Sample records for efficient supervised learning

  1. Semi-supervised and unsupervised extreme learning machines.

    PubMed

    Huang, Gao; Song, Shiji; Gupta, Jatinder N D; Wu, Cheng

    2014-12-01

    Extreme learning machines (ELMs) have proven to be efficient and effective learning mechanisms for pattern classification and regression. However, ELMs are primarily applied to supervised learning problems. Only a few existing research papers have used ELMs to explore unlabeled data. In this paper, we extend ELMs for both semi-supervised and unsupervised tasks based on the manifold regularization, thus greatly expanding the applicability of ELMs. The key advantages of the proposed algorithms are as follows: 1) both the semi-supervised ELM (SS-ELM) and the unsupervised ELM (US-ELM) exhibit learning capability and computational efficiency of ELMs; 2) both algorithms naturally handle multiclass classification or multicluster clustering; and 3) both algorithms are inductive and can handle unseen data at test time directly. Moreover, it is shown in this paper that all the supervised, semi-supervised, and unsupervised ELMs can actually be put into a unified framework. This provides new perspectives for understanding the mechanism of random feature mapping, which is the key concept in ELM theory. Empirical study on a wide range of data sets demonstrates that the proposed algorithms are competitive with the state-of-the-art semi-supervised or unsupervised learning algorithms in terms of accuracy and efficiency.

  2. SemiBoost: boosting for semi-supervised learning.

    PubMed

    Mallapragada, Pavan Kumar; Jin, Rong; Jain, Anil K; Liu, Yi

    2009-11-01

    Semi-supervised learning has attracted a significant amount of attention in pattern recognition and machine learning. Most previous studies have focused on designing special algorithms to effectively exploit the unlabeled data in conjunction with labeled data. Our goal is to improve the classification accuracy of any given supervised learning algorithm by using the available unlabeled examples. We call this as the Semi-supervised improvement problem, to distinguish the proposed approach from the existing approaches. We design a metasemi-supervised learning algorithm that wraps around the underlying supervised algorithm and improves its performance using unlabeled data. This problem is particularly important when we need to train a supervised learning algorithm with a limited number of labeled examples and a multitude of unlabeled examples. We present a boosting framework for semi-supervised learning, termed as SemiBoost. The key advantages of the proposed semi-supervised learning approach are: 1) performance improvement of any supervised learning algorithm with a multitude of unlabeled data, 2) efficient computation by the iterative boosting algorithm, and 3) exploiting both manifold and cluster assumption in training classification models. An empirical study on 16 different data sets and text categorization demonstrates that the proposed framework improves the performance of several commonly used supervised learning algorithms, given a large number of unlabeled examples. We also show that the performance of the proposed algorithm, SemiBoost, is comparable to the state-of-the-art semi-supervised learning algorithms.

  3. A new supervised learning algorithm for spiking neurons.

    PubMed

    Xu, Yan; Zeng, Xiaoqin; Zhong, Shuiming

    2013-06-01

    The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit a specific spike train encoded by the precise firing times of spikes. If only running time is considered, the supervised learning for a spiking neuron is equivalent to distinguishing the times of desired output spikes and the other time during the running process of the neuron through adjusting synaptic weights, which can be regarded as a classification problem. Based on this idea, this letter proposes a new supervised learning method for spiking neurons with temporal encoding; it first transforms the supervised learning into a classification problem and then solves the problem by using the perceptron learning rule. The experiment results show that the proposed method has higher learning accuracy and efficiency over the existing learning methods, so it is more powerful for solving complex and real-time problems.

  4. Task-driven dictionary learning.

    PubMed

    Mairal, Julien; Bach, Francis; Ponce, Jean

    2012-04-01

    Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience, and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations.

  5. Constrained Deep Weak Supervision for Histopathology Image Segmentation.

    PubMed

    Jia, Zhipeng; Huang, Xingyi; Chang, Eric I-Chao; Xu, Yan

    2017-11-01

    In this paper, we develop a new weakly supervised learning algorithm to learn to segment cancerous regions in histopathology images. This paper is under a multiple instance learning (MIL) framework with a new formulation, deep weak supervision (DWS); we also propose an effective way to introduce constraints to our neural networks to assist the learning process. The contributions of our algorithm are threefold: 1) we build an end-to-end learning system that segments cancerous regions with fully convolutional networks (FCNs) in which image-to-image weakly-supervised learning is performed; 2) we develop a DWS formulation to exploit multi-scale learning under weak supervision within FCNs; and 3) constraints about positive instances are introduced in our approach to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. The proposed algorithm, abbreviated as DWS-MIL, is easy to implement and can be trained efficiently. Our system demonstrates the state-of-the-art results on large-scale histopathology image data sets and can be applied to various applications in medical imaging beyond histopathology images, such as MRI, CT, and ultrasound images.

  6. QUEST: Eliminating Online Supervised Learning for Efficient Classification Algorithms.

    PubMed

    Zwartjes, Ardjan; Havinga, Paul J M; Smit, Gerard J M; Hurink, Johann L

    2016-10-01

    In this work, we introduce QUEST (QUantile Estimation after Supervised Training), an adaptive classification algorithm for Wireless Sensor Networks (WSNs) that eliminates the necessity for online supervised learning. Online processing is important for many sensor network applications. Transmitting raw sensor data puts high demands on the battery, reducing network life time. By merely transmitting partial results or classifications based on the sampled data, the amount of traffic on the network can be significantly reduced. Such classifications can be made by learning based algorithms using sampled data. An important issue, however, is the training phase of these learning based algorithms. Training a deployed sensor network requires a lot of communication and an impractical amount of human involvement. QUEST is a hybrid algorithm that combines supervised learning in a controlled environment with unsupervised learning on the location of deployment. Using the SITEX02 dataset, we demonstrate that the presented solution works with a performance penalty of less than 10% in 90% of the tests. Under some circumstances, it even outperforms a network of classifiers completely trained with supervised learning. As a result, the need for on-site supervised learning and communication for training is completely eliminated by our solution.

  7. Fully Decentralized Semi-supervised Learning via Privacy-preserving Matrix Completion.

    PubMed

    Fierimonte, Roberto; Scardapane, Simone; Uncini, Aurelio; Panella, Massimo

    2016-08-26

    Distributed learning refers to the problem of inferring a function when the training data are distributed among different nodes. While significant work has been done in the contexts of supervised and unsupervised learning, the intermediate case of Semi-supervised learning in the distributed setting has received less attention. In this paper, we propose an algorithm for this class of problems, by extending the framework of manifold regularization. The main component of the proposed algorithm consists of a fully distributed computation of the adjacency matrix of the training patterns. To this end, we propose a novel algorithm for low-rank distributed matrix completion, based on the framework of diffusion adaptation. Overall, the distributed Semi-supervised algorithm is efficient and scalable, and it can preserve privacy by the inclusion of flexible privacy-preserving mechanisms for similarity computation. The experimental results and comparison on a wide range of standard Semi-supervised benchmarks validate our proposal.

  8. Multilayer Extreme Learning Machine With Subnetwork Nodes for Representation Learning.

    PubMed

    Yang, Yimin; Wu, Q M Jonathan

    2016-11-01

    The extreme learning machine (ELM), which was originally proposed for "generalized" single-hidden layer feedforward neural networks, provides efficient unified learning solutions for the applications of clustering, regression, and classification. It presents competitive accuracy with superb efficiency in many applications. However, ELM with subnetwork nodes architecture has not attracted much research attentions. Recently, many methods have been proposed for supervised/unsupervised dimension reduction or representation learning, but these methods normally only work for one type of problem. This paper studies the general architecture of multilayer ELM (ML-ELM) with subnetwork nodes, showing that: 1) the proposed method provides a representation learning platform with unsupervised/supervised and compressed/sparse representation learning and 2) experimental results on ten image datasets and 16 classification datasets show that, compared to other conventional feature learning methods, the proposed ML-ELM with subnetwork nodes performs competitively or much better than other feature learning methods.

  9. A comparative evaluation of supervised and unsupervised representation learning approaches for anaplastic medulloblastoma differentiation

    NASA Astrophysics Data System (ADS)

    Cruz-Roa, Angel; Arevalo, John; Basavanhally, Ajay; Madabhushi, Anant; González, Fabio

    2015-01-01

    Learning data representations directly from the data itself is an approach that has shown great success in different pattern recognition problems, outperforming state-of-the-art feature extraction schemes for different tasks in computer vision, speech recognition and natural language processing. Representation learning applies unsupervised and supervised machine learning methods to large amounts of data to find building-blocks that better represent the information in it. Digitized histopathology images represents a very good testbed for representation learning since it involves large amounts of high complex, visual data. This paper presents a comparative evaluation of different supervised and unsupervised representation learning architectures to specifically address open questions on what type of learning architectures (deep or shallow), type of learning (unsupervised or supervised) is optimal. In this paper we limit ourselves to addressing these questions in the context of distinguishing between anaplastic and non-anaplastic medulloblastomas from routine haematoxylin and eosin stained images. The unsupervised approaches evaluated were sparse autoencoders and topographic reconstruct independent component analysis, and the supervised approach was convolutional neural networks. Experimental results show that shallow architectures with more neurons are better than deeper architectures without taking into account local space invariances and that topographic constraints provide useful invariant features in scale and rotations for efficient tumor differentiation.

  10. Supervised Learning for Dynamical System Learning.

    PubMed

    Hefny, Ahmed; Downey, Carlton; Gordon, Geoffrey J

    2015-01-01

    Recently there has been substantial interest in spectral methods for learning dynamical systems. These methods are popular since they often offer a good tradeoff between computational and statistical efficiency. Unfortunately, they can be difficult to use and extend in practice: e.g., they can make it difficult to incorporate prior information such as sparsity or structure. To address this problem, we present a new view of dynamical system learning: we show how to learn dynamical systems by solving a sequence of ordinary supervised learning problems, thereby allowing users to incorporate prior knowledge via standard techniques such as L 1 regularization. Many existing spectral methods are special cases of this new framework, using linear regression as the supervised learner. We demonstrate the effectiveness of our framework by showing examples where nonlinear regression or lasso let us learn better state representations than plain linear regression does; the correctness of these instances follows directly from our general analysis.

  11. An empirical study of ensemble-based semi-supervised learning approaches for imbalanced splice site datasets.

    PubMed

    Stanescu, Ana; Caragea, Doina

    2015-01-01

    Recent biochemical advances have led to inexpensive, time-efficient production of massive volumes of raw genomic data. Traditional machine learning approaches to genome annotation typically rely on large amounts of labeled data. The process of labeling data can be expensive, as it requires domain knowledge and expert involvement. Semi-supervised learning approaches that can make use of unlabeled data, in addition to small amounts of labeled data, can help reduce the costs associated with labeling. In this context, we focus on the problem of predicting splice sites in a genome using semi-supervised learning approaches. This is a challenging problem, due to the highly imbalanced distribution of the data, i.e., small number of splice sites as compared to the number of non-splice sites. To address this challenge, we propose to use ensembles of semi-supervised classifiers, specifically self-training and co-training classifiers. Our experiments on five highly imbalanced splice site datasets, with positive to negative ratios of 1-to-99, showed that the ensemble-based semi-supervised approaches represent a good choice, even when the amount of labeled data consists of less than 1% of all training data. In particular, we found that ensembles of co-training and self-training classifiers that dynamically balance the set of labeled instances during the semi-supervised iterations show improvements over the corresponding supervised ensemble baselines. In the presence of limited amounts of labeled data, ensemble-based semi-supervised approaches can successfully leverage the unlabeled data to enhance supervised ensembles learned from highly imbalanced data distributions. Given that such distributions are common for many biological sequence classification problems, our work can be seen as a stepping stone towards more sophisticated ensemble-based approaches to biological sequence annotation in a semi-supervised framework.

  12. An empirical study of ensemble-based semi-supervised learning approaches for imbalanced splice site datasets

    PubMed Central

    2015-01-01

    Background Recent biochemical advances have led to inexpensive, time-efficient production of massive volumes of raw genomic data. Traditional machine learning approaches to genome annotation typically rely on large amounts of labeled data. The process of labeling data can be expensive, as it requires domain knowledge and expert involvement. Semi-supervised learning approaches that can make use of unlabeled data, in addition to small amounts of labeled data, can help reduce the costs associated with labeling. In this context, we focus on the problem of predicting splice sites in a genome using semi-supervised learning approaches. This is a challenging problem, due to the highly imbalanced distribution of the data, i.e., small number of splice sites as compared to the number of non-splice sites. To address this challenge, we propose to use ensembles of semi-supervised classifiers, specifically self-training and co-training classifiers. Results Our experiments on five highly imbalanced splice site datasets, with positive to negative ratios of 1-to-99, showed that the ensemble-based semi-supervised approaches represent a good choice, even when the amount of labeled data consists of less than 1% of all training data. In particular, we found that ensembles of co-training and self-training classifiers that dynamically balance the set of labeled instances during the semi-supervised iterations show improvements over the corresponding supervised ensemble baselines. Conclusions In the presence of limited amounts of labeled data, ensemble-based semi-supervised approaches can successfully leverage the unlabeled data to enhance supervised ensembles learned from highly imbalanced data distributions. Given that such distributions are common for many biological sequence classification problems, our work can be seen as a stepping stone towards more sophisticated ensemble-based approaches to biological sequence annotation in a semi-supervised framework. PMID:26356316

  13. Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns

    PubMed Central

    Matsubara, Takashi

    2017-01-01

    Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning. PMID:29209191

  14. Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns.

    PubMed

    Matsubara, Takashi

    2017-01-01

    Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.

  15. A deep learning and novelty detection framework for rapid phenotyping in high-content screening

    PubMed Central

    Sommer, Christoph; Hoefler, Rudolf; Samwer, Matthias; Gerlich, Daniel W.

    2017-01-01

    Supervised machine learning is a powerful and widely used method for analyzing high-content screening data. Despite its accuracy, efficiency, and versatility, supervised machine learning has drawbacks, most notably its dependence on a priori knowledge of expected phenotypes and time-consuming classifier training. We provide a solution to these limitations with CellCognition Explorer, a generic novelty detection and deep learning framework. Application to several large-scale screening data sets on nuclear and mitotic cell morphologies demonstrates that CellCognition Explorer enables discovery of rare phenotypes without user training, which has broad implications for improved assay development in high-content screening. PMID:28954863

  16. Characterization and reconstruction of 3D stochastic microstructures via supervised learning.

    PubMed

    Bostanabad, R; Chen, W; Apley, D W

    2016-12-01

    The need for computational characterization and reconstruction of volumetric maps of stochastic microstructures for understanding the role of material structure in the processing-structure-property chain has been highlighted in the literature. Recently, a promising characterization and reconstruction approach has been developed where the essential idea is to convert the digitized microstructure image into an appropriate training dataset to learn the stochastic nature of the morphology by fitting a supervised learning model to the dataset. This compact model can subsequently be used to efficiently reconstruct as many statistically equivalent microstructure samples as desired. The goal of this paper is to build upon the developed approach in three major directions by: (1) extending the approach to characterize 3D stochastic microstructures and efficiently reconstruct 3D samples, (2) improving the performance of the approach by incorporating user-defined predictors into the supervised learning model, and (3) addressing potential computational issues by introducing a reduced model which can perform as effectively as the full model. We test the extended approach on three examples and show that the spatial dependencies, as evaluated via various measures, are well preserved in the reconstructed samples. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  17. A Cross-Correlated Delay Shift Supervised Learning Method for Spiking Neurons with Application to Interictal Spike Detection in Epilepsy.

    PubMed

    Guo, Lilin; Wang, Zhenzhong; Cabrerizo, Mercedes; Adjouadi, Malek

    2017-05-01

    This study introduces a novel learning algorithm for spiking neurons, called CCDS, which is able to learn and reproduce arbitrary spike patterns in a supervised fashion allowing the processing of spatiotemporal information encoded in the precise timing of spikes. Unlike the Remote Supervised Method (ReSuMe), synapse delays and axonal delays in CCDS are variants which are modulated together with weights during learning. The CCDS rule is both biologically plausible and computationally efficient. The properties of this learning rule are investigated extensively through experimental evaluations in terms of reliability, adaptive learning performance, generality to different neuron models, learning in the presence of noise, effects of its learning parameters and classification performance. Results presented show that the CCDS learning method achieves learning accuracy and learning speed comparable with ReSuMe, but improves classification accuracy when compared to both the Spike Pattern Association Neuron (SPAN) learning rule and the Tempotron learning rule. The merit of CCDS rule is further validated on a practical example involving the automated detection of interictal spikes in EEG records of patients with epilepsy. Results again show that with proper encoding, the CCDS rule achieves good recognition performance.

  18. Quantum-Enhanced Machine Learning

    NASA Astrophysics Data System (ADS)

    Dunjko, Vedran; Taylor, Jacob M.; Briegel, Hans J.

    2016-09-01

    The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.

  19. Adaptive distance metric learning for diffusion tensor image segmentation.

    PubMed

    Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C N; Chu, Winnie C W

    2014-01-01

    High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework.

  20. Adaptive Distance Metric Learning for Diffusion Tensor Image Segmentation

    PubMed Central

    Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C. N.; Chu, Winnie C. W.

    2014-01-01

    High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework. PMID:24651858

  1. Learning Supervised Topic Models for Classification and Regression from Crowds.

    PubMed

    Rodrigues, Filipe; Lourenco, Mariana; Ribeiro, Bernardete; Pereira, Francisco C

    2017-12-01

    The growing need to analyze large collections of documents has led to great developments in topic modeling. Since documents are frequently associated with other related variables, such as labels or ratings, much interest has been placed on supervised topic models. However, the nature of most annotation tasks, prone to ambiguity and noise, often with high volumes of documents, deem learning under a single-annotator assumption unrealistic or unpractical for most real-world applications. In this article, we propose two supervised topic models, one for classification and another for regression problems, which account for the heterogeneity and biases among different annotators that are encountered in practice when learning from crowds. We develop an efficient stochastic variational inference algorithm that is able to scale to very large datasets, and we empirically demonstrate the advantages of the proposed model over state-of-the-art approaches.

  2. Arrangement and Applying of Movement Patterns in the Cerebellum Based on Semi-supervised Learning.

    PubMed

    Solouki, Saeed; Pooyan, Mohammad

    2016-06-01

    Biological control systems have long been studied as a possible inspiration for the construction of robotic controllers. The cerebellum is known to be involved in the production and learning of smooth, coordinated movements. Therefore, highly regular structure of the cerebellum has been in the core of attention in theoretical and computational modeling. However, most of these models reflect some special features of the cerebellum without regarding the whole motor command computational process. In this paper, we try to make a logical relation between the most significant models of the cerebellum and introduce a new learning strategy to arrange the movement patterns: cerebellar modular arrangement and applying of movement patterns based on semi-supervised learning (CMAPS). We assume here the cerebellum like a big archive of patterns that has an efficient organization to classify and recall them. The main idea is to achieve an optimal use of memory locations by more than just a supervised learning and classification algorithm. Surely, more experimental and physiological researches are needed to confirm our hypothesis.

  3. Supervised Variational Relevance Learning, An Analytic Geometric Feature Selection with Applications to Omic Datasets.

    PubMed

    Boareto, Marcelo; Cesar, Jonatas; Leite, Vitor B P; Caticha, Nestor

    2015-01-01

    We introduce Supervised Variational Relevance Learning (Suvrel), a variational method to determine metric tensors to define distance based similarity in pattern classification, inspired in relevance learning. The variational method is applied to a cost function that penalizes large intraclass distances and favors small interclass distances. We find analytically the metric tensor that minimizes the cost function. Preprocessing the patterns by doing linear transformations using the metric tensor yields a dataset which can be more efficiently classified. We test our methods using publicly available datasets, for some standard classifiers. Among these datasets, two were tested by the MAQC-II project and, even without the use of further preprocessing, our results improve on their performance.

  4. Unsupervised active learning based on hierarchical graph-theoretic clustering.

    PubMed

    Hu, Weiming; Hu, Wei; Xie, Nianhua; Maybank, Steve

    2009-10-01

    Most existing active learning approaches are supervised. Supervised active learning has the following problems: inefficiency in dealing with the semantic gap between the distribution of samples in the feature space and their labels, lack of ability in selecting new samples that belong to new categories that have not yet appeared in the training samples, and lack of adaptability to changes in the semantic interpretation of sample categories. To tackle these problems, we propose an unsupervised active learning framework based on hierarchical graph-theoretic clustering. In the framework, two promising graph-theoretic clustering algorithms, namely, dominant-set clustering and spectral clustering, are combined in a hierarchical fashion. Our framework has some advantages, such as ease of implementation, flexibility in architecture, and adaptability to changes in the labeling. Evaluations on data sets for network intrusion detection, image classification, and video classification have demonstrated that our active learning framework can effectively reduce the workload of manual classification while maintaining a high accuracy of automatic classification. It is shown that, overall, our framework outperforms the support-vector-machine-based supervised active learning, particularly in terms of dealing much more efficiently with new samples whose categories have not yet appeared in the training samples.

  5. Building mental models by dissecting physical models.

    PubMed

    Srivastava, Anveshna

    2016-01-01

    When students build physical models from prefabricated components to learn about model systems, there is an implicit trade-off between the physical degrees of freedom in building the model and the intensity of instructor supervision needed. Models that are too flexible, permitting multiple possible constructions require greater supervision to ensure focused learning; models that are too constrained require less supervision, but can be constructed mechanically, with little to no conceptual engagement. We propose "model-dissection" as an alternative to "model-building," whereby instructors could make efficient use of supervisory resources, while simultaneously promoting focused learning. We report empirical results from a study conducted with biology undergraduate students, where we demonstrate that asking them to "dissect" out specific conceptual structures from an already built 3D physical model leads to a significant improvement in performance than asking them to build the 3D model from simpler components. Using questionnaires to measure understanding both before and after model-based interventions for two cohorts of students, we find that both the "builders" and the "dissectors" improve in the post-test, but it is the latter group who show statistically significant improvement. These results, in addition to the intrinsic time-efficiency of "model dissection," suggest that it could be a valuable pedagogical tool. © 2015 The International Union of Biochemistry and Molecular Biology.

  6. Cancer survival analysis using semi-supervised learning method based on Cox and AFT models with L1/2 regularization.

    PubMed

    Liang, Yong; Chai, Hua; Liu, Xiao-Ying; Xu, Zong-Ben; Zhang, Hai; Leung, Kwong-Sak

    2016-03-01

    One of the most important objectives of the clinical cancer research is to diagnose cancer more accurately based on the patients' gene expression profiles. Both Cox proportional hazards model (Cox) and accelerated failure time model (AFT) have been widely adopted to the high risk and low risk classification or survival time prediction for the patients' clinical treatment. Nevertheless, two main dilemmas limit the accuracy of these prediction methods. One is that the small sample size and censored data remain a bottleneck for training robust and accurate Cox classification model. In addition to that, similar phenotype tumours and prognoses are actually completely different diseases at the genotype and molecular level. Thus, the utility of the AFT model for the survival time prediction is limited when such biological differences of the diseases have not been previously identified. To try to overcome these two main dilemmas, we proposed a novel semi-supervised learning method based on the Cox and AFT models to accurately predict the treatment risk and the survival time of the patients. Moreover, we adopted the efficient L1/2 regularization approach in the semi-supervised learning method to select the relevant genes, which are significantly associated with the disease. The results of the simulation experiments show that the semi-supervised learning model can significant improve the predictive performance of Cox and AFT models in survival analysis. The proposed procedures have been successfully applied to four real microarray gene expression and artificial evaluation datasets. The advantages of our proposed semi-supervised learning method include: 1) significantly increase the available training samples from censored data; 2) high capability for identifying the survival risk classes of patient in Cox model; 3) high predictive accuracy for patients' survival time in AFT model; 4) strong capability of the relevant biomarker selection. Consequently, our proposed semi-supervised learning model is one more appropriate tool for survival analysis in clinical cancer research.

  7. Weakly Supervised Dictionary Learning

    NASA Astrophysics Data System (ADS)

    You, Zeyu; Raich, Raviv; Fern, Xiaoli Z.; Kim, Jinsub

    2018-05-01

    We present a probabilistic modeling and inference framework for discriminative analysis dictionary learning under a weak supervision setting. Dictionary learning approaches have been widely used for tasks such as low-level signal denoising and restoration as well as high-level classification tasks, which can be applied to audio and image analysis. Synthesis dictionary learning aims at jointly learning a dictionary and corresponding sparse coefficients to provide accurate data representation. This approach is useful for denoising and signal restoration, but may lead to sub-optimal classification performance. By contrast, analysis dictionary learning provides a transform that maps data to a sparse discriminative representation suitable for classification. We consider the problem of analysis dictionary learning for time-series data under a weak supervision setting in which signals are assigned with a global label instead of an instantaneous label signal. We propose a discriminative probabilistic model that incorporates both label information and sparsity constraints on the underlying latent instantaneous label signal using cardinality control. We present the expectation maximization (EM) procedure for maximum likelihood estimation (MLE) of the proposed model. To facilitate a computationally efficient E-step, we propose both a chain and a novel tree graph reformulation of the graphical model. The performance of the proposed model is demonstrated on both synthetic and real-world data.

  8. Deep Visual Attention Prediction

    NASA Astrophysics Data System (ADS)

    Wang, Wenguan; Shen, Jianbing

    2018-05-01

    In this work, we aim to predict human eye fixation with view-free scenes based on an end-to-end deep learning architecture. Although Convolutional Neural Networks (CNNs) have made substantial improvement on human attention prediction, it is still needed to improve CNN based attention models by efficiently leveraging multi-scale features. Our visual attention network is proposed to capture hierarchical saliency information from deep, coarse layers with global saliency information to shallow, fine layers with local saliency response. Our model is based on a skip-layer network structure, which predicts human attention from multiple convolutional layers with various reception fields. Final saliency prediction is achieved via the cooperation of those global and local predictions. Our model is learned in a deep supervision manner, where supervision is directly fed into multi-level layers, instead of previous approaches of providing supervision only at the output layer and propagating this supervision back to earlier layers. Our model thus incorporates multi-level saliency predictions within a single network, which significantly decreases the redundancy of previous approaches of learning multiple network streams with different input scales. Extensive experimental analysis on various challenging benchmark datasets demonstrate our method yields state-of-the-art performance with competitive inference time.

  9. Enhancing adult learning in clinical supervision.

    PubMed

    Goldman, Stuart

    2011-01-01

    For decades, across almost every training site, clinical supervision has been considered "central to the development of skills" in psychiatry. The crucial supervisor/supervisee relationship has been described extensively in the literature, most often framed as a clinical apprenticeship of the novice to the master craftsman. This approach fails to directly incorporate adult-learning theory (ALT), despite a clear literature supporting its superiority. In this article, the author describes the basic principles of ALT, reviewing the limitations of current supervisory practice from the ALT perspective. He then describes system insights gleaned from elements of the manufacturing process and integrates them into a model that enhances ALT-informed approaches to clinical supervision that can be utilized in all settings. Although there are clear benefits of ALT and the proposed "pull" manufacturing management-informed approaches to supervision, there are several anticipated areas of likely resistance: the issues of time for the collaborative goal-setting, monitoring progress, and revising the educational plan. Much of this is already a factor in the current, labor-intensive patterns of individual supervision, and, in practice, even the formal monthly review has, in almost all cases, taken appreciably less than half of a supervisory hour. Any possible increases in time or effort would be more than compensated for by the inherent efficiency of resident-specific teaching and learning. Current supervisory practices can be revised to include principles of ALT and "pull" manufacturing systems that can enhance resident education.

  10. Conditional High-Order Boltzmann Machines for Supervised Relation Learning.

    PubMed

    Huang, Yan; Wang, Wei; Wang, Liang; Tan, Tieniu

    2017-09-01

    Relation learning is a fundamental problem in many vision tasks. Recently, high-order Boltzmann machine and its variants have shown their great potentials in learning various types of data relation in a range of tasks. But most of these models are learned in an unsupervised way, i.e., without using relation class labels, which are not very discriminative for some challenging tasks, e.g., face verification. In this paper, with the goal to perform supervised relation learning, we introduce relation class labels into conventional high-order multiplicative interactions with pairwise input samples, and propose a conditional high-order Boltzmann Machine (CHBM), which can learn to classify the data relation in a binary classification way. To be able to deal with more complex data relation, we develop two improved variants of CHBM: 1) latent CHBM, which jointly performs relation feature learning and classification, by using a set of latent variables to block the pathway from pairwise input samples to output relation labels and 2) gated CHBM, which untangles factors of variation in data relation, by exploiting a set of latent variables to multiplicatively gate the classification of CHBM. To reduce the large number of model parameters generated by the multiplicative interactions, we approximately factorize high-order parameter tensors into multiple matrices. Then, we develop efficient supervised learning algorithms, by first pretraining the models using joint likelihood to provide good parameter initialization, and then finetuning them using conditional likelihood to enhance the discriminant ability. We apply the proposed models to a series of tasks including invariant recognition, face verification, and action similarity labeling. Experimental results demonstrate that by exploiting supervised relation labels, our models can greatly improve the performance.

  11. Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions.

    PubMed

    Chen, Ke; Wang, Shihai

    2011-01-01

    Semi-supervised learning concerns the problem of learning in the presence of labeled and unlabeled data. Several boosting algorithms have been extended to semi-supervised learning with various strategies. To our knowledge, however, none of them takes all three semi-supervised assumptions, i.e., smoothness, cluster, and manifold assumptions, together into account during boosting learning. In this paper, we propose a novel cost functional consisting of the margin cost on labeled data and the regularization penalty on unlabeled data based on three fundamental semi-supervised assumptions. Thus, minimizing our proposed cost functional with a greedy yet stagewise functional optimization procedure leads to a generic boosting framework for semi-supervised learning. Extensive experiments demonstrate that our algorithm yields favorite results for benchmark and real-world classification tasks in comparison to state-of-the-art semi-supervised learning algorithms, including newly developed boosting algorithms. Finally, we discuss relevant issues and relate our algorithm to the previous work.

  12. A Fast Optimization Method for General Binary Code Learning.

    PubMed

    Shen, Fumin; Zhou, Xiang; Yang, Yang; Song, Jingkuan; Shen, Heng; Tao, Dacheng

    2016-09-22

    Hashing or binary code learning has been recognized to accomplish efficient near neighbor search, and has thus attracted broad interests in recent retrieval, vision and learning studies. One main challenge of learning to hash arises from the involvement of discrete variables in binary code optimization. While the widely-used continuous relaxation may achieve high learning efficiency, the pursued codes are typically less effective due to accumulated quantization error. In this work, we propose a novel binary code optimization method, dubbed Discrete Proximal Linearized Minimization (DPLM), which directly handles the discrete constraints during the learning process. Specifically, the discrete (thus nonsmooth nonconvex) problem is reformulated as minimizing the sum of a smooth loss term with a nonsmooth indicator function. The obtained problem is then efficiently solved by an iterative procedure with each iteration admitting an analytical discrete solution, which is thus shown to converge very fast. In addition, the proposed method supports a large family of empirical loss functions, which is particularly instantiated in this work by both a supervised and an unsupervised hashing losses, together with the bits uncorrelation and balance constraints. In particular, the proposed DPLM with a supervised `2 loss encodes the whole NUS-WIDE database into 64-bit binary codes within 10 seconds on a standard desktop computer. The proposed approach is extensively evaluated on several large-scale datasets and the generated binary codes are shown to achieve very promising results on both retrieval and classification tasks.

  13. Remote supervision of medical training via videoconference in northern Australia: a qualitative study of the perspectives of supervisors and trainees

    PubMed Central

    Ray, Robin; Sabesan, Sabe

    2015-01-01

    Objectives Telemedicine has revolutionised the ability to provide care to patients, relieve professional isolation and provide guidance and supervision to junior medical officers in rural areas. This study evaluated the Townsville teleoncology supervision model for the training of junior medical officers in rural areas of North Queensland, Australia. Specifically, the perspectives of junior and senior medical officers were explored to identify recommendations for future implementation. Design A qualitative approach incorporating observation and semistructured interviews was used to collect data. Interviews were uploaded into NVivo 10 data management software. Template analysis enabled themes to be tested and developed through consensus between researchers. Setting One tertiary level and four secondary level healthcare centres in rural and regional Queensland, Australia. Participants 10 junior medical officers (Interns, Registrars) and 10 senior medical officers (Senior Medical Officers, Consultants) who participated in the Townsville teleoncology model of remote supervision via videoconference (TTMRS) were included in the study. Primary and Secondary outcome measures Perspectives on the telemedicine experience, technology, engagement, professional support, satisfaction and limitations were examined. Perspectives on topics raised by participants were also examined as the interviews progressed. Results Four major themes with several subthemes emerged from the data: learning environment, beginning the learning relationship, stimulus for learning and practicalities of remote supervision via videoconference. While some themes were consistent with the current literature, new themes like increased professional edge, recognising non-verbal cues and physical examination challenges were identified. Conclusions Remote supervision via videoconference provides readily available guidance to trainees supporting their delivery of appropriate care to patients. However, resources required for upskilling, training in the use of supervision via videoconference, administration issues and nursing support, as well as physical barriers to examinations, must be addressed to enable more efficient implementation. PMID:25795687

  14. On the asymptotic improvement of supervised learning by utilizing additional unlabeled samples - Normal mixture density case

    NASA Technical Reports Server (NTRS)

    Shahshahani, Behzad M.; Landgrebe, David A.

    1992-01-01

    The effect of additional unlabeled samples in improving the supervised learning process is studied in this paper. Three learning processes. supervised, unsupervised, and combined supervised-unsupervised, are compared by studying the asymptotic behavior of the estimates obtained under each process. Upper and lower bounds on the asymptotic covariance matrices are derived. It is shown that under a normal mixture density assumption for the probability density function of the feature space, the combined supervised-unsupervised learning is always superior to the supervised learning in achieving better estimates. Experimental results are provided to verify the theoretical concepts.

  15. The African disability scooter: efficiency testing in paediatric amputees in Malawi

    PubMed Central

    Beckles, Verona; McCahill, Jennifer L.; Stebbins, Julie; Mkandawire, Nyengo; Church, John C. T.; Lavy, Chris

    2016-01-01

    Abstract Purpose: The African Disability Scooter (ADS) was developed for lower limb amputees, to improve mobility and provide access to different terrains. The aim of this study was to test the efficiency of the ADS in Africa over different terrains. Method: Eight subjects with a mean age of 12 years participated. Energy expenditure and speed were calculated over different terrains using the ADS, a prosthetic limb, and crutches. Repeated testing was completed on different days to assess learning effect. Results: Speed was significantly faster with the ADS on a level surface compared to crutch walking. This difference was maintained when using the scooter on rough terrain. Oxygen cost was halved with the scooter on level ground compared to crutch walking. There were no significant differences in oxygen consumption or heart rate. There were significant differences in oxygen cost and speed between days using the scooter over level ground, suggesting the presence of a learning effect. Conclusions: This study demonstrates that the ADS is faster and more energy efficient than crutch walking in young individuals with amputations, and should be considered as an alternative to a prosthesis where this is not available. The presence of a learning effect suggests supervision and training is required when the scooter is first issued.Implications for RehabilitationThe African Disability Scooter:is faster than crutch walking in amputees;is more energy efficient than walking with crutches;supervised use is needed when learning to use the device;is a good alternative/adjunct for mobility. PMID:25316033

  16. An immune-inspired semi-supervised algorithm for breast cancer diagnosis.

    PubMed

    Peng, Lingxi; Chen, Wenbin; Zhou, Wubai; Li, Fufang; Yang, Jin; Zhang, Jiandong

    2016-10-01

    Breast cancer is the most frequently and world widely diagnosed life-threatening cancer, which is the leading cause of cancer death among women. Early accurate diagnosis can be a big plus in treating breast cancer. Researchers have approached this problem using various data mining and machine learning techniques such as support vector machine, artificial neural network, etc. The computer immunology is also an intelligent method inspired by biological immune system, which has been successfully applied in pattern recognition, combination optimization, machine learning, etc. However, most of these diagnosis methods belong to a supervised diagnosis method. It is very expensive to obtain labeled data in biology and medicine. In this paper, we seamlessly integrate the state-of-the-art research on life science with artificial intelligence, and propose a semi-supervised learning algorithm to reduce the need for labeled data. We use two well-known benchmark breast cancer datasets in our study, which are acquired from the UCI machine learning repository. Extensive experiments are conducted and evaluated on those two datasets. Our experimental results demonstrate the effectiveness and efficiency of our proposed algorithm, which proves that our algorithm is a promising automatic diagnosis method for breast cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Evaluation of Semi-supervised Learning for Classification of Protein Crystallization Imagery.

    PubMed

    Sigdel, Madhav; Dinç, İmren; Dinç, Semih; Sigdel, Madhu S; Pusey, Marc L; Aygün, Ramazan S

    2014-03-01

    In this paper, we investigate the performance of two wrapper methods for semi-supervised learning algorithms for classification of protein crystallization images with limited labeled images. Firstly, we evaluate the performance of semi-supervised approach using self-training with naïve Bayesian (NB) and sequential minimum optimization (SMO) as the base classifiers. The confidence values returned by these classifiers are used to select high confident predictions to be used for self-training. Secondly, we analyze the performance of Yet Another Two Stage Idea (YATSI) semi-supervised learning using NB, SMO, multilayer perceptron (MLP), J48 and random forest (RF) classifiers. These results are compared with the basic supervised learning using the same training sets. We perform our experiments on a dataset consisting of 2250 protein crystallization images for different proportions of training and test data. Our results indicate that NB and SMO using both self-training and YATSI semi-supervised approaches improve accuracies with respect to supervised learning. On the other hand, MLP, J48 and RF perform better using basic supervised learning. Overall, random forest classifier yields the best accuracy with supervised learning for our dataset.

  18. Self-supervised ARTMAP.

    PubMed

    Amis, Gregory P; Carpenter, Gail A

    2010-03-01

    Computational models of learning typically train on labeled input patterns (supervised learning), unlabeled input patterns (unsupervised learning), or a combination of the two (semi-supervised learning). In each case input patterns have a fixed number of features throughout training and testing. Human and machine learning contexts present additional opportunities for expanding incomplete knowledge from formal training, via self-directed learning that incorporates features not previously experienced. This article defines a new self-supervised learning paradigm to address these richer learning contexts, introducing a neural network called self-supervised ARTMAP. Self-supervised learning integrates knowledge from a teacher (labeled patterns with some features), knowledge from the environment (unlabeled patterns with more features), and knowledge from internal model activation (self-labeled patterns). Self-supervised ARTMAP learns about novel features from unlabeled patterns without destroying partial knowledge previously acquired from labeled patterns. A category selection function bases system predictions on known features, and distributed network activation scales unlabeled learning to prediction confidence. Slow distributed learning on unlabeled patterns focuses on novel features and confident predictions, defining classification boundaries that were ambiguous in the labeled patterns. Self-supervised ARTMAP improves test accuracy on illustrative low-dimensional problems and on high-dimensional benchmarks. Model code and benchmark data are available from: http://techlab.eu.edu/SSART/. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Combining active learning and semi-supervised learning techniques to extract protein interaction sentences.

    PubMed

    Song, Min; Yu, Hwanjo; Han, Wook-Shin

    2011-11-24

    Protein-protein interaction (PPI) extraction has been a focal point of many biomedical research and database curation tools. Both Active Learning and Semi-supervised SVMs have recently been applied to extract PPI automatically. In this paper, we explore combining the AL with the SSL to improve the performance of the PPI task. We propose a novel PPI extraction technique called PPISpotter by combining Deterministic Annealing-based SSL and an AL technique to extract protein-protein interaction. In addition, we extract a comprehensive set of features from MEDLINE records by Natural Language Processing (NLP) techniques, which further improve the SVM classifiers. In our feature selection technique, syntactic, semantic, and lexical properties of text are incorporated into feature selection that boosts the system performance significantly. By conducting experiments with three different PPI corpuses, we show that PPISpotter is superior to the other techniques incorporated into semi-supervised SVMs such as Random Sampling, Clustering, and Transductive SVMs by precision, recall, and F-measure. Our system is a novel, state-of-the-art technique for efficiently extracting protein-protein interaction pairs.

  20. ICT Strategies and Tools for the Improvement of Instructional Supervision. The Virtual Supervision

    ERIC Educational Resources Information Center

    Cano, Esteban Vazquez; Garcia, Ma. Luisa Sevillano

    2013-01-01

    This study aims to evaluate and analyze strategies, proposals, and ICT tools to promote a paradigm shift in educational supervision that enhances the schools of this century involved not only in teaching-face learning, but e-learning and blended learning. Traditional models of educational supervision do not guarantee adequate supervision of the…

  1. Baccalaureate nursing students' perceptions of learning and supervision in the clinical environment.

    PubMed

    Dimitriadou, Maria; Papastavrou, Evridiki; Efstathiou, Georgios; Theodorou, Mamas

    2015-06-01

    This study is an exploration of nursing students' experiences within the clinical learning environment (CLE) and supervision provided in hospital settings. A total of 357 second-year nurse students from all universities in Cyprus participated in the study. Data were collected using the Clinical Learning Environment, Supervision and Nurse Teacher instrument. The dimension "supervisory relationship (mentor)", as well as the frequency of individualized supervision meetings, were found to be important variables in the students' clinical learning. However, no statistically-significant connection was established between successful mentor relationship and team supervision. The majority of students valued their mentor's supervision more highly than a nurse teacher's supervision toward the fulfillment of learning outcomes. The dimensions "premises of nursing care" and "premises of learning" were highly correlated, indicating that a key component of a quality clinical learning environment is the quality of care delivered. The results suggest the need to modify educational strategies that foster desirable learning for students in response to workplace demands. © 2014 Wiley Publishing Asia Pty Ltd.

  2. Healthcare students' evaluation of the clinical learning environment and supervision - a cross-sectional study.

    PubMed

    Pitkänen, Salla; Kääriäinen, Maria; Oikarainen, Ashlee; Tuomikoski, Anna-Maria; Elo, Satu; Ruotsalainen, Heidi; Saarikoski, Mikko; Kärsämänoja, Taina; Mikkonen, Kristina

    2018-03-01

    The purpose of clinical placements and supervision is to promote the development of healthcare students´ professional skills. High-quality clinical learning environments and supervision were shown to have significant influence on healthcare students´ professional development. This study aimed to describe healthcare students` evaluation of the clinical learning environment and supervision, and to identify the factors that affect these. The study was performed as a cross-sectional study. The data (n = 1973) were gathered through an online survey using the Clinical Learning Environment, Supervision and Nurse Teacher scale during the academic year 2015-2016 from all healthcare students (N = 2500) who completed their clinical placement at a certain university hospital in Finland. The data were analysed using descriptive statistics and binary logistic regression analysis. More than half of the healthcare students had a named supervisor and supervision was completed as planned. The students evaluated the clinical learning environment and supervision as 'good'. The students´ readiness to recommend the unit to other students and the frequency of separate private unscheduled sessions with the supervisor were the main factors that affect healthcare students` evaluation of the clinical learning environment and supervision. Individualized and goal-oriented supervision in which the student had a named supervisor and where supervision was completed as planned in a positive environment that supported learning had a significant impact on student's learning. The clinical learning environment and supervision support the development of future healthcare professionals' clinical competence. The supervisory relationship was shown to have a significant effect on the outcomes of students' experiences. We recommend the planning of educational programmes for supervisors of healthcare students for the enhancement of supervisors' pedagogical competencies in supervising students in the clinical practice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Evaluation of Semi-supervised Learning for Classification of Protein Crystallization Imagery

    PubMed Central

    Sigdel, Madhav; Dinç, İmren; Dinç, Semih; Sigdel, Madhu S.; Pusey, Marc L.; Aygün, Ramazan S.

    2015-01-01

    In this paper, we investigate the performance of two wrapper methods for semi-supervised learning algorithms for classification of protein crystallization images with limited labeled images. Firstly, we evaluate the performance of semi-supervised approach using self-training with naïve Bayesian (NB) and sequential minimum optimization (SMO) as the base classifiers. The confidence values returned by these classifiers are used to select high confident predictions to be used for self-training. Secondly, we analyze the performance of Yet Another Two Stage Idea (YATSI) semi-supervised learning using NB, SMO, multilayer perceptron (MLP), J48 and random forest (RF) classifiers. These results are compared with the basic supervised learning using the same training sets. We perform our experiments on a dataset consisting of 2250 protein crystallization images for different proportions of training and test data. Our results indicate that NB and SMO using both self-training and YATSI semi-supervised approaches improve accuracies with respect to supervised learning. On the other hand, MLP, J48 and RF perform better using basic supervised learning. Overall, random forest classifier yields the best accuracy with supervised learning for our dataset. PMID:25914518

  4. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding

    PubMed Central

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule’s error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism. PMID:27532262

  5. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.

    PubMed

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism.

  6. Supervised embedding of textual predictors with applications in clinical diagnostics for pediatric cardiology.

    PubMed

    Perry, Thomas Ernest; Zha, Hongyuan; Zhou, Ke; Frias, Patricio; Zeng, Dadan; Braunstein, Mark

    2014-02-01

    Electronic health records possess critical predictive information for machine-learning-based diagnostic aids. However, many traditional machine learning methods fail to simultaneously integrate textual data into the prediction process because of its high dimensionality. In this paper, we present a supervised method using Laplacian Eigenmaps to enable existing machine learning methods to estimate both low-dimensional representations of textual data and accurate predictors based on these low-dimensional representations at the same time. We present a supervised Laplacian Eigenmap method to enhance predictive models by embedding textual predictors into a low-dimensional latent space, which preserves the local similarities among textual data in high-dimensional space. The proposed implementation performs alternating optimization using gradient descent. For the evaluation, we applied our method to over 2000 patient records from a large single-center pediatric cardiology practice to predict if patients were diagnosed with cardiac disease. In our experiments, we consider relatively short textual descriptions because of data availability. We compared our method with latent semantic indexing, latent Dirichlet allocation, and local Fisher discriminant analysis. The results were assessed using four metrics: the area under the receiver operating characteristic curve (AUC), Matthews correlation coefficient (MCC), specificity, and sensitivity. The results indicate that supervised Laplacian Eigenmaps was the highest performing method in our study, achieving 0.782 and 0.374 for AUC and MCC, respectively. Supervised Laplacian Eigenmaps showed an increase of 8.16% in AUC and 20.6% in MCC over the baseline that excluded textual data and a 2.69% and 5.35% increase in AUC and MCC, respectively, over unsupervised Laplacian Eigenmaps. As a solution, we present a supervised Laplacian Eigenmap method to embed textual predictors into a low-dimensional Euclidean space. This method allows many existing machine learning predictors to effectively and efficiently capture the potential of textual predictors, especially those based on short texts.

  7. Human semi-supervised learning.

    PubMed

    Gibson, Bryan R; Rogers, Timothy T; Zhu, Xiaojin

    2013-01-01

    Most empirical work in human categorization has studied learning in either fully supervised or fully unsupervised scenarios. Most real-world learning scenarios, however, are semi-supervised: Learners receive a great deal of unlabeled information from the world, coupled with occasional experiences in which items are directly labeled by a knowledgeable source. A large body of work in machine learning has investigated how learning can exploit both labeled and unlabeled data provided to a learner. Using equivalences between models found in human categorization and machine learning research, we explain how these semi-supervised techniques can be applied to human learning. A series of experiments are described which show that semi-supervised learning models prove useful for explaining human behavior when exposed to both labeled and unlabeled data. We then discuss some machine learning models that do not have familiar human categorization counterparts. Finally, we discuss some challenges yet to be addressed in the use of semi-supervised models for modeling human categorization. Copyright © 2013 Cognitive Science Society, Inc.

  8. Comparative Analysis of River Flow Modelling by Using Supervised Learning Technique

    NASA Astrophysics Data System (ADS)

    Ismail, Shuhaida; Mohamad Pandiahi, Siraj; Shabri, Ani; Mustapha, Aida

    2018-04-01

    The goal of this research is to investigate the efficiency of three supervised learning algorithms for forecasting monthly river flow of the Indus River in Pakistan, spread over 550 square miles or 1800 square kilometres. The algorithms include the Least Square Support Vector Machine (LSSVM), Artificial Neural Network (ANN) and Wavelet Regression (WR). The forecasting models predict the monthly river flow obtained from the three models individually for river flow data and the accuracy of the all models were then compared against each other. The monthly river flow of the said river has been forecasted using these three models. The obtained results were compared and statistically analysed. Then, the results of this analytical comparison showed that LSSVM model is more precise in the monthly river flow forecasting. It was found that LSSVM has he higher r with the value of 0.934 compared to other models. This indicate that LSSVM is more accurate and efficient as compared to the ANN and WR model.

  9. Competencies to enable learning-focused clinical supervision: a thematic analysis of the literature.

    PubMed

    Pront, Leeanne; Gillham, David; Schuwirth, Lambert W T

    2016-04-01

    Clinical supervision is essential for development of health professional students and widely recognised as a significant factor influencing student learning. Although considered important, delivery is often founded on personal experience or a series of predetermined steps that offer standardised behavioural approaches. Such a view may limit the capacity to promote individualised student learning in complex clinical environments. The objective of this review was to develop a comprehensive understanding of what is considered 'good' clinical supervision, within health student education. The literature provides many perspectives, so collation and interpretation were needed to aid development and understanding for all clinicians required to perform clinical supervision within their daily practice. A comprehensive thematic literature review was carried out, which included a variety of health disciplines and geographical environments. Literature addressing 'good' clinical supervision consists primarily of descriptive qualitative research comprising mostly small studies that repeated descriptions of student and supervisor opinions of 'good' supervision. Synthesis and thematic analysis of the literature resulted in four 'competency' domains perceived to inform delivery of learning-focused or 'good' clinical supervision. Domains understood to promote student learning are co-dependent and include 'to partner', 'to nurture', 'to engage' and 'to facilitate meaning'. Clinical supervision is a complex phenomenon and establishing a comprehensive understanding across health disciplines can influence the future health workforce. The learning-focused clinical supervision domains presented here provide an alternative perspective of clinical supervision of health students. This paper is the first step in establishing a more comprehensive understanding of learning-focused clinical supervision, which may lead to development of competencies for clinical supervision. © 2016 John Wiley & Sons Ltd.

  10. Supervision Learning as Conceptual Threshold Crossing: When Supervision Gets "Medieval"

    ERIC Educational Resources Information Center

    Carter, Susan

    2016-01-01

    This article presumes that supervision is a category of teaching, and that we all "learn" how to teach better. So it enquires into what novice supervisors need to learn. An anonymised digital questionnaire sought data from supervisors [n226] on their experiences of supervision to find out what was difficult, and supervisor interviews…

  11. Supervised Learning for Detection of Duplicates in Genomic Sequence Databases.

    PubMed

    Chen, Qingyu; Zobel, Justin; Zhang, Xiuzhen; Verspoor, Karin

    2016-01-01

    First identified as an issue in 1996, duplication in biological databases introduces redundancy and even leads to inconsistency when contradictory information appears. The amount of data makes purely manual de-duplication impractical, and existing automatic systems cannot detect duplicates as precisely as can experts. Supervised learning has the potential to address such problems by building automatic systems that learn from expert curation to detect duplicates precisely and efficiently. While machine learning is a mature approach in other duplicate detection contexts, it has seen only preliminary application in genomic sequence databases. We developed and evaluated a supervised duplicate detection method based on an expert curated dataset of duplicates, containing over one million pairs across five organisms derived from genomic sequence databases. We selected 22 features to represent distinct attributes of the database records, and developed a binary model and a multi-class model. Both models achieve promising performance; under cross-validation, the binary model had over 90% accuracy in each of the five organisms, while the multi-class model maintains high accuracy and is more robust in generalisation. We performed an ablation study to quantify the impact of different sequence record features, finding that features derived from meta-data, sequence identity, and alignment quality impact performance most strongly. The study demonstrates machine learning can be an effective additional tool for de-duplication of genomic sequence databases. All Data are available as described in the supplementary material.

  12. Weakly supervised visual dictionary learning by harnessing image attributes.

    PubMed

    Gao, Yue; Ji, Rongrong; Liu, Wei; Dai, Qionghai; Hua, Gang

    2014-12-01

    Bag-of-features (BoFs) representation has been extensively applied to deal with various computer vision applications. To extract discriminative and descriptive BoF, one important step is to learn a good dictionary to minimize the quantization loss between local features and codewords. While most existing visual dictionary learning approaches are engaged with unsupervised feature quantization, the latest trend has turned to supervised learning by harnessing the semantic labels of images or regions. However, such labels are typically too expensive to acquire, which restricts the scalability of supervised dictionary learning approaches. In this paper, we propose to leverage image attributes to weakly supervise the dictionary learning procedure without requiring any actual labels. As a key contribution, our approach establishes a generative hidden Markov random field (HMRF), which models the quantized codewords as the observed states and the image attributes as the hidden states, respectively. Dictionary learning is then performed by supervised grouping the observed states, where the supervised information is stemmed from the hidden states of the HMRF. In such a way, the proposed dictionary learning approach incorporates the image attributes to learn a semantic-preserving BoF representation without any genuine supervision. Experiments in large-scale image retrieval and classification tasks corroborate that our approach significantly outperforms the state-of-the-art unsupervised dictionary learning approaches.

  13. Opportunities to Learn Scientific Thinking in Joint Doctoral Supervision

    ERIC Educational Resources Information Center

    Kobayashi, Sofie; Grout, Brian W.; Rump, Camilla Østerberg

    2015-01-01

    Research into doctoral supervision has increased rapidly over the last decades, yet our understanding of how doctoral students learn scientific thinking from supervision is limited. Most studies are based on interviews with little work being reported that is based on observation of actual supervision. While joint supervision has become widely…

  14. An Efficient Semi-supervised Learning Approach to Predict SH2 Domain Mediated Interactions.

    PubMed

    Kundu, Kousik; Backofen, Rolf

    2017-01-01

    Src homology 2 (SH2) domain is an important subclass of modular protein domains that plays an indispensable role in several biological processes in eukaryotes. SH2 domains specifically bind to the phosphotyrosine residue of their binding peptides to facilitate various molecular functions. For determining the subtle binding specificities of SH2 domains, it is very important to understand the intriguing mechanisms by which these domains recognize their target peptides in a complex cellular environment. There are several attempts have been made to predict SH2-peptide interactions using high-throughput data. However, these high-throughput data are often affected by a low signal to noise ratio. Furthermore, the prediction methods have several additional shortcomings, such as linearity problem, high computational complexity, etc. Thus, computational identification of SH2-peptide interactions using high-throughput data remains challenging. Here, we propose a machine learning approach based on an efficient semi-supervised learning technique for the prediction of 51 SH2 domain mediated interactions in the human proteome. In our study, we have successfully employed several strategies to tackle the major problems in computational identification of SH2-peptide interactions.

  15. Effects of coaching supervision, mentoring supervision and abusive supervision on talent development among trainee doctors in public hospitals: moderating role of clinical learning environment.

    PubMed

    Subramaniam, Anusuiya; Silong, Abu Daud; Uli, Jegak; Ismail, Ismi Arif

    2015-08-13

    Effective talent development requires robust supervision. However, the effects of supervisory styles (coaching, mentoring and abusive supervision) on talent development and the moderating effects of clinical learning environment in the relationship between supervisory styles and talent development among public hospital trainee doctors have not been thoroughly researched. In this study, we aim to achieve the following, (1) identify the extent to which supervisory styles (coaching, mentoring and abusive supervision) can facilitate talent development among trainee doctors in public hospital and (2) examine whether coaching, mentoring and abusive supervision are moderated by clinical learning environment in predicting talent development among trainee doctors in public hospital. A questionnaire-based critical survey was conducted among trainee doctors undergoing housemanship at six public hospitals in the Klang Valley, Malaysia. Prior permission was obtained from the Ministry of Health Malaysia to conduct the research in the identified public hospitals. The survey yielded 355 responses. The results were analysed using SPSS 20.0 and SEM with AMOS 20.0. The findings of this research indicate that coaching and mentoring supervision are positively associated with talent development, and that there is no significant relationship between abusive supervision and talent development. The findings also support the moderating role of clinical learning environment on the relationships between coaching supervision-talent development, mentoring supervision-talent development and abusive supervision-talent development among public hospital trainee doctors. Overall, the proposed model indicates a 26 % variance in talent development. This study provides an improved understanding on the role of the supervisory styles (coaching and mentoring supervision) on facilitating talent development among public hospital trainee doctors. Furthermore, this study extends the literature to better understand the effects of supervisory styles on trainee doctors' talent development are contigent on the trainee doctors' clinical learning environment. In summary, supervisors are stakeholders with the responsibility of facilitating learning conditions that hold sufficient structure and support to optimise the trainee doctors learning.

  16. Semi-supervised learning for photometric supernova classification

    NASA Astrophysics Data System (ADS)

    Richards, Joseph W.; Homrighausen, Darren; Freeman, Peter E.; Schafer, Chad M.; Poznanski, Dovi

    2012-01-01

    We present a semi-supervised method for photometric supernova typing. Our approach is to first use the non-linear dimension reduction technique diffusion map to detect structure in a data base of supernova light curves and subsequently employ random forest classification on a spectroscopically confirmed training set to learn a model that can predict the type of each newly observed supernova. We demonstrate that this is an effective method for supernova typing. As supernova numbers increase, our semi-supervised method efficiently utilizes this information to improve classification, a property not enjoyed by template-based methods. Applied to supernova data simulated by Kessler et al. to mimic those of the Dark Energy Survey, our methods achieve (cross-validated) 95 per cent Type Ia purity and 87 per cent Type Ia efficiency on the spectroscopic sample, but only 50 per cent Type Ia purity and 50 per cent efficiency on the photometric sample due to their spectroscopic follow-up strategy. To improve the performance on the photometric sample, we search for better spectroscopic follow-up procedures by studying the sensitivity of our machine-learned supernova classification on the specific strategy used to obtain training sets. With a fixed amount of spectroscopic follow-up time, we find that, despite collecting data on a smaller number of supernovae, deeper magnitude-limited spectroscopic surveys are better for producing training sets. For supernova Ia (II-P) typing, we obtain a 44 per cent (1 per cent) increase in purity to 72 per cent (87 per cent) and 30 per cent (162 per cent) increase in efficiency to 65 per cent (84 per cent) of the sample using a 25th (24.5th) magnitude-limited survey instead of the shallower spectroscopic sample used in the original simulations. When redshift information is available, we incorporate it into our analysis using a novel method of altering the diffusion map representation of the supernovae. Incorporating host redshifts leads to a 5 per cent improvement in Type Ia purity and 13 per cent improvement in Type Ia efficiency. A web service for the supernova classification method used in this paper can be found at .

  17. Cross-Domain Semi-Supervised Learning Using Feature Formulation.

    PubMed

    Xingquan Zhu

    2011-12-01

    Semi-Supervised Learning (SSL) traditionally makes use of unlabeled samples by including them into the training set through an automated labeling process. Such a primitive Semi-Supervised Learning (pSSL) approach suffers from a number of disadvantages including false labeling and incapable of utilizing out-of-domain samples. In this paper, we propose a formative Semi-Supervised Learning (fSSL) framework which explores hidden features between labeled and unlabeled samples to achieve semi-supervised learning. fSSL regards that both labeled and unlabeled samples are generated from some hidden concepts with labeling information partially observable for some samples. The key of the fSSL is to recover the hidden concepts, and take them as new features to link labeled and unlabeled samples for semi-supervised learning. Because unlabeled samples are only used to generate new features, but not to be explicitly included in the training set like pSSL does, fSSL overcomes the inherent disadvantages of the traditional pSSL methods, especially for samples not within the same domain as the labeled instances. Experimental results and comparisons demonstrate that fSSL significantly outperforms pSSL-based methods for both within-domain and cross-domain semi-supervised learning.

  18. SU-F-J-72: A Clinical Usable Integrated Contouring Quality Evaluation Software for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, S; Dolly, S; Cai, B

    Purpose: To introduce the Auto Contour Evaluation (ACE) software, which is the clinical usable, user friendly, efficient and all-in-one toolbox for automatically identify common contouring errors in radiotherapy treatment planning using supervised machine learning techniques. Methods: ACE is developed with C# using Microsoft .Net framework and Windows Presentation Foundation (WPF) for elegant GUI design and smooth GUI transition animations through the integration of graphics engines and high dots per inch (DPI) settings on modern high resolution monitors. The industrial standard software design pattern, Model-View-ViewModel (MVVM) pattern, is chosen to be the major architecture of ACE for neat coding structure, deepmore » modularization, easy maintainability and seamless communication with other clinical software. ACE consists of 1) a patient data importing module integrated with clinical patient database server, 2) a 2D DICOM image and RT structure simultaneously displaying module, 3) a 3D RT structure visualization module using Visualization Toolkit or VTK library and 4) a contour evaluation module using supervised pattern recognition algorithms to detect contouring errors and display detection results. ACE relies on supervised learning algorithms to handle all image processing and data processing jobs. Implementations of related algorithms are powered by Accord.Net scientific computing library for better efficiency and effectiveness. Results: ACE can take patient’s CT images and RT structures from commercial treatment planning software via direct user input or from patients’ database. All functionalities including 2D and 3D image visualization and RT contours error detection have been demonstrated with real clinical patient cases. Conclusion: ACE implements supervised learning algorithms and combines image processing and graphical visualization modules for RT contours verification. ACE has great potential for automated radiotherapy contouring quality verification. Structured with MVVM pattern, it is highly maintainable and extensible, and support smooth connections with other clinical software tools.« less

  19. An efficient abnormal cervical cell detection system based on multi-instance extreme learning machine

    NASA Astrophysics Data System (ADS)

    Zhao, Lili; Yin, Jianping; Yuan, Lihuan; Liu, Qiang; Li, Kuan; Qiu, Minghui

    2017-07-01

    Automatic detection of abnormal cells from cervical smear images is extremely demanded in annual diagnosis of women's cervical cancer. For this medical cell recognition problem, there are three different feature sections, namely cytology morphology, nuclear chromatin pathology and region intensity. The challenges of this problem come from feature combination s and classification accurately and efficiently. Thus, we propose an efficient abnormal cervical cell detection system based on multi-instance extreme learning machine (MI-ELM) to deal with above two questions in one unified framework. MI-ELM is one of the most promising supervised learning classifiers which can deal with several feature sections and realistic classification problems analytically. Experiment results over Herlev dataset demonstrate that the proposed method outperforms three traditional methods for two-class classification in terms of well accuracy and less time.

  20. Coupled Semi-Supervised Learning

    DTIC Science & Technology

    2010-05-01

    later in the thesis, in Chapter 5. CPL as a Case Study of Coupled Semi-Supervised Learning The results presented above demonstrate that coupling...EXTRACTION PATTERNS Our answer to the question posed above, then, is that our results with CPL serve as a case study of coupled semi-supervised learning of...that are incompatible with the coupling constraints. Thus, we argue that our results with CPL serve as a case study of coupled semi-supervised

  1. Physical isolation with virtual support: Registrars' learning via remote supervision.

    PubMed

    Wearne, Susan M; Teunissen, Pim W; Dornan, Tim; Skinner, Timothy

    2014-08-26

    Abstract Purpose: Changing the current geographical maldistribution of the medical workforce is important for global health. Research regarding programs that train doctors for work with disadvantaged, rural populations is needed. This paper explores one approach of remote supervision of registrars in isolated rural practice. Researching how learning occurs without on-site supervision may also reveal other key elements of postgraduate education. Methods: Thematic analysis of in-depth interviews exploring 11 respondents' experiences of learning via remote supervision. Results: Remote supervision created distinctive learning environments. Respondents' attributes interacted with external supports to influence whether and how their learning was promoted or impeded. Registrars with clinical and/or life experience, who were insightful and motivated to direct their learning, turned the challenges of isolated practice into opportunities that accelerated their professional development. Discussion: Remote supervision was not necessarily problematic but instead provided rich learning for doctors training in and for the context where they were needed. Registrars learnt through clinical responsibility for defined populations and longitudinal, supportive supervisory relationships. Responsibility and continuity may be as important as supervisory proximity for experienced registrars.

  2. Coupled dimensionality reduction and classification for supervised and semi-supervised multilabel learning

    PubMed Central

    Gönen, Mehmet

    2014-01-01

    Coupled training of dimensionality reduction and classification is proposed previously to improve the prediction performance for single-label problems. Following this line of research, in this paper, we first introduce a novel Bayesian method that combines linear dimensionality reduction with linear binary classification for supervised multilabel learning and present a deterministic variational approximation algorithm to learn the proposed probabilistic model. We then extend the proposed method to find intrinsic dimensionality of the projected subspace using automatic relevance determination and to handle semi-supervised learning using a low-density assumption. We perform supervised learning experiments on four benchmark multilabel learning data sets by comparing our method with baseline linear dimensionality reduction algorithms. These experiments show that the proposed approach achieves good performance values in terms of hamming loss, average AUC, macro F1, and micro F1 on held-out test data. The low-dimensional embeddings obtained by our method are also very useful for exploratory data analysis. We also show the effectiveness of our approach in finding intrinsic subspace dimensionality and semi-supervised learning tasks. PMID:24532862

  3. Coupled dimensionality reduction and classification for supervised and semi-supervised multilabel learning.

    PubMed

    Gönen, Mehmet

    2014-03-01

    Coupled training of dimensionality reduction and classification is proposed previously to improve the prediction performance for single-label problems. Following this line of research, in this paper, we first introduce a novel Bayesian method that combines linear dimensionality reduction with linear binary classification for supervised multilabel learning and present a deterministic variational approximation algorithm to learn the proposed probabilistic model. We then extend the proposed method to find intrinsic dimensionality of the projected subspace using automatic relevance determination and to handle semi-supervised learning using a low-density assumption. We perform supervised learning experiments on four benchmark multilabel learning data sets by comparing our method with baseline linear dimensionality reduction algorithms. These experiments show that the proposed approach achieves good performance values in terms of hamming loss, average AUC, macro F 1 , and micro F 1 on held-out test data. The low-dimensional embeddings obtained by our method are also very useful for exploratory data analysis. We also show the effectiveness of our approach in finding intrinsic subspace dimensionality and semi-supervised learning tasks.

  4. Ensemble learning with trees and rules: supervised, semi-supervised, unsupervised

    USDA-ARS?s Scientific Manuscript database

    In this article, we propose several new approaches for post processing a large ensemble of conjunctive rules for supervised and semi-supervised learning problems. We show with various examples that for high dimensional regression problems the models constructed by the post processing the rules with ...

  5. Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments.

    PubMed

    Han, Wenjing; Coutinho, Eduardo; Ruan, Huabin; Li, Haifeng; Schuller, Björn; Yu, Xiaojie; Zhu, Xuan

    2016-01-01

    Coping with scarcity of labeled data is a common problem in sound classification tasks. Approaches for classifying sounds are commonly based on supervised learning algorithms, which require labeled data which is often scarce and leads to models that do not generalize well. In this paper, we make an efficient combination of confidence-based Active Learning and Self-Training with the aim of minimizing the need for human annotation for sound classification model training. The proposed method pre-processes the instances that are ready for labeling by calculating their classifier confidence scores, and then delivers the candidates with lower scores to human annotators, and those with high scores are automatically labeled by the machine. We demonstrate the feasibility and efficacy of this method in two practical scenarios: pool-based and stream-based processing. Extensive experimental results indicate that our approach requires significantly less labeled instances to reach the same performance in both scenarios compared to Passive Learning, Active Learning and Self-Training. A reduction of 52.2% in human labeled instances is achieved in both of the pool-based and stream-based scenarios on a sound classification task considering 16,930 sound instances.

  6. Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments

    PubMed Central

    Han, Wenjing; Coutinho, Eduardo; Li, Haifeng; Schuller, Björn; Yu, Xiaojie; Zhu, Xuan

    2016-01-01

    Coping with scarcity of labeled data is a common problem in sound classification tasks. Approaches for classifying sounds are commonly based on supervised learning algorithms, which require labeled data which is often scarce and leads to models that do not generalize well. In this paper, we make an efficient combination of confidence-based Active Learning and Self-Training with the aim of minimizing the need for human annotation for sound classification model training. The proposed method pre-processes the instances that are ready for labeling by calculating their classifier confidence scores, and then delivers the candidates with lower scores to human annotators, and those with high scores are automatically labeled by the machine. We demonstrate the feasibility and efficacy of this method in two practical scenarios: pool-based and stream-based processing. Extensive experimental results indicate that our approach requires significantly less labeled instances to reach the same performance in both scenarios compared to Passive Learning, Active Learning and Self-Training. A reduction of 52.2% in human labeled instances is achieved in both of the pool-based and stream-based scenarios on a sound classification task considering 16,930 sound instances. PMID:27627768

  7. Active semi-supervised learning method with hybrid deep belief networks.

    PubMed

    Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong

    2014-01-01

    In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively.

  8. How Supervisor Experience Influences Trust, Supervision, and Trainee Learning: A Qualitative Study.

    PubMed

    Sheu, Leslie; Kogan, Jennifer R; Hauer, Karen E

    2017-09-01

    Appropriate trust and supervision facilitate trainees' growth toward unsupervised practice. The authors investigated how supervisor experience influences trust, supervision, and subsequently trainee learning. In a two-phase qualitative inductive content analysis, phase one entailed reviewing 44 internal medicine resident and attending supervisor interviews from two institutions (July 2013 to September 2014) for themes on how supervisor experience influences trust and supervision. Three supervisor exemplars (early, developing, experienced) were developed and shared in phase two focus groups at a single institution, wherein 23 trainees validated the exemplars and discussed how each impacted learning (November 2015). Phase one: Four domains of trust and supervision varying with experience emerged: data, approach, perspective, clinical. Early supervisors were detail oriented and determined trust depending on task completion (data), were rule based (approach), drew on their experiences as trainees to guide supervision (perspective), and felt less confident clinically compared with more experienced supervisors (clinical). Experienced supervisors determined trust holistically (data), checked key aspects of patient care selectively and covertly (approach), reflected on individual experiences supervising (perspective), and felt comfortable managing clinical problems and gauging trainee abilities (clinical). Phase two: Trainees felt the exemplars reflected their experiences, described their preferences and learning needs shifting over time, and emphasized the importance of supervisor flexibility to match their learning needs. With experience, supervisors differ in their approach to trust and supervision. Supervisors need to trust themselves before being able to trust others. Trainees perceive these differences and seek supervision approaches that align with their learning needs.

  9. Label Information Guided Graph Construction for Semi-Supervised Learning.

    PubMed

    Zhuang, Liansheng; Zhou, Zihan; Gao, Shenghua; Yin, Jingwen; Lin, Zhouchen; Ma, Yi

    2017-09-01

    In the literature, most existing graph-based semi-supervised learning methods only use the label information of observed samples in the label propagation stage, while ignoring such valuable information when learning the graph. In this paper, we argue that it is beneficial to consider the label information in the graph learning stage. Specifically, by enforcing the weight of edges between labeled samples of different classes to be zero, we explicitly incorporate the label information into the state-of-the-art graph learning methods, such as the low-rank representation (LRR), and propose a novel semi-supervised graph learning method called semi-supervised low-rank representation. This results in a convex optimization problem with linear constraints, which can be solved by the linearized alternating direction method. Though we take LRR as an example, our proposed method is in fact very general and can be applied to any self-representation graph learning methods. Experiment results on both synthetic and real data sets demonstrate that the proposed graph learning method can better capture the global geometric structure of the data, and therefore is more effective for semi-supervised learning tasks.

  10. Supervised spike-timing-dependent plasticity: a spatiotemporal neuronal learning rule for function approximation and decisions.

    PubMed

    Franosch, Jan-Moritz P; Urban, Sebastian; van Hemmen, J Leo

    2013-12-01

    How can an animal learn from experience? How can it train sensors, such as the auditory or tactile system, based on other sensory input such as the visual system? Supervised spike-timing-dependent plasticity (supervised STDP) is a possible answer. Supervised STDP trains one modality using input from another one as "supervisor." Quite complex time-dependent relationships between the senses can be learned. Here we prove that under very general conditions, supervised STDP converges to a stable configuration of synaptic weights leading to a reconstruction of primary sensory input.

  11. Safe semi-supervised learning based on weighted likelihood.

    PubMed

    Kawakita, Masanori; Takeuchi, Jun'ichi

    2014-05-01

    We are interested in developing a safe semi-supervised learning that works in any situation. Semi-supervised learning postulates that n(') unlabeled data are available in addition to n labeled data. However, almost all of the previous semi-supervised methods require additional assumptions (not only unlabeled data) to make improvements on supervised learning. If such assumptions are not met, then the methods possibly perform worse than supervised learning. Sokolovska, Cappé, and Yvon (2008) proposed a semi-supervised method based on a weighted likelihood approach. They proved that this method asymptotically never performs worse than supervised learning (i.e., it is safe) without any assumption. Their method is attractive because it is easy to implement and is potentially general. Moreover, it is deeply related to a certain statistical paradox. However, the method of Sokolovska et al. (2008) assumes a very limited situation, i.e., classification, discrete covariates, n(')→∞ and a maximum likelihood estimator. In this paper, we extend their method by modifying the weight. We prove that our proposal is safe in a significantly wide range of situations as long as n≤n('). Further, we give a geometrical interpretation of the proof of safety through the relationship with the above-mentioned statistical paradox. Finally, we show that the above proposal is asymptotically safe even when n(')

  12. A Cluster-then-label Semi-supervised Learning Approach for Pathology Image Classification.

    PubMed

    Peikari, Mohammad; Salama, Sherine; Nofech-Mozes, Sharon; Martel, Anne L

    2018-05-08

    Completely labeled pathology datasets are often challenging and time-consuming to obtain. Semi-supervised learning (SSL) methods are able to learn from fewer labeled data points with the help of a large number of unlabeled data points. In this paper, we investigated the possibility of using clustering analysis to identify the underlying structure of the data space for SSL. A cluster-then-label method was proposed to identify high-density regions in the data space which were then used to help a supervised SVM in finding the decision boundary. We have compared our method with other supervised and semi-supervised state-of-the-art techniques using two different classification tasks applied to breast pathology datasets. We found that compared with other state-of-the-art supervised and semi-supervised methods, our SSL method is able to improve classification performance when a limited number of labeled data instances are made available. We also showed that it is important to examine the underlying distribution of the data space before applying SSL techniques to ensure semi-supervised learning assumptions are not violated by the data.

  13. Clinical supervision in a community setting.

    PubMed

    Evans, Carol; Marcroft, Emma

    Clinical supervision is a formal process of professional support, reflection and learning that contributes to individual development. First Community Health and Care is committed to providing clinical supervision to nurses and allied healthcare professionals to support the provision and maintenance of high-quality care. In 2012, we developed new guidelines for nurses and AHPs on supervision, incorporating a clinical supervision framework. This offers a range of options to staff so supervision accommodates variations in work settings and individual learning needs and styles.

  14. Reflect and learn together - when two supervisors interact in the learning support process of nurse education.

    PubMed

    Berglund, Mia; Sjögren, Reet; Ekebergh, Margaretha

    2012-03-01

    To describe the importance of supervisors working together in supporting the learning process of nurse students through reflective caring science supervision. A supervision model has been developed in order to meet the need for interweaving theory and practice. The model is characterized by learning reflection in caring science. A unique aspect of the present project was that the student groups were led by a teacher and a nurse. Data were collected through interviews with the supervisors. The analysis was performed with a phenomenological approach. The results showed that theory and practice can be made more tangible and interwoven by using two supervisors in a dual supervision. The essential structure is built on the constituents 'Reflection as Learning Support', 'Interweaving Caring Science with the Patient's Narrative', 'The Student as a Learning Subject' and 'The Learning Environment of Supervision'. The study concludes that supervision in pairs provides unique possibilities for interweaving and developing theory and practice. The supervision model offers unique opportunities for cooperation, for the development of theory and practice and for the development of the professional roll of nurses and teachers. © 2012 Blackwell Publishing Ltd.

  15. What factors influence attending surgeon decisions about resident autonomy in the operating room?

    PubMed

    Williams, Reed G; George, Brian C; Meyerson, Shari L; Bohnen, Jordan D; Dunnington, Gary L; Schuller, Mary C; Torbeck, Laura; Mullen, John T; Auyang, Edward; Chipman, Jeffrey G; Choi, Jennifer; Choti, Michael; Endean, Eric; Foley, Eugene F; Mandell, Samuel; Meier, Andreas; Smink, Douglas S; Terhune, Kyla P; Wise, Paul; DaRosa, Debra; Soper, Nathaniel; Zwischenberger, Joseph B; Lillemoe, Keith D; Fryer, Jonathan P

    2017-12-01

    Educating residents in the operating room requires balancing patient safety, operating room efficiency demands, and resident learning needs. This study explores 4 factors that influence the amount of autonomy supervising surgeons afford to residents. We evaluated 7,297 operations performed by 487 general surgery residents and evaluated by 424 supervising surgeons from 14 training programs. The primary outcome measure was supervising surgeon autonomy granted to the resident during the operative procedure. Predictor variables included resident performance on that case, supervising surgeon history with granting autonomy, resident training level, and case difficulty. Resident performance was the strongest predictor of autonomy granted. Typical autonomy by supervising surgeon was the second most important predictor. Each additional factor led to a smaller but still significant improvement in ability to predict the supervising surgeon's autonomy decision. The 4 factors together accounted for 54% of decision variance (r = 0.74). Residents' operative performance in each case was the strongest predictor of how much autonomy was allowed in that case. Typical autonomy granted by the supervising surgeon, the second most important predictor, is unrelated to resident proficiency and warrants efforts to ensure that residents perform each procedure with many different supervisors. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. New supervised learning theory applied to cerebellar modeling for suppression of variability of saccade end points.

    PubMed

    Fujita, Masahiko

    2013-06-01

    A new supervised learning theory is proposed for a hierarchical neural network with a single hidden layer of threshold units, which can approximate any continuous transformation, and applied to a cerebellar function to suppress the end-point variability of saccades. In motor systems, feedback control can reduce noise effects if the noise is added in a pathway from a motor center to a peripheral effector; however, it cannot reduce noise effects if the noise is generated in the motor center itself: a new control scheme is necessary for such noise. The cerebellar cortex is well known as a supervised learning system, and a novel theory of cerebellar cortical function developed in this study can explain the capability of the cerebellum to feedforwardly reduce noise effects, such as end-point variability of saccades. This theory assumes that a Golgi-granule cell system can encode the strength of a mossy fiber input as the state of neuronal activity of parallel fibers. By combining these parallel fiber signals with appropriate connection weights to produce a Purkinje cell output, an arbitrary continuous input-output relationship can be obtained. By incorporating such flexible computation and learning ability in a process of saccadic gain adaptation, a new control scheme in which the cerebellar cortex feedforwardly suppresses the end-point variability when it detects a variation in saccadic commands can be devised. Computer simulation confirmed the efficiency of such learning and showed a reduction in the variability of saccadic end points, similar to results obtained from experimental data.

  17. Semi-supervised prediction of gene regulatory networks using machine learning algorithms.

    PubMed

    Patel, Nihir; Wang, Jason T L

    2015-10-01

    Use of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging task. Many studies have been conducted using unsupervised methods to fulfill the task; however, such methods usually yield low prediction accuracies due to the lack of training data. In this article, we propose semi-supervised methods for GRN prediction by utilizing two machine learning algorithms, namely, support vector machines (SVM) and random forests (RF). The semi-supervised methods make use of unlabelled data for training. We investigated inductive and transductive learning approaches, both of which adopt an iterative procedure to obtain reliable negative training data from the unlabelled data. We then applied our semi-supervised methods to gene expression data of Escherichia coli and Saccharomyces cerevisiae, and evaluated the performance of our methods using the expression data. Our analysis indicated that the transductive learning approach outperformed the inductive learning approach for both organisms. However, there was no conclusive difference identified in the performance of SVM and RF. Experimental results also showed that the proposed semi-supervised methods performed better than existing supervised methods for both organisms.

  18. In-situ trainable intrusion detection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Symons, Christopher T.; Beaver, Justin M.; Gillen, Rob

    A computer implemented method detects intrusions using a computer by analyzing network traffic. The method includes a semi-supervised learning module connected to a network node. The learning module uses labeled and unlabeled data to train a semi-supervised machine learning sensor. The method records events that include a feature set made up of unauthorized intrusions and benign computer requests. The method identifies at least some of the benign computer requests that occur during the recording of the events while treating the remainder of the data as unlabeled. The method trains the semi-supervised learning module at the network node in-situ, such thatmore » the semi-supervised learning modules may identify malicious traffic without relying on specific rules, signatures, or anomaly detection.« less

  19. Facilitating the learning process in design-based learning practices: an investigation of teachers' actions in supervising students

    NASA Astrophysics Data System (ADS)

    Gómez Puente, S. M.; van Eijck, M.; Jochems, W.

    2013-11-01

    Background: In research on design-based learning (DBL), inadequate attention is paid to the role the teacher plays in supervising students in gathering and applying knowledge to design artifacts, systems, and innovative solutions in higher education. Purpose: In this study, we examine whether teacher actions we previously identified in the DBL literature as important in facilitating learning processes and student supervision are present in current DBL engineering practices. Sample: The sample (N=16) consisted of teachers and supervisors in two engineering study programs at a university of technology: mechanical and electrical engineering. We selected randomly teachers from freshman and second-year bachelor DBL projects responsible for student supervision and assessment. Design and method: Interviews with teachers, and interviews and observations of supervisors were used to examine how supervision and facilitation actions are applied according to the DBL framework. Results: Major findings indicate that formulating questions is the most common practice seen in facilitating learning in open-ended engineering design environments. Furthermore, other DBL actions we expected to see based upon the literature were seldom observed in the coaching practices within these two programs. Conclusions: Professionalization of teachers in supervising students need to include methods to scaffold learning by supporting students in reflecting and in providing formative feedback.

  20. In-training assessment: qualitative study of effects on supervision and feedback in an undergraduate clinical rotation.

    PubMed

    Daelmans, H E M; Overmeer, R M; van der Hem-Stokroos, H H; Scherpbier, A J J A; Stehouwer, C D A; van der Vleuten, C P M

    2006-01-01

    Supervision and feedback are essential factors that contribute to the learning environment in the context of workplace learning and their frequency and quality can be improved. Assessment is a powerful tool with which to influence students' learning and supervisors' teaching and thus the learning environment. To investigate an in-training assessment (ITA) programme in action and to explore its effects on supervision and feedback. A qualitative study using individual, semistructured interviews. Eight students and 17 assessors (9 members of staff and 8 residents) in the internal medicine undergraduate clerkship at Vrije Universiteit Medical Centre, Amsterdam, the Netherlands. The ITA programme in action differed from the intended programme. Assessors provided hardly any follow-up on supervision and feedback given during assessments. Although students wanted more supervision and feedback, they rarely asked for it. Students and assessors failed to integrate the whole range of competencies included in the ITA programme into their respective learning and supervision and feedback. When giving feedback, assessors rarely gave borderline or fail judgements. If an ITA programme in action is to be congruent with the intended programme, the implementation of the programme must be monitored. It is also necessary to provide full information about the programme and to ensure this information is given repeatedly. Introducing an ITA programme that includes the assessment of several competencies does not automatically lead to more attention being paid to these competencies in terms of supervision and feedback. Measures that facilitate change in the learning environment seem to be a prerequisite for enabling the assessment programme to steer the learning environment.

  1. The Practice of Supervision for Professional Learning: The Example of Future Forensic Specialists

    ERIC Educational Resources Information Center

    Köpsén, Susanne; Nyström, Sofia

    2015-01-01

    Supervision intended to support learning is of great interest in professional knowledge development. No single definition governs the implementation and enactment of supervision because of different conditions, intentions, and pedagogical approaches. Uncertainty exists at a time when knowledge and methods are undergoing constant development. This…

  2. Transfer learning improves supervised image segmentation across imaging protocols.

    PubMed

    van Opbroek, Annegreet; Ikram, M Arfan; Vernooij, Meike W; de Bruijne, Marleen

    2015-05-01

    The variation between images obtained with different scanners or different imaging protocols presents a major challenge in automatic segmentation of biomedical images. This variation especially hampers the application of otherwise successful supervised-learning techniques which, in order to perform well, often require a large amount of labeled training data that is exactly representative of the target data. We therefore propose to use transfer learning for image segmentation. Transfer-learning techniques can cope with differences in distributions between training and target data, and therefore may improve performance over supervised learning for segmentation across scanners and scan protocols. We present four transfer classifiers that can train a classification scheme with only a small amount of representative training data, in addition to a larger amount of other training data with slightly different characteristics. The performance of the four transfer classifiers was compared to that of standard supervised classification on two magnetic resonance imaging brain-segmentation tasks with multi-site data: white matter, gray matter, and cerebrospinal fluid segmentation; and white-matter-/MS-lesion segmentation. The experiments showed that when there is only a small amount of representative training data available, transfer learning can greatly outperform common supervised-learning approaches, minimizing classification errors by up to 60%.

  3. A multimedia retrieval framework based on semi-supervised ranking and relevance feedback.

    PubMed

    Yang, Yi; Nie, Feiping; Xu, Dong; Luo, Jiebo; Zhuang, Yueting; Pan, Yunhe

    2012-04-01

    We present a new framework for multimedia content analysis and retrieval which consists of two independent algorithms. First, we propose a new semi-supervised algorithm called ranking with Local Regression and Global Alignment (LRGA) to learn a robust Laplacian matrix for data ranking. In LRGA, for each data point, a local linear regression model is used to predict the ranking scores of its neighboring points. A unified objective function is then proposed to globally align the local models from all the data points so that an optimal ranking score can be assigned to each data point. Second, we propose a semi-supervised long-term Relevance Feedback (RF) algorithm to refine the multimedia data representation. The proposed long-term RF algorithm utilizes both the multimedia data distribution in multimedia feature space and the history RF information provided by users. A trace ratio optimization problem is then formulated and solved by an efficient algorithm. The algorithms have been applied to several content-based multimedia retrieval applications, including cross-media retrieval, image retrieval, and 3D motion/pose data retrieval. Comprehensive experiments on four data sets have demonstrated its advantages in precision, robustness, scalability, and computational efficiency.

  4. Improving performance through concept formation and conceptual clustering

    NASA Technical Reports Server (NTRS)

    Fisher, Douglas H.

    1992-01-01

    Research from June 1989 through October 1992 focussed on concept formation, clustering, and supervised learning for purposes of improving the efficiency of problem-solving, planning, and diagnosis. These projects resulted in two dissertations on clustering, explanation-based learning, and means-ends planning, and publications in conferences and workshops, several book chapters, and journals; a complete Bibliography of NASA Ames supported publications is included. The following topics are studied: clustering of explanations and problem-solving experiences; clustering and means-end planning; and diagnosis of space shuttle and space station operating modes.

  5. Active link selection for efficient semi-supervised community detection

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Jin, Di; Wang, Xiao; Cao, Xiaochun

    2015-03-01

    Several semi-supervised community detection algorithms have been proposed recently to improve the performance of traditional topology-based methods. However, most of them focus on how to integrate supervised information with topology information; few of them pay attention to which information is critical for performance improvement. This leads to large amounts of demand for supervised information, which is expensive or difficult to obtain in most fields. For this problem we propose an active link selection framework, that is we actively select the most uncertain and informative links for human labeling for the efficient utilization of the supervised information. We also disconnect the most likely inter-community edges to further improve the efficiency. Our main idea is that, by connecting uncertain nodes to their community hubs and disconnecting the inter-community edges, one can sharpen the block structure of adjacency matrix more efficiently than randomly labeling links as the existing methods did. Experiments on both synthetic and real networks demonstrate that our new approach significantly outperforms the existing methods in terms of the efficiency of using supervised information. It needs ~13% of the supervised information to achieve a performance similar to that of the original semi-supervised approaches.

  6. Active link selection for efficient semi-supervised community detection

    PubMed Central

    Yang, Liang; Jin, Di; Wang, Xiao; Cao, Xiaochun

    2015-01-01

    Several semi-supervised community detection algorithms have been proposed recently to improve the performance of traditional topology-based methods. However, most of them focus on how to integrate supervised information with topology information; few of them pay attention to which information is critical for performance improvement. This leads to large amounts of demand for supervised information, which is expensive or difficult to obtain in most fields. For this problem we propose an active link selection framework, that is we actively select the most uncertain and informative links for human labeling for the efficient utilization of the supervised information. We also disconnect the most likely inter-community edges to further improve the efficiency. Our main idea is that, by connecting uncertain nodes to their community hubs and disconnecting the inter-community edges, one can sharpen the block structure of adjacency matrix more efficiently than randomly labeling links as the existing methods did. Experiments on both synthetic and real networks demonstrate that our new approach significantly outperforms the existing methods in terms of the efficiency of using supervised information. It needs ~13% of the supervised information to achieve a performance similar to that of the original semi-supervised approaches. PMID:25761385

  7. The clinical learning environment and supervision by staff nurses: developing the instrument.

    PubMed

    Saarikoski, Mikko; Leino-Kilpi, Helena

    2002-03-01

    The aims of this study were (1) to describe students' perceptions of the clinical learning environment and clinical supervision and (2) to develop an evaluation scale by using the empirical results of this study. The data were collected using the Clinical Learning Environment and Supervision instrument (CLES). The instrument was based on the literature review of earlier studies. The derived instrument was tested empirically in a study involving nurse students (N=416) from four nursing colleges in Finland. The results demonstrated that the method of supervision, the number of separate supervision sessions and the psychological content of supervisory contact within a positive ward atmosphere are the most important variables in the students' clinical learning. The results also suggest that ward managers can create the conditions of a positive ward culture and a positive attitude towards students and their learning needs. The construct validity of the instrument was analysed by using exploratory factor analysis. The analysis indicated that the most important factor in the students' clinical learning is the supervisory relationship. The two most important factors constituting a 'good' clinical learning environment are the management style of the ward manager and the premises of nursing on the ward. The results of the factor analysis support the theoretical construction of the clinical learning environment modelled by earlier empirical studies.

  8. Semi-Supervised Marginal Fisher Analysis for Hyperspectral Image Classification

    NASA Astrophysics Data System (ADS)

    Huang, H.; Liu, J.; Pan, Y.

    2012-07-01

    The problem of learning with both labeled and unlabeled examples arises frequently in Hyperspectral image (HSI) classification. While marginal Fisher analysis is a supervised method, which cannot be directly applied for Semi-supervised classification. In this paper, we proposed a novel method, called semi-supervised marginal Fisher analysis (SSMFA), to process HSI of natural scenes, which uses a combination of semi-supervised learning and manifold learning. In SSMFA, a new difference-based optimization objective function with unlabeled samples has been designed. SSMFA preserves the manifold structure of labeled and unlabeled samples in addition to separating labeled samples in different classes from each other. The semi-supervised method has an analytic form of the globally optimal solution, and it can be computed based on eigen decomposition. Classification experiments with a challenging HSI task demonstrate that this method outperforms current state-of-the-art HSI-classification methods.

  9. Experiencing Variation: Learning Opportunities in Doctoral Supervision

    ERIC Educational Resources Information Center

    Kobayashi, Sofie; Berge, Maria; Grout, Brian W. W.; Rump, Camilla Østerberg

    2017-01-01

    This study contributes towards a better understanding of learning dynamics in doctoral supervision by analysing how learning opportunities are created in the interaction between supervisors and PhD students, using the notion of experiencing variation as a key to learning. Empirically, we have based the study on four video-recorded sessions, with…

  10. Maximum margin semi-supervised learning with irrelevant data.

    PubMed

    Yang, Haiqin; Huang, Kaizhu; King, Irwin; Lyu, Michael R

    2015-10-01

    Semi-supervised learning (SSL) is a typical learning paradigms training a model from both labeled and unlabeled data. The traditional SSL models usually assume unlabeled data are relevant to the labeled data, i.e., following the same distributions of the targeted labeled data. In this paper, we address a different, yet formidable scenario in semi-supervised classification, where the unlabeled data may contain irrelevant data to the labeled data. To tackle this problem, we develop a maximum margin model, named tri-class support vector machine (3C-SVM), to utilize the available training data, while seeking a hyperplane for separating the targeted data well. Our 3C-SVM exhibits several characteristics and advantages. First, it does not need any prior knowledge and explicit assumption on the data relatedness. On the contrary, it can relieve the effect of irrelevant unlabeled data based on the logistic principle and maximum entropy principle. That is, 3C-SVM approaches an ideal classifier. This classifier relies heavily on labeled data and is confident on the relevant data lying far away from the decision hyperplane, while maximally ignoring the irrelevant data, which are hardly distinguished. Second, theoretical analysis is provided to prove that in what condition, the irrelevant data can help to seek the hyperplane. Third, 3C-SVM is a generalized model that unifies several popular maximum margin models, including standard SVMs, Semi-supervised SVMs (S(3)VMs), and SVMs learned from the universum (U-SVMs) as its special cases. More importantly, we deploy a concave-convex produce to solve the proposed 3C-SVM, transforming the original mixed integer programming, to a semi-definite programming relaxation, and finally to a sequence of quadratic programming subproblems, which yields the same worst case time complexity as that of S(3)VMs. Finally, we demonstrate the effectiveness and efficiency of our proposed 3C-SVM through systematical experimental comparisons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Residents' Ratings of Their Clinical Supervision and Their Self-Reported Medical Errors: Analysis of Data From 2009.

    PubMed

    Baldwin, DeWitt C; Daugherty, Steven R; Ryan, Patrick M; Yaghmour, Nicholas A; Philibert, Ingrid

    2018-04-01

    Medical errors and patient safety are major concerns for the medical and medical education communities. Improving clinical supervision for residents is important in avoiding errors, yet little is known about how residents perceive the adequacy of their supervision and how this relates to medical errors and other education outcomes, such as learning and satisfaction. We analyzed data from a 2009 survey of residents in 4 large specialties regarding the adequacy and quality of supervision they receive as well as associations with self-reported data on medical errors and residents' perceptions of their learning environment. Residents' reports of working without adequate supervision were lower than data from a 1999 survey for all 4 specialties, and residents were least likely to rate "lack of supervision" as a problem. While few residents reported that they received inadequate supervision, problems with supervision were negatively correlated with sufficient time for clinical activities, overall ratings of the residency experience, and attending physicians as a source of learning. Problems with supervision were positively correlated with resident reports that they had made a significant medical error, had been belittled or humiliated, or had observed others falsifying medical records. Although working without supervision was not a pervasive problem in 2009, when it happened, it appeared to have negative consequences. The association between inadequate supervision and medical errors is of particular concern.

  12. Web-conference supervision for advanced psychotherapy training: a practical guide.

    PubMed

    Abbass, Allan; Arthey, Stephen; Elliott, Jason; Fedak, Tim; Nowoweiski, Dion; Markovski, Jasmina; Nowoweiski, Sarah

    2011-06-01

    The advent of readily accessible, inexpensive Web-conferencing applications has opened the door for distance psychotherapy supervision, using video recordings of treated clients. Although relatively new, this method of supervision is advantageous given the ease of use and low cost of various Internet applications. This method allows periodic supervision from point to point around the world, with no travel costs and no long gaps between direct training contacts. Web-conferencing permits face-to-face training so that the learner and supervisor can read each other's emotional responses while reviewing case material. It allows group learning from direct supervision to complement local peer-to-peer learning methods. In this article, we describe the relevant literature on this type of learning method, the practical points in its utilization, its limitations, and its benefits.

  13. A learning model for nursing students during clinical studies.

    PubMed

    Ekebergh, Margaretha

    2011-11-01

    This paper presents a research project where the aim was to develop a new model for learning support in nursing education that makes it possible for the student to encounter both the theoretical caring science structure and the patient's lived experiences in his/her learning process. A reflective group supervision model was developed and tested. The supervision was lead by a teacher and a nurse and started in patient narratives that the students brought to the supervision sessions. The narratives were analyzed by using caring science concepts with the purpose of creating a unity of theory and lived experiences. Data has been collected and analyzed phenomenologically in order to develop knowledge of the students' reflection and learning when using the supervision model. The result shows that the students have had good use of the theoretical concepts in creating a deeper understanding for the patient. They have learned to reflect more systematically and the learning situation has become more realistic to them as it is now carried out in a patient near context. In order to reach these results, however, demands the necessity of recognizing the students' lifeworld in the supervision process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Promoting Readiness to Practice: Which Learning Activities Promote Competence and Professional Identity for Student Social Workers during Practice Learning?

    ERIC Educational Resources Information Center

    Roulston, Audrey; Cleak, Helen; Vreugdenhil, Anthea

    2018-01-01

    Practice learning is integral to the curriculum for qualifying social work students. Accreditation standards require regular student supervision and exposure to specific learning activities. Most agencies offer high-quality placements, but organizational cutbacks may affect supervision and restrict the development of competence and professional…

  15. The Costs of Supervised Classification: The Effect of Learning Task on Conceptual Flexibility

    ERIC Educational Resources Information Center

    Hoffman, Aaron B.; Rehder, Bob

    2010-01-01

    Research has shown that learning a concept via standard supervised classification leads to a focus on diagnostic features, whereas learning by inferring missing features promotes the acquisition of within-category information. Accordingly, we predicted that classification learning would produce a deficit in people's ability to draw "novel…

  16. Oscillatory neural network for pattern recognition: trajectory based classification and supervised learning.

    PubMed

    Miller, Vonda H; Jansen, Ben H

    2008-12-01

    Computer algorithms that match human performance in recognizing written text or spoken conversation remain elusive. The reasons why the human brain far exceeds any existing recognition scheme to date in the ability to generalize and to extract invariant characteristics relevant to category matching are not clear. However, it has been postulated that the dynamic distribution of brain activity (spatiotemporal activation patterns) is the mechanism by which stimuli are encoded and matched to categories. This research focuses on supervised learning using a trajectory based distance metric for category discrimination in an oscillatory neural network model. Classification is accomplished using a trajectory based distance metric. Since the distance metric is differentiable, a supervised learning algorithm based on gradient descent is demonstrated. Classification of spatiotemporal frequency transitions and their relation to a priori assessed categories is shown along with the improved classification results after supervised training. The results indicate that this spatiotemporal representation of stimuli and the associated distance metric is useful for simple pattern recognition tasks and that supervised learning improves classification results.

  17. Can Semi-Supervised Learning Explain Incorrect Beliefs about Categories?

    ERIC Educational Resources Information Center

    Kalish, Charles W.; Rogers, Timothy T.; Lang, Jonathan; Zhu, Xiaojin

    2011-01-01

    Three experiments with 88 college-aged participants explored how unlabeled experiences--learning episodes in which people encounter objects without information about their category membership--influence beliefs about category structure. Participants performed a simple one-dimensional categorization task in a brief supervised learning phase, then…

  18. Professional Learning: Lessons for Supervision from Doctoral Examining

    ERIC Educational Resources Information Center

    Wisker, Gina; Kiley, Margaret

    2014-01-01

    Most research into research supervision practice focuses on functional, collegial or problematic power-related experiences. Work developing the supervisory role concentrates on new supervisors, and on taught development and support programmes. Most literature on academics' professional learning concentrates on learning to be a university teacher…

  19. Methods of Sparse Modeling and Dimensionality Reduction to Deal with Big Data

    DTIC Science & Technology

    2015-04-01

    supervised learning (c). Our framework consists of two separate phases: (a) first find an initial space in an unsupervised manner; then (b) utilize label...model that can learn thousands of topics from a large set of documents and infer the topic mixture of each document, 2) a supervised dimension reduction...model that can learn thousands of topics from a large set of documents and infer the topic mixture of each document, (i) a method of supervised

  20. Integrative gene network construction to analyze cancer recurrence using semi-supervised learning.

    PubMed

    Park, Chihyun; Ahn, Jaegyoon; Kim, Hyunjin; Park, Sanghyun

    2014-01-01

    The prognosis of cancer recurrence is an important research area in bioinformatics and is challenging due to the small sample sizes compared to the vast number of genes. There have been several attempts to predict cancer recurrence. Most studies employed a supervised approach, which uses only a few labeled samples. Semi-supervised learning can be a great alternative to solve this problem. There have been few attempts based on manifold assumptions to reveal the detailed roles of identified cancer genes in recurrence. In order to predict cancer recurrence, we proposed a novel semi-supervised learning algorithm based on a graph regularization approach. We transformed the gene expression data into a graph structure for semi-supervised learning and integrated protein interaction data with the gene expression data to select functionally-related gene pairs. Then, we predicted the recurrence of cancer by applying a regularization approach to the constructed graph containing both labeled and unlabeled nodes. The average improvement rate of accuracy for three different cancer datasets was 24.9% compared to existing supervised and semi-supervised methods. We performed functional enrichment on the gene networks used for learning. We identified that those gene networks are significantly associated with cancer-recurrence-related biological functions. Our algorithm was developed with standard C++ and is available in Linux and MS Windows formats in the STL library. The executable program is freely available at: http://embio.yonsei.ac.kr/~Park/ssl.php.

  1. Using virtual data for training deep model for hand gesture recognition

    NASA Astrophysics Data System (ADS)

    Nikolaev, E. I.; Dvoryaninov, P. V.; Lensky, Y. Y.; Drozdovsky, N. S.

    2018-05-01

    Deep learning has shown real promise for the classification efficiency for hand gesture recognition problems. In this paper, the authors present experimental results for a deeply-trained model for hand gesture recognition through the use of hand images. The authors have trained two deep convolutional neural networks. The first architecture produces the hand position as a 2D-vector by input hand image. The second one predicts the hand gesture class for the input image. The first proposed architecture produces state of the art results with an accuracy rate of 89% and the second architecture with split input produces accuracy rate of 85.2%. In this paper, the authors also propose using virtual data for training a supervised deep model. Such technique is aimed to avoid using original labelled images in the training process. The interest of this method in data preparation is motivated by the need to overcome one of the main challenges of deep supervised learning: using a copious amount of labelled data during training.

  2. Active learning for semi-supervised clustering based on locally linear propagation reconstruction.

    PubMed

    Chang, Chin-Chun; Lin, Po-Yi

    2015-03-01

    The success of semi-supervised clustering relies on the effectiveness of side information. To get effective side information, a new active learner learning pairwise constraints known as must-link and cannot-link constraints is proposed in this paper. Three novel techniques are developed for learning effective pairwise constraints. The first technique is used to identify samples less important to cluster structures. This technique makes use of a kernel version of locally linear embedding for manifold learning. Samples neither important to locally linear propagation reconstructions of other samples nor on flat patches in the learned manifold are regarded as unimportant samples. The second is a novel criterion for query selection. This criterion considers not only the importance of a sample to expanding the space coverage of the learned samples but also the expected number of queries needed to learn the sample. To facilitate semi-supervised clustering, the third technique yields inferred must-links for passing information about flat patches in the learned manifold to semi-supervised clustering algorithms. Experimental results have shown that the learned pairwise constraints can capture the underlying cluster structures and proven the feasibility of the proposed approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Spectral Learning for Supervised Topic Models.

    PubMed

    Ren, Yong; Wang, Yining; Zhu, Jun

    2018-03-01

    Supervised topic models simultaneously model the latent topic structure of large collections of documents and a response variable associated with each document. Existing inference methods are based on variational approximation or Monte Carlo sampling, which often suffers from the local minimum defect. Spectral methods have been applied to learn unsupervised topic models, such as latent Dirichlet allocation (LDA), with provable guarantees. This paper investigates the possibility of applying spectral methods to recover the parameters of supervised LDA (sLDA). We first present a two-stage spectral method, which recovers the parameters of LDA followed by a power update method to recover the regression model parameters. Then, we further present a single-phase spectral algorithm to jointly recover the topic distribution matrix as well as the regression weights. Our spectral algorithms are provably correct and computationally efficient. We prove a sample complexity bound for each algorithm and subsequently derive a sufficient condition for the identifiability of sLDA. Thorough experiments on synthetic and real-world datasets verify the theory and demonstrate the practical effectiveness of the spectral algorithms. In fact, our results on a large-scale review rating dataset demonstrate that our single-phase spectral algorithm alone gets comparable or even better performance than state-of-the-art methods, while previous work on spectral methods has rarely reported such promising performance.

  4. Master's Thesis Supervision: Relations between Perceptions of the Supervisor-Student Relationship, Final Grade, Perceived Supervisor Contribution to Learning and Student Satisfaction

    ERIC Educational Resources Information Center

    de Kleijn, Renske A. M.; Mainhard, M. Tim; Meijer, Paulien C.; Pilot, Albert; Brekelmans, Mieke

    2012-01-01

    Master's thesis supervision is a complex task given the two-fold goal of the thesis (learning and assessment). An important aspect of supervision is the supervisor-student relationship. This quantitative study (N = 401) investigates how perceptions of the supervisor-student relationship are related to three dependent variables: final grade,…

  5. Webly-Supervised Fine-Grained Visual Categorization via Deep Domain Adaptation.

    PubMed

    Xu, Zhe; Huang, Shaoli; Zhang, Ya; Tao, Dacheng

    2018-05-01

    Learning visual representations from web data has recently attracted attention for object recognition. Previous studies have mainly focused on overcoming label noise and data bias and have shown promising results by learning directly from web data. However, we argue that it might be better to transfer knowledge from existing human labeling resources to improve performance at nearly no additional cost. In this paper, we propose a new semi-supervised method for learning via web data. Our method has the unique design of exploiting strong supervision, i.e., in addition to standard image-level labels, our method also utilizes detailed annotations including object bounding boxes and part landmarks. By transferring as much knowledge as possible from existing strongly supervised datasets to weakly supervised web images, our method can benefit from sophisticated object recognition algorithms and overcome several typical problems found in webly-supervised learning. We consider the problem of fine-grained visual categorization, in which existing training resources are scarce, as our main research objective. Comprehensive experimentation and extensive analysis demonstrate encouraging performance of the proposed approach, which, at the same time, delivers a new pipeline for fine-grained visual categorization that is likely to be highly effective for real-world applications.

  6. Being and becoming a psychotherapy supervisor: the crucial triad of learning difficulties.

    PubMed

    Watkins, C Edward

    2013-01-01

    More than 40 years ago eminent psychiatrist Richard Chessick penned a classic, highly prescient psychotherapy supervision paper (that appeared in this journal) in which he identified for supervisors the crucial triad of learning difficulties that tend to confront beginning therapists in their training. These are (a) dealing with the anxiety attendant to the development of psychological mindedness; (b) developing a psychotherapist identity; and (c) developing conviction about the meaningfulness of psychodynamics and psychotherapy. In this paper, I would like to revisit Chessick's seminal contribution about the teaching and learning of psychotherapy and extrapolate his triad of learning difficulties to the process of teaching and learning supervision. The process of being and becoming a psychotherapist has been likened to a developmental journey, and similarly being and becoming a supervisor is increasingly recognized as a developmental journey that is best stimulated by means of didactic and practical experiences (i.e., supervision coursework, seminars, or workshops and the supervision of supervision). In what follows, I would like to explore how Chessick's crucial triad of learning difficulties can be meaningfully extrapolated to and used to inform the supervision training situation. In extrapolating Chessick's triad, beginning supervisors or supervisor trainees can be conceptualized as confronting three critical issues: (a) dealing with the anxiety and demoralization attendant to the development of supervisory mindedness; (b) developing a supervisory identity; and (c) developing conviction about the meaningfulness of psychotherapy supervision. This triadic conceptualization appears to capture nicely core concerns that extend across the arc of the supervisor development process and provides a useful and usable way of thinking about supervisor training and informing it. Each component of the triadic conceptualization is described, and some supervisor education intervention possibilities are considered.

  7. Efficacy of plaque removal and learning effect of a powered and a manual toothbrush.

    PubMed

    Lazarescu, D; Boccaneala, S; Illiescu, A; De Boever, J A

    2003-08-01

    Subjects with high plaque and gingivitis scores can profit most from the introduction of new manual or powered tooth brushes. To improve their hygiene, not only the technical characteristics of new brushes but also the learning effect in efficient handling are of importance. : The present study compared the efficacy in plaque removal of an electric and a manual toothbrush in a general population and analysed the learning effect in efficient handling. Eighty healthy subjects, unfamiliar with electric brushes, were divided into two groups: group 1 used the Philips/Jordan HP 735 powered brush and group 2 used a manual brush, Oral-B40+. Plaque index (PI) and gingival bleeding index (GBI) were assessed at baseline and at weeks 3, 6, 12 and 18. After each evaluation, patients abstained from oral hygiene for 24 h. The next day a 3-min supervised brushing was performed. Before and after this brushing, PI was assessed for the estimation of the individual learning effect. The study was single blinded. Over the 18-week period, PI reduced gradually and statistically significantly (p<0.001) in group 1 from 2.9 (+/-0.38) to 1.5 (+/-0.24) and in group 2 from 2.9 (+/-0.34) to 2.2 (+/-0.23). From week 3 onwards, the difference between groups was statistically significant (p<0.001). The bleeding index decreased in group 1 from 28% (+/-17%) to 7% (+/-5%) (p<0.001) and in group 2 from 30% (+/-12%) to 12% (+/-6%) (p<0.001). The difference between groups was statistically significant (p<0.001) from week 6 onwards. The learning effect, expressed as the percentage of plaque reduction after 3 min of supervised brushing, was 33% for group 1 and 26% for group 2 at week 0. This percentage increased at week 18 to 64% in group 1 and 44% in group 2 (difference between groups statistically significant: p<0.001). The powered brush was significantly more efficient in removing plaque and improving gingival health than the manual brush in the group of subjects unfamiliar with electric brushes. There was also a significant learning effect that was more pronounced with the electric toothbrush.

  8. Authentically Engaged Learning through Live Supervision: A Phenomenological Study

    ERIC Educational Resources Information Center

    Moody, Steven; Kostohryz, Katie; Vereen, Linwood

    2014-01-01

    This phenomenological study explored the experiential learning of 5 master's-level counseling students undergoing live supervision in a group techniques course. Multiple themes were identified to provide a textural-structural description of how students authentically engaged in the learning process. Implications for counselor education and…

  9. Per-service supervised learning for identifying desired WoT apps from user requests in natural language

    PubMed Central

    2017-01-01

    Web of Things (WoT) platforms are growing fast so as the needs for composing WoT apps more easily and efficiently. We have recently commenced the campaign to develop an interface where users can issue requests for WoT apps entirely in natural language. This requires an effort to build a system that can learn to identify relevant WoT functions that fulfill user’s requests. In our preceding work, we trained a supervised learning system with thousands of publicly-available IFTTT app recipes based on conditional random fields (CRF). However, the sub-par accuracy and excessive training time motivated us to devise a better approach. In this paper, we present a novel solution that creates a separate learning engine for each trigger service. With this approach, parallel and incremental learning becomes possible. For inference, our system first identifies the most relevant trigger service for a given user request by using an information retrieval technique. Then, the learning engine associated with the trigger service predicts the most likely pair of trigger and action functions. We expect that such two-phase inference method given parallel learning engines would improve the accuracy of identifying related WoT functions. We verify our new solution through the empirical evaluation with training and test sets sampled from a pool of refined IFTTT app recipes. We also meticulously analyze the characteristics of the recipes to find future research directions. PMID:29149217

  10. Per-service supervised learning for identifying desired WoT apps from user requests in natural language.

    PubMed

    Yoon, Young

    2017-01-01

    Web of Things (WoT) platforms are growing fast so as the needs for composing WoT apps more easily and efficiently. We have recently commenced the campaign to develop an interface where users can issue requests for WoT apps entirely in natural language. This requires an effort to build a system that can learn to identify relevant WoT functions that fulfill user's requests. In our preceding work, we trained a supervised learning system with thousands of publicly-available IFTTT app recipes based on conditional random fields (CRF). However, the sub-par accuracy and excessive training time motivated us to devise a better approach. In this paper, we present a novel solution that creates a separate learning engine for each trigger service. With this approach, parallel and incremental learning becomes possible. For inference, our system first identifies the most relevant trigger service for a given user request by using an information retrieval technique. Then, the learning engine associated with the trigger service predicts the most likely pair of trigger and action functions. We expect that such two-phase inference method given parallel learning engines would improve the accuracy of identifying related WoT functions. We verify our new solution through the empirical evaluation with training and test sets sampled from a pool of refined IFTTT app recipes. We also meticulously analyze the characteristics of the recipes to find future research directions.

  11. [Learning and supervision in Danish clerkships--a qualitative study].

    PubMed

    Wichmann-Hansen, Gitte; Mørcke, Anne Mette; Eika, Berit

    2007-10-15

    The medical profession and hospital practice have changed over the last decades without a concomitant change in Danish clerkships. Therefore, the aim of this study was to analyze learning and supervision in clerkships and to discuss how traditional clerkship learning matches a modern effective hospital environment. A qualitative field study based on 38 days of observations ( asymptotically equal to 135 hours) with 6 students in 8th Semester in 2 internal medical and 3 surgical wards at 2 teaching hospitals in Aarhus County during 2003. The 6 students were interviewed prior to and following clerkship. Data were coded using Ethnograph and analyzed qualitatively. The students typically participated in 6 learning activities: morning reports, ward rounds, out-patient clinics, on call, clerking, and operating theatres. A common feature for the first 3 activities was the students' observational role in contrast to their more active role in the latter 3 activities. Supervision was primarily indirect as the doctors worked and thereby served as tacit role models. When direct, the supervision was didactic and characterized by information transfer. A clerkship offers important learning opportunities for students. They are exposed to many patients and faced with various clinical problems. However, the benefit of students learning in authentic environments is not fully utilized, and the didactic supervision used by doctors hardly matches the learning conditions in a busy hospital. Consequently, we need to reassess the students' roles and doctors' supervisory methods.

  12. Spiking neural networks for handwritten digit recognition-Supervised learning and network optimization.

    PubMed

    Kulkarni, Shruti R; Rajendran, Bipin

    2018-07-01

    We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Teacher and learner: Supervised and unsupervised learning in communities.

    PubMed

    Shafto, Michael G; Seifert, Colleen M

    2015-01-01

    How far can teaching methods go to enhance learning? Optimal methods of teaching have been considered in research on supervised and unsupervised learning. Locally optimal methods are usually hybrids of teaching and self-directed approaches. The costs and benefits of specific methods have been shown to depend on the structure of the learning task, the learners, the teachers, and the environment.

  14. Support vector machines

    NASA Technical Reports Server (NTRS)

    Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri

    2004-01-01

    Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.

  15. Global Optimization Ensemble Model for Classification Methods

    PubMed Central

    Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab

    2014-01-01

    Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382

  16. Semi-supervised Learning for Phenotyping Tasks.

    PubMed

    Dligach, Dmitriy; Miller, Timothy; Savova, Guergana K

    2015-01-01

    Supervised learning is the dominant approach to automatic electronic health records-based phenotyping, but it is expensive due to the cost of manual chart review. Semi-supervised learning takes advantage of both scarce labeled and plentiful unlabeled data. In this work, we study a family of semi-supervised learning algorithms based on Expectation Maximization (EM) in the context of several phenotyping tasks. We first experiment with the basic EM algorithm. When the modeling assumptions are violated, basic EM leads to inaccurate parameter estimation. Augmented EM attenuates this shortcoming by introducing a weighting factor that downweights the unlabeled data. Cross-validation does not always lead to the best setting of the weighting factor and other heuristic methods may be preferred. We show that accurate phenotyping models can be trained with only a few hundred labeled (and a large number of unlabeled) examples, potentially providing substantial savings in the amount of the required manual chart review.

  17. Process Recording in Supervision of Students Learning to Practice with Children

    ERIC Educational Resources Information Center

    Mullin, Walter J.; Canning, James J.

    2007-01-01

    This article addresses the use of process recordings in supervising social work students learning to practice with children. Although process recordings are a traditional method of teaching and learning social work practice, they have received little attention in the literature of social work practice and social work education. Process recordings…

  18. A review of supervised machine learning applied to ageing research.

    PubMed

    Fabris, Fabio; Magalhães, João Pedro de; Freitas, Alex A

    2017-04-01

    Broadly speaking, supervised machine learning is the computational task of learning correlations between variables in annotated data (the training set), and using this information to create a predictive model capable of inferring annotations for new data, whose annotations are not known. Ageing is a complex process that affects nearly all animal species. This process can be studied at several levels of abstraction, in different organisms and with different objectives in mind. Not surprisingly, the diversity of the supervised machine learning algorithms applied to answer biological questions reflects the complexities of the underlying ageing processes being studied. Many works using supervised machine learning to study the ageing process have been recently published, so it is timely to review these works, to discuss their main findings and weaknesses. In summary, the main findings of the reviewed papers are: the link between specific types of DNA repair and ageing; ageing-related proteins tend to be highly connected and seem to play a central role in molecular pathways; ageing/longevity is linked with autophagy and apoptosis, nutrient receptor genes, and copper and iron ion transport. Additionally, several biomarkers of ageing were found by machine learning. Despite some interesting machine learning results, we also identified a weakness of current works on this topic: only one of the reviewed papers has corroborated the computational results of machine learning algorithms through wet-lab experiments. In conclusion, supervised machine learning has contributed to advance our knowledge and has provided novel insights on ageing, yet future work should have a greater emphasis in validating the predictions.

  19. Delegation and supervision of healthcare assistants' work in the daily management of uncertainty and the unexpected in clinical practice: invisible learning among newly qualified nurses.

    PubMed

    Allan, Helen T; Magnusson, Carin; Evans, Karen; Ball, Elaine; Westwood, Sue; Curtis, Kathy; Horton, Khim; Johnson, Martin

    2016-12-01

    The invisibility of nursing work has been discussed in the international literature but not in relation to learning clinical skills. Evans and Guile's (Practice-based education: Perspectives and strategies, Rotterdam: Sense, 2012) theory of recontextualisation is used to explore the ways in which invisible or unplanned and unrecognised learning takes place as newly qualified nurses learn to delegate to and supervise the work of the healthcare assistant. In the British context, delegation and supervision are thought of as skills which are learnt "on the job." We suggest that learning "on-the-job" is the invisible construction of knowledge in clinical practice and that delegation is a particularly telling area of nursing practice which illustrates invisible learning. Using an ethnographic case study approach in three hospital sites in England from 2011 to 2014, we undertook participant observation, interviews with newly qualified nurses, ward managers and healthcare assistants. We discuss the invisible ways newly qualified nurses learn in the practice environment and present the invisible steps to learning which encompass the embodied, affective and social, as much as the cognitive components to learning. We argue that there is a need for greater understanding of the "invisible learning" which occurs as newly qualified nurses learn to delegate and supervise. © 2016 John Wiley & Sons Ltd.

  20. Effects of Supervision in the Training of Nonprofessional Crisis-Intervention Counselors

    ERIC Educational Resources Information Center

    Doyle, William W., Jr.; And Others

    1977-01-01

    This study evaluated three major models currently used by crisis-intervention centers to train and supervise nonprofessional counselors. Training groups included preservice training only (PSO), preservice training and delayed supervision (PSD), and preservice training and immediate supervision (PSI). Findings indicate most learning by…

  1. Combining Unsupervised and Supervised Classification to Build User Models for Exploratory Learning Environments

    ERIC Educational Resources Information Center

    Amershi, Saleema; Conati, Cristina

    2009-01-01

    In this paper, we present a data-based user modeling framework that uses both unsupervised and supervised classification to build student models for exploratory learning environments. We apply the framework to build student models for two different learning environments and using two different data sources (logged interface and eye-tracking data).…

  2. Weakly supervised classification in high energy physics

    DOE PAGES

    Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco; ...

    2017-05-01

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. Here, this paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics $-$ quark versus gluon tagging $-$ we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervisedmore » classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.« less

  3. Weakly supervised classification in high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. Here, this paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics $-$ quark versus gluon tagging $-$ we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervisedmore » classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.« less

  4. Assessment of various supervised learning algorithms using different performance metrics

    NASA Astrophysics Data System (ADS)

    Susheel Kumar, S. M.; Laxkar, Deepak; Adhikari, Sourav; Vijayarajan, V.

    2017-11-01

    Our work brings out comparison based on the performance of supervised machine learning algorithms on a binary classification task. The supervised machine learning algorithms which are taken into consideration in the following work are namely Support Vector Machine(SVM), Decision Tree(DT), K Nearest Neighbour (KNN), Naïve Bayes(NB) and Random Forest(RF). This paper mostly focuses on comparing the performance of above mentioned algorithms on one binary classification task by analysing the Metrics such as Accuracy, F-Measure, G-Measure, Precision, Misclassification Rate, False Positive Rate, True Positive Rate, Specificity, Prevalence.

  5. Self-Supervised Chinese Ontology Learning from Online Encyclopedias

    PubMed Central

    Shao, Zhiqing; Ruan, Tong

    2014-01-01

    Constructing ontology manually is a time-consuming, error-prone, and tedious task. We present SSCO, a self-supervised learning based chinese ontology, which contains about 255 thousand concepts, 5 million entities, and 40 million facts. We explore the three largest online Chinese encyclopedias for ontology learning and describe how to transfer the structured knowledge in encyclopedias, including article titles, category labels, redirection pages, taxonomy systems, and InfoBox modules, into ontological form. In order to avoid the errors in encyclopedias and enrich the learnt ontology, we also apply some machine learning based methods. First, we proof that the self-supervised machine learning method is practicable in Chinese relation extraction (at least for synonymy and hyponymy) statistically and experimentally and train some self-supervised models (SVMs and CRFs) for synonymy extraction, concept-subconcept relation extraction, and concept-instance relation extraction; the advantages of our methods are that all training examples are automatically generated from the structural information of encyclopedias and a few general heuristic rules. Finally, we evaluate SSCO in two aspects, scale and precision; manual evaluation results show that the ontology has excellent precision, and high coverage is concluded by comparing SSCO with other famous ontologies and knowledge bases; the experiment results also indicate that the self-supervised models obviously enrich SSCO. PMID:24715819

  6. Self-supervised Chinese ontology learning from online encyclopedias.

    PubMed

    Hu, Fanghuai; Shao, Zhiqing; Ruan, Tong

    2014-01-01

    Constructing ontology manually is a time-consuming, error-prone, and tedious task. We present SSCO, a self-supervised learning based chinese ontology, which contains about 255 thousand concepts, 5 million entities, and 40 million facts. We explore the three largest online Chinese encyclopedias for ontology learning and describe how to transfer the structured knowledge in encyclopedias, including article titles, category labels, redirection pages, taxonomy systems, and InfoBox modules, into ontological form. In order to avoid the errors in encyclopedias and enrich the learnt ontology, we also apply some machine learning based methods. First, we proof that the self-supervised machine learning method is practicable in Chinese relation extraction (at least for synonymy and hyponymy) statistically and experimentally and train some self-supervised models (SVMs and CRFs) for synonymy extraction, concept-subconcept relation extraction, and concept-instance relation extraction; the advantages of our methods are that all training examples are automatically generated from the structural information of encyclopedias and a few general heuristic rules. Finally, we evaluate SSCO in two aspects, scale and precision; manual evaluation results show that the ontology has excellent precision, and high coverage is concluded by comparing SSCO with other famous ontologies and knowledge bases; the experiment results also indicate that the self-supervised models obviously enrich SSCO.

  7. Efficient Training of Supervised Spiking Neural Network via Accurate Synaptic-Efficiency Adjustment Method.

    PubMed

    Xie, Xiurui; Qu, Hong; Yi, Zhang; Kurths, Jurgen

    2017-06-01

    The spiking neural network (SNN) is the third generation of neural networks and performs remarkably well in cognitive tasks, such as pattern recognition. The temporal neural encode mechanism found in biological hippocampus enables SNN to possess more powerful computation capability than networks with other encoding schemes. However, this temporal encoding approach requires neurons to process information serially on time, which reduces learning efficiency significantly. To keep the powerful computation capability of the temporal encoding mechanism and to overcome its low efficiency in the training of SNNs, a new training algorithm, the accurate synaptic-efficiency adjustment method is proposed in this paper. Inspired by the selective attention mechanism of the primate visual system, our algorithm selects only the target spike time as attention areas, and ignores voltage states of the untarget ones, resulting in a significant reduction of training time. Besides, our algorithm employs a cost function based on the voltage difference between the potential of the output neuron and the firing threshold of the SNN, instead of the traditional precise firing time distance. A normalized spike-timing-dependent-plasticity learning window is applied to assigning this error to different synapses for instructing their training. Comprehensive simulations are conducted to investigate the learning properties of our algorithm, with input neurons emitting both single spike and multiple spikes. Simulation results indicate that our algorithm possesses higher learning performance than the existing other methods and achieves the state-of-the-art efficiency in the training of SNN.

  8. Collective Academic Supervision: A Model for Participation and Learning in Higher Education

    ERIC Educational Resources Information Center

    Nordentoft, Helle Merete; Thomsen, Rie; Wichmann-Hansen, Gitte

    2013-01-01

    Supervision of graduate students is a core activity in higher education. Previous research on graduate supervision focuses on individual and relational aspects of the supervisory relationship rather than collective, pedagogical and methodological aspects of the supervision process. In presenting a collective model we have developed for academic…

  9. Towards autonomous neuroprosthetic control using Hebbian reinforcement learning.

    PubMed

    Mahmoudi, Babak; Pohlmeyer, Eric A; Prins, Noeline W; Geng, Shijia; Sanchez, Justin C

    2013-12-01

    Our goal was to design an adaptive neuroprosthetic controller that could learn the mapping from neural states to prosthetic actions and automatically adjust adaptation using only a binary evaluative feedback as a measure of desirability/undesirability of performance. Hebbian reinforcement learning (HRL) in a connectionist network was used for the design of the adaptive controller. The method combines the efficiency of supervised learning with the generality of reinforcement learning. The convergence properties of this approach were studied using both closed-loop control simulations and open-loop simulations that used primate neural data from robot-assisted reaching tasks. The HRL controller was able to perform classification and regression tasks using its episodic and sequential learning modes, respectively. In our experiments, the HRL controller quickly achieved convergence to an effective control policy, followed by robust performance. The controller also automatically stopped adapting the parameters after converging to a satisfactory control policy. Additionally, when the input neural vector was reorganized, the controller resumed adaptation to maintain performance. By estimating an evaluative feedback directly from the user, the HRL control algorithm may provide an efficient method for autonomous adaptation of neuroprosthetic systems. This method may enable the user to teach the controller the desired behavior using only a simple feedback signal.

  10. Automated labelling of cancer textures in colorectal histopathology slides using quasi-supervised learning.

    PubMed

    Onder, Devrim; Sarioglu, Sulen; Karacali, Bilge

    2013-04-01

    Quasi-supervised learning is a statistical learning algorithm that contrasts two datasets by computing estimate for the posterior probability of each sample in either dataset. This method has not been applied to histopathological images before. The purpose of this study is to evaluate the performance of the method to identify colorectal tissues with or without adenocarcinoma. Light microscopic digital images from histopathological sections were obtained from 30 colorectal radical surgery materials including adenocarcinoma and non-neoplastic regions. The texture features were extracted by using local histograms and co-occurrence matrices. The quasi-supervised learning algorithm operates on two datasets, one containing samples of normal tissues labelled only indirectly, and the other containing an unlabeled collection of samples of both normal and cancer tissues. As such, the algorithm eliminates the need for manually labelled samples of normal and cancer tissues for conventional supervised learning and significantly reduces the expert intervention. Several texture feature vector datasets corresponding to different extraction parameters were tested within the proposed framework. The Independent Component Analysis dimensionality reduction approach was also identified as the one improving the labelling performance evaluated in this series. In this series, the proposed method was applied to the dataset of 22,080 vectors with reduced dimensionality 119 from 132. Regions containing cancer tissue could be identified accurately having false and true positive rates up to 19% and 88% respectively without using manually labelled ground-truth datasets in a quasi-supervised strategy. The resulting labelling performances were compared to that of a conventional powerful supervised classifier using manually labelled ground-truth data. The supervised classifier results were calculated as 3.5% and 95% for the same case. The results in this series in comparison with the benchmark classifier, suggest that quasi-supervised image texture labelling may be a useful method in the analysis and classification of pathological slides but further study is required to improve the results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Fast and robust segmentation of white blood cell images by self-supervised learning.

    PubMed

    Zheng, Xin; Wang, Yong; Wang, Guoyou; Liu, Jianguo

    2018-04-01

    A fast and accurate white blood cell (WBC) segmentation remains a challenging task, as different WBCs vary significantly in color and shape due to cell type differences, staining technique variations and the adhesion between the WBC and red blood cells. In this paper, a self-supervised learning approach, consisting of unsupervised initial segmentation and supervised segmentation refinement, is presented. The first module extracts the overall foreground region from the cell image by K-means clustering, and then generates a coarse WBC region by touching-cell splitting based on concavity analysis. The second module further uses the coarse segmentation result of the first module as automatic labels to actively train a support vector machine (SVM) classifier. Then, the trained SVM classifier is further used to classify each pixel of the image and achieve a more accurate segmentation result. To improve its segmentation accuracy, median color features representing the topological structure and a new weak edge enhancement operator (WEEO) handling fuzzy boundary are introduced. To further reduce its time cost, an efficient cluster sampling strategy is also proposed. We tested the proposed approach with two blood cell image datasets obtained under various imaging and staining conditions. The experiment results show that our approach has a superior performance of accuracy and time cost on both datasets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Predicting protein complexes using a supervised learning method combined with local structural information.

    PubMed

    Dong, Yadong; Sun, Yongqi; Qin, Chao

    2018-01-01

    The existing protein complex detection methods can be broadly divided into two categories: unsupervised and supervised learning methods. Most of the unsupervised learning methods assume that protein complexes are in dense regions of protein-protein interaction (PPI) networks even though many true complexes are not dense subgraphs. Supervised learning methods utilize the informative properties of known complexes; they often extract features from existing complexes and then use the features to train a classification model. The trained model is used to guide the search process for new complexes. However, insufficient extracted features, noise in the PPI data and the incompleteness of complex data make the classification model imprecise. Consequently, the classification model is not sufficient for guiding the detection of complexes. Therefore, we propose a new robust score function that combines the classification model with local structural information. Based on the score function, we provide a search method that works both forwards and backwards. The results from experiments on six benchmark PPI datasets and three protein complex datasets show that our approach can achieve better performance compared with the state-of-the-art supervised, semi-supervised and unsupervised methods for protein complex detection, occasionally significantly outperforming such methods.

  13. Auction dynamics: A volume constrained MBO scheme

    NASA Astrophysics Data System (ADS)

    Jacobs, Matt; Merkurjev, Ekaterina; Esedoǧlu, Selim

    2018-02-01

    We show how auction algorithms, originally developed for the assignment problem, can be utilized in Merriman, Bence, and Osher's threshold dynamics scheme to simulate multi-phase motion by mean curvature in the presence of equality and inequality volume constraints on the individual phases. The resulting algorithms are highly efficient and robust, and can be used in simulations ranging from minimal partition problems in Euclidean space to semi-supervised machine learning via clustering on graphs. In the case of the latter application, numerous experimental results on benchmark machine learning datasets show that our approach exceeds the performance of current state-of-the-art methods, while requiring a fraction of the computation time.

  14. Facilitating the Learning Process in Design-Based Learning Practices: An Investigation of Teachers' Actions in Supervising Students

    ERIC Educational Resources Information Center

    Gómez Puente, S. M.; van Eijck, M.; Jochems, W.

    2013-01-01

    Background: In research on design-based learning (DBL), inadequate attention is paid to the role the teacher plays in supervising students in gathering and applying knowledge to design artifacts, systems, and innovative solutions in higher education. Purpose: In this study, we examine whether teacher actions we previously identified in the DBL…

  15. Using Graphs. Supervising: Technical Aspects of Supervision. The Choice Series #32. A Self Learning Opportunity.

    ERIC Educational Resources Information Center

    Carr, Linda

    This learning unit on using graphs is one in the Choice Series, a self-learning development program for supervisors. Purpose stated for the approximately eight-hour-long unit is to enable the supervisor to look at the usefulness of graphs in displaying figures, use graphs to compare sets of figures, identify trends and seasonal variations in…

  16. Semi-supervised manifold learning with affinity regularization for Alzheimer's disease identification using positron emission tomography imaging.

    PubMed

    Lu, Shen; Xia, Yong; Cai, Tom Weidong; Feng, David Dagan

    2015-01-01

    Dementia, Alzheimer's disease (AD) in particular is a global problem and big threat to the aging population. An image based computer-aided dementia diagnosis method is needed to providing doctors help during medical image examination. Many machine learning based dementia classification methods using medical imaging have been proposed and most of them achieve accurate results. However, most of these methods make use of supervised learning requiring fully labeled image dataset, which usually is not practical in real clinical environment. Using large amount of unlabeled images can improve the dementia classification performance. In this study we propose a new semi-supervised dementia classification method based on random manifold learning with affinity regularization. Three groups of spatial features are extracted from positron emission tomography (PET) images to construct an unsupervised random forest which is then used to regularize the manifold learning objective function. The proposed method, stat-of-the-art Laplacian support vector machine (LapSVM) and supervised SVM are applied to classify AD and normal controls (NC). The experiment results show that learning with unlabeled images indeed improves the classification performance. And our method outperforms LapSVM on the same dataset.

  17. Ranking Medical Terms to Support Expansion of Lay Language Resources for Patient Comprehension of Electronic Health Record Notes: Adapted Distant Supervision Approach

    PubMed Central

    Jagannatha, Abhyuday N; Fodeh, Samah J; Yu, Hong

    2017-01-01

    Background Medical terms are a major obstacle for patients to comprehend their electronic health record (EHR) notes. Clinical natural language processing (NLP) systems that link EHR terms to lay terms or definitions allow patients to easily access helpful information when reading through their EHR notes, and have shown to improve patient EHR comprehension. However, high-quality lay language resources for EHR terms are very limited in the public domain. Because expanding and curating such a resource is a costly process, it is beneficial and even necessary to identify terms important for patient EHR comprehension first. Objective We aimed to develop an NLP system, called adapted distant supervision (ADS), to rank candidate terms mined from EHR corpora. We will give EHR terms ranked as high by ADS a higher priority for lay language annotation—that is, creating lay definitions for these terms. Methods Adapted distant supervision uses distant supervision from consumer health vocabulary and transfer learning to adapt itself to solve the problem of ranking EHR terms in the target domain. We investigated 2 state-of-the-art transfer learning algorithms (ie, feature space augmentation and supervised distant supervision) and designed 5 types of learning features, including distributed word representations learned from large EHR data for ADS. For evaluating ADS, we asked domain experts to annotate 6038 candidate terms as important or nonimportant for EHR comprehension. We then randomly divided these data into the target-domain training data (1000 examples) and the evaluation data (5038 examples). We compared ADS with 2 strong baselines, including standard supervised learning, on the evaluation data. Results The ADS system using feature space augmentation achieved the best average precision, 0.850, on the evaluation set when using 1000 target-domain training examples. The ADS system using supervised distant supervision achieved the best average precision, 0.819, on the evaluation set when using only 100 target-domain training examples. The 2 ADS systems both performed significantly better than the baseline systems (P<.001 for all measures and all conditions). Using a rich set of learning features contributed to ADS’s performance substantially. Conclusions ADS can effectively rank terms mined from EHRs. Transfer learning improved ADS’s performance even with a small number of target-domain training examples. EHR terms prioritized by ADS were used to expand a lay language resource that supports patient EHR comprehension. The top 10,000 EHR terms ranked by ADS are available upon request. PMID:29089288

  18. Extracting microRNA-gene relations from biomedical literature using distant supervision

    PubMed Central

    Clarke, Luka A.; Couto, Francisco M.

    2017-01-01

    Many biomedical relation extraction approaches are based on supervised machine learning, requiring an annotated corpus. Distant supervision aims at training a classifier by combining a knowledge base with a corpus, reducing the amount of manual effort necessary. This is particularly useful for biomedicine because many databases and ontologies have been made available for many biological processes, while the availability of annotated corpora is still limited. We studied the extraction of microRNA-gene relations from text. MicroRNA regulation is an important biological process due to its close association with human diseases. The proposed method, IBRel, is based on distantly supervised multi-instance learning. We evaluated IBRel on three datasets, and the results were compared with a co-occurrence approach as well as a supervised machine learning algorithm. While supervised learning outperformed on two of those datasets, IBRel obtained an F-score 28.3 percentage points higher on the dataset for which there was no training set developed specifically. To demonstrate the applicability of IBRel, we used it to extract 27 miRNA-gene relations from recently published papers about cystic fibrosis. Our results demonstrate that our method can be successfully used to extract relations from literature about a biological process without an annotated corpus. The source code and data used in this study are available at https://github.com/AndreLamurias/IBRel. PMID:28263989

  19. Extracting microRNA-gene relations from biomedical literature using distant supervision.

    PubMed

    Lamurias, Andre; Clarke, Luka A; Couto, Francisco M

    2017-01-01

    Many biomedical relation extraction approaches are based on supervised machine learning, requiring an annotated corpus. Distant supervision aims at training a classifier by combining a knowledge base with a corpus, reducing the amount of manual effort necessary. This is particularly useful for biomedicine because many databases and ontologies have been made available for many biological processes, while the availability of annotated corpora is still limited. We studied the extraction of microRNA-gene relations from text. MicroRNA regulation is an important biological process due to its close association with human diseases. The proposed method, IBRel, is based on distantly supervised multi-instance learning. We evaluated IBRel on three datasets, and the results were compared with a co-occurrence approach as well as a supervised machine learning algorithm. While supervised learning outperformed on two of those datasets, IBRel obtained an F-score 28.3 percentage points higher on the dataset for which there was no training set developed specifically. To demonstrate the applicability of IBRel, we used it to extract 27 miRNA-gene relations from recently published papers about cystic fibrosis. Our results demonstrate that our method can be successfully used to extract relations from literature about a biological process without an annotated corpus. The source code and data used in this study are available at https://github.com/AndreLamurias/IBRel.

  20. A supervised learning rule for classification of spatiotemporal spike patterns.

    PubMed

    Lilin Guo; Zhenzhong Wang; Adjouadi, Malek

    2016-08-01

    This study introduces a novel supervised algorithm for spiking neurons that take into consideration synapse delays and axonal delays associated with weights. It can be utilized for both classification and association and uses several biologically influenced properties, such as axonal and synaptic delays. This algorithm also takes into consideration spike-timing-dependent plasticity as in Remote Supervised Method (ReSuMe). This paper focuses on the classification aspect alone. Spiked neurons trained according to this proposed learning rule are capable of classifying different categories by the associated sequences of precisely timed spikes. Simulation results have shown that the proposed learning method greatly improves classification accuracy when compared to the Spike Pattern Association Neuron (SPAN) and the Tempotron learning rule.

  1. Iterative quantization: a Procrustean approach to learning binary codes for large-scale image retrieval.

    PubMed

    Gong, Yunchao; Lazebnik, Svetlana; Gordo, Albert; Perronnin, Florent

    2013-12-01

    This paper addresses the problem of learning similarity-preserving binary codes for efficient similarity search in large-scale image collections. We formulate this problem in terms of finding a rotation of zero-centered data so as to minimize the quantization error of mapping this data to the vertices of a zero-centered binary hypercube, and propose a simple and efficient alternating minimization algorithm to accomplish this task. This algorithm, dubbed iterative quantization (ITQ), has connections to multiclass spectral clustering and to the orthogonal Procrustes problem, and it can be used both with unsupervised data embeddings such as PCA and supervised embeddings such as canonical correlation analysis (CCA). The resulting binary codes significantly outperform several other state-of-the-art methods. We also show that further performance improvements can result from transforming the data with a nonlinear kernel mapping prior to PCA or CCA. Finally, we demonstrate an application of ITQ to learning binary attributes or "classemes" on the ImageNet data set.

  2. Efficient Multi-Concept Visual Classifier Adaptation in Changing Environments

    DTIC Science & Technology

    2016-09-01

    yet to be discussed in existing supervised multi-concept visual perception systems used in robotics applications.1,5–7 Anno - tation of images is...Autonomous robot navigation in highly populated pedestrian zones. J Field Robotics. 2015;32(4):565–589. 3. Milella A, Reina G, Underwood J . A self...learning framework for statistical ground classification using RADAR and monocular vision. J Field Robotics. 2015;32(1):20–41. 4. Manjanna S, Dudek G

  3. Aspects of Mentorship in Team Supervision of Doctoral Students in Australia

    ERIC Educational Resources Information Center

    Robertson, Margaret

    2017-01-01

    This article examines three aspects of mentorship in collaborative supervision of HDR studies in Australian contexts. The first aspect of mentorship is what the doctoral student learns about supervision--positively or negatively--through the experience of being supervised (supervisor to student). The second aspect is understood as an experienced…

  4. Ellipsoidal fuzzy learning for smart car platoons

    NASA Astrophysics Data System (ADS)

    Dickerson, Julie A.; Kosko, Bart

    1993-12-01

    A neural-fuzzy system combined supervised and unsupervised learning to find and tune the fuzzy-rules. An additive fuzzy system approximates a function by covering its graph with fuzzy rules. A fuzzy rule patch can take the form of an ellipsoid in the input-output space. Unsupervised competitive learning found the statistics of data clusters. The covariance matrix of each synaptic quantization vector defined on ellipsoid centered at the centroid of the data cluster. Tightly clustered data gave smaller ellipsoids or more certain rules. Sparse data gave larger ellipsoids or less certain rules. Supervised learning tuned the ellipsoids to improve the approximation. The supervised neural system used gradient descent to find the ellipsoidal fuzzy patches. It locally minimized the mean-squared error of the fuzzy approximation. Hybrid ellipsoidal learning estimated the control surface for a smart car controller.

  5. Experiences of registered nurses who supervise international nursing students in the clinical and classroom setting: an integrative literature review.

    PubMed

    Newton, Louise; Pront, Leeanne; Giles, Tracey M

    2016-06-01

    To examine the literature reporting the experiences and perceptions of registered nurses who supervise international nursing students in the clinical and classroom setting. Nursing education relies on clinical experts to supervise students during classroom and clinical education, and the quality of that supervision has a significant impact on student development and learning. Global migration and internationalisation of nursing education have led to increasing numbers of registered nurses supervising international nursing students. However, a paucity of relevant literature limits our understanding of these experiences. An integrative literature review. Comprehensive database searches of CINAHL, Informit, PubMed, Journals@Ovid, Findit@flinders and Medline were undertaken. Screening of 179 articles resulted in 10 included for review. Appraisal and analysis using Whittemore and Knafl's (Journal of Advanced Nursing, 52, 2005, 546) five stage integrative review recommendations was undertaken. This review highlighted some unique challenges for registered nurses supervising international nursing students. Identified issues were, a heightened sense of responsibility, additional pastoral care challenges, considerable time investments, communication challenges and cultural differences between teaching and learning styles. It is possible that these unique challenges could be minimised by implementing role preparation programmes specific to international nursing student supervision. Further research is needed to provide an in-depth exploration of current levels of preparation and support to make recommendations for future practice, education and policy development. An awareness of the specific cultural learning needs of international nursing students is an important first step to the provision of culturally competent supervision for this cohort of students. There is an urgent need for education and role preparation for all registered nurses supervising international nursing students, along with adequate recognition of the additional time required to effectively supervise these students. © 2016 John Wiley & Sons Ltd.

  6. Machine learning and next-generation asteroid surveys

    NASA Astrophysics Data System (ADS)

    Nugent, Carrie R.; Dailey, John; Cutri, Roc M.; Masci, Frank J.; Mainzer, Amy K.

    2017-10-01

    Next-generation surveys such as NEOCam (Mainzer et al., 2016) will sift through tens of millions of point source detections daily to detect and discover asteroids. This requires new, more efficient techniques to distinguish between solar system objects, background stars and galaxies, and artifacts such as cosmic rays, scattered light and diffraction spikes.Supervised machine learning is a set of algorithms that allows computers to classify data on a training set, and then apply that classification to make predictions on new datasets. It has been employed by a broad range of fields, including computer vision, medical diagnoses, economics, and natural language processing. It has also been applied to astronomical datasets, including transient identification in the Palomar Transient Factory pipeline (Masci et al., 2016), and in the Pan-STARRS1 difference imaging (D. E. Wright et al., 2015).As part of the NEOCam extended phase A work we apply machine learning techniques to the problem of asteroid detection. Asteroid detection is an ideal application of supervised learning, as there is a wealth of metrics associated with each extracted source, and suitable training sets are easily created. Using the vetted NEOWISE dataset (E. L. Wright et al., 2010, Mainzer et al., 2011) as a proof-of-concept of this technique, we applied the python package sklearn. We report on reliability, feature set selection, and the suitability of various algorithms.

  7. Generalized SMO algorithm for SVM-based multitask learning.

    PubMed

    Cai, Feng; Cherkassky, Vladimir

    2012-06-01

    Exploiting additional information to improve traditional inductive learning is an active research area in machine learning. In many supervised-learning applications, training data can be naturally separated into several groups, and incorporating this group information into learning may improve generalization. Recently, Vapnik proposed a general approach to formalizing such problems, known as "learning with structured data" and its support vector machine (SVM) based optimization formulation called SVM+. Liang and Cherkassky showed the connection between SVM+ and multitask learning (MTL) approaches in machine learning, and proposed an SVM-based formulation for MTL called SVM+MTL for classification. Training the SVM+MTL classifier requires the solution of a large quadratic programming optimization problem which scales as O(n(3)) with sample size n. So there is a need to develop computationally efficient algorithms for implementing SVM+MTL. This brief generalizes Platt's sequential minimal optimization (SMO) algorithm to the SVM+MTL setting. Empirical results show that, for typical SVM+MTL problems, the proposed generalized SMO achieves over 100 times speed-up, in comparison with general-purpose optimization routines.

  8. Road safety education: What works?

    PubMed

    Assailly, J P

    2017-01-01

    The objectives of the paper are: METHOD: Seminal papers, collaborative reports from traffic safety research institutes and books from experts have been used as materials. Very diverse fields of application are presented such as: the importance of emotional experience in interaction with traffic experiences; the efficiency of e-learning; the efficiency of simulators to improve hazard perception skills and calibration of one's driving competencies; the efficiency of social norms marketing at changing behaviors by correcting normative misperceptions; the usefulness of parents-based interventions to improve parental supervision; and finally the importance of multi-components programs due to their synergies. Scientific evidence collected in this paper shows that RSE may have some positive effects if good practices are adopted, if it is part of a lifelong learning process and if transmits not only knowledge but also "life-skills" (or psycho-social competences). for practice From each example, we will see the implications of the results for the implementation of RSE. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Applying Information Processing Theory to Supervision: An Initial Exploration

    ERIC Educational Resources Information Center

    Tangen, Jodi L.; Borders, L. DiAnne

    2017-01-01

    Although clinical supervision is an educational endeavor (Borders & Brown, [Borders, L. D., 2005]), many scholars neglect theories of learning in working with supervisees. The authors describe 1 learning theory--information processing theory (Atkinson & Shiffrin, 1968, 1971; Schunk, 2016)--and the ways its associated interventions may…

  10. An Online Learning Space Facilitating Supervision Pedagogies in Science

    ERIC Educational Resources Information Center

    Picard, M. Y.; Wilkinson, K.; Wirthensohn, M.

    2011-01-01

    Quality research supervision leading to timely completion and student satisfaction involves explicit pedagogy and effective communication. This article describes the development within an action research cycle of an online learning space designed to achieve these goals. The research "spirals" involved interventions in the form of instructive…

  11. Postgraduate Training in Student Learning and Teaching.

    ERIC Educational Resources Information Center

    Alpay, E.; Mendes-Tatsis, M. A.

    2000-01-01

    Presents an experiential postgraduate training program for student learning and supervision involving laboratory and pilot plant supervisions in the chemical engineering field. The program addresses some of the current concerns about non-technical training and the further development of the broad science and engineering knowledge of postgraduate…

  12. Sentiment classification technology based on Markov logic networks

    NASA Astrophysics Data System (ADS)

    He, Hui; Li, Zhigang; Yao, Chongchong; Zhang, Weizhe

    2016-07-01

    With diverse online media emerging, there is a growing concern of sentiment classification problem. At present, text sentiment classification mainly utilizes supervised machine learning methods, which feature certain domain dependency. On the basis of Markov logic networks (MLNs), this study proposed a cross-domain multi-task text sentiment classification method rooted in transfer learning. Through many-to-one knowledge transfer, labeled text sentiment classification, knowledge was successfully transferred into other domains, and the precision of the sentiment classification analysis in the text tendency domain was improved. The experimental results revealed the following: (1) the model based on a MLN demonstrated higher precision than the single individual learning plan model. (2) Multi-task transfer learning based on Markov logical networks could acquire more knowledge than self-domain learning. The cross-domain text sentiment classification model could significantly improve the precision and efficiency of text sentiment classification.

  13. Learning and optimization with cascaded VLSI neural network building-block chips

    NASA Technical Reports Server (NTRS)

    Duong, T.; Eberhardt, S. P.; Tran, M.; Daud, T.; Thakoor, A. P.

    1992-01-01

    To demonstrate the versatility of the building-block approach, two neural network applications were implemented on cascaded analog VLSI chips. Weights were implemented using 7-b multiplying digital-to-analog converter (MDAC) synapse circuits, with 31 x 32 and 32 x 32 synapses per chip. A novel learning algorithm compatible with analog VLSI was applied to the two-input parity problem. The algorithm combines dynamically evolving architecture with limited gradient-descent backpropagation for efficient and versatile supervised learning. To implement the learning algorithm in hardware, synapse circuits were paralleled for additional quantization levels. The hardware-in-the-loop learning system allocated 2-5 hidden neurons for parity problems. Also, a 7 x 7 assignment problem was mapped onto a cascaded 64-neuron fully connected feedback network. In 100 randomly selected problems, the network found optimal or good solutions in most cases, with settling times in the range of 7-100 microseconds.

  14. Practice, supervision, consultancy and appraisal: a continuum of learning.

    PubMed Central

    Launer, John

    2003-01-01

    I examine four different kinds of learning conversation: reflective practice, clinical supervision, work consultancy and performance appraisal. I propose that there is a close and reciprocal relationship between these kinds of conversation, and that they represent different aspects of a unified field, or continuum. I argue that appraisal should be seen as part of this learning continuum rather than as form of monitoring. PMID:14601347

  15. An Early Historical Examination of the Educational Intent of Supervised Agricultural Experiences (SAEs) and Project-Based Learning in Agricultural Education

    ERIC Educational Resources Information Center

    Smith, Kasee L.; Rayfield, John

    2016-01-01

    Project-based learning has been a component of agricultural education since its inception. In light of the current call for additional emphasis of the Supervised Agricultural Experience (SAE) component of agricultural education, there is a need to revisit the roots of project-based learning. This early historical research study was conducted to…

  16. Supervisors & Marketing. Supervising: Technical Aspects of Supervision. The Choice Series #45. A Self Learning Opportunity.

    ERIC Educational Resources Information Center

    Johnson, David W.

    This learning unit on supervisors and marketing is one in the Choice Series, a self-learning development program for supervisors. Purpose stated for the approximately eight-hour-long unit is to enable the supervisor to understand the nature of marketing both to the organization and to the individual in it, understand how customer needs are met by…

  17. Observation versus classification in supervised category learning.

    PubMed

    Levering, Kimery R; Kurtz, Kenneth J

    2015-02-01

    The traditional supervised classification paradigm encourages learners to acquire only the knowledge needed to predict category membership (a discriminative approach). An alternative that aligns with important aspects of real-world concept formation is learning with a broader focus to acquire knowledge of the internal structure of each category (a generative approach). Our work addresses the impact of a particular component of the traditional classification task: the guess-and-correct cycle. We compare classification learning to a supervised observational learning task in which learners are shown labeled examples but make no classification response. The goals of this work sit at two levels: (1) testing for differences in the nature of the category representations that arise from two basic learning modes; and (2) evaluating the generative/discriminative continuum as a theoretical tool for understand learning modes and their outcomes. Specifically, we view the guess-and-correct cycle as consistent with a more discriminative approach and therefore expected it to lead to narrower category knowledge. Across two experiments, the observational mode led to greater sensitivity to distributional properties of features and correlations between features. We conclude that a relatively subtle procedural difference in supervised category learning substantially impacts what learners come to know about the categories. The results demonstrate the value of the generative/discriminative continuum as a tool for advancing the psychology of category learning and also provide a valuable constraint for formal models and associated theories.

  18. New developments in technology-assisted supervision and training: a practical overview.

    PubMed

    Rousmaniere, Tony; Abbass, Allan; Frederickson, Jon

    2014-11-01

    Clinical supervision and training are now widely available online. In this article, three of the most accessible and widely adopted new developments in clinical supervision and training technology are described: Videoconference supervision, cloud-based file sharing software, and clinical outcome tracking software. Partial transcripts from two online supervision sessions are provided as examples of videoconference-based supervision. The benefits and limitations of technology in supervision and training are discussed, with an emphasis on supervision process, ethics, privacy, and security. Recommendations for supervision practice are made, including methods to enhance experiential learning, the supervisory working alliance, and online security. © 2014 Wiley Periodicals, Inc.

  19. The supervisor as gender analyst: feminist perspectives on group supervision and training.

    PubMed

    Schoenholtz-Read, J

    1996-10-01

    Supervision and training groups have advantages over dyadic supervision and training that include factors to promote group learning and interaction within a sociocultural context. This article focuses on the gender aspects of group supervision and training. It provides a review of feminist theoretical developments and presents their application to group supervision and training in the form of eight guidelines that are illustrated by clinical examples.

  20. Failure Analysis of a Complex Learning Framework Incorporating Multi-Modal and Semi-Supervised Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pullum, Laura L; Symons, Christopher T

    2011-01-01

    Machine learning is used in many applications, from machine vision to speech recognition to decision support systems, and is used to test applications. However, though much has been done to evaluate the performance of machine learning algorithms, little has been done to verify the algorithms or examine their failure modes. Moreover, complex learning frameworks often require stepping beyond black box evaluation to distinguish between errors based on natural limits on learning and errors that arise from mistakes in implementation. We present a conceptual architecture, failure model and taxonomy, and failure modes and effects analysis (FMEA) of a semi-supervised, multi-modal learningmore » system, and provide specific examples from its use in a radiological analysis assistant system. The goal of the research described in this paper is to provide a foundation from which dependability analysis of systems using semi-supervised, multi-modal learning can be conducted. The methods presented provide a first step towards that overall goal.« less

  1. Supervised Learning Using Spike-Timing-Dependent Plasticity of Memristive Synapses.

    PubMed

    Nishitani, Yu; Kaneko, Yukihiro; Ueda, Michihito

    2015-12-01

    We propose a supervised learning model that enables error backpropagation for spiking neural network hardware. The method is modeled by modifying an existing model to suit the hardware implementation. An example of a network circuit for the model is also presented. In this circuit, a three-terminal ferroelectric memristor (3T-FeMEM), which is a field-effect transistor with a gate insulator composed of ferroelectric materials, is used as an electric synapse device to store the analog synaptic weight. Our model can be implemented by reflecting the network error to the write voltage of the 3T-FeMEMs and introducing a spike-timing-dependent learning function to the device. An XOR problem was successfully demonstrated as a benchmark learning by numerical simulations using the circuit properties to estimate the learning performance. In principle, the learning time per step of this supervised learning model and the circuit is independent of the number of neurons in each layer, promising a high-speed and low-power calculation in large-scale neural networks.

  2. Cerebellar supervised learning revisited: biophysical modeling and degrees-of-freedom control.

    PubMed

    Kawato, Mitsuo; Kuroda, Shinya; Schweighofer, Nicolas

    2011-10-01

    The biophysical models of spike-timing-dependent plasticity have explored dynamics with molecular basis for such computational concepts as coincidence detection, synaptic eligibility trace, and Hebbian learning. They overall support different learning algorithms in different brain areas, especially supervised learning in the cerebellum. Because a single spine is physically very small, chemical reactions at it are essentially stochastic, and thus sensitivity-longevity dilemma exists in the synaptic memory. Here, the cascade of excitable and bistable dynamics is proposed to overcome this difficulty. All kinds of learning algorithms in different brain regions confront with difficult generalization problems. For resolution of this issue, the control of the degrees-of-freedom can be realized by changing synchronicity of neural firing. Especially, for cerebellar supervised learning, the triangle closed-loop circuit consisting of Purkinje cells, the inferior olive nucleus, and the cerebellar nucleus is proposed as a circuit to optimally control synchronous firing and degrees-of-freedom in learning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Emotional Literacy Support Assistants' Views on Supervision Provided by Educational Psychologists: What EPs Can Learn from Group Supervision

    ERIC Educational Resources Information Center

    Osborne, Cara; Burton, Sheila

    2014-01-01

    The Educational Psychology Service in this study has responsibility for providing group supervision to Emotional Literacy Support Assistants (ELSAs) working in schools. To date, little research has examined this type of inter-professional supervision arrangement. The current study used a questionnaire to examine ELSAs' views on the supervision…

  4. Reflections on Doctoral Supervision: Drawing from the Experiences of Students with Additional Learning Needs in Two Universities

    ERIC Educational Resources Information Center

    Collins, Bethan

    2015-01-01

    Supervision is an essential part of doctoral study, consisting of relationship and process aspects, underpinned by a range of values. To date there has been limited research specifically about disabled doctoral students' experiences of supervision. This paper draws on qualitative, narrative interviews about doctoral supervision with disabled…

  5. Seizure Classification From EEG Signals Using Transfer Learning, Semi-Supervised Learning and TSK Fuzzy System.

    PubMed

    Jiang, Yizhang; Wu, Dongrui; Deng, Zhaohong; Qian, Pengjiang; Wang, Jun; Wang, Guanjin; Chung, Fu-Lai; Choi, Kup-Sze; Wang, Shitong

    2017-12-01

    Recognition of epileptic seizures from offline EEG signals is very important in clinical diagnosis of epilepsy. Compared with manual labeling of EEG signals by doctors, machine learning approaches can be faster and more consistent. However, the classification accuracy is usually not satisfactory for two main reasons: the distributions of the data used for training and testing may be different, and the amount of training data may not be enough. In addition, most machine learning approaches generate black-box models that are difficult to interpret. In this paper, we integrate transductive transfer learning, semi-supervised learning and TSK fuzzy system to tackle these three problems. More specifically, we use transfer learning to reduce the discrepancy in data distribution between the training and testing data, employ semi-supervised learning to use the unlabeled testing data to remedy the shortage of training data, and adopt TSK fuzzy system to increase model interpretability. Two learning algorithms are proposed to train the system. Our experimental results show that the proposed approaches can achieve better performance than many state-of-the-art seizure classification algorithms.

  6. Confronting Well-Learned Lessons in Supervision and Evaluation

    ERIC Educational Resources Information Center

    Ponticell, Judith A.; Zepeda, Sally J.

    2004-01-01

    Supervision is supposed to improve classroom teaching by enhancing teacher thinking, rejection, and understanding of teaching. Evaluation systems are supposed to increase effective teaching behaviors and enhance teacher professionalism. Through the lens of symbolic interaction, we learn that "supposed to" does not matter. In a context of increased…

  7. Re/Learning Student Teaching Supervision: A Co/Autoethnographic Self-Study

    ERIC Educational Resources Information Center

    Butler, Brandon M.; Diacopoulos, Mark M.

    2016-01-01

    This article documents the critical friendship of an experienced teacher educator and a doctoral student through our joint exploration of student teaching supervision. By adopting a co/autoethnographic approach, we learned from biographical and contemporaneous critical incidents that informed short- and long-term practices. In particular, we…

  8. Automatic Classification Using Supervised Learning in a Medical Document Filtering Application.

    ERIC Educational Resources Information Center

    Mostafa, J.; Lam, W.

    2000-01-01

    Presents a multilevel model of the information filtering process that permits document classification. Evaluates a document classification approach based on a supervised learning algorithm, measures the accuracy of the algorithm in a neural network that was trained to classify medical documents on cell biology, and discusses filtering…

  9. A blended supervision model in Australian general practice training.

    PubMed

    Ingham, Gerard; Fry, Jennifer

    2016-05-01

    The Royal Australian College of General Practitioners' Standards for general practice training allow different models of registrar supervision, provided these models achieve the outcomes of facilitating registrars' learning and ensuring patient safety. In this article, we describe a model of supervision called 'blended supervision', and its initial implementation and evaluation. The blended supervision model integrates offsite supervision with available local supervision resources. It is a pragmatic alternative to traditional supervision. Further evaluation of the cost-effectiveness, safety and effectiveness of this model is required, as is the recruitment and training of remote supervisors. A framework of questions was developed to outline the training practice's supervision methods and explain how blended supervision is achieving supervision and teaching outcomes. The supervision and teaching framework can be used to understand the supervision methods of all practices, not just practices using blended supervision.

  10. Supervised Machine Learning for Population Genetics: A New Paradigm

    PubMed Central

    Schrider, Daniel R.; Kern, Andrew D.

    2018-01-01

    As population genomic datasets grow in size, researchers are faced with the daunting task of making sense of a flood of information. To keep pace with this explosion of data, computational methodologies for population genetic inference are rapidly being developed to best utilize genomic sequence data. In this review we discuss a new paradigm that has emerged in computational population genomics: that of supervised machine learning (ML). We review the fundamentals of ML, discuss recent applications of supervised ML to population genetics that outperform competing methods, and describe promising future directions in this area. Ultimately, we argue that supervised ML is an important and underutilized tool that has considerable potential for the world of evolutionary genomics. PMID:29331490

  11. Needs and Rewards. Supervising: Principles and Practice of Supervision. The Choice Series #11. A Self Learning Opportunity.

    ERIC Educational Resources Information Center

    Ellingham, Richard

    This learning unit on needs and rewards is one in the Choice Series, a self-learning development program for supervisors. Purpose stated for the approximately eight-hour-long unit is to enable the supervisor to understand and list the needs that influence work behavior and devise ways in which a work system can be both productive and rewarding for…

  12. Limited Rank Matrix Learning, discriminative dimension reduction and visualization.

    PubMed

    Bunte, Kerstin; Schneider, Petra; Hammer, Barbara; Schleif, Frank-Michael; Villmann, Thomas; Biehl, Michael

    2012-02-01

    We present an extension of the recently introduced Generalized Matrix Learning Vector Quantization algorithm. In the original scheme, adaptive square matrices of relevance factors parameterize a discriminative distance measure. We extend the scheme to matrices of limited rank corresponding to low-dimensional representations of the data. This allows to incorporate prior knowledge of the intrinsic dimension and to reduce the number of adaptive parameters efficiently. In particular, for very large dimensional data, the limitation of the rank can reduce computation time and memory requirements significantly. Furthermore, two- or three-dimensional representations constitute an efficient visualization method for labeled data sets. The identification of a suitable projection is not treated as a pre-processing step but as an integral part of the supervised training. Several real world data sets serve as an illustration and demonstrate the usefulness of the suggested method. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Active learning: a step towards automating medical concept extraction.

    PubMed

    Kholghi, Mahnoosh; Sitbon, Laurianne; Zuccon, Guido; Nguyen, Anthony

    2016-03-01

    This paper presents an automatic, active learning-based system for the extraction of medical concepts from clinical free-text reports. Specifically, (1) the contribution of active learning in reducing the annotation effort and (2) the robustness of incremental active learning framework across different selection criteria and data sets are determined. The comparative performance of an active learning framework and a fully supervised approach were investigated to study how active learning reduces the annotation effort while achieving the same effectiveness as a supervised approach. Conditional random fields as the supervised method, and least confidence and information density as 2 selection criteria for active learning framework were used. The effect of incremental learning vs standard learning on the robustness of the models within the active learning framework with different selection criteria was also investigated. The following 2 clinical data sets were used for evaluation: the Informatics for Integrating Biology and the Bedside/Veteran Affairs (i2b2/VA) 2010 natural language processing challenge and the Shared Annotated Resources/Conference and Labs of the Evaluation Forum (ShARe/CLEF) 2013 eHealth Evaluation Lab. The annotation effort saved by active learning to achieve the same effectiveness as supervised learning is up to 77%, 57%, and 46% of the total number of sequences, tokens, and concepts, respectively. Compared with the random sampling baseline, the saving is at least doubled. Incremental active learning is a promising approach for building effective and robust medical concept extraction models while significantly reducing the burden of manual annotation. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Supervised versus unsupervised categorization: two sides of the same coin?

    PubMed

    Pothos, Emmanuel M; Edwards, Darren J; Perlman, Amotz

    2011-09-01

    Supervised and unsupervised categorization have been studied in separate research traditions. A handful of studies have attempted to explore a possible convergence between the two. The present research builds on these studies, by comparing the unsupervised categorization results of Pothos et al. ( 2011 ; Pothos et al., 2008 ) with the results from two procedures of supervised categorization. In two experiments, we tested 375 participants with nine different stimulus sets and examined the relation between ease of learning of a classification, memory for a classification, and spontaneous preference for a classification. After taking into account the role of the number of category labels (clusters) in supervised learning, we found the three variables to be closely associated with each other. Our results provide encouragement for researchers seeking unified theoretical explanations for supervised and unsupervised categorization, but raise a range of challenging theoretical questions.

  15. Alert Triage v 0.1 beta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doak, Justin E.; Ingram, Joe; Johnson, Josh

    2016-01-06

    In the cyber security operations of a typical organization, data from multiple sources are monitored, and when certain conditions in the data are met, an alert is generated in an alert management system. Analysts inspect these alerts to decide if any deserve promotion to an event requiring further scrutiny. This triage process is manual, time-consuming, and detracts from the in-depth investigation of events. We have created a software system that uses supervised machine learning to automatically prioritize these alerts. In particular we utilize active learning to make efficient use of the pool of unlabeled alerts, thereby improving the performance ofmore » our ranking models over passive learning. We have demonstrated the effectiveness of our system on a large, real-world dataset of cyber security alerts.« less

  16. An Approximation of the Error Backpropagation Algorithm in a Predictive Coding Network with Local Hebbian Synaptic Plasticity

    PubMed Central

    Whittington, James C. R.; Bogacz, Rafal

    2017-01-01

    To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output. PMID:28333583

  17. An Approximation of the Error Backpropagation Algorithm in a Predictive Coding Network with Local Hebbian Synaptic Plasticity.

    PubMed

    Whittington, James C R; Bogacz, Rafal

    2017-05-01

    To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output.

  18. Building an Evidence Base for Effective Supervision Practices: An Analogue Experiment of Supervision to Increase EBT Fidelity.

    PubMed

    Bearman, Sarah Kate; Schneiderman, Robyn L; Zoloth, Emma

    2017-03-01

    Treatments that are efficacious in research trials perform less well under routine conditions; differences in supervision may be one contributing factor. This study compared the effect of supervision using active learning techniques (e.g. role play, corrective feedback) versus "supervision as usual" on therapist cognitive restructuring fidelity, overall CBT competence, and CBT expertise. Forty therapist trainees attended a training workshop and were randomized to supervision condition. Outcomes were assessed using behavioral rehearsals pre- and immediately post-training, and after three supervision meetings. EBT knowledge, attitudes, and fidelity improved for all participants post-training, but only the SUP+ group demonstrated improvement following supervision.

  19. Optimizing area under the ROC curve using semi-supervised learning

    PubMed Central

    Wang, Shijun; Li, Diana; Petrick, Nicholas; Sahiner, Berkman; Linguraru, Marius George; Summers, Ronald M.

    2014-01-01

    Receiver operating characteristic (ROC) analysis is a standard methodology to evaluate the performance of a binary classification system. The area under the ROC curve (AUC) is a performance metric that summarizes how well a classifier separates two classes. Traditional AUC optimization techniques are supervised learning methods that utilize only labeled data (i.e., the true class is known for all data) to train the classifiers. In this work, inspired by semi-supervised and transductive learning, we propose two new AUC optimization algorithms hereby referred to as semi-supervised learning receiver operating characteristic (SSLROC) algorithms, which utilize unlabeled test samples in classifier training to maximize AUC. Unlabeled samples are incorporated into the AUC optimization process, and their ranking relationships to labeled positive and negative training samples are considered as optimization constraints. The introduced test samples will cause the learned decision boundary in a multidimensional feature space to adapt not only to the distribution of labeled training data, but also to the distribution of unlabeled test data. We formulate the semi-supervised AUC optimization problem as a semi-definite programming problem based on the margin maximization theory. The proposed methods SSLROC1 (1-norm) and SSLROC2 (2-norm) were evaluated using 34 (determined by power analysis) randomly selected datasets from the University of California, Irvine machine learning repository. Wilcoxon signed rank tests showed that the proposed methods achieved significant improvement compared with state-of-the-art methods. The proposed methods were also applied to a CT colonography dataset for colonic polyp classification and showed promising results.1 PMID:25395692

  20. Optimizing area under the ROC curve using semi-supervised learning.

    PubMed

    Wang, Shijun; Li, Diana; Petrick, Nicholas; Sahiner, Berkman; Linguraru, Marius George; Summers, Ronald M

    2015-01-01

    Receiver operating characteristic (ROC) analysis is a standard methodology to evaluate the performance of a binary classification system. The area under the ROC curve (AUC) is a performance metric that summarizes how well a classifier separates two classes. Traditional AUC optimization techniques are supervised learning methods that utilize only labeled data (i.e., the true class is known for all data) to train the classifiers. In this work, inspired by semi-supervised and transductive learning, we propose two new AUC optimization algorithms hereby referred to as semi-supervised learning receiver operating characteristic (SSLROC) algorithms, which utilize unlabeled test samples in classifier training to maximize AUC. Unlabeled samples are incorporated into the AUC optimization process, and their ranking relationships to labeled positive and negative training samples are considered as optimization constraints. The introduced test samples will cause the learned decision boundary in a multidimensional feature space to adapt not only to the distribution of labeled training data, but also to the distribution of unlabeled test data. We formulate the semi-supervised AUC optimization problem as a semi-definite programming problem based on the margin maximization theory. The proposed methods SSLROC1 (1-norm) and SSLROC2 (2-norm) were evaluated using 34 (determined by power analysis) randomly selected datasets from the University of California, Irvine machine learning repository. Wilcoxon signed rank tests showed that the proposed methods achieved significant improvement compared with state-of-the-art methods. The proposed methods were also applied to a CT colonography dataset for colonic polyp classification and showed promising results.

  1. Ranking Medical Terms to Support Expansion of Lay Language Resources for Patient Comprehension of Electronic Health Record Notes: Adapted Distant Supervision Approach.

    PubMed

    Chen, Jinying; Jagannatha, Abhyuday N; Fodeh, Samah J; Yu, Hong

    2017-10-31

    Medical terms are a major obstacle for patients to comprehend their electronic health record (EHR) notes. Clinical natural language processing (NLP) systems that link EHR terms to lay terms or definitions allow patients to easily access helpful information when reading through their EHR notes, and have shown to improve patient EHR comprehension. However, high-quality lay language resources for EHR terms are very limited in the public domain. Because expanding and curating such a resource is a costly process, it is beneficial and even necessary to identify terms important for patient EHR comprehension first. We aimed to develop an NLP system, called adapted distant supervision (ADS), to rank candidate terms mined from EHR corpora. We will give EHR terms ranked as high by ADS a higher priority for lay language annotation-that is, creating lay definitions for these terms. Adapted distant supervision uses distant supervision from consumer health vocabulary and transfer learning to adapt itself to solve the problem of ranking EHR terms in the target domain. We investigated 2 state-of-the-art transfer learning algorithms (ie, feature space augmentation and supervised distant supervision) and designed 5 types of learning features, including distributed word representations learned from large EHR data for ADS. For evaluating ADS, we asked domain experts to annotate 6038 candidate terms as important or nonimportant for EHR comprehension. We then randomly divided these data into the target-domain training data (1000 examples) and the evaluation data (5038 examples). We compared ADS with 2 strong baselines, including standard supervised learning, on the evaluation data. The ADS system using feature space augmentation achieved the best average precision, 0.850, on the evaluation set when using 1000 target-domain training examples. The ADS system using supervised distant supervision achieved the best average precision, 0.819, on the evaluation set when using only 100 target-domain training examples. The 2 ADS systems both performed significantly better than the baseline systems (P<.001 for all measures and all conditions). Using a rich set of learning features contributed to ADS's performance substantially. ADS can effectively rank terms mined from EHRs. Transfer learning improved ADS's performance even with a small number of target-domain training examples. EHR terms prioritized by ADS were used to expand a lay language resource that supports patient EHR comprehension. The top 10,000 EHR terms ranked by ADS are available upon request. ©Jinying Chen, Abhyuday N Jagannatha, Samah J Fodeh, Hong Yu. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 31.10.2017.

  2. Facebook for Supervision? Research Education Shaped by the Structural Properties of a Social Media Space

    ERIC Educational Resources Information Center

    Pimmer, Christoph; Chipps, Jennifer; Brysiewicz, Petra; Walters, Fiona; Linxen, Sebastian; Gröhbiel, Urs

    2017-01-01

    This study analyses the use of a group space on the social networking site Facebook as a way to facilitate research supervision for teams of learners. Borrowing Lee's framework for research supervision, the goal was to understand how supervision and learning was achieved in, and shaped by, the properties of a social networking space. For this…

  3. Undergraduate Internship Supervision in Psychology Departments: Use of Experiential Learning Best Practices

    ERIC Educational Resources Information Center

    Bailey, Sarah F.; Barber, Larissa K.; Nelson, Videl L.

    2017-01-01

    This study examined trends in how psychology internships are supervised compared to current experiential learning best practices in the literature. We sent a brief online survey to relevant contact persons for colleges/universities with psychology departments throughout the United States (n = 149 responded). Overall, the majority of institutions…

  4. Arabic Supervised Learning Method Using N-Gram

    ERIC Educational Resources Information Center

    Sanan, Majed; Rammal, Mahmoud; Zreik, Khaldoun

    2008-01-01

    Purpose: Recently, classification of Arabic documents is a real problem for juridical centers. In this case, some of the Lebanese official journal documents are classified, and the center has to classify new documents based on these documents. This paper aims to study and explain the useful application of supervised learning method on Arabic texts…

  5. Standards for Instructional Supervision: Enhancing Teaching and Learning

    ERIC Educational Resources Information Center

    Gordon, Stephen P., Ed.

    2005-01-01

    The standards in this book will enhance teaching and learning. The list of the book's contributors reads like a "Who's Who" in the field of instructional supervision. These standards are practical, specific, and flexible, so that schools and districts can adapt them to their own contexts and goals. Each set also includes activities for…

  6. Communicating Feedback in Teaching Practice Supervision in a Learning-Oriented Field Experience Assessment Framework

    ERIC Educational Resources Information Center

    Tang, Sylvia Yee Fang; Chow, Alice Wai Kwan

    2007-01-01

    This article seeks to understand the ways in which feedback was communicated in post-observation conferences in teaching practice supervision within the learning-oriented field experience assessment (LOFEA) framework. 32 post-observation conferences between 21 pairs of supervisors and participants of in-service teacher education programmes, and…

  7. Big data bioinformatics.

    PubMed

    Greene, Casey S; Tan, Jie; Ung, Matthew; Moore, Jason H; Cheng, Chao

    2014-12-01

    Recent technological advances allow for high throughput profiling of biological systems in a cost-efficient manner. The low cost of data generation is leading us to the "big data" era. The availability of big data provides unprecedented opportunities but also raises new challenges for data mining and analysis. In this review, we introduce key concepts in the analysis of big data, including both "machine learning" algorithms as well as "unsupervised" and "supervised" examples of each. We note packages for the R programming language that are available to perform machine learning analyses. In addition to programming based solutions, we review webservers that allow users with limited or no programming background to perform these analyses on large data compendia. © 2014 Wiley Periodicals, Inc.

  8. SIM_EXPLORE: Software for Directed Exploration of Complex Systems

    NASA Technical Reports Server (NTRS)

    Burl, Michael; Wang, Esther; Enke, Brian; Merline, William J.

    2013-01-01

    Physics-based numerical simulation codes are widely used in science and engineering to model complex systems that would be infeasible to study otherwise. While such codes may provide the highest- fidelity representation of system behavior, they are often so slow to run that insight into the system is limited. Trying to understand the effects of inputs on outputs by conducting an exhaustive grid-based sweep over the input parameter space is simply too time-consuming. An alternative approach called "directed exploration" has been developed to harvest information from numerical simulators more efficiently. The basic idea is to employ active learning and supervised machine learning to choose cleverly at each step which simulation trials to run next based on the results of previous trials. SIM_EXPLORE is a new computer program that uses directed exploration to explore efficiently complex systems represented by numerical simulations. The software sequentially identifies and runs simulation trials that it believes will be most informative given the results of previous trials. The results of new trials are incorporated into the software's model of the system behavior. The updated model is then used to pick the next round of new trials. This process, implemented as a closed-loop system wrapped around existing simulation code, provides a means to improve the speed and efficiency with which a set of simulations can yield scientifically useful results. The software focuses on the case in which the feedback from the simulation trials is binary-valued, i.e., the learner is only informed of the success or failure of the simulation trial to produce a desired output. The software offers a number of choices for the supervised learning algorithm (the method used to model the system behavior given the results so far) and a number of choices for the active learning strategy (the method used to choose which new simulation trials to run given the current behavior model). The software also makes use of the LEGION distributed computing framework to leverage the power of a set of compute nodes. The approach has been demonstrated on a planetary science application in which numerical simulations are used to study the formation of asteroid families.

  9. Online learning versus blended learning of clinical supervisee skills with pre-registration nursing students: A randomised controlled trial.

    PubMed

    McCutcheon, Karen; O'Halloran, Peter; Lohan, Maria

    2018-06-01

    The World Health Organisation amongst others recognises the need for the introduction of clinical supervision education in health professional education as a central strategy for improving patient safety and patient care. Online and blended learning methods are growing exponentially in use in higher education and the systematic evaluation of these methods will aid understanding of how best to teach clinical supervision. The purpose of this study was to test whether undergraduate nursing students who received clinical supervisee skills training via a blended learning approach would score higher in terms of motivation and attitudes towards clinical supervision, knowledge of clinical supervision and satisfaction of learning method, when compared to those students who received an online only teaching approach. A post-test-only randomised controlled trial. Participants were a total of 122 pre-registration nurses enrolled at one United Kingdom university, randomly assigned to the online learning control group (n = 60) or the blended learning intervention group (n = 62). The blended learning intervention group participated in a face-to-face tutorial and the online clinical supervisee skills training app. The online learning control group participated in an online discussion forum and the same online clinical supervisee skills training app. The outcome measures were motivation and attitudes using the modified Manchester Clinical Supervision Scale, knowledge using a 10 point Multiple Choice Questionnaire and satisfaction using a university training evaluation tool. Statistical analysis was performed using independent t-tests to compare the differences between the means of the control group and the intervention group. Thematic analysis was used to analyse responses to open-ended questions. All three of our study hypotheses were confirmed. Participants who received clinical supervisee skills training via a blended learning approach scored higher in terms of motivation and attitudes - mean (m) = 85.5, standard deviation (sd) = 9.78, number of participants (n) = 62 - compared to the online group (m = 79.5, sd = 9.69, n = 60) (p = .001). The blended learning group also scored higher in terms of knowledge (m = 4.2, sd = 1.43, n = 56) compared to the online group (m = 3.51, sd = 1.51, n = 57) (p = .015); and in terms of satisfaction (m = 30.89, sd = 6.54, n = 57) compared to the online group (m = 26.49, sd = 6.93, n = 55) (p = .001). Qualitative data supported results. Blended learning provides added pedagogical value when compared to online learning in terms of teaching undergraduate nurses clinical supervision skills. The evidence is timely given worldwide calls for expanding clinical skills supervision in undergraduate health professional education to improve quality of care and patient safety. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Supervised Learning Based Hypothesis Generation from Biomedical Literature.

    PubMed

    Sang, Shengtian; Yang, Zhihao; Li, Zongyao; Lin, Hongfei

    2015-01-01

    Nowadays, the amount of biomedical literatures is growing at an explosive speed, and there is much useful knowledge undiscovered in this literature. Researchers can form biomedical hypotheses through mining these works. In this paper, we propose a supervised learning based approach to generate hypotheses from biomedical literature. This approach splits the traditional processing of hypothesis generation with classic ABC model into AB model and BC model which are constructed with supervised learning method. Compared with the concept cooccurrence and grammar engineering-based approaches like SemRep, machine learning based models usually can achieve better performance in information extraction (IE) from texts. Then through combining the two models, the approach reconstructs the ABC model and generates biomedical hypotheses from literature. The experimental results on the three classic Swanson hypotheses show that our approach outperforms SemRep system.

  11. Learning locality preserving graph from data.

    PubMed

    Zhang, Yan-Ming; Huang, Kaizhu; Hou, Xinwen; Liu, Cheng-Lin

    2014-11-01

    Machine learning based on graph representation, or manifold learning, has attracted great interest in recent years. As the discrete approximation of data manifold, the graph plays a crucial role in these kinds of learning approaches. In this paper, we propose a novel learning method for graph construction, which is distinct from previous methods in that it solves an optimization problem with the aim of directly preserving the local information of the original data set. We show that the proposed objective has close connections with the popular Laplacian Eigenmap problem, and is hence well justified. The optimization turns out to be a quadratic programming problem with n(n-1)/2 variables (n is the number of data points). Exploiting the sparsity of the graph, we further propose a more efficient cutting plane algorithm to solve the problem, making the method better scalable in practice. In the context of clustering and semi-supervised learning, we demonstrated the advantages of our proposed method by experiments.

  12. Classification

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.

    2011-01-01

    A supervised learning task involves constructing a mapping from input data (normally described by several features) to the appropriate outputs. Within supervised learning, one type of task is a classification learning task, in which each output is one or more classes to which the input belongs. In supervised learning, a set of training examples---examples with known output values---is used by a learning algorithm to generate a model. This model is intended to approximate the mapping between the inputs and outputs. This model can be used to generate predicted outputs for inputs that have not been seen before. For example, we may have data consisting of observations of sunspots. In a classification learning task, our goal may be to learn to classify sunspots into one of several types. Each example may correspond to one candidate sunspot with various measurements or just an image. A learning algorithm would use the supplied examples to generate a model that approximates the mapping between each supplied set of measurements and the type of sunspot. This model can then be used to classify previously unseen sunspots based on the candidate's measurements. This chapter discusses methods to perform machine learning, with examples involving astronomy.

  13. An Automated Self-Learning Quantification System to Identify Visible Areas in Capsule Endoscopy Images.

    PubMed

    Hashimoto, Shinichi; Ogihara, Hiroyuki; Suenaga, Masato; Fujita, Yusuke; Terai, Shuji; Hamamoto, Yoshihiko; Sakaida, Isao

    2017-08-01

    Visibility in capsule endoscopic images is presently evaluated through intermittent analysis of frames selected by a physician. It is thus subjective and not quantitative. A method to automatically quantify the visibility on capsule endoscopic images has not been reported. Generally, when designing automated image recognition programs, physicians must provide a training image; this process is called supervised learning. We aimed to develop a novel automated self-learning quantification system to identify visible areas on capsule endoscopic images. The technique was developed using 200 capsule endoscopic images retrospectively selected from each of three patients. The rate of detection of visible areas on capsule endoscopic images between a supervised learning program, using training images labeled by a physician, and our novel automated self-learning program, using unlabeled training images without intervention by a physician, was compared. The rate of detection of visible areas was equivalent for the supervised learning program and for our automatic self-learning program. The visible areas automatically identified by self-learning program correlated to the areas identified by an experienced physician. We developed a novel self-learning automated program to identify visible areas in capsule endoscopic images.

  14. Improving Face Verification in Photo Albums by Combining Facial Recognition and Metadata With Cross-Matching

    DTIC Science & Technology

    2017-12-01

    satisfactory performance. We do not use statistical models, and we do not create patterns that require supervised learning. Our methodology is intended...statistical models, and we do not create patterns that require supervised learning. Our methodology is intended for use in personal digital image...THESIS MOTIVATION .........................................................................19 III. METHODOLOGY

  15. Beyond Technology...Learning with the Wired Curriculum. 1998 Yearbook of the Massachusetts Association for Supervision and Curriculum Development.

    ERIC Educational Resources Information Center

    Zimmerman, Isa Kaftal, Ed.; Hayes, Mary Forte, Ed.

    This yearbook for the Massachusetts Association for Supervision and Curriculum Development (MASCD) provides educators with models of successful practices and raises questions and potential solutions to issues of accountability, policy, long-term planning, funding, and student motivation for learning. This 1998 yearbook assists educators at all…

  16. Detecting Visually Observable Disease Symptoms from Faces.

    PubMed

    Wang, Kuan; Luo, Jiebo

    2016-12-01

    Recent years have witnessed an increasing interest in the application of machine learning to clinical informatics and healthcare systems. A significant amount of research has been done on healthcare systems based on supervised learning. In this study, we present a generalized solution to detect visually observable symptoms on faces using semi-supervised anomaly detection combined with machine vision algorithms. We rely on the disease-related statistical facts to detect abnormalities and classify them into multiple categories to narrow down the possible medical reasons of detecting. Our method is in contrast with most existing approaches, which are limited by the availability of labeled training data required for supervised learning, and therefore offers the major advantage of flagging any unusual and visually observable symptoms.

  17. Deep Learning for Extreme Weather Detection

    NASA Astrophysics Data System (ADS)

    Prabhat, M.; Racah, E.; Biard, J.; Liu, Y.; Mudigonda, M.; Kashinath, K.; Beckham, C.; Maharaj, T.; Kahou, S.; Pal, C.; O'Brien, T. A.; Wehner, M. F.; Kunkel, K.; Collins, W. D.

    2017-12-01

    We will present our latest results from the application of Deep Learning methods for detecting, localizing and segmenting extreme weather patterns in climate data. We have successfully applied supervised convolutional architectures for the binary classification tasks of detecting tropical cyclones and atmospheric rivers in centered, cropped patches. We have subsequently extended our architecture to a semi-supervised formulation, which is capable of learning a unified representation of multiple weather patterns, predicting bounding boxes and object categories, and has the capability to detect novel patterns (w/ few, or no labels). We will briefly present our efforts in scaling the semi-supervised architecture to 9600 nodes of the Cori supercomputer, obtaining 15PF performance. Time permitting, we will highlight our efforts in pixel-level segmentation of weather patterns.

  18. Restricted Boltzmann machines based oversampling and semi-supervised learning for false positive reduction in breast CAD.

    PubMed

    Cao, Peng; Liu, Xiaoli; Bao, Hang; Yang, Jinzhu; Zhao, Dazhe

    2015-01-01

    The false-positive reduction (FPR) is a crucial step in the computer aided detection system for the breast. The issues of imbalanced data distribution and the limitation of labeled samples complicate the classification procedure. To overcome these challenges, we propose oversampling and semi-supervised learning methods based on the restricted Boltzmann machines (RBMs) to solve the classification of imbalanced data with a few labeled samples. To evaluate the proposed method, we conducted a comprehensive performance study and compared its results with the commonly used techniques. Experiments on benchmark dataset of DDSM demonstrate the effectiveness of the RBMs based oversampling and semi-supervised learning method in terms of geometric mean (G-mean) for false positive reduction in Breast CAD.

  19. Using simulation pedagogy to teach clinical education skills: A randomized trial.

    PubMed

    Holdsworth, Clare; Skinner, Elizabeth H; Delany, Clare M

    2016-05-01

    Supervision of students is a key role of senior physiotherapy clinicians in teaching hospitals. The objective of this study was to test the effect of simulated learning environments (SLE) on educators' self-efficacy in student supervision skills. A pilot prospective randomized controlled trial with concealed allocation was conducted. Clinical educators were randomized to intervention (SLE) or control groups. SLE participants completed two 3-hour workshops, which included simulated clinical teaching scenarios, and facilitated debrief. Standard Education (StEd) participants completed two online learning modules. Change in educator clinical supervision self-efficacy (SE) and student perceptions of supervisor skill were calculated. Between-group comparisons of SE change scores were analyzed with independent t-tests to account for potential baseline differences in education experience. Eighteen educators (n = 18) were recruited (SLE [n = 10], StEd [n = 8]). Significant improvements in SE change scores were seen in SLE participants compared to control participants in three domains of self-efficacy: (1) talking to students about supervision and learning styles (p = 0.01); (2) adapting teaching styles for students' individual needs (p = 0.02); and (3) identifying strategies for future practice while supervising students (p = 0.02). This is the first study investigating SLE for teaching skills of clinical education. SLE improved educators' self-efficacy in three domains of clinical education. Sample size limited the interpretation of student ratings of educator supervision skills. Future studies using SLE would benefit from future large multicenter trials evaluating its effect on educators' teaching skills, student learning outcomes, and subsequent effects on patient care and health outcomes.

  20. Student nurses' experiences of the clinical learning environment in relation to the organization of supervision: a questionnaire survey.

    PubMed

    Sundler, Annelie J; Björk, Maria; Bisholt, Birgitta; Ohlsson, Ulla; Engström, Agneta Kullén; Gustafsson, Margareta

    2014-04-01

    The aim was to investigate student nurses' experiences of the clinical learning environment in relation to how the supervision was organized. The clinical environment plays an essential part in student nurses' learning. Even though different models for supervision have been previously set forth, it has been stressed that there is a need both of further empirical studies on the role of preceptorship in undergraduate nursing education and of studies comparing different models. A cross-sectional study with comparative design was carried out with a mixed method approach. Data were collected from student nurses in the final term of the nursing programme at three universities in Sweden by means of a questionnaire. In general the students had positive experiences of the clinical learning environment with respect to pedagogical atmosphere, leadership style of the ward manager, premises of nursing, supervisory relationship, and role of the nurse preceptor and nurse teacher. However, there were significant differences in their ratings of the supervisory relationship (p<0.001) and the pedagogical atmosphere (p 0.025) depending on how the supervision was organized. Students who had the same preceptor all the time were more satisfied with the supervisory relationship than were those who had different preceptors each day. Students' comments on the supervision confirmed the significance of the preceptor and the supervisory relationship. The organization of the supervision was of significance with regard to the pedagogical atmosphere and the students' relation to preceptors. Students with the same preceptor throughout were more positive concerning the supervisory relationship and the pedagogical atmosphere. © 2013.

  1. Attending to Nuanced Emotions: Fostering Supervisees' Emotional Awareness and Complexity

    ERIC Educational Resources Information Center

    Tangen, Jodi L.

    2017-01-01

    There is limited supervision research exploring how supervisees learn emotional awareness and complexity. In this article, the 5 levels of emotional awareness and 3 aspects of emotional complexity are explored in light of the supervision enterprise. In addition, 2 supervision intervention guides and a case example are provided.

  2. Supervision Matters: Collegial, Developmental and Reflective Approaches to Supervision of Teacher Candidates

    ERIC Educational Resources Information Center

    Strieker, Toni; Adams, Megan; Cone, Neporcha; Hubbard, Daphne; Lim, Woong

    2016-01-01

    This self-study examined the communication approaches of 15 university supervisors who oversaw teacher candidates enrolled in year-long, co-taught P-12 clinical experiences. Supervisors attended 20 hours of professional learning on pre-service co-teaching, developmental supervision, and instructional coaching. Findings indicated that our…

  3. The Impact of Supervised Mentorship on Music Education Master's Degree Students

    ERIC Educational Resources Information Center

    Russell, Joshua A.; Haston, Warren

    2015-01-01

    The purpose of this study was to investigate the influence of supervised mentorship in an authentic-context learning setting on music education graduate students' graduate school experiences. Participants were six current and former graduate music education majors who acted as supervised mentors to undergraduate students teaching instrumental…

  4. Action Research as Instructional Supervision: Suggestions for Principals

    ERIC Educational Resources Information Center

    Glanz, Jeffrey

    2005-01-01

    Supervision based on collaboration, participative decision making, and reflective practice is the hallmark of a viable school improvement program that is designed to promote teaching and learning. Action research has gradually emerged as an important form of instructional supervision to engage teachers in reflective practice about their teaching…

  5. Comparing the Effect of Two Internship Structures on Supervision Experience and Learning

    ERIC Educational Resources Information Center

    Winslow, Robin D.; Eliason, Meghan; Thiede, Keith W.

    2016-01-01

    The purpose of this study was to examine two different models of internship and competitively evaluate their effectiveness in influencing interns' experience, beliefs, and knowledge of supervision. The research questions for this study were developed from the literature on supervision of instruction and internships in educational leadership…

  6. Improving access to services and interactions with clients in Guatemala: the value of distance learning.

    PubMed

    Brambila, Carlos; Lopez, Felipe; Garcia-Colindres, Julio; Donis, Marco Vinicio

    2005-04-01

    To develop and test a distance-learning programme to improve the quality and efficiency of family planning services in Guatemala. The setting was rural family planning services in Guatemala. The study design was quasi-experimental with one intervention and one control group and with pre- and post-intervention measures. Two staff members from each of 20 randomly selected health districts were trained as leaders of the training programme. In turn, the 40 trainers trained a total of 240 service providers, under the supervision of four health area facilitators. The results were compared with 20 randomly selected control health districts. The intervention was a distance-learning programme including 40 in-class hours followed by 120 inservice practice hours spread over a 4-month period. Distinctively, the programme used a cascade approach to training, intensive supervision, and close monitoring and evaluation. Patient flow analysis was used to determine number of contacts, waiting times, and the interaction time between service providers and clients. Consultation observations were used to assess the quality and completeness of reproductive health information and services received by clients. The intervention showed a positive impact on reducing the number of contacts before the consultation and client waiting times. More complete services and better quality services were provided at intervention clinics. Some, but not all, of the study objectives were attained. The long-term impact of the intervention is as yet unknown. Distance-learning programmes are an effective methodology for training health professionals in rural areas.

  7. Clinical education and training of student nurses in four moderately new European Union countries: Assessment of students' satisfaction with the learning environment.

    PubMed

    Antohe, Ileana; Riklikiene, Olga; Tichelaar, Erna; Saarikoski, Mikko

    2016-03-01

    Nurses underwent different models of education during various historical periods. The recent decade in Europe has been marked with educational transitions for the nursing profession related to Bologna Declaration and enlargement of the European Union. This paper aims to explore the situation of clinical placements for student nurses and assess students' satisfaction with the learning environment in four relatively new member states of European Union: the Czech Republic, Hungary, Lithuania and Romania. The data for cross-sectional quantitative study were collected during the exploratory phase of EmpNURS Project via a web based questionnaire which utilized a part of Clinical Learning Environment scale (CLES + T). The students evaluated their clinical learning environment mainly positively. The students' utter satisfaction with their clinical placements reached a high level and strongly correlated with the supervisory model. Although the commonest model for supervision was traditional group supervision, the most satisfied students had the experience of individualised supervision. The study gives a picture of the satisfaction of students with the learning environment and, moreover, with clinical placement education of student nurses in four EU countries. The results highlight the individualized supervision model as a crucial factor of students' total satisfaction during their clinical training periods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Semi-supervised learning for ordinal Kernel Discriminant Analysis.

    PubMed

    Pérez-Ortiz, M; Gutiérrez, P A; Carbonero-Ruz, M; Hervás-Martínez, C

    2016-12-01

    Ordinal classification considers those classification problems where the labels of the variable to predict follow a given order. Naturally, labelled data is scarce or difficult to obtain in this type of problems because, in many cases, ordinal labels are given by a user or expert (e.g. in recommendation systems). Firstly, this paper develops a new strategy for ordinal classification where both labelled and unlabelled data are used in the model construction step (a scheme which is referred to as semi-supervised learning). More specifically, the ordinal version of kernel discriminant learning is extended for this setting considering the neighbourhood information of unlabelled data, which is proposed to be computed in the feature space induced by the kernel function. Secondly, a new method for semi-supervised kernel learning is devised in the context of ordinal classification, which is combined with our developed classification strategy to optimise the kernel parameters. The experiments conducted compare 6 different approaches for semi-supervised learning in the context of ordinal classification in a battery of 30 datasets, showing (1) the good synergy of the ordinal version of discriminant analysis and the use of unlabelled data and (2) the advantage of computing distances in the feature space induced by the kernel function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Detecting Parkinsons' symptoms in uncontrolled home environments: a multiple instance learning approach.

    PubMed

    Das, Samarjit; Amoedo, Breogan; De la Torre, Fernando; Hodgins, Jessica

    2012-01-01

    In this paper, we propose to use a weakly supervised machine learning framework for automatic detection of Parkinson's Disease motor symptoms in daily living environments. Our primary goal is to develop a monitoring system capable of being used outside of controlled laboratory settings. Such a system would enable us to track medication cycles at home and provide valuable clinical feedback. Most of the relevant prior works involve supervised learning frameworks (e.g., Support Vector Machines). However, in-home monitoring provides only coarse ground truth information about symptom occurrences, making it very hard to adapt and train supervised learning classifiers for symptom detection. We address this challenge by formulating symptom detection under incomplete ground truth information as a multiple instance learning (MIL) problem. MIL is a weakly supervised learning framework that does not require exact instances of symptom occurrences for training; rather, it learns from approximate time intervals within which a symptom might or might not have occurred on a given day. Once trained, the MIL detector was able to spot symptom-prone time windows on other days and approximately localize the symptom instances. We monitored two Parkinson's disease (PD) patients, each for four days with a set of five triaxial accelerometers and utilized a MIL algorithm based on axis parallel rectangle (APR) fitting in the feature space. We were able to detect subject specific symptoms (e.g. dyskinesia) that conformed with a daily log maintained by the patients.

  10. Training the Millennial learner through experiential evolutionary scaffolding: implications for clinical supervision in graduate education programs.

    PubMed

    Venne, Vickie L; Coleman, Darrell

    2010-12-01

    They are the Millennials--Generation Y. Over the next few decades, they will be entering genetic counseling graduate training programs and the workforce. As a group, they are unlike previous youth generations in many ways, including the way they learn. Therefore, genetic counselors who teach and supervise need to understand the Millennials and explore new ways of teaching to ensure that the next cohort of genetic counselors has both skills and knowledge to represent our profession well. This paper will summarize the distinguishing traits of the Millennial generation as well as authentic learning and evolutionary scaffolding theories of learning that can enhance teaching and supervision. We will then use specific aspects of case preparation during clinical rotations to demonstrate how incorporating authentic learning theory into evolutionary scaffolding results in experiential evolutionary scaffolding, a method that potentially offers a more effective approach when teaching Millennials. We conclude with suggestions for future research.

  11. Deep imitation learning for 3D navigation tasks.

    PubMed

    Hussein, Ahmed; Elyan, Eyad; Gaber, Mohamed Medhat; Jayne, Chrisina

    2018-01-01

    Deep learning techniques have shown success in learning from raw high-dimensional data in various applications. While deep reinforcement learning is recently gaining popularity as a method to train intelligent agents, utilizing deep learning in imitation learning has been scarcely explored. Imitation learning can be an efficient method to teach intelligent agents by providing a set of demonstrations to learn from. However, generalizing to situations that are not represented in the demonstrations can be challenging, especially in 3D environments. In this paper, we propose a deep imitation learning method to learn navigation tasks from demonstrations in a 3D environment. The supervised policy is refined using active learning in order to generalize to unseen situations. This approach is compared to two popular deep reinforcement learning techniques: deep-Q-networks and Asynchronous actor-critic (A3C). The proposed method as well as the reinforcement learning methods employ deep convolutional neural networks and learn directly from raw visual input. Methods for combining learning from demonstrations and experience are also investigated. This combination aims to join the generalization ability of learning by experience with the efficiency of learning by imitation. The proposed methods are evaluated on 4 navigation tasks in a 3D simulated environment. Navigation tasks are a typical problem that is relevant to many real applications. They pose the challenge of requiring demonstrations of long trajectories to reach the target and only providing delayed rewards (usually terminal) to the agent. The experiments show that the proposed method can successfully learn navigation tasks from raw visual input while learning from experience methods fail to learn an effective policy. Moreover, it is shown that active learning can significantly improve the performance of the initially learned policy using a small number of active samples.

  12. Radar detection with the Neyman-Pearson criterion using supervised-learning-machines trained with the cross-entropy error

    NASA Astrophysics Data System (ADS)

    Jarabo-Amores, María-Pilar; la Mata-Moya, David de; Gil-Pita, Roberto; Rosa-Zurera, Manuel

    2013-12-01

    The application of supervised learning machines trained to minimize the Cross-Entropy error to radar detection is explored in this article. The detector is implemented with a learning machine that implements a discriminant function, which output is compared to a threshold selected to fix a desired probability of false alarm. The study is based on the calculation of the function the learning machine approximates to during training, and the application of a sufficient condition for a discriminant function to be used to approximate the optimum Neyman-Pearson (NP) detector. In this article, the function a supervised learning machine approximates to after being trained to minimize the Cross-Entropy error is obtained. This discriminant function can be used to implement the NP detector, which maximizes the probability of detection, maintaining the probability of false alarm below or equal to a predefined value. Some experiments about signal detection using neural networks are also presented to test the validity of the study.

  13. Evaluation of the Clinical Learning Experience of Nursing Students: a Cross-Sectional Descriptive Study.

    PubMed

    Gurková, Elena; Žiaková, Katarína

    2018-05-18

    The purpose of the cross-sectional descriptive study was to explore and compare the students' experiences of the clinical environment and supervision in Slovakia. Students' clinical learning experience were measured by the valid and reliable clinical learning instrument. A higher frequency of successful supervisory experience was found in the universities which provided accredited mentor preparation programmes or courses and individualised supervisory approaches. Frequency of supervision meetings, the occupational title of a supervisor and mainly the supervision model have an association with students 'perceptions of different domains of clinical learning environment. The duration of the placement was not related to students' experience and perceptions of the learning environment. Slovak students reported higher score regarding the quality of nursing care or ward culture than in the supervisory relationships between students, clinical and school staff. Further studies in this field, extended to different Eastern European countries and clinical settings, may help us to understand factors affecting workplace training.

  14. Computational approaches for predicting biomedical research collaborations.

    PubMed

    Zhang, Qing; Yu, Hong

    2014-01-01

    Biomedical research is increasingly collaborative, and successful collaborations often produce high impact work. Computational approaches can be developed for automatically predicting biomedical research collaborations. Previous works of collaboration prediction mainly explored the topological structures of research collaboration networks, leaving out rich semantic information from the publications themselves. In this paper, we propose supervised machine learning approaches to predict research collaborations in the biomedical field. We explored both the semantic features extracted from author research interest profile and the author network topological features. We found that the most informative semantic features for author collaborations are related to research interest, including similarity of out-citing citations, similarity of abstracts. Of the four supervised machine learning models (naïve Bayes, naïve Bayes multinomial, SVMs, and logistic regression), the best performing model is logistic regression with an ROC ranging from 0.766 to 0.980 on different datasets. To our knowledge we are the first to study in depth how research interest and productivities can be used for collaboration prediction. Our approach is computationally efficient, scalable and yet simple to implement. The datasets of this study are available at https://github.com/qingzhanggithub/medline-collaboration-datasets.

  15. Classification of ROTSE Variable Stars using Machine Learning

    NASA Astrophysics Data System (ADS)

    Wozniak, P. R.; Akerlof, C.; Amrose, S.; Brumby, S.; Casperson, D.; Gisler, G.; Kehoe, R.; Lee, B.; Marshall, S.; McGowan, K. E.; McKay, T.; Perkins, S.; Priedhorsky, W.; Rykoff, E.; Smith, D. A.; Theiler, J.; Vestrand, W. T.; Wren, J.; ROTSE Collaboration

    2001-12-01

    We evaluate several Machine Learning algorithms as potential tools for automated classification of variable stars. Using the ROTSE sample of ~1800 variables from a pilot study of 5% of the whole sky, we compare the effectiveness of a supervised technique (Support Vector Machines, SVM) versus unsupervised methods (K-means and Autoclass). There are 8 types of variables in the sample: RR Lyr AB, RR Lyr C, Delta Scuti, Cepheids, detached eclipsing binaries, contact binaries, Miras and LPVs. Preliminary results suggest a very high ( ~95%) efficiency of SVM in isolating a few best defined classes against the rest of the sample, and good accuracy ( ~70-75%) for all classes considered simultaneously. This includes some degeneracies, irreducible with the information at hand. Supervised methods naturally outperform unsupervised methods, in terms of final error rate, but unsupervised methods offer many advantages for large sets of unlabeled data. Therefore, both types of methods should be considered as promising tools for mining vast variability surveys. We project that there are more than 30,000 periodic variables in the ROTSE-I data base covering the entire local sky between V=10 and 15.5 mag. This sample size is already stretching the time capabilities of human analysts.

  16. Machine learning vortices at the Kosterlitz-Thouless transition

    NASA Astrophysics Data System (ADS)

    Beach, Matthew J. S.; Golubeva, Anna; Melko, Roger G.

    2018-01-01

    Efficient and automated classification of phases from minimally processed data is one goal of machine learning in condensed-matter and statistical physics. Supervised algorithms trained on raw samples of microstates can successfully detect conventional phase transitions via learning a bulk feature such as an order parameter. In this paper, we investigate whether neural networks can learn to classify phases based on topological defects. We address this question on the two-dimensional classical XY model which exhibits a Kosterlitz-Thouless transition. We find significant feature engineering of the raw spin states is required to convincingly claim that features of the vortex configurations are responsible for learning the transition temperature. We further show a single-layer network does not correctly classify the phases of the XY model, while a convolutional network easily performs classification by learning the global magnetization. Finally, we design a deep network capable of learning vortices without feature engineering. We demonstrate the detection of vortices does not necessarily result in the best classification accuracy, especially for lattices of less than approximately 1000 spins. For larger systems, it remains a difficult task to learn vortices.

  17. Network Supervision of Adult Experience and Learning Dependent Sensory Cortical Plasticity.

    PubMed

    Blake, David T

    2017-06-18

    The brain is capable of remodeling throughout life. The sensory cortices provide a useful preparation for studying neuroplasticity both during development and thereafter. In adulthood, sensory cortices change in the cortical area activated by behaviorally relevant stimuli, by the strength of response within that activated area, and by the temporal profiles of those responses. Evidence supports forms of unsupervised, reinforcement, and fully supervised network learning rules. Studies on experience-dependent plasticity have mostly not controlled for learning, and they find support for unsupervised learning mechanisms. Changes occur with greatest ease in neurons containing α-CamKII, which are pyramidal neurons in layers II/III and layers V/VI. These changes use synaptic mechanisms including long term depression. Synaptic strengthening at NMDA-containing synapses does occur, but its weak association with activity suggests other factors also initiate changes. Studies that control learning find support of reinforcement learning rules and limited evidence of other forms of supervised learning. Behaviorally associating a stimulus with reinforcement leads to a strengthening of cortical response strength and enlarging of response area with poor selectivity. Associating a stimulus with omission of reinforcement leads to a selective weakening of responses. In some preparations in which these associations are not as clearly made, neurons with the most informative discharges are relatively stronger after training. Studies analyzing the temporal profile of responses associated with omission of reward, or of plasticity in studies with different discriminanda but statistically matched stimuli, support the existence of limited supervised network learning. © 2017 American Physiological Society. Compr Physiol 7:977-1008, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  18. Critical Action Learning: A Method or Strategy for Peer Supervision of Coaching Practice

    ERIC Educational Resources Information Center

    Turner, Arthur; Tee, David; Crompton, Sally

    2017-01-01

    This paper deals with the on-going practice of a critical action learning set who come together to meet their needs for coaching supervision as a group of executive coaches working from, and within, the University sector in South Wales. The reasons for the successes of, and the challenges around, this practice of four years standing have been…

  19. The Missing Ingredients in Reflective Supervision: Helping Staff Members Learn about and Fully Participate in the Supervisory Process

    ERIC Educational Resources Information Center

    Heffron, Mary Claire; Murch, Trudi

    2018-01-01

    Successful implementation of a reflective supervision (RS) model in an agency or system requires careful attention to the learning needs of supervisees. Although supervisors and managers typically receive orientation and training to help them understand and implement RS, their staff rarely do. In this article, the authors explore supervisees'…

  20. An Evaluation with Respect to e-Learning and Economic Analysis of the Graduate Program Offered in Anadolu University's Institute of Educational Sciences

    ERIC Educational Resources Information Center

    Bayrak, Coskun; Kesim, Eren

    2005-01-01

    In this study, an e-learning platform was formed to enable school teachers and administrators to attend graduate programs in the field of educational administration, supervision, planning and economics. In this framework, for the non-thesis educational administration, supervision, planning and economics graduate programs to be conducted in the…

  1. Just How Much Can School Pupils Learn from School Gardening? A Study of Two Supervised Agricultural Experience Approaches in Uganda

    ERIC Educational Resources Information Center

    Okiror, John James; Matsiko, Biryabaho Frank; Oonyu, Joseph

    2011-01-01

    School systems in Africa are short of skills that link well with rural communities, yet arguments to vocationalize curricula remain mixed and school agriculture lacks the supervised practical component. This study, conducted in eight primary (elementary) schools in Uganda, sought to compare the learning achievement of pupils taught using…

  2. The Moderating Role of Non-Controlling Supervision and Organizational Learning Culture on Employee Creativity: The Influences of Domain Expertise and Creative Personality

    ERIC Educational Resources Information Center

    Jeong, Shinhee; McLean, Gary N.; McLean, Laird D.; Yoo, Sangok; Bartlett, Kenneth

    2017-01-01

    Purpose: By adopting a multilevel approach, this paper aims to examine the relationships among employee creativity and creative personality, domain expertise (i.e. individual-level factors), non-controlling supervision style and organizational learning culture (i.e. team-level factors). It also investigates the cross-level interactions between…

  3. Understanding Trust as an Essential Element of Trainee Supervision and Learning in the Workplace

    ERIC Educational Resources Information Center

    Hauer, Karen E.; ten Cate, Olle; Boscardin, Christy; Irby, David M.; Iobst, William; O'Sullivan, Patricia S.

    2014-01-01

    Clinical supervision requires that supervisors make decisions about how much independence to allow their trainees for patient care tasks. The simultaneous goals of ensuring quality patient care and affording trainees appropriate and progressively greater responsibility require that the supervising physician trusts the trainee. Trust allows the…

  4. Automated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm.

    PubMed

    Pizarro, Ricardo A; Cheng, Xi; Barnett, Alan; Lemaitre, Herve; Verchinski, Beth A; Goldman, Aaron L; Xiao, Ena; Luo, Qian; Berman, Karen F; Callicott, Joseph H; Weinberger, Daniel R; Mattay, Venkata S

    2016-01-01

    High-resolution three-dimensional magnetic resonance imaging (3D-MRI) is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality assessment involves slice-wise visual inspection of 3D-MRI volumes, a procedure that is both subjective and time consuming. Automating the quality rating of 3D-MRI could improve the efficiency and reproducibility of the procedure. The present study is one of the first efforts to apply a support vector machine (SVM) algorithm in the quality assessment of structural brain images, using global and region of interest (ROI) automated image quality features developed in-house. SVM is a supervised machine-learning algorithm that can predict the category of test datasets based on the knowledge acquired from a learning dataset. The performance (accuracy) of the automated SVM approach was assessed, by comparing the SVM-predicted quality labels to investigator-determined quality labels. The accuracy for classifying 1457 3D-MRI volumes from our database using the SVM approach is around 80%. These results are promising and illustrate the possibility of using SVM as an automated quality assessment tool for 3D-MRI.

  5. Robust evaluation of time series classification algorithms for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Worden, Keith; Todd, Michael D.

    2014-03-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and mechanical infrastructure through analysis of structural response measurements. The supervised learning methodology for data-driven SHM involves computation of low-dimensional, damage-sensitive features from raw measurement data that are then used in conjunction with machine learning algorithms to detect, classify, and quantify damage states. However, these systems often suffer from performance degradation in real-world applications due to varying operational and environmental conditions. Probabilistic approaches to robust SHM system design suffer from incomplete knowledge of all conditions a system will experience over its lifetime. Info-gap decision theory enables nonprobabilistic evaluation of the robustness of competing models and systems in a variety of decision making applications. Previous work employed info-gap models to handle feature uncertainty when selecting various components of a supervised learning system, namely features from a pre-selected family and classifiers. In this work, the info-gap framework is extended to robust feature design and classifier selection for general time series classification through an efficient, interval arithmetic implementation of an info-gap data model. Experimental results are presented for a damage type classification problem on a ball bearing in a rotating machine. The info-gap framework in conjunction with an evolutionary feature design system allows for fully automated design of a time series classifier to meet performance requirements under maximum allowable uncertainty.

  6. Machine learning for neuroimaging with scikit-learn.

    PubMed

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  7. Machine learning for neuroimaging with scikit-learn

    PubMed Central

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain. PMID:24600388

  8. Top-Down Visual Saliency via Joint CRF and Dictionary Learning.

    PubMed

    Yang, Jimei; Yang, Ming-Hsuan

    2017-03-01

    Top-down visual saliency is an important module of visual attention. In this work, we propose a novel top-down saliency model that jointly learns a Conditional Random Field (CRF) and a visual dictionary. The proposed model incorporates a layered structure from top to bottom: CRF, sparse coding and image patches. With sparse coding as an intermediate layer, CRF is learned in a feature-adaptive manner; meanwhile with CRF as the output layer, the dictionary is learned under structured supervision. For efficient and effective joint learning, we develop a max-margin approach via a stochastic gradient descent algorithm. Experimental results on the Graz-02 and PASCAL VOC datasets show that our model performs favorably against state-of-the-art top-down saliency methods for target object localization. In addition, the dictionary update significantly improves the performance of our model. We demonstrate the merits of the proposed top-down saliency model by applying it to prioritizing object proposals for detection and predicting human fixations.

  9. Action-Driven Visual Object Tracking With Deep Reinforcement Learning.

    PubMed

    Yun, Sangdoo; Choi, Jongwon; Yoo, Youngjoon; Yun, Kimin; Choi, Jin Young

    2018-06-01

    In this paper, we propose an efficient visual tracker, which directly captures a bounding box containing the target object in a video by means of sequential actions learned using deep neural networks. The proposed deep neural network to control tracking actions is pretrained using various training video sequences and fine-tuned during actual tracking for online adaptation to a change of target and background. The pretraining is done by utilizing deep reinforcement learning (RL) as well as supervised learning. The use of RL enables even partially labeled data to be successfully utilized for semisupervised learning. Through the evaluation of the object tracking benchmark data set, the proposed tracker is validated to achieve a competitive performance at three times the speed of existing deep network-based trackers. The fast version of the proposed method, which operates in real time on graphics processing unit, outperforms the state-of-the-art real-time trackers with an accuracy improvement of more than 8%.

  10. Information Forests

    DTIC Science & Technology

    2014-01-01

    Classification confidence, or informative content of the subsets, is quantified by the Information Divergence. Our approach relates to active learning , semi-supervised learning, mixed generative/discriminative learning.

  11. Evaluating the learning experience of non medical prescribing students with their designated medical practitioners in their period of learning in practice: results of a survey.

    PubMed

    Ahuja, Jaya

    2009-11-01

    To evaluate the learning experience of non medical prescribing (NMP) students during their period of learning in practice and to explore strategies for improvement. A self-administered questionnaire was used to collect data from two consecutive NMP student cohorts. Of 57 NMP students, the majority (64.9%) worked in primary care setting. In contrast to those from primary care setting, the students working in secondary/tertiary care setting had significantly greater chance of knowing their designated medical practitioner (DMP) prior to starting their course (p=0.044). However, this did not influence whether the student did a learning agreement and time schedule agreement with the DMP at the beginning of practice setting. A learning agreement and time schedule was done by 91.2% and 57.9% students, respectively, at beginning of the course. Prior time schedule agreement was a significant determinant in determining the number of hours that student spent subsequently under direct supervision of DMP: 75.8% of those who did a prior time schedule spent >30% of practice hours under the direct supervision of DMP as compared to only 50% of those who did not. Spending >30% of the practice hours under direct supervision of the DMP was significantly associated with student satisfaction (p=0.025). There was greater likelihood of a student being assessed formatively if a prior learning agreement had been done (p=0.035) resulting in increased student satisfaction. Time and workload constraints, organisational issues and peer support emerged as barriers to student learning. Students commented on difficulties in getting doctors as a DMP; and therefore suggested that learning experience can be enhanced if a qualified practicing Non Medical Prescriber could act as a "co-mentor". There were also suggestions of providing incentives to doctors and giving them more information about the role of NMP to encourage more doctors to act as DMP. Learning agreement and a time schedule with DMP at the beginning of the supervised period in practice significantly improved the students' learning experience, and was a major determinant of subsequent student satisfaction. Those who spent at least 30% of practice development time under direct supervision of their DMP were likely to be more satisfied with the learning process.

  12. Quantum Support Vector Machine for Big Data Classification

    NASA Astrophysics Data System (ADS)

    Rebentrost, Patrick; Mohseni, Masoud; Lloyd, Seth

    2014-09-01

    Supervised machine learning is the classification of new data based on already classified training examples. In this work, we show that the support vector machine, an optimized binary classifier, can be implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the number of training examples. In cases where classical sampling algorithms require polynomial time, an exponential speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix.

  13. Classification of damage in structural systems using time series analysis and supervised and unsupervised pattern recognition techniques

    NASA Astrophysics Data System (ADS)

    Omenzetter, Piotr; de Lautour, Oliver R.

    2010-04-01

    Developed for studying long, periodic records of various measured quantities, time series analysis methods are inherently suited and offer interesting possibilities for Structural Health Monitoring (SHM) applications. However, their use in SHM can still be regarded as an emerging application and deserves more studies. In this research, Autoregressive (AR) models were used to fit experimental acceleration time histories from two experimental structural systems, a 3- storey bookshelf-type laboratory structure and the ASCE Phase II SHM Benchmark Structure, in healthy and several damaged states. The coefficients of the AR models were chosen as damage sensitive features. Preliminary visual inspection of the large, multidimensional sets of AR coefficients to check the presence of clusters corresponding to different damage severities was achieved using Sammon mapping - an efficient nonlinear data compression technique. Systematic classification of damage into states based on the analysis of the AR coefficients was achieved using two supervised classification techniques: Nearest Neighbor Classification (NNC) and Learning Vector Quantization (LVQ), and one unsupervised technique: Self-organizing Maps (SOM). This paper discusses the performance of AR coefficients as damage sensitive features and compares the efficiency of the three classification techniques using experimental data.

  14. The results of a survey highlighting issues with feedback on medical training in the United Kingdom and how a Smartphone App could provide a solution.

    PubMed

    Gray, Thomas G; Hood, Gill; Farrell, Tom

    2015-11-06

    Feedback drives learning in medical education. Healthcare Supervision Logbook (HSL) is a Smartphone App developed at Sheffield Teaching Hospitals for providing feedback on medical training, from both a trainee's and a supervisor's perspective. In order to establish a mandate for the role of HSL in clinical practice, a large survey was carried out. Two surveys (one for doctors undertaking specialty training and a second for consultants supervising their training) were designed. The survey for doctors-in-training was distributed to all specialty trainees in the South and West localities of the Health Education Yorkshire and the Humber UK region. The survey for supervisors was distributed to all consultants involved in educational and clinical supervision of specialty trainees at Sheffield Teaching Hospitals. The results confirm that specialty trainees provide feedback on their training infrequently-66 % do so only annually. 96 % of the specialty trainees owned a Smartphone and 45 % said that they would be willing to use a Smartphone App to provide daily feedback on the clinical and educational supervision they receive. Consultant supervisors do not receive regular feedback on the educational and clinical supervision they provide to trainees-56 % said they never received such feedback and 33 % said it was only on an annual basis. 86 % of consultants surveyed owned a Smartphone and 41 % said they would be willing to use a Smartphone App to provide feedback on the performance of trainees they were supervising. Feedback on medical training is recorded by specialty trainees infrequently and consultants providing educational and clinical supervision often do not receive any feedback on their performance in this area. HSL is a simple, quick and efficient way to collect and collate feedback on medical training to improve this situation. Good support and education needs to be provided when implementing this new technology.

  15. E learning in surgery.

    PubMed

    Aryal, Kamal Raj; Pereira, Jerome

    2014-12-01

    E learning means use of electronic media and information technologies in education. Virtual learning environment (VLE) provides learning platforms consisting of online tools, databases and managed resources. This article is a review of use of E learning in medical and surgical education including available evidence favouring this approach. E learning has been shown to be more effective, less costly and more satisfying to the students than the traditional methods. E learning cannot however replace direct consultant supervision at their place of work in surgical trainees and a combination of both called blended learning has been shown to be most useful. As an example of university-based qualification, one such programme is presented to clarify the components and the process of E learning. Increasing use of E learning and occasional face to face focussed supervision by the teacher is likely to enhance surgical training in the future.

  16. Supervised Learning in CINets

    DTIC Science & Technology

    2011-07-01

    supervised learning process is compared to that of Artificial Neural Network ( ANNs ), fuzzy logic rule set, and Bayesian network approaches...of both fuzzy logic systems and Artificial Neural Networks ( ANNs ). Like fuzzy logic systems, the CINet technique allows the use of human- intuitive...fuzzy rule systems [3] CINets also maintain features common to both fuzzy systems and ANNs . The technique can be be shown to possess the property

  17. Does power distance exacerbate or mitigate the effects of abusive supervision? It depends on the outcome.

    PubMed

    Lian, Huiwen; Ferris, D Lance; Brown, Douglas J

    2012-01-01

    We predicted that the effects of abusive supervision are likely to be moderated by subordinate power distance orientation and that the nature of the moderating effect will depend on the outcome. Drawing upon work suggesting that high power distance orientation subordinates are more tolerant of supervisory mistreatment, we posited that high power distance orientation subordinates would be less likely to view abusive supervision as interpersonally unfair. Drawing upon social learning theory suggestions that high power distance orientation subordinates are more likely to view supervisors as role models, we posited that high power distance orientation subordinates would be more likely to pattern their own interpersonally deviant behavior after that of abusive supervisors. Across 3 samples we found support for our predicted interactions, culminating in a mediated moderation model demonstrating that social learning mediates the interaction of abusive supervision and power distance on subordinate interpersonal deviance, while ruling out alternate self-regulation impairment or displaced aggression explanations. Implications for the abusive supervision literature are discussed.

  18. Clinical learning environment and supervision of international nursing students: A cross-sectional study.

    PubMed

    Mikkonen, Kristina; Elo, Satu; Miettunen, Jouko; Saarikoski, Mikko; Kääriäinen, Maria

    2017-05-01

    Previously, it has been shown that the clinical learning environment causes challenges for international nursing students, but there is a lack of empirical evidence relating to the background factors explaining and influencing the outcomes. To describe international and national students' perceptions of their clinical learning environment and supervision, and explain the related background factors. An explorative cross-sectional design was used in a study conducted in eight universities of applied sciences in Finland during September 2015-May 2016. All nursing students studying English language degree programs were invited to answer a self-administered questionnaire based on both the clinical learning environment, supervision and nurse teacher scale and Cultural and Linguistic Diversity scale with additional background questions. Participants (n=329) included international (n=231) and Finnish (n=98) nursing students. Binary logistic regression was used to identify background factors relating to the clinical learning environment and supervision. International students at a beginner level in Finnish perceived the pedagogical atmosphere as worse than native speakers. In comparison to native speakers, these international students generally needed greater support from the nurse teacher at their university. Students at an intermediate level in Finnish reported two times fewer negative encounters in cultural diversity at their clinical placement than the beginners. To facilitate a successful learning experience, international nursing students require a sufficient level of competence in the native language when conducting clinical placements. Educational interventions in language education are required to test causal effects on students' success in the clinical learning environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Supporting and Supervising Teachers Working With Adults Learning English. CAELA Network Brief

    ERIC Educational Resources Information Center

    Young, Sarah

    2009-01-01

    This brief provides an overview of the knowledge and skills that administrators need in order to support and supervise teachers of adult English language learners. It begins with a review of resources and literature related to teacher supervision in general and to adult ESL education. It continues with information on the background and…

  20. The Purposes and Processes of Master's Thesis Supervision: A Comparison of Chinese and Dutch Supervisors

    ERIC Educational Resources Information Center

    Hu, Yanjuan; van der Rijst, Roeland Matthijs; van Veen, Klaas; Verloop, Nico

    2016-01-01

    The number of international Chinese students enrolled in research programmes in Western universities is growing. To provide effective research supervision to these students, it is helpful to understand the similarities and differences in the supervision process between the host country and their home country. We explored which learning outcomes…

  1. How Do I Know That My Supervision Is Reflective? Identifying Factors and Validity of the Reflective Supervision Rating Scale

    ERIC Educational Resources Information Center

    Gallen, Robert T.; Ash, Jordana; Smith, Conner; Franco, Allison; Willford, Jennifer A.

    2016-01-01

    Reflective supervision and consultation (RS/C) is often defined as a "relationship for learning"(Fenichel, 1992, p.9). As such, measurement tools should include the perspective of each participant in the supervisory relationship when assessing RS/C fidelity, delivery quality, and the supervisee's experience. The Reflective Supervision…

  2. On being supervised: getting value from a clinical supervisor and making the relationship work when it is not.

    PubMed

    Parker, Stephen; Suetani, Shuichi; Motamarri, Balaji

    2017-12-01

    The importance of clinical supervision is emphasised in psychiatric training programs. Despite this, the purpose and processes of supervision are often poorly defined. There is limited guidance available for trainees about their role in making supervision work. This paper considers the nature of supervision in psychiatric training and provides practical advice to help supervisees take active steps to make supervision work. In obtaining value from supervision, the active role of the supervisee in seeking feedback, finding value in criticism and building autonomy is emphasised. Additionally, the importance of exploring what value a supervisor can offer and maintaining realistic expectations is considered. Trainees can benefit from taking an active role in planning and managing their supervision to maximise their learning.

  3. Large-scale weakly supervised object localization via latent category learning.

    PubMed

    Chong Wang; Kaiqi Huang; Weiqiang Ren; Junge Zhang; Maybank, Steve

    2015-04-01

    Localizing objects in cluttered backgrounds is challenging under large-scale weakly supervised conditions. Due to the cluttered image condition, objects usually have large ambiguity with backgrounds. Besides, there is also a lack of effective algorithm for large-scale weakly supervised localization in cluttered backgrounds. However, backgrounds contain useful latent information, e.g., the sky in the aeroplane class. If this latent information can be learned, object-background ambiguity can be largely reduced and background can be suppressed effectively. In this paper, we propose the latent category learning (LCL) in large-scale cluttered conditions. LCL is an unsupervised learning method which requires only image-level class labels. First, we use the latent semantic analysis with semantic object representation to learn the latent categories, which represent objects, object parts or backgrounds. Second, to determine which category contains the target object, we propose a category selection strategy by evaluating each category's discrimination. Finally, we propose the online LCL for use in large-scale conditions. Evaluation on the challenging PASCAL Visual Object Class (VOC) 2007 and the large-scale imagenet large-scale visual recognition challenge 2013 detection data sets shows that the method can improve the annotation precision by 10% over previous methods. More importantly, we achieve the detection precision which outperforms previous results by a large margin and can be competitive to the supervised deformable part model 5.0 baseline on both data sets.

  4. Patient-specific semi-supervised learning for postoperative brain tumor segmentation.

    PubMed

    Meier, Raphael; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio

    2014-01-01

    In contrast to preoperative brain tumor segmentation, the problem of postoperative brain tumor segmentation has been rarely approached so far. We present a fully-automatic segmentation method using multimodal magnetic resonance image data and patient-specific semi-supervised learning. The idea behind our semi-supervised approach is to effectively fuse information from both pre- and postoperative image data of the same patient to improve segmentation of the postoperative image. We pose image segmentation as a classification problem and solve it by adopting a semi-supervised decision forest. The method is evaluated on a cohort of 10 high-grade glioma patients, with segmentation performance and computation time comparable or superior to a state-of-the-art brain tumor segmentation method. Moreover, our results confirm that the inclusion of preoperative MR images lead to a better performance regarding postoperative brain tumor segmentation.

  5. Semi-Supervised Recurrent Neural Network for Adverse Drug Reaction mention extraction.

    PubMed

    Gupta, Shashank; Pawar, Sachin; Ramrakhiyani, Nitin; Palshikar, Girish Keshav; Varma, Vasudeva

    2018-06-13

    Social media is a useful platform to share health-related information due to its vast reach. This makes it a good candidate for public-health monitoring tasks, specifically for pharmacovigilance. We study the problem of extraction of Adverse-Drug-Reaction (ADR) mentions from social media, particularly from Twitter. Medical information extraction from social media is challenging, mainly due to short and highly informal nature of text, as compared to more technical and formal medical reports. Current methods in ADR mention extraction rely on supervised learning methods, which suffer from labeled data scarcity problem. The state-of-the-art method uses deep neural networks, specifically a class of Recurrent Neural Network (RNN) which is Long-Short-Term-Memory network (LSTM). Deep neural networks, due to their large number of free parameters rely heavily on large annotated corpora for learning the end task. But in the real-world, it is hard to get large labeled data, mainly due to the heavy cost associated with the manual annotation. To this end, we propose a novel semi-supervised learning based RNN model, which can leverage unlabeled data also present in abundance on social media. Through experiments we demonstrate the effectiveness of our method, achieving state-of-the-art performance in ADR mention extraction. In this study, we tackle the problem of labeled data scarcity for Adverse Drug Reaction mention extraction from social media and propose a novel semi-supervised learning based method which can leverage large unlabeled corpus available in abundance on the web. Through empirical study, we demonstrate that our proposed method outperforms fully supervised learning based baseline which relies on large manually annotated corpus for a good performance.

  6. Longitudinal evaluation of a pilot e-portfolio-based supervision programme for final year medical students: views of students, supervisors and new graduates.

    PubMed

    Vance, Gillian H S; Burford, Bryan; Shapiro, Ethan; Price, Richard

    2017-08-22

    Little is known about how best to implement portfolio-based learning in medical school. We evaluated the introduction of a formative e-portfolio-based supervision pilot for final year medical students by seeking views of students, supervisors and graduates on use and educational effects. Students and supervisors were surveyed by questionnaire, with free text comments invited. Interviews were held with new graduates in their first Foundation Programme placement. Most students used the e-portfolio (54%) and met with their supervisor (62%) 'once or twice' only. Students had more negative views: 22% agreed that the pilot was beneficial, while most supervisors thought that e-portfolio (72%) and supervision (86%) were a 'good idea'. More students reported supervision meetings benefited learning (49%) and professional development (55%) than the e-portfolio did (16%; 28%). Only 47% of students felt 'prepared' for future educational processes, though graduates noted benefits for navigating and understanding e-portfolio building and supervision. Factors limiting engagement reflected 'burden', while supervision meetings and early experience of postgraduate processes offered educational value. Final year students have negative attitudes to a formative e-portfolio, though benefits for easing the educational transition are recognised by graduates. Measures to minimize time, repetition and redundancy of processes may encourage use. Engagement is influenced by the supervisor relationship and educational value may be best achieved by supporting supervisors to develop strategies to facilitate, and motivate self-directed learning processes in undergraduates.

  7. Machine learning applications in genetics and genomics.

    PubMed

    Libbrecht, Maxwell W; Noble, William Stafford

    2015-06-01

    The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets. Here, we provide an overview of machine learning applications for the analysis of genome sequencing data sets, including the annotation of sequence elements and epigenetic, proteomic or metabolomic data. We present considerations and recurrent challenges in the application of supervised, semi-supervised and unsupervised machine learning methods, as well as of generative and discriminative modelling approaches. We provide general guidelines to assist in the selection of these machine learning methods and their practical application for the analysis of genetic and genomic data sets.

  8. Hybrid generative-discriminative human action recognition by combining spatiotemporal words with supervised topic models

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Wang, Cheng; Wang, Boliang

    2011-02-01

    We present a hybrid generative-discriminative learning method for human action recognition from video sequences. Our model combines a bag-of-words component with supervised latent topic models. A video sequence is represented as a collection of spatiotemporal words by extracting space-time interest points and describing these points using both shape and motion cues. The supervised latent Dirichlet allocation (sLDA) topic model, which employs discriminative learning using labeled data under a generative framework, is introduced to discover the latent topic structure that is most relevant to action categorization. The proposed algorithm retains most of the desirable properties of generative learning while increasing the classification performance though a discriminative setting. It has also been extended to exploit both labeled data and unlabeled data to learn human actions under a unified framework. We test our algorithm on three challenging data sets: the KTH human motion data set, the Weizmann human action data set, and a ballet data set. Our results are either comparable to or significantly better than previously published results on these data sets and reflect the promise of hybrid generative-discriminative learning approaches.

  9. Clinical supervision: an important part of every nurse's practice.

    PubMed

    Bifarin, Oladayo; Stonehouse, David

    2017-03-23

    Clinical supervision involves a supportive relationship between supervisor and supervisee that facilitates reflective learning and is part of professional socialisation. Clinical supervision can take many different forms and may be adapted to suit local circumstances. A working agreement is required between the parties to the supervision and issues surrounding confidentiality must be understood. High-quality clinical supervision leads to greater job satisfaction and less stress. When it is absent or inadequate, however, the results can be serious and it is particularly important that student nurses are well supported in this way. Further research in this area is necessary.

  10. Unpacking Clinical Supervision in Transitional and Permanent Supportive Housing: Scrutiny or Support?

    PubMed

    Choy-Brown, Mimi; Stanhope, Victoria; Tiderington, Emmy; Padgett, Deborah K

    2016-07-01

    Behavioral health organizations use clinical supervision to ensure professional development and practice quality. This qualitative study examined 35 service coordinators' perspectives on supervision in two distinct supportive housing program types (permanent and transitional). Thematic analysis of in-depth interviews yielded three contrast themes: support versus scrutiny, planned versus impromptu time, and housing first versus treatment first. Supervisory content and format resulted in differential perceptions of supervision, thereby influencing opportunities for learning. These findings suggest that unpacking discrete elements of supervision enactment in usual care settings can inform implementation of recovery-oriented practice.

  11. Unpacking clinical supervision in transitional and permanent supportive housing: Scrutiny or support?

    PubMed Central

    Choy-Brown, Mimi; Stanhope, Victoria; Tiderington, Emmy; Padgett, Deborah K.

    2015-01-01

    Behavioral health organizations use clinical supervision to ensure professional development and practice quality. This qualitative study examined 35 service coordinators' perspectives on supervision in two distinct supportive housing program types (permanent and transitional). Thematic analysis of in-depth interviews yielded three contrast themes: support versus scrutiny, planned versus impromptu time, and Housing First versus Treatment First. Supervisory content and format resulted in differential perceptions of supervision, thereby influencing opportunities for learning. These findings suggest that unpacking discrete elements of supervision enactment in usual care settings can inform implementation of recovery-oriented practice. PMID:26066866

  12. Rapid Training of Information Extraction with Local and Global Data Views

    DTIC Science & Technology

    2012-05-01

    56 xiii 4.1 An example of words and their bit string representations. Bold ones are transliterated Arabic words...Natural Language Processing ( NLP ) community faces new tasks and new domains all the time. Without enough labeled data of a new task or a new domain to...conduct supervised learning, semi-supervised learning is particularly attractive to NLP researchers since it only requires a handful of labeled examples

  13. Energy-efficient STDP-based learning circuits with memristor synapses

    NASA Astrophysics Data System (ADS)

    Wu, Xinyu; Saxena, Vishal; Campbell, Kristy A.

    2014-05-01

    It is now accepted that the traditional von Neumann architecture, with processor and memory separation, is ill suited to process parallel data streams which a mammalian brain can efficiently handle. Moreover, researchers now envision computing architectures which enable cognitive processing of massive amounts of data by identifying spatio-temporal relationships in real-time and solving complex pattern recognition problems. Memristor cross-point arrays, integrated with standard CMOS technology, are expected to result in massively parallel and low-power Neuromorphic computing architectures. Recently, significant progress has been made in spiking neural networks (SNN) which emulate data processing in the cortical brain. These architectures comprise of a dense network of neurons and the synapses formed between the axons and dendrites. Further, unsupervised or supervised competitive learning schemes are being investigated for global training of the network. In contrast to a software implementation, hardware realization of these networks requires massive circuit overhead for addressing and individually updating network weights. Instead, we employ bio-inspired learning rules such as the spike-timing-dependent plasticity (STDP) to efficiently update the network weights locally. To realize SNNs on a chip, we propose to use densely integrating mixed-signal integrate-andfire neurons (IFNs) and cross-point arrays of memristors in back-end-of-the-line (BEOL) of CMOS chips. Novel IFN circuits have been designed to drive memristive synapses in parallel while maintaining overall power efficiency (<1 pJ/spike/synapse), even at spike rate greater than 10 MHz. We present circuit design details and simulation results of the IFN with memristor synapses, its response to incoming spike trains and STDP learning characterization.

  14. Man-Robot Symbiosis: A Framework For Cooperative Intelligence And Control

    NASA Astrophysics Data System (ADS)

    Parker, Lynne E.; Pin, Francois G.

    1988-10-01

    The man-robot symbiosis concept has the fundamental objective of bridging the gap between fully human-controlled and fully autonomous systems to achieve true man-robot cooperative control and intelligence. Such a system would allow improved speed, accuracy, and efficiency of task execution, while retaining the man in the loop for innovative reasoning and decision-making. The symbiont would have capabilities for supervised and unsupervised learning, allowing an increase of expertise in a wide task domain. This paper describes a robotic system architecture facilitating the symbiotic integration of teleoperative and automated modes of task execution. The architecture reflects a unique blend of many disciplines of artificial intelligence into a working system, including job or mission planning, dynamic task allocation, man-robot communication, automated monitoring, and machine learning. These disciplines are embodied in five major components of the symbiotic framework: the Job Planner, the Dynamic Task Allocator, the Presenter/Interpreter, the Automated Monitor, and the Learning System.

  15. On learning navigation behaviors for small mobile robots with reservoir computing architectures.

    PubMed

    Antonelo, Eric Aislan; Schrauwen, Benjamin

    2015-04-01

    This paper proposes a general reservoir computing (RC) learning framework that can be used to learn navigation behaviors for mobile robots in simple and complex unknown partially observable environments. RC provides an efficient way to train recurrent neural networks by letting the recurrent part of the network (called reservoir) be fixed while only a linear readout output layer is trained. The proposed RC framework builds upon the notion of navigation attractor or behavior that can be embedded in the high-dimensional space of the reservoir after learning. The learning of multiple behaviors is possible because the dynamic robot behavior, consisting of a sensory-motor sequence, can be linearly discriminated in the high-dimensional nonlinear space of the dynamic reservoir. Three learning approaches for navigation behaviors are shown in this paper. The first approach learns multiple behaviors based on the examples of navigation behaviors generated by a supervisor, while the second approach learns goal-directed navigation behaviors based only on rewards. The third approach learns complex goal-directed behaviors, in a supervised way, using a hierarchical architecture whose internal predictions of contextual switches guide the sequence of basic navigation behaviors toward the goal.

  16. Multi-Source Multi-Target Dictionary Learning for Prediction of Cognitive Decline.

    PubMed

    Zhang, Jie; Li, Qingyang; Caselli, Richard J; Thompson, Paul M; Ye, Jieping; Wang, Yalin

    2017-06-01

    Alzheimer's Disease (AD) is the most common type of dementia. Identifying correct biomarkers may determine pre-symptomatic AD subjects and enable early intervention. Recently, Multi-task sparse feature learning has been successfully applied to many computer vision and biomedical informatics researches. It aims to improve the generalization performance by exploiting the shared features among different tasks. However, most of the existing algorithms are formulated as a supervised learning scheme. Its drawback is with either insufficient feature numbers or missing label information. To address these challenges, we formulate an unsupervised framework for multi-task sparse feature learning based on a novel dictionary learning algorithm. To solve the unsupervised learning problem, we propose a two-stage Multi-Source Multi-Target Dictionary Learning (MMDL) algorithm. In stage 1, we propose a multi-source dictionary learning method to utilize the common and individual sparse features in different time slots. In stage 2, supported by a rigorous theoretical analysis, we develop a multi-task learning method to solve the missing label problem. Empirical studies on an N = 3970 longitudinal brain image data set, which involves 2 sources and 5 targets, demonstrate the improved prediction accuracy and speed efficiency of MMDL in comparison with other state-of-the-art algorithms.

  17. Study on Electro-polymerization Nano-micro Wiring System Imitating Axonal Growth of Artificial Neurons towards Machine Learning

    NASA Astrophysics Data System (ADS)

    Dang, Nguyen Tuan; Akai-Kasada, Megumi; Asai, Tetsuya; Saito, Akira; Kuwahara, Yuji; Hokkaido University Collaboration

    2015-03-01

    Machine learning using the artificial neuron network research is supposed to be the best way to understand how the human brain trains itself to process information. In this study, we have successfully developed the programs using supervised machine learning algorithm. However, these supervised learning processes for the neuron network required the very strong computing configuration. Derivation from the necessity of increasing in computing ability and in reduction of power consumption, accelerator circuits become critical. To develop such accelerator circuits using supervised machine learning algorithm, conducting polymer micro/nanowires growing process was realized and applied as a synaptic weigh controller. In this work, high conductivity Polypyrrole (PPy) and Poly (3, 4 - ethylenedioxythiophene) PEDOT wires were potentiostatically grown crosslinking the designated electrodes, which were prefabricated by lithography, when appropriate square wave AC voltage and appropriate frequency were applied. Micro/nanowire growing process emulated the neurotransmitter release process of synapses inside a biological neuron and wire's resistance variation during the growing process was preferred to as the variation of synaptic weigh in machine learning algorithm. In a cooperation with Graduate School of Information Science and Technology, Hokkaido University.

  18. Accuracy of latent-variable estimation in Bayesian semi-supervised learning.

    PubMed

    Yamazaki, Keisuke

    2015-09-01

    Hierarchical probabilistic models, such as Gaussian mixture models, are widely used for unsupervised learning tasks. These models consist of observable and latent variables, which represent the observable data and the underlying data-generation process, respectively. Unsupervised learning tasks, such as cluster analysis, are regarded as estimations of latent variables based on the observable ones. The estimation of latent variables in semi-supervised learning, where some labels are observed, will be more precise than that in unsupervised, and one of the concerns is to clarify the effect of the labeled data. However, there has not been sufficient theoretical analysis of the accuracy of the estimation of latent variables. In a previous study, a distribution-based error function was formulated, and its asymptotic form was calculated for unsupervised learning with generative models. It has been shown that, for the estimation of latent variables, the Bayes method is more accurate than the maximum-likelihood method. The present paper reveals the asymptotic forms of the error function in Bayesian semi-supervised learning for both discriminative and generative models. The results show that the generative model, which uses all of the given data, performs better when the model is well specified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The collaborative model of fieldwork education: a blueprint for group supervision of students.

    PubMed

    Hanson, Debra J; DeIuliis, Elizabeth D

    2015-04-01

    Historically, occupational therapists have used a traditional one-to-one approach to supervision on fieldwork. Due to the impact of managed care on health-care delivery systems, a dramatic increase in the number of students needing fieldwork placement, and the advantages of group learning, the collaborative supervision model has evolved as a strong alternative to an apprenticeship supervision approach. This article builds on the available research to address barriers to model use, applying theoretical foundations of collaborative supervision to practical considerations for academic fieldwork coordinators and fieldwork educators as they prepare for participation in group supervision of occupational therapy and occupational therapy assistant students on level II fieldwork.

  20. Discriminative Nonlinear Analysis Operator Learning: When Cosparse Model Meets Image Classification.

    PubMed

    Wen, Zaidao; Hou, Biao; Jiao, Licheng

    2017-05-03

    Linear synthesis model based dictionary learning framework has achieved remarkable performances in image classification in the last decade. Behaved as a generative feature model, it however suffers from some intrinsic deficiencies. In this paper, we propose a novel parametric nonlinear analysis cosparse model (NACM) with which a unique feature vector will be much more efficiently extracted. Additionally, we derive a deep insight to demonstrate that NACM is capable of simultaneously learning the task adapted feature transformation and regularization to encode our preferences, domain prior knowledge and task oriented supervised information into the features. The proposed NACM is devoted to the classification task as a discriminative feature model and yield a novel discriminative nonlinear analysis operator learning framework (DNAOL). The theoretical analysis and experimental performances clearly demonstrate that DNAOL will not only achieve the better or at least competitive classification accuracies than the state-of-the-art algorithms but it can also dramatically reduce the time complexities in both training and testing phases.

  1. A random forest learning assisted "divide and conquer" approach for peptide conformation search.

    PubMed

    Chen, Xin; Yang, Bing; Lin, Zijing

    2018-06-11

    Computational determination of peptide conformations is challenging as it is a problem of finding minima in a high-dimensional space. The "divide and conquer" approach is promising for reliably reducing the search space size. A random forest learning model is proposed here to expand the scope of applicability of the "divide and conquer" approach. A random forest classification algorithm is used to characterize the distributions of the backbone φ-ψ units ("words"). A random forest supervised learning model is developed to analyze the combinations of the φ-ψ units ("grammar"). It is found that amino acid residues may be grouped as equivalent "words", while the φ-ψ combinations in low-energy peptide conformations follow a distinct "grammar". The finding of equivalent words empowers the "divide and conquer" method with the flexibility of fragment substitution. The learnt grammar is used to improve the efficiency of the "divide and conquer" method by removing unfavorable φ-ψ combinations without the need of dedicated human effort. The machine learning assisted search method is illustrated by efficiently searching the conformations of GGG/AAA/GGGG/AAAA/GGGGG through assembling the structures of GFG/GFGG. Moreover, the computational cost of the new method is shown to increase rather slowly with the peptide length.

  2. Feature Inference Learning and Eyetracking

    ERIC Educational Resources Information Center

    Rehder, Bob; Colner, Robert M.; Hoffman, Aaron B.

    2009-01-01

    Besides traditional supervised classification learning, people can learn categories by inferring the missing features of category members. It has been proposed that feature inference learning promotes learning a category's internal structure (e.g., its typical features and interfeature correlations) whereas classification promotes the learning of…

  3. Supervised learning of postural tasks in patients with poststroke hemiparesis, Parkinson's disease or cerebellar ataxia.

    PubMed

    Ioffe, M E; Ustinova, K I; Chernikova, L A; Kulikov, M A

    2006-01-01

    Supervised learning of different postural tasks in patients with lesions of the motor cortex or pyramidal system (poststroke hemiparesis: 20 patients), nigro-striatal system (Parkinson's disease: 33 patients) and cerebellum (spinocerebellar ataxia: 37 patients) was studied. A control group consisted of 13 healthy subjects. The subjects stood on a force platform and were trained to change the position of the center of pressure (CP) presented as a cursor on a monitor screen in front of the patient. Subjects were instructed to align the CP with the target and then move the target by shifting the CP in the indicated direction. Two different tasks were used. In "Balls", the target (a ball) position varied randomly, so the subject learned a general strategy of voluntary CP control. In "Bricks", the subject had to always move the target in a single direction (downward) from the top to the bottom of the screen, so that a precise postural coordination had to be learned. The training consisted of 10 sessions for each task. The number of correctly performed trials for a session (2 min for each task) was scored. The voluntary control of the CP position was initially impaired in all groups of patients in both tasks. In "Balls", there were no differences between the groups of the patients on the first day. The learning course was somewhat better in hemiparetic patients than in the other groups. In "Bricks", the initial deficit was greater in the groups of parkinsonian and cerebellar patients than in hemiparetic patients. However, learning was more efficient in parkinsonian than in hemiparetic and cerebellar patients. After 10 days of training, the hemiparetic and cerebellar patients completed the acquisition at a certain level whereas the parkinsonian patients showed the ability for further improvement. The results suggest that motor cortex, cerebellum, and basal ganglia are involved in voluntary control of posture and learning different postural tasks. However, these structures play different roles in postural control and learning: basal ganglia are mainly involved in learning a general strategy of CP control while the function of the motor cortex chiefly concerns learning a specific CP trajectory. The cerebellum is involved in both kinds of learning.

  4. Effects of clinical supervision on resident learning and patient care during simulated ICU scenarios.

    PubMed

    Piquette, Dominique; Tarshis, Jordan; Regehr, Glenn; Fowler, Robert A; Pinto, Ruxandra; LeBlanc, Vicki R

    2013-12-01

    Closer supervision of residents' clinical activities has been promoted to improve patient safety, but may additionally affect resident participation in patient care and learning. The objective of this study was to determine the effects of closer supervision on patient care, resident participation, and the development of resident ability to care independently for critically ill patients during simulated scenarios. This quantitative study represents a component of a larger mixed-methods study. Residents were randomized to one of three levels of supervision, defined by the physical proximity of the supervisor (distant, immediately available, and direct). Each resident completed a simulation scenario under the supervision of a critical care fellow, immediately followed by a modified scenario of similar content without supervision. The simulation center of a tertiary, university-affiliated academic center in a large urban city. Fifty-three residents completing a critical care rotation and 24 critical care fellows were recruited between April 2009 and June 2010. None. During the supervised scenarios, lower team performance checklist scores were obtained for distant supervision compared with immediately available and direct supervision (mean [SD], direct: 72% [12%] vs immediately available: 77% [10%] vs distant: 61% [11%]; p = 0.0013). The percentage of checklist items completed by the residents themselves was significantly lower during direct supervision (median [interquartile range], direct: 40% [21%] vs immediately available: 58% [16%] vs distant: 55% [11%]; p = 0.005). During unsupervised scenarios, no significant differences were found on the outcome measures. Care delivered in the presence of senior supervising physicians was more comprehensive than care delivered without access to a bedside supervisor, but was associated with lower resident participation. However, subsequent resident performance during unsupervised scenarios was not adversely affected. Direct supervision of residents leads to improved care process and does not diminish the subsequent ability of residents to function independently.

  5. An online semi-supervised brain-computer interface.

    PubMed

    Gu, Zhenghui; Yu, Zhuliang; Shen, Zhifang; Li, Yuanqing

    2013-09-01

    Practical brain-computer interface (BCI) systems should require only low training effort for the user, and the algorithms used to classify the intent of the user should be computationally efficient. However, due to inter- and intra-subject variations in EEG signal, intermittent training/calibration is often unavoidable. In this paper, we present an online semi-supervised P300 BCI speller system. After a short initial training (around or less than 1 min in our experiments), the system is switched to a mode where the user can input characters through selective attention. In this mode, a self-training least squares support vector machine (LS-SVM) classifier is gradually enhanced in back end with the unlabeled EEG data collected online after every character input. In this way, the classifier is gradually enhanced. Even though the user may experience some errors in input at the beginning due to the small initial training dataset, the accuracy approaches that of fully supervised method in a few minutes. The algorithm based on LS-SVM and its sequential update has low computational complexity; thus, it is suitable for online applications. The effectiveness of the algorithm has been validated through data analysis on BCI Competition III dataset II (P300 speller BCI data). The performance of the online system was evaluated through experimental results on eight healthy subjects, where all of them achieved the spelling accuracy of 85 % or above within an average online semi-supervised learning time of around 3 min.

  6. Enhancing the Standard of Teaching and Learning in the 21st Century via Qualitative School-Based Supervision in Secondary Schools in Abuja Municipal Area Council (AMAC)

    ERIC Educational Resources Information Center

    Ebele, Uju F.; Olofu, Paul A.

    2017-01-01

    The study focused on enhancing the standard of teaching and learning in the 21st century via qualitative school-based supervision in secondary schools in Abuja municipal area council. To guide the study, two null hypotheses were formulated. A descriptive survey research design was adopted. The sample of the study constituted of 270 secondary…

  7. Quality clinical placements: The perspectives of undergraduate nursing students and their supervising nurses.

    PubMed

    Ford, Karen; Courtney-Pratt, Helen; Marlow, Annette; Cooper, John; Williams, Danielle; Mason, Ron

    2016-02-01

    Clinical placement for students of nursing is a central component of tertiary nursing programs but continues to be a complex and multifaceted experience for all stakeholders. This paper presents findings from a longitudinal 3-year study across multiple sites within the Australian context investigating the quality of clinical placements. A study using cross-sectional survey. Acute care, aged care and subacute health care facilities. A total of 1121 Tasmanian undergraduate nursing students and 932 supervising ward nurses. Survey data were collected at completion of practicum from participating undergraduate students and supervising ward nurses across the domains of "welcome and belonging," "competence and confidence: reflections on learning," and "support for learning." In addition, free text comments were sought to further inform understandings of what constitutes quality clinical placements. Overwhelmingly quantitative data demonstrate high-quality clinical placements are provided. Analysis of free text responses indicates further attention to the intersect between the student and the supervising ward nurse is required, including the differing expectations that each holds for the other. While meaningful interpersonal interactions are pivotal for learning, these seemingly concentrated on the relationship between student and their supervisor-the patient/client was not seen to be present. Meaningful learning occurs within an environment that facilitates mutual respect and shared expectations. The role the patient has in student learning was not made obvious in the results and therefore requires further investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Supervising and the Law. Supervising: Industrial Relations. The Choice Series #88. A Self Learning Opportunity.

    ERIC Educational Resources Information Center

    McCall, Matthew S.

    This student guide is intended to assist persons employed as supervisors in understanding the legal aspects of supervision. Discussed in the first four sections are the following topics: the nature of the law (criminal and civil law, why people obey the law, and the law and supervisors); health and safety at work (safety in the workplace, ways of…

  9. Training Feedforward Neural Networks Using Symbiotic Organisms Search Algorithm.

    PubMed

    Wu, Haizhou; Zhou, Yongquan; Luo, Qifang; Basset, Mohamed Abdel

    2016-01-01

    Symbiotic organisms search (SOS) is a new robust and powerful metaheuristic algorithm, which stimulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. In the supervised learning area, it is a challenging task to present a satisfactory and efficient training algorithm for feedforward neural networks (FNNs). In this paper, SOS is employed as a new method for training FNNs. To investigate the performance of the aforementioned method, eight different datasets selected from the UCI machine learning repository are employed for experiment and the results are compared among seven metaheuristic algorithms. The results show that SOS performs better than other algorithms for training FNNs in terms of converging speed. It is also proven that an FNN trained by the method of SOS has better accuracy than most algorithms compared.

  10. Experiments on Supervised Learning Algorithms for Text Categorization

    NASA Technical Reports Server (NTRS)

    Namburu, Setu Madhavi; Tu, Haiying; Luo, Jianhui; Pattipati, Krishna R.

    2005-01-01

    Modern information society is facing the challenge of handling massive volume of online documents, news, intelligence reports, and so on. How to use the information accurately and in a timely manner becomes a major concern in many areas. While the general information may also include images and voice, we focus on the categorization of text data in this paper. We provide a brief overview of the information processing flow for text categorization, and discuss two supervised learning algorithms, viz., support vector machines (SVM) and partial least squares (PLS), which have been successfully applied in other domains, e.g., fault diagnosis [9]. While SVM has been well explored for binary classification and was reported as an efficient algorithm for text categorization, PLS has not yet been applied to text categorization. Our experiments are conducted on three data sets: Reuter's- 21578 dataset about corporate mergers and data acquisitions (ACQ), WebKB and the 20-Newsgroups. Results show that the performance of PLS is comparable to SVM in text categorization. A major drawback of SVM for multi-class categorization is that it requires a voting scheme based on the results of pair-wise classification. PLS does not have this drawback and could be a better candidate for multi-class text categorization.

  11. A Large-scale Distributed Indexed Learning Framework for Data that Cannot Fit into Memory

    DTIC Science & Technology

    2015-03-27

    learn a classifier. Integrating three learning techniques (online, semi-supervised and active learning ) together with a selective sampling with minimum communication between the server and the clients solved this problem.

  12. Active relearning for robust supervised classification of pulmonary emphysema

    NASA Astrophysics Data System (ADS)

    Raghunath, Sushravya; Rajagopalan, Srinivasan; Karwoski, Ronald A.; Bartholmai, Brian J.; Robb, Richard A.

    2012-03-01

    Radiologists are adept at recognizing the appearance of lung parenchymal abnormalities in CT scans. However, the inconsistent differential diagnosis, due to subjective aggregation, mandates supervised classification. Towards optimizing Emphysema classification, we introduce a physician-in-the-loop feedback approach in order to minimize uncertainty in the selected training samples. Using multi-view inductive learning with the training samples, an ensemble of Support Vector Machine (SVM) models, each based on a specific pair-wise dissimilarity metric, was constructed in less than six seconds. In the active relearning phase, the ensemble-expert label conflicts were resolved by an expert. This just-in-time feedback with unoptimized SVMs yielded 15% increase in classification accuracy and 25% reduction in the number of support vectors. The generality of relearning was assessed in the optimized parameter space of six different classifiers across seven dissimilarity metrics. The resultant average accuracy improved to 21%. The co-operative feedback method proposed here could enhance both diagnostic and staging throughput efficiency in chest radiology practice.

  13. Learning Robust and Discriminative Subspace With Low-Rank Constraints.

    PubMed

    Li, Sheng; Fu, Yun

    2016-11-01

    In this paper, we aim at learning robust and discriminative subspaces from noisy data. Subspace learning is widely used in extracting discriminative features for classification. However, when data are contaminated with severe noise, the performance of most existing subspace learning methods would be limited. Recent advances in low-rank modeling provide effective solutions for removing noise or outliers contained in sample sets, which motivates us to take advantage of low-rank constraints in order to exploit robust and discriminative subspace for classification. In particular, we present a discriminative subspace learning method called the supervised regularization-based robust subspace (SRRS) approach, by incorporating the low-rank constraint. SRRS seeks low-rank representations from the noisy data, and learns a discriminative subspace from the recovered clean data jointly. A supervised regularization function is designed to make use of the class label information, and therefore to enhance the discriminability of subspace. Our approach is formulated as a constrained rank-minimization problem. We design an inexact augmented Lagrange multiplier optimization algorithm to solve it. Unlike the existing sparse representation and low-rank learning methods, our approach learns a low-dimensional subspace from recovered data, and explicitly incorporates the supervised information. Our approach and some baselines are evaluated on the COIL-100, ALOI, Extended YaleB, FERET, AR, and KinFace databases. The experimental results demonstrate the effectiveness of our approach, especially when the data contain considerable noise or variations.

  14. Supervised multimedia categorization

    NASA Astrophysics Data System (ADS)

    Aldershoff, Frank; Salden, Alfons H.; Iacob, Sorin M.; Kempen, Masja

    2003-01-01

    Static multimedia on the Web can already be hardly structured manually. Although unavoidable and necessary, manual annotation of dynamic multimedia becomes even less feasible when multimedia quickly changes in complexity, i.e. in volume, modality, and usage context. The latter context could be set by learning or other purposes of the multimedia material. This multimedia dynamics calls for categorisation systems that index, query and retrieve multimedia objects on the fly in a similar way as a human expert would. We present and demonstrate such a supervised dynamic multimedia object categorisation system. Our categorisation system comes about by continuously gauging it to a group of human experts who annotate raw multimedia for a certain domain ontology given a usage context. Thus effectively our system learns the categorisation behaviour of human experts. By inducing supervised multi-modal content and context-dependent potentials our categorisation system associates field strengths of raw dynamic multimedia object categorisations with those human experts would assign. After a sufficient long period of supervised machine learning we arrive at automated robust and discriminative multimedia categorisation. We demonstrate the usefulness and effectiveness of our multimedia categorisation system in retrieving semantically meaningful soccer-video fragments, in particular by taking advantage of multimodal and domain specific information and knowledge supplied by human experts.

  15. Assessment of Counselors' Supervision Processes

    ERIC Educational Resources Information Center

    Ünal, Ali; Sürücü, Abdullah; Yavuz, Mustafa

    2013-01-01

    The aim of this study is to investigate elementary and high school counselors' supervision processes and efficiency of their supervision. The interview method was used as it was thought to be better for realizing the aim of the study. The study group was composed of ten counselors who were chosen through purposeful sampling method. Data were…

  16. Space coding for sensorimotor transformations can emerge through unsupervised learning.

    PubMed

    De Filippo De Grazia, Michele; Cutini, Simone; Lisi, Matteo; Zorzi, Marco

    2012-08-01

    The posterior parietal cortex (PPC) is fundamental for sensorimotor transformations because it combines multiple sensory inputs and posture signals into different spatial reference frames that drive motor programming. Here, we present a computational model mimicking the sensorimotor transformations occurring in the PPC. A recurrent neural network with one layer of hidden neurons (restricted Boltzmann machine) learned a stochastic generative model of the sensory data without supervision. After the unsupervised learning phase, the activity of the hidden neurons was used to compute a motor program (a population code on a bidimensional map) through a simple linear projection and delta rule learning. The average motor error, calculated as the difference between the expected and the computed output, was less than 3°. Importantly, analyses of the hidden neurons revealed gain-modulated visual receptive fields, thereby showing that space coding for sensorimotor transformations similar to that observed in the PPC can emerge through unsupervised learning. These results suggest that gain modulation is an efficient coding strategy to integrate visual and postural information toward the generation of motor commands.

  17. Optimized Graph Learning Using Partial Tags and Multiple Features for Image and Video Annotation.

    PubMed

    Song, Jingkuan; Gao, Lianli; Nie, Feiping; Shen, Heng Tao; Yan, Yan; Sebe, Nicu

    2016-11-01

    In multimedia annotation, due to the time constraints and the tediousness of manual tagging, it is quite common to utilize both tagged and untagged data to improve the performance of supervised learning when only limited tagged training data are available. This is often done by adding a geometry-based regularization term in the objective function of a supervised learning model. In this case, a similarity graph is indispensable to exploit the geometrical relationships among the training data points, and the graph construction scheme essentially determines the performance of these graph-based learning algorithms. However, most of the existing works construct the graph empirically and are usually based on a single feature without using the label information. In this paper, we propose a semi-supervised annotation approach by learning an optimized graph (OGL) from multi-cues (i.e., partial tags and multiple features), which can more accurately embed the relationships among the data points. Since OGL is a transductive method and cannot deal with novel data points, we further extend our model to address the out-of-sample issue. Extensive experiments on image and video annotation show the consistent superiority of OGL over the state-of-the-art methods.

  18. [An overview of clinical practice education models for nursing students: a literature review].

    PubMed

    Canzan, Federica; Marognolli, Oliva; Bevilacqua, Anita; Defanti, Francesca; Ambrosi, Elisa; Cavada, Luisa; Saiani, Luisa

    2017-01-01

    . An overview of education models for nursing students clinical practice: a literature review. In the past decade the nursing education research developed and tested a number of clinical educational models. To describe the most used clinical educational models and to analyze their strengths and weaknesses in fostering the learning processes of nursing students. A literature review of studies on clinical education models for undergraduate nursing student, published in English, was performed. Electronic database Pubmed and Cinhal were searched until November 2016. Nineteen studies were included in the review and five clinical education model identified: 1) the university tutor supervises a group of students and selects learning opportunities; 2) a clinical expert/tutor nurse works side by side with one student; 3) the student is responsible of his/her learning process with the supervision of the ward staff; 4) a clinical tutor of the ward is dedicated to the students' supervision; 5) the student is not assigned to a ward but clinical learning opportunities matched with his/her needs are selected by the university. All the clinical education models shared the focus on students' learning needs. Their specific characteristics better suit them for different stages of students' education and to different clinical settings.

  19. Deep Unfolding for Topic Models.

    PubMed

    Chien, Jen-Tzung; Lee, Chao-Hsi

    2018-02-01

    Deep unfolding provides an approach to integrate the probabilistic generative models and the deterministic neural networks. Such an approach is benefited by deep representation, easy interpretation, flexible learning and stochastic modeling. This study develops the unsupervised and supervised learning of deep unfolded topic models for document representation and classification. Conventionally, the unsupervised and supervised topic models are inferred via the variational inference algorithm where the model parameters are estimated by maximizing the lower bound of logarithm of marginal likelihood using input documents without and with class labels, respectively. The representation capability or classification accuracy is constrained by the variational lower bound and the tied model parameters across inference procedure. This paper aims to relax these constraints by directly maximizing the end performance criterion and continuously untying the parameters in learning process via deep unfolding inference (DUI). The inference procedure is treated as the layer-wise learning in a deep neural network. The end performance is iteratively improved by using the estimated topic parameters according to the exponentiated updates. Deep learning of topic models is therefore implemented through a back-propagation procedure. Experimental results show the merits of DUI with increasing number of layers compared with variational inference in unsupervised as well as supervised topic models.

  20. Perceptions of Supervision Processes and Practices in Initial Contract, Tenured, and Distinguished-Rated Teachers as They Relate to Self-Learning and Growth in One Large Suburban School District

    ERIC Educational Resources Information Center

    Watters, Chad M.

    2017-01-01

    The purpose of this mixed methods study is to examine the perceptions of supervision practices in initial contract, tenured, and distinguished-rated teachers at the elementary level in one large, suburban school district. This study described teacher perceptions of clinical and alternative supervision practices. Six research questions guided this…

  1. Applying active learning to supervised word sense disambiguation in MEDLINE.

    PubMed

    Chen, Yukun; Cao, Hongxin; Mei, Qiaozhu; Zheng, Kai; Xu, Hua

    2013-01-01

    This study was to assess whether active learning strategies can be integrated with supervised word sense disambiguation (WSD) methods, thus reducing the number of annotated samples, while keeping or improving the quality of disambiguation models. We developed support vector machine (SVM) classifiers to disambiguate 197 ambiguous terms and abbreviations in the MSH WSD collection. Three different uncertainty sampling-based active learning algorithms were implemented with the SVM classifiers and were compared with a passive learner (PL) based on random sampling. For each ambiguous term and each learning algorithm, a learning curve that plots the accuracy computed from the test set as a function of the number of annotated samples used in the model was generated. The area under the learning curve (ALC) was used as the primary metric for evaluation. Our experiments demonstrated that active learners (ALs) significantly outperformed the PL, showing better performance for 177 out of 197 (89.8%) WSD tasks. Further analysis showed that to achieve an average accuracy of 90%, the PL needed 38 annotated samples, while the ALs needed only 24, a 37% reduction in annotation effort. Moreover, we analyzed cases where active learning algorithms did not achieve superior performance and identified three causes: (1) poor models in the early learning stage; (2) easy WSD cases; and (3) difficult WSD cases, which provide useful insight for future improvements. This study demonstrated that integrating active learning strategies with supervised WSD methods could effectively reduce annotation cost and improve the disambiguation models.

  2. Applying active learning to supervised word sense disambiguation in MEDLINE

    PubMed Central

    Chen, Yukun; Cao, Hongxin; Mei, Qiaozhu; Zheng, Kai; Xu, Hua

    2013-01-01

    Objectives This study was to assess whether active learning strategies can be integrated with supervised word sense disambiguation (WSD) methods, thus reducing the number of annotated samples, while keeping or improving the quality of disambiguation models. Methods We developed support vector machine (SVM) classifiers to disambiguate 197 ambiguous terms and abbreviations in the MSH WSD collection. Three different uncertainty sampling-based active learning algorithms were implemented with the SVM classifiers and were compared with a passive learner (PL) based on random sampling. For each ambiguous term and each learning algorithm, a learning curve that plots the accuracy computed from the test set as a function of the number of annotated samples used in the model was generated. The area under the learning curve (ALC) was used as the primary metric for evaluation. Results Our experiments demonstrated that active learners (ALs) significantly outperformed the PL, showing better performance for 177 out of 197 (89.8%) WSD tasks. Further analysis showed that to achieve an average accuracy of 90%, the PL needed 38 annotated samples, while the ALs needed only 24, a 37% reduction in annotation effort. Moreover, we analyzed cases where active learning algorithms did not achieve superior performance and identified three causes: (1) poor models in the early learning stage; (2) easy WSD cases; and (3) difficult WSD cases, which provide useful insight for future improvements. Conclusions This study demonstrated that integrating active learning strategies with supervised WSD methods could effectively reduce annotation cost and improve the disambiguation models. PMID:23364851

  3. Learning Biological Networks via Bootstrapping with Optimized GO-based Gene Similarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Ronald C.; Sanfilippo, Antonio P.; McDermott, Jason E.

    2010-08-02

    Microarray gene expression data provide a unique information resource for learning biological networks using "reverse engineering" methods. However, there are a variety of cases in which we know which genes are involved in a given pathology of interest, but we do not have enough experimental evidence to support the use of fully-supervised/reverse-engineering learning methods. In this paper, we explore a novel semi-supervised approach in which biological networks are learned from a reference list of genes and a partial set of links for these genes extracted automatically from PubMed abstracts, using a knowledge-driven bootstrapping algorithm. We show how new relevant linksmore » across genes can be iteratively derived using a gene similarity measure based on the Gene Ontology that is optimized on the input network at each iteration. We describe an application of this approach to the TGFB pathway as a case study and show how the ensuing results prove the feasibility of the approach as an alternate or complementary technique to fully supervised methods.« less

  4. [Validity and Reliability of the Korean Version Scale of the Clinical Learning Environment, Supervision and Nurse Teacher Evaluation Scale (CLES+T)].

    PubMed

    Kim, Sun Hee; Yoo, So Yeon; Kim, Yae Young

    2018-02-01

    This study was conducted to evaluate the validity and reliability of the Korean version of the clinical learning environment, supervision and nurse teacher evaluation scale (CLES+T) that measures the clinical learning environment and the conditions associated with supervision and nurse teachers. The English CLES+T was translated into Korean with forward and back translation. Survey data were collected from 434 nursing students who had more than four days of clinical practice in Korean hospitals. Internal consistency reliability and construct validity using confirmatory and exploratory factor analysis were conducted. SPSS 20.0 and AMOS 22.0 programs were used for data analysis. The exploratory factor analysis revealed seven factors for the thirty three-item scale. Confirmatory factor analysis supported good convergent and discriminant validities. The Cronbach's alpha for the overall scale was .94 and for the seven subscales ranged from .78 to .94. The findings suggest that the 33-items Korean CLES+T is an appropriate instrument to measure Korean nursing students'clinical learning environment with good validity and reliability. © 2018 Korean Society of Nursing Science.

  5. Robust head pose estimation via supervised manifold learning.

    PubMed

    Wang, Chao; Song, Xubo

    2014-05-01

    Head poses can be automatically estimated using manifold learning algorithms, with the assumption that with the pose being the only variable, the face images should lie in a smooth and low-dimensional manifold. However, this estimation approach is challenging due to other appearance variations related to identity, head location in image, background clutter, facial expression, and illumination. To address the problem, we propose to incorporate supervised information (pose angles of training samples) into the process of manifold learning. The process has three stages: neighborhood construction, graph weight computation and projection learning. For the first two stages, we redefine inter-point distance for neighborhood construction as well as graph weight by constraining them with the pose angle information. For Stage 3, we present a supervised neighborhood-based linear feature transformation algorithm to keep the data points with similar pose angles close together but the data points with dissimilar pose angles far apart. The experimental results show that our method has higher estimation accuracy than the other state-of-art algorithms and is robust to identity and illumination variations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Action Learning in Undergraduate Engineering Thesis Supervision

    ERIC Educational Resources Information Center

    Stappenbelt, Brad

    2017-01-01

    In the present action learning implementation, twelve action learning sets were conducted over eight years. The action learning sets consisted of students involved in undergraduate engineering research thesis work. The concurrent study accompanying this initiative investigated the influence of the action learning environment on student approaches…

  7. Joint learning of labels and distance metric.

    PubMed

    Liu, Bo; Wang, Meng; Hong, Richang; Zha, Zhengjun; Hua, Xian-Sheng

    2010-06-01

    Machine learning algorithms frequently suffer from the insufficiency of training data and the usage of inappropriate distance metric. In this paper, we propose a joint learning of labels and distance metric (JLLDM) approach, which is able to simultaneously address the two difficulties. In comparison with the existing semi-supervised learning and distance metric learning methods that focus only on label prediction or distance metric construction, the JLLDM algorithm optimizes the labels of unlabeled samples and a Mahalanobis distance metric in a unified scheme. The advantage of JLLDM is multifold: 1) the problem of training data insufficiency can be tackled; 2) a good distance metric can be constructed with only very few training samples; and 3) no radius parameter is needed since the algorithm automatically determines the scale of the metric. Extensive experiments are conducted to compare the JLLDM approach with different semi-supervised learning and distance metric learning methods, and empirical results demonstrate its effectiveness.

  8. Agricultural Record Keeping. Instructor Key and Supplementary Units.

    ERIC Educational Resources Information Center

    Martin, Donna

    This teaching manual is designed to help students with special needs learn and apply recordkeeping skills in agriculture. The material applies specifically to recordkeeping for a supervised agricultural experience program. The units presented here supplement the curriculum guide, "Developing Programs of Supervised Agricultural…

  9. Supervision and Administration: Programs, Positions, Perspectives.

    ERIC Educational Resources Information Center

    Mills, E. Andrew, Ed.

    This anthology is a collection of 17 articles by arts supervisors and administrators. The authors discuss both specific and general aspects of art education program supervision. Topics include staff development, evaluation of art learning, integrating community cultural resources, establishing elementary art specialists, coordinating multiple arts…

  10. A new semi-supervised learning model combined with Cox and SP-AFT models in cancer survival analysis.

    PubMed

    Chai, Hua; Li, Zi-Na; Meng, De-Yu; Xia, Liang-Yong; Liang, Yong

    2017-10-12

    Gene selection is an attractive and important task in cancer survival analysis. Most existing supervised learning methods can only use the labeled biological data, while the censored data (weakly labeled data) far more than the labeled data are ignored in model building. Trying to utilize such information in the censored data, a semi-supervised learning framework (Cox-AFT model) combined with Cox proportional hazard (Cox) and accelerated failure time (AFT) model was used in cancer research, which has better performance than the single Cox or AFT model. This method, however, is easily affected by noise. To alleviate this problem, in this paper we combine the Cox-AFT model with self-paced learning (SPL) method to more effectively employ the information in the censored data in a self-learning way. SPL is a kind of reliable and stable learning mechanism, which is recently proposed for simulating the human learning process to help the AFT model automatically identify and include samples of high confidence into training, minimizing interference from high noise. Utilizing the SPL method produces two direct advantages: (1) The utilization of censored data is further promoted; (2) the noise delivered to the model is greatly decreased. The experimental results demonstrate the effectiveness of the proposed model compared to the traditional Cox-AFT model.

  11. Exploring Organizational Barriers to Strengthening Clinical Supervision of Psychiatric Nursing Staff: A Longitudinal Controlled Intervention Study.

    PubMed

    Gonge, Henrik; Buus, Niels

    2016-05-01

    This article reports findings from a longitudinal controlled intervention study of 115 psychiatric nursing staff. The twofold objective of the study was: (a) To test whether the intervention could increase clinical supervision participation and effectiveness of existing supervision practices, and (b) To explore organizational constraints to implementation of these strengthened practices. Questionnaire responses and registration of participation in clinical supervision were registered prior and subsequent to the intervention consisting of an action learning oriented reflection on staff's existing clinical supervision practices. Major organizational changes in the intervention group during the study period obstructed the implementation of strengthened clinical supervision practices, but offered an opportunity for studying the influences of organizational constraints. The main findings were that a) diminishing experience of social support from colleagues was associated with reduced participation in clinical supervision, while b) additional quantitative demands were associated with staff reporting difficulties finding time for supervision. This probably explained a negative development in the experienced effectiveness of supervision. It is concluded that organizational support is an imperative for implementation of clinical supervision.

  12. Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and Progressive Supranuclear Palsy.

    PubMed

    Salvatore, C; Cerasa, A; Castiglioni, I; Gallivanone, F; Augimeri, A; Lopez, M; Arabia, G; Morelli, M; Gilardi, M C; Quattrone, A

    2014-01-30

    Supervised machine learning has been proposed as a revolutionary approach for identifying sensitive medical image biomarkers (or combination of them) allowing for automatic diagnosis of individual subjects. The aim of this work was to assess the feasibility of a supervised machine learning algorithm for the assisted diagnosis of patients with clinically diagnosed Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP). Morphological T1-weighted Magnetic Resonance Images (MRIs) of PD patients (28), PSP patients (28) and healthy control subjects (28) were used by a supervised machine learning algorithm based on the combination of Principal Components Analysis as feature extraction technique and on Support Vector Machines as classification algorithm. The algorithm was able to obtain voxel-based morphological biomarkers of PD and PSP. The algorithm allowed individual diagnosis of PD versus controls, PSP versus controls and PSP versus PD with an Accuracy, Specificity and Sensitivity>90%. Voxels influencing classification between PD and PSP patients involved midbrain, pons, corpus callosum and thalamus, four critical regions known to be strongly involved in the pathophysiological mechanisms of PSP. Classification accuracy of individual PSP patients was consistent with previous manual morphological metrics and with other supervised machine learning application to MRI data, whereas accuracy in the detection of individual PD patients was significantly higher with our classification method. The algorithm provides excellent discrimination of PD patients from PSP patients at an individual level, thus encouraging the application of computer-based diagnosis in clinical practice. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Education Supervisors' Views regarding Efficiency of Supervision System and In-Service Training Courses

    ERIC Educational Resources Information Center

    Sahin, Semiha; Cek, Fatma; Zeytin, Nalan

    2011-01-01

    The purpose of this study is to gather the educational supervisors' opinions regarding whether the supervision system and in-service training courses reaches its aim and to obtain their suggestions about the restructuring of the supervision system. The sample of the study is composed of 104 supervisors. The qualitative data were collected through…

  14. Integrating learning assessment and supervision in a competency framework for clinical workplace education.

    PubMed

    Embo, M; Driessen, E; Valcke, M; van der Vleuten, C P M

    2015-02-01

    Although competency-based education is well established in health care education, research shows that the competencies do not always match the reality of clinical workplaces. Therefore, there is a need to design feasible and evidence-based competency frameworks that fit the workplace reality. This theoretical paper outlines a competency-based framework, designed to facilitate learning, assessment and supervision in clinical workplace education. Integration is the cornerstone of this holistic competency framework. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Adaptive Sensing and Fusion of Multi-Sensor Data and Historical Information

    DTIC Science & Technology

    2009-11-06

    integrate MTL and semi-supervised learning into a single framework , thereby exploiting two forms of contextual information. A key new objective of the...this report we integrate MTL and semi-supervised learning into a single framework , thereby exploiting two forms of contextual information. A key new...process [8], denoted as X ∼ BeP (B), where B is a measure on Ω. If B is continuous, X is a Poisson process with intensity B and can be constructed as X = N

  16. A functional supervised learning approach to the study of blood pressure data.

    PubMed

    Papayiannis, Georgios I; Giakoumakis, Emmanuel A; Manios, Efstathios D; Moulopoulos, Spyros D; Stamatelopoulos, Kimon S; Toumanidis, Savvas T; Zakopoulos, Nikolaos A; Yannacopoulos, Athanasios N

    2018-04-15

    In this work, a functional supervised learning scheme is proposed for the classification of subjects into normotensive and hypertensive groups, using solely the 24-hour blood pressure data, relying on the concepts of Fréchet mean and Fréchet variance for appropriate deformable functional models for the blood pressure data. The schemes are trained on real clinical data, and their performance was assessed and found to be very satisfactory. Copyright © 2017 John Wiley & Sons, Ltd.

  17. DL-ReSuMe: A Delay Learning-Based Remote Supervised Method for Spiking Neurons.

    PubMed

    Taherkhani, Aboozar; Belatreche, Ammar; Li, Yuhua; Maguire, Liam P

    2015-12-01

    Recent research has shown the potential capability of spiking neural networks (SNNs) to model complex information processing in the brain. There is biological evidence to prove the use of the precise timing of spikes for information coding. However, the exact learning mechanism in which the neuron is trained to fire at precise times remains an open problem. The majority of the existing learning methods for SNNs are based on weight adjustment. However, there is also biological evidence that the synaptic delay is not constant. In this paper, a learning method for spiking neurons, called delay learning remote supervised method (DL-ReSuMe), is proposed to merge the delay shift approach and ReSuMe-based weight adjustment to enhance the learning performance. DL-ReSuMe uses more biologically plausible properties, such as delay learning, and needs less weight adjustment than ReSuMe. Simulation results have shown that the proposed DL-ReSuMe approach achieves learning accuracy and learning speed improvements compared with ReSuMe.

  18. Supporting Placement Supervision in Clinical Exercise Physiology

    ERIC Educational Resources Information Center

    Sealey, Rebecca M.; Raymond, Jacqueline; Groeller, Herb; Rooney, Kieron; Crabb, Meagan; Watt, Kerrianne

    2015-01-01

    The continued engagement of the professional workforce as supervisors is critical for the sustainability and growth of work-integrated learning activities in university degrees. This study investigated factors that influence the willingness and ability of clinicians to continue to supervise clinical exercise physiology work-integrated learning…

  19. Client-Centered Supervision and Evaluation of Teachers.

    ERIC Educational Resources Information Center

    Schwartz, Libby Zinman

    1978-01-01

    Client-centered supervision is a personal participatory, and developmental approach, which finds its roots in the "third force" psychology of Carl Rogers. It requires a supervisor of sensitivity and humanistic orientation. Teacher evaluation criteria under this system focus on three areas: learning climate, program content, and…

  20. Multi-Source Multi-Target Dictionary Learning for Prediction of Cognitive Decline

    PubMed Central

    Zhang, Jie; Li, Qingyang; Caselli, Richard J.; Thompson, Paul M.; Ye, Jieping; Wang, Yalin

    2017-01-01

    Alzheimer’s Disease (AD) is the most common type of dementia. Identifying correct biomarkers may determine pre-symptomatic AD subjects and enable early intervention. Recently, Multi-task sparse feature learning has been successfully applied to many computer vision and biomedical informatics researches. It aims to improve the generalization performance by exploiting the shared features among different tasks. However, most of the existing algorithms are formulated as a supervised learning scheme. Its drawback is with either insufficient feature numbers or missing label information. To address these challenges, we formulate an unsupervised framework for multi-task sparse feature learning based on a novel dictionary learning algorithm. To solve the unsupervised learning problem, we propose a two-stage Multi-Source Multi-Target Dictionary Learning (MMDL) algorithm. In stage 1, we propose a multi-source dictionary learning method to utilize the common and individual sparse features in different time slots. In stage 2, supported by a rigorous theoretical analysis, we develop a multi-task learning method to solve the missing label problem. Empirical studies on an N = 3970 longitudinal brain image data set, which involves 2 sources and 5 targets, demonstrate the improved prediction accuracy and speed efficiency of MMDL in comparison with other state-of-the-art algorithms. PMID:28943731

  1. Administrative clinical supervision as evaluated by the first-line managers in one health care organization district.

    PubMed

    Sirola-Karvinen, Pirjo; Hyrkäs, Kristiina

    2008-07-01

    The aim of this article is to increase knowledge and understanding of administrative clinical supervision. Administrative clinical supervision is a learning process for leaders that is based on experiences. Only a few studies have focused on administrative clinical supervision. The materials for this study were evaluations collected in 2002-2005 using a clinical supervision evaluation scale (MCSS). The respondents (n = 126) in the study were nursing leaders representing different specialties. The data were analysed statistically. The findings showed that the supervision succeeded very well. The contents of the sessions differed depending on the nurse leader's position. Significant differences were found in the evaluations between specialties and within years of work experience. Clinical supervision was utilized best in the psychiatric and mental health sector. The supervisees' who had long work experience scored the importance and value of clinical supervision as high. Clinical supervision is beneficial for nursing leaders. The experiences were positive and the nursing leaders appreciated the importance and value of clinical supervision. It is important to plan and coordinate a longitudinal evaluation so that clinical supervision for nursing leaders is systematically implemented and continuously developed.

  2. Training Feedforward Neural Networks Using Symbiotic Organisms Search Algorithm

    PubMed Central

    Wu, Haizhou; Luo, Qifang

    2016-01-01

    Symbiotic organisms search (SOS) is a new robust and powerful metaheuristic algorithm, which stimulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. In the supervised learning area, it is a challenging task to present a satisfactory and efficient training algorithm for feedforward neural networks (FNNs). In this paper, SOS is employed as a new method for training FNNs. To investigate the performance of the aforementioned method, eight different datasets selected from the UCI machine learning repository are employed for experiment and the results are compared among seven metaheuristic algorithms. The results show that SOS performs better than other algorithms for training FNNs in terms of converging speed. It is also proven that an FNN trained by the method of SOS has better accuracy than most algorithms compared. PMID:28105044

  3. Intrinsic dimensionality predicts the saliency of natural dynamic scenes.

    PubMed

    Vig, Eleonora; Dorr, Michael; Martinetz, Thomas; Barth, Erhardt

    2012-06-01

    Since visual attention-based computer vision applications have gained popularity, ever more complex, biologically inspired models seem to be needed to predict salient locations (or interest points) in naturalistic scenes. In this paper, we explore how far one can go in predicting eye movements by using only basic signal processing, such as image representations derived from efficient coding principles, and machine learning. To this end, we gradually increase the complexity of a model from simple single-scale saliency maps computed on grayscale videos to spatiotemporal multiscale and multispectral representations. Using a large collection of eye movements on high-resolution videos, supervised learning techniques fine-tune the free parameters whose addition is inevitable with increasing complexity. The proposed model, although very simple, demonstrates significant improvement in predicting salient locations in naturalistic videos over four selected baseline models and two distinct data labeling scenarios.

  4. Supervised and Unsupervised Learning of Multidimensional Acoustic Categories

    ERIC Educational Resources Information Center

    Goudbeek, Martijn; Swingley, Daniel; Smits, Roel

    2009-01-01

    Learning to recognize the contrasts of a language-specific phonemic repertoire can be viewed as forming categories in a multidimensional psychophysical space. Research on the learning of distributionally defined visual categories has shown that categories defined over 1 dimension are easy to learn and that learning multidimensional categories is…

  5. 2009 ESTCP UXO Discrimination Study, San Luis Obispo, CA

    DTIC Science & Technology

    2010-11-01

    SUPERVISED LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 ACTIVE LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8...PERFORMANCE . . . . . . . . . . . . . . . . 29 7.2 ACTIVE LEARNING CLASSIFICATION PERFORMANCE . . . . . . . . . . . 30 8 COST ASSESSMENT 32 9... learning on EM61-array and TEMTADS data. During active learning , SIG started with no a priori labeled data, and acquired labels for a small subset that

  6. Visual texture perception via graph-based semi-supervised learning

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Dong, Junyu; Zhong, Guoqiang

    2018-04-01

    Perceptual features, for example direction, contrast and repetitiveness, are important visual factors for human to perceive a texture. However, it needs to perform psychophysical experiment to quantify these perceptual features' scale, which requires a large amount of human labor and time. This paper focuses on the task of obtaining perceptual features' scale of textures by small number of textures with perceptual scales through a rating psychophysical experiment (what we call labeled textures) and a mass of unlabeled textures. This is the scenario that the semi-supervised learning is naturally suitable for. This is meaningful for texture perception research, and really helpful for the perceptual texture database expansion. A graph-based semi-supervised learning method called random multi-graphs, RMG for short, is proposed to deal with this task. We evaluate different kinds of features including LBP, Gabor, and a kind of unsupervised deep features extracted by a PCA-based deep network. The experimental results show that our method can achieve satisfactory effects no matter what kind of texture features are used.

  7. Using deep learning in image hyper spectral segmentation, classification, and detection

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuying; Su, Zhenyu

    2018-02-01

    Recent years have shown that deep learning neural networks are a valuable tool in the field of computer vision. Deep learning method can be used in applications like remote sensing such as Land cover Classification, Detection of Vehicle in Satellite Images, Hyper spectral Image classification. This paper addresses the use of the deep learning artificial neural network in Satellite image segmentation. Image segmentation plays an important role in image processing. The hue of the remote sensing image often has a large hue difference, which will result in the poor display of the images in the VR environment. Image segmentation is a pre processing technique applied to the original images and splits the image into many parts which have different hue to unify the color. Several computational models based on supervised, unsupervised, parametric, probabilistic region based image segmentation techniques have been proposed. Recently, one of the machine learning technique known as, deep learning with convolution neural network has been widely used for development of efficient and automatic image segmentation models. In this paper, we focus on study of deep neural convolution network and its variants for automatic image segmentation rather than traditional image segmentation strategies.

  8. Projected regression method for solving Fredholm integral equations arising in the analytic continuation problem of quantum physics

    NASA Astrophysics Data System (ADS)

    Arsenault, Louis-François; Neuberg, Richard; Hannah, Lauren A.; Millis, Andrew J.

    2017-11-01

    We present a supervised machine learning approach to the inversion of Fredholm integrals of the first kind as they arise, for example, in the analytic continuation problem of quantum many-body physics. The approach provides a natural regularization for the ill-conditioned inverse of the Fredholm kernel, as well as an efficient and stable treatment of constraints. The key observation is that the stability of the forward problem permits the construction of a large database of outputs for physically meaningful inputs. Applying machine learning to this database generates a regression function of controlled complexity, which returns approximate solutions for previously unseen inputs; the approximate solutions are then projected onto the subspace of functions satisfying relevant constraints. Under standard error metrics the method performs as well or better than the Maximum Entropy method for low input noise and is substantially more robust to increased input noise. We suggest that the methodology will be similarly effective for other problems involving a formally ill-conditioned inversion of an integral operator, provided that the forward problem can be efficiently solved.

  9. The New Possibilities from "Big Data" to Overlooked Associations Between Diabetes, Biochemical Parameters, Glucose Control, and Osteoporosis.

    PubMed

    Kruse, Christian

    2018-06-01

    To review current practices and technologies within the scope of "Big Data" that can further our understanding of diabetes mellitus and osteoporosis from large volumes of data. "Big Data" techniques involving supervised machine learning, unsupervised machine learning, and deep learning image analysis are presented with examples of current literature. Supervised machine learning can allow us to better predict diabetes-induced osteoporosis and understand relative predictor importance of diabetes-affected bone tissue. Unsupervised machine learning can allow us to understand patterns in data between diabetic pathophysiology and altered bone metabolism. Image analysis using deep learning can allow us to be less dependent on surrogate predictors and use large volumes of images to classify diabetes-induced osteoporosis and predict future outcomes directly from images. "Big Data" techniques herald new possibilities to understand diabetes-induced osteoporosis and ascertain our current ability to classify, understand, and predict this condition.

  10. Fundamentals of Supervision.

    ERIC Educational Resources Information Center

    New Mexico State Personnel Office, Santa Fe.

    The correspondence course in supervision is designed for adults interested in self development who hope either immediately or ultimately to assume supervisory responsibilities. Each of the 10 chapters contains an introduction, a statement of what should be learned from the chapter, written course material in paragraph and outline form, and a…

  11. The Case of the "Open Secrets": Increasing the Effectiveness of Instructional Supervision.

    ERIC Educational Resources Information Center

    Duffy, Francis M.

    Conditions in schools that reduce the effectiveness and perceived value of instructional supervision can be diagnosed and corrected through a cyclical process called "organizational learning." Rather than merely responding to symptoms, this method focuses on eliminating or mitigating the underlying causes of "organizational…

  12. Enhancing Adult Learning in Clinical Supervision

    ERIC Educational Resources Information Center

    Goldman, Stuart

    2011-01-01

    Objective/Background: For decades, across almost every training site, clinical supervision has been considered "central to the development of skills" in psychiatry. The crucial supervisor/supervisee relationship has been described extensively in the literature, most often framed as a clinical apprenticeship of the novice to the master craftsman.…

  13. Extracting PICO Sentences from Clinical Trial Reports using Supervised Distant Supervision

    PubMed Central

    Wallace, Byron C.; Kuiper, Joël; Sharma, Aakash; Zhu, Mingxi (Brian); Marshall, Iain J.

    2016-01-01

    Systematic reviews underpin Evidence Based Medicine (EBM) by addressing precise clinical questions via comprehensive synthesis of all relevant published evidence. Authors of systematic reviews typically define a Population/Problem, Intervention, Comparator, and Outcome (a PICO criteria) of interest, and then retrieve, appraise and synthesize results from all reports of clinical trials that meet these criteria. Identifying PICO elements in the full-texts of trial reports is thus a critical yet time-consuming step in the systematic review process. We seek to expedite evidence synthesis by developing machine learning models to automatically extract sentences from articles relevant to PICO elements. Collecting a large corpus of training data for this task would be prohibitively expensive. Therefore, we derive distant supervision (DS) with which to train models using previously conducted reviews. DS entails heuristically deriving ‘soft’ labels from an available structured resource. However, we have access only to unstructured, free-text summaries of PICO elements for corresponding articles; we must derive from these the desired sentence-level annotations. To this end, we propose a novel method – supervised distant supervision (SDS) – that uses a small amount of direct supervision to better exploit a large corpus of distantly labeled instances by learning to pseudo-annotate articles using the available DS. We show that this approach tends to outperform existing methods with respect to automated PICO extraction. PMID:27746703

  14. Self-supervised learning as an enabling technology for future space exploration robots: ISS experiments on monocular distance learning

    NASA Astrophysics Data System (ADS)

    van Hecke, Kevin; de Croon, Guido C. H. E.; Hennes, Daniel; Setterfield, Timothy P.; Saenz-Otero, Alvar; Izzo, Dario

    2017-11-01

    Although machine learning holds an enormous promise for autonomous space robots, it is currently not employed because of the inherent uncertain outcome of learning processes. In this article we investigate a learning mechanism, Self-Supervised Learning (SSL), which is very reliable and hence an important candidate for real-world deployment even on safety-critical systems such as space robots. To demonstrate this reliability, we introduce a novel SSL setup that allows a stereo vision equipped robot to cope with the failure of one of its cameras. The setup learns to estimate average depth using a monocular image, by using the stereo vision depths from the past as trusted ground truth. We present preliminary results from an experiment on the International Space Station (ISS) performed with the MIT/NASA SPHERES VERTIGO satellite. The presented experiments were performed on October 8th, 2015 on board the ISS. The main goals were (1) data gathering, and (2) navigation based on stereo vision. First the astronaut Kimiya Yui moved the satellite around the Japanese Experiment Module to gather stereo vision data for learning. Subsequently, the satellite freely explored the space in the module based on its (trusted) stereo vision system and a pre-programmed exploration behavior, while simultaneously performing the self-supervised learning of monocular depth estimation on board. The two main goals were successfully achieved, representing the first online learning robotic experiments in space. These results lay the groundwork for a follow-up experiment in which the satellite will use the learned single-camera depth estimation for autonomous exploration in the ISS, and are an advancement towards future space robots that continuously improve their navigation capabilities over time, even in harsh and completely unknown space environments.

  15. Clinical supervision: from rhetoric to accident and emergency practice.

    PubMed

    Castille, K

    1996-01-01

    Clinical supervision is firmly on the nursing agenda and, when implemented, will affect every practising nurse. However, current literature offers little in the way of advice on the practical application in a setting like the Accident and Emergency department (A & E). The aim of this article is to encourage A & E nurses to consider how clinical supervision can best be implemented into their current practice. A framework is presented to show how one A & E department has embraced the concept of clinical supervision and incorporated in into their A & E nursing practice. The evaluation, to date, has been positive and A & E nurses have reported that they enjoy the sessions and consider clinical supervision to be a useful learning experience.

  16. High-order distance-based multiview stochastic learning in image classification.

    PubMed

    Yu, Jun; Rui, Yong; Tang, Yuan Yan; Tao, Dacheng

    2014-12-01

    How do we find all images in a larger set of images which have a specific content? Or estimate the position of a specific object relative to the camera? Image classification methods, like support vector machine (supervised) and transductive support vector machine (semi-supervised), are invaluable tools for the applications of content-based image retrieval, pose estimation, and optical character recognition. However, these methods only can handle the images represented by single feature. In many cases, different features (or multiview data) can be obtained, and how to efficiently utilize them is a challenge. It is inappropriate for the traditionally concatenating schema to link features of different views into a long vector. The reason is each view has its specific statistical property and physical interpretation. In this paper, we propose a high-order distance-based multiview stochastic learning (HD-MSL) method for image classification. HD-MSL effectively combines varied features into a unified representation and integrates the labeling information based on a probabilistic framework. In comparison with the existing strategies, our approach adopts the high-order distance obtained from the hypergraph to replace pairwise distance in estimating the probability matrix of data distribution. In addition, the proposed approach can automatically learn a combination coefficient for each view, which plays an important role in utilizing the complementary information of multiview data. An alternative optimization is designed to solve the objective functions of HD-MSL and obtain different views on coefficients and classification scores simultaneously. Experiments on two real world datasets demonstrate the effectiveness of HD-MSL in image classification.

  17. Issues Supervising Family Violence Cases: Advocacy, Ethical Documentation, and Supervisees' Reactions

    ERIC Educational Resources Information Center

    McBride, Dawn L.

    2010-01-01

    Selected clinical and ethical issues associated with providing supervision involving family violence cases are outlined. It is argued that supervisees helping clients with trauma histories require skills beyond learning how to process the trauma with their clients. Advocacy, social action, and coordinating case conferences are some of the…

  18. Supervising Unsuccessful Student Teaching Assignments: Two Terminator's Tales.

    ERIC Educational Resources Information Center

    St. Maurice, Henry

    2001-01-01

    Discusses problems that arise when there is a conflict between a student teacher and the supervising teacher and when a student teacher does not perform satisfactorily. Focuses on how supervisors deal with failed assignments and how beginning teachers improve their teaching and learn from failed assignments. (Contains 21 references.) (JOW)

  19. Pedagogical Concerns in Doctoral Supervision: A Challenge for Pedagogy

    ERIC Educational Resources Information Center

    Zeegers, Margaret; Barron, Deirdre

    2012-01-01

    Purpose: The purpose of this paper is to focus on pedagogy as a crucial element in postgraduate research undertakings, implying active involvement of both student and supervisor in process of teaching and learning. Design/methodology/approach: Drawing on Australian higher degree research supervision practice to illustrate their argument, the…

  20. Don't Leave Teaching to Chance: Learning Objectives for Psychodynamic Psychotherapy Supervision

    ERIC Educational Resources Information Center

    Rojas, Alicia; Arbuckle, Melissa; Cabaniss, Deborah

    2010-01-01

    Objective: The way in which the competencies for psychodynamic psychotherapy specified by the Psychiatry Residency Review Committee of the Accreditation Council for Graduate Medical Education translate into the day-to-day work of individual supervision remains unstudied and unspecified. The authors hypothesized that despite the existence of…

  1. Teacher Supervision and Evaluation Challenges: Canadian Perspectives on Overall Instructional Leadership

    ERIC Educational Resources Information Center

    Brandon, Jim; Hollweck, Trista; Donlevy, James Kent; Whalen, Catherine

    2018-01-01

    This inquiry focuses on the "overall instructional leadership" approaches used by exemplary principals in three high performing Canadian provinces to overcome three persistent obstacles to effective teacher supervision and evaluation: (a) the management challenge, (b) the complexity challenge, and (c) the learning challenge. Analysis of…

  2. Keys to Successful Community Health Worker Supervision

    ERIC Educational Resources Information Center

    Duthie, Patricia; Hahn, Janet S.; Philippi, Evelyn; Sanchez, Celeste

    2012-01-01

    For many years community health workers (CHW) have been important to the implementation of many of our health system's community health interventions. Through this experience, we have recognized some unique challenges in community health worker supervision and have highlighted what we have learned in order to help other organizations effectively…

  3. Learning to Supervise: Four Journeys

    ERIC Educational Resources Information Center

    Turner, Gill

    2015-01-01

    This article explores the experiences of four early career academics as they begin to undertake doctoral supervision. Each supervisor focused on one of their supervisees and drew and described a Journey Plot depicting the high and low points of their supervisory experience with their student. Two questions were addressed by the research: (1) How…

  4. Australia's Supervising Teachers: Motivators and Challenges to Inform Professional Learning

    ERIC Educational Resources Information Center

    Nielsen, Wendy; Mena, Juanjo; Clarke, Anthony; O'Shea, Sarah; Hoban, Garry; Collins, John

    2017-01-01

    This paper offers an overview of what motivates and challenges Australian supervising teachers to work with preservice teachers in their classrooms. In the contemporary Australian context of new National Professional Standards for Teachers, a new national curriculum and new standards for Initial Teacher Education programs, what motivates and…

  5. Building Mental Models by Dissecting Physical Models

    ERIC Educational Resources Information Center

    Srivastava, Anveshna

    2016-01-01

    When students build physical models from prefabricated components to learn about model systems, there is an implicit trade-off between the physical degrees of freedom in building the model and the intensity of instructor supervision needed. Models that are too flexible, permitting multiple possible constructions require greater supervision to…

  6. 17 CFR 23.451 - Political contributions by certain swap dealers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... any person who supervises, directly or indirectly, such employee; and (iii) Any political action... Special Entity for the swap dealer and any person who supervises, directly or indirectly, such employee...) After learning of the contribution: (A) Has taken all available steps to cause the contributor involved...

  7. 17 CFR 23.451 - Political contributions by certain swap dealers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... any person who supervises, directly or indirectly, such employee; and (iii) Any political action... Special Entity for the swap dealer and any person who supervises, directly or indirectly, such employee...) After learning of the contribution: (A) Has taken all available steps to cause the contributor involved...

  8. 17 CFR 23.451 - Political contributions by certain swap dealers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... any person who supervises, directly or indirectly, such employee; and (iii) Any political action... Special Entity for the swap dealer and any person who supervises, directly or indirectly, such employee...) After learning of the contribution: (A) Has taken all available steps to cause the contributor involved...

  9. Research Supervision: The Research Management Matrix

    ERIC Educational Resources Information Center

    Maxwell, T. W.; Smyth, Robyn

    2010-01-01

    We briefly make a case for re-conceptualising research project supervision/advising as the consideration of three inter-related areas: the learning and teaching process; developing the student; and producing the research project/outcome as a social practice. We use this as our theoretical base for an heuristic tool, "the research management…

  10. Independent School Teachers' Perceptions of Supervision and Evaluation

    ERIC Educational Resources Information Center

    Graybeal, Anne E.

    2017-01-01

    This dissertation addressed the teacher supervision process in one independent school in the United States. It explored teachers' approaches to giving and receiving feedback, their perceptions of students' motivation for learning versus their own, and the significance of their professional identities as teachers. The study was motivated by three…

  11. Learning Semantics of Gestural Instructions for Human-Robot Collaboration

    PubMed Central

    Shukla, Dadhichi; Erkent, Özgür; Piater, Justus

    2018-01-01

    Designed to work safely alongside humans, collaborative robots need to be capable partners in human-robot teams. Besides having key capabilities like detecting gestures, recognizing objects, grasping them, and handing them over, these robots need to seamlessly adapt their behavior for efficient human-robot collaboration. In this context we present the fast, supervised Proactive Incremental Learning (PIL) framework for learning associations between human hand gestures and the intended robotic manipulation actions. With the proactive aspect, the robot is competent to predict the human's intent and perform an action without waiting for an instruction. The incremental aspect enables the robot to learn associations on the fly while performing a task. It is a probabilistic, statistically-driven approach. As a proof of concept, we focus on a table assembly task where the robot assists its human partner. We investigate how the accuracy of gesture detection affects the number of interactions required to complete the task. We also conducted a human-robot interaction study with non-roboticist users comparing a proactive with a reactive robot that waits for instructions. PMID:29615888

  12. Learning Semantics of Gestural Instructions for Human-Robot Collaboration.

    PubMed

    Shukla, Dadhichi; Erkent, Özgür; Piater, Justus

    2018-01-01

    Designed to work safely alongside humans, collaborative robots need to be capable partners in human-robot teams. Besides having key capabilities like detecting gestures, recognizing objects, grasping them, and handing them over, these robots need to seamlessly adapt their behavior for efficient human-robot collaboration. In this context we present the fast, supervised Proactive Incremental Learning (PIL) framework for learning associations between human hand gestures and the intended robotic manipulation actions. With the proactive aspect, the robot is competent to predict the human's intent and perform an action without waiting for an instruction. The incremental aspect enables the robot to learn associations on the fly while performing a task. It is a probabilistic, statistically-driven approach. As a proof of concept, we focus on a table assembly task where the robot assists its human partner. We investigate how the accuracy of gesture detection affects the number of interactions required to complete the task. We also conducted a human-robot interaction study with non-roboticist users comparing a proactive with a reactive robot that waits for instructions.

  13. Hierarchical Gene Selection and Genetic Fuzzy System for Cancer Microarray Data Classification

    PubMed Central

    Nguyen, Thanh; Khosravi, Abbas; Creighton, Douglas; Nahavandi, Saeid

    2015-01-01

    This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice. PMID:25823003

  14. Hierarchical gene selection and genetic fuzzy system for cancer microarray data classification.

    PubMed

    Nguyen, Thanh; Khosravi, Abbas; Creighton, Douglas; Nahavandi, Saeid

    2015-01-01

    This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice.

  15. APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musson, John C.; Seaton, Chad; Spata, Mike F.

    2012-11-01

    Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an activation layer, is responsible for the removal of saturation effects. Implementationmore » of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.« less

  16. Semiautomatic mapping of permafrost in the Yukon Flats, Alaska

    NASA Astrophysics Data System (ADS)

    Gulbrandsen, Mats Lundh; Minsley, Burke J.; Ball, Lyndsay B.; Hansen, Thomas Mejer

    2016-12-01

    Thawing of permafrost due to global warming can have major impacts on hydrogeological processes, climate feedback, arctic ecology, and local environments. To understand these effects and processes, it is crucial to know the distribution of permafrost. In this study we exploit the fact that airborne electromagnetic (AEM) data are sensitive to the distribution of permafrost and demonstrate how the distribution of permafrost in the Yukon Flats, Alaska, is mapped in an efficient (semiautomatic) way, using a combination of supervised and unsupervised (machine) learning algorithms, i.e., Smart Interpretation and K-means clustering. Clustering is used to sort unfrozen and frozen regions, and Smart Interpretation is used to predict the depth of permafrost based on expert interpretations. This workflow allows, for the first time, a quantitative and objective approach to efficiently map permafrost based on large amounts of AEM data.

  17. Semiautomatic mapping of permafrost in the Yukon Flats, Alaska

    USGS Publications Warehouse

    Gulbrandsen, Mats Lundh; Minsley, Burke J.; Ball, Lyndsay B.; Hansen, Thomas Mejer

    2016-01-01

    Thawing of permafrost due to global warming can have major impacts on hydrogeological processes, climate feedback, arctic ecology, and local environments. To understand these effects and processes, it is crucial to know the distribution of permafrost. In this study we exploit the fact that airborne electromagnetic (AEM) data are sensitive to the distribution of permafrost and demonstrate how the distribution of permafrost in the Yukon Flats, Alaska, is mapped in an efficient (semiautomatic) way, using a combination of supervised and unsupervised (machine) learning algorithms, i.e., Smart Interpretation and K-means clustering. Clustering is used to sort unfrozen and frozen regions, and Smart Interpretation is used to predict the depth of permafrost based on expert interpretations. This workflow allows, for the first time, a quantitative and objective approach to efficiently map permafrost based on large amounts of AEM data.

  18. The enhancement model of ICT competence for the teachers of SMP Terbuka in Central Java to support long distance learning program

    NASA Astrophysics Data System (ADS)

    Widowati, Trisnani; Purwanti, Dwi

    2017-03-01

    ICT-based learning for SMP Terbuka is a manifestation of the first pillar of DEPDIKNAS Strategic Plan 2005-2009, about the use of ICT as the facility of long distance learning. By implementing ICT-based learning, the communication between the teacher and the students is possible to happen although both parties are in differnet places. The problem in implementing ICT-based learning for SMP Terbuka is the low competence of the teachers in ICT mastery, because this research is aimed to formulate the enhancement model of ICT competence for the teachers of SMP Terbuka in Central Java to support long distance learning program. This research shows that Supervised-Teachers and Tutor Teachers Competence in ICT is still low with the average of Supervised-Teachers competence in operating Ms.Word application of 59.6%, Ms.Excel 55.40%, Power Point 43.40% and internet mastery of 41.8%; while the competence of Tutor Teachers is lower with the average of 40.40% in operating Ms. Word, 35.20% in Ms.Excel, 28.00% in Power Point, and 29% in internet mastery. It means that Supervised-Teachers understand ICT, but they do not master it; while Tutor Teachers have just understood ICT and have a low mastery in Ms.Word. The output of this research is: The new findings of the enhancement model of ICT competence for the teachers of SMP Terbuka in Central Java to support long distance learning program.

  19. Supervised machine learning and active learning in classification of radiology reports.

    PubMed

    Nguyen, Dung H M; Patrick, Jon D

    2014-01-01

    This paper presents an automated system for classifying the results of imaging examinations (CT, MRI, positron emission tomography) into reportable and non-reportable cancer cases. This system is part of an industrial-strength processing pipeline built to extract content from radiology reports for use in the Victorian Cancer Registry. In addition to traditional supervised learning methods such as conditional random fields and support vector machines, active learning (AL) approaches were investigated to optimize training production and further improve classification performance. The project involved two pilot sites in Victoria, Australia (Lake Imaging (Ballarat) and Peter MacCallum Cancer Centre (Melbourne)) and, in collaboration with the NSW Central Registry, one pilot site at Westmead Hospital (Sydney). The reportability classifier performance achieved 98.25% sensitivity and 96.14% specificity on the cancer registry's held-out test set. Up to 92% of training data needed for supervised machine learning can be saved by AL. AL is a promising method for optimizing the supervised training production used in classification of radiology reports. When an AL strategy is applied during the data selection process, the cost of manual classification can be reduced significantly. The most important practical application of the reportability classifier is that it can dramatically reduce human effort in identifying relevant reports from the large imaging pool for further investigation of cancer. The classifier is built on a large real-world dataset and can achieve high performance in filtering relevant reports to support cancer registries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Helping Hands: Using Augmented Reality to Provide Remote Guidance to Health Professionals.

    PubMed

    Mather, Carey; Barnett, Tony; Broucek, Vlasti; Saunders, Annette; Grattidge, Darren; Huang, Weidong

    2017-01-01

    Access to expert practitioners or geographic distance can compound the capacity for appropriate supervision of health professionals in the workplace. Guidance and support of clinicians and students to undertake new or infrequent procedures can be resource intensive. The Helping Hands remote augmented reality system is an innovation to support the development of, and oversee the acquisition of procedural skills through remote learning and teaching supervision while in clinical practice. Helping Hands is a wearable, portable, hands-free, low cost system comprised of two networked laptops, a head-mounted display worn by the recipient and a display screen used remotely by the instructor. Hand hygiene was used as the test procedure as it is a foundation skill learned by all health profession students. The technology supports unmediated remote gesture guidance by augmenting the object with the Helping Hands of a health professional. A laboratory-based study and field trial tested usability and feasibility of the remote guidance system. The study found the Helping Hands system did not compromise learning outcomes. This innovation has the potential to transform remote learning and teaching supervision by enabling health professionals and students opportunities to develop and improve their procedural performance at the workplace.

  1. Risk management and lessons learned solutions for satellite product assurance

    NASA Astrophysics Data System (ADS)

    Larrère, Jean-Luc

    2004-08-01

    The historic trend of the space industry towards lower cost programmes and more generally a better economic efficiency raises a difficult question to the quality assurance community: how to achieve the same—or better—mission success rate while drastically reducing the cost of programmes, hence the cost and level of quality assurance activities. EADS Astrium Earth Observation and Science (France) Business Unit have experimented Risk Management and Lessons Learned on their satellite programmes to achieve this goal. Risk analysis and management are deployed from the programme proposal phase through the development and operations phases. Results of the analysis and the corresponding risk mitigation actions are used to tailor the product assurance programme and activities. Lessons learned have been deployed as a systematic process to collect positive and negative experience from past and on-going programmes and feed them into new programmes. Monitoring and justification of their implementation in programmes is done under supervision from the BU quality assurance function. Control of the system is ensured by the company internal review system. Deployment of these methods has shown that the quality assurance function becomes more integrated in the programme team and development process and that its tasks gain focus and efficiency while minimising the risks associated with new space programmes.

  2. Students Chart Their Own IA Programs

    ERIC Educational Resources Information Center

    Lavender, John; Ross, John

    1973-01-01

    Junior high school industrial arts students learn in a program in which they select their area of learning, manage their activities, supervise themselves in procedures, and investigate career opportunities. (DS)

  3. Supervised learning of probability distributions by neural networks

    NASA Technical Reports Server (NTRS)

    Baum, Eric B.; Wilczek, Frank

    1988-01-01

    Supervised learning algorithms for feedforward neural networks are investigated analytically. The back-propagation algorithm described by Werbos (1974), Parker (1985), and Rumelhart et al. (1986) is generalized by redefining the values of the input and output neurons as probabilities. The synaptic weights are then varied to follow gradients in the logarithm of likelihood rather than in the error. This modification is shown to provide a more rigorous theoretical basis for the algorithm and to permit more accurate predictions. A typical application involving a medical-diagnosis expert system is discussed.

  4. Supervised Machine Learning for Regionalization of Environmental Data: Distribution of Uranium in Groundwater in Ukraine

    NASA Astrophysics Data System (ADS)

    Govorov, Michael; Gienko, Gennady; Putrenko, Viktor

    2018-05-01

    In this paper, several supervised machine learning algorithms were explored to define homogeneous regions of con-centration of uranium in surface waters in Ukraine using multiple environmental parameters. The previous study was focused on finding the primary environmental parameters related to uranium in ground waters using several methods of spatial statistics and unsupervised classification. At this step, we refined the regionalization using Artifi-cial Neural Networks (ANN) techniques including Multilayer Perceptron (MLP), Radial Basis Function (RBF), and Convolutional Neural Network (CNN). The study is focused on building local ANN models which may significantly improve the prediction results of machine learning algorithms by taking into considerations non-stationarity and autocorrelation in spatial data.

  5. The impact of a human resource management intervention on the capacity of supervisors to support and supervise their staff at health facility level.

    PubMed

    Uduma, Ogenna; Galligan, Marie; Mollel, Henry; Masanja, Honorati; Bradley, Susan; McAuliffe, Eilish

    2017-08-30

    A systematic and structured approach to the support and supervision of health workers can strengthen the human resource management function at the district and health facility levels and may help address the current crisis in human resources for health in sub-Saharan Africa by improving health workers' motivation and retention. A supportive supervision programme including (a) a workshop, (b) intensive training and (c) action learning sets was designed to improve human resource management in districts and health facilities in Tanzania. We conducted a randomised experimental design to evaluate the impact of the intervention. Data on the same measures were collected pre and post the intervention in order to identify any changes that occurred (between baseline and end of project) in the capacity of supervisors in intervention a + b and intervention a + b + c to support and supervise their staff. These were compared to supervisors in a control group in each of Tanga, Iringa and Tabora regions (n = 9). A quantitative survey of 95 and 108 supervisors and 196 and 187 health workers sampled at baseline and end-line, respectively, also contained open-ended responses which were analysed separately. Supervisors assessed their own competency levels pre- and post-intervention. End-line samples generally scored higher compared to the corresponding baseline in both intervention groups for competence activities. Significant differences between baseline and end-line were observed in the total scores on 'maintaining high levels of performance', 'dealing with performance problems', 'counselling a troubled employee' and 'time management' in intervention a + b. In contrast, for intervention a + b + c, a significant difference in distribution of scores was only found on 'counselling a troubled employee', although the end-line mean scores were higher than their corresponding baseline mean scores in all cases. Similar trends to those in the supervisors' reports are seen in health workers data in terms of more efficient supervision processes, although the increases are not as marked. A number of different indicators were measured to assess the impact of the supportive supervision intervention on the a + b and a + b + c intervention sites. The average frequency of supervision visits and the supervisors' competency levels across the facilities increased in both intervention types. This would suggest that the intervention proved effective in raising awareness of the importance of supervision and this understanding led to action in the form of more supportive supervision.

  6. Goal Directed Model Inversion: Learning Within Domain Constraints

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.; Compton, Michael; Raghavan, Bharathi; Friedland, Peter (Technical Monitor)

    1994-01-01

    Goal Directed Model Inversion (GDMI) is an algorithm designed to generalize supervised learning to the case where target outputs are not available to the learning system. The output of the learning system becomes the input to some external device or transformation, and only the output of this device or transformation can be compared to a desired target. The fundamental driving mechanism of GDMI is to learn from success. Given that a wrong outcome is achieved, one notes that the action that produced that outcome "would have been right if the outcome had been the desired one." The algorithm makes use of these intermediate "successes" to achieve the final goal. A unique and potentially very important feature of this algorithm is the ability to modify the output of the learning module to force upon it a desired syntactic structure. This differs from ordinary supervised learning in the following way: in supervised learning the exact desired output pattern must be provided. In GDMI instead, it is possible to require simply that the output obey certain rules, i.e., that it "make sense" in some way determined by the knowledge domain. The exact pattern that will achieve the desired outcome is then found by the system. The ability to impose rules while allowing the system to search for its own answers in the context of neural networks is potentially a major breakthrough in two ways: (1) it may allow the construction of networks that can incorporate immediately some important knowledge, i.e., would not need to learn everything from scratch as normally required at present; and (2) learning and searching would be limited to the areas where it is necessary, thus facilitating and speeding up the process. These points are illustrated with examples from robotic path planning and parametric design.

  7. Goal Directed Model Inversion: Learning Within Domain Constraints

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.; Compton, Michael; Raghavan, Bharathi; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    Goal Directed Model Inversion (GDMI) is an algorithm designed to generalize supervised learning to the case where target outputs are not available to the learning system. The output of the learning system becomes the input to some external device or transformation, and only the output of this device or transformation can be compared to a desired target. The fundamental driving mechanism of GDMI is to learn from success. Given that a wrong outcome is achieved, one notes that the action that produced that outcome "would have been right if the outcome had been the desired one." The algorithm makes use of these intermediate "successes" to achieve the final goal. A unique and potentially very important feature of this algorithm is the ability to modify the output of the learning module to force upon it a desired syntactic structure. This differs from ordinary supervised learning in the following way: in supervised learning the exact desired output pattern must be provided. In GDMI instead, it is possible to require simply that the output obey certain rules, i.e., that it "make sense" in some way determined by the knowledge domain. The exact pattern that will achieve the desired outcome is then found by the system. The ability to impose rules while allowing the system to search for its own answers in the context of neural networks is potentially a major breakthrough in two ways: 1) it may allow the construction of networks that can incorporate immediately some important knowledge, i.e. would not need to learn everything from scratch as normally required at present, and 2) learning and searching would be limited to the areas where it is necessary, thus facilitating and speeding up the process. These points are illustrated with examples from robotic path planning and parametric design.

  8. Exploiting the potential of unlabeled endoscopic video data with self-supervised learning.

    PubMed

    Ross, Tobias; Zimmerer, David; Vemuri, Anant; Isensee, Fabian; Wiesenfarth, Manuel; Bodenstedt, Sebastian; Both, Fabian; Kessler, Philip; Wagner, Martin; Müller, Beat; Kenngott, Hannes; Speidel, Stefanie; Kopp-Schneider, Annette; Maier-Hein, Klaus; Maier-Hein, Lena

    2018-06-01

    Surgical data science is a new research field that aims to observe all aspects of the patient treatment process in order to provide the right assistance at the right time. Due to the breakthrough successes of deep learning-based solutions for automatic image annotation, the availability of reference annotations for algorithm training is becoming a major bottleneck in the field. The purpose of this paper was to investigate the concept of self-supervised learning to address this issue. Our approach is guided by the hypothesis that unlabeled video data can be used to learn a representation of the target domain that boosts the performance of state-of-the-art machine learning algorithms when used for pre-training. Core of the method is an auxiliary task based on raw endoscopic video data of the target domain that is used to initialize the convolutional neural network (CNN) for the target task. In this paper, we propose the re-colorization of medical images with a conditional generative adversarial network (cGAN)-based architecture as auxiliary task. A variant of the method involves a second pre-training step based on labeled data for the target task from a related domain. We validate both variants using medical instrument segmentation as target task. The proposed approach can be used to radically reduce the manual annotation effort involved in training CNNs. Compared to the baseline approach of generating annotated data from scratch, our method decreases exploratively the number of labeled images by up to 75% without sacrificing performance. Our method also outperforms alternative methods for CNN pre-training, such as pre-training on publicly available non-medical (COCO) or medical data (MICCAI EndoVis2017 challenge) using the target task (in this instance: segmentation). As it makes efficient use of available (non-)public and (un-)labeled data, the approach has the potential to become a valuable tool for CNN (pre-)training.

  9. When approved is not enough: development of a supervision consultation model.

    PubMed

    Green, S; Shilts, L; Bacigalupe, G

    2001-10-01

    The dramatic increase in the literature that addresses family therapy training and supervision over the last decade has been predominantly in the area of theory, rather than practice. This article describes the development of a meta-supervisory learning context for approved supervisors and provides examples of interactions between supervisors that subsequently influenced both therapy and supervision. We delineate the assumptions that inform our work and offer specific guidelines for supervisors who wish to implement a similar model in their own contexts. We provide suggestions for a proactive refiguring of supervision that may have profound effects and benefits for supervisors and supervisees alike.

  10. Bridging the Learning Gap: Cross-Cultural Learning and Teaching through Distance

    ERIC Educational Resources Information Center

    Mullings, Delores V.

    2015-01-01

    This project engaged students, practitioners, and educators from University of Labor and Social Affairs, Cau Giay District, Hanoi and Newfoundland and Labrador, Canada, in a cross-cultural distance learning and teaching collaboration. Two groups met simultaneously through Skype videoconferencing to discuss and learn about field supervision and…

  11. Learning by Helping? Undergraduate Communication Outcomes Associated with Training or Service-Learning Experiences

    ERIC Educational Resources Information Center

    Katz, Jennifer; DuBois, Melinda; Wigderson, Sara

    2014-01-01

    This study investigated communication outcomes after training or applied service-learning experiences. Pre-practicum trainees learned active listening skills over 10 weeks. Practicum students were successful trainees who staffed a helpline. Community interns were trained and supervised at community agencies. Undergraduate students in psychology…

  12. Beyond the Curriculum: Creating the Conditions for Learning.

    ERIC Educational Resources Information Center

    Grauer, Stuart

    Using current mind/brain research, this paper explores the "hidden curriculum" in the contexts of teaching, learning and supervision. It explains ways in which current research on the nature of learning can fit into today's typical, "clinical" teaching techniques. The importance of respecting individual modes of learning is stressed; further to…

  13. Medical students' perceptions of their learning environment during a mandatory research project.

    PubMed

    Möller, Riitta; Ponzer, Sari; Shoshan, Maria

    2017-10-20

    To explore medical students´ perceptions of their learning environment during a mandatory 20-week scientific research project. This cross-sectional study was conducted between 2011 and 2013. A total of 651 medical students were asked to fill in the Clinical Learning Environment, Supervision, and Nurse Teacher (CLES+T) questionnaire, and 439 (mean age 26 years, range 21-40, 60% females) returned the questionnaire, which corresponds to a response rate of 67%. The Mann-Whitney U test or the Kruskal-Wallis test were used to compare the research environments. The item My workplace can be regarded as a good learning environment correlated strongly with the item There were sufficient meaningful learning situations (r= 0.71, p<0.001). Overall satisfaction with supervision correlated strongly with the items interaction (r=0.78, p < 0.001), feedback (r=0.76, p<0.001), and a sense of trust (r=0.71, p < 0.001).  Supervisors´ failures to bridge the gap between theory and practice or to explain intended learning outcomes were important negative factors.  Students with basic science or epidemiological projects rated their learning environments higher than did students with clinical projects (χ 2 (3, N=437) =20.29, p<0.001). A good research environment for medical students comprises multiple meaningful learning activities, individual supervision with continuous feedback, and a trustful atmosphere including interactions with the whole staff.  Students should be advised that clinical projects might require a higher degree of student independence than basic science projects, which are usually performed in research groups where members work in close collaboration.

  14. The beginnings of psychoanalytic supervision: the crucial role of Max Eitingon.

    PubMed

    Watkins, C Edward

    2013-09-01

    Psychoanalytic supervision is moving well into its 2nd century of theory, practice, and (to a limited extent) research. In this paper, I take a look at the pioneering first efforts to define psychoanalytic supervision and its importance to the psychoanalytic education process. Max Eitingon, the "almost forgotten man" of psychoanalysis, looms large in any such consideration. His writings or organizational reports were seemingly the first psychoanalytic published material to address the following supervision issues: rationale, screening, notes, responsibility, supervisee learning/personality issues, and the extent and length of supervision itself. Although Eitingon never wrote formally on supervision, his pioneering work in the area has continued to echo across the decades and can still be seen reflected in contemporary supervision practice. I also recognize the role of Karen Horney-one of the founders of the Berlin Institute and Poliklinik, friend of Eitingon, and active, vital participant in Eitingon's efforts-in contributing to and shaping the beginnings of psychoanalytic education.

  15. Interprofessional supervision in an intercultural context: a qualitative study.

    PubMed

    Chipchase, Lucy; Allen, Shelley; Eley, Diann; McAllister, Lindy; Strong, Jenny

    2012-11-01

    Our understanding of the qualities and value of clinical supervision is based on uniprofessional clinical education models. There is little research regarding the role and qualities needed in the supervisor role for supporting interprofessional placements. This paper reports the views and perceptions of medical and allied heath students and supervisors on the characteristics of clinical supervision in an interprofessional, international context. A qualitative case study was used involving semi-structured interviews of eight health professional students and four clinical supervisors before and after an interprofessional, international clinical placement. Our findings suggest that supervision from educators whose profession differs from that of the students can be a beneficial and rewarding experience leading to the use of alternative learning strategies. Although all participants valued interprofessional supervision, there was agreement that profession-specific supervision was required throughout the placement. Further research is required to understand this view as interprofessional education aims to prepare graduates for collaborative practice where they may work in teams supervised by staff whose profession may differ from their own.

  16. Roots run deep: Investigating psychological mechanisms between history of family aggression and abusive supervision.

    PubMed

    Garcia, Patrick Raymund James M; Restubog, Simon Lloyd D; Kiewitz, Christian; Scott, Kristin L; Tang, Robert L

    2014-09-01

    In this article, we examine the relationships between supervisor-level factors and abusive supervision. Drawing from social learning theory (Bandura, 1973), we argue that supervisors' history of family aggression indirectly impacts abusive supervision via both hostile cognitions and hostile affect, with angry rumination functioning as a first-stage moderator. Using multisource data, we tested the proposed relationships in a series of 4 studies, each providing evidence of constructive replication. In Study 1, we found positive relationships between supervisors' history of family aggression, hostile affect, explicit hostile cognitions, and abusive supervision. We obtained the same pattern of results in Studies 2, 3, and 4 using an implicit measure of hostile cognitions and controlling for previously established antecedents of abusive supervision. Angry rumination moderated the indirect relationship between supervisors' history of family aggression and abusive supervision via hostile affect only. Overall, the results highlight the important role of supervisor-level factors in the abusive supervision dynamics. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  17. NetVLAD: CNN Architecture for Weakly Supervised Place Recognition.

    PubMed

    Arandjelovic, Relja; Gronat, Petr; Torii, Akihiko; Pajdla, Tomas; Sivic, Josef

    2018-06-01

    We tackle the problem of large scale visual place recognition, where the task is to quickly and accurately recognize the location of a given query photograph. We present the following four principal contributions. First, we develop a convolutional neural network (CNN) architecture that is trainable in an end-to-end manner directly for the place recognition task. The main component of this architecture, NetVLAD, is a new generalized VLAD layer, inspired by the "Vector of Locally Aggregated Descriptors" image representation commonly used in image retrieval. The layer is readily pluggable into any CNN architecture and amenable to training via backpropagation. Second, we create a new weakly supervised ranking loss, which enables end-to-end learning of the architecture's parameters from images depicting the same places over time downloaded from Google Street View Time Machine. Third, we develop an efficient training procedure which can be applied on very large-scale weakly labelled tasks. Finally, we show that the proposed architecture and training procedure significantly outperform non-learnt image representations and off-the-shelf CNN descriptors on challenging place recognition and image retrieval benchmarks.

  18. Supervised Classification Processes for the Characterization of Heritage Elements, Case Study: Cuenca-Ecuador

    NASA Astrophysics Data System (ADS)

    Briones, J. C.; Heras, V.; Abril, C.; Sinchi, E.

    2017-08-01

    The proper control of built heritage entails many challenges related to the complexity of heritage elements and the extent of the area to be managed, for which the available resources must be efficiently used. In this scenario, the preventive conservation approach, based on the concept that prevent is better than cure, emerges as a strategy to avoid the progressive and imminent loss of monuments and heritage sites. Regular monitoring appears as a key tool to identify timely changes in heritage assets. This research demonstrates that the supervised learning model (Support Vector Machines - SVM) is an ideal tool that supports the monitoring process detecting visible elements in aerial images such as roofs structures, vegetation and pavements. The linear, gaussian and polynomial kernel functions were tested; the lineal function provided better results over the other functions. It is important to mention that due to the high level of segmentation generated by the classification procedure, it was necessary to apply a generalization process through opening a mathematical morphological operation, which simplified the over classification for the monitored elements.

  19. General Practitioner (GP) trainees' experience of a '1-h protected supervision model' given during psychiatry placements in the United Kingdom.

    PubMed

    Thomas, Gareth; McNeill, Helen

    2018-01-05

    Background A '1-hour protected supervision model' is well established for Psychiatry trainees. This model is also extended to GP trainees who are on placement in psychiatry. To explore the experiences of the '1-hour protected supervision model' for GP trainees in psychiatry placements in the UK. Methods Using a mixed methods approach, an anonymous online questionnaire was sent to GP trainees in the North West of England who had completed a placement in Psychiatry between February and August 2015. Results Discussing clinical cases whilst using the e-portfolio was the most useful learning event in this model. Patient care can potentially improve if a positive relationship develops between trainee/supervisor, which is impacted by the knowledge of this model at the start of the placement. Trainees found that clinical pressures were impacting on the occurrence of supervision. Conclusion The model works best when both GP trainees and their supervisors understand the model. The most frequently used and educationally beneficial aspect for GP trainees in psychiatry is the exploration of clinical cases using the learning portfolio as an educational tool. For effective delivery of this model of supervision, organisations must reflect on the balance between service delivery and allowing the supervisor and trainee adequate time for it to occur.

  20. Characterization of the Optical Properties of Turbid Media by Supervised Learning of Scattering Patterns.

    PubMed

    Hassaninia, Iman; Bostanabad, Ramin; Chen, Wei; Mohseni, Hooman

    2017-11-10

    Fabricated tissue phantoms are instrumental in optical in-vitro investigations concerning cancer diagnosis, therapeutic applications, and drug efficacy tests. We present a simple non-invasive computational technique that, when coupled with experiments, has the potential for characterization of a wide range of biological tissues. The fundamental idea of our approach is to find a supervised learner that links the scattering pattern of a turbid sample to its thickness and scattering parameters. Once found, this supervised learner is employed in an inverse optimization problem for estimating the scattering parameters of a sample given its thickness and scattering pattern. Multi-response Gaussian processes are used for the supervised learning task and a simple setup is introduced to obtain the scattering pattern of a tissue sample. To increase the predictive power of the supervised learner, the scattering patterns are filtered, enriched by a regressor, and finally characterized with two parameters, namely, transmitted power and scaled Gaussian width. We computationally illustrate that our approach achieves errors of roughly 5% in predicting the scattering properties of many biological tissues. Our method has the potential to facilitate the characterization of tissues and fabrication of phantoms used for diagnostic and therapeutic purposes over a wide range of optical spectrum.

  1. Developing a Language Learning Rationale for African Language Tutorials.

    ERIC Educational Resources Information Center

    Dwyer, David

    1999-01-01

    Presents a rationale for the supervised tutorial component of the African language program at Michigan State University. The supervised tutorial is one of two modes through which African languages are offered at Michigan State University. The other, which is teacher led, is offered for high enrollment languages such as Arabic, Swahili, and Hausa.…

  2. New Technology, Changing Pedagogies? Exploring the Concept of Remote Teaching Placement Supervision

    ERIC Educational Resources Information Center

    Chilton, Helen; McCracken, Wendy

    2017-01-01

    Mobile technologies continue to have a growing influence on contemporary society, are becoming more commonplace within tertiary educational settings and hold the potential to impact on the learning process. This project evaluation considers the perspectives of participants who trialled the use of new technology to enable remote supervision and…

  3. Remote Video Supervision in Adapted Physical Education

    ERIC Educational Resources Information Center

    Kelly, Luke; Bishop, Jason

    2013-01-01

    Supervision for beginning adapted physical education (APE) teachers and inservice general physical education teachers who are learning to work with students with disabilities poses a number of challenges. The purpose of this article is to describe a project aimed at developing a remote video system that could be used by a university supervisor to…

  4. Questions To Ask and Issues To Consider While Supervising Elementary Mathematics Student Teachers.

    ERIC Educational Resources Information Center

    Philip, Randolph A.

    2000-01-01

    Presents four questions to consider when supervising elementary mathematics teachers, who come with many preconceptions about teaching and learning mathematics: What mathematical concepts, procedures, or algorithms are you teaching? Are the concepts and procedures part of a unit? What types of questions do you pose? and What understanding of…

  5. Postgraduate Supervision at an Open Distance E-Learning Institution in South Africa

    ERIC Educational Resources Information Center

    Manyike, Tintswalo Vivian

    2017-01-01

    Effective postgraduate supervision is a concern at universities worldwide, even under optimal conditions where postgraduate students are studying full-time. Universities are being pressured by their governments to increase the throughput of postgraduates where there is a need for supervisory guidance in order to produce quality graduates within a…

  6. Practical Supervision: The First Line of Management.

    ERIC Educational Resources Information Center

    Erkkila, John; MacKay, Pamela

    1990-01-01

    Discusses the problems encountered by first time library supervisors who have to learn not only their new professional jobs but also how to supervise others. A supervisory approach based on work checking is described, and the role that managers should play in assisting their supervisors to acquire necessary skills is outlined. (14 references) (CLB)

  7. When Approved Is not Enough: Development of a Supervision Consultation Model.

    ERIC Educational Resources Information Center

    Green, Shelley; Shilts, Lee; Bacigalupe, Gonzalo

    2001-01-01

    The dramatic increase in literature that addresses family therapy training and supervision over the last decade has been predominantly in the area of theory, rather than practice. This article describes the development of a meta-supervisory learning context for approved supervisors and provides examples of interactions between supervisors that…

  8. The Superskills Model: A Supervisory Microskill Competency Training Model

    ERIC Educational Resources Information Center

    Destler, Dusty

    2017-01-01

    Streamlined supervision frameworks are needed to enhance and progress the practice and training of supervisors. This author proposes the SuperSkills Model (SSM), grounded in the practice of microskills and supervision common factors, with a focus on the development and foundational learning of supervisors-in-training. The SSM worksheet prompts for…

  9. Supervisors' Experience of Resistance during Online Group Supervision: A Phenomenological Case Study

    ERIC Educational Resources Information Center

    Morton, James R., Jr.

    2017-01-01

    Leaders in higher education institutions throughout the United States regard distance learning as an important part of their long-term strategic planning (Allen & Seaman, 2015). Counselor education and supervision training programs are following this trend as demonstrated by the increase of online programs being offered to train professional…

  10. General practitioners' and students' experiences with feedback during a six-week clerkship in general practice: a qualitative study.

    PubMed

    Gran, Sarah Frandsen; Brænd, Anja Maria; Lindbæk, Morten; Frich, Jan C

    2016-06-01

    Feedback may be scarce and unsystematic during students' clerkship periods. We wanted to explore general practitioners' (GPs) and medical students' experiences with giving and receiving supervision and feedback during a clerkship in general practice, with a focus on their experiences with using a structured tool (StudentPEP) to facilitate feedback and supervision. Qualitative study. Teachers and students from a six-week clerkship in general practice for fifth year medical students were interviewed in two student and two teacher focus groups. 21 GPs and nine medical students. We found that GPs first supported students' development in the familiarization phase by exploring the students' expectations and competency level. When mutual trust had been established through the familiarization phase GPs encouraged students to conduct their own consultations while being available for supervision and feedback. Both students and GPs emphasized that good feedback promoting students' professional development was timely, constructive, supportive, and focused on ways to improve. Among the challenges GPs mentioned were giving feedback on behavioral issues such as body language and insensitive use of electronic devices during consultations or if the student was very insecure, passive, and reluctant to take action or lacked social or language skills. While some GPs experienced StudentPEP as time-consuming and unnecessary, others argued that the tool promoted feedback and learning through mandatory observations and structured questions. Mutual trust builds a learning environment in which supervision and feedback may be given during students' clerkship in general practice. Structured tools may promote feedback, reflection and learning. Key Points Observing the teacher and being supervised are essential components of Medical students' learning during general practice clerkships. Teachers and students build mutual trust in the familiarization phase. Good feedback is based on observations, is timely, encouraging, and instructive. StudentPEP may create an arena for structured feedback and reflection.

  11. Biological classification with RNA-Seq data: Can alternatively spliced transcript expression enhance machine learning classifier?

    PubMed

    Johnson, Nathan T; Dhroso, Andi; Hughes, Katelyn J; Korkin, Dmitry

    2018-06-25

    The extent to which the genes are expressed in the cell can be simplistically defined as a function of one or more factors of the environment, lifestyle, and genetics. RNA sequencing (RNA-Seq) is becoming a prevalent approach to quantify gene expression, and is expected to gain better insights to a number of biological and biomedical questions, compared to the DNA microarrays. Most importantly, RNA-Seq allows to quantify expression at the gene and alternative splicing isoform levels. However, leveraging the RNA-Seq data requires development of new data mining and analytics methods. Supervised machine learning methods are commonly used approaches for biological data analysis, and have recently gained attention for their applications to the RNA-Seq data. In this work, we assess the utility of supervised learning methods trained on RNA-Seq data for a diverse range of biological classification tasks. We hypothesize that the isoform-level expression data is more informative for biological classification tasks than the gene-level expression data. Our large-scale assessment is done through utilizing multiple datasets, organisms, lab groups, and RNA-Seq analysis pipelines. Overall, we performed and assessed 61 biological classification problems that leverage three independent RNA-Seq datasets and include over 2,000 samples that come from multiple organisms, lab groups, and RNA-Seq analyses. These 61 problems include predictions of the tissue type, sex, or age of the sample, healthy or cancerous phenotypes and, the pathological tumor stage for the samples from the cancerous tissue. For each classification problem, the performance of three normalization techniques and six machine learning classifiers was explored. We find that for every single classification problem, the isoform-based classifiers outperform or are comparable with gene expression based methods. The top-performing supervised learning techniques reached a near perfect classification accuracy, demonstrating the utility of supervised learning for RNA-Seq based data analysis. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  12. A Comparison of Supervised Machine Learning Algorithms and Feature Vectors for MS Lesion Segmentation Using Multimodal Structural MRI

    PubMed Central

    Sweeney, Elizabeth M.; Vogelstein, Joshua T.; Cuzzocreo, Jennifer L.; Calabresi, Peter A.; Reich, Daniel S.; Crainiceanu, Ciprian M.; Shinohara, Russell T.

    2014-01-01

    Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance. PMID:24781953

  13. SSEL-ADE: A semi-supervised ensemble learning framework for extracting adverse drug events from social media.

    PubMed

    Liu, Jing; Zhao, Songzheng; Wang, Gang

    2018-01-01

    With the development of Web 2.0 technology, social media websites have become lucrative but under-explored data sources for extracting adverse drug events (ADEs), which is a serious health problem. Besides ADE, other semantic relation types (e.g., drug indication and beneficial effect) could hold between the drug and adverse event mentions, making ADE relation extraction - distinguishing ADE relationship from other relation types - necessary. However, conducting ADE relation extraction in social media environment is not a trivial task because of the expertise-dependent, time-consuming and costly annotation process, and the feature space's high-dimensionality attributed to intrinsic characteristics of social media data. This study aims to develop a framework for ADE relation extraction using patient-generated content in social media with better performance than that delivered by previous efforts. To achieve the objective, a general semi-supervised ensemble learning framework, SSEL-ADE, was developed. The framework exploited various lexical, semantic, and syntactic features, and integrated ensemble learning and semi-supervised learning. A series of experiments were conducted to verify the effectiveness of the proposed framework. Empirical results demonstrate the effectiveness of each component of SSEL-ADE and reveal that our proposed framework outperforms most of existing ADE relation extraction methods The SSEL-ADE can facilitate enhanced ADE relation extraction performance, thereby providing more reliable support for pharmacovigilance. Moreover, the proposed semi-supervised ensemble methods have the potential of being applied to effectively deal with other social media-based problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A comparison of supervised machine learning algorithms and feature vectors for MS lesion segmentation using multimodal structural MRI.

    PubMed

    Sweeney, Elizabeth M; Vogelstein, Joshua T; Cuzzocreo, Jennifer L; Calabresi, Peter A; Reich, Daniel S; Crainiceanu, Ciprian M; Shinohara, Russell T

    2014-01-01

    Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance.

  15. Effective and ineffective supervision in postgraduate dental education: a qualitative study.

    PubMed

    Subramanian, J; Anderson, V R; Morgaine, K C; Thomson, W M

    2013-02-01

    Research suggests that students' perceptions should be considered in any discussion of their education, but there has been no systematic examination of New Zealand postgraduate dental students' learning experiences. This study aimed to obtain in-depth qualitative insights into student and graduate perceptions of effective and ineffective learning in postgraduate dental education. Data were collected in 2010 using semi-structured individual interviews. Participants included final-year students and graduates of the University of Otago Doctor of Clinical Dentistry programme. Using the Critical Incident Technique, participants were asked to describe atleast one effective and one ineffective learning experience in detail. Interview transcripts were analysed using a general inductive approach. Broad themes which emerged included supervisory approaches, characteristics of the learning process, and the physical learning environment. This paper considers students' and graduates' perceptions of postgraduate supervision in dentistry as it promotes or precludes effective learning. Effective learning was associated by participants with approachable and supportive supervisory practices, and technique demonstrations accompanied by explicit explanations. Ineffective learning was associated with minimal supervisor demonstrations and guidance (particularly when beginning postgraduate study), and aggressive, discriminatory and/or culturally insensitive supervisory approaches. Participants' responses provided rich, in-depth insights into their reflections and understandings of effective and ineffective approaches to supervision as it influenced their learning in the clinical and research settings. These findings provide a starting point for the development of curriculum and supervisory practices, enhancement of supervisory and mentoring approaches, and the design of continuing education programmes for supervisors at an institutional level. Additionally, these findings might also stimulate topics for reflection and discussion amongst dental educators and administrators more broadly. © 2012 John Wiley & Sons A/S.

  16. Comparative Analysis of Document level Text Classification Algorithms using R

    NASA Astrophysics Data System (ADS)

    Syamala, Maganti; Nalini, N. J., Dr; Maguluri, Lakshamanaphaneendra; Ragupathy, R., Dr.

    2017-08-01

    From the past few decades there has been tremendous volumes of data available in Internet either in structured or unstructured form. Also, there is an exponential growth of information on Internet, so there is an emergent need of text classifiers. Text mining is an interdisciplinary field which draws attention on information retrieval, data mining, machine learning, statistics and computational linguistics. And to handle this situation, a wide range of supervised learning algorithms has been introduced. Among all these K-Nearest Neighbor(KNN) is efficient and simplest classifier in text classification family. But KNN suffers from imbalanced class distribution and noisy term features. So, to cope up with this challenge we use document based centroid dimensionality reduction(CentroidDR) using R Programming. By combining these two text classification techniques, KNN and Centroid classifiers, we propose a scalable and effective flat classifier, called MCenKNN which works well substantially better than CenKNN.

  17. Condition monitoring of an electro-magnetic brake using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Gofran, T.; Neugebauer, P.; Schramm, D.

    2017-10-01

    This paper presents a data-driven approach to Condition Monitoring of Electromagnetic brakes without use of additional sensors. For safe and efficient operation of electric motor a regular evaluation and replacement of the friction surface of the brake is required. One such evaluation method consists of direct or indirect sensing of the air-gap between pressure plate and magnet. A larger gap is generally indicative of worn surface(s). Traditionally this has been accomplished by the use of additional sensors - making existing systems complex, cost- sensitive and difficult to maintain. In this work a feed-forward Artificial Neural Network (ANN) is learned with the electrical data of the brake by supervised learning method to estimate the air-gap. The ANN model is optimized on the training set and validated using the test set. The experimental results of estimated air-gap with accuracy of over 95% demonstrate the validity of the proposed approach.

  18. Relabeling exchange method (REM) for learning in neural networks

    NASA Astrophysics Data System (ADS)

    Wu, Wen; Mammone, Richard J.

    1994-02-01

    The supervised training of neural networks require the use of output labels which are usually arbitrarily assigned. In this paper it is shown that there is a significant difference in the rms error of learning when `optimal' label assignment schemes are used. We have investigated two efficient random search algorithms to solve the relabeling problem: the simulated annealing and the genetic algorithm. However, we found them to be computationally expensive. Therefore we shall introduce a new heuristic algorithm called the Relabeling Exchange Method (REM) which is computationally more attractive and produces optimal performance. REM has been used to organize the optimal structure for multi-layered perceptrons and neural tree networks. The method is a general one and can be implemented as a modification to standard training algorithms. The motivation of the new relabeling strategy is based on the present interpretation of dyslexia as an encoding problem.

  19. Computer-Aided Screening of Conjugated Polymers for Organic Solar Cell: Classification by Random Forest.

    PubMed

    Nagasawa, Shinji; Al-Naamani, Eman; Saeki, Akinori

    2018-05-17

    Owing to the diverse chemical structures, organic photovoltaic (OPV) applications with a bulk heterojunction framework have greatly evolved over the last two decades, which has produced numerous organic semiconductors exhibiting improved power conversion efficiencies (PCEs). Despite the recent fast progress in materials informatics and data science, data-driven molecular design of OPV materials remains challenging. We report a screening of conjugated molecules for polymer-fullerene OPV applications by supervised learning methods (artificial neural network (ANN) and random forest (RF)). Approximately 1000 experimental parameters including PCE, molecular weight, and electronic properties are manually collected from the literature and subjected to machine learning with digitized chemical structures. Contrary to the low correlation coefficient in ANN, RF yields an acceptable accuracy, which is twice that of random classification. We demonstrate the application of RF screening for the design, synthesis, and characterization of a conjugated polymer, which facilitates a rapid development of optoelectronic materials.

  20. Continuous-variable quantum Gaussian process regression and quantum singular value decomposition of nonsparse low-rank matrices

    NASA Astrophysics Data System (ADS)

    Das, Siddhartha; Siopsis, George; Weedbrook, Christian

    2018-02-01

    With the significant advancement in quantum computation during the past couple of decades, the exploration of machine-learning subroutines using quantum strategies has become increasingly popular. Gaussian process regression is a widely used technique in supervised classical machine learning. Here we introduce an algorithm for Gaussian process regression using continuous-variable quantum systems that can be realized with technology based on photonic quantum computers under certain assumptions regarding distribution of data and availability of efficient quantum access. Our algorithm shows that by using a continuous-variable quantum computer a dramatic speedup in computing Gaussian process regression can be achieved, i.e., the possibility of exponentially reducing the time to compute. Furthermore, our results also include a continuous-variable quantum-assisted singular value decomposition method of nonsparse low rank matrices and forms an important subroutine in our Gaussian process regression algorithm.

  1. The dissemination of motivational interviewing in Swedish county councils: Results of a randomized controlled trial

    PubMed Central

    Forsberg, Lars; Lindqvist, Helena; Diez, Margarita; Enö Persson, Johanna; Ghaderi, Ata

    2017-01-01

    Objective A significant number of Swedish practitioners are offered workshop trainings in motivational interviewing through community-based implementation programs. The objective of this randomized controlled trial was to evaluate to what extent the practitioners acquire and retain skills from additional supervision consisting of feedback based on monitoring of practice. Materials and methods A total of 174 practitioners in five county councils across Sweden were randomized to one of the study's two groups: 1) Regular county council workshop training, 2) Regular county council workshop training followed by six sessions of supervision. The participant’s mean age was 43.3 years, and the majority were females (88.1%). Results Recruiting participants proved difficult, which may have led to a biased sample of practitioners highly motivated to learn the method. Although slightly different in form and content, all the workshop trainings increased the participants’ skills to the same level. Also, consistent with previous research, the additional supervision group showed larger gains in proficiency compared to the group who received workshop training only at the six-month follow-up. However, analyses showed generally maintained levels of skills for all the participants at the follow-up assessment, and the majority of participants did not attain beginning proficiency levels at either post-workshop or follow-up. Conclusions The results of this study address the real-life implications of dissemination of evidence-based practices. The maintained level of elevated skills for all participants is a promising finding. However, the low interest for obtaining additional supervision among the Swedish practitioners is problematic. In addition, neither the workshop trainings nor the additional supervision, although improving skills, were sufficient for most of the participants to reach beginning proficiency levels. This raises questions regarding the most efficient form of training to attain and sustain adequate practice standards, and how to create incentive and interest among practitioners to participate in such training. PMID:28750067

  2. (Machine) learning to do more with less

    NASA Astrophysics Data System (ADS)

    Cohen, Timothy; Freytsis, Marat; Ostdiek, Bryan

    2018-02-01

    Determining the best method for training a machine learning algorithm is critical to maximizing its ability to classify data. In this paper, we compare the standard "fully supervised" approach (which relies on knowledge of event-by-event truth-level labels) with a recent proposal that instead utilizes class ratios as the only discriminating information provided during training. This so-called "weakly supervised" technique has access to less information than the fully supervised method and yet is still able to yield impressive discriminating power. In addition, weak supervision seems particularly well suited to particle physics since quantum mechanics is incompatible with the notion of mapping an individual event onto any single Feynman diagram. We examine the technique in detail — both analytically and numerically — with a focus on the robustness to issues of mischaracterizing the training samples. Weakly supervised networks turn out to be remarkably insensitive to a class of systematic mismodeling. Furthermore, we demonstrate that the event level outputs for weakly versus fully supervised networks are probing different kinematics, even though the numerical quality metrics are essentially identical. This implies that it should be possible to improve the overall classification ability by combining the output from the two types of networks. For concreteness, we apply this technology to a signature of beyond the Standard Model physics to demonstrate that all these impressive features continue to hold in a scenario of relevance to the LHC. Example code is provided on GitHub.

  3. Nonlinear Semi-Supervised Metric Learning Via Multiple Kernels and Local Topology.

    PubMed

    Li, Xin; Bai, Yanqin; Peng, Yaxin; Du, Shaoyi; Ying, Shihui

    2018-03-01

    Changing the metric on the data may change the data distribution, hence a good distance metric can promote the performance of learning algorithm. In this paper, we address the semi-supervised distance metric learning (ML) problem to obtain the best nonlinear metric for the data. First, we describe the nonlinear metric by the multiple kernel representation. By this approach, we project the data into a high dimensional space, where the data can be well represented by linear ML. Then, we reformulate the linear ML by a minimization problem on the positive definite matrix group. Finally, we develop a two-step algorithm for solving this model and design an intrinsic steepest descent algorithm to learn the positive definite metric matrix. Experimental results validate that our proposed method is effective and outperforms several state-of-the-art ML methods.

  4. Comparison Promotes Learning and Transfer of Relational Categories

    ERIC Educational Resources Information Center

    Kurtz, Kenneth J.; Boukrina, Olga; Gentner, Dedre

    2013-01-01

    We investigated the effect of co-presenting training items during supervised classification learning of novel relational categories. Strong evidence exists that comparison induces a structural alignment process that renders common relational structure more salient. We hypothesized that comparisons between exemplars would facilitate learning and…

  5. 29 CFR 29.4 - Criteria for apprenticeable occupations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... through a structured, systematic program of on-the-job supervised learning; (b) Be clearly identified and... require the completion of at least 2,000 hours of on-the-job learning to attain; and (d) Require related instruction to supplement the on-the-job learning. ...

  6. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller.

    PubMed

    Kindermans, Pieter-Jan; Tangermann, Michael; Müller, Klaus-Robert; Schrauwen, Benjamin

    2014-06-01

    Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure suitable to solve the decoding task by (a) transfer learning, (b) unsupervised adaptation, (c) language model and (d) dynamic stopping. A simulation study compares the proposed probabilistic zero framework (using transfer learning and task structure) to a state-of-the-art supervised model on n = 22 subjects. The individual influence of the involved components (a)-(d) are investigated. Without any need for a calibration session, the probabilistic zero-training framework with inter-subject transfer learning shows excellent performance--competitive to a state-of-the-art supervised method using calibration. Its decoding quality is carried mainly by the effect of transfer learning in combination with continuous unsupervised adaptation. A high-performing zero-training BCI is within reach for one of the most popular BCI paradigms: ERP spelling. Recording calibration data for a supervised BCI would require valuable time which is lost for spelling. The time spent on calibration would allow a novel user to spell 29 symbols with our unsupervised approach. It could be of use for various clinical and non-clinical ERP-applications of BCI.

  7. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller

    NASA Astrophysics Data System (ADS)

    Kindermans, Pieter-Jan; Tangermann, Michael; Müller, Klaus-Robert; Schrauwen, Benjamin

    2014-06-01

    Objective. Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure suitable to solve the decoding task by (a) transfer learning, (b) unsupervised adaptation, (c) language model and (d) dynamic stopping. Approach. A simulation study compares the proposed probabilistic zero framework (using transfer learning and task structure) to a state-of-the-art supervised model on n = 22 subjects. The individual influence of the involved components (a)-(d) are investigated. Main results. Without any need for a calibration session, the probabilistic zero-training framework with inter-subject transfer learning shows excellent performance—competitive to a state-of-the-art supervised method using calibration. Its decoding quality is carried mainly by the effect of transfer learning in combination with continuous unsupervised adaptation. Significance. A high-performing zero-training BCI is within reach for one of the most popular BCI paradigms: ERP spelling. Recording calibration data for a supervised BCI would require valuable time which is lost for spelling. The time spent on calibration would allow a novel user to spell 29 symbols with our unsupervised approach. It could be of use for various clinical and non-clinical ERP-applications of BCI.

  8. Quality assurance of the clinical learning environment in Austria: Construct validity of the Clinical Learning Environment, Supervision and Nurse Teacher Scale (CLES+T scale).

    PubMed

    Mueller, Gerhard; Mylonas, Demetrius; Schumacher, Petra

    2018-07-01

    Within nursing education, the clinical learning environment is of a high importance in regards to the development of competencies and abilities. The organization, atmosphere, and supervision in the clinical learning environment are only a few factors that influence this development. In Austria there is currently no valid instrument available for the evaluation of influencing factors. The aim of the study was to test the construct validity with principal component analysis as well as the internal consistency of the German Clinical Learning Environment, Supervision and Teacher Scale (CLES+T scale) in Austria. The present validation study has a descriptive-quantitative cross-sectional design. The sample consisted of 385 nursing students from thirteen training institutions in Austria. The data collection was carried out online between March and April 2016. Starting with a polychoric correlation matrix, a parallel analysis with principal component extraction and promax rotation was carried out due to the ordinal data. The exploratory ordinal factor analysis supported a four-component solution and explained 73% of the total variance. The internal consistency of all 25 items reached a Cronbach's α of 0.95 and the four components ranged between 0.83 and 0.95. The German version of the CLES+T scale seems to be a useful instrument for identifying potential areas of improvement in clinical practice in order to derive specific quality measures for the practical learning environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. MARTA GANs: Unsupervised Representation Learning for Remote Sensing Image Classification

    NASA Astrophysics Data System (ADS)

    Lin, Daoyu; Fu, Kun; Wang, Yang; Xu, Guangluan; Sun, Xian

    2017-11-01

    With the development of deep learning, supervised learning has frequently been adopted to classify remotely sensed images using convolutional networks (CNNs). However, due to the limited amount of labeled data available, supervised learning is often difficult to carry out. Therefore, we proposed an unsupervised model called multiple-layer feature-matching generative adversarial networks (MARTA GANs) to learn a representation using only unlabeled data. MARTA GANs consists of both a generative model $G$ and a discriminative model $D$. We treat $D$ as a feature extractor. To fit the complex properties of remote sensing data, we use a fusion layer to merge the mid-level and global features. $G$ can produce numerous images that are similar to the training data; therefore, $D$ can learn better representations of remotely sensed images using the training data provided by $G$. The classification results on two widely used remote sensing image databases show that the proposed method significantly improves the classification performance compared with other state-of-the-art methods.

  10. Adding Learning to Knowledge-Based Systems: Taking the "Artificial" Out of AI

    Treesearch

    Daniel L. Schmoldt

    1997-01-01

    Both, knowledge-based systems (KBS) development and maintenance require time-consuming analysis of domain knowledge. Where example cases exist, KBS can be built, and later updated, by incorporating learning capabilities into their architecture. This applies to both supervised and unsupervised learning scenarios. In this paper, the important issues for learning systems-...

  11. Expert Students in Social Learning Management Systems

    ERIC Educational Resources Information Center

    Avogadro, Paolo; Calegari, Silvia; Dominoni, Matteo Alessandro

    2016-01-01

    Purpose: A social learning management system (social LMS) is a tool which favors social interactions and allows scholastic institutions to supervise and guide the learning process. The inclusion of the social feature to a "normal" LMS leads to the creation of educational social networks (EduSN), where the students interact and learn. The…

  12. Enhancing Postgraduate Learning and Development: A Participatory Action Learning and Action Research Approach through Conferences

    ERIC Educational Resources Information Center

    Wood, Lesley; Louw, Ina; Zuber-Skerritt, Ortrun

    2017-01-01

    As supervisors who advocate the transformational potential of research both to generate theory and practical and emancipatory outcomes, we practice participatory action learning and action research (PALAR). This paper offers an illustrative case of how supervision practices based on action learning can foster emancipatory and lifelong learning…

  13. An online supervised learning method based on gradient descent for spiking neurons.

    PubMed

    Xu, Yan; Yang, Jing; Zhong, Shuiming

    2017-09-01

    The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit a specific spike train encoded by precise firing times of spikes. The gradient-descent-based (GDB) learning methods are widely used and verified in the current research. Although the existing GDB multi-spike learning (or spike sequence learning) methods have good performance, they work in an offline manner and still have some limitations. This paper proposes an online GDB spike sequence learning method for spiking neurons that is based on the online adjustment mechanism of real biological neuron synapses. The method constructs error function and calculates the adjustment of synaptic weights as soon as the neurons emit a spike during their running process. We analyze and synthesize desired and actual output spikes to select appropriate input spikes in the calculation of weight adjustment in this paper. The experimental results show that our method obviously improves learning performance compared with the offline learning manner and has certain advantage on learning accuracy compared with other learning methods. Stronger learning ability determines that the method has large pattern storage capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Self-Taught Low-Rank Coding for Visual Learning.

    PubMed

    Li, Sheng; Li, Kang; Fu, Yun

    2018-03-01

    The lack of labeled data presents a common challenge in many computer vision and machine learning tasks. Semisupervised learning and transfer learning methods have been developed to tackle this challenge by utilizing auxiliary samples from the same domain or from a different domain, respectively. Self-taught learning, which is a special type of transfer learning, has fewer restrictions on the choice of auxiliary data. It has shown promising performance in visual learning. However, existing self-taught learning methods usually ignore the structure information in data. In this paper, we focus on building a self-taught coding framework, which can effectively utilize the rich low-level pattern information abstracted from the auxiliary domain, in order to characterize the high-level structural information in the target domain. By leveraging a high quality dictionary learned across auxiliary and target domains, the proposed approach learns expressive codings for the samples in the target domain. Since many types of visual data have been proven to contain subspace structures, a low-rank constraint is introduced into the coding objective to better characterize the structure of the given target set. The proposed representation learning framework is called self-taught low-rank (S-Low) coding, which can be formulated as a nonconvex rank-minimization and dictionary learning problem. We devise an efficient majorization-minimization augmented Lagrange multiplier algorithm to solve it. Based on the proposed S-Low coding mechanism, both unsupervised and supervised visual learning algorithms are derived. Extensive experiments on five benchmark data sets demonstrate the effectiveness of our approach.

  15. Function approximation using combined unsupervised and supervised learning.

    PubMed

    Andras, Peter

    2014-03-01

    Function approximation is one of the core tasks that are solved using neural networks in the context of many engineering problems. However, good approximation results need good sampling of the data space, which usually requires exponentially increasing volume of data as the dimensionality of the data increases. At the same time, often the high-dimensional data is arranged around a much lower dimensional manifold. Here we propose the breaking of the function approximation task for high-dimensional data into two steps: (1) the mapping of the high-dimensional data onto a lower dimensional space corresponding to the manifold on which the data resides and (2) the approximation of the function using the mapped lower dimensional data. We use over-complete self-organizing maps (SOMs) for the mapping through unsupervised learning, and single hidden layer neural networks for the function approximation through supervised learning. We also extend the two-step procedure by considering support vector machines and Bayesian SOMs for the determination of the best parameters for the nonlinear neurons in the hidden layer of the neural networks used for the function approximation. We compare the approximation performance of the proposed neural networks using a set of functions and show that indeed the neural networks using combined unsupervised and supervised learning outperform in most cases the neural networks that learn the function approximation using the original high-dimensional data.

  16. The helpfulness of category labels in semi-supervised learning depends on category structure.

    PubMed

    Vong, Wai Keen; Navarro, Daniel J; Perfors, Amy

    2016-02-01

    The study of semi-supervised category learning has generally focused on how additional unlabeled information with given labeled information might benefit category learning. The literature is also somewhat contradictory, sometimes appearing to show a benefit to unlabeled information and sometimes not. In this paper, we frame the problem differently, focusing on when labels might be helpful to a learner who has access to lots of unlabeled information. Using an unconstrained free-sorting categorization experiment, we show that labels are useful to participants only when the category structure is ambiguous and that people's responses are driven by the specific set of labels they see. We present an extension of Anderson's Rational Model of Categorization that captures this effect.

  17. Clinical supervision and nursing students' professional competence: support-seeking behaviour and the attachment styles of students and mentors.

    PubMed

    Moked, Zahava; Drach-Zahavy, Anat

    2016-02-01

    To examine whether the interdependent attachment style of students is positively related to their support-seeking behaviour during supervision and whether their over-dependent and counter-dependent attachment styles are negatively related to it. Second, to determine whether the mentors' attachment styles moderate the relationship between the students' support-seeking behaviours and their professional competence, such that this relationship is stronger when supervisors are characterized by higher independent attachment style. The mentor-student encounter during nursing clinical supervision is expected to create a supportive environment aimed at promoting support-seeking behaviours and subsequent positive supervision outcomes. Bowlby's attachment theory suggests that the three attachment styles - independent, counter-dependent and over-dependent - may have implications for clinical supervision. A correlative-prospective study. One hundred and seventy-eight students and 66 clinical mentors completed questionnaires at the beginning and end of a clinical supervision session during 2012-2013. Results demonstrated that high compared with low independent nursing students tended to seek less support. Second, students who seek less support evaluated their professional competence as higher than students who seek more support. Third, mentor's counter-dependent attachment style moderated the relationship between students' support-seeking behaviour and their professional competencies. The results allude to the detrimental meaning of support-seeking in the eyes of nursing students. Results can guide administrators in promoting supervision processes that are compatible with the students' independent learning style, while also preventing the negative implications of autonomic learning. Furthermore, as mentors' counter-dependent attachment style can hinder students' support-seeking, attachment styles should be considered in the selection of mentors. © 2015 John Wiley & Sons Ltd.

  18. Workplace training for senior trainees: a systematic review and narrative synthesis of current approaches to promote patient safety.

    PubMed

    Walton, Merrilyn; Harrison, Reema; Burgess, Annette; Foster, Kirsty

    2015-10-01

    Preventable harm is one of the top six health problems in the developed world. Developing patient safety skills and knowledge among advanced trainee doctors is critical. Clinical supervision is the main form of training for advanced trainees. The use of supervision to develop patient safety competence has not been established. To establish the use of clinical supervision and other workplace training to develop non-technical patient safety competency in advanced trainee doctors. Keywords, synonyms and subject headings were used to search eight electronic databases in addition to hand-searching of relevant journals up to 1 March 2014. Titles and abstracts of retrieved publications were screened by two reviewers and checked by a third. Full-text articles were screened against the eligibility criteria. Data on design, methods and key findings were extracted. Clinical supervision documents were assessed against components common to established patient safety frameworks. Findings from the reviewed articles and document analysis were collated in a narrative synthesis. Clinical supervision is not identified as an avenue for embedding patient safety skills in the workplace and is consequently not evaluated as a method to teach trainees these skills. Workplace training in non-technical patient safety skills is limited, but one-off training courses are sometimes used. Clinical supervision is the primary avenue for learning in postgraduate medical education but the most overlooked in the context of patient safety learning. The widespread implementation of short courses is not matched by evidence of rigorous evaluation. Supporting supervisors to identify teaching moments during supervision and to give weight to non-technical skills and technical skills equally is critical. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Paediatric trainee supervision: management changes and perceived education value.

    PubMed

    van den Boom, Mirjam; Pinnock, Ralph; Weller, Jennifer; Reed, Peter; Shulruf, Boaz

    2012-07-01

    Supervision in postgraduate training is an under-researched area. We measured the amount, type and effect of supervision on patient care and perceived education value in a general paediatric service. We designed a structured observation form and questionnaire to document the type, duration and effect of supervision on patient management and perceived education value. Most supervision occurred without the paediatrician confirming the trainee's findings. Direct observation of the trainee was rare. Management was changed in 30% of patients seen on the inpatient ward round and in 42% of the patients discussed during the chart reviews but not seen by the paediatrician. Management was changed in 48% of the cases when the paediatrician saw the patient with the trainee in outpatients but in only 21% of patients when the patient was but not seen. Changes made to patient management, understanding and perceived education value, differed between inpatient and out patient settings. There was more impact when the paediatrician saw the patient with the trainee in outpatients; while for inpatients, the opposite was true. Trainees rated the value of the supervision more highly than their supervisors did. Trainees' comments on what they learnt from their supervisor related almost exclusively to clinical knowledge rather than professional behaviours. We observed little evidence of supervisors directly observing trainees and trainees learning professional behaviours. A review of supervisory practices to promote more effective learning is needed. Communicating to paediatricians the value their trainees place on their input could have a positive effect on their engagement in supervision. © 2012 The Authors. Journal of Paediatrics and Child Health © 2012 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  20. Work-integrated learning (WIL) supervisors and non-supervisors of allied health professional students.

    PubMed

    Smedts, Anna M; Campbell, Narelle; Sweet, Linda

    2013-01-01

    This study sought to characterise the allied health professional (AHP) workforce of the Northern Territory (NT), Australia, in order to understand the influence of student supervision on workload, job satisfaction, and recruitment and retention. The national Rural Allied Health Workforce Study survey was adapted for the NT context and distributed through local AHP networks. Valid responses (n=179) representing 16 professions were collated and categorised into 'supervisor' and 'non-supervisor' groups for further analysis. The NT AHP workforce is predominantly female, non-Indigenous, raised in an urban environment, trained outside the NT, now concentrated in the capital city, and principally engaged in individual patient care. Allied health professionals cited income and type of work or clientele as the most frequent factors for attraction to their current positions. While 62% provided student supervision, only half reported having training in mentoring or supervision. Supervising students accounted for an estimated 9% of workload. Almost 20% of existing supervisors and 33% of non-supervising survey respondents expressed an interest in greater supervisory responsibilities. Despite indicating high satisfaction with their current positions, 67% of respondents reported an intention to leave their jobs in less than 5 years. Student supervision was not linked to perceived job satisfaction; however, this study found that professionals who were engaged in student supervision were significantly more likely to report intention to stay in their current jobs (>5 years; p<0.05). The findings are important for supporting ongoing work-integrated learning opportunities for students in a remote context, and highlight the need for efforts to be focused on the training and retention of AHPs as student supervisors.

  1. Ensemble Semi-supervised Frame-work for Brain Magnetic Resonance Imaging Tissue Segmentation.

    PubMed

    Azmi, Reza; Pishgoo, Boshra; Norozi, Narges; Yeganeh, Samira

    2013-04-01

    Brain magnetic resonance images (MRIs) tissue segmentation is one of the most important parts of the clinical diagnostic tools. Pixel classification methods have been frequently used in the image segmentation with two supervised and unsupervised approaches up to now. Supervised segmentation methods lead to high accuracy, but they need a large amount of labeled data, which is hard, expensive, and slow to obtain. Moreover, they cannot use unlabeled data to train classifiers. On the other hand, unsupervised segmentation methods have no prior knowledge and lead to low level of performance. However, semi-supervised learning which uses a few labeled data together with a large amount of unlabeled data causes higher accuracy with less trouble. In this paper, we propose an ensemble semi-supervised frame-work for segmenting of brain magnetic resonance imaging (MRI) tissues that it has been used results of several semi-supervised classifiers simultaneously. Selecting appropriate classifiers has a significant role in the performance of this frame-work. Hence, in this paper, we present two semi-supervised algorithms expectation filtering maximization and MCo_Training that are improved versions of semi-supervised methods expectation maximization and Co_Training and increase segmentation accuracy. Afterward, we use these improved classifiers together with graph-based semi-supervised classifier as components of the ensemble frame-work. Experimental results show that performance of segmentation in this approach is higher than both supervised methods and the individual semi-supervised classifiers.

  2. Learning through Supervision and Mentorship To Support the Development of Infants, Toddlers and Their Families: A Source Book.

    ERIC Educational Resources Information Center

    Fenichel, Emily, Ed.

    Eighteen work group papers, several of which previously appeared in "Zero to Three," the Bulletin of the National Center for Infant Clinical Progams, are presented under four headings. Under the heading "Findings and Recommendations of ZERO TO THREE/National center for Clinical Infant Programs' Work Group on Supervision and…

  3. An Experiential Approach to Clinical Supervision Training: A Mixed Methods Evaluation of Effectiveness

    ERIC Educational Resources Information Center

    Fisher, Amy Killen; Simmons, Christopher; Allen, Susan C.

    2016-01-01

    This study evaluates an intensive experiential exercise designed to facilitate the provision of high-quality supervision in social work. Data from 46 BSW and MSW students suggest that the exercise can be an effective learning tool. Both quantitative and qualitative findings indicated that the students formed a supervisory working alliance; BSW…

  4. Entry-Level Technical Skills that Agricultural Industry Experts Expected Students to Learn through Their Supervised Agricultural Experiences: A Modified Delphi Study

    ERIC Educational Resources Information Center

    Ramsey, Jon W.; Edwards, M. Craig

    2011-01-01

    The National Research Council's (NRC) Report (1988), Understanding Agriculture: New Directions for Education, called on secondary agricultural education to shift its scope and purpose, including students' supervised agricultural experiences (SAEs). The NRC asserted that this shift should create opportunities for students to acquire supervised…

  5. Enabling Connections in Postgraduate Supervision for an Applied eLearning Professional Development Programme

    ERIC Educational Resources Information Center

    Donnelly, Roisin

    2013-01-01

    This article describes the practice of postgraduate supervision on a blended professional development programme for academics, and discusses how connectivism has been a useful lens to explore a complex form of instruction. By examining the processes by which supervisors and their students on a two-year part-time masters in Applied eLearning…

  6. A Bourdieusian Perspective on Becoming and Being a Postgraduate Supervisor: The Role of Capital

    ERIC Educational Resources Information Center

    Maritz, Jeanette; Prinsloo, Paul

    2015-01-01

    The objective of this paper is to map the role of capital in the process of learning to become a postgraduate supervisor. Economic, technological and geopolitical changes in higher education call into question previous assumptions about supervision. Supervision is no longer primarily seen as an intellectual and social enterprise but is…

  7. Getting Tangled in the Web: A Systems Theory Approach to Supervision

    ERIC Educational Resources Information Center

    Orr, Penelope P.; Gussak, David E.

    2005-01-01

    The purpose of art therapy supervision in an educational setting has traditionally been seen as an opportunity to help interns adjust to and learn from their placement sites, understand their clients, develop an understanding of themselves in relation to their work, and translate theory into practice (Dye & Borders, 1990; Hawkins & Shoret, 1989;…

  8. Author Detection on a Mobile Phone

    DTIC Science & Technology

    2011-03-01

    handwriting , and to mine sales data for profitable trends. Two broad categories of machine learning are supervised learn- ing and unsupervised learning...evaluation,” AI 2006: Advances in Artificial Intelligence, p. 1015–1021, 2006. [23] “Gartner says worldwide mobile phone sales grew 17 per cent in first

  9. Rapid Training of Information Extraction with Local and Global Data Views

    DTIC Science & Technology

    2012-05-01

    relation type extension system based on active learning a relation type extension system based on semi-supervised learning, and a crossdomain...bootstrapping system for domain adaptive named entity extraction. The active learning procedure adopts features extracted at the sentence level as the local

  10. Comparison of sampling strategies for object-based classification of urban vegetation from Very High Resolution satellite images

    NASA Astrophysics Data System (ADS)

    Rougier, Simon; Puissant, Anne; Stumpf, André; Lachiche, Nicolas

    2016-09-01

    Vegetation monitoring is becoming a major issue in the urban environment due to the services they procure and necessitates an accurate and up to date mapping. Very High Resolution satellite images enable a detailed mapping of the urban tree and herbaceous vegetation. Several supervised classifications with statistical learning techniques have provided good results for the detection of urban vegetation but necessitate a large amount of training data. In this context, this study proposes to investigate the performances of different sampling strategies in order to reduce the number of examples needed. Two windows based active learning algorithms from state-of-art are compared to a classical stratified random sampling and a third combining active learning and stratified strategies is proposed. The efficiency of these strategies is evaluated on two medium size French cities, Strasbourg and Rennes, associated to different datasets. Results demonstrate that classical stratified random sampling can in some cases be just as effective as active learning methods and that it should be used more frequently to evaluate new active learning methods. Moreover, the active learning strategies proposed in this work enables to reduce the computational runtime by selecting multiple windows at each iteration without increasing the number of windows needed.

  11. Scaling Up Graph-Based Semisupervised Learning via Prototype Vector Machines

    PubMed Central

    Zhang, Kai; Lan, Liang; Kwok, James T.; Vucetic, Slobodan; Parvin, Bahram

    2014-01-01

    When the amount of labeled data are limited, semi-supervised learning can improve the learner's performance by also using the often easily available unlabeled data. In particular, a popular approach requires the learned function to be smooth on the underlying data manifold. By approximating this manifold as a weighted graph, such graph-based techniques can often achieve state-of-the-art performance. However, their high time and space complexities make them less attractive on large data sets. In this paper, we propose to scale up graph-based semisupervised learning using a set of sparse prototypes derived from the data. These prototypes serve as a small set of data representatives, which can be used to approximate the graph-based regularizer and to control model complexity. Consequently, both training and testing become much more efficient. Moreover, when the Gaussian kernel is used to define the graph affinity, a simple and principled method to select the prototypes can be obtained. Experiments on a number of real-world data sets demonstrate encouraging performance and scaling properties of the proposed approach. It also compares favorably with models learned via ℓ1-regularization at the same level of model sparsity. These results demonstrate the efficacy of the proposed approach in producing highly parsimonious and accurate models for semisupervised learning. PMID:25720002

  12. Alzheimer's Disease Early Diagnosis Using Manifold-Based Semi-Supervised Learning.

    PubMed

    Khajehnejad, Moein; Saatlou, Forough Habibollahi; Mohammadzade, Hoda

    2017-08-20

    Alzheimer's disease (AD) is currently ranked as the sixth leading cause of death in the United States and recent estimates indicate that the disorder may rank third, just behind heart disease and cancer, as a cause of death for older people. Clearly, predicting this disease in the early stages and preventing it from progressing is of great importance. The diagnosis of Alzheimer's disease (AD) requires a variety of medical tests, which leads to huge amounts of multivariate heterogeneous data. It can be difficult and exhausting to manually compare, visualize, and analyze this data due to the heterogeneous nature of medical tests; therefore, an efficient approach for accurate prediction of the condition of the brain through the classification of magnetic resonance imaging (MRI) images is greatly beneficial and yet very challenging. In this paper, a novel approach is proposed for the diagnosis of very early stages of AD through an efficient classification of brain MRI images, which uses label propagation in a manifold-based semi-supervised learning framework. We first apply voxel morphometry analysis to extract some of the most critical AD-related features of brain images from the original MRI volumes and also gray matter (GM) segmentation volumes. The features must capture the most discriminative properties that vary between a healthy and Alzheimer-affected brain. Next, we perform a principal component analysis (PCA)-based dimension reduction on the extracted features for faster yet sufficiently accurate analysis. To make the best use of the captured features, we present a hybrid manifold learning framework which embeds the feature vectors in a subspace. Next, using a small set of labeled training data, we apply a label propagation method in the created manifold space to predict the labels of the remaining images and classify them in the two groups of mild Alzheimer's and normal condition (MCI/NC). The accuracy of the classification using the proposed method is 93.86% for the Open Access Series of Imaging Studies (OASIS) database of MRI brain images, providing, compared to the best existing methods, a 3% lower error rate.

  13. Medical students’ perceptions of their learning environment during a mandatory research project

    PubMed Central

    Ponzer, Sari; Shoshan, Maria

    2017-01-01

    Objectives To explore medical students´ perceptions of their learning environment during a mandatory 20-week scientific research project.  Methods This cross-sectional study was conducted between 2011 and 2013. A total of 651 medical students were asked to fill in the Clinical Learning Environment, Supervision, and Nurse Teacher (CLES+T) questionnaire, and 439 (mean age 26 years, range 21-40, 60% females) returned the questionnaire, which corresponds to a response rate of 67%. The Mann-Whitney U test or the Kruskal-Wallis test were used to compare the research environments. Results The item My workplace can be regarded as a good learning environment correlated strongly with the item There were sufficient meaningful learning situations (r= 0.71, p<0.001). Overall satisfaction with supervision correlated strongly with the items interaction (r=0.78, p < 0.001), feedback (r=0.76, p<0.001), and a sense of trust (r=0.71, p < 0.001).  Supervisors´ failures to bridge the gap between theory and practice or to explain intended learning outcomes were important negative factors.  Students with basic science or epidemiological projects rated their learning environments higher than did students with clinical projects (χ2(3, N=437)=20.29, p<0.001). Conclusions A good research environment for medical students comprises multiple meaningful learning activities, individual supervision with continuous feedback, and a trustful atmosphere including interactions with the whole staff.  Students should be advised that clinical projects might require a higher degree of student independence than basic science projects, which are usually performed in research groups where members work in close collaboration. PMID:29056611

  14. 32 CFR 634.31 - Parking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... be avoided. (c) Illegal parking contributes to congestion and slows traffic flow on an installation... INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.31 Parking. (a) The most efficient use... eliminates conditions causing traffic accidents. (d) The “Denver boot” device is authorized for use as a...

  15. 32 CFR 634.31 - Parking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... be avoided. (c) Illegal parking contributes to congestion and slows traffic flow on an installation... INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.31 Parking. (a) The most efficient use... eliminates conditions causing traffic accidents. (d) The “Denver boot” device is authorized for use as a...

  16. 32 CFR 634.31 - Parking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... be avoided. (c) Illegal parking contributes to congestion and slows traffic flow on an installation... INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.31 Parking. (a) The most efficient use... eliminates conditions causing traffic accidents. (d) The “Denver boot” device is authorized for use as a...

  17. 32 CFR 634.31 - Parking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... be avoided. (c) Illegal parking contributes to congestion and slows traffic flow on an installation... INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.31 Parking. (a) The most efficient use... eliminates conditions causing traffic accidents. (d) The “Denver boot” device is authorized for use as a...

  18. 32 CFR 634.31 - Parking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... eliminates conditions causing traffic accidents. (d) The “Denver boot” device is authorized for use as a... INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.31 Parking. (a) The most efficient use... be avoided. (c) Illegal parking contributes to congestion and slows traffic flow on an installation...

  19. An exploration of undergraduate medical students' satisfaction with faculty support supervision during community placements in Uganda

    PubMed Central

    Mubuuke, AG; Oria, H; Dhabangi, A; Kiguli, S; Sewankambo, NK

    2015-01-01

    Introduction To produce health professionals who are oriented towards addressing community priority health needs, the training in medical schools has been transformed to include a component of community-based training. During this period, students spend a part of their training in the communities they are likely to serve upon graduation. They engage and empower local people in the communities to address their health needs during their placements, and at the same time learn from the people. During the community-based component, students are constantly supervised by faculty from the university to ensure that the intended objectives are achieved. The purpose of the present study was to explore student experiences of support supervision from university faculty during their community-based education, research and service (COBERS placements) and to identify ways in which the student learning can be improved through improved faculty supervision. Methods This was a cross-sectional study involving students at the College of Health Sciences, Makerere University, Uganda, who had a community-based component during their training. Data were collected using both questionnaires and focus group discussions. Quantitative data were analyzed using statistical software and thematic approaches were used for the analysis of qualitative data. Results Most students reported satisfaction with the COBERS supervision; however, junior students were less satisfied with the supervision than the more senior students with more experience of community-based training. Although many supervisors assisted students before departure to COBERS sites, a significant number of supervisors made little follow-up while students were in the community. Incorporating the use of information technology avenues such as emails and skype sessions was suggested as a potential way of enhancing supervision amidst resource constraints without faculty physically visiting the sites. Conclusions Although many students were satisfied with COBERS supervision, there are still some challenges, mostly seen with the more junior students. Using information technology could be a solution to some of these challenges. PMID:26626014

  20. An exploration of undergraduate medical students' satisfaction with faculty support supervision during community placements in Uganda.

    PubMed

    Mubuuke, Aloysius G; Oria, Hussein; Dhabangi, Aggrey; Kiguli, Sarah; Sewankambo, Nelson K

    2015-01-01

    To produce health professionals who are oriented towards addressing community priority health needs, the training in medical schools has been transformed to include a component of community-based training. During this period, students spend a part of their training in the communities they are likely to serve upon graduation. They engage and empower local people in the communities to address their health needs during their placements, and at the same time learn from the people. During the community-based component, students are constantly supervised by faculty from the university to ensure that the intended objectives are achieved. The purpose of the present study was to explore student experiences of support supervision from university faculty during their community-based education, research and service (COBERS placements) and to identify ways in which the student learning can be improved through improved faculty supervision. This was a cross-sectional study involving students at the College of Health Sciences, Makerere University, Uganda, who had a community-based component during their training. Data were collected using both questionnaires and focus group discussions. Quantitative data were analyzed using statistical software and thematic approaches were used for the analysis of qualitative data. Most students reported satisfaction with the COBERS supervision; however, junior students were less satisfied with the supervision than the more senior students with more experience of community-based training. Although many supervisors assisted students before departure to COBERS sites, a significant number of supervisors made little follow-up while students were in the community. Incorporating the use of information technology avenues such as emails and skype sessions was suggested as a potential way of enhancing supervision amidst resource constraints without faculty physically visiting the sites. Although many students were satisfied with COBERS supervision, there are still some challenges, mostly seen with the more junior students. Using information technology could be a solution to some of these challenges.

  1. Learning in the Absence of Direct Supervision: Person-Dependent Scaffolding

    ERIC Educational Resources Information Center

    Palesy, Debra

    2017-01-01

    Contemporary accounts of learning emphasise the importance of immediate social partners such as teachers and co-workers. Yet, much of our learning for work occurs without such experts. This paper provides an understanding of how and why new home care workers use scaffolding to learn and enact safe manual handling techniques in their workplaces,…

  2. On psychoanalytic supervision as signature pedagogy.

    PubMed

    Watkins, C Edward

    2014-04-01

    What is signature pedagogy in psychoanalytic education? This paper examines that question, considering why psychoanalytic supervision best deserves that designation. In focusing on supervision as signature pedagogy, I accentuate its role in building psychoanalytic habits of mind, habits of hand, and habits of heart, and transforming theory and self-knowledge into practical product. Other facets of supervision as signature pedagogy addressed in this paper include its features of engagement, uncertainty, formation, and pervasiveness, as well as levels of surface, deep, and implicit structure. Epistemological, ontological, and axiological in nature, psychoanalytic supervision engages trainees in learning to do, think, and value what psychoanalytic practitioners in the field do, think, and value: It is, most fundamentally, professional preparation for competent, "good work." In this paper, effort is made to shine a light on and celebrate the pivotal role of supervision in "making" or developing budding psychoanalysts and psychoanalytic psychotherapists. Now over a century old, psychoanalytic supervision remains unparalleled in (1) connecting and integrating conceptualization and practice, (2) transforming psychoanalytic theory and self-knowledge into an informed analyzing instrument, and (3) teaching, transmitting, and perpetuating the traditions, practice, and culture of psychoanalytic treatment.

  3. Effects of process-oriented group supervision - a comparison of three groups of student nurses.

    PubMed

    Severinsson, Elisabeth; Johansson, Ingrid; Lindquist, Ingegerd

    2014-05-01

    To evaluate student nurses' perceptions of the effects of process-oriented group supervision provided during their undergraduate education. Supervision is an important ability and part of a nurse's leadership role. Student nurses need to learn competence in clinical practice. A descriptive-correlational study comparing three groups of student nurses (n = 151) who attended process-oriented group supervision during their education. The effects of process-oriented group supervision were increased awareness of interpersonal, professional and communication skills. There was a moderate relation between the three factors. The strongest correlation was found between the factors professional and communication skills (r = 0.81). The correlations between the factors in group 3, the mandatory group, were identical. By correlating the factors, we concluded that the student nurses' perceptions of the effects of process-oriented group supervision strengthened their professional identity, which may have a bearing on patient safety, nursing leadership and collaboration with the patient, her/his family members and other professionals. There is potential for improving the links between nursing leadership, supervision and patient safety. © 2012 John Wiley & Sons Ltd.

  4. To take responsibility or to be an onlooker. Nursing students' experiences of two models of supervision.

    PubMed

    Hellström-Hyson, Eva; Mårtensson, Gunilla; Kristofferzon, Marja-Leena

    2012-01-01

    The present study aimed at describing how nursing students engaged in their clinical practice experienced two models of supervision: supervision on student wards and traditional supervision. Supervision for nursing students in clinical practice can be organized in different ways. In the present study, parts of nursing students' clinical practice were carried out on student wards in existing hospital departments. The purpose was to give students the opportunity to assume greater responsibility for their clinical education and to apply the nursing process more independently through peer learning. A descriptive design with a qualitative approach was used. Interviews were carried out with eight nursing students in their final semester of a 3-year degree program in nursing. The data were analyzed using content analysis. Two themes were revealed in the data analysis: When supervised on the student wards, nursing students experienced assuming responsibility and finding one's professional role, while during traditional supervision, they experienced being an onlooker and having difficulties assuming responsibility. Supervision on a student ward was found to give nursing students a feeling of acknowledgment and more opportunities to develop independence, continuity, cooperation and confidence. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Finding the Shoe that Fits: Experiential Approaches for First Practicum

    ERIC Educational Resources Information Center

    O'Connell, William P.; Smith, Jacqueline

    2005-01-01

    Graduate counselling students in the first semester of practicum are challenged to learn the basic active listening sequence while simultaneously learning to engage in the supervision process. Students struggle with confusion and self-doubt as they attempt to develop self-efficacy as a professional counsellor. Adult learning theory and…

  6. Cluster: Drafting. Course: Introduction to Technical Drafting.

    ERIC Educational Resources Information Center

    Sanford - Lee County Schools, NC.

    The set of 10 units is designed for use with an instructor as an introduction to technical drafting, and is also keyed to other texts. Each unit contains several task packages specifying prerequisites, rationale for learning, objectives, learning activities to be supervised by the instructor, and learning practice. The units cover: drafting…

  7. Cluster: Drafting. Course: Architectural Drafting. Research Project.

    ERIC Educational Resources Information Center

    Sanford - Lee County Schools, NC.

    The sequence of 10 units is designed for use with an instructor in architectural drafting, and is also keyed to other texts. Each unit contains several task packages specifying prerequisites, rationale for learning, objectives, learning activities to be supervised by the instructor, and learning practice. The units cover: architectural lettering…

  8. Learning How to Supervise: Midlevel Managers' Individual Learning Journeys

    ERIC Educational Resources Information Center

    David, Keegan

    2010-01-01

    The purpose of this study was to explore how midlevel managers in student affairs learn supervisory skills. Student affairs professionals are given tremendous responsibility for the lives of students outside the classroom. The Association of College Personnel Administrators and other sources outlined the necessary competencies for student affairs…

  9. Clinical supervision for nurses in administrative and leadership positions: a systematic literature review of the studies focusing on administrative clinical supervision.

    PubMed

    Sirola-Karvinen, Pirjo; Hyrkäs, Kristiina

    2006-11-01

    The aim of this systematic literature review was to describe administrative clinical supervision from the nursing leaders', directors' and administrators' perspective. Administrative clinical supervision is a timely and important topic as organizational structures in health care and nursing leadership are changing in addition to the increasing number of complex challenges present in health care. The material in this review was drawn from national and international databases including doctoral dissertations, distinguished thesis and peer-reviewed articles. The material was analysed by means of content analysis. The theoretical framework for the analysis was based on the three main functions of clinical supervision: administrative, educational and supportive. The findings demonstrated that the experiences of the administrative clinical supervision and its supportiveness were varying. The intervention was seen to provide versatility of learning experiences and support in challenging work experiences. Administrative clinical supervision effects and assures the quality of care. The effects as a means of development were explained through its resemblance to a leading specialist community. The findings support earlier perceptions concerning the importance and significance of administrative clinical supervision for nursing managers and administrators. However, more research is needed to develop administrative clinical supervision and to increase understanding of theoretical assumptions and relationships of the concepts on the background.

  10. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2.

    PubMed

    de Ávila, Maurício Boff; Xavier, Mariana Morrone; Pintro, Val Oliveira; de Azevedo, Walter Filgueira

    2017-12-09

    Here we report the development of a machine-learning model to predict binding affinity based on the crystallographic structures of protein-ligand complexes. We used an ensemble of crystallographic structures (resolution better than 1.5 Å resolution) for which half-maximal inhibitory concentration (IC 50 ) data is available. Polynomial scoring functions were built using as explanatory variables the energy terms present in the MolDock and PLANTS scoring functions. Prediction performance was tested and the supervised machine learning models showed improvement in the prediction power, when compared with PLANTS and MolDock scoring functions. In addition, the machine-learning model was applied to predict binding affinity of CDK2, which showed a better performance when compared with AutoDock4, AutoDock Vina, MolDock, and PLANTS scores. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Data integration modeling applied to drill hole planning through semi-supervised learning: A case study from the Dalli Cu-Au porphyry deposit in the central Iran

    NASA Astrophysics Data System (ADS)

    Fatehi, Moslem; Asadi, Hooshang H.

    2017-04-01

    In this study, the application of a transductive support vector machine (TSVM), an innovative semi-supervised learning algorithm, has been proposed for mapping the potential drill targets at a detailed exploration stage. The semi-supervised learning method is a hybrid of supervised and unsupervised learning approach that simultaneously uses both training and non-training data to design a classifier. By using the TSVM algorithm, exploration layers at the Dalli porphyry Cu-Au deposit in the central Iran were integrated to locate the boundary of the Cu-Au mineralization for further drilling. By applying this algorithm on the non-training (unlabeled) and limited training (labeled) Dalli exploration data, the study area was classified in two domains of Cu-Au ore and waste. Then, the results were validated by the earlier block models created, using the available borehole and trench data. In addition to TSVM, the support vector machine (SVM) algorithm was also implemented on the study area for comparison. Thirty percent of the labeled exploration data was used to evaluate the performance of these two algorithms. The results revealed 87 percent correct recognition accuracy for the TSVM algorithm and 82 percent for the SVM algorithm. The deepest inclined borehole, recently drilled in the western part of the Dalli deposit, indicated that the boundary of Cu-Au mineralization, as identified by the TSVM algorithm, was only 15 m off from the actual boundary intersected by this borehole. According to the results of the TSVM algorithm, six new boreholes were suggested for further drilling at the Dalli deposit. This study showed that the TSVM algorithm could be a useful tool for enhancing the mineralization zones and consequently, ensuring a more accurate drill hole planning.

  12. 32 CFR 634.26 - Traffic law enforcement principles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... safely within traffic laws and regulations and maintain an effective and efficient flow of traffic... 32 National Defense 4 2013-07-01 2013-07-01 false Traffic law enforcement principles. 634.26... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.26 Traffic...

  13. 32 CFR 634.26 - Traffic law enforcement principles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... safely within traffic laws and regulations and maintain an effective and efficient flow of traffic... 32 National Defense 4 2012-07-01 2011-07-01 true Traffic law enforcement principles. 634.26... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.26 Traffic...

  14. 32 CFR 634.26 - Traffic law enforcement principles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... safely within traffic laws and regulations and maintain an effective and efficient flow of traffic... 32 National Defense 4 2014-07-01 2013-07-01 true Traffic law enforcement principles. 634.26... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.26 Traffic...

  15. 18 CFR 367.9070 - Account 907, Supervision.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... customer service activities, the object of which is to encourage safe, efficient and economical use of the associate utility company's service. Direct supervision of a specific activity within customer service and... POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES SUBJECT TO...

  16. Ranking Highlights in Personal Videos by Analyzing Edited Videos.

    PubMed

    Sun, Min; Farhadi, Ali; Chen, Tseng-Hung; Seitz, Steve

    2016-11-01

    We present a fully automatic system for ranking domain-specific highlights in unconstrained personal videos by analyzing online edited videos. A novel latent linear ranking model is proposed to handle noisy training data harvested online. Specifically, given a targeted domain such as "surfing," our system mines the YouTube database to find pairs of raw and their corresponding edited videos. Leveraging the assumption that an edited video is more likely to contain highlights than the trimmed parts of the raw video, we obtain pair-wise ranking constraints to train our model. The learning task is challenging due to the amount of noise and variation in the mined data. Hence, a latent loss function is incorporated to mitigate the issues caused by the noise. We efficiently learn the latent model on a large number of videos (about 870 min in total) using a novel EM-like procedure. Our latent ranking model outperforms its classification counterpart and is fairly competitive compared with a fully supervised ranking system that requires labels from Amazon Mechanical Turk. We further show that a state-of-the-art audio feature mel-frequency cepstral coefficients is inferior to a state-of-the-art visual feature. By combining both audio-visual features, we obtain the best performance in dog activity, surfing, skating, and viral video domains. Finally, we show that impressive highlights can be detected without additional human supervision for seven domains (i.e., skating, surfing, skiing, gymnastics, parkour, dog activity, and viral video) in unconstrained personal videos.

  17. Assessing the druggability of protein-protein interactions by a supervised machine-learning method.

    PubMed

    Sugaya, Nobuyoshi; Ikeda, Kazuyoshi

    2009-08-25

    Protein-protein interactions (PPIs) are challenging but attractive targets of small molecule drugs for therapeutic interventions of human diseases. In this era of rapid accumulation of PPI data, there is great need for a methodology that can efficiently select drug target PPIs by holistically assessing the druggability of PPIs. To address this need, we propose here a novel approach based on a supervised machine-learning method, support vector machine (SVM). To assess the druggability of the PPIs, 69 attributes were selected to cover a wide range of structural, drug and chemical, and functional information on the PPIs. These attributes were used as feature vectors in the SVM-based method. Thirty PPIs known to be druggable were carefully selected from previous studies; these were used as positive instances. Our approach was applied to 1,295 human PPIs with tertiary structures of their protein complexes already solved. The best SVM model constructed discriminated the already-known target PPIs from others at an accuracy of 81% (sensitivity, 82%; specificity, 79%) in cross-validation. Among the attributes, the two with the greatest discriminative power in the best SVM model were the number of interacting proteins and the number of pathways. Using the model, we predicted several promising candidates for druggable PPIs, such as SMAD4/SKI. As more PPI data are accumulated in the near future, our method will have increased ability to accelerate the discovery of druggable PPIs.

  18. The Learning Process of Supervisees Who Engage in the Reflecting Team Model within Group Supervision: A Grounded Theory Inquiry

    ERIC Educational Resources Information Center

    Pender, Rebecca Lynn

    2012-01-01

    In recent years, counselor educators have begun to incorporate the use of the reflecting team process with the training of counselors. Specifically, the reflecting team has been used in didactic courses (Cox, 2003; Landis & Young, 1994; Harrawood, Wilde & Parmanand, 2011) and in supervision (Cox, 1997; Prest, Darden, & Keller, 1990;…

  19. Supervision on Social Media: Use and Perception of Facebook as a Research Education Tool in Disadvantaged Areas

    ERIC Educational Resources Information Center

    Pimmer, Christoph; Chipps, Jennifer; Brysiewicz, Petra; Walters, Fiona; Linxen, Sebastian; Gröhbiel, Urs

    2016-01-01

    This exploratory study investigates how a typically disadvantaged user group of older, female learners from rural, low-tech settings used and perceived a Facebook group as a research supervision and distance learning tool over time. The within-stage mixed-model research was carried out in a module of a part-time, advanced midwifery education…

  20. Improving Doctoral Support through Group Supervision: Analysing Face-to-Face and Technology-Mediated Strategies for Nurturing and Sustaining Scholarship

    ERIC Educational Resources Information Center

    Hutchings, Maggie

    2017-01-01

    The challenges of the doctoral journey can create social and academic isolation. Student support is normally facilitated through the supervisory team and research training programmes. There is little empirical evidence on the role group supervision and peer learning can play in nurturing and sustaining doctoral scholarship. This article explores…

  1. Undergraduate research internships: veterinary students' experiences and the relation with internship quality.

    PubMed

    Jaarsma, Debbie A D C; Muijtjens, Arno M M; Dolmans, Diana H J M; Schuurmans, Eva M; Van Beukelen, Peter; Scherpbier, Albert J J A

    2009-05-01

    The learning environment of undergraduate research internships has received little attention, compared to postgraduate research training. This study investigates students' experiences with research internships, particularly the quality of supervision, development of research skills, the intellectual and social climate, infrastructure support, and the clarity of goals and the relationship between the experiences and the quality of students' research reports and their overall satisfaction with internships. A questionnaire (23 items, a 5-point Likert scale) was administered to 101 Year five veterinary students after completion of a research internship. Multiple linear regression analyses were conducted with quality of supervision, development of research skills, climate, infrastructure and clarity of goals as independent variables and the quality of students' research reports and students' overall satisfaction as dependent variables. The response rate was 79.2%. Students' experiences are generally positive. Students' experiences with the intellectual and social climate are significantly correlated with the quality of research reports whilst the quality of supervision is significantly correlated with both the quality of research reports and students' overall satisfaction with the internship. Both the quality of supervision and the climate are found to be crucial factors in students' research learning and satisfaction with the internship.

  2. Active Semi-Supervised Community Detection Based on Must-Link and Cannot-Link Constraints

    PubMed Central

    Cheng, Jianjun; Leng, Mingwei; Li, Longjie; Zhou, Hanhai; Chen, Xiaoyun

    2014-01-01

    Community structure detection is of great importance because it can help in discovering the relationship between the function and the topology structure of a network. Many community detection algorithms have been proposed, but how to incorporate the prior knowledge in the detection process remains a challenging problem. In this paper, we propose a semi-supervised community detection algorithm, which makes full utilization of the must-link and cannot-link constraints to guide the process of community detection and thereby extracts high-quality community structures from networks. To acquire the high-quality must-link and cannot-link constraints, we also propose a semi-supervised component generation algorithm based on active learning, which actively selects nodes with maximum utility for the proposed semi-supervised community detection algorithm step by step, and then generates the must-link and cannot-link constraints by accessing a noiseless oracle. Extensive experiments were carried out, and the experimental results show that the introduction of active learning into the problem of community detection makes a success. Our proposed method can extract high-quality community structures from networks, and significantly outperforms other comparison methods. PMID:25329660

  3. Video mining using combinations of unsupervised and supervised learning techniques

    NASA Astrophysics Data System (ADS)

    Divakaran, Ajay; Miyahara, Koji; Peker, Kadir A.; Radhakrishnan, Regunathan; Xiong, Ziyou

    2003-12-01

    We discuss the meaning and significance of the video mining problem, and present our work on some aspects of video mining. A simple definition of video mining is unsupervised discovery of patterns in audio-visual content. Such purely unsupervised discovery is readily applicable to video surveillance as well as to consumer video browsing applications. We interpret video mining as content-adaptive or "blind" content processing, in which the first stage is content characterization and the second stage is event discovery based on the characterization obtained in stage 1. We discuss the target applications and find that using a purely unsupervised approach are too computationally complex to be implemented on our product platform. We then describe various combinations of unsupervised and supervised learning techniques that help discover patterns that are useful to the end-user of the application. We target consumer video browsing applications such as commercial message detection, sports highlights extraction etc. We employ both audio and video features. We find that supervised audio classification combined with unsupervised unusual event discovery enables accurate supervised detection of desired events. Our techniques are computationally simple and robust to common variations in production styles etc.

  4. Supervised learning with decision margins in pools of spiking neurons.

    PubMed

    Le Mouel, Charlotte; Harris, Kenneth D; Yger, Pierre

    2014-10-01

    Learning to categorise sensory inputs by generalising from a few examples whose category is precisely known is a crucial step for the brain to produce appropriate behavioural responses. At the neuronal level, this may be performed by adaptation of synaptic weights under the influence of a training signal, in order to group spiking patterns impinging on the neuron. Here we describe a framework that allows spiking neurons to perform such "supervised learning", using principles similar to the Support Vector Machine, a well-established and robust classifier. Using a hinge-loss error function, we show that requesting a margin similar to that of the SVM improves performance on linearly non-separable problems. Moreover, we show that using pools of neurons to discriminate categories can also increase the performance by sharing the load among neurons.

  5. A Deep Machine Learning Method for Classifying Cyclic Time Series of Biological Signals Using Time-Growing Neural Network.

    PubMed

    Gharehbaghi, Arash; Linden, Maria

    2017-10-12

    This paper presents a novel method for learning the cyclic contents of stochastic time series: the deep time-growing neural network (DTGNN). The DTGNN combines supervised and unsupervised methods in different levels of learning for an enhanced performance. It is employed by a multiscale learning structure to classify cyclic time series (CTS), in which the dynamic contents of the time series are preserved in an efficient manner. This paper suggests a systematic procedure for finding the design parameter of the classification method for a one-versus-multiple class application. A novel validation method is also suggested for evaluating the structural risk, both in a quantitative and a qualitative manner. The effect of the DTGNN on the performance of the classifier is statistically validated through the repeated random subsampling using different sets of CTS, from different medical applications. The validation involves four medical databases, comprised of 108 recordings of the electroencephalogram signal, 90 recordings of the electromyogram signal, 130 recordings of the heart sound signal, and 50 recordings of the respiratory sound signal. Results of the statistical validations show that the DTGNN significantly improves the performance of the classification and also exhibits an optimal structural risk.

  6. Automatic microseismic event picking via unsupervised machine learning

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang

    2018-01-01

    Effective and efficient arrival picking plays an important role in microseismic and earthquake data processing and imaging. Widely used short-term-average long-term-average ratio (STA/LTA) based arrival picking algorithms suffer from the sensitivity to moderate-to-strong random ambient noise. To make the state-of-the-art arrival picking approaches effective, microseismic data need to be first pre-processed, for example, removing sufficient amount of noise, and second analysed by arrival pickers. To conquer the noise issue in arrival picking for weak microseismic or earthquake event, I leverage the machine learning techniques to help recognizing seismic waveforms in microseismic or earthquake data. Because of the dependency of supervised machine learning algorithm on large volume of well-designed training data, I utilize an unsupervised machine learning algorithm to help cluster the time samples into two groups, that is, waveform points and non-waveform points. The fuzzy clustering algorithm has been demonstrated to be effective for such purpose. A group of synthetic, real microseismic and earthquake data sets with different levels of complexity show that the proposed method is much more robust than the state-of-the-art STA/LTA method in picking microseismic events, even in the case of moderately strong background noise.

  7. Maintaining professional resilience through group restorative supervision.

    PubMed

    Wallbank, Sonya

    2013-08-01

    Restorative clinical supervision has been delivered to over 2,500 professionals and has shown to be highly effective in reducing burnout, stress and increasing compassion satisfaction. Demand for the programme has shown that a sustainable model of implementation is needed for organisations who may not be able to invest in continued individual sessions. Following the initial six sessions, group restorative supervision has been developed and this paper reports on the programme's success in maintaining and continuing to improve compassion satisfaction, stress and burnout through the process of restorative group supervision. This means that organisations can continue to maintain the programme once the initial training has been completed and have confidence within the restorative group supervision to support professionals in managing the emotional demands of their role. The restorative groups have also had inadvertent positive benefits in workplace functioning. The paper outlines how professionals have been able to use this learning to support them in being more effective.

  8. Pioneering topological methods for network-based drug-target prediction by exploiting a brain-network self-organization theory.

    PubMed

    Durán, Claudio; Daminelli, Simone; Thomas, Josephine M; Haupt, V Joachim; Schroeder, Michael; Cannistraci, Carlo Vittorio

    2017-04-26

    The bipartite network representation of the drug-target interactions (DTIs) in a biosystem enhances understanding of the drugs' multifaceted action modes, suggests therapeutic switching for approved drugs and unveils possible side effects. As experimental testing of DTIs is costly and time-consuming, computational predictors are of great aid. Here, for the first time, state-of-the-art DTI supervised predictors custom-made in network biology were compared-using standard and innovative validation frameworks-with unsupervised pure topological-based models designed for general-purpose link prediction in bipartite networks. Surprisingly, our results show that the bipartite topology alone, if adequately exploited by means of the recently proposed local-community-paradigm (LCP) theory-initially detected in brain-network topological self-organization and afterwards generalized to any complex network-is able to suggest highly reliable predictions, with comparable performance with the state-of-the-art-supervised methods that exploit additional (non-topological, for instance biochemical) DTI knowledge. Furthermore, a detailed analysis of the novel predictions revealed that each class of methods prioritizes distinct true interactions; hence, combining methodologies based on diverse principles represents a promising strategy to improve drug-target discovery. To conclude, this study promotes the power of bio-inspired computing, demonstrating that simple unsupervised rules inspired by principles of topological self-organization and adaptiveness arising during learning in living intelligent systems (like the brain) can efficiently equal perform complicated algorithms based on advanced, supervised and knowledge-based engineering. © The Author 2017. Published by Oxford University Press.

  9. Ensemble Semi-supervised Frame-work for Brain Magnetic Resonance Imaging Tissue Segmentation

    PubMed Central

    Azmi, Reza; Pishgoo, Boshra; Norozi, Narges; Yeganeh, Samira

    2013-01-01

    Brain magnetic resonance images (MRIs) tissue segmentation is one of the most important parts of the clinical diagnostic tools. Pixel classification methods have been frequently used in the image segmentation with two supervised and unsupervised approaches up to now. Supervised segmentation methods lead to high accuracy, but they need a large amount of labeled data, which is hard, expensive, and slow to obtain. Moreover, they cannot use unlabeled data to train classifiers. On the other hand, unsupervised segmentation methods have no prior knowledge and lead to low level of performance. However, semi-supervised learning which uses a few labeled data together with a large amount of unlabeled data causes higher accuracy with less trouble. In this paper, we propose an ensemble semi-supervised frame-work for segmenting of brain magnetic resonance imaging (MRI) tissues that it has been used results of several semi-supervised classifiers simultaneously. Selecting appropriate classifiers has a significant role in the performance of this frame-work. Hence, in this paper, we present two semi-supervised algorithms expectation filtering maximization and MCo_Training that are improved versions of semi-supervised methods expectation maximization and Co_Training and increase segmentation accuracy. Afterward, we use these improved classifiers together with graph-based semi-supervised classifier as components of the ensemble frame-work. Experimental results show that performance of segmentation in this approach is higher than both supervised methods and the individual semi-supervised classifiers. PMID:24098863

  10. Deep Learning Representation from Electroencephalography of Early-Stage Creutzfeldt-Jakob Disease and Features for Differentiation from Rapidly Progressive Dementia.

    PubMed

    Morabito, Francesco Carlo; Campolo, Maurizio; Mammone, Nadia; Versaci, Mario; Franceschetti, Silvana; Tagliavini, Fabrizio; Sofia, Vito; Fatuzzo, Daniela; Gambardella, Antonio; Labate, Angelo; Mumoli, Laura; Tripodi, Giovanbattista Gaspare; Gasparini, Sara; Cianci, Vittoria; Sueri, Chiara; Ferlazzo, Edoardo; Aguglia, Umberto

    2017-03-01

    A novel technique of quantitative EEG for differentiating patients with early-stage Creutzfeldt-Jakob disease (CJD) from other forms of rapidly progressive dementia (RPD) is proposed. The discrimination is based on the extraction of suitable features from the time-frequency representation of the EEG signals through continuous wavelet transform (CWT). An average measure of complexity of the EEG signal obtained by permutation entropy (PE) is also included. The dimensionality of the feature space is reduced through a multilayer processing system based on the recently emerged deep learning (DL) concept. The DL processor includes a stacked auto-encoder, trained by unsupervised learning techniques, and a classifier whose parameters are determined in a supervised way by associating the known category labels to the reduced vector of high-level features generated by the previous processing blocks. The supervised learning step is carried out by using either support vector machines (SVM) or multilayer neural networks (MLP-NN). A subset of EEG from patients suffering from Alzheimer's Disease (AD) and healthy controls (HC) is considered for differentiating CJD patients. When fine-tuning the parameters of the global processing system by a supervised learning procedure, the proposed system is able to achieve an average accuracy of 89%, an average sensitivity of 92%, and an average specificity of 89% in differentiating CJD from RPD. Similar results are obtained for CJD versus AD and CJD versus HC.

  11. An exploration of the clinical learning experience of nursing students in nine European countries.

    PubMed

    Warne, Tony; Johansson, Unn-Britt; Papastavrou, Evridiki; Tichelaar, Erna; Tomietto, Marco; Van den Bossche, Koen; Moreno, Maria Flores Vizcaya; Saarikoski, Mikko

    2010-11-01

    The overall aim of the study was to develop a composite and comparative view of what factors enhance the learning experiences of student nurses whilst they are in clinical practice. The study involved students undertaking general nurse training programmes in nine Western European countries. The study focused on: (1) student nurse experiences of clinical learning environments, (2) the supervision provided by qualified nurses in clinical placements, and (3) the level of interaction between student and nurse teachers. The study utilised a validated theoretical model: the Clinical Learning Environment, Supervision and Nurse Teacher (CLES+T) evaluation scale. The evaluation scale has a number of sub-dimensions: Pedagogical atmosphere on the ward; Supervisory Relationships; the Leadership Style of Ward Managers; Premises of Nursing; and the Role of the Nurse Teacher. Data (N=1903) was collected from Cyprus, Belgium, England, Finland, Ireland, Italy, Netherlands, Spain and Sweden using web-based questionnaire 2007-2008. The findings revealed that respondents were generally satisfied with their clinical placements. There was clear support for the mentorship approach; 57% of respondents had a successful mentorship experience although some 18% of respondents experienced unsuccessful supervision. The most satisfied students studied at a university college, and had at least a seven week clinical placement supported by individualised mentorship relationships. Learning to become a nurse is a multidimensional process that requires both significant time being spent working with patients and a supportive supervisory relationship. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Automatic face naming by learning discriminative affinity matrices from weakly labeled images.

    PubMed

    Xiao, Shijie; Xu, Dong; Wu, Jianxin

    2015-10-01

    Given a collection of images, where each image contains several faces and is associated with a few names in the corresponding caption, the goal of face naming is to infer the correct name for each face. In this paper, we propose two new methods to effectively solve this problem by learning two discriminative affinity matrices from these weakly labeled images. We first propose a new method called regularized low-rank representation by effectively utilizing weakly supervised information to learn a low-rank reconstruction coefficient matrix while exploring multiple subspace structures of the data. Specifically, by introducing a specially designed regularizer to the low-rank representation method, we penalize the corresponding reconstruction coefficients related to the situations where a face is reconstructed by using face images from other subjects or by using itself. With the inferred reconstruction coefficient matrix, a discriminative affinity matrix can be obtained. Moreover, we also develop a new distance metric learning method called ambiguously supervised structural metric learning by using weakly supervised information to seek a discriminative distance metric. Hence, another discriminative affinity matrix can be obtained using the similarity matrix (i.e., the kernel matrix) based on the Mahalanobis distances of the data. Observing that these two affinity matrices contain complementary information, we further combine them to obtain a fused affinity matrix, based on which we develop a new iterative scheme to infer the name of each face. Comprehensive experiments demonstrate the effectiveness of our approach.

  13. Expert views on clinical supervision: a study based on interviews.

    PubMed

    Severinsson, E I; Borgenhammar, E V

    1997-05-01

    Clinical supervision is a didactic process of the purpose of human development and maturity. The aim of this study is to analyse views on clinical supervision held by a number of experts, and to reflect on the effects and value of clinical supervision in relation to public health. Data were collected by interviews and analysed in accordance with the grounded theory construction model. The results showed that clinical supervision is an integration process guiding a person from 'novice to expert' by establishing a relationship of trust between supervisor and supervisee. This study indicates that implementation of systematic clinical supervision may positively affect quality of care, and patients' recovery, create improved feeling of confidence in one's work, and prevent burnout among staff. The negative aspects, as reported, were the possibility of high 'opportunity costs', e.g. the time loss for patient care by those participating in organized systematic supervision. On the other hand, clinical supervision contributes towards more efficient use of resources and hence avoids unnecessary costs. However, neither of these aspects were further elaborated on by the experts but clearly indicate an important field for further research.

  14. Bank supervision using the Threshold-Minimum Dominating Set

    NASA Astrophysics Data System (ADS)

    Gogas, Periklis; Papadimitriou, Theophilos; Matthaiou, Maria-Artemis

    2016-06-01

    An optimized, healthy and stable banking system resilient to financial crises is a prerequisite for sustainable growth. Minimization of (a) the associated systemic risk and (b) the propagation of contagion in the case of a banking crisis are necessary conditions to achieve this goal. Central Banks are in charge of this significant undertaking via a close and detailed monitoring of the banking network. In this paper, we propose the use of an auxiliary supervision/monitoring system that is both efficient with respect to the required resources and can promptly identify a set of banks that are in distress so that immediate and appropriate action can be taken by the supervising authority. We use the network defined by the interrelations between banking institutions employing tools from Complex Networks theory for an efficient management of the entire banking network. In doing so, we introduce the Threshold Minimum Dominating Set (T-MDS). The T-MDS is used to identify the smallest and most efficient subset of banks that can be used as (a) sensors of distress of a manifesting banking crisis and (b) provide a path of possible contagion. We propose the use of this method as a supplementary monitoring tool in the arsenal of a Central Bank. Our dataset includes the 122 largest American banks in terms of their interbank loans. The empirical results show that when the T-MDS methodology is applied, we can have an efficient supervision of the whole banking network, by monitoring just a subset of 47 banks.

  15. Feasibility study of stain-free classification of cell apoptosis based on diffraction imaging flow cytometry and supervised machine learning techniques.

    PubMed

    Feng, Jingwen; Feng, Tong; Yang, Chengwen; Wang, Wei; Sa, Yu; Feng, Yuanming

    2018-06-01

    This study was to explore the feasibility of prediction and classification of cells in different stages of apoptosis with a stain-free method based on diffraction images and supervised machine learning. Apoptosis was induced in human chronic myelogenous leukemia K562 cells by cis-platinum (DDP). A newly developed technique of polarization diffraction imaging flow cytometry (p-DIFC) was performed to acquire diffraction images of the cells in three different statuses (viable, early apoptotic and late apoptotic/necrotic) after cell separation through fluorescence activated cell sorting with Annexin V-PE and SYTOX® Green double staining. The texture features of the diffraction images were extracted with in-house software based on the Gray-level co-occurrence matrix algorithm to generate datasets for cell classification with supervised machine learning method. Therefore, this new method has been verified in hydrogen peroxide induced apoptosis model of HL-60. Results show that accuracy of higher than 90% was achieved respectively in independent test datasets from each cell type based on logistic regression with ridge estimators, which indicated that p-DIFC system has a great potential in predicting and classifying cells in different stages of apoptosis.

  16. Semi-Supervised Tensor-Based Graph Embedding Learning and Its Application to Visual Discriminant Tracking.

    PubMed

    Hu, Weiming; Gao, Jin; Xing, Junliang; Zhang, Chao; Maybank, Stephen

    2017-01-01

    An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.

  17. A semi-supervised learning approach for RNA secondary structure prediction.

    PubMed

    Yonemoto, Haruka; Asai, Kiyoshi; Hamada, Michiaki

    2015-08-01

    RNA secondary structure prediction is a key technology in RNA bioinformatics. Most algorithms for RNA secondary structure prediction use probabilistic models, in which the model parameters are trained with reliable RNA secondary structures. Because of the difficulty of determining RNA secondary structures by experimental procedures, such as NMR or X-ray crystal structural analyses, there are still many RNA sequences that could be useful for training whose secondary structures have not been experimentally determined. In this paper, we introduce a novel semi-supervised learning approach for training parameters in a probabilistic model of RNA secondary structures in which we employ not only RNA sequences with annotated secondary structures but also ones with unknown secondary structures. Our model is based on a hybrid of generative (stochastic context-free grammars) and discriminative models (conditional random fields) that has been successfully applied to natural language processing. Computational experiments indicate that the accuracy of secondary structure prediction is improved by incorporating RNA sequences with unknown secondary structures into training. To our knowledge, this is the first study of a semi-supervised learning approach for RNA secondary structure prediction. This technique will be useful when the number of reliable structures is limited. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Newton Methods for Large Scale Problems in Machine Learning

    ERIC Educational Resources Information Center

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  19. Cluster: Drafting. Course: Basic Technical Drafting. Research Project.

    ERIC Educational Resources Information Center

    Sanford - Lee County Schools, NC.

    The set of six units is designed for use with an instructor in basic technical drafting and is also keyed to other texts. Each unit contains several task packages specifying prerequisites, rationale for learning, objectives, learning activities to be supervised by the instructor, and learning practice. The units cover: pictorial drawing; screw…

  20. Leadership to Build Learning Communities

    ERIC Educational Resources Information Center

    Zepeda, Sally J.

    2004-01-01

    This study examined the work of a principal of a Midwestern urban elementary school who used instructional supervision as a means of developing a learning community for adults. Implementing a variety of approaches adapted to the culture of the school, the principal crafted a process to meet the learning needs of 125 teachers and created an…

  1. Exploiting Redundancy for Flexible Behavior: Unsupervised Learning in a Modular Sensorimotor Control Architecture

    ERIC Educational Resources Information Center

    Butz, Martin V.; Herbort, Oliver; Hoffmann, Joachim

    2007-01-01

    Autonomously developing organisms face several challenges when learning reaching movements. First, motor control is learned unsupervised or self-supervised. Second, knowledge of sensorimotor contingencies is acquired in contexts in which action consequences unfold in time. Third, motor redundancies must be resolved. To solve all 3 of these…

  2. Approximate Optimal Control as a Model for Motor Learning

    ERIC Educational Resources Information Center

    Berthier, Neil E.; Rosenstein, Michael T.; Barto, Andrew G.

    2005-01-01

    Current models of psychological development rely heavily on connectionist models that use supervised learning. These models adapt network weights when the network output does not match the target outputs computed by some agent. The authors present a model of motor learning in which the child uses exploration to discover appropriate ways of…

  3. 29 CFR 29.4 - Criteria for apprenticeable occupations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... by industry and which must: (a) Involve skills that are customarily learned in a practical way through a structured, systematic program of on-the-job supervised learning; (b) Be clearly identified and... require the completion of at least 2,000 hours of on-the-job learning to attain; and (d) Require related...

  4. 29 CFR 29.4 - Criteria for apprenticeable occupations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... by industry and which must: (a) Involve skills that are customarily learned in a practical way through a structured, systematic program of on-the-job supervised learning; (b) Be clearly identified and... require the completion of at least 2,000 hours of on-the-job learning to attain; and (d) Require related...

  5. 29 CFR 29.4 - Criteria for apprenticeable occupations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... by industry and which must: (a) Involve skills that are customarily learned in a practical way through a structured, systematic program of on-the-job supervised learning; (b) Be clearly identified and... require the completion of at least 2,000 hours of on-the-job learning to attain; and (d) Require related...

  6. General subspace learning with corrupted training data via graph embedding.

    PubMed

    Bao, Bing-Kun; Liu, Guangcan; Hong, Richang; Yan, Shuicheng; Xu, Changsheng

    2013-11-01

    We address the following subspace learning problem: supposing we are given a set of labeled, corrupted training data points, how to learn the underlying subspace, which contains three components: an intrinsic subspace that captures certain desired properties of a data set, a penalty subspace that fits the undesired properties of the data, and an error container that models the gross corruptions possibly existing in the data. Given a set of data points, these three components can be learned by solving a nuclear norm regularized optimization problem, which is convex and can be efficiently solved in polynomial time. Using the method as a tool, we propose a new discriminant analysis (i.e., supervised subspace learning) algorithm called Corruptions Tolerant Discriminant Analysis (CTDA), in which the intrinsic subspace is used to capture the features with high within-class similarity, the penalty subspace takes the role of modeling the undesired features with high between-class similarity, and the error container takes charge of fitting the possible corruptions in the data. We show that CTDA can well handle the gross corruptions possibly existing in the training data, whereas previous linear discriminant analysis algorithms arguably fail in such a setting. Extensive experiments conducted on two benchmark human face data sets and one object recognition data set show that CTDA outperforms the related algorithms.

  7. Vibration control of building structures using self-organizing and self-learning neural networks

    NASA Astrophysics Data System (ADS)

    Madan, Alok

    2005-11-01

    Past research in artificial intelligence establishes that artificial neural networks (ANN) are effective and efficient computational processors for performing a variety of tasks including pattern recognition, classification, associative recall, combinatorial problem solving, adaptive control, multi-sensor data fusion, noise filtering and data compression, modelling and forecasting. The paper presents a potentially feasible approach for training ANN in active control of earthquake-induced vibrations in building structures without the aid of teacher signals (i.e. target control forces). A counter-propagation neural network is trained to output the control forces that are required to reduce the structural vibrations in the absence of any feedback on the correctness of the output control forces (i.e. without any information on the errors in output activations of the network). The present study shows that, in principle, the counter-propagation network (CPN) can learn from the control environment to compute the required control forces without the supervision of a teacher (unsupervised learning). Simulated case studies are presented to demonstrate the feasibility of implementing the unsupervised learning approach in ANN for effective vibration control of structures under the influence of earthquake ground motions. The proposed learning methodology obviates the need for developing a mathematical model of structural dynamics or training a separate neural network to emulate the structural response for implementation in practice.

  8. Mentor relationship as a tool of professional development of student nurses in clinical practice.

    PubMed

    Saarikoski, Mikko

    2003-09-01

    This is a condensed version of a research project relating to the design and the development of a research instrument concerning 'Mentor Relationship as a Tool of Professional Development of Student Nurses in Clinical Practice'. This short research paper is taken from and reproduces the research work undertaken by Saarikoski (2002). The main themes refer to: (1) Evaluation scale to assess the quality of clinical learning environment and (2) Supervision of student nurses during their clinical placements. Parts one and two are taken from the main research study and include the following (i) developing and testing an evaluation tool (ii) describing how nursing students experience their clinical learning environment and (iii) the supervision given by qualified staff nurses working in a hospital setting. This abridged report discusses the methodology approaches undertaken by the author and includes: (a) comparative phased twin centred study (b) a pilot scheme and (c) a primary research instrument that was developed into an extensively validated assessment-measuring tool. This report strongly suggests that there is clear evidence in this research report that the supervisory relationship is the most important single element of pedagogical activities of staff nurses. The total satisfaction of students correlated most clearly with the method of supervision and that those satisfied students had a successful mentor relationship and frequently enough access to private supervision sessions with mentor. In the sample of this empirical study (n = 279 student nurses in Finland) individualized supervision system was most common on psychiatric wards. All nurse educators and clinical practitioners working across Europe and around the World in clinical learning environments will find this paper very useful in helping them to improve and quantify the supervisory process. This study starts bridging the gap between using and integrating both at a National and European level qualitative assessment systems that relate to the learning and supervisory process. The study encourages the need for professionals to test these new instruments in other nursing cultures and reflects upon the need for further research work in this area.

  9. Theme: Innovative Curriculum Ideas and Practices in Agricultural Education.

    ERIC Educational Resources Information Center

    Agricultural Education Magazine, 2002

    2002-01-01

    Fourteen theme articles discuss the following: curriculum ideas and innovations in agricultural education, agricultural literacy, Supervised Agricultural Experience, active learning, locating agricultural education resources, distance and web-based instruction, principles of forest management, professional development, and service learning. (JOW)

  10. Test-retest reliability of the Clinical Learning Environment, Supervision and Nurse Teacher (CLES + T) scale.

    PubMed

    Gustafsson, Margareta; Blomberg, Karin; Holmefur, Marie

    2015-07-01

    The Clinical Learning Environment, Supervision and Nurse Teacher (CLES + T) scale evaluates the student nurses' perception of the learning environment and supervision within the clinical placement. It has never been tested in a replication study. The aim of the present study was to evaluate the test-retest reliability of the CLES + T scale. The CLES + T scale was administered twice to a group of 42 student nurses, with a one-week interval. Test-retest reliability was determined by calculations of Intraclass Correlation Coefficients (ICCs) and weighted Kappa coefficients. Standard Error of Measurements (SEM) and Smallest Detectable Difference (SDD) determined the precision of individual scores. Bland-Altman plots were created for analyses of systematic differences between the test occasions. The results of the study showed that the stability over time was good to excellent (ICC 0.88-0.96) in the sub-dimensions "Supervisory relationship", "Pedagogical atmosphere on the ward" and "Role of the nurse teacher". Measurements of "Premises of nursing on the ward" and "Leadership style of the manager" had lower but still acceptable stability (ICC 0.70-0.75). No systematic differences occurred between the test occasions. This study supports the usefulness of the CLES + T scale as a reliable measure of the student nurses' perception of the learning environment within the clinical placement at a hospital. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Comparison between Two Linear Supervised Learning Machines' Methods with Principle Component Based Methods for the Spectrofluorimetric Determination of Agomelatine and Its Degradants.

    PubMed

    Elkhoudary, Mahmoud M; Naguib, Ibrahim A; Abdel Salam, Randa A; Hadad, Ghada M

    2017-05-01

    Four accurate, sensitive and reliable stability indicating chemometric methods were developed for the quantitative determination of Agomelatine (AGM) whether in pure form or in pharmaceutical formulations. Two supervised learning machines' methods; linear artificial neural networks (PC-linANN) preceded by principle component analysis and linear support vector regression (linSVR), were compared with two principle component based methods; principle component regression (PCR) as well as partial least squares (PLS) for the spectrofluorimetric determination of AGM and its degradants. The results showed the benefits behind using linear learning machines' methods and the inherent merits of their algorithms in handling overlapped noisy spectral data especially during the challenging determination of AGM alkaline and acidic degradants (DG1 and DG2). Relative mean squared error of prediction (RMSEP) for the proposed models in the determination of AGM were 1.68, 1.72, 0.68 and 0.22 for PCR, PLS, SVR and PC-linANN; respectively. The results showed the superiority of supervised learning machines' methods over principle component based methods. Besides, the results suggested that linANN is the method of choice for determination of components in low amounts with similar overlapped spectra and narrow linearity range. Comparison between the proposed chemometric models and a reported HPLC method revealed the comparable performance and quantification power of the proposed models.

  12. How do we know what makes for "best practice" in clinical supervision for psychological therapists? A content analysis of supervisory models and approaches.

    PubMed

    Simpson-Southward, Chloe; Waller, Glenn; Hardy, Gillian E

    2017-11-01

    Clinical supervision for psychotherapies is widely used in clinical and research contexts. Supervision is often assumed to ensure therapy adherence and positive client outcomes, but there is little empirical research to support this contention. Regardless, there are numerous supervision models, but it is not known how consistent their recommendations are. This review aimed to identify which aspects of supervision are consistent across models, and which are not. A content analysis of 52 models revealed 71 supervisory elements. Models focus more on supervisee learning and/or development (88.46%), but less on emotional aspects of work (61.54%) or managerial or ethical responsibilities (57.69%). Most models focused on the supervisee (94.23%) and supervisor (80.77%), rather than the client (48.08%) or monitoring client outcomes (13.46%). Finally, none of the models were clearly or adequately empirically based. Although we might expect clinical supervision to contribute to positive client outcomes, the existing models have limited client focus and are inconsistent. Therefore, it is not currently recommended that one should assume that the use of such models will ensure consistent clinician practice or positive therapeutic outcomes. There is little evidence for the effectiveness of supervision. There is a lack of consistency in supervision models. Services need to assess whether supervision is effective for practitioners and patients. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Purification of Training Samples Based on Spectral Feature and Superpixel Segmentation

    NASA Astrophysics Data System (ADS)

    Guan, X.; Qi, W.; He, J.; Wen, Q.; Chen, T.; Wang, Z.

    2018-04-01

    Remote sensing image classification is an effective way to extract information from large volumes of high-spatial resolution remote sensing images. Generally, supervised image classification relies on abundant and high-precision training data, which is often manually interpreted by human experts to provide ground truth for training and evaluating the performance of the classifier. Remote sensing enterprises accumulated lots of manually interpreted products from early lower-spatial resolution remote sensing images by executing their routine research and business programs. However, these manually interpreted products may not match the very high resolution (VHR) image properly because of different dates or spatial resolution of both data, thus, hindering suitability of manually interpreted products in training classification models, or small coverage area of these manually interpreted products. We also face similar problems in our laboratory in 21st Century Aerospace Technology Co. Ltd (short for 21AT). In this work, we propose a method to purify the interpreted product to match newly available VHRI data and provide the best training data for supervised image classifiers in VHR image classification. And results indicate that our proposed method can efficiently purify the input data for future machine learning use.

  14. A qualitative investigation of the nature of "informal supervision" among therapists in training.

    PubMed

    Coren, Sidney; Farber, Barry A

    2017-11-29

    This study investigated how, when, why, and with whom therapists in training utilize "informal supervision"-that is, engage individuals who are not their formally assigned supervisors in significant conversations about their clinical work. Participants were 16 doctoral trainees in clinical and counseling psychology programs. Semi-structured interviews were conducted and analyzed using the Consensual Qualitative Research (CQR) method. Seven domains emerged from the analysis, indicating that, in general, participants believe that informal and formal supervision offer many of the same benefits, including validation, support, and reassurance; freedom and safety to discuss doubts, anxieties, strong personal reactions to patients, clinical mistakes and challenges; and alternative approaches to clinical interventions. However, several differences also emerged between these modes of learning-for example, formal supervision is seen as more focused on didactics per se ("what to do"), whereas informal supervision is seen as providing more of a "holding environment." Overall, the findings of this study suggest that informal supervision is an important and valuable adjunctive practice by which clinical trainees augment their professional competencies. Recommendations are proposed for clinical practice and training, including the need to further specify the ethical boundaries of this unique and essentially unregulated type of supervision.

  15. Form Follows Function: A Model for Clinical Supervision of Genetic Counseling Students.

    PubMed

    Wherley, Colleen; Veach, Patricia McCarthy; Martyr, Meredith A; LeRoy, Bonnie S

    2015-10-01

    Supervision plays a vital role in genetic counselor training, yet models describing genetic counseling supervision processes and outcomes are lacking. This paper describes a proposed supervision model intended to provide a framework to promote comprehensive and consistent clinical supervision training for genetic counseling students. Based on the principle "form follows function," the model reflects and reinforces McCarthy Veach et al.'s empirically derived model of genetic counseling practice - the "Reciprocal Engagement Model" (REM). The REM consists of mutually interactive educational, relational, and psychosocial components. The Reciprocal Engagement Model of Supervision (REM-S) has similar components and corresponding tenets, goals, and outcomes. The 5 REM-S tenets are: Learning and applying genetic information are key; Relationship is integral to genetic counseling supervision; Student autonomy must be supported; Students are capable; and Student emotions matter. The REM-S outcomes are: Student understands and applies information to independently provide effective services, develop professionally, and engage in self-reflective practice. The 16 REM-S goals are informed by the REM of genetic counseling practice and supported by prior literature. A review of models in medicine and psychology confirms the REM-S contains supervision elements common in healthcare fields, while remaining unique to genetic counseling. The REM-S shows promise for enhancing genetic counselor supervision training and practice and for promoting research on clinical supervision. The REM-S is presented in detail along with specific examples and training and research suggestions.

  16. An Overview of the Elements that Influence Efficiency in Postgraduate Supervisory Practice Arrangements

    ERIC Educational Resources Information Center

    Buttery, Ernest Alan; Richter, Ewa Maria; Filho, Walter Leal

    2005-01-01

    Purpose: To outline the role of the group supervision model in postgraduate training, especially its advantages in respect of research involving industry sponsors. Design/methodology/approach: The paper considers the various categories of supervision and the pivotal role played by the supervisor. It analyses indicators of supervisor effectiveness…

  17. Porosity estimation by semi-supervised learning with sparsely available labeled samples

    NASA Astrophysics Data System (ADS)

    Lima, Luiz Alberto; Görnitz, Nico; Varella, Luiz Eduardo; Vellasco, Marley; Müller, Klaus-Robert; Nakajima, Shinichi

    2017-09-01

    This paper addresses the porosity estimation problem from seismic impedance volumes and porosity samples located in a small group of exploratory wells. Regression methods, trained on the impedance as inputs and the porosity as output labels, generally suffer from extremely expensive (and hence sparsely available) porosity samples. To optimally make use of the valuable porosity data, a semi-supervised machine learning method was proposed, Transductive Conditional Random Field Regression (TCRFR), showing good performance (Görnitz et al., 2017). TCRFR, however, still requires more labeled data than those usually available, which creates a gap when applying the method to the porosity estimation problem in realistic situations. In this paper, we aim to fill this gap by introducing two graph-based preprocessing techniques, which adapt the original TCRFR for extremely weakly supervised scenarios. Our new method outperforms the previous automatic estimation methods on synthetic data and provides a comparable result to the manual labored, time-consuming geostatistics approach on real data, proving its potential as a practical industrial tool.

  18. 'It gave me a new lease of life … ': GPs' views and experiences of supervising foundation doctors in general practice.

    PubMed

    Sabey, Abigail; Harris, Michael; van Hamel, Clare

    2016-03-01

    General practice is a popular placement in the second year of Foundation training. Evaluations suggest this is a positive experience for most trainee doctors and benefits their perceptions of primary care, but the impact on primary care supervisors has not been considered. At a time when placements may need to increase, understanding the experience of the GP supervisors responsible for these placements is important. To explore the views, experiences and needs of GPs who supervise F2 doctors in their practices including their perceptions of the benefits to individuals and practices. A qualitative approach with GPs from across Severn Postgraduate Medical Education who supervise F2 doctors. Semi-structured interviews with 15 GPs between December 2012 and April 2013. GP supervisors are enthusiastic about helping F2 doctors to appreciate the uniqueness of primary care. Workload and responsibility around supervision is considerable making a supportive team important. Working with young, enthusiastic doctors boosts morale in the team. The presence of freshly trained minds prompts GPs to consider their own learning needs. Being a supervisor can increase job satisfaction; the teaching role gives respite from the demanding nature of GP work. Supervisors are positive about working with F2s, who lift morale in the team and challenge GPs in their own practice and learning. This boosts job and personal satisfaction. Nonetheless, consideration should be given to managing teaching workload and team support for supervision.

  19. Creating an educationally minded schedule: one approach to minimize the impact of duty hour standards on intern continuity clinic experience.

    PubMed

    DeBlasio, Dominick; Kerrey, M Kathleen; Sucharew, Heidi; Klein, Melissa

    2014-11-01

    To determine if implementing an educationally minded schedule utilizing consecutive night shifts can moderate the impact of the 2011 duty hour standards on education and patient continuity of care in longitudinal primary care experience (continuity clinic). A 14-month pre-post study was performed in continuity clinic with one supervising physician group and two intern groups. Surveys to assess attitudes and education were distributed to the supervising physicians and interns before and after the changes in duty hour standards. Intern groups' schedules were reviewed for the number of regular and alternative day clinic (i.e. primary care experience on a different weekday) sessions and patient continuity of care. Fifteen supervising physicians and 51 interns participated (25 in 2011, 26 in 2012). Intern groups' comfort when discussing patient issues, educational needs and teamwork perception did not differ. Supervising physicians' understanding of learning needs and provision of feedback did not differ between groups. Supervising physicians indicated a greater ability to provide feedback and understand learning needs during regular continuity clinic sessions compared with alternative day clinics (all p < 0.05). No significant difference was detected between intern groups in the number of regularly scheduled continuity clinics, alternative day clinics or patient continuity of care. The 2011 duty hour standards required significant alterations to intern schedules, but educationally minded scheduling limited impact on education and patient continuity in care.

  20. Towards a Theoretical Framework for Understanding PGCE Student Teacher Learning in the Wild Coast Rural Schools' Partnership Project

    ERIC Educational Resources Information Center

    Pennefather, Jane

    2016-01-01

    This article focuses on a theoretical model that I am developing in order to understand student teacher learning in a rural context and the enabling conditions that can support this learning. The question of whether a supervised teaching practice in a rural context can contribute to the development of student teacher professional learning and…

  1. Linear time relational prototype based learning.

    PubMed

    Gisbrecht, Andrej; Mokbel, Bassam; Schleif, Frank-Michael; Zhu, Xibin; Hammer, Barbara

    2012-10-01

    Prototype based learning offers an intuitive interface to inspect large quantities of electronic data in supervised or unsupervised settings. Recently, many techniques have been extended to data described by general dissimilarities rather than Euclidean vectors, so-called relational data settings. Unlike the Euclidean counterparts, the techniques have quadratic time complexity due to the underlying quadratic dissimilarity matrix. Thus, they are infeasible already for medium sized data sets. The contribution of this article is twofold: On the one hand we propose a novel supervised prototype based classification technique for dissimilarity data based on popular learning vector quantization (LVQ), on the other hand we transfer a linear time approximation technique, the Nyström approximation, to this algorithm and an unsupervised counterpart, the relational generative topographic mapping (GTM). This way, linear time and space methods result. We evaluate the techniques on three examples from the biomedical domain.

  2. Learning With Mixed Hard/Soft Pointwise Constraints.

    PubMed

    Gnecco, Giorgio; Gori, Marco; Melacci, Stefano; Sanguineti, Marcello

    2015-09-01

    A learning paradigm is proposed and investigated, in which the classical framework of learning from examples is enhanced by the introduction of hard pointwise constraints, i.e., constraints imposed on a finite set of examples that cannot be violated. Such constraints arise, e.g., when requiring coherent decisions of classifiers acting on different views of the same pattern. The classical examples of supervised learning, which can be violated at the cost of some penalization (quantified by the choice of a suitable loss function) play the role of soft pointwise constraints. Constrained variational calculus is exploited to derive a representer theorem that provides a description of the functional structure of the optimal solution to the proposed learning paradigm. It is shown that such an optimal solution can be represented in terms of a set of support constraints, which generalize the concept of support vectors and open the doors to a novel learning paradigm, called support constraint machines. The general theory is applied to derive the representation of the optimal solution to the problem of learning from hard linear pointwise constraints combined with soft pointwise constraints induced by supervised examples. In some cases, closed-form optimal solutions are obtained.

  3. Two-layer contractive encodings for learning stable nonlinear features.

    PubMed

    Schulz, Hannes; Cho, Kyunghyun; Raiko, Tapani; Behnke, Sven

    2015-04-01

    Unsupervised learning of feature hierarchies is often a good strategy to initialize deep architectures for supervised learning. Most existing deep learning methods build these feature hierarchies layer by layer in a greedy fashion using either auto-encoders or restricted Boltzmann machines. Both yield encoders which compute linear projections of input followed by a smooth thresholding function. In this work, we demonstrate that these encoders fail to find stable features when the required computation is in the exclusive-or class. To overcome this limitation, we propose a two-layer encoder which is less restricted in the type of features it can learn. The proposed encoder is regularized by an extension of previous work on contractive regularization. This proposed two-layer contractive encoder potentially poses a more difficult optimization problem, and we further propose to linearly transform hidden neurons of the encoder to make learning easier. We demonstrate the advantages of the two-layer encoders qualitatively on artificially constructed datasets as well as commonly used benchmark datasets. We also conduct experiments on a semi-supervised learning task and show the benefits of the proposed two-layer encoders trained with the linear transformation of perceptrons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Computational intelligence in gait research: a perspective on current applications and future challenges.

    PubMed

    Lai, Daniel T H; Begg, Rezaul K; Palaniswami, Marimuthu

    2009-09-01

    Our mobility is an important daily requirement so much so that any disruption to it severely degrades our perceived quality of life. Studies in gait and human movement sciences, therefore, play a significant role in maintaining the well-being of our mobility. Current gait analysis involves numerous interdependent gait parameters that are difficult to adequately interpret due to the large volume of recorded data and lengthy assessment times in gait laboratories. A proposed solution to these problems is computational intelligence (CI), which is an emerging paradigm in biomedical engineering most notably in pathology detection and prosthesis design. The integration of CI technology in gait systems facilitates studies in disorders caused by lower limb defects, cerebral disorders, and aging effects by learning data relationships through a combination of signal processing and machine learning techniques. Learning paradigms, such as supervised learning, unsupervised learning, and fuzzy and evolutionary algorithms, provide advanced modeling capabilities for biomechanical systems that in the past have relied heavily on statistical analysis. CI offers the ability to investigate nonlinear data relationships, enhance data interpretation, design more efficient diagnostic methods, and extrapolate model functionality. These are envisioned to result in more cost-effective, efficient, and easy-to-use systems, which would address global shortages in medical personnel and rising medical costs. This paper surveys current signal processing and CI methodologies followed by gait applications ranging from normal gait studies and disorder detection to artificial gait simulation. We review recent systems focusing on the existing challenges and issues involved in making them successful. We also examine new research in sensor technologies for gait that could be combined with these intelligent systems to develop more effective healthcare solutions.

  5. Learning from Instructional Rounds

    ERIC Educational Resources Information Center

    City, Elizabeth A.

    2011-01-01

    Instructional rounds are a disciplined way for educators to work together to improve a school's instructional core. The practice combines three common elements of improvement: classroom observation, an improvement strategy, and a network. Instructional rounds differ from supervision and evaluation in that people doing rounds learn something…

  6. The nature and structure of supervision in health visiting with victims of child sexual abuse.

    PubMed

    Scott, L

    1999-03-01

    Part of a higher research degree to explore professional practice. To explore how health visitors work with victims of child sexual abuse and the supervision systems to support them. To seek the views and experiences of practising health visitors relating to complex care in order to consider the nature and structure of supervision. The research reported in this paper used a qualitative method of research and semi-structured interviews with practising health visitors of varying levels of experience in venues around England. Qualitative research enabled the exploration of experiences. Identification of the need for regular, structured, accountable opportunities in a 'private setting' to discuss whole caseload work and current practice issues. Supervision requires a structured, formalized process, in both regularity and content, as a means to explore and acknowledge work with increasingly complex care, to enable full discussion of whole caseloads. Supervision is demonstrated as a vehicle to enable the sharing of good practices and for weak practices to be identified and managed appropriately. Supervision seeks to fulfil the above whilst promoting a stimulating, learning experience, accommodating the notion that individuals learn at their own pace and bring a wealth of human experience to the service. The size of the study was dictated by the amount of time available within which to complete a research master's degree course primarily in the author's own time, over a 2-year period. The majority of participants volunteered their accounts in their own time. For others I obtained permission from their employers for them to participate once they approached me with an interest in being interviewed. This research provides a model of supervision based on practitioner views and experiences. The article highlights the value of research and evidence-based information to enhance practice accountability and the quality of care. Proactive risk management can safeguard the health and safety of the public, the practitioner and the organization.

  7. Supervising away from home: clinical, cultural and professional challenges.

    PubMed

    Abramovitch, Henry; Wiener, Jan

    2017-02-01

    This paper explores some challenges of supervising clinical work of trainees, known as 'routers', who live in countries with diverse cultural, social and political traditions, and the analysts who travel to supervise them. It is written as an evolving dialogue between the authors, who explore together the effects of their own culture of origin, and in particular the legacy and values of their own training institutes on the styles and models of analytic supervision. Their dialogue is framed around the meaning of home and experiences of homesickness for analysts working away from home in an interactive field of strangeness in countries where analytical psychology is a relatively new discipline. The authors outline the findings from their own qualitative survey, where other supervisors working abroad, and those they have supervised, describe their experiences and their encounters with difference. The dialogue ends with both authors discussing what they have learned about teaching and supervising abroad, the implications for more flexible use of Jungian concepts, and how such visits have changed their clinical practice in their home countries. © 2017, The Society of Analytical Psychology.

  8. Project Evidence: Responding to the Changing Professional Learning Needs of Mentors in Initial Teacher Education

    ERIC Educational Resources Information Center

    Allen, Jeanne Maree; White, Simone; Sim, Cheryl

    2017-01-01

    This positioning paper seeks to contribute to the knowledge base of the changing professional learning needs of supervising or mentor teachers in initial teacher education. To do so, we draw from the work of "Project Evidence," an Australian Office of Learning and Teaching funded project, designed to support teacher education through the…

  9. A Study of Critical Reflection in Health Professional Education: "Learning Where Others Are Coming from"

    ERIC Educational Resources Information Center

    Delany, Clare; Watkin, Deborah

    2009-01-01

    A dominant focus of clinical education for health professional students is experiential learning through an apprentice model where students are exposed to a range of clinical scenarios and conditions through observation initially, and then through supervised clinical practice. However experiential learning may not be enough to meet the need for…

  10. Mentorship, Supervision and Learning Experience in PhD Education

    ERIC Educational Resources Information Center

    Linden, Jitka; Ohlin, Mats; Brodin, Eva M.

    2013-01-01

    The learning that ensued from the mentorship relationship on a mentorship program for doctoral students at a Swedish university was studied in three cases (two in social science and one in technology). The aim was: (a) to explore how doctoral students, their formal mentors and their supervisors describe their own learning, and how they perceive…

  11. Organizational Commitment for Knowledge Workers: The Roles of Perceived Organizational Learning Culture, Leader-Member Exchange Quality, and Turnover Intention

    ERIC Educational Resources Information Center

    Joo, Baek-Kyoo

    2010-01-01

    This article investigates the impact of perceived organizational learning culture and leader-member exchange (LMX) quality on organizational commitment and eventually on employee turnover intention. Employees exhibited the highest organizational commitment when they perceived a higher learning culture and when they were supervised in a supportive…

  12. Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns.

    PubMed

    Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2013-01-01

    A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.

  13. Precise-Spike-Driven Synaptic Plasticity: Learning Hetero-Association of Spatiotemporal Spike Patterns

    PubMed Central

    Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2013-01-01

    A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe. PMID:24223789

  14. Semi-Supervised Multi-View Learning for Gene Network Reconstruction

    PubMed Central

    Ceci, Michelangelo; Pio, Gianvito; Kuzmanovski, Vladimir; Džeroski, Sašo

    2015-01-01

    The task of gene regulatory network reconstruction from high-throughput data is receiving increasing attention in recent years. As a consequence, many inference methods for solving this task have been proposed in the literature. It has been recently observed, however, that no single inference method performs optimally across all datasets. It has also been shown that the integration of predictions from multiple inference methods is more robust and shows high performance across diverse datasets. Inspired by this research, in this paper, we propose a machine learning solution which learns to combine predictions from multiple inference methods. While this approach adds additional complexity to the inference process, we expect it would also carry substantial benefits. These would come from the automatic adaptation to patterns on the outputs of individual inference methods, so that it is possible to identify regulatory interactions more reliably when these patterns occur. This article demonstrates the benefits (in terms of accuracy of the reconstructed networks) of the proposed method, which exploits an iterative, semi-supervised ensemble-based algorithm. The algorithm learns to combine the interactions predicted by many different inference methods in the multi-view learning setting. The empirical evaluation of the proposed algorithm on a prokaryotic model organism (E. coli) and on a eukaryotic model organism (S. cerevisiae) clearly shows improved performance over the state of the art methods. The results indicate that gene regulatory network reconstruction for the real datasets is more difficult for S. cerevisiae than for E. coli. The software, all the datasets used in the experiments and all the results are available for download at the following link: http://figshare.com/articles/Semi_supervised_Multi_View_Learning_for_Gene_Network_Reconstruction/1604827. PMID:26641091

  15. A peer learning intervention for nursing students in clinical practice education: A quasi-experimental study.

    PubMed

    Pålsson, Ylva; Mårtensson, Gunilla; Swenne, Christine Leo; Ädel, Eva; Engström, Maria

    2017-04-01

    Studies of peer learning indicate that the model enables students to practice skills useful in their future profession, such as communication, cooperation, reflection and independence. However, so far most studies have used a qualitative approach and none have used a quasi-experimental design to study effects of nursing students' peer learning in clinical practice. To investigate the effects of peer learning in clinical practice education on nursing students' self-rated performance. Quasi-experimental. The study was conducted during nursing students' clinical practice. All undergraduate nursing students (n=87) attending their first clinical practice were approached. Seventy students out of 87 answered the questionnaires at both baseline and follow-up (42 of 46 in the intervention group and 28 of 39 in the comparison group). During the first two weeks of the clinical practice period, all students were supervised traditionally. Thereafter, the intervention group received peer learning the last two weeks, and the comparison group received traditional supervision. Questionnaire data were collected on nursing students' self-rated performance during the second (baseline) and last (follow-up) week of their clinical practice. Self-efficacy was improved in the intervention group and a significant interaction effect was found for changes over time between the two groups. For the other self-rated variables/tests, there were no differences in changes over time between the groups. Studying each group separately, the intervention group significantly improved on thirteen of the twenty variables/tests over time and the comparison group improved on four. The results indicate that peer learning is a useful method which improves nursing students' self-efficacy to a greater degree than traditional supervision does. Regarding the other self-rated performance variables, no interaction effects were found. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. L1-norm locally linear representation regularization multi-source adaptation learning.

    PubMed

    Tao, Jianwen; Wen, Shiting; Hu, Wenjun

    2015-09-01

    In most supervised domain adaptation learning (DAL) tasks, one has access only to a small number of labeled examples from target domain. Therefore the success of supervised DAL in this "small sample" regime needs the effective utilization of the large amounts of unlabeled data to extract information that is useful for generalization. Toward this end, we here use the geometric intuition of manifold assumption to extend the established frameworks in existing model-based DAL methods for function learning by incorporating additional information about the target geometric structure of the marginal distribution. We would like to ensure that the solution is smooth with respect to both the ambient space and the target marginal distribution. In doing this, we propose a novel L1-norm locally linear representation regularization multi-source adaptation learning framework which exploits the geometry of the probability distribution, which has two techniques. Firstly, an L1-norm locally linear representation method is presented for robust graph construction by replacing the L2-norm reconstruction measure in LLE with L1-norm one, which is termed as L1-LLR for short. Secondly, considering the robust graph regularization, we replace traditional graph Laplacian regularization with our new L1-LLR graph Laplacian regularization and therefore construct new graph-based semi-supervised learning framework with multi-source adaptation constraint, which is coined as L1-MSAL method. Moreover, to deal with the nonlinear learning problem, we also generalize the L1-MSAL method by mapping the input data points from the input space to a high-dimensional reproducing kernel Hilbert space (RKHS) via a nonlinear mapping. Promising experimental results have been obtained on several real-world datasets such as face, visual video and object. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Some simple guides to finding useful information in exploration geochemical data

    USGS Publications Warehouse

    Singer, D.A.; Kouda, R.

    2001-01-01

    Most regional geochemistry data reflect processes that can produce superfluous bits of noise and, perhaps, information about the mineralization process of interest. There are two end-member approaches to finding patterns in geochemical data-unsupervised learning and supervised learning. In unsupervised learning, data are processed and the geochemist is given the task of interpreting and identifying possible sources of any patterns. In supervised learning, data from known subgroups such as rock type, mineralized and nonmineralized, and types of mineralization are used to train the system which then is given unknown samples to classify into these subgroups. To locate patterns of interest, it is helpful to transform the data and to remove unwanted masking patterns. With trace elements use of a logarithmic transformation is recommended. In many situations, missing censored data can be estimated using multiple regression of other uncensored variables on the variable with censored values. In unsupervised learning, transformed values can be standardized, or normalized, to a Z-score by subtracting the subset's mean and dividing by its standard deviation. Subsets include any source of differences that might be related to processes unrelated to the target sought such as different laboratories, regional alteration, analytical procedures, or rock types. Normalization removes effects of different means and measurement scales as well as facilitates comparison of spatial patterns of elements. These adjustments remove effects of different subgroups and hopefully leave on the map the simple and uncluttered pattern(s) related to the mineralization only. Supervised learning methods, such as discriminant analysis and neural networks, offer the promise of consistent and, in certain situations, unbiased estimates of where mineralization might exist. These methods critically rely on being trained with data that encompasses all populations fairly and that can possibly fall into only the identified populations. ?? 2001 International Association for Mathematical Geology.

  18. Active learning-based information structure analysis of full scientific articles and two applications for biomedical literature review.

    PubMed

    Guo, Yufan; Silins, Ilona; Stenius, Ulla; Korhonen, Anna

    2013-06-01

    Techniques that are capable of automatically analyzing the information structure of scientific articles could be highly useful for improving information access to biomedical literature. However, most existing approaches rely on supervised machine learning (ML) and substantial labeled data that are expensive to develop and apply to different sub-fields of biomedicine. Recent research shows that minimal supervision is sufficient for fairly accurate information structure analysis of biomedical abstracts. However, is it realistic for full articles given their high linguistic and informational complexity? We introduce and release a novel corpus of 50 biomedical articles annotated according to the Argumentative Zoning (AZ) scheme, and investigate active learning with one of the most widely used ML models-Support Vector Machines (SVM)-on this corpus. Additionally, we introduce two novel applications that use AZ to support real-life literature review in biomedicine via question answering and summarization. We show that active learning with SVM trained on 500 labeled sentences (6% of the corpus) performs surprisingly well with the accuracy of 82%, just 2% lower than fully supervised learning. In our question answering task, biomedical researchers find relevant information significantly faster from AZ-annotated than unannotated articles. In the summarization task, sentences extracted from particular zones are significantly more similar to gold standard summaries than those extracted from particular sections of full articles. These results demonstrate that active learning of full articles' information structure is indeed realistic and the accuracy is high enough to support real-life literature review in biomedicine. The annotated corpus, our AZ classifier and the two novel applications are available at http://www.cl.cam.ac.uk/yg244/12bioinfo.html

  19. A Hybrid Supervised/Unsupervised Machine Learning Approach to Solar Flare Prediction

    NASA Astrophysics Data System (ADS)

    Benvenuto, Federico; Piana, Michele; Campi, Cristina; Massone, Anna Maria

    2018-01-01

    This paper introduces a novel method for flare forecasting, combining prediction accuracy with the ability to identify the most relevant predictive variables. This result is obtained by means of a two-step approach: first, a supervised regularization method for regression, namely, LASSO is applied, where a sparsity-enhancing penalty term allows the identification of the significance with which each data feature contributes to the prediction; then, an unsupervised fuzzy clustering technique for classification, namely, Fuzzy C-Means, is applied, where the regression outcome is partitioned through the minimization of a cost function and without focusing on the optimization of a specific skill score. This approach is therefore hybrid, since it combines supervised and unsupervised learning; realizes classification in an automatic, skill-score-independent way; and provides effective prediction performances even in the case of imbalanced data sets. Its prediction power is verified against NOAA Space Weather Prediction Center data, using as a test set, data in the range between 1996 August and 2010 December and as training set, data in the range between 1988 December and 1996 June. To validate the method, we computed several skill scores typically utilized in flare prediction and compared the values provided by the hybrid approach with the ones provided by several standard (non-hybrid) machine learning methods. The results showed that the hybrid approach performs classification better than all other supervised methods and with an effectiveness comparable to the one of clustering methods; but, in addition, it provides a reliable ranking of the weights with which the data properties contribute to the forecast.

  20. Effect of Increased Inpatient Attending Physician Supervision on Medical Errors, Patient Safety, and Resident Education: A Randomized Clinical Trial.

    PubMed

    Finn, Kathleen M; Metlay, Joshua P; Chang, Yuchiao; Nagarur, Amulya; Yang, Shaun; Landrigan, Christopher P; Iyasere, Christiana

    2018-06-04

    While the relationship between resident work hours and patient safety has been extensively studied, little research has evaluated the role of attending physician supervision on patient safety. To determine the effect of increased attending physician supervision on an inpatient resident general medical service on patient safety and educational outcomes. This 9-month randomized clinical trial performed on an inpatient general medical service of a large academic medical center used a crossover design. Participants were clinical teaching attending physicians and residents in an internal medicine residency program. Twenty-two faculty provided either (1) increased direct supervision in which attending physicians joined work rounds on previously admitted patients or (2) standard supervision in which attending physicians were available but did not join work rounds. Each faculty member participated in both arms in random order. The primary safety outcome was rate of medical errors. Resident education was evaluated via a time-motion study to assess resident participation on rounds and via surveys to measure resident and attending physician educational ratings. Of the 22 attending physicians, 8 (36%) were women, with 15 (68%) having more than 5 years of experience. A total of 1259 patients (5772 patient-days) were included in the analysis. The medical error rate was not significantly different between standard vs increased supervision (107.6; 95% CI, 85.8-133.7 vs 91.1; 95% CI, 76.9-104.0 per 1000 patient-days; P = .21). Time-motion analysis of 161 work rounds found no difference in mean length of time spent discussing established patients in the 2 models (202; 95% CI, 192-212 vs 202; 95% CI, 189-215 minutes; P = .99). Interns spoke less when an attending physician joined rounds (64; 95% CI, 60-68 vs 55; 95% CI, 49-60 minutes; P = .008). In surveys, interns reported feeling less efficient (41 [55%] vs 68 [73%]; P = .02) and less autonomous (53 [72%] vs 86 [91%]; P = .001) with an attending physician present and residents felt less autonomous (11 [58%] vs 30 [97%]; P < .001). Conversely, attending physicians rated the quality of care higher when they participated on work rounds (20 [100%] vs 16 [80%]; P = .04). Increased direct attending physician supervision did not significantly reduce the medical error rate. In designing morning work rounds, residency programs should reconsider their balance of patient safety, learning needs, and resident autonomy. ClinicalTrials.gov Identifier: NCT03318198.

Top