Berry, Christopher; Hashemi, Mohammad Reza; Unlu, Mehmet; Jarrahi, Mona
2013-07-08
In this video article we present a detailed demonstration of a highly efficient method for generating terahertz waves. Our technique is based on photoconduction, which has been one of the most commonly used techniques for terahertz generation (1-8). Terahertz generation in a photoconductive emitter is achieved by pumping an ultrafast photoconductor with a pulsed or heterodyned laser illumination. The induced photocurrent, which follows the envelope of the pump laser, is routed to a terahertz radiating antenna connected to the photoconductor contact electrodes to generate terahertz radiation. Although the quantum efficiency of a photoconductive emitter can theoretically reach 100%, the relatively long transport path lengths of photo-generated carriers to the contact electrodes of conventional photoconductors have severely limited their quantum efficiency. Additionally, the carrier screening effect and thermal breakdown strictly limit the maximum output power of conventional photoconductive terahertz sources. To address the quantum efficiency limitations of conventional photoconductive terahertz emitters, we have developed a new photoconductive emitter concept which incorporates a plasmonic contact electrode configuration to offer high quantum-efficiency and ultrafast operation simultaneously. By using nano-scale plasmonic contact electrodes, we significantly reduce the average photo-generated carrier transport path to photoconductor contact electrodes compared to conventional photoconductors (9). Our method also allows increasing photoconductor active area without a considerable increase in the capacitive loading to the antenna, boosting the maximum terahertz radiation power by preventing the carrier screening effect and thermal breakdown at high optical pump powers. By incorporating plasmonic contact electrodes, we demonstrate enhancing the optical-to-terahertz power conversion efficiency of a conventional photoconductive terahertz emitter by a factor of 50 (10).
Yardimci, Nezih Tolga; Cakmakyapan, Semih; Hemmati, Soroosh; Jarrahi, Mona
2017-06-23
The scope and potential uses of time-domain terahertz imaging and spectroscopy are mainly limited by the low optical-to-terahertz conversion efficiency of photoconductive terahertz sources. State-of-the-art photoconductive sources utilize short-carrier-lifetime semiconductors to recombine carriers that cannot contribute to efficient terahertz generation and cause additional thermal dissipation. Here, we present a novel photoconductive terahertz source that offers a significantly higher efficiency compared with terahertz sources fabricated on short-carrier-lifetime substrates. The key innovative feature of this source is the tight three-dimensional confinement of the optical pump beam around the terahertz nanoantennas that are used as radiating elements. This is achieved by means of a nanocavity formed by plasmonic structures and a distributed Bragg reflector. Consequently, almost all of the photo-generated carriers can be routed to the terahertz nanoantennas within a sub-picosecond time-scale. This results in a very strong, ultrafast current that drives the nanoantennas to produce broadband terahertz radiation. We experimentally demonstrate that this terahertz source can generate 4 mW pulsed terahertz radiation under an optical pump power of 720 mW over the 0.1-4 THz frequency range. This is the highest reported power level for terahertz radiation from a photoconductive terahertz source, representing more than an order of magnitude of enhancement in the optical-to-terahertz conversion efficiency compared with state-of-the-art photoconductive terahertz sources fabricated on short-carrier-lifetime substrates.
Yardimci, Nezih Tolga; Cakmakyapan, Semih; Hemmati, Soroosh; ...
2017-06-23
The scope and potential uses of time-domain terahertz imaging and spectroscopy are mainly limited by the low optical-to-terahertz conversion efficiency of photoconductive terahertz sources. State-of-theart photoconductive sources utilize short-carrier-lifetime semiconductors to recombine carriers that cannot contribute to efficient terahertz generation and cause additional thermal dissipation. Here, we present a novel photoconductive terahertz source that offers a significantly higher efficiency compared with terahertz sources fabricated on short-carrier-lifetime substrates. The key innovative feature of this source is the tight three-dimensional confinement of the optical pump beam around the terahertz nanoantennas that are used as radiating elements. This is achieved by means ofmore » a nanocavity formed by plasmonic structures and a distributed Bragg reflector. Consequently, almost all of the photo-generated carriers can be routed to the terahertz nanoantennas within a sub-picosecond time-scale. This results in a very strong, ultrafast current that drives the nanoantennas to produce broadband terahertz radiation. We experimentally demonstrate that this terahertz source can generate 4 mW pulsed terahertz radiation under an optical pump power of 720 mW over the 0.1–4 THz frequency range. This is the highest reported power level for terahertz radiation from a photoconductive terahertz source, representing more than an order of magnitude of enhancement in the optical-to-terahertz conversion efficiency compared with state-of-the-art photoconductive terahertz sources fabricated on shortcarrier- lifetime substrates.« less
Cascaded second-order processes for the efficient generation of narrowband terahertz radiation
NASA Astrophysics Data System (ADS)
Cirmi, Giovanni; Hemmer, Michael; Ravi, Koustuban; Reichert, Fabian; Zapata, Luis E.; Calendron, Anne-Laure; Çankaya, Hüseyin; Ahr, Frederike; Mücke, Oliver D.; Matlis, Nicholas H.; Kärtner, Franz X.
2017-02-01
The generation of high-energy narrowband terahertz radiation has gained heightened importance in recent years due to its potentially transformative impact on spectroscopy, high-resolution radar and more recently electron acceleration. Among various applications, such terahertz radiation is particularly important for table-top free electron lasers, which are at the moment a subject of extensive research. Second-order nonlinear optical methods are among the most promising techniques to achieve the required coherent radiation with energy > 10 mJ, peak field > 100 MV m-1, and frequency between 0.1 and 1 THz. However, they are conventionally thought to suffer from low efficiencies < ˜10-3, due to the high ratio between optical and terahertz photon energies, in what is known as the Manley-Rowe limitation. In this paper, we review the current second-order nonlinear optical methods for the generation of narrowband terahertz radiation. We explain how to employ spectral cascading to increase the efficiency beyond the Manley-Rowe limit and describe the first experimental results in the direction of a terahertz-cascaded optical parametric amplifier, a novel technique which promises to fully exploit spectral cascading to generate narrowband terahertz radiation with few percent optical-to-terahertz conversion efficiency.
Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids.
Dey, Indranuj; Jana, Kamalesh; Fedorov, Vladimir Yu; Koulouklidis, Anastasios D; Mondal, Angana; Shaikh, Moniruzzaman; Sarkar, Deep; Lad, Amit D; Tzortzakis, Stelios; Couairon, Arnaud; Kumar, G Ravindra
2017-10-30
Generation and application of energetic, broadband terahertz pulses (bandwidth ~0.1-50 THz) is an active and contemporary area of research. The main thrust is toward the development of efficient sources with minimum complexities-a true table-top setup. In this work, we demonstrate the generation of terahertz radiation via ultrashort pulse induced filamentation in liquids-a counterintuitive observation due to their large absorption coefficient in the terahertz regime. The generated terahertz energy is more than an order of magnitude higher than that obtained from the two-color filamentation of air (the most standard table-top technique). Such high terahertz energies would generate electric fields of the order of MV cm -1 , which opens the doors for various nonlinear terahertz spectroscopic applications. The counterintuitive phenomenon has been explained via the solution of nonlinear pulse propagation equation in the liquid medium.
Ravi, Koustuban; Schimpf, Damian N; Kärtner, Franz X
2016-10-31
The use of laser pulse sequences to drive the cascaded difference frequency generation of high energy, high peak-power and multi-cycle terahertz pulses in cryogenically cooled (100 K) periodically poled Lithium Niobate is proposed and studied. Detailed simulations considering the coupled nonlinear interaction of terahertz and optical waves (or pump depletion), show that unprecedented optical-to-terahertz energy conversion efficiencies > 5%, peak electric fields of hundred(s) of mega volts/meter at terahertz pulse durations of hundred(s) of picoseconds can be achieved. The proposed methods are shown to circumvent laser induced damage limitations at Joule-level pumping by 1µm lasers to enable multi-cycle terahertz sources with pulse energies > 10 milli-joules. Various pulse sequence formats are proposed and analyzed. Numerical calculations for periodically poled structures accounting for cascaded difference frequency generation, self-phase-modulation, cascaded second harmonic generation and laser induced damage are introduced. The physics governing terahertz generation using pulse sequences in this high conversion efficiency regime, limitations and practical considerations are discussed. It is shown that varying the poling period along the crystal length and further reduction of absorption can lead to even higher energy conversion efficiencies >10%. In addition to numerical calculations, an analytic formulation valid for arbitrary pulse formats and closed-form expressions for important cases are presented. Parameters optimizing conversion efficiency in the 0.1-1 THz range, the corresponding peak electric fields, crystal lengths and terahertz pulse properties are furnished.
Broadly tunable terahertz generation in mid-infrared quantum cascade lasers.
Vijayraghavan, Karun; Jiang, Yifan; Jang, Min; Jiang, Aiting; Choutagunta, Karthik; Vizbaras, Augustinas; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus C; Belkin, Mikhail A
2013-01-01
Room temperature, broadly tunable, electrically pumped semiconductor sources in the terahertz spectral range, similar in operation simplicity to diode lasers, are highly desired for applications. An emerging technology in this area are sources based on intracavity difference-frequency generation in dual-wavelength mid-infrared quantum cascade lasers. Here we report terahertz quantum cascade laser sources based on an optimized non-collinear Cherenkov difference-frequency generation scheme that demonstrates dramatic improvements in performance. Devices emitting at 4 THz display a mid-infrared-to-terahertz conversion efficiency in excess of 0.6 mW W(-2) and provide nearly 0.12 mW of peak power output. Devices emitting at 2 and 3 THz fabricated on the same chip display 0.09 and 0.4 mW W(-2) conversion efficiencies at room temperature, respectively. High terahertz-generation efficiency and relaxed phase-matching conditions offered by the Cherenkov scheme allowed us to demonstrate, for the first time, an external-cavity terahertz quantum cascade laser source tunable between 1.70 and 5.25 THz.
Pálfalvi, László; Tóth, György; Tokodi, Levente; Márton, Zsuzsanna; Fülöp, József András; Almási, Gábor; Hebling, János
2017-11-27
A hybrid-type terahertz pulse source is proposed for high energy terahertz pulse generation. It is the combination of the conventional tilted-pulse-front setup and a transmission stair-step echelon-faced nonlinear crystal with a period falling in the hundred-micrometer range. The most important advantage of the setup is the possibility of using plane parallel nonlinear optical crystal for producing good-quality, symmetric terahertz beam. Another advantage of the proposed setup is the significant reduction of imaging errors, which is important in the case of wide pump beams that are used in high energy experiments. A one dimensional model was developed for determining the terahertz generation efficiency, and it was used for quantitative comparison between the proposed new hybrid setup and previously introduced terahertz sources. With lithium niobate nonlinear material, calculations predict an approximately ten-fold increase in the efficiency of the presently described hybrid terahertz pulse source with respect to that of the earlier proposed setup, which utilizes a reflective stair-step echelon and a prism shaped nonlinear optical crystal. By using pump pulses of 50 mJ pulse energy, 500 fs pulse length and 8 mm beam spot radius, approximately 1% conversion efficiency and 0.5 mJ terahertz pulse energy can be reached with the newly proposed setup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jiang; Shi, Junkai; Xu, Baozhong
2014-01-20
A chirp-tunable femtosecond 10 W, 42 MHz photonic-crystal-fiber oscillator-amplifier system that is capable of delivering sub-60 fs light pulses at 1040 nm is used to demonstrate high-efficiency terahertz radiation generation via optical rectification in GaP crystals only a few millimeters in length. The optimization of the chirp of the fiber-laser pulses is shown to radically enhance the terahertz output, indicating one possible way to more efficiently use these extended nonlinear crystals in compact fiber-pumped terahertz radiation sources.
Rovere, Andrea; Jeong, Young-Gyun; Piccoli, Riccardo; Lee, Seung-Heon; Lee, Seung-Chul; Kwon, O-Pil; Jazbinsek, Mojca; Morandotti, Roberto; Razzari, Luca
2018-02-05
We present the generation of high-peak-electric-field terahertz pulses via collinear optical rectification in a 2-(4-hydroxy-3-methoxystyryl)-1-methilquinolinium-2,4,6-trimethylbenzenesulfonate (HMQ-TMS) organic crystal. The crystal is pumped by an amplified ytterbium laser system, emitting 170-fs-long pulses centered at 1030 nm. A terahertz peak electric field greater than 200 kV/cm is obtained for 420 µJ of optical pump energy, with an energy conversion efficiency of 0.26% - about two orders of magnitude higher than in common inorganic crystals collinearly pumped by amplified femtosecond lasers. An open-aperture Z-scan measurement performed on an n-doped InGaAs thin film using such terahertz source shows a nonlinear increase in the terahertz transmission of about 2.2 times. Our findings demonstrate the potential of this terahertz generation scheme, based on ytterbium laser technology, as a simple and efficient alternative to the existing intense table-top terahertz sources. In particular, we show that it can be readily used to explore nonlinear effects at terahertz frequencies.
Broadband terahertz-power extracting by using electron cyclotron maser.
Pan, Shi; Du, Chao-Hai; Qi, Xiang-Bo; Liu, Pu-Kun
2017-08-04
Terahertz applications urgently require high performance and room temperature terahertz sources. The gyrotron based on the principle of electron cyclotron maser is able to generate watt-to-megawatt level terahertz radiation, and becomes an exceptional role in the frontiers of energy, security and biomedicine. However, in normal conditions, a terahertz gyrotron could generate terahertz radiation with high efficiency on a single frequency or with low efficiency in a relatively narrow tuning band. Here a frequency tuning scheme for the terahertz gyrotron utilizing sequentially switching among several whispering-gallery modes is proposed to reach high performance with broadband, coherence and high power simultaneously. Such mode-switching gyrotron has the potential of generating broadband radiation with 100-GHz-level bandwidth. Even wider bandwidth is limited by the frequency-dependent effective electrical length of the cavity. Preliminary investigation applies a pre-bunched circuit to the single-mode wide-band tuning. Then, more broadband sweeping is produced by mode switching in great-range magnetic tuning. The effect of mode competition, as well as critical engineering techniques on frequency tuning is discussed to confirm the feasibility for the case close to reality. This multi-mode-switching scheme could make gyrotron a promising device towards bridging the so-called terahertz gap.
Terahertz pulse generation from metal nanoparticle ink
NASA Astrophysics Data System (ADS)
Kato, Kosaku; Takano, Keisuke; Tadokoro, Yuzuru; Phan, Thanh Nhat Khoa; Nakajima, Makoto
2016-11-01
Terahertz pulse generation from metallic nanostructures irradiated by femtosecond laser pulses is of interest because the conversion efficiency from laser pulses to terahertz waves is increased by the local field enhancement resulting from the plasmon oscillation. In this talk we present our recent study on terahertz generation from metal nanoparticle ink. We baked a silver nanoparticle ink spin-coated onto a glass coverslip in various temperatures. On the surface of the baked ink, bumpy nanostructures are spontaneously formed, and the average size of bumps depends on the baking temperature. These structures are expected to lead to local field enhancement and then large nonlinear polarizations on the surface. The baked ink was irradiated by the output of regeneratively amplified Ti:sapphire femtosecond laser at an incidence angle of 45°. Waveforms of generated terahertz pulses are detected by electro-optical sampling. The generation efficiency was high when the average diameter of bumps was around 100 nm, which is realized when the ink is baked in 205 to 235°C in our setup. One of our next research targets is terahertz wave generation from micro-patterned metallic nanoparticle ink. It is an advantage of the metal nanoparticle ink that by using inkjet printers one can fabricate various patterns with micrometer scales, in which terahertz waves have a resonance. Combination of microstructures made by a printer and nanostructure spontaneously formed in the baking process will provide us terahertz emitters with unique frequency characteristics.
Resonant features of the terahertz generation in semiconductor nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trukhin, V. N., E-mail: valera.truchin@mail.ioffe.ru; Bouravleuv, A. D.; Mustafin, I. A.
2016-12-15
The paper presents the results of experimental studies of the generation of terahertz radiation in periodic arrays of GaAs nanowires via excitation by ultrashort optical pulses. It is found that the generation of THz radiation exhibits resonant behavior due to the resonant excitation of cylindrical modes in the nanowires. At the optimal geometric parameters of the nanowire array, the generation efficiency is found to be higher than that for bulk p-InAs, which is one of the most effective coherent terahertz emitters.
Investigation of broadband terahertz generation from metasurface
NASA Astrophysics Data System (ADS)
Fang, Ming; Niu, Kaikun; Huang, Zhiaxiang; Sha, Wei E. I.; Wu, Xianliang; Koschny, Thomas; Soukoulis, Costas M.
2018-05-01
The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designing nonlinear plasmonic metamaterials.
Investigation of broadband terahertz generation from metasurface.
Fang, Ming; Niu, Kaikun; Huang, Zhiaxiang; Sha, Wei E I; Wu, Xianliang; Koschny, Thomas; Soukoulis, Costas M
2018-05-28
The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designing nonlinear plasmonic metamaterials.
Bakunov, M I; Mikhaylovskiy, R V; Bodrov, S B; Luk'yanchuk, B S
2010-01-18
We propose a scheme for an experimental verification of the reversed Cherenkov effect in left-handed media. The scheme uses optical-to-terahertz conversion in a planar sandwichlike structure that consists of a nonlinear core cladded with a material that exhibits left-handedness at terahertz frequencies. The focused into a line femtosecond laser pulse propagates in the core and emits Cherenkov wedge of terahertz waves in the cladding. We developed a theory that describes terahertz generation in such a structure and calculated spatial distribution of the generated terahertz field, its energy spectrum, and optical-to-terahertz conversion efficiency. The proposed structure can be a useful tool for characterization of the electromagnetic properties of metamaterials in the terahertz frequency range.
NASA Astrophysics Data System (ADS)
Yang, Shang-Hua; Salas, Rodolfo; Krivoy, Erica M.; Nair, Hari P.; Bank, Seth R.; Jarrahi, Mona
2016-07-01
We investigate the impact of ErAs:GaAs and LuAs:GaAs superlattice structures with different LuAs/ErAs nanoparticle depositions and superlattice geometries on terahertz radiation properties of plasmonic photomixers operating at a 780-nm optical wavelength. Our analysis indicates the crucial impact of carrier drift velocity and carrier lifetime on the performance of plasmonic photomixers. While higher carrier drift velocities enable higher optical-to-terahertz conversion efficiencies by offering higher quantum efficiencies, shorter carrier lifetimes allow achieving higher optical-to-terahertz conversion efficiencies by mitigating the negative impact of destructive terahertz radiation from slow photocarriers and preventing the carrier screening effect.
Terahertz technology for imaging and spectroscopy
NASA Astrophysics Data System (ADS)
Crowe, T. W.; Porterfield, D. W.; Hesler, J. L.; Bishop, W. L.; Kurtz, D. S.; Hui, K.
2006-05-01
The terahertz region of the electromagnetic spectrum has unique properties that make it especially useful for imaging and spectroscopic detection of concealed weapons, explosives and chemical and biological materials. However, terahertz energy is difficult to generate and detect, and this has led to a technology gap in this frequency band. Nonlinear diodes can be used to bridge this gap by translating the functionality achieved at microwave frequencies to the terahertz band. Basic building blocks include low-noise mixers, frequency multipliers, sideband generators and direct detectors. These terahertz components rely on planar Schottky diodes and recently developed integrated diode circuits make them easier to assemble and more robust. The new generation of terahertz sources and receivers requires no mechanical tuning, yet achieves high efficiency and broad bandwidth. This paper reviews the basic design of terahertz transmitters and receivers, with special emphasis on the recent development of systems that are compact, easy to use and have excellent performance.
Investigation of broadband terahertz generation from metasurface
Fang, Ming; Niu, Kaikun; Huang, ZHixiang; ...
2018-01-01
The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designingmore » nonlinear plasmonic metamaterials.« less
Investigation of broadband terahertz generation from metasurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Ming; Niu, Kaikun; Huang, ZHixiang
The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designingmore » nonlinear plasmonic metamaterials.« less
Investigation of broadband terahertz generation from metasurface
Fang, Ming; Niu, Kaikun; Huang, ZHixiang; ...
2018-05-21
The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designingmore » nonlinear plasmonic metamaterials.« less
Enhanced coupling of terahertz radiation to cylindrical wire waveguides.
Deibel, Jason A; Wang, Kanglin; Escarra, Matthew D; Mittleman, Daniel
2006-01-09
Wire waveguides have recently been shown to be valuable for transporting pulsed terahertz radiation. This technique relies on the use of a scattering mechanism for input coupling. A radially polarized surface wave is excited when a linearly polarized terahertz pulse is focused on the gap between the wire waveguide and another metal structure. We calculate the input coupling efficiency using a simulation based on the Finite Element Method (FEM). Additional FEM results indicate that enhanced coupling efficiency can be achieved through the use of a radially symmetric photoconductive antenna. Experimental results confirm that such an antenna can generate terahertz radiation which couples to the radial waveguide mode with greatly improved efficiency.
Generation of high-field narrowband terahertz radiation by counterpropagating plasma wakefields
NASA Astrophysics Data System (ADS)
Timofeev, I. V.; Annenkov, V. V.; Volchok, E. P.
2017-10-01
It is found that nonlinear interaction of plasma wakefields driven by counterpropagating laser or particle beams can efficiently generate high-power electromagnetic radiation at the second harmonic of the plasma frequency. Using a simple analytical theory and particle-in-cell simulations, we show that this phenomenon can be attractive for producing high-field ( ˜10 MV/cm) tunable terahertz radiation with a narrow line width. For laser drivers produced by existing petawatt-class systems, this nonlinear process opens the way to the generation of gigawatt, multi-millijoule terahertz pulses which are not presently available for any other generating schemes.
WGM-Based Photonic Local Oscillators and Modulators
NASA Technical Reports Server (NTRS)
Matsko, Andrey; Maleki, Lute; Iltchenko, Vladimir; Savchenkov, Anatoliy
2007-01-01
Photonic local oscillators and modulators that include whispering-gallery mode (WGM) optical resonators have been proposed as power-efficient devices for generating and detecting radiation at frequencies of the order of a terahertz. These devices are intended especially to satisfy anticipated needs for receivers capable of detecting lowpower, narrow-band terahertz signals to be used for sensing substances of interest in scientific and military applications. At present, available terahertz-signal detectors are power-inefficient and do not afford the spectral and amplitude resolution needed for detecting such signals. The proposed devices would not be designed according to the conventional approach of direct detection of terahertz radiation. Instead, terahertz radiation would first be up-converted into the optical domain, wherein signals could be processed efficiently by photonic means and detected by optical photodetectors, which are more efficient than are photodetectors used in conventional direct detection of terahertz radiation. The photonic devices used to effect the up-conversion would include a tunable optical local oscillator and a novel electro-optical modulator. A local oscillator according to the proposal would be a WGM-based modelocked laser operating at a desired pulserepetition rate of the order of a terahertz. The oscillator would include a terahertz optical filter based on a WGM microresonator, a fiber-optic delay line, an optical amplifier (which could be either a semiconductor optical amplifier or an erbium-doped optical fiberamplifier), and a WGM Ka-band modulator. The terahertz repetition rate would be obtained through harmonic mode locking: for example, by modulating the light at a frequency of 33 GHz and locking each 33d optical mode, one would create a 1.089-THz pulse train. The high resonance quality factors (Q values) of WGM optical resonators should make it possible to decrease signal-generation threshold power levels significantly below those of other optical-signal-generation devices.
Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang
2017-01-23
Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation.
Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang
2017-01-01
Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation. PMID:28112234
Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujita, Kazuue, E-mail: kfujita@crl.hpk.co.jp; Hitaka, Masahiro; Ito, Akio
2015-06-22
We report the performance of room temperature terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers with a dual-upper-state (DAU) active region. DAU active region design is theoretically expected to produce larger optical nonlinearity for terahertz difference-frequency generation, compared to the active region designs of the bound-to-continuum type used previously. Fabricated buried heterostructure devices with a two-section buried distributed feedback grating and the waveguide designed for Cherenkov difference-frequency phase-matching scheme operate in two single-mode mid-infrared wavelengths at 10.7 μm and 9.7 μm and produce terahertz output at 2.9 THz with mid-infrared to terahertz conversion efficiency of 0.8 mW/W{sup 2}more » at room temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galiev, G. B.; Pushkarev, S. S., E-mail: s-s-e-r-p@mail.ru; Buriakov, A. M.
The efficiency of the generation and detection of terahertz radiation in the range up to 3 THz by LT-GaAs films containing equidistant Si doping δ layers and grown by molecular beam epitaxy on GaAs (100) and (111)Ga substrates is studied by terahertz spectroscopy. Microstrip photoconductive antennas are fabricated on the film surface. Terahertz radiation is generated by exposure of the antenna gap to femtosecond optical laser pulses. It is shown that the intensity of terahertz radiation from the photoconductive antenna on LT-GaAs/GaAs (111)Ga is twice as large as the intensity of a similar antenna on LT-GaAs/GaAs(100) and the sensitivity ofmore » the antenna on LT-GaAs/GaAs (111)Ga as a terahertz-radiation detector exceeds that of the antenna on LT-GaAs/GaAs(100) by a factor of 1.4.« less
Kang, Bong Joo; Baek, In Hyung; Lee, Seung-Heon; Kim, Won Tae; Lee, Seung-Jun; Jeong, Young Uk; Kwon, O-Pil; Rotermund, Fabian
2016-05-16
We report on efficient generation of ultra-broadband terahertz (THz) waves via optical rectification in a novel nonlinear organic crystal with acentric core structure, i.e. 2-(4-hydroxystyryl)-1-methylquinolinium 4-methylbenzenesulfonate (OHQ-T), which possesses an ideal molecular structure leading to a maximized nonlinear optical response for near-infrared-pumped THz wave generation. By systematic studies on wavelength-dependent phase-matching conditions in OHQ-T crystals of different thicknesses we are able to generate coherent THz waves with a high peak-to-peak electric field amplitude of up to 650 kV/cm and an upper cut-off frequency beyond 10 THz. High optical-to-THz conversion efficiency of 0.31% is achieved by efficient index matching with a selective pumping at 1300 nm.
Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation.
Suizu, Koji; Koketsu, Kaoru; Shibuya, Takayuki; Tsutsui, Toshihiro; Akiba, Takuya; Kawase, Kodo
2009-04-13
Terahertz (THz) wave generation based on nonlinear frequency conversion is promising way for realizing a tunable monochromatic bright THz-wave source. Such a development of efficient and wide tunable THz-wave source depends on discovery of novel brilliant nonlinear crystal. Important factors of a nonlinear crystal for THz-wave generation are, 1. High nonlinearity and 2. Good transparency at THz frequency region. Unfortunately, many nonlinear crystals have strong absorption at THz frequency region. The fact limits efficient and wide tunable THz-wave generation. Here, we show that Cherenkov radiation with waveguide structure is an effective strategy for achieving efficient and extremely wide tunable THz-wave source. We fabricated MgO-doped lithium niobate slab waveguide with 3.8 microm of thickness and demonstrated difference frequency generation of THz-wave generation with Cherenkov phase matching. Extremely frequency-widened THz-wave generation, from 0.1 to 7.2 THz, without no structural dips successfully obtained. The tuning frequency range of waveguided Cherenkov radiation source was extremely widened compare to that of injection seeded-Terahertz Parametric Generator. The tuning range obtained in this work for THz-wave generation using lithium niobate crystal was the widest value in our knowledge. The highest THz-wave energy obtained was about 3.2 pJ, and the energy conversion efficiency was about 10(-5) %. The method can be easily applied for many conventional nonlinear crystals, results in realizing simple, reasonable, compact, high efficient and ultra broad band THz-wave sources.
NASA Astrophysics Data System (ADS)
Nagashima, Keisuke; Tsubouchi, Masaaki; Ochi, Yoshihiro; Maruyama, Momoko
2018-03-01
We have proposed an improved contact grating device for generating terahertz waves efficiently and have succeeded in developing the device with a very high diffraction efficiency and a wide spectral width. This device has a bi-angular filter and a Fabry-Perot-type structure, which are composed of dielectric multilayers. The bi-angular filter is designed to reflect the 0th-order wave and transmit the-1st-order diffraction wave. Numerical calculations indicate that the new device has a maximum diffraction efficiency over 99% and a spectral width of approximately 20 nm. We measured a high efficiency of 90% over a broad spectral range using a fabricated device.
Spectroscopic Study of Terahertz Generation in Mid-Infrared Quantum Cascade Lasers.
Jiang, Yifan; Vijayraghavan, Karun; Jung, Seungyong; Jiang, Aiting; Kim, Jae Hyun; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus C; Belkin, Mikhail A
2016-02-16
Terahertz quantum cascade laser sources based on intra-cavity difference-frequency generation are currently the only room-temperature mass-producible diode-laser-like emitters of coherent 1-6 THz radiation. Device performance has improved dramatically over the past few years to reach milliwatt-level power output and broad tuning from 1.2 to 5.9 THz, all at room-temperature. Terahertz output in these sources originates from intersubband optical nonlinearity in the laser active region. Here we report the first comprehensive spectroscopic study of the optical nonlinearity and investigate its dependence on the mid-infrared pump frequencies. Our work shows that the terahertz generation efficiency can vary by a factor of 2 or greater depending on the spectral position of the mid-infrared pumps for a fixed THz difference-frequency. We have also measured for the first time the linewidth for transitions between the lower quantum cascade laser states, which is critical for determining terahertz nonlinearity and predicting optical loss in quantum cascade laser waveguides.
Plasmon enhanced terahertz emission from single layer graphene.
Bahk, Young-Mi; Ramakrishnan, Gopakumar; Choi, Jongho; Song, Hyelynn; Choi, Geunchang; Kim, Yong Hyup; Ahn, Kwang Jun; Kim, Dai-Sik; Planken, Paul C M
2014-09-23
We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.
Study on THz wave generation from air plasma induced by quasi-square Airy beam
NASA Astrophysics Data System (ADS)
Zhang, Shijing; Zhang, Liangliang; Jiang, Guangtong; Zhang, Cunlin; Zhao, Yuejin
2018-01-01
Terahertz (THz) wave has attracted considerable attention in recent years because of its potential applications. The intense THz waves generated from air plasma induced by two-color femtosecond laser are widely used due to its high generation efficiency and broad frequency bandwidth. The parameters of the laser change the distribution of the air plasma, and then affect the generation of THz wave. In this research, we investigate the THz wave generation from air plasma induced by quasi-square Airy beam. Unlike the common Gauss beam, the quasi-square Airy beam has ability to autofocus and to increase the maximum intensity at the focus. By using the spatial light modulator (SLM), we can change the parameters of phase map to control the shape of the Airy beam. We obtain the two-color laser field by a 100-um-thick BBO crystal, then use a Golay detector to record THz wave energy. By comparing terahertz generation at different modulation depths, we find that terahertz energy produced by quasi-square Airy beam is up to 3.1 times stronger than that of Gauss beam with identical laser energy. In order to understand the influence of quasi-square Airy beam on the BBO crystal, we record THz wave energy by changing the azimuthal angle of BBO crystal with Gauss beam and Airy beam at different modulation depths. We find that the trend of terahertz energy with respect to the azimuthal angle of the BBO crystal keeps the same for different laser beams. We believe that the quasi-square Airy beam or other auto focusing beam can significantly improve the efficiency of terahertz wave generation and pave the way for its applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Subodh; Singh, Ram Kishor, E-mail: ram007kishor@gmail.com; Sharma, R. P.
Terahertz (THz) generation by beating of two co-axial Gaussian laser beams, propagating in ripple density plasma, has been studied when both ponderomotive and relativistic nonlinearities are operative. When the two lasers co-propagate in rippled density plasma, electrons acquire a nonlinear velocity at beat frequency in the direction transverse to the direction of propagation. This nonlinear oscillatory velocity couples with the density ripple to generate a nonlinear current, which in turn generates THz radiation at the difference frequency. The necessary phase matching condition is provided by the density ripple. Relativistic ponderomotive focusing of the two lasers and its effects on yieldmore » of the generated THz amplitude have been discussed. Numerical results show that conversion efficiency of the order of 10{sup −3} can be achieved in the terahertz radiation generation with relativistic ponderomotive focusing.« less
Terahertz emission from ultrafast spin-charge current at a Rashba interface
NASA Astrophysics Data System (ADS)
Zhang, Qi; Jungfleisch, Matthias Benjamin; Zhang, Wei; Pearson, John E.; Wen, Haidan; Hoffmann, Axel
Ultrafast broadband terahertz (THz) radiation is highly desired in various fields from fundamental research in condensed matter physics to bio-chemical detection. Conventional ultrafast THz sources rely on either nonlinear optical effects or ultrafast charge currents in semiconductors. Recently, however, it was realized that ultrabroad-band THz radiation can be produced highly effectively by novel spintronics-based emitters that also make use of the electron's spin degree of freedom. Those THz-emitters convert a spin current flow into a terahertz electromagnetic pulse via the inverse spin-Hall effect. In contrast to this bulk conversion process, we demonstrate here that a femtosecond spin current pulse launched from a CoFeB layer can also generate terahertz transients efficiently at a two-dimensional Rashba interface between two non-magnetic materials, i.e., Ag/Bi. Those interfaces have been proven to be efficient means for spin- and charge current interconversion.
Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka
2014-06-10
We design a GaP/Si composite waveguide to achieve efficient terahertz (THz) wave generation under collinear phase-matched difference frequency mixing (DFM) between near-infrared light sources. This waveguide structure provides a strong mode confinement of both near-infrared sources and THz wave, resulting in an efficient mode overlapping. The numerical results show that the waveguide can produce guided THz wave (5.93 THz) with a power conversion efficiency of 6.6×10(-4) W(-1). This value is larger than previously obtained with the bulk GaP crystal: 0.5×10(-9) W(-1) [J. Lightwave Technol.27, 3057 (2009)]. Our proposed composite waveguide can be achieved by bridging the telecom wavelength and THz frequency region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponomarev, D. S., E-mail: ponomarev-dmitr@mail.ru; Khabibullin, R. A.; Yachmenev, A. E.
The results of time-domain spectroscopy of the terahertz (THz) generation in a structure with an In{sub 0.38}Ga{sub 0.62}As photoconductive layer are presented. This structure grown by molecular-beam epitaxy on a GaAs substrate using a metamorphic buffer layer allows THz generation with a wide frequency spectrum (to 6 THz). This is due to the additional contribution of the photo-Dember effect to THz generation. The measured optical-to-terahertz conversion efficiency in this structure is 10{sup –5} at a rather low optical fluence of ~40 μJ/cm{sup 2}, which is higher than that in low-temperature grown GaAs by almost two orders of magnitude.
GaSe1-xSx and GaSe1-xTex thick crystals for broadband terahertz pulses generation
NASA Astrophysics Data System (ADS)
Nazarov, M. M.; Yu. Sarkisov, S.; Shkurinov, A. P.; Tolbanov, O. P.
2011-08-01
We demonstrate the possibility of broadband THz pulse generation in mixed GaSe1-xSx and GaSe1-xTex crystals. The ordinary and extraordinary refractive indices of the crystals have been measured by the terahertz time-domain spectroscopy method, those values strongly influence the efficiency of THz generation process. The high birefringence and transparency of pure GaSe and mixed crystals allow optical rectification of femtosecond laser pulses in the several millimeters thick crystal using the еее interaction process (with two pumping waves and generated THz wave all having extraordinary polarization in the crystal).
Terahertz generation by difference frequency generation from a compact optical parametric oscillator
NASA Astrophysics Data System (ADS)
Li, Zhongyang; Wang, Silei; Wang, Mengtao; Wang, Weishu
2017-11-01
Terahertz (THz) generation by difference frequency generation (DFG) processes with dual idler waves is theoretically analyzed. The dual idler waves are generated by a compact optical parametric oscillator (OPO) with periodically poled lithium niobate (PPLN). The phase-matching conditions in a same PPLN for the optical parametric oscillation generating signal and idler waves and for the DFG generating THz waves can be simultaneously satisfied by selecting the poling period of PPLN. Moreover, 3-order cascaded DFG processes generating THz waves can be realized in the same PPLN. To take an example of 8.341 THz which locates in the vicinity of polariton resonances, THz intensities and quantum conversion efficiencies are calculated. Compared with non-cascaded DFG processes, THz intensities of 8.341 THz in 3-order cascaded DFG processes increase to 2.57 times. When the pump intensity equals to 20 MW/mm2, the quantum conversion efficiency of 106% in 3-order cascaded DFG processes can be realized, which exceeds the Manley-Rowe limit.
Quantum cascade lasers: from tool to product.
Razeghi, M; Lu, Q Y; Bandyopadhyay, N; Zhou, W; Heydari, D; Bai, Y; Slivken, S
2015-04-06
The quantum cascade laser (QCL) is an important laser source in the mid-infrared and terahertz frequency range. The past twenty years have witnessed its tremendous development in power, wall plug efficiency, frequency coverage and tunability, beam quality, as well as various applications based on QCL technology. Nowadays, QCLs can deliver high continuous wave power output up to 5.1 W at room temperature, and cover a wide frequency range from 3 to 300 μm by simply varying the material components. Broadband heterogeneous QCLs with a broad spectral range from 3 to 12 μm, wavelength agile QCLs based on monolithic sampled grating design, and on-chip beam QCL combiner are being developed for the next generation tunable mid-infrared source for spectroscopy and sensing. Terahertz sources based on nonlinear generation in QCLs further extend the accessible wavelength into the terahertz range. Room temperature continuous wave operation, high terahertz power up to 1.9 mW, and wide frequency tunability form 1 to 5 THz makes this type of device suitable for many applications in terahertz spectroscopy, imaging, and communication.
Graphene surface emitting terahertz laser: Diffusion pumping concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davoyan, Arthur R., E-mail: davoyan@seas.upenn.edu; Morozov, Mikhail Yu.; Popov, Vyacheslav V.
2013-12-16
We suggest a concept of a tunable graphene-based terahertz (THz) surface emitting laser with diffusion pumping. We employ significant difference in the electronic energy gap of graphene and a typical wide-gap semiconductor, and demonstrate that carriers generated in the semiconductor can be efficiently captured by graphene resulting in population inversion and corresponding THz lasing from graphene. We develop design principles for such a laser and estimate its performance. We predict up to 50 W/cm{sup 2} terahertz power output for 100 kW/cm{sup 2} pump power at frequency around 10 THz at room temperature.
Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Kawamura, Jonathan H.; Lin, Robert H.; Williams, Benjamin
2012-01-01
Quantum cascade lasers (QCLs) are unipolar semiconductor lasers, where the wavelength of emitted radiation is determined by the engineering of quantum states within the conduction band in coupled multiple-quantum-well heterostructures to have the desired energy separation. The recent development of terahertz QCLs has provided a new generation of solid-state sources for radiation in the terahertz frequency range. Terahertz QCLs have been demonstrated from 0.84 to 5.0 THz both in pulsed mode and continuous wave mode (CW mode). The approach employs a resonant-phonon depopulation concept. The metal-metal (MM) waveguide fabrication is performed using Cu-Cu thermo-compression bonding to bond the GaAs/AlGaAs epitaxial layer to a GaAs receptor wafer.
Takushima, Y; Shin, S Y; Chung, Y C
2007-10-29
We propose and investigate a ribbon waveguide for difference-frequency generation of terahertz (THz) wave from infrared light sources. The proposed ribbon waveguide is composed of a nonlinear optic crystal and has a thickness less than the wavelength of the THz wave to support the surface-wave mode in the THz region. By utilizing the waveguide dispersion of the surface-wave mode, the phase matching condition between infrared pump, idler and THz waves can be realized in the collinear configuration. Owing to the weak mode confinement of the THz wave, the absorption coefficient can also be reduced. We design the ribbon waveguide which uses LiNbO(3) crystal and discuss the phase-matching condition for DFG of THz wave. Highly efficient THz-wave generation is confirmed by numerical simulations.
Gas-pressure dependence of terahertz-pulse generation in a laser-generated nitrogen plasma
NASA Astrophysics Data System (ADS)
Löffler, T.; Roskos, H. G.
2002-03-01
Far-infrared (terahertz) pulses can be generated by photoionization of electrically biased gases with amplified laser pulses [T. Löffler, F. Jacob, and H. G. Roskos, Appl. Phys. Lett. 77, 453 (2000)]. The efficiency of the generation process can be significantly increased when the absolute gas pressure is raised because it is then possible to apply higher bias fields close to the dielectric breakdown field of the gas which increases with the pressure. The dependence of the THz output on the optical pump power does not show any indication of saturation, making the plasma emitter an interesting source for THz pulses especially in conjunction with terawatt laser systems.
NASA Astrophysics Data System (ADS)
Hamazaki, Junichi; Furusawa, Kentaro; Sekine, Norihiko; Kasamatsu, Akifumi; Hosako, Iwao
2016-11-01
The effects of the chirp of the pump pulse in broadband terahertz (THz) pulse generation by optical rectification (OR) in GaP were systematically investigated. It was found that the pre-compensation for the dispersion of GaP is important for obtaining smooth and single-peaked THz spectra as well as high power-conversion efficiency. It was also found that an excessive amount of chirp leads to distortions in THz spectra, which can be quantitatively analyzed by using a simple model. Our results highlight the importance of accurate control over the chirp of the pump pulse for generating broadband THz pulses by OR.
Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh
2016-01-01
A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν ~ 1–5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06–4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers. PMID:27009375
Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh
2016-03-24
A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν~1-5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06-4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers.
Electromagnon Resonance at Room Temperature with Gigantic Magnetochromism
NASA Astrophysics Data System (ADS)
Shishikura, H.; Tokunaga, Y.; Takahashi, Y.; Masuda, R.; Taguchi, Y.; Kaneko, Y.; Tokura, Y.
2018-04-01
The elementary excitation characteristic of magnetoelectric (ME) multiferroics is a magnon endowed with electric activity, which is referred to as an electromagnon. The electromagnon resonance mediated by the bilinear exchange coupling potentially exhibits strong terahertz light-matter interaction with optical properties different from the conventional magnon excitation. Here we report the robust electromagnon resonance on helimagnetic Y -type hexaferrites in a wide temperature range including room temperature. Furthermore, the efficient magnetic field controls of the electromagnon are demonstrated on the flexible spin structure of these compounds, leading to the generation or annihilation of the resonance as well as the large resonance energy shift. These terahertz characteristics of the electromagnon exemplify the versatile magneto-optical functionality driven by the ME coupling in multiferroics, paving a way for possible terahertz applications as well as terahertz control of a magnetic state of matter.
NASA Astrophysics Data System (ADS)
Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.
2018-04-01
High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.
Experimental Realization of an Epsilon-Near-Zero Graded-Index Metalens at Terahertz Frequencies
NASA Astrophysics Data System (ADS)
Pacheco-Peña, Victor; Engheta, Nader; Kuznetsov, Sergei; Gentselev, Alexandr; Beruete, Miguel
2017-09-01
The terahertz band has been historically hindered by the lack of efficient generators and detectors, but a series of recent breakthroughs have helped to effectively close the "terahertz gap." A rapid development of terahertz technology has been possible thanks to the translation of revolutionary concepts from other regions of the electromagnetic spectrum. Among them, metamaterials stand out for their unprecedented ability to control wave propagation and manipulate electromagnetic response of matter. They have become a workhorse in the development of terahertz devices such as lenses, polarizers, etc., with fascinating features. In particular, epsilon-near-zero (ENZ) metamaterials have attracted much attention in the past several years due to their unusual properties such as squeezing, tunneling, and supercoupling where a wave traveling inside an electrically small channel filled with an ENZ medium can be tunneled through it, reducing reflections and coupling most of its energy. Here, we design and experimentally demonstrate an ENZ graded-index (GRIN) metamaterial lens operating at terahertz with a power enhancement of 16.2 dB, using an array of narrow hollow rectangular waveguides working near their cutoff frequencies. This is a demonstration of an ENZ GRIN device at terahertz and can open the path towards other realizations of similar devices enabling full quasioptical processing of terahertz signals.
High field terahertz pulse generation from plasma wakefield driven by tailored laser pulses
NASA Astrophysics Data System (ADS)
Chen, Zi-Yu
2013-06-01
A scheme to generate high field terahertz (THz) pulses by using tailored laser pulses interaction with a gas target is proposed. The laser wakefield based THz source is emitted from the asymmetric laser shape induced plasma transverse transient net currents. Particle-in-cell simulations show that THz emission with electric filed strength over 1 GV/cm can be obtained with incident laser at 1×1019 W/cm2 level, and the corresponding energy conversion efficiency is more than 10-4. The intensity scaling holds up to high field strengths. Such a source also has a broad tunability range in amplitude, frequency spectra, and temporal shape.
Photoinduced Nonlinear Mixing of Terahertz Dipole Resonances in Graphene Metadevices.
In, Chihun; Kim, Hyeon-Don; Min, Bumki; Choi, Hyunyong
2016-02-17
The first experimental demonstration of nonlinear terahertz difference-frequency generation in a hybrid graphene metadevice is reported. Decades of research have revealed that terahertz-wave generation is impossible in single-layer graphene. This limitation is overcome and nonlinear terahertz generation by ultra-short optical pulse injection is demonstrated. This device is an essential step toward atomically thin, nonlinear terahertz optoelectronic components. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Terahertz imaging with compressive sensing
NASA Astrophysics Data System (ADS)
Chan, Wai Lam
Most existing terahertz imaging systems are generally limited by slow image acquisition due to mechanical raster scanning. Other systems using focal plane detector arrays can acquire images in real time, but are either too costly or limited by low sensitivity in the terahertz frequency range. To design faster and more cost-effective terahertz imaging systems, the first part of this thesis proposes two new terahertz imaging schemes based on compressive sensing (CS). Both schemes can acquire amplitude and phase-contrast images efficiently with a single-pixel detector, thanks to the powerful CS algorithms which enable the reconstruction of N-by- N pixel images with much fewer than N2 measurements. The first CS Fourier imaging approach successfully reconstructs a 64x64 image of an object with pixel size 1.4 mm using a randomly chosen subset of the 4096 pixels which defines the image in the Fourier plane. Only about 12% of the pixels are required for reassembling the image of a selected object, equivalent to a 2/3 reduction in acquisition time. The second approach is single-pixel CS imaging, which uses a series of random masks for acquisition. Besides speeding up acquisition with a reduced number of measurements, the single-pixel system can further cut down acquisition time by electrical or optical spatial modulation of random patterns. In order to switch between random patterns at high speed in the single-pixel imaging system, the second part of this thesis implements a multi-pixel electrical spatial modulator for terahertz beams using active terahertz metamaterials. The first generation of this device consists of a 4x4 pixel array, where each pixel is an array of sub-wavelength-sized split-ring resonator elements fabricated on a semiconductor substrate, and is independently controlled by applying an external voltage. The spatial modulator has a uniform modulation depth of around 40 percent across all pixels, and negligible crosstalk, at the resonant frequency. The second-generation spatial terahertz modulator, also based on metamaterials with a higher resolution (32x32), is under development. A FPGA-based circuit is designed to control the large number of modulator pixels. Once fully implemented, this second-generation device will enable fast terahertz imaging with both pulsed and continuous-wave terahertz sources.
Warrier, Aravindan M; Li, Ran; Lin, Jipeng; Lee, Andrew J; Pask, Helen M; Spence, David J
2016-09-15
We demonstrate narrowband tunable terahertz generation from a picosecond LiNbO3 polariton laser, pumped by a CW mode-locked Nd:YVO4 picosecond laser. We generated up to 5.4 μW of terahertz output in untuned mode. We tuned the terahertz output, using etalons in the cavity, from 0.51 to 2.12 THz. Terahertz output powers of 3.7 μW and 2.4 μW were achieved at terahertz frequencies of 1.6 THz and 0.9 THz, respectively.
An Overview of the Technological and Scientific Achievements of the Terahertz
NASA Astrophysics Data System (ADS)
Rostami, Ali; Rasooli, Hassan; Baghban, Hamed
2011-01-01
Due to the importance of terahertz radiation in the past several years in spectroscopy, astrophysics, and imaging techniques namely for biomedical applications (its low interference and non-ionizing characteristics, has been made to be a good candidate to be used as a powerful technique for safe, in vivo medical imaging), we decided to review of the terahertz technology and its associated science achievements. The review consists of terahertz terminology, different applications, and main components which are used for detection and generation of terahertz radiation. Also a brief theoretical study of generation and detection of terahertz pulses will be considered. Finally, the chapter will be ended by providing the usage of organic materials for generation and detection of terahertz radiation.
Broadly tunable terahertz difference-frequency generation in quantum cascade lasers on silicon
NASA Astrophysics Data System (ADS)
Jung, Seungyong; Kim, Jae Hyun; Jiang, Yifan; Vijayraghavan, Karun; Belkin, Mikhail A.
2018-01-01
We report broadly tunable terahertz (THz) sources based on intracavity Cherenkov difference-frequency generation in quantum cascade lasers transfer-printed on high-resistivity silicon substrates. Spectral tuning from 1.3 to 4.3 THz was obtained from a 2-mm long laser chip using a modified Littrow external cavity setup. The THz power output and the midinfrared-to-THz conversion efficiency of the devices transferred on silicon are dramatically enhanced, compared with the devices on a native semi-insulating InP substrate. Enhancement is particularly significant at higher THz frequencies, where the tail of the Reststrahlen band results in a strong absorption of THz light in the InP substrate.
Terahertz generation via laser coupling to anharmonic carbon nanotube array
NASA Astrophysics Data System (ADS)
Sharma, Soni; Vijay, A.
2018-02-01
A scheme of terahertz radiation generation employing a matrix of anharmonic carbon nanotubes (CNTs) embedded in silica is proposed. The matrix is irradiated by two collinear laser beams that induce large excursions on CNT electrons and exert a nonlinear force at the beat frequency ω = ω1-ω2. The force derives a nonlinear current producing THz radiation. The THz field is resonantly enhanced at the plasmon resource, ω = ω p ( 1 + β ) / √{ 2 } , where ωp is the plasma frequency and β is a characteristic parameter. Collisions are a limiting factor, suppressing the plasmon resonance. For typical values of plasma parameters, we obtain power conversion efficiency of the order of 10-6.
Avetisyan, Yuri H
2010-08-01
A scheme of terahertz (THz)-wave surface-emitted difference-frequency generation (SEDFG), which lacks the drawbacks associated with the usage of periodically orientation-inverted structures, is proposed. It is shown that both material birefringence of the bulk LiNbO(3) crystal and modal birefringence of GaAs/AlAs waveguide are sufficient to obtain SEDFG up to a frequency of approximately 3THz. The simplicity of the proposed scheme, along with the fact that there is a much smaller THz-wave decay in nonlinear crystal, makes it a good candidate for the practical realization of efficient THz generation. The use of a GaAs waveguide with an oxidized AlAs layer is proposed for enhanced THz-wave SEDFG in the vicinity of the GaAs polariton resonance at 8THz.
Berry, C W; Wang, N; Hashemi, M R; Unlu, M; Jarrahi, M
2013-01-01
Even though the terahertz spectrum is well suited for chemical identification, material characterization, biological sensing and medical imaging, practical development of these applications has been hindered by attributes of existing terahertz optoelectronics. Here we demonstrate that the use of plasmonic contact electrodes can significantly mitigate the low-quantum efficiency performance of photoconductive terahertz optoelectronics. The use of plasmonic contact electrodes offers nanoscale carrier transport path lengths for the majority of photocarriers, increasing the number of collected photocarriers in a subpicosecond timescale and, thus, enhancing the optical-to-terahertz conversion efficiency of photoconductive terahertz emitters and the detection sensitivity of photoconductive terahertz detectors. We experimentally demonstrate 50 times higher terahertz radiation powers from a plasmonic photoconductive emitter in comparison with a similar photoconductive emitter with non-plasmonic contact electrodes, as well as 30 times higher terahertz detection sensitivities from a plasmonic photoconductive detector in comparison with a similar photoconductive detector with non-plasmonic contact electrodes.
Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission
Tanoto, H.; Teng, J. H.; Wu, Q. Y.; Sun, M.; Chen, Z. N.; Maier, S. A.; Wang, B.; Chum, C. C.; Si, G. Y.; Danner, A. J.; Chua, S. J.
2013-01-01
We report highly efficient continuous-wave terahertz (THz) photoconductive antenna based photomixer employing nano-gap electrodes in the active region. The tip-to-tip nano-gap electrode structure provides strong THz field enhancement and acts as a nano-antenna to radiate the THz wave generated in the active region of the photomixer. In addition, it provides good impedance matching to the THz planar antenna and exhibits a lower RC time constant, allowing more efficient radiation especially at the higher part of the THz spectrum. As a result, the output intensity of the photomixer with the new nano-gap electrode structure in the active region is two orders of magnitude higher than that of a photomixer with typical interdigitated electrodes. Significant improvement in the THz emission bandwidth was also observed. An efficient continuous wave THz source will greatly benefit compact THz system development for high resolution THz spectroscopy and imaging applications. PMID:24100840
A simple system for 160GHz optical terahertz wave generation and data modulation
NASA Astrophysics Data System (ADS)
Li, Yihan; He, Jingsuo; Sun, Xueming; Shi, Zexia; Wang, Ruike; Cui, Hailin; Su, Bo; Zhang, Cunlin
2018-01-01
A simple system based on two cascaded Mach-Zehnder modulators, which can generate 160GHz optical terahertz waves from 40GHz microwave sources, is simulated and tested in this paper. Fiber grating filter is used in the system to filter out optical carrier. By properly adjusting the modulator DC bias voltages and the signal voltages and phases, 4-tupling optical terahertz wave can be generated with fiber grating. This notch fiber grating filter is greatly suitable for terahertz over fiber (TOF) communication system. This scheme greatly reduces the cost of long-distance terahertz communication. Furthermore, 10Gbps digital signal is modulated in the 160GHz optical terahertz wave.
Ultrabright continuously tunable terahertz-wave generation at room temperature
Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki
2014-01-01
The hottest frequency region in terms of research currently lies in the ‘frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm2, brightness temperature of ~1018 K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~1016 K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region. PMID:24898269
Ultrabright continuously tunable terahertz-wave generation at room temperature.
Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki
2014-06-05
The hottest frequency region in terms of research currently lies in the 'frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm(2), brightness temperature of ~10(18) K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~10(16) K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region.
NASA Astrophysics Data System (ADS)
Liu, Pengxiang; Zhang, Xinyuan; Yan, Chao; Xu, Degang; Li, Yin; Shi, Wei; Zhang, Guochun; Zhang, Xinzheng; Yao, Jianquan; Wu, Yicheng
2016-01-01
We report an experimental study on widely tunable terahertz (THz) wave difference frequency generation (DFG) with hydrogen-bonded crystals 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene) malononitrile (OH1). The organic crystals were pumped by a ˜1.3 μm double-pass KTiOPO4 optical parametric oscillator. A tuning range of 0.02-20 THz was achieved. OH1 crystals offer a long effective interaction length (also high output) for the generation below 3 THz, owing to the low absorption and favorable phase-matching. The highest energy of 507 nJ/pulse was generated at 1.92 THz with a 1.89-mm-thick crystal. Comprehensive explanations were provided, on the basis of theoretical calculations. Cascading phenomenon during the DFG process was demonstrated. The photon conversion efficiency could reach 2.9%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Pengxiang; The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071; Zhang, Xinyuan
2016-01-04
We report an experimental study on widely tunable terahertz (THz) wave difference frequency generation (DFG) with hydrogen-bonded crystals 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene) malononitrile (OH1). The organic crystals were pumped by a ∼1.3 μm double-pass KTiOPO{sub 4} optical parametric oscillator. A tuning range of 0.02–20 THz was achieved. OH1 crystals offer a long effective interaction length (also high output) for the generation below 3 THz, owing to the low absorption and favorable phase-matching. The highest energy of 507 nJ/pulse was generated at 1.92 THz with a 1.89-mm-thick crystal. Comprehensive explanations were provided, on the basis of theoretical calculations. Cascading phenomenon during the DFG process wasmore » demonstrated. The photon conversion efficiency could reach 2.9%.« less
NASA Astrophysics Data System (ADS)
Li, Zhongyang; Wang, Silei; Wang, Mengtao; Yuan, Bin; Wang, Weishu
2017-10-01
Terahertz (THz) generation by difference frequency generation (DFG) processes with dual signal waves is theoretically analyzed. The dual signal waves are generated by an optical parametric oscillator (OPO) with periodically inverted KTiOPO4 (KTP) plates based on adhesive-free-bonded (AFB) technology. The phase-matching conditions in a same AFB KTP composite for the OPO generating signals and idlers and for the DFG generating THz wave can be simultaneously satisfied by selecting the thickness of each KTP plate. Moreover, 4-order cascaded DFG processes can be realized in the same AFB KTP composite. The cascaded Stokes interaction processes generating THz photons and the cascaded anti-Stokes interaction processes consuming THz photons are investigated from coupled wave equations. Take an example of 3.106 THz which locates in the vicinity of polariton resonances, THz intensities and quantum conversion efficiencies are calculated. Compared with non-cascaded DFG processes, THz intensities of 3.106 THz in 4-order cascaded DFG processes increase to 5.56 times. When the pump intensity equals 20 MW mm-2, the quantum conversion efficiency of 259% in 4-order cascaded DFG processes can be realized, which exceeds the Manley-Rowe limit.
Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuk, D.; Yoo, Y. J.; Rosenthal, E. W.
2016-03-21
We demonstrate scalable terahertz (THz) generation by focusing terawatt, two-color laser pulses in air with a cylindrical lens. This focusing geometry creates a two-dimensional air plasma sheet, which yields two diverging THz lobe profiles in the far field. This setup can avoid plasma-induced laser defocusing and subsequent THz saturation, previously observed with spherical lens focusing of high-power laser pulses. By expanding the plasma source into a two-dimensional sheet, cylindrical focusing can lead to scalable THz generation. This scheme provides an energy conversion efficiency of 7 × 10{sup −4}, ∼7 times better than spherical lens focusing. The diverging THz lobes are refocused withmore » a combination of cylindrical and parabolic mirrors to produce strong THz fields (>21 MV/cm) at the focal point.« less
NASA Astrophysics Data System (ADS)
Chen, Long-chao; Fan, Wen-hui
2011-08-01
The numerical simulation of terahertz generation and detection in the interaction between femtosecond laser pulse and photoconductive material has been reported in this paper. The simulation model based on the Drude-Lorentz theory is used, and takes into account the phenomena that photo-generated electrons and holes are separated by the external bias field, which is screened by the space-charge field simultaneously. According to the numerical calculation, the terahertz time-domain waveforms and their Fourier-transformed spectra are presented under different conditions. The simulation results indicate that terahertz generation and detection properties of photoconductive antennas are largely influenced by three major factors, including photo-carriers' lifetime, laser pulse width and pump laser power. Finally, a simple model has been applied to simulate the detected terahertz pulses by photoconductive antennas with various photo-carriers' lifetimes, and the results show that the detected terahertz spectra are very different from the spectra radiated from the emitter.
Mechanism and modulation of terahertz generation from a semimetal - graphite
Ye, Tong; Meng, Sheng; Zhang, Jin; E, Yiwen; Yang, Yuping; Liu, Wuming; Yin, Yan; Wang, Li
2016-01-01
Semi-metals might offer a stronger interaction and a better confinement for terahertz wave than semiconductors, while preserve tunability. Particularly, graphene-based materials are envisioned as terahertz modulators, filters and ultra-broadband sources. However, the understanding of terahertz generation from those materials is still not clear, thus limits us recognizing the potential and improving device performances. Graphite, the mother material of graphene and a typical bulk semi-metal, is a good system to study semi-metals and graphene-based materials. Here we experimentally modulate and maximize the terahertz signal from graphite surface, thus reveal the mechanism - surface field driving photon induced carriers into transient current to radiate terahertz wave. We also discuss the differences between graphite and semiconductors; particularly graphite shows very weak temperature dependency from room temperature to 80 °C. Above knowledge will help us understand terahertz generations, achieve maximum output and electric modulation, in semi-metal or graphene based devices. PMID:26972818
Mechanism and modulation of terahertz generation from a semimetal--graphite.
Ye, Tong; Meng, Sheng; Zhang, Jin; E, Yiwen; Yang, Yuping; Liu, Wuming; Yin, Yan; Wang, Li
2016-03-14
Semi-metals might offer a stronger interaction and a better confinement for terahertz wave than semiconductors, while preserve tunability. Particularly, graphene-based materials are envisioned as terahertz modulators, filters and ultra-broadband sources. However, the understanding of terahertz generation from those materials is still not clear, thus limits us recognizing the potential and improving device performances. Graphite, the mother material of graphene and a typical bulk semi-metal, is a good system to study semi-metals and graphene-based materials. Here we experimentally modulate and maximize the terahertz signal from graphite surface, thus reveal the mechanism--surface field driving photon induced carriers into transient current to radiate terahertz wave. We also discuss the differences between graphite and semiconductors; particularly graphite shows very weak temperature dependency from room temperature to 80 °C. Above knowledge will help us understand terahertz generations, achieve maximum output and electric modulation, in semi-metal or graphene based devices.
Conditions for optimal efficiency of PCBM-based terahertz modulators
NASA Astrophysics Data System (ADS)
Yoo, Hyung Keun; Lee, Hanju; Lee, Kiejin; Kang, Chul; Kee, Chul-Sik; Hwang, In-Wook; Lee, Joong Wook
2017-10-01
We demonstrate the conditions for optimal modulation efficiency of active terahertz modulators based on phenyl-C61-butyric acid methyl ester (PCBM)-silicon hybrid structures. Highly efficient active control of the terahertz wave modulation was realized by controlling organic film thickness, annealing temperature, and laser excitation wavelength. Under the optimal conditions, the modulation efficiency reached nearly 100%. Charge distributions measured with a near-field scanning microwave microscanning technique corroborated the fact that the increase of photo-excited carriers due to the PCBM-silicon hybrid structure enables the enhancement of active modulation efficiency.
Tunable terahertz wave generation through a bimodal laser diode and plasmonic photomixer.
Yang, S-H; Watts, R; Li, X; Wang, N; Cojocaru, V; O'Gorman, J; Barry, L P; Jarrahi, M
2015-11-30
We demonstrate a compact, robust, and stable terahertz source based on a novel two section digital distributed feedback laser diode and plasmonic photomixer. Terahertz wave generation is achieved through difference frequency generation by pumping the plasmonic photomixer with two output optical beams of the two section digital distributed feedback laser diode. The laser is designed to offer an adjustable terahertz frequency difference between the emitted wavelengths by varying the applied currents to the laser sections. The plasmonic photomixer is comprised of an ultrafast photoconductor with plasmonic contact electrodes integrated with a logarithmic spiral antenna. We demonstrate terahertz wave generation with 0.15-3 THz frequency tunability, 2 MHz linewidth, and less than 5 MHz frequency stability over 1 minute, at useful power levels for practical imaging and sensing applications.
Generation of coherent terahertz radiation in ultrafast laser-gas interactionsa)
NASA Astrophysics Data System (ADS)
Kim, Ki-Yong
2009-05-01
The generation of intense terahertz radiation in ultrafast laser-gas interactions is studied on a basis of transient electron current model. When an ultrashort pulse laser's fundamental and its second harmonic fields are mixed to ionize a gas, a nonvanishing, directional photoelectron current can be produced, which simultaneously emits terahertz radiation in the far field. Here, the generation mechanism is examined with an analytic derivation and numerical simulations, in which tunneling ionization and subsequent electron motion in the combined laser field play a key role. In the simulations, three types of laser-gas interactions are considered: (i) mixing the fundamental and its second harmonic fields, (ii) mixing nonharmonic, two-color fields, and (iii) focusing single-color, few-cycle pulses. In these interactions, terahertz generation and other nonlinear effects driven by the transient current are investigated. In particular, anticorrelation between terahertz and second (or third) harmonic generation is observed and analyzed.
Murate, Kosuke; Roshtkhari, Mehraveh Javan; Ropagnol, Xavier; Blanchard, François
2018-05-01
We report a new method to temporally and spatially manipulate the pulse front tilt (PFT) intensity profile of an ultrashort optical pulse using a commercial microelectromechanical system, also known as a digital micromirror device (DMD). For our demonstration, we show terahertz generation in a lithium niobate crystal using the PFT pumping scheme derived from a DMD chip. The adaptive functionality of the DMD could be a convenient alternative to the more conventional grating required to generate a laser beam with a PFT intensity profile that is typically used for efficient optical rectification in noncollinear phase-matching conditions. In contrast to a grating, PFT using DMD does not suffer from wavelength dispersion, and exhibits overlap properties between grating and a stair-step echelon mirror.
Terahertz emission driven by two-color laser pulses at various frequency ratios
NASA Astrophysics Data System (ADS)
Wang, W.-M.; Sheng, Z.-M.; Li, Y.-T.; Zhang, Y.; Zhang, J.
2017-08-01
We present a simulation study of terahertz radiation from a gas driven by two-color laser pulses in a broad range of frequency ratios ω1/ω0 . Our particle-in-cell simulation results show that there are three series with ω1/ω0=2 n , n +1 /2 , n ±1 /3 (n is a positive integer) for high-efficiency and stable radiation generation. The radiation strength basically decreases with the increasing ω1 and scales linearly with the laser wavelength. These rules are broken when ω1/ω0<1 and much stronger radiation may be generated at any ω1/ω0 . These results can be explained with a model based on gas ionization by two linear-superposition laser fields, rather than a multiwave mixing model.
Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios
NASA Astrophysics Data System (ADS)
Zhang, Liang-Liang; Wang, Wei-Min; Wu, Tong; Zhang, Rui; Zhang, Shi-Jing; Zhang, Cun-Lin; Zhang, Yan; Sheng, Zheng-Ming; Zhang, Xi-Cheng
2017-12-01
In the widely studied two-color laser scheme for terahertz (THz) radiation from a gas, the frequency ratio of the two lasers is usually fixed at ω2/ω1=1 :2 . We investigate THz generation with uncommon frequency ratios. Our experiments show, for the first time, efficient THz generation with new ratios of ω2/ω1=1 :4 and 2 ∶3 . We observe that the THz polarization can be adjusted by rotating the longer-wavelength laser polarization and the polarization adjustment becomes inefficient by rotating the other laser polarization; the THz energy shows similar scaling laws with different frequency ratios. These observations are inconsistent with multiwave mixing theory, but support the gas-ionization or plasma-current model. This study pushes the development of the two-color scheme and provides a new dimension to explore the long-standing problem of the THz generation mechanism.
Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios.
Zhang, Liang-Liang; Wang, Wei-Min; Wu, Tong; Zhang, Rui; Zhang, Shi-Jing; Zhang, Cun-Lin; Zhang, Yan; Sheng, Zheng-Ming; Zhang, Xi-Cheng
2017-12-08
In the widely studied two-color laser scheme for terahertz (THz) radiation from a gas, the frequency ratio of the two lasers is usually fixed at ω_{2}/ω_{1}=1:2. We investigate THz generation with uncommon frequency ratios. Our experiments show, for the first time, efficient THz generation with new ratios of ω_{2}/ω_{1}=1:4 and 2∶3. We observe that the THz polarization can be adjusted by rotating the longer-wavelength laser polarization and the polarization adjustment becomes inefficient by rotating the other laser polarization; the THz energy shows similar scaling laws with different frequency ratios. These observations are inconsistent with multiwave mixing theory, but support the gas-ionization or plasma-current model. This study pushes the development of the two-color scheme and provides a new dimension to explore the long-standing problem of the THz generation mechanism.
Freely Tunable Broadband Polarization Rotator for Terahertz Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping
2014-12-28
A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging.
Narrow-band tunable terahertz emission from ferrimagnetic Mn{sub 3-x}Ga thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awari, N.; University of Groningen, 9747 AG Groningen; Kovalev, S., E-mail: s.kovalev@hzdr.de, E-mail: c.fowley@hzdr.de, E-mail: rodek@tcd.ie
2016-07-18
Narrow-band terahertz emission from coherently excited spin precession in metallic ferrimagnetic Mn{sub 3-x}Ga Heusler alloy nanofilms has been observed. The efficiency of the emission, per nanometer film thickness, is comparable or higher than that of classical laser-driven terahertz sources based on optical rectification. The center frequency of the emission from the films can be tuned precisely via the film composition in the range of 0.20–0.35 THz, making this type of metallic film a candidate for efficient on-chip terahertz emitters. Terahertz emission spectroscopy is furthermore shown to be a sensitive probe of magnetic properties of ultra-thin films.
Pavelyev, D G; Skryl, A S; Bakunov, M I
2014-10-01
We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth.
Manjappa, Manukumara; Srivastava, Yogesh Kumar; Solanki, Ankur; Kumar, Abhishek; Sum, Tze Chien; Singh, Ranjan
2017-08-01
The recent meteoric rise in the field of photovoltaics with the discovery of highly efficient solar-cell devices is inspired by solution-processed organic-inorganic lead halide perovskites that exhibit unprecedented light-to-electricity conversion efficiencies. The stunning performance of perovskites is attributed to their strong photoresponsive properties that are thoroughly utilized in designing excellent perovskite solar cells, light-emitting diodes, infrared lasers, and ultrafast photodetectors. However, optoelectronic application of halide perovskites in realizing highly efficient subwavelength photonic devices has remained a challenge. Here, the remarkable photoconductivity of organic-inorganic lead halide perovskites is exploited to demonstrate a hybrid perovskite-metamaterial device that shows extremely low power photoswitching of the metamaterial resonances in the terahertz part of the electromagnetic spectrum. Furthermore, a signature of a coupled phonon-metamaterial resonance is observed at higher pump powers, where the Fano resonance amplitude is extremely weak. In addition, a low threshold, dynamic control of the highly confined electric field intensity is also observed in the system, which could tremendously benefit the new generation of subwavelength photonic devices as active sensors, low threshold optically controlled lasers, and active nonlinear devices with enhanced functionalities in the infrared, optical, and the terahertz parts of the electromagnetic spectrum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Elliptically polarized terahertz radiation from a chiral oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda, R.; Kida, N., E-mail: kida@k.u-tokyo.ac.jp; Sotome, M.
2015-09-28
Polarization control of terahertz wave is a challenging subject in terahertz science and technology. Here, we report a simple method to control polarization state of the terahertz wave in terahertz generation process. At room temperature, terahertz radiation from a noncentrosymmetric and chiral oxide, sillenite Bi{sub 12}GeO{sub 20}, is observed by the irradiation of linearly polarized femtosecond laser pulses at 800 nm. The polarization state of the emitted terahertz wave is found to be elliptic with an ellipticity of ∼0.37 ± 0.10. Furthermore, the ellipticity was altered to a nearly zero (∼0.01 ± 0.01) by changing the polarization of the incident linearly polarized femtosecond laser pulses.more » Such a terahertz radiation characteristic is attributable to variation of the polarization state of the emitted terahertz waves, which is induced by retardation due to the velocity mismatch between the incident femtosecond laser pulse and generated terahertz wave and by the polarization tilting due to the optical activity at 800 nm.« less
Broadband gate-tunable terahertz plasmons in graphene heterostructures
NASA Astrophysics Data System (ADS)
Yao, Baicheng; Liu, Yuan; Huang, Shu-Wei; Choi, Chanyeol; Xie, Zhenda; Flor Flores, Jaime; Wu, Yu; Yu, Mingbin; Kwong, Dim-Lee; Huang, Yu; Rao, Yunjiang; Duan, Xiangfeng; Wong, Chee Wei
2018-01-01
Graphene, a unique two-dimensional material comprising carbon in a honeycomb lattice1, has brought breakthroughs across electronics, mechanics and thermal transport, driven by the quasiparticle Dirac fermions obeying a linear dispersion2,3. Here, we demonstrate a counter-pumped all-optical difference frequency process to coherently generate and control terahertz plasmons in atomic-layer graphene with octave-level tunability and high efficiency. We leverage the inherent surface asymmetry of graphene for strong second-order nonlinear polarizability4,5, which, together with tight plasmon field confinement, enables a robust difference frequency signal at terahertz frequencies. The counter-pumped resonant process on graphene uniquely achieves both energy and momentum conservation. Consequently, we demonstrate a dual-layer graphene heterostructure with terahertz charge- and gate-tunability over an octave, from 4.7 THz to 9.4 THz, bounded only by the pump amplifier optical bandwidth. Theoretical modelling supports our single-volt-level gate tuning and optical-bandwidth-bounded 4.7 THz phase-matching measurements through the random phase approximation, with phonon coupling, saturable absorption and below the Landau damping, to predict and understand graphene plasmon physics.
Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, T. I.; Yoo, Y. J.; You, Y. S.
2014-07-28
We demonstrate high-field (>8 MV/cm) terahertz generation at a high-repetition-rate (1 kHz) via two-color laser filamentation. Here, we use a cryogenically cooled femtosecond laser amplifier capable of producing 30 fs, 15 mJ pulses at 1 kHz as a driver, along with a combination of a thin dual-wavelength half-waveplate and a Brewster-angled silicon window to enhance terahertz generation and transmission. We also introduce a cost-effective, uncooled microbolometer camera for real-time terahertz beam profiling with two different modes.
Graphene-based terahertz photodetector by noise thermometry technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ming-Jye, E-mail: mingjye@asiss.sinica.edu.tw; Institute of Physics, Academia Sinica, Taipei 11529, Taiwan; Wang, Ji-Wun
2014-01-20
We report the characteristics of graphene-based terahertz (THz) photodetector based on noise thermometry technique by measuring its noise power at frequency from 4 to 6 GHz. Hot electron system in graphene microbridge is generated after THz photon pumping and creates extra noise power. The equivalent noise temperature and electron temperature increase rapidly in low THz pumping regime and saturate gradually in high THz power regime which is attributed to a faster energy relaxation process involved by stronger electron-phonon interaction. Based on this detector, a conversion efficiency around 0.15 from THz power to noise power in 4–6 GHz span has been achieved.
Vallejo, Felipe A; Hayden, L Michael
2013-03-11
We use coupled mode theory, adequately incorporating optical losses, to model ultra-broadband terahertz (THz) waveguide emitters (0.1-20 THz) based on difference frequency generation of femtosecond infrared (IR) optical pulses. We apply the model to a generic, symmetric, five-layer, metal/cladding/core waveguide structure using transfer matrix theory. We provide a design strategy for an efficient ultra-broadband THz emitter and apply it to polymer waveguides with a nonlinear core composed of a poled guest-host electro-optic polymer composite and pumped by a pulsed fiber laser system operating at 1567 nm. The predicted bandwidths are greater than 15 THz and we find a high conversion efficiency of 1.2 × 10(-4) W(-1) by balancing both the modal phase-matching and effective mode attenuation.
Electrically Tunable Goos-Hänchen Effect with Graphene in the Terahertz Regime
Fan, Yuancheng; Shen, Nian-Hai; Zhang, Fuli; ...
2016-07-14
Goos-Hänchen (G-H) effect is of great interest in the manipulation of optical beams. However, it is still fairly challenging to attain efficient controls of the G-H shift for diverse applications. Here, we propose a mechanism to realize tunable G-H shift in the terahertz regime with electrically controllable graphene. Taking monolayer graphene covered epsilon-near-zero metamaterial as a planar model system, it is found that the G-H shift for the orthogonal s-polarized and p-polarized terahertz beams at oblique incidence are positive and negative, respectively. The G-H shift can be modified substantially by electrically controlling the Fermi energy of the monolayer graphene. Reversely,more » the Fermi energy dependent G-H effect can also be used as a strategy for measuring the doping level of graphene. In addition, the G-H shifts of the system are of strong frequency-dependence at oblique angles of incidence, therefore the proposed graphene hybrid system can potentially be used for the generation of terahertz “rainbow”, a flat analog of the dispersive prism in optics. The proposed scheme of hybrid system involving graphene for dynamic control of G-H shift will have potential applications in the manipulation of terahertz waves.« less
Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal.
Suizu, Koji; Shibuya, Takayuki; Uchida, Hirohisa; Kawase, Kodo
2010-02-15
Terahertz (THz) wave generation based on nonlinear frequency conversion is a promising method for realizing a tunable monochromatic high-power THz-wave source. Unfortunately, many nonlinear crystals have strong absorption in the THz frequency region. This limits efficient and widely tunable THz-wave generation. The Cherenkov phase-matching method is one of the most promising techniques for overcoming these problems. Here, we propose a prism-coupled Cherenkov phase-matching (PCC-PM) method, in which a prism with a suitable refractive index at THz frequencies is coupled to a nonlinear crystal. This has the following advantages. Many crystals can be used as THz-wave emitters; the phase-matching condition inside the crystal does not have to be observed; the absorption of the crystal does not prevent efficient generation of radiation; and pump sources with arbitrary wavelengths can be employed. Here we demonstrate PCC-PM THz-wave generation using the organic crystal 4-dimethylamino-N-metyl-4-stilbazolium tosylate (DAST) and a Si prism coupler. We obtain THz-wave radiation with tunability of approximately 0.1 to 10 THz and with no deep absorption features resulting from the absorption spectrum of the crystal. The obtained spectra did not depend on the pump wavelength in the range 1300 to 1450 nm. This simple technique shows promise for generating THz radiation using a wide variety of nonlinear crystals.
Strong emission of terahertz radiation from nanostructured Ge surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Chul; Maeng, Inhee; Kee, Chul-Sik, E-mail: cskee@gist.ac.kr
2015-06-29
Indirect band gap semiconductors are not efficient emitters of terahertz radiation. Here, we report strong emission of terahertz radiation from germanium wafers with nanostructured surfaces. The amplitude of THz radiation from an array of nano-bullets (nano-cones) is more than five (three) times larger than that from a bare-Ge wafer. The power of the terahertz radiation from a Ge wafer with an array of nano-bullets is comparable to that from n-GaAs wafers, which have been widely used as a terahertz source. We find that the THz radiation from Ge wafers with the nano-bullets is even more powerful than that from n-GaAsmore » for frequencies below 0.6 THz. Our results suggest that introducing properly designed nanostructures on indirect band gap semiconductor wafers is a simple and cheap method to improve the terahertz emission efficiency of the wafers significantly.« less
The preparation method of terahertz monolithic integrated device
NASA Astrophysics Data System (ADS)
Zhang, Cong; Su, Bo; He, Jingsuo; Zhang, Hongfei; Wu, Yaxiong; Zhang, Shengbo; Zhang, Cunlin
2018-01-01
The terahertz monolithic integrated device is to integrate the pumping area of the terahertz generation, the detection area of the terahertz receiving and the metal waveguide of terahertz transmission on the same substrate. The terahertz generation and detection device use a photoconductive antenna structure the metal waveguide use a microstrip line structure. The evanescent terahertz-bandwidth electric field extending above the terahertz transmission line interacts with, and is modified by, overlaid dielectric samples, thus enabling the characteristic vibrational absorption resonances in the sample to be probed. In this device structure, since the semiconductor substrate of the photoconductive antenna is located between the strip conductor and the dielectric layer of the microstrip line, and the semiconductor substrate cannot grow on the dielectric layer directly. So how to prepare the semiconductor substrate of the photoconductive antenna and how to bond the semiconductor substrate to the dielectric layer of the microstrip line is a key step in the terahertz monolithic integrated device. In order to solve this critical problem, the epitaxial wafer structure of the two semiconductor substrates is given and transferred to the desired substrate by two methods, respectively.
Continuous-wave optical parametric oscillators on their way to the terahertz range
NASA Astrophysics Data System (ADS)
Sowade, Rosita; Breunig, Ingo; Kiessling, Jens; Buse, Karsten
2010-02-01
Continuous-wave optical parametric oscillators (OPOs) are known to be working horses for spectroscopy in the near- and mid-infrared. However, strong absorption in nonlinear media like lithium niobate complicates the generation of far-infrared light. This absorption leads to pump thresholds vastly exceeding the power of standard pump lasers. Our first approach was, therefore, to combine the established technique of photomixing with optical parametric oscillators. Here, two OPOs provide one wave each, with a tunable difference frequency. These waves are combined to a beat signal as a source for photomixers. Terahertz radiation between 0.065 and 1.018 THz is generated with powers in the order of nanowatts. To overcome the upper frequency limit of the opto-electronic photomixers, terahertz generation has to rely entirely on optical methods. Our all-optical approach, getting around the high thresholds for terahertz generation, is based on cascaded nonlinear processes: the resonantly enhanced signal field, generated in the primary parametric process, is intense enough to act as the pump for a secondary process, creating idler waves with frequencies in the terahertz regime. The latter ones are monochromatic and tunable with detected powers of more than 2 μW at 1.35 THz. Thus, continuous-wave optical parametric oscillators have entered the field of terahertz photonics.
The role of optical rectification in the generation of terahertz radiation from GaBiAs
NASA Astrophysics Data System (ADS)
Radhanpura, K.; Hargreaves, S.; Lewis, R. A.; Henini, M.
2009-06-01
We report on a detailed study of the emission of terahertz-frequency electromagnetic radiation from layers of GaBiyAs1-y (0≤y<0.04) grown by molecular beam epitaxy on (311)B and (001) GaAs substrates. We measure two orthogonally polarized components of the terahertz radiation emitted under excitation by ultrashort near-infrared laser pulses in both transmission and reflection geometries as a function of the crystal rotation about its surface normal as well as the effect of in-plane magnetic field and pump fluence on the terahertz emission. We conclude that the principal mechanism for terahertz generation is via optical rectification rather than transient currents.
Integrated heterodyne terahertz transceiver
Lee, Mark [Albuquerque, NM; Wanke, Michael C [Albuquerque, NM
2009-06-23
A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.
Fumeaux, Christophe; Lin, Hungyen; Serita, Kazunori; Withayachumnankul, Withawat; Kaufmann, Thomas; Tonouchi, Masayoshi; Abbott, Derek
2012-07-30
The process of terahertz generation through optical rectification in a nonlinear crystal is modeled using discretized equivalent current sources. The equivalent terahertz sources are distributed in the active volume and computed based on a separately modeled near-infrared pump beam. This approach can be used to define an appropriate excitation for full-wave electromagnetic numerical simulations of the generated terahertz radiation. This enables predictive modeling of the near-field interactions of the terahertz beam with micro-structured samples, e.g. in a near-field time-resolved microscopy system. The distributed source model is described in detail, and an implementation in a particular full-wave simulation tool is presented. The numerical results are then validated through a series of measurements on square apertures. The general principle can be applied to other nonlinear processes with possible implementation in any full-wave numerical electromagnetic solver.
NASA Astrophysics Data System (ADS)
Singh, Ram Kishor; Singh, Monika; Rajouria, Satish Kumar; Sharma, R. P.
2017-07-01
This communication presents a theoretical model for efficient terahertz (THz) radiation generation by the optical rectification of shaped laser pulse in transversely magnetised ripple density plasma. The laser beam imparts a nonlinear ponderomotive force to the electron and this force exerts a nonlinear velocity component in both transverse and axial directions which have spectral components in the THz range. These velocity components couple with the pre-existing density ripple and give rise to a strong nonlinear current density which drives the THz wave in the plasma. The THz yield increases with the increasing strength of the background magnetic field and the sensitivity depends on the ripple wave number. The emitted power is directly proportional to the square of the amplitude of the density ripple. For exact phase matching condition, the normalised power of the generated THz wave can be achieved of the order of 10-4.
NASA Astrophysics Data System (ADS)
Safari, Samaneh; Niknam, Ali Reza; Jahangiri, Fazel; Jazi, Bahram
2018-04-01
The nonlinear interaction of Hermite-Gaussian and Laguerre-Gaussian (LG) laser beams with a collisional inhomogeneous plasma is studied, and the amplitude of the emitted terahertz (THz) electric field is evaluated. The effects of laser beams and plasma parameters, including the beams width, LG modes, the plasma collision frequency, and the amplitude of density ripple on the evolution of THz electric field amplitude, are examined. It is found that the shape of the generated THz radiation pattern can be tuned by the laser parameters. In addition, the optimum values of the effective parameters for achieving the maximum THz electric field amplitude are proposed. It is shown that a significant enhancement up to 4.5% can be obtained in our scheme, which is much greater than the maximum efficiency obtained for laser beams with the same profiles.
Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal
NASA Astrophysics Data System (ADS)
Jiu-Sheng, Li; Han, Liu; Le, Zhang
2015-09-01
Electromagnetic polarization conveys valuable information for signal processing. Manipulation of terahertz wavelength demultiplexer exhibits tremendous potential in developing application of terahertz science and technology. We propose an approach to separate efficiently four frequencies terahertz waves based on three cascaded directional coupling two-dimensional photonic crystal waveguides. Both plane wave expansion method and finite-difference time-domain method are used to calculate and analyze the characteristics of the proposed device. The simulation results show that the designed terahertz wavelength demultiplexer can split four different wavelengths of terahertz wave into different propagation directions with high transmittance and low crosstalk. The present device is very compact and the total size is 6.8×10.6 mm2. This enables the terahertz wavelength demultiplexer to be used in terahertz wave system and terahertz wave integrated circuit fields.
Robust Optimization Design Algorithm for High-Frequency TWTs
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.; Chevalier, Christine T.
2010-01-01
Traveling-wave tubes (TWTs), such as the Ka-band (26-GHz) model recently developed for the Lunar Reconnaissance Orbiter, are essential as communication amplifiers in spacecraft for virtually all near- and deep-space missions. This innovation is a computational design algorithm that, for the first time, optimizes the efficiency and output power of a TWT while taking into account the effects of dimensional tolerance variations. Because they are primary power consumers and power generation is very expensive in space, much effort has been exerted over the last 30 years to increase the power efficiency of TWTs. However, at frequencies higher than about 60 GHz, efficiencies of TWTs are still quite low. A major reason is that at higher frequencies, dimensional tolerance variations from conventional micromachining techniques become relatively large with respect to the circuit dimensions. When this is the case, conventional design- optimization procedures, which ignore dimensional variations, provide inaccurate designs for which the actual amplifier performance substantially under-performs that of the design. Thus, this new, robust TWT optimization design algorithm was created to take account of and ameliorate the deleterious effects of dimensional variations and to increase efficiency, power, and yield of high-frequency TWTs. This design algorithm can help extend the use of TWTs into the terahertz frequency regime of 300-3000 GHz. Currently, these frequencies are under-utilized because of the lack of efficient amplifiers, thus this regime is known as the "terahertz gap." The development of an efficient terahertz TWT amplifier could enable breakthrough applications in space science molecular spectroscopy, remote sensing, nondestructive testing, high-resolution "through-the-wall" imaging, biomedical imaging, and detection of explosives and toxic biochemical agents.
Water vapor: An extraordinary terahertz wave source under optical excitation
NASA Astrophysics Data System (ADS)
Johnson, Keith; Price-Gallagher, Matthew; Mamer, Orval; Lesimple, Alain; Fletcher, Clark; Chen, Yunqing; Lu, Xiaofei; Yamaguchi, Masashi; Zhang, X.-C.
2008-09-01
In modern terahertz (THz) sensing and imaging spectroscopy, water is considered a nemesis to be avoided due to strong absorption in the THz frequency range. Here we report the first experimental demonstration and theoretical implications of using femtosecond laser pulses to generate intense broadband THz emission from water vapor. When we focused an intense laser pulse in water vapor contained in a gas cell or injected from a gas jet nozzle, an extraordinarily strong THz field from optically excited water vapor is observed. Water vapor has more than 50% greater THz generation efficiency than dry nitrogen. It had previously been assumed that the nonlinear generation of THz waves in this manner primarily involves a free-electron plasma, but we show that the molecular structure plays an essential role in the process. In particular, we found that THz wave generation from H2O vapor is significantly stronger than that from D2O vapor. Vibronic activities of water cluster ions, occurring naturally in water vapor, may possibly contribute to the observed isotope effect along with rovibrational contributions from the predominant monomers.
Shchurova, L Yu; Namiot, V A; Sarkisyan, D R
2015-01-01
Coherent sources of electromagnetic waves in the terahertz frequency range are very promising for various applications, including biology and medicine. In this paper we propose a scheme of a compact terahertz source, in which terahertz radiation is generated due to effective interaction of electrons in a quantum well with an electromagnetic wave of a corrugated waveguide. We have shown that the generation of electromagnetic waves with a frequency of 1012 sec(-1) and an output power of up to 25. mW is possible in the proposed scheme.
High-power Broadband Organic THz Generator
Jeong, Jae-Hyeok; Kang, Bong-Joo; Kim, Ji-Soo; Jazbinsek, Mojca; Lee, Seung-Heon; Lee, Seung-Chul; Baek, In-Hyung; Yun, Hoseop; Kim, Jongtaek; Lee, Yoon Sup; Lee, Jae-Hyeok; Kim, Jae-Ho; Rotermund, Fabian; Kwon, O-Pil
2013-01-01
The high-power broadband terahertz (THz) generator is an essential tool for a wide range of THz applications. Here, we present a novel highly efficient electro-optic quinolinium single crystal for THz wave generation. For obtaining intense and broadband THz waves by optical-to-THz frequency conversion, a quinolinium crystal was developed to fulfill all the requirements, which are in general extremely difficult to maintain simultaneously in a single medium, such as a large macroscopic electro-optic response and excellent crystal characteristics including a large crystal size with desired facets, good environmental stability, high optical quality, wide transparency range, and controllable crystal thickness. Compared to the benchmark inorganic and organic crystals, the new quinolinium crystal possesses excellent crystal properties and THz generation characteristics with broader THz spectral coverage and higher THz conversion efficiency at the technologically important pump wavelength of 800 nm. Therefore, the quinolinium crystal offers great potential for efficient and gap-free broadband THz wave generation. PMID:24220234
High-power broadband organic THz generator.
Jeong, Jae-Hyeok; Kang, Bong-Joo; Kim, Ji-Soo; Jazbinsek, Mojca; Lee, Seung-Heon; Lee, Seung-Chul; Baek, In-Hyung; Yun, Hoseop; Kim, Jongtaek; Lee, Yoon Sup; Lee, Jae-Hyeok; Kim, Jae-Ho; Rotermund, Fabian; Kwon, O-Pil
2013-11-13
The high-power broadband terahertz (THz) generator is an essential tool for a wide range of THz applications. Here, we present a novel highly efficient electro-optic quinolinium single crystal for THz wave generation. For obtaining intense and broadband THz waves by optical-to-THz frequency conversion, a quinolinium crystal was developed to fulfill all the requirements, which are in general extremely difficult to maintain simultaneously in a single medium, such as a large macroscopic electro-optic response and excellent crystal characteristics including a large crystal size with desired facets, good environmental stability, high optical quality, wide transparency range, and controllable crystal thickness. Compared to the benchmark inorganic and organic crystals, the new quinolinium crystal possesses excellent crystal properties and THz generation characteristics with broader THz spectral coverage and higher THz conversion efficiency at the technologically important pump wavelength of 800 nm. Therefore, the quinolinium crystal offers great potential for efficient and gap-free broadband THz wave generation.
Terahertz Characterization of DNA: Enabling a Novel Approach
2015-11-01
DNA in a more reliable and less procedurally complicated manner. The method involves the use of terahertz surface plasmon generated on the surface of...advantages are due to overlapping resonance when the plasmon frequency generated by a foil coincides with that of the biological material. The...interference of the impinging terahertz wave and surface plasmon produces spectral graphs, which can be analyzed to identify and characterize a DNA sample
Terahertz wave manipulation based on multi-bit coding artificial electromagnetic surfaces
NASA Astrophysics Data System (ADS)
Li, Jiu-Sheng; Zhao, Ze-Jiang; Yao, Jian-Quan
2018-05-01
A polarization insensitive multi-bit coding artificial electromagnetic surface is proposed for terahertz wave manipulation. The coding artificial electromagnetic surfaces composed of four-arrow-shaped particles with certain coding sequences can generate multi-bit coding in the terahertz frequencies and manipulate the reflected terahertz waves to the numerous directions by using of different coding distributions. Furthermore, we demonstrate that our coding artificial electromagnetic surfaces have strong abilities to reduce the radar cross section with polarization insensitive for TE and TM incident terahertz waves as well as linear-polarized and circular-polarized terahertz waves. This work offers an effectively strategy to realize more powerful manipulation of terahertz wave.
Recent developments in terahertz sensing technology
NASA Astrophysics Data System (ADS)
Shur, Michael
2016-05-01
Terahertz technology has found numerous applications for the detection of biological and chemical hazardous agents, medical diagnostics, detection of explosives, providing security in buildings, airports, and other public spaces, shortrange covert communications (in the THz and sub-THz windows), and applications in radio astronomy and space research. The expansion of these applications will depend on the development of efficient electronic terahertz sources and sensitive low-noise terahertz detectors. Schottky diode frequency multipliers have emerged as a viable THz source technology reaching a few THz. High speed three terminal electronic devices (FETs and HBTs) have entered the THz range (with cutoff frequencies and maximum frequencies of operation above 1 THz). A new approach called plasma wave electronics recently demonstrated an efficient terahertz detection in GaAs-based and GaN-based HEMTs and in Si MOS, SOI, FINFETs and in FET arrays. This progress in THz electronic technology has promise for a significant expansion of THz applications.
Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime.
Quraishi, Qudsia; Griebel, Martin; Kleine-Ostmann, Thomas; Bratschitsch, Rudolf
2005-12-01
Broadly tunable phase-stable single-frequency terahertz radiation is generated with an optical heterodyne photomixer. The photomixer is excited by two near-infrared CW diode lasers that are phase locked to the stabilized optical frequency comb of a femtosecond titanium:sapphire laser. The terahertz radiation emitted by the photomixer is downconverted into RF frequencies with a waveguide harmonic mixer and measurement-limited linewidths at the Hertz level are demonstrated.
Terahertz NDE for Metallic Surface Roughness Evaluation
NASA Technical Reports Server (NTRS)
Madaras, Eric I.; Anastasi, Robert F.
2006-01-01
Metallic surface roughness in a nominally smooth surface is a potential indication of material degradation or damage. When the surface is coated or covered with an opaque dielectric material, such as paint or insulation, then inspecting for surface changes becomes almost impossible. Terahertz NDE is a method capable of penetrating the coating and inspecting the metallic surface. The terahertz frequency regime is between 100 GHz and 10 THz and has a free space wavelength of 300 micrometers at 1 THz. Pulsed terahertz radiation, can be generated and detected using optical excitation of biased semiconductors with femtosecond laser pulses. The resulting time domain signal is 320 picoseconds in duration. In this application, samples are inspected with a commercial terahertz NDE system that scans the sample and generates a set of time-domain signals that are a function of the backscatter from the metallic surface. Post processing is then performed in the time and frequency domains to generate C-scan type images that show scattering effects due to surface non-uniformity.
Wu, Hang; Wu, Shixiang; Qiu, Nansheng; Chang, Jian; Bao, Rima; Zhang, Xin; Liu, Nian; Liu, Shuai
2018-01-01
Apatite fission-track (AFT) analysis, a widely used low-temperature thermochronology method, can provide details of the hydrocarbon generation history of source rocks for use in hydrocarbon exploration. The AFT method is based on the annealing behavior of fission tracks generated by 238 U fission in apatite particles during geological history. Due to the cumbersome experimental steps and high expense, it is imperative to find an efficient and inexpensive technique to determinate the annealing degree of AFT. In this study, on the basis of the ellipsoid configuration of tracks, the track volume fraction model (TVFM) is established and the fission-track volume index is proposed. Furthermore, terahertz time domain spectroscopy (THz-TDS) is used for the first time to identify the variation of the AFT annealing degree of Durango apatite particles heated at 20, 275, 300, 325, 450, and 500 ℃ for 10 h. The THz absorbance of the sample increases with the degree of annealing. In addition, the THz absorption index is exponentially related to annealing temperature and can be used to characterize the fission-track volume index. Terahertz time domain spectroscopy can be an ancillary technique for AFT thermochronological research. More work is urgently needed to extrapolate experimental data to geological conditions.
Electro-optic crystal mosaics for the generation of terahertz radiation
Carrig, Timothy J.; Taylor, Antoinette J.; Stewart, Kevin R.
1996-01-01
Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification.
Electro-optic crystal mosaics for the generation of terahertz radiation
Carrig, T.J.; Taylor, A.J.; Stewart, K.R.
1996-08-06
Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification. 5 figs.
Electron acceleration and kinetic energy tailoring via ultrafast terahertz fields.
Greig, S R; Elezzabi, A Y
2014-11-17
We propose a mechanism for tuning the kinetic energy of surface plasmon generated electron pulses through control of the time delay between a pair of externally applied terahertz pulses. Varying the time delay results in translation, compression, and broadening of the kinetic energy spectrum of the generated electron pulse. We also observe that the electrons' kinetic energy dependence on the carrier envelope phase of the surface plasmon is preserved under the influence of a terahertz electric field.
Zhang, Zhelin; Chen, Yanping; Chen, Min; Zhang, Zhen; Yu, Jin; Sheng, Zhengming; Zhang, Jie
2016-12-09
We demonstrate effective control on the carrier-envelope phase and angular distribution as well as the peak intensity of a nearly single-cycle terahertz pulse emitted from a laser filament formed by two-color, the fundamental and the corresponding second harmonics, femtosecond laser pulses propagating in air. Experimentally, such control has been performed by varying the filament length and the initial phase difference between the two-color laser components. A linear-dipole-array model, including the descriptions of both the generation (via laser field ionization) and propagation of the emitted terahertz pulse, is proposed to present a quantitative interpretation of the observations. Our results contribute to the understanding of terahertz generation in a femtosecond laser filament and suggest a practical way to control the electric field of a terahertz pulse for potential applications.
NASA Astrophysics Data System (ADS)
Hematizadeh, Ayoob; Jazayeri, Seyed Masud; Ghafary, Bijan
2018-02-01
A scheme for excitation of terahertz (THz) radiation is presented by photo mixing of two super-Gaussian laser beams in a rippled density collisional magnetized plasma. Lasers having different frequencies and wave numbers but the same electric fields create a ponderomotive force on the electrons of plasma in the beating frequency. Super-Gaussian laser beam has the exclusive features such as steep gradient in laser intensity distribution, wider cross-section in comparison with Gaussian profiles, which make stronger ponderomotive force and higher THz radiation. The magnetic field is considered oblique to laser beams propagation direction; in this case, depending on the phase matching conditions different mode waves can propagate in plasma. It is found that amplitude and efficiency of the emitted THz radiation not only are sensitive to the beating frequency, collision frequency, and magnetic field strength but to the angle between laser beams and static magnetic field. The efficiency of THz radiation can be optimized in a certain angle.
A metasurface-based prism analogue for terahertz rainbow spectrum manipulation
NASA Astrophysics Data System (ADS)
Zheng, Shen; Li, Chao; Li, Shichao; Zhang, Xiaojuan; Fang, Guangyou
2017-06-01
Optical prisms can spread compound light spatially into a rainbow and have widespread applications in spectroscopy and imaging. Limited by the natural materials as well as technologies, there has been no natural counterpart of the optical prism that works in the Terahertz (THz) band so far. In this letter, a THz prism analogue based on metasurfaces working in the transmission diffraction mechanism is first proposed to generate the THz rainbow spectrum. The physics of different modes excited by the interaction between the incident wave and the metasurface is investigated in theory and simulation. A coherent enhancement method was developed to improve the mode competition of the rainbow spectrum over other unwanted leaky modes to guarantee the high transfer efficiency of the wavelength dependent transmission diffraction. The experimental results show that the prism analogue can spread the incident spectrum from 0.15 to 0.22 THz in an angular scope of about 30.8° with comparatively high transferring efficiency.
Optically tuned terahertz modulator based on annealed multilayer MoS2.
Cao, Yapeng; Gan, Sheng; Geng, Zhaoxin; Liu, Jian; Yang, Yuping; Bao, Qiaoling; Chen, Hongda
2016-03-08
Controlling the propagation properties of terahertz waves is very important in terahertz technologies applied in high-speed communication. Therefore a new-type optically tuned terahertz modulator based on multilayer-MoS2 and silicon is experimentally demonstrated. The terahertz transmission could be significantly modulated by changing the power of the pumping laser. With an annealing treatment as a p-doping method, MoS2 on silicon demonstrates a triple enhancement of terahertz modulation depth compared with the bare silicon. This MoS2-based device even exhibited much higher modulation efficiency than the graphene-based device. We also analyzed the mechanism of the modulation enhancement originated from annealed MoS2, and found that it is different from that of graphene-based device. The unique optical modulating properties of the device exhibit tremendous promise for applications in terahertz switch.
Efficient semiconductor multicycle terahertz pulse source
NASA Astrophysics Data System (ADS)
Nugraha, P. S.; Krizsán, G.; Polónyi, Gy; Mechler, M. I.; Hebling, J.; Tóth, Gy; Fülöp, J. A.
2018-05-01
Multicycle THz pulse generation by optical rectification in GaP semiconductor nonlinear material is investigated by numerical simulations. It is shown that GaP can be an efficient and versatile source with up to about 8% conversion efficiency and a tuning range from 0.1 THz to about 7 THz. Contact-grating technology for pulse-front tilt can ensure an excellent focusability and scaling the THz pulse energy beyond 1 mJ. Shapeable infrared pump pulses with a constant intensity-modulation period can be delivered for example by a flexible and efficient dual-chirped optical parametric amplifier. Potential applications include linear and nonlinear THz spectroscopy and THz-driven acceleration of electrons.
Integrated heterodyne terahertz transceiver
Wanke, Michael C [Albuquerque, NM; Lee, Mark [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM; Cich, Michael J [Albuquerque, NM
2012-09-25
A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.
NASA Astrophysics Data System (ADS)
Sun, Bo; Liu, Jinsong; Yao, Jianquan; Li, Enbang
2013-11-01
We propose a dual-wavelength pump source by utilizing stimulated polariton scattering in a LiNbO3 crystal. The residual pump and the generated tunable Stokes waves can be combined to generate THz-wave generation via difference frequency generation (DFG). With a pump energy of 49 mJ, Stokes waves with a tuning range from 1067.8 to 1074 nm have been generated, and an output energy of up to 14.9 mJ at 1070 nm has been achieved with a conversion efficiency of 21.7%. A sum frequency generation experiment was carried out to demonstrate the feasibility of the proposed scheme for THz-wave DFG.
González de Alaiza Martínez, P; Davoine, X; Debayle, A; Gremillet, L; Bergé, L
2016-06-03
We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2). We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 10(17) W/cm(2) laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents.
González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.
2016-01-01
We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689
Terahertz Magnetic Mirror Realized with Dielectric Resonator Antennas.
Headland, Daniel; Nirantar, Shruti; Withayachumnankul, Withawat; Gutruf, Philipp; Abbott, Derek; Bhaskaran, Madhu; Fumeaux, Christophe; Sriram, Sharath
2015-11-25
Single-crystal silicon is bonded to a metal-coated substrate and etched in order to form an array of microcylinder passive terahertz dielectric resonator antennas (DRAs). The DRAs exhibit a magnetic response, and hence the array behaves as an efficient artificial magnetic conductor (AMC), with potential for terahertz antenna and sensing applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Arend, Thomas R; Wimmer, Andreas; Schweicher, Guillaume; Chattopadhyay, Basab; Geerts, Yves H; Kersting, Roland
2017-11-02
Terahertz electromodulation spectroscopy provides insight into the material-inherent transport properties of charge carriers in organic semiconductors. Experiments on didodecyl[1]benzothieno[3,2-b][1]benzothiophene (C 12 -BTBT-C 12 ) devices yield for holes an intraband mobility of 9 cm 2 V -1 s -1 . The short duration of the THz pulses advances the understanding of the hole transport on the molecular scale. The efficient screening of Coulomb potentials leads to a collective response of the hole gas to external fields, which can be well described by the Drude model. Bias stress of the devices generates deep traps that capture mobile holes. Although the resulting polarization across the device hinders the injection of mobile holes, the hole mobilities are not affected.
Electro-optically Induced and Manipulated Terahertz Waves from Fe-doped InGaAs Surfaces
NASA Astrophysics Data System (ADS)
Hatem, O.
2018-03-01
We demonstrate the presence of dual simultaneous nonlinear mechanisms: field-induced optical rectification (FIOR) and field-induced surge current (FISC) for the generation of terahertz (THz) pulses from p-type and n-type Fe:In0.53Ga0.47As surfaces upon excitation with femtosecond laser pulses centered at 800 nm wavelength. Experimental investigations of the dependence of the generated THz waves on the incident angular optical polarization, optical irradiance, and the direction and magnitude of applied electric DC fields give confirming results to the proposed THz generation mechanisms. Applying external DC electric fields in the plane of the incident optical field shows efficient capability in manipulating the direction and phase of the generated THz waves, and controlling the refractive index of Fe:In0.53Ga0.47As material in the THz range, in addition to enhancing the emitted THz power up to two orders of magnitude. The fast and reliable response of Fe:In0.53Ga0.47As to the changes in the direction and magnitude of the optical and electrical fields suggests its use in amplitude and phase modulators, and ultrafast optoelectronic systems.
Efficient flat metasurface lens for terahertz imaging.
Yang, Quanlong; Gu, Jianqiang; Wang, Dongyang; Zhang, Xueqian; Tian, Zhen; Ouyang, Chunmei; Singh, Ranjan; Han, Jiaguang; Zhang, Weili
2014-10-20
Metamaterials offer exciting opportunities that enable precise control of amplitude, polarization and phase of the light beam at a subwavelength scale. A gradient metasurface consists of a class of anisotropic subwavelength metamaterial resonators that offer abrupt amplitude and phase changes, thus enabling new applications in optical device design such as ultrathin flat lenses. We propose a highly efficient gradient metasurface lens based on a metal-dielectric-metal structure that operates in the terahertz regime. The proposed structure consists of slotted metallic resonator arrays on two sides of a thin dielectric spacer. By varying the geometrical parameters, the metasurface lens efficiently manipulates the spatial distribution of the terahertz field and focuses the beam to a spot size on the order of a wavelength. The proposed flat metasurface lens design is polarization insensitive and works efficiently even at wide angles of incidence.
Freely-tunable broadband polarization rotator for terahertz waves
NASA Astrophysics Data System (ADS)
Peng, Ru-Wen; Fan, Ren-Hao; Zhou, Yu; Jiang, Shang-Chi; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu
It is known that commercially-available terahertz (THz) emitters usually generate linearly polarized waves only along certain directions, but in practice, a polarization rotator that is capable of rotating the polarization of THz waves to any direction is particularly desirable and it will have various important applications. In this work, we demonstrate a freely tunable polarization rotator for broadband THz waves using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized THz wave to any desired direction with nearly perfect conversion efficiency. The device performance has been experimentally demonstrated by both THz transmission spectra and direct imaging. The polarization rotation originates from multi wave interference in the three-layer grating structure based on the scattering-matrix analysis. We can expect that this active broadband polarization rotator has wide applications in analytical chemistry, biology, communication technology, imaging, etc.. Reference: R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and Mu Wang, Advanced Materials 27,1201(2015). Freely-tunable broadband polarization rotator for terahertz waves.
Toward remote sensing with broadband terahertz waves
NASA Astrophysics Data System (ADS)
Clough, Benjamin W.
Terahertz electromagnetic waves, defined as the frequency region between 0.1 and 10 terahertz on the electromagnetic spectrum, have demonstrated remarkable usefulness for imaging and chemical identification with the ability to penetrate many optically opaque barriers. Photon energies at these frequencies are relatively small (meV), which means the radiation is non-ionizing and therefore considered biologically innocuous. With the growing list of applications and demand for terahertz technology, there is a need to develop innovative terahertz sources and detectors that can overcome existing limitations in power, bandwidth, and operating range. Although terahertz radiation has demonstrated unique and exceptional abilities, it has also presented several fundamental challenges. Most notably, the water vapor absorption of terahertz waves in air at habitable altitudes is greater than 100 dB/km. There is an immediate push to utilize the material and vapor identification abilities of terahertz radiation, while extending the effective distances over which the technology can be used. Remote terahertz detection, until recently, was thought to be impossible due to the high water content in the atmosphere, limited signal collection geometries, and solid state materials necessary for generation and detection. This dissertation focuses on laser air-photonics used for sensing short pulses of electromagnetic radiation. Through the ionization process, the very air that we breathe is capable of generating terahertz field strengths greater than 1 MV/cm, useful bandwidths over 100 terahertz, and highly directional emission patterns. Following ionization and plasma formation, the emitted plasma acoustics or fluorescence can be modulated by an external field to serve as omnidirectional, broadband, electromagnetic sensor. A deeper understanding of terahertz wave-plasma interaction is used to develop methods for retrieving coherent terahertz wave information that can be encoded into plasma acoustic and fluorescence wave emission; the ultimate goal aimed at overcoming fundamental limitations of the current terahertz technology. A synthesized bichromatic field-induced laser plasma is used to study effects of electron velocity redistribution inside the plasma filament, and a technique for obtaining a direct correlation between the terahertz field and the plasma acoustic or fluorescence emission is engineered. This dissertation presents significant advances in terahertz air photonics that help to close the "THz gap" once existing between electronic and optical frequencies, and the acoustic and fluorescence detection methodologies developed provide promising new avenues for extending the useful range of terahertz wave technology.
Absorption of laser plasma in competition with oscillation currents for a terahertz spectrum.
Li, Xiaolu; Bai, Ya; Li, Na; Liu, Peng
2018-01-01
We generate terahertz radiation in a supersonic jet of nitrogen molecules pumped by intense two-color laser pulses. The tuning of terahertz spectra from blue shift to red shift is observed by increasing laser power and stagnation pressure, and the red shift range is enlarged with the increased stagnation pressure. Our simulation reveals that the plasma absorption of the oscillation currents and expanded plasma column owing to increased laser intensity and gas number density are crucial factors in the recurrence of the red shift of terahertz spectra. The findings disclose the microscopic mechanism of terahertz radiation and present a controlling knob for the manipulation of a broadband terahertz spectrum from laser plasma.
Yardimci, Nezih Tolga; Lu, Hong; Jarrahi, Mona
2016-11-07
We present a high-power and broadband photoconductive terahertz emitter operating at telecommunication optical wavelengths, at which compact and high-performance fiber lasers are commercially available. The presented terahertz emitter utilizes an ErAs:InGaAs substrate to achieve high resistivity and short carrier lifetime characteristics required for robust operation at telecommunication optical wavelengths. It also uses a two-dimensional array of plasmonic nano-antennas to offer significantly higher optical-to-terahertz conversion efficiencies compared to the conventional photoconductive emitters, while maintaining broad operation bandwidths. We experimentally demonstrate pulsed terahertz radiation over 0.1-5 THz frequency range with the power levels as high as 300 μ W. This is the highest-reported terahertz radiation power from a photoconductive emitter operating at telecommunication optical wavelengths.
Yardimci, Nezih Tolga; Lu, Hong; Jarrahi, Mona
2016-01-01
We present a high-power and broadband photoconductive terahertz emitter operating at telecommunication optical wavelengths, at which compact and high-performance fiber lasers are commercially available. The presented terahertz emitter utilizes an ErAs:InGaAs substrate to achieve high resistivity and short carrier lifetime characteristics required for robust operation at telecommunication optical wavelengths. It also uses a two-dimensional array of plasmonic nano-antennas to offer significantly higher optical-to-terahertz conversion efficiencies compared to the conventional photoconductive emitters, while maintaining broad operation bandwidths. We experimentally demonstrate pulsed terahertz radiation over 0.1–5 THz frequency range with the power levels as high as 300 μW. This is the highest-reported terahertz radiation power from a photoconductive emitter operating at telecommunication optical wavelengths. PMID:27916999
Large dynamic range terahertz spectrometers based on plasmonic photomixers (Conference Presentation)
NASA Astrophysics Data System (ADS)
Wang, Ning; Javadi, Hamid; Jarrahi, Mona
2017-02-01
Heterodyne terahertz spectrometers are highly in demand for space explorations and astrophysics studies. A conventional heterodyne terahertz spectrometer consists of a terahertz mixer that mixes a received terahertz signal with a local oscillator signal to generate an intermediate frequency signal in the radio frequency (RF) range, where it can be easily processed and detected by RF electronics. Schottky diode mixers, superconductor-insulator-superconductor (SIS) mixers and hot electron bolometer (HEB) mixers are the most commonly used mixers in conventional heterodyne terahertz spectrometers. While conventional heterodyne terahertz spectrometers offer high spectral resolution and high detection sensitivity levels at cryogenic temperatures, their dynamic range and bandwidth are limited by the low radiation power of existing terahertz local oscillators and narrow bandwidth of existing terahertz mixers. To address these limitations, we present a novel approach for heterodyne terahertz spectrometry based on plasmonic photomixing. The presented design replaces terahertz mixer and local oscillator of conventional heterodyne terahertz spectrometers with a plasmonic photomixer pumped by an optical local oscillator. The optical local oscillator consists of two wavelength-tunable continuous-wave optical sources with a terahertz frequency difference. As a result, the spectrometry bandwidth and dynamic range of the presented heterodyne spectrometer is not limited by radiation frequency and power restrictions of conventional terahertz sources. We demonstrate a proof-of-concept terahertz spectrometer with more than 90 dB dynamic range and 1 THz spectrometry bandwidth.
Wallis, R; Degl'Iinnocenti, R; Jessop, D S; Ren, Y; Klimont, A; Shah, Y D; Mitrofanov, O; Bledt, C M; Melzer, J E; Harrington, J A; Beere, H E; Ritchie, D A
2015-10-05
The growth in terahertz frequency applications utilising the quantum cascade laser is hampered by a lack of targeted power delivery solutions over large distances (>100 mm). Here we demonstrate the efficient coupling of double-metal quantum cascade lasers into flexible polystyrene lined hollow metallic waveguides via the use of a hollow copper waveguide integrated into the laser mounting block. Our approach exhibits low divergence, Gaussian-like emission, which is robust to misalignment error, at distances > 550 mm, with a coupling efficiency from the hollow copper waveguide into the flexible waveguide > 90%. We also demonstrate the ability to nitrogen purge the flexible waveguide, increasing the power transmission by up to 20% at 2.85 THz, which paves the way for future fibre based terahertz sensing and spectroscopy applications.
2016-08-25
AFRL-AFOSR-UK-TR-2016-0029 Intense Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics...Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics, 5a. CONTRACT NUMBER 5b. GRANT...an existing high energy laser system, has been applied to the study of intense terahertz radiation generated in gaseous plasmas in purpose
Wan, W J; Li, H; Cao, J C
2018-01-22
The authors present an experimental investigation of radio frequency modulation on pulsed terahertz quantum cascade lasers (QCLs) emitting around 4.3 THz. The QCL chip used in this work is based on a resonant phonon design which is able to generate a 1.2 W peak power at 10 K from a 400-µm-wide and 4-mm-long laser with a single plasmon waveguide. To enhance the radio frequency modulation efficiency and significantly broaden the terahertz spectra, the QCLs are also processed into a double-metal waveguide geometry with a Silicon lens out-coupler to improve the far-field beam quality. The measured beam patterns of the double-metal QCL show a record low divergence of 2.6° in vertical direction and 2.4° in horizontal direction. Finally we perform the inter-mode beat note and terahertz spectra measurements for both single plasmon and double-metal QCLs working in pulsed mode. Since the double-metal waveguide is more suitable for microwave signal transmission, the radio frequency modulation shows stronger effects on the spectral broadening for the double-metal QCL. Although we are not able to achieve comb operation in this work for the pulsed lasers due to the large phase noise, the homogeneous spectral broadening resulted from the radio frequency modulation can be potentially used for spectroscopic applications.
A coherent detection technique via optically biased field for broadband terahertz radiation.
Du, Hai-Wei; Dong, Jia-Meng; Liu, Yi; Shi, Chang-Cheng; Wu, Jing-Wei; Peng, Xiao-Yu
2017-09-01
We demonstrate theoretically and experimentally a coherent terahertz detection technique based on an optically biased field functioning as a local oscillator and a second harmonic induced by the terahertz electric field in the air sensor working in free space. After optimizing the polarization angle and the energy of the probe pulse, and filling the system with dry nitrogen, the terahertz radiation generated from a two-color-femtosecond-laser-pulses induced plasma filament is measured by this technique with a bandwidth of 0.1-10 THz and a signal-to-noise ratio of 48 dB. Our technique provides an alternative simple method for coherent broadband terahertz detection.
RT-CW: widely tunable semiconductor THz QCL sources
NASA Astrophysics Data System (ADS)
Razeghi, M.; Lu, Q. Y.
2016-09-01
Distinctive position of Terahertz (THz) frequencies (ν 0.3 -10 THz) in the electromagnetic spectrum with their lower quantum energy compared to IR and higher frequency compared to microwave range allows for many potential applications unique to them. Especially in the security side of the THz sensing applications, the distinct absorption spectra of explosives and related compounds in the range of 0.1-5 THz makes THz technology a competitive technique for detecting hidden explosives. A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range will greatly boost the THz applications for the diagnosis and detection of explosives. Here we present a new strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based intracavity DFG. Room temperature continuous wave operation with electrical frequency tuning range of 2.06-4.35 THz is demonstrated.
Terahertz amplification in RTD-gated HEMTs with a grating-gate wave coupling topology
NASA Astrophysics Data System (ADS)
Condori Quispe, Hugo O.; Encomendero-Risco, Jimy J.; Xing, Huili Grace; Sensale-Rodriguez, Berardi
2016-08-01
We theoretically analyze the operation of a terahertz amplifier consisting of a resonant-tunneling-diode gated high-electron-mobility transistor (RTD-gated HEMT) in a grating-gate topology. In these devices, the key element enabling substantial power gain is the efficient coupling of terahertz waves into and out of plasmons in the RTD-gated HEMT channel, i.e., the gain medium, via the grating-gate itself, part of the active device, rather than by an external antenna structure as discussed in previous works, therefore potentially enabling terahertz amplification with associated power gains >40 dB.
Terahertz amplification in RTD-gated HEMTs with a grating-gate wave coupling topology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Condori Quispe, Hugo O.; Sensale-Rodriguez, Berardi; Encomendero-Risco, Jimy J.
2016-08-08
We theoretically analyze the operation of a terahertz amplifier consisting of a resonant-tunneling-diode gated high-electron-mobility transistor (RTD-gated HEMT) in a grating-gate topology. In these devices, the key element enabling substantial power gain is the efficient coupling of terahertz waves into and out of plasmons in the RTD-gated HEMT channel, i.e., the gain medium, via the grating-gate itself, part of the active device, rather than by an external antenna structure as discussed in previous works, therefore potentially enabling terahertz amplification with associated power gains >40 dB.
Compact terahertz wave polarization beam splitter using photonic crystal.
Mo, Guo-Qiang; Li, Jiu-Sheng
2016-09-01
Electromagnetic polarization conveys valuable information for signal processing. Manipulation of a terahertz wave polarization state exhibits tremendous potential in developing applications of terahertz science and technology. We propose an approach to efficiently split transverse-electric and transverse-magnetic polarized terahertz waves into different propagation directions over the frequency range from 0.9998 to 1.0007 THz. Both the plane wave expansion method and the finite-difference time-domain method are used to calculate and analyze the transmission characteristics of the proposed device. The present device is very compact and the total size is 1.02 mm×0.99 mm. This polarization beam splitter performance indicates that the structure has a potential application for forthcoming terahertz-wave integrated circuit fields.
Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique.
Phing, Sze Ho; Mazhorova, Anna; Shalaby, Mostafa; Peccianti, Marco; Clerici, Matteo; Pasquazi, Alessia; Ozturk, Yavuz; Ali, Jalil; Morandotti, Roberto
2015-02-25
Terahertz technologies recently emerged as outstanding candidates for a variety of applications in such sectors as security, biomedical, pharmaceutical, aero spatial, etc. Imaging the terahertz field, however, still remains a challenge, particularly when sub-wavelength resolutions are involved. Here we demonstrate an all-optical technique for the terahertz near-field imaging directly at the source plane. A thin layer (<100 nm-thickness) of photo carriers is induced on the surface of the terahertz generation crystal, which acts as an all-optical, virtual blade for terahertz near-field imaging via a knife-edge technique. Remarkably, and in spite of the fact that the proposed approach does not require any mechanical probe, such as tips or apertures, we are able to demonstrate the imaging of a terahertz source with deeply sub-wavelength features (<30 μm) directly in its emission plane.
Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gayduchenko, I., E-mail: igorandg@gmail.com, E-mail: gefedorov@mail.ru; National Research Centre “Kurchatov Institute,” Moscow 123128; Kardakova, A.
2015-11-21
Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DCmore » voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors.« less
First-principles study of a MXene terahertz detector.
Jhon, Y I; Seo, M; Jhon, Y M
2017-12-21
2D transition metal carbides, nitrides, and carbonitrides called MXenes have attracted increasing attention due to their outstanding properties in many fields. By performing systematic density functional theory calculations, here we show that MXenes can serve as excellent terahertz detecting materials. Giant optical absorption and extinction coefficients are observed in the terahertz range in the most popular MXene, namely, Ti 3 C 2 , which is regardless of the stacking degree. Various other optical properties have been investigated as well in the terahertz range for in-depth understanding of its optical response. We find that the thermoelectric figure of merit (ZT) of stacked Ti 3 C 2 flakes is comparable to that of carbon nanotube films. Based on excellent terahertz absorption and decent thermoelectric efficiency in MXenes, we finally suggest the promise of MXenes in terahertz detection applications, which includes terahertz bolometers and photothermoelectric detectors. Possible ZT improvements are discussed in large-scale MXene flake films and/or MXene-polymer composite films.
Laser beat wave excitation of terahertz radiation in a plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, Santosh; Parashar, Jetendra, E-mail: j.p.parashar@gmail.com
2014-10-15
Terahertz (THz) radiation generation by nonlinear mixing of lasers, obliquely incident on a plasma slab is investigated. Two cases are considered: (i) electron density profile is parabolic but density peak is below the critical density corresponding to the beat frequency, (ii) plasma boundaries are sharp and density is uniform. In both cases, nonlinearity arises through the ponderomotive force that gives rise to electron drift at the beat frequency. In the case of inhomogeneous plasma, non zero curl of the nonlinear current density gives rise to electromagnetic THz generation. In case of uniform plasma, the sharp density variation at the plasmamore » boundaries leads to radiation generation. In a slab width of less than a terahertz wavelength, plasma density one fourth of terahertz critical density, laser intensities ∼10{sup 17 }W/cm{sup 2} at 1 μm, one obtains the THz intensity ∼1 GW/cm{sup 2} at 3 THz radiation frequency.« less
NASA Astrophysics Data System (ADS)
Saroch, Akanksha; Jha, Pallavi
2017-12-01
This paper deals with a two-dimensional simulation study of terahertz radiation emission in the wake of circularly polarized laser pulses propagating in uniformly magnetized plasma, using the XOOPIC code. The external magnetic field is applied along the direction of propagation of the laser pulse. It is seen that linearly polarized terahertz radiation is emitted off-axis, along the propagation direction, in plasma. This emitted radiation is also seen to be transmitted in vacuum. Simulation studies reveal that no such radiation is generated on-axis for the given configuration.
Terahertz difference frequency generation in quantum cascade lasers on silicon
NASA Astrophysics Data System (ADS)
Jung, Seungyong; Kim, Jae Hyun; Jiang, Yifan; Vijayraghavan, Karun; Belkin, Mikhail A.
2017-02-01
We demonstrate that an application of a III-V-on-silicon hybrid concept to terahertz (THz) Cherenkov difference frequency generation (DFG) quantum cascade laser (QCL) sources (THz DFG-QCLs) can dramatically improve THz output power and mid-infrared-to-THz conversion efficiency. Completely processed THz DFG-QCLs grown on a 660-μm-thick native InP substrate are transfer-printed onto a 1-mm-thick high-resistive Si substrate using a 100-nm-thick SU-8 as an adhesive layer. Room temperature device performance of the reference InP and hybrid Si THz DFG-QCLs of the same ridge width (22 μm) and cavity length (4.2 mm) have been experimentally compared. The target THz frequency of 3.5 THz is selected for both devices using the dual-period first order surface gratings to select the mid-infrared pump wavelength of 994 cm-1 and 1110 cm-1. At the maximum bias current, the reference InP and hybrid Si devices produced THz power of 50 μW and 270 μW, respectively. The mid-infrared-to-THz conversion efficiency corresponds to 60 μW/W2 and 480 μW/W2, respectively, resulting in 5 times higher THz power and 8 times higher conversion efficiency from the best-performing hybrid devices. A hybrid Si device integrated in a Littrow external-cavity setup showed wavelength tuning from 1.3 THz to 4.3 THz with beam-steering free operation.
Nonlinear optical THz generation and sensing applications
NASA Astrophysics Data System (ADS)
Kawase, Kodo
2012-03-01
We have suggested a wide range of real-life applications using novel terahertz imaging techniques. A high-resolution terahertz tomography was demonstrated by ultra short terahertz pulses using optical fiber and a nonlinear organic crystal. We also report on the thickness measurement of very thin films using high-sensitivity metal mesh filter. Further we have succeeded in a non-destructive inspection that can monitor the soot distribution in the ceramic filter using millimeter-to-terahertz wave computed tomography. These techniques are directly applicable to the non-destructive testing in industries.
Charge generation in organic solar cell materials studied by terahertz spectroscopy
NASA Astrophysics Data System (ADS)
Scarongella, M.; Brauer, J. C.; Douglas, J. D.; Fréchet, J. M. J.; Banerji, N.
2015-09-01
We have investigated the photophysics in neat films of conjugated polymer PBDTTPD and its blend with PCBM using terahertz time-domain spectroscopy. This material has very high efficiency when used in organic solar cells. We were able to identify a THz signature for bound excitons in neat PBDTTPD films, pointing to important delocalization in those excitons. Then, we investigated the nature and local mobility (orders of magnitude higher than bulk mobility) of charges in the PBDTTPPD:PCBM blend as a function of excitation wavelength, fluence and pump-probe time delay. At low pump fluence (no bimolecular recombination phenomena), we were able to observe prompt and delayed charge generation components, the latter originating from excitons created in neat polymer domains which, thanks to delocalization, could reach the PCBM interface and dissociate to charges on a time scale of 1 ps. The nature of the photogenerated charges did not change between 0.5 ps and 800 ps after photo-excitation, which indicated that the excitons split directly into relatively free charges on an ultrafast time scale.
Weiss, C; Torosyan, G; Avetisyan, Y; Beigang, R
2001-04-15
Generation of tunable narrow-band terahertz (THz) radiation perpendicular to the surface of periodically poled lithium niobate by optical rectification of femtosecond pulses is reported. The generated THz radiation can be tuned by use of different poling periods and different observation angles, limited only by the available bandwidth of the pump pulse. Typical bandwidths were 50-100 GHz, depending on the collection angle and the number of periods involved.
Damage in a Thin Metal Film by High-Power Terahertz Radiation.
Agranat, M B; Chefonov, O V; Ovchinnikov, A V; Ashitkov, S I; Fortov, V E; Kondratenko, P S
2018-02-23
We report on the experimental observation of high-power terahertz-radiation-induced damage in a thin aluminum film with a thickness less than a terahertz skin depth. Damage in a thin metal film produced by a single terahertz pulse is observed for the first time. The damage mechanism induced by a single terahertz pulse could be attributed to thermal expansion of the film causing debonding of the film from the substrate, film cracking, and ablation. The damage pattern induced by multiple terahertz pulses at fluences below the damage threshold is quite different from that observed in single-pulse experiments. The observed damage pattern resembles an array of microcracks elongated perpendicular to the in-plane field direction. A mechanism related to microcracks' generation and based on a new phenomenon of electrostriction in thin metal films is proposed.
Damage in a Thin Metal Film by High-Power Terahertz Radiation
NASA Astrophysics Data System (ADS)
Agranat, M. B.; Chefonov, O. V.; Ovchinnikov, A. V.; Ashitkov, S. I.; Fortov, V. E.; Kondratenko, P. S.
2018-02-01
We report on the experimental observation of high-power terahertz-radiation-induced damage in a thin aluminum film with a thickness less than a terahertz skin depth. Damage in a thin metal film produced by a single terahertz pulse is observed for the first time. The damage mechanism induced by a single terahertz pulse could be attributed to thermal expansion of the film causing debonding of the film from the substrate, film cracking, and ablation. The damage pattern induced by multiple terahertz pulses at fluences below the damage threshold is quite different from that observed in single-pulse experiments. The observed damage pattern resembles an array of microcracks elongated perpendicular to the in-plane field direction. A mechanism related to microcracks' generation and based on a new phenomenon of electrostriction in thin metal films is proposed.
High-efficiency terahertz polarization devices based on the dielectric metasurface
NASA Astrophysics Data System (ADS)
Zhou, Jian; Wang, JingJing; Guo, Kai; Shen, Fei; Zhou, Qingfeng; Zhiping yin; Guo, Zhongyi
2018-02-01
Metasurfaces are composed of the subwavelength structures, which can be used to manipulate the amplitude, phase, and polarization of incident electromagnetic waves efficiently. Here, we propose a novel type of dielectric metasurface based on crystal Si for realizing to manipulate the terahertz wave, in which by varying the geometric sizes of the Si micro-bricks, the transmitting phase of the terahertz wave can almost span over the entire 2π range for both of the x-polarization and y-polarization simultaneously, while keeping the similarly high-transmission amplitudes (over 90%). At the frequency of 1.0 THz, we have successfully designed a series of controllable THz devices, such as the polarization-dependent beam splitter, polarization-independent beam deflector and the focusing lenses based on the designed metasurfaces. Our designs are easy to fabricate and can be promising in developing high-efficiency THz functional devices.
Gao, Jingkun; Deng, Bin; Qin, Yuliang; Wang, Hongqiang; Li, Xiang
2016-12-14
An efficient wide-angle inverse synthetic aperture imaging method considering the spherical wavefront effects and suitable for the terahertz band is presented. Firstly, the echo signal model under spherical wave assumption is established, and the detailed wavefront curvature compensation method accelerated by 1D fast Fourier transform (FFT) is discussed. Then, to speed up the reconstruction procedure, the fast Gaussian gridding (FGG)-based nonuniform FFT (NUFFT) is employed to focus the image. Finally, proof-of-principle experiments are carried out and the results are compared with the ones obtained by the convolution back-projection (CBP) algorithm. The results demonstrate the effectiveness and the efficiency of the presented method. This imaging method can be directly used in the field of nondestructive detection and can also be used to provide a solution for the calculation of the far-field RCSs (Radar Cross Section) of targets in the terahertz regime.
Hayashi, Shin'ichiro; Nawata, Koji; Sakai, Hiroshi; Taira, Takunori; Minamide, Hiroaki; Kawase, Kodo
2012-01-30
We report on the development of a high-peak-power, single-longitudinal-mode and tunable injection-seeded terahertz-wave parametric generator using MgO:LiNbO3, which operates at room temperature. The high peak power (> 120 W) is enough to allow easy detection by commercial and calibrated pyroelectric detectors, and the spectral resolution (< 10 GHz) is the Fourier transform limit of the sub-nanosecond terahertz-wave pulse. The tunability (1.2-2.8 THz) and the small footprint size (A3 paper, 29.7 × 42 cm) are suitable for a variety of applications.
NASA Astrophysics Data System (ADS)
Sepehri Javan, N.; Rouhi Erdi, F.
2017-12-01
In this theoretical study, we investigate the generation of terahertz radiation by considering the beating of two similar Gaussian laser beams with different frequencies of ω1 and ω2 in a spatially modulated medium of graphite nanoparticles. The medium is assumed to contain spherical graphite nanoparticles of two different configurations: in the first configuration, the electric fields of the laser beams are parallel to the normal vector of the basal plane of the graphite structure, whereas in the second configuration, the electric fields are perpendicular to the normal vector of the basal plane. The interaction of the electric fields of lasers with the electronic clouds of the nanoparticles generates a ponderomotive force that in turn leads to the creation of a macroscopic electron current in the direction of laser polarizations and at the beat frequency ω1-ω2 , which can generate terahertz radiation. We show that, when the beat frequency lies near the effective plasmon frequency of the nanoparticles and the electric fields are parallel to the basal-plane normal, a resonant interaction of the laser beams causes intense terahertz radiation.
Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations
NASA Astrophysics Data System (ADS)
Schubert, O.; Hohenleutner, M.; Langer, F.; Urbanek, B.; Lange, C.; Huttner, U.; Golde, D.; Meier, T.; Kira, M.; Koch, S. W.; Huber, R.
2014-02-01
Ultrafast charge transport in strongly biased semiconductors is at the heart of high-speed electronics, electro-optics and fundamental solid-state physics. Intense light pulses in the terahertz spectral range have opened fascinating vistas. Because terahertz photon energies are far below typical electronic interband resonances, a stable electromagnetic waveform may serve as a precisely adjustable bias. Novel quantum phenomena have been anticipated for terahertz amplitudes, reaching atomic field strengths. We exploit controlled (multi-)terahertz waveforms with peak fields of 72 MV cm-1 to drive coherent interband polarization combined with dynamical Bloch oscillations in semiconducting gallium selenide. These dynamics entail the emission of phase-stable high-harmonic transients, covering the entire terahertz-to-visible spectral domain between 0.1 and 675 THz. Quantum interference of different ionization paths of accelerated charge carriers is controlled via the waveform of the driving field and explained by a quantum theory of inter- and intraband dynamics. Our results pave the way towards all-coherent terahertz-rate electronics.
Shao, Haifeng; Keyvaninia, Shahram; Vanwolleghem, Mathias; Ducournau, Guillaume; Jiang, Xiaoqing; Morthier, Geert; Lampin, Jean-Francois; Roelkens, Gunther
2014-11-15
We demonstrate an integrated distributed feedback (DFB) laser array as a dual-wavelength source for narrowband terahertz (THz) generation. The laser array is composed of four heterogeneously integrated III-V-on-silicon DFB lasers with different lengths enabling dual-mode lasing tolerant to process variations, bias fluctuations, and ambient temperature variations. By optical heterodyning the two modes emitted by the dual-wavelength DFB laser in the laser array using a THz photomixer composed of an uni-traveling carrier photodiode (UTC-PD), a narrow and stable carrier signal with a frequency of 0.357 THz is generated. The central operating frequency and the emitted terahertz wave linewidth are analyzed, along with their dependency on the bias current applied to the laser diode and ambient temperature.
Real-time terahertz near-field microscope.
Blanchard, F; Doi, A; Tanaka, T; Hirori, H; Tanaka, H; Kadoya, Y; Tanaka, K
2011-04-25
We report a terahertz near-field microscope with a high dynamic range that can capture images of a 370 x 740 μm2 area at 35 frames per second. We achieve high spatial resolution (14 μm corresponding to λ/30 for a center frequency at 0.7 THz) on a large area by combining two novel techniques: terahertz generation by tilted-pulse-front excitation and electro-optic balanced imaging detection using a thin crystal. To demonstrate the microscope capability, we reveal the field enhancement at the gap position of a dipole antenna after the irradiation of a terahertz pulse.
NASA Astrophysics Data System (ADS)
Aksenov, V. N.; Angeluts, A. A.; Balakin, A. V.; Maksimov, E. M.; Ozheredov, I. A.; Shkurinov, A. P.
2018-05-01
We demonstrate the possibility of using a multi-frequency terahertz source to identify substances basing on the analysis of relative amplitudes of the terahertz waves scattered by the object. The results of studying experimentally the scattering of quasi-monochromatic radiation generated by a two-frequency terahertz quantum-cascade laser by the surface of the samples containing inclusions of absorbing substances are presented. It is shown that the spectral features of absorption of these substances within the terahertz frequency range manifest themselves in variations of the amplitudes of the waves at frequencies of 3.0 and 3.7 THz, which are scattered by the samples under consideration.
NASA Astrophysics Data System (ADS)
Jian, Zhongping
This thesis describes the study of two-dimensional photonic crystals slabs with terahertz time domain spectroscopy. In our study we first demonstrate the realization of planar photonic components to manipulate terahertz waves, and then characterize photonic crystals using terahertz pulses. Photonic crystal slabs at the scale of micrometers are first designed and fabricated free of defects. Terahertz time domain spectrometer generates and detects the electric fields of single-cycle terahertz pulses. By putting photonic crystals into waveguide geometry, we successfully demonstrate planar photonic components such as transmission filters, reflection frequency-selective filters, defects modes as well as superprisms. In the characterization study of out-of-plane properties of photonic crystal slabs, we observe very strong dispersion at low frequencies, guided resonance modes at middle frequencies, and a group velocity anomaly at high frequencies. We employ Finite Element Method and Finite-Difference Time-Domain method to simulate the photonic crystals, and excellent agreement is achieved between simulation results and experimental results.
Chromatic effect in a novel THz generation scheme
NASA Astrophysics Data System (ADS)
Li, Bin; Zhang, Wenyan; Liu, Xiaoqing; Deng, Haixiao; Lan, Taihe; Liu, Bo; Liu, Jia; Wang, Xingtao; Zeng, Zhinan; Zhang, Lijian
2017-11-01
Deriving single or few cycle terahertz (THz) pulse by an intense femtosecond laser through cascaded optical rectification is a crucial technique in cutting-edge time-resolved spectroscopy to characterize micro-scale structures and ultrafast dynamics. Due to the broadband nature of the ultrafast driving laser, the chromatic effect limits the THz conversion efficiency in optical rectification crystals, especially for those implementing the pulse-front tilt scheme, e.g. lithium niobate (LN) crystal, has been prevalently used in the past decade. In this research we developed a brand new type of LN crystal utilizing Brewster coupling, and conducted systematically experimental and simulative investigation for the chromatic effect and multi-dimensionally entangled parameters in THz generation, predicting that an extreme conversion efficiency of ˜10% would be potentially achievable at the THz absorption coefficient of ˜0.5 cm-1. Moreover, we first discovered that the chirp of the driving laser plays a decisive role in the pulse-front tilt scheme, and the THz generation efficiency could be enhanced tremendously by applying an appropriate chirp.
Kappa, Jan; Schmitt, Klemens M; Rahm, Marco
2017-08-21
Efficient, high speed spatial modulators with predictable performance are a key element in any coded aperture terahertz imaging system. For spectroscopy, the modulators must also provide a broad modulation frequency range. In this study, we numerically analyze the electromagnetic behavior of a dynamically reconfigurable spatial terahertz wave modulator based on a micromirror grating in Littrow configuration. We show that such a modulator can modulate terahertz radiation over a wide frequency range from 1.7 THz to beyond 3 THz at a modulation depth of more than 0.6. As a specific example, we numerically simulated coded aperture imaging of an object with binary transmissive properties and successfully reconstructed the image.
Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics
NASA Astrophysics Data System (ADS)
Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal
2016-08-01
The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics.
Rout, Saroj; Sonkusale, Sameer
2016-06-27
The ever increasing demand for bandwidth in wireless communication systems will inevitably lead to the extension of operating frequencies toward the terahertz (THz) band known as the 'THz gap'. Towards closing this gap, we present a multi-level amplitude shift keying (ASK) terahertz wireless communication system using terahertz spatial light modulators (SLM) instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. The fundamental principle behind this higher efficiency is the conversion of a noisy voltage domain signal to a noise-free binary spatial pattern for effective amplitude modulation of a free-space THz carrier wave. Spatial modulation is achieved using an an active metamaterial array embedded with pseudomorphic high-electron mobility (pHEMT) designed in a consumer-grade galium-arsenide (GaAs) integrated circuit process which enables electronic control of its THz transmissivity. Each array is assembled as individually controllable tiles for transmissive terahertz spatial modulation. Using the experimental data from our metamaterial based modulator, we show that a four-level ASK digital communication system has two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in transmit signal-to-noise ratio (SNR) using spatial light modulation compared to voltage controlled modulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shenggang, E-mail: liusg@uestc.edu.cn; Hu, Min; Chen, Xiaoxing
2014-05-19
Although surface plasmon polaritons (SPPs) resonance in graphene can be tuned in the terahertz regime, transforming such SPPs into coherent terahertz radiation has not been achieved. Here, we propose a graphene-based coherent terahertz radiation source with greatly enhanced intensity. The radiation works at room temperature, it is tunable and can cover the whole terahertz regime. The radiation intensity generated with this method is 400 times stronger than that from SPPs at a conventional dielectric or semiconducting surface and is comparable to that from the most advanced photonics source such as a quantum cascade laser. The physical mechanism for this strongmore » radiation is presented. The phase diagrams defining the parameters range for the occurrence of radiation is also shown.« less
NASA Astrophysics Data System (ADS)
Chen, Pai-Yen; Salas, Rodolfo; Farhat, Mohamed
2017-12-01
We propose an optoelectronic terahertz oscillator based on the quantum tunneling effect in a plasmonic metamaterial, utilizing a nanostructured metal-insulator-metal (MIM) tunneling junction. The collective resonant response of meta-atoms can achieve >90% optical absorption and strongly localized optical fields within the MIM plasmonic nanojunction. By properly tailoring the radiation aperture, the nonlinear quantum conductance induced by the metamaterial-enhanced, photon-assisted tunneling may produce miliwatt-level terahertz radiation through the optical beating (or heterodyne down conversion) of two lasers with a slight frequency offset. We envisage that the interplay between photon-assisted tunneling and plasmon coupling within the MIM metamaterial/diode may substantially enhance the modulated terahertz photocurrent, and may therefore realize a practical high-power, room-temperature source in applications of terahertz electronics.
Imaging with terahertz radiation
NASA Astrophysics Data System (ADS)
Chan, Wai Lam; Deibel, Jason; Mittleman, Daniel M.
2007-08-01
Within the last several years, the field of terahertz science and technology has changed dramatically. Many new advances in the technology for generation, manipulation, and detection of terahertz radiation have revolutionized the field. Much of this interest has been inspired by the promise of valuable new applications for terahertz imaging and sensing. Among a long list of proposed uses, one finds compelling needs such as security screening and quality control, as well as whimsical notions such as counting the almonds in a bar of chocolate. This list has grown in parallel with the development of new technologies and new paradigms for imaging and sensing. Many of these proposed applications exploit the unique capabilities of terahertz radiation to penetrate common packaging materials and provide spectroscopic information about the materials within. Several of the techniques used for terahertz imaging have been borrowed from other, more well established fields such as x-ray computed tomography and synthetic aperture radar. Others have been developed exclusively for the terahertz field, and have no analogies in other portions of the spectrum. This review provides a comprehensive description of the various techniques which have been employed for terahertz image formation, as well as discussing numerous examples which illustrate the many exciting potential uses for these emerging technologies.
Terahertz plasmonic Bessel beamformer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monnai, Yasuaki; Shinoda, Hiroyuki; Jahn, David
We experimentally demonstrate terahertz Bessel beamforming based on the concept of plasmonics. The proposed planar structure is made of concentric metallic grooves with a subwavelength spacing that couple to a point source to create tightly confined surface waves or spoof surface plasmon polaritons. Concentric scatterers periodically incorporated at a wavelength scale allow for launching the surface waves into free space to define a Bessel beam. The Bessel beam defined at 0.29 THz has been characterized through terahertz time-domain spectroscopy. This approach is capable of generating Bessel beams with planar structures as opposed to bulky axicon lenses and can be readily integratedmore » with solid-state terahertz sources.« less
Wanke, Michael C [Albuquerque, NM; Allen, S James [Santa Barbara, CA; Lee, Mark [Albuquerque, NM
2008-05-20
A terahertz radiation mixer comprises a heterodyned field-effect transistor (FET) having a high electron mobility heterostructure that provides a gatable two-dimensional electron gas in the channel region of the FET. The mixer can operate in either a broadband pinch-off mode or a narrowband resonant plasmon mode by changing a grating gate bias of the FET. The mixer can beat an RF signal frequency against a local oscillator frequency to generate an intermediate frequency difference signal in the microwave region. The mixer can have a low local oscillator power requirement and a large intermediate frequency bandwidth. The terahertz radiation mixer is particularly useful for terahertz applications requiring high resolution.
Su, Hai-Xia; Zhang, Zhao-Hui; Zhao, Xiao-Yan; Li, Zhi; Yan, Fang; Zhang, Han
2013-12-01
The present paper discusses the Lambert-Beer' s law application in the terahertz spectrum, studies the single amino acid tablet sample (glutamine) and two kinds of amino acids mixture tablet (threonine and cystine) under the condition of different concentrations. Absorbance and absorption coefficient was analyzed in the description of the terahertz optical properties of matter. By comparing absorption coefficient and absorbance value of the single component in the vicinity of 1. 72 THz, we verified the material under two kinds of absorption characterization of quantity of THz wave absorption along with the change in the concentration. Using the index of goodness of fit R , it studied the stand or fall of linear relationship between the terahertz absorption quantity of material and concentration under two kinds of representation. This paper analyzes the two components mixture under two kinds of absorption characterization of quantity of terahertz absorption in 0. 3-2. 6 THz. Using the similarity co- efficient and the estimate concentration error as evaluation index, it has been clear that the absorbance of additivity instead of the absorption coefficient should be used during the terahertz spectrum quantitative test, and the Lambert-Beer's law application in the terahertz wave band was further clarified.
All-dielectric rod antenna array for terahertz communications
NASA Astrophysics Data System (ADS)
Withayachumnankul, Withawat; Yamada, Ryoumei; Fujita, Masayuki; Nagatsuma, Tadao
2018-05-01
The terahertz band holds a potential for point-to-point short-range wireless communications at sub-terabit speed. To realize this potential, supporting antennas must have a wide bandwidth to sustain high data rate and must have high gain and low dissipation to compensate for the free space path loss that scales quadratically with frequency. Here we propose an all-dielectric rod antenna array with high radiation efficiency, high gain, and wide bandwidth. The proposed array is integral to a low-loss photonic crystal waveguide platform, and intrinsic silicon is the only constituent material for both the antenna and the feed to maintain the simplicity, compactness, and efficiency. Effective medium theory plays a key role in the antenna performance and integrability. An experimental validation with continuous-wave terahertz electronic systems confirms the minimum gain of 20 dBi across 315-390 GHz. A demonstration shows that a pair of such identical rod array antennas can handle bit-error-free transmission at the speed up to 10 Gbit/s. Further development of this antenna will build critical components for future terahertz communication systems.
Graphene based terahertz phase modulators
NASA Astrophysics Data System (ADS)
Kakenov, N.; Ergoktas, M. S.; Balci, O.; Kocabas, C.
2018-07-01
Electrical control of amplitude and phase of terahertz radiation (THz) is the key technological challenge for high resolution and noninvasive THz imaging. The lack of active materials and devices hinders the realization of these imaging systems. Here, we demonstrate an efficient terahertz phase and amplitude modulation using electrically tunable graphene devices. Our device structure consists of electrolyte-gated graphene placed at quarter wavelength distance from a reflecting metallic surface. In this geometry, graphene operates as a tunable impedance surface which yields electrically controlled reflection phase. Terahertz time domain reflection spectroscopy reveals the voltage controlled phase modulation of π and the reflection modulation of 50 dB. To show the promises of our approach, we demonstrate a multipixel phase modulator array which operates as a gradient impedance surface.
Role of nonlinear refraction in the generation of terahertz field pulses by light fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zabolotskii, A. A., E-mail: zabolotskii@iae.nsk.su
2013-07-15
The generation of microwave (terahertz) pulses without any envelope in a four-level quasi-resonant medium is considered. Two intense quasi-monochromatic laser fields lead to a partial upper-level population. Microwave field pulses cause the transition between these levels. For appropriately chosen scales, the evolution of the fields is shown to be described by the pseudo-spin evolution equations in a microwave field with the inclusion of nonlinear refraction caused by an adiabatic upper-level population. The evolution of terahertz field pulses is described outside the scope of the slow-envelope approximation. When a number of standard approximations are taken into account, this system of equationsmore » is shown to be equivalent to an integrable version of the generalized reduced Maxwell-Bloch equations or to the generalized three-wave mixing equations. The soliton solution found by the inverse scattering transform method is used as an example to show that nonlinear refraction leads to a strong compression of the microwave (terahertz) field soliton.« less
Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers.
Consolino, L; Taschin, A; Bartolini, P; Bartalini, S; Cancio, P; Tredicucci, A; Beere, H E; Ritchie, D A; Torre, R; Vitiello, M S; De Natale, P
2012-01-01
Optical frequency comb synthesizers have represented a revolutionary approach to frequency metrology, providing a grid of frequency references for any laser emitting within their spectral coverage. Extending the metrological features of optical frequency comb synthesizers to the terahertz domain would be a major breakthrough, due to the widespread range of accessible strategic applications and the availability of stable, high-power and widely tunable sources such as quantum cascade lasers. Here we demonstrate phase-locking of a 2.5 THz quantum cascade laser to a free-space comb, generated in a LiNbO(3) waveguide and covering the 0.1-6 THz frequency range. We show that even a small fraction (<100 nW) of the radiation emitted from the quantum cascade laser is sufficient to generate a beat note suitable for phase-locking to the comb, paving the way to novel metrological-grade terahertz applications, including high-resolution spectroscopy, manipulation of cold molecules, astronomy and telecommunications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, A. A., E-mail: frolov@ihed.ras.ru
2016-12-15
A theory of generation of terahertz radiation under laser–cluster interaction, developed earlier for an overdense cluster plasma [A. A. Frolov, Plasma Phys. Rep. 42. 637 (2016)], is generalized for the case of arbitrary electron density. The spectral composition of radiation is shown to substantially depend on the density of free electrons in the cluster. For an underdense cluster plasma, there is a sharp peak in the terahertz spectrum at the frequency of the quadrupole mode of a plasma sphere. As the electron density increases to supercritical values, this spectral line vanishes and a broad maximum at the frequency comparable withmore » the reciprocal of the laser pulse duration appears in the spectrum. The dependence of the total energy of terahertz radiation on the density of free electrons is analyzed. The radiation yield is shown to increase significantly under resonance conditions, when the laser frequency is close to the eigenfrequency of the dipole or quadrupole mode of a plasma sphere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galiev, G. B., E-mail: galiev-galib@mail.ru; Grekhov, M. M.; Kitaeva, G. Kh.
2017-03-15
The spectrum and waveforms of broadband terahertz-radiation pulses generated by low-temperature In{sub 0.53}Ga{sub 0.47}As epitaxial films under femtosecond laser pumping are investigated by terahertz time-resolved spectroscopy. The In{sub 0.53}Ga{sub 0.47}As films are fabricated by molecular-beam epitaxy at a temperature of 200°C under different arsenic pressures on (100)-oriented InP substrates and, for the first time, on (411)A InP substrates. The surface morphology of the samples is studied by atomic-force microscopy and the structural quality is established by high-resolution X-ray diffraction analysis. It is found that the amplitude of terahertz radiation from the LT-InGaAs layers on the (411)A InP substrates exceeds thatmore » from similar layers formed on the (100) InP substrates by a factor of 3–5.« less
[A Terahertz Spectral Database Based on Browser/Server Technique].
Zhang, Zhuo-yong; Song, Yue
2015-09-01
With the solution of key scientific and technical problems and development of instrumentation, the application of terahertz technology in various fields has been paid more and more attention. Owing to the unique characteristic advantages, terahertz technology has been showing a broad future in the fields of fast, non-damaging detections, as well as many other fields. Terahertz technology combined with other complementary methods can be used to cope with many difficult practical problems which could not be solved before. One of the critical points for further development of practical terahertz detection methods depends on a good and reliable terahertz spectral database. We developed a BS (browser/server) -based terahertz spectral database recently. We designed the main structure and main functions to fulfill practical requirements. The terahertz spectral database now includes more than 240 items, and the spectral information was collected based on three sources: (1) collection and citation from some other abroad terahertz spectral databases; (2) collected from published literatures; and (3) spectral data measured in our laboratory. The present paper introduced the basic structure and fundament functions of the terahertz spectral database developed in our laboratory. One of the key functions of this THz database is calculation of optical parameters. Some optical parameters including absorption coefficient, refractive index, etc. can be calculated based on the input THz time domain spectra. The other main functions and searching methods of the browser/server-based terahertz spectral database have been discussed. The database search system can provide users convenient functions including user registration, inquiry, displaying spectral figures and molecular structures, spectral matching, etc. The THz database system provides an on-line searching function for registered users. Registered users can compare the input THz spectrum with the spectra of database, according to the obtained correlation coefficient one can perform the searching task very fast and conveniently. Our terahertz spectral database can be accessed at http://www.teralibrary.com. The proposed terahertz spectral database is based on spectral information so far, and will be improved in the future. We hope this terahertz spectral database can provide users powerful, convenient, and high efficient functions, and could promote the broader applications of terahertz technology.
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2005-01-01
Terahertz NDE is being examined as a method to inspect the adhesive bond-line of Space Shuttle tiles for defects. Terahertz signals are generated and detected, using optical excitation of biased semiconductors with femtosecond laser pulses. Shuttle tile samples were manufactured with defects that included repair regions unbond regions, and other conditions that occur in Shuttle structures. These samples were inspected with a commercial terahertz NDE system that scanned a tile and generated a data set of RF signals. The signals were post processed to generate C-scan type images that are typically seen in ultrasonic NDE. To improve defect visualization the Hilbert-Huang Transform, a transform that decomposes a signal into oscillating components called intrinsic mode functions, was applied to test signals identified as being in and out of the defect regions and then on a complete data set. As expected with this transform, the results showed that the decomposed low-order modes correspond to signal noise while the high-order modes correspond to low frequency oscillations in the signal and mid-order modes correspond to local signal oscillations. The local oscillations compare well with various reflection interfaces and the defect locations in the original signal.
Chudow, Joel D; Santavicca, Daniel F; Prober, Daniel E
2016-08-10
Luttinger liquid theory predicts that collective electron excitations due to strong electron-electron interactions in a one-dimensional (1D) system will result in a modification of the collective charge-propagation velocity. By utilizing a circuit model for an individual metallic single-walled carbon nanotube as a nanotransmission line, it has been shown that the frequency-dependent terahertz impedance of a carbon nanotube can probe this expected 1D Luttinger liquid behavior. We excite terahertz standing-wave resonances on individual antenna-coupled metallic single-walled carbon nanotubes. The terahertz signal is rectified using the nanotube contact nonlinearity, allowing for a low-frequency readout of the coupled terahertz current. The charge velocity on the nanotube is determined from the terahertz spectral response. Our measurements show that a carbon nanotube can behave as a Luttinger liquid system with charge-propagation velocities that are faster than the Fermi velocity. Understanding what determines the charge velocity in low-dimensional conductors is important for the development of next generation nanodevices.
Contrast improvement of terahertz images of thin histopathologic sections
Formanek, Florian; Brun, Marc-Aurèle; Yasuda, Akio
2011-01-01
We present terahertz images of 10 μm thick histopathologic sections obtained in reflection geometry with a time-domain spectrometer, and demonstrate improved contrast for sections measured in paraffin with water. Automated segmentation is applied to the complex refractive index data to generate clustered terahertz images distinguishing cancer from healthy tissues. The degree of classification of pixels is then evaluated using registered visible microscope images. Principal component analysis and propagation simulations are employed to investigate the origin and the gain of image contrast. PMID:21326635
Contrast improvement of terahertz images of thin histopathologic sections.
Formanek, Florian; Brun, Marc-Aurèle; Yasuda, Akio
2010-12-03
We present terahertz images of 10 μm thick histopathologic sections obtained in reflection geometry with a time-domain spectrometer, and demonstrate improved contrast for sections measured in paraffin with water. Automated segmentation is applied to the complex refractive index data to generate clustered terahertz images distinguishing cancer from healthy tissues. The degree of classification of pixels is then evaluated using registered visible microscope images. Principal component analysis and propagation simulations are employed to investigate the origin and the gain of image contrast.
Carpintero, Guillermo; Hisatake, Shintaro; de Felipe, David; Guzman, Robinson; Nagatsuma, Tadao; Keil, Norbert
2018-02-14
We report for the first time the successful wavelength stabilization of two hybrid integrated InP/Polymer DBR lasers through optical injection. The two InP/Polymer DBR lasers are integrated into a photonic integrated circuit, providing an ideal source for millimeter and Terahertz wave generation by optical heterodyne technique. These lasers offer the widest tuning range of the carrier wave demonstrated to date up into the Terahertz range, about 20 nm (2.5 THz) on a single photonic integrated circuit. We demonstrate the application of this source to generate a carrier wave at 330 GHz to establish a wireless data transmission link at a data rate up to 18 Gbit/s. Using a coherent detection scheme we increase the sensitivity by more than 10 dB over direct detection.
Terahertz Spectroscopy for Chemical Detection and Burn Characterization
NASA Astrophysics Data System (ADS)
Arbab, Mohammad Hassan
Terahertz (THz) frequencies represent the last frontier of the electromagnetic spectrum to be investigated by scientists. One of the main attractions of investigating this frequency range is the richness of the spectral information that can be obtained using a Terahertz Time-Domain Spectroscopy (THz-TDS) setup. Many large molecule chemicals and polymers have vibrational and rotational modes in the THz frequencies. Study of these resonance modes has revealed a wealth of new information about the intermolecular structure, and its transformation during crystallization or polymerization process. This information helps researchers develop new materials to address problems such as efficient energy conversion in polymer solar cells. Moreover, similar signature-like terahertz modes can be used for stand-off identification of substances or for nondestructive evaluation of defects in industrial applications. Finally, terahertz spectroscopy has the potential to provide a safe and non-ionizing imaging modality to study cellular and molecular events in biological and biomedical applications. The high sensitivity of terahertz waves to attenuation by both bound and free water molecules can also provides a source of signal contrast for many future biomedical imaging and diagnostic applications. In this dissertation, we aim to study and develop three such applications of terahertz spectroscopy, which form the three axes of our work: rough-surface scattering mediated stand-off detection of chemicals, characterization of burn injuries using terahertz radiation, and a new electrically tunable bandpass filter device incorporating nano-material transparent electrodes that can enable fast terahertz spectroscopy in the frequency domain.
Terahertz Investigations of Extraordinarily Efficient Conduction in a Redox Active Ionic Liquid.
NASA Astrophysics Data System (ADS)
Thorsmolle, Verner; Brauer, Jan; Rothenberger, Guido; Kuang, Daibin; Zakeeruddin, Shaik; Grätzel, Michael; Moser, Jacques
2009-03-01
Iodine added to iodide-based ionic liquids leads to extraordinarily efficient charge transport, vastly exceeding expectancy for such viscous systems. Using terahertz time-domain spectroscopy, in conjunction with dc conductivity and viscosity measurements we unravel the conductivity pathways in 1-methyl-3-propylimidazolium iodide melts. Applying low temperatures, we demonstrate for the first time conduction entirely due to a Grotthus bond-exchange mechanism at iodine concentrations higher than 3.9 M. The terahertz and transport results are reconciled in a model providing a quantitative description of the conduction by physical diffusion and the Grotthus bond-exchange process. These novel results are of great importance for the fundamental understanding of conduction in molten salts and for applications where ionic liquids are used as charge-transporting media such as in batteries and dye-sensitized solar cells.
Oh, Kyoung-Hwan; Shimizu, Naofumi; Kohjiro, Satoshi; Kikuchi, Ken'ichi; Wakatsuki, Atsushi; Kukutsu, Naoya; Kado, Yuichi
2009-10-12
We propose a high-sweeping-speed optically synchronized dual-channel terahertz (THz) signal generator for an active gas-sensing system with a superconductor-insulator-superconductor (SIS) mixer. The generator can sweep a frequency range from 200 to 500 GHz at a speed of 375 GHz/s and a frequency resolution of 500 MHz. With the developed gas-sensing system, a gas-absorption-line measurement was successfully carried out with N(2)O gas in that frequency range.
Monolithic Superconducting Emitter of Tunable Circularly Polarized Terahertz Radiation
NASA Astrophysics Data System (ADS)
Elarabi, A.; Yoshioka, Y.; Tsujimoto, M.; Kakeya, I.
2017-12-01
We propose an approach to controlling the polarization of terahertz (THz) radiation from intrinsic Josephson-junction stacks in a single crystalline high-temperature superconductor Bi2Sr2CaCu2O8 . Monolithic control of the surface high-frequency current distributions in the truncated square mesa structure allows us to modulate the polarization of the emitted terahertz wave as a result of two orthogonal fundamental modes excited inside the mesa. Highly polarized circular terahertz waves with a degree of circular polarization of more than 99% can be generated using an electrically controlled method. The intuitive results obtained from the numerical simulation based on the conventional antenna theory are consistent with the observed emission characteristics.
Efficiency of broadband terahertz rectennas based on self-switching nanodiodes
NASA Astrophysics Data System (ADS)
Briones, Edgar; Cortes-Mestizo, Irving E.; Briones, Joel; Droopad, Ravindranath; Espinosa-Vega, Leticia I.; Vilchis, Heber; Mendez-Garcia, Victor H.
2017-04-01
The authors investigate the efficiency of a series of broadband rectennas designed to harvest the free-propagating electromagnetic energy at terahertz frequencies. We analyze by simulations the case of self-complementary square- and Archimedean-spiral antennas coupled to L-shaped self-switching diodes (L-SSDs). First, the geometry (i.e., the width and length of the channel) of the L-SSD was optimized to obtain a remarkable diode-like I-V response. Subsequently, the optimized L-SSD geometry was coupled to both types of spiral antennas and their characteristic impedance was studied. Finally, the energy conversion efficiency was evaluated for both rectenna architectures.
Terahertz wave polarization beam splitter using a cascaded multimode interference structure.
Li, Jiu-sheng; Liu, Han; Zhang, Le
2014-08-01
A terahertz wave polarization beam splitter, based on two cascaded multimode interference structures with different widths, is designed and numerically demonstrated. The numerical calculation results show that the designed polarization beam splitter can split transverse-electric (TE) and transverse-magnetic (TM)-polarized terahertz waves into different propagation directions with high efficiency over a frequency range from 6.40 to 6.50 THz. This polarization beam splitter shows more than a 22.06 dB extinction ratio for TE-polarization and a 31.65 dB extinction ratio for TM-polarization. Using such a polarization beam splitter, the whole length of the polarization beam splitter is reduced to about 1/12 that of a conventional design. This enables the polarization beam splitter to be used in terahertz wave integrated circuit fields.
NASA Astrophysics Data System (ADS)
Kinoshita, Yuto; Kida, Noriaki; Miyamoto, Tatsuya; Kanou, Manabu; Sasagawa, Takao; Okamoto, Hiroshi
2018-04-01
The spin-splitting energy bands induced by the relativistic spin-orbit interaction in solids provide a new opportunity to manipulate the spin-polarized electrons on the subpicosecond timescale. Here, we report one such example in a bulk Rashba-type polar semiconductor BiTeBr. Strong terahertz electromagnetic waves are emitted after the resonant excitation of the interband transition between the Rashba-type spin-splitting energy bands with a femtosecond laser pulse circularly polarized. The phase of the emitted terahertz waves is reversed by switching the circular polarization. This suggests that the observed terahertz radiation originates from the subpicosecond spin-polarized photocurrents, which are generated by the asymmetric depopulation of the Dirac state. Our result provides a way for the current-induced terahertz radiation and its phase control by the circular polarization of incident light without external electric fields.
Frequency Up-Conversion Photon-Type Terahertz Imager.
Fu, Z L; Gu, L L; Guo, X G; Tan, Z Y; Wan, W J; Zhou, T; Shao, D X; Zhang, R; Cao, J C
2016-05-05
Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices.
Frequency Up-Conversion Photon-Type Terahertz Imager
Fu, Z. L.; Gu, L. L.; Guo, X. G.; Tan, Z. Y.; Wan, W. J.; Zhou, T.; Shao, D. X.; Zhang, R.; Cao, J. C.
2016-01-01
Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices. PMID:27147281
Terahertz reflection interferometry for automobile paint layer thickness measurement
NASA Astrophysics Data System (ADS)
Rahman, Aunik; Tator, Kenneth; Rahman, Anis
2015-05-01
Non-destructive terahertz reflection interferometry offers many advantages for sub-surface inspection such as interrogation of hidden defects and measurement of layers' thicknesses. Here, we describe a terahertz reflection interferometry (TRI) technique for non-contact measurement of paint panels where the paint is comprised of different layers of primer, basecoat, topcoat and clearcoat. Terahertz interferograms were generated by reflection from different layers of paints on a metallic substrate. These interferograms' peak spacing arising from the delay-time response of respective layers, allow one to model the thicknesses of the constituent layers. Interferograms generated at different incident angles show that the interferograms are more pronounced at certain angles than others. This "optimum" angle is also a function of different paint and substrate combinations. An automated angular scanning algorithm helps visualizing the evolution of the interferograms as a function of incident angle and also enables the identification of optimum reflection angle for a given paint-substrate combination. Additionally, scanning at different points on a substrate reveals that there are observable variations from one point to another of the same sample over its entire surface area. This ability may be used as a quality control tool for in-situ inspection in a production line. Keywords: Terahertz reflective interferometry, Paint and coating layers, Non-destructive
Theory of terahertz emission from femtosecond-laser-induced microplasmas
NASA Astrophysics Data System (ADS)
Thiele, I.; Nuter, R.; Bousquet, B.; Tikhonchuk, V.; Skupin, S.; Davoine, X.; Gremillet, L.; Bergé, L.
2016-12-01
We present a theoretical investigation of terahertz (THz) generation in laser-induced gas plasmas. The work is strongly motivated by recent experimental results on microplasmas, but our general findings are not limited to such a configuration. The electrons and ions are created by tunnel ionization of neutral atoms, and the resulting plasma is heated by collisions. Electrons are driven by electromagnetic, convective, and diffusive sources and produce a macroscopic current which is responsible for THz emission. The model naturally includes both ionization current and transition-Cherenkov mechanisms for THz emission, which are usually investigated separately in the literature. The latter mechanism is shown to dominate for single-color multicycle laser pulses, where the observed THz radiation originates from longitudinal electron currents. However, we find that the often discussed oscillations at the plasma frequency do not contribute to the THz emission spectrum. In order to predict the scaling of the conversion efficiency with pulse energy and focusing conditions, we propose a simplified description that is in excellent agreement with rigorous particle-in-cell simulations.
Optical-fiber-connected 300-GHz FM-CW radar system
NASA Astrophysics Data System (ADS)
Kanno, Atsushi; Sekine, Norihiko; Kasamatsu, Akifumi; Yamamoto, Naokatsu; Kawanishi, Tetsuya
2017-05-01
300-GHz frequency-modulated continuous-wave (FM-CW) radar system operated by radio over fiber technologies is configured and demonstrated. Centralized signal generator, which is based on an optical frequency comb generation, provides high-precise FM-CW radar signal. The optical signal is easy to be transported to radar heads through an optical fiber network. Optical-modulator-based optical frequency comb generator is utilized as an optical frequency multiplier from a microwave signal to a 300-GHz terahertz signal by an optical modulation technique. In the study, we discuss the configuration of the network, signal generator and remote radar head for terahertz-wave multi-static radar system.
Distributed gain in plasmonic reflectors and its use for terahertz generation.
Sydoruk, O; Syms, R R A; Solymar, L
2012-08-27
Semiconductor plasmons have potential for terahertz generation. Because practical device formats may be quasi-optical, we studied theoretically distributed plasmonic reflectors that comprise multiple interfaces between cascaded two-dimensional electron channels. Employing a mode-matching technique, we show that transmission through and reflection from a single interface depend on the magnitude and direction of a dc current flowing in the channels. As a result, plasmons can be amplified at an interface, and the cumulative effect of multiple interfaces increases the total gain, leading to plasmonic reflection coefficients exceeding unity. Reversing the current direction in a distributed reflector, however, has the opposite effect of plasmonic deamplification. Consequently, we propose structurally asymmetric resonators comprising two different distributed reflectors and predict that they are capable of terahertz oscillations at low threshold currents.
Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching
NASA Astrophysics Data System (ADS)
Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei
2018-06-01
OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.
Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching
NASA Astrophysics Data System (ADS)
Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei
2018-03-01
OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.
Terahertz generation by beating two Langmuir waves in a warm and collisional plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao-Bo; Qiao, Xin; Cheng, Li-Hong
2015-09-15
Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasmamore » temperature and the Langmuir wave-length.« less
Design of a terahertz parametric oscillator based on a resonant cavity in a terahertz waveguide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, K., E-mail: k-saito@material.tohoku.ac.jp; Oyama, Y.; Tanabe, T.
We demonstrate ns-pulsed pumping of terahertz (THz) parametric oscillations in a quasi-triply resonant cavity in a THz waveguide. The THz waves, down converted through parametric interactions between the pump and signal waves at telecom frequencies, are confined to a GaP single mode ridge waveguide. By combining the THz waveguide with a quasi-triply resonant cavity, the nonlinear interactions can be enhanced. A low threshold pump intensity for parametric oscillations can be achieved in the cavity waveguide. The THz output power can be maximized by optimizing the quality factors of the cavity so that an optical to THz photon conversion efficiency, η{submore » p}, of 0.35, which is near the quantum-limit level, can be attained. The proposed THz optical parametric oscillator can be utilized as an efficient and monochromatic THz source.« less
Highly efficient quantum dot-based photoconductive THz materials and devices
NASA Astrophysics Data System (ADS)
Rafailov, E. U.; Leyman, R.; Carnegie, D.; Bazieva, N.
2013-09-01
We demonstrate Terahertz (THz) signal sources based on photoconductive (PC) antenna devices comprising active layers of InAs semiconductor quantum dots (QDs) on GaAs. Antenna structures comprised of multiple active layers of InAs:GaAs PC materials are optically pumped using ultrashort pulses generated by a Ti:Sapphire laser and CW dualwavelength laser diodes. We also characterised THz output signals using a two-antenna coherent detection system. We discuss preliminary performance data from such InAs:GaAs THz devices which exhibit efficient emission of both pulsed and continuous wave (CW) THz signals and significant optical-to-THz conversion at both absorption wavelength ranges, <=850 nm and <=1300 nm.
Gain and losses in THz quantum cascade laser with metal-metal waveguide.
Martl, Michael; Darmo, Juraj; Deutsch, Christoph; Brandstetter, Martin; Andrews, Aaron Maxwell; Klang, Pavel; Strasser, Gottfried; Unterrainer, Karl
2011-01-17
Coupling of broadband terahertz pulses into metal-metal terahertz quantum cascade lasers is presented. Mode matched terahertz transients are generated on the quantum cascade laser facet of subwavelength dimension. This method provides a full overlap of optical mode and active laser medium. A longitudinal optical-phonon depletion based active region design is investigated in a coupled cavity configuration. Modulation experiments reveal spectral gain and (broadband) losses. The observed gain shows high dynamic behavior when switching from loss to gain around threshold and is clamped at total laser losses.
Terahertz radar cross section measurements.
Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd
2010-12-06
We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.
Scanning Terahertz Heterodyne Imaging Systems
NASA Technical Reports Server (NTRS)
Siegel, Peter; Dengler, Robert
2007-01-01
Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.
NASA Technical Reports Server (NTRS)
Hu, Qing (Inventor); Williams, Benjamin S. (Inventor)
2007-01-01
The present invention provides quantum cascade lasers and amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum cascade laser of the invention includes a semiconductor heterostructure that provides a plurality of lasing modules connected in series. Each lasing module includes a plurality of quantum well structure that collectively generate at least an upper lasing state, a lower lasing state, and a relaxation state such that the upper and the lower lasing states are separated by an energy corresponding to an optical frequency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant LO-phonon scattering of electrons into the relaxation state.
NASA Technical Reports Server (NTRS)
Williams, Benjamin S. (Inventor); Hu, Qing (Inventor)
2009-01-01
The present invention provides quantum cascade lasers and amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum cascade laser of the invention includes a semiconductor heterostructure that provides a plurality of lasing modules connected in series. Each lasing module includes a plurality of quantum well structure that collectively generate at least an upper lasing state, a lower lasing state, and a relaxation state such that the upper and the lower lasing states are separated by an energy corresponding to an optical frequency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant LO-phonon scattering of electrons into the relaxation state.
Polarization control of terahertz waves generated by circularly polarized few-cycle laser pulses
NASA Astrophysics Data System (ADS)
Song, Liwei; Bai, Ya; Xu, Rongjie; Li, Chuang; Liu, Peng; Li, Ruxin; Xu, Zhizhan
2013-12-01
We demonstrate the generation and control of elliptically polarized terahertz (THz) waves from air plasma produced by circularly polarized few-cycle laser pulses. Experimental and calculated results reveal that electric field asymmetry in rotating directions of the circularly polarized few-cycle laser pulses produces the enhanced broadband transient currents, and the phase difference of perpendicular laser field components is partially inherited in the generation process of THz emission. The ellipticity of the THz emission and its major axis direction are all-optically controlled by the duration and carrier-envelope phase of the laser pulses.
Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide.
You, Borwen; Lu, Ja-Yu
2016-08-08
The feasibility of remote chemical detection is experimentally demonstrated by using a Teflon pipe as a scanning arm in a continuous-terahertz wave sensing and imaging system. Different tablets with distinct mixed ratios of aluminum and polyethylene powders are well distinguished by measuring the power reflectivities of 0.4 THz wave associated with their distinct terahertz refractive indices. Given its refractive index sensitivity and fast response, the reflective terahertz sensing system can be used to real-time trace and quantitatively analyze the ammonium-chloride aerosols produced by the chemical reaction between hydrochloric acid and ammonia vapors. With a tightly focusing terahertz beam spot, the spatial and concentration distributions of the generated chemical product are successfully mapped out by the 1D scan of the flexible pipe probe. In consideration of the responsitivity, power stability, and focused spot size of the system, its detection limit for the ammonium-chloride aerosol is estimated to be approximately 165 nmol/mm2. The reliable and compact terahertz pipe scan system is potentially suitable for practical applications, such as biomedical or industrial fiber endoscopy.
Moldosanov, Kamil; Postnikov, Andrei
2016-01-01
The need for practical and adaptable terahertz sources is apparent in the areas of application such as early cancer diagnostics, nondestructive inspection of pharmaceutical tablets, visualization of concealed objects. We outline the operation principle and suggest the design of a simple appliance for generating terahertz radiation by a system of nanoobjects - gold nanobars (GNBs) or nanorings (GNRs) - irradiated by microwaves. Our estimations confirm a feasibility of the idea that GNBs and GNRs irradiated by microwaves could become terahertz emitters with photon energies within the full width at half maximum of the longitudinal acoustic phononic DOS of gold (ca. 16-19 meV, i.e., 3.9-4.6 THz). A scheme of the terahertz radiation source is suggested based on the domestic microwave oven irradiating a substrate with multiple deposited GNBs or GNRs. The size of a nanoobject for optimal conversion is estimated to be approx. 3 nm (thickness) by approx. 100 nm (length of GNB, or along the GNR). This detailed prediction is open to experimental verification. An impact is expected onto further studies of interplay between atomic vibrations and electromagnetic waves in nanoobjects.
Wu, J. B.; Zhang, X.; Jin, B. B.; Liu, H. T.; Chen, Y. H.; Li, Z. Y.; Zhang, C. H.; Kang, L.; Xu, W. W.; Chen, J.; Wang, H. B.; Tonouchi, M.; Wu, P. H.
2015-01-01
Superconductor is a compelling plasmonic medium at terahertz frequencies owing to its intrinsic low Ohmic loss and good tuning property. However, the microscopic physics of the interaction between terahertz wave and superconducting plasmonic structures is still unknown. In this paper, we conducted experiments of the enhanced terahertz transmission through a series of superconducting NbN subwavelength hole arrays, and employed microscopic hybrid wave model in theoretical analysis of the role of hybrid waves in the enhanced transmission. The theoretical calculation provided a good match of experimental data. In particular, we obtained the following results. When the width of the holes is far below wavelength, the enhanced transmission is mainly caused by localized resonance around individual holes. On the contrary, when the holes are large, hybrid waves scattered by the array of holes dominate the extraordinary transmission. The surface plasmon polaritions are proved to be launched on the surface of superconducting film and the excitation efficiency increases when the temperature approaches critical temperature and the working frequency goes near energy gap frequency. This work will enrich our knowledge on the microscopic physics of extraordinary optical transmission at terahertz frequencies and contribute to developing terahertz plasmonic devices. PMID:26498994
Broadband non-polarizing terahertz beam splitters with variable split ratio
NASA Astrophysics Data System (ADS)
Wei, Minggui; Xu, Quan; Wang, Qiu; Zhang, Xueqian; Li, Yanfeng; Gu, Jianqiang; Tian, Zhen; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili
2017-08-01
Seeking effective terahertz functional devices has always aroused extensive attention. Of particular interest is the terahertz beam splitter. Here, we have proposed, designed, manufactured, and tested a broadband non-polarizing terahertz beam splitter with a variable split ratio based on an all-dielectric metasurface. The metasurface was created by patterning a dielectric surface of the N-step phase gradient and etching to a few hundred micrometers. The conversion efficiency as high as 81% under the normal incidence at 0.7 THz was achieved. Meanwhile, such a splitter works well over a broad frequency range. The split ratio of the proposed design can be continuously tuned by simply shifting the metasurface, and the angle of emergences can also be easily adjusted by choosing the step of phase gradients. The proposed design is non-polarizing, and its performance is kept under different polarizations.
Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics
Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal
2016-01-01
The ability to generate efficient giga–terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics. PMID:27492493
Woo, Jeong Min; Hussain, Sajid; Jang, Jae-Hyung
2017-01-01
A terahertz (THz) in-line polarization converter that yields a polarization conversion ratio as high as 99.9% is demonstrated at 1 THz. It has double-layer slot structures oriented in orthogonal directions that are electrically connected by 1/8-wavelngth-long through-via holes beside the slot structures. The slots on the front metal-plane respond to the incident THz wave with polarization orthogonal to the slots and generates a circulating surface current around the slots. The surface current propagates along a pair of through-via holes that function as a two-wire transmission line. The propagating current generates a surface current around the backside slot structures oriented orthogonal to the slot structures on the front metal layer. The circulating current generates a terahertz wave polarized orthogonal to the backside slot structures and the 90° polarization conversion is completed. The re-radiating THz wave with 90° converted polarization propagates in the same direction as the incident THz wave. PMID:28211498
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Suresh C.; Malik, Pratibha
2015-04-15
The excitation of terahertz (THz) plasmons by a pre-bunched relativistic electron beam propagating in a parallel plane semiconducting guiding system is studied. It is found that the n-InSb semiconductor strongly supports the confined surface plasmons in the terahertz frequency range. The growth rate and efficiency of the THz surface plasmons increase linearly with modulation index and show the largest value as modulation index approaches unity. Moreover, the growth rate of the instability scales as one-third power of the beam density and inverse one-third power of the THz radiation frequency.
Mode-locked thin-disk lasers and their potential application for high-power terahertz generation
NASA Astrophysics Data System (ADS)
Saraceno, Clara J.
2018-04-01
The progress achieved in the last few decades in the performance of ultrafast laser systems with high average power has been tremendous, and continues to provide momentum to new exciting applications, both in scientific research and technology. Among the various technological advances that have shaped this progress, mode-locked thin-disk oscillators have attracted significant attention as a unique technology capable of providing ultrashort pulses with high energy (tens to hundreds of microjoules) and at very high repetition rates (in the megahertz regime) from a single table-top oscillator. This technology opens the door to compact high repetition rate ultrafast sources spanning the entire electromagnetic spectrum from the XUV to the terahertz regime, opening various new application fields. In this article, we focus on their unexplored potential as compact driving sources for high average power terahertz generation.
Yasumatsu, Naoya; Watanabe, Shinichi
2012-02-01
We propose and develop a method to quickly and precisely determine the polarization direction of coherent terahertz electromagnetic waves generated by femtosecond laser pulses. The measurement system consists of a conventional terahertz time-domain spectroscopy system with the electro-optic (EO) sampling method, but we add a new functionality in the EO crystal which is continuously rotating with the angular frequency ω. We find a simple yet useful formulation of the EO signal as a function of the crystal orientation, which enables a lock-in-like detection of both the electric-field amplitude and the absolute polarization direction of the terahertz waves with respect to the probe laser pulse polarization direction at the same time. The single measurement finishes around two periods of the crystal rotations (∼21 ms), and we experimentally prove that the accuracy of the polarization measurement does not suffer from the long-term amplitude fluctuation of the terahertz pulses. Distribution of the measured polarization directions by repeating the measurements is excellently fitted by a gaussian distribution function with a standard deviation of σ = 0.56°. The developed technique is useful for the fast direct determination of the polarization state of the terahertz electromagnetic waves for polarization imaging applications as well as the precise terahertz Faraday or Kerr rotation spectroscopy.
Two color laser driven THz generation in clustered plasma
NASA Astrophysics Data System (ADS)
Malik, Rakhee; Uma, R.; Kumar, Pawan
2017-07-01
A scheme of terahertz (THz) generation, using nonlinear mixing of two color laser (fundamental ω1 and slightly frequency shifted second harmonic ω2 ) in clustered plasma, is investigated. The lasers exert ponderomotive force on cluster electrons and drive density perturbations at 2 ω1 and ω2-ω1 . The density perturbations beat with the oscillatory velocities to produce nonlinear current at ω2-2 ω1 , generating THz radiation. The radiation is enhanced due to cluster plasmon resonance and by phase matching introduced through a density ripple. The generation involves third order nonlinearity and does not require a magnetic field or inhomogeneity to sustain it. We report THz power conversion efficiency ˜ 10-4 at 1 μm and 0.5 μm wavelengths with intensity ˜ 3 ×1014W/cm 2 .
Zhang, Liang-liang; Zhang, Rui; Xu, Xiao-yan; Zhang, Cun-lin
2016-02-01
Indium Phosphide (InP) has attracted great physical interest because of its unique characteristics and is indispensable to both optical and electronic devices. However, the optical property of InP in the terahertz range (0. 110 THz) has not yet been fully characterized and systematically studied. The former researches about the properties of InP concentrated on the terahertz frequency between 0.1 and 4 THz. The terahertz optical properties of the InP in the range of 4-10 THz are still missing. It is fairly necessary to fully understand its properties in the entire terahertz range, which results in a better utilization as efficient terahertz devices. In this paper, we study the optical properties of undoped (100) InP wafer in the ultra-broad terahertz frequency range (0.5-18 THz) by using air-biased-coherent-detection (ABCD) system, enabling the coherent detection of terahertz wave in gases, which leads to a significant improvement on the dynamic range and sensitivity of the system. The advantage of this method is broad frequency bandwidth from 0.2 up to 18 THz which is only mainly limited by laser pulse duration since it uses ionized air as terahertz emitter and detector instead of using an electric optical crystal or photoconductive antenna. The terahertz pulse passing through the InP wafer is delayed regarding to the reference pulse and has much lower amplitude. In addition, the frequency spectrum amplitude of the terahertz sample signal drops to the noise floor level from 6.7 to 12.1 THz. At the same time InP wafer is opaque at the frequencies spanning from 6.7 to 12.1 THz. In the frequency regions of 0.8-6.7 and 12.1-18 THz it has relativemy low absorption coefficient. Meanwhile, the refractive index increases monotonously in the 0.8-6.7 THz region and 12.1-18 THz region. These findings will contribute to the design of InP based on nonlinear terahertz devices.
Terahertz pulse generation by the tilted pulse front technique using an M-shaped optical system
NASA Astrophysics Data System (ADS)
Morita, Ken; Shiozawa, Kento; Suizu, Koji; Ishitani, Yoshihiro
2018-05-01
To achieve the phase matching condition in terahertz (THz) pulse generation by the tilted pulse front technique, it is necessary to rebuild the entire optical setup if the optical conditions, such as excitation wavelength, temperature of nonlinear crystal, and output THz frequency, are changed. We propose THz pulse generation by the tilted pulse front technique using an M-shaped configuration. This system allows us to change the optical conditions only by tuning a few optics and without rebuilding the entire setup. We change the excitation wavelength at a fixed radiation frequency and assess the performance of the proposed system.
Longitudinal terahertz wave generation from an air plasma filament induced by a femtosecond laser
NASA Astrophysics Data System (ADS)
Minami, Yasuo; Kurihara, Takayuki; Yamaguchi, Keita; Nakajima, Makoto; Suemoto, Tohru
2013-04-01
We have generated and detected a longitudinally polarized (Z-polarized) terahertz (THz) wave by focusing a conically propagating THz beam generated from a plasma filament induced by a femtosecond laser pulse. In the experiment, we observed a radially polarized field in a collimated region and Z-polarized field at focus in the time domain. The maximum value of the Z-polarized THz electric field reached 1.0 kV/cm. It was also quantitatively discussed about the Z-polarized field and the radial field at the focal point. We expect this technique to find application in THz time domain spectroscopy.
Frequency-tunable continuous-wave terahertz sources based on GaAs plasmonic photomixers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shang-Hua; Jarrahi, Mona; Electrical Engineering Department, University of California Los Angeles, Los Angeles, California 90095
2015-09-28
We present frequency-tunable, continuous-wave terahertz sources based on GaAs plasmonic photomixers, which offer high terahertz radiation power levels at 50% radiation duty cycle. The use of plasmonic contact electrodes enhances photomixer quantum efficiency while maintaining its ultrafast operation by concentrating a large number of photocarriers in close proximity to the device contact electrodes. Additionally, the relatively high thermal conductivity and high resistivity of GaAs allow operation under high optical pump power levels and long duty cycles without reaching the thermal breakdown limit of the photomixer. We experimentally demonstrate continuous-wave terahertz radiation with a radiation frequency tuning range of more thanmore » 2 THz and a record-high radiation power of 17 μW at 1 THz through plasmonic photomixers fabricated on a low temperature grown GaAs substrate at 50% radiation duty cycle.« less
Vitale, W. A.; Tamagnone, M.; Émond, N.; Le Drogoff, B.; Capdevila, S.; Skrivervik, A.; Chaker, M.; Mosig, J. R.; Ionescu, A. M.
2017-01-01
The modulated scattering technique is based on the use of reconfigurable electromagnetic scatterers, structures able to scatter and modulate an impinging electromagnetic field in function of a control signal. The modulated scattering technique is used in a wide range of frequencies up to millimeter waves for various applications, such as field mapping of circuits or antennas, radio-frequency identification devices and imaging applications. However, its implementation in the terahertz domain remains challenging. Here, we describe the design and experimental demonstration of the modulated scattering technique at terahertz frequencies. We characterize a modulated scatterer consisting in a bowtie antenna loaded with a vanadium dioxide switch, actuated using a continuous current. The modulated scatterer behavior is demonstrated using a time domain terahertz spectroscopy setup and shows significant signal strength well above 0.5 THz, which makes this device a promising candidate for the development of fast and energy-efficient THz communication devices and imaging systems. Moreover, our experiments allowed us to verify the operation of a single micro-meter sized VO2 switch at terahertz frequencies, thanks to the coupling provided by the antenna. PMID:28145523
Efficient laser-diode end-pumped Nd:GGG lasers at 1054 and 1067 nm.
Xu, Bin; Xu, Huiying; Cai, Zhiping; Camy, P; Doualan, J L; Moncorgé, R
2014-10-10
Efficient and compact laser-diode end-pumped Nd:GGG simultaneous multiwavelength continuous-wave lasers at ∼1059, ∼1060 and ∼1062 nm were first demonstrated in a free-running 30 mm plano-concave laser cavity. The maximum output power was up to 3.92 W with a slope efficiency of about 53.6% with respect to the absorbed pump power. By inserting a 0.1 mm optical glass plate acting as a Fabry-Pérot etalon, a single-wavelength laser at ∼1067 nm with a maximum output power of 1.95 W and a slope efficiency of 28.5% can be obtained. Multiwavelength lasers, including those at ∼1054 or ∼1067 nm, were also achievable by suitably tilting the glass etalon. These simultaneous multiwavelength lasers provide a potential source for terahertz wave generation.
Broadband, Spectrally Flat, Graphene-based Terahertz Modulators.
Shi, Fenghua; Chen, Yihang; Han, Peng; Tassin, Philippe
2015-12-02
Advances in the efficient manipulation of terahertz waves are crucial for the further development of terahertz technology, promising applications in many diverse areas, such as biotechnology and spectroscopy, to name just a few. Due to its exceptional electronic and optical properties, graphene is a good candidate for terahertz electro-absorption modulators. However, graphene-based modulators demonstrated to date are limited in bandwidth due to Fabry-Perot oscillations in the modulators' substrate. Here, a novel method is demonstrated to design electrically controlled graphene-based modulators that can achieve broadband and spectrally flat modulation of terahertz beams. In our design, a graphene layer is sandwiched between a dielectric and a slightly doped substrate on a metal reflector. It is shown that the spectral dependence of the electric field intensity at the graphene layer can be dramatically modified by optimizing the structural parameters of the device. In this way, the electric field intensity can be spectrally flat and even compensate for the dispersion of the graphene conductivity, resulting in almost invariant absorption in a wide frequency range. Modulation depths up to 76% can be achieved within a fractional operational bandwidth of over 55%. It is expected that our modulator designs will enable the use of terahertz technology in applications requiring broadband operation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Third International Symposium on Space Terahertz Technology: Symposium proceedings
NASA Technical Reports Server (NTRS)
1992-01-01
Papers from the symposium are presented that are relevant to the generation, detection, and use of the terahertz spectral region for space astronomy and remote sensing of the Earth's upper atmosphere. The program included thirteen sessions covering a wide variety of topics including solid-state oscillators, power-combining techniques, mixers, harmonic multipliers, antennas and antenna arrays, submillimeter receivers, and measurement techniques.
Emission of terahertz waves in the interaction of a laser pulse with clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, A. A., E-mail: frolov@ihed.ras.ru
2016-07-15
A theory of generation of terahertz radiation in the interaction of a femtosecond laser pulse with a spherical cluster is developed for the case in which the density of free electrons in the cluster plasma exceeds the critical value. The spectral, angular, and energy characteristics of the emitted terahertz radiation are investigated, as well as its spatiotemporal structure. It is shown that the directional pattern of radiation has a quadrupole structure and that the emission spectrum has a broad maximum at a frequency nearly equal to the reciprocal of the laser pulse duration. It is found that the total radiatedmore » energy depends strongly on the cluster size. Analysis of the spatiotemporal profile of the terahertz signal shows that it has a femtosecond duration and contains only two oscillation cycles.« less
Graphene-based terahertz metasurface with tunable spectrum splitting.
Su, Zhaoxian; Chen, Xuan; Yin, Jianbo; Zhao, Xiaopeng
2016-08-15
We design a tunable terahertz metasurface, which consists of two different trapezoid graphene ribbons patterned in opposite directions on a gold film, separated by a thin dielectric spacer. The two kinds of graphene ribbons can cover a nearly 2π phase shift with high reflection efficiency in different spectral regions so that the metasurface can reflect different frequency waves to totally different directions. By changing the Fermi level of the graphene ribbons, the response frequency of the proposed metasurface can be adjusted, and as a result, tunable spectrum splitting can be realized. The present metasurface provides a powerful way to control terahertz waves and has potential applications in wide-angle beam splitters.
Investigating Dielectric and Metamaterial Effects in a Terahertz Traveling-Wave Tube Amplifier
NASA Technical Reports Server (NTRS)
Starinshak, David P.; Wilson, Jeffrey D.
2008-01-01
Adding material enhancements to a terahertz traveling-wave tube amplifier is investigated. Isotropic dielectrics, negative-index metamaterials, and anisotropic crystals are simulated, and plans to increase the efficiency of the device are discussed. Early results indicate that adding dielectric to the curved sections of the serpentine-shaped slow-wave circuit produce optimal changes in the cold-test characteristics of the device and a minimal drop in operating frequency. Additional results suggest that materials with simultaneously small relative permittivities and electrical conductivities are best suited for increasing the efficiency of the device. More research is required on the subject, and recommendations are given to determine the direction.
NASA Astrophysics Data System (ADS)
Hochrein, Thomas
2015-03-01
Although a lot of work has already been done under the older terms "far infrared" or "sub-millimeter waves", the term "terahertz" stands for a novel technique offering many potential applications. The latter term also represents a new generation of systems with the opportunity for coherent, time-resolved detection. In addition to the well-known technical opportunities, an historical examination of Internet usage, as well as the number of publications and patent applications, confirms ongoing interest in this technique. These activities' annual growth rate is between 9 % and 21 %. The geographical distribution shows the center of terahertz activities. A shift from the scientific to more application-oriented research can be observed. We present a survey among worldwide terahertz suppliers with special focus on the European region and the use of terahertz systems in the field of measurement and analytical applications. This reveals the current state of terahertz systems' commercial and geographical availability as well as their costs, target markets, and technical performance. Component cost distribution using the example of an optical pulsed time-domain terahertz system gives an impression of the prevailing cost structure. The predication regarding prospective market development, decreasing system costs and higher availability shows a convenient situation for potential users and interested customers. The causes are primarily increased competition and larger quantities in the future.
NASA Astrophysics Data System (ADS)
Cao, Jianjun; Kong, Yan; Gao, Shumei; liu, Cheng
2018-01-01
Graphene has been demonstrated to have extraordinary large second order nonlinear susceptibility that can be applied in generating mid-infrared (MIR) and terahertz waves through the difference frequency process. In this study, we exploit the highly localized electric fields caused by plasmon resonances to increase the nonlinear response from graphene. The proposed structure contains a graphene sheet on a gold grating substrate that sustains both surface plasmons at the near-infrared on the gold surface and plasmons at the MIR on the graphene surface. Based on finite difference time domain (FDTD) numerical simulations, more than 3 orders of magnitude improvement of the MIR generation efficiency is obtained by placing graphene sheets on a gold grating substrate under resonance conditions instead of placing them on a flat substrate. With the same gold grating substrate, MIR waves tunable from 30 to 55 THz are generated by tuning the gate voltage of the graphene sheet.
NASA Astrophysics Data System (ADS)
Kurihara, Takayuki; Watanabe, Hiroshi; Nakajima, Makoto; Karube, Shutaro; Oto, Kenichi; Otani, YoshiChika; Suemoto, Tohru
2018-03-01
We exploit an intense terahertz magnetic near field combined with femtosecond laser excitation to break the symmetry of photoinduced spin reorientation paths in ErFeO3 . We succeed in aligning macroscopic magnetization reaching up to 80% of total magnetization in the sample to selectable orientations by adjusting the time delay between terahertz and optical pump pulses. The spin dynamics are well reproduced by equations of motion, including time-dependent magnetic potential. We show that the direction of the generated magnetization is determined by the transient direction of spin tilting and the magnetic field at the moment of photoexcitation.
Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.
Chen, Zhen; Hefferman, Gerald; Wei, Tao
2017-03-01
This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.
Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.
Vinokurov, Nikolay A; Jeong, Young Uk
2013-02-08
We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device.
Tunable plasmonic toroidal terahertz metamodulator
NASA Astrophysics Data System (ADS)
Gerislioglu, Burak; Ahmadivand, Arash; Pala, Nezih
2018-04-01
Optical modulators are essential and strategic parts of micro- and nanophotonic circuits to encode electro-optical signals in the optical domain. Here, by using arrays of multipixel toroidal plasmonic terahertz (THz) metamolecules, we developed a functional plasmonic metamodulator with high efficiency and tunability. Technically, the dynamic toroidal dipole induces nonradiating charge-current arrangements leading to have an exquisite role in defining the inherent spectral features of various materials. By categorizing in a different family of multipoles far from the traditional electromagnetic multipoles, the toroidal dipole corresponds to poloidal currents flowing on the surface of a closed-loop torus. Utilizing the sensitivity of the optically driven toroidal momentum to the incident THz beam power and by employing both numerical tools and experimental analysis, we systematically studied the spectral response of the proposed THz plasmonic metadevice. In this Rapid Communication, we uncover a correlation between the existence and the excitation of the toroidal response and the incident beam power. This mechanism is employed to develop THz toroidal metamodulators with a strong potential to be employed for practical advanced and next-generation communication, filtering, and routing applications.
Photonic quasi-crystal terahertz lasers
Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles
2014-01-01
Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of ‘defects’, which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1–0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum. PMID:25523102
Photonic quasi-crystal terahertz lasers
NASA Astrophysics Data System (ADS)
Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles
2014-12-01
Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of ‘defects’, which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1-0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum.
Photonic quasi-crystal terahertz lasers.
Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles
2014-12-19
Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of 'defects', which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1-0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum.
Strong terahertz field generation, detection, and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ki-Yong
2016-05-22
This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-drivenmore » extremely nonlinear phenomena in a university laboratory.« less
Strong terahertz field generation, detection, and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ki-Yong
2016-05-15
This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-drivenmore » extremely nonlinear phenomena in a university laboratory.« less
Energy scaling of terahertz-wave parametric sources.
Tang, Guanqi; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Wang, Weitao; Wu, Dong; Li, Ning; Fu, Qiang; Lu, Qingming; Zhang, Shaojun
2015-02-23
Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm(2) and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier.
NASA Astrophysics Data System (ADS)
Kornienko, Vladimir V.; Kitaeva, Galiya Kh.; Sedlmeir, Florian; Leuchs, Gerd; Schwefel, Harald G. L.
2018-05-01
We study a calibration scheme for terahertz wave nonlinear-optical detectors based on spontaneous parametric down-conversion. Contrary to the usual low wavelength pump in the green, we report here on the observation of spontaneous parametric down-conversion originating from an in-growth poled lithium niobate crystal pumped with a continuous wave 50 mW, 795 nm diode laser system, phase-matched to a terahertz frequency idler wave. Such a system is more compact and allows for longer poling periods as well as lower losses in the crystal. Filtering the pump radiation by a rubidium-87 vapor cell allowed the frequency-angular spectra to be obtained down to ˜0.5 THz or ˜1 nm shift from the pump radiation line. The presence of an amplified spontaneous emission "pedestal" in the diode laser radiation spectrum significantly hampers the observation of spontaneous parametric down-conversion spectra, in contrast to conventional narrowband gas lasers. Benefits of switching to longer pump wavelengths are pointed out, such as collinear optical-terahertz phase-matching in bulk crystals.
High Speed Terahertz Modulator on the Chip Based on Tunable Terahertz Slot Waveguide
Singh, P. K.; Sonkusale, S.
2017-01-01
This paper presents an on-chip device that can perform gigahertz-rate amplitude modulation and switching of broadband terahertz electromagnetic waves. The operation of the device is based on the interaction of confined THz waves in a novel slot waveguide with an electronically tunable two dimensional electron gas (2DEG) that controls the loss of the THz wave propagating through this waveguide. A prototype device is fabricated which shows THz intensity modulation of 96% at 0.25 THz carrier frequency with low insertion loss and device length as small as 100 microns. The demonstrated modulation cutoff frequency exceeds 14 GHz indicating potential for the high-speed modulation of terahertz waves. The entire device operates at room temperature with low drive voltage (<2 V) and zero DC power consumption. The device architecture has potential for realization of the next generation of on-chip modulators and switches at THz frequencies. PMID:28102306
Frequency-dependent absorbance of broadband terahertz wave in dense plasma sheet
NASA Astrophysics Data System (ADS)
Peng, Yan; Qi, Binbin; Jiang, Xiankai; Zhu, Zhi; Zhao, Hongwei; Zhu, Yiming
2018-05-01
Due to the ability of accurate fingerprinting and low-ionization for different substances, terahertz (THz) technology has a lot of crucial applications in material analysis, information transfer, and safety inspection, etc. However, the spectral characteristic of atmospheric gas and ionized gas has not been widely investigated, which is important for the remote sensing application. Here, in this paper, we investigate the absorbance of broadband terahertz wave in dense plasma sheet generated by femtosecond laser pulses. It was found that as the terahertz wave transmits through the plasma sheet formed, respectively, in carbon dioxide, oxygen, argon and nitrogen, spectrum presents completely different and frequency-dependent absorbance. The reasons for these absorption peaks are related to the molecular polarity, electric charge, intermolecular and intramolecular interactions, and collisional absorption of gas molecules. These results have significant implications for the remote sensing of gas medium.
Ibrahim, Akram; Férachou, Denis; Sharma, Gargi; Singh, Kanwarpal; Kirouac-Turmel, Marie; Ozaki, Tsuneyuki
2016-01-01
Time-domain spectroscopy using coherent millimeter and sub-millimeter radiation (also known as terahertz radiation) is rapidly expanding its application, owing greatly to the remarkable advances in generating and detecting such radiation. However, many current techniques for coherent terahertz detection have limited dynamic range, thus making it difficult to perform some basic experiments that need to directly compare strong and weak terahertz signals. Here, we propose and demonstrate a novel technique based on cross-polarized spectral-domain interferometry to achieve ultra-high dynamic range electro-optic sampling measurement of coherent millimeter and sub-millimeter radiation. In our scheme, we exploit the birefringence in a single-mode polarization maintaining fiber in order to measure the phase change induced by the electric field of terahertz radiation in the detection crystal. With our new technique, we have achieved a dynamic range of 7 × 106, which is 4 orders of magnitude higher than conventional electro-optic sampling techniques, while maintaining comparable signal-to-noise ratio. The present technique is foreseen to have great impact on experiments such as linear terahertz spectroscopy of optically thick materials (such as aqueous samples) and nonlinear terahertz spectroscopy, where the higher dynamic range is crucial for proper interpretation of experimentally obtained results. PMID:26976363
Optical Properties of Laminarin Using Terahertz Time-Domain Spectroscopy (abstract)
NASA Astrophysics Data System (ADS)
Shin, Hee Jun; Maeng, Inhee; Oh, Seung Jae; Kim, Sung In; Kim, Ha Won; Son, Joo-Hiuk
2009-04-01
Terahertz spectroscopy is important in the study of biomolecular structure because the vibration and rotation energy of large molecules such as DNA, proteins, and polysaccharides are laid in terahertz regions. Terahertz time-domain spectroscopy (THz-TDS), using terahertz pulses generated and detected by femto-second pulses laser, has been used in the study of biomolecular dynamics, as well as carrier dynamics of semiconductors. Laminarin is a polysaccharide of glucose in brown algae. It is made up of β(1-3)-glucan and β(1-6)-glucan. β-glucan is an anticancer material that activates the immune reaction of human cells and inhibits proliferation of cancer cells. β-glucan with a single-strand structure has been reported to activate the immune reaction to a greater extent than β-glucan with a triple-strand helix structure. We used THz-TDS to characterize the difference between single-strand and triple-strand β-glucan. We obtained single-strand β-glucan by chemical treatment of triple-strand β-glucan. We measured the frequency dependent optical constants of Laminarin using THz-TDS. Power absorption of the triple-strand helix is larger than the single-strand helix in terahertz regions. The refractive index of the triple-strand helix is also larger than that of the single-strand helix.
Ibrahim, Akram; Férachou, Denis; Sharma, Gargi; Singh, Kanwarpal; Kirouac-Turmel, Marie; Ozaki, Tsuneyuki
2016-03-15
Time-domain spectroscopy using coherent millimeter and sub-millimeter radiation (also known as terahertz radiation) is rapidly expanding its application, owing greatly to the remarkable advances in generating and detecting such radiation. However, many current techniques for coherent terahertz detection have limited dynamic range, thus making it difficult to perform some basic experiments that need to directly compare strong and weak terahertz signals. Here, we propose and demonstrate a novel technique based on cross-polarized spectral-domain interferometry to achieve ultra-high dynamic range electro-optic sampling measurement of coherent millimeter and sub-millimeter radiation. In our scheme, we exploit the birefringence in a single-mode polarization maintaining fiber in order to measure the phase change induced by the electric field of terahertz radiation in the detection crystal. With our new technique, we have achieved a dynamic range of 7 × 10(6), which is 4 orders of magnitude higher than conventional electro-optic sampling techniques, while maintaining comparable signal-to-noise ratio. The present technique is foreseen to have great impact on experiments such as linear terahertz spectroscopy of optically thick materials (such as aqueous samples) and nonlinear terahertz spectroscopy, where the higher dynamic range is crucial for proper interpretation of experimentally obtained results.
Photonic-Assisted mm-Wave and THz Wireless Transmission towards 100 Gbit/s Data Rate
NASA Astrophysics Data System (ADS)
Freire Hermelo, Maria; Chuenchom, Rattana; Rymanov, Vitaly; Kaiser, Thomas; Sheikh, Fawad; Czylwik, Andreas; Stöhr, Andreas
2017-09-01
This paper presents photonic-assisted 60 GHz mm-wave and 325 GHz system approaches that enable the transmission of spectral-efficient and high data rate signals over fiber and over air. First, we focus on generic channel characteristics within the mm-wave 60 GHz band and at the terahertz (THz) band around 325 GHz. Next, for generating the high data rate baseband signals, we present a technical solution for constructing an extreme bandwidth arbitrary waveform generator (AWG). We then report the development of a novel coherent photonic mixer (CPX) module for direct optic-to-RF conversion of extreme wideband optical signals, with a>5 dB higher conversion gain compared to conventional photodiodes. Finally, we experimentally demonstrate record spectral efficient wireless transmission for both bands. The achieved spectral efficiencies reach 10 bit/s/Hz for the 60 GHz band and 6 bit/s/Hz for the 325 GHz band. The maximum data rate transmitted at THz frequencies in the 325 GHz band is 59 Gbit/s using a 64-QAM-OFDM modulation format and a 10 GHz wide data signal.
NASA Astrophysics Data System (ADS)
Tokizane, Yu; Nawata, Kouji; Han, Zhengli; Koyama, Mio; Notake, Takashi; Takida, Yuma; Minamide, Hiroaki
2017-02-01
We developed a widely tunable terahertz (THz)-wave source covering the sub-THz frequency by difference frequency generation using a 4-dimethylamino-N‧-methyl-4‧-stibazolium tosylate (DAST) crystal. Near-infrared waves generated by dual-wavelength injection-seeded β-BaB2O4 optical parametric generation (is-BBO-OPG) were used for pumping the DAST crystal, which had separated wavelengths in the spectrum with a difference frequency of sub-THz. Furthermore, the non-collinear phase-matching condition was designed to compensate the walk-off effect of the BBO crystal. Consequently, tunable THz-waves from 0.3 to 4 THz were generated by tuning the wavelength of one of the seeding beams. The generated sub-THz-waves were monochromatic (dν < 33 GHz) with a maximum energy of 80 pJ at 0.65 THz.
2017-04-02
field terahertz, felix free electron laser, nonlinear crystal coefficients, EOARD 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...the Felix free electron laser. Measurements of these properties, which are crucial for designing of efficient nonlinear optical frequency...Currently, only free electron lasers are the source that can readily meet those requirements in the THz range, see Fig 2. Fig. 2 Power and tunability of the
NASA Astrophysics Data System (ADS)
Cortie, D. L.; Lewis, R. A.
2011-10-01
The discovery that short pulses of near-infrared radiation striking a semiconductor may lead to emission of radiation at terahertz frequencies paved the way for terahertz time-domain spectroscopy. Previous modeling has allowed the physical mechanisms to be understood in general terms but it has not fully explored the role of key physical parameters of the emitter material nor has it fully revealed the competing nature of the surface-field and photo-Dember effects. In this context, our purpose has been to more fully explicate the mechanisms of terahertz emission from transient currents at semiconductor surfaces and to determine the criteria for efficient emission. To achieve this purpose we employ an ensemble Monte Carlo simulation in three dimensions. To ground the calculations, we focus on a specific emitter, InAs. We separately vary distinct physical parameters to determine their specific contribution. We find that scattering as a whole has relatively little impact on the terahertz emission. The emission is found to be remarkably resistant to alterations of the dark surface potential. Decreasing the band gap leads to a strong increase in terahertz emission, as does decreasing the electron mass. Increasing the absorption dramatically influences the peak-peak intensity and peak shape. We conclude that increasing absorption is the most direct path to improve surface-current semiconductor terahertz emitters. We find for longer pump pulses that the emission is limited by a newly identified vanguard counter-potential mechanism: Electrons at the leading edge of longer laser pulses repel subsequent electrons. This discovery is the main result of our work.
Coupling of free space sub-terahertz waves into dielectric slabs using PC waveguides.
Ghattan, Z; Hasek, T; Shahabadi, M; Koch, M
2008-04-28
The paper presents theoretical and experimental results on photonic crystal structures which work under the self-collimation condition to couple free space waves into dielectric slabs in the sub-terahertz range. Using a standard machining process, two-dimensional photonic crystal structures consisting of a square array of air holes in the dielectric medium are fabricated. One of the structures has two adjacent parallel line-defects that improve the coupling efficiency. This leads to a combination of self-collimation and directional emission of electromagnetic waves. The experimental results are in good agreement with those of the Finite- Element-Method calculations. Experimentally we achieve a coupling efficiency of 63%.
THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses
NASA Astrophysics Data System (ADS)
Nguyen, A.; González de Alaiza Martínez, P.; Thiele, I.; Skupin, S.; Bergé, L.
2018-03-01
We numerically study the influence of chirping and delaying several ionizing two-color light pulses in order to engineer terahertz (THz) wave generation in air. By means of comprehensive 3D simulations, it is shown that two chirped pulses can increase the THz yield when they are separated by a suitable time delay for the same laser energy in focused propagation geometry. To interpret these results, the local current theory is revisited and we propose an easy, accessible all-optical criterion that predicts the laser-to-THz conversion efficiencies given any input laser spectrum. In the filamentation regime, numerical simulations display evidence that a chirped pulse is able to produce more THz radiation due to propagation effects, which maintain the two colors of the laser field more efficiently coupled over long distances. A large delay between two pulses promotes multi-peaked THz spectra as well as conversion efficiencies above 10‑4.
Tunnel transit-time (TUNNETT) devices for terahertz sources
NASA Technical Reports Server (NTRS)
Haddad, G. I.; East, J. R.; Kidner, C.
1991-01-01
The potential and capabilities of tunnel transit-time (TUNNETT) devices for power generation in the 100-1000 GHz range are presented. The basic properties of these devices and the important material parameters which determine their properties are discussed and criteria for designing such devices are presented. It is shown from a first-order model that significant amounts of power can be obtained from these devices in the terahertz frequency range.
Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device
NASA Astrophysics Data System (ADS)
Kruczek, T.; Leyman, R.; Carnegie, D.; Bazieva, N.; Erbert, G.; Schulz, S.; Reardon, C.; Reynolds, S.; Rafailov, E. U.
2012-08-01
Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals' difference frequency ˜1 THz.
Tsubouchi, Masaaki; Nagashima, Keisuke
2018-06-14
We demonstrate a high-speed terahertz (THz) waveform measurement system for intense THz light with a scan rate of 100 Hz. To realize the high scan rate, a loudspeaker vibrating at 50 Hz is employed to scan the delay time between THz light and electro-optic sampling light. Because the fast scan system requires a high data sampling rate, we develop an Yb-doped fiber laser with a repetition rate of 100 kHz optimized for effective THz light generation with the output electric field of 1 kV/cm. The present system drastically reduces the measurement time of the THz waveform from several minutes to 10 ms.
NASA Astrophysics Data System (ADS)
Gribenyukov, A. I.; Dyomin, V. V.; Polovtsev, I. G.; Yudin, N. N.
2018-03-01
An optical layout of a two-cascade frequency converter of the mid-IR laser radiation into the terahertz (THz) radiation is proposed. In the first stage it is assumed to convert the Tm:YLF-laser frequency in a Cr+2:ZnSe polycrystal into the radiation with the wavelength 2-3 μm. The second cascade can be presented as a parametric conversion of the frequencies of two laser sources operating in the 2-3 μm range into the THz radiation via the difference-frequency mixing in a nonlinear optical ZnGeP2 crystal. The estimates of the terahertz output signal are reported.
Momeni, Ali; Rouhi, Kasra; Rajabalipanah, Hamid; Abdolali, Ali
2018-04-18
Inspired by the information theory, a new concept of re-programmable encrypted graphene-based coding metasurfaces was investigated at terahertz frequencies. A channel-coding function was proposed to convolutionally record an arbitrary information message onto unrecognizable but recoverable parity beams generated by a phase-encrypted coding metasurface. A single graphene-based reflective cell with dual-mode biasing voltages was designed to act as "0" and "1" meta-atoms, providing broadband opposite reflection phases. By exploiting graphene tunability, the proposed scheme enabled an unprecedented degree of freedom in the real-time mapping of information messages onto multiple parity beams which could not be damaged, altered, and reverse-engineered. Various encryption types such as mirroring, anomalous reflection, multi-beam generation, and scattering diffusion can be dynamically attained via our multifunctional metasurface. Besides, contrary to conventional time-consuming and optimization-based methods, this paper convincingly offers a fast, straightforward, and efficient design of diffusion metasurfaces of arbitrarily large size. Rigorous full-wave simulations corroborated the results where the phase-encrypted metasurfaces exhibited a polarization-insensitive reflectivity less than -10 dB over a broadband frequency range from 1 THz to 1.7 THz. This work reveals new opportunities for the extension of re-programmable THz-coding metasurfaces and may be of interest for reflection-type security systems, computational imaging, and camouflage technology.
Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses
Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke
2015-01-01
Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 1018 W/cm2 is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200 MV/m and 7 ps, respectively. PMID:25652694
Bending and coupling losses in terahertz wire waveguides.
Astley, Victoria; Scheiman, Julianna; Mendis, Rajind; Mittleman, Daniel M
2010-02-15
We present an experimental study of several common perturbations of wire waveguides for terahertz pulses. Sommerfeld waves retain significant signal strength and bandwidth even with large gaps in the wire, exhibiting more efficient recoupling at higher frequencies. We also describe a detailed study of bending losses. For a given turn angle, we observe an optimum radius of curvature that minimizes the overall propagation loss. These results emphasize the impact of the distortion of the spatial mode on the radiative bend loss.
Efficient Broadband Terahertz Radiation Detectors Based on Bolometers with a Thin Metal Absorber
NASA Astrophysics Data System (ADS)
Dem'yanenko, M. A.
2018-01-01
The matrix method has been used to calculate the coefficients of absorption of terahertz radiation in conventional (with radiation incident from vacuum adjacent to the bolometer) and inverted (with radiation incident from the substrate on which the bolometer was fabricated) bolometric structures. Near-unity absorption coefficients were obtained when an additional cavity in the form of a gap between the bolometer and the input or output window was introduced. Conventional bolometers then became narrowband, while inverted-type devices remained broadband.
Control of Terahertz Emission by Ultrafast Spin-Charge Current Conversion at Rashba Interfaces
NASA Astrophysics Data System (ADS)
Jungfleisch, Matthias B.; Zhang, Qi; Zhang, Wei; Pearson, John E.; Schaller, Richard D.; Wen, Haidan; Hoffmann, Axel
2018-05-01
We show that a femtosecond spin-current pulse can generate terahertz (THz) transients at Rashba interfaces between two nonmagnetic materials. Our results unambiguously demonstrate the importance of the interface in this conversion process that we interpret in terms of the inverse Rashba Edelstein effect, in contrast to the THz emission in the bulk conversion process via the inverse spin-Hall effect. Furthermore, we show that at Rashba interfaces the THz-field amplitude can be controlled by the helicity of the light. The optical generation of electric photocurrents by these interfacial effects in the femtosecond regime will open up new opportunities in ultrafast spintronics.
Control of Terahertz Emission by Ultrafast Spin-Charge Current Conversion at Rashba Interfaces.
Jungfleisch, Matthias B; Zhang, Qi; Zhang, Wei; Pearson, John E; Schaller, Richard D; Wen, Haidan; Hoffmann, Axel
2018-05-18
We show that a femtosecond spin-current pulse can generate terahertz (THz) transients at Rashba interfaces between two nonmagnetic materials. Our results unambiguously demonstrate the importance of the interface in this conversion process that we interpret in terms of the inverse Rashba Edelstein effect, in contrast to the THz emission in the bulk conversion process via the inverse spin-Hall effect. Furthermore, we show that at Rashba interfaces the THz-field amplitude can be controlled by the helicity of the light. The optical generation of electric photocurrents by these interfacial effects in the femtosecond regime will open up new opportunities in ultrafast spintronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashiwagi, T., E-mail: kashiwagi@ims.tsukuba.ac.jp; Minami, H.; Kadowaki, K.
2014-02-24
A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high-T{sub c} superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications.
Singh, Bipin K; Pandey, Praveen C
2016-07-20
Engineering of thermally tunable terahertz photonic and omnidirectional bandgaps has been demonstrated theoretically in one-dimensional quasi-periodic photonic crystals (PCs) containing semiconductor and dielectric materials. The considered quasi-periodic structures are taken in the form of Fibonacci, Thue-Morse, and double periodic sequences. We have shown that the photonic and omnidirectional bandgaps in the quasi-periodic structures with semiconductor constituents are strongly depend on the temperature, thickness of the constituted semiconductor and dielectric material layers, and generations of the quasi-periodic sequences. It has been found that the number of photonic bandgaps increases with layer thickness and generation of the quasi-periodic sequences. Omnidirectional bandgaps in the structures have also been obtained. Results show that the bandwidths of photonic and omnidirectional bandgaps are tunable by changing the temperature and lattice parameters of the structures. The generation of quasi-periodic sequences can also change the properties of photonic and omnidirectional bandgaps remarkably. The frequency range of the photonic and omnidirectional bandgaps can be tuned by the change of temperature and layer thickness of the considered quasi-periodic structures. This work will be useful to design tunable terahertz PC devices.
Regimes of enhanced electromagnetic emission in beam-plasma interactions
NASA Astrophysics Data System (ADS)
Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.
2015-11-01
The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.
Gigahertz dual-comb modelocked diode-pumped semiconductor and solid-state lasers
NASA Astrophysics Data System (ADS)
Link, S. M.; Mangold, M.; Golling, M.; Klenner, A.; Keller, U.
2016-03-01
We present a simple approach to generate simultaneously two gigahertz mode-locked pulse trains from a single gain element. A bi-refringent crystal in the laser cavity splits the one cavity beam into two cross-polarized and spatially separated beams. This polarization-duplexing is successfully demonstrated for both a semiconductor disk laser (i.e. MIXSEL) and a diode-pumped solid-state Nd:YAG laser. The beat between the two beams results in a microwave frequency comb, which represents a direct link between the terahertz optical frequencies and the electronically accessible microwave regime. This dual-output technique enables compact and cost-efficient dual-comb lasers for spectroscopy applications.
A microfabricated low-profile wideband antenna array for terahertz communications.
Luk, K M; Zhou, S F; Li, Y J; Wu, F; Ng, K B; Chan, C H; Pang, S W
2017-04-28
While terahertz communications are considered to be the future solutions for the increasing demands on bandwidth, terahertz equivalents of radio frequency front-end components have not been realized. It remains challenging to achieve wideband, low profile antenna arrays with highly directive beams of radiation. Here, based on the complementary antenna approach, a wideband 2 × 2 cavity-backed slot antenna array with a corrugated surface is proposed. The approach is based on a unidirectional antenna with a cardiac radiation pattern and stable frequency characteristics that is achieved by integrating a series-resonant electric dipole with a parallel-resonant magnetic dipole. In this design, the slots work as magnetic dipoles while the corrugated surface radiates as an array of electric dipoles. The proposed antenna is realized at 1 THz operating frequency by stacking multiple metallized layers using the microfabrication technology. S-parameter measurements of this terahertz low-profile metallic antenna array demonstrate high efficiency at terahertz frequencies. Fractional bandwidth and gain are measured to be 26% and 14 dBi which are consistent with the simulated results. The proposed antenna can be used as the building block for larger antenna arrays with more directive beams, paving the way to develop high gain low-profile antennas for future communication needs.
Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei
2016-01-01
Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum. PMID:27225031
Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei
2016-05-26
Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.
Terahertz-driven linear electron acceleration
Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.
2015-01-01
The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410
Terahertz-driven linear electron acceleration
Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...
2015-10-06
The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less
Piroxicam derivatives THz classification
NASA Astrophysics Data System (ADS)
Sterczewski, Lukasz A.; Grzelczak, Michal P.; Nowak, Kacper; Szlachetko, Bogusław; Plinska, Stanislawa; Szczesniak-Siega, Berenika; Malinka, Wieslaw; Plinski, Edward F.
2016-02-01
In this paper we report a new approach to linking the terahertz spectral shapes of drug candidates having a similar molecular structure to their chemical and physical parameters. We examined 27 newly-synthesized derivatives of a well-known nonsteroidal anti-inflammatory drug Piroxicam used for treatment of inflammatory arthritis and chemoprevention of colon cancer. The testing was carried out by means of terahertz pulsed spectroscopy (TPS). Using chemometric techniques we evaluated their spectral similarity in the terahertz range and attempted to link the position on the principal component analysis (PCA) score map to the similarity of molecular descriptors. A simplified spectral model preserved 75% and 85.1% of the variance in 2 and 3 dimensions respectively, compared to the input 1137. We have found that in 85% of the investigated samples a similarity of the physical and chemical parameters corresponds to a similarity in the terahertz spectra. The effects of data preprocessing on the generated maps are also discussed. The technique presented can support the choice of the most promising drug candidates for clinical trials in pharmacological research.
WGM Resonators for Terahertz-to-Optical Frequency Conversion
NASA Technical Reports Server (NTRS)
Strekalov,Dmitry; Savchenkov, Anatoliy; Matsko, Andrey; Nu, Nan
2008-01-01
Progress has been made toward solving some practical problems in the implementation of terahertz-to-optical frequency converters utilizing whispering-gallery-mode (WGM) resonators. Such frequency converters are expected to be essential parts of non-cryogenic terahertz- radiation receivers that are, variously, under development or contemplated for a variety of applications in airborne and spaceborne instrumentation for astronomical and military uses. In most respects, the basic principles of terahertz-to-optical frequency conversion in WGM resonators are the same as those of microwave (sub-terahertz)-to-optical frequency conversion in WGM resonators, various aspects of which were discussed in the three preceeding articles. To recapitulate: In a receiver following this approach, a preamplified incoming microwave signal (in the present case, a terahertz signal) is up-converted to an optical signal by a technique that exploits the nonlinearity of the electromagnetic response of a whispering-gallery-mode (WGM) resonator made of LiNbO3 or another suitable electro-optical material. Upconversion takes place by three-wave mixing in the resonator. To ensure the required interaction among the optical and terahertz signals, the WGM resonator must be designed and fabricated to function as an electro-optical modulator while simultaneously exhibiting (1) resonance at the required microwave and optical operating frequencies and (2) phase matching among the microwave and optical signals circulating in the resonator. Downstream of the WGM resonator, the up-converted signal is processed photonically by use of a tunable optical filter or local oscillator and is then detected. The practical problems addressed in the present development effort are the following: Satisfaction of the optical and terahertz resonance-frequency requirement is a straightforward matter, inasmuch as the optical and terahertz spectra can be measured. However, satisfaction of the phase-matching requirement is more difficult. The approach followed in the present development is to perform computer simulations of the microwave and optical signals circulating in the resonator to test for phase matching. To enable excitation of the terahertz WGM resonator mode, it is also necessary to ensure phase matching between that mode and the incoming terahertz radiation. In the present development, the incoming signal is coupled into the WGM resonator via a tapered waveguide in the form of a fused silica rod. The phase-matching requirement is satisfied at one point along the taper; the rod is positioned with this point in proximity to the WGM resonator. To maximize the conversion efficiency, it is necessary to maximize the spatial overlap among the terahertz and optical modes in the WGM resonator. In the absence of a special design effort to address this issue, there would be little such overlap because, as a consequence of a large difference between wavelengths, the optical and terahertz modes would be concentrated at different depths from the rim of a WGM resonator. In the present development, overlap is ensured by constructing the WGM resonator as a ring (see figure) so thin that the optical and terahertz modes are effectively forced to overlap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isić, Goran, E-mail: isicg@ipb.ac.rs; Gajić, Radoš
It is well known that due to the high conductivity of noble metals at terahertz frequencies and scalability of macroscopic Maxwell equations, a geometrical downscaling of a terahertz resonator results in the linear upscaling of its resonance frequency. However, the scaling laws of modal decay rates, important for the resonator excitation efficiency, are much less known. Here, we investigate the extent to which the scale-invariance of decay rates is violated due to the finite conductivity of the metal. We find that the resonance quality factor or the excitation efficiency may be substantially affected by scaling and show that this happensmore » as a result of the scale-dependence of the metal absorption rate, while the radiative decay and the dielectric cavity absorption rates are approximately scale-invariant. In particular, we find that by downscaling overcoupled resonators, their excitation efficiency increases, while the opposite happens with undercoupled resonators.« less
NASA Astrophysics Data System (ADS)
Wang, Kai; Cao, Qing; Zhang, Huifang; Shen, Pengcheng; Xing, Lujing
2018-06-01
Based on the TE01 mode of a rectangular metal waveguide and the Gaussian mode of a fiber, we propose the cos-Gaussian mode of a terahertz rectangular metal waveguide filled with multiple slices of dielectric. First, we consider a rectangular metal waveguide filled with an ideal graded-index dielectric along one direction. Furthermore, we replace the graded-index dielectric with multiple slices of dielectric according to the effective medium theory. The modal field, the effective index, and the coupling efficiency of this waveguide are investigated. It is found that the approximately linearly polarized electric field is Gaussian along one dimensionality and cosine along the other one. In addition, the low loss and high coupling efficiency with a Gaussian beam can be acquired at 0.9 THz. By optimization, the coupling efficiency could reach 88.5%.
Jiang, Yannan; Wang, Lei; Wang, Jiao; Akwuruoha, Charles Nwakanma; Cao, Weiping
2017-10-30
The polarization conversion of electromagnetic (EM) waves, especially linear-to-circular (LTC) polarization conversion, is of great significance in practical applications. In this study, we propose an ultra-wideband high-efficiency reflective LTC polarization converter based on a metasurface in the terahertz regime. It consists of periodic unit cells, each cell of which is formed by a double split resonant square ring, dielectric layer, and fully reflective gold mirror. In the frequency range of 0.60 - 1.41 THz, the magnitudes of the reflection coefficients reach approximately 0.7, and the phase difference between the two orthogonal electric field components of the reflected wave is close to 90° or -270°. The results indicate that the relative bandwidth reaches 80% and the efficiency is greater than 88%, thus, ultra-wideband high-efficiency LTC polarization conversion has been realized. Finally, the physical mechanism of the polarization conversion is revealed. This converter has potential applications in antenna design, EM measurement, and stealth technology.
Chattopadhyay, Tanay
2010-10-01
A flip-flop (FF) is a kind of latch and the simplest form of memory device, which stores various values either temporarily or permanently. Optical FF memories form a fundamental building block for all-optical packet switches in next-generation communication networks. An all-optical clocked delay FF using a single terahertz optical asymmetric demultiplexer-based interferometric switch is proposed and described. Numerical simulation results are also reported.
Nanoplasmonic-gold-cylinder-array-enhanced terahertz source
NASA Astrophysics Data System (ADS)
Zhiguang, Ao; Jinhai, Sun; He, Cai; Guofeng, Song; Jiakun, Song; Yuzhi, Song; Yun, Xu
2016-12-01
Photoconductive antennas (PCAs) based on nanoplasmonic gratings contact electrodes have been proposed to satisfy the demand for high power, efficiency and responsivity terahertz (THz) sources. Reducing the average photo-generated carrier transport path to the photoconductor contact electrodes was previously considered the dominant mechanism to improve PCAs' power. However, considering the bias in a real device, the electric field between gratings is limited and the role of surface plasmonic resonance (SPR) field enhancement is more important in improving THz radiation. This paper, based on SPR, analyzes the interaction between incident light and substrate in nano cylinder array PCAs and clearly shows that the SPR can enhance the light absorption in the substrate. After the optimization of the structure size, the proposed structure can offer 87% optical transmission into GaAs substrate. Compared with conventional PCAs, the optical transmission into the substrate will increase 5.8 times and the enhancement factor of substrate absorption will reach 13.7 respectively. Project supported by the National Basic Research Program of China (Nos. 2015CB351902, 2015CB932402), the National Key Research Program of China (No. 2011ZX01015-001), and the National Natural Science Foundation of China (No. U143231).
Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity
Mitrofanov, Oleg; Brener, Igal; Luk, Ting S.; ...
2015-11-19
Nanoscale structuring of optical materials leads to modification of their properties and can be used for improving efficiencies of photonic devices and for enabling new functionalities. In ultrafast optoelectronic switches for generation and detection of terahertz (THz) radiation, incorporation of nanostructures allows us to overcome inherent limitations of photoconductive materials. We propose and demonstrate a nanostructured photoconductive THz detector for sampling highly localized THz fields, down to the level of λ/150. The nanostructure that consists of an array of optical nanoantennas and a distributed Bragg reflector forms a hybrid cavity, which traps optical gate pulses within the photoconductive layer. Themore » effect of photon trapping is observed as enhanced absorption at a designed wavelength. This optically thin photoconductive THz detector allows us to detect highly confined evanescent THz fields coupled through a deeply subwavelength aperture as small as 2 μm (λ/150 at 1 THz). As a result, by monolithically integrating the THz detector with apertures ranging from 2 to 5 μm we realize higher spatial resolution and higher sensitivity in aperture-type THz near-field microscopy and THz time-domain spectroscopy.« less
Terahertz parametric sources and imaging applications
NASA Astrophysics Data System (ADS)
Yamashita, M.; Ogawa, Y.; Otani, C.; Kawase, K.
2005-12-01
We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of LiNbO 3 or MgO-doped LiNbO 3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave sources with a simple configuration. We report the detailed characteristics of the oscillation and the radiation including tunability, spatial and temporal coherency, uni directivity, and efficiency. A Fourier transform limited THz-wave spectrum narrowing was achieved by introducing the injection seeding method. Further, we have developed a spectroscopic THz imaging system using a TPO, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. Several images of the envelope are recorded at different THz frequencies and then processed. The final result is an image that reveals what substances are present in the envelope, in what quantity, and how they are distributed across the envelope area. The example presented here shows the identification of three drugs, two of which illegal, while one is an over-the-counter drug.
Terahertz parametric sources and imaging applications
NASA Astrophysics Data System (ADS)
Kawase, Kodo; Ogawa, Yuichi; Minamide, Hiroaki; Ito, Hiromasa
2005-07-01
We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of LiNbO3 or MgO-doped LiNbO3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave source with a simple configuration. We report the detailed characteristics of the oscillation and the radiation including tunability, spatial and temporal coherency, uni-directivity, and efficiency. A Fourier transform limited THz-wave spectrum narrowing was achieved by introducing the injection seeding method. Further, we have developed a spectroscopic THz imaging system using a THz-wave parametric oscillator, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. Several images of the envelope are recorded at different THz frequencies and then processed. The final result is an image that reveals what substances are present in the envelope, in what quantity, and how they are distributed across the envelope area. The example presented here shows the identification of three drugs, two of which are illegal, while one is an over-the-counter drug.
The spectral analysis of fuel oils using terahertz radiation and chemometric methods
NASA Astrophysics Data System (ADS)
Zhan, Honglei; Zhao, Kun; Zhao, Hui; Li, Qian; Zhu, Shouming; Xiao, Lizhi
2016-10-01
The combustion characteristics of fuel oils are closely related to both engine efficiency and pollutant emissions, and the analysis of oils and their additives is thus important. These oils and additives have been found to generate distinct responses to terahertz (THz) radiation as the result of various molecular vibrational modes. In the present work, THz spectroscopy was employed to identify a number of oils, including lubricants, gasoline and diesel, with different additives. The identities of dozens of these oils could be readily established using statistical models based on principal component analysis. The THz spectra of gasoline, diesel, sulfur and methyl methacrylate (MMA) were acquired and linear fittings were obtained. By using chemometric methods, including back propagation, artificial neural network and support vector machine techniques, typical concentrations of sulfur in gasoline (ppm-grade) could be detected, together with MMA in diesel below 0.5%. The absorption characteristics of the oil additives were also assessed using 2D correlation spectroscopy, and several hidden absorption peaks were discovered. The technique discussed herein should provide a useful new means of analyzing fuel oils with various additives and impurities in a non-destructive manner and therefore will be of benefit to the field of chemical detection and identification.
Chekhov, Alexander L; Stognij, Alexander I; Satoh, Takuya; Murzina, Tatiana V; Razdolski, Ilya; Stupakiewicz, Andrzej
2018-05-09
We report spatial localization of the effective magnetic field generated via the inverse Faraday effect employing surface plasmon polaritons (SPPs) at Au/garnet interface. Analyzing both numerically and analytically the electric field of the SPPs at this interface, we corroborate our study with a proof-of-concept experiment showing efficient SPP-driven excitation of coherent spin precession with 0.41 THz frequency. We argue that the subdiffractional confinement of the SPP electric field enables strong spatial localization of the SPP-mediated excitation of spin dynamics. We demonstrate two orders of magnitude enhancement of the excitation efficiency at the surface plasmon resonance within a 100 nm layer of a dielectric garnet. Our findings broaden the horizons of ultrafast spin-plasmonics and open pathways toward nonthermal opto-magnetic recording on the nanoscale.
NASA Astrophysics Data System (ADS)
van Capel, P. J. S.; Turchinovich, D.; Porte, H. P.; Lahmann, S.; Rossow, U.; Hangleiter, A.; Dijkhuis, J. I.
2011-08-01
We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic signals and THz electromagnetic radiation signals demonstrates that transient strain generation in InGaN/GaN MQWs is correlated with electromagnetic THz generation, and both types of emission find their origin in ultrafast dynamical screening of the built-in piezoelectric field in the MQWs. The measured spectral intensity of the detected Brillouin signal corresponds to a maximum strain amplitude of generated acoustic pulses of 2%. This value coincides with the static lattice-mismatch-induced strain in In0.2Ga0.8N/GaN, demonstrating the total release of static strain in MQWs via impulsive THz acoustic emission. This confirms the ultrafast dynamical screening mechanism in MQWs as a highly efficient method for impulsive strain generation.
NASA Astrophysics Data System (ADS)
Sanjuan, Federico; Gaborit, Gwenaël; Coutaz, Jean-Louis
2018-04-01
We report for the first time on the observation of an angular anisotropy of the THz signal generated by optical rectification in a < 111 > ZnTe crystal. This cubic (zinc-blende) crystal in the < 111 > orientation exhibits both transverse isotropy for optical effects involving the linear χ (1) and nonlinear χ (2) susceptibilities. Thus, the observed anisotropy can only be related to χ (3) effect, namely two-photon absorption, which leads to the photo-generation of free carriers that absorb the generated THz signal. Two-photon absorption in zinc-blende crystals is known to be due to a spin-orbit interaction between the valence and higher-conduction bands. We perform a couple of measurements that confirm our hypothesis, as well as we fit the recorded data with a simple model. This two-photon absorption effect makes difficult an efficient generation, through optical rectification in < 111 > zinc-blende crystals, of THz beams of any given polarization state by only monitoring the laser pump polarization.
NASA Astrophysics Data System (ADS)
Sultana, Jakeya; Islam, Md. Saiful; Atai, Javid; Islam, Muhammad Rakibul; Abbott, Derek
2017-07-01
We demonstrate a photonic crystal fiber with near-zero flattened dispersion, ultralower effective material loss (EML), and negligible confinement loss for a broad spectrum range. The use of cyclic olefin copolymer Topas with improved core confinement significantly reduces the loss characteristics and the use of higher air filling fraction results in flat dispersion characteristics. The properties such as dispersion, EML, confinement loss, modal effective area, and single-mode operation of the fiber have been investigated using the full-vector finite element method with the perfectly matched layer absorbing boundary conditions. The practical implementation of the proposed fiber is achievable with existing fabrication techniques as only circular-shaped air holes have been used to design the waveguide. Thus, it is expected that the proposed terahertz waveguide can potentially be used for flexible and efficient transmission of terahertz waves.
Lee, Seung-Heon; Lu, Jian; Lee, Seung-Jun; Han, Jae-Hyun; Jeong, Chan-Uk; Lee, Seung-Chul; Li, Xian; Jazbinšek, Mojca; Yoon, Woojin; Yun, Hoseop; Kang, Bong Joo; Rotermund, Fabian; Nelson, Keith A; Kwon, O-Pil
2017-08-01
Highly efficient nonlinear optical organic crystals are very attractive for various photonic applications including terahertz (THz) wave generation. Up to now, only two classes of ionic crystals based on either pyridinium or quinolinium with extremely large macroscopic optical nonlinearity have been developed. This study reports on a new class of organic nonlinear optical crystals introducing electron-accepting benzothiazolium, which exhibit higher electron-withdrawing strength than pyridinium and quinolinium in benchmark crystals. The benzothiazolium crystals consisting of new acentric core HMB (2-(4-hydroxy-3-methoxystyryl)-3-methylbenzo[d]thiazol-3-ium) exhibit extremely large macroscopic optical nonlinearity with optimal molecular ordering for maximizing the diagonal second-order nonlinearity. HMB-based single crystals prepared by simple cleaving method satisfy all required crystal characteristics for intense THz wave generation such as large crystal size with parallel surfaces, moderate thickness and high optical quality with large optical transparency range (580-1620 nm). Optical rectification of 35 fs pulses at the technologically very important wavelength of 800 nm in 0.26 mm thick HMB crystal leads to one order of magnitude higher THz wave generation efficiency with remarkably broader bandwidth compared to standard inorganic 0.5 mm thick ZnTe crystal. Therefore, newly developed HMB crystals introducing benzothiazolium with extremely large macroscopic optical nonlinearity are very promising materials for intense broadband THz wave generation and other nonlinear optical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Control of Terahertz Emission by Ultrafast Spin-Charge Current Conversion at Rashba Interfaces
Jungfleisch, Matthias B.; Zhang, Qi; Zhang, Wei; ...
2018-05-18
Here, we show that a femtosecond spin-current pulse can generate terahertz (THz) transients at Rashba interfaces between two nonmagnetic materials. Our results unambiguously demonstrate the importance of the interface in this conversion process that we interpret in terms of the inverse Rashba Edelstein effect, in contrast to the THz emission in the bulk conversion process via the inverse spin-Hall effect. Furthermore, we show that at Rashba interfaces the THz-field amplitude can be controlled by the helicity of the light. The optical generation of electric photocurrents by these interfacial effects in the femtosecond regime will open up new opportunities in ultrafastmore » spintronics.« less
Control of Terahertz Emission by Ultrafast Spin-Charge Current Conversion at Rashba Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jungfleisch, Matthias B.; Zhang, Qi; Zhang, Wei
Here, we show that a femtosecond spin-current pulse can generate terahertz (THz) transients at Rashba interfaces between two nonmagnetic materials. Our results unambiguously demonstrate the importance of the interface in this conversion process that we interpret in terms of the inverse Rashba Edelstein effect, in contrast to the THz emission in the bulk conversion process via the inverse spin-Hall effect. Furthermore, we show that at Rashba interfaces the THz-field amplitude can be controlled by the helicity of the light. The optical generation of electric photocurrents by these interfacial effects in the femtosecond regime will open up new opportunities in ultrafastmore » spintronics.« less
Kim, Namje; Shin, Jaeheon; Sim, Eundeok; Lee, Chul Wook; Yee, Dae-Su; Jeon, Min Yong; Jang, Yudong; Park, Kyung Hyun
2009-08-03
We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The continuous tuning of the CW THz emission from Fe(+)-implanted InGaAs photomixers is successfully demonstrated using our dual-mode laser as the excitation source. The CW THz frequency is continuously tuned from 0.17 to 0.49 THz.
Electro-optical detection of THz radiation in Fe implanted LiNbO3
NASA Astrophysics Data System (ADS)
Wang, Yuhua; Ni, Hongwei; Zhan, Weiting; Yuan, Jie; Wang, Ruwu
2013-01-01
In this letter, the authors present first observation of terahertz generation from Fe implantation of LiNbO3 crystal substrate. LiNbO3 single crystal is grown by Czochralski method. Metal nanoparticles synthesized by Fe ion implantation were implanted into LiNbO3 single crystal using metal vapor vacuum arc (MEVVA) ion source. 1 kHz, 35 fs laser pulsed centered at 800 nm were focused onto the samples. Terahertz was generated via optical rectification. The findings suggest that under the investigated implantation parameter, a spectral component in excess of 0.44 THz emission were found from Fe ion implantation of LiNbO3.
Madéo, Julien; Margiolakis, Athanasios; Zhao, Zhen-Yu; Hale, Peter J; Man, Michael K L; Zhao, Quan-Zhong; Peng, Wei; Shi, Wang-Zhou; Dani, Keshav M
2015-07-15
We report on the first terahertz (THz) emitter based on femtosecond-laser-ablated gallium arsenide (GaAs), demonstrating a 65% enhancement in THz emission at high optical power compared to the nonablated device. Counter-intuitively, the ablated device shows significantly lower photocurrent and carrier mobility. We understand this behavior in terms of n-doping, shorter carrier lifetime, and enhanced photoabsorption arising from the ablation process. Our results show that laser ablation allows for efficient and cost-effective optoelectronic THz devices via the manipulation of fundamental properties of materials.
Terahertz generation from laser-driven ultrafast current propagation along a wire target
NASA Astrophysics Data System (ADS)
Zhuo, H. B.; Zhang, S. J.; Li, X. H.; Zhou, H. Y.; Li, X. Z.; Zou, D. B.; Yu, M. Y.; Wu, H. C.; Sheng, Z. M.; Zhou, C. T.
2017-01-01
Generation of intense coherent THz radiation by obliquely incidenting an intense laser pulse on a wire target is studied using particle-in-cell simulation. The laser-accelerated fast electrons are confined and guided along the surface of the wire, which then acts like a current-carrying line antenna and under appropriate conditions can emit electromagnetic radiation in the THz regime. For a driving laser intensity ˜3 ×1018W /cm2 and pulse duration ˜10 fs, a transient current above 10 KA is produced on the wire surface. The emission-cone angle of the resulting ˜0.15 mJ (˜58 GV/m peak electric field) THz radiation is ˜30∘ . The conversion efficiency of laser-to-THz energy is ˜0.75 % . A simple analytical model that well reproduces the simulated result is presented.
Smith-Purcell terahertz radiation from laser modulated electron beam over a metallic grating
NASA Astrophysics Data System (ADS)
Kumar, Pawan; Bhasin, Lalita; Tripathi, V. K.; Kumar, Ashok; Kumar, Manoj
2016-09-01
We propose a novel scheme of terahertz (THz) radiation generation from the beat frequency modulation of an electron beam by two co-propagating lasers and the generation of terahertz radiation by the modulated beam passing over a periodic metallic grating. The lasers cause velocity modulation of the beam by exerting a longitudinal ponderomotive force on it. In the drift space between the modulator and metallic grating, the velocity modulation translates into density and current modulation. The modulated beam, propagating over the grating of specific wave number, induces space periodic image current in the conductor that emits beat frequency Smith-Purcell radiation. With 1 μm, 4 × 1016 W/cm2 lasers, beam current modulation of the order of 50% can be achieved at optimum lengths of the modulator and drift space. Employing 10 mA, 0.5 MeV short-period electron beam, propagating at a height of 50 μ m above the grating of period 150 μm, one may obtain THz radiated power of the order of 6 mW at 10 THz.
NASA Astrophysics Data System (ADS)
Yang, Fan; Liu, Ren-Bao
2013-03-01
Quantum evolution of particles under strong fields can be approximated by the quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integrals. The quantum trajectories are the key concept to understand strong-field optics phenomena, such as high-order harmonic generation (HHG), above-threshold ionization (ATI), and high-order terahertz siedeband generation (HSG). The HSG in semiconductors may have a wealth of physics due to the possible nontrivial ``vacuum'' states of band materials. We find that in a spin-orbit-coupled semiconductor, the cyclic quantum trajectories of an electron-hole pair under a strong terahertz field accumulates nontrivial Berry phases. We study the monolayer MoS2 as a model system and find that the Berry phases are given by the Faraday rotation angles of the pulse emission from the material under short-pulse excitation. This result demonstrates an interesting Berry phase dependent effect in the extremely nonlinear optics of semiconductors. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.
Consolino, Luigi; Jung, Seungyong; Campa, Annamaria; De Regis, Michele; Pal, Shovon; Kim, Jae Hyun; Fujita, Kazuue; Ito, Akio; Hitaka, Masahiro; Bartalini, Saverio; De Natale, Paolo; Belkin, Mikhail A; Vitiello, Miriam Serena
2017-09-01
Terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers (THz DFG-QCLs) have recently emerged as the first monolithic electrically pumped semiconductor sources capable of operating at room temperature across the 1- to 6-THz range. Despite tremendous progress in power output, which now exceeds 1 mW in pulsed and 10 μW in continuous-wave regimes at room temperature, knowledge of the major figure of merits of these devices for high-precision spectroscopy, such as spectral purity and absolute frequency tunability, is still lacking. By exploiting a metrological grade system comprising a terahertz frequency comb synthesizer, we measure, for the first time, the free-running emission linewidth (LW), the tuning characteristics, and the absolute center frequency of individual emission lines of these sources with an uncertainty of 4 × 10 -10 . The unveiled emission LW (400 kHz at 1-ms integration time) indicates that DFG-QCLs are well suited to operate as local oscillators and to be used for a variety of metrological, spectroscopic, communication, and imaging applications that require narrow-LW THz sources.
Terahertz plasmonic laser radiating in an ultra-narrow beam
Wu, Chongzhao; Khanal, Sudeep; Reno, John L.; ...
2016-07-07
Plasmonic lasers (spasers) generate coherent surface plasmon polaritons (SPPs) and could be realized at subwavelength dimensions in metallic cavities for applications in nanoscale optics. Plasmonic cavities are also utilized for terahertz quantum-cascade lasers (QCLs), which are the brightest available solid-state sources of terahertz radiation. A long standing challenge for spasers that are utilized as nanoscale sources of radiation, is their poor coupling to the far-field radiation. Unlike conventional lasers that could produce directional beams, spasers have highly divergent radiation patterns due to their subwavelength apertures. Here, we theoretically and experimentally demonstrate a new technique for implementing distributed feedback (DFB) thatmore » is distinct from any other previously utilized DFB schemes for semiconductor lasers. The so-termed antenna-feedback scheme leads to single-mode operation in plasmonic lasers, couples the resonant SPP mode to a highly directional far-field radiation pattern, and integrates hybrid SPPs in surrounding medium into the operation of the DFB lasers. Experimentally, the antenna-feedback method, which does not require the phase matching to a well-defined effective index, is implemented for terahertz QCLs, and single-mode terahertz QCLs with a beam divergence as small as 4°×4° are demonstrated, which is the narrowest beam reported for any terahertz QCL to date. Moreover, in contrast to a negligible radiative field in conventional photonic band-edge lasers, in which the periodicity follows the integer multiple of half-wavelengths inside the active medium, antenna-feedback breaks this integer limit for the first time and enhances the radiative field of the lasing mode. Terahertz lasers with narrow-beam emission will find applications for integrated as well as standoff terahertz spectroscopy and sensing. Furthermore, the antenna-feedback scheme is generally applicable to any plasmonic laser with a Fabry–Perot cavity irrespective of its operating wavelength and could bring plasmonic lasers closer to practical applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterczewski, L. A., E-mail: lukasz.sterczewski@pwr.edu.pl; Grzelczak, M. P.; Plinski, E. F.
In this paper, we present an electronic circuit used to bias a photoconductive antenna that generates terahertz radiation. The working principles and the design process for the device are discussed in detail. The noise and shape of the wave measurements for a built device are considered. Furthermore, their impact on a terahertz pulse and its spectra is also examined. The proposed implementation is simple to build, robust and offers a real improvement over THz instrumentation due to the frequency tuning. Additionally, it provides for galvanic isolation and ESD protection.
Integrated injection seeded terahertz source and amplifier for time-domain spectroscopy.
Maysonnave, J; Jukam, N; Ibrahim, M S M; Maussang, K; Madéo, J; Cavalié, P; Dean, P; Khanna, S P; Steenson, D P; Linfield, E H; Davies, A G; Tignon, J; Dhillon, S S
2012-02-15
We used a terahertz (THz) quantum cascade laser (QCL) as an integrated injection seeded source and amplifier for THz time-domain spectroscopy. A THz input pulse is generated inside a QCL by illuminating the laser facet with a near-IR pulse from a femtosecond laser and amplified using gain switching. The THz output from the QCL is found to saturate upon increasing the amplitude of the THz input power, which indicates that the QCL is operating in an injection seeded regime.
Terahertz radiation source using a high-power industrial electron linear accelerator
NASA Astrophysics Data System (ADS)
Kalkal, Yashvir; Kumar, Vinit
2017-04-01
High-power (˜ 100 kW) industrial electron linear accelerators (linacs) are used for irradiations, e.g., for pasteurization of food products, disinfection of medical waste, etc. We propose that high-power electron beam from such an industrial linac can first pass through an undulator to generate useful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for the intended industrial applications. This will enhance the utilization of a high-power industrial linac. We have performed calculation of spontaneous emission in the undulator to show that for typical parameters, continuous terahertz radiation having power of the order of μW can be produced, which may be useful for many scientific applications such as multispectral imaging of biological samples, chemical samples etc.
Broadband THz Generation and Detection at 10 nm Scale
NASA Astrophysics Data System (ADS)
Ma, Yanjun; Huang, Mengchen; Levy, Jeremy; Ryu, Sangwoo; Wung Bark, Chung; Eom, Chang-Beom
2013-03-01
The terahertz region of the electromagnetic spectrum (0.1 THz-10 THz) probes a wealth of information relevant for material, biological, medical and pharmaceutical sciences, as well as applications in chemical sensing and homeland security. To date, there have been no methods capable of controlling THz radiation at scales relevant for single molecules. Here we report the generation and detection of broadband terahertz radiation from 10-nm-scale nanojunctions which are ''sketched'' at the interface of LaAlO3/SrTiO3 (LAO/STO) heterostructure with a conductive atomic force microscope (c-AFM) tip. The nonresonant χ (3) process is characterized for a single nanojunction structure, which is nonlienar electronic response to both the static field cross the junction and the optical field illuminated the junction. The same mechanism can result in the generation and detection of broadband THz radiation. This unprecedented control of terahertz radiation, on a scale of four orders of magnitude smaller than the diffraction limit, creates a pathway toward ultra-high-resolution THz imaging, single-molecule fingerprinting, spectroscopic characterization of catalysts, and other applications. The authors acknowledge support from AFOSR - FA9550-12-1-0268 (J. L.), AFOSR FA9550-12-1-0342 (C. -B. E.) and the National Science Foundation through grants DMR-1104191 (J. L.) and DMR-1234096 (C. -B. E.).
NASA Astrophysics Data System (ADS)
Yang, Yong-fa; Li, Qi
2014-12-01
In the practical application of terahertz reflection-mode confocal scanning microscopy, the size of detector pinhole is an important factor that determines the performance of spatial resolution characteristic of the microscopic system. However, the use of physical pinhole brings some inconvenience to the experiment and the adjustment error has a great influence on the experiment result. Through reasonably selecting the parameter of matrix detector virtual pinhole (VPH), it can efficiently approximate the physical pinhole. By using this approach, the difficulty of experimental calibration is reduced significantly. In this article, an imaging scheme of terahertz reflection-mode confocal scanning microscopy that is based on the matrix detector VPH is put forward. The influence of detector pinhole size on the axial resolution of confocal scanning microscopy is emulated and analyzed. Then, the parameter of VPH is emulated when the best axial imaging performance is reached.
Terahertz Focusing and Polarization Control in Large-Area Bias-Free Semiconductor Emitters
NASA Astrophysics Data System (ADS)
Carthy, Joanna L.; Gow, Paul C.; Berry, Sam A.; Mills, Ben; Apostolopoulos, Vasilis
2018-03-01
We show that, when large-area multiplex terahertz semiconductor emitters, that work on diffusion currents and Schottky potentials, are illuminated by ultrashort optical pulses they can radiate a directional electromagnetic terahertz pulse which is controlled by the angular spectrum of the incident optical beam. Using the lens that focuses the incident near-infrared pulse, we have demonstrated THz emission focusing in free space, at the same point where the optical radiation would focus. We investigated the beam waist and Gouy phase shift of the THz emission as a function of frequency. We also show that the polarization profile of the emitted THz can be tailored by the metallic patterning on the semiconductor, demonstrating radial polarization when a circular emitter design is used. Our techniques can be used for fast THz beam steering and mode control for efficiently coupling to waveguides without the need for THz lenses or parabolic mirrors.
Spectral gain profile of a multi-stack terahertz quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachmann, D., E-mail: dominic.bachmann@tuwien.ac.at; Deutsch, C.; Krall, M.
2014-11-03
The spectral gain of a multi-stack terahertz quantum cascade laser, composed of three active regions with emission frequencies centered at 2.3, 2.7, and 3.0 THz, is studied as a function of driving current and temperature using terahertz time-domain spectroscopy. The optical gain associated with the particular quantum cascade stacks clamps at different driving currents and saturates to different values. We attribute these observations to varying pumping efficiencies of the respective upper laser states and to frequency dependent optical losses. The multi-stack active region exhibits a spectral gain full width at half-maximum of 1.1 THz. Bandwidth and spectral position of themore » measured gain match with the broadband laser emission. As the laser action ceases with increasing operating temperature, the gain at the dominant lasing frequency of 2.65 THz degrades sharply.« less
Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses
NASA Astrophysics Data System (ADS)
Mondal, S.; Wei, Q.; Ding, W. J.; Hafez, H. A.; Fareed, M. A.; Laramée, A.; Ropagnol, X.; Zhang, G.; Sun, S.; Sheng, Z. M.; Zhang, J.; Ozaki, T.
2017-01-01
We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 μm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20-200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 μm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results.
Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses.
Mondal, S; Wei, Q; Ding, W J; Hafez, H A; Fareed, M A; Laramée, A; Ropagnol, X; Zhang, G; Sun, S; Sheng, Z M; Zhang, J; Ozaki, T
2017-01-10
We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 μm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20-200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 μm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results.
Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses
Mondal, S.; Wei, Q.; Ding, W. J.; Hafez, H. A.; Fareed, M. A.; Laramée, A.; Ropagnol, X.; Zhang, G.; Sun, S.; Sheng, Z. M.; Zhang, J.; Ozaki, T.
2017-01-01
We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 μm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20–200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 μm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results. PMID:28071764
Kim, Namje; Han, Sang-Pil; Ko, Hyunsung; Leem, Young Ahn; Ryu, Han-Cheol; Lee, Chul Wook; Lee, Donghun; Jeon, Min Yong; Noh, Sam Kyu; Park, Kyung Hyun
2011-08-01
We demonstrate a tunable continuous-wave (CW) terahertz (THz) homodyne system with a novel detuned dual-mode laser diode (DML) and low-temperature-grown (LTG) InGaAs photomixers. The optical beat source with the detuned DML showed a beat frequency tuning range of 0.26 to over 1.07 THz. Log-spiral antenna integrated LTG InGaAs photomixers are used as THz wave generators and detectors. The CW THz radiation frequency was continuously tuned to over 1 THz. Our results clearly show the feasibility of a compact and fast scanning CW THz spectrometer consisting of a fiber-coupled detuned DML and photomixers operating in the 1.55-μm range.
Limitations to THz generation by optical rectification using tilted pulse fronts.
Ravi, Koustuban; Huang, W Ronny; Carbajo, Sergio; Wu, Xiaojun; Kärtner, Franz
2014-08-25
Terahertz (THz) generation by optical rectification (OR) using tilted-pulse-fronts is studied. A one-dimensional (1-D) model which simultaneously accounts for (i) the nonlinear coupled interaction of the THz and optical radiation, (ii) angular and material dispersion, (iii) absorption, iv) self-phase modulation and (v) stimulated Raman scattering is presented. We numerically show that the large experimentally observed cascaded frequency down-shift and spectral broadening (cascading effects) of the optical pump pulse is a direct consequence of THz generation. In the presence of this large spectral broadening, the large angular dispersion associated with tilted-pulse-fronts which is ~15-times larger than material dispersion, accentuates phase mismatch and degrades THz generation. Consequently, this cascading effect in conjunction with angular dispersion is shown to be the strongest limitation to THz generation in lithium niobate for pumping at 1 µm. It is seen that the exclusion of these cascading effects in modeling OR, leads to a significant overestimation of the optical-to-THz conversion efficiency. The results are verified with calculations based on a 2-D spatial model. The simulation results are supported by experiments.
Cascaded spintronic logic with low-dimensional carbon
NASA Astrophysics Data System (ADS)
Friedman, Joseph S.; Girdhar, Anuj; Gelfand, Ryan M.; Memik, Gokhan; Mohseni, Hooman; Taflove, Allen; Wessels, Bruce W.; Leburton, Jean-Pierre; Sahakian, Alan V.
2017-06-01
Remarkable breakthroughs have established the functionality of graphene and carbon nanotube transistors as replacements to silicon in conventional computing structures, and numerous spintronic logic gates have been presented. However, an efficient cascaded logic structure that exploits electron spin has not yet been demonstrated. In this work, we introduce and analyse a cascaded spintronic computing system composed solely of low-dimensional carbon materials. We propose a spintronic switch based on the recent discovery of negative magnetoresistance in graphene nanoribbons, and demonstrate its feasibility through tight-binding calculations of the band structure. Covalently connected carbon nanotubes create magnetic fields through graphene nanoribbons, cascading logic gates through incoherent spintronic switching. The exceptional material properties of carbon materials permit Terahertz operation and two orders of magnitude decrease in power-delay product compared to cutting-edge microprocessors. We hope to inspire the fabrication of these cascaded logic circuits to stimulate a transformative generation of energy-efficient computing.
Intense terahertz pulses from SLAC electron beams using coherent transition radiation.
Wu, Ziran; Fisher, Alan S; Goodfellow, John; Fuchs, Matthias; Daranciang, Dan; Hogan, Mark; Loos, Henrik; Lindenberg, Aaron
2013-02-01
SLAC has two electron accelerators, the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET), providing high-charge, high-peak-current, femtosecond electron bunches. These characteristics are ideal for generating intense broadband terahertz (THz) pulses via coherent transition radiation. For LCLS and FACET respectively, the THz pulse duration is typically 20 and 80 fs RMS and can be tuned via the electron bunch duration; emission spectra span 3-30 THz and 0.5 THz-5 THz; and the energy in a quasi-half-cycle THz pulse is 0.2 and 0.6 mJ. The peak electric field at a THz focus has reached 4.4 GV/m (0.44 V/Å) at LCLS. This paper presents measurements of the terahertz pulses and preliminary observations of nonlinear materials response.
THz-wave parametric source and its imaging applications
NASA Astrophysics Data System (ADS)
Kawase, Kodo
2004-08-01
Widely tunable coherent terahertz (THz) wave generation has been demonstrated based on the parametric oscillation using MgO doped LiNbO3 crystal pumped by a Q-switched Nd:YAG laser. This method exhibits multiple advantages like wide tunability, coherency and compactness of its system. We have developed a novel basic technology for terahertz (THz) imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral transillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.
NASA Astrophysics Data System (ADS)
Abedi-Varaki, M.
2018-02-01
In this paper, the effects of planar magnetostatic wiggler and s-parameter on the terahertz (THz) radiation generation through rippled plasma have been investigated. Efficient THz radiation generation by photo-mixing of tophat lasers for rippled density plasma in the presence of the wiggler field has been presented. Fundamental equations for the analysis of the non-linear current density and THz radiation generation by wiggler magnetostatic field have been derived. It is shown that for the higher order of the tophat lasers, the values of THz amplitude are greater. In fact, the higher order of the tophat lasers has a sharp gradient in the intensity of lasers, which leads to a stronger nonlinear ponderomotive force and, consequently, a stronger current density. In addition, it is seen that by increasing s-parameter, the normalized transverse profile becomes more focused near the axis of y. Furthermore, it is observed that the normalized laser efficiency has a decreasing trend with increasing normalized THz frequency for different values of the wiggler field. Also, it is shown that by employing a greater order of the tophat lasers and a stronger wiggler field, the efficiency of order of 30% can be achieved. Moreover, it is found that we can control focus and intensity of THz radiation emitted in rippled plasma by choosing the appropriate order of the tophat lasers and tuning of the wiggler field.
2012-01-01
We report on efficient terahertz (THz) emission from high-electric-field-biased SiC structures with a natural superlattice at liquid helium temperatures. The emission spectrum demonstrates a single line, the maximum of which shifts linearly with increases in bias field. We attribute this emission to steady-state Bloch oscillations of electrons in the SiC natural superlattice. The properties of the THz emission agree fairly with the parameters of the Bloch oscillator regime, which have been proven by high-field electron transport studies of SiC structures with natural superlattices. PMID:23043773
High harmonic terahertz confocal gyrotron with nonuniform electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Wenjie; Guan, Xiaotong; Yan, Yang
2016-01-15
The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.
A high-efficiency regime for gas-phase terahertz lasers.
Wang, Fan; Lee, Jeongwon; Phillips, Dane J; Holliday, Samuel G; Chua, Song-Liang; Bravo-Abad, Jorge; Joannopoulos, John D; Soljačić, Marin; Johnson, Steven G; Everitt, Henry O
2018-06-11
We present both an innovative theoretical model and an experimental validation of a molecular gas optically pumped far-infrared (OPFIR) laser at 0.25 THz that exhibits 10× greater efficiency (39% of the Manley-Rowe limit) and 1,000× smaller volume than comparable commercial lasers. Unlike previous OPFIR-laser models involving only a few energy levels that failed even qualitatively to match experiments at high pressures, our ab initio theory matches experiments quantitatively, within experimental uncertainties with no free parameters, by accurately capturing the interplay of millions of degrees of freedom in the laser. We show that previous OPFIR lasers were inefficient simply by being too large and that high powers favor high pressures and small cavities. We believe that these results will revive interest in OPFIR laser as a powerful and compact source of terahertz radiation.
High-performance terahertz wave absorbers made of silicon-based metamaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Sheng; Zhu, Jianfei; Jiang, Wei
2015-08-17
Electromagnetic (EM) wave absorbers with high efficiency in different frequency bands have been extensively investigated for various applications. In this paper, we propose an ultra-broadband and polarization-insensitive terahertz metamaterial absorber based on a patterned lossy silicon substrate. Experimentally, a large absorption efficiency more than 95% in a frequency range of 0.9–2.5 THz was obtained up to a wave incident angle as large as 70°. Much broader absorption bandwidth and excellent oblique incidence absorption performance are numerically demonstrated. The underlying mechanisms due to the combination of a waveguide cavity mode and impedance-matched diffraction are analyzed in terms of the field patternsmore » and the scattering features. The monolithic THz absorber proposed here may find important applications in EM energy harvesting systems such as THz barometer or biosensor.« less
Efficient prediction of terahertz quantum cascade laser dynamics from steady-state simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnew, G.; Lim, Y. L.; Nikolić, M.
2015-04-20
Terahertz-frequency quantum cascade lasers (THz QCLs) based on bound-to-continuum active regions are difficult to model owing to their large number of quantum states. We present a computationally efficient reduced rate equation (RE) model that reproduces the experimentally observed variation of THz power with respect to drive current and heat-sink temperature. We also present dynamic (time-domain) simulations under a range of drive currents and predict an increase in modulation bandwidth as the current approaches the peak of the light–current curve, as observed experimentally in mid-infrared QCLs. We account for temperature and bias dependence of the carrier lifetimes, gain, and injection efficiency,more » calculated from a full rate equation model. The temperature dependence of the simulated threshold current, emitted power, and cut-off current are thus all reproduced accurately with only one fitting parameter, the interface roughness, in the full REs. We propose that the model could therefore be used for rapid dynamical simulation of QCL designs.« less
Ga metal nanoparticle-GaAs quantum molecule complexes for Terahertz generation.
Bietti, Sergio; Basso Basset, Francesco; Scarpellini, David; Fedorov, Alexey; Ballabio, Andrea; Esposito, Luca; Elborg, Martin; Kuroda, Takashi; Nemcsics, Akos; Toth, Lajos; Manzoni, Cristian; Vozzi, Caterina; Sanguinetti, Stefano
2018-06-18
A hybrid metal-semiconductor nanosystem for the generation of THz radiation, based on the fabrication of GaAs quantum molecules-Ga metal nanoparticles complexes through a self assembly approach, is proposed. The role of the growth parameters, the substrate temperature, the Ga and As flux during the quantum dot molecule fabrication and the metal nanoparticle alignment is discussed. The tuning of the relative positioning of quantum dot molecules and metal nanoparticles is obtained through the careful control of Ga droplet nucleation sites via Ga surface diffusion. The electronic structure of a typical quantum dot molecule was evaluated on the base of the morphological characterizations performed by Atomic Force Microscopy and cross sectional Scanning Electron Microscopy, and the predicted results confirmed by micro-photoluminescence experiments, showing that the Ga metal nanoparticle-GaAs quantum molecule complexes are suitable for terahertz generation from intraband transition. . © 2018 IOP Publishing Ltd.
Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides
Navarro-Cía, Miguel; Wu, Jiang; Liu, Huiyun; Mitrofanov, Oleg
2016-01-01
Coaxial waveguides exhibit no dispersion and therefore can serve as an ideal channel for transmission of broadband THz pulses. Implementation of THz coaxial waveguide systems however requires THz beams with radially-polarized distribution. We demonstrate the launching of THz pulses into coaxial waveguides using the effect of THz pulse generation at semiconductor surfaces. We find that the radial transient photo-currents produced upon optical excitation of the surface at normal incidence radiate a THz pulse with the field distribution matching the mode of the coaxial waveguide. In this simple scheme, the optical excitation beam diameter controls the spatial profile of the generated radially-polarized THz pulse and allows us to achieve efficient coupling into the TEM waveguide mode in a hollow coaxial THz waveguide. The TEM quasi-single mode THz waveguide excitation and non-dispersive propagation of a short THz pulse is verified experimentally by time-resolved near-field mapping of the THz field at the waveguide output. PMID:27941845
Regimes of enhanced electromagnetic emission in beam-plasma interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.
2015-11-15
The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whethermore » electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.« less
A field-emission based vacuum device for the generation of THz waves
NASA Astrophysics Data System (ADS)
Lin, Ming-Chieh
2005-03-01
Terahertz waves have been used to characterize the electronic, vibrational and compositional properties of solid, liquid and gas phase materials during the past decade. More and more applications in imaging science and technology call for the well development of THz wave sources. Amplification and generation of a high frequency electromagnetic wave are a common interest of field emission based devices. In the present work, we propose a vacuum electronic device based on field emission mechanism for the generation of THz waves. To verify our thinking and designs, the cold tests and the hot tests have been studied via the simulation tools, SUPERFISH and MAGIC. In the hot tests, two types of electron emission mechanisms are considered. One is the field emission and the other is the explosive emission. The preliminary design of the device is carried out and tested by the numerical simulations. The simulation results show that an electronic efficiency up to 4% can be achieved without employing any magnetic circuits.
Widely tunable telecom MEMS-VCSEL for terahertz photomixing.
Haidar, Mohammad Tanvir; Preu, Sascha; Paul, Sujoy; Gierl, Christian; Cesar, Julijan; Emsia, Ali; Küppers, Franko
2015-10-01
We report frequency-tunable terahertz (THz) generation with a photomixer driven by an ultra-broadband tunable micro-electro-mechanical system vertical-cavity surface-emitting laser (MEMS-VCSEL) and a fixed-wavelength VCSEL, as well as a tunable MEMS-VCSEL mixed with a distributed feedback (DFB) diode. A total frequency span of 3.4 THz is covered in direct detection mode and 3.23 THz in the homodyne mode. The tuning range is solely limited by the dynamic range of the photomixers and the Schottky diode/photoconductor used in the experiment.
Intense terahertz radiation from relativistic laser–plasma interactions
Liao, G. Q.; Li, Y. T.; Li, C.; ...
2016-11-02
The development of tabletop intense terahertz (THz) radiation sources is extremely important for THz science and applications. This study presents our measurements of intense THz radiation from relativistic laser–plasma interactions under different experimental conditions. Several THz generation mechanisms have been proposed and investigated, including coherent transition radiation (CTR) emitted by fast electrons from the target rear surface, transient current radiation at the front of the target, and mode conversion from electron plasma waves (EPWs) to THz waves. Finally, the results indicate that relativistic laser plasma is a promising driver of intense THz radiation sources.
Terahertz imaging through self-mixing in a quantum cascade laser.
Dean, Paul; Lim, Yah Leng; Valavanis, Alex; Kliese, Russell; Nikolić, Milan; Khanna, Suraj P; Lachab, Mohammad; Indjin, Dragan; Ikonić, Zoran; Harrison, Paul; Rakić, Aleksandar D; Linfield, Edmund H; Davies, A Giles
2011-07-01
We demonstrate terahertz (THz) frequency imaging using a single quantum cascade laser (QCL) device for both generation and sensing of THz radiation. Detection is achieved by utilizing the effect of self-mixing in the THz QCL, and, specifically, by monitoring perturbations to the voltage across the QCL, induced by light reflected from an external object back into the laser cavity. Self-mixing imaging offers high sensitivity, a potentially fast response, and a simple, compact optical design, and we show that it can be used to obtain high-resolution reflection images of exemplar structures.
Yamakawa, H.; Miyamoto, T.; Morimoto, T.; Yada, H.; Kinoshita, Y.; Sotome, M.; Kida, N.; Yamamoto, K.; Iwano, K.; Matsumoto, Y.; Watanabe, S.; Shimoi, Y.; Suda, M.; Yamamoto, H. M.; Mori, H.; Okamoto, H.
2016-01-01
In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity. PMID:26864779
Yamakawa, H; Miyamoto, T; Morimoto, T; Yada, H; Kinoshita, Y; Sotome, M; Kida, N; Yamamoto, K; Iwano, K; Matsumoto, Y; Watanabe, S; Shimoi, Y; Suda, M; Yamamoto, H M; Mori, H; Okamoto, H
2016-02-11
In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity.
Terahertz generation from laser-driven ultrafast current propagation along a wire target.
Zhuo, H B; Zhang, S J; Li, X H; Zhou, H Y; Li, X Z; Zou, D B; Yu, M Y; Wu, H C; Sheng, Z M; Zhou, C T
2017-01-01
Generation of intense coherent THz radiation by obliquely incidenting an intense laser pulse on a wire target is studied using particle-in-cell simulation. The laser-accelerated fast electrons are confined and guided along the surface of the wire, which then acts like a current-carrying line antenna and under appropriate conditions can emit electromagnetic radiation in the THz regime. For a driving laser intensity ∼3×10^{18}W/cm^{2} and pulse duration ∼10 fs, a transient current above 10 KA is produced on the wire surface. The emission-cone angle of the resulting ∼0.15 mJ (∼58 GV/m peak electric field) THz radiation is ∼30^{∘}. The conversion efficiency of laser-to-THz energy is ∼0.75%. A simple analytical model that well reproduces the simulated result is presented.
NASA Astrophysics Data System (ADS)
Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald
2008-10-01
Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.
Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald
2008-10-01
Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie et al. [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.
Generation of Elliptically Polarized Terahertz Waves from Antiferromagnetic Sandwiched Structure.
Zhou, Sheng; Zhang, Qiang; Fu, Shu-Fang; Wang, Xuan-Zhang; Song, Yu-Ling; Wang, Xiang-Guang; Qu, Xiu-Rong
2018-04-01
The generation of elliptically polarized electromagnetic wave of an antiferromagnetic (AF)/dielectric sandwiched structure in the terahertz range is studied. The frequency and external magnetic field can change the AF optical response, resulting in the generation of elliptical polarization. An especially useful geometry with high levels of the generation of elliptical polarization is found in the case where an incident electromagnetic wave perpendicularly illuminates the sandwiched structure, the AF anisotropy axis is vertical to the wave-vector and the external magnetic field is pointed along the wave-vector. In numerical calculations, the AF layer is FeF2 and the dielectric layers are ZnF2. Although the effect originates from the AF layer, it can be also influenced by the sandwiched structure. We found that the ZnF2/FeF2/ZnF2 structure possesses optimal rotation of the principal axis and ellipticity, which can reach up to about thrice that of a single FeF2 layer.
Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene.
Crosse, J A; Xu, Xiaodong; Sherwin, Mark S; Liu, R B
2014-09-24
In a semiconductor illuminated by a strong terahertz (THz) field, optically excited electron-hole pairs can recombine to emit light in a broad frequency comb evenly spaced by twice the THz frequency. Such high-order THz sideband generation is of interest both as an example of extreme nonlinear optics and also as a method for ultrafast electro-optical modulation. So far, this phenomenon has only been observed with large field strengths (~10 kV cm(-1)), an obstacle for technological applications. Here we predict that bi-layer graphene generates high-order sidebands at much weaker THz fields. We find that a THz field of strength 1 kV cm(-1) can produce a high-sideband spectrum of about 30 THz, 100 times broader than in GaAs. The sidebands are generated despite the absence of classical collisions, with the quantum coherence of the electron-hole pairs enabling recombination. These remarkable features lower the barrier to desktop electro-optical modulation at THz frequencies, facilitating ultrafast optical communications.
Consolino, Luigi; Jung, Seungyong; Campa, Annamaria; De Regis, Michele; Pal, Shovon; Kim, Jae Hyun; Fujita, Kazuue; Ito, Akio; Hitaka, Masahiro; Bartalini, Saverio; De Natale, Paolo; Belkin, Mikhail A.; Vitiello, Miriam Serena
2017-01-01
Terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers (THz DFG-QCLs) have recently emerged as the first monolithic electrically pumped semiconductor sources capable of operating at room temperature across the 1- to 6-THz range. Despite tremendous progress in power output, which now exceeds 1 mW in pulsed and 10 μW in continuous-wave regimes at room temperature, knowledge of the major figure of merits of these devices for high-precision spectroscopy, such as spectral purity and absolute frequency tunability, is still lacking. By exploiting a metrological grade system comprising a terahertz frequency comb synthesizer, we measure, for the first time, the free-running emission linewidth (LW), the tuning characteristics, and the absolute center frequency of individual emission lines of these sources with an uncertainty of 4 × 10−10. The unveiled emission LW (400 kHz at 1-ms integration time) indicates that DFG-QCLs are well suited to operate as local oscillators and to be used for a variety of metrological, spectroscopic, communication, and imaging applications that require narrow-LW THz sources. PMID:28879235
New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters
Zhang, Fan; Song, Kaijun; Fan, Yong
2017-01-01
A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model. PMID:28181514
Planar Submillimeter-Wave Mixer Technology with Integrated Antenna
NASA Technical Reports Server (NTRS)
Chattopadhyay, Gautam; Mehdi, Imran; Gill, John J.; Lee, Choonsup; lombart, Muria L.; Thomas, Betrand
2010-01-01
High-performance mixers at terahertz frequencies require good matching between the coupling circuits such as antennas and local oscillators and the diode embedding impedance. With the availability of amplifiers at submillimeter wavelengths and the need to have multi-pixel imagers and cameras, planar mixer architecture is required to have an integrated system. An integrated mixer with planar antenna provides a compact and optimized design at terahertz frequencies. Moreover, it leads to a planar architecture that enables efficient interconnect with submillimeter-wave amplifiers. In this architecture, a planar slot antenna is designed on a thin gallium arsenide (GaAs) membrane in such a way that the beam on either side of the membrane is symmetric and has good beam profile with high coupling efficiency. A coplanar waveguide (CPW) coupled Schottky diode mixer is designed and integrated with the antenna. In this architecture, the local oscillator (LO) is coupled through one side of the antenna and the RF from the other side, without requiring any beam sp litters or diplexers. The intermediate frequency (IF) comes out on a 50-ohm CPW line at the edge of the mixer chip, which can be wire-bonded to external circuits. This unique terahertz mixer has an integrated single planar antenna for coupling both the radio frequency (RF) input and LO injection without any diplexer or beamsplitters. The design utilizes novel planar slot antenna architecture on a 3- mthick GaAs membrane. This work is required to enable future multi-pixel terahertz receivers for astrophysics missions, and lightweight and compact receivers for planetary missions to the outer planets in our solar system. Also, this technology can be used in tera hertz radar imaging applications as well as for testing of quantum cascade lasers (QCLs).
Controlling Propagation Properties of Surface Plasmon Polariton at Terahertz Frequency
NASA Astrophysics Data System (ADS)
Gupta, Barun
Despite great scientific exploration since the 1900s, the terahertz range is one of the least explored regions of electromagnetic spectrum today. In the field of plasmonics, texturing and patterning allows for control over electromagnetic waves bound to the interface between a metal and the adjacent dielectric medium. The surface plasmon-polaritons (SPPs) display unique dispersion characteristics that depend upon the plasma frequency of the medium. In the long wavelength regime, where metals are highly conductive, such texturing can create an effective medium that can be characterized by an effective plasma frequency that is determined by the geometrical parameters of the surface structure. The terahertz (THz) spectral range offers unique opportunities to utilize such materials. This thesis describes a number of terahertz plasmonic devices, both passive and active, fabricated using different techniques. As an example, inkjet printing is exploited for fabricating two-dimensional plasmonic devices. In this case, we demonstrated the terahertz plasmonic structures in which the conductivity of the metallic film is varied spatially in order to further control the plasmonic response. Using a commercially available inkjet printers, in which one cartridge is filled with conductive silver ink and a second cartridge is filled with resistive carbon ink, computer generated drawings of plasmonic structures are printed in which the individual printed dots can have differing amounts of the two inks, thereby creating a spatial variation in the conductivity. The inkjet printing technique is limited to the two-dimensional structurers. In order to expand the capability of printing complex terahertz devices, which cannot otherwise be fabricated using standard fabricating techniques, we employed 3D printing techniques. 3D printing techniques using polymers to print out the complex structures. In the realm of active plasmonic devices, a wide range of innovative approaches have been developed utilizing a variety of materials. We discuss the use of SMAs for terahertz (THz) plasmonics that allows for switching between different physical geometries corresponding to different electromagnetic responses.
[Application of terahertz technology in medical testing and diagnosis].
Qi, Na; Zhang, Zhuo-Yong; Xiang, Yu-Hong
2013-08-01
Terahertz science and technology is increasingly emphasized in science and industry, and has progressed significantly in recent years. There is an important aspect of attention in the application of terahertz technology to medicine. The overview of the terahertz characters, terahertz spectroscopy and terahertz imaging technology is introduced. This paper focuses on reviewing the use of and research progress in terahertz spectroscopy and terahertz imaging technology in medical testing and diagnosis. Furthermore, the problems to be solved and development directions of terahertz spectroscopy and terahertz imaging technology are discussed.
Waveform-controlled terahertz radiation from the air filament produced by few-cycle laser pulses.
Bai, Ya; Song, Liwei; Xu, Rongjie; Li, Chuang; Liu, Peng; Zeng, Zhinan; Zhang, Zongxin; Lu, Haihe; Li, Ruxin; Xu, Zhizhan
2012-06-22
Waveform-controlled terahertz (THz) radiation is of great importance due to its potential application in THz sensing and coherent control of quantum systems. We demonstrated a novel scheme to generate waveform-controlled THz radiation from air plasma produced when carrier-envelope-phase (CEP) stabilized few-cycle laser pulses undergo filamentation in ambient air. We launched CEP-stabilized 10 fs-long (~1.7 optical cycles) laser pulses at 1.8 μm into air and found that the generated THz waveform can be controlled by varying the filament length and the CEP of driving laser pulses. Calculations using the photocurrent model and including the propagation effects well reproduce the experimental results, and the origins of various phase shifts in the filament are elucidated.
Terahertz transmission properties of silicon wafers using continuous-wave terahertz spectroscopy
NASA Astrophysics Data System (ADS)
Kim, Chihoon; Ahn, Jae Sung; Ji, Taeksoo; Eom, Joo Beom
2017-04-01
We present the spectral properties of Si wafers using continuous-wave terahertz (CW-THz) spectroscopy. By using a tunable laser source and a fixed distributed-feedback laser diode (DFB-LD), a stably tunable beat source for CW-THz spectroscopy system can be implemented. THz radiation is generated in the frequency range of 100 GHz-800 GHz by photomixing in a photoconductive antenna. We also measured CW-THz waveforms by changing the beat frequency and confirmed repeatability through repeated measurement. We calculated the peaks of the THz frequency by taking fast Fourier transforms (FFTs) of measured THz waveforms. The feasibility of CW-THz spectroscopy is demonstrated by the THz spectra of Si wafers with different resistivities, mobilities, and carrier concentrations. The results show that Si wafers with a lower resistivity absorb more THz waves. Thus, we expect our CW-THz system to have the advantage of being able to perform fast non-destructive analysis.
Planar Holographic Metasurfaces for Terahertz Focusing
Kuznetsov, Sergei A.; Astafev, Mikhail A.; Beruete, Miguel; Navarro-Cía, Miguel
2015-01-01
Scientists and laymen alike have always been fascinated by the ability of lenses and mirrors to control light. Now, with the advent of metamaterials and their two-dimensional counterpart metasurfaces, such components can be miniaturized and designed with additional functionalities, holding promise for system integration. To demonstrate this potential, here ultrathin reflection metasurfaces (also called metamirrors) designed for focusing terahertz radiation into a single spot and four spaced spots are proposed and experimentally investigated at the frequency of 0.35 THz. Each metasurface is designed using a computer-generated spatial distribution of the reflection phase. The phase variation within 360 deg is achieved via a topological morphing of the metasurface pattern from metallic patches to U-shaped and split-ring resonator elements, whose spectral response is derived from full-wave electromagnetic simulations. The proposed approach demonstrates a high-performance solution for creating low-cost and lightweight beam-shaping and beam-focusing devices for the terahertz band. PMID:25583565
Demonstration of a terahertz pure vector beam by tailoring geometric phase.
Wakayama, Toshitaka; Higashiguchi, Takeshi; Sakaue, Kazuyuki; Washio, Masakazu; Otani, Yukitoshi
2018-06-06
We demonstrate the creation of a vector beam by tailoring geometric phase of left- and right- circularly polarized beams. Such a vector beam with a uniform phase has not been demonstrated before because a vortex phase remains in the beam. We focus on vortex phase cancellation to generate vector beams in terahertz regions, and measure the geometric phase of the beam and its spatial distribution of polarization. We conduct proof-of-principle experiments for producing a vector beam with radial polarization and uniform phase at 0.36 THz. We determine the vortex phase of the vector beam to be below 4%, thus highlighting the extendibility and availability of the proposed concept to the super broadband spectral region from ultraviolet to terahertz. The extended range of our proposed techniques could lead to breakthroughs in the fields of microscopy, chiral nano-materials, and quantum information science.
A view of metals through the terahertz window
NASA Astrophysics Data System (ADS)
Dodge, Steve
2006-05-01
As electrons move through a metal, interaction with their environment tends to slow them down, causing the Drude peak in the optical conductivity to become narrower. The resulting peak width is typically in the terahertz frequency range that sits between microwaves the far infrared, too fast for conventional electronics and too slow for conventional infrared spectroscopy. With femtosecond laser techniques, however, coherent, broadband terahertz radiation can now be generated and detected with exquisite sensitivity, providing a new window onto electronic interactions in metals. I will discuss the application of this technique to a variety of metallic systems, including elemental lead, the nearly magnetic oxide metal CaRuO3, and CrV alloys that span the quantum phase transition from spin-density wave to paramagnetic metal. M. A. Gilmore, S. Kamal, D. M. Broun, and J. S. Dodge, Appl. Phys. Lett. 88, 141910 (2006).
NASA Astrophysics Data System (ADS)
Rawat, Priyanka; Rawat, Vinod; Gaur, Bineet; Purohit, Gunjan
2017-07-01
This paper explores the self-focusing of hollow Gaussian laser beam (HGLB) in collisionless magnetized plasma and its effect on the generation of THz radiation in the presence of relativistic-ponderomotive nonlinearity. The relativistic change of electron mass and electron density perturbation due to the ponderomotive force leads to self-focusing of the laser beam in plasma. Nonlinear coupling between the intense HGLB and electron plasma wave leads to generation of THz radiation in plasma. Resonant excitation of THz radiation at different frequencies of laser and electron plasma wave satisfies proper phase matching conditions. Appropriate expressions for the beam width parameter of the laser beam and the electric vector of the THz wave have been evaluated under the paraxial-ray and Wentzel-Kramers Brillouin approximations. It is found that the yield of THz amplitude depends on the focusing behaviour of laser beam, magnetic field, and background electron density. Numerical simulations have been carried out to investigate the effect of laser and plasma parameters on self-focusing of the laser beam and further its effect on the efficiency of the generated THz radiation.
NASA Astrophysics Data System (ADS)
Nafari, Mona; Aizin, Gregory R.; Jornet, Josep M.
2017-05-01
Wireless data rates have doubled every eighteen months for the last three decades. Following this trend, Terabit-per-second links will become a reality within the next five years. In this context, Terahertz (THz) band (0.1-10 THz) communication is envisioned as a key technology of the next decade. Despite major progress towards developing THz sources, compact signal generators above 1 THz able to efficiently work at room temperature are still missing. Recently, the use of hybrid graphene/semiconductor high-electron-mobility transistors (HEMT) has been proposed as a way to generate Surface Plasmon Polariton (SPP) waves at THz frequencies. Compact size, room-temperature operation and tunability of the graphene layer, in addition to possibility for large scale integration, motivate the exploration of this approach. In this paper, a simulation model of hybrid graphene/semiconductor HEMT-based THz sources is developed. More specifically, first, the necessary conditions for the so-called Dyakonov-Shur instability to arise within the HEMT channel are derived, and the impact of imperfect boundary conditions is analyzed. Second, the required conditions for coupling between a confined plasma wave in the HEMT channel and a SPP wave in graphene are derived, by starting from the coupling analysis between two 2DEG. Multi-physics simulation are conducted by integrating the hydrodynamic equations for the description of the HEMT device with Maxwell's equations for SPP modeling. Extensive results are provided to analyze the impact of different design elements on the THz signal source. This work will guide the experimental fabrication and characterization of the devices.
Microelectromechanically tunable multiband metamaterial with preserved isotropy
NASA Astrophysics Data System (ADS)
Pitchappa, Prakash; Ho, Chong Pei; Qian, You; Dhakar, Lokesh; Singh, Navab; Lee, Chengkuo
2015-06-01
We experimentally demonstrate a micromachined reconfigurable metamaterial with polarization independent characteristics for multiple resonances in terahertz spectral region. The metamaterial unit cell consists of eight out-of-plane deformable microcantilevers placed at each corner of an octagon ring. The octagon shaped unit cell geometry provides the desired rotational symmetry, while the out-of-plane movable cantilevers preserves the symmetry at different configurations of the metamaterial. The metamaterial is shown to provide polarization independent response for both electrical inductive-capacitive (eLC) resonance and dipolar resonance at all states of actuation. The proposed metamaterial has a switching range of 0.16 THz and 0.37 THz and a transmission intensity change of more than 0.2 and 0.7 for the eLC and dipolar resonances, respectively for both TE and TM modes. Further optimization of the metal layer thickness, provides an improvement of up to 80% modulation at 0.57 THz. The simultaneously tunable dual band isotropic metamaterial will enable the realization of high performance electro-optic devices that would facilitate numerous terahertz applications such as compressive terahertz imaging, miniaturized terahertz spectroscopy and next generation high speed wireless communication possible in the near future.
Ruchert, Clemens; Vicario, Carlo; Hauri, Christoph P
2012-03-01
We present the generation of high-power single-cycle terahertz (THz) pulses in the organic salt crystal 2-[3-(4-hydroxystyryl)-5.5-dimethylcyclohex-2-enylidene]malononitrile or OH1. Broadband THz radiation with a central frequency of 1.5 THz (λ(c)=200 μm) and high electric field strength of 440 kV/cm is produced by optical rectification driven by the signal of a powerful femtosecond optical parametric amplifier. A 1.5% pump to THz energy conversion efficiency is reported, and pulse energy stability better than 1% RMS is achieved. An approach toward the realization of higher field strength is discussed. © 2012 Optical Society of America
Nanotunneling Junction-based Hyperspectal Polarimetric Photodetector and Detection Method
NASA Technical Reports Server (NTRS)
Son, Kyung-ah (Inventor); Moon, Jeongsun J. (Inventor); Chattopadhyay, Goutam (Inventor); Liao, Anna (Inventor); Ting, David (Inventor)
2009-01-01
A photodetector, detector array, and method of operation thereof in which nanojunctions are formed by crossing layers of nanowires. The crossing nanowires are separated by a few nm thick electrical barrier layer which allows tunneling. Each nanojunction is coupled to a slot antenna for efficient and frequency-selective coupling to photo signals. The nanojunctions formed at the intersection of the crossing wires defines a vertical tunneling diode that rectifies the AC signal from a coupled antenna and generates a DC signal suitable for reforming a video image. The nanojunction sensor allows multi/hyper spectral imaging of radiation within a spectral band ranging from terahertz to visible light, and including infrared (IR) radiation. This new detection approach also offers unprecedented speed, sensitivity and fidelity at room temperature.
Optical bistability and multistability via double dark resonance in graphene nanostructure
NASA Astrophysics Data System (ADS)
Seyyed, Hossein Asadpour; G, Solookinejad; M, Panahi; E Ahmadi, Sangachin
2016-06-01
Electrons in graphene nanoribbons can lead to exceptionally strong optical responses in the infrared and terahertz regions owing to their unusual dispersion relation. Therefore, on the basis of quantum optics and solid-material scientific principles, we show that optical bistability and multistability can be generated in graphene nanostructure under strong magnetic field. We also show that by adjusting the intensity and detuning of infrared laser field, the threshold intensity and hysteresis loop can be manipulated efficiently. The effects of the electronic cooperation parameter which are directly proportional to the electronic number density and the length of the graphene sample are discussed. Our proposed model may be useful for the nextgeneration all-optical systems and information processing based on nano scale devices.
Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices
Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun
2015-01-01
Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices. PMID:26347288
Optically thin hybrid cavity for terahertz photo-conductive detectors
Thompson, Robert J.; Siday, T.; Glass, S.; ...
2017-01-23
Here, the efficiency of photoconductive (PC) devices, including terahertz detectors, is constrained by the bulk optical constants of PC materials. Here, we show that optical absorption in a PC layer can be modified substantially within a hybrid cavity containing nanoantennas and a Distributed Bragg Reflector. We find that a hybrid cavity, consisting of a GaAs PC layer of just 50 nm, can be used to absorb >75% of incident photons by trapping the light within the cavity. We provide an intuitive model, which describes the dependence of the optimum operation wavelength on the cavity thickness. We also find that themore » nanoantenna size is a critical parameter, small variations of which lead to both wavelength shifting and reduced absorption in the cavity, suggesting that impedance matching is key for achieving efficient absorption in the optically thin hybrid cavities.« less
Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices.
Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun
2015-09-08
Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices.
Liu, Changming; Wei, Xuli; Niu, Liting; Wang, Kejia; Yang, Zhengang; Liu, Jinsong
2016-06-13
We present an efficient method to discriminate orbital angular momentum (OAM) of the terahertz (THz) vortex beam using a diffractive mode transformer. The mode transformer performs a log-polar coordinate transformation of the input THz vortex beam, which consists of two 3D-printed diffractive elements. A following lens separates each transformed OAM mode to a different lateral position in its focal plane. This method enables a simultaneous measurement over multiple OAM modes of the THz vortex beam. We experimentally demonstrate the measurement of seven individual OAM modes and two multiplexed OAM modes, which is in good agreement with simulations.
Detection of Poisonous Herbs by Terahertz Time-Domain Spectroscopy
NASA Astrophysics Data System (ADS)
Zhang, H.; Li, Z.; Chen, T.; Liu, J.-J.
2018-03-01
The aim of this paper is the application of terahertz (THz) spectroscopy combined with chemometrics techniques to distinguish poisonous and non-poisonous herbs which both have a similar appearance. Spectra of one poisonous and two non-poisonous herbs (Gelsemium elegans, Lonicera japonica Thunb, and Ficus Hirta Vahl) were obtained in the range 0.2-1.4 THz by using a THz time-domain spectroscopy system. Principal component analysis (PCA) was used for feature extraction. The prediction accuracy of classification is between 97.78 to 100%. The results demonstrate an efficient and applicative method to distinguish poisonous herbs, and it may be implemented by using THz spectroscopy combined with chemometric algorithms.
Microspectroscopy with Terahertz bioMEMS
NASA Astrophysics Data System (ADS)
Akalin, Tahsin; Treizebré, Anthony
2006-04-01
Biological applications require more and more compact, sensitive and reliable microsystems. We will present solutions in order to realize a "microspectroscopy" up to Terahertz frequencies of various biological entities (living cell, neurons, proteins...). We investigate these entities in liquid phase. In a recent work, we have demonstrated a solution to excite efficiently a single wire transmission line [1]. The propagation mode is similar to a surface plasmon and known as a Goubau-mode [2]. The wire we used is extremely thin compared to other recent solutions at terahertz frequencies. There are three orders of magnitude in the size of the wire used by K. Wang and D.M. Mittleman. Typically the wire's width is 1μm compared to the 900μm diameter metal wire in [3]. Moreover our solution is in a planar configuration which is more suitable for microfluidic applications. We benefit from the high confinement of the electromagnetic field around this very thin gold wire to optimize the sensitivity of these Terahertz BioMEMS. Microfluidic channels are placed below the strip in a perpendicular direction. We will first present some properties of the Planar Goubau-Line (PGL) [4] and the measurements results obtained with structures fabricated on glass and quartz substrates. In a last part resonant structures and Mach-Zehnder type interferometers will also be presented.
Cramer, Joel; Seifert, Tom; Kronenberg, Alexander; Fuhrmann, Felix; Jakob, Gerhard; Jourdan, Martin; Kampfrath, Tobias; Kläui, Mathias
2018-02-14
We measure the inverse spin Hall effect of Cu 1-x Ir x thin films on yttrium iron garnet over a wide range of Ir concentrations (0.05 ⩽ x ⩽ 0.7). Spin currents are triggered through the spin Seebeck effect, either by a continuous (dc) temperature gradient or by ultrafast optical heating of the metal layer. The spin Hall current is detected by electrical contacts or measurement of the emitted terahertz radiation. With both approaches, we reveal the same Ir concentration dependence that follows a novel complex, nonmonotonous behavior as compared to previous studies. For small Ir concentrations a signal minimum is observed, whereas a pronounced maximum appears near the equiatomic composition. We identify this behavior as originating from the interplay of different spin Hall mechanisms as well as a concentration-dependent variation of the integrated spin current density in Cu 1-x Ir x . The coinciding results obtained for dc and ultrafast stimuli provide further support that the spin Seebeck effect extends to terahertz frequencies, thus enabling a transfer of established spintronic measurement schemes into the terahertz regime. Our findings also show that the studied material allows for efficient spin-to-charge conversion even on ultrafast time scales.
NASA Astrophysics Data System (ADS)
Vainshtein, Sergey N.; Duan, Guoyong; Mikhnev, Valeri A.; Zemlyakov, Valery E.; Egorkin, Vladimir I.; Kalyuzhnyy, Nikolay A.; Maleev, Nikolai A.; Näpänkangas, Juha; Sequeiros, Roberto Blanco; Kostamovaara, Juha T.
2018-05-01
Progress in terahertz spectroscopy and imaging is mostly associated with femtosecond laser-driven systems, while solid-state sources, mainly sub-millimetre integrated circuits, are still in an early development phase. As simple and cost-efficient an emitter as a Gunn oscillator could cause a breakthrough in the field, provided its frequency limitations could be overcome. Proposed here is an application of the recently discovered collapsing field domains effect that permits sub-THz oscillations in sub-micron semiconductor layers thanks to nanometer-scale powerfully ionizing domains arising due to negative differential mobility in extreme fields. This shifts the frequency limit by an order of magnitude relative to the conventional Gunn effect. Our first miniature picosecond pulsed sources cover the 100-200 GHz band and promise milliwatts up to ˜500 GHz. Thanks to the method of interferometrically enhanced time-domain imaging proposed here and the low single-shot jitter of ˜1 ps, our simple imaging system provides sufficient time-domain imaging contrast for fresh-tissue terahertz histology.
Metasurface for multi-channel terahertz beam splitters and polarization rotators
NASA Astrophysics Data System (ADS)
Zang, XiaoFei; Gong, HanHong; Li, Zhen; Xie, JingYa; Cheng, QingQing; Chen, Lin; Shkurinov, Alexander P.; Zhu, YiMing; Zhuang, SongLin
2018-04-01
Terahertz beam splitters and polarization rotators are two typical devices with wide applications ranging from terahertz communication to system integration. However, they are faced with severe challenges in manipulating THz waves in multiple channels, which is desirable for system integration and device miniaturization. Here, we propose a method to design ultra-thin multi-channel THz beam splitters and polarization rotators simultaneously. The reflected beams are divided into four beams with nearly the same density under illumination of linear-polarized THz waves, while the polarization of reflected beams in each channel is modulated with a rotation angle or invariable with respect to the incident THz waves, leading to the multi-channel polarization rotator (multiple polarization rotation in the reflective channels) and beam splitter, respectively. Reflective metasurfaces, created by patterning metal-rods with different orientations on a polyimide film, were fabricated and measured to demonstrate these characteristics. The proposed approach provides an efficient way of controlling polarization of THz waves in various channels, which significantly simplifies THz functional devices and the experimental system.
NASA Astrophysics Data System (ADS)
Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Liu, Chuang; Chen, Zhenlei
2017-06-01
We demonstrate a terahertz-wave parametric oscillator (TPO) with an asymmetrical porro-prism (PP) resonator configuration, consisting of a close PP corner reflector and a distant output mirror relative to the MgO:LiNbO3 crystal. Based on this cavity, frequency tuning of Stokes and the accompanied terahertz (THz) waves is realized just by rotating the plane mirror. Furthermore, THz output with high efficiency and wide tuning range is obtained. Compared with a conventional TPO employing a plane-parallel resonator of the same cavity length and output loss, the low end of the frequency tuning range is extended to 0.96 THz from 1.2 THz. The highest output obtained at 1.28 THz is enhanced by about 25%, and the oscillation threshold pump energy measured at 1.66 THz is reduced by about 4.5%. This resonator configuration also shows some potential to simplify the structure and application for intracavity TPOs.
Luo, Liang; Men, Long; Liu, Zhaoyu; ...
2017-06-01
How photoexcitations evolve into Coulomb-bound electron and hole pairs, called excitons, and unbound charge carriers is a key cross-cutting issue in photovoltaics and optoelectronics. Until now, the initial quantum dynamics following photoexcitation remains elusive in the hybrid perovskite system. Furthermore we reveal excitonic Rydberg states with distinct formation pathways by observing the multiple resonant, internal quantum transitions using ultrafast terahertz quasi-particle transport. Nonequilibrium emergent states evolve with a complex co-existence of excitons, carriers and phonons, where a delayed buildup of excitons under on- and off-resonant pumping conditions allows us to distinguish between the loss of electronic coherence and hot statemore » cooling processes. The nearly ~1 ps dephasing time, efficient electron scattering with discrete terahertz phonons and intermediate binding energy of ~13.5 meV in perovskites are distinct from conventional photovoltaic semiconductors. In addition to providing implications for coherent energy conversion, these are potentially relevant to the development of light-harvesting and electron-transport devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Liang; Men, Long; Liu, Zhaoyu
How photoexcitations evolve into Coulomb-bound electron and hole pairs, called excitons, and unbound charge carriers is a key cross-cutting issue in photovoltaics and optoelectronics. Until now, the initial quantum dynamics following photoexcitation remains elusive in the hybrid perovskite system. Furthermore we reveal excitonic Rydberg states with distinct formation pathways by observing the multiple resonant, internal quantum transitions using ultrafast terahertz quasi-particle transport. Nonequilibrium emergent states evolve with a complex co-existence of excitons, carriers and phonons, where a delayed buildup of excitons under on- and off-resonant pumping conditions allows us to distinguish between the loss of electronic coherence and hot statemore » cooling processes. The nearly ~1 ps dephasing time, efficient electron scattering with discrete terahertz phonons and intermediate binding energy of ~13.5 meV in perovskites are distinct from conventional photovoltaic semiconductors. In addition to providing implications for coherent energy conversion, these are potentially relevant to the development of light-harvesting and electron-transport devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding Xueyong; Li Hongfan; Lv Zhensu
Based on the mode-coupling method, numerical analysis is presented to demonstrate the influence of ripple taper on band-gap overlap in a coaxial Bragg structure operating at terahertz frequency. Results show that the interval between the band-gaps of the competing mode and the desired working mode is narrowed by use of positive-taper ripples, but is expanded if negative-taper ripples are employed, and the influence of the negative-taper ripples is obviously more advantageous than the positive-taper ripples; the band-gap overlap of modes can be efficiently separated by use of negative-taper ripples. The residual side-lobes of the frequency response in a coaxial Braggmore » structure with ripple taper also can be effectively suppressed by employing the windowing-function technique. These peculiarities provide potential advantage in constructing a coaxial Bragg cavity with high quality factor for single higher-order-mode operation of a high-power free-electron maser in the terahertz frequency range.« less
High frequency resolution terahertz time-domain spectroscopy
NASA Astrophysics Data System (ADS)
Sangala, Bagvanth Reddy
2013-12-01
A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.
Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes
NASA Astrophysics Data System (ADS)
Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng
2016-09-01
Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.
Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes.
Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng
2016-09-01
Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ∼400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.
NASA Astrophysics Data System (ADS)
Wu, Hui-Chun; Sheng, Zheng-Ming; Zhang, Jie
2008-04-01
We propose a scheme to generate single-cycle powerful terahertz (THz) pulses by ultrashort intense laser pulses obliquely incident on an underdense plasma slab of a few THz wavelengths in thickness. THz waves are radiated from a transient net current driven by the laser ponderomotive force in the plasma slab. Analysis and particle-in-cell simulations show that such a THz source is capable of providing power of megawatts to gigawatts, field strength of MV/cm-GV/cm, and broad tunability range, which is potentially useful for nonlinear and high-field THz science and applications.
Nagel, Michael; Bolivar, Peter Haring; Brucherseifer, Martin; Kurz, Heinrich; Bosserhoff, Anja; Büttner, Reinhard
2002-04-01
A promising label-free approach for the analysis of genetic material by means of detecting the hybridization of polynucleotides with electromagnetic waves at terahertz (THz) frequencies is presented. Using an integrated waveguide approach, incorporating resonant THz structures as sample carriers and transducers for the analysis of the DNA molecules, we achieve a sensitivity down to femtomolar levels. The approach is demonstrated with time-domain ultrafast techniques based on femtosecond laser pulses for generating and electro-optically detecting broadband THz signals, although the principle can certainly be transferred to other THz technologies.
Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept
NASA Astrophysics Data System (ADS)
Hernandez-Cardoso, G. G.; Rojas-Landeros, S. C.; Alfaro-Gomez, M.; Hernandez-Serrano, A. I.; Salas-Gutierrez, I.; Lemus-Bedolla, E.; Castillo-Guzman, A. R.; Lopez-Lemus, H. L.; Castro-Camus, E.
2017-02-01
Most people with diabetes suffer some deterioration of the feet. Diabetic foot syndrome causes ulceration in about 15% of cases and such deterioration leads to amputation in about 2.5% of diabetic patients, diminishing their quality of life and generating extraordinary costs for patients and public health systems. Currently, there is no objective method for the detection of diabetic foot syndrome in its early stages. We propose terahertz imaging as a method for the evaluation of such deterioration. This screening method could aid the prevention and medical treatment of this condition in the future.
Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Politano, Antonio; Knap, Wojciech; Vitiello, Miriam S.
2016-01-01
The ability to convert light into an electrical signal with high efficiencies and controllable dynamics, is a major need in photonics and optoelectronics. In the Terahertz (THz) frequency range, with its exceptional application possibilities in high data rate wireless communications, security, night-vision, biomedical or video-imaging and gas sensing, detection technologies providing efficiency and sensitivity performances that can be “engineered” from scratch, remain elusive. Here, by exploiting the inherent electrical and thermal in-plane anisotropy of a flexible thin flake of black-phosphorus (BP), we devise plasma-wave, thermoelectric and bolometric nano-detectors with a selective, switchable and controllable operating mechanism. All devices operates at room-temperature and are integrated on-chip with planar nanoantennas, which provide remarkable efficiencies through light-harvesting in the strongly sub-wavelength device channel. The achieved selective detection (∼5–8 V/W responsivity) and sensitivity performances (signal-to-noise ratio of 500), are here exploited to demonstrate the first concrete application of a phosphorus-based active THz device, for pharmaceutical and quality control imaging of macroscopic samples, in real-time and in a realistic setting. PMID:26847823
Application of Terahertz Field Enhancement Effect in Metal Microstructures
NASA Astrophysics Data System (ADS)
Nakajima, M.; Kurihara, T.; Tadokoro, Y.; Kang, B.; Takano, K.; Yamaguchi, K.; Watanabe, H.; Oto, K.; Suemoto, T.; Hangyo, M.
2016-12-01
Applications of high-field terahertz pulses are attractive in physics and terahertz technology. In this study, two applications related to high-intensity terahertz pulses are demonstrated. The field enhancement effect by subwavelength metallic microstructures is utilized for terahertz excitation measurement. The spin precession dynamics in magnetic materials was induced by a terahertz magnetic field. Spin precession was amplified by one order of magnitude in amplitude by the enhanced magnetic terahertz field in orthoferrite ErFeO3 with metal microstructures. The induced spin dynamics was analyzed and explained by LLG-LCR model. Moreover, a detection method for terahertz pulses was developed using a cholesteric liquid crystal at room temperature without any electronic devices. The beam profile of terahertz pulses was visualized and compared to other methods such as the knife edge method using pyroelectric detector and micro-bolometer array. The liquid crystal terahertz imager is very simple and has good applicability as a portable terahertz-sensing card.
Li, Weiwei; Lu, Yalin; He, Zhigang; Jia, Qika; Wang, Lin
2016-06-01
We propose to generate high-power terahertz (THz) radiation from a cylindrical dielectric loaded waveguide (DLW) excited by a direct-current electron beam with the harmonics generation method. The DLW supports a discrete set of modes that can be excited by an electron beam passing through the structure. The interaction of these modes with the co-propagating electron beam results in micro-bunching and the coherent enhancement of the wakefield radiation, which is dominated by the fundamental mode. By properly choosing the parameters of DLW and beam energy, the high order modes can be the harmonics of the fundamental one; thus, high frequency radiation corresponding to the high order modes will benefit from the dominating bunching process at the fundamental eigenfrequency and can also be coherently excited. With the proposed method, high power THz radiation can be obtained with an easily achievable electron beam and a large DLW structure.
Self-starting harmonic frequency comb generation in a quantum cascade laser
NASA Astrophysics Data System (ADS)
Kazakov, Dmitry; Piccardo, Marco; Wang, Yongrui; Chevalier, Paul; Mansuripur, Tobias S.; Xie, Feng; Zah, Chung-en; Lascola, Kevin; Belyanin, Alexey; Capasso, Federico
2017-12-01
Optical frequency combs1,2 establish a rigid phase-coherent link between microwave and optical domains and are emerging as high-precision tools in an increasing number of applications3. Frequency combs with large intermodal spacing are employed in the field of microwave photonics for radiofrequency arbitrary waveform synthesis4,5 and for the generation of terahertz tones of high spectral purity in future wireless communication networks6,7. Here, we demonstrate self-starting harmonic frequency comb generation with a terahertz repetition rate in a quantum cascade laser. The large intermodal spacing caused by the suppression of tens of adjacent cavity modes originates from a parametric contribution to the gain due to temporal modulations of population inversion in the laser8,9. Using multiheterodyne self-detection, the mode spacing of the harmonic comb is shown to be uniform to within 5 × 10-12 parts of the central frequency. This new harmonic comb state extends the range of applications of quantum cascade laser frequency combs10-13.
NASA Astrophysics Data System (ADS)
Chen, Tianyu; Nam, Yoon-Ho; Wang, Xinke; Han, Peng; Sun, Wenfeng; Feng, Shengfei; Ye, Jiasheng; Song, Jae-Won; Lee, Jung-Ho; Zhang, Chao; Zhang, Yan
2018-01-01
We present femtosecond optical pump-terahertz probe studies on the ultrafast dynamical processes of photo-generated charge carriers in silicon photovoltaic cells with various nanostructured surfaces and doping densities. The pump-probe measurements provide direct insight on the lifetime of photo-generated carriers, frequency-dependent complex dielectric response along with photoconductivity of silicon photovoltaic cells excited by optical pump pulses. A lifetime of photo-generated carriers of tens of nanosecond is identified from the time-dependent pump-induced attenuation of the terahertz transmission. In addition, we find a large value of the imaginary part of the dielectric function and of the real part of the photoconductivity in silicon photovoltaic cells with micron length nanowires. We attribute these findings to the result of defect-enhanced electron-photon interactions. Moreover, doping densities of phosphorous impurities in silicon photovoltaic cells are also quantified using the Drude-Smith model with our measured frequency-dependent complex photoconductivities.
Electro-Optic Generation and Detection of Femtosecond Electromagnetic Pulses
1991-11-20
electromagnetic pulses from an electro - optic crystal following their generation by electro - optic Cherenkov radiation, and their subsequent propagation and detection...in free space; (4) The measurement of subpicosecond electrical response of a new organic electrooptic material (polymer); (5) The observation of terahertz transition radiation from the surfaces of electro - optic crystals.
Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene
Crosse, J. A.; Xu, Xiaodong; Sherwin, Mark S.; Liu, R. B.
2014-01-01
In a semiconductor illuminated by a strong terahertz (THz) field, optically excited electron–hole pairs can recombine to emit light in a broad frequency comb evenly spaced by twice the THz frequency. Such high-order THz sideband generation is of interest both as an example of extreme nonlinear optics and also as a method for ultrafast electro-optical modulation. So far, this phenomenon has only been observed with large field strengths (~10 kV cm−1), an obstacle for technological applications. Here we predict that bi-layer graphene generates high-order sidebands at much weaker THz fields. We find that a THz field of strength 1 kV cm−1 can produce a high-sideband spectrum of about 30 THz, 100 times broader than in GaAs. The sidebands are generated despite the absence of classical collisions, with the quantum coherence of the electron–hole pairs enabling recombination. These remarkable features lower the barrier to desktop electro-optical modulation at THz frequencies, facilitating ultrafast optical communications. PMID:25249245
Terahertz Quantum Cascade Structures Using Step Wells And Longitudinal Optical-Phonon Scattering
2009-06-01
emit many photons, which allows for differential quantum efficiencies greater than unity and hence higher power output. QCLs have been successfully...maintained. The step in the well allows for high injection efficiency due to the spatial separation of the wavefunctions. A step quantum well, in which at...III.D.34), the photon density is determined to be ( )thiphotonphoton IILeAn − Γ = ητ (III.D.35) where the internal quantum efficiency
Research on terahertz properties of rat brain tissue sections during dehydration
NASA Astrophysics Data System (ADS)
Cui, Gangqiang; Liang, Jianfeng; Zhao, Hongwei; Zhao, Xianghui; Chang, Chao
2018-01-01
Biological tissue sections are always kept in a system purged with dry nitrogen for the measurement of terahertz spectrum. However, the injected nitrogen will cause dehydration of tissue sections, which will affect the accuracy of spectrum measurement. In this paper, terahertz time-domain spectrometer is used to measure the terahertz spectra of rat brain tissue sections during dehydration. The changes of terahertz properties, including terahertz transmittance, refractive index and extinction coefficient during dehydration are also analyzed. The amplitudes of terahertz time-domain spectra increase gradually during the dehydration process. Besides, the terahertz properties show obvious changes during the dehydration process. All the results indicate that the injected dry nitrogen has a significant effect on the terahertz spectra and properties of tissue sections. This study contributes to further research and application of terahertz technology in biomedical field.
Zou, Yi; Liu, Qiao; Yang, Xia; Huang, Hua-Chuan; Li, Jiang; Du, Liang-Hui; Li, Ze-Ren; Zhao, Jian-Heng; Zhu, Li-Guo
2017-01-01
We demonstrated that attenuated total reflectance terahertz time-domain spectroscopy (ATR THz-TDS) is able to monitor oxidative stress response of living human cells, which is proven in this work that it is an efficient non-invasive, label-free, real-time and in situ monitoring of cell death. Furthermore, the dielectric constant and dielectric loss of cultured living human breast epithelial cells, and along with their evolution under oxidative stress response induced by high concentration of H2O2, were quantitatively determined in the work. Our observation and results were finally confirmed using standard fluorescence-labeled flow cytometry measurements and visible fluorescence imaging. PMID:29359084
Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods
Smolyanskaya, O. A.; Schelkanova, I. J.; Kulya, M. S.; Odlyanitskiy, E. L.; Goryachev, I. S.; Tcypkin, A. N.; Grachev, Ya. V.; Toropova, Ya. G.; Tuchin, V. V.
2018-01-01
The optical clearing method has been widely used for different spectral ranges where it provides tissue transparency. In this work, we observed the enhanced penetration of the terahertz waves inside biological samples (skin, kidney, and cornea) treated with glycerol solutions inducing changes of optical and dielectric properties. It was supported by the observed trend of free-to-bound water ratio measured by the nuclear magnetic resonance (NMR) method. The terahertz clearing efficiency was found to be less for diabetic samples than for normal ones. Results of the numerical simulation proved that pulse deformation is due to bigger penetration depth caused by the reduction of absorption and refraction at optical clearing. PMID:29541513
High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xuemin; Shen, Changle; Jiang, Tao
2016-07-15
Terahertz quantum cascade lasers with a record output power up to ∼0.23 W in continuous wave mode were obtained. We show that the optimal 2.9-mm-long device operating at 3.11 THz has a low threshold current density of 270 A/cm{sup 2} at ∼15 K. The maximum operating temperature arrived at ∼65 K in continuous wave mode and the internal quantum efficiencies decreased from 0.53 to 0.19 for the devices with different cavity lengths. By using one convex lens with the effective focal length of 13 mm, the beam profile was collimated to be a quasi Gaussian distribution.
6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors.
Li, Hua; Wan, Wen-Jian; Tan, Zhi-Yong; Fu, Zhang-Long; Wang, Hai-Xia; Zhou, Tao; Li, Zi-Ping; Wang, Chang; Guo, Xu-Guang; Cao, Jun-Cheng
2017-06-14
The fast detection of terahertz radiation is of great importance for various applications such as fast imaging, high speed communications, and spectroscopy. Most commercial products capable of sensitively responding the terahertz radiation are thermal detectors, i.e., pyroelectric sensors and bolometers. This class of terahertz detectors is normally characterized by low modulation frequency (dozens or hundreds of Hz). Here we demonstrate the first fast semiconductor-based terahertz quantum well photodetectors by carefully designing the device structure and microwave transmission line for high frequency signal extraction. Modulation response bandwidth of gigahertz level is obtained. As an example, the 6.2-GHz modulated terahertz light emitted from a Fabry-Pérot terahertz quantum cascade laser is successfully detected using the fast terahertz quantum well photodetector. In addition to the fast terahertz detection, the technique presented in this work can also be used for optically characterizing the frequency stability of terahertz quantum cascade lasers, heterodyne detections and photomixing applications.
Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz.
Hornstein, Melissa K; Bajaj, Vikram S; Griffin, Robert G; Temkin, Richard J
2007-02-01
The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE(2) (,) (3) (,) (1) mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents.
Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz
Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.
2007-01-01
The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE2,3,1 mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents. PMID:17687412
Toward realizing high power semiconductor terahertz laser sources at room temperature
NASA Astrophysics Data System (ADS)
Razeghi, Manijeh
2011-05-01
The terahertz (THz) spectral range offers promising applications in science, industry, and military. THz penetration through nonconductors (fabrics, wood, plastic) enables a more efficient way of performing security checks (for example at airports), as illegal drugs and explosives could be detected. Being a non-ionizing radiation, THz radiation is environment-friendly enabling a safer analysis environment than conventional X-ray based techniques. However, the lack of a compact room temperature THz laser source greatly hinders mass deployment of THz systems in security check points and medical centers. In the past decade, tremendous development has been made in GaAs/AlGaAs based THz Quantum Cascade Laser (QCLs), with maximum operating temperatures close to 200 K (without magnetic field). However, higher temperature operation is severely limited by a small LO-phonon energy (~ 36 meV) in this material system. With a much larger LO-phonon energy of ~ 90 meV, III-Nitrides are promising candidates for room temperature THz lasers. However, realizing high quality material for GaN-based intersubband devices presents a significant challenge. Advances with this approach will be presented. Alternatively, recent demonstration of InP based mid-infrared QCLs with extremely high peak power of 120 W at room temperature opens up the possibility of producing high power THz emission with difference frequency generation through two mid-infrared wavelengths.
Nonlinear terahertz coherent excitation of vibrational modes of liquids.
Allodi, Marco A; Finneran, Ian A; Blake, Geoffrey A
2015-12-21
We report the first coherent excitation of intramolecular vibrational modes via the nonlinear interaction of a TeraHertz (THz) light field with molecular liquids. A terahertz-terahertz-Raman pulse sequence prepares the coherences with a broadband, high-energy, (sub)picosecond terahertz pulse, that are then measured in a terahertz Kerr effect spectrometer via phase-sensitive, heterodyne detection with an optical pulse. The spectrometer reported here has broader terahertz frequency coverage, and an increased sensitivity relative to previously reported terahertz Kerr effect experiments. Vibrational coherences are observed in liquid diiodomethane at 3.66 THz (122 cm(-1)), and in carbon tetrachloride at 6.50 THz (217 cm(-1)), in exact agreement with literature values of those intramolecular modes. This work opens the door to 2D spectroscopies, nonlinear in terahertz field, that can study the dynamics of condensed-phase molecular systems, as well as coherent control at terahertz frequencies.
Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration.
Ye, Longfang; Xiao, Yifan; Liu, Na; Song, Zhengyong; Zhang, Wei; Liu, Qing Huo
2017-01-23
We proposed a novel planar terahertz (THz) plasmonic waveguide with folded stub arrays to achieve excellent terahertz propagation performance with tight field confinement and compact size based on the concept of spoof surface plasmon polaritons (spoof SPPs). It is found that the waveguide propagation characteristics can be directly manipulated by increasing the length of the folded stubs without increasing its lateral dimension, which exhibits much lower asymptotic frequency of the dispersion relation and even tighter terahertz field confinement than conventional plasmonic waveguides with rectangular stub arrays. Based on this waveguiding scheme, a terahertz concentrator with gradual step-length folded stubs is proposed to achieve high terahertz field enhancement, and an enhancement factor greater than 20 is demonstrated. This work offers a new perspective on very confined terahertz propagation and concentration, which may have promising potential applications in various integrated terahertz plasmonic circuits and devices, terahertz sensing and terahertz nonlinear optics.
Generation and investigation of terahertz Airy beam realized using parallel-plate waveguides
NASA Astrophysics Data System (ADS)
Wu, Mengru; Lang, Tingting; Shi, Guohua; Han, Zhanghua
2018-03-01
In this paper, the launching of Airy beam in the terahertz region using waveguiding structures was proposed, designed and numerically characterized. By properly designing the waveguide slit width and the packing number in different sections of parallel-plate waveguides (PPWGs) array, arbitrary phase delay and lateral position-dependent amplitude transmission through the structure, required to realize the target Airy beam profile, can be easily fulfilled. Airy beams working at the frequency of 0.3 THz with good non-diffracting, self-bending, and self-healing features are demonstrated. This study represents a new alternative to scattering-based metasurface structures, and can be utilized in many modern applications.
Lo, Mu-Chieh; Guzmán, Robinson; Gordón, Carlos; Carpintero, Guillermo
2017-04-15
This Letter presents a photonics-based millimeter wave and terahertz frequency synthesizer using a monolithic InP photonic integrated circuit composed of a mode-locked laser (MLL) and two pulse interleaver stages to multiply the repetition rate frequency. The MLL is a multiple colliding pulse MLL producing an 80 GHz repetition rate pulse train. Through two consecutive monolithic pulse interleaver structures, each doubling the repetition rate, we demonstrate the achievement of 160 and 320 GHz. The fabrication was done on a multi-project wafer run of a generic InP photonic technology platform.
Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials
NASA Astrophysics Data System (ADS)
Xu, Hui; Zhao, Mingzhuo; Chen, Zhiquan; Zheng, Mingfei; Xiong, Cuixiu; Zhang, Baihui; Li, Hongjian
2018-05-01
We theoretically investigate the sensing characteristics based on tunable Fano resonance in terahertz graphene-layered metamaterials. A Fano phenomenon comes from destructive interference in a narrow frequency range, and it can lead to a high figure of merit of ˜9786. A simple model for sensitivity is presented, and the sensitivity can reach up to 7885 nm/RIU. Besides, the Fano peak becomes more and more unobvious as symmetry breaking slowly recovers. We use an appropriate theoretical theory to explain the generation of Fano phenomena. Our proposed structure and investigation may pave the way for fundamental research of nanosensor applications and designs in highly integrated optical circuits.
Terahertz science and technology of carbon nanomaterials.
Hartmann, R R; Kono, J; Portnoi, M E
2014-08-15
The diverse applications of terahertz (THz) radiation and its importance to fundamental science makes finding ways to generate, manipulate and detect THz radiation one of the key areas of modern applied physics. One approach is to utilize carbon nanomaterials, in particular, single-wall carbon nanotubes and graphene. Their novel optical and electronic properties offer much promise to the field of THz science and technology. This article describes the past, current, and future of THz science and technology of carbon nanotubes and graphene. We will review fundamental studies such as THz dynamic conductivity, THz nonlinearities and ultrafast carrier dynamics as well as THz applications such as THz sources, detectors, modulators, antennas and polarizers.
On-chip, self-detected terahertz dual-comb source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rösch, Markus, E-mail: mroesch@phys.ethz.ch; Scalari, Giacomo, E-mail: scalari@phys.ethz.ch; Villares, Gustavo
2016-04-25
We present a directly generated on-chip dual-comb source at terahertz (THz) frequencies. The multi-heterodyne beating signal of two free-running THz quantum cascade laser frequency combs is measured electrically using one of the combs as a detector, fully exploiting the unique characteristics of quantum cascade active regions. Up to 30 modes can be detected corresponding to a spectral bandwidth of 630 GHz, being the available bandwidth of the dual comb configuration. The multi-heterodyne signal is used to investigate the equidistance of the comb modes showing an accuracy of 10{sup −12} at the carrier frequency of 2.5 THz.
Real-time, continuous-wave terahertz imaging using a microbolometer focal-plane array
NASA Technical Reports Server (NTRS)
Hu, Qing (Inventor); Min Lee, Alan W. (Inventor)
2010-01-01
The present invention generally provides a terahertz (THz) imaging system that includes a source for generating radiation (e.g., a quantum cascade laser) having one or more frequencies in a range of about 0.1 THz to about 10 THz, and a two-dimensional detector array comprising a plurality of radiation detecting elements that are capable of detecting radiation in that frequency range. An optical system directs radiation from the source to an object to be imaged. The detector array detects at least a portion of the radiation transmitted through the object (or reflected by the object) so as to form a THz image of that object.
NASA Astrophysics Data System (ADS)
Kalinauskaite, Eimante; Murphy, Anthony; McAuley, Ian; Trappe, Neil A.; Bracken, Colm P.; McCarthy, Darragh N.; Doherty, Stephen; Gradziel, Marcin L.; O'Sullivan, Creidhe; Maffei, Bruno; Lamarre, Jean-Michel A.; Ade, Peter A. R.; Savini, Giorgio
2016-07-01
Multimode horn antennas can be utilized as high efficiency feeds for bolometric detectors, providing increased throughput and sensitivity over single mode feeds, while also ensuring good control of beam pattern characteristics. Multimode horns were employed in the highest frequency channels of the European Space Agency Planck Telescope, and have been proposed for future terahertz instrumentation, such as SAFARI for SPICA. The radiation pattern of a multimode horn is affected by the details of the coupling of the higher order waveguide modes to the bolometer making the modeling more complicated than in the case of a single mode system. A typical cavity coupled bolometer system can be most efficiently simulated using mode matching, typically with smooth walled waveguide modes as the basis and computing an overall scattering matrix for the horn-waveguide-cavity system that includes the power absorption by the absorber. In this paper we present how to include a cavity coupled bolometer, modelled as a thin absorbing film with particular interest in investigating the cavity configuration for optimizing power absorption. As an example, the possible improvements from offsetting the axis of a cylindrically symmetric absorbing cavity from that of a circular waveguide feeding it (thus trapping more power in the cavity) are discussed. Another issue is the effect on the optical efficiency of the detectors of the presence of any gaps, through which power can escape. To model these effects required that existing in-house mode matching software, which calculates the scattering matrices for axially symmetric waveguide structures, be extended to be able to handle offset junctions and free space gaps. As part of this process the complete software code 'PySCATTER' was developed in Python. The approach can be applied to proposed terahertz systems, such as SPICASAFARI.
Passive and hybrid mode locking in multi-section terahertz quantum cascade lasers
NASA Astrophysics Data System (ADS)
Tzenov, P.; Babushkin, I.; Arkhipov, R.; Arkhipov, M.; Rosanov, N.; Morgner, U.; Jirauschek, C.
2018-05-01
It is believed that passive mode locking is virtually impossible in quantum cascade lasers (QCLs) because of too fast carrier relaxation time. Here, we revisit this possibility and theoretically show that stable mode locking and pulse durations in the few cycle regime at terahertz (THz) frequencies are possible in suitably engineered bound-to-continuum QCLs. We achieve this by utilizing a multi-section cavity geometry with alternating gain and absorber sections. The critical ingredients are the very strong coupling of the absorber to both field and environment as well as a fast absorber carrier recovery dynamics. Under these conditions, even if the gain relaxation time is several times faster than the cavity round trip time, generation of few-cycle pulses is feasible. We investigate three different approaches for ultrashort pulse generation via THz quantum cascade lasers, namely passive, hybrid and colliding pulse mode locking.
Observation of broadband terahertz wave generation from liquid water
NASA Astrophysics Data System (ADS)
Jin, Qi; E, Yiwen; Williams, Kaia; Dai, Jianming; Zhang, X.-C.
2017-08-01
Bulk liquid water is a strong absorber in the terahertz (THz) frequency range, due to which liquid water has historically been sworn off as a source for THz radiation. Here, we experimentally demonstrate the generation of broadband THz waves from liquid water excited by femtosecond laser pulses. Our measurements reveal the critical dependence of the THz field upon the relative position between the water film and the focal point of the laser beam. The THz radiation from liquid water shows distinct characteristics when compared with the THz radiation from air plasmas with single color optical excitation. First, the THz field is maximized with the laser beam of longer pulse durations. In addition, the p-polarized component of the emitted THz waves will be influenced by the polarization of the optical excitation beam. It is also shown that the energy of the THz radiation is linearly dependent on the excitation pulse energy.
Piccardo, Marco; Chevalier, Paul; Mansuripur, Tobias S; Kazakov, Dmitry; Wang, Yongrui; Rubin, Noah A; Meadowcroft, Lauren; Belyanin, Alexey; Capasso, Federico
2018-04-16
The recently discovered ability of the quantum cascade laser to produce a harmonic frequency comb has attracted new interest in these devices for both applications and fundamental laser physics. In this review we present an extensive experimental phenomenology of the harmonic state, including its appearance in mid-infrared and terahertz quantum cascade lasers, studies of its destabilization induced by delayed optical feedback, and the assessment of its frequency comb nature. A theoretical model explaining its origin as due to the mutual interaction of population gratings and population pulsations inside the laser cavity will be described. We explore different approaches to control the spacing of the harmonic state, such as optical injection seeding and variation of the device temperature. Prospective applications of the harmonic state include microwave and terahertz generation, picosecond pulse generation in the mid-infrared, and broadband spectroscopy.
Complex extreme learning machine applications in terahertz pulsed signals feature sets.
Yin, X-X; Hadjiloucas, S; Zhang, Y
2014-11-01
This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm should also be very useful in other applications requiring the classification of very large datasets. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Nguyen, A; González de Alaiza Martínez, P; Déchard, J; Thiele, I; Babushkin, I; Skupin, S; Bergé, L
2017-03-06
We theoretically and numerically study the influence of both instantaneous and Raman-delayed Kerr nonlinearities as well as a long-wavelength pump in the terahertz (THz) emissions produced by two-color femtosecond filaments in air. Although the Raman-delayed nonlinearity induced by air molecules weakens THz generation, four-wave mixing is found to impact the THz spectra accumulated upon propagation via self-, cross-phase modulations and self-steepening. Besides, using the local current theory, we show that the scaling of laser-to-THz conversion efficiency with the fundamental laser wavelength strongly depends on the relative phase between the two colors, the pulse duration and shape, rendering a universal scaling law impossible. Scaling laws in powers of the pump wavelength may only provide a rough estimate of the increase in the THz yield. We confront these results with comprehensive numerical simulations of strongly focused pulses and of filaments propagating over meter-range distances.
NASA Technical Reports Server (NTRS)
Starinshak, David P.; Smith, Nathan D.; Wilson, Jeffrey D.
2008-01-01
The electromagnetic effects of conventional dielectrics, anisotropic dielectrics, and metamaterials were modeled in a terahertz-frequency folded-waveguide slow-wave circuit. Results of attempts to utilize these materials to increase efficiency are presented.
Performance modeling of terahertz (THz) and millimeter waves (mmW) pupil plane imaging
NASA Astrophysics Data System (ADS)
Mohammadian, Nafiseh; Furxhi, Orges; Zhang, Lei; Offermans, Peter; Ghazi, Galia; Driggers, Ronald
2018-05-01
Terahertz- (THz) and millimeter-wave sensors are becoming more important in industrial, security, medical, and defense applications. A major problem in these sensing areas is the resolution, sensitivity, and visual acuity of the imaging systems. There are different fundamental parameters in designing a system that have significant effects on the imaging performance. The performance of THz systems can be discussed in terms of two characteristics: sensitivity and spatial resolution. New approaches for design and manufacturing of THz imagers are a vital basis for developing future applications. Photonics solutions have been at the technological forefront in THz band applications. A single scan antenna does not provide reasonable resolution, sensitivity, and speed. An effective approach to imaging is placing a high-performance antenna in a two-dimensional antenna array to achieve higher radiation efficiency and higher resolution in the imaging systems. Here, we present the performance modeling of a pupil plane imaging system to find the resolution and sensitivity efficiency of the imaging system.
Microscopic origins of the terahertz carrier relaxation and cooling dynamics in graphene
Mihnev, Momchil T.; Kadi, Faris; Divin, Charles J.; Winzer, Torben; Lee, Seunghyun; Liu, Che-Hung; Zhong, Zhaohui; Berger, Claire; de Heer, Walt A.; Malic, Ermin; Knorr, Andreas; Norris, Theodore B.
2016-01-01
The ultrafast dynamics of hot carriers in graphene are key to both understanding of fundamental carrier–carrier interactions and carrier–phonon relaxation processes in two-dimensional materials, and understanding of the physics underlying novel high-speed electronic and optoelectronic devices. Many recent experiments on hot carriers using terahertz spectroscopy and related techniques have interpreted the variety of observed signals within phenomenological frameworks, and sometimes invoke extrinsic effects such as disorder. Here, we present an integrated experimental and theoretical programme, using ultrafast time-resolved terahertz spectroscopy combined with microscopic modelling, to systematically investigate the hot-carrier dynamics in a wide array of graphene samples having varying amounts of disorder and with either high or low doping levels. The theory reproduces the observed dynamics quantitatively without the need to invoke any fitting parameters, phenomenological models or extrinsic effects such as disorder. We demonstrate that the dynamics are dominated by the combined effect of efficient carrier–carrier scattering, which maintains a thermalized carrier distribution, and carrier–optical–phonon scattering, which removes energy from the carrier liquid. PMID:27221060
Stimulated Emission of Terahertz Radiation from Internal ExcitonTransitions in Cu2O
NASA Astrophysics Data System (ADS)
Schmid, B. A.; Huber, R.; Shen, Y. R.; Kaindl, R. A.; Chemla, D. S.
2006-03-01
Excitons are among the most fundamental optical excitation modes in semiconductors. Resonant infrared pulses have been used to sensitively probe absorptive transitions between hydrogen-like bound pair states [1,2]. We report the first observation of the reverse quantum process: stimulated emission of electromagnetic radiation from intra-excitonic transitions [3]. Broadband terahertz pulses monitor the far-infrared electromagnetic response of Cu2O after ultrafast resonant photogeneration of 3p excitons. Stimulated emission from the 3p to the energetically lower 2s bound level occurs at a photon energy of 6.6 meV, with a cross section of ˜10-14 cm^2. Simultaneous excitation of both exciton levels, in turn, drives quantum beats which lead to efficient terahertz emission sharply peaked at the difference frequency. Our results demonstrate a new fundamental process of THz quantum optics and highlight analogies and differences between excitonic and atomic systems. [1] R. A. Kaindl et al., Nature 423, 734 (2003). [2] M. Kubouchi et al., Phys. Rev. Lett. 94, 016403 (2005). [3] R. Huber et al., Phys. Rev. Lett., to appear.
Microstructured optical fibers for terahertz waveguiding regime by using an analytical field model
NASA Astrophysics Data System (ADS)
Sharma, Dinesh Kumar; Sharma, Anurag; Tripathi, Saurabh Mani
2017-12-01
Microstructured optical fibres (MOFs) are seen as novel optical waveguide for the potential applications in the terahertz (THz) band as they provide a flexible route towards THz waveguiding. Using the analytical field model (Sharma et al., 2014) developed for index-guiding MOFs with hexagonal lattice of circular air-holes in the photonic crystal cladding; we aim to study the propagation characteristics such as effective index, near and the far-field radiation patterns and its evolution from near-to-far-field domain, spot size, effective mode area, and the numerical aperture at the THz regime. Further, we present an analytical field expression for the next higher-order mode of the MOF for studying the modal properties at terahertz frequencies. Also, we investigate the mode cut-off conditions for identifying the single-mode operation range at THz frequencies. Emphasis is put on studying the coupling characteristics of MOF geometries for efficient mode coupling. Comparisons with available experimental and numerical simulation results, e.g., those based on the full-vector finite element method (FEM) and the finite-difference frequency-domain (FDFD) method have been included.
Tuning a Tetrahertz Wire Laser
NASA Technical Reports Server (NTRS)
Qin, Qi; Williams, Benjamin S.; Kumar, Sushil; Reno, John L.; Hu, Qing
2009-01-01
Tunable terahertz lasers are desirable in applications in sensing and spectroscopy because many biochemical species have strong spectral fingerprints at terahertz frequencies. Conventionally, the frequency of a laser is tuned in a similar manner to a stringed musical instrument, in which pitch is varied by changing the length of the string (the longitudinal component of the wave vector) and/ or its tension (the refractive index). However, such methods are difficult to implement in terahertz semiconductor lasers because of their poor outcoupling efficiencies. Here, we demonstrate a novel tuning mechanism based on a unique 'wire laser' device for which the transverse dimension w is much much less than lambda. Placing a movable object close to the wire laser manipulates a large fraction of the waveguided mode propagating outside the cavity, thereby tuning its resonant frequency. Continuous single-mode redshift and blueshift tuning is demonstrated for the same device by using either a dielectric or metallic movable object. In combination, this enables a frequency tuning of approximately equal to 137 GHz (3.6%) from a single laser device at approximately equal to 3.8 THz.
NASA Astrophysics Data System (ADS)
Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Khurgin, Jacob B.; Jalali, Bahram
2010-02-01
Bulk centrosymmetric silicon lacks second-order optical nonlinearity χ(2) - a foundational component of nonlinear optics. Here, we propose a new class of photonic device which enables χ(2) as well as quasi-phase matching based on periodic stress fields in silicon - periodically-poled silicon (PePSi). This concept adds the periodic poling capability to silicon photonics, and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on χ(2)) effects. The concept can also be simply achieved by having periodic arrangement of stressed thin films along a silicon waveguide. As an example of the utility, we present simulations showing that mid-wave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50% based on χ(2) values measurements for strained silicon reported in the literature [Jacobson et al. Nature 441, 199 (2006)]. The use of PePSi for frequency conversion can also be extended to terahertz generation. With integrated piezoelectric material, dynamically control of χ(2)nonlinearity in PePSi waveguide may also be achieved. The successful realization of PePSi based devices depends on the strength of the stress induced χ(2) in silicon. Presently, there exists a significant discrepancy in the literature between the theoretical and experimentally measured values. We present a simple theoretical model that produces result consistent with prior theoretical works and use this model to identify possible reasons for this discrepancy.
Ahn, K J; Milde, F; Knorr, A
2007-01-12
Acoustic wave excitation of semiconductor quantum dots generates resonance fluorescence of electronic intersublevel excitations. Our theoretical analysis predicts acoustoluminescence, in particular, a conversion of acoustic into electromagnetic THz waves over a broad spectral range.
Fingerprint extraction from interference destruction terahertz spectrum.
Xiong, Wei; Shen, Jingling
2010-10-11
In this paper, periodic peaks in a terahertz absorption spectrum are confirmed to be induced from interference effects. Theoretically, we explained the periodic peaks and calculated the locations of them. Accordingly, a technique was suggested, with which the interference peaks in a terahertz spectrum can be eliminated and therefore a real terahertz absorption spectrum can be obtained. Experimentally, a sample, Methamphetamine, was investigated and its terahertz fingerprint was successfully extracted from its interference destruction spectrum. This technique is useful in getting samples' terahertz fingerprint spectra, and furthermore provides a fast nondestructive testing method using a large size terahertz beam to identify materials.
Microfabricated Circuits for Terahertz Wave Amplification and Terahertz Biosensors
NASA Astrophysics Data System (ADS)
Fawole, Olutosin Charles
The terahertz frequency band extends from deep infrared (100 THz) down to millimeter waves (0.4 THz), and this band was mostly inaccessible due to the lack of appropriate sources and detectors. Those with access to this band had to endure the small-intensity pulsed signals (nanowatts to microwatts) that the terahertz sources of those times could provide. In recent years, however, sufficient development has led to the availability of terahertz sources with sufficient power (1-100 muW) and the ease of use these sources has in turn enabled researchers to develop newer sources, detectors, and application areas. The terahertz regime is interesting because a) many molecules have vibrational, rotation and transition absorption bands in this regime, b) the terahertz electromagnetic wavelength is sufficiently small to resolve centimeter to millimeter scale objects, and c) scattering and absorption in metals in the terahertz regime make it very challenging to devise terahertz signal processing circuits. Thus, performing terahertz reflection/transmission measurements may enable precise identification of chemicals in a sample. Furthermore, small wavelengths and strong scattering by metallic objects make imaging with terahertz waves quite attractive. Finally, the ability to devise terahertz communication circuits and links will provide access to a frequency domain that is restricted and not available to others. One of the main objectives of this work is to develop 0.75 - 1.1 terahertz (free space wavelength 272 mum - 400 ?mum) amplifiers. Another objective of this work is to explore the suitability of terahertz waves in biological imaging and sensing. The terahertz amplifiers developed in this work consisted of distributed components such as rectangular waveguides and cylindrical dielectric resonators. In contrast to discrete amplifiers, which are based on solid-state devices, distributed traveling wave amplifiers can potentially handle and produce larger powers. Three different distributed terahertz amplifier circuits were considered in this work. These were based on a) coupled dielectric resonators, b) dielectric waveguides with periodic slots, and c) metallic meandering waveguides. The result of the hot test of the last circuit on interaction with an electron beam energy source yielded an amplification of 12 dB of a -55 dBm, 0.9 terahertz signal over 1 gigahertz bandwidth. The electron beam acceleration voltage was 4.8 kV and its current was approximately 20 microamps. The terahertz biosensing system developed in this work was used to study the unique interaction of terahertz waves with the chemical and physical components of biological tissues, and the products of biochemical reactions. A terahertz near-field imaging system was also developed to image mouse brain slices, plants, and bug wings. In addition, this work also demonstrated the capabilities and limitations of terahertz waves for the real-time noninvasive monitoring of bioethanol production by yeast cells.
Millimeter-wave and terahertz integrated circuit antennas
NASA Technical Reports Server (NTRS)
Rebeiz, Gabriel M.
1992-01-01
This paper presents a comprehensive review of integrated circuit antennas suitable for millimeter and terahertz applications. A great deal of research was done on integrated circuit antennas in the last decade and many of the problems associated with electrically thick dielectric substrates, such as substrate modes and poor radiation patterns, have been understood and solved. Several new antennas, such as the integrated horn antenna, the dielectric-filled parabola, the Fresnel plate antenna, the dual-slot antenna, and the log-periodic and spiral antennas on extended hemispherical lenses, have resulted in excellent performance at millimeter-wave frequencies, and are covered in detail in this paper. Also, a review of the efficiency definitions used with planar antennas is given in detail in the appendix.
Electrically controlled magnetic circular dichroism and Faraday rotation in graphene
NASA Astrophysics Data System (ADS)
Kuzmenko, Alexey; Poumirol, Jean-Marie; Liu, Peter Q. Liu; Slipchenko, Tetiana; Nikitin, Alexey; Martin-Moreno, Luis; Faist, Jerome
Magnetic circular dichroism (MCD) and Faraday rotation (FR) are the fundamental phenomena of great practical importance arising from the breaking of the time reversal symmetry by a magnetic field. In most materials the strength and the sign of these effects can be only controlled by the field value and its orientation. Using broadband terahertz magneto-electro-optical spectroscopy, we demonstrate that in graphene both the MCD and the FR can be modulated in intensity, tuned in frequency and, importantly, inverted using only electrostatic doping at a fixed magnetic field due to the unique properties of the Dirac fermions. Our results indicate the fundamental possibility of compact, efficient, electrically invertible and wavelength-tunable non-reciprocal passive terahertz elements based on graphene operating at ambient temperature.
Quantum theory of terahertz conductivity of semiconductor nanostructures
NASA Astrophysics Data System (ADS)
Ostatnický, T.; Pushkarev, V.; Němec, H.; Kužel, P.
2018-02-01
Efficient and controlled charge carrier transport through nanoelements is currently a primordial question in the research of nanoelectronic materials and structures. We develop a quantum-mechanical theory of the conductivity spectra of confined charge carriers responding to an electric field from dc regime up to optical frequencies. The broken translation symmetry induces a broadband drift-diffusion current, which is not taken into account in the analysis based on Kubo formula and relaxation time approximation. We show that this current is required to ensure that the dc conductivity of isolated nanostructures correctly attains zero. It causes a significant reshaping of the conductivity spectra up to terahertz or multiterahertz spectral ranges, where the electron scattering rate is typically comparable to or larger than the probing frequency.
Terahertz wavefront control by tunable metasurface made of graphene ribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yatooshi, Takumi; Ishikawa, Atsushi, E-mail: a-ishikawa@okayama-u.ac.jp; Tsuruta, Kenji
2015-08-03
We propose a tunable metasurface consisting of an array of graphene ribbons on a silver mirror with a SiO{sub 2} gap layer to control reflected wavefront at terahertz frequencies. The graphene ribbons exhibit localized plasmon resonances depending on their Fermi levels to introduce abrupt phase shifts along the metasurface. With interference of the Fabry-Perot resonances in the SiO{sub 2} layer, phase shift through the system is largely accumulated, covering the 0-to-2π range for full control of the wavefront. Numerical simulations prove that wide-angle beam steering up to 53° with a high reflection efficiency of 60% is achieved at 5 THzmore » within a switching time shorter than 0.6 ps.« less
Design of a Multistep Phase Mask for High-Energy Terahertz Pulse Generation by Optical Rectification
NASA Astrophysics Data System (ADS)
Avetisyan, Y.; Makaryan, A.; Tadevosyan, V.; Tonouchi, M.
2017-12-01
A new scheme for generating high-energy terahertz (THz) pulses based on using a multistep phase mask (MSPM) is suggested and analyzed. The mask is placed on the entrance surface of the nonlinear optical (NLO) crystal eliminating the necessity of the imaging optics. In contrast to the contact grating method, introduction of large amounts of angular dispersion is avoided. The operation principle of the suggested scheme is based on the fact that the MSPM splits a single input beam into many smaller time-delayed "beamlets," which together form a discretely tilted-front laser pulse in NLO crystal. The analysis of THz-pulse generation in ZnTe and lithium niobate (LN) crystals shows that application of ZnTe crystal is more preferable, especially when long-wavelength pump sources are used. The dimensions of the mask's steps required for high-energy THz-pulse generation in ZnTe and LN crystals are calculated. The optimal number of steps is estimated, taking into account individual beamlet's spatial broadening and problems related to the mask fabrication. The proposed method is a promising way to develop high-energy, monolithic, and alignment-free THz-pulse sources.
The potential of terahertz imaging for cancer diagnosis: A review of investigations to date.
Yu, Calvin; Fan, Shuting; Sun, Yiwen; Pickwell-Macpherson, Emma
2012-03-01
The terahertz region lies between the microwave and infrared regions of the electromagnetic spectrum such that it is strongly attenuated by water and very sensitive to water content. Terahertz radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues. Because of these characteristic properties, there has been an increasing interest in terahertz imaging and spectroscopy for biological applications within the last few years and more and more terahertz spectra are being reported, including spectroscopic studies of cancer. The presence of cancer often causes increased blood supply to affected tissues and a local increase in tissue water content may be observed: this acts as a natural contrast mechanism for terahertz imaging of cancer. Furthermore the structural changes that occur in affected tissues have also been shown to contribute to terahertz image contrast. This paper introduces terahertz technology and provides a short review of recent advances in terahertz imaging and spectroscopy techniques. In particular investigations relating to the potential of terahertz imaging and spectroscopy for cancer diagnosis will be highlighted.
The potential of terahertz imaging for cancer diagnosis: A review of investigations to date
Yu, Calvin; Fan, Shuting; Sun, Yiwen; Pickwell-MacPherson, Emma
2012-01-01
The terahertz region lies between the microwave and infrared regions of the electromagnetic spectrum such that it is strongly attenuated by water and very sensitive to water content. Terahertz radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues. Because of these characteristic properties, there has been an increasing interest in terahertz imaging and spectroscopy for biological applications within the last few years and more and more terahertz spectra are being reported, including spectroscopic studies of cancer. The presence of cancer often causes increased blood supply to affected tissues and a local increase in tissue water content may be observed: this acts as a natural contrast mechanism for terahertz imaging of cancer. Furthermore the structural changes that occur in affected tissues have also been shown to contribute to terahertz image contrast. This paper introduces terahertz technology and provides a short review of recent advances in terahertz imaging and spectroscopy techniques. In particular investigations relating to the potential of terahertz imaging and spectroscopy for cancer diagnosis will be highlighted. PMID:23256057
Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate
Miyamoto, Katsuhiko; Kang, Bong Joo; Kim, Won Tae; Sasaki, Yuta; Niinomi, Hiromasa; Suizu, Koji; Rotermund, Fabian; Omatsu, Takashige
2016-01-01
Optical vortex, possessing an annular intensity profile and an orbital angular momentum (characterized by an integer termed a topological charge) associated with a helical wavefront, has attracted great attention for diverse applications due to its unique properties. In particular for terahertz (THz) frequency range, several approaches for THz vortex generation, including molded phase plates consisting of metal slit antennas, achromatic polarization elements and binary-diffractive optical elements, have been recently proposed, however, they are typically designed for a specific frequency. Here, we demonstrate highly intense broadband monocycle vortex generation near 0.6 THz by utilizing a polymeric Tsurupica spiral phase plate in combination with tilted-pulse-front optical rectification in a prism-cut LiNbO3 crystal. A maximum peak power of 2.3 MW was obtained for THz vortex output with an expected topological charge of 1.15. Furthermore, we applied the highly intense THz vortex beam for studying unique nonlinear behaviors in bilayer graphene towards the development of nonlinear super-resolution THz microscopy and imaging system. PMID:27966595
NASA Astrophysics Data System (ADS)
Rösch, Markus; Benea-Chelmus, Ileana-Cristina; Scalari, Giacomo; Bonzon, Christopher B.; Süess, Martin J.; Beck, Mattias; Faist, Jérôme
2017-02-01
Recent work has been showing the possibility of generating frequency combs at terahertz frequencies using terahertz quantum cascade lasers. The main efforts so far were on getting the laser to work in a stable comb operation over an as broad as possible spectral bandwidth. Another issue is the scattered farfield of such combs due to their subwavelength facets of the used metal-metal waveguide. In contrast to single mode lasers the monolithic approaches of distributed feedback lasers or photonic crystals cannot be used. We present here a monolithic broadband extractor compatible with frequency comb operation based on the concept of an end-fire antenna. The antenna can be fabricated using standard fabrication techniques. It has been designed to support a bandwidth of up to 600 GHz at a central frequency of 2.5 THz. The fabricated devices show single lobed farfields with only minor asymmetries, increased output power along an increased dynamical range of frequency comb operation. A side-absorber schematics using a thin film of Nickel has been used to suppress any higher-order lateral modes in the laser. The reported frequency combs with monolithic extractors are ideal candidates for spectroscopic applications at terahertz frequencies using a self-detected dual-comb spectroscopy setup due to the increased dynamical range along with the improved farfield leading to more output power of the frequency combs.
Lattice modes of the chirally pure and racemic phases of tyrosine crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyanchikov, M. A.; Gorelik, V. S., E-mail: gorelik@sci.lebedev.ru; Gorshunov, B. P.
High-Q librational modes have been found to be present in the infrared absorption and Raman spectra of chirally pure L-tyrosine. Such modes can serve as terahertz radiation detectors and generators in chirally pure biostructures.
Joseph, Cecil S; Patel, Rakesh; Neel, Victor A; Giles, Robert H; Yaroslavsky, Anna N
2014-05-01
We tested the hypothesis that polarization sensitive optical and terahertz imaging may be combined for accurate nonmelanoma skin cancer (NMSC) delineation. Nine NMSC specimens were imaged. 513 μm and 440 nm wavelengths were used for terahertz and optical imaging, respectively. Histopathology was processed for evaluation. Terahertz reflectance of NMSC was quantified. Our results demonstrate that cross-polarized terahertz images correctly identified location of the tumours, whereas cross-polarized and polarization difference optical images accurately presented morphological features. Cross-polarized terahertz images exhibited lower reflectivity values in cancer as compared to normal tissue. Combination of optical and terahertz imaging shows promise for intraoperative delineation of NMSC. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-resolution reconstruction for terahertz imaging.
Xu, Li-Min; Fan, Wen-Hui; Liu, Jia
2014-11-20
We present a high-resolution (HR) reconstruction model and algorithms for terahertz imaging, taking advantage of super-resolution methodology and algorithms. The algorithms used include projection onto a convex sets approach, iterative backprojection approach, Lucy-Richardson iteration, and 2D wavelet decomposition reconstruction. Using the first two HR reconstruction methods, we successfully obtain HR terahertz images with improved definition and lower noise from four low-resolution (LR) 22×24 terahertz images taken from our homemade THz-TDS system at the same experimental conditions with 1.0 mm pixel. Using the last two HR reconstruction methods, we transform one relatively LR terahertz image to a HR terahertz image with decreased noise. This indicates potential application of HR reconstruction methods in terahertz imaging with pulsed and continuous wave terahertz sources.
Semiconductor quantum well irradiated by a two-mode electromagnetic field as a terahertz emitter
NASA Astrophysics Data System (ADS)
Mandal, S.; Liew, T. C. H.; Kibis, O. V.
2018-04-01
We study theoretically the nonlinear optical properties of a semiconductor quantum well (QW) irradiated by a two-mode electromagnetic wave consisting of a strong resonant dressing field and a weak off-resonant driving field. In the considered strongly coupled electron-field system, the dressing field opens dynamic Stark gaps in the electron energy spectrum of the QW, whereas the driving field induces electron oscillations in the QW plane. Since the gapped electron spectrum restricts the amplitude of the oscillations, the emission of a frequency comb from the QW appears. Therefore, the doubly driven QW operates as a nonlinear optical element which can be used, particularly, for optically controlled generation of terahertz radiation.
Coherent Two-Dimensional Terahertz Magnetic Resonance Spectroscopy of Collective Spin Waves.
Lu, Jian; Li, Xian; Hwang, Harold Y; Ofori-Okai, Benjamin K; Kurihara, Takayuki; Suemoto, Tohru; Nelson, Keith A
2017-05-19
We report a demonstration of two-dimensional (2D) terahertz (THz) magnetic resonance spectroscopy using the magnetic fields of two time-delayed THz pulses. We apply the methodology to directly reveal the nonlinear responses of collective spin waves (magnons) in a canted antiferromagnetic crystal. The 2D THz spectra show all of the third-order nonlinear magnon signals including magnon spin echoes, and 2-quantum signals that reveal pairwise correlations between magnons at the Brillouin zone center. We also observe second-order nonlinear magnon signals showing resonance-enhanced second-harmonic and difference-frequency generation. Numerical simulations of the spin dynamics reproduce all of the spectral features in excellent agreement with the experimental 2D THz spectra.
Measurement of beam profiles by terahertz sensor card with cholesteric liquid crystals.
Tadokoro, Yuzuru; Nishikawa, Tomohiro; Kang, Boyoung; Takano, Keisuke; Hangyo, Masanori; Nakajima, Makoto
2015-10-01
We demonstrate a sensor card with cholesteric liquid crystals (CLCs) for terahertz (THz) waves generated from a nonlinear crystal pumped by a table-top laser. A beam profile of the THz waves is successfully visualized as color change by the sensor card without additional electronic devices, power supplies, and connecting cables. Above the power density of 4.3 mW/cm2, the approximate beam diameter of the THz waves is measured using the hue image that is digitalized from the picture of the sensor card. The sensor card is low in cost, portable, and suitable for various situations such as THz imaging and alignment of THz systems.
Terahertz wireless communications based on photonics technologies.
Nagatsuma, Tadao; Horiguchi, Shogo; Minamikata, Yusuke; Yoshimizu, Yasuyuki; Hisatake, Shintaro; Kuwano, Shigeru; Yoshimoto, Naoto; Terada, Jun; Takahashi, Hiroyuki
2013-10-07
There has been an increasing interest in the application of terahertz (THz) waves to broadband wireless communications. In particular, use of frequencies above 275 GHz is one of the strong concerns among radio scientists and engineers, because these frequency bands have not yet been allocated at specific active services, and there is a possibility to employ extremely large bandwidths for ultra-broadband wireless communications. Introduction of photonics technologies for signal generation, modulation and detection is effective not only to enhance the bandwidth and/or the data rate, but also to combine fiber-optic (wired) and wireless networks. This paper reviews recent progress in THz wireless communications using telecom-based photonics technologies towards 100 Gbit/s.
Laser beat wave resonant terahertz generation in a magnetized plasma channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhasin, Lalita; Tripathi, V. K.; Kumar, Pawan, E-mail: kumarpawan-30@yahoo.co.in
Resonant excitation of terahertz (THz) radiation by nonlinear mixing of two lasers in a ripple-free self created plasma channel is investigated. The channel has a transverse static magnetic field and supports a THz X-mode with phase velocity close to the speed of light in vacuum when the frequency of the mode is close to plasma frequency on the channel axis and its value decreases with the intensity of lasers. The THz is resonantly driven by the laser beat wave ponderomotive force. The THz amplitude scales almost three half power of the intensity of lasers as the width of the THzmore » eigen mode shrinks with laser intensity.« less
Switching terahertz wave with grating-coupled Kretschmann configuration.
Jiu-Sheng, Li
2017-08-07
We present a terahertz wave switch utilizing Kretschmann configuration which consists of high-refractive-index prism-liquid crystal-periodically grooved metal grating. The switching mechanism of the terahertz switch is based on spoof surface plasmon polariton (SSPP) excitation in the attenuated total reflection regime by changing the liquid crystal refractive index. The results highlighted the fact that the feasibility to "tune" the attenuated total reflection terahertz wave intensity by using the external applied bias voltage. The extinction ratio of the terahertz switch reaches 31.48dB. The terahertz switch has good control ability and flexibility, and can be used in potential terahertz free space device systems.
Li, Wu; Hu, Bing; Wang, Ming-wei
2014-12-01
In the present paper, the terahertz time-domain spectroscopy (THz-TDS) identification model of borneol based on principal component analysis (PCA) and support vector machine (SVM) was established. As one Chinese common agent, borneol needs a rapid, simple and accurate detection and identification method for its different source and being easily confused in the pharmaceutical and trade links. In order to assure the quality of borneol product and guard the consumer's right, quickly, efficiently and correctly identifying borneol has significant meaning to the production and transaction of borneol. Terahertz time-domain spectroscopy is a new spectroscopy approach to characterize material using terahertz pulse. The absorption terahertz spectra of blumea camphor, borneol camphor and synthetic borneol were measured in the range of 0.2 to 2 THz with the transmission THz-TDS. The PCA scores of 2D plots (PC1 X PC2) and 3D plots (PC1 X PC2 X PC3) of three kinds of borneol samples were obtained through PCA analysis, and both of them have good clustering effect on the 3 different kinds of borneol. The value matrix of the first 10 principal components (PCs) was used to replace the original spectrum data, and the 60 samples of the three kinds of borneol were trained and then the unknown 60 samples were identified. Four kinds of support vector machine model of different kernel functions were set up in this way. Results show that the accuracy of identification and classification of SVM RBF kernel function for three kinds of borneol is 100%, and we selected the SVM with the radial basis kernel function to establish the borneol identification model, in addition, in the noisy case, the classification accuracy rates of four SVM kernel function are above 85%, and this indicates that SVM has strong generalization ability. This study shows that PCA with SVM method of borneol terahertz spectroscopy has good classification and identification effects, and provides a new method for species identification of borneol in Chinese medicine.
Near-Field Terahertz Transmission Imaging at 0.210 Terahertz Using a Simple Aperture Technique
2015-10-01
This report discusses a simple aperture useful for terahertz near-field imaging at .2010 terahertz ( lambda = 1.43 millimeters). The aperture requires...achieve a spatial resolution of lambda /7. The aperture can be scaled with the assistance of machinery found in conventional machine shops to achieve similar results using shorter terahertz wavelengths.
2015-07-01
for the fluid flow controlled MEMS metamaterial with PDMS chamber. (b)-(d) shows the cantilever deformation with respect to increasing fluid flow...Firstly the metamaterial was integrated with a polydimethylsiloxane fluidic channel and the injection flow rate was varied from 0 to 5 ml/min
NASA Astrophysics Data System (ADS)
Lewis, R. A.
2017-07-01
Terahertz radiation has been proposed as a useful tool in the study of soils and related materials from such diverse perspectives as detection of non-metallic landmines to improving soil fertility by agricultural charcoals produced by pyrolysis of organic material. The main barrier to such applications is that soils are rather opaque at terahertz frequencies. In this article, the main findings to date on the interaction of terahertz radiation with soils are reviewed, organized around the four phenomena of terahertz: transmission, scattering, reflection, and absorption. Terahertz transmission through soils is generally low and decreases with frequency. Terahertz scattering is evident in many THz-soil interactions, as the wavelength of the radiation is of the order of the particle size. Terahertz reflection is important to communications as these develop from the GHz into the THz band. Terahertz absorption on diluted soil samples has been demonstrated to be effective in identifying soil constituents, such as aromatic compounds, and soil contaminants, such as pesticides.
Semiconductor activated terahertz metamaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hou-Tong
Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result inmore » unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and few-layer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response.« less
Semiconductor activated terahertz metamaterials
Chen, Hou-Tong
2014-08-01
Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result inmore » unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and few-layer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response.« less
Mm-Wave Spectroscopic Sensors, Catalogs, and Uncatalogued Lines
NASA Astrophysics Data System (ADS)
Medvedev, Ivan; Neese, Christopher F.; De Lucia, Frank C.
2014-06-01
Analytical chemical sensing based on high resolution rotational molecular spectra has been recognized as a viable technique for decades. We recently demonstrated a compact implementation of such a sensor. Future generations of these sensors will rely on automated algorithms for quantification of chemical dilutions based on their spectral libraries, as well as identification of spectral features not present in spectral catalogs. Here we present an algorithm aimed at detection of unidentified lines in complex molecular species based on spectroscopic libraries developed in our previous projects. We will discuss the approaches suitable for data mining in feature-rich rotational molecular spectra. Neese, C.F., I.R. Medvedev, G.M. Plummer, A.J. Frank, C.D. Ball, and F.C. De Lucia, "A Compact Submillimeter/Terahertz Gas Sensor with Efficient Gas Collection, Preconcentration, and ppt Sensitivity." Sensors Journal, IEEE, 2012. 12(8): p. 2565-2574
NASA Astrophysics Data System (ADS)
Ponseca, C. S., Jr.; Sundström, V.
2016-03-01
Ultrafast charge carrier dynamics in organo metal halide perovskite has been probed using time resolved terahertz (THz) spectroscopy (TRTS). Current literature on its early time characteristics is unanimous: sub-ps charge carrier generation, highly mobile charges and very slow recombination rationalizing the exceptionally high power conversion efficiency for a solution processed solar cell material. Electron injection from MAPbI3 to nanoparticles (NP) of TiO2 is found to be sub-ps while Al2O3 NPs do not alter charge dynamics. Charge transfer to organic electrodes, Spiro-OMeTAD and PCBM, is sub-ps and few hundreds of ps respectively, which is influenced by the alignment of energy bands. It is surmised that minimizing defects/trap states is key in optimizing charge carrier extraction from these materials.
A Concealed Barcode Identification System Using Terahertz Time-domain Spectroscopy
NASA Astrophysics Data System (ADS)
Guan, Yu; Yamamoto, Manabu; Kitazawa, Toshiyuki; Tripathi, Saroj R.; Takeya, Kei; Kawase, Kodo
2015-03-01
We present a concealed terahertz barcode/chipless tag to achieve remote identification through an obstructing material using terahertz radiation. We show scanned terahertz reflection spectral images of barcodes concealed by a thick obstacle. A concealed and double- side printed terahertz barcode structure is proposed, and we demonstrate that our design has better performance in definition than a single-side printed barcode using terahertz time-domain spectroscopy. This technique combines the benefits of a chipless tag to read encoded information covered by an optically opaque material with low cost and a simple fabrication process. Simulations are also described, along with an explanation of the principle of the terahertz barcode identification system.
NASA Astrophysics Data System (ADS)
Rahmati, Ehsan; Ahmadi-Boroujeni, Mehdi
2018-04-01
One of the shortcomings of photoconductive (PC) antennas in terahertz (THz) generation is low effective radiated power in the desirable direction. In this paper, we propose a defective photonic crystal (DPC) substrate consisting of a customized 2D array of air holes drilled into a solid substrate in order to improve the radiation characteristics of THz PC antennas. The effect of the proposed structure on the performance of a conventional THz PC antenna has been examined from several aspects including radiation efficiency, directivity, and field distribution. By comparing the radiation performance of the THz antenna on the proposed DPC substrate to that of the conventional solid substrate, it is shown that the proposed technique can significantly improve the efficiency and directivity of the THz PC antenna over a wide frequency range. It is achieved by reducing the amount of power coupled to the substrate surface waves and limiting the radiation in undesirable directions. In addition, it is found that the sensitivity of directivity to the substrate thickness is considerably decreased and the adverse Fabry-Perot effects of the thick substrate are reduced by the application of the proposed DPC substrate.
Artificial dielectric stepped-refractive-index lens for the terahertz region.
Hernandez-Serrano, A I; Mendis, Rajind; Reichel, Kimberly S; Zhang, Wei; Castro-Camus, E; Mittleman, Daniel M
2018-02-05
In this paper we theoretically and experimentally demonstrate a stepped-refractive-index convergent lens made of a parallel stack of metallic plates for terahertz frequencies based on artificial dielectrics. The lens consist of a non-uniformly spaced stack of metallic plates, forming a mirror-symmetric array of parallel-plate waveguides (PPWGs). The operation of the device is based on the TE 1 mode of the PPWG. The effective refractive index of the TE 1 mode is a function of the frequency of operation and the spacing between the plates of the PPWG. By varying the spacing between the plates, we can modify the local refractive index of the structure in every individual PPWG that constitutes the lens producing a stepped refractive index profile across the multi stack structure. The theoretical and experimental results show that this structure is capable of focusing a 1 cm diameter beam to a line focus of less than 4 mm for the design frequency of 0.18 THz. This structure shows that this artificial-dielectric concept is an important technology for the fabrication of next generation terahertz devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polischuk, O. V., E-mail: polischuk.sfire@mail.ru; Melnikova, V. S.; Popov, V. V., E-mail: popov-slava@yahoo.co.uk
2016-11-15
The terahertz absorption spectrum in a periodic array of graphene nanoribbons located on the surface of a dielectric substrate with a high refractive index (terahertz prism) is studied theoretically. The total absorption of terahertz radiation is shown to occur in the regime of total internal reflection of the terahertz wave from the periodic array of graphene nanoribbons, at the frequencies of plasma oscillations in graphene, in a wide range of incidence angles of the external terahertz wave even at room temperature.
Subwavelength hybrid terahertz waveguides.
Nam, Sung Hyun; Taylor, Antoinette J; Efimov, Anatoly
2009-12-07
We introduce and present general properties of hybrid terahertz waveguides. Weakly confined Zenneck waves on a metal-dielectric interface at terahertz frequencies can be transformed to a strongly confined yet low-loss subwavelength mode through coupling with a photonic mode of a nearby high-index dielectric strip. We analyze confinement, attenuation, and dispersion properties of this mode. The proposed design is suitable for planar integration and allows easy fabrication on chip scale. The superior waveguiding properties at terahertz frequencies could enable the hybrid terahertz waveguides as building blocks for terahertz integrated circuits.
Effects of excitation frequency on high-order terahertz sideband generation in semiconductors
NASA Astrophysics Data System (ADS)
Xie, Xiao-Tao; Zhu, Bang-Fen; Liu, Ren-Bao
2013-10-01
We theoretically investigate the effects of the excitation frequency on the plateau of high-order terahertz sideband generation (HSG) in semiconductors driven by intense terahertz (THz) fields. We find that the plateau of the sideband spectrum strongly depends on the detuning between the near-infrared laser field and the band gap. We use the quantum trajectory theory (three-step model) to understand the HSG. In the three-step model, an electron-hole pair is first excited by a weak laser, then driven by the strong THz field, and finally recombined to emit a photon with energy gain. When the laser is tuned below the band gap (negative detuning), the electron-hole generation is a virtual process that requires quantum tunneling to occur. When the energy gained by the electron-hole pair from the THz field is less than 3.17 times the ponderomotive energy (Up), the electron and the hole can be driven to the same position and recombined without quantum tunneling, so that the HSG will have large probability amplitude. This leads to a plateau feature of the HSG spectrum with a high-frequency cutoff at about 3.17Up above the band gap. Such a plateau feature is similar to the case of high-order harmonics generation in atoms where electrons have to overcome the binding energy to escape the atomic core. A particularly interesting excitation condition in HSG is that the laser can be tuned above the band gap (positive detuning), corresponding to the unphysical ‘negative’ binding energy in atoms for high-order harmonic generation. Now the electron-hole pair is generated by real excitation, but the recombination process can be real or virtual depending on the energy gained from the THz field, which determines the plateau feature in HSG. Both the numerical calculation and the quantum trajectory analysis reveal that for positive detuning, the HSG plateau cutoff depends on the frequency of the excitation laser. In particular, when the laser is tuned more than 3.17Up above the band gap, the HSG spectrum presents no plateau feature but instead sharp peaks near the band edge and near the excitation frequency.
Active terahertz wave imaging system for detecting hidden objects
NASA Astrophysics Data System (ADS)
Gan, Yuner; Liu, Ming; Zhao, Yuejin
2016-11-01
Terahertz wave can penetrate the common dielectric materials such as clothing, cardboard boxes, plastics and so on. Besides, the low photon energy and non-ionizing characteristic of the terahertz wave are especially suitable for the safety inspection of the human body. Terahertz imaging technology has a tremendous potential in the field of security inspection such as stations, airports and other public places. Terahertz wave imaging systems are divided into two categories: active terahertz imaging systems and passive terahertz imaging systems. So far, most terahertz imaging systems work at point to point mechanical scan pattern with the method of passive imaging. The imaging results of passive imaging tend to have low contrast and the image is not clear enough. This paper designs and implements an active terahertz wave imaging system combining terahertz wave transmitting and receiving with a Cassegrain antenna. The terahertz wave at the frequency of 94GHz is created by impact ionization avalanche transit time (IMPATT) diode, focused on the feed element for Cassegrain antenna by high density polyethylene (HDPE) lens, and transmitted to the human body by Cassegrain antenna. The reflected terahertz wave goes the same way it was emitted back to the feed element for Cassegrain antenna, focused on the horn antenna of detector by another high density polyethylene lens. The scanning method is the use of two-dimensional planar mirror, one responsible for horizontal scanning, and another responsible for vertical scanning. Our system can achieve a clear human body image, has better sensitivity and resolution than passive imaging system, and costs much lower than other active imaging system in the meantime.
Numeric analysis of terahertz wave propagation in familiar packaging materials
NASA Astrophysics Data System (ADS)
Zhang, Lihong; Yang, Guang
2015-10-01
To assess the potential application of terahertz waves in security examination, the transmission characteristics of terahertz waves in packaging materials should be studied. This paper simulates the propagation of terahertz waves in cloth and paper, studies the changes of shape and position of crest of terahertz waves before and after these materials, and gets the law of these changes, which has potential applications in thickness measurement for the thin insulated materials; gives reflected and transmitted wave of terahertz waves, and computes reflected and transmitted coefficient, indicates the good transmission properties of these materials for terahertz waves, which provides the theoretical basis for the realization of contactless security examination of packaged post, package and people pass the important passageway (such as airport and station).
NASA Astrophysics Data System (ADS)
Gao, Xiang; Du, Jia; Zhang, Ting; Jay Guo, Y.; Foley, Cathy P.
2017-11-01
This paper presents a systematic investigation of a broadband thin-film antenna-coupled high-temperature superconducting (HTS) terahertz (THz) harmonic mixer at relatively high operating temperature from 40 to 77 K. The mixer device chip was fabricated using the CSIRO established step-edge YBa2Cu3O7-x (YBCO) Josephson junction technology, packaged in a well-designed module and cooled in a temperature adjustable cryocooler. Detailed experimental characterizations were carried out for the broadband HTS mixer at both the 200 and 600 GHz bands in harmonic mixing mode. The DC current-voltage characteristics (IVCs), bias current condition, local oscillator (LO) power requirement, frequency response, as well as conversion efficiency under different bath temperatures were thoroughly investigated for demonstrating the frequency down-conversion performance.
Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces.
Mou, Nanli; Sun, Shulin; Dong, Hongxing; Dong, Shaohua; He, Qiong; Zhou, Lei; Zhang, Long
2018-04-30
Electromagnetic (EM) wave absorption plays a vital role in photonics. While metasurfaces are proposed to absorb EM waves efficiently, most of them exhibit limited bandwidth and fixed functionalities. Here, we propose a broadband and tunable terahertz (THz) absorber based on a graphene-based metasurface, which is constructed by a single layer of closely patterned graphene concentric double rings and a metallic mirror separated by an ultrathin SiO 2 layer. Plasmonic hybridization between two graphene rings significantly enlarges the absorption bandwidth, which can be further tuned by gating the graphene. Moreover, the specific design also makes our device insensitive to the incident angle and polarization state of impinging EM waves. Our results may inspire certain wave-modulation-related applications, such as THz imaging, smart absorber, tunable sensor, etc.
Wide-aperture aspherical lens for high-resolution terahertz imaging
NASA Astrophysics Data System (ADS)
Chernomyrdin, Nikita V.; Frolov, Maxim E.; Lebedev, Sergey P.; Reshetov, Igor V.; Spektor, Igor E.; Tolstoguzov, Viktor L.; Karasik, Valeriy E.; Khorokhorov, Alexei M.; Koshelev, Kirill I.; Schadko, Aleksander O.; Yurchenko, Stanislav O.; Zaytsev, Kirill I.
2017-01-01
In this paper, we introduce wide-aperture aspherical lens for high-resolution terahertz (THz) imaging. The lens has been designed and analyzed by numerical methods of geometrical optics and electrodynamics. It has been made of high-density polyethylene by shaping at computer-controlled lathe and characterized using a continuous-wave THz imaging setup based on a backward-wave oscillator and Golay detector. The concept of image contrast has been implemented to estimate image quality. According to the experimental data, the lens allows resolving two points spaced at 0.95λ distance with a contrast of 15%. To highlight high resolution in the THz images, the wide-aperture lens has been employed for studying printed electronic circuit board containing sub-wavelength-scale elements. The observed results justify the high efficiency of the proposed lens design.
Zhu, Huan; Zhu, Haiqing; Wang, Fangfang; Chang, Gaolei; Yu, Chenren; Yan, Quan; Chen, Jianxin; Li, Lianhe; Davies, A Giles; Linfield, Edmund H; Tang, Zhou; Chen, Pingping; Lu, Wei; Xu, Gangyi; He, Li
2018-01-22
A terahertz master-oscillation power-amplifier quantum cascade laser (THz-MOPA-QCL) is demonstrated where a grating coupler is employed to efficiently extract the THz radiation. By maximizing the group velocity and eliminating the scattering of THz wave in the grating coupler, the residue reflectivity is reduced down to the order of 10 -3 . A buried DFB grating and a tapered preamplifier are proposed to improve the seed power and to reduce the gain saturation, respectively. The THz-MOPA-QCL exhibits single-mode emission, a single-lobed beam with a narrow divergence angle of 18° × 16°, and a pulsed output power of 136 mW at 20 K, which is 36 times that of a second-order DFB laser from the same material.
3D-Printed Broadband Dielectric Tube Terahertz Waveguide with Anti-Reflection Structure
NASA Astrophysics Data System (ADS)
Vogt, Dominik Walter; Leonhardt, Rainer
2016-11-01
We demonstrate broadband, low loss, and close-to-zero dispersion guidance of terahertz (THz) radiation in a dielectric tube with an anti-reflection structure (AR-tube waveguide) in the frequency range from 0.2 to 1.0 THz. The anti-reflection structure (ARS) consists of close-packed cones in a hexagonal lattice arranged on the outer surface of the tube cladding. The feature size of the ARS is in the order of the wavelength between 0.2 and 1.0 THz. The waveguides are fabricated with the versatile and cost efficient 3D-printing method. Terahertz time-domain spectroscopy (THz-TDS) measurements as well as 3D finite-difference time-domain simulations (FDTD) are performed to extensively characterize the AR-tube waveguides. Spectrograms, attenuation spectra, effective phase refractive indices, and the group-velocity dispersion parameters β 2 of the AR-tube waveguides are presented. Both the experimental and numerical results confirm the extended bandwidth and smaller group-velocity dispersion of the AR-tube waveguide compared to a low loss plain dielectric tube THz waveguide. The AR-tube waveguide prototypes show an attenuation spectrum close to the theoretical limit given by the infinite cladding tube waveguide.
Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz.
Moustakas, Theodore D; Paiella, Roberto
2017-10-01
This paper reviews the device physics and technology of optoelectronic devices based on semiconductors of the GaN family, operating in the spectral regions from deep UV to Terahertz. Such devices include LEDs, lasers, detectors, electroabsorption modulators and devices based on intersubband transitions in AlGaN quantum wells (QWs). After a brief history of the development of the field, we describe how the unique crystal structure, chemical bonding, and resulting spontaneous and piezoelectric polarizations in heterostructures affect the design, fabrication and performance of devices based on these materials. The heteroepitaxial growth and the formation and role of extended defects are addressed. The role of the chemical bonding in the formation of metallic contacts to this class of materials is also addressed. A detailed discussion is then presented on potential origins of the high performance of blue LEDs and poorer performance of green LEDs (green gap), as well as of the efficiency reduction of both blue and green LEDs at high injection current (efficiency droop). The relatively poor performance of deep-UV LEDs based on AlGaN alloys and methods to address the materials issues responsible are similarly addressed. Other devices whose state-of-the-art performance and materials-related issues are reviewed include violet-blue lasers, 'visible blind' and 'solar blind' detectors based on photoconductive and photovoltaic designs, and electroabsorption modulators based on bulk GaN or GaN/AlGaN QWs. Finally, we describe the basic physics of intersubband transitions in AlGaN QWs, and their applications to near-infrared and terahertz devices.
Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz
NASA Astrophysics Data System (ADS)
Moustakas, Theodore D.; Paiella, Roberto
2017-10-01
This paper reviews the device physics and technology of optoelectronic devices based on semiconductors of the GaN family, operating in the spectral regions from deep UV to Terahertz. Such devices include LEDs, lasers, detectors, electroabsorption modulators and devices based on intersubband transitions in AlGaN quantum wells (QWs). After a brief history of the development of the field, we describe how the unique crystal structure, chemical bonding, and resulting spontaneous and piezoelectric polarizations in heterostructures affect the design, fabrication and performance of devices based on these materials. The heteroepitaxial growth and the formation and role of extended defects are addressed. The role of the chemical bonding in the formation of metallic contacts to this class of materials is also addressed. A detailed discussion is then presented on potential origins of the high performance of blue LEDs and poorer performance of green LEDs (green gap), as well as of the efficiency reduction of both blue and green LEDs at high injection current (efficiency droop). The relatively poor performance of deep-UV LEDs based on AlGaN alloys and methods to address the materials issues responsible are similarly addressed. Other devices whose state-of-the-art performance and materials-related issues are reviewed include violet-blue lasers, ‘visible blind’ and ‘solar blind’ detectors based on photoconductive and photovoltaic designs, and electroabsorption modulators based on bulk GaN or GaN/AlGaN QWs. Finally, we describe the basic physics of intersubband transitions in AlGaN QWs, and their applications to near-infrared and terahertz devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Monika; Kumar, Sanjay; Sharma, R. P.
2011-07-15
The comment by Stenflo and Brodin mentions two points in our recently published paper [M. Singh, S. Kumar, and R. P. Sharma, Phys. Plasmas 18, 022304 (2011)]. We have given the appropriate reply for the same here.
Zhang, Zhen; Yan, Lixin; Du, Yingchao; ...
2017-05-01
We propose a method based on the slice energy spread modulation to generate strong subpicosecond density bunching in high-intensity relativistic electron beams. A laser pulse with periodic intensity envelope is used to modulate the slice energy spread of the electron beam, which can then be converted into density modulation after a dispersive section. It is found that the double-horn slice energy distribution of the electron beam induced by the laser modulation is very effective to increase the density bunching. Since the modulation is performed on a relativistic electron beam, the process does not suffer from strong space charge force ormore » coupling between phase spaces, so that it is straightforward to preserve the beam quality for terahertz (THz) radiation and other applications. We show in both theory and simulations that the tunable radiation from the beam can cover the frequency range of 1 - 10 THz with high power and narrow-band spectra.« less
NASA Astrophysics Data System (ADS)
He, Yixin; Wang, Yuye; Xu, Degang; Nie, Meitong; Yan, Chao; Tang, Longhuang; Shi, Jia; Feng, Jiachen; Yan, Dexian; Liu, Hongxiang; Teng, Bing; Feng, Hua; Yao, Jianquan
2018-01-01
We have demonstrated a high-energy and broadly tunable monochromatic terahertz (THz) source based on difference frequency generation (DFG) in DAST crystal. A high-energy dual-wavelength optical parametric oscillator with two KTP crystals was constructed as a light source for DFG, where the effect of blue light was first observed accompanying with tunable dual-wavelength pump light due to different nonlinear processes. The THz frequency was tuned randomly in the range of 0.3-19.6 THz. The highest energy of 870 nJ/pulse was obtained at 18.9 THz under the intense pump intensity of 247 MW/cm2. The THz energy dips above 3 THz have been analyzed and mainly attributed to the resonance absorption induced by lattice vibration in DAST crystal. The dependence of THz output on the input energy was studied experimentally, and THz output saturation was observed. Furthermore, tests of transmission spectroscopy of four typical samples were demonstrated with this ultra-wideband THz source.
[Development of Terahertz Imaging Technology in the Assessment of Burn Injuries].
Zhu, Xinjian; He, Xuan; Wang, Pin; Gao, Dandan; Qiu, Yan; He, Qinghua; Wu, Baoming
2016-02-01
Terahertz waves have unique properties and advantages, which makes it gain increasing attention and applications in the biomedical field. Burns is a common clinical trauma. Since the water-sensitive and non-destructive characteristics of terahertz, terahertz imaging techniques can be used to detect burns. So far, terahertz imaging technology in the assessment of burn injuries has been developed from ex vivo to in vivo, and high-resolution images can be obtained through the gauzes and plasters. In this paper, we mainly introduces the application of terahertz imaging technology and development in the assessment of burn injuries.
Development of terahertz endoscopic system for cancer detection
NASA Astrophysics Data System (ADS)
Doradla, Pallavi; Alavi, Karim; Joseph, Cecil S.; Giles, Robert H.
2016-02-01
Terahertz (THz) imaging is emerging as a robust platform for a myriad of applications in the fields of security, health, astronomy and material science. The terahertz regime with wavelengths spanning from microns to millimeters is a potentially safe and noninvasive medical imaging modality for detecting cancers. Endoscopic imaging systems provide high flexibility in examining the interior surfaces of an organ or tissue. Researchers have been working on the development of THz endoscopes with photoconductive antennas, which necessarily operate under high voltage, and require at least two channels to measure the reflected signal from the specimen. This manuscript provides the design and imperative steps involved in the development of a single-channel terahertz endoscopic system. The continuous-wave terahertz imaging system utilizes a single flexible terahertz waveguide channel to transmit and collect the back reflected intrinsic terahertz signal from the sample and is capable of operation in both transmission and reflection modalities. To determine the feasibility of using a terahertz endoscope for cancer detection, the co- and cross-polarized terahertz remittance from human colonic tissue specimens were collected at 584 GHz frequency. The two dimensional terahertz images obtained using polarization specific detection exhibited intrinsic contrast between cancerous and normal regions of fresh colorectal tissue. The level of contrast observed using endoscopic imaging correlates well with the contrast levels observed in the free space ex vivo terahertz reflectance studies of human colonic tissue. The prototype device developed in this study represents a significant step towards clinical endoscopic application of THz technology for in vivo colon cancer screening.
Excitation of Terahertz Charge Transfer Plasmons in Metallic Fractal Structures
NASA Astrophysics Data System (ADS)
Ahmadivand, Arash; Gerislioglu, Burak; Sinha, Raju; Vabbina, Phani Kiran; Karabiyik, Mustafa; Pala, Nezih
2017-08-01
There have been extensive researches on terahertz (THz) plasmonic structures supporting resonant modes to demonstrate nano and microscale devices with high efficiency and responsivity as well as frequency selectivity. Here, using antisymmetric plasmonic fractal Y-shaped (FYS) structures as building blocks, we introduce a highly tunable four-member fractal assembly to support charge transfer plasmons (CTPs) and classical dipolar resonant modes with significant absorption cross section in the THz domain. We first present that the unique geometrical nature of the FYS system and corresponding spectral response allow for supporting intensified dipolar plasmonic modes under polarised light exposure in a standalone structure. In addition to classical dipolar mode, for the very first time, we demonstrated CTPs in the THz domain due to the direct shuttling of the charges across the metallic fractal microantenna which led to sharp resonant absorption peaks. Using both numerical and experimental studies, we have investigated and confirmed the excitation of the CTP modes and highly tunable spectral response of the proposed plasmonic fractal structure. This understanding opens new and promising horizons for tightly integrated THz devices with high efficiency and functionality.
Wang, Yuye; Tang, Longhuang; Xu, Degang; Yan, Chao; He, Yixin; Shi, Jia; Yan, Dexian; Liu, Hongxiang; Nie, Meitong; Feng, Jiachen; Yao, Jianquan
2017-04-17
A widely tunable, high-energy terahertz wave parametric oscillator based on 1 mol. % MgO-doped near-stoichiometric LiNbO3 crystal has been demonstrated with 1064 nm nanosecond pulsed laser pumping. The tunable range of 1.16 to 4.64 THz was achieved. The maximum THz wave output energy of 17.49 μJ was obtained at 1.88 THz under the pump energy of 165 mJ/pulse, corresponding to the THz wave conversion efficiency of 1.06 × 10-4 and the photon conversion efficiency of 1.59%, respectively. Moreover, under the same experimental conditions, the THz output energy of TPO with MgO:SLN crystal was about 2.75 times larger than that obtained from the MgO:CLN TPO at 1.60 THz. Based on the theoretical analysis, the THz energy enhancement mechanism in the MgO:SLN TPO was clarified to originate from its larger Raman scattering cross section and smaller absorption coefficient.
High performance terahertz metasurface quantum-cascade VECSEL with an intra-cryostat cavity
Xu, Luyao; Curwen, Christopher A.; Reno, John L.; ...
2017-09-04
A terahertz quantum-cascade (QC) vertical-external-cavity surface-emitting-laser (VECSEL) is demonstrated with over 5 mW power in continuous-wave and single-mode operation above 77 K, in combination with a near-Gaussian beam pattern with full-width half-max divergence as narrow as ~5° × 5°, with no evidence of thermal lensing. This is realized by creating an intra-cryostat VECSEL cavity to reduce the cavity loss and designing an active focusing metasurface reflector with low power dissipation for efficient heat removal. Compared with a conventional quantumcascade laser based on a metal-metal waveguide, the intra-cryostat QC-VECSEL exhibits significant improvements in both output power level and beam pattern. Also,more » the intra-cryostat configuration newly allows evaluation of QC-VECSEL operation vs. temperature, showing a maximum pulsed mode operating temperature of 129 K. While the threshold current density in the QC-VECSEL is worse in comparison to a conventional edge-emitting metal-metal waveguide QClaser, the beam quality, slope efficiency, maximum power, and thermal resistance are all significantly improved.« less
Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields.
Noe, G Timothy; Katayama, Ikufumi; Katsutani, Fumiya; Allred, James J; Horowitz, Jeffrey A; Sullivan, David M; Zhang, Qi; Sekiguchi, Fumiya; Woods, Gary L; Hoffmann, Matthias C; Nojiri, Hiroyuki; Takeda, Jun; Kono, Junichiro
2016-12-26
We have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers in the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.
Quantized conductance observed during sintering of silver nanoparticles by intense terahertz pulses
NASA Astrophysics Data System (ADS)
Takano, Keisuke; Harada, Hirofumi; Yoshimura, Masashi; Nakajima, Makoto
2018-04-01
We show that silver nanoparticles, which are deposited on a terahertz-receiving antenna, can be sintered by intense terahertz pulse irradiation. The conductance of the silver nanoparticles between the antenna electrodes is measured under the terahertz pulse irradiation. The dispersant materials surrounding the nanoparticles are peeled off, and conduction paths are created. We reveal that, during sintering, quantum point contacts are formed, leading to quantized conductance between the electrodes with the conductance quantum, which reflects the formation of atomically thin wires. The terahertz electric pulses are sufficiently intense to activate electromigration, i.e., transfer of kinetic energy from the electrons to the silver atoms. The silver atoms move and atomically thin wires form under the intense terahertz pulse irradiation. These findings may inspire nanoscale structural processing by terahertz pulse irradiation.
Optimal control of quantum rings by terahertz laser pulses.
Räsänen, E; Castro, A; Werschnik, J; Rubio, A; Gross, E K U
2007-04-13
Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.
Terahertz Absorption and Circular Dichroism Spectroscopy of Solvated Biopolymers
NASA Astrophysics Data System (ADS)
Xu, Jing; Plaxco, Kevin; Allen, S. James
2006-03-01
Biopolymers are expected to exhibit broad spectral features in the terahertz frequency range, corresponding to their functionally relevant, global and sub-global collective vibrational modes with ˜ picosecond timescale. Recent advances in terahertz technology have stimulated researchers to employ terahertz absorption spectroscopy to directly probe these postulated collective modes. However, these pioneering studies have been limited to dry and, at best, moist samples. Successful isolation of low frequency vibrational activities of solvated biopolymers in their natural water environment has remained elusive, due to the overwhelming attenuation of the terahertz radiation by water. Here we have developed a terahertz absorption and circular dichroism spectrometer suitable for studying biopolymers in biologically relevant water solutions. We have precisely isolated, for the first time, the terahertz absorption of solvated prototypical proteins, Bovine Serum Albumin and Lysozyme, and made important direct comparison to the existing molecular dynamic simulations and normal mode calculations. We have also successfully demonstrated the magnetic circular dichroism in semiconductors, and placed upper bounds on the terahertz circular dichroism signatures of prototypical proteins in water solution.
NASA Astrophysics Data System (ADS)
Wang, Lin; Chen, Xiaoshuang; Hu, Yibin; Wang, Shao-Wei; Lu, Wei
2015-04-01
Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the scaling limit. Due to the quantum-capacitance effect, the plasma wave exhibits strong correlation with the distribution of density of states (DOS). It is indicated that the electrically tunable plasma resonance has a power-dependent V0.8TG relation on the gate voltage, which originates from the linear dependence of density of states (DOS) on the energy in pristine graphene, in striking difference to those dominated by classical capacitance with only V0.5TG dependence. The results of different transistor sizes indicate the potential application of nanometric graphene FETs in highly-efficient electro-optic modulation or detection of terahertz or infrared radiation. In addition, we highlight the perspectives of plasma resonance excitation in probing the many-body interaction and quantum matter state in strong correlation electron systems. This study reveals the key feature of plasma waves in decorated/nanometric graphene FETs, and paves the way to tailor plasma band-engineering and expand its application in both terahertz and mid-infrared regions.Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the scaling limit. Due to the quantum-capacitance effect, the plasma wave exhibits strong correlation with the distribution of density of states (DOS). It is indicated that the electrically tunable plasma resonance has a power-dependent V0.8TG relation on the gate voltage, which originates from the linear dependence of density of states (DOS) on the energy in pristine graphene, in striking difference to those dominated by classical capacitance with only V0.5TG dependence. The results of different transistor sizes indicate the potential application of nanometric graphene FETs in highly-efficient electro-optic modulation or detection of terahertz or infrared radiation. In addition, we highlight the perspectives of plasma resonance excitation in probing the many-body interaction and quantum matter state in strong correlation electron systems. This study reveals the key feature of plasma waves in decorated/nanometric graphene FETs, and paves the way to tailor plasma band-engineering and expand its application in both terahertz and mid-infrared regions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07689c
Electro-optic measurement of terahertz pulse energy distribution.
Sun, J H; Gallacher, J G; Brussaard, G J H; Lemos, N; Issac, R; Huang, Z X; Dias, J M; Jaroszynski, D A
2009-11-01
An accurate and direct measurement of the energy distribution of a low repetition rate terahertz electromagnetic pulse is challenging because of the lack of sensitive detectors in this spectral range. In this paper, we show how the total energy and energy density distribution of a terahertz electromagnetic pulse can be determined by directly measuring the absolute electric field amplitude and beam energy density distribution using electro-optic detection. This method has potential use as a routine method of measuring the energy density of terahertz pulses that could be applied to evaluating future high power terahertz sources, terahertz imaging, and spatially and temporarily resolved pump-probe experiments.
NASA Astrophysics Data System (ADS)
Xue, Zhan-Qiang; Shang, Li-Ping; Deng, Hu; Zhang, Qian-Cheng; Liu, Quan-Cheng; Qu, Wei-Wei; Li, Zhan-Feng; Wang, Shun-Li
2018-05-01
Not Available Project supported by the National Defense Basic Scientific Research Program of China (Grant No. Z202013T001) and Postgraduate Innovation Fund Project by Southwest University of Science and Technology, China (Grant No. 16ycx104).
Terahertz wireless communication based on InP-related devices (Conference Presentation)
NASA Astrophysics Data System (ADS)
Lee, Eui Su; Kim, Hyun-Soo; Park, Jeong-Woo; Park, Dong Woo; Park, Kyung Hyun
2017-02-01
Recently, a wide interest has been gathered in using terahertz (THz) waves as the carrier waves for the next generation of broadband wireless communications. Upon this objective, the photonics technologies are very attractive for their usefulness in signal generations, modulations and detections with enhanced bandwidth and data rates, and the readiness in combining to the existing fiber-optic or wireless networks. In this paper, as a preliminary step toward the THz wireless communications, a THz wireless interconnection system with a broadband antenna-integrated uni-traveling-carrier photodiode (UTC-PD) and a Shottky-barrier diode (SBD) module will be presented. In our system, optical beating signals are generated and digitally modulated by the optical intensity modulator driven by a pulse pattern generator (PPG). As the receiver a SBD and an IF filter followed by a low-noise preamplifier and a limiting amplifier was used. With a 6-mA photocurrent of the UTC-PD which corresponds to the transmitter output power of about 30 μW at 280 GHz, an error-free (BER<10-9) transmission has been achieved at 2.5 Gbit/s which is limited by a limiting amplifier. With this system, a 1.485-Gbit/s video signal with a high-definition serial digital interface format was successfully transmitted over a wireless link.
Toward practical terahertz time-domain spectroscopy
NASA Astrophysics Data System (ADS)
Brigada, David J.
Terahertz time-domain spectroscopy is a promising technology for the identification of explosive and pharmaceutical substances in adverse conditions. It interacts strongly with intermolecular vibrational and rotational modes. Terahertz also passes through many common dielectric covering materials, allowing for the identification of substances in envelopes, wrapped in opaque plastic, or otherwise hidden. However, there are several challenges preventing the adoption of terahertz spectroscopy outside the laboratory. This dissertation examines the problems preventing widespread adoption of terahertz technology and attempts to resolve them. In order to use terahertz spectroscopy to identify substances, a spectrum measured of the target sample must be compared to the spectra of various known standard samples. This dissertation examines various methods that can be employed throughout the entire process of acquiring and transforming terahertz waveforms to improve the accuracy of these comparisons. The concepts developed in this dissertation directly apply to terahertz spectroscopy, but also carry implications for other spectroscopy methods, from Raman to mass spectrometry. For example, these techniques could help to lower the rate of false positives at airport security checkpoints. This dissertation also examines the implementation of several of these methods as a way to realize a fully self-contained, handheld, battery-operated terahertz spectrometer. This device also employs techniques to allow minimally-trained operators use terahertz to detect different substances of interest. It functions as a proof-of-concept of the true benefits of the improvements that have been developed in this dissertation.
Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noe, II, G. Timothy; Katayama, Ikufumi; Katsutani, Fumiya
Here, we have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers inmore » the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.« less
Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields
Noe, II, G. Timothy; Katayama, Ikufumi; Katsutani, Fumiya; ...
2016-12-22
Here, we have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers inmore » the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.« less
Strong polarization-dependent terahertz modulation of aligned Ag nanowires on Si substrate.
Lee, Gyuseok; Maeng, Inhee; Kang, Chul; Oh, Myoung-Kyu; Kee, Chul-Sik
2018-05-14
Optically tunable, strong polarization-dependent transmission of terahertz pulses through aligned Ag nanowires on a Si substrate is demonstrated. Terahertz pulses primarily pass through the Ag nanowires and the transmittance is weakly dependent on the angle between the direction of polarization of the terahertz pulse and the direction of nanowire alignment. However, the transmission of a terahertz pulse through optically excited materials strongly depends on the polarization direction. The extinction ratio increases as the power of the pumping laser increases. The enhanced polarization dependency is explained by the redistribution of photocarriers, which accelerates the sintering effect along the direction of alignment of the Ag nanowires. The photocarrier redistribution effect is examined by the enhancement of terahertz emission from the sample. Oblique metal nanowires on Si could be utilized for designing optically tunable terahertz polarization modulators.
[Terahertz Spectroscopic Identification with Deep Belief Network].
Ma, Shuai; Shen, Tao; Wang, Rui-qi; Lai, Hua; Yu, Zheng-tao
2015-12-01
Feature extraction and classification are the key issues of terahertz spectroscopy identification. Because many materials have no apparent absorption peaks in the terahertz band, it is difficult to extract theirs terahertz spectroscopy feature and identify. To this end, a novel of identify terahertz spectroscopy approach with Deep Belief Network (DBN) was studied in this paper, which combines the advantages of DBN and K-Nearest Neighbors (KNN) classifier. Firstly, cubic spline interpolation and S-G filter were used to normalize the eight kinds of substances (ATP, Acetylcholine Bromide, Bifenthrin, Buprofezin, Carbazole, Bleomycin, Buckminster and Cylotriphosphazene) terahertz transmission spectra in the range of 0.9-6 THz. Secondly, the DBN model was built by two restricted Boltzmann machine (RBM) and then trained layer by layer using unsupervised approach. Instead of using handmade features, the DBN was employed to learn suitable features automatically with raw input data. Finally, a KNN classifier was applied to identify the terahertz spectrum. Experimental results show that using the feature learned by DBN can identify the terahertz spectrum of different substances with the recognition rate of over 90%, which demonstrates that the proposed method can automatically extract the effective features of terahertz spectrum. Furthermore, this KNN classifier was compared with others (BP neural network, SOM neural network and RBF neural network). Comparisons showed that the recognition rate of KNN classifier is better than the other three classifiers. Using the approach that automatic extract terahertz spectrum features by DBN can greatly reduce the workload of feature extraction. This proposed method shows a promising future in the application of identifying the mass terahertz spectroscopy.
NASA Astrophysics Data System (ADS)
Booske, John H.
2008-05-01
Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave (mmw) to terahertz (THz) regime electromagnetic radiation, from 0.1 to 10THz. While vacuum electronic sources are a natural choice for high power, the challenges have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, high resolution radar, next generation acceleration drivers, and analysis of fluids and condensed matter. The compact size requirements for many of these high frequency sources require miniscule, microfabricated slow wave circuits. This necessitates electron beams with tiny transverse dimensions and potentially very high current densities for adequate gain. Thus, an emerging family of microfabricated, vacuum electronic devices share many of the same plasma physics challenges that are currently confronting "classic" high power microwave (HPM) generators including long-life bright electron beam sources, intense beam transport, parasitic mode excitation, energetic electron interaction with surfaces, and rf air breakdown at output windows. The contemporary plasma physics and other related issues of compact, high power mmw-to-THz sources are compared and contrasted to those of HPM generation, and future research challenges and opportunities are discussed.
NASA Astrophysics Data System (ADS)
Wada, Yoshio; Satoh, Takumi; Higashi, Yasuhiro; Urata, Yoshiharu
2017-12-01
We demonstrate a high-average-power, single longitudinal-mode, and tunable terahertz (THz)-wave source based on difference frequency generation (DFG) in a MgO:LiNbO3 (MgO:LN) crystal. The waves for DFG are generated using a pair of Yb-doped pulsed fiber lasers with a master oscillator power fiber amplifier configuration. The average power of the THz-wave output reaches 450 μW at 1.07 THz (280 μm) at a linewidth of 7.2 GHz, and the tunability ranges from 0.35 to 1.07 THz under the pulse repetition frequency of 500 kHz. A short burn-in test of the THz wave is also carried out, and the output power stability is within ± 5% of the averaged power without any active stabilizing technique. The combination of MgO:LN-DFG and stable and robust fiber laser sources is highly promising for the development of high-average-power THz-wave sources, particularly in the high transmission sub-THz region. This approach may enable new applications of THz-wave spectroscopy in imaging and remote sensing.
Growth, structural, thermal, dielectric and optical studies on HBST crystal: A potential THz emitter
NASA Astrophysics Data System (ADS)
Ma, Yuzhe; Teng, Bing; Cao, Lifeng; Zhong, Degao; Ji, Shaohua; Teng, Fei; Liu, Jiaojiao; Yao, Yuan; Tang, Jie; Tong, Jiaming
2018-02-01
The efficient organic nonlinear optical material 4-hydroxy benzaldehyde-N-methyl 4-stilbazolium tosylate (HBST) was grown from methanol by slope nucleation method combined with slow cooling (SNM-SC) for the first time. The optimum growth conditions based on the cooling rate was further investigated. The single crystal X-ray diffraction (XRD) revealed that the chromophores of HBST crystal make an angle of about 33° with respect to the a-axis, which is close to the optimum of Terahertz (THz)-wave generation and electro-optics applications. NMR and FT-IR spectral studies have been performed to ascertain various functional groups present in the sample. Futhermore, the thermal stability and decomposition stages were analyzed through TG-DTA and DSC techniques. The dielectric constant and dielectric loss of HBST crystal have been studied. Critical optical properties like the absorption coefficient, refractive index, cut-off wavelength and band gap energy were calculated. Photoluminescence (PL) exication studies indicated green emission occured at 507 nm. All the results of HBST crystal make it a promising candidate in the fields of optoelectronic and the generation of THz.
Plasma q -plate for generation and manipulation of intense optical vortices
NASA Astrophysics Data System (ADS)
Qu, Kenan; Jia, Qing; Fisch, Nathaniel J.
2017-11-01
An optical vortex is a light wave with a twisting wavefront around its propagation axis and null intensity in the beam center. Its unique spatial structure of field lends itself to a broad range of applications, including optical communication, quantum information, superresolution microscopy, and multidimensional manipulation of particles. However, accessible intensity of optical vortices have been limited to material ionization threshold. This limitation might be removed by using the plasma medium. Here we propose the design of suitably magnetized plasmas which, functioning as a q -plate, leads to a direct conversion from a high-intensity Gaussian beam into a twisted beam. A circularly polarized laser beam in the plasma accumulates an azimuthal-angle-dependent phase shift and hence forms a twisting wavefront. Our three-dimensional particle-in-cell simulations demonstrate extremely high-power conversion efficiency. The plasma q -plate can work in a large range of frequencies spanning from terahertz to the optical domain.
Attosecond control of electron beams at dielectric and absorbing membranes
NASA Astrophysics Data System (ADS)
Morimoto, Yuya; Baum, Peter
2018-03-01
Ultrashort electron pulses are crucial for time-resolved electron diffraction and microscopy of the fundamental light-matter interaction. In this work, we study experimentally and theoretically the generation and characterization of attosecond electron pulses by optical-field-driven compression and streaking at dielectric or absorbing interaction elements. The achievable acceleration and deflection gradient depends on the laser-electron angle, the laser's electric and magnetic field directions, and the foil orientation. Electric and magnetic fields have similar contributions to the final effect and both need to be considered. Experiments and theory agree well and reveal the optimum conditions for highly efficient, velocity-matched electron-field interactions in the longitudinal or transverse direction. We find that metallic membranes are optimum for light-electron control at mid-infrared or terahertz wavelengths, but dielectric membranes are excellent in the visible and near-infrared regimes and are therefore ideal for the formation of attosecond electron pulses.
A promising diagnostic method: Terahertz pulsed imaging and spectroscopy
Sun, Yiwen; Sy, Ming Yiu; Wang, Yi-Xiang J; Ahuja, Anil T; Zhang, Yuan-Ting; Pickwell-MacPherson, Emma
2011-01-01
The terahertz band lies between the microwave and infrared regions of the electromagnetic spectrum. This radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues. It is strongly attenuated by water and very sensitive to water content. Unique absorption spectra due to intermolecular vibrations in this region have been found in different biological materials. These unique features make terahertz imaging very attractive for medical applications in order to provide complimentary information to existing imaging techniques. There has been an increasing interest in terahertz imaging and spectroscopy of biologically related applications within the last few years and more and more terahertz spectra are being reported. This paper introduces terahertz technology and provides a short review of recent advances in terahertz imaging and spectroscopy techniques, and a number of applications such as molecular spectroscopy, tissue characterization and skin imaging are discussed. PMID:21512652
Study on spectral features of terahertz wave propagating in the air
NASA Astrophysics Data System (ADS)
Kang, Shengwu
2018-03-01
Now, Terahertz technology has been widely used in many fields, which is mainly related to imaging detection. While the frequency range of the terahertz-wave is located between microwave and visible light, whether the existing visible light principle is applicable to terahertz-wave should be studied again. Through experiment, we measure the terahertz-wave field amplitude distribution on the receiving plane perpendicular to the direction of propagation in the air and picture out the energy distribution curve; derive an energy decay formula of terahertz wave based on the results; design a terahertz wavelength apparatus using the F-P interferometer theory; test the wavelength between 1 and 3 THz from the SIFIR-50THz laser of American Corehent company; finally analyze the related factors affecting the measurement precision including the beam incident angle, mechanical vibration, temperature fluctuation and the refractive index fluctuation.
High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays.
Yardimci, Nezih Tolga; Jarrahi, Mona
2017-02-16
Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB.
High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays
Yardimci, Nezih Tolga; Jarrahi, Mona
2017-01-01
Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB. PMID:28205615
Synthetic aperture in terahertz in-line digital holography for resolution enhancement.
Huang, Haochong; Rong, Lu; Wang, Dayong; Li, Weihua; Deng, Qinghua; Li, Bin; Wang, Yunxin; Zhan, Zhiqiang; Wang, Xuemin; Wu, Weidong
2016-01-20
Terahertz digital holography is a combination of terahertz technology and digital holography. In digital holography, the imaging resolution is the key parameter in determining the detailed quality of a reconstructed wavefront. In this paper, the synthetic aperture method is used in terahertz digital holography and the in-line arrangement is built to perform the detection. The resolved capability of previous terahertz digital holographic systems restricts this technique to meet the requirement of practical detection. In contrast, the experimental resolved power of the present method can reach 125 μm, which is the best resolution of terahertz digital holography to date. Furthermore, the basic detection of a biological specimen is conducted to show the practical application. In all, the results of the proposed method demonstrate the enhancement of experimental imaging resolution and that the amplitude and phase distributions of the fine structure of samples can be reconstructed by using terahertz digital holography.
Optomechanical terahertz detection with single meta-atom resonator.
Belacel, Cherif; Todorov, Yanko; Barbieri, Stefano; Gacemi, Djamal; Favero, Ivan; Sirtori, Carlo
2017-11-17
Most of the common technologies for detecting terahertz photons (>1 THz) at room temperature rely on slow thermal devices. The realization of fast and sensitive detectors in this frequency range is indeed a notoriously difficult task. Here we propose a novel device consisting of a subwavelength terahertz meta-atom resonator, which integrates a nanomechanical element and allows energy exchange between the mechanical motion and the electromagnetic degrees of freedom. An incident terahertz wave thus produces a nanomechanical signal that can be read out optically with high precision. We exploit this concept to demonstrate a terahertz detector that operates at room temperature with high sensitivity and a much higher frequency response compared to standard detectors. Beyond the technological issue of terahertz detection, our architecture opens up new perspectives for fundamental science of light-matter interaction at terahertz frequencies, combining optomechanical approaches with semiconductor quantum heterostructures.
Video-rate terahertz electric-field vector imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takai, Mayuko; Takeda, Masatoshi; Sasaki, Manabu
We present an experimental setup to dramatically reduce a measurement time for obtaining spatial distributions of terahertz electric-field (E-field) vectors. The method utilizes the electro-optic sampling, and we use a charge-coupled device to detect a spatial distribution of the probe beam polarization rotation by the E-field-induced Pockels effect in a 〈110〉-oriented ZnTe crystal. A quick rotation of the ZnTe crystal allows analyzing the terahertz E-field direction at each image position, and the terahertz E-field vector mapping at a fixed position of an optical delay line is achieved within 21 ms. Video-rate mapping of terahertz E-field vectors is likely to bemore » useful for achieving real-time sensing of terahertz vector beams, vector vortices, and surface topography. The method is also useful for a fast polarization analysis of terahertz beams.« less
Terahertz Technology: A Boon to Tablet Analysis
Wagh, M. P.; Sonawane, Y. H.; Joshi, O. U.
2009-01-01
The terahertz gap has a frequency ranges from ∼0.3 THz to ∼10 THz in the electromagnetic spectrum which is in between microwave and infrared. The terahertz radiations are invisible to naked eye. In comparison with x-ray they are intrinsically safe, non-destructive and non-invasive. Terahertz spectroscopy enables 3D imaging of structures and materials, and the measurement of the unique spectral fingerprints of chemical and physical forms. Terahertz radiations are produced by a dendrimer based high power terahertz source and spectroscopy technologies. It resolves many of the questions left unanswered by complementary techniques, such as optical imaging, Raman and infrared spectra. In the pharmaceutical industries it enables nondestructive, internal, chemical analysis of tablets, capsules, and other dosage forms. Tablet coatings are a major factor in drug bioavailability. Therefore tablet coatings integrity and uniformity are of crucial importance to quality. Terahertz imaging gives an unparalleled certainty about the integrity of tablet coatings and the matrix performance of tablet cores. This article demonstrates the potential of terahertz pulse imaging for the analysis of tablet coating thickness by illustrating the technique on tablets. PMID:20490288
Tutorial: Terahertz beamforming, from concepts to realizations
NASA Astrophysics Data System (ADS)
Headland, Daniel; Monnai, Yasuaki; Abbott, Derek; Fumeaux, Christophe; Withayachumnankul, Withawat
2018-05-01
The terahertz range possesses significant untapped potential for applications including high-volume wireless communications, noninvasive medical imaging, sensing, and safe security screening. However, due to the unique characteristics and constraints of terahertz waves, the vast majority of these applications are entirely dependent upon the availability of beam control techniques. Thus, the development of advanced terahertz-range beam control techniques yields a range of useful and unparalleled applications. This article provides an overview and tutorial on terahertz beam control. The underlying principles of wavefront engineering include array antenna theory and diffraction optics, which are drawn from the neighboring microwave and optical regimes, respectively. As both principles are applicable across the electromagnetic spectrum, they are reconciled in this overview. This provides a useful foundation for investigations into beam control in the terahertz range, which lies between microwaves and infrared light. Thereafter, noteworthy experimental demonstrations of beam control in the terahertz range are discussed, and these include geometric optics, phased array devices, leaky-wave antennas, reflectarrays, and transmitarrays. These techniques are compared and contrasted for their suitability in applications of terahertz waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nusinovich, G.S.; Sinitsyn, O.V.
This paper contains a simple analytical theory that allows one to evaluate the effect of transverse nonuniformity of the rf field on the interaction efficiency in various microwave sources driven by linear electron beams. The theory is, first, applied to the systems where the beams of cylindrical symmetry interact with rf fields of microwave circuits having Cartesian geometry. Also, various kinds of microwave devices driven by sheet electron beams (orotrons, clinotrons) are considered. The theory can be used for evaluating the efficiency of novel sources of coherent terahertz radiation.
NASA Astrophysics Data System (ADS)
Zhao, J.; Zhang, X.; Li, S.; Liu, C.; Chen, Y.; Peng, Y.; Zhu, Y.
2018-03-01
In this work, to decide the existence of terahertz (THz) wave propagation effect, THz pulses emitted from a blocked two-color femtosecond laser filament with variable length were recorded by a standard electric-optic sampling setup. The phenomenon of temporal advance of the THz waveform's peak with the increasing filament length has been observed. Together with another method of knife-edge measurement which aims at directly retrieving the THz beam diameter, both the experimental approaches have efficiently indicated the same filament range within which THz wave propagated inside the plasma column. At last, a preliminary two-dimensional near-field scanning imaging of the THz spot inside the cross section of the filament has been suggested as the third way to determine the issue of THz wave propagation effect.
Scattering properties of electromagnetic waves from metal object in the lower terahertz region
NASA Astrophysics Data System (ADS)
Chen, Gang; Dang, H. X.; Hu, T. Y.; Su, Xiang; Lv, R. C.; Li, Hao; Tan, X. M.; Cui, T. J.
2018-01-01
An efficient hybrid algorithm is proposed to analyze the electromagnetic scattering properties of metal objects in the lower terahertz (THz) frequency. The metal object can be viewed as perfectly electrical conducting object with a slightly rough surface in the lower THz region. Hence the THz scattered field from metal object can be divided into coherent and incoherent parts. The physical optics and truncated-wedge incremental-length diffraction coefficients methods are combined to compute the coherent part; while the small perturbation method is used for the incoherent part. With the MonteCarlo method, the radar cross section of the rough metal surface is computed by the multilevel fast multipole algorithm and the proposed hybrid algorithm, respectively. The numerical results show that the proposed algorithm has good accuracy to simulate the scattering properties rapidly in the lower THz region.
Characterization of an active metasurface using terahertz ellipsometry
Karl, Nicholas; Heimbeck, Martin S.; Everitt, Henry O.; ...
2017-11-06
Switchable metasurfaces fabricated on a doped epi-layer have become an important platform for developing techniques to control terahertz (THz) radiation, as a DC bias can modulate the transmission characteristics of the metasurface. To model and understand this performance in new device configurations accurately, a quantitative understanding of the bias-dependent surface characteristics is required. In this work, we perform THz variable angle spectroscopic ellipsometry on a switchable metasurface as a function of DC bias. By comparing these data with numerical simulations, we extract a model for the response of the metasurface at any bias value. Using this model, we predict amore » giant bias-induced phase modulation in a guided wave configuration. Lastly, these predictions are in qualitative agreement with our measurements, offering a route to efficient modulation of THz signals.« less
FDTD-based computed terahertz wave propagation in multilayer medium structures
NASA Astrophysics Data System (ADS)
Tu, Wan-li; Zhong, Shun-cong; Yao, Hai-zi; Shen, Yao-chun
2013-08-01
The terahertz region of the electromagnetic spectrum spans the frequency range of 0.1THz~10THz, which means it sandwiches between the mid-infrared (IR) and the millimeter/ microwave. With the development and commercialization of terahertz pulsed spectroscopy (TPS) and terahertz pulsed imaging (TPI) systems, terahertz technologies have been widely used in the sensing and imaging fields. It allows high quality cross-sectional images from within scattering media to be obtained nondestructively. Characterizing the interaction of terahertz radiation with multilayer medium structures is critical for the development of nondestructive testing technology. Currently, there was much experimental investigation of using TPI for the characterization of terahertz radiation in materials (e.g., pharmaceutical tablet coatings), but there were few theoretical researches on propagation of terahertz radiation in multilayer medium structures. Finite Difference Time Domain (FDTD) algorithm is a proven method for electromagnetic scattering theory, which analyzes continuous electromagnetic problems by employing finite difference and obtains electromagnetic field value at the sampling point to approach the actual continuous solutions. In the present work, we investigated the propagation of terahertz radiation in multilayer medium structures based on FDTD method. The model of multilayer medium structures under the THz frequency plane wave incidence was established, and the reflected radiation properties were recorded and analyzed. The terahertz radiation used was broad-band in the frequency up to 2 THz. A batch of single layer coated pharmaceutical tablets, whose coating thickness in the range of 40~100μm, was computed by FDTD method. We found that the simulation results on pharmaceutical tablet coatings were in good agreement with the experimental results obtained using a commercial system (TPI imaga 2000, TeraView, Cambridge, UK) , demonstrating its usefulness in simulating and analyzing terahertz responses from a multilayered sample.
Terahertz emission from ultrafast spin and charge currents at a Rashba interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qi; Jungfleisch, Matthias B.; Zhang, Wei
2017-01-01
Abstract: We demonstrate the efficient single-cycle THz emission from a Rashba interface, i.e., Ag/Bi, in a spintronic heterostructure. Different from the previously reported inversed spin Hall effect mechanism in bulk systems, the observed ultrafast spin-to-charge conversion in a 2D Rashba interface is due to the inversed Rashba-Edelstein effect.
Novel devices and systems for terahertz spectroscopy and imaging
NASA Astrophysics Data System (ADS)
Wang, Kanglin
This doctoral thesis documents my research on novel devices and systems for terahertz (THz) spectroscopy and imaging. The research is particularly focused on the manipulation of THz radiation, including subwavelength concentration and low-loss wave guiding. One of the major obstacles for THz imaging is the poor spatial resolution due to the diffraction of the long-wavelength light source. To break this restriction, we build a THz near-field microscopy system by combining apertureless near-field scanning optical microscopy (ANSOM) with terahertz time-domain spectroscopy (THz-TDS). The experimental result indicates a sub-wavelength spatial resolution of about 10 micron. Abnormal frequency response of the ANSOM probe tip is observed, and a dipole antenna model is developed to explain the bandwidth reduction of the detected THz pulses. We also observe and characterize the THz wave propagation on the near-field probe in ANSOM. These studies not only demonstrate the feasibility of ANSOM in the THz frequency range, but also provide fundamental insights into the near-field microscopy in general, such as the broadband compatibility, the propagation effects and the antenna effects. Motivated by our study of the propagation effects in THz ANSOM, we characterize the guided mode of THz pulses on a bare metal wire by directly measuring the spatial profile of electric field of the mode, and find that the wire structure can be used to guide THz waves with outstanding performance. This new broadband THz waveguide exhibits very small dispersion, extremely low attenuation and remarkable structural simplicity. These features make it especially suitable for use in THz sensing and imaging systems. The first THz endoscope is demonstrated based on metal wire waveguides. To improve the input coupling efficiency of such waveguides, we develop a photoconductive antenna with radial symmetry which can generate radially polarized THz radiation matching the waveguide mode. Through THz-TDS measurements and theoretical calculations, we study the dispersion relation of the surface waves on metal wires, which indicates the increasing importance of skin effects for surface waves in the THz frequency range.
Physics-Based Imaging Methods for Terahertz Nondestructive Evaluation Applications
NASA Astrophysics Data System (ADS)
Kniffin, Gabriel Paul
Lying between the microwave and far infrared (IR) regions, the "terahertz gap" is a relatively unexplored frequency band in the electromagnetic spectrum that exhibits a unique combination of properties from its neighbors. Like in IR, many materials have characteristic absorption spectra in the terahertz (THz) band, facilitating the spectroscopic "fingerprinting" of compounds such as drugs and explosives. In addition, non-polar dielectric materials such as clothing, paper, and plastic are transparent to THz, just as they are to microwaves and millimeter waves. These factors, combined with sub-millimeter wavelengths and non-ionizing energy levels, makes sensing in the THz band uniquely suited for many NDE applications. In a typical nondestructive test, the objective is to detect a feature of interest within the object and provide an accurate estimate of some geometrical property of the feature. Notable examples include the thickness of a pharmaceutical tablet coating layer or the 3D location, size, and shape of a flaw or defect in an integrated circuit. While the material properties of the object under test are often tightly controlled and are generally known a priori, many objects of interest exhibit irregular surface topographies such as varying degrees of curvature over the extent of their surfaces. Common THz pulsed imaging (TPI) methods originally developed for objects with planar surfaces have been adapted for objects with curved surfaces through use of mechanical scanning procedures in which measurements are taken at normal incidence over the extent of the surface. While effective, these methods often require expensive robotic arm assemblies, the cost and complexity of which would likely be prohibitive should a large volume of tests be needed to be carried out on a production line. This work presents a robust and efficient physics-based image processing approach based on the mature field of parabolic equation methods, common to undersea acoustics, seismology, and other areas of science and engineering. The method allows the generation of accurate 3D THz tomographic images of objects with irregular, non-planar surfaces using a simple planar scan geometry, thereby facilitating the integration of 3D THz imaging into mainstream NDE use.
Terahertz plasmonic lasers with narrow beams and large tunability
NASA Astrophysics Data System (ADS)
Jin, Yuan; Wu, Chongzhao; Reno, John L.; Kumar, Sushil
2017-02-01
Plasmonic lasers generate coherent long-range or localized surface-plasmon-polaritons (SPPs), where the SPP mode exists at the interface of the metal (or a metallic nanoparticle) and a dielectric. Metallic-cavities sup- porting SPP modes are also utilized for terahertz quantum-cascade lasers (QCLs). Due to subwavelength apertures, plasmonic lasers have highly divergent radiation patterns. Recently, we theoretically and experimentally demonstrated a new technique for implementing distributed-feedback (DFB), which is termed as an antenna- feedback scheme, to establish a hybrid SPP mode in the surrounding medium of a plasmonic laser's cavity with a large wavefront. This technique allows such lasers to radiate in narrow beams without requirement of any specific design considerations for phase-matching. Experimental demonstration is done for terahertz QCLs that show beam-divergence as small as 4-degrees. The antenna-feedback scheme has a characteristic feature in that refractive-index of the laser's surrounding medium affects its radiative frequency in the same vein as refractive- index of the cavity. Hence, any perturbations in the refractive-index of the surrounding medium could lead to large modulation in the laser's emission frequency. Along this line, we report 57 GHz reversible, continuous, and mode-hop-free tuning of such QCLs operating at 78 K based on post-process deposition/etching of a dielectric on an already mounted QCL chip. This is the largest tuning range achieved for terahertz QCLs when operating much above the temperature of liquid-Helium. We review the aforementioned experimental results and discuss methods to increase optical power output from terahertz QCLs with antenna-feedback. Peak power output of 13 mW is realized for a 3.3 THz QCL operating in a Stirling cooler at 54 K. A new dual-slit photonic structure based on antenna-feedback scheme is proposed to further improve output power as well as provide enhanced tunability.
Zhang, Zeng-yan; Ji, Te; Zhu, Zhi-yong; Zhao, Hong-wei; Chen, Min; Xiao, Ti-qiao; Guo, Zhi
2015-01-01
Terahertz radiation is an electromagnetic radiation in the range between millimeter waves and far infrared. Due to its low energy and non-ionizing characters, THz pulse imaging emerges as a novel tool in many fields, such as material, chemical, biological medicine, and food safety. Limited spatial resolution is a significant restricting factor of terahertz imaging technology. Near field imaging method was proposed to improve the spatial resolution of terahertz system. Submillimeter scale's spauial resolution can be achieved if the income source size is smaller than the wawelength of the incoming source and the source is very close to the sample. But many changes were needed to the traditional terahertz time domain spectroscopy system, and it's very complex to analyze sample's physical parameters through the terahertz signal. A method of inserting a pinhole upstream to the sample was first proposed in this article to improve the spatial resolution of traditional terahertz time domain spectroscopy system. The measured spatial resolution of terahertz time domain spectroscopy system by knife edge method can achieve spatial resolution curves. The moving stage distance between 10 % and 90 Yo of the maximum signals respectively was defined as the, spatial resolution of the system. Imaging spatial resolution of traditional terahertz time domain spectroscopy system was improved dramatically after inserted a pinhole with diameter 0. 5 mm, 2 mm upstream to the sample. Experimental results show that the spatial resolution has been improved from 1. 276 mm to 0. 774 mm, with the increment about 39 %. Though this simple method, the spatial resolution of traditional terahertz time domain spectroscopy system was increased from millimeter scale to submillimeter scale. A pinhole with diameter 1 mm on a polyethylene plate was taken as sample, to terahertz imaging study. The traditional terahertz time domain spectroscopy system and pinhole inserted terahertz time domain spectroscopy system were applied in the imaging experiment respectively. The relative THz-power loss imaging of samples were use in this article. This method generally delivers the best signal to noise ratio in loss images, dispersion effects are cancelled. Terahertz imaging results show that the sample's boundary was more distinct after inserting the pinhole in front of, sample. The results also conform that inserting pinhole in front of sample can improve the imaging spatial resolution effectively. The theoretical analyses of the method which improve the spatial resolution by inserting a pinhole in front of sample were given in this article. The analyses also indicate that the smaller the pinhole size, the longer spatial coherence length of the system, the better spatial resolution of the system. At the same time the terahertz signal will be reduced accordingly. All the experimental results and theoretical analyses indicate that the method of inserting a pinhole in front of sample can improve the spatial resolution of traditional terahertz time domain spectroscopy system effectively, and it will further expand the application of terahertz imaging technology.
Simultaneous passively Q-switched dual-wavelength solid-state laser working at 1065 and 1066 nm.
Pallas, Florent; Herault, Emilie; Roux, Jean-Francois; Kevorkian, Antoine; Coutaz, Jean-Louis; Vitrant, Guy
2012-07-15
A passively Q-switched dual-wavelength solid-state laser is presented. The two wavelengths are emitted by two different crystals in order to avoid gain competition, and the synchronization between the pulses is obtained by external triggering of the saturable absorber. Sum frequency mixing is demonstrated, proving the interest of this source for terahertz generation in the 0.3-0.4 THz range through difference frequency generation.
Nonlinear spin current generation in noncentrosymmetric spin-orbit coupled systems
NASA Astrophysics Data System (ADS)
Hamamoto, Keita; Ezawa, Motohiko; Kim, Kun Woo; Morimoto, Takahiro; Nagaosa, Naoto
2017-06-01
Spin current plays a central role in spintronics. In particular, finding more efficient ways to generate spin current has been an important issue and has been studied actively. For example, representative methods of spin-current generation include spin-polarized current injections from ferromagnetic metals, the spin Hall effect, and the spin battery. Here, we theoretically propose a mechanism of spin-current generation based on nonlinear phenomena. By using Boltzmann transport theory, we show that a simple application of the electric field E induces spin current proportional to E2 in noncentrosymmetric spin-orbit coupled systems. We demonstrate that the nonlinear spin current of the proposed mechanism is supported in the surface state of three-dimensional topological insulators and two-dimensional semiconductors with the Rashba and/or Dresselhaus interaction. In the latter case, the angular dependence of the nonlinear spin current can be manipulated by the direction of the electric field and by the ratio of the Rashba and Dresselhaus interactions. We find that the magnitude of the spin current largely exceeds those in the previous methods for a reasonable magnitude of the electric field. Furthermore, we show that application of ac electric fields (e.g., terahertz light) leads to the rectifying effect of the spin current, where dc spin current is generated. These findings will pave a route to manipulate the spin current in noncentrosymmetric crystals.
Strain Imaging Using Terahertz Waves and Metamaterials
2016-11-01
TECHNICAL REPORT RDMR-WD-16-48 STRAIN IMAGING USING TERAHERTZ WAVES AND METAMATERIALS Henry O. Everitt and Martin S...TITLE AND SUBTITLE Strain Imaging Using Terahertz Waves and Metamaterials 5. FUNDING NUMBERS 6. AUTHOR(S) Henry O. Everitt, Martin S...predictions. 14. SUBJECT TERMS Birefringence, Terahertz Waves , Metamaterials 15. NUMBER OF PAGES 16 16. PRICE CODE 17. SECURITY
Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields
NASA Astrophysics Data System (ADS)
Kim, Ki-Yong; Glownia, James H.; Taylor, Antoinette J.; Rodriguez, George
2007-04-01
A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.
Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields.
Kim, Ki-Yong; Glownia, James H; Taylor, Antoinette J; Rodriguez, George
2007-04-16
A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.
NASA Astrophysics Data System (ADS)
Wu, Si-Qing; Liu, Jin-Song; Wang, Sheng-Lie; Hu, Bing
2013-10-01
The generation of terahertz (THz) emission from air plasma induced by two-color femtosecond laser pulses is studied on the basis of a transient photocurrent model. While the gas is ionized by the two-color femtosecond laser-pulses composed of the fundamental and its second harmonic, a non-vanishing directional photoelectron current emerges, radiating a THz electromagnetic pulse. The gas ionization processes at three different laser-pulse energies are simulated, and the corresponding THz waveforms and spectra are plotted. The results demonstrate that, by keeping the laser-pulse width and the relative phase between two pulses invariant when the laser energy is at a moderate value, the emitted THz fields are significantly enhanced with a near-linear dependence on the optical energy.
Label-free probing of genes by time-domain terahertz sensing.
Haring Bolivar, P; Brucherseifer, M; Nagel, M; Kurz, H; Bosserhoff, A; Büttner, R
2002-11-07
A label-free sensing approach for the label-free characterization of genetic material with terahertz (THz) electromagnetic waves is presented. Time-resolved THz analysis of polynucleotides demonstrates a strong dependence of the complex refractive index of DNA molecules in the THz frequency range on their hybridization state. By monitoring THz signals one can thus infer the binding state (hybridized or denatured) of oligo- and polynucleotides, enabling the label-free determination the genetic composition of unknown DNA sequences. A broadband experimental proof-of-principle in a freespace analytic configuration, as well as a higher-sensitivity approach using integrated THz sensors reaching femtomol detection levels and demonstrating the capability to detect single-base mutations, are presented. The potential application for next generation high-throughput label-free genetic analytic systems is discussed.
Numerical analysis of THz radiation wave using upper hybrid wave wiggler
NASA Astrophysics Data System (ADS)
Malik, Pratibha; Sharma, Suresh C.; Panwar, Jyotsna; Sharma, Rinku
2018-03-01
A theory for upper hybrid wave induced by relativistic electron beam in magnetized plasma emits tuneable and coherent terahertz radiation. The nonlinear interaction with REB is used to generate terahertz radiation. The enhancement in the amplitude of THz wave is also observed when pre-bunched REB is used. The ponderomotive force applied on beam electrons due to radiation wave and upper wave wiggler modifies the dispersion relation. By solving the dispersion relation, we have derived the growth rate of the radiation wave. Numerical studies indicate that by increasing the beam energy the growth rate of the radiation wave decreases, while it increases with wiggler frequency. Besides this, the growth rate of the radiation wave increases with beam density and decreases with radiation frequency and static magnetic field.
NASA Astrophysics Data System (ADS)
Vardanyan, Aleksandr O.; Oganesyan, David L.
2008-11-01
The results of a theoretical study of the formation of a supercontinuum produced due to the interaction of femtosecond laser pulses with an isotropic nonlinear medium are presented. The system of nonlinear Maxwell's equations was numerically integrated in time by the finite-difference method. The interaction of mutually orthogonal linearly-polarised 1.98-μm, 30-fs, 30-nJ pulses propagating along the normal to the 110 plane in a 1-mm-long GaAs crystal was considered. In the nonlinear part of the polarisation medium, the inertialless second-order nonlinear susceptibility was taken into account. The formation process of a terahertz pulse obtained due to the supercontinuum filtration was studied.