Sample records for efficient second-step splicing

  1. RNA splicing process analysis for identifying antisense oligonucleotide inhibitors with padlock probe-based isothermal amplification.

    PubMed

    Ren, Xiaojun; Deng, Ruijie; Wang, Lida; Zhang, Kaixiang; Li, Jinghong

    2017-08-01

    RNA splicing, which mainly involves two transesterification steps, is a fundamental process of gene expression and its abnormal regulation contributes to serious genetic diseases. Antisense oligonucleotides (ASOs) are genetic control tools that can be used to specifically control genes through alteration of the RNA splicing pathway. Despite intensive research, how ASOs or various other factors influence the multiple processes of RNA splicing still remains obscure. This is largely due to an inability to analyze the splicing efficiency of each step in the RNA splicing process with high sensitivity. We addressed this limitation by introducing a padlock probe-based isothermal amplification assay to achieve quantification of the specific products in different splicing steps. With this amplified assay, the roles that ASOs play in RNA splicing inhibition in the first and second steps could be distinguished. We identified that 5'-ASO could block RNA splicing by inhibiting the first step, while 3'-ASO could block RNA splicing by inhibiting the second step. This method provides a versatile tool for assisting efficient ASO design and discovering new splicing modulators and therapeutic drugs.

  2. RNA splicing process analysis for identifying antisense oligonucleotide inhibitors with padlock probe-based isothermal amplification† †Electronic supplementary information (ESI) available: Additional experimental materials, methods, DNA sequences and supplementary figures and tables. See DOI: 10.1039/c7sc01336a Click here for additional data file.

    PubMed Central

    Ren, Xiaojun; Deng, Ruijie; Wang, Lida; Zhang, Kaixiang

    2017-01-01

    RNA splicing, which mainly involves two transesterification steps, is a fundamental process of gene expression and its abnormal regulation contributes to serious genetic diseases. Antisense oligonucleotides (ASOs) are genetic control tools that can be used to specifically control genes through alteration of the RNA splicing pathway. Despite intensive research, how ASOs or various other factors influence the multiple processes of RNA splicing still remains obscure. This is largely due to an inability to analyze the splicing efficiency of each step in the RNA splicing process with high sensitivity. We addressed this limitation by introducing a padlock probe-based isothermal amplification assay to achieve quantification of the specific products in different splicing steps. With this amplified assay, the roles that ASOs play in RNA splicing inhibition in the first and second steps could be distinguished. We identified that 5′-ASO could block RNA splicing by inhibiting the first step, while 3′-ASO could block RNA splicing by inhibiting the second step. This method provides a versatile tool for assisting efficient ASO design and discovering new splicing modulators and therapeutic drugs. PMID:28989608

  3. Modelling reveals kinetic advantages of co-transcriptional splicing.

    PubMed

    Aitken, Stuart; Alexander, Ross D; Beggs, Jean D

    2011-10-01

    Messenger RNA splicing is an essential and complex process for the removal of intron sequences. Whereas the composition of the splicing machinery is mostly known, the kinetics of splicing, the catalytic activity of splicing factors and the interdependency of transcription, splicing and mRNA 3' end formation are less well understood. We propose a stochastic model of splicing kinetics that explains data obtained from high-resolution kinetic analyses of transcription, splicing and 3' end formation during induction of an intron-containing reporter gene in budding yeast. Modelling reveals co-transcriptional splicing to be the most probable and most efficient splicing pathway for the reporter transcripts, due in part to a positive feedback mechanism for co-transcriptional second step splicing. Model comparison is used to assess the alternative representations of reactions. Modelling also indicates the functional coupling of transcription and splicing, because both the rate of initiation of transcription and the probability that step one of splicing occurs co-transcriptionally are reduced, when the second step of splicing is abolished in a mutant reporter.

  4. Boric acid reversibly inhibits the second step of pre-mRNA splicing.

    PubMed

    Shomron, Noam; Ast, Gil

    2003-09-25

    Several approaches have been used to identify the factors involved in mRNA splicing. None of them, however, comprises a straightforward reversible method for inhibiting the second step of splicing using an external reagent other than a chelator. This investigation demonstrates that the addition of boric acid to an in vitro pre-mRNA splicing reaction causes a dose-dependent reversible inhibition effect on the second step of splicing. The mechanism of action does not involve chelation of several metal ions; hindrance of 3' splice-site; or binding to hSlu7. This study presents a novel method for specific reversible inhibition of the second step of pre-mRNA splicing.

  5. CEF1/CDC5 alleles modulate transitions between catalytic conformations of the spliceosome

    PubMed Central

    Query, Charles C.; Konarska, Maria M.

    2012-01-01

    Conformational change within the spliceosome is required between the first and second catalytic steps of pre-mRNA splicing. A prior genetic screen for suppressors of an intron mutant that stalls between the two steps yielded both prp8 and non-prp8 alleles that suppressed second-step splicing defects. We have now identified the strongest non-prp8 suppressors as alleles of the NTC (Prp19 complex) component, CEF1. These cef1 alleles generally suppress second-step defects caused by a variety of intron mutations, mutations in U6 snRNA, or deletion of the second-step protein factor Prp17, and they can activate alternative 3′ splice sites. Genetic and functional interactions between cef1 and prp8 alleles suggest that they modulate the same event(s) in the first-to-second-step transition, most likely by stabilization of the second-step spliceosome; in contrast, alleles of U6 snRNA that also alter this transition modulate a distinct event, most likely by stabilization of the first-step spliceosome. These results implicate a myb-like domain of Cef1/CDC5 in interactions that modulate conformational states of the spliceosome and suggest that alteration of these events affects splice site use, resulting in alternative splicing-like patterns in yeast. PMID:22408182

  6. Rearrangement of competing U2 RNA helices within the spliceosome promotes multiple steps in splicing

    PubMed Central

    Perriman, Rhonda J.; Ares, Manuel

    2007-01-01

    Nuclear pre-messenger RNA (pre-mRNA) splicing requires multiple spliceosomal small nuclear RNA (snRNA) and pre-mRNA rearrangements. Here we reveal a new snRNA conformational switch in which successive roles for two competing U2 helices, stem IIa and stem IIc, promote distinct splicing steps. When stem IIa is stabilized by loss of stem IIc, rapid ATP-independent and Cus2p-insensitive prespliceosome formation occurs. In contrast, hyperstabilized stem IIc improves the first splicing step on aberrant branchpoint pre-mRNAs and rescues temperature-sensitive U6–U57C, a U6 mutation that also suppresses first-step splicing defects of branchpoint mutations. A second, later role for stem IIa is revealed by its suppression of a cold-sensitive allele of the second-step splicing factor PRP16. Our data expose a spliceosomal progression cycle of U2 stem IIa formation, disruption by stem IIc, and then reformation of stem IIa before the second catalytic step. We propose that the competing stem IIa and stem IIc helices are key spliceosomal RNA elements that optimize juxtaposition of the proper reactive sites during splicing. PMID:17403781

  7. Mechanism of protein splicing of the Pyrococcus abyssi lon protease intein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Kevin M.; Schufreider, Ann K.; McGill, Melissa A.

    2010-12-17

    Research highlights: {yields} The Pyrococcus abyssi lon protease intein promotes efficient protein splicing. {yields} Inteins with mutations that interfere with individual steps of splicing do not promote unproductive side reactions. {yields} The intein splices with Lys in place of the highly conserved penultimate His. {yields} The intein is flanked by a Gly-rich region at its C terminus that may increase the efficiency of the third step of splicing, Asn cyclization coupled to peptide bond cleavage. -- Abstract: Protein splicing is a post-translational process by which an intervening polypeptide, the intein, excises itself from the flanking polypeptides, the exteins, coupled tomore » ligation of the exteins. The lon protease of Pyrococcus abyssi (Pab) is interrupted by an intein. When over-expressed as a fusion protein in Escherichia coli, the Pab lon protease intein can promote efficient protein splicing. Mutations that block individual steps of splicing generally do not lead to unproductive side reactions, suggesting that the intein tightly coordinates the splicing process. The intein can splice, although it has Lys in place of the highly conserved penultimate His, and mutants of the intein in the C-terminal region lead to the accumulation of stable branched-ester intermediate.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Enrique, E-mail: ealvarez@cbm.uam.es; Castello, Alfredo; Carrasco, Luis

    Highlights: {yields} Novel role for poliovirus 2A protease as splicing modulator. {yields} Poliovirus 2A protease inhibits the alternative splicing of pre-mRNAs. {yields} Poliovirus 2A protease blocks the second catalytic step of splicing. -- Abstract: Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A{sup pro} modulating the alternative splicing of pre-mRNAs. Expression of 2A{sup pro} potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A{sup pro} abrogate Fas exon 6 skipping, whereas higher levels of proteasemore » fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A{sup pro}, leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A{sup pro} on splicing is to selectively block the second catalytic step.« less

  9. HSA: a heuristic splice alignment tool.

    PubMed

    Bu, Jingde; Chi, Xuebin; Jin, Zhong

    2013-01-01

    RNA-Seq methodology is a revolutionary transcriptomics sequencing technology, which is the representative of Next generation Sequencing (NGS). With the high throughput sequencing of RNA-Seq, we can acquire much more information like differential expression and novel splice variants from deep sequence analysis and data mining. But the short read length brings a great challenge to alignment, especially when the reads span two or more exons. A two steps heuristic splice alignment tool is generated in this investigation. First, map raw reads to reference with unspliced aligner--BWA; second, split initial unmapped reads into three equal short reads (seeds), align each seed to the reference, filter hits, search possible split position of read and extend hits to a complete match. Compare with other splice alignment tools like SOAPsplice and Tophat2, HSA has a better performance in call rate and efficiency, but its results do not as accurate as the other software to some extent. HSA is an effective spliced aligner of RNA-Seq reads mapping, which is available at https://github.com/vlcc/HSA.

  10. Splicing-related genes are alternatively spliced upon changes in ambient temperatures in plants

    PubMed Central

    Bucher, Johan; Lammers, Michiel; Busscher-Lange, Jacqueline; Bonnema, Guusje; Rodenburg, Nicole; Proveniers, Marcel C. G.; Angenent, Gerco C.

    2017-01-01

    Plants adjust their development and architecture to small variations in ambient temperature. In a time in which temperatures are rising world-wide, the mechanism by which plants are able to sense temperature fluctuations and adapt to it, is becoming of special interest. By performing RNA-sequencing on two Arabidopsis accession and one Brassica species exposed to temperature alterations, we showed that alternative splicing is an important mechanism in ambient temperature sensing and adaptation. We found that amongst the differentially alternatively spliced genes, splicing related genes are enriched, suggesting that the splicing machinery itself is targeted for alternative splicing when temperature changes. Moreover, we showed that many different components of the splicing machinery are targeted for ambient temperature regulated alternative splicing. Mutant analysis of a splicing related gene that was differentially spliced in two of the genotypes showed an altered flowering time response to different temperatures. We propose a two-step mechanism where temperature directly influences alternative splicing of the splicing machinery genes, followed by a second step where the altered splicing machinery affects splicing of downstream genes involved in the adaptation to altered temperatures. PMID:28257507

  11. Molecular dissection of step 2 catalysis of yeast pre-mRNA splicing investigated in a purified system

    PubMed Central

    Ohrt, Thomas; Odenwälder, Peter; Dannenberg, Julia; Prior, Mira; Warkocki, Zbigniew; Schmitzová, Jana; Karaduman, Ramazan; Gregor, Ingo; Enderlein, Jörg; Fabrizio, Patrizia; Lührmann, Reinhard

    2013-01-01

    Step 2 catalysis of pre-mRNA splicing entails the excision of the intron and ligation of the 5′ and 3′ exons. The tasks of the splicing factors Prp16, Slu7, Prp18, and Prp22 in the formation of the step 2 active site of the spliceosome and in exon ligation, and the timing of their recruitment, remain poorly understood. Using a purified yeast in vitro splicing system, we show that only the DEAH-box ATPase Prp16 is required for formation of a functional step 2 active site and for exon ligation. Efficient docking of the 3′ splice site (3′SS) to the active site requires only Slu7/Prp18 but not Prp22. Spliceosome remodeling by Prp16 appears to be subtle as only the step 1 factor Cwc25 is dissociated prior to step 2 catalysis, with its release dependent on docking of the 3′SS to the active site and Prp16 action. We show by fluorescence cross-correlation spectroscopy that Slu7/Prp18 and Prp16 bind early to distinct, low-affinity binding sites on the step-1-activated B* spliceosome, which are subsequently converted into high-affinity sites. Our results shed new light on the factor requirements for step 2 catalysis and the dynamics of step 1 and 2 factors during the catalytic steps of splicing. PMID:23685439

  12. Low loss fusion splicing of micron scale silica fibers.

    PubMed

    Pal, Parama; Knox, Wayne H

    2008-07-21

    Tapered micron-sized optical fibers may be important in the future for development of microscale integrated photonic devices. Complex photonic circuits require many devices and a robust technique for interconnection. We demonstrate splicing of four micron diameter step-index air-clad silica microfibers using a CO2 laser. We obtain splice losses lower than 0.3%. Compared with evanescent coupling of microfibers, our splices are more mechanically stable and efficient.

  13. PVT: An Efficient Computational Procedure to Speed up Next-generation Sequence Analysis

    PubMed Central

    2014-01-01

    Background High-throughput Next-Generation Sequencing (NGS) techniques are advancing genomics and molecular biology research. This technology generates substantially large data which puts up a major challenge to the scientists for an efficient, cost and time effective solution to analyse such data. Further, for the different types of NGS data, there are certain common challenging steps involved in analysing those data. Spliced alignment is one such fundamental step in NGS data analysis which is extremely computational intensive as well as time consuming. There exists serious problem even with the most widely used spliced alignment tools. TopHat is one such widely used spliced alignment tools which although supports multithreading, does not efficiently utilize computational resources in terms of CPU utilization and memory. Here we have introduced PVT (Pipelined Version of TopHat) where we take up a modular approach by breaking TopHat’s serial execution into a pipeline of multiple stages, thereby increasing the degree of parallelization and computational resource utilization. Thus we address the discrepancies in TopHat so as to analyze large NGS data efficiently. Results We analysed the SRA dataset (SRX026839 and SRX026838) consisting of single end reads and SRA data SRR1027730 consisting of paired-end reads. We used TopHat v2.0.8 to analyse these datasets and noted the CPU usage, memory footprint and execution time during spliced alignment. With this basic information, we designed PVT, a pipelined version of TopHat that removes the redundant computational steps during ‘spliced alignment’ and breaks the job into a pipeline of multiple stages (each comprising of different step(s)) to improve its resource utilization, thus reducing the execution time. Conclusions PVT provides an improvement over TopHat for spliced alignment of NGS data analysis. PVT thus resulted in the reduction of the execution time to ~23% for the single end read dataset. Further, PVT designed for paired end reads showed an improved performance of ~41% over TopHat (for the chosen data) with respect to execution time. Moreover we propose PVT-Cloud which implements PVT pipeline in cloud computing system. PMID:24894600

  14. PVT: an efficient computational procedure to speed up next-generation sequence analysis.

    PubMed

    Maji, Ranjan Kumar; Sarkar, Arijita; Khatua, Sunirmal; Dasgupta, Subhasis; Ghosh, Zhumur

    2014-06-04

    High-throughput Next-Generation Sequencing (NGS) techniques are advancing genomics and molecular biology research. This technology generates substantially large data which puts up a major challenge to the scientists for an efficient, cost and time effective solution to analyse such data. Further, for the different types of NGS data, there are certain common challenging steps involved in analysing those data. Spliced alignment is one such fundamental step in NGS data analysis which is extremely computational intensive as well as time consuming. There exists serious problem even with the most widely used spliced alignment tools. TopHat is one such widely used spliced alignment tools which although supports multithreading, does not efficiently utilize computational resources in terms of CPU utilization and memory. Here we have introduced PVT (Pipelined Version of TopHat) where we take up a modular approach by breaking TopHat's serial execution into a pipeline of multiple stages, thereby increasing the degree of parallelization and computational resource utilization. Thus we address the discrepancies in TopHat so as to analyze large NGS data efficiently. We analysed the SRA dataset (SRX026839 and SRX026838) consisting of single end reads and SRA data SRR1027730 consisting of paired-end reads. We used TopHat v2.0.8 to analyse these datasets and noted the CPU usage, memory footprint and execution time during spliced alignment. With this basic information, we designed PVT, a pipelined version of TopHat that removes the redundant computational steps during 'spliced alignment' and breaks the job into a pipeline of multiple stages (each comprising of different step(s)) to improve its resource utilization, thus reducing the execution time. PVT provides an improvement over TopHat for spliced alignment of NGS data analysis. PVT thus resulted in the reduction of the execution time to ~23% for the single end read dataset. Further, PVT designed for paired end reads showed an improved performance of ~41% over TopHat (for the chosen data) with respect to execution time. Moreover we propose PVT-Cloud which implements PVT pipeline in cloud computing system.

  15. RNA editing in nascent RNA affects pre-mRNA splicing

    PubMed Central

    Hsiao, Yun-Hua Esther; Bahn, Jae Hoon; Yang, Yun; Lin, Xianzhi; Tran, Stephen; Yang, Ei-Wen; Quinones-Valdez, Giovanni

    2018-01-01

    In eukaryotes, nascent RNA transcripts undergo an intricate series of RNA processing steps to achieve mRNA maturation. RNA editing and alternative splicing are two major RNA processing steps that can introduce significant modifications to the final gene products. By tackling these processes in isolation, recent studies have enabled substantial progress in understanding their global RNA targets and regulatory pathways. However, the interplay between individual steps of RNA processing, an essential aspect of gene regulation, remains poorly understood. By sequencing the RNA of different subcellular fractions, we examined the timing of adenosine-to-inosine (A-to-I) RNA editing and its impact on alternative splicing. We observed that >95% A-to-I RNA editing events occurred in the chromatin-associated RNA prior to polyadenylation. We report about 500 editing sites in the 3′ acceptor sequences that can alter splicing of the associated exons. These exons are highly conserved during evolution and reside in genes with important cellular function. Furthermore, we identified a second class of exons whose splicing is likely modulated by RNA secondary structures that are recognized by the RNA editing machinery. The genome-wide analyses, supported by experimental validations, revealed remarkable interplay between RNA editing and splicing and expanded the repertoire of functional RNA editing sites. PMID:29724793

  16. RNA editing in nascent RNA affects pre-mRNA splicing.

    PubMed

    Hsiao, Yun-Hua Esther; Bahn, Jae Hoon; Yang, Yun; Lin, Xianzhi; Tran, Stephen; Yang, Ei-Wen; Quinones-Valdez, Giovanni; Xiao, Xinshu

    2018-06-01

    In eukaryotes, nascent RNA transcripts undergo an intricate series of RNA processing steps to achieve mRNA maturation. RNA editing and alternative splicing are two major RNA processing steps that can introduce significant modifications to the final gene products. By tackling these processes in isolation, recent studies have enabled substantial progress in understanding their global RNA targets and regulatory pathways. However, the interplay between individual steps of RNA processing, an essential aspect of gene regulation, remains poorly understood. By sequencing the RNA of different subcellular fractions, we examined the timing of adenosine-to-inosine (A-to-I) RNA editing and its impact on alternative splicing. We observed that >95% A-to-I RNA editing events occurred in the chromatin-associated RNA prior to polyadenylation. We report about 500 editing sites in the 3' acceptor sequences that can alter splicing of the associated exons. These exons are highly conserved during evolution and reside in genes with important cellular function. Furthermore, we identified a second class of exons whose splicing is likely modulated by RNA secondary structures that are recognized by the RNA editing machinery. The genome-wide analyses, supported by experimental validations, revealed remarkable interplay between RNA editing and splicing and expanded the repertoire of functional RNA editing sites. © 2018 Hsiao et al.; Published by Cold Spring Harbor Laboratory Press.

  17. cis-acting intron mutations that affect the efficiency of avian retroviral RNA splicing: implication for mechanisms of control.

    PubMed Central

    Katz, R A; Kotler, M; Skalka, A M

    1988-01-01

    The full-length retroviral RNA transcript serves as (i) mRNA for the gag and pol gene products, (ii) genomic RNA that is assembled into progeny virions, and (iii) a pre-mRNA for spliced subgenomic mRNAs. Therefore, a balance of spliced and unspliced RNA is required to generate the appropriate levels of protein and RNA products for virion production. We have introduced an insertion mutation near the avian sarcoma virus env splice acceptor site that results in a significant increase in splicing to form functional env mRNA. The mutant virus is replication defective, but phenotypic revertant viruses that have acquired second-site mutations near the splice acceptor site can be isolated readily. Detailed analysis of one of these viruses revealed that a single nucleotide change at -20 from the splice acceptor site, within the original mutagenic insert, was sufficient to restore viral growth and significantly decrease splicing efficiency compared with the original mutant and wild-type viruses. Thus, minor sequence alterations near the env splice acceptor site can produce major changes in the balance of spliced and unspliced RNAs. Our results suggest a mechanism of control in which splicing is modulated by cis-acting sequences at the env splice acceptor site. Furthermore, this retroviral system provides a powerful genetic method for selection and analysis of mutations that affect splicing control. Images PMID:2839694

  18. A conformational switch in PRP8 mediates metal ion coordination that promotes pre-mRNA exon ligation

    PubMed Central

    Schellenberg, Matthew J.; Wu, Tao; Ritchie, Dustin B.; Fica, Sebastian; Staley, Jonathan P.; Atta, Karim A.; LaPointe, Paul; MacMillan, Andrew M.

    2013-01-01

    SUMMARY Splicing of pre-mRNAs in eukaryotes is catalyzed by the spliceosome a large RNA–protein metalloenzyme. The catalytic center of the spliceosome involves a structure comprised of the U2 and U6 snRNAs and includes a metal bound by U6 snRNA. The precise architecture of the splicesome active site however, including the question of whether it includes protein components, remains unresolved. A wealth of evidence places the protein PRP8 at the heart of the spliceosome through assembly and catalysis. Here we provide evidence that the RNase H domain of PRP8 undergoes a conformational switch between the two steps of splicing rationalizing yeast prp8 alleles promoting either the first or second step. We also show that this switch unmasks a metal-binding site involved in the second step. Together these data establish that PRP8 is a metalloprotein that promotes exon ligation within the spliceosome. PMID:23686287

  19. Analysis of splicing in vitro using extracts of Saccharomyces cerevisiae.

    PubMed

    Ares, Manuel

    2013-10-01

    In vitro splicing studies are a powerful means of investigating the requirements and mechanisms of action of the many components of the splicing apparatus. The ability to add and subtract components, purify activities, and reconstitute activity, as well as to expose the apparatus to chemical probes of various types, allows a far more mechanistically detailed view of the process to emerge than is available from genetic or in vivo studies alone. Two kinds of activities are assayed during in vitro splicing. The first concerns the chemical conversion of the substrate pre-mRNA into splicing intermediates and products and is usually visualized using a labeled substrate followed by separation on a denaturing gel. The second concerns the assembly of noncovalent complexes between the substrate and the myriad components of the splicing apparatus. This is also visualized using a labeled substrate, but the separation of complexes is achieved using native gel electrophoresis or gradient sedimentation. In this protocol, we describe the splicing reaction and its preparation for analysis by denaturing gels and native splicing complex gels. We also provide conditions for depletion of ATP, a critical cofactor that is hydrolyzed during numerous key steps in spliceosome assembly and splicing progression.

  20. Numerical Analysis on Tensile Properties of Grout-filled Splice Sleeve Rebars under ISO 834 Standard Fire

    NASA Astrophysics Data System (ADS)

    Liu, Yong Jun; Li, Chao; Zhou, When Jun

    2018-06-01

    This paper presents some numerical simulation results of tensile properties of reinforcing bars spliced by grout-filled coupling sleeves under fire conditions to identify the effect of load ratio on fire resistance time of spliced reinforcing bars, which provide a useful base for predicting structural behaviors of pre-cast reinforced concrete buildings in fires. A spliced rebar system investigated in this paper consists of two equal-diameter steel reinforcing bars with 25mm diameter and a straight coupling sleeve with 50mm outer and 45mm inner diameters. As a result, the thickness of grout between steel bars and sleeves are 20mm. Firstly, the temperature distributions in steel bars connected by grout- filled coupling sleeves exposed to ISO 834 standard fire were calculated utilizing finite element analysis software ANSYS. Secondly, the stress changes in heated steel bars connected by grout-filled coupling sleeves under different constant tensile loads were calculated step by step until the rebar system failed due to fire. Thus, the fire resistant time of rebar spliced by grout-filled coupling sleeves under different axial tensile loads can be determined, further, the relationship between fire resistance time and axial tensile loads ratio can could be obtained. Finally, the fire resistant times versus axial tensile load ratios curve of grout-filled splice sleeve rebars exposed to ISO 834 standard fire is presented.

  1. FineSplice, enhanced splice junction detection and quantification: a novel pipeline based on the assessment of diverse RNA-Seq alignment solutions.

    PubMed

    Gatto, Alberto; Torroja-Fungairiño, Carlos; Mazzarotto, Francesco; Cook, Stuart A; Barton, Paul J R; Sánchez-Cabo, Fátima; Lara-Pezzi, Enrique

    2014-04-01

    Alternative splicing is the main mechanism governing protein diversity. The recent developments in RNA-Seq technology have enabled the study of the global impact and regulation of this biological process. However, the lack of standardized protocols constitutes a major bottleneck in the analysis of alternative splicing. This is particularly important for the identification of exon-exon junctions, which is a critical step in any analysis workflow. Here we performed a systematic benchmarking of alignment tools to dissect the impact of design and method on the mapping, detection and quantification of splice junctions from multi-exon reads. Accordingly, we devised a novel pipeline based on TopHat2 combined with a splice junction detection algorithm, which we have named FineSplice. FineSplice allows effective elimination of spurious junction hits arising from artefactual alignments, achieving up to 99% precision in both real and simulated data sets and yielding superior F1 scores under most tested conditions. The proposed strategy conjugates an efficient mapping solution with a semi-supervised anomaly detection scheme to filter out false positives and allows reliable estimation of expressed junctions from the alignment output. Ultimately this provides more accurate information to identify meaningful splicing patterns. FineSplice is freely available at https://sourceforge.net/p/finesplice/.

  2. Saturation mutagenesis reveals manifold determinants of exon definition.

    PubMed

    Ke, Shengdong; Anquetil, Vincent; Zamalloa, Jorge Rojas; Maity, Alisha; Yang, Anthony; Arias, Mauricio A; Kalachikov, Sergey; Russo, James J; Ju, Jingyue; Chasin, Lawrence A

    2018-01-01

    To illuminate the extent and roles of exonic sequences in the splicing of human RNA transcripts, we conducted saturation mutagenesis of a 51-nt internal exon in a three-exon minigene. All possible single and tandem dinucleotide substitutions were surveyed. Using high-throughput genetics, 5560 minigene molecules were assayed for splicing in human HEK293 cells. Up to 70% of mutations produced substantial (greater than twofold) phenotypes of either increased or decreased splicing. Of all predicted secondary structural elements, only a single 15-nt stem-loop showed a strong correlation with splicing, acting negatively. The in vitro formation of exon-protein complexes between the mutant molecules and proteins associated with spliceosome formation (U2AF35, U2AF65, U1A, and U1-70K) correlated with splicing efficiencies, suggesting exon definition as the step affected by most mutations. The measured relative binding affinities of dozens of human RNA binding protein domains as reported in the CISBP-RNA database were found to correlate either positively or negatively with splicing efficiency, more than could fit on the 51-nt test exon simultaneously. The large number of these functional protein binding correlations point to a dynamic and heterogeneous population of pre-mRNA molecules, each responding to a particular collection of binding proteins. © 2018 Ke et al.; Published by Cold Spring Harbor Laboratory Press.

  3. High-efficiency (6 + 1) × 1 pump-signal combiner based on low-deformation and high-precision alignment fabrication

    NASA Astrophysics Data System (ADS)

    Zou, Shuzhen; Chen, Han; Yu, Haijuan; Sun, Jing; Zhao, Pengfei; Lin, Xuechun

    2017-12-01

    We demonstrate a new method for fabricating a (6 + 1) × 1 pump-signal combiner based on the reduction of signal fiber diameter by corrosion. This method avoids the mismatch loss of the splice between the signal fiber and the output fiber caused by the signal fiber taper processing. The optimum radius of the corroded signal fiber was calculated according to the analysis of the influence of the cladding thickness on the laser propagating in the fiber core. Besides, we also developed a two-step splicing method to complete the high-precision alignment between the signal fiber core and the output fiber core. A high-efficiency (6 + 1) × 1 pump-signal combiner was produced with an average pump power transmission efficiency of 98.0% and a signal power transmission efficiency of 97.7%, which is well suitable for application to high-power fiber laser system.

  4. Beyond tRNA cleavage: novel essential function for yeast tRNA splicing endonuclease unrelated to tRNA processing

    PubMed Central

    Dhungel, Nripesh; Hopper, Anita K.

    2012-01-01

    Pre-tRNA splicing is an essential process in all eukaryotes. In yeast and vertebrates, the enzyme catalyzing intron removal from pre-tRNA is a heterotetrameric complex (splicing endonuclease [SEN] complex). Although the SEN complex is conserved, the subcellular location where pre-tRNA splicing occurs is not. In yeast, the SEN complex is located at the cytoplasmic surface of mitochondria, whereas in vertebrates, pre-tRNA splicing is nuclear. We engineered yeast to mimic the vertebrate cell biology and demonstrate that all three steps of pre-tRNA splicing, as well as tRNA nuclear export and aminoacylation, occur efficiently when the SEN complex is nuclear. However, nuclear pre-tRNA splicing fails to complement growth defects of cells with defective mitochondrial-located splicing, suggesting that the yeast SEN complex surprisingly serves a novel and essential function in the cytoplasm that is unrelated to tRNA splicing. The novel function requires all four SEN complex subunits and the catalytic core. A subset of pre-rRNAs accumulates when the SEN complex is restricted to the nucleus, indicating that the SEN complex moonlights in rRNA processing. Thus, findings suggest that selection for the subcellular distribution of the SEN complex may reside not in its canonical, but rather in a novel, activity. PMID:22391451

  5. Targeting RNA Splicing for Disease Therapy

    PubMed Central

    Havens, Mallory A.; Duelli, Dominik M.

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics. PMID:23512601

  6. Targeting RNA splicing for disease therapy.

    PubMed

    Havens, Mallory A; Duelli, Dominik M; Hastings, Michelle L

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for the expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics. Copyright © 2013 John Wiley & Sons, Ltd.

  7. [Genetic diagnostics of pathogenic splicing abnormalities in the clinical laboratory--pitfalls and screening approaches].

    PubMed

    Niimi, Hideki; Ogawa, Tomomi; Note, Rhougou; Hayashi, Shirou; Ueno, Tomohiro; Harada, Kenu; Uji, Yoshinori; Kitajima, Isao

    2010-12-01

    In recent years, genetic diagnostics of pathogenic splicing abnormalities are increasingly recognized as critically important in the clinical genetic diagnostics. It is reported that approximately 10% of pathogenic mutations causing human inherited diseases are splicing mutations. Nonetheless, it is still difficult to identify splicing abnormalities in routine genetic diagnostic settings. Here, we studied two different kinds of cases with splicing abnormalities. The first case is a protein S deficiency. Nucleotide analyses revealed that the proband had a previously reported G to C substitution in the invariant AG dinucleotide at the splicing acceptor site of intronl/exon2, which produces multiple splicing abnormalities resulting in protein S deficiency. The second case is an antithrombin (AT) deficiency. This proband had a previously reported G to A substitution, at nucleotide position 9788 in intron 4, 14 bp in front of exon 5, which created a de novo exon 5 splice site and resulted in AT deficiency. From a practical standpoint, we discussed the pitfalls, attentions, and screening approaches in genetic diagnostics of pathogenic splicing abnormalities. Due to the difficulty with full-length sequence analysis of introns, and the lack of RNA samples, splicing mutations may escape identification. Although current genetic testing remains to be improved, to screen for splicing abnormalities more efficiently, it is significant to use an appropriate combination of various approaches such as DNA and/or RNA samples, splicing mutation databases, bioinformatic tools to detect splice sites and cis-regulatory elements, and in vitro and/or in vivo experimentally methods as needed.

  8. Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing

    PubMed Central

    Munding, Elizabeth M.; Shiue, Lily; Katzman, Sol; Donohue, John Paul; Ares, Manuel

    2013-01-01

    Summary During meiosis in yeast, global splicing efficiency increases and then decreases. Here we provide evidence that splicing improves due to reduced competition for the splicing machinery. The timing of this regulation corresponds to repression and reactivation of ribosomal protein genes (RPGs) during meiosis. In vegetative cells RPG repression by rapamycin treatment also increases splicing efficiency. Down-regulation of the RPG-dedicated transcription factor gene IFH1 genetically suppresses two spliceosome mutations prp11-1 and prp4-1, and globally restores splicing efficiency in prp4-1 cells. We conclude that the splicing apparatus is limiting and pre-mRNAs compete. Splicing efficiency of a pre-mRNA therefore depends not just on its own concentration and affinity for limiting splicing factor(s) but also on those of competing pre-mRNAs. Competition between RNAs for limiting RNA processing factors appears to be a general condition in eukaryotic cells important for function of a variety of post-transcriptional control mechanisms including miRNA repression, polyadenylation and splicing. PMID:23891561

  9. The Mitochondrial Genome of the Prasinophyte Prasinoderma coloniale Reveals Two Trans-Spliced Group I Introns in the Large Subunit rRNA Gene

    PubMed Central

    Pombert, Jean-François; Otis, Christian; Turmel, Monique; Lemieux, Claude

    2013-01-01

    Organelle genes are often interrupted by group I and or group II introns. Splicing of these mobile genetic occurs at the RNA level via serial transesterification steps catalyzed by the introns'own tertiary structures and, sometimes, with the help of external factors. These catalytic ribozymes can be found in cis or trans configuration, and although trans-arrayed group II introns have been known for decades, trans-spliced group I introns have been reported only recently. In the course of sequencing the complete mitochondrial genome of the prasinophyte picoplanktonic green alga Prasinoderma coloniale CCMP 1220 (Prasinococcales, clade VI), we uncovered two additional cases of trans-spliced group I introns. Here, we describe these introns and compare the 54,546 bp-long mitochondrial genome of Prasinoderma with those of four other prasinophytes (clades II, III and V). This comparison underscores the highly variable mitochondrial genome architecture in these ancient chlorophyte lineages. Both Prasinoderma trans-spliced introns reside within the large subunit rRNA gene (rnl) at positions where cis-spliced relatives, often containing homing endonuclease genes, have been found in other organelles. In contrast, all previously reported trans-spliced group I introns occur in different mitochondrial genes (rns or coxI). Each Prasinoderma intron is fragmented into two pieces, forming at the RNA level a secondary structure that resembles those of its cis-spliced counterparts. As observed for other trans-spliced group I introns, the breakpoint of the first intron maps to the variable loop L8, whereas that of the second is uniquely located downstream of P9.1. The breakpoint In each Prasinoderma intron corresponds to the same region where the open reading frame (ORF) occurs when present in cis-spliced orthologs. This correlation between the intron breakpoint and the ORF location in cis-spliced orthologs also holds for other trans-spliced introns; we discuss the possible implications of this interesting observation for trans-splicing of group I introns. PMID:24386369

  10. Specificity in endoplasmic reticulum-stress signaling in yeast entails a step-wise engagement of HAC1 mRNA to clusters of the stress sensor Ire1.

    PubMed

    van Anken, Eelco; Pincus, David; Coyle, Scott; Aragón, Tomás; Osman, Christof; Lari, Federica; Gómez Puerta, Silvia; Korennykh, Alexei V; Walter, Peter

    2014-12-30

    Insufficient protein-folding capacity in the endoplasmic reticulum (ER) induces the unfolded protein response (UPR). In the ER lumen, accumulation of unfolded proteins activates the transmembrane ER-stress sensor Ire1 and drives its oligomerization. In the cytosol, Ire1 recruits HAC1 mRNA, mediating its non-conventional splicing. The spliced mRNA is translated into Hac1, the key transcription activator of UPR target genes that mitigate ER-stress. In this study, we report that oligomeric assembly of the ER-lumenal domain is sufficient to drive Ire1 clustering. Clustering facilitates Ire1's cytosolic oligomeric assembly and HAC1 mRNA docking onto a positively charged motif in Ire1's cytosolic linker domain that tethers the kinase/RNase to the transmembrane domain. By the use of a synthetic bypass, we demonstrate that mRNA docking per se is a pre-requisite for initiating Ire1's RNase activity and, hence, splicing. We posit that such step-wise engagement between Ire1 and its mRNA substrate contributes to selectivity and efficiency in UPR signaling.

  11. SASD: the Synthetic Alternative Splicing Database for identifying novel isoform from proteomics

    PubMed Central

    2013-01-01

    Background Alternative splicing is an important and widespread mechanism for generating protein diversity and regulating protein expression. High-throughput identification and analysis of alternative splicing in the protein level has more advantages than in the mRNA level. The combination of alternative splicing database and tandem mass spectrometry provides a powerful technique for identification, analysis and characterization of potential novel alternative splicing protein isoforms from proteomics. Therefore, based on the peptidomic database of human protein isoforms for proteomics experiments, our objective is to design a new alternative splicing database to 1) provide more coverage of genes, transcripts and alternative splicing, 2) exclusively focus on the alternative splicing, and 3) perform context-specific alternative splicing analysis. Results We used a three-step pipeline to create a synthetic alternative splicing database (SASD) to identify novel alternative splicing isoforms and interpret them at the context of pathway, disease, drug and organ specificity or custom gene set with maximum coverage and exclusive focus on alternative splicing. First, we extracted information on gene structures of all genes in the Ensembl Genes 71 database and incorporated the Integrated Pathway Analysis Database. Then, we compiled artificial splicing transcripts. Lastly, we translated the artificial transcripts into alternative splicing peptides. The SASD is a comprehensive database containing 56,630 genes (Ensembl gene IDs), 95,260 transcripts (Ensembl transcript IDs), and 11,919,779 Alternative Splicing peptides, and also covering about 1,956 pathways, 6,704 diseases, 5,615 drugs, and 52 organs. The database has a web-based user interface that allows users to search, display and download a single gene/transcript/protein, custom gene set, pathway, disease, drug, organ related alternative splicing. Moreover, the quality of the database was validated with comparison to other known databases and two case studies: 1) in liver cancer and 2) in breast cancer. Conclusions The SASD provides the scientific community with an efficient means to identify, analyze, and characterize novel Exon Skipping and Intron Retention protein isoforms from mass spectrometry and interpret them at the context of pathway, disease, drug and organ specificity or custom gene set with maximum coverage and exclusive focus on alternative splicing. PMID:24267658

  12. RNA Structure Design Improves Activity and Specificity of trans-Splicing-Triggered Cell Death in a Suicide Gene Therapy Approach.

    PubMed

    Poddar, Sushmita; Loh, Pei She; Ooi, Zi Hao; Osman, Farhana; Eul, Joachim; Patzel, Volker

    2018-06-01

    Spliceosome-mediated RNA trans-splicing enables correction or labeling of pre-mRNA, but therapeutic applications are hampered by issues related to the activity and target specificity of trans-splicing RNA (tsRNA). We employed computational RNA structure design to improve both on-target activity and specificity of tsRNA in a herpes simplex virus thymidine kinase/ganciclovir suicide gene therapy approach targeting alpha fetoprotein (AFP), a marker of hepatocellular carcinoma (HCC) or human papillomavirus type 16 (HPV-16) pre-mRNA. While unstructured, mismatched target binding domains significantly improved 3' exon replacement (3'ER), 5' exon replacement (5'ER) correlated with the thermodynamic stability of the tsRNA 3' end. Alternative on-target trans-splicing was found to be a prevalent event. The specificity of trans-splicing with the intended target splice site was improved 10-fold by designing tsRNA that harbors secondary target binding domains shielding alternative on-target and blinding off-target splicing events. Such rationally designed suicide RNAs efficiently triggered death of HPV-16-transduced or hepatoblastoma-derived human tissue culture cells without evidence for off-target cell killing. Highest cell death activities were observed with novel dual-targeting tsRNAs programmed for trans-splicing toward AFP and a second HCC pre-mRNA biomarker. Our observations suggest trans-splicing represents a promising approach to suicide gene therapy. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. SRSF3 represses the expression of PDCD4 protein by coordinated regulation of alternative splicing, export and translation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Seung Kuk; Jeong, Sunjoo, E-mail: sjsj@dankook.ac.kr

    2016-02-05

    Gene expression is regulated at multiple steps, such as transcription, splicing, export, degradation and translation. Considering diverse roles of SR proteins, we determined whether the tumor-related splicing factor SRSF3 regulates the expression of the tumor-suppressor protein, PDCD4, at multiple steps. As we have reported previously, knockdown of SRSF3 increased the PDCD4 protein level in SW480 colon cancer cells. More interestingly, here we showed that the alternative splicing and the nuclear export of minor isoforms of pdcd4 mRNA were repressed by SRSF3, but the translation step was unaffected. In contrast, only the translation step of the major isoform of pdcd4 mRNAmore » was repressed by SRSF3. Therefore, overexpression of SRSF3 might be relevant to the repression of all isoforms of PDCD4 protein levels in most types of cancer cell. We propose that SRSF3 could act as a coordinator of the expression of PDCD4 protein via two mechanisms on two alternatively spliced mRNA isoforms.« less

  14. Splicing of designer exons informs a biophysical model for exon definition

    PubMed Central

    Arias, Mauricio A.; Chasin, Lawrence A.

    2015-01-01

    Pre-mRNA molecules in humans contain mostly short internal exons flanked by longer introns. To explain the removal of such introns, exon recognition instead of intron recognition has been proposed. We studied this exon definition using designer exons (DEs) made up of three prototype modules of our own design: an exonic splicing enhancer (ESE), an exonic splicing silencer (ESS), and a Reference Sequence (R) predicted to be neither. Each DE was examined as the central exon in a three-exon minigene. DEs made of R modules showed a sharp size dependence, with exons shorter than 14 nt and longer than 174 nt splicing poorly. Changing the strengths of the splice sites improved longer exon splicing but worsened shorter exon splicing, effectively displacing the curve to the right. For the ESE we found, unexpectedly, that its enhancement efficiency was independent of its position within the exon. For the ESS we found a step-wise positional increase in its effects; it was most effective at the 3′ end of the exon. To apply these results quantitatively, we developed a biophysical model for exon definition of internal exons undergoing cotranscriptional splicing. This model features commitment to inclusion before the downstream exon is synthesized and competition between skipping and inclusion fates afterward. Collision of both exon ends to form an exon definition complex was incorporated to account for the effect of size; ESE/ESS effects were modeled on the basis of stabilization/destabilization. This model accurately predicted the outcome of independent experiments on more complex DEs that combined ESEs and ESSs. PMID:25492963

  15. Definition of Proteasomal Peptide Splicing Rules for High-Efficiency Spliced Peptide Presentation by MHC Class I Molecules

    PubMed Central

    Berkers, Celia R.; de Jong, Annemieke; Schuurman, Karianne G.; Linnemann, Carsten; Meiring, Hugo D.; Janssen, Lennert; Neefjes, Jacques J.; Schumacher, Ton N. M.; Rodenko, Boris

    2015-01-01

    Peptide splicing, in which two distant parts of a protein are excised and then ligated to form a novel peptide, can generate unique MHC class I–restricted responses. Because these peptides are not genetically encoded and the rules behind proteasomal splicing are unknown, it is difficult to predict these spliced Ags. In the current study, small libraries of short peptides were used to identify amino acid sequences that affect the efficiency of this transpeptidation process. We observed that splicing does not occur at random, neither in terms of the amino acid sequences nor through random splicing of peptides from different sources. In contrast, splicing followed distinct rules that we deduced and validated both in vitro and in cells. Peptide ligation was quantified using a model peptide and demonstrated to occur with up to 30% ligation efficiency in vitro, provided that optimal structural requirements for ligation were met by both ligating partners. In addition, many splicing products could be formed from a single protein. Our splicing rules will facilitate prediction and detection of new spliced Ags to expand the peptidome presented by MHC class I Ags. PMID:26401003

  16. Evolution of introns in the archaeal world.

    PubMed

    Tocchini-Valentini, Giuseppe D; Fruscoloni, Paolo; Tocchini-Valentini, Glauco P

    2011-03-22

    The self-splicing group I introns are removed by an autocatalytic mechanism that involves a series of transesterification reactions. They require RNA binding proteins to act as chaperones to correctly fold the RNA into an active intermediate structure in vivo. Pre-tRNA introns in Bacteria and in higher eukaryote plastids are typical examples of self-splicing group I introns. By contrast, two striking features characterize RNA splicing in the archaeal world. First, self-splicing group I introns cannot be found, to this date, in that kingdom. Second, the RNA splicing scenario in Archaea is uniform: All introns, whether in pre-tRNA or elsewhere, are removed by tRNA splicing endonucleases. We suggest that in Archaea, the protein recruited for splicing is the preexisting tRNA splicing endonuclease and that this enzyme, together with the ligase, takes over the task of intron removal in a more efficient fashion than the ribozyme. The extinction of group I introns in Archaea would then be a consequence of recruitment of the tRNA splicing endonuclease. We deal here with comparative genome analysis, focusing specifically on the integration of introns into genes coding for 23S rRNA molecules, and how this newly acquired intron has to be removed to regenerate a functional RNA molecule. We show that all known oligomeric structures of the endonuclease can recognize and cleave a ribosomal intron, even when the endonuclease derives from a strain lacking rRNA introns. The persistence of group I introns in mitochondria and chloroplasts would be explained by the inaccessibility of these introns to the endonuclease.

  17. An intein with genetically selectable markers provides a new approach to internally label proteins with GFP.

    PubMed

    Ramsden, Richard; Arms, Luther; Davis, Trisha N; Muller, Eric G D

    2011-06-27

    Inteins are proteins that catalyze their own removal from within larger precursor proteins. In the process they splice the flanking protein sequences, termed the N-and C-terminal exteins. Large inteins frequently have a homing endonuclease that is involved in maintaining the intein in the host. Splicing and nuclease activity are independent and distinct domains in the folded structure. We show here that other biochemical activities can be incorporated into an intein in place of the endonuclease without affecting splicing and that these activities can provide genetic selection for the intein. We have coupled such a genetically marked intein with GFP as the N-terminal extein to create a cassette to introduce GFP within the interior of a targeted protein. The Pch PRP8 mini-intein of Penicillium chrysogenum was modified to include: 1) aminoglycoside phosphotransferase; 2) imidazoleglycerol-phosphate dehydratase, His5 from S. pombe ; 3) hygromycin B phosphotransferase; and 4) the transcriptional activator LexA-VP16. The proteins were inserted at the site of the lost endonuclease. When expressed in E. coli, all of the modified inteins spliced at high efficiency. Splicing efficiency was also greater than 96% when expressed from a plasmid in S. cerevisiae. In addition the inteins conferred either G418 or hygromycin resistance, or histidine or leucine prototropy, depending on the inserted marker and the yeast genetic background. DNA encoding the marked inteins coupled to GFP as the N-terminal extein was PCR amplified with ends homologous to an internal site in the yeast calmodulin gene CMD1. The DNA was transformed into yeast and integrants obtained by direct selection for the intein's marker. The His5-marked intein yielded a fully functional calmodulin that was tagged with GFP within its central linker. Inteins continue to show their flexibility as tools in molecular biology. The Pch PRP8 intein can successfully tolerate a variety of genetic markers and still retain high splicing efficiency. We have shown that a genetically marked intein can be used to insert GFP in one-step within a target protein in vivo.

  18. Genetic and physical interactions between factors involved in both cell cycle progression and pre-mRNA splicing in Saccharomyces cerevisiae.

    PubMed Central

    Ben-Yehuda, S; Dix, I; Russell, C S; McGarvey, M; Beggs, J D; Kupiec, M

    2000-01-01

    The PRP17/CDC40 gene of Saccharomyces cerevisiae functions in two different cellular processes: pre-mRNA splicing and cell cycle progression. The Prp17/Cdc40 protein participates in the second step of the splicing reaction and, in addition, prp17/cdc40 mutant cells held at the restrictive temperature arrest in the G2 phase of the cell cycle. Here we describe the identification of nine genes that, when mutated, show synthetic lethality with the prp17/cdc40Delta allele. Six of these encode known splicing factors: Prp8p, Slu7p, Prp16p, Prp22p, Slt11p, and U2 snRNA. The other three, SYF1, SYF2, and SYF3, represent genes also involved in cell cycle progression and in pre-mRNA splicing. Syf1p and Syf3p are highly conserved proteins containing several copies of a repeated motif, which we term RTPR. This newly defined motif is shared by proteins involved in RNA processing and represents a subfamily of the known TPR (tetratricopeptide repeat) motif. Using two-hybrid interaction screens and biochemical analysis, we show that the SYF gene products interact with each other and with four other proteins: Isy1p, Cef1p, Prp22p, and Ntc20p. We discuss the role played by these proteins in splicing and cell cycle progression. PMID:11102353

  19. Genetic and physical interactions between factors involved in both cell cycle progression and pre-mRNA splicing in Saccharomyces cerevisiae.

    PubMed

    Ben-Yehuda, S; Dix, I; Russell, C S; McGarvey, M; Beggs, J D; Kupiec, M

    2000-12-01

    The PRP17/CDC40 gene of Saccharomyces cerevisiae functions in two different cellular processes: pre-mRNA splicing and cell cycle progression. The Prp17/Cdc40 protein participates in the second step of the splicing reaction and, in addition, prp17/cdc40 mutant cells held at the restrictive temperature arrest in the G2 phase of the cell cycle. Here we describe the identification of nine genes that, when mutated, show synthetic lethality with the prp17/cdc40Delta allele. Six of these encode known splicing factors: Prp8p, Slu7p, Prp16p, Prp22p, Slt11p, and U2 snRNA. The other three, SYF1, SYF2, and SYF3, represent genes also involved in cell cycle progression and in pre-mRNA splicing. Syf1p and Syf3p are highly conserved proteins containing several copies of a repeated motif, which we term RTPR. This newly defined motif is shared by proteins involved in RNA processing and represents a subfamily of the known TPR (tetratricopeptide repeat) motif. Using two-hybrid interaction screens and biochemical analysis, we show that the SYF gene products interact with each other and with four other proteins: Isy1p, Cef1p, Prp22p, and Ntc20p. We discuss the role played by these proteins in splicing and cell cycle progression.

  20. Enantioselective Total Syntheses of FR901464 and Spliceostatin A and Evaluation of Splicing Activity of Key Derivatives

    PubMed Central

    2015-01-01

    FR901464 (1) and spliceostatin A (2) are potent inhibitors of spliceosomes. These compounds have shown remarkable anticancer activity against multiple human cancer cell lines. Herein, we describe efficient, enantioselective syntheses of FR901464, spliceostatin A, six corresponding diastereomers and an evaluation of their splicing activity. Syntheses of spliceostatin A and FR901464 were carried out in the longest linear sequence of 9 and 10 steps, respectively. To construct the highly functionalized tetrahydropyran A-ring, we utilized CBS reduction, Achmatowicz rearrangement, Michael addition, and reductive amination as key steps. The remarkable diastereoselectivity of the Michael addition was specifically demonstrated with different substrates under various reaction conditions. The side chain B was prepared from an optically active alcohol, followed by acetylation and hydrogenation over Lindlar’s catalyst. The other densely functionalized tetrahydropyran C-ring was derived from readily available (R)-isopropylidene glyceraldehyde through a route featuring 1,2-addition, cyclic ketalization, and regioselective epoxidation. These fragments were coupled together at a late stage through amidation and cross-metathesis in a convergent manner. Six key diastereomers were then synthesized to probe the importance of specific stereochemical features of FR901464 and spliceostatin A, with respect to their in vitro splicing activity. PMID:24873648

  1. Preparation of cell-free splicing extracts from Saccharomyces cerevisiae.

    PubMed

    Ares, Manuel

    2013-10-01

    Much of our understanding of the mechanism of splicing comes from the analysis of cell extracts able to carry out splicing complex formation and splicing reactions in vitro using exogenously added synthetic model pre-mRNA transcripts. This protocol describes the preparation of whole-cell extracts from the budding yeast Saccharomyces cerevisiae. These extracts can be used to dissect the biochemical steps of the splicing reaction and to determine the macromolecules, cofactors, and substrate features necessary for successful splicing.

  2. Functions for fission yeast splicing factors SpSlu7 and SpPrp18 in alternative splice-site choice and stress-specific regulated splicing.

    PubMed

    Melangath, Geetha; Sen, Titash; Kumar, Rakesh; Bawa, Pushpinder; Srinivasan, Subha; Vijayraghavan, Usha

    2017-01-01

    Budding yeast spliceosomal factors ScSlu7 and ScPrp18 interact and mediate intron 3'ss choice during second step pre-mRNA splicing. The fission yeast genome with abundant multi-intronic transcripts, degenerate splice signals and SR proteins is an apt unicellular fungal model to deduce roles for core spliceosomal factors in alternative splice-site choice, intron retention and to study the cellular implications of regulated splicing. From our custom microarray data we deduce a stringent reproducible subset of S. pombe alternative events. We examined the role of factors SpSlu7 or SpPrp18 for these splice events and investigated the relationship to growth phase and stress. Wild-type log and stationary phase cells showed ats1+ exon 3 skipped and intron 3 retained transcripts. Interestingly the non-consensus 5'ss in ats1+ intron 3 caused SpSlu7 and SpPrp18 dependent intron retention. We validated the use of an alternative 5'ss in dtd1+ intron 1 and of an upstream alternative 3'ss in DUF3074 intron 1. The dtd1+ intron 1 non-canonical 5'ss yielded an alternative mRNA whose levels increased in stationary phase. Utilization of dtd1+ intron 1 sub-optimal 5' ss required functional SpPrp18 and SpSlu7 while compromise in SpSlu7 function alone hampered the selection of the DUF3074 intron 1 non canonical 3'ss. We analysed the relative abundance of these splice isoforms during mild thermal, oxidative and heavy metal stress and found stress-specific splice patterns for ats1+ and DUF3074 intron 1 some of which were SpSlu7 and SpPrp18 dependent. By studying ats1+ splice isoforms during compromised transcription elongation rates in wild-type, spslu7-2 and spprp18-5 mutant cells we found dynamic and intron context-specific effects in splice-site choice. Our work thus shows the combinatorial effects of splice site strength, core splicing factor functions and transcription elongation kinetics to dictate alternative splice patterns which in turn serve as an additional recourse of gene regulation in fission yeast.

  3. Functions for fission yeast splicing factors SpSlu7 and SpPrp18 in alternative splice-site choice and stress-specific regulated splicing

    PubMed Central

    Kumar, Rakesh; Bawa, Pushpinder; Srinivasan, Subha

    2017-01-01

    Budding yeast spliceosomal factors ScSlu7 and ScPrp18 interact and mediate intron 3’ss choice during second step pre-mRNA splicing. The fission yeast genome with abundant multi-intronic transcripts, degenerate splice signals and SR proteins is an apt unicellular fungal model to deduce roles for core spliceosomal factors in alternative splice-site choice, intron retention and to study the cellular implications of regulated splicing. From our custom microarray data we deduce a stringent reproducible subset of S. pombe alternative events. We examined the role of factors SpSlu7 or SpPrp18 for these splice events and investigated the relationship to growth phase and stress. Wild-type log and stationary phase cells showed ats1+ exon 3 skipped and intron 3 retained transcripts. Interestingly the non-consensus 5’ss in ats1+ intron 3 caused SpSlu7 and SpPrp18 dependent intron retention. We validated the use of an alternative 5’ss in dtd1+ intron 1 and of an upstream alternative 3’ss in DUF3074 intron 1. The dtd1+ intron 1 non-canonical 5’ss yielded an alternative mRNA whose levels increased in stationary phase. Utilization of dtd1+ intron 1 sub-optimal 5’ ss required functional SpPrp18 and SpSlu7 while compromise in SpSlu7 function alone hampered the selection of the DUF3074 intron 1 non canonical 3’ss. We analysed the relative abundance of these splice isoforms during mild thermal, oxidative and heavy metal stress and found stress-specific splice patterns for ats1+ and DUF3074 intron 1 some of which were SpSlu7 and SpPrp18 dependent. By studying ats1+ splice isoforms during compromised transcription elongation rates in wild-type, spslu7-2 and spprp18-5 mutant cells we found dynamic and intron context-specific effects in splice-site choice. Our work thus shows the combinatorial effects of splice site strength, core splicing factor functions and transcription elongation kinetics to dictate alternative splice patterns which in turn serve as an additional recourse of gene regulation in fission yeast. PMID:29236736

  4. Improving the efficiency of a user-driven learning system with reconfigurable hardware. Application to DNA splicing.

    PubMed

    Lemoine, E; Merceron, D; Sallantin, J; Nguifo, E M

    1999-01-01

    This paper describes a new approach to problem solving by splitting up problem component parts between software and hardware. Our main idea arises from the combination of two previously published works. The first one proposed a conceptual environment of concept modelling in which the machine and the human expert interact. The second one reported an algorithm based on reconfigurable hardware system which outperforms any kind of previously published genetic data base scanning hardware or algorithms. Here we show how efficient the interaction between the machine and the expert is when the concept modelling is based on reconfigurable hardware system. Their cooperation is thus achieved with an real time interaction speed. The designed system has been partially applied to the recognition of primate splice junctions sites in genetic sequences.

  5. Circadian processes in the RNA life cycle.

    PubMed

    Torres, Manon; Becquet, Denis; Franc, Jean-Louis; François-Bellan, Anne-Marie

    2018-05-01

    The circadian clock drives daily rhythms of multiple physiological processes, allowing organisms to anticipate and adjust to periodic changes in environmental conditions. These physiological rhythms are associated with robust oscillations in the expression of at least 30% of expressed genes. While the ability for the endogenous timekeeping system to generate a 24-hr cycle is a cell-autonomous mechanism based on negative autoregulatory feedback loops of transcription and translation involving core-clock genes and their protein products, it is now increasingly evident that additional mechanisms also govern the circadian oscillations of clock-controlled genes. Such mechanisms can take place post-transcriptionally during the course of the RNA life cycle. It has been shown that many steps during RNA processing are regulated in a circadian manner, thus contributing to circadian gene expression. These steps include mRNA capping, alternative splicing, changes in splicing efficiency, and changes in RNA stability controlled by the tail length of polyadenylation or the use of alternative polyadenylation sites. RNA transport can also follow a circadian pattern, with a circadian nuclear retention driven by rhythmic expression within the nucleus of particular bodies (the paraspeckles) and circadian export to the cytoplasm driven by rhythmic proteins acting like cargo. Finally, RNA degradation may also follow a circadian pattern through the rhythmic involvement of miRNAs. In this review, we summarize the current knowledge of the post-transcriptional circadian mechanisms known to play a prominent role in shaping circadian gene expression in mammals. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > RNA Editing and Modification RNA Export and Localization > Nuclear Export/Import. © 2018 Wiley Periodicals, Inc.

  6. Intron Definition and a Branch Site Adenosine at nt 385 Control RNA Splicing of HPV16 E6*I and E7 Expression

    PubMed Central

    Ajiro, Masahiko; Jia, Rong; Zhang, Lifang; Liu, Xuefeng; Zheng, Zhi-Ming

    2012-01-01

    HPV16 E6 and E7, two viral oncogenes, are expressed from a single bicistronic pre-mRNA. In this report, we provide the evidence that the bicistronic pre-mRNA intron 1 contains three 5′ splice sites (5′ ss) and three 3′ splice sites (3′ ss) normally used in HPV16+ cervical cancer and its derived cell lines. The choice of two novel alternative 5′ ss (nt 221 5′ ss and nt 191 5′ ss) produces two novel isoforms of E6E7 mRNAs (E6*V and E6*VI). The nt 226 5′ ss and nt 409 3′ ss is preferentially selected over the other splice sites crossing over the intron to excise a minimal length of the intron in RNA splicing. We identified AACAAAC as the preferred branch point sequence (BPS) and an adenosine at nt 385 (underlined) in the BPS as a branch site to dictate the selection of the nt 409 3′ ss for E6*I splicing and E7 expression. Introduction of point mutations into the mapped BPS led to reduced U2 binding to the BPS and thereby inhibition of the second step of E6E7 splicing at the nt 409 3′ ss. Importantly, the E6E7 bicistronic RNA with a mutant BPS and inefficient splicing makes little or no E7 and the resulted E6 with mutations of 91QYNK94 to 91PSFW94 displays attenuate activity on p53 degradation. Together, our data provide structural basis of the E6E7 intron 1 for better understanding of how viral E6 and E7 expression is regulated by alternative RNA splicing. This study elucidates for the first time a mapped branch point in HPV16 genome involved in viral oncogene expression. PMID:23056301

  7. Spliced leader RNA of trypanosomes: in vivo mutational analysis reveals extensive and distinct requirements for trans splicing and cap4 formation.

    PubMed Central

    Lücke, S; Xu, G L; Palfi, Z; Cross, M; Bellofatto, V; Bindereif, A

    1996-01-01

    In trypanosomes mRNAs are generated through trans splicing. The spliced leader (SL) RNA, which donates the 5'-terminal mini-exon to each of the protein coding exons, plays a central role in the trans splicing process. We have established in vivo assays to study in detail trans splicing, cap4 modification, and RNP assembly of the SL RNA in the trypanosomatid species Leptomonas seymouri. First, we found that extensive sequences within the mini-exon are required for SL RNA function in vivo, although a conserved length of 39 nt is not essential. In contrast, the intron sequence appears to be surprisingly tolerant to mutation; only the stem-loop II structure is indispensable. The asymmetry of the sequence requirements in the stem I region suggests that this domain may exist in different functional conformations. Second, distinct mini-exon sequences outside the modification site are important for efficient cap4 formation. Third, all SL RNA mutations tested allowed core RNP assembly, suggesting flexible requirements for core protein binding. In sum, the results of our mutational analysis provide evidence for a discrete domain structure of the SL RNA and help to explain the strong phylogenetic conservation of the mini-exon sequence and of the overall SL RNA secondary structure; they also suggest that there may be certain differences between trans splicing in nematodes and trypanosomes. This approach provides a basis for studying RNA-RNA interactions in the trans spliceosome. Images PMID:8861965

  8. Masters change, slaves remain.

    PubMed

    Graham, Patricia; Penn, Jill K M; Schedl, Paul

    2003-01-01

    Sex determination offers an opportunity to address many classic questions of developmental biology. In addition, because sex determination evolves rapidly, it offers an opportunity to investigate the evolution of genetic hierarchies. Sex determination in Drosophila melanogaster is controlled by the master regulatory gene, Sex lethal (Sxl). DmSxl controls the alternative splicing of a downstream gene, transformer (tra), which acts with tra2 to control alternative splicing of doublesex (dsx). DmSxl also controls its own splicing, creating an autoregulatory feedback loop that ensures expression of Sxl in females, but not males. A recent paper has shown that in the dipteran Ceratitis capitata later (downstream) steps in the regulatory hierarchy are conserved, while earlier (upstream) steps are not. Cctra is regulated by alternative splicing and apparently controls the alternative splicing of Ccdsx. However, Cctra is not regulated by CcSxl. Instead it appears to autoregulate in a manner similar to the autoregulation seen with DmSxl. Copyright 2002 Wiley Periodicals, Inc.

  9. Reflections on the history of pre-mRNA processing and highlights of current knowledge: A unified picture

    PubMed Central

    Darnell, James E.

    2013-01-01

    Several strong conclusions emerge concerning pre-mRNA processing from both old and newer experiments. The RNAPII complex is involved with pre-mRNA processing through binding of processing proteins to the CTD (carboxyl terminal domain) of the largest RNAPII subunit. These interactions are necessary for efficient processing, but whether factor binding to the CTD and delivery to splicing sites is obligatory or facilitatory is unsettled. Capping, addition of an m7Gppp residue (cap) to the initial transcribed residue of a pre-mRNA, occurs within seconds. Splicing of pre-mRNA by spliceosomes at particular sites is most likely committed during transcription by the binding of initiating processing factors and ∼50% of the time is completed in mammalian cells before completion of the primary transcript. This fact has led to an outpouring in the literature about “cotranscriptional splicing.” However splicing requires several minutes for completion and can take longer. The RNAPII complex moves through very long introns and also through regions dense with alternating exons and introns at an average rate of ∼3 kb per min and is, therefore, not likely detained at each splice site for more than a few seconds, if at all. Cleavage of the primary transcript at the 3′ end and polyadenylation occurs within 30 sec or less at recognized polyA sites, and the majority of newly polyadenylated pre-mRNA molecules are much larger than the average mRNA. Finally, it seems quite likely that the nascent RNA most often remains associated with the chromosomal locus being transcribed until processing is complete, possibly acquiring factors related to the transport of the new mRNA to the cytoplasm. PMID:23440351

  10. Protein arginine methylation of Npl3 promotes splicing of the SUS1 intron harboring non-consensus 5' splice site and branch site.

    PubMed

    Muddukrishna, Bhavana; Jackson, Christopher A; Yu, Michael C

    2017-06-01

    Protein arginine methylation occurs on spliceosomal components and spliceosome-associated proteins, but how this modification contributes to their function in pre-mRNA splicing remains sparse. Here we provide evidence that protein arginine methylation of the yeast SR-/hnRNP-like protein Npl3 plays a role in facilitating efficient splicing of the SUS1 intron that harbors a non-consensus 5' splice site and branch site. In yeast cells lacking the major protein arginine methyltransferase HMT1, we observed a change in the co-transcriptional recruitment of the U1 snRNP subunit Snp1 and Npl3 to pre-mRNAs harboring both consensus (ECM33 and ASC1) and non-consensus (SUS1) 5' splice site and branch site. Using an Npl3 mutant that phenocopies wild-type Npl3 when expressed in Δhmt1 cells, we showed that the arginine methylation of Npl3 is responsible for this. Examination of pre-mRNA splicing efficiency in these mutants reveals the requirement of Npl3 methylation for the efficient splicing of SUS1 intron 1, but not of ECM33 or ASC1. Changing the 5' splice site and branch site in SUS1 intron 1 to the consensus form restored splicing efficiency in an Hmt1-independent manner. Results from biochemical studies show that methylation of Npl3 promotes its optimal association with the U1 snRNP through its association with the U1 snRNP subunit Mud1. Based on these data, we propose a model in which Hmt1, via arginine methylation of Npl3, facilitates U1 snRNP engagement with the pre-mRNA to promote usage of non-consensus splice sites by the splicing machinery. Published by Elsevier B.V.

  11. Evolutionary Insights into RNA trans-Splicing in Vertebrates

    PubMed Central

    Lei, Quan; Li, Cong; Zuo, Zhixiang; Huang, Chunhua; Cheng, Hanhua; Zhou, Rongjia

    2016-01-01

    Pre-RNA splicing is an essential step in generating mature mRNA. RNA trans-splicing combines two separate pre-mRNA molecules to form a chimeric non-co-linear RNA, which may exert a function distinct from its original molecules. Trans-spliced RNAs may encode novel proteins or serve as noncoding or regulatory RNAs. These novel RNAs not only increase the complexity of the proteome but also provide new regulatory mechanisms for gene expression. An increasing amount of evidence indicates that trans-splicing occurs frequently in both physiological and pathological processes. In addition, mRNA reprogramming based on trans-splicing has been successfully applied in RNA-based therapies for human genetic diseases. Nevertheless, clarifying the extent and evolution of trans-splicing in vertebrates and developing detection methods for trans-splicing remain challenging. In this review, we summarize previous research, highlight recent advances in trans-splicing, and discuss possible splicing mechanisms and functions from an evolutionary viewpoint. PMID:26966239

  12. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches

    PubMed Central

    Chen, Mo; Manley, James L.

    2010-01-01

    Alternative splicing of mRNA precursors provides an important means of genetic control and is a crucial step in the expression of most genes. Alternative splicing markedly affects human development, and its misregulation underlies many human diseases. Although the mechanisms of alternative splicing have been studied extensively, until the past few years we had not begun to realize fully the diversity and complexity of alternative splicing regulation by an intricate protein–RNA network. Great progress has been made by studying individual transcripts and through genome-wide approaches, which together provide a better picture of the mechanistic regulation of alternative pre-mRNA splicing. PMID:19773805

  13. A novel protein factor is required for use of distal alternative 5' splice sites in vitro.

    PubMed Central

    Harper, J E; Manley, J L

    1991-01-01

    Adenovirus E1A pre-mRNA was used as a model to examine alternative 5' splice site selection during in vitro splicing reactions. Strong preference for the downstream 13S 5' splice site over the upstream 12S or 9S 5' splice sites was observed. However, the 12S 5' splice site was used efficiently when a mutant pre-mRNA lacking the 13S 5' splice site was processed, and 12S splicing from this substrate was not reduced by 13S splicing from a separate pre-mRNA, demonstrating that 13S splicing reduced 12S 5' splice site selection through a bona fide cis-competition. DEAE-cellulose chromatography of nuclear extract yielded two fractions with different splicing activities. The bound fraction contained all components required for efficient splicing of simple substrates but was unable to utilize alternative 5' splice sites. In contrast, the flow-through fraction, which by itself was inactive, contained an activity required for alternative splicing and was shown to stimulate 12S and 9S splicing, while reducing 13S splicing, when added to reactions carried out by the bound fraction. Furthermore, the activity, which we have called distal splicing factor (DSF), enhanced utilization of an upstream 5' splice site on a simian virus 40 early pre-mRNA, suggesting that the factor acts in a position-dependent, substrate-independent fashion. Several lines of evidence are presented suggesting that DSF is a non-small nuclear ribonucleoprotein protein. Finally, we describe a functional interaction between DSF and ASF, a protein that enhances use of downstream 5' splice sites. Images PMID:1658620

  14. Analysis of a FANCE Splice Isoform in Regard to DNA Repair.

    PubMed

    Bouffard, Frédérick; Plourde, Karine; Bélanger, Simon; Ouellette, Geneviève; Labrie, Yvan; Durocher, Francine

    2015-09-25

    The FANC-BRCA DNA repair pathway is activated in response to interstrand crosslinks formed in DNA. A homozygous mutation in 1 of the 17 Fanconi anemia (FA) genes results in malfunctions of this pathway and development of FA syndrome. The integrity of this protein network is essential for good maintenance of DNA repair process and genome stability. Following the identification of an alternatively splice isoform of FANCE (Fanconi anemia complementation group E) significantly expressed in breast cancer individuals from high-risk non-BRCA1/2 families, we studied the impact of this FANCE splice isoform (FANCEΔ4) on DNA repair processes. We have demonstrated that FANCEΔ4 mRNA was efficiently translated into a functional protein and expressed in normal and breast cancer cell lines. Following treatment with the crosslinking agent mitomycin C, EUFA130 (FANCE-deficient) cells infected with FANCEΔ4 were blocked into G2/M phase, while cell survival was significantly reduced compared with FANCE-infected EUFA130 cells. In addition, FANCEΔ4 did not allow FANCD2 and FANCI monoubiquitination, which represents a crucial step of the FANC-BRCA functional pathway. As observed for FANCE wild-type protein, localization of FANCEΔ4 protein was confined to the nucleus following mitomycin C treatment. Although FANCEΔ4 protein showed interaction with FANCE, FANCEΔ4 did not support normal function of FANCE protein in this pathway and could have deleterious effects on FANCE protein activity. We have demonstrated that FANCEΔ4 seems to act as a regulator of FANCD2 protein expression level by promoting its degradation. This study highlights the importance of an efficient regulation of alternative splicing expression of FA genes for proper DNA repair. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Cold-dependent alternative splicing of a Jumonji C domain-containing gene MtJMJC5 in Medicago truncatula.

    PubMed

    Shen, Yingfang; Wu, Xiaopei; Liu, Demei; Song, Shengjing; Liu, Dengcai; Wang, Haiqing

    2016-05-27

    Histone methylation is an epigenetic modification mechanism that regulates gene expression in eukaryotic cells. Jumonji C domain-containing demethylases are involved in removal of methyl groups at lysine or arginine residues. The JmjC domain-only member, JMJ30/JMJD5 of Arabidopsis, is a component of the plant circadian clock. Although some plant circadian clock genes undergo alternative splicing in response to external cues, there is no evidence that JMJ30/JMJD5 is regulated by alternative splicing. In this study, the expression of an Arabidopsis JMJ30/JMJD5 ortholog in Medicago truncatula, MtJMJC5, in response to circadian clock and abiotic stresses were characterized. The results showed that MtJMJC5 oscillates with a circadian rhythm, and undergoes cold specifically induced alternative splicing. The cold-induced alternative splicing could be reversed after ambient temperature returning to the normal. Sequencing results revealed four alternative splicing RNA isoforms including a full-length authentic protein encoding variant, and three premature termination condon-containing variants due to alternative 3' splice sites at the first and second intron. Under cold treatment, the variants that share a common 3' alternative splicing site at the second intron were intensively up-regulated while the authentic protein encoding variant and the premature termination condon-containing variant only undergoing a 3' alternative splicing at the first intron were down regulated. Although all the premature termination condon-harboring alternative splicing variants were sensitive to nonsense-mediated decay, the premature termination codon-harboring alternative splicing variants sharing the 3' alternative splicing site at the second intron showed less sensitivity than the one only containing the 3' alternative slicing site at the first intron under cold treatment. These results suggest that the cold-dependent alternative splicing of MtJMJC5 is likely a species or genus-specific mechanism of gene expression regulation on RNA levels, and might play a role in epigenetic regulation of the link between the circadian clock and ambient temperature fluctuation in Medicago. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The RNA Splicing Response to DNA Damage.

    PubMed

    Shkreta, Lulzim; Chabot, Benoit

    2015-10-29

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.

  17. The RNA Splicing Response to DNA Damage

    PubMed Central

    Shkreta, Lulzim; Chabot, Benoit

    2015-01-01

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging. PMID:26529031

  18. Photonic crystal fiber technology for high-performance all-fiber monolithic ultrafast fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Papior, Sidsel R.; Weirich, Johannes; Johansen, Mette M.; Jakobsen, Christian; Michieletto, Mattia; Triches, Marco; Kristensen, Torben; Olesen, Anders S.; Petersen, Christian; Andersen, Thomas V.; Maack, Martin D.; Alkeskjold, Thomas T.

    2018-02-01

    Photonic crystal fiber (PCF) technology for ultrafast fiber amplifiers traditionally uses air holes as key elements for large mode area (LMA) fiber designs. These air holes are crucial for the performance of high-end LMA PCFs, but makes splicing and interfacing more complex. To reduce this complexity in mid-range amplifiers, we present single-mode polarization-maintaining Yb-doped LMA PCFs without air holes for easier splicing into monolithic all-fiber amplifier designs. A 30 μm core all-solid spliceable PCF is presented, and amplification of 1064 nm light above 50 W with an optical to optical efficiency of 80 % is demonstrated. Furthermore, to demonstrate the excellent reliability of PCF based monolithic amplifiers, we demonstrate ultra-longterm performance data of > 35 khrs on a 14 μm core step-index type PCF amplifier with low long-term power degradation slope of < 1.5 % / 10,000 h.

  19. Optimized approach for Ion Proton RNA sequencing reveals details of RNA splicing and editing features of the transcriptome.

    PubMed

    Brown, Roger B; Madrid, Nathaniel J; Suzuki, Hideaki; Ness, Scott A

    2017-01-01

    RNA-sequencing (RNA-seq) has become the standard method for unbiased analysis of gene expression but also provides access to more complex transcriptome features, including alternative RNA splicing, RNA editing, and even detection of fusion transcripts formed through chromosomal translocations. However, differences in library methods can adversely affect the ability to recover these different types of transcriptome data. For example, some methods have bias for one end of transcripts or rely on low-efficiency steps that limit the complexity of the resulting library, making detection of rare transcripts less likely. We tested several commonly used methods of RNA-seq library preparation and found vast differences in the detection of advanced transcriptome features, such as alternatively spliced isoforms and RNA editing sites. By comparing several different protocols available for the Ion Proton sequencer and by utilizing detailed bioinformatics analysis tools, we were able to develop an optimized random primer based RNA-seq technique that is reliable at uncovering rare transcript isoforms and RNA editing features, as well as fusion reads from oncogenic chromosome rearrangements. The combination of optimized libraries and rapid Ion Proton sequencing provides a powerful platform for the transcriptome analysis of research and clinical samples.

  20. Alternative Splicing in Neurogenesis and Brain Development.

    PubMed

    Su, Chun-Hao; D, Dhananjaya; Tarn, Woan-Yuh

    2018-01-01

    Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manipulation and RNA sequencing have provided insights into the molecular mechanisms underlying the effects of alternative splicing in stem cell self-renewal and neuronal fate specification. Timely expression and perhaps post-translational modification of neuron-specific splicing regulators play important roles in neuronal development. Alternative splicing of many key transcription regulators or epigenetic factors reprograms the transcriptome and hence contributes to stem cell fate determination. During neuronal differentiation, alternative splicing also modulates signaling activity, centriolar dynamics, and metabolic pathways. Moreover, alternative splicing impacts cortical lamination and neuronal development and function. In this review, we focus on recent progress toward understanding the contributions of alternative splicing to neurogenesis and brain development, which has shed light on how splicing defects may cause brain disorders and diseases.

  1. Multi-step splicing of sphingomyelin synthase linear and circular RNAs.

    PubMed

    Filippenkov, Ivan B; Sudarkina, Olga Yu; Limborska, Svetlana A; Dergunova, Lyudmila V

    2018-05-15

    The SGMS1 gene encodes the enzyme sphingomyelin synthase 1 (SMS1), which is involved in the regulation of lipid metabolism, apoptosis, intracellular vesicular transport and other significant processes. The SGMS1 gene is located on chromosome 10 and has a size of 320 kb. Previously, we showed that dozens of alternative transcripts of the SGMS1 gene are present in various human tissues. In addition to mRNAs that provide synthesis of the SMS1 protein, this gene participates in the synthesis of non-coding transcripts, including circular RNAs (circRNAs), which include exons of the 5'-untranslated region (5'-UTR) and are highly represented in the brain. In this study, using the high-throughput technology RNA-CaptureSeq, many new SGMS1 transcripts were identified, including both intronic unspliced RNAs (premature RNAs) and RNAs formed via alternative splicing. Recursive exons (RS-exons) that can participate in the multi-step splicing of long introns of the gene were also identified. These exons participate in the formation of circRNAs. Thus, multi-step splicing may provide a variety of linear and circular RNAs of eukaryotic genes in tissues. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Role of TAR RNA splicing in translational regulation of simian immunodeficiency virus from rhesus macaques.

    PubMed Central

    Viglianti, G A; Rubinstein, E P; Graves, K L

    1992-01-01

    The untranslated leader sequences of rhesus macaque simian immunodeficiency virus mRNAs form a stable secondary structure, TAR. This structure can be modified by RNA splicing. In this study, the role of TAR splicing in virus replication was investigated. The proportion of viral RNAs containing a spliced TAR structure is high early after infection and decreases at later times. Moreover, proviruses containing mutations which prevent TAR splicing are significantly delayed in replication. These mutant viruses require approximately 20 days to achieve half-maximal virus production, in contrast to wild-type viruses, which require approximately 8 days. We attribute this delay to the inefficient translation of unspliced-TAR-containing mRNAs. The molecular basis for this translational effect was examined in in vitro assays. We found that spliced-TAR-containing mRNAs were translated up to 8.5 times more efficiently than were similar mRNAs containing an unspliced TAR leader. Furthermore, these spliced-TAR-containing mRNAs were more efficiently associated with ribosomes. We postulate that the level of TAR splicing provides a balance for the optimal expression of both viral proteins and genomic RNA and therefore ultimately controls the production of infectious virions. Images PMID:1629957

  3. Splice assembly tool and method of splicing

    DOEpatents

    Silva, Frank A.

    1980-01-01

    A splice assembly tool for assembling component parts of an electrical conductor while producing a splice connection between electrical cables therewith, comprises a first structural member adaptable for supporting force applying means thereon, said force applying means enabling a rotary force applied manually thereto to be converted to a longitudinal force for subsequent application against a first component part of said electrical connection, a second structural member adaptable for engaging a second component part in a manner to assist said first structural member in assembling the component parts relative to one another and transmission means for conveying said longitudinal force between said first and said second structural members, said first and said second structural members being coupled to one another by said transmission means, wherein at least one of said component parts comprises a tubular elastomeric sleeve and said force applying means provides a relatively high mechanical advantage when said rotary force is applied thereto so as to facilitate assembly of said at least one tubular elastomeric sleeve about said other component part in an interference fit manner.

  4. Oncogenes and RNA splicing of human tumor viruses

    PubMed Central

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-01-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein–Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis. PMID:26038756

  5. Comprehensive proteomic analysis of the human spliceosome

    NASA Astrophysics Data System (ADS)

    Zhou, Zhaolan; Licklider, Lawrence J.; Gygi, Steven P.; Reed, Robin

    2002-09-01

    The precise excision of introns from pre-messenger RNA is performed by the spliceosome, a macromolecular machine containing five small nuclear RNAs and numerous proteins. Much has been learned about the protein components of the spliceosome from analysis of individual purified small nuclear ribonucleoproteins and salt-stable spliceosome `core' particles. However, the complete set of proteins that constitutes intact functional spliceosomes has yet to be identified. Here we use maltose-binding protein affinity chromatography to isolate spliceosomes in highly purified and functional form. Using nanoscale microcapillary liquid chromatography tandem mass spectrometry, we identify ~145 distinct spliceosomal proteins, making the spliceosome the most complex cellular machine so far characterized. Our spliceosomes comprise all previously known splicing factors and 58 newly identified components. The spliceosome contains at least 30 proteins with known or putative roles in gene expression steps other than splicing. This complexity may be required not only for splicing multi-intronic metazoan pre-messenger RNAs, but also for mediating the extensive coupling between splicing and other steps in gene expression.

  6. Invariant U2 snRNA nucleotides form a stem loop to recognize the intron early in splicing

    PubMed Central

    Perriman, Rhonda; Ares, Manuel

    2010-01-01

    U2 snRNA-intron branchpoint pairing is a critical step in pre-mRNA recognition by the splicing apparatus, but the mechanism by which these two RNAs engage each other is unknown. Here we identify a new U2 snRNA structure, the branchpoint interaction stem-loop (BSL), that presents the U2 nucleotides that will contact the intron. We provide evidence that the BSL forms prior to interaction with the intron, and is disrupted by the DExD/H protein Prp5p during engagement of the snRNA with the intron. In vitro splicing complex assembly in a BSL-destabilized mutant extract suggests that the BSL is required at a previously unrecognized step between commitment complex and prespliceosome formation. The extreme evolutionary conservation of the BSL suggests it represents an ancient structural solution to the problem of intron branchpoint recognition by dynamic RNA elements that must serve multiple functions at other times during splicing. PMID:20471947

  7. An empirical study of ensemble-based semi-supervised learning approaches for imbalanced splice site datasets.

    PubMed

    Stanescu, Ana; Caragea, Doina

    2015-01-01

    Recent biochemical advances have led to inexpensive, time-efficient production of massive volumes of raw genomic data. Traditional machine learning approaches to genome annotation typically rely on large amounts of labeled data. The process of labeling data can be expensive, as it requires domain knowledge and expert involvement. Semi-supervised learning approaches that can make use of unlabeled data, in addition to small amounts of labeled data, can help reduce the costs associated with labeling. In this context, we focus on the problem of predicting splice sites in a genome using semi-supervised learning approaches. This is a challenging problem, due to the highly imbalanced distribution of the data, i.e., small number of splice sites as compared to the number of non-splice sites. To address this challenge, we propose to use ensembles of semi-supervised classifiers, specifically self-training and co-training classifiers. Our experiments on five highly imbalanced splice site datasets, with positive to negative ratios of 1-to-99, showed that the ensemble-based semi-supervised approaches represent a good choice, even when the amount of labeled data consists of less than 1% of all training data. In particular, we found that ensembles of co-training and self-training classifiers that dynamically balance the set of labeled instances during the semi-supervised iterations show improvements over the corresponding supervised ensemble baselines. In the presence of limited amounts of labeled data, ensemble-based semi-supervised approaches can successfully leverage the unlabeled data to enhance supervised ensembles learned from highly imbalanced data distributions. Given that such distributions are common for many biological sequence classification problems, our work can be seen as a stepping stone towards more sophisticated ensemble-based approaches to biological sequence annotation in a semi-supervised framework.

  8. An empirical study of ensemble-based semi-supervised learning approaches for imbalanced splice site datasets

    PubMed Central

    2015-01-01

    Background Recent biochemical advances have led to inexpensive, time-efficient production of massive volumes of raw genomic data. Traditional machine learning approaches to genome annotation typically rely on large amounts of labeled data. The process of labeling data can be expensive, as it requires domain knowledge and expert involvement. Semi-supervised learning approaches that can make use of unlabeled data, in addition to small amounts of labeled data, can help reduce the costs associated with labeling. In this context, we focus on the problem of predicting splice sites in a genome using semi-supervised learning approaches. This is a challenging problem, due to the highly imbalanced distribution of the data, i.e., small number of splice sites as compared to the number of non-splice sites. To address this challenge, we propose to use ensembles of semi-supervised classifiers, specifically self-training and co-training classifiers. Results Our experiments on five highly imbalanced splice site datasets, with positive to negative ratios of 1-to-99, showed that the ensemble-based semi-supervised approaches represent a good choice, even when the amount of labeled data consists of less than 1% of all training data. In particular, we found that ensembles of co-training and self-training classifiers that dynamically balance the set of labeled instances during the semi-supervised iterations show improvements over the corresponding supervised ensemble baselines. Conclusions In the presence of limited amounts of labeled data, ensemble-based semi-supervised approaches can successfully leverage the unlabeled data to enhance supervised ensembles learned from highly imbalanced data distributions. Given that such distributions are common for many biological sequence classification problems, our work can be seen as a stepping stone towards more sophisticated ensemble-based approaches to biological sequence annotation in a semi-supervised framework. PMID:26356316

  9. Identification of pathogenic gene mutations in LMNA and MYBPC3 that alter RNA splicing.

    PubMed

    Ito, Kaoru; Patel, Parth N; Gorham, Joshua M; McDonough, Barbara; DePalma, Steven R; Adler, Emily E; Lam, Lien; MacRae, Calum A; Mohiuddin, Syed M; Fatkin, Diane; Seidman, Christine E; Seidman, J G

    2017-07-18

    Genetic variants that cause haploinsufficiency account for many autosomal dominant (AD) disorders. Gene-based diagnosis classifies variants that alter canonical splice signals as pathogenic, but due to imperfect understanding of RNA splice signals other variants that may create or eliminate splice sites are often clinically classified as variants of unknown significance (VUS). To improve recognition of pathogenic splice-altering variants in AD disorders, we used computational tools to prioritize VUS and developed a cell-based minigene splicing assay to confirm aberrant splicing. Using this two-step procedure we evaluated all rare variants in two AD cardiomyopathy genes, lamin A/C ( LMNA ) and myosin binding protein C ( MYBPC3 ). We demonstrate that 13 LMNA and 35 MYBPC3 variants identified in cardiomyopathy patients alter RNA splicing, representing a 50% increase in the numbers of established damaging splice variants in these genes. Over half of these variants are annotated as VUS by clinical diagnostic laboratories. Familial analyses of one variant, a synonymous LMNA VUS, demonstrated segregation with cardiomyopathy affection status and altered cardiac LMNA splicing. Application of this strategy should improve diagnostic accuracy and variant classification in other haploinsufficient AD disorders.

  10. Evolution of Nova-Dependent Splicing Regulation in the Brain

    PubMed Central

    Živin, Marko; Darnell, Robert B

    2007-01-01

    A large number of alternative exons are spliced with tissue-specific patterns, but little is known about how such patterns have evolved. Here, we study the conservation of the neuron-specific splicing factors Nova1 and Nova2 and of the alternatively spliced exons they regulate in mouse brain. Whereas Nova RNA binding domains are 94% identical across vertebrate species, Nova-dependent splicing silencer and enhancer elements (YCAY clusters) show much greater divergence, as less than 50% of mouse YCAY clusters are conserved at orthologous positions in the zebrafish genome. To study the relation between the evolution of tissue-specific splicing and YCAY clusters, we compared the brain-specific splicing of Nova-regulated exons in zebrafish, chicken, and mouse. The presence of YCAY clusters in lower vertebrates invariably predicted conservation of brain-specific splicing across species, whereas their absence in lower vertebrates correlated with a loss of alternative splicing. We hypothesize that evolution of Nova-regulated splicing in higher vertebrates proceeds mainly through changes in cis-acting elements, that tissue-specific splicing might in some cases evolve in a single step corresponding to evolution of a YCAY cluster, and that the conservation level of YCAY clusters relates to the functions encoded by the regulated RNAs. PMID:17937501

  11. Effects of secondary structure on pre-mRNA splicing: hairpins sequestering the 5' but not the 3' splice site inhibit intron processing in Nicotiana plumbaginifolia.

    PubMed

    Liu, H X; Goodall, G J; Kole, R; Filipowicz, W

    1995-01-16

    We have performed a systematic study of the effect of artificial hairpins on pre-mRNA splicing in protoplasts of a dicot plant, Nicotiana plumbaginifolia. Hairpins with a potential to form 18 or 24 bp stems strongly inhibit splicing when they sequester the 5' splice site or are placed in the middle of short introns. However, similar 24 bp hairpins sequestering the 3' splice site do not prevent this site from being used as an acceptor. Utilization of the stem-located 3' site requires that the base of the stem is separated from the upstream 5' splice site by a minimum of approximately 45 nucleotides and that another 'helper' 3' splice site is present downstream of the stem. The results indicate that the spliceosome or factors associated with it may have a potential to unfold secondary structure present in the downstream portion of the intron, prior to or at the step of the 3' splice site selection. The finding that the helper 3' site is required for utilization of the stem-located acceptor confirms and extends previous observations, obtained with HeLa cell in vitro splicing systems, indicating that the 3' splice site may be recognized at least twice during spliceosome assembly.

  12. Simple and reliable light launch from a conventional single-mode fiber into a helical-core fiber through an adiabatically tapered splice.

    PubMed

    Kim, Hyuntai; Kim, Jongki; Jung, Yongmin; Vazquez-Zuniga, Luis Alonso; Lee, Seung Jong; Choi, Geunchang; Oh, Kyunghwan; Wang, Pu; Clarkson, W A; Jeong, Yoonchan

    2012-11-05

    We propose a simple and efficient light launch scheme for a helical-core fiber (HCF) by using an adiabatically tapered splice technique, through which we overcome its inherent difficulty with light launch owing to the large lateral offset and angular tilt of its core. We experimentally demonstrate single-mode excitation in the HCF in this configuration, which yields the coupling efficiency of around -5.9 dB (26%) for a ~1.1-μm light input when the splice joint is tapered down to 30 μm in diameter. To our knowledge, this is the first proof-of-principle report on the fusion-splice coupling between an HCF and a conventional single-mode fiber.

  13. Cancer-Associated Perturbations in Alternative Pre-messenger RNA Splicing.

    PubMed

    Shkreta, Lulzim; Bell, Brendan; Revil, Timothée; Venables, Julian P; Prinos, Panagiotis; Elela, Sherif Abou; Chabot, Benoit

    2013-01-01

    For most of our 25,000 genes, the removal of introns by pre-messenger RNA (pre-mRNA) splicing represents an essential step toward the production of functional messenger RNAs (mRNAs). Alternative splicing of a single pre-mRNA results in the production of different mRNAs. Although complex organisms use alternative splicing to expand protein function and phenotypic diversity, patterns of alternative splicing are often altered in cancer cells. Alternative splicing contributes to tumorigenesis by producing splice isoforms that can stimulate cell proliferation and cell migration or induce resistance to apoptosis and anticancer agents. Cancer-specific changes in splicing profiles can occur through mutations that are affecting splice sites and splicing control elements, and also by alterations in the expression of proteins that control splicing decisions. Recent progress in global approaches that interrogate splicing diversity should help to obtain specific splicing signatures for cancer types. The development of innovative approaches for annotating and reprogramming splicing events will more fully establish the essential contribution of alternative splicing to the biology of cancer and will hopefully provide novel targets and anticancer strategies. Metazoan genes are usually made up of several exons interrupted by introns. The introns are removed from the pre-mRNA by RNA splicing. In conjunction with other maturation steps, such as capping and polyadenylation, the spliced mRNA is then transported to the cytoplasm to be translated into a functional protein. The basic mechanism of splicing requires accurate recognition of each extremity of each intron by the spliceosome. Introns are identified by the binding of U1 snRNP to the 5' splice site and the U2AF65/U2AF35 complex to the 3' splice site. Following these interactions, other proteins and snRNPs are recruited to generate the complete spliceosomal complex needed to excise the intron. While many introns are constitutively removed by the spliceosome, other splice junctions are not used systematically, generating the phenomenon of alternative splicing. Alternative splicing is therefore the process by which a single species of pre-mRNA can be matured to produce different mRNA molecules (Fig. 1). Depending on the number and types of alternative splicing events, a pre-mRNA can generate from two to several thousands different mRNAs leading to the production of a corresponding number of proteins. It is now believed that the expression of at least 70 % of human genes is subjected to alternative splicing, implying an enormous contribution to proteomic diversity, and by extension, to the development and the evolution of complex animals. Defects in splicing have been associated with human diseases (Caceres and Kornblihtt, Trends Genet 18(4):186-93, 2002, Cartegni et al., Nat Rev Genet 3(4):285-98, 2002, Pagani and Baralle, Nat Rev Genet 5(5):389-96, 2004), including cancer (Brinkman, Clin Biochem 37(7):584-94, 2004, Venables, Bioessays 28(4):378-86, 2006, Srebrow and Kornblihtt, J Cell Sci 119(Pt 13):2635-2641, 2006, Revil et al., Bull Cancer 93(9):909-919, 2006, Venables, Transworld Res Network, 2006, Pajares et al., Lancet Oncol 8(4):349-57, 2007, Skotheim and Nees, Int J Biochem Cell Biol 39:1432-1449, 2007). Numerous studies have now confirmed the existence of specific differences in the alternative splicing profiles between normal and cancer tissues. Although there are a few cases where specific mutations are the primary cause for these changes, global alterations in alternative splicing in cancer cells may be primarily derived from changes in the expression of RNA-binding proteins that control splice site selection. Overall, these cancer-specific differences in alternative splicing offer an immense potential to improve the diagnosis and the prognosis of cancer. This review will focus on the functional impact of cancer-associated alternative splicing variants, the molecular determinants that alter the splicing decisions in cancer cells, and future therapeutic strategies.

  14. Protein trans-splicing on an M13 bacteriophage: towards directed evolution of a semisynthetic split intein by phage display.

    PubMed

    Garbe, Daniel; Thiel, Ilka V; Mootz, Henning D

    2010-10-01

    Split inteins link their fused peptide or protein sequences with a peptide bond in an autocatalytic reaction called protein trans-splicing. This reaction is becoming increasingly important for a variety of applications in protein semisynthesis, polypeptide circularisation, construction of biosensors, or segmental isotopic labelling of proteins. However, split inteins exhibit greatly varying solubility, efficiency and tolerance towards the nature of the fused sequences as well as reaction conditions. We envisioned that phage display as an in vitro selection technique would provide a powerful tool for the directed evolution of split inteins with improved properties. As a first step towards this goal, we show that presentation of active split inteins on an M13 bacteriophage is feasible. Two different C-terminal intein fragments of the Ssp DnaB intein, artificially split at amino acid positions 104 and 11, were encoded in a phagemid vector in fusion to a truncated gpIII protein. For efficient production of hybrid phages, the presence of a soluble domain tag at their N-termini was necessary. Immunoblot analysis revealed that the hybrid phages supported protein trans-splicing with a protein or a synthetic peptide, respectively, containing the complementary intein fragment. Incorporation of biotin or desthiobiotin by this reaction provides a straightforward strategy for future enrichment of desired mutants from randomised libraries of the C-terminal intein fragments on streptavidin beads. Protein semisynthesis on a phage could also be exploited for the selection of chemically modified proteins with unique properties. © 2010 European Peptide Society and John Wiley & Sons, Ltd.

  15. Site-Selective RNA Splicing Nanozyme: DNAzyme and RtcB Conjugates on a Gold Nanoparticle.

    PubMed

    Petree, Jessica R; Yehl, Kevin; Galior, Kornelia; Glazier, Roxanne; Deal, Brendan; Salaita, Khalid

    2018-01-19

    Modifying RNA through either splicing or editing is a fundamental biological process for creating protein diversity from the same genetic code. Developing novel chemical biology tools for RNA editing has potential to transiently edit genes and to provide a better understanding of RNA biochemistry. Current techniques used to modify RNA include the use of ribozymes, adenosine deaminase, and tRNA endonucleases. Herein, we report a nanozyme that is capable of splicing virtually any RNA stem-loop. This nanozyme is comprised of a gold nanoparticle functionalized with three enzymes: two catalytic DNA strands with ribonuclease function and an RNA ligase. The nanozyme cleaves and then ligates RNA targets, performing a splicing reaction that is akin to the function of the spliceosome. Our results show that the three-enzyme reaction can remove a 19 nt segment from a 67 nt RNA loop with up to 66% efficiency. The complete nanozyme can perform the same splice reaction at 10% efficiency. These splicing nanozymes represent a new promising approach for gene manipulation that has potential for applications in living cells.

  16. An in vivo genetic screen for genes involved in spliced leader trans-splicing indicates a crucial role for continuous de novo spliced leader RNP assembly.

    PubMed

    Philippe, Lucas; Pandarakalam, George C; Fasimoye, Rotimi; Harrison, Neale; Connolly, Bernadette; Pettitt, Jonathan; Müller, Berndt

    2017-08-21

    Spliced leader (SL) trans-splicing is a critical element of gene expression in a number of eukaryotic groups. This process is arguably best understood in nematodes, where biochemical and molecular studies in Caenorhabditis elegans and Ascaris suum have identified key steps and factors involved. Despite this, the precise details of SL trans-splicing have yet to be elucidated. In part, this is because the systematic identification of the molecules involved has not previously been possible due to the lack of a specific phenotype associated with defects in this process. We present here a novel GFP-based reporter assay that can monitor SL1 trans-splicing in living C. elegans. Using this assay, we have identified mutants in sna-1 that are defective in SL trans-splicing, and demonstrate that reducing function of SNA-1, SNA-2 and SUT-1, proteins that associate with SL1 RNA and related SmY RNAs, impairs SL trans-splicing. We further demonstrate that the Sm proteins and pICln, SMN and Gemin5, which are involved in small nuclear ribonucleoprotein assembly, have an important role in SL trans-splicing. Taken together these results provide the first in vivo evidence for proteins involved in SL trans-splicing, and indicate that continuous replacement of SL ribonucleoproteins consumed during trans-splicing reactions is essential for effective trans-splicing. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Vectorization of morpholino oligomers by the (R-Ahx-R)4 peptide allows efficient splicing correction in the absence of endosomolytic agents.

    PubMed

    Abes, Saïd; Moulton, Hong M; Clair, Philippe; Prevot, Paul; Youngblood, Derek S; Wu, Rebecca P; Iversen, Patrick L; Lebleu, Bernard

    2006-12-01

    The efficient and non-toxic nuclear delivery of steric-block oligonucleotides (ON) is a prerequisite for therapeutic strategies involving splice correction or exon skipping. Cationic cell penetrating peptides (CPPs) have given rise to much interest for the intracellular delivery of biomolecules, but their efficiency in promoting cytoplasmic or nuclear delivery of oligonucleotides has been hampered by endocytic sequestration and subsequent degradation of most internalized material in endocytic compartments. In the present study, we compared the splice correction activity of three different CPPs conjugated to PMO(705), a steric-block ON targeted against the mutated splicing site of human beta-globin pre-mRNA in the HeLa pLuc705 splice correction model. In contrast to Tat48-60 (Tat) and oligoarginine (R(9)F(2)) PMO(705) conjugates, the 6-aminohexanoic-spaced oligoarginine (R-Ahx-R)(4)-PMO(705) conjugate was able to promote an efficient splice correction in the absence of endosomolytic agents. Our mechanistic investigations about its uptake mechanisms lead to the conclusion that these three vectors are internalized using the same endocytic route involving proteoglycans, but that the (R-Ahx-R)(4)-PMO(705) conjugate has the unique ability to escape from lysosomial fate and to access to the nuclear compartment. This vector, which has displays an extremely low cytotoxicity, the ability to function without chloroquine adjunction and in the presence of serum proteins. It thus offers a promising lead for the development of vectors able to enhance the delivery of therapeutic steric-block ON in clinically relevant models.

  18. Identification of cis-Acting Elements and Splicing Factors Involved in the Regulation of BIM Pre-mRNA Splicing

    PubMed Central

    Juan, Wen Chun; Roca, Xavier; Ong, S. Tiong

    2014-01-01

    Aberrant changes in the expression of the pro-apoptotic protein, BCL-2-like 11 (BIM), can result in either impaired or excessive apoptosis, which can contribute to tumorigenesis and degenerative disorders, respectively. Altering BIM pre-mRNA splicing is an attractive approach to modulate apoptosis because BIM activity is partly determined by the alternative splicing of exons 3 or 4, whereby exon 3-containing transcripts are not apoptotic. Here we identified several cis-acting elements and splicing factors involved in BIM alternative splicing, as a step to better understand the regulation of BIM expression. We analyzed a recently discovered 2,903-bp deletion polymorphism within BIM intron 2 that biased splicing towards exon 3, and which also impaired BIM-dependent apoptosis. We found that this region harbors multiple redundant cis-acting elements that repress exon 3 inclusion. Furthermore, we have isolated a 23-nt intronic splicing silencer at the 3′ end of the deletion that is important for excluding exon 3. We also show that PTBP1 and hnRNP C repress exon 3 inclusion, and that downregulation of PTBP1 inhibited BIM-mediated apoptosis. Collectively, these findings start building our understanding of the cis-acting elements and splicing factors that regulate BIM alternative splicing, and also suggest potential approaches to alter BIM splicing for therapeutic purposes. PMID:24743263

  19. Identification of cis-acting elements and splicing factors involved in the regulation of BIM Pre-mRNA splicing.

    PubMed

    Juan, Wen Chun; Roca, Xavier; Ong, S Tiong

    2014-01-01

    Aberrant changes in the expression of the pro-apoptotic protein, BCL-2-like 11 (BIM), can result in either impaired or excessive apoptosis, which can contribute to tumorigenesis and degenerative disorders, respectively. Altering BIM pre-mRNA splicing is an attractive approach to modulate apoptosis because BIM activity is partly determined by the alternative splicing of exons 3 or 4, whereby exon 3-containing transcripts are not apoptotic. Here we identified several cis-acting elements and splicing factors involved in BIM alternative splicing, as a step to better understand the regulation of BIM expression. We analyzed a recently discovered 2,903-bp deletion polymorphism within BIM intron 2 that biased splicing towards exon 3, and which also impaired BIM-dependent apoptosis. We found that this region harbors multiple redundant cis-acting elements that repress exon 3 inclusion. Furthermore, we have isolated a 23-nt intronic splicing silencer at the 3' end of the deletion that is important for excluding exon 3. We also show that PTBP1 and hnRNP C repress exon 3 inclusion, and that downregulation of PTBP1 inhibited BIM-mediated apoptosis. Collectively, these findings start building our understanding of the cis-acting elements and splicing factors that regulate BIM alternative splicing, and also suggest potential approaches to alter BIM splicing for therapeutic purposes.

  20. Identification of human short introns

    PubMed Central

    Abebrese, Emmanuel L.; Arnold, Zachary R.; Armstrong, Katharine; Burns, Lindsay; Day, R. Thomas; Hsu, Daniel G.; Jarrell, Katherine; Luo, Yi; Mugayo, Daphine

    2017-01-01

    Canonical pre-mRNA splicing requires snRNPs and associated splicing factors to excise conserved intronic sequences, with a minimum intron length required for efficient splicing. Non-canonical splicing–intron excision without the spliceosome–has been documented; most notably, some tRNAs and the XBP1 mRNA contain short introns that are not removed by the spliceosome. There have been some efforts to identify additional short introns, but little is known about how many short introns are processed from mRNAs. Here, we report an approach to identify RNA short introns from RNA-Seq data, discriminating against small genomic deletions. We identify hundreds of short introns conserved among multiple human cell lines. These short introns are often alternatively spliced and are found in a variety of RNAs–both mRNAs and lncRNAs. Short intron splicing efficiency is increased by secondary structure, and we detect both canonical and non-canonical short introns. In many cases, splicing of these short introns from mRNAs is predicted to alter the reading frame and change protein output. Our findings imply that standard gene prediction models which often assume a lower limit for intron size fail to predict short introns effectively. We conclude that short introns are abundant in the human transcriptome, and short intron splicing represents an added layer to mRNA regulation. PMID:28520720

  1. Low loss fusion splicing polarization-maintaining photonic crystal fiber and conventional polarization-maintaining fiber

    NASA Astrophysics Data System (ADS)

    Zuoming, Sun; Ningfang, Song; Jing, Jin; Jingming, Song; Pan, Ma

    2012-12-01

    An efficient and simple method of fusion splicing of a Polarization-Maintaining Photonic Crystal Fiber (PM-PCF) and a conventional Polarization-Maintaining Fiber (PMF) with a low loss of 0.65 dB in experiment is reported. The minimum bending diameter of the joint can reach 2 cm. Theoretical calculation of the splicing loss based on mode field diameters (MFDs) mismatch of the two kinds of fibers is given. All parameters affected the splicing loss were studied.

  2. Perturbation of Chromatin Structure Globally Affects Localization and Recruitment of Splicing Factors

    PubMed Central

    Risso, Guillermo J.; Pawellek, Andrea; Ule, Jernej; Lamond, Angus I.; Kornblihtt, Alberto R.

    2012-01-01

    Chromatin structure is an important factor in the functional coupling between transcription and mRNA processing, not only by regulating alternative splicing events, but also by contributing to exon recognition during constitutive splicing. We observed that depolarization of neuroblastoma cell membrane potential, which triggers general histone acetylation and regulates alternative splicing, causes a concentration of SR proteins in nuclear speckles. This prompted us to analyze the effect of chromatin structure on splicing factor distribution and dynamics. Here, we show that induction of histone hyper-acetylation results in the accumulation in speckles of multiple splicing factors in different cell types. In addition, a similar effect is observed after depletion of the heterochromatic protein HP1α, associated with repressive chromatin. We used advanced imaging approaches to analyze in detail both the structural organization of the speckle compartment and nuclear distribution of splicing factors, as well as studying direct interactions between splicing factors and their association with chromatin in vivo. The results support a model where perturbation of normal chromatin structure decreases the recruitment efficiency of splicing factors to nascent RNAs, thus causing their accumulation in speckles, which buffer the amount of free molecules in the nucleoplasm. To test this, we analyzed the recruitment of the general splicing factor U2AF65 to nascent RNAs by iCLIP technique, as a way to monitor early spliceosome assembly. We demonstrate that indeed histone hyper-acetylation decreases recruitment of U2AF65 to bulk 3′ splice sites, coincident with the change in its localization. In addition, prior to the maximum accumulation in speckles, ∼20% of genes already show a tendency to decreased binding, while U2AF65 seems to increase its binding to the speckle-located ncRNA MALAT1. All together, the combined imaging and biochemical approaches support a model where chromatin structure is essential for efficient co-transcriptional recruitment of general and regulatory splicing factors to pre-mRNA. PMID:23152763

  3. Regulation of insulin preRNA splicing by glucose

    PubMed Central

    Wang, Juehu; Shen, Luping; Najafi, Habiba; Kolberg, Janice; Matschinsky, Franz M.; Urdea, Mickey; German, Michael

    1997-01-01

    Glucose tightly regulates the synthesis and secretion of insulin by β cells in the pancreatic islets of Langerhans. To investigate whether glucose regulates insulin synthesis at the level of insulin RNA splicing, we developed a method to detect and quantify a small amount of RNA by using the branched DNA (bDNA) signal-amplification technique. This assay is both sensitive and highly specific: mouse insulin II mRNA can be detected from a single β cell (βTC3 cells or mouse islets), whereas 1 million non-insulin-producing α cells (αTC1.6 cells) give no signal. By using intron and exon sequences, oligonucleotide probes were designed to distinguish the various unspliced and partially spliced insulin preRNAs from mature insulin mRNA. Insulin RNA splicing rates were estimated from the rate of disappearance of insulin preRNA signal from β cells treated with actinomycin D to block transcription. We found that the two introns in mouse insulin II are not spliced with the same efficiency. Intron 2 is spliced out more efficiently than intron 1. As a result, some mRNA retaining intron 1 enters the cytoplasm, making up ≈2-10% of insulin mRNA in the cell. This partially spliced cytoplasmic mRNA is quite stable, with a half-life similar to the completely spliced form. When islets grown in high glucose are shifted to low glucose medium, the level of insulin preRNA and the rate of splicing fall significantly. We conclude that glucose stimulates insulin gene transcription and insulin preRNA splicing. Previous estimates of insulin transcription rates based on insulin preRNA levels that did not consider the rate of splicing may have underestimated the effect of glucose on insulin gene transcription. PMID:9113994

  4. The low information content of Neurospora splicing signals: implications for RNA splicing and intron origin.

    PubMed

    Collins, Richard A; Stajich, Jason E; Field, Deborah J; Olive, Joan E; DeAbreu, Diane M

    2015-05-01

    When we expressed a small (0.9 kb) nonprotein-coding transcript derived from the mitochondrial VS plasmid in the nucleus of Neurospora we found that it was efficiently spliced at one or more of eight 5' splice sites and ten 3' splice sites, which are present apparently by chance in the sequence. Further experimental and bioinformatic analyses of other mitochondrial plasmids, random sequences, and natural nuclear genes in Neurospora and other fungi indicate that fungal spliceosomes recognize a wide range of 5' splice site and branchpoint sequences and predict introns to be present at high frequency in random sequence. In contrast, analysis of intronless fungal nuclear genes indicates that branchpoint, 5' splice site and 3' splice site consensus sequences are underrepresented compared with random sequences. This underrepresentation of splicing signals is sufficient to deplete the nuclear genome of splice sites at locations that do not comprise biologically relevant introns. Thus, the splicing machinery can recognize a wide range of splicing signal sequences, but splicing still occurs with great accuracy, not because the splicing machinery distinguishes correct from incorrect introns, but because incorrect introns are substantially depleted from the genome. © 2015 Collins et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  5. Spatio-temporal regulations and functions of neuronal alternative RNA splicing in developing and adult brains.

    PubMed

    Iijima, Takatoshi; Hidaka, Chiharu; Iijima, Yoko

    2016-08-01

    Alternative pre-mRNA splicing is a fundamental mechanism that generates molecular diversity from a single gene. In the central nervous system (CNS), key neural developmental steps are thought to be controlled by alternative splicing decisions, including the molecular diversity underlying synaptic wiring, plasticity, and remodeling. Significant progress has been made in understanding the molecular mechanisms and functions of alternative pre-mRNA splicing in neurons through studies in invertebrate systems; however, recent studies have begun to uncover the potential role of neuronal alternative splicing in the mammalian CNS. This article provides an overview of recent findings regarding the regulation and function of neuronal alternative splicing. In particular, we focus on the spatio-temporal regulation of neurexin, a synaptic adhesion molecule, by neuronal cell type-specific factors and neuronal activity, which are thought to be especially important for characterizing neural development and function within the mammalian CNS. Notably, there is increasing evidence that implicates the dysregulation of neuronal splicing events in several neurological disorders. Therefore, understanding the detailed mechanisms of neuronal alternative splicing in the mammalian CNS may provide plausible treatment strategies for these diseases. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  6. Sex-dependent Association of a Common Low Density Lipoprotein Receptor Polymorphism with RNA Splicing Efficiency in the Brain and Alzheimers Disease

    PubMed Central

    Zou, Fanggeng; Gopalraj, Rangaraj K.; Lok, Johann; Zhu, Haiyan; Ling, I-Fang; Simpson, James F.; Tucker, H. Michael; Kelly, Jeremiah F.; Younkin, Samuel G.; Dickson, Dennis W.; Petersen, Ronald C; Graff-Radford, Neill R.; Bennett, David A.; Crook, Julia E.; G.Younkin, Steven; Estus, Steven

    2008-01-01

    Since apoE allele status is the predominant Alzheimers disease (AD) genetic risk factor, functional single nucleotide polymorphisms (SNP)s in brain apoE receptors represent excellent candidates for association with AD. Recently, we identified a SNP, rs688, as modulating the splicing efficiency of low-density lipoprotein receptor (LDLR) exon 12 in the female human liver and in minigene transfected HepG2 cells. Moreover, the rs688T minor allele associated with significantly higher LDL and total cholesterol in women in the Framingham Offspring Study. Since LDLR is a major apoE receptor in the brain, we hypothesized that rs688 modulates LDLR splicing in neural tissues and associates with AD. To evaluate this hypothesis, we first transfected LDLR minigenes into SH-SY5Y neuroblastoma cells and found that rs688T reduces exon 12 inclusion in this neural model. We then evaluated rs688 association with exon 12 splicing efficiency in vivo by quantifying LDLR splicing in human anterior cingulate tissue obtained at autopsy; the rs688T allele associated with decreased LDLR exon 12 splicing efficiency in aged men but not women. Lastly, we evaluated whether rs688 associates with AD by genotyping DNA from 1,457 men and 2,055 women drawn from three case-control series. The rs688T/T genotype was associated with increased AD odds in males (recessive model, odds ratio (OR) of 1.49, 95% confidence interval (CI) of 1.13−1.97, uncorrected p=0.005), but not in females. In summary, these studies identify a functional apoE receptor SNP that is associated with AD in a sex-dependent fashion. PMID:18065781

  7. Splicing Efficiently Couples Optical Fibers

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.

    1985-01-01

    Method of splicing single-mode optical fibers results in very low transmission losses through joined fiber ends. Coupling losses between joined optical-fiber ends only 0.1 dB. Method needs no special operator training.

  8. Systematic profiling of alternative splicing signature reveals prognostic predictor for ovarian cancer.

    PubMed

    Zhu, Junyong; Chen, Zuhua; Yong, Lei

    2018-02-01

    The majority of genes are alternatively spliced and growing evidence suggests that alternative splicing is modified in cancer and is associated with cancer progression. Systematic analysis of alternative splicing signature in ovarian cancer is lacking and greatly needed. We profiled genome-wide alternative splicing events in 408 ovarian serous cystadenocarcinoma (OV) patients in TCGA. Seven types of alternative splicing events were curated and prognostic analyses were performed with predictive models and splicing network built for OV patients. Among 48,049 mRNA splicing events in 10,582 genes, we detected 2,611 alternative splicing events in 2,036 genes which were significant associated with overall survival of OV patients. Exon skip events were the most powerful prognostic factors among the seven types. The area under the curve of the receiver-operator characteristic curve for prognostic predictor, which was built with top significant alternative splicing events, was 0.937 at 2,000 days of overall survival, indicating powerful efficiency in distinguishing patient outcome. Interestingly, splicing correlation network suggested obvious trends in the role of splicing factors in OV. In summary, we built powerful prognostic predictors for OV patients and uncovered interesting splicing networks which could be underlying mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Analysis of aberrant pre-messenger RNA splicing resulting from mutations in ATP8B1 and efficient in vitro rescue by adapted U1 small nuclear RNA.

    PubMed

    van der Woerd, Wendy L; Mulder, Johanna; Pagani, Franco; Beuers, Ulrich; Houwen, Roderick H J; van de Graaf, Stan F J

    2015-04-01

    ATP8B1 deficiency is a severe autosomal recessive liver disease resulting from mutations in the ATP8B1 gene characterized by a continuous phenotypical spectrum from intermittent (benign recurrent intrahepatic cholestasis; BRIC) to progressive familial intrahepatic cholestasis (PFIC). Current therapeutic options are insufficient, and elucidating the molecular consequences of mutations could lead to personalized mutation-specific therapies. We investigated the effect on pre-messenger RNA splicing of 14 ATP8B1 mutations at exon-intron boundaries using an in vitro minigene system. Eleven mutations, mostly associated with a PFIC phenotype, resulted in aberrant splicing and a complete absence of correctly spliced product. In contrast, three mutations led to partially correct splicing and were associated with a BRIC phenotype. These findings indicate an inverse correlation between the level of correctly spliced product and disease severity. Expression of modified U1 small nuclear RNAs (snRNA) complementary to the splice donor sites strongly improved or completely rescued splicing for several ATP8B1 mutations located at donor, as well as acceptor, splice sites. In one case, we also evaluated exon-specific U1 snRNAs that, by targeting nonconserved intronic sequences, might reduce possible off-target events. Although very effective in correcting exon skipping, they also induced retention of the short downstream intron. We systematically characterized the molecular consequences of 14 ATP8B1 mutations at exon-intron boundaries associated with ATP8B1 deficiency and found that the majority resulted in total exon skipping. The amount of correctly spliced product inversely correlated with disease severity. Compensatory modified U1 snRNAs, complementary to mutated donor splice sites, were able to improve exon definition very efficiently and could be a novel therapeutic strategy in ATP8B1 deficiency as well as other genetic diseases. © 2014 by the American Association for the Study of Liver Diseases.

  10. RNA splicing during terminal erythropoiesis.

    PubMed

    Conboy, John G

    2017-05-01

    Erythroid progenitors must accurately and efficiently splice thousands of pre-mRNAs as the cells undergo extensive changes in gene expression and cellular remodeling during terminal erythropoiesis. Alternative splicing choices are governed by interactions between RNA binding proteins and cis-regulatory binding motifs in the RNA. This review will focus on recent studies that define the genome-wide scope of splicing in erythroblasts and discuss what is known about its regulation. RNA-seq analysis of highly purified erythroblast populations has revealed an extensive program of alternative splicing of both exons and introns. During normal erythropoiesis, stage-specific splicing transitions alter the structure and abundance of protein isoforms required for optimized red cell production. Mutation or deficiency of splicing regulators underlies hematopoietic disease in myelopdysplasia syndrome patients via disrupting the splicing program. Erythroid progenitors execute an elaborate alternative splicing program that modulates gene expression posttranscriptionally, ultimately regulating the structure and function of the proteome in a differentiation stage-specific manner during terminal erythropoiesis. This program helps drive differentiation and ensure synthesis of the proper protein isoforms required to produce mechanically stable red cells. Mutation or deficiency of key splicing regulatory proteins disrupts the splicing program to cause disease.

  11. Non-coding functions of alternative pre-mRNA splicing in development

    PubMed Central

    Mockenhaupt, Stefan; Makeyev, Eugene V.

    2015-01-01

    A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization. PMID:26493705

  12. SpliceRover: Interpretable Convolutional Neural: Networks for Improved Splice Site Prediction.

    PubMed

    Zuallaert, Jasper; Godin, Fréderic; Kim, Mijung; Soete, Arne; Saeys, Yvan; De Neve, Wesley

    2018-06-21

    During the last decade, improvements in high-throughput sequencing have generated a wealth of genomic data. Functionally interpreting these sequences and finding the biological signals that are hallmarks of gene function and regulation is currently mostly done using automated genome annotation platforms, which mainly rely on integrated machine learning frameworks to identify different functional sites of interest, including splice sites. Splicing is an essential step in the gene regulation process, and the correct identification of splice sites is a major cornerstone in a genome annotation system. In this paper, we present SpliceRover, a predictive deep learning approach that outperforms the state-of-the-art in splice site prediction. SpliceRover uses convolutional neural networks (CNNs), which have been shown to obtain cutting edge performance on a wide variety of prediction tasks. We adapted this approach to deal with genomic sequence inputs, and show it consistently outperforms already existing approaches, with relative improvements in prediction effectiveness of up to 80.9% when measured in terms of false discovery rate. However, a major criticism of CNNs concerns their "black box" nature, as mechanisms to obtain insight into their reasoning processes are limited. To facilitate interpretability of the SpliceRover models, we introduce an approach to visualize the biologically relevant information learnt. We show that our visualization approach is able to recover features known to be important for splice site prediction (binding motifs around the splice site, presence of polypyrimidine tracts and branch points), as well as reveal new features (e.g., several types of exclusion patterns near splice sites). SpliceRover is available as a web service. The prediction tool and instructions can be found at http://bioit2.irc.ugent.be/splicerover/. Supplementary materials are available at Bioinformatics online.

  13. A Novel Pathway for Sensory-Mediated Arousal Involves Splicing of an Intron in the period Clock Gene

    PubMed Central

    Cao, Weihuan; Edery, Isaac

    2015-01-01

    Study Objectives: D. melanogaster is an excellent animal model to study how the circadian (≅ 24-h) timing system and sleep regulate daily wake-sleep cycles. Splicing of a temperature-sensitive 3'-terminal intron (termed dmpi8) from the circadian clock gene period (per) regulates the distribution of daily activity in Drosophila. The role of dmpi8 splicing on daily behavior was further evaluated by analyzing sleep. Design: Transgenic flies of the same genetic background but expressing either a wild-type recombinant per gene or one where the efficiency of dmpi8 splicing was increased were exposed to different temperatures in daily light-dark cycles and sleep parameters measured. In addition, transgenic flies were briefly exposed to a variety of sensory-mediated stimuli to measure arousal responses. Results: Surprisingly, we show that the effect of dmpi8 splicing on daytime activity levels does not involve a circadian role for per but is linked to adjustments in sensory-dependent arousal and sleep behavior. Genetically altered flies with high dmpi8 splicing efficiency remain aroused longer following short treatments with light and non-photic cues such as mechanical stimulation. Conclusions: We propose that the thermal regulation of dmpi8 splicing acts as a temperature-calibrated rheostat in a novel arousal mechanism, so that on warm days the inefficient splicing of the dmpi8 intron triggers an increase in quiescence by decreasing sensory-mediated arousal, thus ensuring flies minimize being active during the hot midday sun despite the presence of light in the environment, which is usually a strong arousal cue for diurnal animals. Citation: Cao W, Edery I. A novel pathway for sensory-mediated arousal involves splicing of an intron in the period clock gene. SLEEP 2015;38(1):41–51. PMID:25325457

  14. Specifications of a Simulation Model for a Local Area Network Design in Support of a Stock Point Logistics Integrated Communication Environment (SPLICE).

    DTIC Science & Technology

    1983-06-01

    constrained at each step. Use of dis- crete simulation can be a powerful tool in this process if its role is carefully planned. The gross behavior of the...by projecting: - the arrival of units of work at SPLICE processing facilities (workload analysis) . - the amount of processing resources comsumed in

  15. Inference of alternative splicing from RNA-Seq data with probabilistic splice graphs

    PubMed Central

    LeGault, Laura H.; Dewey, Colin N.

    2013-01-01

    Motivation: Alternative splicing and other processes that allow for different transcripts to be derived from the same gene are significant forces in the eukaryotic cell. RNA-Seq is a promising technology for analyzing alternative transcripts, as it does not require prior knowledge of transcript structures or genome sequences. However, analysis of RNA-Seq data in the presence of genes with large numbers of alternative transcripts is currently challenging due to efficiency, identifiability and representation issues. Results: We present RNA-Seq models and associated inference algorithms based on the concept of probabilistic splice graphs, which alleviate these issues. We prove that our models are often identifiable and demonstrate that our inference methods for quantification and differential processing detection are efficient and accurate. Availability: Software implementing our methods is available at http://deweylab.biostat.wisc.edu/psginfer. Contact: cdewey@biostat.wisc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23846746

  16. Intron open reading frames as mobile elements and evolution of a group I intron.

    PubMed

    Sellem, C H; Belcour, L

    1997-05-01

    Group I introns are proposed to have become mobile following the acquisition of open reading frames (ORFs) that encode highly specific DNA endonucleases. This proposal implies that intron ORFs could behave as autonomously mobile entities. This was supported by abundant circumstantial evidence but no experiment of ORF transfer from an ORF-containing intron to its ORF-less counterpart has been described. In this paper we present such experiments, which demonstrate the efficient mobility of the mitochondrial nad1-i4-orf1 between two Podospora strains. The homing of this mobile ORF was accompanied by a bidirectional co-conversion that did not systematically involve the whole intron sequence. Orf1 acquisition would be the most recent step in the evolution of the nad1-i4 intron, which has resulted in many strains of Podospora having an intron with two ORFs (biorfic) and four splicing pathways. We show that two of the splicing events that operate in this biorfic intron, as evidenced by PCR experiments, are generated by a 5'-alternative splice site, which is most probably a remnant of the monoorfic ancestral form of the intron. We propose a sequential evolution model that is consistent with the four organizations of the corresponding nad1 locus that we found among various species of the Pyrenomycete family; these organizations consist of no intron, an intron alone, a monoorfic intron, and a biorfic intron.

  17. Thermodynamic Modeling of Donor Splice Site Recognition in pre-mRNA

    NASA Astrophysics Data System (ADS)

    Aalberts, Daniel P.; Garland, Jeffrey A.

    2004-03-01

    When eukaryotic genes are edited by the spliceosome, the first step in intron recognition is the binding of a U1 snRNA with the donor (5') splice site. We model this interaction thermodynamically to identify splice sites. Applied to a set of 65 annotated genes, our Finding with Binding method achieves a significant separation between real and false sites. Analyzing binding patterns allows us to discard a large number of decoy sites. Our results improve statistics-based methods for donor site recognition, demonstrating the promise of physical modeling to find functional elements in the genome.

  18. Thermodynamic modeling of donor splice site recognition in pre-mRNA

    NASA Astrophysics Data System (ADS)

    Garland, Jeffrey A.; Aalberts, Daniel P.

    2004-04-01

    When eukaryotic genes are edited by the spliceosome, the first step in intron recognition is the binding of a U1 small nuclear RNA with the donor ( 5' ) splice site. We model this interaction thermodynamically to identify splice sites. Applied to a set of 65 annotated genes, our “finding with binding” method achieves a significant separation between real and false sites. Analyzing binding patterns allows us to discard a large number of decoy sites. Our results improve statistics-based methods for donor site recognition, demonstrating the promise of physical modeling to find functional elements in the genome.

  19. Long-time dynamics through parallel trajectory splicing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, Danny; Cubuk, Ekin D.; Waterland, Amos

    2015-11-24

    Simulating the atomistic evolution of materials over long time scales is a longstanding challenge, especially for complex systems where the distribution of barrier heights is very heterogeneous. Such systems are difficult to investigate using conventional long-time scale techniques, and the fact that they tend to remain trapped in small regions of configuration space for extended periods of time strongly limits the physical insights gained from short simulations. We introduce a novel simulation technique, Parallel Trajectory Splicing (ParSplice), that aims at addressing this problem through the timewise parallelization of long trajectories. The computational efficiency of ParSplice stems from a speculation strategymore » whereby predictions of the future evolution of the system are leveraged to increase the amount of work that can be concurrently performed at any one time, hence improving the scalability of the method. ParSplice is also able to accurately account for, and potentially reuse, a substantial fraction of the computational work invested in the simulation. We validate the method on a simple Ag surface system and demonstrate substantial increases in efficiency compared to previous methods. As a result, we then demonstrate the power of ParSplice through the study of topology changes in Ag 42Cu 13 core–shell nanoparticles.« less

  20. Genetic Studies of the Prp17 Gene of Saccharomyces Cerevisiae: A Domain Essential for Function Maps to a Nonconserved Region of the Protein

    PubMed Central

    Seshadri, V.; Vaidya, V. C.; Vijayraghavan, U.

    1996-01-01

    The PRP17 gene product is required for the second step of pre-mRNA splicing reactions. The C-terminal half of this protein bears four repeat units with homology to the β transducin repeat. Missense mutations in three temperature-sensitive prp17 mutants map to a region in the N-terminal half of the protein. We have generated, in vitro, 11 missense alleles at the β transducin repeat units and find that only one affects function in vivo. A phenotypically silent missense allele at the fourth repeat unit enhances the slow-growing phenotype conferred by an allele at the third repeat, suggesting an interaction between these domains. Although many missense mutations in highly conserved amino acids lack phenotypic effects, deletion analysis suggests an essential role for these units. Only mutations in the N-terminal nonconserved domain of PRP17 are synthetically lethal in combination with mutations in PRP16 and PRP18, two other gene products required for the second splicing reaction. A mutually allele-specific interaction between prp17 and snr7, with mutations in U5 snRNA, was observed. We therefore suggest that the functional region of Prp17p that interacts with Prp18p, Prp16p, and U5 snRNA is in the N terminal region of the protein. PMID:8722761

  1. Evaluation of Alternative Splicing Regulators As Targets For Selective Therapy of Triple Negative (Basal) Breast Carcinoma

    DTIC Science & Technology

    2016-10-01

    KHDRBS3 and SRSF12 on tumor progression and metastasis (Task1). We analyzed the effect of KHDRBS3 depletion on the growth and migration properties of the...tumor growth during the second year of this project. Continued analysis of the splicing factor expression in primary tumor samples further supports...depletion on tumor initiation, growth and metastasis. Keywords Pre-mRNA splicing, breast cancer, KHDRBS3, SRPK1, SRSF12, metastasis

  2. RNA splicing and its connection with other regulatory layers in somatic cell reprogramming.

    PubMed

    Zavolan, Mihaela; Kanitz, Alexander

    2018-06-01

    Understanding how cell identity is established and maintained is one of the most exciting challenges of molecular biology today. Recent work has added a conserved layer of RNA splicing and other post-transcriptional regulatory processes to the transcriptional and epigenetic networks already known to cooperate in the establishment and maintenance of cell identity. Here we summarize these findings, highlighting specifically the multitude of splicing factors that can modulate the efficiency of somatic cell reprogramming. Distinct patterns of gene expression dynamics of these factors during reprogramming suggest that further improvements in efficiency could be obtained through optimal timing of overexpression or knockdown of individual regulators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Genomic overview of mRNA 5′-leader trans-splicing in the ascidian Ciona intestinalis

    PubMed Central

    Satou, Yutaka; Hamaguchi, Makoto; Takeuchi, Keisuke; Hastings, Kenneth E. M.; Satoh, Nori

    2006-01-01

    Although spliced leader (SL) trans-splicing in the chordates was discovered in the tunicate Ciona intestinalis there has been no genomic overview analysis of the extent of trans-splicing or the make-up of the trans-spliced and non-trans-spliced gene populations of this model organism. Here we report such an analysis for Ciona based on the oligo-capping full-length cDNA approach. We randomly sampled 2078 5′-full-length ESTs representing 668 genes, or 4.2% of the entire genome. Our results indicate that Ciona contains a single major SL, which is efficiently trans-spliced to mRNAs transcribed from a specific set of genes representing ∼50% of the total number of expressed genes, and that individual trans-spliced mRNA species are, on average, 2–3-fold less abundant than non-trans-spliced mRNA species. Our results also identify a relationship between trans-splicing status and gene functional classification; ribosomal protein genes fall predominantly into the non-trans-spliced category. In addition, our data provide the first evidence for the occurrence of polycistronic transcription in Ciona. An interesting feature of the Ciona polycistronic transcription units is that the great majority entirely lack intercistronic sequences. PMID:16822859

  4. Human Splicing Finder: an online bioinformatics tool to predict splicing signals.

    PubMed

    Desmet, François-Olivier; Hamroun, Dalil; Lalande, Marine; Collod-Béroud, Gwenaëlle; Claustres, Mireille; Béroud, Christophe

    2009-05-01

    Thousands of mutations are identified yearly. Although many directly affect protein expression, an increasing proportion of mutations is now believed to influence mRNA splicing. They mostly affect existing splice sites, but synonymous, non-synonymous or nonsense mutations can also create or disrupt splice sites or auxiliary cis-splicing sequences. To facilitate the analysis of the different mutations, we designed Human Splicing Finder (HSF), a tool to predict the effects of mutations on splicing signals or to identify splicing motifs in any human sequence. It contains all available matrices for auxiliary sequence prediction as well as new ones for binding sites of the 9G8 and Tra2-beta Serine-Arginine proteins and the hnRNP A1 ribonucleoprotein. We also developed new Position Weight Matrices to assess the strength of 5' and 3' splice sites and branch points. We evaluated HSF efficiency using a set of 83 intronic and 35 exonic mutations known to result in splicing defects. We showed that the mutation effect was correctly predicted in almost all cases. HSF could thus represent a valuable resource for research, diagnostic and therapeutic (e.g. therapeutic exon skipping) purposes as well as for global studies, such as the GEN2PHEN European Project or the Human Variome Project.

  5. Human Splicing Finder: an online bioinformatics tool to predict splicing signals

    PubMed Central

    Desmet, François-Olivier; Hamroun, Dalil; Lalande, Marine; Collod-Béroud, Gwenaëlle; Claustres, Mireille; Béroud, Christophe

    2009-01-01

    Thousands of mutations are identified yearly. Although many directly affect protein expression, an increasing proportion of mutations is now believed to influence mRNA splicing. They mostly affect existing splice sites, but synonymous, non-synonymous or nonsense mutations can also create or disrupt splice sites or auxiliary cis-splicing sequences. To facilitate the analysis of the different mutations, we designed Human Splicing Finder (HSF), a tool to predict the effects of mutations on splicing signals or to identify splicing motifs in any human sequence. It contains all available matrices for auxiliary sequence prediction as well as new ones for binding sites of the 9G8 and Tra2-β Serine-Arginine proteins and the hnRNP A1 ribonucleoprotein. We also developed new Position Weight Matrices to assess the strength of 5′ and 3′ splice sites and branch points. We evaluated HSF efficiency using a set of 83 intronic and 35 exonic mutations known to result in splicing defects. We showed that the mutation effect was correctly predicted in almost all cases. HSF could thus represent a valuable resource for research, diagnostic and therapeutic (e.g. therapeutic exon skipping) purposes as well as for global studies, such as the GEN2PHEN European Project or the Human Variome Project. PMID:19339519

  6. Non-coding functions of alternative pre-mRNA splicing in development.

    PubMed

    Mockenhaupt, Stefan; Makeyev, Eugene V

    2015-12-01

    A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. U2AF1 mutations alter splice site recognition in hematological malignancies.

    PubMed

    Ilagan, Janine O; Ramakrishnan, Aravind; Hayes, Brian; Murphy, Michele E; Zebari, Ahmad S; Bradley, Philip; Bradley, Robert K

    2015-01-01

    Whole-exome sequencing studies have identified common mutations affecting genes encoding components of the RNA splicing machinery in hematological malignancies. Here, we sought to determine how mutations affecting the 3' splice site recognition factor U2AF1 alter its normal role in RNA splicing. We find that U2AF1 mutations influence the similarity of splicing programs in leukemias, but do not give rise to widespread splicing failure. U2AF1 mutations cause differential splicing of hundreds of genes, affecting biological pathways such as DNA methylation (DNMT3B), X chromosome inactivation (H2AFY), the DNA damage response (ATR, FANCA), and apoptosis (CASP8). We show that U2AF1 mutations alter the preferred 3' splice site motif in patients, in cell culture, and in vitro. Mutations affecting the first and second zinc fingers give rise to different alterations in splice site preference and largely distinct downstream splicing programs. These allele-specific effects are consistent with a computationally predicted model of U2AF1 in complex with RNA. Our findings suggest that U2AF1 mutations contribute to pathogenesis by causing quantitative changes in splicing that affect diverse cellular pathways, and give insight into the normal function of U2AF1's zinc finger domains. © 2015 Ilagan et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Steric antisense inhibition of AMPA receptor Q/R editing reveals tight coupling to intronic editing sites and splicing

    PubMed Central

    Penn, Andrew C.; Balik, Ales; Greger, Ingo H.

    2013-01-01

    Adenosine-to-Inosine (A-to-I) RNA editing is a post-transcriptional mechanism, evolved to diversify the transcriptome in metazoa. In addition to wide-spread editing in non-coding regions protein recoding by RNA editing allows for fine tuning of protein function. Functional consequences are only known for some editing sites and the combinatorial effect between multiple sites (functional epistasis) is currently unclear. Similarly, the interplay between RNA editing and splicing, which impacts on post-transcriptional gene regulation, has not been resolved. Here, we describe a versatile antisense approach, which will aid resolving these open questions. We have developed and characterized morpholino oligos targeting the most efficiently edited site—the AMPA receptor GluA2 Q/R site. We show that inhibition of editing closely correlates with intronic editing efficiency, which is linked to splicing efficiency. In addition to providing a versatile tool our data underscore the unique efficiency of a physiologically pivotal editing site. PMID:23172291

  9. Multiple splicing defects in an intronic false exon.

    PubMed

    Sun, H; Chasin, L A

    2000-09-01

    Splice site consensus sequences alone are insufficient to dictate the recognition of real constitutive splice sites within the typically large transcripts of higher eukaryotes, and large numbers of pseudoexons flanked by pseudosplice sites with good matches to the consensus sequences can be easily designated. In an attempt to identify elements that prevent pseudoexon splicing, we have systematically altered known splicing signals, as well as immediately adjacent flanking sequences, of an arbitrarily chosen pseudoexon from intron 1 of the human hprt gene. The substitution of a 5' splice site that perfectly matches the 5' consensus combined with mutation to match the CAG/G sequence of the 3' consensus failed to get this model pseudoexon included as the central exon in a dhfr minigene context. Provision of a real 3' splice site and a consensus 5' splice site and removal of an upstream inhibitory sequence were necessary and sufficient to confer splicing on the pseudoexon. This activated context also supported the splicing of a second pseudoexon sequence containing no apparent enhancer. Thus, both the 5' splice site sequence and the polypyrimidine tract of the pseudoexon are defective despite their good agreement with the consensus. On the other hand, the pseudoexon body did not exert a negative influence on splicing. The introduction into the pseudoexon of a sequence selected for binding to ASF/SF2 or its replacement with beta-globin exon 2 only partially reversed the effect of the upstream negative element and the defective polypyrimidine tract. These results support the idea that exon-bridging enhancers are not a prerequisite for constitutive exon definition and suggest that intrinsically defective splice sites and negative elements play important roles in distinguishing the real splicing signal from the vast number of false splicing signals.

  10. A mutational analysis of U12-dependent splice site dinucleotides

    PubMed Central

    DIETRICH, ROSEMARY C.; FULLER, JOHN D.; PADGETT, RICHARD A.

    2005-01-01

    Introns spliced by the U12-dependent minor spliceosome are divided into two classes based on their splice site dinucleotides. The /AU-AC/ class accounts for about one-third of U12-dependent introns in humans, while the /GU-AG/ class accounts for the other two-thirds. We have investigated the in vivo and in vitro splicing phenotypes of mutations in these dinucleotide sequences. A 5′ A residue can splice to any 3′ residue, although C is preferred. A 5′ G residue can splice to 3′ G or U residues with a preference for G. Little or no splicing was observed to 3′ A or C residues. A 5′ U or C residue is highly deleterious for U12-dependent splicing, although some combinations, notably 5′ U to 3′ U produced detectable spliced products. The dependence of 3′ splice site activity on the identity of the 5′ residue provides evidence for communication between the first and last nucleotides of the intron. Most mutants in the second position of the 5′ splice site and the next to last position of the 3′ splice site were defective for splicing. Double mutants of these residues showed no evidence of communication between these nucleotides. Varying the distance between the branch site and the 3′ splice site dinucleotide in the /GU-AG/ class showed that a somewhat larger range of distances was functional than for the /AU-AC/ class. The optimum branch site to 3′ splice site distance of 11–12 nucleotides appears to be the same for both classes. PMID:16043500

  11. Using information content and base frequencies to distinguish mutations from genetic polymorphisms in splice junction recognition sites.

    PubMed

    Rogan, P K; Schneider, T D

    1995-01-01

    Predicting the effects of nucleotide substitutions in human splice sites has been based on analysis of consensus sequences. We used a graphic representation of sequence conservation and base frequency, the sequence logo, to demonstrate that a change in a splice acceptor of hMSH2 (a gene associated with familial nonpolyposis colon cancer) probably does not reduce splicing efficiency. This confirms a population genetic study that suggested that this substitution is a genetic polymorphism. The information theory-based sequence logo is quantitative and more sensitive than the corresponding splice acceptor consensus sequence for detection of true mutations. Information analysis may potentially be used to distinguish polymorphisms from mutations in other types of transcriptional, translational, or protein-coding motifs.

  12. Interconnections Between RNA-Processing Pathways Revealed by a Sequencing-Based Genetic Screen for Pre-mRNA Splicing Mutants in Fission Yeast.

    PubMed

    Larson, Amy; Fair, Benjamin Jung; Pleiss, Jeffrey A

    2016-06-01

    Pre-mRNA splicing is an essential component of eukaryotic gene expression and is highly conserved from unicellular yeasts to humans. Here, we present the development and implementation of a sequencing-based reverse genetic screen designed to identify nonessential genes that impact pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, an organism that shares many of the complex features of splicing in higher eukaryotes. Using a custom-designed barcoding scheme, we simultaneously queried ∼3000 mutant strains for their impact on the splicing efficiency of two endogenous pre-mRNAs. A total of 61 nonessential genes were identified whose deletions resulted in defects in pre-mRNA splicing; enriched among these were factors encoding known or predicted components of the spliceosome. Included among the candidates identified here are genes with well-characterized roles in other RNA-processing pathways, including heterochromatic silencing and 3' end processing. Splicing-sensitive microarrays confirm broad splicing defects for many of these factors, revealing novel functional connections between these pathways. Copyright © 2016 Larson et al.

  13. Interconnections Between RNA-Processing Pathways Revealed by a Sequencing-Based Genetic Screen for Pre-mRNA Splicing Mutants in Fission Yeast

    PubMed Central

    Larson, Amy; Fair, Benjamin Jung; Pleiss, Jeffrey A.

    2016-01-01

    Pre-mRNA splicing is an essential component of eukaryotic gene expression and is highly conserved from unicellular yeasts to humans. Here, we present the development and implementation of a sequencing-based reverse genetic screen designed to identify nonessential genes that impact pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, an organism that shares many of the complex features of splicing in higher eukaryotes. Using a custom-designed barcoding scheme, we simultaneously queried ∼3000 mutant strains for their impact on the splicing efficiency of two endogenous pre-mRNAs. A total of 61 nonessential genes were identified whose deletions resulted in defects in pre-mRNA splicing; enriched among these were factors encoding known or predicted components of the spliceosome. Included among the candidates identified here are genes with well-characterized roles in other RNA-processing pathways, including heterochromatic silencing and 3ʹ end processing. Splicing-sensitive microarrays confirm broad splicing defects for many of these factors, revealing novel functional connections between these pathways. PMID:27172183

  14. The histone variant H2A.Z promotes efficient cotranscriptional splicing in S. cerevisiae

    PubMed Central

    Neves, Lauren T.; Douglass, Stephen; Spreafico, Roberto; Venkataramanan, Srivats; Kress, Tracy L.; Johnson, Tracy L.

    2017-01-01

    In eukaryotes, a dynamic ribonucleic protein machine known as the spliceosome catalyzes the removal of introns from premessenger RNA (pre-mRNA). Recent studies show the processes of RNA synthesis and RNA processing to be spatio–temporally coordinated, indicating that RNA splicing takes place in the context of chromatin. H2A.Z is a highly conserved histone variant of the canonical histone H2A. In Saccharomyces cerevisiae, H2A.Z is deposited into chromatin by the SWR-C complex, is found near the 5′ ends of protein-coding genes, and has been implicated in transcription regulation. Here we show that splicing of intron-containing genes in cells lacking H2A.Z is impaired, particularly under suboptimal splicing conditions. Cells lacking H2A.Z are especially dependent on a functional U2 snRNP (small nuclear RNA [snRNA] plus associated proteins), as H2A.Z shows extensive genetic interactions with U2 snRNP-associated proteins, and RNA sequencing (RNA-seq) reveals that introns with nonconsensus branch points are particularly sensitive to H2A.Z loss. Consistently, H2A.Z promotes efficient spliceosomal rearrangements involving the U2 snRNP, as H2A.Z loss results in persistent U2 snRNP association and decreased recruitment of downstream snRNPs to nascent RNA. H2A.Z impairs transcription elongation, suggesting that spliceosome rearrangements are tied to H2A.Z's role in elongation. Depletion of disassembly factor Prp43 suppresses H2A.Z-mediated splice defects, indicating that, in the absence of H2A.Z, stalled spliceosomes are disassembled, and unspliced RNAs are released. Together, these data demonstrate that H2A.Z is required for efficient pre-mRNA splicing and indicate a role for H2A.Z in coordinating the kinetics of transcription elongation and splicing. PMID:28446598

  15. Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes

    PubMed Central

    Ebstein, F.; Textoris-Taube, K.; Keller, C.; Golnik, R.; Vigneron, N.; Van den Eynde, B. J.; Schuler-Thurner, B.; Schadendorf, D.; Lorenz, F. K. M.; Uckert, W.; Urban, S.; Lehmann, A.; Albrecht-Koepke, N.; Janek, K.; Henklein, P.; Niewienda, A.; Kloetzel, P. M.; Mishto, M.

    2016-01-01

    Proteasome-catalyzed peptide splicing represents an additional catalytic activity of proteasomes contributing to the pool of MHC-class I-presented epitopes. We here biochemically and functionally characterized a new melanoma gp100 derived spliced epitope. We demonstrate that the gp100mel47–52/40–42 antigenic peptide is generated in vitro and in cellulo by a not yet described proteasomal condensation reaction. gp100mel47–52/40–42 generation is enhanced in the presence of the β5i/LMP7 proteasome-subunit and elicits a peptide-specific CD8+ T cell response. Importantly, we demonstrate that different gp100mel-derived spliced epitopes are generated and presented to CD8+ T cells with efficacies comparable to non-spliced canonical tumor epitopes and that gp100mel-derived spliced epitopes trigger activation of CD8+ T cells found in peripheral blood of half of the melanoma patients tested. Our data suggest that both transpeptidation and condensation reactions contribute to the frequent generation of spliced epitopes also in vivo and that their immune relevance may be comparable to non-spliced epitopes. PMID:27049119

  16. Integration of a splicing regulatory network within the meiotic gene expression program of Saccharomyces cerevisiae

    PubMed Central

    Munding, Elizabeth M.; Igel, A. Haller; Shiue, Lily; Dorighi, Kristel M.; Treviño, Lisa R.; Ares, Manuel

    2010-01-01

    Splicing regulatory networks are essential components of eukaryotic gene expression programs, yet little is known about how they are integrated with transcriptional regulatory networks into coherent gene expression programs. Here we define the MER1 splicing regulatory network and examine its role in the gene expression program during meiosis in budding yeast. Mer1p splicing factor promotes splicing of just four pre-mRNAs. All four Mer1p-responsive genes also require Nam8p for splicing activation by Mer1p; however, other genes require Nam8p but not Mer1p, exposing an overlapping meiotic splicing network controlled by Nam8p. MER1 mRNA and three of the four Mer1p substrate pre-mRNAs are induced by the transcriptional regulator Ume6p. This unusual arrangement delays expression of Mer1p-responsive genes relative to other genes under Ume6p control. Products of Mer1p-responsive genes are required for initiating and completing recombination and for activation of Ndt80p, the activator of the transcriptional network required for subsequent steps in the program. Thus, the MER1 splicing regulatory network mediates the dependent relationship between the UME6 and NDT80 transcriptional regulatory networks in the meiotic gene expression program. This study reveals how splicing regulatory networks can be interlaced with transcriptional regulatory networks in eukaryotic gene expression programs. PMID:21123654

  17. Rrp6 is recruited to transcribed genes and accompanies the spliced mRNA to the nuclear pore

    PubMed Central

    Hessle, Viktoria; von Euler, Anne; González de Valdivia, Ernesto; Visa, Neus

    2012-01-01

    Rrp6 is an exoribonuclease involved in the quality control of mRNA biogenesis. We have analyzed the association of Rrp6 with the Balbiani ring pre-mRNPs of Chironomus tentans to obtain insight into the role of Rrp6 in splicing surveillance. Rrp6 is recruited to transcribed genes and its distribution along the genes does not correlate with the positions of exons and introns. In the nucleoplasm, Rrp6 is bound to both unspliced and spliced transcripts. Rrp6 is released from the mRNPs in the vicinity of the nuclear pore before nucleo-cytoplasmic translocation. We show that Rrp6 is associated with newly synthesized transcripts during all the nuclear steps of gene expression and is associated with the transcripts independently of their splicing status. These observations suggest that the quality control of pre-mRNA splicing is not based on the selective recruitment of the exoribonuclease Rrp6 to unprocessed mRNAs. PMID:22745224

  18. Mechanisms and Regulation of Alternative Pre-mRNA Splicing

    PubMed Central

    Lee, Yeon

    2015-01-01

    Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA–protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA–RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions. PMID:25784052

  19. Sexy splicing: regulatory interplays governing sex determination from Drosophila to mammals.

    PubMed

    Lalli, Enzo; Ohe, Kenji; Latorre, Elisa; Bianchi, Marco E; Sassone-Corsi, Paolo

    2003-02-01

    A remarkable array of strategies is used to produce sexual differentiation in different species. Complex gene hierarchies govern sex determination pathways, as exemplified by the classic D. melanogaster paradigm, where an interplay of transcriptional, splicing and translational mechanisms operate. Molecular studies support the hypothesis that genetic sex determination pathways evolved in reverse order, from downstream to upstream genes, in the cascade. The recent identification of a role for the key regulatory factors SRY and WT1(+KTS) in pre-mRNA splicing indicates that important steps in the mammalian sex determination process are likely to operate at the post-transcriptional level.

  20. Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks.

    PubMed

    Shelley, M J; Tao, L

    2001-01-01

    To avoid the numerical errors associated with resetting the potential following a spike in simulations of integrate-and-fire neuronal networks, Hansel et al. and Shelley independently developed a modified time-stepping method. Their particular scheme consists of second-order Runge-Kutta time-stepping, a linear interpolant to find spike times, and a recalibration of postspike potential using the spike times. Here we show analytically that such a scheme is second order, discuss the conditions under which efficient, higher-order algorithms can be constructed to treat resets, and develop a modified fourth-order scheme. To support our analysis, we simulate a system of integrate-and-fire conductance-based point neurons with all-to-all coupling. For six-digit accuracy, our modified Runge-Kutta fourth-order scheme needs a time-step of Delta(t) = 0.5 x 10(-3) seconds, whereas to achieve comparable accuracy using a recalibrated second-order or a first-order algorithm requires time-steps of 10(-5) seconds or 10(-9) seconds, respectively. Furthermore, since the cortico-cortical conductances in standard integrate-and-fire neuronal networks do not depend on the value of the membrane potential, we can attain fourth-order accuracy with computational costs normally associated with second-order schemes.

  1. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  2. DNAJC17 is localized in nuclear speckles and interacts with splicing machinery components.

    PubMed

    Pascarella, A; Ferrandino, G; Credendino, S C; Moccia, C; D'Angelo, F; Miranda, B; D'Ambrosio, C; Bielli, P; Spadaro, O; Ceccarelli, M; Scaloni, A; Sette, C; De Felice, M; De Vita, G; Amendola, E

    2018-05-17

    DNAJC17 is a heat shock protein (HSP40) family member, identified in mouse as susceptibility gene for congenital hypothyroidism. DNAJC17 knockout mouse embryos die prior to implantation. In humans, germline homozygous mutations in DNAJC17 have been found in syndromic retinal dystrophy patients, while heterozygous mutations represent candidate pathogenic events for myeloproliferative disorders. Despite widespread expression and involvement in human diseases, DNAJC17 function is still poorly understood. Herein, we have investigated its function through high-throughput transcriptomic and proteomic approaches. DNAJC17-depleted cells transcriptome highlighted genes involved in general functional categories, mainly related to gene expression. Conversely, DNAJC17 interactome can be classified in very specific functional networks, with the most enriched one including proteins involved in splicing. Furthermore, several splicing-related interactors, were independently validated by co-immunoprecipitation and in vivo co-localization. Accordingly, co-localization of DNAJC17 with SC35, a marker of nuclear speckles, further supported its interaction with spliceosomal components. Lastly, DNAJC17 up-regulation enhanced splicing efficiency of minigene reporter in live cells, while its knockdown induced perturbations of splicing efficiency at whole genome level, as demonstrated by specific analysis of RNAseq data. In conclusion, our study strongly suggests a role of DNAJC17 in splicing-related processes and provides support to its recognized essential function in early development.

  3. Heart failure-associated changes in RNA splicing of sarcomere genes.

    PubMed

    Kong, Sek Won; Hu, Yong Wu; Ho, Joshua W K; Ikeda, Sadakatsu; Polster, Sean; John, Ranjit; Hall, Jennifer L; Bisping, Egbert; Pieske, Burkert; dos Remedios, Cristobal G; Pu, William T

    2010-04-01

    Alternative mRNA splicing is an important mechanism for regulation of gene expression. Altered mRNA splicing occurs in association with several types of cancer, and a small number of disease-associated changes in splicing have been reported in heart disease. However, genome-wide approaches have not been used to study splicing changes in heart disease. We hypothesized that mRNA splicing is different in diseased hearts compared with control hearts. We used the Affymetrix Exon array to globally evaluate mRNA splicing in left ventricular myocardial RNA from controls (n=15) and patients with ischemic cardiomyopathy (n=15). We observed a broad and significant decrease in mRNA splicing efficiency in heart failure, which affected some introns to a greater extent than others. The profile of mRNA splicing separately clustered ischemic cardiomyopathy and control samples, suggesting distinct changes in mRNA splicing between groups. Reverse transcription-polymerase chain reaction validated 9 previously unreported alternative splicing events. Furthermore, we demonstrated that splicing of 4 key sarcomere genes, cardiac troponin T (TNNT2), cardiac troponin I (TNNI3), myosin heavy chain 7 (MYH7), and filamin C, gamma (FLNC), was significantly altered in ischemic cardiomyopathy and in dilated cardiomyopathy and aortic stenosis. In aortic stenosis samples, these differences preceded the onset of heart failure. Remarkably, the ratio of minor to major splice variants of TNNT2, MYH7, and FLNC classified independent test samples as control or disease with >98% accuracy. Our data indicate that mRNA splicing is broadly altered in human heart disease and that patterns of aberrant RNA splicing accurately assign samples to control or disease classes.

  4. Homologous SV40 RNA trans-splicing

    PubMed Central

    Eul, Joachim; Patzel, Volker

    2013-01-01

    Simian Virus 40 (SV40) is a polyomavirus found in both monkeys and humans, which causes cancer in some animal models. In humans, SV40 has been reported to be associated with cancers but causality has not been proven yet. The transforming activity of SV40 is mainly due to its 94-kD large T antigen, which binds to the retinoblastoma (pRb) and p53 tumor suppressor proteins, and thereby perturbs their functions. Here we describe a 100 kD super T antigen harboring a duplication of the pRB binding domain that was associated with unusual high cell transformation activity and that was generated by a novel mechanism involving homologous RNA trans-splicing of SV40 early transcripts in transformed rodent cells. Enhanced trans-splice activity was observed in clones carrying a single point mutation in the large T antigen 5′ donor splice site (ss). This mutation impaired cis-splicing in favor of an alternative trans-splice reaction via a cryptic 5′ss within a second cis-spliced SV40 pre-mRNA molecule and enabled detectable gene expression. Next to the cryptic 5′ss we identified additional trans-splice helper functions, including putative dimerization domains and a splice enhancer sequence. Our findings suggest RNA trans-splicing as a SV40-intrinsic mechanism that supports the diversification of viral RNA and phenotypes. PMID:24178438

  5. Putting Humpty-Dumpty Together: Clustering the Functional Dynamics of Single Biomolecular Machines Such as the Spliceosome.

    PubMed

    Rohlman, C E; Blanco, M R; Walter, N G

    2016-01-01

    The spliceosome is a biomolecular machine that, in all eukaryotes, accomplishes site-specific splicing of introns from precursor messenger RNAs (pre-mRNAs) with high fidelity. Operating at the nanometer scale, where inertia and friction have lost the dominant role they play in the macroscopic realm, the spliceosome is highly dynamic and assembles its active site around each pre-mRNA anew. To understand the structural dynamics underlying the molecular motors, clocks, and ratchets that achieve functional accuracy in the yeast spliceosome (a long-standing model system), we have developed single-molecule fluorescence resonance energy transfer (smFRET) approaches that report changes in intra- and intermolecular interactions in real time. Building on our work using hidden Markov models (HMMs) to extract kinetic and conformational state information from smFRET time trajectories, we recognized that HMM analysis of individual state transitions as independent stochastic events is insufficient for a biomolecular machine as complex as the spliceosome. In this chapter, we elaborate on the recently developed smFRET-based Single-Molecule Cluster Analysis (SiMCAn) that dissects the intricate conformational dynamics of a pre-mRNA through the splicing cycle in a model-free fashion. By leveraging hierarchical clustering techniques developed for Bioinformatics, SiMCAn efficiently analyzes large datasets to first identify common molecular behaviors. Through a second level of clustering based on the abundance of dynamic behaviors exhibited by defined functional intermediates that have been stalled by biochemical or genetic tools, SiMCAn then efficiently assigns pre-mRNA FRET states and transitions to specific splicing complexes, with the potential to find heretofore undescribed conformations. SiMCAn thus arises as a general tool to analyze dynamic cellular machines more broadly. © 2016 Elsevier Inc. All rights reserved.

  6. Selenophosphate synthetase 1 and its role in redox homeostasis, defense and proliferation.

    PubMed

    Na, Jiwoon; Jung, Jisu; Bang, Jeyoung; Lu, Qiao; Carlson, Bradley A; Guo, Xiong; Gladyshev, Vadim N; Kim, Jinhong; Hatfield, Dolph L; Lee, Byeong Jae

    2018-04-30

    Selenophosphate synthetase (SEPHS) synthesizes selenophosphate, the active selenium donor, using ATP and selenide as substrates. SEPHS was initially identified and isolated from bacteria and has been characterized in many eukaryotes and archaea. Two SEPHS paralogues, SEPHS1 and SEPHS2, occur in various eukaryotes, while prokaryotes and archaea have only one form of SEPHS. Between the two isoforms in eukaryotes, only SEPHS2 shows catalytic activity during selenophosphate synthesis. Although SEPHS1 does not contain any significant selenophosphate synthesis activity, it has been reported to play an essential role in regulating cellular physiology. Prokaryotic SEPHS contains a cysteine or selenocysteine (Sec) at the catalytic domain. However, in eukaryotes, SEPHS1 contains other amino acids such as Thr, Arg, Gly, or Leu at the catalytic domain, and SEPHS2 contains only a Sec. Sequence comparisons, crystal structure analyses, and ATP hydrolysis assays suggest that selenophosphate synthesis occurs in two steps. In the first step, ATP is hydrolyzed to produce ADP and gamma-phosphate. In the second step, ADP is further hydrolyzed and selenophosphate is produced using gamma-phosphate and selenide. Both SEPHS1 and SEPHS2 have ATP hydrolyzing activities, but Cys or Sec is required in the catalytic domain for the second step of reaction. The gene encoding SEPHS1 is divided by introns, and five different splice variants are produced by alternative splicing in humans. SEPHS1 mRNA is abundant in rapidly proliferating cells such as embryonic and cancer cells and its expression is induced by various stresses including oxidative stress and salinity stress. The disruption of the SEPHS1 gene in mice or Drosophila leads to the inhibition of cell proliferation, embryonic lethality, and morphological changes in the embryos. Targeted removal of SEPHS1 mRNA in insect, mouse, and human cells also leads to common phenotypic changes similar to those observed by in vivo gene knockout: the inhibition of cell growth/proliferation, the accumulation of hydrogen peroxide in mammals and an unidentified reactive oxygen species (ROS) in Drosophila, and the activation of a defense system. Hydrogen peroxide accumulation in SEPHS1-deficient cells is mainly caused by the down-regulation of genes involved in ROS scavenging, and leads to the inhibition of cell proliferation and survival. However, the mechanisms underlying SEPHS1 regulation of redox homeostasis are still not understood. Copyright © 2018. Published by Elsevier Inc.

  7. Independence between pre-mRNA splicing and DNA methylation in an isogenic minigene resource.

    PubMed

    Nanan, Kyster K; Ocheltree, Cody; Sturgill, David; Mandler, Mariana D; Prigge, Maria; Varma, Garima; Oberdoerffer, Shalini

    2017-12-15

    Actively transcribed genes adopt a unique chromatin environment with characteristic patterns of enrichment. Within gene bodies, H3K36me3 and cytosine DNA methylation are elevated at exons of spliced genes and have been implicated in the regulation of pre-mRNA splicing. H3K36me3 is further responsive to splicing, wherein splicing inhibition led to a redistribution and general reduction over gene bodies. In contrast, little is known of the mechanisms supporting elevated DNA methylation at actively spliced genic locations. Recent evidence associating the de novo DNA methyltransferase Dnmt3b with H3K36me3-rich chromatin raises the possibility that genic DNA methylation is influenced by splicing-associated H3K36me3. Here, we report the generation of an isogenic resource to test the direct impact of splicing on chromatin. A panel of minigenes of varying splicing potential were integrated into a single FRT site for inducible expression. Profiling of H3K36me3 confirmed the established relationship to splicing, wherein levels were directly correlated with splicing efficiency. In contrast, DNA methylation was equivalently detected across the minigene panel, irrespective of splicing and H3K36me3 status. In addition to revealing a degree of independence between genic H3K36me3 and DNA methylation, these findings highlight the generated minigene panel as a flexible platform for the query of splicing-dependent chromatin modifications. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  8. Rare splicing defects of FAS underly severe recessive autoimmune lymphoproliferative syndrome.

    PubMed

    Agrebi, N; Ben-Mustapha, I; Matoussi, N; Dhouib, N; Ben-Ali, M; Mekki, N; Ben-Ahmed, M; Larguèche, B; Ben Becher, S; Béjaoui, M; Barbouche, M R

    2017-10-01

    Autoimmune lymphoproliferative syndrome (ALPS) is a prototypic disorder of impaired apoptosis characterized by autoimmune features and lymphoproliferation. Heterozygous germline or somatic FAS mutations associated with preserved protein expression have been described. Very rare cases of homozygous germline FAS mutations causing severe autosomal recessive form of ALPS with a complete defect of Fas expression have been reported. We report two unrelated patients from highly inbred North African population showing a severe ALPS phenotype and an undetectable Fas surface expression. Two novel homozygous mutations have been identified underlying rare splicing defects mechanisms. The first mutation breaks a branch point sequence and the second alters a regulatory exonic splicing site. These splicing defects induce the skipping of exon 6 encoding the transmembrane domain of CD95. Our findings highlight the requirement of tight regulation of FAS exon 6 splicing for balanced alternative splicing and illustrate the importance of such studies in highly consanguineous populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Insertion of part of an intron into the 5[prime] untranslated region of a Caenorhabditis elegans gene converts it into a trans-spliced gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, R.; Thomas, J.; Spieth, J.

    In nematodes, the RNA products of some genes are trans-spliced to a 22-nucleotide spliced leader (SL), while the RNA products of other genes are not. In Caenorhabditis elegans, there are two SLs, Sl1 and SL2, donated by two distinct small nuclear ribonucleoprotein particles in a process functionally quite similar to nuclear intron removal. The authors demonstrate here that it is possible to convert a non-trans-spliced gene into a trans-spliced gene by placement of an intron missing only the 5[prime] splice site into the 5[prime] untranslated region. Stable transgenic strains were isolated expressing a gene in which 69 nucleotides of amore » vit-5 intron, including the 3[prime] splice site, were inserted into the 5[prime] untranslated region of a vit-2/vit-6 fusion gene. The RNA product of this gene was examined by primer extension and PCR amplification. Although the vit-2/vit-6 transgene product is not normally trans-spliced, the majority of transcripts from this altered gene were trans-spliced to SL1. They termed the region of a trans-spliced mRNA precursor between the 5[prime] end and the first 3[prime] splice site an 'outrun'. The results suggest that if a transcript begins with intronlike sequence followed by a 3[prime] splice site, this alone may constitute an outrun and be sufficient to demarcate a transcript as a trans-splice acceptor. These findings leave open the possibility that specific sequences are required to increase the efficiency of trans-splicing.« less

  10. Comprehensive splicing functional analysis of DNA variants of the BRCA2 gene by hybrid minigenes

    PubMed Central

    2012-01-01

    Introduction The underlying pathogenic mechanism of a large fraction of DNA variants of disease-causing genes is the disruption of the splicing process. We aimed to investigate the effect on splicing of the BRCA2 variants c.8488-1G > A (exon 20) and c.9026_9030del (exon 23), as well as 41 BRCA2 variants reported in the Breast Cancer Information Core (BIC) mutation database. Methods DNA variants were analyzed with the splicing prediction programs NNSPLICE and Human Splicing Finder. Functional analyses of candidate variants were performed by lymphocyte RT-PCR and/or hybrid minigene assays. Forty-one BIC variants of exons 19, 20, 23 and 24 were bioinformatically selected and generated by PCR-mutagenesis of the wild type minigenes. Results Lymphocyte RT-PCR of c.8488-1G > A showed intron 19 retention and a 12-nucleotide deletion in exon 20, whereas c.9026_9030del did not show any splicing anomaly. Minigene analysis of c.8488-1G > A displayed the aforementioned aberrant isoforms but also exon 20 skipping. We further evaluated the splicing outcomes of 41 variants of four BRCA2 exons by minigene analysis. Eighteen variants presented splicing aberrations. Most variants (78.9%) disrupted the natural splice sites, whereas four altered putative enhancers/silencers and had a weak effect. Fluorescent RT-PCR of minigenes accurately detected 14 RNA isoforms generated by cryptic site usage, exon skipping and intron retention events. Fourteen variants showed total splicing disruptions and were predicted to truncate or eliminate essential domains of BRCA2. Conclusions A relevant proportion of BRCA2 variants are correlated with splicing disruptions, indicating that RNA analysis is a valuable tool to assess the pathogenicity of a particular DNA change. The minigene system is a straightforward and robust approach to detect variants with an impact on splicing and contributes to a better knowledge of this gene expression step. PMID:22632462

  11. 17β-estradiol regulates the RNA-binding protein Nova1, which then regulates the alternative splicing of estrogen receptor β in the aging female rat brain.

    PubMed

    Shults, Cody L; Dingwall, Caitlin B; Kim, Chun K; Pinceti, Elena; Rao, Yathindar S; Pak, Toni R

    2018-01-01

    Alternative RNA splicing results in the translation of diverse protein products arising from a common nucleotide sequence. These alternative protein products are often functional and can have widely divergent actions from the canonical protein. Studies in humans and other vertebrate animals have demonstrated that alternative splicing events increase with advanced age, sometimes resulting in pathological consequences. Menopause represents a critical transition for women, where the beneficial effects of estrogens are no longer evident; therefore, factors underlying increased pathological conditions in women are confounded by the dual factors of aging and declining estrogens. Estrogen receptors (ERs) are subject to alternative splicing, the spliced variants increase following menopause, and they fail to efficiently activate estrogen-dependent signaling pathways. However, the factors that regulate the alternative splicing of ERs remain unknown. We demonstrate novel evidence supporting a potential biological feedback loop where 17β-estradiol regulates the RNA-binding protein Nova1, which, in turn, regulates the alternative splicing of ERβ. These data increase our understanding of ER alternative splicing and could have potential implications for women taking hormone replacement therapy after menopause. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A Presumptive Developmental Role for a Sea Urchin Cyclin B Splice Variant

    PubMed Central

    Lozano, Jean-Claude; Schatt, Philippe; Marquès, François; Peaucellier, Gérard; Fort, Philippe; Féral, Jean-Pierre; Genevière, Anne-Marie; Picard, André

    1998-01-01

    We show that a splice variant–derived cyclin B is produced in sea urchin oocytes and embryos. This splice variant protein lacks highly conserved sequences in the COOH terminus of the protein. It is found strikingly abundant in growing oocytes and cells committed to differentiation during embryogenesis. Cyclin B splice variant (CBsv) protein associates weakly in the cell with Xenopus cdc2 and with budding yeast CDC28p. In contrast to classical cyclin B, CBsv very poorly complements a triple CLN deletion in budding yeast, and its microinjection prevents an initial step in MPF activation, leading to an important delay in oocyte meiosis reinitiation. CBsv microinjection in fertilized eggs induces cell cycle delay and abnormal development. We assume that CBsv is produced in growing oocytes to keep them in prophase, and during embryogenesis to slow down cell cycle in cells that will be committed to differentiation. PMID:9442104

  13. Regulated capture by exosomes of mRNAs for cytoplasmic tRNA synthetases.

    PubMed

    Wang, Feng; Xu, Zhiwen; Zhou, Jie; Lo, Wing-Sze; Lau, Ching-Fun; Nangle, Leslie A; Yang, Xiang-Lei; Zhang, Mingjie; Schimmel, Paul

    2013-10-11

    Although tRNA synthetases are enzymes that catalyze the first step of translation in the cytoplasm, surprising functions unrelated to translation have been reported. These studies, and the demonstration of novel activities of splice variants, suggest a far broader reach of tRNA synthetases into cell biology than previously recognized. Here we show that mRNAs for most tRNA synthetases can be detected in exosomes. Also detected in exosomes was an mRNA encoding a unique splice variant that others had associated with prostate cancer. The exosomal mRNAs encoding the native synthetase and its cancer-associated splice variant could be translated in vitro and in mammalian cells into stable proteins. Other results showed that selection by exosomes of the splice variant mRNA could be regulated by an external stimulus. Thus, a broad and diverse regulated pool of tRNA synthetase-derived mRNAs is packaged for genetic exchange.

  14. Multiple cis-acting sequence elements are required for efficient splicing of simian virus 40 small-t antigen pre-mRNA.

    PubMed Central

    Fu, X Y; Colgan, J D; Manley, J L

    1988-01-01

    We have determined the effects of a number of mutations in the small-t antigen mRNA intron on the alternative splicing pattern of the simian virus 40 early transcript. Expansion of the distance separating the small-t pre-mRNA lariat branch point and the shared large T-small t 3' splice site from 18 to 29 nucleotides (nt) resulted in a relative enhancement of small-t splicing in vivo. This finding, coupled with the observation that large-T pre-RNA splicing in vitro was not affected by this expansion, suggests that small-t splicing is specifically constrained by a short branch point-3' splice site distance. Similarly, the distance separating the 5' splice site and branch point (48 nt) was found to be at or near a minimum for small-t splicing, because deletions in this region as small as 2 nt dramatically reduced the ratio of small-t to large-T mRNA that accumulated in transfected cells. Finally, a specific sequence within the small-t intron, encompassing the upstream branch sites used in large-T splicing, was found to be an important element in the cell-specific pattern of early alternative splicing. Substitutions within this region reduced the ratio of small-t to large-T mRNA produced in HeLa cells but had only minor effects in human 293 cells. Images PMID:2851720

  15. Aberrant splicing in maize rough endosperm3 reveals a conserved role for U12 splicing in eukaryotic multicellular development

    PubMed Central

    Barbazuk, W. Brad

    2017-01-01

    RNA splicing of U12-type introns functions in human cell differentiation, but it is not known whether this class of introns has a similar role in plants. The maize ROUGH ENDOSPERM3 (RGH3) protein is orthologous to the human splicing factor, ZRSR2. ZRSR2 mutations are associated with myelodysplastic syndrome (MDS) and cause U12 splicing defects. Maize rgh3 mutants have aberrant endosperm cell differentiation and proliferation. We found that most U12-type introns are retained or misspliced in rgh3. Genes affected in rgh3 and ZRSR2 mutants identify cell cycle and protein glycosylation as common pathways disrupted. Transcripts with retained U12-type introns can be found in polysomes, suggesting that splicing efficiency can alter protein isoforms. The rgh3 mutant protein disrupts colocalization with a known ZRSR2-interacting protein, U2AF2. These results indicate conserved function for RGH3/ZRSR2 in U12 splicing and a deeply conserved role for the minor spliceosome to promote cell differentiation from stem cells to terminal fates. PMID:28242684

  16. Diversity in mRNA expression of the serine-type carboxypeptidase ocpG in Aspergillus oryzae through intron retention.

    PubMed

    Ishida, Ken; Kuboshima, Megumi; Morita, Hiroto; Maeda, Hiroshi; Okamoto, Ayako; Takeuchi, Michio; Yamagata, Youhei

    2014-01-01

    Alternative splicing is thought to be a means for diversification of products by mRNA modification. Although some intron retentions are predicted by transcriptome analysis in Aspergillus oryzae, its physiological significance remains unknown. We found that intron retention occurred occasionally in the serine-type carboxypeptidase gene, ocpG. Analysis under various culture conditions revealed that extracellular nitrogen conditions influence splicing patterns; this suggested that there might be a correlation between splicing efficiency and the necessity of OcpG activity for obtaining a nitrogen source. Since further analysis showed that splicing occurred independently in each intron, we constructed ocpG intron-exchanging strain by interchanging the positions of intron-1 and intron-2. The splicing pattern indicated the probability that ocpG intron retention was affected by the secondary structures of intronic mRNA.

  17. Overcoming imatinib resistance conferred by the BIM deletion polymorphism in chronic myeloid leukemia with splice-switching antisense oligonucleotides

    PubMed Central

    Liu, Jun; Bhadra, Malini; Sinnakannu, Joanna Rajeswary; Yue, Wan Lin; Tan, Cheryl Weiqi; Rigo, Frank; Ong, S.Tiong; Roca, Xavier

    2017-01-01

    Many tyrosine kinase-driven cancers, including chronic myeloid leukemia (CML), are characterized by high response rates to specific tyrosine kinase inhibitors (TKIs) like imatinib. In East Asians, primary imatinib resistance is caused by a deletion polymorphism in Intron 2 of the BIM gene, whose product is required for TKI-induced apoptosis. The deletion biases BIM splicing from exon 4 to exon 3, generating splice isoforms lacking the exon 4-encoded pro-apoptotic BH3 domain, which impairs the ability of TKIs to induce apoptosis. We sought to identify splice-switching antisense oligonucleotides (ASOs) that block exon 3 but enhance exon 4 splicing, and thereby resensitize BIM deletion-containing cancers to imatinib. First, we mapped multiple cis-acting splicing elements around BIM exon 3 by minigene mutations, and found an exonic splicing enhancer acting via SRSF1. Second, by a systematic ASO walk, we isolated ASOs that corrected the aberrant BIM splicing. Eight of 67 ASOs increased exon 4 levels in BIM deletion-containing cells, and restored imatinib-induced apoptosis and TKI sensitivity. This proof-of-principle study proves that resistant CML cells by BIM deletion polymorphism can be resensitized to imatinib via splice-switching BIM ASOs. Future optimizations might yield a therapeutic ASO as precision-medicine adjuvant treatment for BIM-polymorphism-associated TKI-resistant CML and other cancers. PMID:29100409

  18. Overcoming imatinib resistance conferred by the BIM deletion polymorphism in chronic myeloid leukemia with splice-switching antisense oligonucleotides.

    PubMed

    Liu, Jun; Bhadra, Malini; Sinnakannu, Joanna Rajeswary; Yue, Wan Lin; Tan, Cheryl Weiqi; Rigo, Frank; Ong, S Tiong; Roca, Xavier

    2017-09-29

    Many tyrosine kinase-driven cancers, including chronic myeloid leukemia (CML), are characterized by high response rates to specific tyrosine kinase inhibitors (TKIs) like imatinib. In East Asians, primary imatinib resistance is caused by a deletion polymorphism in Intron 2 of the BIM gene, whose product is required for TKI-induced apoptosis. The deletion biases BIM splicing from exon 4 to exon 3, generating splice isoforms lacking the exon 4-encoded pro-apoptotic BH3 domain, which impairs the ability of TKIs to induce apoptosis. We sought to identify splice-switching antisense oligonucleotides (ASOs) that block exon 3 but enhance exon 4 splicing, and thereby resensitize BIM deletion-containing cancers to imatinib. First, we mapped multiple cis -acting splicing elements around BIM exon 3 by minigene mutations, and found an exonic splicing enhancer acting via SRSF1. Second, by a systematic ASO walk, we isolated ASOs that corrected the aberrant BIM splicing. Eight of 67 ASOs increased exon 4 levels in BIM deletion-containing cells, and restored imatinib-induced apoptosis and TKI sensitivity. This proof-of-principle study proves that resistant CML cells by BIM deletion polymorphism can be resensitized to imatinib via splice-switching BIM ASOs. Future optimizations might yield a therapeutic ASO as precision-medicine adjuvant treatment for BIM -polymorphism-associated TKI-resistant CML and other cancers.

  19. [Current status and future prospects of research on Fukuyama muscular dystrophy].

    PubMed

    Toda, Tatsushi

    2015-08-01

    Fukuyama congenital muscular dystrophy(FCMD) is a second common childhood muscular dystrophy in Japan. All FCMD patients have ancestral insertion of the SVA retrotransposal element into fukutin. We show that aberrant mRNA splicing induced by SVA exon-trapping caused FCMD. Introduction of 3 cocktailed antisense oligonucleotides(AONs) targeting around these splice sites prevented pathogenic splicing in FCMD patient cells and model mice, and normalized protein production and functions of Fukutin as well as O-glycosylation of α-dystroglycan. We show the promise of splicing modulation therapy as the first radical clinical treatment for FCMD in the near future. We also show that fukutin is prerequisite to ameliorate muscular dystrophic phenotype by myofiber-selective LARGE expression. Recent advances in FCMD are discussed.

  20. Low resistance splices for HTS devices and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalitha, S. L.

    This paper discusses the preparation methodology and performance evaluation of low resistance splices made of the second generation (2G) high-temperature superconductor (HTS). These splices are required in a broad spectrum of HTS devices including a large aperture, high-field solenoid built in the laboratory to demonstrate a superconducting magnetic energy storage (SMES) device. Several pancake coils are assembled in the form of a nested solenoid, and each coil requires a hundred meters or more of 2G (RE)BCO tape. However, commercial availability of this superconductor with a very uniform physical properties is currently limited to shorter piece lengths. This necessitates us havingmore » splices to inter-connect the tape pieces within a pancake coil, between adjacent pancake coils, and to attach HTS current leads to the magnet assembly. As a part of the optimization and qualification of splicing process, a systematic study was undertaken to analyze the electrical performance of splices in two different configurations suitable for this magnet assembly: lap joint and spiral joint. The electrical performance is quantified in terms of the resistance of splices estimated from the current-voltage characteristics. Finally, It has been demonstrated that a careful application of this splicing technique can generate lap joints with resistance less than 1 nΩ at 77 K.« less

  1. Low resistance splices for HTS devices and applications

    DOE PAGES

    Lalitha, S. L.

    2017-06-30

    This paper discusses the preparation methodology and performance evaluation of low resistance splices made of the second generation (2G) high-temperature superconductor (HTS). These splices are required in a broad spectrum of HTS devices including a large aperture, high-field solenoid built in the laboratory to demonstrate a superconducting magnetic energy storage (SMES) device. Several pancake coils are assembled in the form of a nested solenoid, and each coil requires a hundred meters or more of 2G (RE)BCO tape. However, commercial availability of this superconductor with a very uniform physical properties is currently limited to shorter piece lengths. This necessitates us havingmore » splices to inter-connect the tape pieces within a pancake coil, between adjacent pancake coils, and to attach HTS current leads to the magnet assembly. As a part of the optimization and qualification of splicing process, a systematic study was undertaken to analyze the electrical performance of splices in two different configurations suitable for this magnet assembly: lap joint and spiral joint. The electrical performance is quantified in terms of the resistance of splices estimated from the current-voltage characteristics. Finally, It has been demonstrated that a careful application of this splicing technique can generate lap joints with resistance less than 1 nΩ at 77 K.« less

  2. Mechanisms of splicing-dependent trans-synaptic adhesion by PTPδ-IL1RAPL1/IL-1RAcP for synaptic differentiation

    NASA Astrophysics Data System (ADS)

    Yamagata, Atsushi; Yoshida, Tomoyuki; Sato, Yusuke; Goto-Ito, Sakurako; Uemura, Takeshi; Maeda, Asami; Shiroshima, Tomoko; Iwasawa-Okamoto, Shiho; Mori, Hisashi; Mishina, Masayoshi; Fukai, Shuya

    2015-04-01

    Synapse formation is triggered through trans-synaptic interaction between pairs of pre- and postsynaptic adhesion molecules, the specificity of which depends on splice inserts known as `splice-insert signaling codes'. Receptor protein tyrosine phosphatase δ (PTPδ) can bidirectionally induce pre- and postsynaptic differentiation of neurons by trans-synaptically binding to interleukin-1 receptor accessory protein (IL-1RAcP) and IL-1RAcP-like-1 (IL1RAPL1) in a splicing-dependent manner. Here, we report crystal structures of PTPδ in complex with IL1RAPL1 and IL-1RAcP. The first immunoglobulin-like (Ig) domain of IL1RAPL1 directly recognizes the first splice insert, which is critical for binding to IL1RAPL1. The second splice insert functions as an adjustable linker that positions the Ig2 and Ig3 domains of PTPδ for simultaneously interacting with the Ig1 domain of IL1RAPL1 or IL-1RAcP. We further identified the IL1RAPL1-specific interaction, which appears coupled to the first-splice-insert-mediated interaction. Our results thus reveal the decoding mechanism of splice-insert signaling codes for synaptic differentiation induced by trans-synaptic adhesion between PTPδ and IL1RAPL1/IL-1RAcP.

  3. Low resistance splices for HTS devices and applications

    NASA Astrophysics Data System (ADS)

    Lalitha, S. L.

    2017-09-01

    This paper discusses the preparation methodology and performance evaluation of low resistance splices made of the second generation (2G) high-temperature superconductor (HTS). These splices are required in a broad spectrum of HTS devices including a large aperture, high-field solenoid built in the laboratory to demonstrate a superconducting magnetic energy storage (SMES) device. Several pancake coils are assembled in the form of a nested solenoid, and each coil requires a hundred meters or more of 2G (RE)BCO tape. However, commercial availability of this superconductor with a very uniform physical properties is currently limited to shorter piece lengths. This necessitates us having splices to inter-connect the tape pieces within a pancake coil, between adjacent pancake coils, and to attach HTS current leads to the magnet assembly. As a part of the optimization and qualification of splicing process, a systematic study was undertaken to analyze the electrical performance of splices in two different configurations suitable for this magnet assembly: lap joint and spiral joint. The electrical performance is quantified in terms of the resistance of splices estimated from the current-voltage characteristics. It has been demonstrated that a careful application of this splicing technique can generate lap joints with resistance less than 1 nΩ at 77 K.

  4. Sequential recognition of the pre-mRNA branch point by U2AF65 and a novel spliceosome-associated 28-kDa protein.

    PubMed Central

    Gaur, R K; Valcárcel, J; Green, M R

    1995-01-01

    Splicing of pre-mRNAs occurs via a lariat intermediate in which an intronic adenosine, embedded within a branch point sequence, forms a 2',5'-phosphodiester bond (RNA branch) with the 5' end of the intron. How the branch point is recognized and activated remains largely unknown. Using site-specific photochemical cross-linking, we have identified two proteins that specifically interact with the branch point during the splicing reaction. U2AF65, an essential splicing factor that binds to the adjacent polypyrimidine tract, crosslinks to the branch point at the earliest stage of spliceosome formation in an ATP-independent manner. A novel 28-kDa protein, which is a constituent of the mature spliceosome, contacts the branch point after the first catalytic step. Our results indicate that the branch point is sequentially recognized by distinct splicing factors in the course of the splicing reaction. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 PMID:7493318

  5. Thermopriming triggers splicing memory in Arabidopsis.

    PubMed

    Ling, Yu; Serrano, Natalia; Gao, Ge; Atia, Mohamed; Mokhtar, Morad; Woo, Yong H; Bazin, Jeremie; Veluchamy, Alaguraj; Benhamed, Moussa; Crespi, Martin; Gehring, Christoph; Reddy, A S N; Mahfouz, Magdy M

    2018-04-27

    Abiotic and biotic stresses limit crop productivity. Exposure to a non-lethal stress, referred to as priming, can allow plants to survive subsequent and otherwise lethal conditions; the priming effect persists even after a prolonged stress-free period. However, the molecular mechanisms underlying priming are not fully understood. Here, we investigated the molecular basis of heat-shock memory and the role of priming in Arabidopsis thaliana. Comprehensive analysis of transcriptome-wide changes in gene expression and alternative splicing in primed and non-primed plants revealed that alternative splicing functions as a novel component of heat-shock memory. We show that priming of plants with a non-lethal heat stress results in de-repression of splicing after a second exposure to heat stress. By contrast, non-primed plants showed significant repression of splicing. These observations link 'splicing memory' to the ability of plants to survive subsequent and otherwise lethal heat stress. This newly discovered priming-induced splicing memory may represent a general feature of heat-stress responses in plants and other organisms as many of the key components are conserved among eukaryotes. Furthermore, this finding could facilitate the development of novel approaches to improve plant survival under extreme heat stress.

  6. Engineered U7 snRNA mediates sustained splicing correction in erythroid cells from β-thalassemia/HbE patients.

    PubMed

    Preedagasamzin, Sarinthip; Nualkaew, Tiwaporn; Pongrujikorn, Tanjitti; Jinawath, Natini; Kole, Ryszard; Fucharoen, Suthat; Jearawiriyapaisarn, Natee; Svasti, Saovaros

    2018-04-30

    Repair of a splicing defect of β-globin pre-mRNA harboring hemoglobin E (HbE) mutation was successfully accomplished in erythroid cells from patients with β-thalassemia/HbE disorder by a synthetic splice-switching oligonucleotide (SSO). However, its application is limited by short-term effectiveness and requirement of lifelong periodic administration of SSO, especially for chronic diseases like thalassemias. Here, we engineered lentiviral vectors that stably express U7 small nuclear RNA (U7 snRNA) carrying the splice-switching sequence of the SSO that restores correct splicing of β E -globin pre-mRNA and achieves a long-term therapeutic effect. Using a two-step tiling approach, we systematically screened U7 snRNAs carrying splice-switching SSO sequences targeted to the cryptic 5' splice site created by HbE mutation. We tested this approach and identified the most responsive element for mediating splicing correction in engineered U7 snRNAs in HeLa-β E cell model cell line. Remarkably, the U7 snRNA lentiviral vector (U7 βE4+1) targeted to this region effectively restored the correctly-spliced β E -globin mRNA for at least 5 months. Moreover, the effects of the U7 βE4+1 snRNA lentiviral vector were also evident as upregulation of the correctly-spliced β E -globin mRNA in erythroid progenitor cells from β-thalassemia/HbE patients treated with the vector, which led to improvements of pathologies in erythroid progenitor cells from thalassemia patients. These results suggest that the splicing correction of β E -globin pre-mRNA by the engineered U7 snRNA lentiviral vector provides a promising, long-term treatment for β-thalassemia/HbE. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Eight Nucleotide Substitutions Inhibit Splicing to HPV-16 3′-Splice Site SA3358 and Reduce the Efficiency by which HPV-16 Increases the Life Span of Primary Human Keratinocytes

    PubMed Central

    Li, Xiaoze; Johansson, Cecilia; Cardoso Palacios, Carlos; Mossberg, Anki; Dhanjal, Soniya; Bergvall, Monika; Schwartz, Stefan

    2013-01-01

    The most commonly used 3′-splice site on the human papillomavirus type 16 (HPV-16) genome named SA3358 is used to produce HPV-16 early mRNAs encoding E4, E5, E6 and E7, and late mRNAs encoding L1 and L2. We have previously shown that SA3358 is suboptimal and is totally dependent on a downstream splicing enhancer containingmultiple potential ASF/SF2 binding sites. Here weshow that only one of the predicted ASF/SF2 sites accounts for the majority of the enhancer activity. We demonstrate that single nucleotide substitutions in this predicted ASF/SF2 site impair enhancer function and that this correlates with less efficient binding to ASF/SF2 in vitro. We provide evidence that HPV-16 mRNAs that arespliced to SA3358 interact with ASF/SF2 in living cells. In addition,mutational inactivation of the ASF/SF2 site weakened the enhancer at SA3358 in episomal forms of the HPV-16 genome, indicating that the enhancer is active in the context of the full HPV-16 genome.This resulted in induction of HPV-16 late gene expression as a result of competition from late splice site SA5639. Furthermore, inactivation of the ASF/SF2 site of the SA3358 splicing enhancer reduced the ability of E6- and E7-encoding HPV-16 plasmids to increase the life span of primary keratinocytes in vitro, demonstrating arequirement for an intact splicing enhancer of SA3358 forefficient production of the E6 and E7 mRNAs. These results link the strength of the HPV-16 SA3358 splicing enhancer to expression of E6 and E7 and to the pathogenic properties of HPV-16. PMID:24039800

  8. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development.

    PubMed

    Thapa, Rajesh; Gattass, Rafael R; Nguyen, Vinh; Chin, Geoff; Gibson, Dan; Kim, Woohong; Shaw, L Brandon; Sanghera, Jasbinder S

    2015-11-01

    We demonstrate a low-loss, repeatable, and robust splice between single-mode silica fiber and single-mode chalcogenide (CHG) fiber. These splices are particularly difficult to create because of the significant difference in the two fibers' glass transition temperatures (∼1000°C) as well as the large difference in the coefficients of thermal expansion between the fibers (∼20×10(-6)/°C). With 90% light coupled through the silica-CHG fiber splice, predominantly in the fundamental circular-symmetric mode, into the core of the CHG fiber and with 0.5 dB of splice loss measured around the wavelength of 2.5 μm, after correcting only for the Fresnel loss, the silica-CHG splice offers excellent beam quality and coupling efficiency. The tensile strength of the splice is greater than 12 kpsi, and the laser damage threshold is greater than 2 W (CW) and was limited by the available laser pump power. We also utilized this splicing technique to demonstrate 2 to 4.5 μm ultrabroadband supercontinuum generation in a monolithic all-fiber system comprising a CHG fiber and a high peak power 2 μm pulsed Raman-shifted thulium fiber laser. This is a major development toward compact form factor commercial applications of soft-glass mid-IR fibers.

  9. Splice-site mutations identified in PDE6A responsible for retinitis pigmentosa in consanguineous Pakistani families

    PubMed Central

    Khan, Shahid Y.; Ali, Shahbaz; Naeem, Muhammad Asif; Khan, Shaheen N.; Husnain, Tayyab; Butt, Nadeem H.; Qazi, Zaheeruddin A.; Akram, Javed; Riazuddin, Sheikh; Ayyagari, Radha; Hejtmancik, J. Fielding

    2015-01-01

    Purpose This study was conducted to localize and identify causal mutations associated with autosomal recessive retinitis pigmentosa (RP) in consanguineous familial cases of Pakistani origin. Methods Ophthalmic examinations that included funduscopy and electroretinography (ERG) were performed to confirm the affectation status. Blood samples were collected from all participating individuals, and genomic DNA was extracted. A genome-wide scan was performed, and two-point logarithm of odds (LOD) scores were calculated. Sanger sequencing was performed to identify the causative variants. Subsequently, we performed whole exome sequencing to rule out the possibility of a second causal variant within the linkage interval. Sequence conservation was performed with alignment analyses of PDE6A orthologs, and in silico splicing analysis was completed with Human Splicing Finder version 2.4.1. Results A large multigenerational consanguineous family diagnosed with early-onset RP was ascertained. An ophthalmic clinical examination consisting of fundus photography and electroretinography confirmed the diagnosis of RP. A genome-wide scan was performed, and suggestive two-point LOD scores were observed with markers on chromosome 5q. Haplotype analyses identified the region; however, the region did not segregate with the disease phenotype in the family. Subsequently, we performed a second genome-wide scan that excluded the entire genome except the chromosome 5q region harboring PDE6A. Next-generation whole exome sequencing identified a splice acceptor site mutation in intron 16: c.2028–1G>A, which was completely conserved in PDE6A orthologs and was absent in ethnically matched 350 control chromosomes, the 1000 Genomes database, and the NHLBI Exome Sequencing Project. Subsequently, we investigated our entire cohort of RP familial cases and identified a second family who harbored a splice acceptor site mutation in intron 10: c.1408–2A>G. In silico analysis suggested that these mutations will result in the elimination of wild-type splice acceptor sites that would result in either skipping of the respective exon or the creation of a new cryptic splice acceptor site; both possibilities would result in retinal photoreceptor cells that lack PDE6A wild-type protein. Conclusions we report two splice acceptor site variations in PDE6A in consanguineous Pakistani families who manifested cardinal symptoms of RP. Taken together with our previously published work, our data suggest that mutations in PDE6A account for about 2% of the total genetic load of RP in our cohort and possibly in the Pakistani population as well. PMID:26321862

  10. Repair of pre-mRNA splicing

    PubMed Central

    Nlend, Rachel Nlend; Meyer, Kathrin

    2010-01-01

    Recent analyses of complete genomes have revealed that alternative splicing became more prevalent and important during eukaryotic evolution. Alternative splicing augments the protein repertoire—particularly that of the human genome—and plays an important role in the development and function of differentiated cell types. However, splicing is also extremely vulnerable, and defects in the proper recognition of splicing signals can give rise to a variety of diseases. In this review, we discuss splicing correction therapies, by using the inherited disease Spinal Muscular Atrophy (SMA) as an example. This lethal early childhood disorder is caused by deletions or other severe mutations of SMN1, a gene coding for the essential survival of motoneurons protein. A second gene copy present in humans and few non-human primates, SMN2, can only partly compensate for the defect because of a single nucleotide change in exon 7 that causes this exon to be skipped in the majority of mRNAs. Thus SMN2 is a prime therapeutic target for SMA. In recent years, several strategies based on small molecule drugs, antisense oligonucleotides or in vivo expressed RNAs have been developed that allow a correction of SMN2 splicing. For some of these, a therapeutic benefit has been demonstrated in mouse models for SMA. This means that clinical trials of such splicing therapies for SMA may become possible in the near future. PMID:20523126

  11. Analysis of Autoregulation at the Level of Pre-mRNA Splicing of the Suppressor-of-White-Apricot Gene in Drosophila

    PubMed Central

    Zachar, Z.; Chou, T. B.; Kramer, J.; Mims, I. P.; Bingham, P. M.

    1994-01-01

    The Drosophila suppressor-of-white-apricot [su(w(a))] protein regulates/modulates at least two somatic RNA processing events. It is a potent regulator of its own expression. We report here new studies of this autoregulatory circuit. Among other things, our studies show the following. First, new evidence that su(w(a)) expression is autoregulated at the level of pre-mRNA splicing is reported. su(w(a)) protein represses accumulation of the fully spliced su(w(a)) mRNA encoding it and promotes accumulation of high levels of incompletely spliced su(w(a)) pre-mRNA. Second, the fully spliced su(w(a)) mRNA is sufficient for all known su(w(a)) genetic functions indicating that it encodes the sole su(w(a)) protein. Third, the incompletely spliced su(w(a)) pre-mRNAs resulting from autoregulation are not translated (probably as a result of nuclear retention) and apparently represent nonfunctional by-products. Fourth, the special circumstances of su(w(a)) expression during oogenesis allows maternal deposition exclusively of fully spliced su(w(a)) mRNA. Fifth, su(w(a)) protein immunolocalizes to nuclei consistent with its being a direct regulator of pre-mRNA processing. We discuss the implications of our results for mechanisms of splicing regulation and for developmental control of su(w(a)) expression. PMID:8056305

  12. Applying the Brakes to Multi-Site SR Protein Phosphorylation: Substrate-Induced Effects on the Splicing Kinase SRPK1†

    PubMed Central

    Aubol, Brandon E.; Adams, Joseph A.

    2011-01-01

    To investigate how a protein kinase interacts with its protein substrate during extended, multi-site phosphorylation, the kinetic mechanism of a protein kinase involved in mRNA splicing control was investigated using rapid quench flow techniques. The protein kinase SRPK1 phosphorylates approximately 10 serines in the arginine-serine-rich domain (RS domain) of the SR protein SRSF1 in a C-to-N-terminal direction, a modification that directs this essential splicing factor from the cytoplasm to the nucleus. Transient-state kinetic experiments illustrate that the first phosphate is added rapidly onto the RS domain of SRSF1 (t1/2 = 0.1 sec) followed by slower, multi-site phosphorylation at the remaining serines (t1/2 = 15 sec). Mutagenesis experiments suggest that efficient phosphorylation rates are maintained by an extensive hydrogen bonding and electrostatic network between the RS domain of the SR protein and the active site and docking groove of the kinase. Catalytic trapping and viscosometric experiments demonstrate that while the phosphoryl transfer step is fast, ADP release limits multi-site phosphorylation. By studying phosphate incorporation into selectively pre-phosphorylated forms of the enzyme-substrate complex, the kinetic mechanism for site-specific phosphorylation along the reaction coordinate was assessed. The binding affinity of the SR protein, the phosphoryl transfer rate and ADP exchange rate were found to decline significantly as a function of progressive phosphorylation in the RS domain. These findings indicate that the protein substrate actively modulates initiation, extension and termination events associated with prolonged, multi-site phosphorylation. PMID:21728354

  13. SKIP Is a Component of the Spliceosome Linking Alternative Splicing and the Circadian Clock in Arabidopsis[W

    PubMed Central

    Wang, Xiaoxue; Wu, Fangming; Xie, Qiguang; Wang, Huamei; Wang, Ying; Yue, Yanling; Gahura, Ondrej; Ma, Shuangshuang; Liu, Lei; Cao, Ying; Jiao, Yuling; Puta, Frantisek; McClung, C. Robertson; Xu, Xiaodong; Ma, Ligeng

    2012-01-01

    Circadian clocks generate endogenous rhythms in most organisms from cyanobacteria to humans and facilitate entrainment to environmental diurnal cycles, thus conferring a fitness advantage. Both transcriptional and posttranslational mechanisms are prominent in the basic network architecture of circadian systems. Posttranscriptional regulation, including mRNA processing, is emerging as a critical step for clock function. However, little is known about the molecular mechanisms linking RNA metabolism to the circadian clock network. Here, we report that a conserved SNW/Ski-interacting protein (SKIP) domain protein, SKIP, a splicing factor and component of the spliceosome, is involved in posttranscriptional regulation of circadian clock genes in Arabidopsis thaliana. Mutation in SKIP lengthens the circadian period in a temperature-sensitive manner and affects light input and the sensitivity of the clock to light resetting. SKIP physically interacts with the spliceosomal splicing factor Ser/Arg-rich protein45 and associates with the pre-mRNA of clock genes, such as PSEUDORESPONSE REGULATOR7 (PRR7) and PRR9, and is necessary for the regulation of their alternative splicing and mRNA maturation. Genome-wide investigations reveal that SKIP functions in regulating alternative splicing of many genes, presumably through modulating recognition or cleavage of 5′ and 3′ splice donor and acceptor sites. Our study addresses a fundamental question on how the mRNA splicing machinery contributes to circadian clock function at a posttranscriptional level. PMID:22942380

  14. Is an observed non-co-linear RNA product spliced in trans, in cis or just in vitro?

    PubMed Central

    Yu, Chun-Ying; Liu, Hsiao-Jung; Hung, Li-Yuan; Kuo, Hung-Chih; Chuang, Trees-Juen

    2014-01-01

    Global transcriptome investigations often result in the detection of an enormous number of transcripts composed of non-co-linear sequence fragments. Such ‘aberrant’ transcript products may arise from post-transcriptional events or genetic rearrangements, or may otherwise be false positives (sequencing/alignment errors or in vitro artifacts). Moreover, post-transcriptionally non-co-linear (‘PtNcl’) transcripts can arise from trans-splicing or back-splicing in cis (to generate so-called ‘circular RNA’). Here, we collected previously-predicted human non-co-linear RNA candidates, and designed a validation procedure integrating in silico filters with multiple experimental validation steps to examine their authenticity. We showed that >50% of the tested candidates were in vitro artifacts, even though some had been previously validated by RT-PCR. After excluding the possibility of genetic rearrangements, we distinguished between trans-spliced and circular RNAs, and confirmed that these two splicing forms can share the same non-co-linear junction. Importantly, the experimentally-confirmed PtNcl RNA events and their corresponding PtNcl splicing types (i.e. trans-splicing, circular RNA, or both sharing the same junction) were all expressed in rhesus macaque, and some were even expressed in mouse. Our study thus describes an essential procedure for confirming PtNcl transcripts, and provides further insight into the evolutionary role of PtNcl RNA events, opening up this important, but understudied, class of post-transcriptional events for comprehensive characterization. PMID:25053845

  15. A Targeted Oligonucleotide Enhancer of SMN2 Exon 7 Splicing Forms Competing Quadruplex and Protein Complexes in Functional Conditions

    PubMed Central

    Smith, Lindsay D.; Dickinson, Rachel L.; Lucas, Christian M.; Cousins, Alex; Malygin, Alexey A.; Weldon, Carika; Perrett, Andrew J.; Bottrill, Andrew R.; Searle, Mark S.; Burley, Glenn A.; Eperon, Ian C.

    2014-01-01

    Summary The use of oligonucleotides to activate the splicing of selected exons is limited by a poor understanding of the mechanisms affected. A targeted bifunctional oligonucleotide enhancer of splicing (TOES) anneals to SMN2 exon 7 and carries an exonic splicing enhancer (ESE) sequence. We show that it stimulates splicing specifically of intron 6 in the presence of repressing sequences in intron 7. Complementarity to the 5′ end of exon 7 increases U2AF65 binding, but the ESE sequence is required for efficient recruitment of U2 snRNP. The ESE forms at least three coexisting discrete states: a quadruplex, a complex containing only hnRNP F/H, and a complex enriched in the activator SRSF1. Neither hnRNP H nor quadruplex formation contributes to ESE activity. The results suggest that splicing limited by weak signals can be rescued by rapid exchange of TOES oligonucleotides in various complexes and raise the possibility that SR proteins associate transiently with ESEs. PMID:25263560

  16. Isolation of the sex-determining gene Sex-lethal (Sxl) in Penaeus (Litopenaeus) vannamei (Boone, 1931) and characterization of its embryogenic, gametogenic, and tissue-specific expression.

    PubMed

    López-Cuadros, Itzia; García-Gasca, Alejandra; Gomez-Anduro, Gracia; Escobedo-Fregoso, Cristina; Llera-Herrera, Raúl A; Ibarra, Ana M

    2018-08-20

    The Pacific white shrimp Penaeus vannamei is the most cultured shrimp species around the world. Because females grow larger than males, the culture of 'only females' is of great interest, but knowledge on sex determination and differentiation is required for producing only females. In an effort to obtain information associated with reproduction in P. vannamei, transcriptomic data from female gonads was generated, and partial sequences of a transcript were identified as Sex-lethal (Sxl). Its characterization indicated that, differently from other penaeids in which this gene has been isolated, there are six isoforms of the Sxl transcript in P. vannamei (PvanSxl 1-6). These isoforms result from alternative splicing at three splice sites (SS1, SS2, SS3). The first splice-site is unique to P. vannamei, as it has not been reported for other Arthropod species; the second splice-site (SS2) is common among crustaceans, and the third splice-site (SS3) is also unique to P. vannamei and when spliced-out, it is always together with SS2. All isoforms are expressed during embryogenesis as well as gametogenesis of both genders. The two shorter isoforms, PvanSxl-5 and PvanSxl-6, which result from the splicing of SS2 and SS3, were found mostly expressed in adult testis, but PvanSxl-6 was also expressed in oocytes during gametogenesis. During oogenesis, the second largest isoform, PvanSxl-2, which splices-out only SS1, and PvanSxl-4 that splices-out SS1 and SS2 were highly expressed. These two isoforms were also highly expressed during embryonic development. In situ hybridization allowed pinpointing more specifically the cells where the PvanSxl transcripts were expressed. During embryogenesis, hybridization was observed from the one-cell stage embryo to late gastrula. In the female gonad in previtellogenesis, hybridization occurred in the nucleus of oocytes, whereas in secondary vitellogenesis the transcript also hybridized cytoplasmic granules and cortical crypts. Finally, in situ hybridization corroborated the expression of PvanSxl also in the male gonad during spermatogenesis, mostly occurring in the cytoplasm from spermatogonia and spermatocytes. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Correct mRNA Processing at a Mutant TT Splice Donor in FANCC Ameliorates the Clinical Phenotype in Patients and Is Enhanced by Delivery of Suppressor U1 snRNAs

    PubMed Central

    Hartmann, Linda; Neveling, Kornelia; Borkens, Stephanie; Schneider, Hildegard; Freund, Marcel; Grassman, Elke; Theiss, Stephan; Wawer, Angela; Burdach, Stefan; Auerbach, Arleen D.; Schindler, Detlev; Hanenberg, Helmut; Schaal, Heiner

    2010-01-01

    The U1 small nuclear RNA (U1 snRNA) as a component of the major U2-dependent spliceosome recognizes 5′ splice sites (5′ss) containing GT as the canonical dinucleotide in the intronic positions +1 and +2. The c.165+1G>T germline mutation in the 5′ss of exon 2 of the Fanconi anemia C (FANCC) gene commonly predicted to prevent correct splicing was identified in nine FA patients from three pedigrees. RT-PCR analysis of the endogenous FANCC mRNA splicing pattern of patient-derived fibroblasts revealed aberrant mRNA processing, but surprisingly also correct splicing at the TT dinucleotide, albeit with lower efficiency. This consequently resulted in low levels of correctly spliced transcript and minute levels of normal posttranslationally processed FANCD2 protein, indicating that this naturally occurring TT splicing might contribute to the milder clinical manifestations of the disease in these patients. Functional analysis of this FANCC 5′ss within splicing reporters revealed that both the noncanonical TT dinucleotide and the genomic context of FANCC were required for the residual correct splicing at this mutant 5′ss. Finally, use of lentiviral vectors as a delivery system to introduce expression cassettes for TT-adapted U1 snRNAs into primary FANCC patient fibroblasts allowed the correction of the DNA-damage-induced G2 cell-cycle arrest in these cells, thus representing an alternative transcript-targeting approach for genetic therapy of inherited splice-site mutations. PMID:20869034

  18. PASTA: splice junction identification from RNA-Sequencing data

    PubMed Central

    2013-01-01

    Background Next generation transcriptome sequencing (RNA-Seq) is emerging as a powerful experimental tool for the study of alternative splicing and its regulation, but requires ad-hoc analysis methods and tools. PASTA (Patterned Alignments for Splicing and Transcriptome Analysis) is a splice junction detection algorithm specifically designed for RNA-Seq data, relying on a highly accurate alignment strategy and on a combination of heuristic and statistical methods to identify exon-intron junctions with high accuracy. Results Comparisons against TopHat and other splice junction prediction software on real and simulated datasets show that PASTA exhibits high specificity and sensitivity, especially at lower coverage levels. Moreover, PASTA is highly configurable and flexible, and can therefore be applied in a wide range of analysis scenarios: it is able to handle both single-end and paired-end reads, it does not rely on the presence of canonical splicing signals, and it uses organism-specific regression models to accurately identify junctions. Conclusions PASTA is a highly efficient and sensitive tool to identify splicing junctions from RNA-Seq data. Compared to similar programs, it has the ability to identify a higher number of real splicing junctions, and provides highly annotated output files containing detailed information about their location and characteristics. Accurate junction data in turn facilitates the reconstruction of the splicing isoforms and the analysis of their expression levels, which will be performed by the remaining modules of the PASTA pipeline, still under development. Use of PASTA can therefore enable the large-scale investigation of transcription and alternative splicing. PMID:23557086

  19. Identification of a splicing enhancer in MLH1 using COMPARE a new assay for determination of relative RNA splicing efficiencies

    PubMed Central

    Xu, Dong-Qing; Mattox, William

    2006-01-01

    Exonic splicing enhancers (ESEs) are sequences that facilitate recognition of splice sites and prevent exon-skipping. Because ESEs are often embedded within proteincoding sequences, alterations in them can also often be interpreted as nonsense, missense or silent mutations. To correctly interpret exonic mutations and their roles in disease, it is important to develop strategies that identify ESE mutations. Potential ESEs can be found computationally in many exons but it has proven difficult to predict if a given mutation will have effects on splicing based on sequence alone. Here we describe a flexible in vitro method that can be used to functionally compare the effects of multiple sequence variants on ESE activity in a single in vitro splicing reaction. We have applied this method in parallel with conventional splicing assays to test for a splicing enhancer in exon 17 of the human MLH1 gene. Point mutations associated with hereditary nonpolyposis colorectal cancer (HNPCC) have previously been found to correlate with exon-skipping in both lymphocytes and tumors from patients. We show that sequences from this exon can replace an ESE from the mouse IgM gene to support RNA splicing in HeLa nuclear extracts. ESE activity was reduced by HNPCC point mutations in codon 659 indicating that their primary effect is on splicing. Surprisingly the strongest enhancer function mapped to a different region of the exon upstream of this codon. Together our results indicate that HNPCC point mutations in codon 659 affect an auxillary element that augments the enhancer function to ensure exon inclusion. PMID:16357104

  20. Single-molecule RNA observation in vivo reveals dynamics of co-transcriptional splicing

    NASA Astrophysics Data System (ADS)

    Ferguson, M. L.; Coulon, A.; de Turris, V.; Palangat, M.; Chow, C. C.; Singer, R. H.; Larson, D. R.

    2013-03-01

    The synthesis of pre-mRNA and the splicing of that pre-mRNA to form completed transcripts requires coordination between two large multi-subunit complexes (the transcription elongation complex and the spliceosome). How this coordination occurs in vivo is unknown. Here we report the first experimental observation of transcription and splicing occurring at the same gene in living cells. By utilizing the PP7/MS2 fluorescent RNA reporter system, we can directly observe two distinct regions of the nascent RNA, allowing us to measure the rise and fall time of the intron and exon of a reporter gene stably integrated into a human cell line. The reporter gene consists of a beta globin gene where we have inserted a 24 RNA hairpin cassette into the intron/exon. Upon synthesis, the RNA hairpins are tightly bound by fluorescently-labeled PP7/MS2 bacteriophage coat proteins. After gene induction, a single locus of active transcription in the nucleus shows fluorescence intensity changes characteristic of the synthesis and excision of the intron/exon. Using fluctuation analysis, we determine the elongation rate to be 1.5 kb/min. From the temporal cross correlation function, we determine that splicing of this gene must be co-transcriptional with a splicing time of ~100 seconds before termination and a ~200 second pause at termination. We propose that dual-color RNA imaging may be extended to investigate other mechanisms of transcription, gene regulation, and RNA processing.

  1. Enhanced splicing correction effect by an oligo-aspartic acid-PNA conjugate and cationic carrier complexes.

    PubMed

    Bae, Yun Mi; Kim, Myung Hee; Yu, Gwang Sig; Um, Bong Ho; Park, Hee Kyung; Lee, Hyun-il; Lee, Kang Taek; Suh, Yung Doug; Choi, Joon Sig

    2014-02-10

    Peptide nucleic acids (PNAs) are synthetic structural analogues of DNA and RNA. They recognize specific cellular nucleic acid sequences and form stable complexes with complementary DNA or RNA. Here, we designed an oligo-aspartic acid-PNA conjugate and showed its enhanced delivery into cells with high gene correction efficiency using conventional cationic carriers, such as polyethylenimine (PEI) and Lipofectamine 2000. The negatively charged oligo-aspartic acid-PNA (Asp(n)-PNA) formed complexes with PEI and Lipofectamine, and the resulting Asp(n)-PNA/PEI and Asp(n)-PNA/Lipofectamine complexes were introduced into cells. We observed significantly enhanced cellular uptake of Asp(n)-PNA by cationic carriers and detected an active splicing correction effect even at nanomolar concentrations. We found that the splicing correction efficiency of the complex depended on the kind of the cationic carriers and on the number of repeating aspartic acid units. By enhancing the cellular uptake efficiency of PNAs, these results may provide a novel platform technology of PNAs as bioactive substances for their biological and therapeutic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Improved diffusion Monte Carlo propagators for bosonic systems using Itô calculus

    NASA Astrophysics Data System (ADS)

    Hâkansson, P.; Mella, M.; Bressanini, Dario; Morosi, Gabriele; Patrone, Marta

    2006-11-01

    The construction of importance sampled diffusion Monte Carlo (DMC) schemes accurate to second order in the time step is discussed. A central aspect in obtaining efficient second order schemes is the numerical solution of the stochastic differential equation (SDE) associated with the Fokker-Plank equation responsible for the importance sampling procedure. In this work, stochastic predictor-corrector schemes solving the SDE and consistent with Itô calculus are used in DMC simulations of helium clusters. These schemes are numerically compared with alternative algorithms obtained by splitting the Fokker-Plank operator, an approach that we analyze using the analytical tools provided by Itô calculus. The numerical results show that predictor-corrector methods are indeed accurate to second order in the time step and that they present a smaller time step bias and a better efficiency than second order split-operator derived schemes when computing ensemble averages for bosonic systems. The possible extension of the predictor-corrector methods to higher orders is also discussed.

  3. Hypoxia leads to significant changes in alternative splicing and elevated expression of CLK splice factor kinases in PC3 prostate cancer cells.

    PubMed

    Bowler, Elizabeth; Porazinski, Sean; Uzor, Simon; Thibault, Philippe; Durand, Mathieu; Lapointe, Elvy; Rouschop, Kasper M A; Hancock, John; Wilson, Ian; Ladomery, Michael

    2018-04-02

    Mounting evidence suggests that one of the ways that cells adapt to hypoxia is through alternative splicing. The aim of this study was firstly to examine the effect of hypoxia on the alternative splicing of cancer associated genes using the prostate cancer cell line PC3 as a model. Secondly, the effect of hypoxia on the expression of several regulators of splicing was examined. PC3 cells were grown in 1% oxygen in a hypoxic chamber for 48 h, RNA extracted and sent for high throughput PCR analysis at the RNomics platform at the University of Sherbrooke, Canada. Genes whose exon inclusion rate PSI (ψ) changed significantly were identified, and their altered exon inclusion rates verified by RT-PCR in three cell lines. The expression of splice factors and splice factor kinases in response to hypoxia was examined by qPCR and western blotting. The splice factor kinase CLK1 was inhibited with the benzothiazole TG003. In PC3 cells the exon inclusion rate PSI (ψ) was seen to change by > 25% in 12 cancer-associated genes; MBP, APAF1, PUF60, SYNE2, CDC42BPA, FGFR10P, BTN2A2, UTRN, RAP1GDS1, PTPN13, TTC23 and CASP9 (caspase 9). The expression of the splice factors SRSF1, SRSF2, SRSF3, SAM68, HuR, hnRNPA1, and of the splice factor kinases SRPK1 and CLK1 increased significantly in hypoxia. We also observed that the splice factor kinase CLK3, but not CLK2 and CLK4, was also induced in hypoxic DU145 prostate, HT29 colon and MCF7 breast cancer cell lines. Lastly, we show that the inhibition of CLK1 in PC3 cells with the benzothiazole TG003 increased expression of the anti-apoptotic isoform caspase 9b. Significant changes in alternative splicing of cancer associated genes occur in prostate cancer cells in hypoxic conditions. The expression of several splice factors and splice factor kinases increases during hypoxia, in particular the Cdc-like splice factor kinases CLK1 and CLK3. We suggest that in hypoxia the elevated expression of these regulators of splicing helps cells adapt through alternative splicing of key cancer-associated genes. We suggest that the CLK splice factor kinases could be targeted in cancers in which hypoxia contributes to resistance to therapy.

  4. New discoveries of old SON: a link between RNA splicing and cancer.

    PubMed

    Hickey, Christopher J; Kim, Jung-Hyun; Ahn, Eun-Young Erin

    2014-02-01

    The SON protein is a ubiquitously expressed DNA- and RNA-binding protein primarily localized to nuclear speckles. Although several early studies implicated SON in DNA-binding, tumorigenesis and apoptosis, functional significance of this protein had not been recognized until recent studies discovered SON as a novel RNA splicing co-factor. During constitutive RNA splicing, SON ensures efficient intron removal from the transcripts containing suboptimal splice sites. Importantly, SON-mediated splicing is required for proper processing of selective transcripts related to cell cycle, microtubules, centrosome maintenance, and genome stability. Moreover, SON regulates alternative splicing of RNAs from the genes involved in apoptosis and epigenetic modification. In addition to the role in RNA splicing, SON has an ability to suppress transcriptional activation at certain promoter/enhancer DNA sequences. Considering the multiple SON target genes which are directly involved in cell proliferation, genome stability and chromatin modifications, SON is an emerging player in gene regulation during cancer development and progression. Here, we summarize available information from several early studies on SON, and highlight recent discoveries describing molecular mechanisms of SON-mediated gene regulation. We propose that our future effort on better understanding of diverse SON functions would reveal novel targets for cancer therapy. © 2013 Wiley Periodicals, Inc.

  5. The brown algae Pl.LSU/2 group II intron-encoded protein has functional reverse transcriptase and maturase activities.

    PubMed

    Zerbato, Madeleine; Holic, Nathalie; Moniot-Frin, Sophie; Ingrao, Dina; Galy, Anne; Perea, Javier

    2013-01-01

    Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner.

  6. Simultaneous quantification of alternatively spliced transcripts in a single droplet digital PCR reaction.

    PubMed

    Sun, Bing; Tao, Lian; Zheng, Yun-Ling

    2014-06-01

    Human telomerase reverse transcriptase (hTERT) is an essential component required for telomerase activity and telomere maintenance. Several alternatively spliced forms of hTERT mRNA have been reported in human primary and tumor cells. Currently, however, there is no sensitive and accurate method for the simultaneous quantification of multiple alternatively spliced RNA transcripts, such as in the case of hTERT. Here we show droplet digital PCR (ddPCR) provides sensitive, simultaneous digital quantification in a single reaction of two alternatively spliced single deletion hTERT transcripts (α-/β+ and α+/β-) as well as the opportunity to manually quantify non-deletion (α+/β+) and double deletion (α-/β-) transcripts. Our ddPCR method enables direct comparison among four alternatively spliced mRNAs without the need for internal standards or multiple primer pairs specific for each variant as real-time PCR (qPCR) requires, thus eliminating potential variation due to differences in PCR amplification efficiency.

  7. TAPAS: tools to assist the targeted protein quantification of human alternative splice variants.

    PubMed

    Yang, Jae-Seong; Sabidó, Eduard; Serrano, Luis; Kiel, Christina

    2014-10-15

    In proteomes of higher eukaryotes, many alternative splice variants can only be detected by their shared peptides. This makes it highly challenging to use peptide-centric mass spectrometry to distinguish and to quantify protein isoforms resulting from alternative splicing events. We have developed two complementary algorithms based on linear mathematical models to efficiently compute a minimal set of shared and unique peptides needed to quantify a set of isoforms and splice variants. Further, we developed a statistical method to estimate the splice variant abundances based on stable isotope labeled peptide quantities. The algorithms and databases are integrated in a web-based tool, and we have experimentally tested the limits of our quantification method using spiked proteins and cell extracts. The TAPAS server is available at URL http://davinci.crg.es/tapas/. luis.serrano@crg.eu or christina.kiel@crg.eu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Dynamic ASXL1 Exon Skipping and Alternative Circular Splicing in Single Human Cells

    PubMed Central

    Natarajan, Sivaraman; Carter, Robert; Brown, Patrick O.

    2016-01-01

    Circular RNAs comprise a poorly understood new class of noncoding RNA. In this study, we used a combination of targeted deletion, high-resolution splicing detection, and single-cell sequencing to deeply probe ASXL1 circular splicing. We found that efficient circular splicing required the canonical transcriptional start site and inverted AluSx elements. Sequencing-based interrogation of isoforms after ASXL1 overexpression identified promiscuous linear splicing between all exons, with the two most abundant non-canonical linear products skipping the exons that produced the circular isoforms. Single-cell sequencing revealed a strong preference for either the linear or circular ASXL1 isoforms in each cell, and found the predominant exon skipping product is frequently co-expressed with its reciprocal circular isoform. Finally, absolute quantification of ASXL1 isoforms confirmed our findings and suggests that standard methods overestimate circRNA abundance. Taken together, these data reveal a dynamic new view of circRNA genesis, providing additional framework for studying their roles in cellular biology. PMID:27736885

  9. When SUMO met splicing.

    PubMed

    Pozzi, Berta; Mammi, Pablo; Bragado, Laureano; Giono, Luciana E; Srebrow, Anabella

    2018-05-09

    Spliceosomal proteins have been revealed as SUMO conjugation targets. Moreover, we have reported that many of these are in a SUMO-conjugated form when bound to a pre-mRNA substrate during a splicing reaction. We demonstrated that SUMOylation of Prp3 (PRPF3), a component of the U4/U6 di-snRNP, is required for U4/U6•U5 tri-snRNP formation and/or recruitment to active spliceosomes. Expanding upon our previous results, we have shown that the splicing factor SRSF1 stimulates SUMO conjugation to several spliceosomal proteins. Given the relevance of the splicing process, as well as the complex and dynamic nature of its governing machinery, the spliceosome, the molecular mechanisms that modulate its function represent an attractive topic of research. We posit that SUMO conjugation could represent a way of modulating spliceosome assembly and thus, splicing efficiency. How cycles of SUMOylation/de-SUMOylation of spliceosomal proteins become integrated throughout the highly choreographed spliceosomal cycle awaits further investigation.

  10. mRNA trans-splicing in gene therapy for genetic diseases.

    PubMed

    Berger, Adeline; Maire, Séverine; Gaillard, Marie-Claude; Sahel, José-Alain; Hantraye, Philippe; Bemelmans, Alexis-Pierre

    2016-07-01

    Spliceosome-mediated RNA trans-splicing, or SMaRT, is a promising strategy to design innovative gene therapy solutions for currently intractable genetic diseases. SMaRT relies on the correction of mutations at the post-transcriptional level by modifying the mRNA sequence. To achieve this, an exogenous RNA is introduced into the target cell, usually by means of gene transfer, to induce a splice event in trans between the exogenous RNA and the target endogenous pre-mRNA. This produces a chimeric mRNA composed partly of exons of the latter, and partly of exons of the former, encoding a sequence free of mutations. The principal challenge of SMaRT technology is to achieve a reaction as complete as possible, i.e., resulting in 100% repairing of the endogenous mRNA target. The proof of concept of SMaRT feasibility has already been established in several models of genetic diseases caused by recessive mutations. In such cases, in fact, the repair of only a portion of the mutant mRNA pool may be sufficient to obtain a significant therapeutic effect. However in the case of dominant mutations, the target cell must be freed from the majority of mutant mRNA copies, requiring a highly efficient trans-splicing reaction. This likely explains why only a few examples of SMaRT approaches targeting dominant mutations are reported in the literature. In this review, we explain in details the mechanism of trans-splicing, review the different strategies that are under evaluation to lead to efficient trans-splicing, and discuss the advantages and limitations of SMaRT. WIREs RNA 2016, 7:487-498. doi: 10.1002/wrna.1347 For further resources related to this article, please visit the WIREs website. © 2016 The Authors. WIREs RNA published by Wiley Periodicals, Inc.

  11. Detection of KIT Genotype in Pigs by TaqMan MGB Real-Time Quantitative Polymerase Chain Reaction.

    PubMed

    Li, Xiuxiu; Li, Xiaoning; Luo, Rongrong; Wang, Wenwen; Wang, Tao; Tang, Hui

    2018-05-01

    The dominant white phenotype in domestic pigs is caused by two mutations in the KIT gene: a 450 kb duplication containing the entire KIT gene together with flanking sequences and one splice mutation with a G:A substitution in intron 17. The purpose of this study was to establish a simple, rapid method to determine KIT genotype in pigs. First, to detect KIT copy number variation (CNV), primers for exon 2 of the KIT gene, along with a TaqMan minor groove binder (MGB) probe, were designed. The single-copy gene, estrogen receptor (ESR), was used as an internal control. A real-time fluorescence-based quantitative PCR (FQ-PCR) protocol was developed to accurately detect KIT CNVs. Second, to detect the splice mutation ratio of the G:A substitution in intron 17, a 175 bp region, including the target mutation, was amplified from genomic DNA. Based on the sequence of the resulting amplified fragment, an MGB probe set was designed to detect the ratio of splice mutation to normal using FQ-PCR. A series of parallel amplification curves with the same internal distances were obtained using gradually diluted DNA as templates. The CT values among dilutions were significantly different (p < 0.001) and the coefficients of variation from each dilution were low (from 0.13% to 0.26%). The amplification efficiencies for KIT and ESR were approximately equal, indicating ESR was an appropriate control gene. Furthermore, use of the MGB probe set resulted in detection of the target mutation at a high resolution and stability; standard curves illustrated that the amplification efficiencies of KIT1 (G) and KIT2 (A) were approximately equal (98.8% and 97.2%). In conclusion, a simple, rapid method, with high specificity and stability, for the detection of the KIT genotype in pigs was established using TaqMan MGB probe real-time quantitative PCR.

  12. Reenacting the birth of an intron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellsten, Uffe; Aspden, Julie L.; Rio, Donald C.

    2011-07-01

    An intron is an extended genomic feature whose function requires multiple constrained positions - donor and acceptor splice sites, a branch point, a polypyrimidine tract and suitable splicing enhancers - that may be distributed over hundreds or thousands of nucleotides. New introns are therefore unlikely to emerge by incremental accumulation of functional sub-elements. Here we demonstrate that a functional intron can be created de novo in a single step by a segmental genomic duplication. This experiment recapitulates in vivo the birth of an intron that arose in the ancestral jawed vertebrate lineage nearly half a billion years ago.

  13. Alternative RNA splicing and gastric cancer.

    PubMed

    Li, Ying; Yuan, Yuan

    2017-07-01

    Alternative splicing (AS) linked to diseases, especially to tumors. Recently, more and more studies focused on the relationship between AS and gastric cancer (GC). This review surveyed the hot topic from four aspects: First, the common types of AS in cancer, including exon skipping, intron retention, mutually exclusive exon, alternative 5 ' or 3' splice site, alternative first or last exon and alternative 3' untranslated regions. Second, basic mechanisms of AS and its relationship with cancer. RNA splicing in eukaryotes follows the GT-AG rule by both cis-elements and trans-acting factors regulatory. Through RNA splicing, different proteins with different forms and functions can be produced and may be associated with carcinogenesis. Third, AS types of GC-related genes and their splicing variants. In this paper, we listed 10 common genes with AS and illustrated its possible molecular mechanisms owing to genetic variation (mutation and /or polymorphism). Fourth, the splicing variants of GC-associated genes and gastric carcinogenesis, invasion and metastasis. Many studies have found that the different splicing variants of the same gene are differentially expressed in GC and its precancerous diseases, suggesting AS has important implications in GC development. Taking together, this review highlighted the role of AS and splicing variants in the process of GC. We hope that this is not only beneficial to advances in the study field of GC, but also can provide valuable information to other similar tumor research.Although we already know some gene splicing and splicing variants play an important role in the development of GC, but many phenomena and mechanisms are still unknown. For example, how the tumor microenvironment and signal transduction pathway effect the forming and function of AS? Unfortunately, this review did not cover the contents because the current study is limited. It is no doubt that clarifying the phenomena and mechanisms of these unknown may help to reveal the relationship of AS with complex tumor genetic variation and the occurrence and development of tumors. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. High efficiency pump combiner fabricated by CO2 laser splicing system

    NASA Astrophysics Data System (ADS)

    Zhu, Gongwen

    2018-02-01

    High power combiners are of great interest for high power fiber lasers and fiber amplifiers. With the advent of CO2 laser splicing system, power combiners are made possible with low manufacturing cost, low loss, high reliability and high performance. Traditionally fiber optical components are fabricated with flame torch, electrode arc discharge or filament heater. However, these methods can easily leave contamination on the fiber, resulting inconsistent performance or even catching fire in high power operations. The electrodes or filaments also degrade rapidly during the combiner manufacturing process. The rapid degradation will lead to extensive maintenance, making it unpractical or uneconomic for volume production. By contrast, CO2 laser is the cleanest heating source which provides reliable and repeatable process for fabricating fiber optic components including high power combiners. In this paper we present an all fiber end pumped 7x1 pump combiner fabricated by CO2 laser splicing system. The input pump fibers are 105/125 (core/clad diameters in μm) fibers with a core NA of 0.22. The output fiber is a 300/320 fiber with a core NA of 0.22. The average efficiency is 99.4% with all 7 ports more than 99%. The process is contamination-free and highly repeatable. To our best knowledge, this is the first report in the literature on power combiners fabricated by CO2 laser splicing system. It also has the highest reported efficiency of its kind.

  15. Technique for recovery of voice data from heat damaged magnetic tape

    NASA Technical Reports Server (NTRS)

    Melugin, J. F.; Obrien, D. E., III (Inventor)

    1974-01-01

    A method for conditioning, and thus enabling retrieval of intelligence from, magnetic tapes after damage from heat has caused the tape to wrinkle and curl severely thereby reducing tape width to less than one-half its original size. The damaged tape is superposed on a first piece of splicing tape with the oxide side of the magnetic tape in contact with the adhesive side of the splicing tape and then carefully smoothed by a special tool. A second piece of splicing tape is placed on the backing side of the magnetic tape then the resulting tape stack is trimmed to the original width of the magnetic tape. After the first piece of splicing tape is carefully removed from the oxide side of the damaged magnetic tape, the resulting magnetic tape is then ready to be placed into a recorder for playback.

  16. FgPrp4 Kinase Is Important for Spliceosome B-Complex Activation and Splicing Efficiency in Fusarium graminearum

    PubMed Central

    Jiang, Cong; Li, Yang; Li, Chaohui; Liu, Huiquan; Kang, Zhensheng; Xu, Jin-Rong

    2016-01-01

    PRP4 encodes the only kinase among the spliceosome components. Although it is an essential gene in the fission yeast and other eukaryotic organisms, the Fgprp4 mutant was viable in the wheat scab fungus Fusarium graminearum. Deletion of FgPRP4 did not block intron splicing but affected intron splicing efficiency in over 60% of the F. graminearum genes. The Fgprp4 mutant had severe growth defects and produced spontaneous suppressors that were recovered in growth rate. Suppressor mutations were identified in the PRP6, PRP31, BRR2, and PRP8 orthologs in nine suppressor strains by sequencing analysis with candidate tri-snRNP component genes. The Q86K mutation in FgMSL1 was identified by whole genome sequencing in suppressor mutant S3. Whereas two of the suppressor mutations in FgBrr2 and FgPrp8 were similar to those characterized in their orthologs in yeasts, suppressor mutations in Prp6 and Prp31 orthologs or FgMSL1 have not been reported. Interestingly, four and two suppressor mutations identified in FgPrp6 and FgPrp31, respectively, all are near the conserved Prp4-phosphorylation sites, suggesting that these mutations may have similar effects with phosphorylation by Prp4 kinase. In FgPrp31, the non-sense mutation at R464 resulted in the truncation of the C-terminal 130 aa region that contains all the conserved Prp4-phosphorylation sites. Deletion analysis showed that the N-terminal 310-aa rich in SR residues plays a critical role in the localization and functions of FgPrp4. We also conducted phosphoproteomics analysis with FgPrp4 and identified S289 as the phosphorylation site that is essential for its functions. These results indicated that FgPrp4 is critical for splicing efficiency but not essential for intron splicing, and FgPrp4 may regulate pre-mRNA splicing by phosphorylation of other components of the tri-snRNP although itself may be activated by phosphorylation at S289. PMID:27058959

  17. Phylogenetic Analysis of Nuclear-Encoded RNA Maturases

    PubMed Central

    Malik, Sunita; Upadhyaya, KC; Khurana, SM Paul

    2017-01-01

    Posttranscriptional processes, such as splicing, play a crucial role in gene expression and are prevalent not only in nuclear genes but also in plant mitochondria where splicing of group II introns is catalyzed by a class of proteins termed maturases. In plant mitochondria, there are 22 mitochondrial group II introns. matR, nMAT1, nMAT2, nMAT3, and nMAT4 proteins have been shown to be required for efficient splicing of several group II introns in Arabidopsis thaliana. Nuclear maturases (nMATs) are necessary for splicing of mitochondrial genes, leading to normal oxidative phosphorylation. Sequence analysis through phylogenetic tree (including bootstrapping) revealed high homology with maturase sequences of A thaliana and other plants. This study shows the phylogenetic relationship of nMAT proteins between A thaliana and other nonredundant plant species taken from BLASTP analysis. PMID:28607538

  18. Reading the tea leaves: Dead transposon copies reveal novel host and transposon biology.

    PubMed

    McLaughlin, Richard N

    2018-03-01

    Transposable elements comprise a huge portion of most animal genomes. Unlike many pathogens, these elements leave a mark of their impact via their insertion into host genomes. With proper teasing, these sequences can relay information about the evolutionary history of transposons and their hosts. In a new publication, Larson and colleagues describe a previously unappreciated density of long interspersed element-1 (LINE-1) sequences that have been spliced (LINE-1 and other reverse transcribing elements are necessarily intronless). They provide data to suggest that the retention of these potentially deleterious splice sites in LINE-1 results from the sites' overlap with an important transcription factor binding site. These spliced LINE-1s (i.e., spliced integrated retrotransposed elements [SpiREs]) lose their ability to replicate, suggesting they are evolutionary dead ends. However, the lethality of this splicing could be an efficient means of blocking continued replication of LINE-1. In this way, the record of inactive LINE-1 sequences in the human genome revealed a new, though infrequent, event in the LINE-1 replication cycle and motivates future studies to test whether splicing might be another weapon in the anti-LINE-1 arsenal of host genomes.

  19. Simultaneous Quantification of Multiple Alternatively Spliced mRNA Transcripts Using Droplet Digital PCR.

    PubMed

    Sun, Bing; Zheng, Yun-Ling

    2018-01-01

    Currently there is no sensitive, precise, and reproducible method to quantitate alternative splicing of mRNA transcripts. Droplet digital™ PCR (ddPCR™) analysis allows for accurate digital counting for quantification of gene expression. Human telomerase reverse transcriptase (hTERT) is one of the essential components required for telomerase activity and for the maintenance of telomeres. Several alternatively spliced forms of hTERT mRNA in human primary and tumor cells have been reported in the literature. Using one pair of primers and two probes for hTERT, four alternatively spliced forms of hTERT (α-/β+, α+/β- single deletions, α-/β- double deletion, and nondeletion α+/β+) were accurately quantified through a novel analysis method via data collected from a single ddPCR reaction. In this chapter, we describe this ddPCR method that enables direct quantitative comparison of four alternatively spliced forms of the hTERT messenger RNA without the need for internal standards or multiple pairs of primers specific for each variant, eliminating the technical variation due to differential PCR amplification efficiency for different amplicons and the challenges of quantification using standard curves. This simple and straightforward method should have general utility for quantifying alternatively spliced gene transcripts.

  20. PASSion: a pattern growth algorithm-based pipeline for splice junction detection in paired-end RNA-Seq data.

    PubMed

    Zhang, Yanju; Lameijer, Eric-Wubbo; 't Hoen, Peter A C; Ning, Zemin; Slagboom, P Eline; Ye, Kai

    2012-02-15

    RNA-seq is a powerful technology for the study of transcriptome profiles that uses deep-sequencing technologies. Moreover, it may be used for cellular phenotyping and help establishing the etiology of diseases characterized by abnormal splicing patterns. In RNA-Seq, the exact nature of splicing events is buried in the reads that span exon-exon boundaries. The accurate and efficient mapping of these reads to the reference genome is a major challenge. We developed PASSion, a pattern growth algorithm-based pipeline for splice site detection in paired-end RNA-Seq reads. Comparing the performance of PASSion to three existing RNA-Seq analysis pipelines, TopHat, MapSplice and HMMSplicer, revealed that PASSion is competitive with these packages. Moreover, the performance of PASSion is not affected by read length and coverage. It performs better than the other three approaches when detecting junctions in highly abundant transcripts. PASSion has the ability to detect junctions that do not have known splicing motifs, which cannot be found by the other tools. Of the two public RNA-Seq datasets, PASSion predicted ≈ 137,000 and 173,000 splicing events, of which on average 82 are known junctions annotated in the Ensembl transcript database and 18% are novel. In addition, our package can discover differential and shared splicing patterns among multiple samples. The code and utilities can be freely downloaded from https://trac.nbic.nl/passion and ftp://ftp.sanger.ac.uk/pub/zn1/passion.

  1. Investigation of solvent-free MALDI-TOFMS sample preparation methods for the analysis of organometallic and coordination compounds.

    PubMed

    Hughes, Laura; Wyatt, Mark F; Stein, Bridget K; Brenton, A Gareth

    2009-01-15

    An investigation of various solvent-free matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) sample preparation methods for the characterization of organometallic and coordination compounds is described. Such methods are desirable for insoluble materials, compounds that are only soluble in disadvantageous solvents, or complexes that dissociate in solution, all of which present a major "difficulty" to most mass spectrometry techniques. First-row transition metal acetylacetonate complexes, which have been characterized previously by solution preparation MALDI-TOFMS, were used to evaluate the various solvent-free procedures. These procedures comprise two distinct steps: the first being the efficient "solids mixing" (the mixing of sample and matrix), and the second being the effective transfer of the sample/matrix mixture to the MALDI target plate. This investigation shows that vortex mixing is the most efficient first step and that smearing using a microspatula is the most effective second step. In addition, the second step is shown to be much more critical than the first step in obtaining high-quality data. Case studies of truly insoluble materials highlight the importance of these techniques for the wider chemistry community.

  2. The ins and outs of nuclear re-export of retrogradely transported tRNAs in Saccharomyces cerevisiae

    PubMed Central

    Pierce, Jacqueline B; Eswara, Manoja BK

    2010-01-01

    In Saccharomyces cerevisiae intron-containing pre-tRNAs are exported from the nucleus to the cytoplasm for removal of the introns, and the spliced tRNAs are returned to the nucleus for reasons that are not understood. The re-imported spliced tRNAs are then subjected to aminoacylation in the nucleolus to ensure that they are functional prior to re-export to the cytoplasm. Previous studies have shown that re-imported spliced tRNAs and mature tRNAs made entirely in the nucleus from intronless precursors are retained in the nucleus of S. cerevisiae in response to glucose, amino acid, nitrogen or inorganic phosphate deprivation. Contrary to these studies, we recently reported that starvation of S. cerevisiae of amino acids or nitrogen results in nuclear accumulation of re-imported spliced tRNAs, but not tRNAs made from intronless precursors. This finding suggests that separate pathways are used for nuclear export of retrogradely transported spliced tRNAs and tRNAs made from intronless pre-tRNAs. In addition, the data support the conclusion that the nuclear re-export pathway for retrogradely transported spliced tRNAs, but not the pathway responsible for nuclear export of tRNAs derived from intronless precursors is regulated during amino acid or nitrogen starvation. This regulation appears to occur at a step after the re-imported spliced tRNAs have undergone aminoacylation quality assurance and, in part, involves the TORC1 signalling pathway. Moreover, it was established that Utp9p is an intranuclear component that only facilitates nuclear re-export of retrogradely transported spliced tRNAs by the β-karyopherin Msn5p. Utp9p acts in concert with Utp8p, a key player in nuclear tRNA export in S. cerevisiae, to translocate aminoacylated re-imported spliced tRNAs from the nucleolus to Msn5p and assist with formation of the Msn5p-tRNA-Gsp1p-GTP export complex. This pathway, however, is not the only one responsible for nuclear re-export of retrogradely transported spliced tRNAs. PMID:21327067

  3. Succession of splicing regulatory elements determines cryptic 5΄ss functionality

    PubMed Central

    Brillen, Anna-Lena; Schöneweis, Katrin; Walotka, Lara; Hartmann, Linda; Müller, Lisa; Ptok, Johannes; Kaisers, Wolfgang; Poschmann, Gereon; Stühler, Kai; Buratti, Emanuele

    2017-01-01

    Abstract A critical step in exon definition is the recognition of a proper splice donor (5΄ss) by the 5’ end of U1 snRNA. In the selection of appropriate 5΄ss, cis-acting splicing regulatory elements (SREs) are indispensable. As a model for 5΄ss recognition, we investigated cryptic 5΄ss selection within the human fibrinogen Bβ-chain gene (FGB) exon 7, where we identified several exonic SREs that simultaneously acted on up- and downstream cryptic 5΄ss. In the FGB exon 7 model system, 5΄ss selection iteratively proceeded along an alternating sequence of U1 snRNA binding sites and interleaved SREs which in principle supported different 3’ exon ends. Like in a relay race, SREs either suppressed a potential 5΄ss and passed the splicing baton on or splicing actually occurred. From RNA-Seq data, we systematically selected 19 genes containing exons with silent U1 snRNA binding sites competing with nearby highly used 5΄ss. Extensive SRE analysis by different algorithms found authentic 5΄ss significantly more supported by SREs than silent U1 snRNA binding sites, indicating that our concept may permit generalization to a model for 5΄ss selection and 3’ exon end definition. PMID:28039323

  4. scaRNAs regulate splicing and vertebrate heart development.

    PubMed

    Patil, Prakash; Kibiryeva, Nataliya; Uechi, Tamayo; Marshall, Jennifer; O'Brien, James E; Artman, Michael; Kenmochi, Naoya; Bittel, Douglas C

    2015-08-01

    Alternative splicing (AS) plays an important role in regulating mammalian heart development, but a link between misregulated splicing and congenital heart defects (CHDs) has not been shown. We reported that more than 50% of genes associated with heart development were alternatively spliced in the right ventricle (RV) of infants with tetralogy of Fallot (TOF). Moreover, there was a significant decrease in the level of 12 small cajal body-specific RNAs (scaRNAs) that direct the biochemical modification of specific nucleotides in spliceosomal RNAs. We sought to determine if scaRNA levels influence patterns of AS and heart development. We used primary cells derived from the RV of infants with TOF to show a direct link between scaRNA levels and splice isoforms of several genes that regulate heart development (e.g., GATA4, NOTCH2, DAAM1, DICER1, MBNL1 and MBNL2). In addition, we used antisense morpholinos to knock down the expression of two scaRNAs (scarna1 and snord94) in zebrafish and saw a corresponding disruption of heart development with an accompanying alteration in splice isoforms of cardiac regulatory genes. Based on these combined results, we hypothesize that scaRNA modification of spliceosomal RNAs assists in fine tuning the spliceosome for dynamic selection of mRNA splice isoforms. Our results are consistent with disruption of splicing patterns during early embryonic development leading to insufficient communication between the first and second heart fields, resulting in conotruncal misalignment and TOF. Our findings represent a new paradigm for determining the mechanisms underlying congenital cardiac malformations. Copyright © 2015. Published by Elsevier B.V.

  5. The Brown Algae Pl.LSU/2 Group II Intron-Encoded Protein Has Functional Reverse Transcriptase and Maturase Activities

    PubMed Central

    Zerbato, Madeleine; Holic, Nathalie; Moniot-Frin, Sophie; Ingrao, Dina; Galy, Anne; Perea, Javier

    2013-01-01

    Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner. PMID:23505475

  6. A Role for SMN Exon 7 Splicing in the Selective Vulnerability of Motor Neurons in Spinal Muscular Atrophy

    PubMed Central

    Ruggiu, Matteo; McGovern, Vicki L.; Lotti, Francesco; Saieva, Luciano; Li, Darrick K.; Kariya, Shingo; Monani, Umrao R.; Burghes, Arthur H. M.

    2012-01-01

    Spinal muscular atrophy (SMA) is an inherited motor neuron disease caused by homozygous loss of the Survival Motor Neuron 1 (SMN1) gene. In the absence of SMN1, inefficient inclusion of exon 7 in transcripts from the nearly identical SMN2 gene results in ubiquitous SMN decrease but selective motor neuron degeneration. Here we investigated whether cell type-specific differences in the efficiency of exon 7 splicing contribute to the vulnerability of SMA motor neurons. We show that normal motor neurons express markedly lower levels of full-length SMN mRNA from SMN2 than do other cells in the spinal cord. This is due to inefficient exon 7 splicing that is intrinsic to motor neurons under normal conditions. We also find that SMN depletion in mammalian cells decreases exon 7 inclusion through a negative feedback loop affecting the splicing of its own mRNA. This mechanism is active in vivo and further decreases the efficiency of exon 7 inclusion specifically in motor neurons of severe-SMA mice. Consistent with expression of lower levels of full-length SMN, we find that SMN-dependent downstream molecular defects are exacerbated in SMA motor neurons. These findings suggest a mechanism to explain the selective vulnerability of motor neurons to loss of SMN1. PMID:22037760

  7. ASPIC: a novel method to predict the exon-intron structure of a gene that is optimally compatible to a set of transcript sequences.

    PubMed

    Bonizzoni, Paola; Rizzi, Raffaella; Pesole, Graziano

    2005-10-05

    Currently available methods to predict splice sites are mainly based on the independent and progressive alignment of transcript data (mostly ESTs) to the genomic sequence. Apart from often being computationally expensive, this approach is vulnerable to several problems--hence the need to develop novel strategies. We propose a method, based on a novel multiple genome-EST alignment algorithm, for the detection of splice sites. To avoid limitations of splice sites prediction (mainly, over-predictions) due to independent single EST alignments to the genomic sequence our approach performs a multiple alignment of transcript data to the genomic sequence based on the combined analysis of all available data. We recast the problem of predicting constitutive and alternative splicing as an optimization problem, where the optimal multiple transcript alignment minimizes the number of exons and hence of splice site observations. We have implemented a splice site predictor based on this algorithm in the software tool ASPIC (Alternative Splicing PredICtion). It is distinguished from other methods based on BLAST-like tools by the incorporation of entirely new ad hoc procedures for accurate and computationally efficient transcript alignment and adopts dynamic programming for the refinement of intron boundaries. ASPIC also provides the minimal set of non-mergeable transcript isoforms compatible with the detected splicing events. The ASPIC web resource is dynamically interconnected with the Ensembl and Unigene databases and also implements an upload facility. Extensive bench marking shows that ASPIC outperforms other existing methods in the detection of novel splicing isoforms and in the minimization of over-predictions. ASPIC also requires a lower computation time for processing a single gene and an EST cluster. The ASPIC web resource is available at http://aspic.algo.disco.unimib.it/aspic-devel/.

  8. Algorithm to Identify Frequent Coupled Modules from Two-Layered Network Series: Application to Study Transcription and Splicing Coupling

    PubMed Central

    Li, Wenyuan; Dai, Chao; Liu, Chun-Chi

    2012-01-01

    Abstract Current network analysis methods all focus on one or multiple networks of the same type. However, cells are organized by multi-layer networks (e.g., transcriptional regulatory networks, splicing regulatory networks, protein-protein interaction networks), which interact and influence each other. Elucidating the coupling mechanisms among those different types of networks is essential in understanding the functions and mechanisms of cellular activities. In this article, we developed the first computational method for pattern mining across many two-layered graphs, with the two layers representing different types yet coupled biological networks. We formulated the problem of identifying frequent coupled clusters between the two layers of networks into a tensor-based computation problem, and proposed an efficient solution to solve the problem. We applied the method to 38 two-layered co-transcription and co-splicing networks, derived from 38 RNA-seq datasets. With the identified atlas of coupled transcription-splicing modules, we explored to what extent, for which cellular functions, and by what mechanisms transcription-splicing coupling takes place. PMID:22697243

  9. A compatible exon-exon junction database for the identification of exon skipping events using tandem mass spectrum data.

    PubMed

    Mo, Fan; Hong, Xu; Gao, Feng; Du, Lin; Wang, Jun; Omenn, Gilbert S; Lin, Biaoyang

    2008-12-16

    Alternative splicing is an important gene regulation mechanism. It is estimated that about 74% of multi-exon human genes have alternative splicing. High throughput tandem (MS/MS) mass spectrometry provides valuable information for rapidly identifying potentially novel alternatively-spliced protein products from experimental datasets. However, the ability to identify alternative splicing events through tandem mass spectrometry depends on the database against which the spectra are searched. We wrote scripts in perl, Bioperl, mysql and Ensembl API and built a theoretical exon-exon junction protein database to account for all possible combinations of exons for a gene while keeping the frame of translation (i.e., keeping only in-phase exon-exon combinations) from the Ensembl Core Database. Using our liver cancer MS/MS dataset, we identified a total of 488 non-redundant peptides that represent putative exon skipping events. Our exon-exon junction database provides the scientific community with an efficient means to identify novel alternatively spliced (exon skipping) protein isoforms using mass spectrometry data. This database will be useful in annotating genome structures using rapidly accumulating proteomics data.

  10. The Splicing History of an mRNA Affects Its Level of Translation and Sensitivity to Cleavage by the Virion Host Shutoff Endonuclease during Herpes Simplex Virus Infections

    PubMed Central

    Sadek, Jouliana

    2016-01-01

    ABSTRACT During lytic herpes simplex virus (HSV) infections, the virion host shutoff (Vhs) (UL41) endoribonuclease degrades many cellular and viral mRNAs. In uninfected cells, spliced mRNAs emerge into the cytoplasm bound by exon junction complexes (EJCs) and are translated several times more efficiently than unspliced mRNAs that have the same sequence but lack EJCs. Notably, most cellular mRNAs are spliced, whereas most HSV mRNAs are not. To examine the effect of splicing on gene expression during HSV infection, cells were transfected with plasmids harboring an unspliced renilla luciferase (RLuc) reporter mRNA or RLuc constructs with introns near the 5′ or 3′ end of the gene. After splicing of intron-containing transcripts, all three RLuc mRNAs had the same primary sequence. Upon infection in the presence of actinomycin D, spliced mRNAs were much less sensitive to degradation by copies of Vhs from infecting virions than were unspliced mRNAs. During productive infections (in the absence of drugs), RLuc was expressed at substantially higher levels from spliced than from unspliced mRNAs. Interestingly, the stimulatory effect of splicing on RLuc expression was significantly greater in infected than in uninfected cells. The translational stimulatory effect of an intron during HSV-1 infections could be replicated by artificially tethering various EJC components to an unspliced RLuc transcript. Thus, the splicing history of an mRNA, and the consequent presence or absence of EJCs, affects its level of translation and sensitivity to Vhs cleavage during lytic HSV infections. IMPORTANCE Most mammalian mRNAs are spliced. In contrast, of the more than 80 mRNAs harbored by herpes simplex virus 1 (HSV-1), only 5 are spliced. In addition, synthesis of the immediate early protein ICP27 causes partial inhibition of pre-mRNA splicing, with the resultant accumulation of both spliced and unspliced versions of some mRNAs in the cytoplasm. A common perception is that HSV-1 infection necessarily inhibits the expression of spliced mRNAs. In contrast, this study demonstrates two instances in which pre-mRNA splicing actually enhances the synthesis of proteins from mRNAs during HSV-1 infections. Specifically, splicing stabilized an mRNA against degradation by copies of the Vhs endoribonuclease from infecting virions and greatly enhanced the amount of protein synthesized from spliced mRNAs at late times after infection. The data suggest that splicing, and the resultant presence of exon junction complexes on an mRNA, may play an important role in gene expression during HSV-1 infections. PMID:27681125

  11. Evaluating approaches to find exon chains based on long reads.

    PubMed

    Kuosmanen, Anna; Norri, Tuukka; Mäkinen, Veli

    2018-05-01

    Transcript prediction can be modeled as a graph problem where exons are modeled as nodes and reads spanning two or more exons are modeled as exon chains. Pacific Biosciences third-generation sequencing technology produces significantly longer reads than earlier second-generation sequencing technologies, which gives valuable information about longer exon chains in a graph. However, with the high error rates of third-generation sequencing, aligning long reads correctly around the splice sites is a challenging task. Incorrect alignments lead to spurious nodes and arcs in the graph, which in turn lead to incorrect transcript predictions. We survey several approaches to find the exon chains corresponding to long reads in a splicing graph, and experimentally study the performance of these methods using simulated data to allow for sensitivity/precision analysis. Our experiments show that short reads from second-generation sequencing can be used to significantly improve exon chain correctness either by error-correcting the long reads before splicing graph creation, or by using them to create a splicing graph on which the long-read alignments are then projected. We also study the memory and time consumption of various modules, and show that accurate exon chains lead to significantly increased transcript prediction accuracy. The simulated data and in-house scripts used for this article are available at http://www.cs.helsinki.fi/group/gsa/exon-chains/exon-chains-bib.tar.bz2.

  12. Comparison of Two Methods for Detecting Alternative Splice Variants Using GeneChip® Exon Arrays

    PubMed Central

    Fan, Wenhong; Stirewalt, Derek L.; Radich, Jerald P.; Zhao, Lueping

    2011-01-01

    The Affymetrix GeneChip Exon Array can be used to detect alternative splice variants. Microarray Detection of Alternative Splicing (MIDAS) and Partek® Genomics Suite (Partek® GS) are among the most popular analytical methods used to analyze exon array data. While both methods utilize statistical significance for testing, MIDAS and Partek® GS could produce somewhat different results due to different underlying assumptions. Comparing MIDAS and Partek® GS is quite difficult due to their substantially different mathematical formulations and assumptions regarding alternative splice variants. For meaningful comparison, we have used the previously published generalized probe model (GPM) which encompasses both MIDAS and Partek® GS under different assumptions. We analyzed a colon cancer exon array data set using MIDAS, Partek® GS and GPM. MIDAS and Partek® GS produced quite different sets of genes that are considered to have alternative splice variants. Further, we found that GPM produced results similar to MIDAS as well as to Partek® GS under their respective assumptions. Within the GPM, we show how discoveries relating to alternative variants can be quite different due to different assumptions. MIDAS focuses on relative changes in expression values across different exons within genes and tends to be robust but less efficient. Partek® GS, however, uses absolute expression values of individual exons within genes and tends to be more efficient but more sensitive to the presence of outliers. From our observations, we conclude that MIDAS and Partek® GS produce complementary results, and discoveries from both analyses should be considered. PMID:23675234

  13. Serine/Arginine-Rich Splicing Factor 3 and Heterogeneous Nuclear Ribonucleoprotein A1 Regulate Alternative RNA Splicing and Gene Expression of Human Papillomavirus 18 through Two Functionally Distinguishable cis Elements.

    PubMed

    Ajiro, Masahiko; Tang, Shuang; Doorbar, John; Zheng, Zhi-Ming

    2016-10-15

    Human papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other oncogenic HPVs, HPV18 encodes two major (one early and one late) polycistronic pre-mRNAs that are regulated by alternative RNA splicing to produce a repertoire of viral transcripts for the expression of individual viral genes. However, RNA cis-regulatory elements and trans-acting factors contributing to HPV18 alternative RNA splicing remain unknown. In this study, an exonic splicing enhancer (ESE) in the nucleotide (nt) 3520 to 3550 region in the HPV18 genome was identified and characterized for promotion of HPV18 929^3434 splicing and E1^E4 production through interaction with SRSF3, a host oncogenic splicing factor differentially expressed in epithelial cells and keratinocytes. Introduction of point mutations in the SRSF3-binding site or knockdown of SRSF3 expression in cells reduces 929^3434 splicing and E1^E4 production but activates other, minor 929^3465 and 929^3506 splicing. Knockdown of SRSF3 expression also enhances the expression of E2 and L1 mRNAs. An exonic splicing silencer (ESS) in the HPV18 nt 612 to 639 region was identified as being inhibitory to the 233^416 splicing of HPV18 E6E7 pre-mRNAs via binding to hnRNP A1, a well-characterized, abundantly and ubiquitously expressed RNA-binding protein. Introduction of point mutations into the hnRNP A1-binding site or knockdown of hnRNP A1 expression promoted 233^416 splicing and reduced E6 expression. These data provide the first evidence that the alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host trans-acting splicing factors. Expression of HPV18 genes is regulated by alternative RNA splicing of viral polycistronic pre-mRNAs to produce a repertoire of viral early and late transcripts. RNA cis elements and trans-acting factors contributing to HPV18 alternative RNA splicing have been discovered in this study for the first time. The identified ESS at the E7 open reading frame (ORF) prevents HPV18 233^416 splicing in the E6 ORF through interaction with a host splicing factor, hnRNP A1, and regulates E6 and E7 expression of the early E6E7 polycistronic pre-mRNA. The identified ESE at the E1^E4 ORF promotes HPV18 929^3434 splicing of both viral early and late pre-mRNAs and E1^E4 production through interaction with SRSF3. This study provides important observations on how alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host splicing factors and offers potential therapeutic targets to overcome HPV-related cancer. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Serine/Arginine-Rich Splicing Factor 3 and Heterogeneous Nuclear Ribonucleoprotein A1 Regulate Alternative RNA Splicing and Gene Expression of Human Papillomavirus 18 through Two Functionally Distinguishable cis Elements

    PubMed Central

    Ajiro, Masahiko; Tang, Shuang; Doorbar, John

    2016-01-01

    ABSTRACT Human papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other oncogenic HPVs, HPV18 encodes two major (one early and one late) polycistronic pre-mRNAs that are regulated by alternative RNA splicing to produce a repertoire of viral transcripts for the expression of individual viral genes. However, RNA cis-regulatory elements and trans-acting factors contributing to HPV18 alternative RNA splicing remain unknown. In this study, an exonic splicing enhancer (ESE) in the nucleotide (nt) 3520 to 3550 region in the HPV18 genome was identified and characterized for promotion of HPV18 929^3434 splicing and E1^E4 production through interaction with SRSF3, a host oncogenic splicing factor differentially expressed in epithelial cells and keratinocytes. Introduction of point mutations in the SRSF3-binding site or knockdown of SRSF3 expression in cells reduces 929^3434 splicing and E1^E4 production but activates other, minor 929^3465 and 929^3506 splicing. Knockdown of SRSF3 expression also enhances the expression of E2 and L1 mRNAs. An exonic splicing silencer (ESS) in the HPV18 nt 612 to 639 region was identified as being inhibitory to the 233^416 splicing of HPV18 E6E7 pre-mRNAs via binding to hnRNP A1, a well-characterized, abundantly and ubiquitously expressed RNA-binding protein. Introduction of point mutations into the hnRNP A1-binding site or knockdown of hnRNP A1 expression promoted 233^416 splicing and reduced E6 expression. These data provide the first evidence that the alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host trans-acting splicing factors. IMPORTANCE Expression of HPV18 genes is regulated by alternative RNA splicing of viral polycistronic pre-mRNAs to produce a repertoire of viral early and late transcripts. RNA cis elements and trans-acting factors contributing to HPV18 alternative RNA splicing have been discovered in this study for the first time. The identified ESS at the E7 open reading frame (ORF) prevents HPV18 233^416 splicing in the E6 ORF through interaction with a host splicing factor, hnRNP A1, and regulates E6 and E7 expression of the early E6E7 polycistronic pre-mRNA. The identified ESE at the E1^E4 ORF promotes HPV18 929^3434 splicing of both viral early and late pre-mRNAs and E1^E4 production through interaction with SRSF3. This study provides important observations on how alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host splicing factors and offers potential therapeutic targets to overcome HPV-related cancer. PMID:27489271

  15. X-linked Alport syndrome caused by splicing mutations in COL4A5.

    PubMed

    Nozu, Kandai; Vorechovsky, Igor; Kaito, Hiroshi; Fu, Xue Jun; Nakanishi, Koichi; Hashimura, Yuya; Hashimoto, Fusako; Kamei, Koichi; Ito, Shuichi; Kaku, Yoshitsugu; Imasawa, Toshiyuki; Ushijima, Katsumi; Shimizu, Junya; Makita, Yoshio; Konomoto, Takao; Yoshikawa, Norishige; Iijima, Kazumoto

    2014-11-07

    X-linked Alport syndrome is caused by mutations in the COL4A5 gene. Although many COL4A5 mutations have been detected, the mutation detection rate has been unsatisfactory. Some men with X-linked Alport syndrome show a relatively mild phenotype, but molecular basis investigations have rarely been conducted to clarify the underlying mechanism. In total, 152 patients with X-linked Alport syndrome who were suspected of having Alport syndrome through clinical and pathologic investigations and referred to the hospital for mutational analysis between January of 2006 and January of 2013 were genetically diagnosed. Among those patients, 22 patients had suspected splice site mutations. Transcripts are routinely examined when suspected splice site mutations for abnormal transcripts are detected; 11 of them showed expected exon skipping, but others showed aberrant splicing patterns. The mutation detection strategy had two steps: (1) genomic DNA analysis using PCR and direct sequencing and (2) mRNA analysis using RT-PCR to detect RNA processing abnormalities. Six splicing consensus site mutations resulting in aberrant splicing patterns, one exonic mutation leading to exon skipping, and four deep intronic mutations producing cryptic splice site activation were identified. Interestingly, one case produced a cryptic splice site with a single nucleotide substitution in the deep intron that led to intronic exonization containing a stop codon; however, the patient showed a clearly milder phenotype for X-linked Alport syndrome in men with a truncating mutation. mRNA extracted from the kidney showed both normal and abnormal transcripts, with the normal transcript resulting in the milder phenotype. This novel mechanism leads to mild clinical characteristics. This report highlights the importance of analyzing transcripts to enhance the mutation detection rate and provides insight into genotype-phenotype correlations. This approach can clarify the cause of atypically mild phenotypes in X-linked Alport syndrome. Copyright © 2014 by the American Society of Nephrology.

  16. Cwf16p Associating with the Nineteen Complex Ensures Ordered Exon Joining in Constitutive Pre-mRNA Splicing in Fission Yeast

    PubMed Central

    Sasaki-Haraguchi, Noriko; Ikuyama, Takeshi; Yoshii, Shogo; Takeuchi-Andoh, Tomoko; Frendewey, David; Tani, Tokio

    2015-01-01

    Exons are ligated in an ordered manner without the skipping of exons in the constitutive splicing of pre-mRNAs with multiple introns. To identify factors ensuring ordered exon joining in constitutive pre-mRNA splicing, we previously screened for exon skipping mutants in Schizosaccharomyces pombe using a reporter plasmid, and characterized three exon skipping mutants named ods1 (ordered splicing 1), ods2, and ods3, the responsible genes of which encode Prp2/U2AF59, U2AF23, and SF1, respectively. They form an SF1-U2AF59-U2AF23 complex involved in recognition of the branch and 3′ splice sites in pre-mRNA. In the present study, we identified a fourth ods mutant, ods4, which was isolated in an exon-skipping screen. The ods4 + gene encodes Cwf16p, which interacts with the NineTeen Complex (NTC), a complex thought to be involved in the first catalytic step of the splicing reaction. We isolated two multi-copy suppressors for the ods4-1 mutation, Srp2p, an SR protein essential for pre-mRNA splicing, and Tif213p, a translation initiation factor, in S. pombe. The overexpression of Srp2p suppressed the exon-skipping phenotype of all ods mutants, whereas Tif213p suppressed only ods4-1, which has a mutation in the translational start codon of the cwf16 gene. We also showed that the decrease in the transcriptional elongation rate induced by drug treatment suppressed exon skipping in ods4-1. We propose that Cwf16p/NTC participates in the early recognition of the branch and 3′ splice sites and cooperates with the SF1-U2AF59-U2AF23 complex to maintain ordered exon joining. PMID:26302002

  17. Overexpressed long noncoding RNA CRNDE with distinct alternatively spliced isoforms in multiple cancers.

    PubMed

    Ma, Xuefei; Zhang, Wei; Zhang, Rong; Li, Jingming; Li, Shufen; Ma, Yunlin; Jin, Wen; Wang, Kankan

    2018-05-26

    Alternative splicing is a tightly regulated process that contributes to cancer development. CRNDE is a long noncoding RNA with alternative splicing and is implicated in the pathogenesis of several cancers. However, whether deregulated expression of CRNDE is common and which isoforms are mainly involved in cancers remain unclear. In this study, we report that CRNDE is aberrantly expressed in the majority of solid and hematopoietic malignancies. The investigation of CRNDE expression in normal samples revealed that CRNDE was expressed in a tissue- and cell-specific manner. Further comparison of CRNDE expression in 2938 patient samples from 15 solid and hematopoietic tumors showed that CRNDE was significantly overexpressed in 11 malignancies, including 3 reported and 8 unreported, and also implicated that the overexpressed isoforms differed in various cancer types. Furthermore, anti-cancer drugs could efficiently repress CRNDE overexpression in cancer cell lines and primary samples, and even had different impacts on the expression of CRNDE isoforms. Finally, experimental profiles of 12 alternatively spliced isoforms demonstrated that the spliced variant CRNDE-g was the most highly expressed isoform in multiple cancer types. Collectively, our results emphasize the cancer-associated feature of CRNDE and its spliced isoforms, and may provide promising targets for cancer diagnosis and therapy.

  18. QUANTIFYING ALTERNATIVE SPLICING FROM PAIRED-END RNA-SEQUENCING DATA.

    PubMed

    Rossell, David; Stephan-Otto Attolini, Camille; Kroiss, Manuel; Stöcker, Almond

    2014-03-01

    RNA-sequencing has revolutionized biomedical research and, in particular, our ability to study gene alternative splicing. The problem has important implications for human health, as alternative splicing may be involved in malfunctions at the cellular level and multiple diseases. However, the high-dimensional nature of the data and the existence of experimental biases pose serious data analysis challenges. We find that the standard data summaries used to study alternative splicing are severely limited, as they ignore a substantial amount of valuable information. Current data analysis methods are based on such summaries and are hence sub-optimal. Further, they have limited flexibility in accounting for technical biases. We propose novel data summaries and a Bayesian modeling framework that overcome these limitations and determine biases in a non-parametric, highly flexible manner. These summaries adapt naturally to the rapid improvements in sequencing technology. We provide efficient point estimates and uncertainty assessments. The approach allows to study alternative splicing patterns for individual samples and can also be the basis for downstream analyses. We found a several fold improvement in estimation mean square error compared popular approaches in simulations, and substantially higher consistency between replicates in experimental data. Our findings indicate the need for adjusting the routine summarization and analysis of alternative splicing RNA-seq studies. We provide a software implementation in the R package casper.

  19. Intron self-complementarity enforces exon inclusion in a yeast pre-mRNA

    PubMed Central

    Howe, Kenneth James; Ares, Manuel

    1997-01-01

    Skipping of internal exons during removal of introns from pre-mRNA must be avoided for proper expression of most eukaryotic genes. Despite significant understanding of the mechanics of intron removal, mechanisms that ensure inclusion of internal exons in multi-intron pre-mRNAs remain mysterious. Using a natural two-intron yeast gene, we have identified distinct RNA–RNA complementarities within each intron that prevent exon skipping and ensure inclusion of internal exons. We show that these complementarities are positioned to act as intron identity elements, bringing together only the appropriate 5′ splice sites and branchpoints. Destroying either intron self-complementarity allows exon skipping to occur, and restoring the complementarity using compensatory mutations rescues exon inclusion, indicating that the elements act through formation of RNA secondary structure. Introducing new pairing potential between regions near the 5′ splice site of intron 1 and the branchpoint of intron 2 dramatically enhances exon skipping. Similar elements identified in single intron yeast genes contribute to splicing efficiency. Our results illustrate how intron secondary structure serves to coordinate splice site pairing and enforce exon inclusion. We suggest that similar elements in vertebrate genes could assist in the splicing of very large introns and in the evolution of alternative splicing. PMID:9356473

  20. Efficient and robust photo-ionization loading of beryllium ions

    NASA Astrophysics Data System (ADS)

    Wolf, Sebastian; Studer, Dominik; Wendt, Klaus; Schmidt-Kaler, Ferdinand

    2018-02-01

    We demonstrate the efficient generation of Be^+ ions with a 60 ns and 150 nJ laser pulse near 235 nm for two-step photo-ionization, proven by subsequent counting of the number of ions loaded into a linear Paul trap. The bandwidth and power of the laser pulse are chosen in such a way that a first, resonant step fully saturates the entire velocity distribution of beryllium atoms effusing from a thermal oven. The second excitation step is driven by the same light field causing efficient non-resonant ionization. Our ion-loading scheme has a similar efficiency as compared to former pathways using two-photon continuous wave laser excitation, but with an order of magnitude lower than average UV light power.

  1. Fine-Scale Variation and Genetic Determinants of Alternative Splicing across Individuals

    PubMed Central

    Coulombe-Huntington, Jasmin; Lam, Kevin C. L.; Dias, Christel; Majewski, Jacek

    2009-01-01

    Recently, thanks to the increasing throughput of new technologies, we have begun to explore the full extent of alternative pre–mRNA splicing (AS) in the human transcriptome. This is unveiling a vast layer of complexity in isoform-level expression differences between individuals. We used previously published splicing sensitive microarray data from lymphoblastoid cell lines to conduct an in-depth analysis on splicing efficiency of known and predicted exons. By combining publicly available AS annotation with a novel algorithm designed to search for AS, we show that many real AS events can be detected within the usually unexploited, speculative majority of the array and at significance levels much below standard multiple-testing thresholds, demonstrating that the extent of cis-regulated differential splicing between individuals is potentially far greater than previously reported. Specifically, many genes show subtle but significant genetically controlled differences in splice-site usage. PCR validation shows that 42 out of 58 (72%) candidate gene regions undergo detectable AS, amounting to the largest scale validation of isoform eQTLs to date. Targeted sequencing revealed a likely causative SNP in most validated cases. In all 17 incidences where a SNP affected a splice-site region, in silico splice-site strength modeling correctly predicted the direction of the micro-array and PCR results. In 13 other cases, we identified likely causative SNPs disrupting predicted splicing enhancers. Using Fst and REHH analysis, we uncovered significant evidence that 2 putative causative SNPs have undergone recent positive selection. We verified the effect of five SNPs using in vivo minigene assays. This study shows that splicing differences between individuals, including quantitative differences in isoform ratios, are frequent in human populations and that causative SNPs can be identified using in silico predictions. Several cases affected disease-relevant genes and it is likely some of these differences are involved in phenotypic diversity and susceptibility to complex diseases. PMID:20011102

  2. Dual-band infrared imaging for quantitative corrosion detection in aging aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Grande, N.K.

    1993-12-31

    Aircraft skin thickness-loss from corrosion has been measured using dual-band infrared (DBIR) imaging on a flash-heated Boeing 737 fuselage structure. The authors mapped surface temperature differences of 0.2 to 0.6 C for 5 to 14 % thickness losses within corroded lap splices at 0.4 seconds after the heat flash. The procedure mapped surface temperature differences at sites without surface-emissivity clutter (from dirt, dents, tape, markings, ink, sealants, uneven paint, paint stripper, exposed metal and roughness variations). They established the correlation of percent thickness loss with surface temperature rise using a partially corroded F-18 wing box and several aluminum panels whichmore » had thickness losses from milled flat-bottom holes. The authors mapped the lap splice composite thermal inertia, (k{rho}c){sup 1/2}, which characterized shallow skin defects within the lap splice at early times (<0.3 s) and deeper skin defects within the lap splice at late times (>0.4 s). Corrosion invaded the inside of the Boeing 737 lap splice, beneath the galley and the latrine, where they observed ``pillowing`` from volume build-up of corrosion by-products.« less

  3. Dual-band infrared imaging for quantitative corrosion detection in aging aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Grande, N.K.

    1993-11-01

    Aircraft skin thickness-loss from corrosion has been measured using dual-band infrared (DBIR) imaging on a flash-heated Boeing 737 fuselage structure. We mapped surface temperature differences of 0.2 to 0.6 {degrees}C for 5 to 14% thickness losses within corroded lap splices at 0.4 seconds after the heat flash. Our procedure mapped surface temperature differences at sites without surface-emissivity clutter (from dirt, dents, tape, markings, ink, sealants, uneven paint, paint stripper, exposed metal and roughness variations). We established the correlation of percent thickness loss with surface temperature rise using a partially corroded F-18 wing box and several aluminum panels which had thicknessmore » losses from milled flat-bottom holes. We mapped the lap splice composite thermal inertia, (kpc){sup {1/2}}, which characterized shallow skin defects within the lap splice at early times (<0.3 s) and deeper skin defects within the lap splice at late times (>0.4 s). Corrosion invaded the inside of the Boeing 737 lap splice, beneath the galley and the latrine, where we observed ``pillowing`` from volume build-up of corrosion by-products.« less

  4. A survey of the sorghum transcriptome using single-molecule long reads

    DOE PAGES

    Abdel-Ghany, Salah E.; Hamilton, Michael; Jacobi, Jennifer L.; ...

    2016-06-24

    Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novelmore » splice isoforms. Additionally, we uncover APA ofB11,000 expressed genes and more than 2,100 novel genes. Lastly, these results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism.« less

  5. A survey of the sorghum transcriptome using single-molecule long reads

    PubMed Central

    Abdel-Ghany, Salah E.; Hamilton, Michael; Jacobi, Jennifer L.; Ngam, Peter; Devitt, Nicholas; Schilkey, Faye; Ben-Hur, Asa; Reddy, Anireddy S. N.

    2016-01-01

    Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novel splice isoforms. Additionally, we uncover APA of ∼11,000 expressed genes and more than 2,100 novel genes. These results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism. PMID:27339290

  6. Validation and Interrogation of Differentially Expressed and Alternatively Spliced Genes in African American Prostate Cancer

    DTIC Science & Technology

    2016-10-01

    These analyses have led to two submitted manuscripts. The first manuscript, “Variants of stemness -related genes predicted to regulate RNA splicing...and Table 1-3 at the end of this progress report. The second manuscript, “Single nucleotide polymorphisms of stemness pathway genes predicted to...cancer and support a contribution of the stemness pathway to prostate cancer patient outcome. Please see Figure 5-7 and Table 4-6 at the end of this

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahder, G.; Bopp, L.A.; Eager, G.S.

    This report covers the continuation of the work to develop technology to manufacture chemically crosslinked polyethylene insulated power cables in the ac voltage range of 138 kV to 345 kV having insulation thicknesses approximately equal to that of oil impregnated paper insulated cables. It also incorporates the development of field molded splices and terminations for new high voltage stress 138 kV cables. After reviewing the main equipment elements, incorporated in the pilot extrusion line, the special features of this system are noted and a step-by-step description of the cable extrusion process is given. Optimization of the process and introduction ofmore » modifications in the equipment culminated with the production of 138 kV cables. Results of laboratory tests to demonstrate the high quality of the cables are given. The development of molded splices and molded stress control cones was initiated with the work on model cables and followed by the making of splices and terminations on 138 kV cables. The molded components are made with the same purified insulating compound as used in the manufacture of the cables. Both the molded splices and the molded stress control cones have been fully tested in the laboratory. Following the completion of the development of the 138 kV cable a high stress 230 kV crosslinked polyethylene cable was developed and optimized. A full evaluation program similar to the one utilized on the 138 kV cable was carried out. Subsequently, work to develop a 345 kV high voltage stress cable, having insulation thickness of 1.02'' was undertaken. 345 kV cables were successfully manufactured and tested. However, additional work is required to further optimize the quality of this cable.« less

  8. A contracted DNA repeat in LHX3 intron 5 is associated with aberrant splicing and pituitary dwarfism in German shepherd dogs.

    PubMed

    Voorbij, Annemarie M W Y; van Steenbeek, Frank G; Vos-Loohuis, Manon; Martens, Ellen E C P; Hanson-Nilsson, Jeanette M; van Oost, Bernard A; Kooistra, Hans S; Leegwater, Peter A

    2011-01-01

    Dwarfism in German shepherd dogs is due to combined pituitary hormone deficiency of unknown genetic cause. We localized the recessively inherited defect by a genome wide approach to a region on chromosome 9 with a lod score of 9.8. The region contains LHX3, which codes for a transcription factor essential for pituitary development. Dwarfs have a deletion of one of six 7 bp repeats in intron 5 of LHX3, reducing the intron size to 68 bp. One dwarf was compound heterozygous for the deletion and an insertion of an asparagine residue in the DNA-binding homeodomain of LHX3, suggesting involvement of the gene in the disorder. An exon trapping assay indicated that the shortened intron is not spliced efficiently, probably because it is too small. We applied bisulfite conversion of cytosine to uracil in RNA followed by RT-PCR to analyze the splicing products. The aberrantly spliced RNA molecules resulted from either skipping of exon 5 or retention of intron 5. The same splicing defects were observed in cDNA derived from the pituitary of dwarfs. A survey of similarly mutated introns suggests that there is a minimal distance requirement between the splice donor and branch site of 50 nucleotides. In conclusion, a contraction of a DNA repeat in intron 5 of canine LHX3 leads to deficient splicing and is associated with pituitary dwarfism.

  9. A Contracted DNA Repeat in LHX3 Intron 5 Is Associated with Aberrant Splicing and Pituitary Dwarfism in German Shepherd Dogs

    PubMed Central

    Voorbij, Annemarie M. W. Y.; van Steenbeek, Frank G.; Vos-Loohuis, Manon; Martens, Ellen E. C. P.; Hanson-Nilsson, Jeanette M.; van Oost, Bernard A.; Kooistra, Hans S.; Leegwater, Peter A.

    2011-01-01

    Dwarfism in German shepherd dogs is due to combined pituitary hormone deficiency of unknown genetic cause. We localized the recessively inherited defect by a genome wide approach to a region on chromosome 9 with a lod score of 9.8. The region contains LHX3, which codes for a transcription factor essential for pituitary development. Dwarfs have a deletion of one of six 7 bp repeats in intron 5 of LHX3, reducing the intron size to 68 bp. One dwarf was compound heterozygous for the deletion and an insertion of an asparagine residue in the DNA-binding homeodomain of LHX3, suggesting involvement of the gene in the disorder. An exon trapping assay indicated that the shortened intron is not spliced efficiently, probably because it is too small. We applied bisulfite conversion of cytosine to uracil in RNA followed by RT-PCR to analyze the splicing products. The aberrantly spliced RNA molecules resulted from either skipping of exon 5 or retention of intron 5. The same splicing defects were observed in cDNA derived from the pituitary of dwarfs. A survey of similarly mutated introns suggests that there is a minimal distance requirement between the splice donor and branch site of 50 nucleotides. In conclusion, a contraction of a DNA repeat in intron 5 of canine LHX3 leads to deficient splicing and is associated with pituitary dwarfism. PMID:22132174

  10. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, Ajeet; Doshi, Parag; Tate, John Keith; Mejia, Jose; Chen, Zhizhang

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

  11. Functioning of the Drosophila Wilms'-Tumor-1-Associated Protein Homolog, Fl(2)d, in Sex-Lethal-Dependent Alternative Splicing

    PubMed Central

    Penn, Jill K. M.; Graham, Patricia; Deshpande, Girish; Calhoun, Gretchen; Chaouki, Ahmad Sami; Salz, Helen K.; Schedl, Paul

    2008-01-01

    fl(2)d, the Drosophila homolog of Wilms'-tumor-1-associated protein (WTAP), regulates the alternative splicing of Sex-lethal (Sxl), transformer (tra), and Ultrabithorax (Ubx). Although WTAP has been found in functional human spliceosomes, exactly how it contributes to the splicing process remains unknown. Here we attempt to identify factors that interact genetically and physically with fl(2)d. We begin by analyzing the Sxl-Fl(2)d protein–protein interaction in detail and present evidence suggesting that the female-specific fl(2)d1 allele is antimorphic with respect to the process of sex determination. Next we show that fl(2)d interacts genetically with early acting general splicing regulators and that Fl(2)d is present in immunoprecipitable complexes with Snf, U2AF50, U2AF38, and U1-70K. By contrast, we could not detect Fl(2)d complexes containing the U5 snRNP protein U5-40K or with a protein that associates with the activated B spliceosomal complex SKIP. Significantly, the genetic and molecular interactions observed for Sxl are quite similar to those detected for fl(2)d. Taken together, our findings suggest that Sxl and fl(2)d function to alter splice-site selection at an early step in spliceosome assembly. PMID:18245840

  12. Alternative pre-mRNA splicing of Toll-like receptor signaling components in peripheral blood mononuclear cells from patients with ARDS.

    PubMed

    Blumhagen, Rachel Z; Hedin, Brenna R; Malcolm, Kenneth C; Burnham, Ellen L; Moss, Marc; Abraham, Edward; Huie, Tristan J; Nick, Jerry A; Fingerlin, Tasha E; Alper, Scott

    2017-11-01

    A key physiological feature of acute respiratory distress syndrome (ARDS) is inflammation. Toll-like receptor (TLR) signaling is required to combat the infection that underlies many ARDS cases but also contributes to pathological inflammation. Several TLR signaling pathway genes encoding positive effectors of inflammation also produce alternatively spliced mRNAs encoding negative regulators of inflammation. An imbalance between these isoforms could contribute to pathological inflammation and disease severity. To determine whether splicing in TLR pathways is altered in patients with ARDS, we monitored alternative splicing of MyD88 and IRAK1 , two genes that function in multiple TLR pathways. The MyD88 and IRAK1 genes produce long proinflammatory mRNAs (MyD88 L and IRAK1) and shorter anti-inflammatory mRNAs (MyD88 S and IRAK1c). We quantified mRNA encoding inflammatory cytokines and MyD88 and IRAK1 isoforms in peripheral blood mononuclear cells (PBMCs) from 104 patients with ARDS and 30 healthy control subjects. We found that MyD88 pre-mRNA splicing is altered in patients with ARDS in a proinflammatory direction. We also observed altered MyD88 isoform levels in a second critically ill patient cohort, suggesting that these changes may not be unique to ARDS. Early in ARDS, PBMC IRAK1c levels were associated with patient survival. Despite the similarities in MyD88 and IRAK1 alternative splicing observed in previous in vitro studies, there were differences in how MyD88 and IRAK1 alternative splicing was altered in patients with ARDS. We conclude that pre-mRNA splicing of TLR signaling genes is altered in patients with ARDS, and further investigation of altered splicing may lead to novel prognostic and therapeutic approaches. Copyright © 2017 the American Physiological Society.

  13. Large-scale remodeling of a repressed exon ribonucleoprotein to an exon definition complex active for splicing

    PubMed Central

    Wongpalee, Somsakul Pop; Vashisht, Ajay; Sharma, Shalini; Chui, Darryl; Wohlschlegel, James A; Black, Douglas L

    2016-01-01

    Polypyrimidine-tract binding protein PTBP1 can repress splicing during the exon definition phase of spliceosome assembly, but the assembly steps leading to an exon definition complex (EDC) and how PTBP1 might modulate them are not clear. We found that PTBP1 binding in the flanking introns allowed normal U2AF and U1 snRNP binding to the target exon splice sites but blocked U2 snRNP assembly in HeLa nuclear extract. Characterizing a purified PTBP1-repressed complex, as well as an active early complex and the final EDC by SILAC-MS, we identified extensive PTBP1-modulated changes in exon RNP composition. The active early complex formed in the absence of PTBP1 proceeded to assemble an EDC with the eviction of hnRNP proteins, the late recruitment of SR proteins, and binding of the U2 snRNP. These results demonstrate that during early stages of splicing, exon RNP complexes are highly dynamic with many proteins failing to bind during PTBP1 arrest. DOI: http://dx.doi.org/10.7554/eLife.19743.001 PMID:27882870

  14. A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs

    PubMed Central

    Gromadzka, Agnieszka M.; Steckelberg, Anna-Lena; Singh, Kusum K.; Hofmann, Kay; Gehring, Niels H.

    2016-01-01

    The export of messenger RNAs (mRNAs) is the final of several nuclear posttranscriptional steps of gene expression. The formation of export-competent mRNPs involves the recruitment of export factors that are assumed to facilitate transport of the mature mRNAs. Using in vitro splicing assays, we show that a core set of export factors, including ALYREF, UAP56 and DDX39, readily associate with the spliced RNAs in an EJC (exon junction complex)- and cap-dependent manner. In order to elucidate how ALYREF and other export adaptors mediate mRNA export, we conducted a computational analysis and discovered four short, conserved, linear motifs present in RNA-binding proteins. We show that mutation in one of the new motifs (WxHD) in an unstructured region of ALYREF reduced RNA binding and abolished the interaction with eIF4A3 and CBP80. Additionally, the mutation impaired proper localization to nuclear speckles and export of a spliced reporter mRNA. Our results reveal important details of the orchestrated recruitment of export factors during the formation of export competent mRNPs. PMID:26773052

  15. PASSion: a pattern growth algorithm-based pipeline for splice junction detection in paired-end RNA-Seq data

    PubMed Central

    Zhang, Yanju; Lameijer, Eric-Wubbo; 't Hoen, Peter A. C.; Ning, Zemin; Slagboom, P. Eline; Ye, Kai

    2012-01-01

    Motivation: RNA-seq is a powerful technology for the study of transcriptome profiles that uses deep-sequencing technologies. Moreover, it may be used for cellular phenotyping and help establishing the etiology of diseases characterized by abnormal splicing patterns. In RNA-Seq, the exact nature of splicing events is buried in the reads that span exon–exon boundaries. The accurate and efficient mapping of these reads to the reference genome is a major challenge. Results: We developed PASSion, a pattern growth algorithm-based pipeline for splice site detection in paired-end RNA-Seq reads. Comparing the performance of PASSion to three existing RNA-Seq analysis pipelines, TopHat, MapSplice and HMMSplicer, revealed that PASSion is competitive with these packages. Moreover, the performance of PASSion is not affected by read length and coverage. It performs better than the other three approaches when detecting junctions in highly abundant transcripts. PASSion has the ability to detect junctions that do not have known splicing motifs, which cannot be found by the other tools. Of the two public RNA-Seq datasets, PASSion predicted ∼ 137 000 and 173 000 splicing events, of which on average 82 are known junctions annotated in the Ensembl transcript database and 18% are novel. In addition, our package can discover differential and shared splicing patterns among multiple samples. Availability: The code and utilities can be freely downloaded from https://trac.nbic.nl/passion and ftp://ftp.sanger.ac.uk/pub/zn1/passion Contact: y.zhang@lumc.nl; k.ye@lumc.nl Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22219203

  16. Single-Molecule Imaging of RNA Splicing in Live Cells.

    PubMed

    Rino, José; Martin, Robert M; Carvalho, Célia; de Jesus, Ana C; Carmo-Fonseca, Maria

    2015-01-01

    Expression of genetic information in eukaryotes involves a series of interconnected processes that ultimately determine the quality and amount of proteins in the cell. Many individual steps in gene expression are kinetically coupled, but tools are lacking to determine how temporal relationships between chemical reactions contribute to the output of the final gene product. Here, we describe a strategy that permits direct measurements of intron dynamics in single pre-mRNA molecules in live cells. This approach reveals that splicing can occur much faster than previously proposed and opens new avenues for studying how kinetic mechanisms impact on RNA biogenesis. © 2015 Elsevier Inc. All rights reserved.

  17. hnRNP L regulates differences in expression of mouse integrin alpha2beta1.

    PubMed

    Cheli, Yann; Kunicki, Thomas J

    2006-06-01

    There is a 2-fold variation in platelet integrin alpha2beta1 levels among inbred mouse strains. Decreased alpha2beta1 in 4 strains carrying Itga2 haplotype 2 results from decreased affinity of heterogeneous ribonucleoprotein L (hnRNP L) for a 6 CA repeat sequence (CA6) within intron 1. Seven strains bearing haplotype 1 and a 21 CA repeat sequence at this position (CA21) express twice the level of platelet alpha2beta1 and exhibit an equivalent gain of platelet function in vitro. By UV crosslinking and immunoprecipitation, hnRNP L binds more avidly to CA21, relative to CA6. By cell-free, in vitro mRNA splicing, decreased binding of hnRNP L results in decreased splicing efficiency and an increased proportion of alternatively spliced product. The splicing enhancer activity of CA21 in vivo is abolished by prior treatment with hnRNP L-specific siRNA. Thus, decreased surface alpha2beta1 results from decreased Itga2 pre-mRNA splicing regulated by hnRNP L and depends on CA repeat length at a specific site in intron 1.

  18. hnRNP L regulates differences in expression of mouse integrin α2β1

    PubMed Central

    Cheli, Yann; Kunicki, Thomas J.

    2006-01-01

    There is a 2-fold variation in platelet integrin α2β1 levels among inbred mouse strains. Decreased α2β1 in 4 strains carrying Itga2 haplotype 2 results from decreased affinity of heterogeneous ribonucleoprotein L (hnRNP L) for a 6 CA repeat sequence (CA6) within intron 1. Seven strains bearing haplotype 1 and a 21 CA repeat sequence at this position (CA21) express twice the level of platelet α2β1 and exhibit an equivalent gain of platelet function in vitro. By UV crosslinking and immunoprecipitation, hnRNP L binds more avidly to CA21, relative to CA6. By cell-free, in vitro mRNA splicing, decreased binding of hnRNP L results in decreased splicing efficiency and an increased proportion of alternatively spliced product. The splicing enhancer activity of CA21 in vivo is abolished by prior treatment with hnRNP L–specific siRNA. Thus, decreased surface α2β1 results from decreased Itga2 pre-mRNA splicing regulated by hnRNP L and depends on CA repeat length at a specific site in intron 1. PMID:16455949

  19. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes.

    PubMed

    Liu, H X; Cartegni, L; Zhang, M Q; Krainer, A R

    2001-01-01

    Point mutations can generate defective and sometimes harmful proteins. The nonsense-mediated mRNA decay (NMD) pathway minimizes the potential damage caused by nonsense mutations. In-frame nonsense codons located at a minimum distance upstream of the last exon-exon junction are recognized as premature termination codons (PTCs), targeting the mRNA for degradation. Some nonsense mutations cause skipping of one or more exons, presumably during pre-mRNA splicing in the nucleus; this phenomenon is termed nonsense-mediated altered splicing (NAS), and its underlying mechanism is unclear. By analyzing NAS in BRCA1, we show here that inappropriate exon skipping can be reproduced in vitro, and results from disruption of a splicing enhancer in the coding sequence. Enhancers can be disrupted by single nonsense, missense and translationally silent point mutations, without recognition of an open reading frame as such. These results argue against a nuclear reading-frame scanning mechanism for NAS. Coding-region single-nucleotide polymorphisms (cSNPs) within exonic splicing enhancers or silencers may affect the patterns or efficiency of mRNA splicing, which may in turn cause phenotypic variability and variable penetrance of mutations elsewhere in a gene.

  20. Selective aggregation of the splicing factor Hsh155 suppresses splicing upon genotoxic stress.

    PubMed

    Mathew, Veena; Tam, Annie S; Milbury, Karissa L; Hofmann, Analise K; Hughes, Christopher S; Morin, Gregg B; Loewen, Christopher J R; Stirling, Peter C

    2017-12-04

    Upon genotoxic stress, dynamic relocalization events control DNA repair as well as alterations of the transcriptome and proteome, enabling stress recovery. How these events may influence one another is only partly known. Beginning with a cytological screen of genome stability proteins, we find that the splicing factor Hsh155 disassembles from its partners and localizes to both intranuclear and cytoplasmic protein quality control (PQC) aggregates under alkylation stress. Aggregate sequestration of Hsh155 occurs at nuclear and then cytoplasmic sites in a manner that is regulated by molecular chaperones and requires TORC1 activity signaling through the Sfp1 transcription factor. This dynamic behavior is associated with intron retention in ribosomal protein gene transcripts, a decrease in splicing efficiency, and more rapid recovery from stress. Collectively, our analyses suggest a model in which some proteins evicted from chromatin and undergoing transcriptional remodeling during stress are targeted to PQC sites to influence gene expression changes and facilitate stress recovery. © 2017 Mathew et al.

  1. TopHat: discovering splice junctions with RNA-Seq

    PubMed Central

    Trapnell, Cole; Pachter, Lior; Salzberg, Steven L.

    2009-01-01

    Motivation: A new protocol for sequencing the messenger RNA in a cell, known as RNA-Seq, generates millions of short sequence fragments in a single run. These fragments, or ‘reads’, can be used to measure levels of gene expression and to identify novel splice variants of genes. However, current software for aligning RNA-Seq data to a genome relies on known splice junctions and cannot identify novel ones. TopHat is an efficient read-mapping algorithm designed to align reads from an RNA-Seq experiment to a reference genome without relying on known splice sites. Results: We mapped the RNA-Seq reads from a recent mammalian RNA-Seq experiment and recovered more than 72% of the splice junctions reported by the annotation-based software from that study, along with nearly 20 000 previously unreported junctions. The TopHat pipeline is much faster than previous systems, mapping nearly 2.2 million reads per CPU hour, which is sufficient to process an entire RNA-Seq experiment in less than a day on a standard desktop computer. We describe several challenges unique to ab initio splice site discovery from RNA-Seq reads that will require further algorithm development. Availability: TopHat is free, open-source software available from http://tophat.cbcb.umd.edu Contact: cole@cs.umd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19289445

  2. RNA Binding Protein RBM38 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19, Which Facilitates Viral DNA Replication.

    PubMed

    Ganaie, Safder S; Chen, Aaron Yun; Huang, Chun; Xu, Peng; Kleiboeker, Steve; Du, Aifang; Qiu, Jianming

    2018-04-15

    Human parvovirus B19 (B19V) expresses a single precursor mRNA (pre-mRNA), which undergoes alternative splicing and alternative polyadenylation to generate 12 viral mRNA transcripts that encode two structural proteins (VP1 and VP2) and three nonstructural proteins (NS1, 7.5-kDa protein, and 11-kDa protein). Splicing at the second 5' donor site (D2 site) of the B19V pre-mRNA is essential for the expression of VP2 and the 11-kDa protein. We previously identified that cis -acting intronic splicing enhancer 2 (ISE2) that lies immediately after the D2 site facilitates the recognition of the D2 donor for its efficient splicing. In this study, we report that ISE2 is critical for the expression of the 11-kDa viral nonstructural protein. We found that ISE2 harbors a consensus RNA binding motif protein 38 (RBM38) binding sequence, 5'-UGUGUG-3'. RBM38 is expressed during the middle stage of erythropoiesis. We first confirmed that RBM38 binds specifically with the ISE2 element in vitro The knockdown of RBM38 significantly decreases the level of spliced mRNA at D2 that encodes the 11-kDa protein but not that of the D2-spliced mRNA that encodes VP2. Importantly, we found that the 11-kDa protein enhances viral DNA replication and virion release. Accordingly, the knockdown of RBM38 decreases virus replication via downregulating 11-kDa protein expression. Taken together, these results suggest that the 11-kDa protein facilitates B19V DNA replication and that RBM38 is an essential host factor for B19V pre-mRNA splicing and for the expression of the 11-kDa protein. IMPORTANCE B19V is a human pathogen that can cause fifth disease, arthropathy, anemia in immunocompromised patients and sickle cell disease patients, myocarditis, and hydrops fetalis in pregnant women. Human erythroid progenitor cells (EPCs) are most susceptible to B19V infection and fully support viral DNA replication. The exclusive tropism of B19V for erythroid-lineage cells is dependent not only on the expression of viral receptors and coreceptors on the cell surface but also on the intracellular host factors that support B19V replication. Our present study shows that B19V uses a host factor, RNA binding motif protein 38 (RBM38), for the processing of its pre-mRNA during virus replication. Specifically, RBM38 interacts with the intronic splicing enhancer 2 (ISE2) element of B19V pre-mRNA and promotes 11-kDa protein expression, thereby regulating the 11-kDa protein-mediated augmentation of B19V replication. The identification of this novel host-pathogen interaction will provide mechanistic insights into B19V replication and aid in finding new targets for anti-B19V therapeutics. Copyright © 2018 American Society for Microbiology.

  3. Transfer RNA Post-Transcriptional Processing, Turnover, and Subcellular Dynamics in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Hopper, Anita K.

    2013-01-01

    Transfer RNAs (tRNAs) are essential for protein synthesis. In eukaryotes, tRNA biosynthesis employs a specialized RNA polymerase that generates initial transcripts that must be subsequently altered via a multitude of post-transcriptional steps before the tRNAs beome mature molecules that function in protein synthesis. Genetic, genomic, biochemical, and cell biological approaches possible in the powerful Saccharomyces cerevisiae system have led to exciting advances in our understandings of tRNA post-transcriptional processing as well as to novel insights into tRNA turnover and tRNA subcellular dynamics. tRNA processing steps include removal of transcribed leader and trailer sequences, addition of CCA to the 3′ mature sequence and, for tRNAHis, addition of a 5′ G. About 20% of yeast tRNAs are encoded by intron-containing genes. The three-step splicing process to remove the introns surprisingly occurs in the cytoplasm in yeast and each of the splicing enzymes appears to moonlight in functions in addition to tRNA splicing. There are 25 different nucleoside modifications that are added post-transcriptionally, creating tRNAs in which ∼15% of the residues are nucleosides other than A, G, U, or C. These modified nucleosides serve numerous important functions including tRNA discrimination, translation fidelity, and tRNA quality control. Mature tRNAs are very stable, but nevertheless yeast cells possess multiple pathways to degrade inappropriately processed or folded tRNAs. Mature tRNAs are also dynamic in cells, moving from the cytoplasm to the nucleus and back again to the cytoplasm; the mechanism and function of this retrograde process is poorly understood. Here, the state of knowledge for tRNA post-transcriptional processing, turnover, and subcellular dynamics is addressed, highlighting the questions that remain. PMID:23633143

  4. Identification of a Novel Transcript and Regulatory Mechanism for Microsomal Triglyceride Transfer Protein

    PubMed Central

    Suzuki, Takashi; Brown, Judy J.; Swift, Larry L.

    2016-01-01

    Microsomal triglyceride transfer protein (MTP) is essential for the assembly of triglyceride-rich apolipoprotein B-containing lipoproteins. Previous studies in our laboratory identified a novel splice variant of MTP in mice that we named MTP-B. MTP-B has a unique first exon (1B) located 2.7 kB upstream of the first exon (1A) for canonical MTP (MTP-A). The two mature isoforms, though nearly identical in sequence and function, have different tissue expression patterns. In this study we report the identification of a second MTP splice variant (MTP-C), which contains both exons 1B and 1A. MTP-C is expressed in all the tissues we tested. In cells transfected with MTP-C, protein expression was less than 15% of that found when the cells were transfected with MTP-A or MTP-B. In silico analysis of the 5’-UTR of MTP-C revealed seven ATGs upstream of the start site for MTP-A, which is the only viable start site in frame with the main coding sequence. One of those ATGs was located in the 5’-UTR for MTP-A. We generated reporter constructs in which the 5’-UTRs of MTP-A or MTP-C were inserted between an SV40 promoter and the coding sequence of the luciferase gene and transfected these constructs into HEK 293 cells. Luciferase activity was significantly reduced by the MTP-C 5’-UTR, but not by the MTP-A 5’-UTR. We conclude that alternative splicing plays a key role in regulating MTP expression by introducing unique 5’-UTRs, which contain elements that alter translation efficiency, enabling the cell to optimize MTP levels and activity. PMID:26771188

  5. Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae

    PubMed Central

    Shaheen, Hussam H.; Hopper, Anita K.

    2005-01-01

    In eukaryotes, tRNAs transcribed in the nucleus function in cytoplasmic protein synthesis. The Ran-GTP-binding exportin, Los1p/Xpo-t, and additional pathway(s) mediate tRNA transport to the cytoplasm. Although tRNA movement was thought to be unidirectional, recent reports that yeast precursor tRNA splicing occurs in the cytoplasm, whereas fully spliced tRNAs can reside in the nucleus, require that either the precursor tRNA splicing machinery or mature tRNAs move from the cytoplasm to the nucleus. Our data argue against the first possibility and strongly support the second. Combining heterokaryon analysis with fluorescence in situ hybridization, we show that a foreign tRNA encoded by one nucleus can move from the cytoplasm to a second nucleus that does not encode the tRNA. We also discovered nuclear accumulation of endogenous cytoplasmic tRNAs in haploid yeast cells in response to nutritional deprivation. Nuclear accumulation of cytoplasmic tRNA requires Ran and the Mtr10/Kap111 member of the importin-β family. Retrograde tRNA nuclear import may provide a novel mechanism to regulate gene expression in eukaryotes. PMID:16040803

  6. Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae.

    PubMed

    Shaheen, Hussam H; Hopper, Anita K

    2005-08-09

    In eukaryotes, tRNAs transcribed in the nucleus function in cytoplasmic protein synthesis. The Ran-GTP-binding exportin, Los1p/Xpo-t, and additional pathway(s) mediate tRNA transport to the cytoplasm. Although tRNA movement was thought to be unidirectional, recent reports that yeast precursor tRNA splicing occurs in the cytoplasm, whereas fully spliced tRNAs can reside in the nucleus, require that either the precursor tRNA splicing machinery or mature tRNAs move from the cytoplasm to the nucleus. Our data argue against the first possibility and strongly support the second. Combining heterokaryon analysis with fluorescence in situ hybridization, we show that a foreign tRNA encoded by one nucleus can move from the cytoplasm to a second nucleus that does not encode the tRNA. We also discovered nuclear accumulation of endogenous cytoplasmic tRNAs in haploid yeast cells in response to nutritional deprivation. Nuclear accumulation of cytoplasmic tRNA requires Ran and the Mtr10/Kap111 member of the importin-beta family. Retrograde tRNA nuclear import may provide a novel mechanism to regulate gene expression in eukaryotes.

  7. PCR-free Quantification of Multiple Splice Variants in Cancer Gene by Surface Enhanced Raman Spectroscopy

    PubMed Central

    Sun, Lan; Irudayaraj, Joseph

    2009-01-01

    We demonstrate a surface enhanced Raman spectroscopy (SERS) based array platform to monitor gene expression in cancer cells in a multiplex and quantitative format without amplification steps. A strategy comprising of DNA/RNA hybridization, S1 nuclease digestion, and alkaline hydrolysis was adopted to obtain DNA targets specific to two splice junction variants Δ(9, 10) and Δ(5) of the breast cancer susceptibility gene 1 (BRCA1) from MCF-7 and MDA-MB-231 breast cancer cell lines. These two targets were identified simultaneously and their absolute quantities were estimated by a SERS strategy utilizing the inherent plasmon-phonon Raman mode of gold nanoparticle probes as a self-referencing standard to correct for variability in surface enhancement. Results were then validated by reverse transcription PCR (RT-PCR). Our proposed methodology could be expanded to a higher level of multiplexing for quantitative gene expression analysis of any gene without any amplification steps. PMID:19780515

  8. Long genes and genes with multiple splice variants are enriched in pathways linked to cancer and other multigenic diseases.

    PubMed

    Sahakyan, Aleksandr B; Balasubramanian, Shankar

    2016-03-12

    The role of random mutations and genetic errors in defining the etiology of cancer and other multigenic diseases has recently received much attention. With the view that complex genes should be particularly vulnerable to such events, here we explore the link between the simple properties of the human genes, such as transcript length, number of splice variants, exon/intron composition, and their involvement in the pathways linked to cancer and other multigenic diseases. We reveal a substantial enrichment of cancer pathways with long genes and genes that have multiple splice variants. Although the latter two factors are interdependent, we show that the overall gene length and splicing complexity increase in cancer pathways in a partially decoupled manner. Our systematic survey for the pathways enriched with top lengthy genes and with genes that have multiple splice variants reveal, along with cancer pathways, the pathways involved in various neuronal processes, cardiomyopathies and type II diabetes. We outline a correlation between the gene length and the number of somatic mutations. Our work is a step forward in the assessment of the role of simple gene characteristics in cancer and a wider range of multigenic diseases. We demonstrate a significant accumulation of long genes and genes with multiple splice variants in pathways of multigenic diseases that have already been associated with de novo mutations. Unlike the cancer pathways, we note that the pathways of neuronal processes, cardiomyopathies and type II diabetes contain genes long enough for topoisomerase-dependent gene expression to also be a potential contributing factor in the emergence of pathologies, should topoisomerases become impaired.

  9. Central Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bryan (Technical Monitor)

    2002-01-01

    We present new, efficient central schemes for multi-dimensional Hamilton-Jacobi equations. These non-oscillatory, non-staggered schemes are first- and second-order accurate and are designed to scale well with an increasing dimension. Efficiency is obtained by carefully choosing the location of the evolution points and by using a one-dimensional projection step. First-and second-order accuracy is verified for a variety of multi-dimensional, convex and non-convex problems.

  10. Alternative splicing of a viral mirtron differentially affects the expression of other microRNAs from its cluster and of the host transcript

    PubMed Central

    Rasschaert, Perrine; Dambrine, Ginette; Rasschaert, Denis; Laurent, Sylvie

    2016-01-01

    ABSTRACT Interplay between alternative splicing and the Microprocessor may have differential effects on the expression of intronic miRNAs organized into clusters. We used a viral model — the LAT long non-coding RNA (LAT lncRNA) of Marek's disease oncogenic herpesvirus (MDV-1), which has the mdv1-miR-M8-M6-M7-M10 cluster embedded in its first intron — to assess the impact of splicing modifications on the biogenesis of each of the miRNAs from the cluster. Drosha silencing and alternative splicing of an extended exon 2 of the LAT lncRNA from a newly identified 3′ splice site (SS) at the end of the second miRNA of the cluster showed that mdv1-miR-M6 was a 5′-tailed mirtron. We have thus identified the first 5′-tailed mirtron within a cluster of miRNAs for which alternative splicing is directly associated with differential expression of the other miRNAs of the cluster, with an increase in intronic mdv1-miR-M8 expression and a decrease in expression of the exonic mdv1-miR-M7, and indirectly associated with regulation of the host transcript. According to the alternative 3SS used for the host intron splicing, the mdv1-miR-M6 is processed as a mirtron by the spliceosome, dispatching the other miRNAs of the cluster into intron and exon, or as a canonical miRNA by the Microprocessor complex. The viral mdv1-miR-M6 mirtron is the first mirtron described that can also follow the canonical pathway. PMID:27715458

  11. Hypoxia-Induced Expression of VEGF Splice Variants and Protein in Four Retinal Cell Types

    PubMed Central

    Watkins, William M.; McCollum, Gary W.; Savage, Sara R.; Capozzi, Megan E.; Penn, John S.; Morrison, David G.

    2014-01-01

    The purpose of this study was to investigate the hypoxia-induced Vegf120, Vegf164 and Vegf188 mRNA expression profiles in rat Müller cells (MC), astrocytes, retinal pigmented epithelial cells (RPE) and retinal microvascular endothelial cells (RMEC) and correlate these findings to VEGF secreted protein. Cultured cells were exposed to normoxia or hypoxia. Total RNA was isolated from cell lysates and Vegf splice variant mRNA copy numbers were assayed by a validated qRT-PCR external calibration curve method. mRNA copy numbers were normalized to input total RNA. Conditioned medium was collected from cells and assayed for total VEGF protein by ELISA. Hypoxia increased total Vegf mRNA and secreted protein in all the retinal cell types, with the highest levels observed in MC and astrocytes ranking second. Total Vegf mRNA levels in hypoxic RPE and RMEC were comparable; however, the greatest hypoxic induction of each Vegf splice variant mRNA was observed in RMEC. RPE and RMEC ranked 3rd and 4th respectively, in terms of secreted total VEGF protein in hypoxia. The Vegf120, Vegf164 and Vegf188 mRNA splice variants were all increased in hypoxic cells compared to normoxic controls. In normoxia, the relative Vegf splice variant mRNA levels ranked from highest to lowest for each cell type were Vegf164>Vegf120>Vegf188. Hypoxic induction did not alter this ranking, although it did favor an increased stoichiometry of Vegf164 mRNA over the other two splice variants. MC and astrocytes are likely to be the major sources of total Vegf, and Vegf164 splice variant mRNAs, and VEGF protein in retinal hypoxia. PMID:24076411

  12. Conserved developmental alternative splicing of muscleblind-like (MBNL) transcripts regulates MBNL localization and activity.

    PubMed

    Terenzi, Fulvia; Ladd, Andrea N

    2010-01-01

    Muscleblind-like (MBNL) proteins have been shown to regulate pre-mRNA alternative splicing, and MBNL1 has been implicated in regulating fetal-to-adult transitions in alternative splicing in the heart. MBNL1 is highly conserved, exhibiting more than 95% identity at the amino acid level between birds and mammals. To investigate MBNL1 expression during embryonic heart development, we examined MBNL1 transcript and protein expression in the embryonic chicken heart from the formation of the primitive heart tube through cardiac morphogenesis (embryonic days 1.5 through 8). MBNL1 transcript levels remained steady throughout these stages, whereas MBNL1 protein levels increased and exhibited a shift in isoforms. MBNL1 has several alternatively spliced exons. Using RT-PCR, we determined that the inclusion of one of these, exon 5, decreases dramatically during cardiac morphogenesis. This developmental transition is conserved in mice. Functional analyses of MBNL1 isoforms containing or lacking exon 5-encoded sequences revealed that exon 5 is important for the regulation of the subcellular localization, RNA binding affinity, and alternative splicing activity of MBNL1 proteins. A second MBNL protein, MBNL2, is also expressed in the embryonic heart. We found that MBNL2 exon 5, which is paralogous to MBNL1 exon 5, is similarly regulated during embryonic heart development. Analysis of MBNL1 and MBNL2 transcripts in several embryonic tissues in chicken and mouse indicate that exon 5 alternative splicing is highly conserved and tissue-specific. Thus, we propose that conserved developmental stage- and tissue-specific alternative splicing of MBNL transcripts is an important mechanism by which MBNL activity is regulated during embryonic development.

  13. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

  14. A mixed group II/group III twintron in the Euglena gracilis chloroplast ribosomal protein S3 gene: evidence for intron insertion during gene evolution.

    PubMed Central

    Copertino, D W; Christopher, D A; Hallick, R B

    1991-01-01

    The splicing of a 409 nucleotide intron from the Euglena gracilis chloroplast ribosomal protein S3 gene (rps3) was examined by cDNA cloning and sequencing, and northern hybridization. Based on the characterization of a partially spliced pre-mRNA, the intron was characterized as a 'mixed' twintron, composed of a 311 nucleotide group II intron internal to a 98 nucleotide group III intron. Twintron excision is via a 2-step sequential splicing pathway, with removal of the internal group II intron preceding excision of the external group III intron. Based on secondary structural analysis of the twintron, we propose that group III introns may represent highly degenerate versions of group II introns. The existence of twintrons is interpreted as evidence that group II introns were inserted during the evolution of Euglena chloroplast genes from a common ancestor with eubacteria, archaebacteria, cyanobacteria, and other chloroplasts. Images PMID:1721702

  15. Synonymous mutations in RNASEH2A create cryptic splice sites impairing RNase H2 enzyme function in Aicardi-Goutières syndrome

    PubMed Central

    Rice, Gillian I.; Reijns, Martin A.M.; Coffin, Stephanie R.; Forte, Gabriella M.A.; Anderson, Beverley H.; Szynkiewicz, Marcin; Gornall, Hannah; Gent, David; Leitch, Andrea; Botella, Maria P.; Fazzi, Elisa; Gener, Blanca; Lagae, Lieven; Olivieri, Ivana; Orcesi, Simona; Swoboda, Kathryn J.; Perrino, Fred W.; Jackson, Andrew P.; Crow, Yanick J.

    2013-01-01

    Aicardi-Goutières syndrome (AGS) is an inflammatory disorder resulting from mutations in TREX1, RNASEH2A/2B/2C, SAMHD1 or ADAR1. Here we provide molecular, biochemical and cellular evidence for the pathogenicity of two synonymous variants in RNASEH2A. Firstly, the c.69G>A (p.Val23Val) mutation causes the formation of a splice donor site within exon 1, resulting in an out of frame deletion at the end of exon 1, leading to reduced RNase H2 protein levels. The second mutation, c.75C>T (p.Arg25Arg), also introduces a splice donor site within exon 1, and the internal deletion of 18 amino acids. The truncated protein still forms a heterotrimeric RNase H2 complex, but lacks catalytic activity. However, as a likely result of leaky splicing, a small amount of full-length active protein is apparently produced in an individual homozygous for this mutation. Recognition of the disease causing status of these variants allows for diagnostic testing in relevant families. PMID:23592335

  16. Proposed hardware architectures of particle filter for object tracking

    NASA Astrophysics Data System (ADS)

    Abd El-Halym, Howida A.; Mahmoud, Imbaby Ismail; Habib, SED

    2012-12-01

    In this article, efficient hardware architectures for particle filter (PF) are presented. We propose three different architectures for Sequential Importance Resampling Filter (SIRF) implementation. The first architecture is a two-step sequential PF machine, where particle sampling, weight, and output calculations are carried out in parallel during the first step followed by sequential resampling in the second step. For the weight computation step, a piecewise linear function is used instead of the classical exponential function. This decreases the complexity of the architecture without degrading the results. The second architecture speeds up the resampling step via a parallel, rather than a serial, architecture. This second architecture targets a balance between hardware resources and the speed of operation. The third architecture implements the SIRF as a distributed PF composed of several processing elements and central unit. All the proposed architectures are captured using VHDL synthesized using Xilinx environment, and verified using the ModelSim simulator. Synthesis results confirmed the resource reduction and speed up advantages of our architectures.

  17. Antisense Masking of an hnRNP A1/A2 Intronic Splicing Silencer Corrects SMN2 Splicing in Transgenic Mice

    PubMed Central

    Hua, Yimin; Vickers, Timothy A.; Okunola, Hazeem L.; Bennett, C. Frank; Krainer, Adrian R.

    2008-01-01

    survival of motor neuron 2, centromeric (SMN2) is a gene that modifies the severity of spinal muscular atrophy (SMA), a motor-neuron disease that is the leading genetic cause of infant mortality. Increasing inclusion of SMN2 exon 7, which is predominantly skipped, holds promise to treat or possibly cure SMA; one practical strategy is the disruption of splicing silencers that impair exon 7 recognition. By using an antisense oligonucleotide (ASO)-tiling method, we systematically screened the proximal intronic regions flanking exon 7 and identified two intronic splicing silencers (ISSs): one in intron 6 and a recently described one in intron 7. We analyzed the intron 7 ISS by mutagenesis, coupled with splicing assays, RNA-affinity chromatography, and protein overexpression, and found two tandem hnRNP A1/A2 motifs within the ISS that are responsible for its inhibitory character. Mutations in these two motifs, or ASOs that block them, promote very efficient exon 7 inclusion. We screened 31 ASOs in this region and selected two optimal ones to test in human SMN2 transgenic mice. Both ASOs strongly increased hSMN2 exon 7 inclusion in the liver and kidney of the transgenic animals. Our results show that the high-resolution ASO-tiling approach can identify cis-elements that modulate splicing positively or negatively. Most importantly, our results highlight the therapeutic potential of some of these ASOs in the context of SMA. PMID:18371932

  18. Another heritage from the RNA world: self-excision of intron sequence from nuclear pre-tRNAs.

    PubMed

    Weber, U; Beier, H; Gross, H J

    1996-06-15

    The intervening sequences of nuclear tRNA precursors are known to be excised by tRNA splicing endonuclease. We show here that a T7 transcript corresponding to a pre-tRNA(Tyr) from Arabidopsis thaliana has a highly specific activity for autolytic intron excision. Self-cleavage occurs precisely at the authentic 3'-splice site and at the phosphodiester bond one nucleotide downstream of the authentic 5'-splice site. The reaction results in fragments with 2',3'-cyclic phosphate and 5'-OH termini. It is resistant to proteinase K and/or SDS treatment and is not inhibited by added tRNA. The self-cleavage depends on Mg2+ and is stimulated by spermine and Triton X-100. A set of sequence variants at the cleavage sites has been analysed for autolytic intron excision and, in parallel, for enzymatic in vitro splicing in wheat germ S23 extract. Single-stranded loops are a prerequisite for both reactions. Self-cleavage not only occurs at pyrimidine-A but also at U-U bonds. Since intron self-excision is only about five times slower than the enzymatic intron excision in a wheat germ S23 extract, we propose that the splicing endonuclease may function by improving the preciseness and efficiency of an inherent pre-tRNA self-cleavage activity.

  19. RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo

    PubMed Central

    Waldsich, Christina; Grossberger, Rupert; Schroeder, Renée

    2002-01-01

    Efficient splicing of the td group I intron in vivo is dependent on the ribosome. In the absence of translation, the pre-mRNA is trapped in nonnative-splicing-incompetent conformations. Alternatively, folding of the pre-mRNA can be promoted by the RNA chaperone StpA or by the group I intron-specific splicing factor Cyt-18. To understand the mechanism of action of RNA chaperones, we probed the impact of StpA on the structure of the td intron in vivo. Our data suggest that StpA loosens tertiary interactions. The most prominent structural change was the opening of the base triples, which are involved in the correct orientation of the two major intron core domains. In line with the destabilizing activity of StpA, splicing of mutant introns with a reduced structural stability is sensitive to StpA. In contrast, Cyt-18 strengthens tertiary contacts, thereby rescuing splicing of structurally compromised td mutants in vivo. Our data provide direct evidence for protein-induced conformational changes within catalytic RNA in vivo. Whereas StpA resolves tertiary contacts enabling the RNA to refold, Cyt-18 contributes to the overall compactness of the td intron in vivo. PMID:12208852

  20. ISS-N1 makes the First FDA-approved Drug for Spinal Muscular Atrophy

    PubMed Central

    Ottesen, Eric W.

    2017-01-01

    Abstract Spinal muscular atrophy (SMA) is one of the leading genetic diseases of children and infants. SMA is caused by deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, cannot compensate for the loss of SMN1 due to predominant skipping of exon 7. While various regulatory elements that modulate SMN2 exon 7 splicing have been proposed, intronic splicing silencer N1 (ISS-N1) has emerged as the most promising target thus far for antisense oligonucleotide-mediated splicing correction in SMA. Upon procuring exclusive license from the University of Massachussets Medical School in 2010, Ionis Pharmaceuticals (formerly ISIS Pharamaceuticals) began clinical development of Spinraza™ (synonyms: Nusinersen, IONIS-SMNRX, ISIS-SMNRX), an antisense drug based on ISS-N1 target. Spinraza™ showed very promising results at all steps of the clinical development and was approved by US Food and Drug Administration (FDA) on December 23, 2016. Spinraza™ is the first FDA-approved treatment for SMA and the first antisense drug to restore expression of a fully functional protein via splicing correction. The success of Spinraza™ underscores the potential of intronic sequences as promising therapeutic targets and sets the stage for further improvement of antisense drugs based on advanced oligonucleotide chemistries and delivery protocols. PMID:28400976

  1. A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs.

    PubMed

    Gromadzka, Agnieszka M; Steckelberg, Anna-Lena; Singh, Kusum K; Hofmann, Kay; Gehring, Niels H

    2016-03-18

    The export of messenger RNAs (mRNAs) is the final of several nuclear posttranscriptional steps of gene expression. The formation of export-competent mRNPs involves the recruitment of export factors that are assumed to facilitate transport of the mature mRNAs. Using in vitro splicing assays, we show that a core set of export factors, including ALYREF, UAP56 and DDX39, readily associate with the spliced RNAs in an EJC (exon junction complex)- and cap-dependent manner. In order to elucidate how ALYREF and other export adaptors mediate mRNA export, we conducted a computational analysis and discovered four short, conserved, linear motifs present in RNA-binding proteins. We show that mutation in one of the new motifs (WxHD) in an unstructured region of ALYREF reduced RNA binding and abolished the interaction with eIF4A3 and CBP80. Additionally, the mutation impaired proper localization to nuclear speckles and export of a spliced reporter mRNA. Our results reveal important details of the orchestrated recruitment of export factors during the formation of export competent mRNPs. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Traceless splicing enabled by substrate-induced activation of the Nostoc punctiforme Npu DnaE intein after mutation of a catalytic cysteine to serine.

    PubMed

    Cheriyan, Manoj; Chan, Siu-Hong; Perler, Francine

    2014-12-12

    Inteins self-catalytically cleave out of precursor proteins while ligating the surrounding extein fragments with a native peptide bond. Much attention has been lavished on these molecular marvels with the hope of understanding and harnessing their chemistry for novel biochemical transformations including coupling peptides from synthetic or biological origins and controlling protein function. Despite an abundance of powerful applications, the use of inteins is still hampered by limitations in our understanding of their specificity (defined as flanking sequences that permit splicing) and the challenge of inserting inteins into target proteins. We examined the frequently used Nostoc punctiforme Npu DnaE intein after the C-extein cysteine nucleophile (Cys+1) was mutated to serine or threonine. Previous studies demonstrated reduced rates and/or splicing yields with the Npu DnaE intein after mutation of Cys+1 to Ser+1. In this study, genetic selection identified extein sequences with Ser+1 that enabled the Npu DnaE intein to splice with only a 5-fold reduction in rate compared to the wild-type Cys+1 intein and without mutation of the intein itself to activate Ser+1 as a nucleophile. Three different proteins spliced efficiently after insertion of the intein flanked by the selected sequences. We then used this selected specificity to achieve traceless splicing in a targeted enzyme at a location predicted by primary sequence similarity to only the selected C-extein sequence. This study highlights the latent catalytic potential of the Npu DnaE intein to splice with an alternative nucleophile and enables broader intein utility by increasing insertion site choices. Copyright © 2014. Published by Elsevier Ltd.

  3. Comprehensive analysis of alternative splicing and functionality in neuronal differentiation of P19 cells.

    PubMed

    Suzuki, Hitoshi; Osaki, Ken; Sano, Kaori; Alam, A H M Khurshid; Nakamura, Yuichiro; Ishigaki, Yasuhito; Kawahara, Kozo; Tsukahara, Toshifumi

    2011-02-18

    Alternative splicing, which produces multiple mRNAs from a single gene, occurs in most human genes and contributes to protein diversity. Many alternative isoforms are expressed in a spatio-temporal manner, and function in diverse processes, including in the neural system. The purpose of the present study was to comprehensively investigate neural-splicing using P19 cells. GeneChip Exon Array analysis was performed using total RNAs purified from cells during neuronal cell differentiation. To efficiently and readily extract the alternative exon candidates, 9 filtering conditions were prepared, yielding 262 candidate exons (236 genes). Semiquantitative RT-PCR results in 30 randomly selected candidates suggested that 87% of the candidates were differentially alternatively spliced in neuronal cells compared to undifferentiated cells. Gene ontology and pathway analyses suggested that many of the candidate genes were associated with neural events. Together with 66 genes whose functions in neural cells or organs were reported previously, 47 candidate genes were found to be linked to 189 events in the gene-level profile of neural differentiation. By text-mining for the alternative isoform, distinct functions of the isoforms of 9 candidate genes indicated by the result of Exon Array were confirmed. Alternative exons were successfully extracted. Results from the informatics analyses suggested that neural events were primarily governed by genes whose expression was increased and whose transcripts were differentially alternatively spliced in the neuronal cells. In addition to known functions in neural cells or organs, the uninvestigated alternative splicing events of 11 genes among 47 candidate genes suggested that cell cycle events are also potentially important. These genes may help researchers to differentiate the roles of alternative splicing in cell differentiation and cell proliferation.

  4. High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier

    NASA Astrophysics Data System (ADS)

    Mu, Xiaodong; Steinvurzel, Paul; Rose, Todd S.; Lotshaw, William T.; Beck, Steven M.; Clemmons, James H.

    2016-03-01

    We demonstrate high power, deep ultraviolet (DUV) conversion to 266 nm through frequency quadrupling of a nanosecond pulse width 1064 nm fiber master oscillator power amplifier (MOPA). The MOPA system uses an Yb-doped double-clad polarization-maintaining large mode area tapered fiber as the final gain stage to generate 0.5-mJ, 10 W, 1.7- ns single mode pulses at a repetition rate of 20 kHz with measured spectral bandwidth of 10.6 GHz (40 pm), and beam qualities of Mx 2=1.07 and My 2=1.03, respectively. Using LBO and BBO crystals for the second-harmonic generation (SHG) and fourth-harmonic generation (FHG), we have achieved 375 μJ (7.5 W) and 92.5 μJ (1.85 W) at wavelengths of 532 nm and 266 nm, respectively. To the best of our knowledge these are the highest narrowband infrared, green and UV pulse energies obtained to date from a fully spliced fiber amplifier. We also demonstrate high efficiency SHG and FHG with walk-off compensated (WOC) crystal pairs and tightly focused pump beam. An SHG efficiency of 75%, FHG efficiency of 47%, and an overall efficiency of 35% from 1064 nm to 266 nm are obtained.

  5. [A novel dipeptidyl peptidase IV inhibitors developed through scaffold hopping and drug splicing strategy].

    PubMed

    Wang, Shan-Chun; Zeng, Li-Li; Ding, Yu-Yang; Zeng, Shao-Gao; Song, Hong-Rui; Hu, Wen-Hui; Xie, Hui

    2014-01-01

    Though all the marketed drugs of dipeptidyl peptidase IV inhibitors are structurally different, their inherent correlation is worthy of further investigation. Herein we rapidly discovered a novel DPP-IV inhibitor 8g (IC50 = 4.9 nmol.L-1) which exhibits as good activity and selectivity as the market drugs through scaffold hopping and drug splicing strategies based on alogliptin and linagliptin. This study demonstrated that the employment of classic medicinal chemistry strategy to the marketed drugs with specific target is an efficient approach to discover novel bioactive molecules.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iseki, Tadahiro; Inaba, Makoto; Takahashi, Naoki

    During the second and third steps of Active Test at Rokkasho Reprocessing Plant (RRP), the performances of the Separation Facility have been checked; (A) diluent washing efficiency, (B) plutonium stripping efficiency, (C) decontamination factor of fission products and (D) plutonium and uranium leakage into raffinate and spent solvent. Test results were equivalent to or better than expected. (authors)

  7. CHARGE syndrome: a recurrent hotspot of mutations in CHD7 IVS25 analyzed by bioinformatic tools and minigene assays.

    PubMed

    Legendre, Marine; Rodriguez-Ballesteros, Montserrat; Rossi, Massimiliano; Abadie, Véronique; Amiel, Jeanne; Revencu, Nicole; Blanchet, Patricia; Brioude, Frédéric; Delrue, Marie-Ange; Doubaj, Yassamine; Sefiani, Abdelaziz; Francannet, Christine; Holder-Espinasse, Muriel; Jouk, Pierre-Simon; Julia, Sophie; Melki, Judith; Mur, Sébastien; Naudion, Sophie; Fabre-Teste, Jennifer; Busa, Tiffany; Stamm, Stephen; Lyonnet, Stanislas; Attie-Bitach, Tania; Kitzis, Alain; Gilbert-Dussardier, Brigitte; Bilan, Frédéric

    2018-02-01

    CHARGE syndrome is a rare genetic disorder mainly due to de novo and private truncating mutations of CHD7 gene. Here we report an intriguing hot spot of intronic mutations (c.5405-7G > A, c.5405-13G > A, c.5405-17G > A and c.5405-18C > A) located in CHD7 IVS25. Combining computational in silico analysis, experimental branch-point determination and in vitro minigene assays, our study explains this mutation hot spot by a particular genomic context, including the weakness of the IVS25 natural acceptor-site and an unconventional lariat sequence localized outside the common 40 bp upstream the acceptor splice site. For each of the mutations reported here, bioinformatic tools indicated a newly created 3' splice site, of which the existence was confirmed using pSpliceExpress, an easy-to-use and reliable splicing reporter tool. Our study emphasizes the idea that combining these two complementary approaches could increase the efficiency of routine molecular diagnosis.

  8. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution.

    PubMed Central

    Colwill, K; Pawson, T; Andrews, B; Prasad, J; Manley, J L; Bell, J C; Duncan, P I

    1996-01-01

    Mammalian Clk/Sty is the prototype for a family of dual specificity kinases (termed LAMMER kinases) that have been conserved in evolution, but whose physiological substrates are unknown. In a yeast two-hybrid screen, the Clk/Sty kinase specifically interacted with RNA binding proteins, particularly members of the serine/arginine-rich (SR) family of splicing factors. Clk/Sty itself has an serine/arginine-rich non-catalytic N-terminal region which is important for its association with SR splicing factors. In vitro, Clk/Sty efficiently phosphorylated the SR family member ASF/SF2 on serine residues located within its serine/arginine-rich region (the RS domain). Tryptic phosphopeptide mapping demonstrated that the sites on ASF/SF2 phosphorylated in vitro overlap with those phosphorylated in vivo. Immunofluorescence studies showed that a catalytically inactive form of Clk/Sty co-localized with SR proteins in nuclear speckles. Overexpression of the active Clk/Sty kinase caused a redistribution of SR proteins within the nucleus. These results suggest that Clk/Sty kinase directly regulates the activity and compartmentalization of SR splicing factors. Images PMID:8617202

  9. Effective delivery of large genes to the retina by dual AAV vectors

    PubMed Central

    Trapani, Ivana; Colella, Pasqualina; Sommella, Andrea; Iodice, Carolina; Cesi, Giulia; de Simone, Sonia; Marrocco, Elena; Rossi, Settimio; Giunti, Massimo; Palfi, Arpad; Farrar, Gwyneth J; Polishchuk, Roman; Auricchio, Alberto

    2014-01-01

    Retinal gene therapy with adeno-associated viral (AAV) vectors is safe and effective in humans. However, AAV's limited cargo capacity prevents its application to therapies of inherited retinal diseases due to mutations of genes over 5 kb, like Stargardt's disease (STGD) and Usher syndrome type IB (USH1B). Previous methods based on ‘forced’ packaging of large genes into AAV capsids may not be easily translated to the clinic due to the generation of genomes of heterogeneous size which raise safety concerns. Taking advantage of AAV's ability to concatemerize, we generated dual AAV vectors which reconstitute a large gene by either splicing (trans-splicing), homologous recombination (overlapping), or a combination of the two (hybrid). We found that dual trans-splicing and hybrid vectors transduce efficiently mouse and pig photoreceptors to levels that, albeit lower than those achieved with a single AAV, resulted in significant improvement of the retinal phenotype of mouse models of STGD and USH1B. Thus, dual AAV trans-splicing or hybrid vectors are an attractive strategy for gene therapy of retinal diseases that require delivery of large genes. PMID:24150896

  10. Intron Definition Is Required for Excision of the Minute Virus of Mice Small Intron and Definition of the Upstream Exon

    PubMed Central

    Haut, Donald D.; Pintel, D. J.

    1998-01-01

    Alternative splicing of pre-mRNAs plays a critical role in maximizing the coding capacity of the small parvovirus genome. The small-intron region of minute virus of mice (MVM) pre-mRNAs undergoes an unusual pattern of overlapping alternative splicing—using two donors (D1 and D2) and two acceptors (A1 and A2) within a region of 120 nucleotides—that determines the steady-state ratios of the various viral mRNAs. In this report, we show that the determinants that govern excision of the small intron are complex and are also required for efficient definition of the upstream exon. For the MVM small intron in its natural context, the two donors appear to compete for the splicing machinery: the position of D1 favors its usage, while the primary sequence of D2 must be more like the consensus sequence than is D1 to be used efficiently. We have genetically defined the branch points that are used for generation of the major and minor spliced forms and show that recognition of components of the small-intron acceptors is likely to be the dominant determinant in alternative small-intron excision. We have also identified a G-rich intronic enhancer sequence within the small intron that is essential for splicing of the minor form (D2 to A2) but not the major form (D1 to A1) of MVM mRNAs and is required for efficient definition of the upstream NS2-specific exon. In its natural context, the small intron appears to be excised by a mechanism consistent with intron definition. When the MVM small intron is expanded, various parameters of its excision are altered, indicating that critical cis-acting signals are context dependent. Relative use of the donors and acceptors is altered, and the upstream NS2-specific exon is no longer efficiently defined. The fact that definition of the upstream NS2-specific exon can be achieved by the MVM small intron in its natural context, but not when it is expanded, suggests that the multiple determinants that govern definition and excision of the small intron are required, in concert, for upstream exon definition. Our data are consistent with a model in which alternative splicing of the MVM P4-generated pre-mRNAs is governed by a hybrid of intron- and exon-defining mechanisms. PMID:9499034

  11. Spectrum online-tunable Mach-Zehnder interferometer based on step-like tapers and its refractive index sensing characteristics

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Chen, Mao-qing; Xia, Feng; Hu, Hai-feng

    2017-11-01

    A novel refractive index (RI) sensor based on an asymmetrical Mach-Zehnder interferometer (MZI) with two different step-like tapers is proposed. The step-like taper is fabricated by fusion splicing two half tapers with an appropriate offset. By further applying offset and discharging to the last fabricated step-like taper of MZI, influence of taper parameters on interference spectrum is investigated using only one device. This simple technique provides an on-line method to sweep parameters of step-like tapers and speeds up the optimization process of interference spectrum, meanwhile. In RI sensing experiment, the sensor has a high sensitivity of -185.79 nm/RIU (refractive index unit) in the RI range of 1.3333-1.3673.

  12. Variants of the Xenopus laevis ribosomal transcription factor xUBF are developmentally regulated by differential splicing.

    PubMed

    Guimond, A; Moss, T

    1992-07-11

    XUBF is a Xenopus ribosomal transcription factor of the HMG-box family which contains five tandemly disposed homologies to the HMG1 & 2 DNA binding domains. XUBF has been isolated as a protein doublet and two cDNAs encoding the two molecular weight variants have been characterised. The major two forms of xUBF identified differ by the presence or absence of a 22 amino acid segment lying between HMG-boxes 3 and 4. Here we show that the mRNAs for these two forms of xUBF are regulated during development and differentiation over a range of nearly 20 fold. By isolating two of the xUBF genes, it was possible to show that both encoded the variable 22 amino acid segment in exon 12. Oocyte splicing assays and the sequencing of PCR-generated cDNA fragments, demonstrated that the transcripts from one of these genes were differentially spliced in a developmentally regulated manner. Transcripts from the second gene were found to be predominantly or exclusively spliced to produce the lower molecular weight form of xUBF. Expression of a high molecular weight form from yet a third gene was also detected. Although the intron-exon structures of the Xenopus and mouse UBF genes were found to be essentially identical, the differential splicing of exon 8 found in mammals, was not detected in Xenopus.

  13. Innate immunity and the new forward genetics.

    PubMed

    Beutler, Bruce

    2016-12-01

    As it is a hard-wired system for responses to microbes, innate immunity is particularly susceptible to classical genetic analysis. Mutations led the way to the discovery of many of the molecular elements of innate immune sensing and signaling pathways. In turn, the need for a faster way to find the molecular causes of mutation-induced phenotypes triggered a huge transformation in forward genetics. During the 1980s and 1990s, many heritable phenotypes were ascribed to mutations through positional cloning. In mice, this required three steps. First, a genetic mapping step was used to show that a given phenotype emanated from a circumscribed region of the genome. Second, a physical mapping step was undertaken, in which all of the region was cloned and its gene content determined. Finally, a concerted search for the mutation was performed. Such projects usually lasted for several years, but could produce breakthroughs in our understanding of biological processes. Publication of the annotated mouse genome sequence in 2002 made physical mapping unnecessary. More recently we devised a new technology for automated genetic mapping, which eliminated both genetic mapping and the search for mutations among candidate genes. The cause of phenotype can now be determined instantaneously. We have created more than 100,000 coding/splicing mutations. And by screening for defects of innate and adaptive immunity we have discovered many "new" proteins needed for innate immune function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Innate immunity and the new forward genetics

    PubMed Central

    Beutler, Bruce

    2016-01-01

    As it is a hard-wired system for responses to microbes, innate immunity is particularly susceptible to classical genetic analysis. Mutations led the way to the discovery of many of the molecular elements of innate immune sensing and signaling pathways. In turn, the need for a faster way to find the molecular causes of mutation-induced phenotypes triggered a huge transformation in forward genetics. During the 1980s and 1990s, many heritable phenotypes were ascribed to mutations through positional cloning. In mice, this required three steps. First, a genetic mapping step was used to show that a given phenotype emanated from a circumscribed region of the genome. Second, a physical mapping step was undertaken, in which all of the region was cloned and its gene content determined. Finally, a concerted search for the mutation was performed. Such projects usually lasted for several years, but could produce breakthroughs in our understanding of biological processes. Publication of the annotated mouse genome sequence in 2002 made physical mapping unnecessary. More recently we devised a new technology for automated genetic mapping, which eliminated both genetic mapping and the search for mutations among candidate genes. The cause of phenotype can now be determined instantaneously. We have created more than 100,000 coding/splicing mutations. And by screening for defects of innate and adaptive immunity we have discovered many “new” proteins needed for innate immune function. PMID:27890263

  15. 3D scanning and printing of airfoils for modular UAS

    NASA Astrophysics Data System (ADS)

    Dahlgren, Robert P.; Pinsker, Ethan A.; Dary, Omar G.; Ogunbiyi, Joab A.; Mazhari, Arash Alex

    2017-02-01

    The NASA Ames Research Center has been developing small unmanned airborne systems (UAS) based upon remotecontrolled military aircraft such as the RQ-14 DragonEye and RQ-11 Raven manufactured by AeroVironment. The first step is replacing OEM avionics with COTS avionics that do not use military frequencies for command and control. 3D printing and other rapid prototyping techniques are used to graft RQ-14 components into new "FrankenEye" aircraft and RQ-11 components into new "FrankenRaven" airframes. To that end, it is necessary to design new components to concatenate wing sections into elongated wingspans, construct biplane architectures, attach payload pods, and add control surfaces. When making components such as wing splices it is critical that the curvature and angles of the splice identically match the existing wing at the mating surfaces. The RQ-14 has a thick, simple airfoil with a rectangular planform and no twist or dihedral which make splice development straightforward. On the other hand the RQ-11 has a much thinner sailplane-type airfoil having a tapered polyhedral planform. 3D scanning of the Raven wings with a NextEngine scanner could not capture the complex curvature of the high-performance RQ-11 airfoil, resulting in non-matching and even misshapen splice prototypes. To characterize the airfoil a coordinate measuring machine (CMM) was employed to measure the wing's shape, fiducials and mounting features, enabling capture of the subtle curves of the airfoil and the leading and trailing edges with high fidelity. In conclusion, both rapid and traditional techniques are needed to precisely measure and fabricate wing splice components.

  16. Splicing stimulates siRNA formation at Drosophila DNA double-strand breaks

    PubMed Central

    Merk, Karin; Breinig, Marco; Böttcher, Romy; Krebs, Stefan; Blum, Helmut; Boutros, Michael

    2017-01-01

    DNA double-strand breaks trigger the production of locus-derived siRNAs in fruit flies, human cells and plants. At least in flies, their biogenesis depends on active transcription running towards the break. Since siRNAs derive from a double-stranded RNA precursor, a major question is how broken DNA ends can generate matching sense and antisense transcripts. We performed a genome-wide RNAi-screen in cultured Drosophila cells, which revealed that in addition to DNA repair factors, many spliceosome components are required for efficient siRNA generation. We validated this observation through site-specific DNA cleavage with CRISPR-cas9 followed by deep sequencing of small RNAs. DNA breaks in intron-less genes or upstream of a gene’s first intron did not efficiently trigger siRNA production. When DNA double-strand breaks were induced downstream of an intron, however, this led to robust siRNA generation. Furthermore, a downstream break slowed down splicing of the upstream intron and a detailed analysis of siRNA coverage at the targeted locus revealed that unspliced pre-mRNA contributes the sense strand to the siRNA precursor. Since splicing factors are stimulating the response but unspliced transcripts are entering the siRNA biogenesis, the spliceosome is apparently stalled in a pre-catalytic state and serves as a signaling hub. We conclude that convergent transcription at DNA breaks is stimulated by a splicing dependent control process. The resulting double-stranded RNA is converted into siRNAs that instruct the degradation of cognate mRNAs. In addition to a potential role in DNA repair, the break-induced transcription may thus be a means to cull improper RNAs from the transcriptome of Drosophila melanogaster. Since the splicing factors identified in our screen also stimulated siRNA production from high copy transgenes, it is possible that this surveillance mechanism serves in genome defense beyond DNA double-strand breaks. PMID:28628606

  17. Recovery of viruses from water by a modified flocculation procedure for second-step concentration.

    PubMed Central

    Dahling, D R; Wright, B A

    1986-01-01

    A reduction in virus recovery efficiencies stemming from a change in the commercial processing of powdered beef extract was reversed by the addition of Celite analytical filter aid. Supplementing beef extract with this silicate is recommended as a modification to the organic flocculation procedure for second-step concentration in monitoring for waterborne viruses. Considerable differences in virus recovery were found among lots of beef extract and Celite preparations; this indicates that the performance of each lot of these substances should be checked before use. PMID:3015024

  18. A two-step recognition of signal sequences determines the translocation efficiency of proteins.

    PubMed Central

    Belin, D; Bost, S; Vassalli, J D; Strub, K

    1996-01-01

    The cytosolic and secreted, N-glycosylated, forms of plasminogen activator inhibitor-2 (PAI-2) are generated by facultative translocation. To study the molecular events that result in the bi-topological distribution of proteins, we determined in vitro the capacities of several signal sequences to bind the signal recognition particle (SRP) during targeting, and to promote vectorial transport of murine PAI-2 (mPAI-2). Interestingly, the six signal sequences we compared (mPAI-2 and three mutated derivatives thereof, ovalbumin and preprolactin) were found to have the differential activities in the two events. For example, the mPAI-2 signal sequence first binds SRP with moderate efficiency and secondly promotes the vectorial transport of only a fraction of the SRP-bound nascent chains. Our results provide evidence that the translocation efficiency of proteins can be controlled by the recognition of their signal sequences at two steps: during SRP-mediated targeting and during formation of a committed translocation complex. This second recognition may occur at several time points during the insertion/translocation step. In conclusion, signal sequences have a more complex structure than previously anticipated, allowing for multiple and independent interactions with the translocation machinery. Images PMID:8599930

  19. A two-step recognition of signal sequences determines the translocation efficiency of proteins.

    PubMed

    Belin, D; Bost, S; Vassalli, J D; Strub, K

    1996-02-01

    The cytosolic and secreted, N-glycosylated, forms of plasminogen activator inhibitor-2 (PAI-2) are generated by facultative translocation. To study the molecular events that result in the bi-topological distribution of proteins, we determined in vitro the capacities of several signal sequences to bind the signal recognition particle (SRP) during targeting, and to promote vectorial transport of murine PAI-2 (mPAI-2). Interestingly, the six signal sequences we compared (mPAI-2 and three mutated derivatives thereof, ovalbumin and preprolactin) were found to have the differential activities in the two events. For example, the mPAI-2 signal sequence first binds SRP with moderate efficiency and secondly promotes the vectorial transport of only a fraction of the SRP-bound nascent chains. Our results provide evidence that the translocation efficiency of proteins can be controlled by the recognition of their signal sequences at two steps: during SRP-mediated targeting and during formation of a committed translocation complex. This second recognition may occur at several time points during the insertion/translocation step. In conclusion, signal sequences have a more complex structure than previously anticipated, allowing for multiple and independent interactions with the translocation machinery.

  20. Intellectual disabilities, neuronal posttranscriptional RNA metabolism, and RNA-binding proteins: three actors for a complex scenario.

    PubMed

    Bardoni, Barbara; Abekhoukh, Sabiha; Zongaro, Samantha; Melko, Mireille

    2012-01-01

    Intellectual disability (ID) is the most frequent cause of serious handicap in children and young adults and interests 2-3% of worldwide population, representing a serious problem from the medical, social, and economic points of view. The causes are very heterogeneous. Genes involved in ID have various functions altering different pathways important in neuronal function. Regulation of mRNA metabolism is particularly important in neurons for synaptic structure and function. Here, we review ID due to alteration of mRNA metabolism. Functional absence of some RNA-binding proteins--namely, FMRP, FMR2P, PQBP1, UFP3B, VCX-A--causes different forms of ID. These proteins are involved in different steps of RNA metabolism and, even if a detailed analysis of their RNA targets has been performed so far only for FMRP, it appears clear that they modulate some aspects (translation, stability, transport, and sublocalization) of a subset of RNAs coding for proteins, whose function must be relevant for neurons. Two other proteins, DYRK1A and CDKL5, involved in Down syndrome and Rett syndrome, respectively, have been shown to have an impact on splicing efficiency of specific mRNAs. Both proteins are kinases and their effect is indirect. Interestingly, both are localized in nuclear speckles, the nuclear domains where splicing factors are assembled, stocked, and recycled and influence their biogenesis and/or their organization. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Functional analysis of U1-70K interacting SR proteins in pre-mRNA splicing in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.S.N. Reddy

    Proteins of a serine/arginine-rich (SR) family are part of the spliceosome and are implicated in both constitutive and alternative splicing of pre-mRNAs. With the funding from DOE we have been studying alternative of splicing of genes encoding serine/arginine-rich (SR) proteins and the roles of SR proteins that interact with U1-70K in regulating basic and alternative splicing. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins and its regulation by hormones and stresses: We analyzed the splicing of all 19 Arabidopsis genes in different tissues, during different seedling stages and in response to various hormonal and stress treatments. Remarkably, about 90 differentmore » transcripts are produced from 15 SR genes, thereby increasing the transcriptome complexity of SR genes by about five fold. Using the RNA isolated from polysomes we have shown that most of the splice variants are recruited for translation. Alternative splicing of some SR genes is controlled in a developmental and tissue-specific manner (Palusa et al., 2007). Interestingly, among the various hormones and abiotic stresses tested, temperature stress (cold and heat) and ultraviolet light dramatically altered alternative splicing of pre-mRNAs of several SR genes whereas hormones altered the splicing of only two SR genes (Palusa et al., 2007). Localization and dynamics of a novel serine/arginine-rich protein that interacts with U1-70K: We analyzed the intranuclear movement of SR45 fused to GFP by fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP). We demonstrate that the movement of GFP-SR45 is ATP-dependent. Interestingly, inhibition of transcription or phosphorylation slowed the mobility of GFP-SR45 (Ali et al., 2006). Our studies have revealed that the nuclear localization signals are located in arg/ser-rich domains (RS) 1 and 2, whereas the speckle targeting signals are exclusively present in RS2 (Ali et al., 2006). The regulation of SR45 mobility by ATP and a transcriptional inhibitor is in contrast to the mobility of SR family splicing factors in animals and suggests fundamental differences in the movement of plant and animals splicing factors. In vivo interaction of U170K with SR45: To analyze the interaction of U170K with SR45, we expressed these proteins fused to RFP and GFP respectively, in protoplasts. Both the reporters co-localized to the same subnuclear domains. To determine direct interaction of these proteins, we fused full-length U170K to one part of split YFP and full-length or truncated version of SR45 to the second half of split YFP. Coexpession of these split YFP constructs resulted in reconstitution of YFP in speckles, suggesting direction interaction of these proteins in vivo (Ali et al., 2008). SR45 is a Novel Plant-Specific Splicing Factor and is Involved in Regulating Multiple Developmental Processes: Using an in vitro splicing complementation assay, we showed that SR45 is an essential splicing factor. The sr45-1 mutant exhibited a number of developmental abnormalities. Further analysis of flowering time has shown that the autonomous pathway of flowering is affected in the mutant. Expression analysis of several flowering genes has revealed that FLC, a key flowering repressor, is up-regulated in the SR45 mutant. Further, alternative splicing pattern of several other SR genes was altered in the sr45-1 mutant in a tissue-specific manner. Hence, the observed pleiotropic effects on various aspects of development are likely due to altered level of SR protein isoforms, which in turn regulate the splicing of other pre-mRNAs. Expression of wild-type SR45 in the mutant complemented the phenotypic defects and changes in alternative splicing of SR genes. SR45 thus is a novel plant-specific splicing factor and plays a crucial role in multiple developmental processes.« less

  2. Gene silencing efficiency and INF-β induction effects of splicing miRNA 155-based artificial miRNA with pre-miRNA stem-loop structures.

    PubMed

    Sin, Onsam; Mabiala, Prudence; Liu, Ye; Sun, Ying; Hu, Tao; Liu, Qingzhen; Guo, Deyin

    2012-02-01

    Artificial microRNA (miRNA) expression vectors have been developed and used for RNA interference. The secondary structure of artificial miRNA is important for RNA interference efficacy. We designed two groups of six artificial splicing miRNA 155-based miRNAs (SM155-based miRNAs) with the same target in the coding region or 3' UTR of a target gene and studied their RNA silencing efficiency and interferon β (IFN-β) induction effects. SM155-based miRNA with a mismatch at the +1 position and a bulge at the +11, +12 positions in a miRNA precursor stem-loop structure showed the highest gene silencing efficiency and lowest IFN-β induction effect (increased IFN-β mRNA level by 10% in both target cases), regardless of the specificity of the target sequence, suggesting that pSM155-based miRNA with this design could be a valuable miRNA expression vector.

  3. Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency.

    PubMed

    Jin, Honglei; Li, Mengshu; Duan, Sujuan; Fu, Mei; Dong, Xiaoxiao; Liu, Bing; Feng, Dongru; Wang, Jinfa; Wang, Hong-Bin

    2016-11-01

    Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants. © 2016 American Society of Plant Biologists. All Rights Reserved.

  4. Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency1[OPEN

    PubMed Central

    Jin, Honglei; Li, Mengshu; Duan, Sujuan; Fu, Mei; Dong, Xiaoxiao; Feng, Dongru; Wang, Jinfa

    2016-01-01

    Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants. PMID:27609860

  5. Synonymous mutations in RNASEH2A create cryptic splice sites impairing RNase H2 enzyme function in Aicardi-Goutières syndrome.

    PubMed

    Rice, Gillian I; Reijns, Martin A M; Coffin, Stephanie R; Forte, Gabriella M A; Anderson, Beverley H; Szynkiewicz, Marcin; Gornall, Hannah; Gent, David; Leitch, Andrea; Botella, Maria P; Fazzi, Elisa; Gener, Blanca; Lagae, Lieven; Olivieri, Ivana; Orcesi, Simona; Swoboda, Kathryn J; Perrino, Fred W; Jackson, Andrew P; Crow, Yanick J

    2013-08-01

    Aicardi-Goutières syndrome is an inflammatory disorder resulting from mutations in TREX1, RNASEH2A/2B/2C, SAMHD1, or ADAR1. Here, we provide molecular, biochemical, and cellular evidence for the pathogenicity of two synonymous variants in RNASEH2A. Firstly, the c.69G>A (p.Val23Val) mutation causes the formation of a splice donor site within exon 1, resulting in an out of frame deletion at the end of exon 1, leading to reduced RNase H2 protein levels. The second mutation, c.75C>T (p.Arg25Arg), also introduces a splice donor site within exon 1, and the internal deletion of 18 amino acids. The truncated protein still forms a heterotrimeric RNase H2 complex, but lacks catalytic activity. However, as a likely result of leaky splicing, a small amount of full-length active protein is apparently produced in an individual homozygous for this mutation. Recognition of the disease causing status of these variants allows for diagnostic testing in relevant families. © 2013 WILEY PERIODICALS, INC.

  6. 10 CFR Appendix B to Subpart F of... - Sampling Plan For Enforcement Testing

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... sample as follows: ER18MR98.010 where (x 1) is the measured energy efficiency, energy or water (in the...-tailed probability level and a sample size of n 1. Step 6(a). For an Energy Efficiency Standard, compare... an Energy Efficiency Standard, determine the second sample size (n 2) as follows: ER18MR98.015 where...

  7. Unprecedented multiplicity of Ig transmembrane and secretory mRNA forms in the cartilaginous fish.

    PubMed

    Rumfelt, Lynn L; Diaz, Marilyn; Lohr, Rebecca L; Mochon, Evonne; Flajnik, Martin F

    2004-07-15

    In most jawed vertebrates including cartilaginous fish, membrane-bound IgM is expressed as a five Ig superfamily (Igsf)-domain H chain attached to a transmembrane (Tm) region. Heretofore, bony fish IgM was the one exception with IgM mRNA spliced to produce a four-domain Tm H chain. We now demonstrate that the Tm and secretory (Sec) mRNAs of the novel cartilaginous fish Ig isotypes, IgW and IgNAR, are present in multiple forms, most likely generated by alternative splicing. In the nurse shark, Ginglymostoma cirratum, and horn shark, Heterodontus francisci, alternative splicing of Tm exons to the second or the fourth constant (C(H)) exons produces two distinct IgW Tm cDNAs. Although the seven-domain IgW Sec cDNA form contains a canonical secretory tail shared with IgM, IgNAR, and IgA, we report a three-domain cDNA form of shark IgW (IgW(short)) having an unusual Sec tail, which is orthologous to skate IgX(short) cDNA. The IgW and IgW(short) Sec transcripts are restricted in their tissue distribution and expression levels vary among individual sharks, with all forms expressed early in ontogeny. IgNAR mRNA is alternatively spliced to produce a truncated four-domain Tm cDNA and a second Tm cDNA is expressed identical in Igsf domains as the Sec form. PBL is enriched in the Tm cDNA of these Igs. These molecular data suggest that cartilaginous fish have augmented their humoral immune repertoire by diversifying the sizes of their Ig isotypes. Furthermore, these Tm cDNAs are prototypical and the truncated variants may translate as more stable protein at the cell surface.

  8. High diversification of CD94 by alternative splicing in New World primates.

    PubMed

    Galindo, John A; Cadavid, Luis F

    2013-04-01

    CD94 forms heterodimers with NKG2A, -C, or -E to constitute lectin-like natural killer cell receptors for MHC-E. Its structure differs from other C-type lectins in that the second α-helix is replaced by a loop that forms the interacting interface with the NKG2 molecules. Although CD94 has remained highly conserved mammals, several alternative splicing variants have been detected in some species. To evaluate the prevalence and significance of this phenomenon, we have cloned and sequenced CD94 cDNAs in six species of New World primates from the Cebidae and Atelidae families. Full-length sequences had a mean similarity of 96 % amongst New World primates and of 90 % to the human orthologue, with little variation in the residues interacting with NKG2 or MHC-E molecules. Despite this high conservation, a total of 14 different splice variants were identified, half of which were shared by two or more primate species. Homology-based modeling of the C-type lectin domain showed that most isoforms folded stably, although they had modifications that prevented its interaction with NKG2 and MHC-E. Two isoforms were predicted to replace the typical CD94 loop by a second α-helix, evidencing a domain fold transition from a CD94 structure to a canonical C-type lectin. These two structures were more similar to members of the CLEC lectin family than to the native CD94. Thus, CD94 has remained conserved in primates to maintain functional interactions with NKG2 and MHC-E, while at the same time has diversified by alternative splicing potentially providing additional functional scenarios.

  9. Developmental expression of a regulatory gene is programmed at the level of splicing.

    PubMed Central

    Chou, T B; Zachar, Z; Bingham, P M

    1987-01-01

    We report sequence and transcript structures for a 6191-base chromosomal segment containing the presumptive regulatory gene from Drosophila, suppressor-of-white-apricot [su(wa)]. Our results indicate that su(wa) expression is controlled by regulating occurrence of specific splices. Seven introns are removed from the su(wa) primary transcript during precellular blastoderm development. The sequence of this mature RNA indicates that it is a conventional messenger RNA. In contrast, after cellular blastoderm the first two of these introns cease to be efficiently removed. The mature RNAs resulting from this failure to remove the first two introns have structures quite unexpected of mRNAs. We propose that postcellular blastoderm su(wa) expression is repressed by preventing splices necessary to produce a functional mRNA. Implications and mechanisms are discussed. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:2832151

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnova, Anna S.; Morgun, Andrey; Shulzhenko, Natalia

    Two transcript variants (TV) of the T cell immune regulator gene 1 (TCIRG1) have already been characterized. TV1 encodes a subunit of the osteoclast vacuolar proton pump and TV2 encodes a T cell inhibitory receptor. Based on the search in dbEST, we validated by RT-PCR six new alternative splice events in TCIRG1 in most of the 28 human tissues studied. In addition, we observed that transcripts using the TV1 transcription start site and two splice forms previously described in a patient with infantile malignant osteopetrosis are also expressed in various tissues of healthy individuals. Studies of these nine splice formsmore » in cytoplasmic RNA of peripheral blood mononuclear cells showed that at least six of them could be efficiently exported from the nucleus. Since various products with nearly ubiquitous tissue distribution are generated from TCIRG1, this gene may be involved in other processes besides immune response and bone resorption.« less

  11. CryoEM structure of the spliceosome immediately after branching

    PubMed Central

    Galej, Wojciech P.; Wilkinson, Max E.; Fica, Sebastian M.; Oubridge, Chris; Newman, Andrew J.; Nagai, Kiyoshi

    2016-01-01

    Pre-mRNA splicing proceeds by two consecutive trans-esterification reactions via a lariat-intron intermediate. We present the 3.8Å cryoEM structure of the spliceosome immediately after lariat formation. The 5’-splice site is cleaved but remains close to the catalytic Mg2+ site in the U2/U6 snRNA triplex, and the 5’-phosphate of the intron nucleotide G(+1) is linked to the branch adenosine 2’OH. The 5’-exon is held between the Prp8 N-terminal and Linker domains, and base-pairs with U5 snRNA loop 1. Non-Watson-Crick interactions between the branch helix and 5’-splice site dock the branch adenosine into the active site, while intron nucleotides +3 to +6 base-pair with the U6 snRNA ACAGAGA sequence. Isy1 and the step one factors Yju2 and Cwc25 stabilise docking of the branch helix. The intron downstream of the branch site emerges between the Prp8 RT and Linker domains and extends towards Prp16 helicase, suggesting a plausible mechanism of remodelling before exon ligation. PMID:27459055

  12. Advances in sapphire optical fiber sensors

    NASA Technical Reports Server (NTRS)

    Wang, Anbo; Wang, George Z.; Gollapudi, Sridhar; May, Russell G.; Murphy, Kent A.; Claus, Richard O.

    1993-01-01

    We describe the development and testing of two sapphire fiber sensor designs intended for use in high temperature environments. The first is a birefringence-balanced polarimetric sapphire fiber sensor. In this sensor, two single crystal sapphire rods, acting as the birefringence sensing element, are connected to each other in such a way that the slow axis of the first rod is aligned along with the fast axis of the second rod, and the fast axis of the first rod is along the slow axis of the second rod. This sensor has been demonstrated for measurement of temperature up to 1500 C. The second is a sapphire-fiber-based intrinsic interferometric sensor. In this sensor, a length of uncoated, unclad, structural-graded multimode sapphire fiber is fusion spliced to a singlemode silica fiber to form a Fabry-Perot cavity. The reflections from the silica-to-sapphire fiber splice and the free endface of the sapphire fiber give rise to the interfering fringe output. This sensor has been demonstrated for the measurement of temperature above 1510 C, and a resolution of 0.1 C has been obtained.

  13. The organization and contribution of helicases to RNA splicing.

    PubMed

    De, Inessa; Schmitzová, Jana; Pena, Vladimir

    2016-01-01

    Splicing is an essential step of gene expression. It occurs in two consecutive chemical reactions catalyzed by a large protein-RNA complex named the spliceosome. Assembled on the pre-mRNA substrate from five small nuclear proteins, the spliceosome acts as a protein-controlled ribozyme to catalyze the two reactions and finally dissociates into its components, which are re-used for a new round of splicing. Upon following this cyclic pathway, the spliceosome undergoes numerous intermediate stages that differ in composition as well as in their internal RNA-RNA and RNA-protein contacts. The driving forces and control mechanisms of these remodeling processes are provided by specific molecular motors called RNA helicases. While eight spliceosomal helicases are present in all organisms, higher eukaryotes contain five additional ones potentially required to drive a more intricate splicing pathway and link it to an RNA metabolism of increasing complexity. Spliceosomal helicases exhibit a notable structural diversity in their accessory domains and overall architecture, in accordance with the diversity of their task-specific functions. This review summarizes structure-function knowledge about all spliceosomal helicases, including the latter five, which traditionally are treated separately from the conserved ones. The implications of the structural characteristics of helicases for their functions, as well as for their structural communication within the multi-subunits environment of the spliceosome, are pointed out. © 2016 Wiley Periodicals, Inc.

  14. Successful COG8 and PDF overlap is mediated by alterations in splicing and polyadenylation signals.

    PubMed

    Pereira-Castro, Isabel; Quental, Rita; da Costa, Luís T; Amorim, António; Azevedo, Luisa

    2012-02-01

    Although gene-free areas compose the great majority of eukaryotic genomes, a significant fraction of genes overlaps, i.e., unique nucleotide sequences are part of more than one transcription unit. In this work, the evolutionary history and origin of a same-strand gene overlap is dissected through the analysis of COG8 (component of oligomeric Golgi complex 8) and PDF (peptide deformylase). Comparative genomic surveys reveal that the relative locations of these two genes have been changing over the last 445 million years from distinct chromosomal locations in fish to overlapping in rodents and primates, indicating that the overlap between these genes precedes their divergence. The overlap between the two genes was initiated by the gain of a novel splice donor site between the COG8 stop codon and PDF initiation codon. Splicing is accomplished by the use of the PDF acceptor, leading COG8 to share the 3'end with PDF. In primates, loss of the ancestral polyadenylation signal for COG8 makes the overlap between COG8 and PDF mandatory, while in mouse and rat concurrent overlapping and non-overlapping Cog8 transcripts exist. Altogether, we demonstrate that the origin, evolution and preservation of the COG8/PDF same-strand overlap follow similar mechanistic steps as those documented for antisense overlaps where gain and/or loss of splice sites and polyadenylation signals seems to drive the process.

  15. ISS-N1 makes the First FDA-approved Drug for Spinal Muscular Atrophy.

    PubMed

    Ottesen, Eric W

    2017-01-01

    Spinal muscular atrophy (SMA) is one of the leading genetic diseases of children and infants. SMA is caused by deletions or mutations of Survival Motor Neuron 1 ( SMN1 ) gene. SMN2 , a nearly identical copy of SMN1 , cannot compensate for the loss of SMN1 due to predominant skipping of exon 7. While various regulatory elements that modulate SMN2 exon 7 splicing have been proposed, intronic splicing silencer N1 (ISS-N1) has emerged as the most promising target thus far for antisense oligonucleotide-mediated splicing correction in SMA. Upon procuring exclusive license from the University of Massachussets Medical School in 2010, Ionis Pharmaceuticals (formerly ISIS Pharamaceuticals) began clinical development of Spinraza ™ (synonyms: Nusinersen, IONIS-SMN RX , ISIS-SMN RX ), an antisense drug based on ISS-N1 target. Spinraza ™ showed very promising results at all steps of the clinical development and was approved by US Food and Drug Administration (FDA) on December 23, 2016. Spinraza ™ is the first FDA-approved treatment for SMA and the first antisense drug to restore expression of a fully functional protein via splicing correction. The success of Spinraza ™ underscores the potential of intronic sequences as promising therapeutic targets and sets the stage for further improvement of antisense drugs based on advanced oligonucleotide chemistries and delivery protocols.

  16. Los1p, involved in yeast pre-tRNA splicing, positively regulates members of the SOL gene family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, W.C.; Stanford, D.R.; Hopper, A.K.

    1996-06-01

    To understand the role of Los1p in pre-tRNA splicing, we sought los1 multicopy suppressors. We found SOL1 that suppresses both point and null LOS1 mutations. Since, when fused to the Gal4p DNA-binding domain, Los1p activates transcription, we tested whether Los1p regulates SOL1. We found that los1 mutants have depleted levels of SOL1 mRNA and Sol1p. Thus, LOS1 appears to positively regulate SOL1. SOL1 belongs to a multigene family with at least two additional members, SOL2 and SOL3. Sol proteins have extensive similarity to an unusual group of glucose-6-phosphate dehydrogenases (G6PDs). As the similarities are restricted to areas separate from themore » catalytic domain, these G6PDs may have more than one function. The SOL gene disruptions negatively affect tRNA-mediated nonsense suppression and the severity increases with the number of mutant SOL genes. However, tRNA levels do not vary with either multicopy SOL genes or with SOL disruptions. Therefore, the Sol proteins affect tRNA expression/function at steps other than transcription or splicing. We propose that LOS1 regulates gene products involved in tRNA expression/function as well as pre-tRNA splicing. 64 refs., 6 figs., 6 tabs.« less

  17. High expression of PTBP1 promote invasion of colorectal cancer by alternative splicing of cortactin.

    PubMed

    Wang, Zhi-Na; Liu, Dan; Yin, Bin; Ju, Wen-Yi; Qiu, Hui-Zhong; Xiao, Yi; Chen, Yuan-Jia; Peng, Xiao-Zhong; Lu, Chong-Mei

    2017-05-30

    Polypyrimidine tract-binding protein 1 (PTBP1) involving in almost all steps of mRNA regulation including alternative splicing metabolism during tumorigenesis due to its RNA-binding activity. Initially, we found that high expressed PTBP1 and poor prognosis was interrelated in colorectal cancer (CRC) patients with stages II and III CRC, which widely different in prognosis and treatment, by immunohistochemistry. PTBP1 was also upregulated in colon cancer cell lines. In our study, knockdown of PTBP1 by siRNA transfection decreased cell proliferation and invasion in vitro. Denovirus shRNA knockdown of PTBP1 inhibited colorectal cancer growth in vivo. Furthermore, PTBP1 regulates alternative splicing of many target genes involving in tumorgenesis in colon cancer cells. We confirmed that the splicing of cortactin exon 11 which was only contained in cortactin isoform-a, as a PTBP1 target. Knockdown of PTBP1 decreased the expression of cortactin isoform-a by exclusion of exon 11. Also the mRNA levels of PTBP1 and cortactin isoform-a were cooperatively expressed in colorectal cancer tissues. Knocking down cortactin isoform-a significantly decreased cell migration and invasion in colorectal cancer cells. Overexpression of cortactin isoform-a could rescue PTBP1-knockdown effect of cell motility. In summary the study revealed that PTBP1 facilitates colorectal cancer migration and invasion activities by inclusion of cortactin exon 11.

  18. Reality-and-Desire in Ciliates

    NASA Astrophysics Data System (ADS)

    Brijder, Robert; Hoogeboom, Hendrik Jan

    The theory of gene assembly in ciliates has a number of similarities with the theory of sorting by reversal. Both theories model processes that are based on splicing, and have a fixed begin and end product. The main difference is the type of splicing operations used to obtain the end product from the begin product. In this overview paper, we show how the concept of breakpoint graph, known from the theory of sorting by reversal, can be used in the theory of gene assembly. Our aim is to present the material in an intuitive and informal manner to allow for an efficient introduction into the subject.

  19. 0.4-1.4 μm Visible to Near-Infrared Widely Broadened Super Continuum Generation with Er-doped Ultrashort Pulse Fiber Laser System

    NASA Astrophysics Data System (ADS)

    Nishizawa, Norihiko; Mitsuzawa, Hideyuki; Sumimura, Kazuhiko

    2009-03-01

    Visible to near-infrared widely broadened super continuum generation is demonstrated using ultrashort-pulse fiber laser system. Er-doped fiber chirped-pulse amplification system operated at 1550 nm in wavelength is used for the amplifier system, which generated ultrashort-pulse of 112 fs in FWHM with output power of 160 mW, on average. Almost pedestal free 200 fs second harmonic generation pulse is generated at 780 nm region using periodically poled LiNbO3 and conversion efficiency is as high as 37%. 0.45-1.40 μm widely broadened super continuum is generated in highly nonlinear photonic crystal fiber and spectrum flatness is within ±6 dB. All of the fiber devices are fusion spliced so that this system shows a good stability.

  20. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  1. Laser resonance ionization spectroscopy of antimony

    NASA Astrophysics Data System (ADS)

    Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.

    2017-02-01

    The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.

  2. RNA editing in the anticodon of tRNA Leu (CAA) occurs before group I intron splicing in plastids of a moss Takakia lepidozioides S. Hatt. & Inoue.

    PubMed

    Miyata, Y; Sugita, C; Maruyama, K; Sugita, M

    2008-03-01

    RNA editing of cytidine (C) to uridine (U) transitions occurs in plastids and mitochondria of most land plants. In this study, we amplified and sequenced the group I intron-containing tRNA Leu gene, trnL-CAA, from Takakia lepidozioides, a moss. DNA sequence analysis revealed that the T. lepidozioides tRNA Leu gene consisted of a 35-bp 5' exon, a 469-bp group I intron and a 50-bp 3' exon. The intron was inserted between the first and second position of the tRNA Leu anticodon. In general, plastid tRNA Leu genes with a group I intron code for a TAA anticodon in most land plants. This strongly suggests that the first nucleotide of the CAA anticodon could be edited in T. lepidozioides plastids. To investigate this possibility, we analysed cDNAs derived from the trnL-CAA transcripts. We demonstrated that the first nucleotide C of the anticodon was edited to create a canonical UAA anticodon in T. lepidozioides plastids. cDNA sequencing analyses of the spliced or unspliced tRNA Leu transcripts revealed that, while the spliced tRNA was completely edited, editing in the unspliced tRNAs were only partial. This is the first experimental evidence that the anticodon editing of tRNA occurs before RNA splicing in plastids. This suggests that this editing is a prerequisite to splicing of pre-tRNA Leu.

  3. Curvature measurement with photonic crystal fiber based Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Deng, Ming; Tang, Chang-Ping; Zhu, Tao; Rao, Yun-Jiang

    2011-05-01

    A PCF-based MZI with regular and high-contrast fringe pattern is fabricated by splicing a section of PCF in between two SMFs with a commercial available fusion splicer. Its resonant wavelength is sensitive to external bending with a sensitivity of 3.046nm/m but independent on temperature. To that end, we also propose another kind of bending sensor with higher sensitivity of 5.129nm/m. This device is constructed by combining an LPG and an MZI with zero offset at the second splice. It is anticipated that the high sensitive structures will find applications in robot arms and artificial limbs.

  4. Design and fabrication of realistic adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Shyprykevich, P.

    1983-01-01

    Eighteen bonded joint test specimens representing three different designs of a composite wing chordwise bonded splice were designed and fabricated using current aircraft industry practices. Three types of joints (full wing laminate penetration, two side stepped; midthickness penetration, one side stepped; and partial penetration, scarfed) were analyzed using state of the art elastic joint analysis modified for plastic behavior of the adhesive. The static tensile fail load at room temperature was predicted to be: (1) 1026 kN/m (5860 1b/in) for the two side stepped joint; (2) 925 kN/m (5287 1b/in) for the one side stepped joint; and (3) 1330 kN/m (7600 1b/in) for the scarfed joint. All joints were designed to fail in the adhesive.

  5. Modification of the Creator recombination system for proteomics applications--improved expression by addition of splice sites.

    PubMed

    Colwill, Karen; Wells, Clark D; Elder, Kelly; Goudreault, Marilyn; Hersi, Kadija; Kulkarni, Sarang; Hardy, W Rod; Pawson, Tony; Morin, Gregg B

    2006-03-06

    Recombinational systems have been developed to rapidly shuttle Open Reading Frames (ORFs) into multiple expression vectors in order to analyze the large number of cDNAs available in the post-genomic era. In the Creator system, an ORF introduced into a donor vector can be transferred with Cre recombinase to a library of acceptor vectors optimized for different applications. Usability of the Creator system is impacted by the ability to easily manipulate DNA, the number of acceptor vectors for downstream applications, and the level of protein expression from Creator vectors. To date, we have developed over 20 novel acceptor vectors that employ a variety of promoters and epitope tags commonly employed for proteomics applications and gene function analysis. We also made several enhancements to the donor vectors including addition of different multiple cloning sites to allow shuttling from pre-existing vectors and introduction of the lacZ alpha reporter gene to allow for selection. Importantly, in order to ameliorate any effects on protein expression of the loxP site between a 5' tag and ORF, we introduced a splicing event into our expression vectors. The message produced from the resulting 'Creator Splice' vector undergoes splicing in mammalian systems to remove the loxP site. Upon analysis of our Creator Splice constructs, we discovered that protein expression levels were also significantly increased. The development of new donor and acceptor vectors has increased versatility during the cloning process and made this system compatible with a wider variety of downstream applications. The modifications introduced in our Creator Splice system were designed to remove extraneous sequences due to recombination but also aided in downstream analysis by increasing protein expression levels. As a result, we can now employ epitope tags that are detected less efficiently and reduce our assay scale to allow for higher throughput. The Creator Splice system appears to be an extremely useful tool for proteomics.

  6. Modification of the Creator recombination system for proteomics applications – improved expression by addition of splice sites

    PubMed Central

    Colwill, Karen; Wells, Clark D; Elder, Kelly; Goudreault, Marilyn; Hersi, Kadija; Kulkarni, Sarang; Hardy, W Rod; Pawson, Tony; Morin, Gregg B

    2006-01-01

    Background Recombinational systems have been developed to rapidly shuttle Open Reading Frames (ORFs) into multiple expression vectors in order to analyze the large number of cDNAs available in the post-genomic era. In the Creator system, an ORF introduced into a donor vector can be transferred with Cre recombinase to a library of acceptor vectors optimized for different applications. Usability of the Creator system is impacted by the ability to easily manipulate DNA, the number of acceptor vectors for downstream applications, and the level of protein expression from Creator vectors. Results To date, we have developed over 20 novel acceptor vectors that employ a variety of promoters and epitope tags commonly employed for proteomics applications and gene function analysis. We also made several enhancements to the donor vectors including addition of different multiple cloning sites to allow shuttling from pre-existing vectors and introduction of the lacZ alpha reporter gene to allow for selection. Importantly, in order to ameliorate any effects on protein expression of the loxP site between a 5' tag and ORF, we introduced a splicing event into our expression vectors. The message produced from the resulting 'Creator Splice' vector undergoes splicing in mammalian systems to remove the loxP site. Upon analysis of our Creator Splice constructs, we discovered that protein expression levels were also significantly increased. Conclusion The development of new donor and acceptor vectors has increased versatility during the cloning process and made this system compatible with a wider variety of downstream applications. The modifications introduced in our Creator Splice system were designed to remove extraneous sequences due to recombination but also aided in downstream analysis by increasing protein expression levels. As a result, we can now employ epitope tags that are detected less efficiently and reduce our assay scale to allow for higher throughput. The Creator Splice system appears to be an extremely useful tool for proteomics. PMID:16519801

  7. Simulation-based comprehensive benchmarking of RNA-seq aligners

    PubMed Central

    Baruzzo, Giacomo; Hayer, Katharina E; Kim, Eun Ji; Di Camillo, Barbara; FitzGerald, Garret A; Grant, Gregory R

    2018-01-01

    Alignment is the first step in most RNA-seq analysis pipelines, and the accuracy of downstream analyses depends heavily on it. Unlike most steps in the pipeline, alignment is particularly amenable to benchmarking with simulated data. We performed a comprehensive benchmarking of 14 common splice-aware aligners for base, read, and exon junction-level accuracy and compared default with optimized parameters. We found that performance varied by genome complexity, and accuracy and popularity were poorly correlated. The most widely cited tool underperforms for most metrics, particularly when using default settings. PMID:27941783

  8. Isolation and Identification of Gene-Specific MicroRNAs.

    PubMed

    Lin, Shi-Lung; Chang, Donald C; Ying, Shao-Yao

    2018-01-01

    Computer programming has identified hundreds of genomic hairpin sequences, many with functions yet to be determined. Because transfection of hairpin-like microRNA precursors (pre-miRNAs) into mammalian cells is not always sufficient to trigger RNA-induced gene silencing complex (RISC) assembly, a key step for inducing RNA interference (RNAi)-related gene silencing, we have developed an intronic miRNA expression system to overcome this problem by inserting a hairpin-like pre-miRNA structure into the intron region of a gene, and hence successfully increase the efficiency and effectiveness of miRNA-associated RNAi induction in vitro and in vivo. This intronic miRNA biogenesis mechanism has been found to depend on a coupled interaction of nascent messenger RNA transcription and intron excision within a specific nuclear region proximal to genomic perichromatin fibrils. The intronic miRNA so obtained is transcribed by type-II RNA polymerases, coexpressed within a primary gene transcript, and then excised out of the gene transcript by intracellular RNA splicing and processing machineries. After that, ribonuclease III (RNaseIII) endonucleases further process the spliced introns into mature miRNAs. Using this intronic miRNA expression system, we have shown for the first time that the intron-derived miRNAs are able to elicit strong RNAi effects in not only human and mouse cells in vitro but also in zebrafishes, chicken embryos, and adult mice in vivo. We have also developed a miRNA isolation protocol, based on the complementarity between the designed miRNA and its targeted gene sequence, to purify and identify the mature miRNAs generated. As a result, several intronic miRNA identities and structures have been confirmed. According to this proof-of-principle methodology, we now have full knowledge to design various intronic pre-miRNA inserts that are more efficient and effective for inducing specific gene silencing effects in vitro and in vivo.

  9. Isolation and identification of gene-specific microRNAs.

    PubMed

    Lin, Shi-Lung; Chang, Donald C; Ying, Shao-Yao

    2006-01-01

    Prediction of microRNA (miRNA) candidates using computer programming has identified hundreds and hundreds of genomic hairpin sequences, of which, the functions remain to be determined. Because direct transfection of hairpin-like miRNA precursors (pre)-miRNAs in mammalian cells is not always sufficient to trigger effective RNA-induced gene-silencing complex (RISC) assembly, a key step for RNA interference (RNAi)-related gene silencing, we developed an intronic miRNA-expressing system to overcome this problem, and successfully increased the efficiency and effectiveness of miRNA-associated RNAi induction in vitro and in vivo. By insertion of a hairpin-like pre-miRNA structure into the intron region of a gene, this intronic miRNA biogenesis system has been found to depend on a coupled interaction of nascent precursor messenger RNA transcription and intron excision within a specific nuclear region proximal to genomic perichromatin fibrils. The intronic miRNA was transcribed by RNA type II polymerases, coexpressed with a primary gene transcript, and excised out of its encoding gene transcript by intracellular RNA splicing and processing mechanisms. Currently, some ribonuclease III endonucleases have been found to be involved in the processing of spliced introns and probably facilitating the intronic miRNA maturation. Using this miRNA-expressing system, we have shown for the first time that the intron-derived miRNAs were able to induce strong RNAi effects in not only human and mouse cells but also zebrafish, chicken embryos, and adult mice. Based on the strand complementarity between the designed miRNA and its target gene sequence, we have also developed a miRNA isolation protocol to purify and identify the mature miRNAs generated by the intronic miRNA-expressing system. Several intronic miRNA identities and structures are currently confirmed to be active in vitro and in vivo. According to this proof- of-principle method, we now have the knowledge to design pre-miRNA inserts that are more efficient and effective for the intronic miRNA-expressing system.

  10. Isolation and identification of gene-specific microRNAs.

    PubMed

    Lin, Shi-Lung; Chang, Donald C; Ying, Shao-Yao

    2013-01-01

    Computer programming has identified hundreds of genomic hairpin sequences, many with functions remain to be determined. Because direct transfection of hairpin-like miRNA precursors (pre)-miRNAs in mammalian cells is not always sufficient to trigger effective RNA-induced gene silencing complex (RISC) assembly, a key step for RNA interference (RNAi)-related gene silencing, we developed an intronic miRNA-expressing system to overcome this problem by inserting a hairpin-like pre-miRNA structure into the intron region of a gene and successfully increased the efficiency and effectiveness of miRNA-associated RNAi induction in vitro and in vivo. This intronic miRNA biogenesis has been found to depend on a coupled interaction of nascent precursor messenger RNA transcription and intron excision within a specific nuclear region proximal to genomic perichromatin fibrils. The intronic miRNA was transcribed by RNA type II polymerases, coexpressed with a primary gene transcript, and excised out of its encoding gene transcript by intracellular RNA splicing and processing mechanisms. Currently, some ribonuclease III endonucleases have been found to be involved in the processing of spliced introns and probably facilitating the intronic miRNA maturation. Using this miRNA generation system, we have shown for the first time that the intron-derived miRNAs were able to induce strong RNAi effects in not only human and mouse cells but also zebrafishes, chicken embryos, and adult mice. We have also developed an miRNA isolation protocol, based on the complementarity between the designed miRNA and its target gene sequence, to purify and identify the mature miRNAs generated by the intronic miRNA-expressing system. Several intronic miRNA identities and structures are currently confirmed to be active in vitro and in vivo. According to this proven-of-principle method, we now have full knowledge to design pre-miRNA inserts that are more efficient and effective for the intronic miRNA-expressing systems.

  11. New approach for high reliability, low loss splicing between silica and ZBLAN fibers

    NASA Astrophysics Data System (ADS)

    Carbonnier, Robin; Zheng, Wenxin

    2018-02-01

    In the past decade, ZBLAN (ZrF4-BaF2-LaF3-NaF) fibers have drawn increasing interest for laser operations at wavelengths where Fused Silica-based (SiO2) fibers do not perform well. One limitation to the expansion of ZBLAN fiber lasers today is the difficulty to efficiently inject and extract light in/from the guiding medium using SiO2 fibers. Although free space and butt coupling have provided acceptable results, consistent and long lasting physical joints between SiO2 and ZBLAN fibers will allow smaller, cheaper, and more robust component manufacturing. While low loss splices have been reported using a traditional splicing approach, the very low mechanical strength of the joint makes it difficult to scale. Difficulties in achieving a strong bond are mainly due to the large difference of transition temperature between ZBLAN and SiO2 fibers ( 260°C vs 1175°C). This paper presents results obtained by using the high thermal expansion coefficient of the ZBLAN fiber to encapsulate a smaller SiO2 fiber. A CO2 laser glass processing system was used to control the expansion and contraction of the ZBLAN material during the splicing process for optimum reliability. This method produced splices between 125μm ZBLAN to 80μm SiO2 fibers with average transmission loss of 0.225dB (measured at 1550nm) and average ultimate tension strength of 121.4gf. The Resulting splices can be durably packaged without excessive care. Other combinations using 125μm SiO2 fibers tapered to 80μm are also discussed.

  12. Regulation of translation by upstream translation initiation codons of surfactant protein A1 splice variants

    PubMed Central

    Tsotakos, Nikolaos; Silveyra, Patricia; Lin, Zhenwu; Thomas, Neal; Vaid, Mudit

    2014-01-01

    Surfactant protein A (SP-A), a molecule with roles in lung innate immunity and surfactant-related functions, is encoded by two genes in humans: SFTPA1 (SP-A1) and SFTPA2 (SP-A2). The mRNAs from these genes differ in their 5′-untranslated regions (5′-UTR) due to differential splicing. The 5′-UTR variant ACD′ is exclusively found in transcripts of SP-A1, but not in those of SP-A2. Its unique exon C contains two upstream AUG codons (uAUGs) that may affect SP-A1 translation efficiency. The first uAUG (u1) is in frame with the primary start codon (p), but the second one (u2) is not. The purpose of this study was to assess the impact of uAUGs on SP-A1 expression. We employed RT-qPCR to determine the presence of exon C-containing SP-A1 transcripts in human RNA samples. We also used in vitro techniques including mutagenesis, reporter assays, and toeprinting analysis, as well as in silico analyses to determine the role of uAUGs. Exon C-containing mRNA is present in most human lung tissue samples and its expression can, under certain conditions, be regulated by factors such as dexamethasone or endotoxin. Mutating uAUGs resulted in increased luciferase activity. The mature protein size was not affected by the uAUGs, as shown by a combination of toeprint and in silico analysis for Kozak sequence, secondary structure, and signal peptide and in vitro translation in the presence of microsomes. In conclusion, alternative splicing may introduce uAUGs in SP-A1 transcripts, which in turn negatively affect SP-A1 translation, possibly affecting SP-A1/SP-A2 ratio, with potential for clinical implication. PMID:25326576

  13. A two steps solution approach to solving large nonlinear models: application to a problem of conjunctive use.

    PubMed

    Vieira, J; Cunha, M C

    2011-01-01

    This article describes a solution method of solving large nonlinear problems in two steps. The two steps solution approach takes advantage of handling smaller and simpler models and having better starting points to improve solution efficiency. The set of nonlinear constraints (named as complicating constraints) which makes the solution of the model rather complex and time consuming is eliminated from step one. The complicating constraints are added only in the second step so that a solution of the complete model is then found. The solution method is applied to a large-scale problem of conjunctive use of surface water and groundwater resources. The results obtained are compared with solutions determined with the direct solve of the complete model in one single step. In all examples the two steps solution approach allowed a significant reduction of the computation time. This potential gain of efficiency of the two steps solution approach can be extremely important for work in progress and it can be particularly useful for cases where the computation time would be a critical factor for having an optimized solution in due time.

  14. Isoform Sequencing and State-of-Art Applications for Unravelling Complexity of Plant Transcriptomes

    PubMed Central

    An, Dong; Li, Changsheng; Humbeck, Klaus

    2018-01-01

    Single-molecule real-time (SMRT) sequencing developed by PacBio, also called third-generation sequencing (TGS), offers longer reads than the second-generation sequencing (SGS). Given its ability to obtain full-length transcripts without assembly, isoform sequencing (Iso-Seq) of transcriptomes by PacBio is advantageous for genome annotation, identification of novel genes and isoforms, as well as the discovery of long non-coding RNA (lncRNA). In addition, Iso-Seq gives access to the direct detection of alternative splicing, alternative polyadenylation (APA), gene fusion, and DNA modifications. Such applications of Iso-Seq facilitate the understanding of gene structure, post-transcriptional regulatory networks, and subsequently proteomic diversity. In this review, we summarize its applications in plant transcriptome study, specifically pointing out challenges associated with each step in the experimental design and highlight the development of bioinformatic pipelines. We aim to provide the community with an integrative overview and a comprehensive guidance to Iso-Seq, and thus to promote its applications in plant research. PMID:29346292

  15. On the Cutting Edge with Gene Splicing.

    ERIC Educational Resources Information Center

    Ehrman, Patrick; Fritz, Lucie

    1989-01-01

    Describes a program in which second-year biology students use plasmid isolation to remove DNA from Escherichia coli bacteria and subsequently ligate and transform it into other E. coli bacteria. Cites ways teachers can get involved in current research that allows student participation. (RT)

  16. Large exon size does not limit splicing in vivo.

    PubMed

    Chen, I T; Chasin, L A

    1994-03-01

    Exon sizes in vertebrate genes are, with a few exceptions, limited to less than 300 bases. It has been proposed that this limitation may derive from the exon definition model of splice site recognition. In this model, a downstream donor site enhances splicing at the upstream acceptor site of the same exon. This enhancement may require contact between factors bound to each end of the exon; an exon size limitation would promote such contact. To test the idea that proximity was required for exon definition, we inserted random DNA fragments from Escherichia coli into a central exon in a three-exon dihydrofolate reductase minigene and tested whether the expanded exons were efficiently spliced. DNA from a plasmid library of expanded minigenes was used to transfect a CHO cell deletion mutant lacking the dhfr locus. PCR analysis of DNA isolated from the pooled stable cotransfectant populations displayed a range of DNA insert sizes from 50 to 1,500 nucleotides. A parallel analysis of the RNA from this population by reverse transcription followed by PCR showed a similar size distribution. Central exons as large as 1,400 bases could be spliced into mRNA. We also tested individual plasmid clones containing exon inserts of defined sizes. The largest exon included in mRNA was 1,200 bases in length, well above the 300-base limit implied by the survey of naturally occurring exons. We conclude that a limitation in exon size is not part of the exon definition mechanism.

  17. Inhibition of mutant BRAF splice variant signaling by next-generation, selective RAF inhibitors.

    PubMed

    Basile, Kevin J; Le, Kaitlyn; Hartsough, Edward J; Aplin, Andrew E

    2014-05-01

    Vemurafenib and dabrafenib block MEK-ERK1/2 signaling and cause tumor regression in the majority of advanced-stage BRAF(V600E) melanoma patients; however, acquired resistance and paradoxical signaling have driven efforts for more potent and selective RAF inhibitors. Next-generation RAF inhibitors, such as PLX7904 (PB04), effectively inhibit RAF signaling in BRAF(V600E) melanoma cells without paradoxical effects in wild-type cells. Furthermore, PLX7904 blocks the growth of vemurafenib-resistant BRAF(V600E) cells that express mutant NRAS. Acquired resistance to vemurafenib and dabrafenib is also frequently driven by expression of mutation BRAF splice variants; thus, we tested the effects of PLX7904 and its clinical analog, PLX8394 (PB03), in BRAF(V600E) splice variant-mediated vemurafenib-resistant cells. We show that paradox-breaker RAF inhibitors potently block MEK-ERK1/2 signaling, G1/S cell cycle events, survival and growth of vemurafenib/PLX4720-resistant cells harboring distinct BRAF(V600E) splice variants. These data support the further investigation of paradox-breaker RAF inhibitors as a second-line treatment option for patients failing on vemurafenib or dabrafenib. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Using Sorting by Reversal: Breakpoint Graph for Gene Assembly in Ciliates

    NASA Astrophysics Data System (ADS)

    Brijder, Robert; Jan Hoogeboom, Hendrik

    2007-09-01

    The theory of gene assembly in ciliates has much in common with the theory of sorting by reversal. Both model processes that are based on splicing, and have a fixed begin and end product. The main difference is the type of splicing operations used to obtain the end product from the begin product. In this overview paper we show that the concept of breakpoint graph, known from the theory of sorting by reversal, has many uses in the theory of gene assembly. Our aim is to present the material in an intuitive and informal manner to allow for an efficient introduction into the subject.

  19. Kinetic pathway for folding of the Tetrahymena ribozyme revealed by three UV-inducible crosslinks.

    PubMed Central

    Downs, W D; Cech, T R

    1996-01-01

    The kinetics of RNA folding were examined in the L-21 ribozyme, an RNA enzyme derived from the self-splicing Tetrahymena intron. Three UV-inducible crosslinks were mapped, characterized, and used as indicators for the folded state of the ribozyme. Together these data suggest that final structures are adopted first by the P4-P6 independently folding domain and only later in a region that positions the P1 helix (including the 5' splice site), a region whose folding is linked to that of a portion of the catalytic core. At intermediate times, a non-native structure forms in the region of the triple helical scaffold, which connects the major folding domains. At 30 degrees C, the unfolded ribozyme passes through these stages with a half-life of 2 min from the time magnesium cations are provided. At higher temperatures, the half-life is shortened but the order of events is unchanged. Thermal melting of the fully folded ribozyme also revealed a multi-stage process in which the steps of folding are reversed: the kinetically slowest structure is the least stable and melts first. These structures of the ribozyme also bind Mg2+ cooperatively and their relative affinity for binding seems to be a major determinant in the order of events during folding. Na+ can also substitute for Mg2+ to give rise to the same crosslinkable structures, but only at much higher concentrations. Specific binding sites for Mg2+ may make this cation particularly efficient at electrostatic stabilization during folding of these ribozyme structures. PMID:8756414

  20. High temperature attenuates the gravitropism of inflorescence stems by inducing SHOOT GRAVITROPISM 5 alternative splicing in Arabidopsis.

    PubMed

    Kim, Joo-Young; Ryu, Jae Yong; Baek, Kon; Park, Chung-Mo

    2016-01-01

    In higher plants, gravitropism proceeds through three sequential steps in the responding organs: perception of gravity signals, signal transduction and asymmetric cell elongation. Light and temperature also influence the gravitropic orientation of plant organs. A series of Arabidopsis shoot gravitropism (sgr) mutants has been shown to exhibit disturbed shoot gravitropism. SGR5 is functionally distinct from other SGR members in that it mediates the early events of gravitropic responses in inflorescence stems. Here, we demonstrated that SGR5 alternative splicing produces two protein variants (SGR5α and SGR5β) in modulating the gravitropic response of inflorescence stems at high temperatures. SGR5β inhibits SGR5α function by forming non-DNA-binding heterodimers. Transgenic plants overexpressing SGR5β (35S:SGR5β) exhibit reduced gravitropic growth of inflorescence stems, as observed in the SGR5-deficient sgr5-5 mutant. Interestingly, SGR5 alternative splicing is accelerated at high temperatures, resulting in the high-level accumulation of SGR5β transcripts. When plants were exposed to high temperatures, whereas gravitropic curvature was reduced in Col-0 inflorescence stems, it was uninfluenced in the inflorescence stems of 35S:SGR5β transgenic plants and sgr5-5 mutant. We propose that the thermoresponsive alternative splicing of SGR5 provides an adaptation strategy by which plants protect the shoots from hot air under high temperature stress in natural habitats. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  1. Los1p, involved in yeast pre-tRNA splicing, positively regulates members of the SOL gene family.

    PubMed

    Shen, W C; Stanford, D R; Hopper, A K

    1996-06-01

    To understand the role of Los1p in pre-tRNA splicing, we sought los1 multicopy suppressors. We found SOL1 that suppresses both point and null LOS1 mutations. Since, when fused to the Ga14p DNA-binding domain, Los1p activates transcription, we tested whether Los1p regulates SOL1. We found that las1 mutants have depleted levels of SOL1 mRNA and Sol1p. Thus, LOS1 appears to positively regulate SOL1. SOL1 belongs to a multigene family with at least two additional members, SOL2 and SOL3. Sol proteins have extensive similarity to an unusual group of glucose-6-phosphate dehydrogenases. As the similarities are restricted to areas separate from the catalytic domain, these G6PDs may have more than one function. The SOL family appears to be unessential since cells with a triple disruption of all three SOL genes are viable. SOL gene disruptions negatively affect tRNA-mediated nonsense suppression and the severity increases with the number of mutant SOL genes. However, tRNA levels do not vary with either multicopy SOL genes or with SOL disruptions. Therefore, the Sol proteins affect tRNA expression/ function at steps other than transcription or splicing. We propose that LOS1 regulates gene products involved in tRNA expression/function as well as pre-tRNA splicing.

  2. Structure of the human gene encoding the protein repair L-isoaspartyl (D-aspartyl) O-methyltransferase.

    PubMed

    DeVry, C G; Tsai, W; Clarke, S

    1996-11-15

    The protein L-isoaspartyl/D-aspartyl O-methyltransferase (EC 2.1.1.77) catalyzes the first step in the repair of proteins damaged in the aging process by isomerization or racemization reactions at aspartyl and asparaginyl residues. A single gene has been localized to human chromosome 6 and multiple transcripts arising through alternative splicing have been identified. Restriction enzyme mapping, subcloning, and DNA sequence analysis of three overlapping clones from a human genomic library in bacteriophage P1 indicate that the gene spans approximately 60 kb and is composed of 8 exons interrupted by 7 introns. Analysis of intron/exon splice junctions reveals that all of the donor and acceptor splice sites are in agreement with the mammalian consensus splicing sequence. Determination of transcription initiation sites by primer extension analysis of poly(A)+ mRNA from human brain identifies multiple start sites, with a major site 159 nucleotides upstream from the ATG start codon. Sequence analysis of the 5'-untranslated region demonstrates several potential cis-acting DNA elements including SP1, ETF, AP1, AP2, ARE, XRE, CREB, MED-1, and half-palindromic ERE motifs. The promoter of this methyltransferase gene lacks an identifiable TATA box but is characterized by a CpG island which begins approximately 723 nucleotides upstream of the major transcriptional start site and extends through exon 1 and into the first intron. These features are characteristic of housekeeping genes and are consistent with the wide tissue distribution observed for this methyltransferase activity.

  3. Identification of Splicing Quantitative Trait Loci (sQTL) in Drosophila melanogaster with Developmental Lead (Pb2+) Exposure.

    PubMed

    Qu, Wen; Gurdziel, Katherine; Pique-Regi, Roger; Ruden, Douglas M

    2017-01-01

    Lead (Pb) poisoning has been a major public health issue globally and the recent Flint water crisis has drawn nation-wide attention to its effects. To better understand how lead plays a role as a neurotoxin, we utilized the Drosophila melanogaster model to study the genetic effects of lead exposure during development and identified lead-responsive genes. In our previous studies, we have successfully identified hundreds of lead-responsive expression QTLs (eQTLs) by using RNA-seq analysis on heads collected from the Drosophila Synthetic Population Resource. Cis -eQTLs, also known as allele-specific expression (ASE) polymorphisms, are generally single-nucleotide polymorphisms in the promoter regions of genes that affect expression of the gene, such as by inhibiting the binding of transcription factors. Trans -eQTLs are genes that regulate mRNA levels for many genes, and are generally thought to be SNPs in trans -acting transcription or translation factors. In this study, we focused our attention on alternative splicing events that are affected by lead exposure. Splicing QTLs (sQTLs), which can be caused by SNPs that alter splicing or alternative splicing (AS), such as by changing the sequence-specific binding affinity of splicing factors to the pre-mRNA. We applied two methods in search for sQTLs by using RNA-seq data from control and lead-exposed w 1118 Drosophila heads. First, we used the fraction of reads in a gene that falls in each exon as the phenotype. Second, we directly compared the transcript counts among the various splicing isoforms as the phenotype. Among the 1,236 potential Pb-responsive sQTLs ( p < 0.0001, FDR < 0.39), mostly cis -sQTLs, one of the most distinct genes is Dscam1 (Down Syndrome Cell Adhesion Molecule), which has over 30,000 potential alternative splicing isoforms. We have also identified a candidate Pb-responsive trans -sQTL hotspot that appears to regulate 129 genes that are enriched in the "cation channel" gene ontology category, suggesting a model in which alternative splicing of these channels might lead to an increase in the elimination of Pb 2+ from the neurons encoding these channels. To our knowledge, this is the first paper that uses sQTL analyses to understand the neurotoxicology of an environmental toxin in any organism, and the first reported discovery of a candidate trans -sQTL hotspot.

  4. Identification of Splicing Quantitative Trait Loci (sQTL) in Drosophila melanogaster with Developmental Lead (Pb2+) Exposure

    PubMed Central

    Qu, Wen; Gurdziel, Katherine; Pique-Regi, Roger; Ruden, Douglas M.

    2017-01-01

    Lead (Pb) poisoning has been a major public health issue globally and the recent Flint water crisis has drawn nation-wide attention to its effects. To better understand how lead plays a role as a neurotoxin, we utilized the Drosophila melanogaster model to study the genetic effects of lead exposure during development and identified lead-responsive genes. In our previous studies, we have successfully identified hundreds of lead-responsive expression QTLs (eQTLs) by using RNA-seq analysis on heads collected from the Drosophila Synthetic Population Resource. Cis-eQTLs, also known as allele-specific expression (ASE) polymorphisms, are generally single-nucleotide polymorphisms in the promoter regions of genes that affect expression of the gene, such as by inhibiting the binding of transcription factors. Trans-eQTLs are genes that regulate mRNA levels for many genes, and are generally thought to be SNPs in trans-acting transcription or translation factors. In this study, we focused our attention on alternative splicing events that are affected by lead exposure. Splicing QTLs (sQTLs), which can be caused by SNPs that alter splicing or alternative splicing (AS), such as by changing the sequence-specific binding affinity of splicing factors to the pre-mRNA. We applied two methods in search for sQTLs by using RNA-seq data from control and lead-exposed w1118 Drosophila heads. First, we used the fraction of reads in a gene that falls in each exon as the phenotype. Second, we directly compared the transcript counts among the various splicing isoforms as the phenotype. Among the 1,236 potential Pb-responsive sQTLs (p < 0.0001, FDR < 0.39), mostly cis-sQTLs, one of the most distinct genes is Dscam1 (Down Syndrome Cell Adhesion Molecule), which has over 30,000 potential alternative splicing isoforms. We have also identified a candidate Pb-responsive trans-sQTL hotspot that appears to regulate 129 genes that are enriched in the “cation channel” gene ontology category, suggesting a model in which alternative splicing of these channels might lead to an increase in the elimination of Pb2+ from the neurons encoding these channels. To our knowledge, this is the first paper that uses sQTL analyses to understand the neurotoxicology of an environmental toxin in any organism, and the first reported discovery of a candidate trans-sQTL hotspot. PMID:29114259

  5. Discovery of a new mechanism for regulation of plant triacylglycerol metabolism: The peanut diacylglycerol acyltransferase-1 gene family transcriptome is highly enriched in alternative splicing variants

    USDA-ARS?s Scientific Manuscript database

    Triacylglycerols (TAGs) are the most important energy storage form in oilseed crops. Diacylglycerol acyltransferase (DGAT) catalyzes the rate-limiting step of the Kennedy pathway of TAG biosynthesis. To date, little is known about the regulation of DGAT activity in peanut (Arachis hypogaea), an agr...

  6. A Bayesian Approach for Evaluation of Determinants of Health System Efficiency Using Stochastic Frontier Analysis and Beta Regression.

    PubMed

    Şenel, Talat; Cengiz, Mehmet Ali

    2016-01-01

    In today's world, Public expenditures on health are one of the most important issues for governments. These increased expenditures are putting pressure on public budgets. Therefore, health policy makers have focused on the performance of their health systems and many countries have introduced reforms to improve the performance of their health systems. This study investigates the most important determinants of healthcare efficiency for OECD countries using second stage approach for Bayesian Stochastic Frontier Analysis (BSFA). There are two steps in this study. First we measure 29 OECD countries' healthcare efficiency by BSFA using the data from the OECD Health Database. At second stage, we expose the multiple relationships between the healthcare efficiency and characteristics of healthcare systems across OECD countries using Bayesian beta regression.

  7. Circular RNAs: Unexpected outputs of many protein-coding genes

    PubMed Central

    Wilusz, Jeremy E.

    2017-01-01

    ABSTRACT Pre-mRNAs from thousands of eukaryotic genes can be non-canonically spliced to generate circular RNAs, some of which accumulate to higher levels than their associated linear mRNA. Recent work has revealed widespread mechanisms that dictate whether the spliceosome generates a linear or circular RNA. For most genes, circular RNA biogenesis via backsplicing is far less efficient than canonical splicing, but circular RNAs can accumulate due to their long half-lives. Backsplicing is often initiated when complementary sequences from different introns base pair and bring the intervening splice sites close together. This process is further regulated by the combinatorial action of RNA binding proteins, which allow circular RNAs to be expressed in unique patterns. Some genes do not require complementary sequences to generate RNA circles and instead take advantage of exon skipping events. It is still unclear what most mature circular RNAs do, but future investigations into their functions will be facilitated by recently described methods to modulate circular RNA levels. PMID:27571848

  8. Monolithic thulium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Aubrecht, J.; Peterka, P.; Honzátko, P.; Todorov, F.; Podrazký, O.; Kamrádek, M.; Proboštová, J.; Kašík, I.

    2017-12-01

    In this contribution we report and discuss the results of laser characterizations of experimental thulium-doped optical fibers. These active fibers were fabricated in house and were tested in two laser systems to verify their characteristics. The first one, a monolithic fiber laser, was of great interest to us due to its potentially lower overall resonator losses, improved laser lifetime and better robustness. The compact laser cavities with a Bragg gratings inscribed directly into the active optical fiber differs to the second laser system where the Bragg gratings were inscribed into a passive fiber which had to be spliced to the active fiber. The tested fibers were manufactured by the modified chemical vapor deposition method and a solution-doping of thulium ions with Al2O3 or alumina nanoparticles, respectively. We focused on comparison of laser output powers, slope efficiencies, and laser thresholds for particular thulium-doped fiber in different laser configurations.

  9. Antisense Oligonucleotide-Based Splicing Correction in Individuals with Leber Congenital Amaurosis due to Compound Heterozygosity for the c.2991+1655A>G Mutation in CEP290.

    PubMed

    Duijkers, Lonneke; van den Born, L Ingeborgh; Neidhardt, John; Bax, Nathalie M; Pierrache, Laurence H M; Klevering, B Jeroen; Collin, Rob W J; Garanto, Alejandro

    2018-03-07

    Leber congenital amaurosis (LCA) is a rare inherited retinal disorder affecting approximately 1:50,000 people worldwide. So far, mutations in 25 genes have been associated with LCA, with CEP290 (encoding the Centrosomal protein of 290 kDa) being the most frequently mutated gene. The most recurrent LCA-causing CEP290 mutation, c.2991+1655A>G, causes the insertion of a pseudoexon into a variable proportion of CEP290 transcripts. We previously demonstrated that antisense oligonucleotides (AONs) have a high therapeutic potential for patients homozygously harbouring this mutation, although to date, it is unclear whether rescuing one single allele is enough to restore CEP290 function. Here, we assessed the AON efficacy at RNA, protein and cellular levels in samples that are compound heterozygous for this mutation, together with a protein-truncating mutation in CEP290 . We demonstrate that AONs can efficiently restore splicing and increase protein levels. However, due to a high variability in ciliation among the patient-derived cell lines, the efficacy of the AONs was more difficult to assess at the cellular level. This observation points towards the importance of the severity of the second allele and possibly other genetic variants present in each individual. Overall, AONs seem to be a promising tool to treat CEP290 -associated LCA, not only in homozygous but also in compound heterozygous carriers of the c.2991+1655A>G variant.

  10. Mutation-adapted U1 snRNA corrects a splicing error of the dopa decarboxylase gene.

    PubMed

    Lee, Ni-Chung; Lee, Yu-May; Chen, Pin-Wen; Byrne, Barry J; Hwu, Wuh-Liang

    2016-12-01

    Aromatic l-amino acid decarboxylase (AADC) deficiency is an inborn error of monoamine neurotransmitter synthesis, which results in dopamine, serotonin, epinephrine and norepinephrine deficiencies. The DDC gene founder mutation IVS6 + 4A > T is highly prevalent in Chinese patients with AADC deficiency. In this study, we designed several U1 snRNA vectors to adapt U1 snRNA binding sequences of the mutated DDC gene. We found that only the modified U1 snRNA (IVS-AAA) that completely matched both the intronic and exonic U1 binding sequences of the mutated DDC gene could correct splicing errors of either the mutated human DDC minigene or the mouse artificial splicing construct in vitro. We further injected an adeno-associated viral (AAV) vector to express IVS-AAA in the brain of a knock-in mouse model. This treatment was well tolerated and improved both the survival and brain dopamine and serotonin levels of mice with AADC deficiency. Therefore, mutation-adapted U1 snRNA gene therapy can be a promising method to treat genetic diseases caused by splicing errors, but the efficiency of such a treatment still needs improvements. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Random Splicing of Several Exons Caused by a Single Base Change in the Target Exon of CRISPR/Cas9 Mediated Gene Knockout.

    PubMed

    Kapahnke, Marcel; Banning, Antje; Tikkanen, Ritva

    2016-12-14

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated sequence 9 (CRISPR/Cas9) system is widely used for genome editing purposes as it facilitates an efficient knockout of a specific gene in, e.g. cultured cells. Targeted double-strand breaks are introduced to the target sequence of the guide RNAs, which activates the cellular DNA repair mechanism for non-homologous-end-joining, resulting in unprecise repair and introduction of small deletions or insertions. Due to this, sequence alterations in the coding region of the target gene frequently cause frame-shift mutations, facilitating degradation of the mRNA. We here show that such CRISPR/Cas9-mediated alterations in the target exon may also result in altered splicing of the respective pre-mRNA, most likely due to mutations of splice-regulatory sequences. Using the human FLOT-1 gene as an example, we demonstrate that such altered splicing products also give rise to aberrant protein products. These may potentially function as dominant-negative proteins and thus interfere with the interpretation of the data generated with these cell lines. Since most researchers only control the consequences of CRISPR knockout at genomic and protein level, our data should encourage to also check the alterations at the mRNA level.

  12. Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor

    PubMed Central

    Huertas, César S.; Domínguez-Zotes, Santos; Lechuga, Laura M.

    2017-01-01

    Personalized medicine is a promising tool not only for prevention, screening and development of more efficient treatment strategies, but also for diminishing the side effects caused by current therapies. Deciphering gene regulation pathways provides a reliable prognostic analysis to elucidate the origin of grave diseases and facilitate the selection of the most adequate treatment for each individual. Alternative splicing of mRNA precursors is one of these gene regulation pathways and enables cells to generate different protein outputs from the same gene depending on their developmental or homeostatic status. Its deregulation is strongly linked to disease onset and progression constituting a relevant and innovative class of biomarker. Herein we report a highly selective and sensitive nanophotonic biosensor based on the direct monitoring of the aberrant alternative splicing of Fas gene. Unlike conventional methods, the nanobiosensor performs a real-time detection of the specific isoforms in the fM-pM range without any cDNA synthesis or PCR amplification requirements. The nanobiosensor has been proven isoform-specific with no crosshybridization, greatly minimizing detection biases. The demonstrated high sensitivity and specificity make our nanobiosensor ideal for examining significant tumor-associated expression shifts of alternatively spliced isoforms for the early and accurate theranostics of cancer. PMID:28120920

  13. Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor.

    PubMed

    Huertas, César S; Domínguez-Zotes, Santos; Lechuga, Laura M

    2017-01-25

    Personalized medicine is a promising tool not only for prevention, screening and development of more efficient treatment strategies, but also for diminishing the side effects caused by current therapies. Deciphering gene regulation pathways provides a reliable prognostic analysis to elucidate the origin of grave diseases and facilitate the selection of the most adequate treatment for each individual. Alternative splicing of mRNA precursors is one of these gene regulation pathways and enables cells to generate different protein outputs from the same gene depending on their developmental or homeostatic status. Its deregulation is strongly linked to disease onset and progression constituting a relevant and innovative class of biomarker. Herein we report a highly selective and sensitive nanophotonic biosensor based on the direct monitoring of the aberrant alternative splicing of Fas gene. Unlike conventional methods, the nanobiosensor performs a real-time detection of the specific isoforms in the fM-pM range without any cDNA synthesis or PCR amplification requirements. The nanobiosensor has been proven isoform-specific with no crosshybridization, greatly minimizing detection biases. The demonstrated high sensitivity and specificity make our nanobiosensor ideal for examining significant tumor-associated expression shifts of alternatively spliced isoforms for the early and accurate theranostics of cancer.

  14. Mediator directs co-transcriptional heterochromatin assembly by RNA interference-dependent and -independent pathways.

    PubMed

    Oya, Eriko; Kato, Hiroaki; Chikashige, Yuji; Tsutsumi, Chihiro; Hiraoka, Yasushi; Murakami, Yota

    2013-01-01

    Heterochromatin at the pericentromeric repeats in fission yeast is assembled and spread by an RNAi-dependent mechanism, which is coupled with the transcription of non-coding RNA from the repeats by RNA polymerase II. In addition, Rrp6, a component of the nuclear exosome, also contributes to heterochromatin assembly and is coupled with non-coding RNA transcription. The multi-subunit complex Mediator, which directs initiation of RNA polymerase II-dependent transcription, has recently been suggested to function after initiation in processes such as elongation of transcription and splicing. However, the role of Mediator in the regulation of chromatin structure is not well understood. We investigated the role of Mediator in pericentromeric heterochromatin formation and found that deletion of specific subunits of the head domain of Mediator compromised heterochromatin structure. The Mediator head domain was required for Rrp6-dependent heterochromatin nucleation at the pericentromere and for RNAi-dependent spreading of heterochromatin into the neighboring region. In the latter process, Mediator appeared to contribute to efficient processing of siRNA from transcribed non-coding RNA, which was required for efficient spreading of heterochromatin. Furthermore, the head domain directed efficient transcription in heterochromatin. These results reveal a pivotal role for Mediator in multiple steps of transcription-coupled formation of pericentromeric heterochromatin. This observation further extends the role of Mediator to co-transcriptional chromatin regulation.

  15. Single-step reinitialization and extending algorithms for level-set based multi-phase flow simulations

    NASA Astrophysics Data System (ADS)

    Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-12-01

    We propose efficient single-step formulations for reinitialization and extending algorithms, which are critical components of level-set based interface-tracking methods. The level-set field is reinitialized with a single-step (non iterative) "forward tracing" algorithm. A minimum set of cells is defined that describes the interface, and reinitialization employs only data from these cells. Fluid states are extrapolated or extended across the interface by a single-step "backward tracing" algorithm. Both algorithms, which are motivated by analogy to ray-tracing, avoid multiple block-boundary data exchanges that are inevitable for iterative reinitialization and extending approaches within a parallel-computing environment. The single-step algorithms are combined with a multi-resolution conservative sharp-interface method and validated by a wide range of benchmark test cases. We demonstrate that the proposed reinitialization method achieves second-order accuracy in conserving the volume of each phase. The interface location is invariant to reapplication of the single-step reinitialization. Generally, we observe smaller absolute errors than for standard iterative reinitialization on the same grid. The computational efficiency is higher than for the standard and typical high-order iterative reinitialization methods. We observe a 2- to 6-times efficiency improvement over the standard method for serial execution. The proposed single-step extending algorithm, which is commonly employed for assigning data to ghost cells with ghost-fluid or conservative interface interaction methods, shows about 10-times efficiency improvement over the standard method while maintaining same accuracy. Despite their simplicity, the proposed algorithms offer an efficient and robust alternative to iterative reinitialization and extending methods for level-set based multi-phase simulations.

  16. NMR studies of two spliced leader RNAs using isotope labeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapham, J.; Crothers, D.M.

    1994-12-01

    Spliced leader RNAs are a class of RNA molecules (<200 nts) involved in the trans splicing of messenger RNA found in trypanosomes, nematodes, and other lower eukaryotes. The spliced leader RNA from the trypanosome Leptomonas Collosoma exists in two alternate structural forms with similar thermal stabilities. The 54 nucleotides on the 5{prime} end of the SL molecule is structurally independent from the 3{prime} half of the RNA, and displays the two structural forms. Furthermore, the favored of the two structures was shown to contain anomalous nuclease sensitivity and thermal stability features, which suggests that there may be tertiary interactions betweenmore » the splice site and other nucleotides in the 5{prime} end. Multidimensional NMR studies are underway to elucidate the structural elements present in the SL RNAs that give rise to their physical properties. Two spliced leader sequences have been studied. The first, the 54 nucleotides on the 5{prime} end of the L. Collosoma sequence, was selected because of earlier studies in our laboratory. The second sequence is the 5{prime} end of the trypanosome Crithidia Fasciculata, which was chosen because of its greater sequence homology to other SL sequences. Given the complexity of the NMR spectra for RNA molecules of this size, we have incorporated {sup 15}N/{sup 13}C-labeled nucleotides into the RNA. One of the techniques we have developed to simplify the spectra of these RNA molecules is isotope labeling of specific regions of the RNA. This has been especially helpful in assigning the secondary structure of molecules that may be able to adopt multiple conformations. Using this technique one can examine a part of the molecule without spectral interference from the unlabeled portion. We hope this approach will promote an avenue for studying the structure of larger RNAs in their native surroundings.« less

  17. A Comprehensive Analysis of Alternative Splicing in Paleopolyploid Maize.

    PubMed

    Mei, Wenbin; Liu, Sanzhen; Schnable, James C; Yeh, Cheng-Ting; Springer, Nathan M; Schnable, Patrick S; Barbazuk, William B

    2017-01-01

    Identifying and characterizing alternative splicing (AS) enables our understanding of the biological role of transcript isoform diversity. This study describes the use of publicly available RNA-Seq data to identify and characterize the global diversity of AS isoforms in maize using the inbred lines B73 and Mo17, and a related species, sorghum. Identification and characterization of AS within maize tissues revealed that genes expressed in seed exhibit the largest differential AS relative to other tissues examined. Additionally, differences in AS between the two genotypes B73 and Mo17 are greatest within genes expressed in seed. We demonstrate that changes in the level of alternatively spliced transcripts (intron retention and exon skipping) do not solely reflect differences in total transcript abundance, and we present evidence that intron retention may act to fine-tune gene expression across seed development stages. Furthermore, we have identified temperature sensitive AS in maize and demonstrate that drought-induced changes in AS involve distinct sets of genes in reproductive and vegetative tissues. Examining our identified AS isoforms within B73 × Mo17 recombinant inbred lines (RILs) identified splicing QTL (sQTL). The 43.3% of cis- sQTL regulated junctions are actually identified as alternatively spliced junctions in our analysis, while 10 Mb windows on each side of 48.2% of trans -sQTLs overlap with splicing related genes. Using sorghum as an out-group enabled direct examination of loss or conservation of AS between homeologous genes representing the two subgenomes of maize. We identify several instances where AS isoforms that are conserved between one maize homeolog and its sorghum ortholog are absent from the second maize homeolog, suggesting that these AS isoforms may have been lost after the maize whole genome duplication event. This comprehensive analysis provides new insights into the complexity of AS in maize.

  18. Circ-UBR5: An exonic circular RNA and novel small nuclear RNA involved in RNA splicing.

    PubMed

    Qin, Meilin; Wei, Gang; Sun, Xiaomeng

    2018-06-24

    Circular RNAs (circRNAs) are class of non-coding RNAs formed by back-splicing events as loops, and could be found in all types of organisms. They play important and diverse roles in cell development, growth, and tumorigenesis, but functions of the majority of circRNAs remain enigmatic. Particularly functional phenotypes of great majority of circRNAs are not obvious. Here we randomly selected a circRNA circ-UBR5, which has no obvious functional phenotype in non-small cell lung cancer (NSCLC) cells from our previous research findings, to explore its potential function in cells. Differential expression of circ-UBR5 was detected in paired samples of tumorous tissues and adjacent nontumorous tissues from 59 patients with NSCLC by real-time quantitative reverse transcription-polymerase chain reactions (qRT-PCRs). Results showed circ-UBR5 expression was significantly downregulated in NSCLC tissues (p < 0.001) and was correlated with tumor differentiation (p = 0.00126), suggesting circ-UBR5 might serve as an index of NSCLC differentiation. Our findings indicated circ-UBR5 could bind splicing regulatory factor QKI, KH domain containing RNA binding (QKI) and NOVA alternative splicing regulator 1 (NOVA1) and U1 small nuclear RNA (snRNA) in the nucleus, revealing circ-UBR5 might be a novel snRNA involved in RNA splicing regulatory process. Moreover, we first presented a highly efficient strategy for finding specific circRNA binding proteins using Human Protein Microarray (Huprot™ Protoarray). Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. High-Order Residual-Distribution Hyperbolic Advection-Diffusion Schemes: 3rd-, 4th-, and 6th-Order

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza R.; Nishikawa, Hiroaki

    2014-01-01

    In this paper, spatially high-order Residual-Distribution (RD) schemes using the first-order hyperbolic system method are proposed for general time-dependent advection-diffusion problems. The corresponding second-order time-dependent hyperbolic advection- diffusion scheme was first introduced in [NASA/TM-2014-218175, 2014], where rapid convergences over each physical time step, with typically less than five Newton iterations, were shown. In that method, the time-dependent hyperbolic advection-diffusion system (linear and nonlinear) was discretized by the second-order upwind RD scheme in a unified manner, and the system of implicit-residual-equations was solved efficiently by Newton's method over every physical time step. In this paper, two techniques for the source term discretization are proposed; 1) reformulation of the source terms with their divergence forms, and 2) correction to the trapezoidal rule for the source term discretization. Third-, fourth, and sixth-order RD schemes are then proposed with the above techniques that, relative to the second-order RD scheme, only cost the evaluation of either the first derivative or both the first and the second derivatives of the source terms. A special fourth-order RD scheme is also proposed that is even less computationally expensive than the third-order RD schemes. The second-order Jacobian formulation was used for all the proposed high-order schemes. The numerical results are then presented for both steady and time-dependent linear and nonlinear advection-diffusion problems. It is shown that these newly developed high-order RD schemes are remarkably efficient and capable of producing the solutions and the gradients to the same order of accuracy of the proposed RD schemes with rapid convergence over each physical time step, typically less than ten Newton iterations.

  20. A Nested-Splicing by Overlap Extension PCR Improves Specificity of this Standard Method.

    PubMed

    Karkhane, Ali Asghar; Yakhchali, Bagher; Rastgar Jazii, Ferdous; Bambai, Bijan; Aminzadeh, Saeed; Rahimi, Fatemeh

    2015-06-01

    Splicing by overlap extension (SOE) PCR is used to create mutation in the coding sequence of an enzyme in order to study the role of specific residues in protein's structure and function. We introduced a nested-SOE-PCR (N -SOE-PCR) in order to increase the specificity and generating mutations in a gene by SOE-PCR. Genomic DNA from Bacillus thermocatenulatus was extracted. Nested PCR was used to amplify B. thermocatenulatus lipase gene variants, namely wild type and mutant, using gene specific and mutagenic specific primers, followed by cloning in a suitable vector. Briefly in N-SOE-PCR method, instead of two pairs of primers, three pairs of primers are used to amplify a mutagenic fragment. Moreover, the first and second PCR products are slightly longer than PCR products in a conventional SOE. PCR products obtained from the first round of PCR are used for the second PCR by applying the nested and mutated primers. Following to the purification of the amplified fragments, they will be subject of the further purification and will be used as template to perform the third round of PCR using gene specific primers. In the end, the products will be cloned into a suitable vector for subsequent application. In comparison to the conventional SOE-PCR, the improved method (i.e. N-SOE-PCR) increases the yield and specificity of the products. In addition, the proposed method shows a large reduction in the non-specific products. By applying two more primers in the conventional SOE, the specificity of the method will be improved. This would be in part due to annealing of the primers further inside the amplicon that increases both the efficiency and a better attachment of the primers. Positioning of the primer far from both ends of an amplicon leads to an enhanced binding as well as increased affinity in the third round of amplification in SOE.

  1. Sequential addition reactions of two molecules of Grignard reagents to thioformamides.

    PubMed

    Murai, Toshiaki; Ui, Kazuki; Narengerile

    2009-08-07

    Sequential addition reactions of two molecules of Grignard reagents to thioformamides were found to yield tertiary amines in an efficient manner. The addition of two different Grignard reagents can be accomplished by using one equivalent of arylmagnesium reagent in the first step. In the second step, a variety of reagents such as alkyl, alkenyl, aryl, and alkynyl reagents were used to afford the corresponding amines in good to high yields.

  2. High-Efficiency Promoter-Dependent Transduction by Adeno-Associated Virus Type 6 Vectors in Mouse Lung

    PubMed Central

    HALBERT, CHRISTINE L.; LAM, SIU-LING; MILLER, A. DUSTY

    2014-01-01

    The transduction efficiency of adeno-associated virus (AAV) vectors in various somatic tissues has been shown to depend heavily on the AAV type from which the vector capsid proteins are derived. Among the AAV types studied, AAV6 efficiently transduces cells of the airway epithelium, making it a good candidate for the treatment of lung diseases such as cystic fibrosis. Here we have evaluated the effects of various promoter sequences on transduction rates and gene expression levels in the lung. Of the strong viral promoters examined, the Rous sarcoma virus (RSV) promoter performed significantly better than a human cytomegalovirus (CMV) promoter in the airway epithelium. However, a hybrid promoter consisting of a CMV enhancer, β-actin promoter and splice donor, and a β-globin splice acceptor (CAG promoter) exhibited even higher expression than either of the strong viral promoters alone, showing a 38-fold increase in protein expression over the RSV promoter. In addition, we show that vectors containing either the RSV or CAG promoter expressed well in the nasal and tracheal epithelium. Transduction rates in the 90% range were achieved in many airways with the CAG promoter, showing that with the proper AAV capsid proteins and promoter sequences, highly efficient transduction can be achieved. PMID:17430088

  3. Emerging functions of alternative splicing coupled with nonsense-mediated decay.

    PubMed

    Hamid, Fursham M; Makeyev, Eugene V

    2014-08-01

    Higher eukaryotes rely on AS (alternative splicing) of pre-mRNAs (mRNA precursors) to generate more than one protein product from a single gene and to regulate mRNA stability and translational activity. An important example of the latter function involves an interplay between AS and NMD (nonsense-mediated decay), a cytoplasmic quality control mechanism eliminating mRNAs containing PTCs (premature translation termination codons). Although originally identified as an error surveillance process, AS-NMD additionally provides an efficient strategy for deterministic regulation of gene expression outputs. In this review, we discuss recently published examples of AS-NMD and delineate functional contexts where recurrent use of this mechanism orchestrates expression of important genes.

  4. Test-firing ammunition for spliceosome inhibition in cancer.

    PubMed

    Dehm, Scott M

    2013-11-15

    E7107 is a derivative of the pladienolide family of natural product spliceosome inhibitors, which targets the U2 small nuclear ribonucleoprotein (snRNP) subunit SF3b. The results of a first-in-human trial with E7107 have been reported, representing an important translational step toward the goal of modulating RNA splicing for cancer therapy. Clin Cancer Res; 19(22); 6064-6. ©2013 AACR.

  5. Habituation, discrimination and anxiety in transgenic mice overexpressing acetylcholinesterase splice variants.

    PubMed

    Kofman, Ora; Shavit, Yehoshua; Ashkenazi, Sarit; Gabay, Shai

    2007-12-14

    TgS and TgR transgenic mice overexpress different splice variants of acetylcholinesterase and serve as models for genetic disruption of the cholinergic system. Whereas the TgS mouse overexpresses synaptic AChE, the TgR mouse overexpresses the rare readthrough variant whose C-terminal lacks the cysteine residue which permits adherence to the membrane. The two genotypes were compared to the parent strain, FVB/N mice on locomotion, discrimination learning and anxiety behavior following two exposures to the elevated plus maze. Male TgS mice were slower to acquire a simple odor discrimination, failed to habituate to a novel environment but were not impaired on reversal or set shifting compared to the FVB/N or TgR mice. In addition, TgS mice showed less avoidance behavior on the first exposure and but less exploration on the second exposure to the EPM. TgR mice were not impaired on discrimination learning; however, the females showed excessive running in circles in the activity meter. The findings suggest that the effects of overexpression of AChE are unique to different splice variants and may be sex-dependent.

  6. Switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Zhou, Yuxin; Wang, Xin; Tang, Zijuan; Lou, Shuqin

    2018-05-01

    In this paper, a switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer is proposed. The in-line Mach–Zehnder interferometer is fabricated by splicing a large-core fiber between two segments of single mode fibers, in which the first splicing point is tapered and the second splicing point is connected directly. By carefully rotating the polarization controller, switchable single-, dual-, triple- and quad-wavelength lasing outputs can be obtained with a side mode suppression ratio higher than 50 dB. The maximal peak power difference of multi-wavelength lasing is 3.67 dB, demonstrating a good power equalization performance. Furthermore, the proposed laser is proven to be very stable at room temperature. The wavelength shifts and peak power fluctuations are less than 0.02 nm and 1.3 dB over half an hour. In addition, stable quintuple-wavelength lasing with a side mode suppression ratio higher than 50 dB can also be realized when the filter length is changed.

  7. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag

    1996-01-01

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  8. Higher Order Time Integration Schemes for the Unsteady Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The efficiency gains obtained using higher-order implicit Runge-Kutta schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each timestep are presented. The first algorithm (NMG) is a pseudo-time-stepping scheme which employs a non-linear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on Inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the Generalized Minimal Residual method. Results demonstrating the relative superiority of these Newton's methods based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes with the more efficient nonlinear solvers.

  9. MutPred Splice: machine learning-based prediction of exonic variants that disrupt splicing

    PubMed Central

    2014-01-01

    We have developed a novel machine-learning approach, MutPred Splice, for the identification of coding region substitutions that disrupt pre-mRNA splicing. Applying MutPred Splice to human disease-causing exonic mutations suggests that 16% of mutations causing inherited disease and 10 to 14% of somatic mutations in cancer may disrupt pre-mRNA splicing. For inherited disease, the main mechanism responsible for the splicing defect is splice site loss, whereas for cancer the predominant mechanism of splicing disruption is predicted to be exon skipping via loss of exonic splicing enhancers or gain of exonic splicing silencer elements. MutPred Splice is available at http://mutdb.org/mutpredsplice. PMID:24451234

  10. Investigation and development of an effective, economical and efficient concrete pile splice.

    DOT National Transportation Integrated Search

    2015-06-01

    Structures such as bridges or tall buildings often require deep foundations in order to reach soil or rock strata capable of resisting the associated high loads. In Florida, concrete elements such as driven piles, drilled shafts or other cast-in-plac...

  11. Integrated Proteomic Pipeline Using Multiple Search Engines for a Proteogenomic Study with a Controlled Protein False Discovery Rate.

    PubMed

    Park, Gun Wook; Hwang, Heeyoun; Kim, Kwang Hoe; Lee, Ju Yeon; Lee, Hyun Kyoung; Park, Ji Yeong; Ji, Eun Sun; Park, Sung-Kyu Robin; Yates, John R; Kwon, Kyung-Hoon; Park, Young Mok; Lee, Hyoung-Joo; Paik, Young-Ki; Kim, Jin Young; Yoo, Jong Shin

    2016-11-04

    In the Chromosome-Centric Human Proteome Project (C-HPP), false-positive identification by peptide spectrum matches (PSMs) after database searches is a major issue for proteogenomic studies using liquid-chromatography and mass-spectrometry-based large proteomic profiling. Here we developed a simple strategy for protein identification, with a controlled false discovery rate (FDR) at the protein level, using an integrated proteomic pipeline (IPP) that consists of four engrailed steps as follows. First, using three different search engines, SEQUEST, MASCOT, and MS-GF+, individual proteomic searches were performed against the neXtProt database. Second, the search results from the PSMs were combined using statistical evaluation tools including DTASelect and Percolator. Third, the peptide search scores were converted into E-scores normalized using an in-house program. Last, ProteinInferencer was used to filter the proteins containing two or more peptides with a controlled FDR of 1.0% at the protein level. Finally, we compared the performance of the IPP to a conventional proteomic pipeline (CPP) for protein identification using a controlled FDR of <1% at the protein level. Using the IPP, a total of 5756 proteins (vs 4453 using the CPP) including 477 alternative splicing variants (vs 182 using the CPP) were identified from human hippocampal tissue. In addition, a total of 10 missing proteins (vs 7 using the CPP) were identified with two or more unique peptides, and their tryptic peptides were validated using MS/MS spectral pattern from a repository database or their corresponding synthetic peptides. This study shows that the IPP effectively improved the identification of proteins, including alternative splicing variants and missing proteins, in human hippocampal tissues for the C-HPP. All RAW files used in this study were deposited in ProteomeXchange (PXD000395).

  12. Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp

    PubMed Central

    Gotic, Ivana; Omidi, Saeed; Fleury-Olela, Fabienne; Molina, Nacho; Naef, Felix; Schibler, Ueli

    2016-01-01

    In mammals, body temperature fluctuates diurnally around a mean value of 36°C–37°C. Despite the small differences between minimal and maximal values, body temperature rhythms can drive robust cycles in gene expression in cultured cells and, likely, animals. Here we studied the mechanisms responsible for the temperature-dependent expression of cold-inducible RNA-binding protein (CIRBP). In NIH3T3 fibroblasts exposed to simulated mouse body temperature cycles, Cirbp mRNA oscillates about threefold in abundance, as it does in mouse livers. This daily mRNA accumulation cycle is directly controlled by temperature oscillations and does not depend on the cells’ circadian clocks. Here we show that the temperature-dependent accumulation of Cirbp mRNA is controlled primarily by the regulation of splicing efficiency, defined as the fraction of Cirbp pre-mRNA processed into mature mRNA. As revealed by genome-wide “approach to steady-state” kinetics, this post-transcriptional mechanism is widespread in the temperature-dependent control of gene expression. PMID:27633015

  13. Dual-band infrared (DBIR) imaging inspections of Boeing 737 and KC-135 aircraft panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Grande, N.K.; Dolan, K.W.; Durbin, P.F.

    1993-08-27

    We apply dual-band infrared (DBIR) imaging as a dynamic thermal tomography tool for wide area inspection of a Boeing 737 aircraft, and several Boeing KC-135 aircraft panels. Our analyses are discussed in this report. After flash-heating the aircraft skin, we record synchronized DBIR images every 40 ms, from onset to 8 seconds after the heat flash. We analyze selective DBIR image ratios which enhance surface temperature contrast and remove surface-emissivity clutter (from dirt, dents, tape, markings, ink, sealants, uneven paint, paint stripper, exposed metal and roughness variations). The Boeing 737 and KC-135 aircraft fuselage panels have varying percent thickness lossesmore » from corrosion. We established the correlation of percent thickness loss with surface temperature rise (above ambient) for a partially corroded F-18 wing box structure and several aluminum reference panels. Based on this correlation, lap splice temperatures rise 1{degrees}C per 24 {plus_minus} 5 % material loss at 0.4 s after the heat flash. We show tables, charts and temperature maps of typical lap splice material losses for the riveted (and bonded) Boeing 737, and the riveted (but unbonded) Boeing KC-135. We map the fuselage composite thermal inertia, based on the (inverse) slope of the surface temperature versus inverse square root of time. Composite thermal inertia maps characterize shallow skin defects within the lap splice at early times (<0.3 s) and deeper skin defects within the lap splice at late times (>0.4 s). Late time composite thermal inertia maps depict where corrosion-related thickness losses occur. Lap splice sites on a typical Boeing KC-135 panel with low composite thermal inertia values had high skin-thickness losses from corrosion.« less

  14. Dynamic thermal tomography for nondestructive inspection of aging aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Grande, N.K.; Dolan, K.W.; Durbin, P.F.

    1993-11-01

    The authors apply dual-band infrared (DBIR) imaging as a dynamic thermal tomography tool for wide area inspection of a Boeing 737 aircraft and several Boeing KC-135 aircraft panels. The analyses are discussed in this report. After flash-heating the aircraft skin, they record synchronized DBIR images every 40 ms, from onset to 8 seconds after the heat flash. They analyze selective DBIR image ratios which enhance surface temperature contrast and remove surface-emissivity clutter. The Boeing 737 and KC-135 aircraft fuselage panels have varying percent thickness losses from corrosion. They established the correlation of percent thickness loss with surface temperature rise (abovemore » ambient) for a partially corroded F-18 wing box structure and several aluminum plates which had 6 to 60% thickness losses at milled flat-bottom hole sites. Based on this correlation, lap splice temperatures rise 1C per 24 {plus_minus} 5% material loss at 0.4 s after the heat flash. They tabulate and map corrosion-related percent thickness loss effects for the riveted Boeing 737, and the riveted Boeing KKC-135. They map the fuselage composite thermal inertia, based on the (inverse) slope of the surface temperature versus inverse square root of time. Composite thermal inertia maps characterized shallow skin defects within the lap splice at early times (< 0.3 s) and deeper skin defects within the lap splice at late times (> 0.4 s). Late time composite thermal inertia maps depict where corrosion-related thickness losses occur (e.g., on the inside of the Boeing 737 lap splice, beneath the galley and the latrine). Lap splice sites on a typical Boeing KC-135 panel with low composite thermal inertia values had high skin-thickness losses from corrosion.« less

  15. Activation of a cryptic splice site in the mitochondrial elongation factor GFM1 causes combined OXPHOS deficiency☆

    PubMed Central

    Simon, Mariella T.; Ng, Bobby G.; Friederich, Marisa W.; Wang, Raymond Y.; Boyer, Monica; Kircher, Martin; Collard, Renata; Buckingham, Kati J.; Chang, Richard; Shendure, Jay; Nickerson, Deborah A.; Bamshad, Michael J.; Van Hove, Johan L.K.; Freeze, Hudson H.; Abdenur, Jose E.

    2017-01-01

    We report the clinical, biochemical, and molecular findings in two brothers with encephalopathy and multi-systemic disease. Abnormal transferrin glycoforms were suggestive of a type I congenital disorder of glycosylation (CDG). While exome sequencing was negative for CDG related candidate genes, the testing revealed compound heterozygous mutations in the mitochondrial elongation factor G gene (GFM1). One of the mutations had been reported previously while the second, novel variant was found deep in intron 6, activating a cryptic splice site. Functional studies demonstrated decreased GFM1 protein levels, suggested disrupted assembly of mitochondrial complexes III and V and decreased activities of mitochondrial complexes I and IV, all indicating combined OXPHOS deficiency. PMID:28216230

  16. Novel association of familial testicular germ cell tumor and autosomal dominant polycystic kidney disease with PKD1 mutation.

    PubMed

    Truscott, Laurel; Gell, Joanna; Chang, Vivian Y; Lee, Hane; Strom, Samuel P; Pillai, Rex; Sisk, Anthony; Martinez-Agosto, Julian A; Anderson, Martin; Federman, Noah

    2017-01-01

    Adolescent brothers were diagnosed with testicular germ cell tumors within the same month. Both were found to have multiple renal cysts on pretreatment imaging done for staging. The proband, his brother, and their mother, were all found to have a novel splice variant in intron 8 of the PKD1 gene by clinical exome sequencing. This is the second family reported with both familial testicular germ cell tumor (FTGCT) and autosomal dominant polycystic kidney disease (ADPKD), and the first described association of FTGCT with a splice variant in PKD1. We suggest that this novel variant in PKD1 may convey increased risk for FTGCT in addition to causing ADPKD. © 2016 Wiley Periodicals, Inc.

  17. An intronic mutation c.6430-3C>G in the F8 gene causes splicing efficiency and premature termination in hemophilia A.

    PubMed

    Xia, Zunjing; Lin, Jie; Lu, Lingping; Kim, Chol; Yu, Ping; Qi, Ming

    2018-06-01

    : Hemophilia A is a bleeding disorder caused by coagulation factor VIII protein deficiency or dysfunction, which is classified into severe, moderate, and mild according to factor clotting activity. An overwhelming majority of missense and nonsense mutations occur in exons of F8 gene, whereas mutations in introns can also be pathogenic. This study aimed to investigate the effect of an intronic mutation, c.6430-3C>G (IVS22-3C>G), on pre-mRNA splicing of the F8 gene. We applied DNA and cDNA sequencing in a Chinese boy with hemophilia A to search if any pathogenic mutation in the F8 gene. Functional analysis was performed to investigate the effect of an intronic mutation at the transcriptional level. Human Splicing Finder and PyMol were also used to predict its effect. We found the mutation c.6430-3C>G (IVS22-3C>G) in the F8 gene in the affected boy, with his mother being a carrier. cDNA from the mother and pSPL3 splicing assay showed that the mutation IVS22-3C>G results in a two-nucleotide AG inclusion at the 3' end of intron 22 and leads to a truncated coagulation factor VIII protein, with partial loss of the C1 domain and complete loss of the C2 domain. The in-silico tool predicted that the mutation induces altered pre-mRNA splicing by using a cryptic acceptor site in intron 22. The IVS22-3C>G mutation was confirmed to affect pre-mRNA splicing and produce a truncated protein, which reduces the stability of binding between the F8 protein and von Willebrand factor carrier protein due to the loss of an interaction domain.

  18. Genome-wide analysis of trans-splicing in the nematode Pristionchus pacificus unravels conserved gene functions for germline and dauer development in divergent operons.

    PubMed

    Sinha, Amit; Langnick, Claudia; Sommer, Ralf J; Dieterich, Christoph

    2014-09-01

    Discovery of trans-splicing in multiple metazoan lineages led to the identification of operon-like gene organization in diverse organisms, including trypanosomes, tunicates, and nematodes, but the functional significance of such operons is not completely understood. To see whether the content or organization of operons serves similar roles across species, we experimentally defined operons in the nematode model Pristionchus pacificus. We performed affinity capture experiments on mRNA pools to specifically enrich for transcripts that are trans-spliced to either the SL1- or SL2-spliced leader, using spliced leader-specific probes. We obtained distinct trans-splicing patterns from the analysis of three mRNA pools (total mRNA, SL1 and SL2 fraction) by RNA-seq. This information was combined with a genome-wide analysis of gene orientation and spacing. We could confirm 2219 operons by RNA-seq data out of 6709 candidate operons, which were predicted by sequence information alone. Our gene order comparison of the Caenorhabditis elegans and P. pacificus genomes shows major changes in operon organization in the two species. Notably, only 128 out of 1288 operons in C. elegans are conserved in P. pacificus. However, analysis of gene-expression profiles identified conserved functions such as an enrichment of germline-expressed genes and higher expression levels of operonic genes during recovery from dauer arrest in both species. These results provide support for the model that a necessity for increased transcriptional efficiency in the context of certain developmental processes could be a selective constraint for operon evolution in metazoans. Our method is generally applicable to other metazoans to see if similar functional constraints regulate gene organization into operons. © 2014 Sinha et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. RAP: RNA-Seq Analysis Pipeline, a new cloud-based NGS web application

    PubMed Central

    2015-01-01

    Background The study of RNA has been dramatically improved by the introduction of Next Generation Sequencing platforms allowing massive and cheap sequencing of selected RNA fractions, also providing information on strand orientation (RNA-Seq). The complexity of transcriptomes and of their regulative pathways make RNA-Seq one of most complex field of NGS applications, addressing several aspects of the expression process (e.g. identification and quantification of expressed genes and transcripts, alternative splicing and polyadenylation, fusion genes and trans-splicing, post-transcriptional events, etc.). Moreover, the huge volume of data generated by NGS platforms introduces unprecedented computational and technological challenges to efficiently analyze and store sequence data and results. Methods In order to provide researchers with an effective and friendly resource for analyzing RNA-Seq data, we present here RAP (RNA-Seq Analysis Pipeline), a cloud computing web application implementing a complete but modular analysis workflow. This pipeline integrates both state-of-the-art bioinformatics tools for RNA-Seq analysis and in-house developed scripts to offer to the user a comprehensive strategy for data analysis. RAP is able to perform quality checks (adopting FastQC and NGS QC Toolkit), identify and quantify expressed genes and transcripts (with Tophat, Cufflinks and HTSeq), detect alternative splicing events (using SpliceTrap) and chimeric transcripts (with ChimeraScan). This pipeline is also able to identify splicing junctions and constitutive or alternative polyadenylation sites (implementing custom analysis modules) and call for statistically significant differences in genes and transcripts expression, splicing pattern and polyadenylation site usage (using Cuffdiff2 and DESeq). Results Through a user friendly web interface, the RAP workflow can be suitably customized by the user and it is automatically executed on our cloud computing environment. This strategy allows to access to bioinformatics tools and computational resources without specific bioinformatics and IT skills. RAP provides a set of tabular and graphical results that can be helpful to browse, filter and export analyzed data, according to the user needs. PMID:26046471

  20. Two biomechanical strategies for locomotor adaptation to split-belt treadmill walking in subjects with and without transtibial amputation.

    PubMed

    Selgrade, Brian P; Toney, Megan E; Chang, Young-Hui

    2017-02-28

    Locomotor adaptation is commonly studied using split-belt treadmill walking, in which each foot is placed on a belt moving at a different speed. As subjects adapt to split-belt walking, they reduce metabolic power, but the biomechanical mechanism behind this improved efficiency is unknown. Analyzing mechanical work performed by the legs and joints during split-belt adaptation could reveal this mechanism. Because ankle work in the step-to-step transition is more efficient than hip work, we hypothesized that control subjects would reduce hip work on the fast belt and increase ankle work during the step-to-step transition as they adapted. We further hypothesized that subjects with unilateral, trans-tibial amputation would instead increase propulsive work from their intact leg on the slow belt. Control subjects reduced hip work and shifted more ankle work to the step-to-step transition, supporting our hypothesis. Contrary to our second hypothesis, intact leg work, ankle work and hip work in amputees were unchanged during adaptation. Furthermore, all subjects increased collisional energy loss on the fast belt, but did not increase propulsive work. This was possible because subjects moved further backward during fast leg single support in late adaptation than in early adaptation, compensating by reducing backward movement in slow leg single support. In summary, subjects used two strategies to improve mechanical efficiency in split-belt walking adaptation: a CoM displacement strategy that allows for less forward propulsion on the fast belt; and, an ankle timing strategy that allows efficient ankle work in the step-to-step transition to increase while reducing inefficient hip work. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs

    PubMed Central

    Zhang, Xiao-Ou; Dong, Rui; Zhang, Yang; Zhang, Jia-Lin; Luo, Zheng; Zhang, Jun; Chen, Ling-Ling; Yang, Li

    2016-01-01

    Circular RNAs (circRNAs) derived from back-spliced exons have been widely identified as being co-expressed with their linear counterparts. A single gene locus can produce multiple circRNAs through alternative back-splice site selection and/or alternative splice site selection; however, a detailed map of alternative back-splicing/splicing in circRNAs is lacking. Here, with the upgraded CIRCexplorer2 pipeline, we systematically annotated different types of alternative back-splicing and alternative splicing events in circRNAs from various cell lines. Compared with their linear cognate RNAs, circRNAs exhibited distinct patterns of alternative back-splicing and alternative splicing. Alternative back-splice site selection was correlated with the competition of putative RNA pairs across introns that bracket alternative back-splice sites. In addition, all four basic types of alternative splicing that have been identified in the (linear) mRNA process were found within circRNAs, and many exons were predominantly spliced in circRNAs. Unexpectedly, thousands of previously unannotated exons were detected in circRNAs from the examined cell lines. Although these novel exons had similar splice site strength, they were much less conserved than known exons in sequences. Finally, both alternative back-splicing and circRNA-predominant alternative splicing were highly diverse among the examined cell lines. All of the identified alternative back-splicing and alternative splicing in circRNAs are available in the CIRCpedia database (http://www.picb.ac.cn/rnomics/circpedia). Collectively, the annotation of alternative back-splicing and alternative splicing in circRNAs provides a valuable resource for depicting the complexity of circRNA biogenesis and for studying the potential functions of circRNAs in different cells. PMID:27365365

  2. A three-step maximum a posteriori probability method for InSAR data inversion of coseismic rupture with application to the 14 April 2010 Mw 6.9 Yushu, China, earthquake

    NASA Astrophysics Data System (ADS)

    Sun, Jianbao; Shen, Zheng-Kang; Bürgmann, Roland; Wang, Min; Chen, Lichun; Xu, Xiwei

    2013-08-01

    develop a three-step maximum a posteriori probability method for coseismic rupture inversion, which aims at maximizing the a posterior probability density function (PDF) of elastic deformation solutions of earthquake rupture. The method originates from the fully Bayesian inversion and mixed linear-nonlinear Bayesian inversion methods and shares the same posterior PDF with them, while overcoming difficulties with convergence when large numbers of low-quality data are used and greatly improving the convergence rate using optimization procedures. A highly efficient global optimization algorithm, adaptive simulated annealing, is used to search for the maximum of a posterior PDF ("mode" in statistics) in the first step. The second step inversion approaches the "true" solution further using the Monte Carlo inversion technique with positivity constraints, with all parameters obtained from the first step as the initial solution. Then slip artifacts are eliminated from slip models in the third step using the same procedure of the second step, with fixed fault geometry parameters. We first design a fault model with 45° dip angle and oblique slip, and produce corresponding synthetic interferometric synthetic aperture radar (InSAR) data sets to validate the reliability and efficiency of the new method. We then apply this method to InSAR data inversion for the coseismic slip distribution of the 14 April 2010 Mw 6.9 Yushu, China earthquake. Our preferred slip model is composed of three segments with most of the slip occurring within 15 km depth and the maximum slip reaches 1.38 m at the surface. The seismic moment released is estimated to be 2.32e+19 Nm, consistent with the seismic estimate of 2.50e+19 Nm.

  3. Splicing-factor alterations in cancers

    PubMed Central

    Anczuków, Olga; Krainer, Adrian R.

    2016-01-01

    Tumor-associated alterations in RNA splicing result either from mutations in splicing-regulatory elements or changes in components of the splicing machinery. This review summarizes our current understanding of the role of splicing-factor alterations in human cancers. We describe splicing-factor alterations detected in human tumors and the resulting changes in splicing, highlighting cell-type-specific similarities and differences. We review the mechanisms of splicing-factor regulation in normal and cancer cells. Finally, we summarize recent efforts to develop novel cancer therapies, based on targeting either the oncogenic splicing events or their upstream splicing regulators. PMID:27530828

  4. Sub-wavelength efficient polarization filter (SWEP filter)

    DOEpatents

    Simpson, Marcus L.; Simpson, John T.

    2003-12-09

    A polarization sensitive filter includes a first sub-wavelength resonant grating structure (SWS) for receiving incident light, and a second SWS. The SWS are disposed relative to one another such that incident light which is transmitted by the first SWS passes through the second SWS. The filter has a polarization sensitive resonance, the polarization sensitive resonance substantially reflecting a first polarization component of incident light while substantially transmitting a second polarization component of the incident light, the polarization components being orthogonal to one another. A method for forming polarization filters includes the steps of forming first and second SWS, the first and second SWS disposed relative to one another such that a portion of incident light applied to the first SWS passes through the second SWS. A method for separating polarizations of light, includes the steps of providing a filter formed from a first and second SWS, shining incident light having orthogonal polarization components on the first SWS, and substantially reflecting one of the orthogonal polarization components while substantially transmitting the other orthogonal polarization component. A high Q narrowband filter includes a first and second SWS, the first and second SWS are spaced apart a distance being at least one half an optical wavelength.

  5. Financial performance monitoring of the technical efficiency of critical access hospitals: a data envelopment analysis and logistic regression modeling approach.

    PubMed

    Wilson, Asa B; Kerr, Bernard J; Bastian, Nathaniel D; Fulton, Lawrence V

    2012-01-01

    From 1980 to 1999, rural designated hospitals closed at a disproportionally high rate. In response to this emergent threat to healthcare access in rural settings, the Balanced Budget Act of 1997 made provisions for the creation of a new rural hospital--the critical access hospital (CAH). The conversion to CAH and the associated cost-based reimbursement scheme significantly slowed the closure rate of rural hospitals. This work investigates which methods can ensure the long-term viability of small hospitals. This article uses a two-step design to focus on a hypothesized relationship between technical efficiency of CAHs and a recently developed set of financial monitors for these entities. The goal is to identify the financial performance measures associated with efficiency. The first step uses data envelopment analysis (DEA) to differentiate efficient from inefficient facilities within a data set of 183 CAHs. Determining DEA efficiency is an a priori categorization of hospitals in the data set as efficient or inefficient. In the second step, DEA efficiency is the categorical dependent variable (efficient = 0, inefficient = 1) in the subsequent binary logistic regression (LR) model. A set of six financial monitors selected from the array of 20 measures were the LR independent variables. We use a binary LR to test the null hypothesis that recently developed CAH financial indicators had no predictive value for categorizing a CAH as efficient or inefficient, (i.e., there is no relationship between DEA efficiency and fiscal performance).

  6. The complexities of hydrolytic enzymes from the termite digestive system.

    PubMed

    Saadeddin, Anas

    2014-06-01

    The main challenge in second generation bioethanol production is the efficient breakdown of cellulose to sugar monomers (hydrolysis). Due to the recalcitrant character of cellulose, feedstock pretreatment and adapted hydrolysis steps are needed to obtain fermentable sugar monomers. The conventional industrial production process of second-generation bioethanol from biomass comprises several steps: thermochemical pretreatment, enzymatic hydrolysis and sugar fermentation. This process is undergoing continuous optimization in order to increase the bioethanol yield and reduce the economic cost. Therefore, the discovery of new enzymes with high lignocellulytic activity or new strategies is extremely important. In nature, wood-feeding termites have developed a sophisticated and efficient cellulose degrading system in terms of the rate and extent of cellulose hydrolysis and exploitation. This system, which represents a model for digestive symbiosis has attracted the attention of biofuel researchers. This review describes the termite digestive system, gut symbionts, termite enzyme resources, in vitro studies of isolated enzymes and lignin degradation in termites.

  7. Mapping RNA-seq Reads with STAR

    PubMed Central

    Dobin, Alexander; Gingeras, Thomas R.

    2015-01-01

    Mapping of large sets of high-throughput sequencing reads to a reference genome is one of the foundational steps in RNA-seq data analysis. The STAR software package performs this task with high levels of accuracy and speed. In addition to detecting annotated and novel splice junctions, STAR is capable of discovering more complex RNA sequence arrangements, such as chimeric and circular RNA. STAR can align spliced sequences of any length with moderate error rates providing scalability for emerging sequencing technologies. STAR generates output files that can be used for many downstream analyses such as transcript/gene expression quantification, differential gene expression, novel isoform reconstruction, signal visualization, and so forth. In this unit we describe computational protocols that produce various output files, use different RNA-seq datatypes, and utilize different mapping strategies. STAR is Open Source software that can be run on Unix, Linux or Mac OS X systems. PMID:26334920

  8. Mapping RNA-seq Reads with STAR.

    PubMed

    Dobin, Alexander; Gingeras, Thomas R

    2015-09-03

    Mapping of large sets of high-throughput sequencing reads to a reference genome is one of the foundational steps in RNA-seq data analysis. The STAR software package performs this task with high levels of accuracy and speed. In addition to detecting annotated and novel splice junctions, STAR is capable of discovering more complex RNA sequence arrangements, such as chimeric and circular RNA. STAR can align spliced sequences of any length with moderate error rates, providing scalability for emerging sequencing technologies. STAR generates output files that can be used for many downstream analyses such as transcript/gene expression quantification, differential gene expression, novel isoform reconstruction, and signal visualization. In this unit, we describe computational protocols that produce various output files, use different RNA-seq datatypes, and utilize different mapping strategies. STAR is open source software that can be run on Unix, Linux, or Mac OS X systems. Copyright © 2015 John Wiley & Sons, Inc.

  9. Investigation and development of an effective, economical and efficient concrete pile splice : [summary].

    DOT National Transportation Integrated Search

    2015-08-01

    Large structures like bridges or tall buildings are often built on deep foundations either precast concrete piles or cast-in-place drilled shafts. The pile or shaft must be long enough to reach : a rock layer or to provide sufficient resistance t...

  10. Efficiency improvement of dentistry clinics: introducing an intervening package for dentistry clinics, isfahan, iran.

    PubMed

    Alaghemandan, Hamed; Yarmohammadian, Mohammad H; Khorasani, Elahe; Rezaee, Sobhan

    2014-02-01

    In Isfahan, the second metropolitan in Iran, there are 1448 dentistry treatment centers that most of them are inefficient. Today, efficiency is the most important issue in health care centers as well as dentistry clinics. The goal of this research is to investigate the affordability and efficiency of dentistry clinics in Isfahan province, Iran. The current work is a quantitative research, designed in three methodological steps, including two surveys and experimental studies, for understanding current deficiencies of Iranian dentistry clinics. First, we ran a survey. Then, we analyzed the results of the questionnaires which guided us to find a particular intervening package to improve the efficiency of the clinics. At the second step, we chose an inefficient clinic named Mohtasham (Iran, Isfahan) to evaluate our intervening package. Based on what the interviewees answered, we mention the most important issues to be considered for improving the efficiency of dental clinics in Isfahan. By considering mentioned problematic issues, an intervening package was designed. This intervening package was applied in Mohtasham clinic, since June 2010. It improved the clinic's income from 16328 US$ with 4125 clients in 2010, to 420,000 US$ with 14784 patients in 2012. The proposed intervening package changed this clinic to an efficient and economic one. Its income increased 5.08 times and its patient's numbers grew 4.01 times simultaneously. In other words, Mohtasham's experience demonstrates the reliability of the package and its potentiality to be applied in macro level to improve other dentistry clinics.

  11. Identification of a Novel LXXLL Motif in α-Actinin 4-spliced Isoform That Is Critical for Its Interaction with Estrogen Receptor α and Co-activators*

    PubMed Central

    Khurana, Simran; Chakraborty, Sharmistha; Zhao, Xuan; Liu, Yu; Guan, Dongyin; Lam, Minh; Huang, Wei; Yang, Sichun; Kao, Hung-Ying

    2012-01-01

    α-Actinins (ACTNs) are a family of proteins cross-linking actin filaments that maintain cytoskeletal organization and cell motility. Recently, it has also become clear that ACTN4 can function in the nucleus. In this report, we found that ACTN4 (full length) and its spliced isoform ACTN4 (Iso) possess an unusual LXXLL nuclear receptor interacting motif. Both ACTN4 (full length) and ACTN4 (Iso) potentiate basal transcription activity and directly interact with estrogen receptor α, although ACTN4 (Iso) binds ERα more strongly. We have also found that both ACTN4 (full length) and ACTN4 (Iso) interact with the ligand-independent and the ligand-dependent activation domains of estrogen receptor α. Although ACTN4 (Iso) interacts efficiently with transcriptional co-activators such as p300/CBP-associated factor (PCAF) and steroid receptor co-activator 1 (SRC-1), the full length ACTN4 protein either does not or does so weakly. More importantly, the flanking sequences of the LXXLL motif are important not only for interacting with nuclear receptors but also for the association with co-activators. Taken together, we have identified a novel extended LXXLL motif that is critical for interactions with both receptors and co-activators. This motif functions more efficiently in a spliced isoform of ACTN4 than it does in the full-length protein. PMID:22908231

  12. Aberrant alternative splicing is another hallmark of cancer.

    PubMed

    Ladomery, Michael

    2013-01-01

    The vast majority of human genes are alternatively spliced. Not surprisingly, aberrant alternative splicing is increasingly linked to cancer. Splice isoforms often encode proteins that have distinct and even antagonistic properties. The abnormal expression of splice factors and splice factor kinases in cancer changes the alternative splicing of critically important pre-mRNAs. Aberrant alternative splicing should be added to the growing list of cancer hallmarks.

  13. Screening and Selection of New Antagonists of the RING-Mediated Hdm2/Hdmx Interaction

    DTIC Science & Technology

    2013-05-01

    efficient production of cyclotides in bacterial cells using protein trans-splicing (PTS) (Fig. 4) (Appendix: paper #7). Using this new approach we have... used for the production of native folded cyclotides. We estimated that in- cell production of cyclotide MCoTI-I was around 10- times more...efficient using Npu DnaE PTS than EPL, and therefore provides an attractive alternative for the recombinant production of these type of

  14. The organization of RNA contacts by PTB for regulation of FAS splicing

    PubMed Central

    Mickleburgh, Ian; Kafasla, Panagiota; Cherny, Dmitry; Llorian, Miriam; Curry, Stephen; Jackson, Richard J.; Smith, Christopher W.J.

    2014-01-01

    Post-transcriptional steps of gene expression are regulated by RNA binding proteins. Major progress has been made in characterizing RNA-protein interactions, from high resolution structures to transcriptome-wide profiling. Due to the inherent technical challenges, less attention has been paid to the way in which proteins with multiple RNA binding domains engage with target RNAs. We have investigated how the four RNA recognition motif (RRM) domains of Polypyrimidine tract binding (PTB) protein, a major splicing regulator, interact with FAS pre-mRNA under conditions in which PTB represses FAS exon 6 splicing. A combination of tethered hydroxyl radical probing, targeted inactivation of individual RRMs and single molecule analyses revealed an unequal division of labour between the four RRMs of PTB. RNA binding by RRM4 is the most important for function despite the low intrinsic binding specificity and the complete lack of effect of disrupting individual RRM4 contact points on the RNA. The ordered RRM3-4 di-domain packing provides an extended binding surface for RNA interacting at RRM4, via basic residues in the preceding linker. Our results illustrate how multiple alternative low-specificity binding configurations of RRM4 are consistent with repressor function as long as the overall ribonucleoprotein architecture provided by appropriate di-domain packing is maintained. PMID:24957602

  15. Novel Variations of FANCA Gene Provokes Fanconi Anemia: Molecular Diagnosis in a Special Chinese Family.

    PubMed

    Li, Niu; Song, Aiyun; Ding, Lixia; Zhu, Hua; Li, Guoqiang; Miao, Yan; Wang, Jian; Li, Benshang; Chen, Jing

    2018-07-01

    Fanconi anemia (FA) is a rare autosomal recessive or X-linked disorder with highly variable clinical manifestations and an incidence of ∼1 to 5 in 1 million births. To date, 15 bona fide FA genes have been reported to be responsible for the known FA complementation groups and the FANCA gene accounts for almost 60%. In the present study, we report a special Chinese family, which has 2 children with classic FA characteristics. Via 2-step analysis of the whole-exome sequencing data and verification using multiplex ligation-dependent probe amplification test, one child was found to have a novel compound heterozygous mutation of a splicing variant (c.1471-1G>A) and a large intragenic deletion (exons 23-30 del) of the FANCA gene. The other child had the same splicing variant and another novel large deletion (exons 1-18 del) in the FANCA gene. Clone sequencing showed the c.1471-1G>A variant generate an altered transcript with 1 cryptic splice site in intron 15, resulting in a premature termination codon (p.Val490HisfsX6). This study not only shows the complexity of FA molecular diagnosis via comprehensively studying the FA pathogenic genes and the mutational spectrum, but also has significant reference value for the future molecular diagnosis of FA.

  16. In silico study of breast cancer associated gene 3 using LION Target Engine and other tools.

    PubMed

    León, Darryl A; Cànaves, Jaume M

    2003-12-01

    Sequence analysis of individual targets is an important step in annotation and validation. As a test case, we investigated human breast cancer associated gene 3 (BCA3) with LION Target Engine and with other bioinformatics tools. LION Target Engine confirmed that the BCA3 gene is located on 11p15.4 and that the two most likely splice variants (lacking exon 3 and exons 3 and 5, respectively) exist. Based on our manual curation of sequence data, it is proposed that an additional variant (missing only exon 5) published in a public sequence repository, is a prediction artifact. A significant number of new orthologs were also identified, and these were the basis for a high-quality protein secondary structure prediction. Moreover, our research confirmed several distinct functional domains as described in earlier reports. Sequence conservation from multiple sequence alignments, splice variant identification, secondary structure predictions, and predicted phosphorylation sites suggest that the removal of interaction sites through alternative splicing might play a modulatory role in BCA3. This in silico approach shows the depth and relevance of an analysis that can be accomplished by including a variety of publicly available tools with an integrated and customizable life science informatics platform.

  17. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning

    PubMed Central

    Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2015-01-01

    Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion® Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure. PMID:26633465

  18. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning.

    PubMed

    Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2015-12-01

    Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion(®) Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure.

  19. The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention.

    PubMed

    Pendleton, Kathryn E; Chen, Beibei; Liu, Kuanqing; Hunter, Olga V; Xie, Yang; Tu, Benjamin P; Conrad, Nicholas K

    2017-05-18

    Maintenance of proper levels of the methyl donor S-adenosylmethionine (SAM) is critical for a wide variety of biological processes. We demonstrate that the N 6 -adenosine methyltransferase METTL16 regulates expression of human MAT2A, which encodes the SAM synthetase expressed in most cells. Upon SAM depletion by methionine starvation, cells induce MAT2A expression by enhanced splicing of a retained intron. Induction requires METTL16 and its methylation substrate, a vertebrate conserved hairpin (hp1) in the MAT2A 3' UTR. Increasing METTL16 occupancy on the MAT2A 3' UTR is sufficient to induce efficient splicing. We propose that, under SAM-limiting conditions, METTL16 occupancy on hp1 increases due to inefficient enzymatic turnover, which promotes MAT2A splicing. We further show that METTL16 is the long-unknown methyltransferase for the U6 spliceosomal small nuclear RNA (snRNA). These observations suggest that the conserved U6 snRNA methyltransferase evolved an additional function in vertebrates to regulate SAM homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Analysis of informational redundancy in the protein-assembling machinery

    NASA Astrophysics Data System (ADS)

    Berkovich, Simon

    2004-03-01

    Entropy analysis of the DNA structure does not reveal a significant departure from randomness indicating lack of informational redundancy. This signifies the absence of a hidden meaning in the genome text and supports the 'barcode' interpretation of DNA given in [1]. Lack of informational redundancy is a characteristic property of an identification label rather than of a message of instructions. Yet randomness of DNA has to induce non-random structures of the proteins. Protein synthesis is a two-step process: transcription into RNA with gene splicing and formation a structure of amino acids. Entropy estimations, performed by A. Djebbari, show typical values of redundancy of the biomolecules along these pathways: DNA gene 4proteins 15-40in gene expression, the RNA copy carries the same information as the original DNA template. Randomness is essentially eliminated only at the step of the protein creation by a degenerate code. According to [1], the significance of the substitution of U for T with a subsequent gene splicing is that these transformations result in a different pattern of RNA oscillations, so the vital DNA communications are protected against extraneous noise coming from the protein making activities. 1. S. Berkovich, "On the 'barcode' functionality of DNA, or the Phenomenon of Life in the Physical Universe", Dorrance Publishing Co., Pittsburgh, 2003

  1. [Deregulation of pre-messenger RNA splicing and rare diseases].

    PubMed

    de la Grange, Pierre

    2016-12-01

    Most of protein-coding human genes are subjected to alternative pre-mRNA splicing. This mechanism is highly regulated to precisely modulate detection of specific splice sites. This regulation is under control of the spliceosome and several splicing factors are also required to modulate the alternative usage of splice sites. Splicing factors and spliceosome components recognize splicing signals and regulatory sequences of the pre-mRNAs. These splicing sequences make splicing susceptible to polymorphisms and mutations. Examples of associations between human rare diseases and defects in pre-messenger RNA splicing are accumulating. Although many alterations are caused by mutations in splicing sequence (i.e., cis acting mutations), recent studies described the disruptive impact of mutations within spliceosome components or splicing factors (i.e., trans acting mutations). Following growing of knowledge regarding splicing regulation, several approaches have been developed to compensate for the effect of deleterious mutations and to restore sufficient amounts of functional protein. © 2016 médecine/sciences – Inserm.

  2. Application of Mössbauer spectroscopy for: (1) characterization of Egyptian Maghara coal; (2) evaluating the efficiency of different methods for coal desulphurization

    NASA Astrophysics Data System (ADS)

    Eissa, N. A.; Sheta, N. H.; Ahmed, M. A.

    1992-04-01

    Coal has been recently discovered in Maghara mine at Northern Sinai, Egypt. Coal samples have been collected from different depths and were measured by XRD, XRF, and MS, in order to characterize this type of coal. It has been found that the iron bearing minerals are mainly pyrite and different sulphates depending on the depth of the sample. The second part contains the application of desulphurization techniques to Egyptian coal which are: floatation (one step and two steps) chemical [(HCl+HNO3), and Fe2(SO4)3] and bacterial methods (Chromatium and Chlorobium species). The efficiency of each technique was calculated. A comparative discussion is given of each desulphurization method, from which the bacterial method has proved to be the most efficient one.

  3. Efficient computation of optimal oligo-RNA binding.

    PubMed

    Hodas, Nathan O; Aalberts, Daniel P

    2004-01-01

    We present an algorithm that calculates the optimal binding conformation and free energy of two RNA molecules, one or both oligomeric. This algorithm has applications to modeling DNA microarrays, RNA splice-site recognitions and other antisense problems. Although other recent algorithms perform the same calculation in time proportional to the sum of the lengths cubed, O((N1 + N2)3), our oligomer binding algorithm, called bindigo, scales as the product of the sequence lengths, O(N1*N2). The algorithm performs well in practice with the aid of a heuristic for large asymmetric loops. To demonstrate its speed and utility, we use bindigo to investigate the binding proclivities of U1 snRNA to mRNA donor splice sites.

  4. Jannovar: a java library for exome annotation.

    PubMed

    Jäger, Marten; Wang, Kai; Bauer, Sebastian; Smedley, Damian; Krawitz, Peter; Robinson, Peter N

    2014-05-01

    Transcript-based annotation and pedigree analysis are two basic steps in the computational analysis of whole-exome sequencing experiments in genetic diagnostics and disease-gene discovery projects. Here, we present Jannovar, a stand-alone Java application as well as a Java library designed to be used in larger software frameworks for exome and genome analysis. Jannovar uses an interval tree to identify all transcripts affected by a given variant, and provides Human Genome Variation Society-compliant annotations both for variants affecting coding sequences and splice junctions as well as untranslated regions and noncoding RNA transcripts. Jannovar can also perform family-based pedigree analysis with Variant Call Format (VCF) files with data from members of a family segregating a Mendelian disorder. Using a desktop computer, Jannovar requires a few seconds to annotate a typical VCF file with exome data. Jannovar is freely available under the BSD2 license. Source code as well as the Java application and library file can be downloaded from http://compbio.charite.de (with tutorial) and https://github.com/charite/jannovar. © 2014 WILEY PERIODICALS, INC.

  5. Lighting a path: genetic studies pinpoint neurodevelopmental mechanisms in autism and related disorders.

    PubMed

    Pescosolido, Matthew F; Yang, Unikora; Sabbagh, Mark; Morrow, Eric M

    2012-09-01

    In this review, we outline critical molecular processes that have been implicated by discovery of genetic mutations in autism. These mechanisms need to be mapped onto the neurodevelopment step(s) gone awry that may be associated with cause in autism. Molecular mechanisms include: (i) regulation of gene expression; (ii) pre-mRNA splicing; (iii) protein localization, translation, and turnover; (iv) synaptic transmission; (v) cell signaling; (vi) the functions of cytoskeletal and scaffolding proteins; and (vii) the function of neuronal cell adhesion molecules. While the molecular mechanisms appear broad, they may converge on only one of a few steps during neurodevelopment that perturbs the structure, function, and/or plasticity of neuronal circuitry. While there are many genetic mutations involved, novel treatments may need to target only one of few developmental mechanisms.

  6. Polyoma virus small tumor antigen pre-mRNA splicing requires cooperation between two 3' splice sites.

    PubMed Central

    Ge, H; Noble, J; Colgan, J; Manley, J L

    1990-01-01

    We have studied splicing of the polyoma virus early region pre-mRNA in vitro. This RNA is alternatively spliced in vivo to produce mRNA encoding the large, middle-sized (MTAg), and small (StAg) tumor antigens. Our primary interest was to learn how the 48-nucleotide StAg intron is excised, because the length of this intron is significantly less than the apparent minimum established for mammalian introns. Although the products of all three splices are detected in vitro, characterization of the pathway and sequence requirements of StAg splicing suggests that splicing factors interact with the precursor RNA in an unexpected way to catalyze removal of this intron. Specifically, StAg splicing uses either of two lariat branch points, one of which is located only 4 nucleotides from the 3' splice site. Furthermore, the StAg splice absolutely requires that the alternative MTAg 3' splice site, located 14 nucleotides downstream of the StAg 3' splice site, be intact. Insertion mutations that increase or decrease the quality of the MTAg pyrimidine stretch enhance or repress StAg as well as MTAg splicing, and a single-base change in the MTAg AG splice acceptor totally blocks both splices. These results demonstrate the ability of two 3' splice sites to cooperate with each other to bring about removal of a single intron. Images PMID:2159146

  7. Characterization of cis-Acting RNA Elements of Zika Virus by Using a Self-Splicing Ribozyme-Dependent Infectious Clone.

    PubMed

    Liu, Zhong-Yu; Yu, Jiu-Yang; Huang, Xing-Yao; Fan, Hang; Li, Xiao-Feng; Deng, Yong-Qiang; Ji, Xue; Cheng, Meng-Li; Ye, Qing; Zhao, Hui; Han, Jian-Feng; An, Xiao-Ping; Jiang, Tao; Zhang, Bo; Tong, Yi-Gang; Qin, Cheng-Feng

    2017-11-01

    Zika virus (ZIKV) has caused significant outbreaks and epidemics in the Americas recently, raising global concern due to its ability to cause microcephaly and other neurological complications. A stable and efficient infectious clone of ZIKV is urgently needed. However, the instability and toxicity of flavivirus cDNA clones in Escherichia coli hosts has hindered the development of ZIKV infectious clones. Here, using a novel self-splicing ribozyme-based strategy, we generated a stable infectious cDNA clone of a contemporary ZIKV strain imported from Venezuela to China in 2016. The constructed clone contained a modified version of the group II self-splicing intron P.li.LSUI2 near the junction between the E and NS1 genes, which were removed from the RNA transcripts by an easy-to-establish in vitro splicing reaction. Transfection of the spliced RNAs into BHK-21 cells led to the production of infectious progeny virus that resembled the parental virus. Finally, potential cis -acting RNA elements in ZIKV genomic RNA were identified based on this novel reverse genetics system, and the critical role of 5'-SLA promoter and 5'-3' cyclization sequences were characterized by a combination of different assays. Our results provide another stable and reliable reverse genetics system for ZIKV that will help study ZIKV infection and pathogenesis, and the novel self-splicing intron-based strategy could be further expanded for the construction of infectious clones from other emerging and reemerging flaviviruses. IMPORTANCE The ongoing Zika virus (ZIKV) outbreaks have drawn global concern due to the unexpected causal link to fetus microcephaly and other severe neurological complications. The infectious cDNA clones of ZIKV are critical for the research community to study the virus, understand the disease, and inform vaccine design and antiviral screening. A panel of existing technologies have been utilized to develop ZIKV infectious clones. Here, we successfully generated a stable infectious clone of a 2016 ZIKV strain using a novel self-splicing ribozyme-based technology that abolished the potential toxicity of ZIKV cDNA clones to the E. coli host. Moreover, two crucial cis -acting replication elements (5'-SLA and 5'-CS) of ZIKV were first identified using this novel reverse genetics system. This novel self-splicing ribozyme-based reverse genetics platform will be widely utilized in future ZIKV studies and provide insight for the development of infectious clones of other emerging viruses. Copyright © 2017 American Society for Microbiology.

  8. Characterization of cis-Acting RNA Elements of Zika Virus by Using a Self-Splicing Ribozyme-Dependent Infectious Clone

    PubMed Central

    Liu, Zhong-Yu; Yu, Jiu-Yang; Huang, Xing-Yao; Fan, Hang; Li, Xiao-Feng; Deng, Yong-Qiang; Ji, Xue; Cheng, Meng-Li; Ye, Qing; Zhao, Hui; Han, Jian-Feng; An, Xiao-Ping; Jiang, Tao; Zhang, Bo; Tong, Yi-Gang

    2017-01-01

    ABSTRACT Zika virus (ZIKV) has caused significant outbreaks and epidemics in the Americas recently, raising global concern due to its ability to cause microcephaly and other neurological complications. A stable and efficient infectious clone of ZIKV is urgently needed. However, the instability and toxicity of flavivirus cDNA clones in Escherichia coli hosts has hindered the development of ZIKV infectious clones. Here, using a novel self-splicing ribozyme-based strategy, we generated a stable infectious cDNA clone of a contemporary ZIKV strain imported from Venezuela to China in 2016. The constructed clone contained a modified version of the group II self-splicing intron P.li.LSUI2 near the junction between the E and NS1 genes, which were removed from the RNA transcripts by an easy-to-establish in vitro splicing reaction. Transfection of the spliced RNAs into BHK-21 cells led to the production of infectious progeny virus that resembled the parental virus. Finally, potential cis-acting RNA elements in ZIKV genomic RNA were identified based on this novel reverse genetics system, and the critical role of 5′-SLA promoter and 5′-3′ cyclization sequences were characterized by a combination of different assays. Our results provide another stable and reliable reverse genetics system for ZIKV that will help study ZIKV infection and pathogenesis, and the novel self-splicing intron-based strategy could be further expanded for the construction of infectious clones from other emerging and reemerging flaviviruses. IMPORTANCE The ongoing Zika virus (ZIKV) outbreaks have drawn global concern due to the unexpected causal link to fetus microcephaly and other severe neurological complications. The infectious cDNA clones of ZIKV are critical for the research community to study the virus, understand the disease, and inform vaccine design and antiviral screening. A panel of existing technologies have been utilized to develop ZIKV infectious clones. Here, we successfully generated a stable infectious clone of a 2016 ZIKV strain using a novel self-splicing ribozyme-based technology that abolished the potential toxicity of ZIKV cDNA clones to the E. coli host. Moreover, two crucial cis-acting replication elements (5′-SLA and 5′-CS) of ZIKV were first identified using this novel reverse genetics system. This novel self-splicing ribozyme-based reverse genetics platform will be widely utilized in future ZIKV studies and provide insight for the development of infectious clones of other emerging viruses. PMID:28814522

  9. Muscle-specific accumulation of Drosophila myosin heavy chains: a splicing mutation in an alternative exon results in an isoform substitution.

    PubMed Central

    Kronert, W A; Edwards, K A; Roche, E S; Wells, L; Bernstein, S I

    1991-01-01

    We show that the molecular lesions in two homozygousviable mutants of the Drosophila muscle myosin heavy chain gene affect an alternative exon (exon 9a) which encodes a portion of the myosin head that is highly conserved among both cytoplasmic and muscle myosins of all organisms. In situ hybridization and Northern blotting analysis in wild-type organisms indicates that exon 9a is used in indirect flight muscles whereas both exons 9a and 9b are utilized in jump muscles. Alternative exons 9b and 9c are used in other larval and adult muscles. One of the mutations in exon 9a is a nonsense allele that greatly reduces myosin RNA stability. It prevents thick filament accumulation in indirect flight muscles and severely reduces the number of thick filaments in a subset of cells of the jump muscles. The second mutation affects the 5' splice site of exon 9a. This results in production of an aberrantly spliced transcript in indirect flight muscles, which prevents thick filament accumulation. Jump muscles of this mutant substitute exon 9b for exon 9a and consequently have normal levels of thick filaments in this muscle type. This isoform substitution does not obviously affect the ultrastructure or function of the jump muscle. Analysis of this mutant illustrates that indirect flight muscles and jump muscles utilize different mechanisms for alternative RNA splicing. Images PMID:1907912

  10. Two short protein domains are responsible for the nuclear localization of the mouse spermine oxidase mu isoform.

    PubMed

    Bianchi, Marzia; Amendola, Roberto; Federico, Rodolfo; Polticelli, Fabio; Mariottini, Paolo

    2005-06-01

    In mouse, at least two catalytically active splice variants (mSMOalpha and mSMOmicro) of the flavin-containing spermine oxidase enzyme are present. We have demonstrated previously that the cytosolic mSMOalpha is the major isoform, while the mSMOmicro enzyme is present in both nuclear and cytoplasmic compartments and has an extra protein domain corresponding to the additional exon VIa. By amino acid sequence comparison and molecular modeling of mSMO proteins, we identified a second domain that is necessary for nuclear localization of the mSMOmicro splice variant. A deletion mutant enzyme of this region was constructed to demonstrate its role in protein nuclear targeting by means of transient expression in the murine neuroblastoma cell line, N18TG2.

  11. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.

    PubMed

    Sveen, A; Kilpinen, S; Ruusulehto, A; Lothe, R A; Skotheim, R I

    2016-05-12

    Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations.

  12. The power of fission: yeast as a tool for understanding complex splicing.

    PubMed

    Fair, Benjamin Jung; Pleiss, Jeffrey A

    2017-06-01

    Pre-mRNA splicing is an essential component of eukaryotic gene expression. Many metazoans, including humans, regulate alternative splicing patterns to generate expansions of their proteome from a limited number of genes. Importantly, a considerable fraction of human disease causing mutations manifest themselves through altering the sequences that shape the splicing patterns of genes. Thus, understanding the mechanistic bases of this complex pathway will be an essential component of combating these diseases. Dating almost to the initial discovery of splicing, researchers have taken advantage of the genetic tractability of budding yeast to identify the components and decipher the mechanisms of splicing. However, budding yeast lacks the complex splicing machinery and alternative splicing patterns most relevant to humans. More recently, many researchers have turned their efforts to study the fission yeast, Schizosaccharomyces pombe, which has retained many features of complex splicing, including degenerate splice site sequences, the usage of exonic splicing enhancers, and SR proteins. Here, we review recent work using fission yeast genetics to examine pre-mRNA splicing, highlighting its promise for modeling the complex splicing seen in higher eukaryotes.

  13. High-throughput sequence analysis of Ciona intestinalis SL trans-spliced mRNAs: alternative expression modes and gene function correlates.

    PubMed

    Matsumoto, Jun; Dewar, Ken; Wasserscheid, Jessica; Wiley, Graham B; Macmil, Simone L; Roe, Bruce A; Zeller, Robert W; Satou, Yutaka; Hastings, Kenneth E M

    2010-05-01

    Pre-mRNA 5' spliced-leader (SL) trans-splicing occurs in some metazoan groups but not in others. Genome-wide characterization of the trans-spliced mRNA subpopulation has not yet been reported for any metazoan. We carried out a high-throughput analysis of the SL trans-spliced mRNA population of the ascidian tunicate Ciona intestinalis by 454 Life Sciences (Roche) pyrosequencing of SL-PCR-amplified random-primed reverse transcripts of tailbud embryo RNA. We obtained approximately 250,000 high-quality reads corresponding to 8790 genes, approximately 58% of the Ciona total gene number. The great depth of this data revealed new aspects of trans-splicing, including the existence of a significant class of "infrequently trans-spliced" genes, accounting for approximately 28% of represented genes, that generate largely non-trans-spliced mRNAs, but also produce trans-spliced mRNAs, in part through alternative promoter use. Thus, the conventional qualitative dichotomy of trans-spliced versus non-trans-spliced genes should be supplanted by a more accurate quantitative view recognizing frequently and infrequently trans-spliced gene categories. Our data include reads representing approximately 80% of Ciona frequently trans-spliced genes. Our analysis also revealed significant use of closely spaced alternative trans-splice acceptor sites which further underscores the mechanistic similarity of cis- and trans-splicing and indicates that the prevalence of +/-3-nt alternative splicing events at tandem acceptor sites, NAGNAG, is driven by spliceosomal mechanisms, and not nonsense-mediated decay, or selection at the protein level. The breadth of gene representation data enabled us to find new correlations between trans-splicing status and gene function, namely the overrepresentation in the frequently trans-spliced gene class of genes associated with plasma/endomembrane system, Ca(2+) homeostasis, and actin cytoskeleton.

  14. An efficient method for variable region assembly in the construction of scFv phage display libraries using independent strand amplification

    PubMed Central

    Sotelo, Pablo H.; Collazo, Noberto; Zuñiga, Roberto; Gutiérrez-González, Matías; Catalán, Diego; Ribeiro, Carolina Hager; Aguillón, Juan Carlos; Molina, María Carmen

    2012-01-01

    Phage display library technology is a common method to produce human antibodies. In this technique, the immunoglobulin variable regions are displayed in a bacteriophage in a way that each filamentous virus displays the product of a single antibody gene on its surface. From the collection of different phages, it is possible to isolate the virus that recognizes specific targets. The most common form in which to display antibody variable regions in the phage is the single chain variable fragment format (scFv), which requires assembly of the heavy and light immunoglobulin variable regions in a single gene. In this work, we describe a simple and efficient method for the assembly of immunoglobulin heavy and light chain variable regions in a scFv format. This procedure involves a two-step reaction: (1) DNA amplification to produce the single strand form of the heavy or light chain gene required for the fusion; and (2) mixture of both single strand products followed by an assembly reaction to construct a complete scFv gene. Using this method, we produced 6-fold more scFv encoding DNA than the commonly used splicing by overlap extension PCR (SOE-PCR) approach. The scFv gene produced by this method also proved to be efficient in generating a diverse scFv phage display library. From this scFv library, we obtained phages that bound several non-related antigens, including recombinant proteins and rotavirus particles. PMID:22692130

  15. SplicingTypesAnno: annotating and quantifying alternative splicing events for RNA-Seq data.

    PubMed

    Sun, Xiaoyong; Zuo, Fenghua; Ru, Yuanbin; Guo, Jiqiang; Yan, Xiaoyan; Sablok, Gaurav

    2015-04-01

    Alternative splicing plays a key role in the regulation of the central dogma. Four major types of alternative splicing have been classified as intron retention, exon skipping, alternative 5 splice sites or alternative donor sites, and alternative 3 splice sites or alternative acceptor sites. A few algorithms have been developed to detect splice junctions from RNA-Seq reads. However, there are few tools targeting at the major alternative splicing types at the exon/intron level. This type of analysis may reveal subtle, yet important events of alternative splicing, and thus help gain deeper understanding of the mechanism of alternative splicing. This paper describes a user-friendly R package, extracting, annotating and analyzing alternative splicing types for sequence alignment files from RNA-Seq. SplicingTypesAnno can: (1) provide annotation for major alternative splicing at exon/intron level. By comparing the annotation from GTF/GFF file, it identifies the novel alternative splicing sites; (2) offer a convenient two-level analysis: genome-scale annotation for users with high performance computing environment, and gene-scale annotation for users with personal computers; (3) generate a user-friendly web report and additional BED files for IGV visualization. SplicingTypesAnno is a user-friendly R package for extracting, annotating and analyzing alternative splicing types at exon/intron level for sequence alignment files from RNA-Seq. It is publically available at https://sourceforge.net/projects/splicingtypes/files/ or http://genome.sdau.edu.cn/research/software/SplicingTypesAnno.html. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Spliced RNA of woodchuck hepatitis virus.

    PubMed

    Ogston, C W; Razman, D G

    1992-07-01

    Polymerase chain reaction was used to investigate RNA splicing in liver of woodchucks infected with woodchuck hepatitis virus (WHV). Two spliced species were detected, and the splice junctions were sequenced. The larger spliced RNA has an intron of 1300 nucleotides, and the smaller spliced sequence shows an additional downstream intron of 1104 nucleotides. We did not detect singly spliced sequences from which the smaller intron alone was removed. Control experiments showed that spliced sequences are present in both RNA and DNA in infected liver, showing that the viral reverse transcriptase can use spliced RNA as template. Spliced sequences were detected also in virion DNA prepared from serum. The upstream intron produces a reading frame that fuses the core to the polymerase polypeptide, while the downstream intron causes an inframe deletion in the polymerase open reading frame. Whereas the splicing patterns in WHV are superficially similar to those reported recently in hepatitis B virus, we detected no obvious homology in the coding capacity of spliced RNAs from these two viruses.

  17. The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture.

    PubMed

    Pai, Athma A; Henriques, Telmo; McCue, Kayla; Burkholder, Adam; Adelman, Karen; Burge, Christopher B

    2017-12-27

    Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning ('intron definition') or exon-spanning ('exon definition') pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila , using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60-70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. We observed unexpectedly low variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance the rate or accuracy of splicing.

  18. iCLIP Predicts the Dual Splicing Effects of TIA-RNA Interactions

    PubMed Central

    Briese, Michael; Zarnack, Kathi; Luscombe, Nicholas M.; Rot, Gregor; Zupan, Blaž; Curk, Tomaž; Ule, Jernej

    2010-01-01

    The regulation of alternative splicing involves interactions between RNA-binding proteins and pre-mRNA positions close to the splice sites. T-cell intracellular antigen 1 (TIA1) and TIA1-like 1 (TIAL1) locally enhance exon inclusion by recruiting U1 snRNP to 5′ splice sites. However, effects of TIA proteins on splicing of distal exons have not yet been explored. We used UV-crosslinking and immunoprecipitation (iCLIP) to find that TIA1 and TIAL1 bind at the same positions on human RNAs. Binding downstream of 5′ splice sites was used to predict the effects of TIA proteins in enhancing inclusion of proximal exons and silencing inclusion of distal exons. The predictions were validated in an unbiased manner using splice-junction microarrays, RT-PCR, and minigene constructs, which showed that TIA proteins maintain splicing fidelity and regulate alternative splicing by binding exclusively downstream of 5′ splice sites. Surprisingly, TIA binding at 5′ splice sites silenced distal cassette and variable-length exons without binding in proximity to the regulated alternative 3′ splice sites. Using transcriptome-wide high-resolution mapping of TIA-RNA interactions we evaluated the distal splicing effects of TIA proteins. These data are consistent with a model where TIA proteins shorten the time available for definition of an alternative exon by enhancing recognition of the preceding 5′ splice site. Thus, our findings indicate that changes in splicing kinetics could mediate the distal regulation of alternative splicing. PMID:21048981

  19. Adaptive interference cancel filter for evoked potential using high-order cumulants.

    PubMed

    Lin, Bor-Shyh; Lin, Bor-Shing; Chong, Fok-Ching; Lai, Feipei

    2004-01-01

    This paper is to present evoked potential (EP) processing using adaptive interference cancel (AIC) filter with second and high order cumulants. In conventional ensemble averaging method, people have to conduct repetitively experiments to record the required data. Recently, the use of AIC structure with second statistics in processing EP has proved more efficiency than traditional averaging method, but it is sensitive to both of the reference signal statistics and the choice of step size. Thus, we proposed higher order statistics-based AIC method to improve these disadvantages. This study was experimented in somatosensory EP corrupted with EEG. Gradient type algorithm is used in AIC method. Comparisons with AIC filter on second, third, fourth order statistics are also presented in this paper. We observed that AIC filter with third order statistics has better convergent performance for EP processing and is not sensitive to the selection of step size and reference input.

  20. The Arabidopsis THO/TREX component TEX1 functionally interacts with MOS11 and modulates mRNA export and alternative splicing events.

    PubMed

    Sørensen, Brian B; Ehrnsberger, Hans F; Esposito, Silvia; Pfab, Alexander; Bruckmann, Astrid; Hauptmann, Judith; Meister, Gunter; Merkl, Rainer; Schubert, Thomas; Längst, Gernot; Melzer, Michael; Grasser, Marion; Grasser, Klaus D

    2017-02-01

    We identify proteins that associate with the THO core complex, and show that the TEX1 and MOS11 components functionally interact, affecting mRNA export and splicing as well as plant development. TREX (TRanscription-EXport) is a multiprotein complex that plays a central role in the coordination of synthesis, processing and nuclear export of mRNAs. Using targeted proteomics, we identified proteins that associate with the THO core complex of Arabidopsis TREX. In addition to the RNA helicase UAP56 and the mRNA export factors ALY2-4 and MOS11 we detected interactions with the mRNA export complex TREX-2 and multiple spliceosomal components. Plants defective in the THO component TEX1 or in the mRNA export factor MOS11 (orthologue of human CIP29) are mildly affected. However, tex1 mos11 double-mutant plants show marked defects in vegetative and reproductive development. In tex1 plants, the levels of tasiRNAs are reduced, while miR173 levels are decreased in mos11 mutants. In nuclei of mos11 cells increased mRNA accumulation was observed, while no mRNA export defect was detected with tex1 cells. Nevertheless, in tex1 mos11 double-mutants, the mRNA export defect was clearly enhanced relative to mos11. The subnuclear distribution of TEX1 substantially overlaps with that of splicing-related SR proteins and in tex1 plants the ratio of certain alternative splicing events is altered. Our results demonstrate that Arabidopsis TEX1 and MOS11 are involved in distinct steps of the biogenesis of mRNAs and small RNAs, and that they interact regarding some aspects, but act independently in others.

  1. Discovery of a new mechanism for regulation of plant triacylglycerol metabolism: The peanut diacylglycerol acyltransferase-1 gene family transcriptome is highly enriched in alternative splicing variants.

    PubMed

    Zheng, Ling; Shockey, Jay; Guo, Feng; Shi, Lingmin; Li, Xinguo; Shan, Lei; Wan, Shubo; Peng, Zhenying

    2017-12-01

    Triacylglycerols (TAGs) are the most important energy storage form in oilseed crops. Diacylglycerol acyltransferase (DGAT) catalyzes the rate-limiting step of the Kennedy pathway of TAG biosynthesis. To date, little is known about the regulation of DGAT activity in peanut (Arachis hypogaea), an agronomically important oilseed crop that is cultivated in many parts of the world. In this study, seven distinct forms of type 1 DGAT (AhDGAT1.1-AhDGAT1.7) were identified, cloned, and characterized. Comparisons of the nucleotide sequences and gene structures revealed many different splicing variants of AhDGAT1, some of which displayed different organ-specific expression patterns. A representative gene (AhDGAT1.1) was transformed into wild-type tobacco and was shown to increase seed fatty acid (FA) content by 14.7%-20.9%. All seven AhDGAT1s were expressed in TAG-deficient Saccharomyces cerevisiae strain H1246; the five longest AhDGAT1 variants generated high levels of acyltransferase activity and complemented the free fatty acid lethality phenotype in this strain. The alternative splicing that gives rise to AhDGAT1.2 and AhDGAT1.4 creates predicted protein C-terminal truncations. The proteins encoded by these two variants were not active and did not complement the fatty acid sensitivity in H1246. These results were verified by visualization of intracellular lipid droplets using Nile Red staining. Collectively, the results presented here represent the first comprehensive analysis of the peanut DGAT1 gene family, which, unlike in other published plant DGAT1 sequences, shows widespread alternative splicing that may affect the expression patterns and enzyme activities of some members of the gene family. Copyright © 2017. Published by Elsevier GmbH.

  2. Time-Accurate Local Time Stepping and High-Order Time CESE Methods for Multi-Dimensional Flows Using Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji Shankar; Cheng, Gary

    2013-01-01

    With the wide availability of affordable multiple-core parallel supercomputers, next generation numerical simulations of flow physics are being focused on unsteady computations for problems involving multiple time scales and multiple physics. These simulations require higher solution accuracy than most algorithms and computational fluid dynamics codes currently available. This paper focuses on the developmental effort for high-fidelity multi-dimensional, unstructured-mesh flow solvers using the space-time conservation element, solution element (CESE) framework. Two approaches have been investigated in this research in order to provide high-accuracy, cross-cutting numerical simulations for a variety of flow regimes: 1) time-accurate local time stepping and 2) highorder CESE method. The first approach utilizes consistent numerical formulations in the space-time flux integration to preserve temporal conservation across the cells with different marching time steps. Such approach relieves the stringent time step constraint associated with the smallest time step in the computational domain while preserving temporal accuracy for all the cells. For flows involving multiple scales, both numerical accuracy and efficiency can be significantly enhanced. The second approach extends the current CESE solver to higher-order accuracy. Unlike other existing explicit high-order methods for unstructured meshes, the CESE framework maintains a CFL condition of one for arbitrarily high-order formulations while retaining the same compact stencil as its second-order counterpart. For large-scale unsteady computations, this feature substantially enhances numerical efficiency. Numerical formulations and validations using benchmark problems are discussed in this paper along with realistic examples.

  3. Genetics of alternative splicing evolution during sunflower domestication.

    PubMed

    Smith, Chris C R; Tittes, Silas; Mendieta, J Paul; Collier-Zans, Erin; Rowe, Heather C; Rieseberg, Loren H; Kane, Nolan C

    2018-06-11

    Alternative splicing enables organisms to produce the diversity of proteins necessary for multicellular life by using relatively few protein-coding genes. Although differences in splicing have been identified among divergent taxa, the shorter-term evolution of splicing is understudied. The origins of novel splice forms, and the contributions of alternative splicing to major evolutionary transitions, are largely unknown. This study used transcriptomes of wild and domesticated sunflowers to examine splice differentiation and regulation during domestication. We identified substantial splicing divergence between wild and domesticated sunflowers, mainly in the form of intron retention. Transcripts with divergent splicing were enriched for seed-development functions, suggesting that artificial selection impacted splicing patterns. Mapping of quantitative trait loci (QTLs) associated with 144 differential splicing cases revealed primarily trans -acting variation affecting splicing patterns. A large proportion of identified QTLs contain known spliceosome proteins and are associated with splicing variation in multiple genes. Examining a broader set of wild and domesticated sunflower genotypes revealed that most differential splicing patterns in domesticated sunflowers likely arose from standing variation in wild Helianthus annuus and gained frequency during the domestication process. However, several domesticate-associated splicing patterns appear to be introgressed from other Helianthus species. These results suggest that sunflower domestication involved selection on pleiotropic regulatory alleles. More generally, our findings indicate that substantial differences in isoform abundances arose rapidly during a recent evolutionary transition and appear to contribute to adaptation and population divergence.

  4. SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts.

    PubMed

    Ryan, Michael C; Cleland, James; Kim, RyangGuk; Wong, Wing Chung; Weinstein, John N

    2012-09-15

    SpliceSeq is a resource for RNA-Seq data that provides a clear view of alternative splicing and identifies potential functional changes that result from splice variation. It displays intuitive visualizations and prioritized lists of results that highlight splicing events and their biological consequences. SpliceSeq unambiguously aligns reads to gene splice graphs, facilitating accurate analysis of large, complex transcript variants that cannot be adequately represented in other formats. SpliceSeq is freely available at http://bioinformatics.mdanderson.org/main/SpliceSeq:Overview. The application is a Java program that can be launched via a browser or installed locally. Local installation requires MySQL and Bowtie. mryan@insilico.us.com Supplementary data are available at Bioinformatics online.

  5. Ovarian Tumors related to Intronic Mutations in DICER1: A Report from the International Ovarian and Testicular Stromal Tumor Registry

    PubMed Central

    Schultz, Kris Ann; Harris, Anne; Messinger, Yoav; Sencer, Susan; Baldinger, Shari; Dehner, Louis P.; Hill, D. Ashley

    2015-01-01

    Germline DICER1 mutations have been described in individuals with pleuropulmonary blastoma (PPB), ovarian Sertoli-Leydig cell tumor (SLCT), sarcomas, multinodular goiter, thyroid carcinoma, cystic nephroma and other neoplastic conditions. Early results from the International Ovarian and Testicular Stromal Tumor Registry show germline DICER1 mutations in 48% of girls and women with SLCT. In this report, a young woman presented with ovarian undifferentiated sarcoma. Four years later, she presented with SLCT. She was successfully treated for both malignancies. Sequence results showed a germline intronic mutation in DICER1. This mutation results in an exact duplication of the six bases at the splice site at the intron 23 and exon 24 junction. Predicted improper splicing leads to inclusion of 10 bases of intronic sequence, frameshift and premature truncation of the protein disrupting the RNase IIIb domain. A second individual with SLCT was found to have an identical germline mutation. In each of the ovarian tumors, an additional somatic mutation in the RNase IIIb domain of DICER1 was found. In rare patients, germline intronic mutations in DICER1 that are predicted to cause incorrect splicing can also contribute to the pathogenesis of SLCT. PMID:26289771

  6. Domain identification in impedance computed tomography by spline collocation method

    NASA Technical Reports Server (NTRS)

    Kojima, Fumio

    1990-01-01

    A method for estimating an unknown domain in elliptic boundary value problems is considered. The problem is formulated as an inverse problem of integral equations of the second kind. A computational method is developed using a splice collocation scheme. The results can be applied to the inverse problem of impedance computed tomography (ICT) for image reconstruction.

  7. 49 CFR Appendix G to Subchapter B... - Minimum Periodic Inspection Standards

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... missing or in danger of falling away. d. Brake Hose. (1) Hose with any damage extending through the outer... braid reinforcement or color difference between cover and inner tube. Exposure of second color is cause... hoses improperly joined (such as a splice made by sliding the hose ends over a piece of tubing and...

  8. 49 CFR Appendix G to Subchapter B... - Minimum Periodic Inspection Standards

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... missing or in danger of falling away. d. Brake Hose. (1) Hose with any damage extending through the outer... braid reinforcement or color difference between cover and inner tube. Exposure of second color is cause... hoses improperly joined (such as a splice made by sliding the hose ends over a piece of tubing and...

  9. 49 CFR Appendix G to Subchapter B... - Minimum Periodic Inspection Standards

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... missing or in danger of falling away. d. Brake Hose. (1) Hose with any damage extending through the outer... braid reinforcement or color difference between cover and inner tube. Exposure of second color is cause... hoses improperly joined (such as a splice made by sliding the hose ends over a piece of tubing and...

  10. Exploiting differential RNA splicing patterns: a potential new group of therapeutic targets in cancer.

    PubMed

    Jyotsana, Nidhi; Heuser, Michael

    2018-02-01

    Mutations in genes associated with splicing have been found in hematologic malignancies, but also in solid cancers. Aberrant cancer specific RNA splicing either results from mutations or misexpression of the spliceosome genes directly, or from mutations in splice sites of oncogenes or tumor suppressors. Areas covered: In this review, we present molecular targets of aberrant splicing in various malignancies, information on existing and emerging therapeutics against such targets, and strategies for future drug development. Expert opinion: Alternative splicing is an important mechanism that controls gene expression, and hence pharmacologic and genetic control of aberrant alternative RNA splicing has been proposed as a potential therapy in cancer. To identify and validate aberrant RNA splicing patterns as therapeutic targets we need to (1) characterize the most common genetic aberrations of the spliceosome and of splice sites, (2) understand the dysregulated downstream pathways and (3) exploit in-vivo disease models of aberrant splicing. Antisense oligonucleotides show promising activity, but will benefit from improved delivery tools. Inhibitors of mutated splicing factors require improved specificity, as alternative and aberrant splicing are often intertwined like two sides of the same coin. In summary, targeting aberrant splicing is an early but emerging field in cancer treatment.

  11. Interplay between DMD Point Mutations and Splicing Signals in Dystrophinopathy Phenotypes

    PubMed Central

    Juan-Mateu, Jonàs; González-Quereda, Lidia; Rodríguez, Maria José; Verdura, Edgard; Lázaro, Kira; Jou, Cristina; Nascimento, Andrés; Jiménez-Mallebrera, Cecilia; Colomer, Jaume; Monges, Soledad; Lubieniecki, Fabiana; Foncuberta, Maria Eugenia; Pascual-Pascual, Samuel Ignacio; Molano, Jesús; Baiget, Montserrat; Gallano, Pia

    2013-01-01

    DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements. PMID:23536893

  12. 30 CFR 57.12088 - Splicing trailing cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...

  13. 30 CFR 57.12088 - Splicing trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...

  14. 30 CFR 57.12088 - Splicing trailing cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...

  15. 30 CFR 57.12088 - Splicing trailing cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...

  16. The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture

    PubMed Central

    Pai, Athma A; Henriques, Telmo; McCue, Kayla; Burkholder, Adam; Adelman, Karen

    2017-01-01

    Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning (‘intron definition’) or exon-spanning (‘exon definition’) pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila, using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60–70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. We observed unexpectedly low variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance the rate or accuracy of splicing. PMID:29280736

  17. The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture

    DOE PAGES

    Pai, Athma A.; Henriques, Telmo; McCue, Kayla; ...

    2017-12-27

    Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning (‘intron definition’) or exon-spanning (‘exon definition’) pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila, using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60–70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. We observed unexpectedly lowmore » variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance the rate or accuracy of splicing.« less

  18. The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pai, Athma A.; Henriques, Telmo; McCue, Kayla

    Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning (‘intron definition’) or exon-spanning (‘exon definition’) pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila, using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60–70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. We observed unexpectedly lowmore » variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance the rate or accuracy of splicing.« less

  19. SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts

    PubMed Central

    Ryan, Michael C.; Cleland, James; Kim, RyangGuk; Wong, Wing Chung; Weinstein, John N.

    2012-01-01

    Summary: SpliceSeq is a resource for RNA-Seq data that provides a clear view of alternative splicing and identifies potential functional changes that result from splice variation. It displays intuitive visualizations and prioritized lists of results that highlight splicing events and their biological consequences. SpliceSeq unambiguously aligns reads to gene splice graphs, facilitating accurate analysis of large, complex transcript variants that cannot be adequately represented in other formats. Availability and implementation: SpliceSeq is freely available at http://bioinformatics.mdanderson.org/main/SpliceSeq:Overview. The application is a Java program that can be launched via a browser or installed locally. Local installation requires MySQL and Bowtie. Contact: mryan@insilico.us.com Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:22820202

  20. IRAS: High-Throughput Identification of Novel Alternative Splicing Regulators.

    PubMed

    Zheng, S

    2016-01-01

    Alternative splicing is a fundamental regulatory process of gene expression. Defects in alternative splicing can lead to various diseases, and modification of disease-causing splicing events presents great therapeutic promise. Splicing outcome is commonly affected by extracellular stimuli and signaling cascades that converge on RNA-binding splicing regulators. These trans-acting factors recognize cis-elements in pre-mRNA transcripts to affect spliceosome assembly and splice site choices. Identification of these splicing regulators and/or upstream modulators has been difficult and traditionally done by piecemeal. High-throughput screening strategies to find multiple regulators of exon splicing have great potential to accelerate the discovery process, but typically confront low sensitivity and low specificity of screening assays. Here we describe a unique screening strategy, IRAS (identifying regulators of alternative splicing), using a pair of dual-output minigene reporters to allow for sensitive detection of exon splicing changes. Each dual-output reporter produces green fluorescent protein (GFP) and red fluorescent protein (RFP) fluorescent signals to assay the two spliced isoforms exclusively. The two complementary minigene reporters alter GFP/RFP output ratios in the opposite direction in response to splicing change. Applying IRAS in cell-based high-throughput screens allows sensitive and specific identification of splicing regulators and modulators for any alternative exons of interest. In comparison to previous high-throughput screening methods, IRAS substantially enhances the specificity of the screening assay. This strategy significantly eliminates false positives without sacrificing sensitive identification of true regulators of splicing. © 2016 Elsevier Inc. All rights reserved.

  1. Comparison of effects of dry versus wet swallowing on Eustachian tube function via a nine-step inflation/deflation test.

    PubMed

    Adali, M Kemal; Uzun, Cem

    2005-09-01

    The aim of the present study is to evaluate the effect of swallowing type (dry versus wet) on the outcome of a nine-step inflation/deflation tympanometric Eustachian tube function (ETF) test in healthy adults. Fourteen normal healthy volunteers, between 19 and 28 years of age, were included in the study. The nine-step test was performed in two different test procedures: (1) test with dry swallows (dry test procedure) and (2) test with liquid swallows (wet test procedure). If the equilibration of middle-ear (ME) pressure was successful in all the steps of the nine-step test, ETF was considered 'Good'. Otherwise, the test was considered 'Poor', and the test was repeated at a second session. In the dry test procedure, ETF was 'Good' in 21 ears at the first session and in 24 ears after the second session (p > 0.05). However, in the wet test procedure, ETF was 'Good' in 13 ears at the first session and in 21 ears after the second session (p < 0.05). At the first session, ETF was 'Good' in 21 and 13 ears in the dry and wet test procedures, respectively. The difference was statistically significant (p < 0.05). However, after the second session, the overall number of ears with 'Good' tubal function was almost the same in both test procedures (24 ears at dry test procedures versus 21 ears at wet test procedures;p > 0.05). Dry swallowing seems to be more effective for the equilibration of ME pressure. Thus, a single-session dependent evaluation of ETF may be efficient for the dry test procedure of the nine-step test. Swallowing with water may be easier for subjects, but a repetition of the test at a second session may be necessary when the test result is 'Poor'.

  2. Regulation of alternative mRNA splicing: old players and new perspectives.

    PubMed

    Dvinge, Heidi

    2018-06-01

    Nearly all human multi-exon genes are subject to alternative splicing in one or more cell types. The splicing machinery, therefore, has to select between multiple splice sites in a context-dependent manner, relying on sequence features in cis and trans-acting splicing regulators that either promote or repress splice site recognition and spliceosome assembly. However, the functional coupling between multiple gene regulatory layers signifies that splicing can also be modulated by transcriptional or epigenetic characteristics. Other, less obvious, aspects of alternative splicing have come to light in recent years, often involving core components of the spliceosome previously thought to perform a basal rather than a regulatory role in splicing. Together this paints a highly dynamic picture of splicing regulation, where the final splice site choice is governed by the entire transcriptional environment of a gene and its cellular context. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Splicing predictions reliably classify different types of alternative splicing

    PubMed Central

    Busch, Anke; Hertel, Klemens J.

    2015-01-01

    Alternative splicing is a key player in the creation of complex mammalian transcriptomes and its misregulation is associated with many human diseases. Multiple mRNA isoforms are generated from most human genes, a process mediated by the interplay of various RNA signature elements and trans-acting factors that guide spliceosomal assembly and intron removal. Here, we introduce a splicing predictor that evaluates hundreds of RNA features simultaneously to successfully differentiate between exons that are constitutively spliced, exons that undergo alternative 5′ or 3′ splice-site selection, and alternative cassette-type exons. Surprisingly, the splicing predictor did not feature strong discriminatory contributions from binding sites for known splicing regulators. Rather, the ability of an exon to be involved in one or multiple types of alternative splicing is dictated by its immediate sequence context, mainly driven by the identity of the exon's splice sites, the conservation around them, and its exon/intron architecture. Thus, the splicing behavior of human exons can be reliably predicted based on basic RNA sequence elements. PMID:25805853

  4. Methods for Characterization of Alternative RNA Splicing.

    PubMed

    Harvey, Samuel E; Cheng, Chonghui

    2016-01-01

    Quantification of alternative splicing to detect the abundance of differentially spliced isoforms of a gene in total RNA can be accomplished via RT-PCR using both quantitative real-time and semi-quantitative PCR methods. These methods require careful PCR primer design to ensure specific detection of particular splice isoforms. We also describe analysis of alternative splicing using a splicing "minigene" in mammalian cell tissue culture to facilitate investigation of the regulation of alternative splicing of a particular exon of interest.

  5. SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells.

    PubMed

    Liang, Yang; Tebaldi, Toma; Rejeski, Kai; Joshi, Poorval; Stefani, Giovanni; Taylor, Ashley; Song, Yuanbin; Vasic, Radovan; Maziarz, Jamie; Balasubramanian, Kunthavai; Ardasheva, Anastasia; Ding, Alicia; Quattrone, Alessandro; Halene, Stephanie

    2018-06-01

    Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2 P95H binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2 P95H targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a "splicing-cascade" phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2 P95H , impairs hematopoietic differentiation in vivo. Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer.

  6. Schizophyllum commune has an extensive and functional alternative splicing repertoire

    PubMed Central

    Gehrmann, Thies; Pelkmans, Jordi F.; Lugones, Luis G.; Wösten, Han A. B.; Abeel, Thomas; Reinders, Marcel J. T.

    2016-01-01

    Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the events in coding regions. On the other hand, exon skipping events were rare in coding regions (1%) but enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative splicing than any other studied fungus. Taken together, alternative splicing increases the complexity of the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality that is exploited dynamically. PMID:27659065

  7. Widespread Use of Non-productive Alternative Splice Sites in Saccharomyces cerevisiae

    PubMed Central

    Kawashima, Tadashi; Douglass, Stephen; Gabunilas, Jason; Pellegrini, Matteo; Chanfreau, Guillaume F.

    2014-01-01

    Saccharomyces cerevisiae has been used as a model system to investigate the mechanisms of pre-mRNA splicing but only a few examples of alternative splice site usage have been described in this organism. Using RNA-Seq analysis of nonsense-mediated mRNA decay (NMD) mutant strains, we show that many S. cerevisiae intron-containing genes exhibit usage of alternative splice sites, but many transcripts generated by splicing at these sites are non-functional because they introduce premature termination codons, leading to degradation by NMD. Analysis of splicing mutants combined with NMD inactivation revealed the role of specific splicing factors in governing the use of these alternative splice sites and identified novel functions for Prp17p in enhancing the use of branchpoint-proximal upstream 3′ splice sites and for Prp18p in suppressing the usage of a non-canonical AUG 3′-splice site in GCR1. The use of non-productive alternative splice sites can be increased in stress conditions in a promoter-dependent manner, contributing to the down-regulation of genes during stress. These results show that alternative splicing is frequent in S. cerevisiae but masked by RNA degradation and that the use of alternative splice sites in this organism is mostly aimed at controlling transcript levels rather than increasing proteome diversity. PMID:24722551

  8. Schizophyllum commune has an extensive and functional alternative splicing repertoire

    DOE PAGES

    Gehrmann, Thies; Pelkmans, Jordi F.; Lugones, Luis G.; ...

    2016-09-23

    Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the events in coding regions. On the other hand, exon skipping events were rare in coding regionsmore » (1%) but enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative splicing than any other studied fungus. Finally, taken together, alternative splicing increases the complexity of the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality that is exploited dynamically.« less

  9. SplicePlot: a utility for visualizing splicing quantitative trait loci.

    PubMed

    Wu, Eric; Nance, Tracy; Montgomery, Stephen B

    2014-04-01

    RNA sequencing has provided unprecedented resolution of alternative splicing and splicing quantitative trait loci (sQTL). However, there are few tools available for visualizing the genotype-dependent effects of splicing at a population level. SplicePlot is a simple command line utility that produces intuitive visualization of sQTLs and their effects. SplicePlot takes mapped RNA sequencing reads in BAM format and genotype data in VCF format as input and outputs publication-quality Sashimi plots, hive plots and structure plots, enabling better investigation and understanding of the role of genetics on alternative splicing and transcript structure. Source code and detailed documentation are available at http://montgomerylab.stanford.edu/spliceplot/index.html under Resources and at Github. SplicePlot is implemented in Python and is supported on Linux and Mac OS. A VirtualBox virtual machine running Ubuntu with SplicePlot already installed is also available.

  10. Function of alternative splicing

    PubMed Central

    Kelemen, Olga; Convertini, Paolo; Zhang, Zhaiyi; Wen, Yuan; Shen, Manli; Falaleeva, Marina; Stamm, Stefan

    2017-01-01

    Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in ‘splicing programs’, which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed. PMID:22909801

  11. Genetic therapies for RNA mis-splicing diseases.

    PubMed

    Hammond, Suzan M; Wood, Matthew J A

    2011-05-01

    RNA mis-splicing diseases account for up to 15% of all inherited diseases, ranging from neurological to myogenic and metabolic disorders. With greatly increased genomic sequencing being performed for individual patients, the number of known mutations affecting splicing has risen to 50-60% of all disease-causing mutations. During the past 10years, genetic therapy directed toward correction of RNA mis-splicing in disease has progressed from theoretical work in cultured cells to promising clinical trials. In this review, we discuss the use of antisense oligonucleotides to modify splicing as well as the principles and latest work in bifunctional RNA, trans-splicing and modification of U1 and U7 snRNA to target splice sites. The success of clinical trials for modifying splicing to treat Duchenne muscular dystrophy opens the door for the use of splicing modification for most of the mis-splicing diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Mutual interdependence of splicing and transcription elongation.

    PubMed

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  13. A Novel Morpholino Oligomer Targeting ISS-N1 Improves Rescue of Severe Spinal Muscular Atrophy Transgenic Mice

    PubMed Central

    Janghra, Narinder; Mitrpant, Chalermchai; Dickinson, Rachel L.; Anthony, Karen; Price, Loren; Eperon, Ian C.; Wilton, Stephen D.; Morgan, Jennifer

    2013-01-01

    Abstract In the search for the most efficacious antisense oligonucleotides (AOs) aimed at inducing SMN2 exon 7 inclusion, we systematically assessed three AOs, PMO25 (−10, −34), PMO18 (−10, −27), and PMO20 (−10, −29), complementary to the SMN2 intron 7 splicing silencer (ISS-N1). PMO25 was the most efficacious in augmenting exon 7 inclusion in vitro in spinal muscular atrophy (SMA) patient fibroblasts and in vitro splicing assays. PMO25 and PMO18 were compared further in a mouse model of severe SMA. After a single intracerebroventricular (ICV) injection in neonatal mice, PMO25 increased the life span of severe SMA mice up to 30-fold, with average survival greater by 3-fold compared with PMO18 at a dose of 20 μg/g and 2-fold at 40 μg/g. Exon 7 inclusion was increased in the CNS but not in peripheral tissues. Systemic delivery of PMO25 at birth achieved a similar outcome and produced increased exon 7 inclusion both in the CNS and peripherally. Systemic administration of a 10-μg/g concentration of PMO25 conjugated to an octaguanidine dendrimer (VMO25) increased the life span only 2-fold in neonatal type I SMA mice, although it prevented tail necrosis in mild SMA mice. Higher doses and ICV injection of VMO25 were associated with toxicity. We conclude that (1) the 25-mer AO is more efficient than the 18-mer and 20-mer in modifying SMN2 splicing in vitro; (2) it is more efficient in prolonging survival in SMA mice; and (3) naked Morpholino oligomers are more efficient and safer than the Vivo-Morpholino and have potential for future SMA clinical applications. PMID:23339722

  14. The Nematode Eukaryotic Translation Initiation Factor 4E/G Complex Works with a trans-Spliced Leader Stem-Loop To Enable Efficient Translation of Trimethylguanosine-Capped RNAs ▿ †

    PubMed Central

    Wallace, Adam; Filbin, Megan E.; Veo, Bethany; McFarland, Craig; Stepinski, Janusz; Jankowska-Anyszka, Marzena; Darzynkiewicz, Edward; Davis, Richard E.

    2010-01-01

    Eukaryotic mRNA translation begins with recruitment of the 40S ribosome complex to the mRNA 5′ end through the eIF4F initiation complex binding to the 5′ m7G-mRNA cap. Spliced leader (SL) RNA trans splicing adds a trimethylguanosine (TMG) cap and a sequence, the SL, to the 5′ end of mRNAs. Efficient translation of TMG-capped mRNAs in nematodes requires the SL sequence. Here we define a core set of nucleotides and a stem-loop within the 22-nucleotide nematode SL that stimulate translation of mRNAs with a TMG cap. The structure and core nucleotides are conserved in other nematode SLs and correspond to regions of SL1 required for early Caenorhabditis elegans development. These SL elements do not facilitate translation of m7G-capped RNAs in nematodes or TMG-capped mRNAs in mammalian or plant translation systems. Similar stem-loop structures in phylogenetically diverse SLs are predicted. We show that the nematode eukaryotic translation initiation factor 4E/G (eIF4E/G) complex enables efficient translation of the TMG-SL RNAs in diverse in vitro translation systems. TMG-capped mRNA translation is determined by eIF4E/G interaction with the cap and the SL RNA, although the SL does not increase the affinity of eIF4E/G for capped RNA. These results suggest that the mRNA 5′ untranslated region (UTR) can play a positive and novel role in translation initiation through interaction with the eIF4E/G complex in nematodes and raise the issue of whether eIF4E/G-RNA interactions play a role in the translation of other eukaryotic mRNAs. PMID:20154140

  15. The nematode eukaryotic translation initiation factor 4E/G complex works with a trans-spliced leader stem-loop to enable efficient translation of trimethylguanosine-capped RNAs.

    PubMed

    Wallace, Adam; Filbin, Megan E; Veo, Bethany; McFarland, Craig; Stepinski, Janusz; Jankowska-Anyszka, Marzena; Darzynkiewicz, Edward; Davis, Richard E

    2010-04-01

    Eukaryotic mRNA translation begins with recruitment of the 40S ribosome complex to the mRNA 5' end through the eIF4F initiation complex binding to the 5' m(7)G-mRNA cap. Spliced leader (SL) RNA trans splicing adds a trimethylguanosine (TMG) cap and a sequence, the SL, to the 5' end of mRNAs. Efficient translation of TMG-capped mRNAs in nematodes requires the SL sequence. Here we define a core set of nucleotides and a stem-loop within the 22-nucleotide nematode SL that stimulate translation of mRNAs with a TMG cap. The structure and core nucleotides are conserved in other nematode SLs and correspond to regions of SL1 required for early Caenorhabditis elegans development. These SL elements do not facilitate translation of m(7)G-capped RNAs in nematodes or TMG-capped mRNAs in mammalian or plant translation systems. Similar stem-loop structures in phylogenetically diverse SLs are predicted. We show that the nematode eukaryotic translation initiation factor 4E/G (eIF4E/G) complex enables efficient translation of the TMG-SL RNAs in diverse in vitro translation systems. TMG-capped mRNA translation is determined by eIF4E/G interaction with the cap and the SL RNA, although the SL does not increase the affinity of eIF4E/G for capped RNA. These results suggest that the mRNA 5' untranslated region (UTR) can play a positive and novel role in translation initiation through interaction with the eIF4E/G complex in nematodes and raise the issue of whether eIF4E/G-RNA interactions play a role in the translation of other eukaryotic mRNAs.

  16. Coupling between alternative polyadenylation and alternative splicing is limited to terminal introns.

    PubMed

    Movassat, Maliheh; Crabb, Tara L; Busch, Anke; Yao, Chengguo; Reynolds, Derrick J; Shi, Yongsheng; Hertel, Klemens J

    2016-07-02

    Alternative polyadenylation has been implicated as an important regulator of gene expression. In some cases, alternative polyadenylation is known to couple with alternative splicing to influence last intron removal. However, it is unknown whether alternative polyadenylation events influence alternative splicing decisions at upstream exons. Knockdown of the polyadenylation factors CFIm25 or CstF64 in HeLa cells was used as an approach in identifying alternative polyadenylation and alternative splicing events on a genome-wide scale. Although hundreds of alternative splicing events were found to be differentially spliced in the knockdown of CstF64, genes associated with alternative polyadenylation did not exhibit an increased incidence of alternative splicing. These results demonstrate that the coupling between alternative polyadenylation and alternative splicing is usually limited to defining the last exon. The striking influence of CstF64 knockdown on alternative splicing can be explained through its effects on UTR selection of known splicing regulators such as hnRNP A2/B1, thereby indirectly influencing splice site selection. We conclude that changes in the expression of the polyadenylation factor CstF64 influences alternative splicing through indirect effects.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehrmann, Thies; Pelkmans, Jordi F.; Lugones, Luis G.

    Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the events in coding regions. On the other hand, exon skipping events were rare in coding regionsmore » (1%) but enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative splicing than any other studied fungus. Finally, taken together, alternative splicing increases the complexity of the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality that is exploited dynamically.« less

  18. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay

    PubMed Central

    Ni, Julie Z.; Grate, Leslie; Donohue, John Paul; Preston, Christine; Nobida, Naomi; O’Brien, Georgeann; Shiue, Lily; Clark, Tyson A.; Blume, John E.; Ares, Manuel

    2007-01-01

    Many alternative splicing events create RNAs with premature stop codons, suggesting that alternative splicing coupled with nonsense-mediated decay (AS-NMD) may regulate gene expression post-transcriptionally. We tested this idea in mice by blocking NMD and measuring changes in isoform representation using splicing-sensitive microarrays. We found a striking class of highly conserved stop codon-containing exons whose inclusion renders the transcript sensitive to NMD. A genomic search for additional examples identified >50 such exons in genes with a variety of functions. These exons are unusually frequent in genes that encode splicing activators and are unexpectedly enriched in the so-called “ultraconserved” elements in the mammalian lineage. Further analysis show that NMD of mRNAs for splicing activators such as SR proteins is triggered by splicing activation events, whereas NMD of the mRNAs for negatively acting hnRNP proteins is triggered by splicing repression, a polarity consistent with widespread homeostatic control of splicing regulator gene expression. We suggest that the extreme genomic conservation surrounding these regulatory splicing events within splicing factor genes demonstrates the evolutionary importance of maintaining tightly tuned homeostasis of RNA-binding protein levels in the vertebrate cell. PMID:17369403

  19. The candidate histocompatibility locus of a Basal chordate encodes two highly polymorphic proteins.

    PubMed

    Nydam, Marie L; Netuschil, Nikolai; Sanders, Erin; Langenbacher, Adam; Lewis, Daniel D; Taketa, Daryl A; Marimuthu, Arumugapradeep; Gracey, Andrew Y; De Tomaso, Anthony W

    2013-01-01

    The basal chordate Botryllus schlosseri undergoes a natural transplantation reaction governed by a single, highly polymorphic locus called the fuhc. Our initial characterization of this locus suggested it encoded a single gene alternatively spliced into two transcripts: a 555 amino acid-secreted form containing the first half of the gene, and a full-length, 1008 amino acid transmembrane form, with polymorphisms throughout the ectodomain determining outcome. We have now found that the locus encodes two highly polymorphic genes which are separated by a 227 bp intergenic region: first, the secreted form as previously described, and a second gene encoding a 531 amino acid membrane-bound gene containing three extracellular immunoglobulin domains. While northern blotting revealed only these two mRNAs, both PCR and mRNA-seq detect a single capped and polyadenylated transcript that encodes processed forms of both genes linked by the intergenic region, as well as other transcripts in which exons of the two genes are spliced together. These results might suggest that the two genes are expressed as an operon, during which both genes are co-transcribed and then trans-spliced into two separate messages. This type of transcriptional regulation has been described in tunicates previously; however, the membrane-bound gene does not encode a typical Splice Leader (SL) sequence at the 5' terminus that usually accompanies trans-splicing. Thus, the presence of stable transcripts encoding both genes may suggest a novel mechanism of regulation, or conversely may be rare but stable transcripts in which the two mRNAs are linked due to a small amount of read-through by RNA polymerase. Both genes are highly polymorphic and co-expressed on tissues involved in histocompatibility. In addition, polymorphisms on both genes correlate with outcome, although we have found a case in which it appears that the secreted form may be major allorecognition determinant.

  20. Lin28 induces resistance to anti-androgens via promotion of AR splice variant generation.

    PubMed

    Tummala, Ramakumar; Nadiminty, Nagalakshmi; Lou, Wei; Evans, Christopher P; Gao, Allen C

    2016-04-01

    Prostate cancer (PCa) is androgen-dependent initially and progresses to a castration-resistant state after androgen deprivation therapy. Treatment options for castration-resistant PCa include the potent second-generation anti-androgen enzalutamide or CYP17A1 inhibitor abiraterone. Recent clinical observations point to the development of resistance to these therapies which may be mediated by constitutively active alternative splice variants of the androgen receptor (AR). Sensitivity of LNCaP cells overexpressing Lin28 (LN-Lin28) to enzalutamide, abiraterone, or bicalutamide was compared to that of control LN-neo cells using cell growth assays, proliferation assays using MTT, anchorage-dependent clonogenic ability assays and soft agar assays. Ability of LN-Lin28 cells to maintain AR activation after treatment with enzalutamide, abiraterone, or bicalutamide was tested using immunofluorescence, Western blotting, ChIP assays, and qRT-PCR. Importance of Lin28 in enzalutamide resistance was assessed by the downregulation of Lin28 expression in C4-2B and 22Rv1 cells chronically treated with enzalutamide. Requirement for sustained AR signaling in LN-Lin28 cells was examined by the downregulation of either full length AR or AR-V7 using siRNA. We show that Lin28 promotes the development of resistance to currently used targeted therapeutics by enhancing the expression of AR splice variants such as AR-V7. PCa cells overexpressing Lin28 exhibit resistance to treatment with enzalutamide, abiraterone, or bicalutamide. Downregulation of Lin28 resensitizes enzalutamide-resistant PCa cells to enzalutamide treatment. We also show that the upregulation of splicing factors such as hnRNPA1 by Lin28 may mediate the enhanced generation of AR splice variants in Lin28-expressing cells. Our findings suggest that Lin28 plays a key role in the acquisition of resistance to AR-targeted therapies by PCa cells and establish the importance of Lin28 in PCa progression. © 2015 Wiley Periodicals, Inc.

  1. Understanding splicing regulation through RNA splicing maps

    PubMed Central

    Witten, Joshua T.; Ule, Jernej

    2011-01-01

    Alternative splicing is a highly regulated process that greatly increases the proteome diversity and plays an important role in cellular differentiation and disease. Interactions between RNA-binding proteins (RBPs) and pre-mRNA are the principle regulator of splicing decisions. Findings from recent genome-wide studies of protein–RNA interactions have been combined with assays of the global effects of RBPs on splicing to create RNA splicing maps. These maps integrate information from all pre-mRNAs regulated by single RBPs to identify the global positioning principles guiding splicing regulation. Recent studies using this approach have identified a set of positional principles that are shared between diverse RBPs. Here, we discuss how insights from RNA splicing maps of different RBPs inform the mechanistic models of splicing regulation. PMID:21232811

  2. Pre-mRNA mis-splicing of sarcomeric genes in heart failure.

    PubMed

    Zhu, Chaoqun; Chen, Zhilong; Guo, Wei

    2017-08-01

    Pre-mRNA splicing is an important biological process that allows production of multiple proteins from a single gene in the genome, and mainly contributes to protein diversity in eukaryotic organisms. Alternative splicing is commonly governed by RNA binding proteins to meet the ever-changing demands of the cell. However, the mis-splicing may lead to human diseases. In the heart of human, mis-regulation of alternative splicing has been associated with heart failure. In this short review, we focus on alternative splicing of sarcomeric genes and review mis-splicing related heart failure with relatively well studied Sarcomeric genes and splicing mechanisms with identified regulatory factors. The perspective of alternative splicing based therapeutic strategies in heart failure has also been discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Alternative splicing in cancers: From aberrant regulation to new therapeutics.

    PubMed

    Song, Xiaowei; Zeng, Zhenyu; Wei, Huanhuan; Wang, Zefeng

    2018-03-01

    Alternative splicing is one of the most common mechanisms for gene regulation in humans, and plays a vital role to increase the complexity of functional proteins. In this article, we seek to provide a general review on the relationships between alternative splicing and tumorigenesis. We briefly introduce the basic rules for regulation of alternative splicing, and discuss recent advances on dynamic regulation of alternative splicing in cancers by highlighting the roles of a variety of RNA splicing factors in tumorigenesis. We further discuss several important questions regarding the splicing of long noncoding RNAs and back-splicing of circular RNAs in cancers. Finally, we discuss the current technologies that can be used to manipulate alternative splicing and serve as potential cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Coordinated tissue-specific regulation of adjacent alternative 3′ splice sites in C. elegans

    PubMed Central

    Ragle, James Matthew; Katzman, Sol; Akers, Taylor F.; Barberan-Soler, Sergio; Zahler, Alan M.

    2015-01-01

    Adjacent alternative 3′ splice sites, those separated by ≤18 nucleotides, provide a unique problem in the study of alternative splicing regulation; there is overlap of the cis-elements that define the adjacent sites. Identification of the intron's 3′ end depends upon sequence elements that define the branchpoint, polypyrimidine tract, and terminal AG dinucleotide. Starting with RNA-seq data from germline-enriched and somatic cell-enriched Caenorhabditis elegans samples, we identify hundreds of introns with adjacent alternative 3′ splice sites. We identify 203 events that undergo tissue-specific alternative splicing. For these, the regulation is monodirectional, with somatic cells preferring to splice at the distal 3′ splice site (furthest from the 5′ end of the intron) and germline cells showing a distinct shift toward usage of the adjacent proximal 3′ splice site (closer to the 5′ end of the intron). Splicing patterns in somatic cells follow C. elegans consensus rules of 3′ splice site definition; a short stretch of pyrimidines preceding an AG dinucleotide. Splicing in germline cells occurs at proximal 3′ splice sites that lack a preceding polypyrimidine tract, and in three instances the germline-specific site lacks the AG dinucleotide. We provide evidence that use of germline-specific proximal 3′ splice sites is conserved across Caenorhabditis species. We propose that there are differences between germline and somatic cells in the way that the basal splicing machinery functions to determine the intron terminus. PMID:25922281

  5. Can the HIV-1 splicing machinery be targeted for drug discovery?

    PubMed Central

    Dlamini, Zodwa; Hull, Rodney

    2017-01-01

    HIV-1 is able to express multiple protein types and isoforms from a single 9 kb mRNA transcript. These proteins are also expressed at particular stages of viral development, and this is achieved through the control of alternative splicing and the export of these transcripts from the nucleus. The nuclear export is controlled by the HIV protein Rev being required to transport incompletely spliced and partially spliced mRNA from the nucleus where they are normally retained. This implies a close relationship between the control of alternate splicing and the nuclear export of mRNA in the control of HIV-1 viral proliferation. This review discusses both the processes. The specificity and regulation of splicing in HIV-1 is controlled by the use of specific splice sites as well as exonic splicing enhancer and exonic splicing silencer sequences. The use of these silencer and enhancer sequences is dependent on the serine arginine family of proteins as well as the heterogeneous nuclear ribonucleoprotein family of proteins that bind to these sequences and increase or decrease splicing. Since alternative splicing is such a critical factor in viral development, it presents itself as a promising drug target. This review aims to discuss the inhibition of splicing, which would stall viral development, as an anti-HIV therapeutic strategy. In this review, the most recent knowledge of splicing in human immunodeficiency viral development and the latest therapeutic strategies targeting human immunodeficiency viral splicing are discussed. PMID:28331370

  6. Splicing-independent loading of TREX on nascent RNA is required for efficient expression of dual-strand piRNA clusters in Drosophila

    PubMed Central

    Hur, Junho K.; Luo, Yicheng; Moon, Sungjin; Ninova, Maria; Marinov, Georgi K.; Chung, Yun D.; Aravin, Alexei A.

    2016-01-01

    The conserved THO/TREX (transcription/export) complex is critical for pre-mRNA processing and mRNA nuclear export. In metazoa, TREX is loaded on nascent RNA transcribed by RNA polymerase II in a splicing-dependent fashion; however, how TREX functions is poorly understood. Here we show that Thoc5 and other TREX components are essential for the biogenesis of piRNA, a distinct class of small noncoding RNAs that control expression of transposable elements (TEs) in the Drosophila germline. Mutations in TREX lead to defects in piRNA biogenesis, resulting in derepression of multiple TE families, gametogenesis defects, and sterility. TREX components are enriched on piRNA precursors transcribed from dual-strand piRNA clusters and colocalize in distinct nuclear foci that overlap with sites of piRNA transcription. The localization of TREX in nuclear foci and its loading on piRNA precursor transcripts depend on Cutoff, a protein associated with chromatin of piRNA clusters. Finally, we show that TREX is required for accumulation of nascent piRNA precursors. Our study reveals a novel splicing-independent mechanism for TREX loading on nascent RNA and its importance in piRNA biogenesis. PMID:27036967

  7. Modular protein expression by RNA trans-splicing enables flexible expression of antibody formats in mammalian cells from a dual-host phage display vector.

    PubMed

    Shang, Yonglei; Tesar, Devin; Hötzel, Isidro

    2015-10-01

    A recently described dual-host phage display vector that allows expression of immunoglobulin G (IgG) in mammalian cells bypasses the need for subcloning of phage display clone inserts to mammalian vectors for IgG expression in large antibody discovery and optimization campaigns. However, antibody discovery and optimization campaigns usually need different antibody formats for screening, requiring reformatting of the clones in the dual-host phage display vector to an alternative vector. We developed a modular protein expression system mediated by RNA trans-splicing to enable the expression of different antibody formats from the same phage display vector. The heavy-chain region encoded by the phage display vector is directly and precisely fused to different downstream heavy-chain sequences encoded by complementing plasmids simply by joining exons in different pre-mRNAs by trans-splicing. The modular expression system can be used to efficiently express structurally correct IgG and Fab fragments or other antibody formats from the same phage display clone in mammalian cells without clone reformatting. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Molecular basis for the action of a dietary flavonoid revealed by the comprehensive identification of apigenin human targets

    PubMed Central

    Arango, Daniel; Morohashi, Kengo; Yilmaz, Alper; Kuramochi, Kouji; Parihar, Arti; Brahimaj, Bledi; Grotewold, Erich; Doseff, Andrea I.

    2013-01-01

    Flavonoids constitute the largest class of dietary phytochemicals, adding essential health value to our diet, and are emerging as key nutraceuticals. Cellular targets for dietary phytochemicals remain largely unknown, posing significant challenges for the regulation of dietary supplements and the understanding of how nutraceuticals provide health value. Here, we describe the identification of human cellular targets of apigenin, a flavonoid abundantly present in fruits and vegetables, using an innovative high-throughput approach that combines phage display with second generation sequencing. The 160 identified high-confidence candidate apigenin targets are significantly enriched in three main functional categories: GTPase activation, membrane transport, and mRNA metabolism/alternative splicing. This last category includes the heterogeneous nuclear ribonucleoprotein A2 (hnRNPA2), a factor involved in splicing regulation, mRNA stability, and mRNA transport. Apigenin binds to the C-terminal glycine-rich domain of hnRNPA2, preventing hnRNPA2 from forming homodimers, and therefore, it perturbs the alternative splicing of several human hnRNPA2 targets. Our results provide a framework to understand how dietary phytochemicals exert their actions by binding to many functionally diverse cellular targets. In turn, some of them may modulate the activity of a large number of downstream genes, which is exemplified here by the effects of apigenin on the alternative splicing activity of hnRNPA2. Hence, in contrast to small-molecule pharmaceuticals designed for defined target specificity, dietary phytochemicals affect a large number of cellular targets with varied affinities that, combined, result in their recognized health benefits. PMID:23697369

  9. SpliceDisease database: linking RNA splicing and disease.

    PubMed

    Wang, Juan; Zhang, Jie; Li, Kaibo; Zhao, Wei; Cui, Qinghua

    2012-01-01

    RNA splicing is an important aspect of gene regulation in many organisms. Splicing of RNA is regulated by complicated mechanisms involving numerous RNA-binding proteins and the intricate network of interactions among them. Mutations in cis-acting splicing elements or its regulatory proteins have been shown to be involved in human diseases. Defects in pre-mRNA splicing process have emerged as a common disease-causing mechanism. Therefore, a database integrating RNA splicing and disease associations would be helpful for understanding not only the RNA splicing but also its contribution to disease. In SpliceDisease database, we manually curated 2337 splicing mutation disease entries involving 303 genes and 370 diseases, which have been supported experimentally in 898 publications. The SpliceDisease database provides information including the change of the nucleotide in the sequence, the location of the mutation on the gene, the reference Pubmed ID and detailed description for the relationship among gene mutations, splicing defects and diseases. We standardized the names of the diseases and genes and provided links for these genes to NCBI and UCSC genome browser for further annotation and genomic sequences. For the location of the mutation, we give direct links of the entry to the respective position/region in the genome browser. The users can freely browse, search and download the data in SpliceDisease at http://cmbi.bjmu.edu.cn/sdisease.

  10. The Interplay of Temperature and Genotype on Patterns of Alternative Splicing in Drosophila melanogaster.

    PubMed

    Jakšić, Ana Marija; Schlötterer, Christian

    2016-09-01

    Alternative splicing is the highly regulated process of variation in the removal of introns from premessenger-RNA transcripts. The consequences of alternative splicing on the phenotype are well documented, but the impact of the environment on alternative splicing is not yet clear. We studied variation in alternative splicing among four different temperatures, 13, 18, 23, and 29°, in two Drosophila melanogaster genotypes. We show plasticity of alternative splicing with up to 10% of the expressed genes being differentially spliced between the most extreme temperatures for a given genotype. Comparing the two genotypes at different temperatures, we found <1% of the genes being differentially spliced at 18°. At extreme temperatures, however, we detected substantial differences in alternative splicing-with almost 10% of the genes having differential splicing between the genotypes: a magnitude similar to between species differences. Genes with differential alternative splicing between genotypes frequently exhibit dominant inheritance. Remarkably, the pattern of surplus of differences in alternative splicing at extreme temperatures resembled the pattern seen for gene expression intensity. Since different sets of genes were involved for the two phenotypes, we propose that purifying selection results in the reduction of differences at benign temperatures. Relaxed purifying selection at temperature extremes, on the other hand, may cause the divergence in gene expression and alternative splicing between the two strains in rarely encountered environments. Copyright © 2016 by the Genetics Society of America.

  11. A serine–arginine-rich (SR) splicing factor modulates alternative splicing of over a thousand genes in Toxoplasma gondii

    PubMed Central

    Yeoh, Lee M.; Goodman, Christopher D.; Hall, Nathan E.; van Dooren, Giel G.; McFadden, Geoffrey I.; Ralph, Stuart A.

    2015-01-01

    Single genes are often subject to alternative splicing, which generates alternative mature mRNAs. This phenomenon is widespread in animals, and observed in over 90% of human genes. Recent data suggest it may also be common in Apicomplexa. These parasites have small genomes, and economy of DNA is evolutionarily favoured in this phylum. We investigated the mechanism of alternative splicing in Toxoplasma gondii, and have identified and localized TgSR3, a homologue of ASF/SF2 (alternative-splicing factor/splicing factor 2, a serine-arginine–rich, or SR protein) to a subnuclear compartment. In addition, we conditionally overexpressed this protein, which was deleterious to growth. qRT-PCR was used to confirm perturbation of splicing in a known alternatively-spliced gene. We performed high-throughput RNA-seq to determine the extent of splicing modulated by this protein. Current RNA-seq algorithms are poorly suited to compact parasite genomes, and hence we complemented existing tools by writing a new program, GeneGuillotine, that addresses this deficiency by segregating overlapping reads into distinct genes. In order to identify the extent of alternative splicing, we released another program, JunctionJuror, that detects changes in intron junctions. Using this program, we identified about 2000 genes that were constitutively alternatively spliced in T. gondii. Overexpressing the splice regulator TgSR3 perturbed alternative splicing in over 1000 genes. PMID:25870410

  12. Alternative splicing and trans-splicing events revealed by analysis of the Bombyx mori transcriptome

    PubMed Central

    Shao, Wei; Zhao, Qiong-Yi; Wang, Xiu-Ye; Xu, Xin-Yan; Tang, Qing; Li, Muwang; Li, Xuan; Xu, Yong-Zhen

    2012-01-01

    Alternative splicing and trans-splicing events have not been systematically studied in the silkworm Bombyx mori. Here, the silkworm transcriptome was analyzed by RNA-seq. We identified 320 novel genes, modified 1140 gene models, and found thousands of alternative splicing and 58 trans-splicing events. Studies of three SR proteins show that both their alternative splicing patterns and mRNA products are conserved from insect to human, and one isoform of Srsf6 with a retained intron is expressed sex-specifically in silkworm gonads. Trans-splicing of mod(mdg4) in silkworm was experimentally confirmed. We identified integrations from a common 5′-gene with 46 newly identified alternative 3′-exons that are located on both DNA strands over a 500-kb region. Other trans-splicing events in B. mori were predicted by bioinformatic analysis, in which 12 events were confirmed by RT-PCR, six events were further validated by chimeric SNPs, and two events were confirmed by allele-specific RT-PCR in F1 hybrids from distinct silkworm lines of JS and L10, indicating that trans-splicing is more widespread in insects than previously thought. Analysis of the B. mori transcriptome by RNA-seq provides valuable information of regulatory alternative splicing events. The conservation of splicing events across species and newly identified trans-splicing events suggest that B. mori is a good model for future studies. PMID:22627775

  13. Hereditary cancer genes are highly susceptible to splicing mutations

    PubMed Central

    Soemedi, Rachel; Maguire, Samantha; Murray, Michael F.; Monaghan, Sean F.

    2018-01-01

    Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5′ and 3′ splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77%) of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36%) of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing. PMID:29505604

  14. Optimal fusion offset in splicing photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Jin, Wa; Bi, Weihong; Fu, Guangwei

    2013-08-01

    Heat transfer is very complicate in fusion splicing process of photonic crystal fibers (PCFs) due to different structures and sizes of air hole, which requires different fusion splicing power and offsets of heat source. Based on the heat transfer characteristics, this paper focus on the optimal splicing offset splicing the single mode fiber and PCFs with a CO2 laser irradiation. The theory and experiments both show that the research results can effectively calculate the optimal fusion splicing offset and guide the practical splicing between PCFs and SMFs.

  15. A Distributed Signature Detection Method for Detecting Intrusions in Sensor Systems

    PubMed Central

    Kim, Ilkyu; Oh, Doohwan; Yoon, Myung Kuk; Yi, Kyueun; Ro, Won Woo

    2013-01-01

    Sensor nodes in wireless sensor networks are easily exposed to open and unprotected regions. A security solution is strongly recommended to prevent networks against malicious attacks. Although many intrusion detection systems have been developed, most systems are difficult to implement for the sensor nodes owing to limited computation resources. To address this problem, we develop a novel distributed network intrusion detection system based on the Wu–Manber algorithm. In the proposed system, the algorithm is divided into two steps; the first step is dedicated to a sensor node, and the second step is assigned to a base station. In addition, the first step is modified to achieve efficient performance under limited computation resources. We conduct evaluations with random string sets and actual intrusion signatures to show the performance improvement of the proposed method. The proposed method achieves a speedup factor of 25.96 and reduces 43.94% of packet transmissions to the base station compared with the previously proposed method. The system achieves efficient utilization of the sensor nodes and provides a structural basis of cooperative systems among the sensors. PMID:23529146

  16. A distributed signature detection method for detecting intrusions in sensor systems.

    PubMed

    Kim, Ilkyu; Oh, Doohwan; Yoon, Myung Kuk; Yi, Kyueun; Ro, Won Woo

    2013-03-25

    Sensor nodes in wireless sensor networks are easily exposed to open and unprotected regions. A security solution is strongly recommended to prevent networks against malicious attacks. Although many intrusion detection systems have been developed, most systems are difficult to implement for the sensor nodes owing to limited computation resources. To address this problem, we develop a novel distributed network intrusion detection system based on the Wu-Manber algorithm. In the proposed system, the algorithm is divided into two steps; the first step is dedicated to a sensor node, and the second step is assigned to a base station. In addition, the first step is modified to achieve efficient performance under limited computation resources. We conduct evaluations with random string sets and actual intrusion signatures to show the performance improvement of the proposed method. The proposed method achieves a speedup factor of 25.96 and reduces 43.94% of packet transmissions to the base station compared with the previously proposed method. The system achieves efficient utilization of the sensor nodes and provides a structural basis of cooperative systems among the sensors.

  17. Coordination of two sequential ester-transfer reactions: exogenous guanosine binding promotes the subsequent ωG binding to a group I intron

    PubMed Central

    Bao, Penghui; Wu, Qi-Jia; Yin, Ping; Jiang, Yanfei; Wang, Xu; Xie, Mao-Hua; Sun, Tao; Huang, Lin; Mo, Ding-Ding; Zhang, Yi

    2008-01-01

    Self-splicing of group I introns is accomplished by two sequential ester-transfer reactions mediated by sequential binding of two different guanosine ligands, but it is yet unclear how the binding is coordinated at a single G-binding site. Using a three-piece trans-splicing system derived from the Candida intron, we studied the effect of the prior GTP binding on the later ωG binding by assaying the ribozyme activity in the second reaction. We showed that adding GTP simultaneously with and prior to the esterified ωG in a substrate strongly accelerated the second reaction, suggesting that the early binding of GTP facilitates the subsequent binding of ωG. GTP-mediated facilitation requires C2 amino and C6 carbonyl groups on the Watson–Crick edge of the base but not the phosphate or sugar groups, suggesting that the base triple interactions between GTP and the binding site are important for the subsequent ωG binding. Strikingly, GTP binding loosens a few local structures of the ribozyme including that adjacent to the base triple, providing structural basis for a rapid exchange of ωG for bound GTP. PMID:18978026

  18. Integrative Analysis of Many RNA-Seq Datasets to Study Alternative Splicing

    PubMed Central

    Li, Wenyuan; Dai, Chao; Kang, Shuli; Zhou, Xianghong Jasmine

    2014-01-01

    Alternative splicing is an important gene regulatory mechanism that dramatically increases the complexity of the proteome. However, how alternative splicing is regulated and how transcription and splicing are coordinated are still poorly understood, and functions of transcript isoforms have been studied only in a few limited cases. Nowadays, RNA-seq technology provides an exceptional opportunity to study alternative splicing on genome-wide scales and in an unbiased manner. With the rapid accumulation of data in public repositories, new challenges arise from the urgent need to effectively integrate many different RNA-seq datasets for study alterative splicing. This paper discusses a set of advanced computational methods that can integrate and analyze many RNA-seq datasets to systematically identify splicing modules, unravel the coupling of transcription and splicing, and predict the functions of splicing isoforms on a genome-wide scale. PMID:24583115

  19. Small Molecule Modulators of Pre-mRNA Splicing in Cancer Therapy.

    PubMed

    Salton, Maayan; Misteli, Tom

    2016-01-01

    Pre-mRNA splicing is a fundamental process in mammalian gene expression and alternative RNA splicing plays a considerable role in generating protein diversity. RNA splicing events are also key to the pathology of numerous diseases, particularly cancers. Some tumors are molecularly addicted to specific RNA splicing isoforms making interference with pre-mRNA processing a viable therapeutic strategy. Several RNA splicing modulators have recently been characterized, some showing promise in preclinical studies. While the targets of most splicing modulators are constitutive RNA processing components, possibly leading to undesirable side effects, selectivity for individual splicing events has been observed. Given the high prevalence of splicing defects in cancer, small molecule modulators of RNA processing represent a potentially promising novel therapeutic strategy in cancer treatment. Here, we review their reported effects, mechanisms, and limitations. Published by Elsevier Ltd.

  20. Interplay between estrogen receptor and AKT in Estradiol-induced alternative splicing

    PubMed Central

    2013-01-01

    Background Alternative splicing is critical for generating complex proteomes in response to extracellular signals. Nuclear receptors including estrogen receptor alpha (ERα) and their ligands promote alternative splicing. The endogenous targets of ERα:estradiol (E2)-mediated alternative splicing and the influence of extracellular kinases that phosphorylate ERα on E2-induced splicing are unknown. Methods MCF-7 and its anti-estrogen derivatives were used for the majority of the assays. CD44 mini gene was used to measure the effect of E2 and AKT on alternative splicing. ExonHit array analysis was performed to identify E2 and AKT-regulated endogenous alternatively spliced apoptosis-related genes. Quantitative reverse transcription polymerase chain reaction was performed to verify alternative splicing. ERα binding to alternatively spliced genes was verified by chromatin immunoprecipitation assay. Bromodeoxyuridine incorporation-ELISA and Annexin V labeling assays were done to measure cell proliferation and apoptosis, respectively. Results We identified the targets of E2-induced alternative splicing and deconstructed some of the mechanisms surrounding E2-induced splicing by combining splice array with ERα cistrome and gene expression array. E2-induced alternatively spliced genes fall into at least two subgroups: coupled to E2-regulated transcription and ERα binding to the gene without an effect on rate of transcription. Further, AKT, which phosphorylates both ERα and splicing factors, influenced ERα:E2 dependent splicing in a gene-specific manner. Genes that are alternatively spliced include FAS/CD95, FGFR2, and AXIN-1. E2 increased the expression of FGFR2 C1 isoform but reduced C3 isoform at mRNA level. E2-induced alternative splicing of FAS and FGFR2 in MCF-7 cells correlated with resistance to FAS activation-induced apoptosis and response to keratinocyte growth factor (KGF), respectively. Resistance of MCF-7 breast cancer cells to the anti-estrogen tamoxifen was associated with ERα-dependent overexpression of FGFR2, whereas resistance to fulvestrant was associated with ERα-dependent isoform switching, which correlated with altered response to KGF. Conclusion E2 may partly alter cellular proteome through alternative splicing uncoupled to its effects on transcription initiation and aberration in E2-induced alternative splicing events may influence response to anti-estrogens. PMID:23758675

  1. Progression through the spliceosome cycle requires Prp38p function for U4/U6 snRNA dissociation.

    PubMed Central

    Xie, J; Beickman, K; Otte, E; Rymond, B C

    1998-01-01

    The elaborate and energy-intensive spliceosome assembly pathway belies the seemingly simple chemistry of pre-mRNA splicing. Prp38p was previously identified as a protein required in vivo and in vitro for the first pre-mRNA cleavage reaction catalyzed by the spliceosome. Here we show that Prp38p is a unique component of the U4/U6.U5 tri-small nuclear ribonucleoprotein (snRNP) particle and is necessary for an essential step late in spliceosome maturation. Without Prp38p activity spliceosomes form, but arrest in a catalytically impaired state. Functional spliceosomes shed U4 snRNA before 5' splice-site cleavage. In contrast, Prp38p-defective spliceosomes retain U4 snRNA bound to its U6 snRNA base-pairing partner. Prp38p is the first tri-snRNP-specific protein shown to be dispensable for assembly, but required for conformational changes which lead to catalytic activation of the spliceosome. PMID:9582287

  2. Transcriptional and functional studies of Human Endogenous Retrovirus envelope EnvP(b) and EnvV genes in human trophoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, Amandine, E-mail: amandine.vargas@voila.fr; Thiery, Maxime, E-mail: thiery.maxime@courrier.uqam.ca; Lafond, Julie, E-mail: lafond.julie@uqam.ca

    2012-03-30

    HERV (Human Endogenous Retrovirus)-encoded envelope proteins are implicated in the development of the placenta. Indeed, Syncytin-1 and -2 play a crucial role in the fusion of human trophoblasts, a key step in placentation. Other studies have identified two other HERV env proteins, namely EnvP(b) and EnvV, both expressed in the placenta. In this study, we have fully characterized both env transcripts and their expression pattern and have assessed their implication in trophoblast fusion. Through RACE analyses, standard spliced transcripts were detected, while EnvV transcripts demonstrated alternative splicing at its 3 Prime end. Promoter activity and expression of both genes weremore » induced in forskolin-stimulated BeWo cells and in primary trophoblasts. Although we have confirmed the fusogenic activity of EnvP(b), overexpression or silencing experiments revealed no impact of this protein on trophoblast fusion. Our results demonstrate that both env genes are expressed in human trophoblasts but are not required for syncytialization.« less

  3. Widespread alternative and aberrant splicing revealed by lariat sequencing

    PubMed Central

    Stepankiw, Nicholas; Raghavan, Madhura; Fogarty, Elizabeth A.; Grimson, Andrew; Pleiss, Jeffrey A.

    2015-01-01

    Alternative splicing is an important and ancient feature of eukaryotic gene structure, the existence of which has likely facilitated eukaryotic proteome expansions. Here, we have used intron lariat sequencing to generate a comprehensive profile of splicing events in Schizosaccharomyces pombe, amongst the simplest organisms that possess mammalian-like splice site degeneracy. We reveal an unprecedented level of alternative splicing, including alternative splice site selection for over half of all annotated introns, hundreds of novel exon-skipping events, and thousands of novel introns. Moreover, the frequency of these events is far higher than previous estimates, with alternative splice sites on average activated at ∼3% the rate of canonical sites. Although a subset of alternative sites are conserved in related species, implying functional potential, the majority are not detectably conserved. Interestingly, the rate of aberrant splicing is inversely related to expression level, with lowly expressed genes more prone to erroneous splicing. Although we validate many events with RNAseq, the proportion of alternative splicing discovered with lariat sequencing is far greater, a difference we attribute to preferential decay of aberrantly spliced transcripts. Together, these data suggest the spliceosome possesses far lower fidelity than previously appreciated, highlighting the potential contributions of alternative splicing in generating novel gene structures. PMID:26261211

  4. Correlation of the level of full-length CFTR transcript with pulmonary phenotype in patients carrying R117H and 1342-1,-2delAG mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamosh, A.; Cutting, G.R.; Oates, R.

    The R117H mutation occurs on two chromosome backgrounds, one associated with a 7 thymidine tract (7T-R11H) in the splice-acceptor site of intron 8, the other with a 5 thymidine tract (5T-R117H). We examined exon 9 splicing efficiency in 5 patients of genotype R117H/{delta}F508 and one carrying 1342-1,-2delAG{delta}F508, an obligate exon 9 slice site mutation. Four patients carried R117H on a 7T background -- three adult men with congenital bilateral absence of the vas deferens and one adolescent female with pancreatitis and borderline sweat chloride concentration. The patient with R117H on a 5T background had pancreatic sufficient CF (PS-CF). The 1342-1,-2delAGmore » patient has classic pancreatic insufficient CF (PI-CF). cDNA was synthesized from total RNA extracted from nasal epithlial cells and analyzed for CFTR splicing by 35 cycle PCR using primers in exon 7 and 11. The quantity of full length transcript derived from the R117H or {delta}F508 alleles was assessed by allele-specific oligonucleotide hybridization. While 91.4% of transcript from the 5T-R117H allele was full-length, only 42.2% of CFTR transcript from the 5T-R117H allele was full length. Since CBAVD patients have no lung disease and PS-CF patients do, this indicates that the threshold of developing CF lung disease is crossed when the amount of CFTR transcript bearing R117H is reduced by half. Interestingly, 17.1% of transcript derived from the 1342-1,-2delAG allele (or 8.6% of total CFTR transcript) was normal and full length. This suggests that up to 9% of full length wild-type CFTR transcript may be inadequate to escape the lung disease of CF and that a 9 thymidine tract followed by AAC (the result of the AG deletion) can be used as a splice donor with 2-9% efficiency.« less

  5. Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis

    PubMed Central

    2014-01-01

    Background The circadian clock enables living organisms to anticipate recurring daily and seasonal fluctuations in their growth habitats and synchronize their biology to the environmental cycle. The plant circadian clock consists of multiple transcription-translation feedback loops that are entrained by environmental signals, such as light and temperature. In recent years, alternative splicing emerges as an important molecular mechanism that modulates the clock function in plants. Several clock genes are known to undergo alternative splicing in response to changes in environmental conditions, suggesting that the clock function is intimately associated with environmental responses via the alternative splicing of the clock genes. However, the alternative splicing events of the clock genes have not been studied at the molecular level. Results We systematically examined whether major clock genes undergo alternative splicing under various environmental conditions in Arabidopsis. We also investigated the fates of the RNA splice variants of the clock genes. It was found that the clock genes, including EARLY FLOWERING 3 (ELF3) and ZEITLUPE (ZTL) that have not been studied in terms of alternative splicing, undergo extensive alternative splicing through diverse modes of splicing events, such as intron retention, exon skipping, and selection of alternative 5′ splice site. Their alternative splicing patterns were differentially influenced by changes in photoperiod, temperature extremes, and salt stress. Notably, the RNA splice variants of TIMING OF CAB EXPRESSION 1 (TOC1) and ELF3 were degraded through the nonsense-mediated decay (NMD) pathway, whereas those of other clock genes were insensitive to NMD. Conclusion Taken together, our observations demonstrate that the major clock genes examined undergo extensive alternative splicing under various environmental conditions, suggesting that alternative splicing is a molecular scheme that underlies the linkage between the clock and environmental stress adaptation in plants. It is also envisioned that alternative splicing of the clock genes plays more complex roles than previously expected. PMID:24885185

  6. A split-step method to include electron–electron collisions via Monte Carlo in multiple rate equation simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huthmacher, Klaus; Molberg, Andreas K.; Rethfeld, Bärbel

    2016-10-01

    A split-step numerical method for calculating ultrafast free-electron dynamics in dielectrics is introduced. The two split steps, independently programmed in C++11 and FORTRAN 2003, are interfaced via the presented open source wrapper. The first step solves a deterministic extended multi-rate equation for the ionization, electron–phonon collisions, and single photon absorption by free-carriers. The second step is stochastic and models electron–electron collisions using Monte-Carlo techniques. This combination of deterministic and stochastic approaches is a unique and efficient method of calculating the nonlinear dynamics of 3D materials exposed to high intensity ultrashort pulses. Results from simulations solving the proposed model demonstrate howmore » electron–electron scattering relaxes the non-equilibrium electron distribution on the femtosecond time scale.« less

  7. Implicit time accurate simulation of unsteady flow

    NASA Astrophysics Data System (ADS)

    van Buuren, René; Kuerten, Hans; Geurts, Bernard J.

    2001-03-01

    Implicit time integration was studied in the context of unsteady shock-boundary layer interaction flow. With an explicit second-order Runge-Kutta scheme, a reference solution to compare with the implicit second-order Crank-Nicolson scheme was determined. The time step in the explicit scheme is restricted by both temporal accuracy as well as stability requirements, whereas in the A-stable implicit scheme, the time step has to obey temporal resolution requirements and numerical convergence conditions. The non-linear discrete equations for each time step are solved iteratively by adding a pseudo-time derivative. The quasi-Newton approach is adopted and the linear systems that arise are approximately solved with a symmetric block Gauss-Seidel solver. As a guiding principle for properly setting numerical time integration parameters that yield an efficient time accurate capturing of the solution, the global error caused by the temporal integration is compared with the error resulting from the spatial discretization. Focus is on the sensitivity of properties of the solution in relation to the time step. Numerical simulations show that the time step needed for acceptable accuracy can be considerably larger than the explicit stability time step; typical ratios range from 20 to 80. At large time steps, convergence problems that are closely related to a highly complex structure of the basins of attraction of the iterative method may occur. Copyright

  8. Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties

    PubMed Central

    Naser, Mohamed A.; Patterson, Michael S.

    2010-01-01

    Reconstruction algorithms are presented for a two-step solution of the bioluminescence tomography (BLT) problem. In the first step, a priori anatomical information provided by x-ray computed tomography or by other methods is used to solve the continuous wave (cw) diffuse optical tomography (DOT) problem. A Taylor series expansion approximates the light fluence rate dependence on the optical properties of each region where first and second order direct derivatives of the light fluence rate with respect to scattering and absorption coefficients are obtained and used for the reconstruction. In the second step, the reconstructed optical properties at different wavelengths are used to calculate the Green’s function of the system. Then an iterative minimization solution based on the L1 norm shrinks the permissible regions where the sources are allowed by selecting points with higher probability to contribute to the source distribution. This provides an efficient BLT reconstruction algorithm with the ability to determine relative source magnitudes and positions in the presence of noise. PMID:21258486

  9. 30 CFR 7.405 - Critical characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Cable Splice Kits § 7.405 Critical characteristics. (a) A sample from each production run, batch, or lot of manufactured electric cable, signaling cable, or splice made from a splice kit shall be flame... cable or splice and a sample of the cable or splice kit assembly shall be visually inspected or tested...

  10. 30 CFR 7.405 - Critical characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Cable Splice Kits § 7.405 Critical characteristics. (a) A sample from each production run, batch, or lot of manufactured electric cable, signaling cable, or splice made from a splice kit shall be flame... cable or splice and a sample of the cable or splice kit assembly shall be visually inspected or tested...

  11. Basic Electricity. Part 4.

    ERIC Educational Resources Information Center

    Kilmer, Donald C.

    Designed for the student interested in a vocation in electrical work, this guide, fourth in a set of four, includes three units: Unit X--Splicing Wires, covering thirteen lessons (removing insulation, pigtail splice, Western Union splice, tap splice, extension cord splice, connecting wires to a terminal screw, underwriter's knot, three-wire ground…

  12. Parameter optimization of fusion splicing of photonic crystal fibers and conventional fibers to increase strength

    NASA Astrophysics Data System (ADS)

    Zhang, Chunxi; Zhang, Zuchen; Song, Jingming; Wu, Chunxiao; Song, Ningfang

    2015-03-01

    A splicing parameter optimization method to increase the tensile strength of splicing joint between photonic crystal fiber (PCF) and conventional fiber is demonstrated. Based on the splicing recipes provided by splicer or fiber manufacturers, the optimal values of some major splicing parameters are obtained in sequence, and a conspicuous improvement in the mechanical strength of splicing joints between PCFs and conventional fibers is validated through experiments.

  13. Regulation of Alternative Splicing in Vivo by Overexpression of Antagonistic Splicing Factors

    NASA Astrophysics Data System (ADS)

    Caceres, Javier F.; Stamm, Stefan; Helfman, David M.; Krainer, Adrian R.

    1994-09-01

    The opposing effects of SF2/ASF and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 influence alternative splicing in vitro. SF2/ASF or hnRNP A1 complementary DNAs were transiently overexpressed in HeLa cells, and the effect on alternative splicing of several cotransfected reporter genes was measured. Increased expression of SF2/ASF activated proximal 5' splice sites, promoted inclusion of a neuron-specific exon, and prevented abnormal exon skipping. Increased expression of hnRNP A1 activated distal 5' splice sites. Therefore, variations in the intracellular levels of antagonistic splicing factors influence different modes of alternative splicing in vivo and may be a natural mechanism for tissue-specific or developmental regulation of gene expression.

  14. High strength fusion splicing of hollow core photonic crystal fiber and single-mode fiber by large offset reheating

    NASA Astrophysics Data System (ADS)

    Song, Ningfang; Wu, Chunxiao; Luo, Wenyong; Zhang, Zuchen; Li, Wei

    2016-12-01

    High strength fusion splicing hollow core photonic crystal fiber (HC-PCF) and single-mode fiber (SMF) requires sufficient energy, which results in collapse of the air holes inside HC-PCF. Usually the additional splice loss induced by the collapse of air holes is too large. By large offset reheating, the collapse length of HC-PCF is reduced, thus the additional splice loss induced by collapse is effectively suppressed. This method guarantees high-strength fusion splicing between the two types of fiber with a low splice loss. The strength of the splice compares favorably with the strength of HC-PCF itself. This method greatly improves the reliability of splices between HC-PCFs and SMFs.

  15. Mutations of RNA splicing factors in hematological malignancies.

    PubMed

    Shukla, Girish C; Singh, Jagjit

    2017-11-28

    Systematic large-scale cancer genomic studies have produced numerous significant findings. These studies have not only revealed new cancer-promoting genes, but they also have identified cancer-promoting functions of previously known "housekeeping" genes. These studies have identified numerous mutations in genes which play a fundamental role in nuclear precursor mRNA splicing. Somatic mutations and copy number variation in many of the splicing factors which participate in the formation of multiple spliceosomal complexes appear to play a role in many cancers and in particular in myelodysplastic syndromes (MDS). Mutated proteins seem to interfere with the recognition of the authentic splice sites (SS) leading to utilization of suboptimal alternative splicing sites generating aberrantly spliced mRNA isoforms. This short review is focusing on the function of the splice factors involved in the formation of splicing complexes and potential mechanisms which affect usage of the authentic splice site recognition. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. In vivo effects on intron retention and exon skipping by the U2AF large subunit and SF1/BBP in the nematode Caenorhabditis elegans

    PubMed Central

    Ma, Long; Tan, Zhiping; Teng, Yanling; Hoersch, Sebastian; Horvitz, H. Robert

    2011-01-01

    The in vivo analysis of the roles of splicing factors in regulating alternative splicing in animals remains a challenge. Using a microarray-based screen, we identified a Caenorhabditis elegans gene, tos-1, that exhibited three of the four major types of alternative splicing: intron retention, exon skipping, and, in the presence of U2AF large subunit mutations, the use of alternative 3′ splice sites. Mutations in the splicing factors U2AF large subunit and SF1/BBP altered the splicing of tos-1. 3′ splice sites of the retained intron or before the skipped exon regulate the splicing pattern of tos-1. Our study provides in vivo evidence that intron retention and exon skipping can be regulated largely by the identities of 3′ splice sites. PMID:22033331

  17. Regulation of alternative splicing in Drosophila by 56 RNA binding proteins

    DOE PAGES

    Brooks, Angela N.; Duff, Michael O.; May, Gemma; ...

    2015-08-20

    Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected themore » splicing of pre-mRNAs encoding other splicing regulators. In conclusion, this large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs.« less

  18. The Human Splicing Factor ASF/SF2 can Specifically Recognize Pre-mRNA 5' Splice Sites

    NASA Astrophysics Data System (ADS)

    Zuo, Ping; Manley, James L.

    1994-04-01

    ASF/SF2 is a human protein previously shown to function in in vitro pre-mRNA splicing as an essential factor necessary for all splices and also as an alternative splicing factor, capable of switching selection of 5' splice sites. To begin to study the protein's mechanism of action, we have investigated the RNA binding properties of purified recombinant ASF/SF2. Using UV crosslinking and gel shift assays, we demonstrate that the RNA binding region of ASF/SF2 can interact with RNA in a sequence-specific manner, recognizing the 5' splice site in each of two different pre-mRNAs. Point mutations in the 5' splice site consensus can reduce binding by as much as a factor of 100, with the largest effects observed in competition assays. These findings support a model in which ASF/SF2 aids in the recognition of pre-mRNA 5' splice sites.

  19. Nanoplasmonic probes of RNA folding and assembly during pre-mRNA splicing

    NASA Astrophysics Data System (ADS)

    Nguyen, Anh H.; Lee, Jong Uk; Sim, Sang Jun

    2016-02-01

    RNA splicing plays important roles in transcriptome and proteome diversity. Herein, we describe the use of a nanoplasmonic system that unveils RNA folding and assembly during pre-mRNA splicing wherein the quantification of mRNA splice variants is not taken into account. With a couple of SERS-probes and plasmonic probes binding at the boundary sites of exon-2/intron-2 and intron-2/exon-3 of the pre-mature RNA of the β-globin gene, the splicing process brings the probes into the plasmonic bands. For plasmonic probes, a plasmon shift increase of ~29 nm, corresponding to intron removal and exon-2 and exon-3 connection to form the mRNA molecule, is measured by plasmonic coupling. The increased scattering intensity and surface-enhanced Raman scattering (SERS) fingerprinting reveal the clear dynamics of pre-mRNA splicing. Moreover, a time-resolved experiment of individual RNA molecules exhibited a successful splicing and an inhibited splicing event by 33 μM biflavonoid isoginkgetin, a general inhibitor of RNA splicing. The results suggest that the RNA splicing is successfully monitored with the nanoplasmonic system. Thus, this platform can be useful for studying RNA nanotechnology, biomolecular folding, alternative splicing, and maturation of microRNA.

  20. Prognostic alternative mRNA splicing signature in non-small cell lung cancer.

    PubMed

    Li, Yuan; Sun, Nan; Lu, Zhiliang; Sun, Shouguo; Huang, Jianbing; Chen, Zhaoli; He, Jie

    2017-05-01

    Alternative splicing provides a major mechanism to generate protein diversity. Increasing evidence suggests a link of dysregulation of splicing associated with cancer. Genome-wide alternative splicing profiling in lung cancer remains largely unstudied. We generated alternative splicing profiles in 491 lung adenocarcinoma (LUAD) and 471 lung squamous cell carcinoma (LUSC) patients in TCGA using RNA-seq data, prognostic models and splicing networks were built by integrated bioinformatics analysis. A total of 3691 and 2403 alternative splicing events were significantly associated with patient survival in LUAD and LUSC, respectively, including EGFR, CD44, PIK3C3, RRAS2, MAPKAP1 and FGFR2. The area under the curve of the receiver-operator characteristic curve for prognostic predictor in NSCLC was 0.817 at 2000 days of overall survival which were also over 0.8 in LUAD and LUSC, separately. Interestingly, splicing correlation networks uncovered opposite roles of splicing factors in LUAD and LUSC. We created prognostic predictors based on alternative splicing events with high performances for risk stratification in NSCLC patients and uncovered interesting splicing networks in LUAD and LUSC which could be underlying mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A saga of cancer epigenetics: linking epigenetics to alternative splicing.

    PubMed

    Narayanan, Sathiya Pandi; Singh, Smriti; Shukla, Sanjeev

    2017-03-07

    The discovery of an increasing number of alternative splicing events in the human genome highlighted that ∼94% of genes generate alternatively spliced transcripts that may produce different protein isoforms with diverse functions. It is now well known that several diseases are a direct and indirect consequence of aberrant splicing events in humans. In addition to the conventional mode of alternative splicing regulation by ' cis ' RNA-binding sites and ' trans' RNA-binding proteins, recent literature provides enormous evidence for epigenetic regulation of alternative splicing. The epigenetic modifications may regulate alternative splicing by either influencing the transcription elongation rate of RNA polymerase II or by recruiting a specific splicing regulator via different chromatin adaptors. The epigenetic alterations and aberrant alternative splicing are known to be associated with various diseases individually, but this review discusses/highlights the latest literature on the role of epigenetic alterations in the regulation of alternative splicing and thereby cancer progression. This review also points out the need for further studies to understand the interplay between epigenetic modifications and aberrant alternative splicing in cancer progression. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  2. A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila

    PubMed Central

    Gao, Jun-Li; Fan, Yu-Jie; Wang, Xiu-Ye; Zhang, Yu; Pu, Jia; Li, Liang; Shao, Wei; Zhan, Shuai; Hao, Jianjiang

    2015-01-01

    Unlike typical cis-splicing, trans-splicing joins exons from two separate transcripts to produce chimeric mRNA and has been detected in most eukaryotes. Trans-splicing in trypanosomes and nematodes has been characterized as a spliced leader RNA-facilitated reaction; in contrast, its mechanism in higher eukaryotes remains unclear. Here we investigate mod(mdg4), a classic trans-spliced gene in Drosophila, and report that two critical RNA sequences in the middle of the last 5′ intron, TSA and TSB, promote trans-splicing of mod(mdg4). In TSA, a 13-nucleotide (nt) core motif is conserved across Drosophila species and is essential and sufficient for trans-splicing, which binds U1 small nuclear RNP (snRNP) through strong base-pairing with U1 snRNA. In TSB, a conserved secondary structure acts as an enhancer. Deletions of TSA and TSB using the CRISPR/Cas9 system result in developmental defects in flies. Although it is not clear how the 5′ intron finds the 3′ introns, compensatory changes in U1 snRNA rescue trans-splicing of TSA mutants, demonstrating that U1 recruitment is critical to promote trans-splicing in vivo. Furthermore, TSA core-like motifs are found in many other trans-spliced Drosophila genes, including lola. These findings represent a novel mechanism of trans-splicing, in which RNA motifs in the 5′ intron are sufficient to bring separate transcripts into close proximity to promote trans-splicing. PMID:25838544

  3. Regulation of mRNA abundance by polypyrimidine tract-binding protein-controlled alternate 5' splice site choice.

    PubMed

    Hamid, Fursham M; Makeyev, Eugene V

    2014-11-01

    Alternative splicing (AS) provides a potent mechanism for increasing protein diversity and modulating gene expression levels. How alternate splice sites are selected by the splicing machinery and how AS is integrated into gene regulation networks remain important questions of eukaryotic biology. Here we report that polypyrimidine tract-binding protein 1 (Ptbp1/PTB/hnRNP-I) controls alternate 5' and 3' splice site (5'ss and 3'ss) usage in a large set of mammalian transcripts. A top scoring event identified by our analysis was the choice between competing upstream and downstream 5'ss (u5'ss and d5'ss) in the exon 18 of the Hps1 gene. Hps1 is essential for proper biogenesis of lysosome-related organelles and loss of its function leads to a disease called type 1 Hermansky-Pudlak Syndrome (HPS). We show that Ptbp1 promotes preferential utilization of the u5'ss giving rise to stable mRNAs encoding a full-length Hps1 protein, whereas bias towards d5'ss triggered by Ptbp1 down-regulation generates transcripts susceptible to nonsense-mediated decay (NMD). We further demonstrate that Ptbp1 binds to pyrimidine-rich sequences between the u5'ss and d5'ss and activates the former site rather than repressing the latter. Consistent with this mechanism, u5'ss is intrinsically weaker than d5'ss, with a similar tendency observed for other genes with Ptbp1-induced u5'ss bias. Interestingly, the brain-enriched Ptbp1 paralog Ptbp2/nPTB/brPTB stimulated the u5'ss utilization but with a considerably lower efficiency than Ptbp1. This may account for the tight correlation between Hps1 with Ptbp1 expression levels observed across mammalian tissues. More generally, these data expand our understanding of AS regulation and uncover a post-transcriptional strategy ensuring co-expression of a subordinate gene with its master regulator through an AS-NMD tracking mechanism.

  4. Mutations in TMEM260 Cause a Pediatric Neurodevelopmental, Cardiac, and Renal Syndrome.

    PubMed

    Ta-Shma, Asaf; Khan, Tahir N; Vivante, Asaf; Willer, Jason R; Matak, Pavle; Jalas, Chaim; Pode-Shakked, Ben; Salem, Yishay; Anikster, Yair; Hildebrandt, Friedhelm; Katsanis, Nicholas; Elpeleg, Orly; Davis, Erica E

    2017-04-06

    Despite the accelerated discovery of genes associated with syndromic traits, the majority of families affected by such conditions remain undiagnosed. Here, we employed whole-exome sequencing in two unrelated consanguineous kindreds with central nervous system (CNS), cardiac, renal, and digit abnormalities. We identified homozygous truncating mutations in TMEM260, a locus predicted to encode numerous splice isoforms. Systematic expression analyses across tissues and developmental stages validated two such isoforms, which differ in the utilization of an internal exon. The mutations in both families map uniquely to the long isoform, raising the possibility of an isoform-specific disorder. Consistent with this notion, RT-PCR of lymphocyte cell lines from one of the kindreds showed reduced levels of only the long isoform, which could be ameliorated by emetine, suggesting that the mutation induces nonsense-mediated decay. Subsequent in vivo testing supported this hypothesis. First, either transient suppression or CRISPR/Cas9 genome editing of zebrafish tmem260 recapitulated key neurological phenotypes. Second, co-injection of morphants with the long human TMEM260 mRNA rescued CNS pathology, whereas the short isoform was significantly less efficient. Finally, immunocytochemical and biochemical studies showed preferential enrichment of the long TMEM260 isoform to the plasma membrane. Together, our data suggest that there is overall reduced, but not ablated, functionality of TMEM260 and that attenuation of the membrane-associated functions of this protein is a principal driver of pathology. These observations contribute to an appreciation of the roles of splice isoforms in genetic disorders and suggest that dissection of the functions of these transcripts will most likely inform pathomechanism. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Tissue-Specific Reduction in Splicing Efficiency of IKBKAP Due to the Major Mutation Associated with Familial Dysautonomia

    PubMed Central

    Cuajungco, Math P.; Leyne, Maire; Mull, James; Gill, Sandra P.; Lu, Weining; Zagzag, David; Axelrod, Felicia B.; Maayan, Channa; Gusella, James F.; Slaugenhaupt, Susan A.

    2003-01-01

    We recently identified a mutation in the I-κB kinase associated protein (IKBKAP) gene as the major cause of familial dysautonomia (FD), a recessive sensory and autonomic neuropathy. This alteration, located at base pair 6 of the intron 20 donor splice site, is present on >99.5% of FD chromosomes and results in tissue-specific skipping of exon 20. A second FD mutation, a missense change in exon 19 (R696P), was seen in only four patients heterozygous for the major mutation. Here, we have further characterized the consequences of the major mutation by examining the ratio of wild-type to mutant (WT:MU) IKBKAP transcript in EBV-transformed lymphoblast lines, primary fibroblasts, freshly collected blood samples, and postmortem tissues from patients with FD. We consistently found that WT IKBKAP transcripts were present, albeit to varying extents, in all cell lines, blood, and postmortem FD tissues. Further, a corresponding decrease in the level of WT protein is seen in FD cell lines and tissues. The WT:MU ratio in cultured lymphoblasts varied with growth phase but not with serum concentration or inclusion of antibiotics. Using both densitometry and real-time quantitative polymerase chain reaction, we found that relative WT:MU IKBKAP RNA levels were highest in cultured patient lymphoblasts and lowest in postmortem central and peripheral nervous tissues. These observations suggest that the relative inefficiency of WT IKBKAP mRNA production from the mutant alleles in the nervous system underlies the selective degeneration of sensory and autonomic neurons in FD.Therefore, exploration of methods to increase the WT:MU IKBKAP transcript ratio in the nervous system offers a promising approach for developing an effective therapy for patients with FD. PMID:12577200

  6. Basal exon skipping and nonsense-associated altered splicing allows bypassing complete CEP290 loss-of-function in individuals with unusually mild retinal disease.

    PubMed

    Barny, Iris; Perrault, Isabelle; Michel, Christel; Soussan, Mickael; Goudin, Nicolas; Rio, Marlène; Thomas, Sophie; Attié-Bitach, Tania; Hamel, Christian; Dollfus, Hélène; Kaplan, Josseline; Rozet, Jean-Michel; Gerard, Xavier

    2018-05-16

    CEP290 mutations cause a spectrum of ciliopathies from Leber congenital amaurosis type 10 (LCA10) to embryo-lethal Meckel syndrome (MKS). Using panel-based molecular diagnosis testing for inherited retinal diseases, we identified two individuals with some preserved vision despite biallelism for presumably truncating CEP290 mutations. The first one carried a homozygous 1 base-pair deletion in exon 17, introducing a premature termination codon (PTC) in exon 18 (c.1666del; p.Ile556Phefs*17). mRNA analysis revealed a basal exon skipping (BES) of exon 18, providing mutant cells with the ability to escape protein truncation, while disrupting the reading frame in controls. The second individual harbored compound heterozygous nonsense mutations in exon 8 (c.508A>T, p.Lys170*) and exon 32 (c.4090G>T, p.Glu1364*), respectively. Some CEP290 lacking exon 8 were detected in mutant fibroblasts but not in controls whereas some skipping of exon 32 occurred in both lines, but with higher amplitude in the mutant. Considering that the deletion of either exon maintains the reading frame in either line, skipping in mutant cells likely involves nonsense-associated altered splicing (NAS) alone (exon 8), or with BES (exon 32). Skipping of PTC-containing exons in mutant cells allowed production of CEP290 isoforms with preserved ability to assemble into a high molecular weight complex and to interact efficiently with proteins important for cilia formation and intraflagellar trafficking. In contrast, studying LCA10 and MKS fibroblasts we show moderate to severe cilia alterations, providing support for a correlation between disease severity and the ability of cells to express shortened, yet functional, CEP290 isoforms.

  7. Efficient high light acclimation involves rapid processes at multiple mechanistic levels.

    PubMed

    Dietz, Karl-Josef

    2015-05-01

    Like no other chemical or physical parameter, the natural light environment of plants changes with high speed and jumps of enormous intensity. To cope with this variability, photosynthetic organisms have evolved sensing and response mechanisms that allow efficient acclimation. Most signals originate from the chloroplast itself. In addition to very fast photochemical regulation, intensive molecular communication is realized within the photosynthesizing cell, optimizing the acclimation process. Current research has opened up new perspectives on plausible but mostly unexpected complexity in signalling events, crosstalk, and process adjustments. Within seconds and minutes, redox states, levels of reactive oxygen species, metabolites, and hormones change and transmit information to the cytosol, modifying metabolic activity, gene expression, translation activity, and alternative splicing events. Signalling pathways on an intermediate time scale of several minutes to a few hours pave the way for long-term acclimation. Thereby, a new steady state of the transcriptome, proteome, and metabolism is realized within rather short time periods irrespective of the previous acclimation history to shade or sun conditions. This review provides a time line of events during six hours in the 'stressful' life of a plant. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. A study of alternative splicing in the pig

    PubMed Central

    2010-01-01

    Background Since at least half of the genes in mammalian genomes are subjected to alternative splicing, alternative pre-mRNA splicing plays an important contribution to the complexity of the mammalian proteome. Expressed sequence tags (ESTs) provide evidence of a great number of possible alternative isoforms. With the EST resource for the domestic pig now containing more than one million porcine ESTs, it is possible to identify alternative splice forms of the individual transcripts in this species from the EST data with some confidence. Results The pig EST data generated by the Sino-Danish Pig Genome project has been assembled with publicly available ESTs and made available in the PigEST database. Using the Distiller package 2,515 EST clusters with candidate alternative isoforms were identified in the EST data with high confidence. In agreement with general observations in human and mouse, we find putative splice variants in about 30% of the contigs with more than 50 ESTs. Based on the criteria that a minimum of two EST sequences confirmed each splice event, a list of 100 genes with the most distinct tissue-specific alternative splice events was generated from the list of candidates. To confirm the tissue specificity of the splice events, 10 genes with functional annotation were randomly selected from which 16 individual splice events were chosen for experimental verification by quantitative PCR (qPCR). Six genes were shown to have tissue specific alternatively spliced transcripts with expression patterns matching those of the EST data. The remaining four genes had tissue-restricted expression of alternative spliced transcripts. Five out of the 16 splice events that were experimentally verified were found to be putative pig specific. Conclusions In accordance with human and rodent studies we estimate that approximately 30% of the porcine genes undergo alternative splicing. We found a good correlation between EST predicted tissue-specificity and experimentally validated splice events in different porcine tissue. This study indicates that a cluster size of around 50 ESTs is optimal for in silico detection of alternative splicing. Although based on a limited number of splice events, the study supports the notion that alternative splicing could have an important impact on species differentiation since 31% of the splice events studied appears to be species specific. PMID:20444244

  9. A genome-wide aberrant RNA splicing in patients with acute myeloid leukemia identifies novel potential disease markers and therapeutic targets.

    PubMed

    Adamia, Sophia; Haibe-Kains, Benjamin; Pilarski, Patrick M; Bar-Natan, Michal; Pevzner, Samuel; Avet-Loiseau, Herve; Lode, Laurence; Verselis, Sigitas; Fox, Edward A; Burke, John; Galinsky, Ilene; Dagogo-Jack, Ibiayi; Wadleigh, Martha; Steensma, David P; Motyckova, Gabriela; Deangelo, Daniel J; Quackenbush, John; Stone, Richard; Griffin, James D

    2014-03-01

    Despite new treatments, acute myeloid leukemia (AML) remains an incurable disease. More effective drug design requires an expanded view of the molecular complexity that underlies AML. Alternative splicing of RNA is used by normal cells to generate protein diversity. Growing evidence indicates that aberrant splicing of genes plays a key role in cancer. We investigated genome-wide splicing abnormalities in AML and based on these abnormalities, we aimed to identify novel potential biomarkers and therapeutic targets. We used genome-wide alternative splicing screening to investigate alternative splicing abnormalities in two independent AML patient cohorts [Dana-Farber Cancer Institute (DFCI) (Boston, MA) and University Hospital de Nantes (UHN) (Nantes, France)] and normal donors. Selected splicing events were confirmed through cloning and sequencing analysis, and than validated in 193 patients with AML. Our results show that approximately 29% of expressed genes genome-wide were differentially and recurrently spliced in patients with AML compared with normal donors bone marrow CD34(+) cells. Results were reproducible in two independent AML cohorts. In both cohorts, annotation analyses indicated similar proportions of differentially spliced genes encoding several oncogenes, tumor suppressor proteins, splicing factors, and heterogeneous-nuclear-ribonucleoproteins, proteins involved in apoptosis, cell proliferation, and spliceosome assembly. Our findings are consistent with reports for other malignances and indicate that AML-specific aberrations in splicing mechanisms are a hallmark of AML pathogenesis. Overall, our results suggest that aberrant splicing is a common characteristic for AML. Our findings also suggest that splice variant transcripts that are the result of splicing aberrations create novel disease markers and provide potential targets for small molecules or antibody therapeutics for this disease. ©2013 AACR

  10. Long-read sequencing of nascent RNA reveals coupling among RNA processing events.

    PubMed

    Herzel, Lydia; Straube, Korinna; Neugebauer, Karla M

    2018-06-14

    Pre-mRNA splicing is accomplished by the spliceosome, a megadalton complex that assembles de novo on each intron. Because spliceosome assembly and catalysis occur cotranscriptionally, we hypothesized that introns are removed in the order of their transcription in genomes dominated by constitutive splicing. Remarkably little is known about splicing order and the regulatory potential of nascent transcript remodeling by splicing, due to the limitations of existing methods that focus on analysis of mature splicing products (mRNAs) rather than substrates and intermediates. Here, we overcome this obstacle through long-read RNA sequencing of nascent, multi-intron transcripts in the fission yeast Schizosaccharomyces pombe Most multi-intron transcripts were fully spliced, consistent with rapid cotranscriptional splicing. However, an unexpectedly high proportion of transcripts were either fully spliced or fully unspliced, suggesting that splicing of any given intron is dependent on the splicing status of other introns in the transcript. Supporting this, mild inhibition of splicing by a temperature-sensitive mutation in prp2 , the homolog of vertebrate U2AF65, increased the frequency of fully unspliced transcripts. Importantly, fully unspliced transcripts displayed transcriptional read-through at the polyA site and were degraded cotranscriptionally by the nuclear exosome. Finally, we show that cellular mRNA levels were reduced in genes with a high number of unspliced nascent transcripts during caffeine treatment, showing regulatory significance of cotranscriptional splicing. Therefore, overall splicing of individual nascent transcripts, 3' end formation, and mRNA half-life depend on the splicing status of neighboring introns, suggesting crosstalk among spliceosomes and the polyA cleavage machinery during transcription elongation. © 2018 Herzel et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations.

    PubMed

    Pellagatti, Andrea; Armstrong, Richard N; Steeples, Violetta; Sharma, Eshita; Repapi, Emmanouela; Singh, Shalini; Sanchi, Andrea; Radujkovic, Aleksandar; Horn, Patrick; Dolatshad, Hamid; Roy, Swagata; Broxholme, John; Lockstone, Helen; Taylor, Stephen; Giagounidis, Aristoteles; Vyas, Paresh; Schuh, Anna; Hamblin, Angela; Papaemmanuil, Elli; Killick, Sally; Malcovati, Luca; Hennrich, Marco L; Gavin, Anne-Claude; Ho, Anthony D; Luft, Thomas; Hellström-Lindberg, Eva; Cazzola, Mario; Smith, Christopher W J; Smith, Stephen; Boultwood, Jacqueline

    2018-06-21

    SF3B1, SRSF2 and U2AF1 are the most frequently mutated splicing factor genes in the myelodysplastic syndromes (MDS). We have performed a comprehensive and systematic analysis to determine the impact of these commonly mutated splicing factors on pre-mRNA splicing in the bone marrow stem/progenitor cells and in the erythroid and myeloid precursors in splicing factor mutant MDS. Using RNA-seq, we determined the aberrantly spliced genes and dysregulated pathways in CD34 + cells of 84 MDS patients. Splicing factor mutations result in different alterations in splicing and largely affect different genes, but these converge in common dysregulated pathways and cellular processes, focused on RNA splicing, protein synthesis and mitochondrial dysfunction, suggesting common mechanisms of action in MDS. Many of these dysregulated pathways and cellular processes can be linked to the known disease pathophysiology associated with splicing factor mutations in MDS, whilst several others have not been previously associated with MDS, such as sirtuin signaling. We identified aberrantly spliced events associated with clinical variables, and isoforms which independently predict survival in MDS and implicate dysregulation of focal adhesion and extracellular exosomes as drivers of poor survival. Aberrantly spliced genes and dysregulated pathways were identified in the MDS-affected lineages in splicing factor mutant MDS. Functional studies demonstrated that knockdown of the mitosis regulators SEPT2 and AKAP8, aberrantly spliced target genes of SF3B1 and SRSF2 mutations respectively, led to impaired erythroid cell growth and differentiation. This study illuminates the impact of the common spliceosome mutations on the MDS phenotype and provides novel insights into disease pathophysiology. Copyright © 2018 American Society of Hematology.

  12. Defective control of pre–messenger RNA splicing in human disease

    PubMed Central

    Shkreta, Lulzim

    2016-01-01

    Examples of associations between human disease and defects in pre–messenger RNA splicing/alternative splicing are accumulating. Although many alterations are caused by mutations in splicing signals or regulatory sequence elements, recent studies have noted the disruptive impact of mutated generic spliceosome components and splicing regulatory proteins. This review highlights recent progress in our understanding of how the altered splicing function of RNA-binding proteins contributes to myelodysplastic syndromes, cancer, and neuropathologies. PMID:26728853

  13. Manananggal - a novel viewer for alternative splicing events.

    PubMed

    Barann, Matthias; Zimmer, Ralf; Birzele, Fabian

    2017-02-21

    Alternative splicing is an important cellular mechanism that can be analyzed by RNA sequencing. However, identification of splicing events in an automated fashion is error-prone. Thus, further validation is required to select reliable instances of alternative splicing events (ASEs). There are only few tools specifically designed for interactive inspection of ASEs and available visualization approaches can be significantly improved. Here, we present Manananggal, an application specifically designed for the identification of splicing events in next generation sequencing data. Manananggal includes a web application for visual inspection and a command line tool that allows for ASE detection. We compare the sashimi plots available in the IGV Viewer, the DEXSeq splicing plots and SpliceSeq to the Manananggal interface and discuss the advantages and drawbacks of these tools. We show that sashimi plots (such as those used by the IGV Viewer and SpliceSeq) offer a practical solution for simple ASEs, but also indicate short-comings for highly complex genes. Manananggal is an interactive web application that offers functions specifically tailored to the identification of alternative splicing events that other tools are lacking. The ability to select a subset of isoforms allows an easier interpretation of complex alternative splicing events. In contrast to SpliceSeq and the DEXSeq splicing plot, Manananggal does not obscure the gene structure by showing full transcript models that makes it easier to determine which isoforms are expressed and which are not.

  14. 30 CFR 75.810 - High-voltage trailing cables; splices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage trailing cables; splices. 75.810... § 75.810 High-voltage trailing cables; splices. [Statutory Provisions] In the case of high-voltage cables used as trailing cables, temporary splices shall not be used and all permanent splices shall be...

  15. 30 CFR 57.12088 - Splicing trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent, shall be made in a trailing cable within 25 feet of the machine unless the machine is equipped with a...

  16. RBFOX2 Is an Important Regulator of Mesenchymal Tissue-Specific Splicing in both Normal and Cancer Tissues

    PubMed Central

    Venables, Julian P.; Brosseau, Jean-Philippe; Gadea, Gilles; Klinck, Roscoe; Prinos, Panagiotis; Beaulieu, Jean-François; Lapointe, Elvy; Durand, Mathieu; Thibault, Philippe; Tremblay, Karine; Rousset, François; Tazi, Jamal; Abou Elela, Sherif

    2013-01-01

    Alternative splicing provides a critical and flexible layer of regulation intervening in many biological processes to regulate the diversity of proteins and impact cell phenotype. To identify alternative splicing differences that distinguish epithelial from mesenchymal tissues, we have investigated hundreds of cassette exons using a high-throughput reverse transcription-PCR (RT-PCR) platform. Extensive changes in splicing were noted between epithelial and mesenchymal tissues in both human colon and ovarian tissues, with many changes from mostly one splice variant to predominantly the other. Remarkably, many of the splicing differences that distinguish normal mesenchymal from normal epithelial tissues matched those that differentiate normal ovarian tissues from ovarian cancer. Furthermore, because splicing profiling could classify cancer cell lines according to their epithelial/mesenchymal characteristics, we used these cancer cell lines to identify regulators for these specific splicing signatures. By knocking down 78 potential splicing factors in five cell lines, we provide an extensive view of the complex regulatory landscape associated with the epithelial and mesenchymal states, thus revealing that RBFOX2 is an important driver of mesenchymal tissue-specific splicing. PMID:23149937

  17. Alternative Splicing as a Target for Cancer Treatment.

    PubMed

    Martinez-Montiel, Nancy; Rosas-Murrieta, Nora Hilda; Anaya Ruiz, Maricruz; Monjaraz-Guzman, Eduardo; Martinez-Contreras, Rebeca

    2018-02-11

    Alternative splicing is a key mechanism determinant for gene expression in metazoan. During alternative splicing, non-coding sequences are removed to generate different mature messenger RNAs due to a combination of sequence elements and cellular factors that contribute to splicing regulation. A different combination of splicing sites, exonic or intronic sequences, mutually exclusive exons or retained introns could be selected during alternative splicing to generate different mature mRNAs that could in turn produce distinct protein products. Alternative splicing is the main source of protein diversity responsible for 90% of human gene expression, and it has recently become a hallmark for cancer with a full potential as a prognostic and therapeutic tool. Currently, more than 15,000 alternative splicing events have been associated to different aspects of cancer biology, including cell proliferation and invasion, apoptosis resistance and susceptibility to different chemotherapeutic drugs. Here, we present well established and newly discovered splicing events that occur in different cancer-related genes, their modification by several approaches and the current status of key tools developed to target alternative splicing with diagnostic and therapeutic purposes.

  18. Fluorescence Reporter-Based Genome-Wide RNA Interference Screening to Identify Alternative Splicing Regulators.

    PubMed

    Misra, Ashish; Green, Michael R

    2017-01-01

    Alternative splicing is a regulated process that leads to inclusion or exclusion of particular exons in a pre-mRNA transcript, resulting in multiple protein isoforms being encoded by a single gene. With more than 90 % of human genes known to undergo alternative splicing, it represents a major source for biological diversity inside cells. Although in vitro splicing assays have revealed insights into the mechanisms regulating individual alternative splicing events, our global understanding of alternative splicing regulation is still evolving. In recent years, genome-wide RNA interference (RNAi) screening has transformed biological research by enabling genome-scale loss-of-function screens in cultured cells and model organisms. In addition to resulting in the identification of new cellular pathways and potential drug targets, these screens have also uncovered many previously unknown mechanisms regulating alternative splicing. Here, we describe a method for the identification of alternative splicing regulators using genome-wide RNAi screening, as well as assays for further validation of the identified candidates. With modifications, this method can also be adapted to study the splicing regulation of pre-mRNAs that contain two or more splice isoforms.

  19. Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression.

    PubMed

    Kristensen, Jesper T; Houmann, Andreas; Liu, Xiaomin; Turchinovich, Dmitry

    2008-06-23

    We report on highly reproducible low-loss fusion splicing of polarization-maintaining single-mode fibers (PM-SMFs) and hollow-core photonic crystal fibers (HC-PCFs). The PM-SMF-to-HC-PCF splices are characterized by the loss of 0.62 +/- 0.24 dB, and polarization extinction ratio of 19 +/- 0.68 dB. The reciprocal HC-PCF-to-PM-SMF splice loss is found to be 2.19 +/- 0.33 dB, which is caused by the mode evolution in HC-PCF. The return loss in both cases was measured to be -14 dB. We show that a splice defect is caused by the HC-PCF cleave defect, and the lossy splice can be predicted at an early stage of the splicing process. We also demonstrate that the higher splice loss compromises the PM properties of the splice. Our splicing technique was successfully applied to the realization of a low-loss, environmentally stable monolithic PM fiber laser pulse compressor, enabling direct end-of-the-fiber femtosecond pulse delivery.

  20. A New Route for High-Purity Organic Materials: High-Pressure-Ramp-Induced Ultrafast Polymerization of 2-(Hydroxyethyl)Methacrylate

    NASA Astrophysics Data System (ADS)

    Evlyukhin, E.; Museur, L.; Traore, M.; Perruchot, C.; Zerr, A.; Kanaev, A.

    2015-12-01

    The synthesis of highly biocompatible polymers is important for modern biotechnologies and medicine. Here, we report a unique process based on a two-step high-pressure ramp (HPR) for the ultrafast and efficient bulk polymerization of 2-(hydroxyethyl)methacrylate (HEMA) at room temperature without photo- and thermal activation or addition of initiator. The HEMA monomers are first activated during the compression step but their reactivity is hindered by the dense glass-like environment. The rapid polymerization occurs in only the second step upon decompression to the liquid state. The conversion yield was found to exceed 90% in the recovered samples. The gel permeation chromatography evidences the overriding role of HEMA2•• biradicals in the polymerization mechanism. The HPR process extends the application field of HP-induced polymerization, beyond the family of crystallized monomers considered up today. It is also an appealing alternative to typical photo- or thermal activation, allowing the efficient synthesis of highly pure organic materials.

  1. Practical applications of insects' sexual development for pest control.

    PubMed

    Koukidou, M; Alphey, L

    2014-01-01

    Elucidation of the sex differentiation pathway in insects offers an opportunity to understand key aspects of evolutionary developmental biology. In addition, it provides the understanding necessary to manipulate insects in order to develop new synthetic genetics-based tools for the control of pest insects. Considerable progress has been made in this, especially in improvements to the sterile insect technique (SIT). Large scale sex separation is considered highly desirable or essential for most SIT targets. This separation can be provided by genetic methods based on sex-specific gene expression. Investigation of sex determination by many groups has provided molecular components and methods for this. Though the primary sex determination signal varies considerably, key regulatory genes and mechanisms remain surprisingly similar. In most cases studied so far, a primary signal is transmitted to a basal gene at the bottom of the hierarchy (dsx) through an alternative splicing cascade; dsx is itself differentially spliced in males and females. A sex-specific alternative splicing system therefore offers an attractive route to achieve female-specific expression. Experience has shown that alternative splicing modules can be developed with cross-species function; modularity and standardisation and re-use of parts are key principles of synthetic biology. Both female-killing and sex reversal (XX females to phenotypic males) can in principle also be used as efficient alternatives to sterilisation in SIT-like methods. Sexual maturity is yet another area where understanding of sexual development may be applied to insect control programmes. Further detailed understanding of this crucial aspect of insect biology will undoubtedly continue to underpin innovative practical applications. © 2014 S. Karger AG, Basel.

  2. Language study on Spliced Semigraph using Folding techniques

    NASA Astrophysics Data System (ADS)

    Thiagarajan, K.; Padmashree, J.

    2018-04-01

    In this paper, we proposed algorithm to identify cut vertices and cut edges for n-Cut Spliced Semigraph and splicing the n-Cut Spliced Semigraph using cut vertices else cut edges or combination of cut vertex and cut edge and applying sequence of folding to the spliced semigraph to obtain the semigraph quadruple η(S)=(2, 1, 1, 1). We observed that the splicing and folding using both cut vertices and cut edges is applicable only for n-Cut Spliced Semigraph where n > 2. Also, we transformed the spliced semigraph into tree structure and studied the language for the semigraph with n+2 vertices and n+1 semivertices using Depth First Edge Sequence algorithm and obtain the language structure with sequence of alphabet ‘a’ and ‘b’.

  3. Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III (Inventor); Lundgren, Eric C. (Inventor)

    2016-01-01

    Systems, methods, and apparatus for increasing durability of adhesively bonded joints in a sandwich structure. Such systems, methods, and apparatus includes an first face sheet and an second face sheet as well as an insert structure, the insert structure having a first insert face sheet, a second insert face sheet, and an insert core material. In addition, sandwich core material is arranged between the first face sheet and the second face sheet. A primary bondline may be coupled to the face sheet(s) and the splice. Further, systems, methods, and apparatus of the present disclosure advantageously reduce the load, provide a redundant path, reduce structural fatigue, and/or increase fatigue life.

  4. Systems, Apparatuses, and Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, III, Stanley S. (Inventor); Lundgren, Eric C. (Inventor)

    2014-01-01

    Systems, methods, and apparatus for increasing durability of adhesively bonded joints in a sandwich structure. Such systems, methods, and apparatus includes an first face sheet and an second face sheet as well as an insert structure, the insert structure having a first insert face sheet, a second insert face sheet, and an insert core material. In addition, sandwich core material is arranged between the first face sheet and the second face sheet. A primary bondline may be coupled to the face sheet(s) and the splice. Further, systems, methods, and apparatus of the present disclosure advantageously reduce the load, provide a redundant path, reduce structural fatigue, and/or increase fatigue life.

  5. Application of 3d Model of Cultural Relics in Virtual Restoration

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Hou, M.; Hu, Y.; Zhao, Q.

    2018-04-01

    In the traditional cultural relics splicing process, in order to identify the correct spatial location of the cultural relics debris, experts need to manually splice the existing debris. The repeated contact between debris can easily cause secondary damage to the cultural relics. In this paper, the application process of 3D model of cultural relic in virtual restoration is put forward, and the relevant processes and ideas are verified with the example of Terracotta Warriors data. Through the combination of traditional cultural relics restoration methods and computer virtual reality technology, virtual restoration of high-precision 3D models of cultural relics can provide a scientific reference for virtual restoration, avoiding the secondary damage to the cultural relics caused by improper restoration. The efficiency and safety of the preservation and restoration of cultural relics have been improved.

  6. The combinatorial control of alternative splicing in C. elegans

    PubMed Central

    2017-01-01

    Normal development requires the right splice variants to be made in the right tissues at the right time. The core splicing machinery is engaged in all splicing events, but which precise splice variant is made requires the choice between alternative splice sites—for this to occur, a set of splicing factors (SFs) must recognize and bind to short RNA motifs in the pre-mRNA. In C. elegans, there is known to be extensive variation in splicing patterns across development, but little is known about the targets of each SF or how multiple SFs combine to regulate splicing. Here we combine RNA-seq with in vitro binding assays to study how 4 different C. elegans SFs, ASD-1, FOX-1, MEC-8, and EXC-7, regulate splicing. The 4 SFs chosen all have well-characterised biology and well-studied loss-of-function genetic alleles, and all contain RRM domains. Intriguingly, while the SFs we examined have varied roles in C. elegans development, they show an unexpectedly high overlap in their targets. We also find that binding sites for these SFs occur on the same pre-mRNAs more frequently than expected suggesting extensive combinatorial control of splicing. We confirm that regulation of splicing by multiple SFs is often combinatorial and show that this is functionally significant. We also find that SFs appear to combine to affect splicing in two modes—they either bind in close proximity within the same intron or they appear to bind to separate regions of the intron in a conserved order. Finally, we find that the genes whose splicing are regulated by multiple SFs are highly enriched for genes involved in the cytoskeleton and in ion channels that are key for neurotransmission. Together, this shows that specific classes of genes have complex combinatorial regulation of splicing and that this combinatorial regulation is critical for normal development to occur. PMID:29121637

  7. An RRM–ZnF RNA recognition module targets RBM10 to exonic sequences to promote exon exclusion

    PubMed Central

    Collins, Katherine M.; Kainov, Yaroslav A.; Christodolou, Evangelos; Ray, Debashish; Morris, Quaid; Hughes, Timothy; Taylor, Ian A.

    2017-01-01

    Abstract RBM10 is an RNA-binding protein that plays an essential role in development and is frequently mutated in the context of human disease. RBM10 recognizes a diverse set of RNA motifs in introns and exons and regulates alternative splicing. However, the molecular mechanisms underlying this seemingly relaxed sequence specificity are not understood and functional studies have focused on 3΄ intronic sites only. Here, we dissect the RNA code recognized by RBM10 and relate it to the splicing regulatory function of this protein. We show that a two-domain RRM1–ZnF unit recognizes a GGA-centered motif enriched in RBM10 exonic sites with high affinity and specificity and test that the interaction with these exonic sequences promotes exon skipping. Importantly, a second RRM domain (RRM2) of RBM10 recognizes a C-rich sequence, which explains its known interaction with the intronic 3΄ site of NUMB exon 9 contributing to regulation of the Notch pathway in cancer. Together, these findings explain RBM10's broad RNA specificity and suggest that RBM10 functions as a splicing regulator using two RNA-binding units with different specificities to promote exon skipping. PMID:28379442

  8. An RRM-ZnF RNA recognition module targets RBM10 to exonic sequences to promote exon exclusion.

    PubMed

    Collins, Katherine M; Kainov, Yaroslav A; Christodolou, Evangelos; Ray, Debashish; Morris, Quaid; Hughes, Timothy; Taylor, Ian A; Makeyev, Eugene V; Ramos, Andres

    2017-06-20

    RBM10 is an RNA-binding protein that plays an essential role in development and is frequently mutated in the context of human disease. RBM10 recognizes a diverse set of RNA motifs in introns and exons and regulates alternative splicing. However, the molecular mechanisms underlying this seemingly relaxed sequence specificity are not understood and functional studies have focused on 3΄ intronic sites only. Here, we dissect the RNA code recognized by RBM10 and relate it to the splicing regulatory function of this protein. We show that a two-domain RRM1-ZnF unit recognizes a GGA-centered motif enriched in RBM10 exonic sites with high affinity and specificity and test that the interaction with these exonic sequences promotes exon skipping. Importantly, a second RRM domain (RRM2) of RBM10 recognizes a C-rich sequence, which explains its known interaction with the intronic 3΄ site of NUMB exon 9 contributing to regulation of the Notch pathway in cancer. Together, these findings explain RBM10's broad RNA specificity and suggest that RBM10 functions as a splicing regulator using two RNA-binding units with different specificities to promote exon skipping. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Alternative splicing at exon 2 results in the loss of the catalytic activity of mouse DNA polymerase iota in vitro.

    PubMed

    Kazachenko, Konstantin Y; Miropolskaya, Nataliya A; Gening, Leonid V; Tarantul, Vyacheslav Z; Makarova, Alena V

    2017-02-01

    Y-family DNA polymerase iota (Pol ι) possesses both DNA polymerase and dRP lyase activities and was suggested to be involved in DNA translesion synthesis and base excision repair in mammals. The 129 strain of mice and its derivatives have a natural nonsense codon mutation in the second exon of the Pol ι gene resulting in truncation of the Pol ι protein. These mice were widely used as a Pol ι-null model for in vivo studies of the Pol ι function. However whether 129-derived strains of mice are fully deficient in the Pol ι functions was a subject of discussion since Pol ι mRNA undergoes alternative splicing at exon 2. Here we report purification of mouse Pol ι lacking the region encoded by exon 2, which includes several conserved residues involved in catalysis. We show that the deletion abrogates both the DNA polymerase and dRP lyase activities of Pol ι in the presence of either Mg 2+ or Mn 2+ ions. Thus, 129-derived strains of mice express catalytically inactive alternatively spliced Pol ι variant, whose cellular functions, if any exist, remain to be established. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The behavior of bonded doubler splices for composite sandwich panels

    NASA Technical Reports Server (NTRS)

    Zeller, T. A.; Weisahaar, T. A.

    1980-01-01

    The results of an investigation into the behavior of adhesively bonded doubler splices of two composite material sandwich panels are presented. The splices are studied from three approaches: analytical; numerical (finite elements); and experimental. Several parameters that characterize the splice are developed to determine their influence upon joint strength. These parameters are: doubler overlap length; core stiffness; laminate bending stiffness; the size of the gap between the spliced sandwich panels; and room and elevated temperatures. Similarities and contrasts between these splices and the physically similar single and double lap joints are discussed. The results of this investigation suggest several possible approaches to improving the strength of the sandwich splices.

  11. Transcriptome Bioinformatical Analysis of Vertebrate Stages of Schistosoma japonicum Reveals Alternative Splicing Events

    PubMed Central

    Wang, Xinye; Xu, Xindong; Lu, Xingyu; Zhang, Yuanbin; Pan, Weiqing

    2015-01-01

    Alternative splicing is a molecular process that contributes greatly to the diversification of proteome and to gene functions. Understanding the mechanisms of stage-specific alternative splicing can provide a better understanding of the development of eukaryotes and the functions of different genes. Schistosoma japonicum is an infectious blood-dwelling trematode with a complex lifecycle that causes the tropical disease schistosomiasis. In this study, we analyzed the transcriptome of Schistosoma japonicum to discover alternative splicing events in this parasite, by applying RNA-seq to cDNA library of adults and schistosomula. Results were validated by RT-PCR and sequencing. We found 11,623 alternative splicing events among 7,099 protein encoding genes and average proportion of alternative splicing events per gene was 42.14%. We showed that exon skip is the most common type of alternative splicing events as found in high eukaryotes, whereas intron retention is the least common alternative splicing type. According to intron boundary analysis, the parasite possesses same intron boundaries as other organisms, namely the classic “GT-AG” rule. And in alternative spliced introns or exons, this rule is less strict. And we have attempted to detect alternative splicing events in genes encoding proteins with signal peptides and transmembrane helices, suggesting that alternative splicing could change subcellular locations of specific gene products. Our results indicate that alternative splicing is prevalent in this parasitic worm, and that the worm is close to its hosts. The revealed secretome involved in alternative splicing implies new perspective into understanding interaction between the parasite and its host. PMID:26407301

  12. Controlling CH3NH3PbI(3-x)Cl(x) Film Morphology with Two-Step Annealing Method for Efficient Hybrid Perovskite Solar Cells.

    PubMed

    Liu, Dong; Wu, Lili; Li, Chunxiu; Ren, Shengqiang; Zhang, Jingquan; Li, Wei; Feng, Lianghuan

    2015-08-05

    The methylammonium lead halide perovskite solar cells have become very attractive because they can be prepared with low-cost solution-processable technology and their power conversion efficiency have been increasing from 3.9% to 20% in recent years. However, the high performance of perovskite photovoltaic devices are dependent on the complicated process to prepare compact perovskite films with large grain size. Herein, a new method is developed to achieve excellent CH3NH3PbI3-xClx film with fine morphology and crystallization based on one step deposition and two-step annealing process. This method include the spin coating deposition of the perovskite films with the precursor solution of PbI2, PbCl2, and CH3NH3I at the molar ratio 1:1:4 in dimethylformamide (DMF) and the post two-step annealing (TSA). The first annealing is achieved by solvent-induced process in DMF to promote migration and interdiffusion of the solvent-assisted precursor ions and molecules and realize large size grain growth. The second annealing is conducted by thermal-induced process to further improve morphology and crystallization of films. The compact perovskite films are successfully prepared with grain size up to 1.1 μm according to SEM observation. The PL decay lifetime, and the optic energy gap for the film with two-step annealing are 460 ns and 1.575 eV, respectively, while they are 307 and 327 ns and 1.577 and 1.582 eV for the films annealed in one-step thermal and one-step solvent process. On the basis of the TSA process, the photovoltaic devices exhibit the best efficiency of 14% under AM 1.5G irradiation (100 mW·cm(-2)).

  13. Corruption of accuracy and efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementation of conceptual hydrologic models

    NASA Astrophysics Data System (ADS)

    Schoups, G.; Vrugt, J. A.; Fenicia, F.; van de Giesen, N. C.

    2010-10-01

    Conceptual rainfall-runoff models have traditionally been applied without paying much attention to numerical errors induced by temporal integration of water balance dynamics. Reliance on first-order, explicit, fixed-step integration methods leads to computationally cheap simulation models that are easy to implement. Computational speed is especially desirable for estimating parameter and predictive uncertainty using Markov chain Monte Carlo (MCMC) methods. Confirming earlier work of Kavetski et al. (2003), we show here that the computational speed of first-order, explicit, fixed-step integration methods comes at a cost: for a case study with a spatially lumped conceptual rainfall-runoff model, it introduces artificial bimodality in the marginal posterior parameter distributions, which is not present in numerically accurate implementations of the same model. The resulting effects on MCMC simulation include (1) inconsistent estimates of posterior parameter and predictive distributions, (2) poor performance and slow convergence of the MCMC algorithm, and (3) unreliable convergence diagnosis using the Gelman-Rubin statistic. We studied several alternative numerical implementations to remedy these problems, including various adaptive-step finite difference schemes and an operator splitting method. Our results show that adaptive-step, second-order methods, based on either explicit finite differencing or operator splitting with analytical integration, provide the best alternative for accurate and efficient MCMC simulation. Fixed-step or adaptive-step implicit methods may also be used for increased accuracy, but they cannot match the efficiency of adaptive-step explicit finite differencing or operator splitting. Of the latter two, explicit finite differencing is more generally applicable and is preferred if the individual hydrologic flux laws cannot be integrated analytically, as the splitting method then loses its advantage.

  14. Survey of gene splicing algorithms based on reads.

    PubMed

    Si, Xiuhua; Wang, Qian; Zhang, Lei; Wu, Ruo; Ma, Jiquan

    2017-11-02

    Gene splicing is the process of assembling a large number of unordered short sequence fragments to the original genome sequence as accurately as possible. Several popular splicing algorithms based on reads are reviewed in this article, including reference genome algorithms and de novo splicing algorithms (Greedy-extension, Overlap-Layout-Consensus graph, De Bruijn graph). We also discuss a new splicing method based on the MapReduce strategy and Hadoop. By comparing these algorithms, some conclusions are drawn and some suggestions on gene splicing research are made.

  15. The influence of Argonaute proteins on alternative RNA splicing.

    PubMed

    Batsché, Eric; Ameyar-Zazoua, Maya

    2015-01-01

    Alternative splicing of precursor RNAs is an important process in multicellular species because it impacts several aspects of gene expression: from the increase of protein repertoire to the level of expression. A large body of evidences demonstrates that factors regulating chromatin and transcription impact the outcomes of alternative splicing. Argonaute (AGO) proteins were known to play key roles in the regulation of gene expression at the post-transcriptional level. More recently, their role in the nucleus of human somatic cells has emerged. Here, we will discuss some of the nuclear functions of AGO, with special emphasis on alternative splicing. The AGO-mediated modulation of alternative splicing is based on several properties of these proteins: their binding to transcripts on chromatin and their interactions with many proteins, especially histone tail-modifying enzymes, HP1γ and splicing factors. AGO proteins may favor a decrease in the RNA-polymerase II kinetics at actively transcribed genes leading to the modulation of alternative splicing decisions. They could also influence alternative splicing through their interaction with core components of the splicing machinery and several splicing factors. We will discuss the modes of AGO recruitment on chromatin at active genes. We suggest that long intragenic antisense transcripts (lincRNA) might be an important feature of genes containing splicing events regulated by AGO. © 2014 John Wiley & Sons, Ltd.

  16. Evolutionary conservation and regulation of particular alternative splicing events in plant SR proteins

    PubMed Central

    Kalyna, Maria; Lopato, Sergiy; Voronin, Viktor; Barta, Andrea

    2006-01-01

    Alternative splicing is an important mechanism for fine tuning of gene expression at the post-transcriptional level. SR proteins govern splice site selection and spliceosome assembly. The Arabidopsis genome encodes 19 SR proteins, several of which have no orthologues in metazoan. Three of the plant specific subfamilies are characterized by the presence of a relatively long alternatively spliced intron located in their first RNA recognition motif, which potentially results in an extremely truncated protein. In atRSZ33, a member of the RS2Z subfamily, this alternative splicing event was shown to be autoregulated. Here we show that atRSp31, a member of the RS subfamily, does not autoregulate alternative splicing of its similarily positioned intron. Interestingly, this alternative splicing event is regulated by atRSZ33. We demonstrate that the positions of these long introns and their capability for alternative splicing are conserved from green algae to flowering plants. Moreover, in particular alternative splicing events the splicing signals are embedded into highly conserved sequences. In different taxa, these conserved sequences occur in at least one gene within a subfamily. The evolutionary preservation of alternative splice forms together with highly conserved intron features argues for additional functions hidden in the genes of these plant-specific SR proteins. PMID:16936312

  17. Alternative splicing and the evolution of phenotypic novelty.

    PubMed

    Bush, Stephen J; Chen, Lu; Tovar-Corona, Jaime M; Urrutia, Araxi O

    2017-02-05

    Alternative splicing, a mechanism of post-transcriptional RNA processing whereby a single gene can encode multiple distinct transcripts, has been proposed to underlie morphological innovations in multicellular organisms. Genes with developmental functions are enriched for alternative splicing events, suggestive of a contribution of alternative splicing to developmental programmes. The role of alternative splicing as a source of transcript diversification has previously been compared to that of gene duplication, with the relationship between the two extensively explored. Alternative splicing is reduced following gene duplication with the retention of duplicate copies higher for genes which were alternatively spliced prior to duplication. Furthermore, and unlike the case for overall gene number, the proportion of alternatively spliced genes has also increased in line with the evolutionary diversification of cell types, suggesting alternative splicing may contribute to the complexity of developmental programmes. Together these observations suggest a prominent role for alternative splicing as a source of functional innovation. However, it is unknown whether the proliferation of alternative splicing events indeed reflects a functional expansion of the transcriptome or instead results from weaker selection acting on larger species, which tend to have a higher number of cell types and lower population sizes.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'. © 2016 The Author(s).

  18. Alternative splicing and the evolution of phenotypic novelty

    PubMed Central

    Bush, Stephen J.; Chen, Lu; Tovar-Corona, Jaime M.

    2017-01-01

    Alternative splicing, a mechanism of post-transcriptional RNA processing whereby a single gene can encode multiple distinct transcripts, has been proposed to underlie morphological innovations in multicellular organisms. Genes with developmental functions are enriched for alternative splicing events, suggestive of a contribution of alternative splicing to developmental programmes. The role of alternative splicing as a source of transcript diversification has previously been compared to that of gene duplication, with the relationship between the two extensively explored. Alternative splicing is reduced following gene duplication with the retention of duplicate copies higher for genes which were alternatively spliced prior to duplication. Furthermore, and unlike the case for overall gene number, the proportion of alternatively spliced genes has also increased in line with the evolutionary diversification of cell types, suggesting alternative splicing may contribute to the complexity of developmental programmes. Together these observations suggest a prominent role for alternative splicing as a source of functional innovation. However, it is unknown whether the proliferation of alternative splicing events indeed reflects a functional expansion of the transcriptome or instead results from weaker selection acting on larger species, which tend to have a higher number of cell types and lower population sizes. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994117

  19. Histone and RNA-binding protein interaction creates crosstalk network for regulation of alternative splicing.

    PubMed

    Kim, Yong-Eun; Park, Chungoo; Kim, Kyoon Eon; Kim, Kee K

    2018-04-30

    Alternative splicing is an essential process in eukaryotes, as it increases the complexity of gene expression by generating multiple proteins from a single pre-mRNA. However, information on the regulatory mechanisms for alternative splicing is lacking, because splicing occurs over a short period via the transient interactions of proteins within functional complexes of the spliceosome. Here, we investigated in detail the molecular mechanisms connecting alternative splicing with epigenetic mechanisms. We identified interactions between histone proteins and splicing factors such as Rbfox2, Rbfox3, and splicing factor proline and glutamine rich protein (SFPQ) by in vivo crosslinking and immunoprecipitation. Furthermore, we confirmed that splicing factors were bound to specific modified residues of histone proteins. Additionally, changes in histone methylation due to histone methyltransferase inhibitor treatment notably affected alternative splicing in selected genes. Therefore, we suggested that there may be crosstalk mechanisms connecting histone modifications and RNA-binding proteins that increase the local concentration of RNA-binding proteins in alternative exon loci of nucleosomes by binding specific modified histone proteins, leading to alternative splicing. This crosstalk mechanism may play a major role in epigenetic processes such as histone modification and the regulation of alternative splicing. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Pre-mRNA splicing in cancer: the relevance in oncogenesis, treatment and drug resistance.

    PubMed

    Wojtuszkiewicz, Anna; Assaraf, Yehuda G; Maas, Marielle J P; Kaspers, Gertjan J L; Jansen, Gerrit; Cloos, Jacqueline

    2015-05-01

    Aberrant pre-mRNA splicing in cancer is emerging as an important determinant of oncogenesis, response to treatment and anticancer drug resistance. At the same time, the spliceosome has become a target for a novel class of pre-clinical chemotherapeutics with a potential future application in cancer treatment. Taken together, these findings offer novel opportunities for the enhancement of the efficacy of cancer therapy. This review presents a comprehensive overview of the molecular mechanisms involved in splicing and current developments regarding splicing aberrations in relation to several aspects of cancer formation and therapy. Identified mutations in the various components of the spliceosome and their implications for cancer prognosis are delineated. Moreover, the contribution of abnormal splicing patterns as well as deregulated splicing factors to chemoresistance is discussed, along with novel splicing-based therapeutic approaches. Significant progress has been made in deciphering the role of splicing factors in cancer including carcinogenesis and drug resistance. Splicing-based prognostic tools as well as therapeutic options hold great potential towards improvements in cancer therapy. However, gaining more in-depth molecular insight into the consequences of mutations in various components of the splicing machinery as well as of cellular effects of spliceosome inhibition is a prerequisite to establish the role of splicing in tumor progression and treatment options, respectively.

Top