Sample records for efficient total synthesis

  1. Efficient total synthesis of (S)-14-azacamptothecin.

    PubMed

    Liu, Guan-Sai; Yao, Yuan-Shan; Xu, Peng; Wang, Shaozhong; Yao, Zhu-Jun

    2010-06-01

    An efficient total synthesis of (S)-14-azacamptothecin has been accomplished in 10 steps and 56% overall yield from 5H-pyrano[4,3-d]pyrimidine 8. A mild Hendrickson reagent-triggered intramolecular cascade cyclization, a highly enantioselective dihydroxylation, and an efficient palladium-catalyzed transformation of an O-allyl into N-allyl group are the key steps in the synthesis. This work provides a much higher overall yield than the previous achievement and shows sound flexibility for the further applications that will lead to new bioactive analogues.

  2. Dearomatization Strategies in the Synthesis of Complex Natural Products

    PubMed Central

    Roche, Stéphane P.; Porco, John A.

    2014-01-01

    Evolution in the field of the total synthesis of natural products has led to exciting developments over the last decade. Numerous chemo-selective and enantioselective methodologies have emerged from total syntheses, resulting in efficient access to many important natural product targets. This Review highlights recent developments concerning dearomatization, a powerful strategy for the total synthesis of architecturally complex natural products wherein planar, aromatic scaffolds are converted to three-dimensional molecular architectures. PMID:21506209

  3. Total Synthesis of Bryostatins. Development of Methodology for Atom-Economic and Stereoselective Synthesis of the C-ring Subunit

    PubMed Central

    Trost, Barry M.; Frontier, Alison J.; Thiel, Oliver R.; Yang, Hanbiao; Dong, Guangbin

    2012-01-01

    Bryostatins, a family of structurally complicated macrolides, exhibit an exceptional range of biological activities. The limited availability and structural complexity of these molecules makes development of an efficient total synthesis particularly important. This article describes our initial efforts towards the total synthesis of bryostatins, in which chemoselective and atom-economical methods for stereoselective assembly of the C-ring subunit were developed. A Pd-catalyzed tandem alkyne-alkyne coupling/6-endo-dig cyclization sequence was explored and successfully pursued in the synthesis of a dihydropyran ring system. Elaboration of this methodology ultimately led to a concise synthesis of the C-ring subunit of bryostatins. PMID:21793057

  4. Total Synthesis of Adunctin B.

    PubMed

    Dethe, Dattatraya H; Dherange, Balu D

    2018-03-16

    Total synthesis of (±)-adunctin B, a natural product isolated from Piper aduncum (Piperaceae), has been achieved using two different strategies, in seven and three steps. The efficient approach features highly atom economical and diastereoselective Friedel-Crafts acylation, alkylation reaction and palladium catalyzed Wacker type oxidative cyclization.

  5. Total Synthesis of (±)-Cis-Trikentrin B via Intermolecular 6,7-Indole Aryne Cycloaddition and Stille Cross-Coupling.

    PubMed

    Chandrasoma, Nalin; Brown, Neil; Brassfield, Allen; Nerurkar, Alok; Suarez, Susana; Buszek, Keith R

    2013-02-20

    An efficient total synthesis of the annulated indole natural product (±)- cis -trikentrin B was accomplished by means of a regioselectively generated 6,7-indole aryne cycloaddition via selective metal-halogen exchange from a 5,6,7-tribromoindole. The unaffected C-5 bromine was subsequently used for a Stille cross-coupling to install the butenyl side chain and complete the synthesis. This strategy provides rapid access into the trikentrins and the related herbindoles, and represents another application of this methodology to natural products total synthesis. The required 5,6,7-indole aryne precursor was prepared using the Leimgruber-Batcho indole synthesis.

  6. Efficient utilization of greenhouse gases in a gas-to-liquids process combined with CO2/steam-mixed reforming and Fe-based Fischer-Tropsch synthesis.

    PubMed

    Zhang, Chundong; Jun, Ki-Won; Ha, Kyoung-Su; Lee, Yun-Jo; Kang, Seok Chang

    2014-07-15

    Two process models for carbon dioxide utilized gas-to-liquids (GTL) process (CUGP) mainly producing light olefins and Fischer-Tropsch (F-T) synthetic oils were developed by Aspen Plus software. Both models are mainly composed of a reforming unit, an F-T synthesis unit and a recycle unit, while the main difference is the feeding point of fresh CO2. In the reforming unit, CO2 reforming and steam reforming of methane are combined together to produce syngas in flexible composition. Meanwhile, CO2 hydrogenation is conducted via reverse water gas shift on the Fe-based catalysts in the F-T synthesis unit to produce hydrocarbons. After F-T synthesis, the unreacted syngas is recycled to F-T synthesis and reforming units to enhance process efficiency. From the simulation results, it was found that the carbon efficiencies of both CUGP options were successfully improved, and total CO2 emissions were significantly reduced, compared with the conventional GTL processes. The process efficiency was sensitive to recycle ratio and more recycle seemed to be beneficial for improving process efficiency and reducing CO2 emission. However, the process efficiency was rather insensitive to split ratio (recycle to reforming unit/total recycle), and the optimum split ratio was determined to be zero.

  7. Scope and Limitations of Fmoc Chemistry SPPS-Based Approaches to the Total Synthesis of Insulin Lispro via Ester Insulin.

    PubMed

    Dhayalan, Balamurugan; Mandal, Kalyaneswar; Rege, Nischay; Weiss, Michael A; Eitel, Simon H; Meier, Thomas; Schoenleber, Ralph O; Kent, Stephen B H

    2017-01-31

    We have systematically explored three approaches based on 9-fluorenylmethoxycarbonyl (Fmoc) chemistry solid phase peptide synthesis (SPPS) for the total chemical synthesis of the key depsipeptide intermediate for the efficient total chemical synthesis of insulin. The approaches used were: stepwise Fmoc chemistry SPPS; the "hybrid method", in which maximally protected peptide segments made by Fmoc chemistry SPPS are condensed in solution; and, native chemical ligation using peptide-thioester segments generated by Fmoc chemistry SPPS. A key building block in all three approaches was a Glu[O-β-(Thr)] ester-linked dipeptide equipped with a set of orthogonal protecting groups compatible with Fmoc chemistry SPPS. The most effective method for the preparation of the 51 residue ester-linked polypeptide chain of ester insulin was the use of unprotected peptide-thioester segments, prepared from peptide-hydrazides synthesized by Fmoc chemistry SPPS, and condensed by native chemical ligation. High-resolution X-ray crystallography confirmed the disulfide pairings and three-dimensional structure of synthetic insulin lispro prepared from ester insulin lispro by this route. Further optimization of these pilot studies could yield an efficient total chemical synthesis of insulin lispro (Humalog) based on peptide synthesis by Fmoc chemistry SPPS. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Total synthesis of bryostatins: the development of methodology for the atom-economic and stereoselective synthesis of the ring C subunit.

    PubMed

    Trost, Barry M; Frontier, Alison J; Thiel, Oliver R; Yang, Hanbiao; Dong, Guangbin

    2011-08-22

    Bryostatins, a family of structurally complicated macrolides, exhibit an exceptional range of biological activities. The limited availability and structural complexity of these molecules makes development of an efficient total synthesis particularly important. This article describes our initial efforts towards the total synthesis of bryostatins, in which chemoselective and atom-economical methods for the stereoselective assembly of the ring C subunit were developed. A Pd-catalyzed tandem alkyne-alkyne coupling/6-endo-dig cyclization sequence was explored and successfully pursued in the synthesis of a dihydropyran ring system. Elaboration of this methodology ultimately led to a concise synthesis of the ring C subunit of bryostatins. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Reaction of Donor-Acceptor Cyclobutanes with Indoles: A General Protocol for the Formal Total Synthesis of (±)-Strychnine and the Total Synthesis of (±)-Akuammicine.

    PubMed

    Feng, Liang-Wen; Ren, Hai; Xiong, Hu; Wang, Pan; Wang, Lijia; Tang, Yong

    2017-03-06

    A ligand-promoted catalytic [4+2] annulation reaction using indole derivatives and donor-acceptor (D-A) cyclobutanes is reported, thus providing an efficient and atom-economical access to versatile cyclohexa-fused indolines with excellent levels of diastereoselectivity and a broad substrate scope. In the presence of a chiral SaBOX ligand, excellent enantioselectivity was realized with up to 94 % ee. This novel synthetic method is applied as a general protocol for the total synthesis of (±)-akuammicine and the formal total synthesis of (±)-strychnine from the same common-core scaffold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nazarov cyclization initiated by peracid oxidation: the total synthesis of (+/-)-rocaglamide.

    PubMed

    Malona, John A; Cariou, Kevin; Frontier, Alison J

    2009-06-10

    The total syntheses of aglafolin, rocagloic acid, and rocaglamide using Nazarov cyclization are described. Generation of the necessary oxyallyl cation intermediate was accomplished via peracid oxidation of an allenol ether to generate an unusual oxycarbenium ion species that undergoes cyclization. The synthesis is efficient, highly diastereoselective, and strategically distinct from previous syntheses of rocaglamide.

  11. Biomimetically inspired asymmetric total synthesis of (+)-19-dehydroxyl arisandilactone A

    NASA Astrophysics Data System (ADS)

    Han, Yi-Xin; Jiang, Yan-Long; Li, Yong; Yu, Hai-Xin; Tong, Bing-Qi; Niu, Zhe; Zhou, Shi-Jie; Liu, Song; Lan, Yu; Chen, Jia-Hua; Yang, Zhen

    2017-01-01

    Complex natural products are a proven and rich source of disease-modulating drugs and of efficient tools for the study of chemical biology and drug discovery. The architectures of complex natural products are generally considered to represent significant barriers to efficient chemical synthesis. Here we describe a concise and efficient asymmetric synthesis of 19-dehydroxyl arisandilactone A--which belongs to a family of architecturally unique, highly oxygenated nortriterpenoids isolated from the medicinal plant Schisandra arisanensis. This synthesis takes place by means of a homo-Michael reaction, a tandem retro-Michael/Michael reaction, and Cu-catalysed intramolecular cyclopropanation as key steps. The proposed mechanisms for the homo-Michael and tandem retro-Michael/Michael reactions are supported by density functional theory (DFT) calculation. The developed chemistry may find application for the synthesis of its other family members of Schisandraceae nortriterpenoids.

  12. Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units

    NASA Astrophysics Data System (ADS)

    Wu, Yong; Xiong, De-Cai; Chen, Si-Cong; Wang, Yong-Shi; Ye, Xin-Shan

    2017-03-01

    Carbohydrates are diverse bio-macromolecules with highly complex structures that are involved in numerous biological processes. Well-defined carbohydrates obtained by chemical synthesis are essential to the understanding of their functions. However, synthesis of carbohydrates is greatly hampered by its insufficient efficiency. So far, assembly of long carbohydrate chains remains one of the most challenging tasks for synthetic chemists. Here we describe a highly efficient assembly of a 92-mer polysaccharide by the preactivation-based one-pot glycosylation protocol. Several linear and branched oligosaccharide/polysaccharide fragments ranging from 5-mer to 31-mer in length have been rapidly constructed in one-pot manner, which enables the first total synthesis of a biologically important mycobacterial arabinogalactan through a highly convergent [31+31+30] coupling reaction. Our results show that the preactivation-based one-pot glycosylation protocol may provide access to the construction of long and complicated carbohydrate chains.

  13. Total Synthesis of the Post-translationally Modified Polyazole Peptide Antibiotic Goadsporin.

    PubMed

    Dexter, Hannah L; Williams, Huw E L; Lewis, William; Moody, Christopher J

    2017-03-06

    The structurally unique polyazole antibiotic goadsporin contains six heteroaromatic oxazole and thiazole rings integrated into a linear array of amino acids that also contains two dehydroalanine residues. An efficient total synthesis of goadsporin is reported in which the key steps are the use of rhodium(II)-catalyzed reactions of diazocarbonyl compounds to generate the four oxazole rings, which demonstrates the power of rhodium carbene chemistry in organic chemical synthesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Total synthesis of the cyclopeptide alkaloid abyssenine A. Application of inter- and intramolecular copper-mediated coupling reactions in organic synthesis.

    PubMed

    Toumi, Mathieu; Couty, François; Evano, Gwilherm

    2007-11-23

    The first total synthesis of the 15-membered ring cyclopeptide alkaloid abyssenine A 1 has been achieved with a longest linear sequence of 15 steps. Central to the synthetic approach was an efficient copper-mediated Ullmann coupling/Claisen rearrangement sequence allowing for both ipso and ortho functionalization of aromatic iodide 4. This sequence was used for the synthesis of the aromatic core. The synthetic utility of copper-catalyzed coupling reactions was further demonstrated to install the enamide with a concomitant straightforward macrocyclization starting from acyclic alpha-amido-omega-vinyl iodide 13.

  15. Pharmacophore mapping in the laulimalide series: total synthesis of a vinylogue for a late-stage metathesis diversification strategy.

    PubMed

    Wender, Paul A; Hilinski, Michael K; Skaanderup, Philip R; Soldermann, Nicolas G; Mooberry, Susan L

    2006-08-31

    An efficient synthesis of the macrocyclic core of laulimalide with a pendant vinyl group at C20 is described, allowing for late-stage introduction of various side chains through a selective and efficient cross metathesis diversification step. Representative analogues reported herein are the first to contain modifications to only the side chain dihydropyran of laulimalide and des-epoxy laulimalide. This step-economical strategy enables the rapid synthesis of new analogues using alkenes as an inexpensive, abundantly available diversification feedstock.

  16. Design and Stereoselective Preparation of a New Class of Chiral Olefin Metathesis Catalysts and Application to Enantioselective Synthesis of Quebrachamine: Catalyst Development Inspired by Natural Product Synthesis

    PubMed Central

    Sattely, Elizabeth S.; Meek, Simon J.; Malcolmson, Steven J.; Schrock, Richard R.; Hoveyda, Amir H.

    2010-01-01

    A total synthesis of the Aspidosperma alkaloid quebrachamine in racemic form is first described. A key catalytic ring-closing metathesis of an achiral triene is used to establish the all-carbon quaternary stereogenic center and the tetracyclic structure of the natural product; the catalytic transformation proceeds with reasonable efficiency through the use of existing achiral Ru or Mo catalysts. Ru- or Mo-based chiral olefin metathesis catalysts have proven to be inefficient and entirely nonselective in cases where the desired product is observed. In the present study, the synthesis route thus serves as a platform for the discovery of new olefin metathesis catalysts that allow for efficient completion of an enantioselective synthesis of quebrachamine. Accordingly, on the basis of mechanistic principles, stereogenic-at-Mo complexes bearing only monodentate ligands have been designed. The new catalysts provide significantly higher levels of activity than observed with the previously reported Ru- or Mo-based complexes. Enantiomerically enriched chiral alkylidenes are generated through diastereoselective reactions involving achiral Mo-based bispyrrolides and enantiomerically pure silyl-protected binaphthols. Such chiral catalysts initiate the key enantioselective ring-closing metathesis step in the total synthesis of quebrachamine efficiently (1 mol % loading, 22 °C, 1 h, >98% conversion, 84% yield) and with high selectivity (98:2 er, 96% ee). PMID:19113867

  17. A Concise Synthesis of the Erythrina Alkaloid 3–Demethoxyerythratidinone via Combined Rhodium Catalysis

    PubMed Central

    Joo, Jung Min; David, Ramoncito A.; Yuan, Yu; Lee, Chulbom

    2010-01-01

    The total synthesis of the erythrina alkaloid 3–demethoxyerythratidinone has been achieved via a strategy based on combined rhodium catalysis. The catalytic tandem cyclization effected by the interplay of alkynyl and vinylidene rhodium species allows for efficient access to the A and B rings of the tetracyclic erythrinane skeleton in a single step. The synthesis also features rapid preparation of the requisite precursor for the double ring closure and thus has been completed in only 7 total steps in 41% overall yield. PMID:21090648

  18. Increased yield of PCR products by addition of T4 gene 32 protein to the SMART PCR cDNA synthesis system.

    PubMed

    Villalva, C; Touriol, C; Seurat, P; Trempat, P; Delsol, G; Brousset, P

    2001-07-01

    Under certain conditions, T4 gene 32 protein is known to increase the efficiency of different enzymes, such as Taq DNA polymerase, reverse transcriptase, and telomerase. In this study, we compared the efficiency of the SMART PCR cDNA synthesis kit with and without the T4 gene 32 protein. The use of this cDNA synthesis procedure, in combination with T4 gene 32 protein, increases the yield of RT-PCR products from approximately 90% to 150%. This effect is even observed for long mRNA templates and low concentrations of total RNA (25 ng). Therefore, we suggest the addition of T4 gene 32 protein in the RT-PCR mixture to increase the efficiency of cDNA synthesis, particularly in cases when low amounts of tissue are used.

  19. Copper-catalyzed selective hydroamination reactions of alkynes

    PubMed Central

    Shi, Shi-Liang; Buchwald, Stephen L.

    2014-01-01

    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a longstanding goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective, and step-efficient synthesis of amines is still needed. In this work we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines, and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio-, and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine, and tolterodine. PMID:25515888

  20. Copper-catalysed selective hydroamination reactions of alkynes

    NASA Astrophysics Data System (ADS)

    Shi, Shi-Liang; Buchwald, Stephen L.

    2015-01-01

    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a long-standing goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective and step-efficient synthesis of amines is still needed. Here, we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio- and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine and tolterodine.

  1. Total synthesis of a CD-ring: side-chain building block for preparing 17-epi-calcitriol derivatives from the Hajos-Parrish dione.

    PubMed

    Michalak, Karol; Wicha, Jerzy

    2011-08-19

    An efficient synthesis of the key building block for 17-epi-calctriol from the Hajos-Parrish dione involving a sequence of diastereoselective transformation of the azulene core and the side-chain construction is presented.

  2. The Pauson-Khand Reaction as a New Entry to the Synthesis of Bridged Bicyclic Heterocycles: Application to the Enantioselective Total Synthesis of (−)-Alstonerine

    PubMed Central

    Miller, Kenneth A.; Shanahan, Charles S.; Martin, Stephen F.

    2008-01-01

    The first application of the Pauson-Khand reaction (PKR) to the synthesis of azabridged bicyclic structures is described. Compounds containing azabicyclo[3.3.1]nonane and azabicyclo[3.2.1]octane rings fused to cyclopentenones were efficiently constructed via the PKR of cis-2,6-disubstituted N-acyl piperidine enyne substrates, many of which can be readily prepared from 4-methoxypyridine in a few steps. Moreover, the PKR of cis-2,6-disubstituted piperazine enynes allowed the preparation of diazabicyclo[3.3.1]nonanes fused to cyclopentenones. This new strategy for the synthesis of azabridged bicyclic frameworks was exploited as a key step in a concise, enantioselective total synthesis of the macroline alklaoid (−)-alstonerine. PMID:19122869

  3. The Pauson-Khand Reaction as a New Entry to the Synthesis of Bridged Bicyclic Heterocycles: Application to the Enantioselective Total Synthesis of (-)-Alstonerine.

    PubMed

    Miller, Kenneth A; Shanahan, Charles S; Martin, Stephen F

    2008-01-01

    The first application of the Pauson-Khand reaction (PKR) to the synthesis of azabridged bicyclic structures is described. Compounds containing azabicyclo[3.3.1]nonane and azabicyclo[3.2.1]octane rings fused to cyclopentenones were efficiently constructed via the PKR of cis-2,6-disubstituted N-acyl piperidine enyne substrates, many of which can be readily prepared from 4-methoxypyridine in a few steps. Moreover, the PKR of cis-2,6-disubstituted piperazine enynes allowed the preparation of diazabicyclo[3.3.1]nonanes fused to cyclopentenones. This new strategy for the synthesis of azabridged bicyclic frameworks was exploited as a key step in a concise, enantioselective total synthesis of the macroline alklaoid (-)-alstonerine.

  4. Enantioselective synthesis of pactamycin, a complex antitumor antibiotic.

    PubMed

    Malinowski, Justin T; Sharpe, Robert J; Johnson, Jeffrey S

    2013-04-12

    Medicinal application of many complex natural products is precluded by the impracticality of their chemical synthesis. Pactamycin, the most structurally intricate aminocyclopentitol antibiotic, displays potent antiproliferative properties across multiple phylogenetic domains, but it is highly cytotoxic. A limited number of analogs produced by genetic engineering technologies show reduced cytotoxicity against mammalian cells, renewing promise for therapeutic applications. For decades, an efficient synthesis of pactamycin amenable to analog derivatizations has eluded researchers. Here, we present a short asymmetric total synthesis of pactamycin. An enantioselective Mannich reaction and symmetry-breaking reduction sequence was designed to enable assembly of the entire carbon core skeleton in under five steps and control critical three-dimensional (stereochemical) functional group relationships. This modular route totals 15 steps and is immediately amenable for structural analog synthesis.

  5. Photochemistry of tricyclo[5.2.2.0(2,6)]undeca-4,10-dien-8-ones: an efficient general route to substituted linear triquinanes from 2-methoxyphenols. Total synthesis of (+/-)-Delta(9(12))-capnellene.

    PubMed

    Hsu, Day-Shin; Chou, Yu-Yu; Tung, Yen-Shih; Liao, Chun-Chen

    2010-03-08

    An efficient and short entry to polyfunctionalized linear triquinanes from 2-methoxyphenols is described by utilizing the following chemistry. The Diels-Alder reactions of masked o-benzoquinones, derived from 2-methoxyphenols, with cyclopentadiene afford tricyclo[5.2.2.0(2,6)]undeca-4,10-dien-8-ones. Photochemical oxa-di-pi-methane (ODPM) rearrangements and 1,3-acyl shifts of the Diels-Alder adducts are investigated. The ODPM-rearranged products are further converted to linear triquinanes by using an O-stannyl ketyl fragmentation. Application of this efficient strategy to the total synthesis of (+/-)-Delta(9(12))-capnellene was accomplished from 2-methoxy-4-methylphenol in nine steps with 20 % overall yield.

  6. Contemporary Strategies for the Synthesis of Tetrahydropyran Derivatives: Application to Total Synthesis of Neopeltolide, a Marine Macrolide Natural Product

    PubMed Central

    Fuwa, Haruhiko

    2016-01-01

    Tetrahydropyrans are structural motifs that are abundantly present in a range of biologically important marine natural products. As such, significant efforts have been paid to the development of efficient and versatile methods for the synthesis of tetrahydropyran derivatives. Neopeltolide, a potent antiproliferative marine natural product, has been an attractive target compound for synthetic chemists because of its complex structure comprised of a 14-membered macrolactone embedded with a tetrahydropyran ring, and twenty total and formal syntheses of this natural product have been reported so far. This review summarizes the total and formal syntheses of neopeltolide and its analogues, highlighting the synthetic strategies exploited for constructing the tetrahydropyran ring. PMID:27023567

  7. Protein chemical synthesis by α-ketoacid-hydroxylamine ligation.

    PubMed

    Harmand, Thibault J; Murar, Claudia E; Bode, Jeffrey W

    2016-06-01

    Total chemical synthesis of proteins allows researchers to custom design proteins without the complex molecular biology that is required to insert non-natural amino acids or the biocontamination that arises from methods relying on overexpression in cells. We describe a detailed procedure for the chemical synthesis of proteins with the α-ketoacid-hydroxylamine (KAHA ligation), using (S)-5-oxaproline (Opr) as a key building block. This protocol comprises two main parts: (i) the synthesis of peptide fragments by standard fluorenylmethoxycarbonyl (Fmoc) chemistry and (ii) the KAHA ligation between fragments containing Opr and a C-terminal peptide α-ketoacid. This procedure provides an alternative to native chemical ligation (NCL) that could be valuable for the synthesis of proteins, particularly targets that do not contain cysteine residues. The ligation conditions-acidic DMSO/H2O or N-methyl-2-pyrrolidinone (NMP)/H2O-are ideally suited for solubilizing peptide segments, including many hydrophobic examples. The utility and efficiency of the protocol is demonstrated by the total chemical synthesis of the mature betatrophin (also called ANGPTL8), a 177-residue protein that contains no cysteine residues. With this protocol, the total synthesis of the betatrophin protein has been achieved in around 35 working days on a multimilligram scale.

  8. Chemoenzymatic synthesis of Amaryllidaceae constituents and biological evaluation of their C-1 analogs. The next generation synthesis of 7-deoxypancratistatin and dihydrolycoricidine.1

    PubMed Central

    Collins, Jonathan; Rinner, Uwe; Moser, Michael; Hudlicky, Tomas; Ghiviriga, Ion; Romero, Anntherese E.; Kornienko, Alexander; Ma, Dennis; Griffin, Carly; Pandey, Siyaram

    2010-01-01

    An efficient synthesis of C-1 derivatives of 7-deoxypancratistatin is reported. The key steps include the following: selective opening of an epoxide with aluminum acetylide in the presence of an aziridine; solid-state silica-gel-catalyzed opening of an aziridine; oxidative cleavage of a phenanthrene core and its recyclization to phenanthridone to provide the key C-1 aldehyde 22. The conversion of this aldehyde to C-1 acetoxymethyl and C-1 hydroxymethyl derivatives is described along with the evaluation of their biological activity against several cancer cell lines and in an apoptosis study. The C-1 acetoxymethyl derivative has shown promising activity comparable to that of the natural product. In addition, a total synthesis of trans-dihydrolycoricidine and a formal total synthesis of 7-deoxypancratistatin are reported from aldehyde 22. Detailed experimental and spectral data are provided for all new compounds. PMID:20373760

  9. Scope & Limitations of Fmoc Chemistry SPPS-Based Approaches to the Total Synthesis of Insulin Lispro via Ester Insulin

    PubMed Central

    Dhayalan, Balamurugan; Mandal, Kalyaneswar; Rege, Nischay; Weiss, Michael A.; Eitel, Simon H.; Meier, Thomas; Schoenleber, Ralph O.; Kent, Stephen B.H.

    2017-01-01

    We have systematically explored three approaches based on Fmoc chemistry SPPS for the total chemical synthesis of the key depsipeptide intermediate for the efficient total chemical synthesis of insulin. The approaches used were: stepwise Fmoc chemistry SPPS; the ‘hybrid method’, in which maximally-protected peptide segments made by Fmoc chemistry SPPS are condensed in solution; and, native chemical ligation using peptide-thioester segments generated by Fmoc chemistry SPPS. A key building block in all three approaches was a Glu[Oβ(Thr)] ester-linked dipeptide equipped with a set of orthogonal protecting groups compatible with Fmoc chemistry SPPS. The most effective method for the preparation of the 51 residue ester-linked polypeptide chain of ester insulin was the use of unprotected peptide-thioester segments, prepared from peptide-hydrazides synthesized by Fmoc chemistry SPPS, and condensed by native chemical ligation. High resolution X-ray crystallography confirmed the disulfide pairings and three-dimensional structure of synthetic insulin lispro prepared from ester insulin lispro by this route. Further optimization of these pilot studies should yield an effective total chemical synthesis of insulin lispro (Humalog) based on peptide synthesis by Fmoc chemistry SPPS. PMID:27905149

  10. Cyclic azole-homologated peptides from Marine sponges.

    PubMed

    Molinski, Tadeusz F

    2017-12-19

    This review discusses the chemistry of cyclic azole-homologated peptides (AHPs) from the marine sponges, Theonella swinhoei, other Theonella species, Calyx spp. and Plakina jamaicensis. The origin, distribution of AHPs and molecular structure elucidations of AHPs are described followed by their biosynthesis, bioactivity, and synthetic efforts towards their total synthesis. Reports of partial and total synthesis of AHPs extend beyond peptide coupling reactions and include creative construction of the non-proteinogenic amino acid components, mainly the homologated heteroaromatic and α-keto-β-amino acids. A useful conclusion is drawn regarding AHPs: despite their rarity, exotic structures and the potent protease inhibitory properties of some members, their synthesis is under-developed and beckons solutions for outstanding problems towards their efficient assembly.

  11. Total synthesis and structural revision of TMG-chitotriomycin, a specific inhibitor of insect and fungal beta-N-acetylglucosaminidases.

    PubMed

    Yang, You; Li, Yao; Yu, Biao

    2009-09-02

    TMG-chitotriomycin, a potent and selective inhibitor of the beta-N-acetylglucosaminidases that possesses an unique N,N,N-trimethyl-d-glucosamine (TMG) residue, is revised to be the TMG-beta-(1-->4)-chitotriose instead of the originally proposed alpha-anomer via its total synthesis, for which a highly convergent approach was developed in which the sterically demanding (1-->4)-glycosidic linkages are efficiently constructed by the Au(I)-catalyzed glycosylation protocol with glycosyl o-hexynylbenzoates as donors.

  12. Growth, oxygen consumption, and protein and RNA synthesis rates in the yolk sac larvae of the African catfish (Clarias gariepinus).

    PubMed

    Smith, Richard W; Ottema, Colin

    2006-03-01

    Rapidly growing African catfish yolk sac larvae were investigated during the first 22 h after hatching. Body compartment protein concentration increased fourfold yet oxygen consumption remained constant (mean=21.3 +/- 3.2 nmol O2 mg(-1) protein h(-1)), suggesting fast growth results mainly from yolk sac protein absorption. The protein synthesis rates at 1-2 and 5-6 h also equaled the highest conceivable rates of muscle protein synthesis; 11.6-11.9% and 7.4-7.9% day(-1), respectively. Therefore the corresponding energetic costs of protein synthesis were almost the theoretical minimum; 13.0 +/- 1.7-16.3 +/- 2.8 micromol O2 mg(-1) protein synthesised. Total protein synthesis expenditure (74.5-77.7 micromol O2 g(-1) protein h(-1)) was also less than other yolk sac larvae. These protein synthesis rates resulted from high RNA concentrations (113.2 +/- 3.4 microg RNA mg(-1) protein) and were also correlated with RNA translational efficiency. High translational efficiency (1 h; 1.2+/-0.1 mg protein synthesised microg(-1) RNA day(-1)) equaled high synthesis rate (36.8 +/- 5.4 microg RNA microg(-1) DNA day(-1)) and both declined over 22 h. This investigation suggests rapid growth combines growth efficiency and compensatory energy partitioning. This accommodates the ontogenetic and phylogenetic standpoints imposed by energy budget limitations.

  13. Chemoselective synthesis of ketones and ketimines by addition of organometallic reagents to secondary amides

    NASA Astrophysics Data System (ADS)

    Bechara, William S.; Pelletier, Guillaume; Charette, André B.

    2012-03-01

    The development of efficient and selective transformations is crucial in synthetic chemistry as it opens new possibilities in the total synthesis of complex molecules. Applying such reactions to the synthesis of ketones is of great importance, as this motif serves as a synthetic handle for the elaboration of numerous organic functionalities. In this context, we report a general and chemoselective method based on an activation/addition sequence on secondary amides allowing the controlled isolation of structurally diverse ketones and ketimines. The generation of a highly electrophilic imidoyl triflate intermediate was found to be pivotal in the observed exceptional functional group tolerance, allowing the facile addition of readily available Grignard and diorganozinc reagents to amides, and avoiding commonly observed over-addition or reduction side reactions. The methodology has been applied to the formal synthesis of analogues of the antineoplastic agent Bexarotene and to the rapid and efficient synthesis of unsymmetrical diketones in a one-pot procedure.

  14. Fungal Anticancer Metabolites: Synthesis Towards Drug Discovery.

    PubMed

    Barbero, Margherita; Artuso, Emma; Prandi, Cristina

    2018-01-01

    Fungi are a well-known and valuable source of compounds of therapeutic relevance, in particular of novel anticancer compounds. Although seldom obtainable through isolation from the natural source, the total organic synthesis still remains one of the most efficient alternatives to resupply them. Furthermore, natural product total synthesis is a valuable tool not only for discovery of new complex biologically active compounds but also for the development of innovative methodologies in enantioselective organic synthesis. We undertook an in-depth literature searching by using chemical bibliographic databases (SciFinder, Reaxys) in order to have a comprehensive insight into the wide research field. The literature has been then screened, refining the obtained results by subject terms focused on both biological activity and innovative synthetic procedures. The literature on fungal metabolites has been recently reviewed and these publications have been used as a base from which we consider the synthetic feasibility of the most promising compounds, in terms of anticancer properties and drug development. In this paper, compounds are classified according to their chemical structure. This review summarizes the anticancer potential of fungal metabolites, highlighting the role of total synthesis outlining the feasibility of innovative synthetic procedures that facilitate the development of fungal metabolites into drugs that may become a real future perspective. To our knowledge, this review is the first effort to deal with the total synthesis of these active fungi metabolites and demonstrates that total chemical synthesis is a fruitful means of yielding fungal derivatives as aided by recent technological and innovative advancements. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Synthesis and characterization of hydrolysed starch-g-poly(methacrylic acid) composite.

    PubMed

    Zahran, Magdy K; Ahmed, Enas M; El-Rafie, Mohamed H

    2016-06-01

    A novel method for the synthesis of starch-g-poly(methacrylic acid) composite was adopted by graft polymerization of hydrolysed starch (HS) and methacrylic acid (MAA) in aqueous medium using an efficient sodium perborate (SPB)-thiourea (TU) redox initiation system. The parameters influencing the redox system efficiency and thence the polymerization method were considered. These parameters comprehended the concentrations of MAA, SPB, TU and SPB/TU molar ratio as well as the polymerization temperature. The polymerization reaction was scrutinized through calculation of the MAA total conversion percent (TC%). The resultant poly(MAA-HS) composite was assessed by evaluating the polymer criteria (the graft yield, GY%; the grafting efficiency, GE%; the homopolymer, HP%; and the total conversion). The comportment of the apparent viscosity of the cooked poly(MAA)-starch composite paste, obtained under diverse polymerization conditions, was examined. Tentative mechanisms, which depict all occasions that happen amid the entire course of the polymerization reaction, have been proffered. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Schwertmannite Synthesis through Ferrous Ion Chemical Oxidation under Different H2O2 Supply Rates and Its Removal Efficiency for Arsenic from Contaminated Groundwater.

    PubMed

    Liu, Fenwu; Zhou, Jun; Zhang, Shasha; Liu, Lanlan; Zhou, Lixiang; Fan, Wenhua

    2015-01-01

    Schwertmannite-mediated removal of arsenic from contaminated water has attracted increasing attention. However, schwertmannite chemical synthesis behavior under different H2O2 supply rates for ferrous ions oxidation is unclear. This study investigated pH, ferrous ions oxidation efficiency, and total iron precipitation efficiency during schwertmannite synthesis by adding H2O2 into FeSO4 · 7H2O solution at different supply rates. Specific surface area and arsenic (III) removal capacity of schwertmannite have also been studied. Results showed that pH decreased from ~3.48 to ~1.96, ~2.06, ~2.12, ~2.14, or ~2.17 after 60 h reaction when the ferrous ions solution received the following corresponding amounts of H2O2: 1.80 mL at 2 h (treatment 1); 0.90 mL at 2 h and 14 h (treatment 2); 0.60 mL at 2, 14, and 26 h (treatment 3); 0.45 mL at 2, 14, 26, and 38 h (treatment 4), or 0.36 mL at 2, 14, 26, 38, and 50 h (treatment 5). Slow H2O2 supply significantly inhibited the total iron precipitation efficiency but improved the specific surface area or arsenic (III) removal capacity of schwertmannite. For the initial 50.0 μg/L arsenic (III)-contaminated water under pH ~7.0 and using 0.25 g/L schwertmannite as an adsorbent, the total iron precipitation efficiency, specific surface area of the harvested schwertmannite, and schwertmannite arsenic(III) removal efficiency were 29.3%, 2.06 m2/g, and 81.1%, respectively, in treatment 1. However, the above parameters correspondingly changed to 17.3%, 16.30 m2/g, and 96.5%, respectively, in treatment 5.

  17. Synthesis of Polycyclic Natural Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Tuan Hoang

    With the continuous advancements in molecular biology and modern medicine, organic synthesis has become vital to the support and extension of those discoveries. The isolations of new natural products allow for the understanding of their biological activities and therapeutic value. Organic synthesis is employed to aid in the determination of the relationship between structure and function of these natural products. The development of synthetic methodologies in the course of total syntheses is imperative for the expansion of this highly interdisciplinary field of science. In addition to the practical applications of total syntheses, the structural complexity of natural products represents amore » worthwhile challenge in itself. The pursuit of concise and efficient syntheses of complex molecules is both gratifying and enjoyable.« less

  18. A convergent approach to the total synthesis of telmisartan via a Suzuki cross-coupling reaction between two functionalized benzimidazoles.

    PubMed

    Martin, Alex D; Siamaki, Ali R; Belecki, Katherine; Gupton, B Frank

    2015-02-06

    A direct and efficient total synthesis has been developed for telmisartan, a widely prescribed treatment for hypertension. This approach brings together two functionalized benzimidazoles using a high-yielding Suzuki reaction that can be catalyzed by either a homogeneous palladium source or graphene-supported palladium nanoparticles. The ability to perform the cross-coupling reaction was facilitated by the regio-controlled preparation of the 2-bromo-1-methylbenzimidazole precursor. This convergent approach provides telmisartan in an overall yield of 72% while circumventing many issues associated with previously reported processes.

  19. Rhodium-Catalyzed Asymmetric N-H Functionalization of Quinazolinones with Allenes and Allylic Carbonates: The First Enantioselective Formal Total Synthesis of (-)-Chaetominine.

    PubMed

    Zhou, Yirong; Breit, Bernhard

    2017-12-22

    An unprecedented asymmetric N-H functionalization of quinazolinones with allenes and allylic carbonates was successfully achieved by rhodium catalysis with the assistance of chiral bidentate diphosphine ligands. The high efficiency and practicality of this method was demonstrated by a low catalyst loading of 1 mol % as well as excellent chemo-, regio-, and enantioselectivities with broad functional group compatibility. Furthermore, this newly developed strategy was applied as key step in the first enantioselective formal total synthesis of (-)-chaetominine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Microwave power amplifiers based on AlGaN/GaN transistors with a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Vendik, O. G.; Vendik, I. B.; Tural'chuk, P. A.; Parnes, Ya. M.; Parnes, M. D.

    2016-11-01

    A technique for synthesis of microwave power amplifiers based on transistors with a AlGaN/GaN heterojunction is discussed. Special focus is on the development of a technique for synthesis of transformation circuits of the power amplifier to increase efficiency with a retained high output power. The use of independent matching at the harmonic frequencies and fundamental frequency makes it possible to control the attainable efficiency in a wide frequency band along with the total suppression of harmonics beyond the operational band. Microwave power amplifiers for operation at 4 and 9 GHz have been developed and experimentally investigated.

  1. Total synthesis and structural revision of the marine macrolide neopeltolide.

    PubMed

    Custar, Daniel W; Zabawa, Thomas P; Scheidt, Karl A

    2008-01-23

    The total synthesis and structural revision of the marine natural product neopeltolide is reported. The key bond-forming step involves a Lewis acid-catalyzed intramolecular cyclization to install the tetrahydropyran ring and the macrocycle simultaneously. This type of cyclization is the first of its kind and assembles the carbon backbone of the natural product efficiently. The synthesis of the reported structure revealed differences in the data between the natural and synthetic material. After significant investigation, the diastereomeric molecule with the C11 and C13 configurations inverted was synthesized using the initial route. This compound matches the data reported for neopeltolide (1H, 13C, HRMS, IR, NOESY, [alpha]), thereby establishing the correct overall structure for this potent macrolide natural product, including the relative and absolute stereochemistry.

  2. Total Radiosynthesis: Thinking outside "the box".

    PubMed

    Liang, Steven H; Vasdev, Neil

    2015-09-01

    The logic of total synthesis transformed a stagnant state of medicinal and synthetic organic chemistry when there was a paucity of methods and reagents to synthesize drug molecules and/or natural products. Molecular imaging by positron emission tomography (PET) is now experiencing a renaissance in the way radiopharmaceuticals for molecular imaging are synthesized, however, a paradigm shift is desperately needed in the discovery pipeline to accelerate in vivo imaging studies. A significant challenge in radiochemistry is the limited choice of labeled reagents (or building blocks) available for the synthesis of novel radiopharmaceuticals with the most commonly used short-lived radionuclides carbon-11 ( 11 C; half-life ~20 minutes) and fluorine-18 ( 18 F; half-life ~2 hours). In fact, most drugs cannot be labeled with 11 C or 18 F due to a lack of efficient and diverse radiosynthetic methods. In general, routine radiopharmaceutical production relies on the incorporation of the isotope at the last or penultimate step of synthesis, ideally within one half-life of the radionuclide, to maximize radiochemical yields and specific activities thereby reducing losses due to radioactive decay. Reliance on radiochemistry conducted within the constraints of an automated synthesis unit ("box") has stifled the exploration of multi-step reactions with short-lived radionuclides. Radiopharmaceutical synthesis can be transformed by considering logic of total synthesis to develop novel approaches for 11 C- and 18 F-radiolabeling complex molecules via retrosynthetic analysis and multi-step reactions. As a result of such exploration, new methods, reagents and radiopharmaceuticals for in vivo imaging studies are discovered. A new avenue to develop radiotracers that were previously unattainable due to the lack of efficient radiosynthetic methods is necessary to work towards our ultimate, albeit impossible goal - the concept we term total radiosynthesis - to radiolabel virtually any molecule. As with the vast majority of drugs, most radiotracers also fail, therefore expeditious evaluation of tracers in preclinical models prior to optimization or derivatization of the lead molecules/drugs is necessary. Furthermore the exact position of the 11 C and 18 F radionuclide in tracers is often critical for metabolic considerations, and flexible methodologies to introduce the radiolabel are needed. Using the principles of total synthesis our laboratory and others have shown that multi-step radiochemical reactions are indeed suitable for preclinical and even clinical use. As the goal of total synthesis is to be concise, we have also simplified the syntheses of radiopharmaceuticals. We are presently developing new strategies via [ 11 C]CO 2 fixation which has enabled library radiosynthesis as well as labeling non-activated arenes using [ 18 F]fluoride via iodonium ylides. Both of which have proven to be suitable for human PET imaging. We concurrently utilize state-of-the-art automation technologies including microfluidic flow chemistry and rapid purification strategies for radiopharmaceutical production. In this account we highlight how total radiosynthesis has impacted our radiochemistry program, with prominent examples from others, focusing on its impact towards preclinical and clinical research studies.

  3. Total Radiosynthesis: Thinking outside “the box”

    PubMed Central

    Liang, Steven H.; Vasdev, Neil

    2016-01-01

    The logic of total synthesis transformed a stagnant state of medicinal and synthetic organic chemistry when there was a paucity of methods and reagents to synthesize drug molecules and/or natural products. Molecular imaging by positron emission tomography (PET) is now experiencing a renaissance in the way radiopharmaceuticals for molecular imaging are synthesized, however, a paradigm shift is desperately needed in the discovery pipeline to accelerate in vivo imaging studies. A significant challenge in radiochemistry is the limited choice of labeled reagents (or building blocks) available for the synthesis of novel radiopharmaceuticals with the most commonly used short-lived radionuclides carbon-11 (11C; half-life ~20 minutes) and fluorine-18 (18F; half-life ~2 hours). In fact, most drugs cannot be labeled with 11C or 18F due to a lack of efficient and diverse radiosynthetic methods. In general, routine radiopharmaceutical production relies on the incorporation of the isotope at the last or penultimate step of synthesis, ideally within one half-life of the radionuclide, to maximize radiochemical yields and specific activities thereby reducing losses due to radioactive decay. Reliance on radiochemistry conducted within the constraints of an automated synthesis unit (“box”) has stifled the exploration of multi-step reactions with short-lived radionuclides. Radiopharmaceutical synthesis can be transformed by considering logic of total synthesis to develop novel approaches for 11C- and 18F-radiolabeling complex molecules via retrosynthetic analysis and multi-step reactions. As a result of such exploration, new methods, reagents and radiopharmaceuticals for in vivo imaging studies are discovered. A new avenue to develop radiotracers that were previously unattainable due to the lack of efficient radiosynthetic methods is necessary to work towards our ultimate, albeit impossible goal – the concept we term total radiosynthesis - to radiolabel virtually any molecule. As with the vast majority of drugs, most radiotracers also fail, therefore expeditious evaluation of tracers in preclinical models prior to optimization or derivatization of the lead molecules/drugs is necessary. Furthermore the exact position of the 11C and 18F radionuclide in tracers is often critical for metabolic considerations, and flexible methodologies to introduce the radiolabel are needed. Using the principles of total synthesis our laboratory and others have shown that multi-step radiochemical reactions are indeed suitable for preclinical and even clinical use. As the goal of total synthesis is to be concise, we have also simplified the syntheses of radiopharmaceuticals. We are presently developing new strategies via [11C]CO2 fixation which has enabled library radiosynthesis as well as labeling non-activated arenes using [18F]fluoride via iodonium ylides. Both of which have proven to be suitable for human PET imaging. We concurrently utilize state-of-the-art automation technologies including microfluidic flow chemistry and rapid purification strategies for radiopharmaceutical production. In this account we highlight how total radiosynthesis has impacted our radiochemistry program, with prominent examples from others, focusing on its impact towards preclinical and clinical research studies. PMID:27512156

  4. From N-triisopropylsilylpyrrole to an optically active C-4 substituted pyroglutamic acid: total synthesis of penmacric acid.

    PubMed

    Berini, Christophe; Pelloux-Léon, Nadia; Minassian, Frédéric; Denis, Jean-Noël

    2009-11-07

    The stereoselective synthesis of penmacric acid, an optically active C-4 substituted pyroglutamic acid, has been efficiently achieved through an unusual 11-step sequence starting from simple N-triisopropylsilylpyrrole. The key-steps are the initial addition of the pyrrole nucleus onto a chiral nitrone and the obtention of the pyroglutamic acid moiety by reductive hydrogenation of the pyrrole followed by oxidation of the corresponding pyrrolidine into pyrrolidinone.

  5. A new route to methyl (R,E)-(-)-tetradeca-2,4,5-trienoate (pheromone of Acanthoscelides obtectus) utilizing a palladium-catalyzed asymmetric allene formation reaction.

    PubMed

    Ogasawara, Masamichi; Nagano, Takashi; Hayashi, Tamio

    2005-07-08

    [reaction: see text] A formal total synthesis of the sex attractant of male dried bean beetle, methyl (R,E)-(-)-tetradeca-2,4,5-trienoate, was achieved by a new efficient route utilizing the Pd-catalyzed asymmetric allene synthesis reaction. It was found that the atropisomeric biaryl bisphosphine (R)-segphos showed better enantioselectivity than (R)-binap in the Pd-catalyzed reaction for preparing alkyl-substituted axially chiral allenes.

  6. Novel stereocontrolled approach to syn- and anti-oxepene-cyclogeranyl trans-fused polycyclic systems: asymmetric total synthesis of (-)-Aplysistatin, (+)-Palisadin A, (+)-Palisadin B, (+)-12-hydroxy-palisadin B, and the AB ring system of adociasulfate-2 and toxicol A.

    PubMed

    Couladouros, Elias A; Vidali, Veroniki P

    2004-08-06

    A new stereocontrolled method for the formation of trans-anti cyclogeranyl-oxepene systems is described. The demanding stereochemistry is secured by stereoselective coupling of a cyclogeranyl tertiary alcohol with a 1,2-unsymmetrically substituted epoxide, while the formation of the highly strained oxepene is achieved employing ring-closing metathesis. Since the stereochemistry of the trans-fused 6,7-ring system is determined by the epoxide, the method also allows the construction of trans-syn 6,7-ring systems. This approach leads to the synthesis of the AB fragment of Adociasulfate-2 and Toxicol A, for the first time. The flexibility and efficiency of the presented strategy is demonstrated by the total asymmetric synthesis of (-)-Aplysistatin, (+)-Palisadin A, (+)-12-hydroxy-Palisadin B, and (+)-Palisadin B, employing two similar key intermediates.

  7. Total synthesis of fluoxetine and duloxetine through an in situ imine formation/borylation/transimination and reduction approach.

    PubMed

    Calow, Adam D J; Fernández, Elena; Whiting, Andrew

    2014-08-28

    We report efficient, catalytic, asymmetric total syntheses of both (R)-fluoxetine and (S)-duloxetine from α,β-unsaturated aldehydes conducting five sequential one-pot steps (imine formation/copper mediated β-borylation/transimination/reduction/oxidation) followed by the specific ether group formation which deliver the desired products (R)-fluoxetine in 45% yield (96% ee) and (S)-duloxetine in 47% yield (94% ee).

  8. Synthesis of (+)-dumetorine and congeners by using flow chemistry technologies.

    PubMed

    Riva, Elena; Rencurosi, Anna; Gagliardi, Stefania; Passarella, Daniele; Martinelli, Marisa

    2011-05-23

    An efficient total synthesis of the natural alkaloid (+)-dumetorine by using flow technology is described. The process entailed five separate steps starting from the enantiopure (S)-2-(piperidin-2-yl)ethanol 4 with 29% overall yield. Most of the reactions were carried out by exploiting solvent superheating and by using packed columns of immobilized reagents or scavengers to minimize handling. New protocols for performing classical reactions under continuous flow are disclosed: the ring-closing metathesis reaction with a novel polyethylene glycol-supported Hoveyda catalyst and the unprecedented flow deprotection/Eschweiler-Clarke methylation sequence. The new protocols developed for the synthesis of (+)-dumetorine were applied to the synthesis of its simplified natural congeners (-)-sedamine and (+)-sedridine. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A General, Concise Strategy that Enables Collective Total Syntheses of over 50 Protoberberine and Five Aporhoeadane Alkaloids within Four to Eight Steps.

    PubMed

    Zhou, Shiqiang; Tong, Rongbiao

    2016-05-17

    A concise, catalytic, and general strategy that allowed efficient total syntheses of 22 natural 13-methylprotoberberines within four steps for each molecule is reported. This synthesis represents the most efficient and shortest route to date, featuring three catalytic processes: CuI-catalyzed redox-A(3) reaction, Pd-catalyzed reductive carbocyclization, and PtO2 -catalyzed hydrogenation. Importantly, this new strategy to the tetracyclic framework has also been applied to the collective concise syntheses of >30 natural protoberberines (without 13-methyl group) and five aporhoeadane alkaloids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Phosphate Tether-Mediated Approach to the Formal Total Synthesis of (-)-Salicylihalamides A and B

    PubMed Central

    Chegondi, Rambabu; Tan, Mary M. L.; Hanson, Paul R.

    2011-01-01

    A concise formal synthesis of the cytotoxic macrolides (-)-salicylihalamides A and B is reported. Key features of the synthetic strategy include a chemoselective hydroboration, highly regio- and diastereoselective methyl cuprate addition, Pd-catalyzed formate reduction, and an E-selective ring-closing metathesis to construct the 12-membered macrocycle subunit. Overall, two routes have been developed from a readily prepared bicyclic phosphate (4-steps), a 13-step route and a more efficient 9-step sequence relying on regioselective esterification of a key diol. PMID:21504150

  11. Gallium-68 DOTATATE Production with Automated PET Radiopharmaceutical Synthesis System: A Three Year Experience.

    PubMed

    Aslani, Alireza; Snowdon, Graeme M; Bailey, Dale L; Schembri, Geoffrey P; Bailey, Elizabeth A; Roach, Paul J

    2014-01-01

    Gallium-68 (Ga-68) is an ideal research and hospital-based PET radioisotope. Currently, the main form of Ga-68 radiopharmaceutical that is being synthesised in-house is Ga-68 conjugated with DOTA based derivatives. The development of automated synthesis systems has increased the reliability, reproducibility and safety of radiopharmaceutical productions. Here we report on our three year, 500 syntheses experience with an automated system for Ga-68 DOTATATE. The automated synthesis system we use is divided into three parts of a) servomotor modules, b) single use sterile synthesis cassettes and, c) a computerised system that runs the modules. An audit trail is produced by the system as a requirement for GMP production. The required reagents and chemicals are made in-. The Germanium breakthrough is determined on a weekly basis. Production yields for each synthesis are calculated to monitor the performance and efficiency of the synthesis. The quality of the final product is assessed after each synthesis by ITLC-SG and HPLC methods. A total of 500 Ga-68 DOTATATE syntheses (>800 patient doses) were performed between March 2011 and February 2014. The average generator yield was 81.3±0.2% for 2011, 76.7±0.4% for 2012 and 75.0±0.3% for 2013. Ga-68 DOTATATE yields for 2011, 2012, and 2013 were 81.8±0.4%, 82.2±0.4% and 87.9±0.4%, respectively. These exceed the manufacturer's expected value of approximately 70%. Germanium breakthrough averaged 8.6×10(-6)% of total activity which is well below the recommended level of 0.001%. The average ITLC-measured radiochemical purity was above 98.5% and the average HPLC-measured radiochemical purity was above 99.5%. Although there were some system failures during synthesis, there were only eight occasions where the patient scans needed to be rescheduled. In our experience the automated synthesis system performs reliably with a relatively low incident of failures. Our system had a consistent and reliable Ga-68 DOTATATE output with high labelling efficiency and purity. There is minimal operator intervention and radiation exposure. The system is GMP-compliant and has low maintenance and acceptable running costs. This system together with the recommended (68)Ge/(68)Ga generator is well suited for use in a hospital-based radiopharmacy.

  12. Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit.

    PubMed

    Tran, Lee; Hanavan, Paul D; Campbell, Latoya E; De Filippis, Elena; Lake, Douglas F; Coletta, Dawn K; Roust, Lori R; Mandarino, Lawrence J; Carroll, Chad C; Katsanos, Christos S

    2016-01-01

    Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = - 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish impaired β-F1-ATPase translation as an important consequence of obesity.

  13. Fully convergent chemical synthesis of ester insulin: determination of the high resolution X-ray structure by racemic protein crystallography.

    PubMed

    Avital-Shmilovici, Michal; Mandal, Kalyaneswar; Gates, Zachary P; Phillips, Nelson B; Weiss, Michael A; Kent, Stephen B H

    2013-02-27

    Efficient total synthesis of insulin is important to enable the application of medicinal chemistry to the optimization of the properties of this important protein molecule. Recently we described "ester insulin"--a novel form of insulin in which the function of the 35 residue C-peptide of proinsulin is replaced by a single covalent bond--as a key intermediate for the efficient total synthesis of insulin. Here we describe a fully convergent synthetic route to the ester insulin molecule from three unprotected peptide segments of approximately equal size. The synthetic ester insulin polypeptide chain folded much more rapidly than proinsulin, and at physiological pH. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin (i.e., [Asp(B10), Lys(B28), Pro(B29)]ester insulin) were prepared by total chemical synthesis. The atomic structure of the synthetic ester insulin molecule was determined by racemic protein X-ray crystallography to a resolution of 1.6 Å. Diffraction quality crystals were readily obtained from the racemic mixture of {D-DKP ester insulin + L-DKP ester insulin}, whereas crystals were not obtained from the L-ester insulin alone even after extensive trials. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin were assayed for receptor binding and in diabetic rats, before and after conversion by saponification to the corresponding DKP insulin enantiomers. L-DKP ester insulin bound weakly to the insulin receptor, while synthetic L-DKP insulin derived from the L-DKP ester insulin intermediate was fully active in binding to the insulin receptor. The D- and L-DKP ester insulins and D-DKP insulin were inactive in lowering blood glucose in diabetic rats, while synthetic L-DKP insulin was fully active in this biological assay. The structural basis of the lack of biological activity of ester insulin is discussed.

  14. Fully Convergent Chemical Synthesis of Ester Insulin: Determination of the High Resolution X-ray Structure by Racemic Protein Crystallography

    PubMed Central

    Avital-Shmilovici, Michal; Mandal, Kalyaneswar; Gates, Zachary P.; Phillips, Nelson B.; Weiss, Michael A.; Kent, Stephen B.H.

    2013-01-01

    Efficient total synthesis of insulin is important to enable the application of medicinal chemistry to the optimization of the properties of this important protein molecule. Recently we described ‘ester insulin’ – a novel form of insulin in which the function of the 35 residue C-peptide of proinsulin is replaced by a single covalent bond – as a key intermediate for the efficient total synthesis of insulin. Here we describe a fully convergent synthetic route to the ester insulin molecule from three unprotected peptide segments of approximately equal size. The synthetic ester insulin polypeptide chain folded much more rapidly than proinsulin, and at physiological pH. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin (i.e. [AspB10, LysB28, ProB29]ester insulin) were prepared by total chemical synthesis. The atomic structure of the synthetic ester insulin molecule was determined by racemic protein X-ray crystallography to a resolution of 1.6 Å. Diffraction quality crystals were readily obtained from the racemic mixture of {D-DKP ester insulin + L-DKP ester insulin}, whereas crystals were not obtained from the L-ester insulin alone even after extensive trials. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin were assayed for receptor binding and in diabetic rats, before and after conversion by saponification to the corresponding DKP insulin enantiomers. L-DKP ester insulin bound weakly to the insulin receptor, while synthetic L-DKP insulin derived from the L-DKP ester insulin intermediate was fully active in binding to the insulin receptor. The D- and L-DKP ester insulins and D-DKP insulin were inactive in lowering blood glucose in diabetic rats, while synthetic L-DKP insulin was fully active in this biological assay. The structural basis of the lack of biological activity of ester insulin is discussed. PMID:23343390

  15. Asymmetric Total Synthesis of (-)-(3 R)-Inthomycin C.

    PubMed

    Balcells, Sandra; Haughey, Maxwell B; Walker, Johannes C L; Josa-Culleré, Laia; Towers, Christopher; Donohoe, Timothy J

    2018-06-04

    A short (10 step) and efficient (15% overall yield) synthesis of the natural product (-)-(3 R)-inthomycin C is reported. The key steps comprise three C-C bond-forming reactions: (i) a vinylogous Mukaiyama aldol, (ii) an olefin cross-metathesis reaction, and (iii) an asymmetric Mukaiyama-Kiyooka aldol. This route is notable for its brevity and has the advantage of lacking stoichiometric tin-promoted cross-coupling reactions present in previous approaches. Initial investigations on the biological activity of (-)-(3 R)-inthomycin C and structural analogues on human cancer cell lines are also described for the first time.

  16. Insight into the SEA amide thioester equilibrium. Application to the synthesis of thioesters at neutral pH.

    PubMed

    Pira, S L; El Mahdi, O; Raibaut, L; Drobecq, H; Dheur, J; Boll, E; Melnyk, O

    2016-07-26

    The bis(2-sulfanylethyl)amide (SEA) N,S-acyl shift thioester surrogate has found a variety of useful applications in the field of protein total synthesis. Here we present novel insights into the SEA amide/thioester equilibrium in water which is an essential step in any reaction involving the thioester surrogate properties of the SEA group. We also show that the SEA amide thioester equilibrium can be efficiently displaced at neutral pH for accessing peptide alkylthioesters, i.e. the key components of the native chemical ligation (NCL) reaction.

  17. Rapid Vortex Fluidics: Continuous Flow Synthesis of Amides and Local Anesthetic Lidocaine.

    PubMed

    Britton, Joshua; Chalker, Justin M; Raston, Colin L

    2015-07-20

    Thin film flow chemistry using a vortex fluidic device (VFD) is effective in the scalable acylation of amines under shear, with the yields of the amides dramatically enhanced relative to traditional batch techniques. The optimized monophasic flow conditions are effective in ≤80 seconds at room temperature, enabling access to structurally diverse amides, functionalized amino acids and substituted ureas on multigram scales. Amide synthesis under flow was also extended to a total synthesis of local anesthetic lidocaine, with sequential reactions carried out in two serially linked VFD units. The synthesis could also be executed in a single VFD, in which the tandem reactions involve reagent delivery at different positions along the rapidly rotating tube with in situ solvent replacement, as a molecular assembly line process. This further highlights the versatility of the VFD in organic synthesis, as does the finding of a remarkably efficient debenzylation of p-methoxybenzyl amines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Methodology and Natural Product Syntehsis: (A) Novel Glycosyl Donors; (B) N-Sulfinyl Metallodienamines and Their Application to the Total Synthesis of (-)-Albocycline

    NASA Astrophysics Data System (ADS)

    Chatare, Vijay K.

    My research involved in two different areas, development of novel glycosylation methodology and scope in oligosaccharide synthesis. A new scaffold for antibiotic development targeting the bacterial cell wall: Total synthesis of Albocycline and its analogs to see the mechanism of action in cell wall biosynthesis. Developed novel gem-dimethyl analogs of Fraser-Reid's NPGs from 3,3-dimethyl 4-pentenol and 2,2-dimethyl 4-pentenol. These donors are stable toward acidic and basic conditions, which makes them step-efficient when compared to other glycosylating agents. The scope and reactivity of 3,3-dimethyl 4-pentenyl glycosides of glucose, mannose, galactose, and N-acetylglucosamine have been studied extensively for oligosaccharide synthesis. The donors are readily prepared from commercial starting materials and both glycosylation and hydrolysis yields are in the synthetically useful in oligosaccharide synthesis. NSMD methodology introduced a key step in albocycline synthesis, where (-)-albocycline has great biological activity against "superbug" methicillin-resistant Staphylococcus aureus (MRSA). We hypothesize that albocycline inhibits the first committed step in bacterial cell wall biosynthesis. We have successfully completed two generation syntheses of albocycline. Vinylogous aldol on the left-handed fragment, aldehyde to get selectively up alcohol at the C-8 position using Davis-Ellman sulfinylimine chemistry and then oxidation with Davis oxaziridine to access requisite stereochemistry at C-4 alcohol followed by Horner-Wadsworth-Emmons to access seco-acid. Finally, a Keck macrolactonization reaction provided access to desired (-)-Albocycline.

  19. Total synthesis of (-)-doliculide, structure-activity relationship studies and its binding to F-actin.

    PubMed

    Matcha, Kiran; Madduri, Ashoka V R; Roy, Sayantani; Ziegler, Slava; Waldmann, Herbert; Hirsch, Anna K H; Minnaard, Adriaan J

    2012-11-26

    Actin, an abundant protein in most eukaryotic cells, is one of the targets in cancer research. Recently, a great deal of attention has been paid to the synthesis and function of actin-targeting compounds and their use as effective molecular probes in chemical biology. In this study, we have developed an efficient synthesis of (-)-doliculide, a very potent actin binder with a higher cell-membrane permeability than phalloidin. Actin polymerization assays with (-)-doliculide and two analogues on HeLa and BSC-1 cells, together with a prediction of their binding mode to F-actin by unbiased computational docking, show that doliculide stabilizes F-actin in a similar way to jasplakinolide and chondramide C. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Combustion synthesis of ceramic-metal composite materials - The TiC-Al2O3-Al system

    NASA Technical Reports Server (NTRS)

    Feng, H. J.; Moore, John J.; Wirth, D. G.

    1992-01-01

    Combustion synthesis was applied for producing ceramic-metal composites with reduced levels of porosity, by allowing an excess amount of liquid metal, generated by the exothermic reaction during synthesis, to infiltrate the pores. It is shown that this method, when applied to TiC-Al2O3 system, led to a decreased level of porosity in the resulting TiC-Al2O3-Al product, as compared with that of TiC-Al2O3 system. This in situ procedure is more efficient than the two-stage conventional processes (i.e., sintering followed by liquid metal infiltration), although there are limitations with respect to total penetration of the liquid metal and maintaining a stable propagation of the combustion reaction.

  1. Fast conventional Fmoc solid-phase peptide synthesis with HCTU.

    PubMed

    Hood, Christina A; Fuentes, German; Patel, Hirendra; Page, Karen; Menakuru, Mahendra; Park, Jae H

    2008-01-01

    1H-Benzotriazolium 1-[bis(dimethyl-amino)methylene]-5-chloro-hexafluorophosphate (1-),3-oxide (HCTU) is a nontoxic, nonirritating and noncorrosive coupling reagent. Seven biologically active peptides (GHRP-6, (65-74)ACP, oxytocin, G-LHRH, C-peptide, hAmylin(1-37), and beta-amyloid(1-42)) were synthesized with reaction times reduced to deprotection times of 3 min or less and coupling times of 5 min or less using HCTU as the coupling reagent. Expensive coupling reagents or special techniques were not used. Total peptide synthesis times were dramatically reduced by as much as 42.5 h (1.8 days) without reducing the crude peptide purities. It was shown that HCTU can be used as an affordable, efficient coupling reagent for fast Fmoc solid-phase peptide synthesis.

  2. Enantioselective Brønsted Acid Catalysis as a Tool for the Synthesis of Natural Products and Pharmaceuticals.

    PubMed

    Merad, Jérémy; Lalli, Claudia; Bernadat, Guillaume; Maury, Julien; Masson, Géraldine

    2018-03-15

    Synthesis of biologically active molecules (whether at laboratory or industrial scale) remains a highly appealing area of modern organic chemistry. Nowadays, the need to access original bioactive scaffolds goes together with the desire to improve synthetic efficiency, while reducing the environmental footprint of chemical activities. Long neglected in the field of total synthesis, enantioselective organocatalysis has recently emerged as an environmentally friendly and indispensable tool for the construction of relevant bioactive molecules. Notably, enantioselective Brønsted acid catalysis has offered new opportunities in terms of both retrosynthetic disconnections and controlling stereoselectivity. The present report attempts to provide an overview of enantioselective total or formal syntheses designed around Brønsted acid-catalyzed transformations. To demonstrate the versatility of the reactions promoted and the diversity of the accessible motifs, this Minireview draws a systematic parallel between methods and retrosynthetic analysis. The manuscript is organized according to the main reaction types and the nature of newly-formed bonds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An Efficient Synthesis of Dicycloalkylacetylenes: 1,2-Dicyclopropylethyne and (cyclopropylethynyl)cyclobutane (Preprint)

    DTIC Science & Technology

    2008-11-05

    ANSI Std. 239.18 The Distribution A : “Approved for public release; distribution unlimited.” An Efficient Synthesis of Dicycloalkylacetylenes: 1 ... synthesis of terminal/internal alkynes involve the alkynylation of alkylhalide with metal acetylide 1 or base promoted dehydrohalogenation 2 of...chloropent- 1 -yne (5, 57%) 9 and 1,8- dichlorooct- 1 -yne(9, 36%). 8 We report here an efficient and economical synthesis of dicycloalkylethynes namely

  4. Iso-seco-tanapartholides: Isolation, Synthesis and Biological Evaluation

    PubMed Central

    Makiyi, Edward F; Frade, Raquel F M; Lebl, Tomas; Jaffray, Ellis G; Cobb, Susan E; Harvey, Alan L; Slawin, Alexandra M Z; Hay, Ronald T; Westwood, Nicholas J

    2009-01-01

    The isolation, identification and total synthesis of two plant-derived inhibitors of the NF-κB signaling pathway from the iso-seco-tanapartholide family of natural products is described. A key step in the efficient reaction sequence is a late-stage oxidative cleavage reaction that was carried out in the absence of protecting groups to give the natural products directly. A detailed comparison of the synthetic material with samples of the natural products proved informative. Biological studies on synthetic material confirmed that these compounds act late in the NF-κB signaling pathway. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) PMID:23606807

  5. Rumen microbial protein synthesis and nitrogen efficiency as affected by tanniferous and non-tanniferous forage legumes incubated individually or together in Rumen Simulation Technique.

    PubMed

    Grosse Brinkhaus, Anja; Bee, Giuseppe; Schwarm, Angela; Kreuzer, Michael; Dohme-Meier, Frigga; Zeitz, Johanna O

    2018-03-01

    A limited availability of microbial protein can impair productivity in ruminants. Ruminal nitrogen efficiency might be optimised by combining high-quality forage legumes such as red clover (RC), which has unfavourably high ruminal protein degradability, with tanniferous legumes like sainfoin (SF) and birdsfoot trefoil (BT). Silages from SF and from BT cultivars [Bull (BB) and Polom (BP)] were incubated singly or in combination with RC using the Rumen Simulation Technique (n = 6). The tanniferous legumes, when compared to RC, changed the total short-chain fatty acid profile by increasing propionate proportions at the expense of butyrate. Silage from SF contained the most condensed tannins (CTs) (136 g CT kg -1 dry matter) and clearly differed in various traits from the BT and RC silages. The apparent nutrient degradability (small with SF), microbial protein synthesis, and calculated content of potentially utilisable crude protein (large with SF) indicated that SF had the greatest efficiency in ruminal protein synthesis. The effects of combining SF with RC were mostly linear. The potential of sainfoin to improve protein supply, demonstrated either individually or in combination with a high-performance forage legume, indicates its potential usefulness in complementing protein-deficient ruminant diets and high-quality forages rich in rumen-degradable protein. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit

    PubMed Central

    Tran, Lee; Hanavan, Paul D.; Campbell, Latoya E.; De Filippis, Elena; Lake, Douglas F.; Coletta, Dawn K.; Roust, Lori R.; Mandarino, Lawrence J.; Carroll, Chad C.; Katsanos, Christos S.

    2016-01-01

    Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = – 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish impaired β-F1-ATPase translation as an important consequence of obesity. PMID:27532680

  7. Facile and easily popularized synthesis of L-cysteine-functionalized magnetic nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides.

    PubMed

    Feng, Xiaoyan; Deng, Chunhui; Gao, Mingxia; Zhang, Xiangmin

    2018-01-01

    Protein glycosylation is one of the most important post-translational modifications. Also, efficient enrichment and separation of glycopeptides from complex samples are crucial for the thorough analysis of glycosylation. Developing novel hydrophilic materials with facile and easily popularized synthesis is an urgent need in large-scale glycoproteomics research. Herein, for the first time, a one-step functionalization strategy based on metal-organic coordination was proposed and Fe 3 O 4 nanoparticles were directly functionalized with zwitterionic hydrophilic L-cysteine (L-Cys), greatly simplifying the synthetic procedure. The easily synthesized Fe 3 O 4 /L-Cys possessed excellent hydrophilicity and brief composition, contributing to affinity for glycopeptides and reduction in nonspecific interaction. Thus, Fe 3 O 4 /L-Cys nanoparticles showed outstanding sensitivity (25 amol/μL), high selectivity (mixture of bovine serum albumin and horseradish peroxidase tryptic digests at a mass ratio of 100:1), good reusability (five repeated times), and stability (room temperature storage of 1 month). Encouragingly, in the glycosylation analysis of human serum, a total of 376 glycopeptides with 393 N-glycosylation sites corresponding to 118 glycoproteins were identified after enrichment with Fe 3 O 4 /L-Cys, which was superior to ever reported L-Cys modified magnetic materials. Furthermore, applying the one-step functionalization strategy, cysteamine and glutathione respectively direct-functionalized Fe 3 O 4 nanoparticles were successfully synthesized and also achieved efficient glycopeptide enrichment in human serum. The results indicated that we have presented an efficient and easily popularized strategy in glycoproteomics as well as in the synthesis of novel materials. Graphical abstract Fe 3 O 4 /L-Cys nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides.

  8. Efficient Extracellular Expression of Metalloprotease for Z-Aspartame Synthesis.

    PubMed

    Zhu, Fucheng; Liu, Feng; Wu, Bin; He, Bingfang

    2016-12-28

    Metalloprotease PT121 and its mutant Y114S (Tyr114 was substituted to Ser) are effective catalysts for the synthesis of Z-aspartame (Z-APM). This study presents the selection of a suitable signal peptide for improving expression and extracellular secretion of proteases PT121 and Y114S by Escherichia coli. Co-inducers containing IPTG and arabinose were used to promote protease production and cell growth. Under optimal conditions, the expression levels of PT121 and Y114S reached >500 mg/L, and the extracellular activity of PT121/Y114S accounted for 87/82% of the total activity of proteases. Surprisingly, purer protein was obtained in the supernatant, because arabinose reduced cell membrane permeability, avoiding cell lysis. Comparison of Z-APM synthesis and caseinolysis between proteases PT121 and Y114S showed that mutant Y114S presented remarkably higher activity of Z-APM synthesis and considerably lower activity of caseinolysis. The significant difference in substrate specificity renders these enzymes promising biocatalysts.

  9. RNA turnover and protein synthesis in fish cells.

    PubMed

    Smith, R W; Palmer, R M; Houlihan, D F

    2000-03-01

    Protein synthesis in fish has been previously correlated with RNA content. The present study investigates whether protein and RNA synthesis rates are similarly related. Protein and RNA synthesis rates were determined from 3H-phenylalanine and 3H-uridine incorporation, respectively, and expressed as % x day(-1) and half-lives, respectively. Three fibroblast cell lines were used: BF-2, RTP, CHSE 214, which are derived from the bluegill, rainbow trout and Chinook salmon, respectively. These cells contained similar RNA concentrations (approximately 175 microg RNA x mg(-1) cell protein). Therefore differences in protein synthesis rates, BF-2 (31.3 +/- 1.8)>RTP (25.1 +/- 1.7)>CHSE 214 (17.6 +/-1.1), were attributable to RNA translational efficiency. The most translationally efficient RNA (BF-2 cells), 1.8 mg protein synthesised x microg(-1) RNA x day(-1), corresponded to the lowest RNA half-life, 75.4 +/- 6.4 h. Translationally efficient RNA was also energetically efficient with BF-2 cells exploiting the least costly route of nucleotide supply (i.e. exogenous salvage) 3.5-6.0 times more than the least translationally efficient RNA (CHSE 214 cells). These data suggest that differential nucleotide supply, between intracellular synthesis and exogenous salvage, constitutes the area of pre-translational flexibility exploited to maintain RNA synthesis as a fixed energetic cost component of protein synthesis.

  10. Energy-efficient growth of phage Q Beta in Escherichia coli.

    PubMed

    Kim, Hwijin; Yin, John

    2004-10-20

    The role of natural selection in the optimal design of organisms is controversial. Optimal forms, functions, or behaviors of organisms have long been claimed without knowledge of how genotype contributes to phenotype, delineation of design constraints, or reference to alternative designs. Moreover, arguments for optimal designs have been often based on models that were difficult, if not impossible, to test. Here, we begin to address these issues by developing and probing a kinetic model for the intracellular growth of bacteriophage Q beta in Escherichia coli. The model accounts for the energetic costs of all template-dependent polymerization reactions, in ATP equivalents, including RNA-dependent RNA elongation by the phage replicase and synthesis of all phage proteins by the translation machinery of the E. coli host cell. We found that translation dominated phage growth, requiring 85% of the total energy expenditure. Only 10% of the total energy was applied to activities other than the direct synthesis of progeny phage components, reflecting primarily the cost of making the negative-strand RNA template that is needed for replication of phage genomic RNA. Further, we defined an energy efficiency of phage growth and showed its direct relationship to the yield of phage progeny. Finally, we performed a sensitivity analysis and found that the growth of wild-type phage was optimized for progeny yield or energy efficiency, suggesting that phage Q beta has evolved to optimally utilize the finite resources of its host cells.

  11. Total Synthesis and Biological Investigation of (-)-Artemisinin: The Antimalarial Activity of Artemisinin is not Stereospecific.

    PubMed

    Krieger, Johannes; Smeilus, Toni; Kaiser, Marcel; Seo, Ean-Jeong; Efferth, Thomas; Giannis, Athanassios

    2018-05-03

    Here, we describe an efficient and diversity-oriented entry to both (-)-artemisinin (1) and its natural antipode (+)-artemisinin, starting from commercially and readily available S-(+)- and R-(-)-citronellene, respectively. Subsequently, we answered the still open question regarding the specificity of artemisinins action. By using a drug-sensitive Plasmodium falciparum NF54 strain, we showed that the antimalarial activity of artemisinin is not stereospecific. Our straightforward and biomimetic approach to this natural endoperoxide enables the synthesis of artemisinin derivatives that are not accessible through applying current methods and may help to address the problem of emerging resistance of Plasmodium falciparum towards artemisinin. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthetic studies of the zoanthamine alkaloids: the total syntheses of norzoanthamine and zoanthamine.

    PubMed

    Yoshimura, Fumihiko; Sasaki, Minoru; Hattori, Izumi; Komatsu, Kei; Sakai, Mio; Tanino, Keiji; Miyashita, Masaaki

    2009-07-06

    The zoanthamine alkaloids, a type of heptacyclic marine alkaloid isolated from colonial zoanthids of the genus Zoanthus sp., have distinctive biological and pharmacological properties in addition to their unique chemical structures with stereochemical complexity. Namely, norzoanthamine (1) can suppress the loss of bone weight and strength in ovariectomized mice and has been expected as a promising candidate for a new type of antiosteoporotic drug, while zoanthamine (2) has exhibited potent inhibitory activity toward phorbol myristate-induced inflammation in addition to powerful analgesic effects. Recently, norzoanthamine derivatives were demonstrated to inhibit strongly the growth of P-388 murine leukemia cell lines, in addition to their potent antiplatelet activities on human platelet aggregation. Their distinctive biological properties, combined with novel chemical structures, make this family of alkaloids extremely attractive targets for chemical synthesis. However, the chemical synthesis of the zoanthamine alkaloids has been impeded owing to their densely functionalized complex stereostructures. In this paper, we report the first and highly efficient total syntheses of norzoanthamine (1) and zoanthamine (2) in full detail, which involve stereoselective synthesis of the requisite triene (18) for an intramolecular Diels-Alder reaction via the sequential three-component coupling reactions, the key intramolecular Diels-Alder reaction, and subsequent crucial bis-aminoacetalization as the key steps. Ultimately, we achieved the total synthesis of norzoanthamine (1) in 41 steps with an overall yield of 3.5 % (an average of 92 % yield each step) and that of zoanthamine (2) in 43 steps with an overall yield of 2.2 % (an average of 91 % yield each step) starting from (R)-5-methylcyclohexenone (3), respectively.

  13. A Comparison of Wavetable and FM Data Reduction Methods for Resynthesis of Musical Sounds

    NASA Astrophysics Data System (ADS)

    Horner, Andrew

    An ideal music-synthesis technique provides both high-level spectral control and efficient computation. Simple playback of recorded samples lacks spectral control, while additive sine-wave synthesis is inefficient. Wavetable and frequencymodulation synthesis, however, are two popular synthesis techniques that are very efficient and use only a few control parameters.

  14. Photocatalytic water splitting over titania supported copper and nickel oxide in photoelectrochemical cell; optimization of photoconversion efficiency

    NASA Astrophysics Data System (ADS)

    Muti Mohamed, Norani; Bashiri, Robabeh; Kait, Chong Fai; Sufian, Suriati

    2018-04-01

    we investigated the influence of fluctuating the preparation variables of TiO2 on the efficiency of photocatalytic water splitting in photoelectrochemical (PEC) cell. Hydrothermal associated sol-gel technique was applied to synthesis modified TiO2 with nickel and copper oxide. The variation of water (mL), acid (mL) and total metal loading (%) were mathematically modelled using central composite design (CCD) from the response surface method (RSM) to explore the single and combined effects of parameters on the system performance. The experimental data were fitted using quadratic polynomial regression model from analysis of variance (ANOVA). The coefficient of determination value of 98% confirms the linear relationship between the experimental and predicted values. The amount of water had maximum effect on the photoconversion efficiency due to a direct effect on the crystalline and the number of defects on the surface of photocatalyst. The optimal parameter ratios with maximum photoconversion efficiency were 16 mL, 3 mL and 5 % for water, acid and total metal loading, respectively.

  15. Energy Utilization for Polysaccharide Synthesis by Mixed Rumen Organisms Fermenting Soluble Carbohydrates

    PubMed Central

    Walker, D. J.

    1968-01-01

    Synthesis of reserve polysaccharide by mixed rumen organisms fermenting glucose, maltose, cellobiose, and xylose has been studied in relation to the adenosine triphosphate energy calculated to be available from substrate fermentation. About 80% of the energy available from glucose and xylose was used for polysaccharide synthesis, whereas, assuming hydrolytic cleavage of the disaccharides, more than 100% was used when cellobiose and maltose were the substrates. If, however, phosphorolytic cleavage of the disaccharides, for which there is evidence, was involved, the energy from both maltose and cellobiose fermentation was used with about the same efficiency as that from glucose and xylose fermentation. The rumen fluid used was collected 24 hr after feeding, and growth of microorganisms in such samples was sufficient to account for utilization of less than 10% of the total energy becoming available during the 40-min incubation period. PMID:16349819

  16. Chemoenzymatic assembly of mammalian O-mannose glycans.

    PubMed

    Cao, Hongzhi; Meng, Caicai; Sasmal, Aniruddha; Zhang, Yan; Gao, Tian; Liu, Chang-Cheng; Khan, Naazneen; Varki, Ajit; Wang, Fengshan

    2018-05-26

    O-Mannose glycans account up to 30% of total O-glycans in brain. Previous synthesis and functional studies only focused on the Core M3 O-mannose glycans of α-dystroglycan which are a causative factor for various muscular diseases. In this study, a highly efficient chemoenzymatic strategy was developed that enabled the first collective synthesis of 63 Core M1 and Core M2 O-mannose glycans. This chemoenzymatic strategy features the gram-scale chemical synthesis of 5 judiciously designed core structures, and the diversity-oriented modification of the core structures with 3 enzyme modules to provide 58 complex O-mannose glycans in a linear sequence that does not exceed 4 steps. The binding profiles of synthetic O-mannose glycans with a panel of lectins, antibodies and brain proteins were also explored using the printed O-mannose glycan array. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Total Synthesis of Tiacumicin A. Total Synthesis, Relay Synthesis, and Degradation Studies of Fidaxomicin (Tiacumicin B, Lipiarmycin A3).

    PubMed

    Hattori, Hiromu; Kaufmann, Elias; Miyatake-Ondozabal, Hideki; Berg, Regina; Gademann, Karl

    2018-04-12

    The commercial macrolide antibiotic fidaxomicin was synthesized in a highly convergent manner. Salient features of this synthesis include a β-selective noviosylation, a β-selective rhamnosylation, a ring-closing metathesis, a Suzuki coupling, and a vinylogous Mukaiyama aldol reaction. Careful choice of protecting groups and fine-tuning of the glycosylation reactions led to the first total synthesis of fidaxomicin. In addition, a relay synthesis of fidaxomicin was established, which gives access to a conveniently protected intermediate from the natural material for derivatization. The first total synthesis of a related congener, tiacumicin A, is presented.

  18. Directed evolution and expression tuning of geraniol synthase for efficient geraniol production in Escherichia coli.

    PubMed

    Tashiro, Miki; Fujii, Akira; Kawai-Noma, Shigeko; Saito, Kyoichi; Umeno, Daisuke

    2017-11-17

    To achieve an efficient production of geraniol and its derivatives in Escherichia coli, we aimed to improve the activity of geraniol synthase (GES) through a single round of mutagenesis and screening for higher substrate consumption. We isolated GES variants that outperform their parent in geraniol production. The analysis of GES variants indicated that the expression level of GES was the bottleneck for geraniol synthesis. Over-expression of the mutant GES M53 with a 5'-untranslated sequence designed for high translational efficiency, along with the additional expression of mevalonate pathway enzymes, isopentenyl pyrophosphate isomerase, and geranyl pyrophosphate synthase, yielded 300 mg/L/12 h geraniol and its derivatives (>1000 mg/L/42 h in total) in a shaking flask.

  19. An efficient microwave-assisted synthesis method for the production of water soluble amine-terminated Si nanoparticles.

    PubMed

    Atkins, Tonya M; Louie, Angelique Y; Kauzlarich, Susan M

    2012-07-27

    Silicon nanoparticles can be considered a green material, especially when prepared via a microwave-assisted method without the use of highly reactive reducing agents or hydrofluoric acid. A simple solution synthesis of hydrogen-terminated Si- and Mn-doped Si nanoparticles via microwave-assisted synthesis is demonstrated. The reaction of the Zintl salt, Na(4)Si(4), or Mn-doped Na(4)Si(4), Na(4)Si(4(Mn)), with ammonium bromide, NH(4)Br, produces small dispersible nanoparticles along with larger particles that precipitate. Allylamine and 1-amino-10-undecene were reacted with the hydrogen-terminated Si nanoparticles to provide water solubility and stability. A one-pot, single-reaction process and a one-pot, two-step reaction process were investigated. Details of the microwave-assisted process are provided, with the optimal synthesis being the one-pot, two-step reaction procedure and a total time of about 15 min. The nanoparticles were characterized by transmission electron microscopy (TEM), x-ray diffraction, and fluorescence spectroscopies. The microwave-assisted method reliably produces a narrow size distribution of Si nanoparticles in solution.

  20. Institute for Atom-Efficient Chemical Transformations Energy Frontier

    Science.gov Websites

    Synthesis Search Argonne ... Search Argonne Home > Institute for Atom-Efficient Chemical Transformations Synthesis Characterization Computational Studies Evaluation and Mechanisms/Catalytic Experimentation Using

  1. The CP molecule labyrinth: a paradigm of how endeavors in total synthesis lead to discoveries and inventions in organic synthesis.

    PubMed

    Nicolaou, K C; Baran, Phil S

    2002-08-02

    Imagine an artist carving a sculpture from a marble slab and finding gold nuggets in the process. This thought is not a far-fetched description of the work of a synthetic chemist pursuing the total synthesis of a natural product. At the end of the day, he or she will be judged by the artistry of the final work and the weight of the gold discovered in the process. However, as colorful as this description of total synthesis may be, it does not entirely capture the essence of the endeavor, for there is much more to be told, especially with regard to the contrast of frustrating failures and exhilarating moments of discovery. To fully appreciate the often Herculean nature of the task and the rewards that accompany it, one must sense the details of the enterprise behind the scenes. A more vivid description of total synthesis as a struggle against a tough opponent is perhaps appropriate to dramatize these elements of the experience. In this article we describe one such endeavor of total synthesis which, in addition to reaching the target molecule, resulted in a wealth of new synthetic strategies and technologies for chemical synthesis. The total synthesis of the CP molecules is compared to Theseus' most celebrated athlos (Greek for exploit, accomplishment): the conquest of the dreaded Minotaur, which he accomplished through brilliance, skill, and bravery having traversed the famous labyrinth with the help of Ariadne. This story from Greek mythology comes alive in modern synthetic expeditions toward natural products as exemplified by the total synthesis of the CP molecules which serve as a paradigm for modern total synthesis endeavors, where the objectives are discovery and invention in the broader sense of organic synthesis.

  2. Study of the effect of presence or absence of protozoa on rumen fermentation and microbial protein contribution to the chyme.

    PubMed

    Belanche, A; Abecia, L; Holtrop, G; Guada, J A; Castrillo, C; de la Fuente, G; Balcells, J

    2011-12-01

    The aim of this study was to investigate the effect of presence or absence of protozoa on rumen fermentation and efficiency of microbial protein synthesis under different diets. Of 20 twin paired lambs, 1 lamb of each pair was isolated from the ewe within 24 h after birth and reared in a protozoa-free environment (n = 10), whereas their respective twin-siblings remained with the ewe (faunated, n = 10). When lambs reached 6 mo of age, 5 animals of each group were randomly allocated to 1 of 2 experimental diets consisting of either alfalfa hay as the sole diet, or 50:50 mixed with ground barley grain according to a 2 × 2 factorial arrangement of treatments. After 15 d of adaptation to the diet, the animals were euthanized and total rumen and abomasal contents were sampled to estimate rumen microbial synthesis using C(31) alkane as flow marker. Different ((15)N and purine bases) and a novel (recombinant DNA sequences) microbial markers, combined with several microbial reference extracts (rumen protozoa, liquid and solid associated bacteria) were evaluated. Absence of rumen protozoa modified the rumen fermentation pattern and decreased total tract OM and NDF digestibility in 2.0 and 5.1 percentage points, respectively. The effect of defaunation on microbial N flow was weak, however, and was dependent on the microbial marker and microbial reference extract considered. Faunated lambs fed with mixed diet showed the greatest rumen protozoal concentration and the least efficient microbial protein synthesis (29% less than the other treatments), whereas protozoa-free lambs fed with mixed diet presented the smallest ammonia concentration and 34% greater efficiency of N utilization than the other treatments. Although (15)N gave the most precise estimates of microbial synthesis, the use of recombinant DNA sequences represents an alternative that allows separate quantification of the bacteria and protozoa contributions. This marker showed that presence of protozoa decrease the bacterial-N flow through the abomasum by 33%, whereas the protozoa-N contribution to the microbial N flow increased from 1.9 to 14.1% when barley grain was added to the alfalfa hay. Absolute data related to intestinal flow must be treated with caution because the limitations of the sampling and maker system employed.

  3. Simplified Application of Material Efficiency Green Metrics to Synthesis Plans: Pedagogical Case Studies Selected from "Organic Syntheses"

    ERIC Educational Resources Information Center

    Andraos, John

    2015-01-01

    This paper presents a simplified approach for the application of material efficiency metrics to linear and convergent synthesis plans encountered in organic synthesis courses. Computations are facilitated and automated using intuitively designed Microsoft Excel spreadsheets without invoking abstract mathematical formulas. The merits of this…

  4. Effect of powder compaction on radiation-thermal synthesis of lithium-titanium ferrites

    NASA Astrophysics Data System (ADS)

    Surzhikov, A. P.; Lysenko, E. N.; Vlasov, V. A.; Malyshev, A. V.; Korobeynikov, M. V.; Mikhailenko, M. A.

    2017-01-01

    Effect of powder compaction on the efficiency of thermal and radiation-thermal synthesis of lithium-substituted ferrites was investigated by X-Ray diffraction and specific magnetization analysis. It was shown that the radiation-thermal heating of compacted powder reagents mixture leads to an increase in efficiency of lithium-titanium ferrites synthesis.

  5. Non-nucleoside building blocks for copper-assisted and copper-free click chemistry for the efficient synthesis of RNA conjugates.

    PubMed

    Jayaprakash, K N; Peng, Chang Geng; Butler, David; Varghese, Jos P; Maier, Martin A; Rajeev, Kallanthottathil G; Manoharan, Muthiah

    2010-12-03

    Novel non-nucleoside alkyne monomers compatible with oligonucleotide synthesis were designed, synthesized, and efficiently incorporated into RNA and RNA analogues during solid-phase synthesis. These modifications allowed site-specific conjugation of ligands to the RNA oligonucleotides through copper-assisted (CuAAC) and copper-free strain-promoted azide-alkyne cycloaddition (SPAAC) reactions. The SPAAC click reactions of cyclooctyne-oligonucleotides with various classes of azido-functionalized ligands in solution phase and on solid phase were efficient and quantitative and occurred under mild reaction conditions. The SPAAC reaction provides a method for the synthesis of oligonucleotide-ligand conjugates uncontaminated with copper ions.

  6. Highly efficient water-mediated approach to access benzazoles: metal catalyst and base-free synthesis of 2-substituted benzimidazoles, benzoxazoles, and benzothiazoles.

    PubMed

    Bala, Manju; Verma, Praveen Kumar; Sharma, Deepika; Kumar, Neeraj; Singh, Bikram

    2015-05-01

    An efficient water-catalyzed method has been developed for the synthesis of 2-substituted benzimidazoles, benzoxazoles, and benzothiazoles in one step. The present method excludes the usage of toxic metal catalysts and bases to produce benzazoles in good to excellent yields. An efficient and versatile water-mediated method has been established for the synthesis of various 2-arylbenzazoles. The present protocol excludes the usage of any catalyst and additive provided excellent selectivities and yields with high functional group tolerance for the synthesis of 2-arylated benzimidazoles, benzoxazoles, and benzothiazoles. Benzazolones were also synthesized using similar reaction protocol.

  7. Intramolecular carbolithiation of N-allyl-ynamides: an efficient entry to 1,4-dihydropyridines and pyridines - application to a formal synthesis of sarizotan.

    PubMed

    Gati, Wafa; Rammah, Mohamed M; Rammah, Mohamed B; Evano, Gwilherm

    2012-01-01

    We have developed a general synthesis of polysubstituted 1,4-dihydropyridines and pyridines based on a highly regioselective lithiation/6-endo-dig intramolecular carbolithiation from readily available N-allyl-ynamides. This reaction, which has been successfully applied to the formal synthesis of the anti-dyskinesia agent sarizotan, further extends the use of ynamides in organic synthesis and further demonstrates the synthetic efficiency of carbometallation reactions.

  8. Economy of Catalyst Synthesis-Convenient Access to Libraries of Di- and Tetranaphtho Azepinium Compounds.

    PubMed

    Tharamak, Sorachat; Knittl-Frank, Christian; Manaprasertsak, Auraya; Pengsook, Anchulee; Suchy, Lydia; Schuller, Philipp; Happl, Barbara; Roller, Alexander; Widhalm, Michael

    2018-03-24

    Efficient optimization procedures in chiral catalysis are usually linked to a straightforward strategy to access groups of structurally similar catalysts required for fine-tuning. The ease of building up such ligand libraries can be increased when the structure-modifying step (introduction of a substituent) is done at a later stage of the synthesis. This is demonstrated for the extended family of di- and tetranaphtho azepinium compounds, widely used as chiral phase transfer catalysts (PTC). Using 2,6-diiodo-4,5-dihydro-3 H -dinaphtho[2,1-c:1',2'-e]azepine and 4,8-diiodo-6,7-dihydro-5 H -dibenzo[c,e]azepine, respectively, as key intermediates, 18 spiro -azepinium compounds were synthesized in a total yield of 25-42% over 6-7 steps from 1,1'-binaphthyl-2,2'-dicarboxylic acid or diphenic acid, respectively. The replacement of iodo groups with aryl substituents was performed as the last or the penultimate step of the synthesis.

  9. The economic production of alcohol fuels from coal-derived synthesis gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K.

    1995-12-31

    The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2);more » (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)« less

  10. [Development of boomerang-type intramolecular cascade reactions and application to natural product synthesis].

    PubMed

    Takasu, K

    2001-12-01

    Intramolecular cascade reaction has received much attention as a powerful methodology to construct a polycyclic framework in organic synthesis. We have been developing "boomerang-type cascade reaction" to construct a variety of polycyclic skeletons efficiently. In the above reactions, a nucleophilic function of substrates changes the character into an electrophile after the initial reaction, and the electrophilic group acts as a nucleophile in the second reaction. That is, the reaction center stepwise moves from one functional group back to the same one via other functional groups. The stream of the electron concerning the cascade reaction is like a locus of boomerang. We show here three different boomerang-type reactions via ionic species or free radicals. 1) Diastereoselective Michael-aldol reaction based on the chiral auxiliary method and enantioselective Michael-aldol reaction by the use of external chiral sources. 2) Short and efficient total syntheses of longifolane sesquiterpenes utilizing intramolecular double Michael addition as a key step. 3) Development of boomerang-type radical cascade reaction of halopolyenes to construct terpenoid skeletons and its regioselectivity.

  11. Intramolecular carbolithiation of N-allyl-ynamides: an efficient entry to 1,4-dihydropyridines and pyridines – application to a formal synthesis of sarizotan

    PubMed Central

    Gati, Wafa; Rammah, Mohamed M; Rammah, Mohamed B

    2012-01-01

    Summary We have developed a general synthesis of polysubstituted 1,4-dihydropyridines and pyridines based on a highly regioselective lithiation/6-endo-dig intramolecular carbolithiation from readily available N-allyl-ynamides. This reaction, which has been successfully applied to the formal synthesis of the anti-dyskinesia agent sarizotan, further extends the use of ynamides in organic synthesis and further demonstrates the synthetic efficiency of carbometallation reactions. PMID:23365632

  12. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis.

    PubMed

    Kärkäs, Markus D; Porco, John A; Stephenson, Corey R J

    2016-09-14

    The use of photochemical transformations is a powerful strategy that allows for the formation of a high degree of molecular complexity from relatively simple building blocks in a single step. A central feature of all light-promoted transformations is the involvement of electronically excited states, generated upon absorption of photons. This produces transient reactive intermediates and significantly alters the reactivity of a chemical compound. The input of energy provided by light thus offers a means to produce strained and unique target compounds that cannot be assembled using thermal protocols. This review aims at highlighting photochemical transformations as a tool for rapidly accessing structurally and stereochemically diverse scaffolds. Synthetic designs based on photochemical transformations have the potential to afford complex polycyclic carbon skeletons with impressive efficiency, which are of high value in total synthesis.

  13. DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis.

    PubMed

    MacConnell, Andrew B; McEnaney, Patrick J; Cavett, Valerie J; Paegel, Brian M

    2015-09-14

    The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the "structure elucidation problem": the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS's utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 10(4) molecules/bead and sequencing allowed for elucidation of each compound's synthetic history. We applied DESPS to the combinatorial synthesis of a 75,645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and PCR make implementation of DESPS straightforward, and may prompt the chemistry community to revisit the synthesis of more complex and diverse libraries.

  14. An efficient chemical synthesis of nicotinamide riboside (NAR) and analogues.

    PubMed

    Tanimori, Shinji; Ohta, Takeshi; Kirihata, Mitsunori

    2002-04-22

    A simple and efficient synthesis of nicotinamide riboside (NAR) 1 and derivatives 4 and 5 via trimethylsilyl trifluoromethanesulfonate (TMSOTf)-mediated N-glycosilation followed by spontaneous deacetylation by treating with methanol is reported.

  15. Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: Implications for therapeutic delivery.

    PubMed

    Lu, Mei; Zhao, Xiaoyun; Xing, Haonan; Xun, Zhe; Yang, Tianzhi; Cai, Cuifang; Wang, Dongkai; Ding, Pingtian

    2018-04-03

    Cell-free (CF) protein synthesis has emerged as a powerful technique platform for efficient protein production in vitro. Liposomes have been widely studied as therapeutic carriers due to their biocompatibility, biodegradability, low toxicity, flexible surface manipulation, easy preparation, and higher cargo encapsulation capability. However, rapid immune clearance, insufficient targeting capacity, and poor cytoplasmic delivery efficiency substantially restrict their clinical application. The incorporation of functional membrane proteins (MPs) or peptides allows the transfer of biological properties to liposomes and imparts them with improved circulation, increased targeting, and efficient intracellular delivery. Liposome-chaperoned CF synthesis enables production of proteoliposomes in one-step reaction, which not only substantially simplifies the production procedure but also keeps protein functionality intact. Building off these observations, proteoliposomes with integrated MPs represent an excellent candidate for therapeutic delivery. In this review, we describe recent advances in CF synthesis with emphasis on detailing key factors for improving CF expression efficiency. Furthermore, we provide insights into strategies for rational design of proteoliposomal nanodelivery systems via CF synthesis. Liposome-chaperoned CF synthesis has emerged as a powerful approach for the design of recombinant proteoliposomes in one-step reaction. The incorporation of bioactive MPs or peptides into liposomes via CF synthesis can facilitate the development of proteoliposomal nanodelivery systems with improved circulation, increased targeting, and enhanced cellular delivery capacity. Moreover, by adapting lessons learned from natural delivery vehicles, novel bio-inspired proteoliposomes with enhanced delivery properties could be produced in CF systems. In this review, we first give an overview of CF synthesis with focus on enhancing protein expression in liposome-chaperoned CF systems. Furthermore, we intend to provide insight into harnessing CF-synthesized proteoliposomes for efficient therapeutic delivery. Copyright © 2018. Published by Elsevier Ltd.

  16. Multigram Synthesis of a Chiral Substituted Indoline Via Copper-Catalyzed Alkene Aminooxygenation.

    PubMed

    Sequeira, Fatima C; Bovino, Michael T; Chipre, Anthony J; Chemler, Sherry R

    2012-05-01

    (S)-5-Fluoro-2-(2,2,6,6-tetramethylpiperidin-1-yloxymethyl)-1-tosylindoline, a 2-methyleneoxy-substituted chiral indoline, was synthesized on multigram scale using an efficient copper-catalyzed enantioselective intramolecular alkene aminooxygenation. The synthesis is accomplished in four steps and the indoline is obtained in 89% ee (>98% after one recrystallization). Other highlights include efficient gram-scale synthesis of the (4R,5S)-di-Ph-box ligand and efficient separation of a monoallylaniline from its bis(allyl)aniline by-product by distillation under reduced pressure.

  17. Multigram Synthesis of a Chiral Substituted Indoline Via Copper-Catalyzed Alkene Aminooxygenation

    PubMed Central

    Sequeira, Fatima C.; Bovino, Michael T.; Chipre, Anthony J.

    2012-01-01

    (S)-5-Fluoro-2-(2,2,6,6-tetramethylpiperidin-1-yloxymethyl)-1-tosylindoline, a 2-methyleneoxy-substituted chiral indoline, was synthesized on multigram scale using an efficient copper-catalyzed enantioselective intramolecular alkene aminooxygenation. The synthesis is accomplished in four steps and the indoline is obtained in 89% ee (>98% after one recrystallization). Other highlights include efficient gram-scale synthesis of the (4R,5S)-di-Ph-box ligand and efficient separation of a monoallylaniline from its bis(allyl)aniline by-product by distillation under reduced pressure. PMID:22639473

  18. Total Synthesis of Avrainvilleol.

    PubMed

    Wegener, Aaron; Miller, Kenneth A

    2017-11-03

    The first total synthesis of the marine natural product avrainvilleol is reported. The total synthesis features the first application of the transition-metal-free coupling of a tosyl hydrazone and a boronic acid to the preparation of a complex natural product, and the first example of this coupling with a hindered diortho substituted hydrazone substrate.

  19. Isoxazolodihydropyridinones: 1,3-dipolar cycloaddition of nitrile oxides onto 2,4-dioxopiperidines

    PubMed Central

    Coffman, Keith C.; Hartley, Timothy P.; Dallas, Jerry L.; Kurth, Mark J.

    2012-01-01

    Practical and efficient methods have been developed for the diversity-oriented synthesis of isoxazolodihydropyridinones via the 1,3-dipolar cycloaddition of nitrile oxides onto 2,4-dioxopiperidines. A select few of these isoxazolodihydropyridinones were further elaborated with triazoles by copper catalyzed azide-alkyne cycloaddition reactions. A total of 70 compounds and intermediates were synthesized and analyzed for drug likeness. Sixty-four of these novel compounds were submitted to the NIH Molecular Libraries Small Molecule Repository for high-throughput biological screening. PMID:22352295

  20. Scalable, Stereocontrolled Total Syntheses of (±)–Axinellamines A and B

    PubMed Central

    Su, Shun; Rodriguez, Rodrigo A.; Baran, Phil S.

    2011-01-01

    The development of a simple, efficient, scalable, and stereocontrolled synthesis of a common intermediate en route to the axinellamines, massadines, and palau’amine is reported. This completely new route was utilized to prepare the axinellamines on a gram scale. In a more general sense, three distinct and enabling methodological advances were made during these studies: 1. ethylene glycol-assisted Pauson-Khand cycloaddition reaction, 2. a Zn/In-mediated Barbier type reaction, and 3. a TfNH2-assisted chlorination-spirocyclization. PMID:21846138

  1. Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene β-cyclase (Dclcyb1) expression

    PubMed Central

    Moreno, J.C.; Cerda, A.; Simpson, K.; Lopez-Diaz, I.; Carrera, E; Handford, M.; Stange, C.

    2016-01-01

    Carotenoids, chlorophylls and gibberellins are derived from the common precursor geranylgeranyl diphosphate (GGPP). One of the enzymes in carotenoid biosynthesis is lycopene β-cyclase (LCYB) that catalyzes the conversion of lycopene into β-carotene. In carrot, Dclcyb1 is essential for carotenoid synthesis in the whole plant. Here we show that when expressed in tobacco, increments in total carotenoids, β-carotene and chlorophyll levels occur. Furthermore, photosynthetic efficiency is enhanced in transgenic lines. Interestingly, and contrary to previous observations where overexpression of a carotenogenic gene resulted in the inhibition of the synthesis of gibberellins, we found raised levels of active GA4 and the concommitant increases in plant height, leaf size and whole plant biomass, as well as an early flowering phenotype. Moreover, a significant increase in the expression of the key carotenogenic genes, Ntpsy1, Ntpsy2 and Ntlcyb, as well as those involved in the synthesis of chlorophyll (Ntchl), gibberellin (Ntga20ox, Ntcps and Ntks) and isoprenoid precursors (Ntdxs2 and Ntggpps) was observed. These results indicate that the expression of Dclcyb1 induces a positive feedback affecting the expression of isoprenoid gene precursors and genes involved in carotenoid, gibberellin and chlorophyll pathways leading to an enhancement in fitness measured as biomass, photosynthetic efficiency and carotenoid/chlorophyll composition. PMID:26893492

  2. Aligator: A computational tool for optimizing total chemical synthesis of large proteins.

    PubMed

    Jacobsen, Michael T; Erickson, Patrick W; Kay, Michael S

    2017-09-15

    The scope of chemical protein synthesis (CPS) continues to expand, driven primarily by advances in chemical ligation tools (e.g., reversible solubilizing groups and novel ligation chemistries). However, the design of an optimal synthesis route can be an arduous and fickle task due to the large number of theoretically possible, and in many cases problematic, synthetic strategies. In this perspective, we highlight recent CPS tool advances and then introduce a new and easy-to-use program, Aligator (Automated Ligator), for analyzing and designing the most efficient strategies for constructing large targets using CPS. As a model set, we selected the E. coli ribosomal proteins and associated factors for computational analysis. Aligator systematically scores and ranks all feasible synthetic strategies for a particular CPS target. The Aligator script methodically evaluates potential peptide segments for a target using a scoring function that includes solubility, ligation site quality, segment lengths, and number of ligations to provide a ranked list of potential synthetic strategies. We demonstrate the utility of Aligator by analyzing three recent CPS projects from our lab: TNFα (157 aa), GroES (97 aa), and DapA (312 aa). As the limits of CPS are extended, we expect that computational tools will play an increasingly important role in the efficient execution of ambitious CPS projects such as production of a mirror-image ribosome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Total synthesis of (-)-strychnine.

    PubMed

    Kaburagi, Yosuke; Tokuyama, Hidetoshi; Fukuyama, Tohru

    2004-08-25

    Total synthesis of (-)-strychnine is described. Notable features of our synthesis include (1) palladium-catalyzed coupling of the indole and vinyl epoxide moieties, (2) synthesis of the nine-membered cyclic amine derivative from the diol precursor in a one-pot procedure, and (3) transannular cyclization of the nine-membered cyclic amine.

  4. Supplementing lactating dairy cows with a vitamin B12 precursor, 5,6-dimethylbenzimidazole, increases the apparent ruminal synthesis of vitamin B12.

    PubMed

    Brito, A; Chiquette, J; Stabler, S P; Allen, R H; Girard, C L

    2015-01-01

    Cobalamin (CBL), the biologically active form of vitamin B12, and its analogs, are produced by bacteria only if cobalt supply is adequate. The analogs differ generally by the nucleotide moiety of the molecule. In CBL, 5,6-dimethylbenzimidazole (5,6-DMB) is the base in the nucleotide moiety. The present study aimed to determine if a supplement of 5,6-DMB could increase utilization of dietary cobalt for synthesis of CBL and change ruminal fermentation, nutrient digestibility, omasal flow of nutrients and ruminal protozoa counts. Eight ruminally cannulated multiparous Holstein cows (mean±standard deviation=238±21 days in milk and 736±47 kg of BW) were used in a crossover design. Cows were randomly assigned to a daily supplement of a gelatin capsule containing 1.5 g of 5,6-DMB via the rumen cannula or no supplement. Each period lasted 29 days and consisted of 21 days for treatment adaptation and 8 days for data and samples collection. Five corrinoids, CBL and four cobamides were detected in the total mixed ration and the omasal digesta from both treatments. The dietary supplement of 5,6-DMB increased (P=0.02) apparent ruminal synthesis of CBL from 14.6 to 19.6 (s.e.m. 0.8) mg/day but had no effect (P>0.1) on apparent ruminal synthesis of the four analogs. The supplement of 5,6-DMB had no effect (P>0.1) on milk production and composition, or on protozoal count, ruminal pH and concentrations of volatile fatty acids and ammonia nitrogen in rumen content. The supplement had also no effect (P>0.1) on intake, omasal flow and apparent ruminal digestibility of dry matter, organic matter, NDF, ADF and nitrogenous fractions. Plasma concentration of CBL was not affected by treatments (P=0.98). Providing a preformed part of the CBL molecule, that is, 5,6-DMB, increased by 34% the apparent ruminal synthesis of CBL by ruminal bacteria but had no effect on ruminal fermentation or protozoa count and it was not sufficient to increase plasma concentrations of the vitamin. Even though the efficiency of cobalt utilization for apparent synthesis of CBL was increased from 2.0% to 2.7% by the 5,6-DMB supplement, this improved efficiency was still very low. Further research is needed to identify the factors affecting efficiency of utilization of cobalt for synthesis of CBL by the bacterial populations in rumen.

  5. Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Huang, Xiaodan; Zhao, Yufei; Ao, Zhimin; Wang, Guoxiu

    2014-12-01

    Synthesis of mesoporous graphene materials by soft-template methods remains a great challenge, owing to the poor self-assembly capability of precursors and the severe agglomeration of graphene nanosheets. Herein, a micelle-template strategy to prepare porous graphene materials with controllable mesopores, high specific surface areas and large pore volumes is reported. By fine-tuning the synthesis parameters, the pore sizes of mesoporous graphene can be rationally controlled. Nitrogen heteroatom doping is found to remarkably render electrocatalytic properties towards hydrogen evolution reactions as a highly efficient metal-free catalyst. The synthesis strategy and the demonstration of highly efficient catalytic effect provide benchmarks for preparing well-defined mesoporous graphene materials for energy production applications.

  6. Micelle-template synthesis of nitrogen-doped mesoporous graphene as an efficient metal-free electrocatalyst for hydrogen production.

    PubMed

    Huang, Xiaodan; Zhao, Yufei; Ao, Zhimin; Wang, Guoxiu

    2014-12-19

    Synthesis of mesoporous graphene materials by soft-template methods remains a great challenge, owing to the poor self-assembly capability of precursors and the severe agglomeration of graphene nanosheets. Herein, a micelle-template strategy to prepare porous graphene materials with controllable mesopores, high specific surface areas and large pore volumes is reported. By fine-tuning the synthesis parameters, the pore sizes of mesoporous graphene can be rationally controlled. Nitrogen heteroatom doping is found to remarkably render electrocatalytic properties towards hydrogen evolution reactions as a highly efficient metal-free catalyst. The synthesis strategy and the demonstration of highly efficient catalytic effect provide benchmarks for preparing well-defined mesoporous graphene materials for energy production applications.

  7. Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production

    PubMed Central

    Huang, Xiaodan; Zhao, Yufei; Ao, Zhimin; Wang, Guoxiu

    2014-01-01

    Synthesis of mesoporous graphene materials by soft-template methods remains a great challenge, owing to the poor self-assembly capability of precursors and the severe agglomeration of graphene nanosheets. Herein, a micelle-template strategy to prepare porous graphene materials with controllable mesopores, high specific surface areas and large pore volumes is reported. By fine-tuning the synthesis parameters, the pore sizes of mesoporous graphene can be rationally controlled. Nitrogen heteroatom doping is found to remarkably render electrocatalytic properties towards hydrogen evolution reactions as a highly efficient metal-free catalyst. The synthesis strategy and the demonstration of highly efficient catalytic effect provide benchmarks for preparing well-defined mesoporous graphene materials for energy production applications. PMID:25523276

  8. Studies toward the unique pederin family member psymberin: full structure elucidation, two alternative total syntheses, and analogs.

    PubMed

    Feng, Yu; Jiang, Xin; De Brabander, Jef K

    2012-10-17

    Two synthetic approaches to psymberin have been accomplished. A highly convergent first generation synthesis led to the complete stereochemical assignment and demonstrated that psymberin and irciniastatin A are identical compounds. This synthesis featured a diastereoselective aldol coupling between the aryl fragment and a central tetrahydropyran core and a novel one-pot procedure to convert an amide, via intermediacy of a sensitive methyl imidate, to the N-acyl aminal reminiscent of psymberin. The highlights of the second generation synthesis include an efficient iridium-catalyzed enantioselective bisallylation of neopentyl glycol and a stepwise Sonogashira coupling/cycloisomerization/reduction sequence to construct the dihydroisocoumarin unit. The two synthetic avenues were achieved in 17-18 steps (longest linear sequence, ~14-15 isolations) from 3 fragments prepared in 7-8 (first generation) and 3-8 (second generation) steps each. This convergent approach allowed for the preparation of sufficient amounts of psymberin (~ 0.5 g) for follow-up biological studies. Meanwhile, our highly flexible strategy enabled the design and synthesis of multiple analogs, including a psymberin-pederin hybrid, termed psympederin, that proved crucial to a comprehensive understanding of the chemical biology of psymberin and related compounds that will be described in a subsequent manuscript.

  9. Transcriptome Sequencing of Gracilariopsis lemaneiformis to Analyze the Genes Related to Optically Active Phycoerythrin Synthesis.

    PubMed

    Huang, Xiaoyun; Zang, Xiaonan; Wu, Fei; Jin, Yuming; Wang, Haitao; Liu, Chang; Ding, Yating; He, Bangxiang; Xiao, Dongfang; Song, Xinwei; Liu, Zhu

    2017-01-01

    Gracilariopsis lemaneiformis (aka Gracilaria lemaneiformis) is a red macroalga rich in phycoerythrin, which can capture light efficiently and transfer it to photosystemⅡ. However, little is known about the synthesis of optically active phycoerythrinin in G. lemaneiformis at the molecular level. With the advent of high-throughput sequencing technology, analysis of genetic information for G. lemaneiformis by transcriptome sequencing is an effective means to get a deeper insight into the molecular mechanism of phycoerythrin synthesis. Illumina technology was employed to sequence the transcriptome of two strains of G. lemaneiformis- the wild type and a green-pigmented mutant. We obtained a total of 86915 assembled unigenes as a reference gene set, and 42884 unigenes were annotated in at least one public database. Taking the above transcriptome sequencing as a reference gene set, 4041 differentially expressed genes were screened to analyze and compare the gene expression profiles of the wild type and green mutant. By GO and KEGG pathway analysis, we concluded that three factors, including a reduction in the expression level of apo-phycoerythrin, an increase of chlorophyll light-harvesting complex synthesis, and reduction of phycoerythrobilin by competitive inhibition, caused the reduction of optically active phycoerythrin in the green-pigmented mutant.

  10. Highly efficient enzymatic synthesis of 2-monoacylglycerides and structured lipids and their production on a technical scale.

    PubMed

    Pfeffer, Jan; Freund, Andreas; Bel-Rhlid, Rachid; Hansen, Carl-Erik; Reuss, Matthias; Schmid, Rolf D; Maurer, Steffen C

    2007-10-01

    We report here a two-step process for the high-yield enzymatic synthesis of 2-monoacylglycerides (2-MAG) of saturated as well as unsaturated fatty acids with different chain lengths. The process consists of two steps: first the unselective esterification of fatty acids and glycerol leading to a triacylglyceride followed by an sn1,3-selective alcoholysis reaction yielding 2-monoacylglycerides. Remarkably, both steps can be catalyzed by lipase B from Candida antarctica (CalB). The whole process including esterification and alcoholysis was scaled up in a miniplant to a total volume of 10 l. With this volume, a two-step process catalyzed by CalB for the synthesis of 1,3-oleoyl-2-palmitoylglycerol (OPO) using tripalmitate as starting material was established. On a laboratory scale, we obtained gram quantities of the synthesized 2-monoacylglycerides of polyunsaturated fatty acids such as arachidonic-, docosahexaenoic- and eicosapentaenoic acids and up to 96.4% of the theoretically possible yield with 95% purity. On a technical scale (>100 g of product, >5 l of reaction volume), 97% yield was reached in the esterification and 73% in the alcoholysis and a new promising process for the enzymatic synthesis of OPO was established.

  11. Microbial protein synthesis, ruminal digestion, microbial populations, and nitrogen balance in sheep fed diets varying in forage-to-concentrate ratio and type of forage.

    PubMed

    Ramos, S; Tejido, M L; Martínez, M E; Ranilla, M J; Carro, M D

    2009-09-01

    Six ruminally and duodenally cannulated sheep were used in a partially replicated 4 x 4 Latin square to evaluate the effects of 4 diets on microbial synthesis, microbial populations, and ruminal digestion. The experimental diets had forage to concentrate ratios (F:C; DM basis) of 70:30 (HF) or 30:70 (HC) with alfalfa hay (A) or grass hay (G) as forage and were designated as HFA, HCA, HFG, and HCG. The concentrate was based on barley, gluten feed, wheat middlings, soybean meal, palmkern meal, wheat, corn, and mineral-vitamin premix in the proportions of 22, 20, 20, 13, 12, 5, 5, and 3%, respectively (as-is basis). Sheep were fed the diets at a daily rate of 56 g/kg of BW(0.75) to minimize feed selection. High-concentrate diets resulted in greater (P < 0.001) total tract apparent OM digestibility compared with HF diets, but no differences were detected in NDF digestibility. Ruminal digestibility of OM, NDF, and ADF was decreased by increasing the proportion of concentrate, but no differences between forages were detected. Compared with sheep fed HF diets, sheep receiving HC diets had less ruminal pH values and acetate proportions, but greater butyrate proportions. No differences among diets were detected in numbers of cellulolytic bacteria, but protozoa numbers were less (P = 0.004) and total bacteria numbers tended (P = 0.08) to be less for HC diets. Carboxymethylcellulase, xylanase, and amylase activities were greater for HC compared with HF diets, with A diets showing greater (P = 0.008) carboxymethylcellulase activities than G diets. Retained N ranged from 28.7 to 37.9% of N intake and was not affected by F:C (P = 0.62) or the type of forage (P = 0.31). Microbial N synthesis and its efficiency was greater (P < 0.001) for HC diets compared with HF diets. The results indicate that concentrates with low cereal content can be included in the diet of sheep up to 70% of the diet without detrimental effects on ruminal activity, microbial synthesis efficiency, and N losses.

  12. Natural Product Total Synthesis in the Organic Laboratory: Total Synthesis of Caffeic Acid Phenethyl Ester (CAPE), a Potent 5-Lipoxygenase Inhibitor from Honeybee Hives

    ERIC Educational Resources Information Center

    Touaibia, Mohamed; Guay, Michel

    2011-01-01

    Natural products play a critical role in modern organic synthesis and learning synthetic techniques is an important component of the organic laboratory experience. In addition to traditional one-step organic synthesis laboratories, a multistep natural product synthesis is an interesting experiment to challenge students. The proposed three-step…

  13. Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Hata, Kenji; Futaba, Don N.; Mizuno, Kohei; Namai, Tatsunori; Yumura, Motoo; Iijima, Sumio

    2004-11-01

    We demonstrate the efficient chemical vapor deposition synthesis of single-walled carbon nanotubes where the activity and lifetime of the catalysts are enhanced by water. Water-stimulated enhanced catalytic activity results in massive growth of superdense and vertically aligned nanotube forests with heights up to 2.5 millimeters that can be easily separated from the catalysts, providing nanotube material with carbon purity above 99.98%. Moreover, patterned, highly organized intrinsic nanotube structures were successfully fabricated. The water-assisted synthesis method addresses many critical problems that currently plague carbon nanotube synthesis.

  14. Synthesis of a novel galactosylated lipid and its application to the hepatocyte-selective targeting of liposomal doxorubicin.

    PubMed

    Wang, Shao-Ning; Deng, Yi-Hui; Xu, Hui; Wu, Hong-Bing; Qiu, Ying-Kun; Chen, Da-Wei

    2006-01-01

    This paper described the synthesis of a novel galactosylated lipid with mono-galactoside moiety, (5-Cholesten-3beta-yl) 4-oxo-4-[2-(lactobionyl amido) ethylamido] butanoate (CHS-ED-LA), and the targetability of doxorubicin (DOX), a model drug, in liposomes containing 10% mol/mol CHS-ED-LA (galactosylated liposomes, GalL) to the liver was studied. The weighted-average overall drug targeting efficiency (Te(*)) was used to evaluate the liver targetability of GalL DOX. The results showed that GalL DOX gave a relatively high (Te(*))(liver) value of 64.6%, while DOX in conventional liposome (CL DOX) only gave a (Te(*))(liver) value of 21.8%. In the liver, the GalL DOX was mainly taken up by parenchymal cells (88% of the total hepatic uptake). Moreover, preinjection of asialofetuin significantly inhibited the liver uptake of GalL DOX (from 70 to 12% of the total injected dose). It was suggested that liposomes containing such novel galactosylated lipid, CHS-ED-LA, had a great potential as drug delivery carriers for hepatocyte-selective targeting.

  15. Total synthesis of the thiopeptide antibiotic amythiamicin D.

    PubMed

    Hughes, Rachael A; Thompson, Stewart P; Alcaraz, Lilian; Moody, Christopher J

    2005-11-09

    The thiopeptide (or thiostrepton) antibiotics are a class of sulfur containing highly modified cyclic peptides with interesting biological properties, including reported activity against MRSA and malaria. Described herein is the total synthesis of the thiopeptide natural product amythiamicin D, which utilizes a biosynthesis-inspired hetero-Diels-Alder route to the pyridine core of the antibiotic as a key step. Preliminary studies using a range of serine-derived 1-ethoxy-2-azadienes established that hetero-Diels-Alder reaction with N-acetylenamines proceeded efficiently under microwave irradiation to give 2,3,6-trisubstituted pyridines. The thiazole building blocks of the antibiotic were obtained by either classical Hantzsch reactions or by dirhodium(II)-catalyzed chemoselective carbene N-H insertion followed by thionation, and were combined to give the bis-thiazole that forms the left-hand fragment of the antibiotic. The key Diels-Alder reaction of a tris-thiazolyl azadiene with benzyl 2-(1-acetylaminoethenyl)thiazole-4-carboxylate gave the core tetrathiazolyl pyridine, which was elaborated into the natural product by successive incorporation of glycine and bis-thiazole fragments followed by macrocyclization.

  16. High-Efficiency Synthesis of Human α-Endorphin and Magainin in the Erythrocytes of Transgenic Mice: A Production System for Therapeutic Peptides

    NASA Astrophysics Data System (ADS)

    Sharma, Ajay; Khoury-Christianson, Anastasia M.; White, Steven P.; Dhanjal, Nirpal K.; Huang, Wen; Paulhiac, Clara; Friedman, Eric J.; Manjula, Belur N.; Kumar, Ramesh

    1994-09-01

    Chemical synthesis of peptides, though feasible, is hindered by considerations of cost, purity, and efficiency of synthesizing longer chains. Here we describe a transgenic system for producing peptides of therapeutic interest as fusion proteins at low cost and high purity. Transgenic hemoglobin expression technology using the locus control region was employed to produce fusion hemoglobins in the erythrocytes of mice. The fusion hemoglobin contains the desired peptide as an extension at the C end of human α-globin. A protein cleavage site is inserted between the C end of the α-globin chain and the N-terminal residue of the desired peptide. The peptide is recovered after cleavage of the fusion protein with enzymes that recognize this cleavage signal as their substrate. Due to the selective compartmentalization of hemoglobin in the erythrocytes, purification of the fusion hemoglobin is easy and efficient. Because of its compact and highly ordered structure, the internal sites of hemoglobin are resistant to protease digestion and the desired peptide is efficiently released and recovered. The applicability of this approach was established by producing a 16-mer α-endorphin peptide and a 26-mer magainin peptide in transgenic mice. Transgenic animals and their progeny expressing these fusion proteins remain healthy, even when the fusion protein is expressed at >25% of the total hemoglobin in the erythrocytes. Additional applications and potential improvements of this methodology are discussed.

  17. DNA polymerases eta and kappa exchange with the polymerase delta holoenzyme to complete common fragile site synthesis.

    PubMed

    Barnes, Ryan P; Hile, Suzanne E; Lee, Marietta Y; Eckert, Kristin A

    2017-09-01

    Common fragile sites (CFSs) are inherently unstable genomic loci that are recurrently altered in human tumor cells. Despite their instability, CFS are ubiquitous throughout the human genome and associated with large tumor suppressor genes or oncogenes. CFSs are enriched with repetitive DNA sequences, one feature postulated to explain why these loci are inherently difficult to replicate, and sensitive to replication stress. We have shown that specialized DNA polymerases (Pols) η and κ replicate CFS-derived sequences more efficiently than the replicative Pol δ. However, we lacked an understanding of how these enzymes cooperate to ensure efficient CFS replication. Here, we designed a model of lagging strand replication with RFC loaded PCNA that allows for maximal activity of the four-subunit human Pol δ holoenzyme, Pol η, and Pol κ in polymerase mixing assays. We discovered that Pol η and κ are both able to exchange with Pol δ stalled at repetitive CFS sequences, enhancing Normalized Replication Efficiency. We used this model to test the impact of PCNA mono-ubiquitination on polymerase exchange, and found no change in polymerase cooperativity in CFS replication compared with unmodified PCNA. Finally, we modeled replication stress in vitro using aphidicolin and found that Pol δ holoenzyme synthesis was significantly inhibited in a dose-dependent manner, preventing any replication past the CFS. Importantly, Pol η and κ were still proficient in rescuing this stalled Pol δ synthesis, which may explain, in part, the CFS instability phenotype of aphidicolin-treated Pol η and Pol κ-deficient cells. In total, our data support a model wherein Pol δ stalling at CFSs allows for free exchange with a specialized polymerase that is not driven by PCNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Micro-total envelope system with silicon nanowire separator for safe carcinogenic chemistry.

    PubMed

    Singh, Ajay K; Ko, Dong-Hyeon; Vishwakarma, Niraj K; Jang, Seungwook; Min, Kyoung-Ik; Kim, Dong-Pyo

    2016-02-26

    Exploration and expansion of the chemistries involving toxic or carcinogenic reagents are severely limited by the health hazards their presence poses. Here, we present a micro-total envelope system (μ-TES) and an automated total process for the generation of the carcinogenic reagent, its purification and its utilization for a desired synthesis that is totally enveloped from being exposed to the carcinogen. A unique microseparator is developed on the basis of SiNWs structure to replace the usual exposure-prone distillation in separating the generated reagent. Chloromethyl methyl ether chemistry is explored as a carcinogenic model in demonstrating the efficiency of the μ-TES that is fully automated so that feeding the ingredients for the generation is all it takes to produce the desired product. Syntheses taking days can be accomplished safely in minutes with excellent yields, which bodes well for elevating the carcinogenic chemistry to new unexplored dimensions.

  19. Concise, Enantioselective Total Synthesis of (-)-Alstonerine

    PubMed Central

    Miller, Kenneth A.

    2008-01-01

    A novel enantioselective total synthesis of (-)-alstonerine has been completed that requires only 1 5 steps from L-tryptophan. The synthesis features the first application of a Pauson-Khand reaction t o synthesize an azabridged bicyclic skeleton. PMID:17298078

  20. Shape-selective synthesis of non-micellar cobalt oxide (CoO) nanomaterials by microwave irradiations

    NASA Astrophysics Data System (ADS)

    Kundu, Subrata; Jayachandran, M.

    2013-04-01

    Shape-selective formation of CoO nanoparticles has been developed using a simple one-step in situ non-micellar microwave (MW) heating method. CoO NPs were synthesized by mixing aqueous CoCl2·6H2O solution with poly (vinyl) alcohol (PVA) in the presence of sodium hydroxide (NaOH). The reaction mixture was irradiated using MW for a total time of 2 min. This process exclusively generated different shapes like nanosphere, nanosheet, and nanodendrite structures just by tuning the Co(II) ion to PVA molar ratios and controlling other reaction parameters. The proposed synthesis method is efficient, straightforward, reproducible, and robust. Other than in catalysis, these cobalt oxide nanomaterials can be used for making pigments, battery materials, for developing solid state sensors, and also as an anisotropy source for magnetic recording.

  1. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis

    PubMed Central

    2016-01-01

    The use of photochemical transformations is a powerful strategy that allows for the formation of a high degree of molecular complexity from relatively simple building blocks in a single step. A central feature of all light-promoted transformations is the involvement of electronically excited states, generated upon absorption of photons. This produces transient reactive intermediates and significantly alters the reactivity of a chemical compound. The input of energy provided by light thus offers a means to produce strained and unique target compounds that cannot be assembled using thermal protocols. This review aims at highlighting photochemical transformations as a tool for rapidly accessing structurally and stereochemically diverse scaffolds. Synthetic designs based on photochemical transformations have the potential to afford complex polycyclic carbon skeletons with impressive efficiency, which are of high value in total synthesis. PMID:27120289

  2. Brønsted acid-catalysed enantioselective construction of axially chiral arylquinazolinones

    NASA Astrophysics Data System (ADS)

    Wang, Yong-Bin; Zheng, Sheng-Cai; Hu, Yu-Mei; Tan, Bin

    2017-05-01

    The axially chiral arylquinazolinone acts as a privileged structural scaffold, which is present in a large number of natural products and biologically active compounds as well as in chiral ligands. However, a direct catalytic enantioselective approach to access optically pure arylquinazolinones has been underexplored. Here we show a general and efficient approach to access enantiomerically pure arylquinazolinones in one-pot fashion catalysed by chiral phosphoric acids. A variety of axially chiral arylquinazolinones were obtained in high yields with good to excellent enantioselectivities under mild condition. Furthermore, we disclosed a method for atroposelective synthesis of alkyl-substituted arylquinazolinones involving Brønsted acid-catalysed carbon-carbon bond cleavage strategy. Finally, the asymmetric total synthesis of eupolyphagin bearing a cyclic arylquinazolinone skeleton was accomplished with an overall yield of 32% in six steps by utilizing the aforementioned methodology.

  3. An eco-compatible strategy for the diversity-oriented synthesis of macrocycles exploiting carbohydrate-derived building blocks.

    PubMed

    Maurya, Sushil K; Rana, Rohit

    2017-01-01

    An efficient, eco-compatible diversity-oriented synthesis (DOS) approach for the generation of library of sugar embedded macrocyclic compounds with various ring size containing 1,2,3-triazole has been developed. This concise strategy involves the iterative use of readily available sugar-derived alkyne/azide-alkene building blocks coupled through copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction followed by pairing of the linear cyclo-adduct using greener reaction conditions. The eco-compatibility, mild reaction conditions, greener solvents, easy purification and avoidance of hazards and toxic solvents are advantages of this protocol to access this important structural class. The diversity of the macrocycles synthesized (in total we have synthesized 13 macrocycles) using a set of standard reaction protocols demonstrate the potential of the new eco-compatible approach for the macrocyclic library generation.

  4. A novel approach for the synthesis of ultrathin silica-coated iron oxide nanocubes decorated with silver nanodots (Fe3O4/SiO2/Ag) and their superior catalytic reduction of 4-nitroaniline

    NASA Astrophysics Data System (ADS)

    Abbas, Mohamed; Torati, Sri Ramulu; Kim, Cheolgi

    2015-07-01

    A novel sonochemical approach was developed for the synthesis of different core/shell structures of Fe3O4/SiO2/Ag nanocubes and SiO2/Ag nanospheres. The total reaction time of the three sonochemical steps for the synthesis of Fe3O4/SiO2/Ag nanocubes is shorter than that of the previously reported methods. A proposed reaction mechanism for the sonochemical functionalization of the silica and the silver on the surface of magnetic nanocubes was discussed in detail. Transmission electron microscopy revealed that the surface of Fe3O4/SiO2 nanocubes was decorated with small Ag nanoparticles of approximately 10-20 nm in size, and the energy dispersive spectroscopy mapping analysis confirmed the morphology of the structure. Additionally, X-ray diffraction data were used to confirm the formation of both phases of a cubic inverse spinel structure for Fe3O4 and bcc structures for Ag in the core/shell structure of the Fe3O4/SiO2/Ag nanocubes. The as-synthesized Fe3O4/SiO2/Ag nanocubes showed a high efficiency in the catalytic reduction reaction of 4-nitroaniline to 4-phenylenediamine and a better performance than both Ag and SiO2/Ag nanoparticles. The grafted silver catalyst was recycled and reused at least fifteen times without a significant loss of catalytic efficiency.A novel sonochemical approach was developed for the synthesis of different core/shell structures of Fe3O4/SiO2/Ag nanocubes and SiO2/Ag nanospheres. The total reaction time of the three sonochemical steps for the synthesis of Fe3O4/SiO2/Ag nanocubes is shorter than that of the previously reported methods. A proposed reaction mechanism for the sonochemical functionalization of the silica and the silver on the surface of magnetic nanocubes was discussed in detail. Transmission electron microscopy revealed that the surface of Fe3O4/SiO2 nanocubes was decorated with small Ag nanoparticles of approximately 10-20 nm in size, and the energy dispersive spectroscopy mapping analysis confirmed the morphology of the structure. Additionally, X-ray diffraction data were used to confirm the formation of both phases of a cubic inverse spinel structure for Fe3O4 and bcc structures for Ag in the core/shell structure of the Fe3O4/SiO2/Ag nanocubes. The as-synthesized Fe3O4/SiO2/Ag nanocubes showed a high efficiency in the catalytic reduction reaction of 4-nitroaniline to 4-phenylenediamine and a better performance than both Ag and SiO2/Ag nanoparticles. The grafted silver catalyst was recycled and reused at least fifteen times without a significant loss of catalytic efficiency. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02680f

  5. Host Pah1p phosphatidate phosphatase limits viral replication by regulating phospholipid synthesis

    PubMed Central

    Zhang, Zhenlu; He, Guijuan; Catanzaro, Nicholas; Wu, Zujian; Xie, Lianhui

    2018-01-01

    Replication of positive-strand RNA viruses [(+)RNA viruses] takes place in membrane-bound viral replication complexes (VRCs). Formation of VRCs requires virus-mediated manipulation of cellular lipid synthesis. Here, we report significantly enhanced brome mosaic virus (BMV) replication and much improved cell growth in yeast cells lacking PAH1 (pah1Δ), the sole yeast ortholog of human LIPIN genes. PAH1 encodes Pah1p (phosphatidic acid phosphohydrolase), which converts phosphatidate (PA) to diacylglycerol that is subsequently used for the synthesis of the storage lipid triacylglycerol. Inactivation of Pah1p leads to altered lipid composition, including high levels of PA, total phospholipids, ergosterol ester, and free fatty acids, as well as expansion of the nuclear membrane. In pah1Δ cells, BMV replication protein 1a and double-stranded RNA localized to the extended nuclear membrane, there was a significant increase in the number of VRCs formed, and BMV genomic replication increased by 2-fold compared to wild-type cells. In another yeast mutant that lacks both PAH1 and DGK1 (encodes diacylglycerol kinase converting diacylglycerol to PA), which has a normal nuclear membrane but maintains similar lipid compositional changes as in pah1Δ cells, BMV replicated as efficiently as in pah1Δ cells, suggesting that the altered lipid composition was responsible for the enhanced BMV replication. We further showed that increased levels of total phospholipids play an important role because the enhanced BMV replication required active synthesis of phosphatidylcholine, the major membrane phospholipid. Moreover, overexpression of a phosphatidylcholine synthesis gene (CHO2) promoted BMV replication. Conversely, overexpression of PAH1 or plant PAH1 orthologs inhibited BMV replication in yeast or Nicotiana benthamiana plants. Competing with its host for limited resources, BMV inhibited host growth, which was markedly alleviated in pah1Δ cells. Our work suggests that Pah1p promotes storage lipid synthesis and thus represses phospholipid synthesis, which in turn restricts both viral replication and cell growth during viral infection. PMID:29649282

  6. The double-edged effects of annealing MgO underlayers on the efficient synthesis of single-wall carbon nanotube forests.

    PubMed

    Tsuji, Takashi; Hata, Kenji; Futaba, Don N; Sakurai, Shunsuke

    2017-11-16

    Recently, the millimetre-scale, highly efficient synthesis of single-wall carbon nanotube (SWCNT) forests from Fe catalysts has been reported through the annealing of the magnesia (MgO) underlayer. Here, we report the double-edged effects of underlayer annealing on the efficiency and structure of the SWCNT forest synthesis through a temperature-dependent examination. Our results showed that the efficiency of the SWCNT forests sharply increased with increased underlayer annealing temperatures from 600 °C up to 900 °C due to a temperature-dependent structural modification, characterized by increased grain size and reduced defects, of the MgO underlayer. Beyond this temperature, the SWCNT fraction also decreased as a result of further structural modification of the MgO underlayer. This exemplifies the double-edged effects of annealing. Specifically, for underlayer annealing below 600 °C, the catalyst subsurface diffusion was found to limit the growth efficiency, and for excessively high underlayer annealing temperatures (>900 °C), catalyst coalescence/ripening led to the formation of double-wall carbon nanotubes. As a result, three distinct regions of synthesis were observed: (i) a "low yield" region below a threshold temperature (∼600 °C); (ii) an "increased yield" region from 600 to 900 °C, and (iii) a "saturation" region above 900 °C. The efficient SWCNT forest synthesis could only occur within a specific annealing temperature window as a result of this double-edged effects of underlayer annealing.

  7. A Continuum of Progress: Applications of N-Hetereocyclic Carbene Catalysis in Total Synthesis

    PubMed Central

    Izquierdo, Javier; Hutson, Gerri E.; Cohen, Daniel T.; Scheidt, Karl A.

    2013-01-01

    N-Heterocyclic carbene (NHC) catalyzed transformations have emerged as powerful tactics for the construction of complex molecules. Since Stetter’s report in 1975 of the total synthesis of cis-jasmon and dihydrojasmon by using carbene catalysis, the use of NHCs in total synthesis has grown rapidly, particularly over the last decade. This renaissance is undoubtedly due to the recent developments in NHC-catalyzed reactions, including new benzoin, Stetter, homoenolate, and aroylation processes. These transformations employ typical as well as Umpolung types of bond disconnections and have served as the key step in several new total syntheses. This Minireview highlights these reports and captures the excitement and emerging synthetic utility of carbene catalysis in total synthesis. PMID:23074146

  8. 1,2-Dicyclopropylethyne and (Cyclopropylethynyl)cyclobutane from an Efficient Synthesis of 1,2-(omega-Haloalkyl)ethynes and 1-Cycloalkyl-2-(omega-haloalkyl)ethynes (Pre Print)

    DTIC Science & Technology

    2012-02-09

    Efficient Synthesis of 1,2-(ω-Haloalkyl0ethynes and 1 -Cycloalkyl-2-(ω-haloalkyl)ethynes 5b. GRANT NUMBER (Pre Print) 5c. PROGRAM ELEMENT NUMBER...suffers from low yield as is evi- dent from the reported synthesis of 5-chloropent- 1 -yne (5, 57%)9 and 1,8-dichlorooct- 1 -yne (9, 36%).8 The synthesis ... chloropropane / 1 -bromo-4-chlorobutane is very sluggish and incomplete in THF. However, the reaction in the presence of 10 mol % Bu4NI results in an

  9. Efficient synthesis of 3-O-thia-cPA and preliminary analysis of its biological activity toward autotaxin.

    PubMed

    Tanaka, Ryo; Kato, Masaru; Suzuki, Takahiro; Nakazaki, Atsuo; Nozaki, Emi; Gotoh, Mari; Murakami-Murofushi, Kimiko; Kobayashi, Susumu

    2011-07-15

    The efficient synthesis of 3-O-thia-cPAs (4a-d), sulfur analogues of cyclic phosphatidic acid (cPA), has been achieved. The key step of the synthesis is an intramolecular Arbuzov reaction to construct the cyclic thiophosphate moiety. The present synthetic route enables the synthesis of 4a-d in only four steps from the commercially available glycidol. Preliminary biological experiments showed that 4a-d exhibited a similar inhibitory effect on autotaxin (ATX) as original cPA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Tactical Synthesis Of Efficient Global Search Algorithms

    NASA Technical Reports Server (NTRS)

    Nedunuri, Srinivas; Smith, Douglas R.; Cook, William R.

    2009-01-01

    Algorithm synthesis transforms a formal specification into an efficient algorithm to solve a problem. Algorithm synthesis in Specware combines the formal specification of a problem with a high-level algorithm strategy. To derive an efficient algorithm, a developer must define operators that refine the algorithm by combining the generic operators in the algorithm with the details of the problem specification. This derivation requires skill and a deep understanding of the problem and the algorithmic strategy. In this paper we introduce two tactics to ease this process. The tactics serve a similar purpose to tactics used for determining indefinite integrals in calculus, that is suggesting possible ways to attack the problem.

  11. Quantifying ruminal nitrogen metabolism using the omasal sampling technique in cattle--a meta-analysis.

    PubMed

    Broderick, G A; Huhtanen, P; Ahvenjärvi, S; Reynal, S M; Shingfield, K J

    2010-07-01

    Mixed model analysis of data from 32 studies (122 diets) was used to evaluate the precision and accuracy of the omasal sampling technique for quantifying ruminal-N metabolism and to assess the relationships between nonammonia-N flow at the omasal canal and milk protein yield. Data were derived from experiments in cattle fed North American diets (n=36) based on alfalfa silage, corn silage, and corn grain and Northern European diets (n=86) composed of grass silage and barley-based concentrates. In all studies, digesta flow was quantified using a triple-marker approach. Linear regressions were used to predict microbial-N flow to the omasum from intake of dry matter (DM), organic matter (OM), or total digestible nutrients. Efficiency of microbial-N synthesis increased with DM intake and there were trends for increased efficiency with elevated dietary concentrations of crude protein (CP) and rumen-degraded protein (RDP) but these effects were small. Regression of omasal rumen-undegraded protein (RUP) flow on CP intake indicated that an average 32% of dietary CP escaped and 68% was degraded in the rumen. The slope from regression of observed omasal flows of RUP on flows predicted by the National Research Council (2001) model indicated that NRC predicted greater RUP supply. Measured microbial-N flow was, on average, 26% greater than that predicted by the NRC model. Zero ruminal N-balance (omasal CP flow=CP intake) was obtained at dietary CP and RDP concentrations of 147 and 106 g/kg of DM, corresponding to ruminal ammonia-N and milk urea N concentrations of 7.1 and 8.3mg/100mL, respectively. Milk protein yield was positively related to the efficiency of microbial-N synthesis and measured RUP concentration. Improved efficiency of microbial-N synthesis and reduced ruminal CP degradability were positively associated with efficiency of capture of dietary N as milk N. In conclusion, the results of this study indicate that the omasal sampling technique yields valuable estimates of RDP, RUP, and ruminal microbial protein supply in cattle. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. General Strategy for Synthesis of C-19 Methyl-Substituted Sarpagine/Macroline/Ajmaline Indole Alkaloids Including Total Synthesis of 19(S),20(R)-Dihydroperaksine, 19(S),20(R)-Dihydroperaksine-17-al, and Peraksine

    PubMed Central

    2015-01-01

    A detailed account of the development of a general strategy for synthesis of the C-19 methyl-substituted alkaloids including total synthesis of 19(S),20(R)-dihydroperaksine-17-al (1), 19(S),20(R)-dihydroperaksine (2), and peraksine (6) is presented. Efforts directed toward the total synthesis of macrosalhine chloride (5) are also reported. Important to success is the sequence of chemical reactions which include a critical haloboration reaction, regioselective hydroboration, and controlled oxidation (to provide sensitive enolizable aldehydes at C-20). In addition, the all-important Pd-catalyzed α-vinylation reaction has been extended to a chiral C-19 alkyl-substituted substrate for the first time. Synthesis of the advanced intermediate 64 completes an improved formal total synthesis of talcarpine (26) and provides a starting point for synthesis of macroline-related alkaloids 27–31. Similarly, extension of this synthetic strategy in the ring A oxygenated series should provide easy access to the northern hemisphere 32b of the bisindoles angustricraline, alstocraline, and foliacraline (Figure 4). PMID:25247616

  13. Samarium Diiodide-Mediated Reactions in Total Synthesis

    PubMed Central

    Nicolaou, K. C.; Ellery, Shelby P.; Chen, Jason S.

    2009-01-01

    Introduced by Henri Kagan more than three decades ago, samarium diiodide (SmI2) has found increasing applications in chemical synthesis. This single-electron reducing agent has been particularly useful in C–C bond formations, including those found in total synthesis endeavors. This Review highlights selected applications of SmI2 in total synthesis, with special emphasis on novel transformations and mechanistic considerations. The examples discussed are both illustrative of the power of this reagent in complex molecule construction and inspirational for the design of synthetic strategies toward such targets, both natural and designed. PMID:19714695

  14. The effects of the sequential addition of synthesis parameters on the performance of alkali activated fly ash mortar

    NASA Astrophysics Data System (ADS)

    Dassekpo, Jean-Baptiste Mawulé; Zha, Xiaoxiong; Zhan, Jiapeng; Ning, Jiaqian

    Geopolymer is an energy efficient and sustainable material that is currently used in construction industry as an alternative for Portland cement. As a new material, specific mix design method is essential and efforts have been made to develop a mix design procedure with the main focus on achieving better compressive strength and economy. In this paper, a sequential addition of synthesis parameters such as fly ash-sand, alkaline liquids, plasticizer and additional water at well-defined time intervals was investigated. A total of 4 mix procedures were used to study the compressive performance on fly ash-based geopolymer mortar and the results of each method were analyzed and discussed. Experimental results show that the sequential addition of sodium hydroxide (NaOH), sodium silicate (Na2SiO3), plasticizer (PL), followed by adding water (WA) increases considerably the compressive strengths of the geopolymer-based mortar. These results clearly demonstrate the high significant influence of sequential addition of synthesis parameters on geopolymer materials compressive properties, and also provide a new mixing method for the preparation of geopolymer paste, mortar and concrete.

  15. Optimizing the performance of catalytic traps for hydrocarbon abatement during the cold-start of a gasoline engine.

    PubMed

    Puértolas, B; Navlani-García, M; García, T; Navarro, M V; Lozano-Castelló, D; Cazorla-Amorós, D

    2014-08-30

    A key target to reduce current hydrocarbon emissions from vehicular exhaust is to improve their abatement under cold-start conditions. Herein, we demonstrate the potential of factorial analysis to design a highly efficient catalytic trap. The impact of the synthesis conditions on the preparation of copper-loaded ZSM-5 is clearly revealed by XRD, N2 sorption, FTIR, NH3-TPD, SEM and TEM. A high concentration of copper nitrate precursor in the synthesis improves the removal of hydrocarbons, providing both strong adsorption sites for hydrocarbon retention at low temperature and copper oxide nanoparticles for full hydrocarbon catalytic combustion at high temperature. The use of copper acetate precursor leads to a more homogeneous dispersion of copper oxide nanoparticles also providing enough catalytic sites for the total oxidation of hydrocarbons released from the adsorption sites, although lower copper loadings are achieved. Thus, synthesis conditions leading to high copper loadings jointly with highly dispersed copper oxide nanoparticles would result in an exceptional catalytic trap able to reach superior hydrocarbon abatement under highly demanding operational conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Synthesis and DNA cleavage activity of Bis-3-chloropiperidines as alkylating agents.

    PubMed

    Zuravka, Ivonne; Roesmann, Rolf; Sosic, Alice; Wende, Wolfgang; Pingoud, Alfred; Gatto, Barbara; Göttlich, Richard

    2014-09-01

    Nitrogen mustards are an important class of bifunctional alkylating agents routinely used in chemotherapy. They react with DNA as electrophiles through the formation of highly reactive aziridinium ion intermediates. The antibiotic 593A, with potential antitumor activity, can be considered a naturally occurring piperidine mustard containing a unique 3-chloropiperidine ring. However, the total synthesis of this antibiotic proved to be rather challenging. With the aim of designing simplified analogues of this natural product, we developed an efficient bidirectional synthetic route to bis-3-chloropiperidines joined by flexible, conformationally restricted, or rigid diamine linkers. The key step involves an iodide-catalyzed double cyclization of unsaturated bis-N-chloroamines to simultaneously generate both piperidine rings. Herein we describe the synthesis and subsequent evaluation of a series of novel nitrogen-bridged bis-3-chloropiperidines, enabling the study of the impact of the linker structure on DNA alkylation properties. Our studies reveal that the synthesized compounds possess DNA alkylating abilities and induce strand cleavage, with a strong preference for guanine residues. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene β-cyclase (Dclcyb1) expression.

    PubMed

    Moreno, J C; Cerda, A; Simpson, K; Lopez-Diaz, I; Carrera, E; Handford, M; Stange, C

    2016-04-01

    Carotenoids, chlorophylls and gibberellins are derived from the common precursor geranylgeranyl diphosphate (GGPP). One of the enzymes in carotenoid biosynthesis is lycopene β-cyclase (LCYB) that catalyzes the conversion of lycopene into β-carotene. In carrot, Dclcyb1 is essential for carotenoid synthesis in the whole plant. Here we show that when expressed in tobacco, increments in total carotenoids, β-carotene and chlorophyll levels occur. Furthermore, photosynthetic efficiency is enhanced in transgenic lines. Interestingly, and contrary to previous observations where overexpression of a carotenogenic gene resulted in the inhibition of the synthesis of gibberellins, we found raised levels of active GA4 and the concommitant increases in plant height, leaf size and whole plant biomass, as well as an early flowering phenotype. Moreover, a significant increase in the expression of the key carotenogenic genes, Ntpsy1, Ntpsy2 and Ntlcyb, as well as those involved in the synthesis of chlorophyll (Ntchl), gibberellin (Ntga20ox, Ntcps and Ntks) and isoprenoid precursors (Ntdxs2 and Ntggpps) was observed. These results indicate that the expression of Dclcyb1 induces a positive feedback affecting the expression of isoprenoid gene precursors and genes involved in carotenoid, gibberellin and chlorophyll pathways leading to an enhancement in fitness measured as biomass, photosynthetic efficiency and carotenoid/chlorophyll composition. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Identification of cis-acting elements on positive-strand subgenomic mRNA required for the synthesis of negative-strand counterpart in bovine coronavirus.

    PubMed

    Yeh, Po-Yuan; Wu, Hung-Yi

    2014-07-30

    It has been demonstrated that, in addition to genomic RNA, sgmRNA is able to serve as a template for the synthesis of the negative-strand [(-)-strand] complement. However, the cis-acting elements on the positive-strand [(+)-strand] sgmRNA required for (-)-strand sgmRNA synthesis have not yet been systematically identified. In this study, we employed real-time quantitative reverse transcription polymerase chain reaction to analyze the cis-acting elements on bovine coronavirus (BCoV) sgmRNA 7 required for the synthesis of its (-)-strand counterpart by deletion mutagenesis. The major findings are as follows. (1) Deletion of the 5'-terminal leader sequence on sgmRNA 7 decreased the synthesis of the (-)-strand sgmRNA complement. (2) Deletions of the 3' untranslated region (UTR) bulged stem-loop showed no effect on (-)-strand sgmRNA synthesis; however, deletion of the 3' UTR pseudoknot decreased the yield of (-)-strand sgmRNA. (3) Nucleotides positioned from -15 to -34 of the sgmRNA 7 3'-terminal region are required for efficient (-)-strand sgmRNA synthesis. (4) Nucleotide species at the 3'-most position (-1) of sgmRNA 7 is correlated to the efficiency of (-)-strand sgmRNA synthesis. These results together suggest, in principle, that the 5'- and 3'-terminal sequences on sgmRNA 7 harbor cis-acting elements are critical for efficient (-)-strand sgmRNA synthesis in BCoV.

  19. Green chemistry for nanoparticle synthesis.

    PubMed

    Duan, Haohong; Wang, Dingsheng; Li, Yadong

    2015-08-21

    The application of the twelve principles of green chemistry in nanoparticle synthesis is a relatively new emerging issue concerning the sustainability. This field has received great attention in recent years due to its capability to design alternative, safer, energy efficient, and less toxic routes towards synthesis. These routes have been associated with the rational utilization of various substances in the nanoparticle preparations and synthetic methods, which have been broadly discussed in this tutorial review. This article is not meant to provide an exhaustive overview of green synthesis of nanoparticles, but to present several pivotal aspects of synthesis with environmental concerns, involving the selection and evaluation of nontoxic capping and reducing agents, the choice of innocuous solvents and the development of energy-efficient synthetic methods.

  20. The Use of Aryl Hydrazide Linkers for the Solid Phase Synthesis of Chemically Modified Peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Y; Mitchell, A R; Camarero, J A

    2006-11-03

    Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc- and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis ofmore » C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.« less

  1. Highly efficient one-pot three-component synthesis of naphthopyran derivatives in water catalyzed by hydroxyapatite

    EPA Science Inventory

    An expeditious and efficient protocol for the synthesis of naphthopyrans has been developed that proceeds via one-pot three-component sequential reaction in water catalyzed by hydroxyapatite or sodium-modified-hydroxyapatite. The title compounds have been obtained in high yield a...

  2. The first total synthesis of sporiolide A.

    PubMed

    Du, Yuguo; Chen, Qi; Linhardt, Robert J

    2006-10-27

    The first total synthesis of the natural cytotoxic agent sporiolide A has been accomplished from D-glucal in 16 steps with 6.1% overall yield. Carbohydrates were applied as the chiral templates to manipulate the absolute configuration during the synthesis. Pyridinium chlorochromate (PCC)-promoted transformation of the cyclic enol-ether to lactone, followed by Yamaguchi esterification and intramolecular ring closure metathesis, greatly facilitates synthesis of the target compound.

  3. Undergraduate Research as Chemical Education--A Symposium: An Undergraduate Laboratory Experiment: The Total Synthesis of Maytansine.

    ERIC Educational Resources Information Center

    Goodwin, Thomas E.

    1984-01-01

    An undergraduate research program in natural product synthesis was established at a small liberal arts college. Discusses program goals (including the total synthesis of maytansine), objectives, and accomplishments to date. Guidelines for establishing such programs are offered. (JN)

  4. Asymmetric total synthesis of cladosporin and isocladosporin.

    PubMed

    Zheng, Huaiji; Zhao, Changgui; Fang, Bowen; Jing, Peng; Yang, Juan; Xie, Xingang; She, Xuegong

    2012-07-06

    The first asymmetric total syntheses of cladosporin and isocladosporin were accomplished in 8 steps with 8% overall yield and 10 steps with 26% overall yield, respectively. The relative configuration of isocladosporin was determined via this total synthesis.

  5. Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes-``Super-Growth''

    NASA Astrophysics Data System (ADS)

    Hata, Kenji

    2005-03-01

    We demonstrate an extremely efficient chemical vapour deposition synthesis of single-walled carbon nanotubes where the activity and lifetime of the catalysts are enhanced by water [1]. Water-stimulated enhanced catalytic activity results in massive growth of super-dense and vertically-aligned nanotube forests with heights up to 2.5 millimeters that can be easily separated from the catalysts, providing nanotube material with carbon purity above 99.98%. Moreover, patterned highly organized intrinsic nanotube structures were successfully fabricated. The water-assisted synthesis method addresses many critical problems that currently plague carbon nanotube synthesis. [1] K. Hata, et al., Science, 306, 1362 (2004).

  6. Δ(9)-Tetrahydrocannabinolic acid synthase production in Pichia pastoris enables chemical synthesis of cannabinoids.

    PubMed

    Lange, Kerstin; Schmid, Andreas; Julsing, Mattijs K

    2015-10-10

    Δ(9)-Tetrahydrocannabinol (THC) is of increasing interest as a pharmaceutical and bioactive compound. Chemical synthesis of THC uses a laborious procedure and does not satisfy the market demand. The implementation of biocatalysts for specific synthesis steps might be beneficial for making natural product availability independent from the plant. Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) from C. sativa L. catalyzes the cyclization of cannabigerolic acid (CBGA) to Δ(9)-tetrahydrocannabinolic acid (THCA), which is non-enzymatically decarboxylated to THC. We report the preparation of THCAS in amounts sufficient for the biocatalytic production of THC(A). Active THCAS was most efficiently obtained from Pichia pastoris. THCAS was produced on a 2L bioreactor scale and the enzyme was isolated by single-step chromatography with a specific activity of 73Ug(-1)total protein. An organic/aqueous two-liquid phase setup for continuous substrate delivery facilitated in situ product removal. In addition, THCAS activity in aqueous environments lasted for only 20min whereas the presence of hexane stabilized the activity over 3h. In conclusion, production of THCAS in P. pastoris Mut(S) KM71 KE1, subsequent isolation, and its application in a two-liquid phase setup enables the synthesis of THCA on a mg scale. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Anchoring of Cu(II) onto surface of porous metal-organic framework through post-synthesis modification for the synthesis of benzimidazoles and benzothiazoles

    NASA Astrophysics Data System (ADS)

    Kardanpour, Reihaneh; Tangestaninejad, Shahram; Mirkhani, Valiollah; Moghadam, Majid; Mohammadpoor-Baltork, Iraj; Zadehahmadi, Farnaz

    2016-03-01

    Efficient synthesis of various benzimidazoles and benzothiazoles under mild conditions catalyzed by Cu(II) anchored onto UiO-66-NH2 metal organic framework is reported. In this manner, first, the aminated UiO-66 was modified with thiophene-2-carbaldehyde and then the prepared Schiff base was reacted with CuCl2. The prepared catalyst was characterized by FT-IR, UV-vis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). The UiO-66-NH2-TC-Cu was applied as a highly efficient catalyst for synthesis of benzimidazole and benzothiazole derivatives by the reaction of aldehydes with 1,2-diaminobenzene or 2-aminothiophenol. The Cu(II)-containing MOF was reused several times without any appreciable loss of its efficiency.

  8. Magnetic nanoparticle supported phosphotungstic acid: An efficient catalyst for the synthesis of xanthene derivatives

    NASA Astrophysics Data System (ADS)

    Patel, Nipun; Katheriya, Deepak; Dadhania, Harsh; Dadhania, Abhishek

    2018-05-01

    Magnetic nanoparticle supported phosphotungstic acid (Fe3O4@SiO2-HPW) was applied as a highly efficient catalyst for the synthesis of 14H-dibenzoxanthene derivatives via condensation reaction of 2-naphthol and aryl aldehydes. The catalyst was found highly efficient for the synthesis of xanthene derivatives under solvent free condition. The catalyst showed high activity and stability during the reaction and provided excellent yield of the corresponding products in short reaction time. All the synthesized compounds were characterized through FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. Furthermore, the catalyst is magnetically recoverable and can be reused several times without significant loss of its catalytic activity.

  9. Optimization of removal function in computer controlled optical surfacing

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Guo, Peiji; Ren, Jianfeng

    2010-10-01

    The technical principle of computer controlled optical surfacing (CCOS) and the common method of optimizing removal function that is used in CCOS are introduced in this paper. A new optimizing method time-sharing synthesis of removal function is proposed to solve problems of the removal function being far away from Gaussian type and slow approaching of the removal function error that encountered in the mode of planet motion or translation-rotation. Detailed time-sharing synthesis of using six removal functions is discussed. For a given region on the workpiece, six positions are selected as the centers of the removal function; polishing tool controlled by the executive system of CCOS revolves around each centre to complete a cycle in proper order. The overall removal function obtained by the time-sharing process is the ratio of total material removal in six cycles to time duration of the six cycles, which depends on the arrangement and distribution of the six removal functions. Simulations on the synthesized overall removal functions under two different modes of motion, i.e., planet motion and translation-rotation are performed from which the optimized combination of tool parameters and distribution of time-sharing synthesis removal functions are obtained. The evaluation function when optimizing is determined by an approaching factor which is defined as the ratio of the material removal within the area of half of the polishing tool coverage from the polishing center to the total material removal within the full polishing tool coverage area. After optimization, it is found that the optimized removal function obtained by time-sharing synthesis is closer to the ideal Gaussian type removal function than those by the traditional methods. The time-sharing synthesis method of the removal function provides an efficient way to increase the convergence speed of the surface error in CCOS for the fabrication of aspheric optical surfaces, and to reduce the intermediate- and high-frequency error.

  10. N-Heterocyclic carbene-catalyzed direct cross-aza-benzoin reaction: Efficient synthesis of α-amino-β-keto esters.

    PubMed

    Uno, Takuya; Kobayashi, Yusuke; Takemoto, Yoshiji

    2012-01-01

    An efficient catalytic synthesis of α-amino-β-keto esters has been newly developed. Cross-coupling of various aldehydes with α-imino ester, catalyzed by N-heterocyclic carbene, leads chemoselectively to α-amino-β-keto esters in moderate to good yields with high atom efficiency. The reaction mechanism is discussed, and it is proposed that the α-amino-β-keto esters are formed under thermodynamic control.

  11. Recruiting the Students to Fight Cancer: Total Synthesis of Goniothalamin

    ERIC Educational Resources Information Center

    Nahra, Fady; Riant, Olivier

    2015-01-01

    A modified total synthesis of (S)-goniothalamin is described for an advanced course in organic chemistry. This experiment gives students an opportunity to handle organometallic reagents and perform an enzymatic kinetic resolution and a metathesis reaction, all in the same synthesis. Furthermore, students learn flame-drying techniques for the…

  12. The First Total Synthesis of Sporiolide A

    PubMed Central

    Chen, Qi; Linhardt, Robert J.

    2014-01-01

    The first total synthesis of the natural cytotoxic agent sporiolide A has been accomplished from D-glucal in 16 steps with 6.1% overall yield. Carbohydrates were applied as the chiral templates to manipulate the absolute configuration during the synthesis. Pyridinium chlorochromate (PCC)-promoted transformation of the cyclic enol-ether to lactone, followed by Yamaguchi esterification and intramolecular ring closure metathesis, greatly facilitates synthesis of the target compound. PMID:17064018

  13. Anchoring of Cu(II) onto surface of porous metal-organic framework through post-synthesis modification for the synthesis of benzimidazoles and benzothiazoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardanpour, Reihaneh; Tangestaninejad, Shahram, E-mail: stanges@sci.ui.ac.ir; Mirkhani, Valiollah, E-mail: mirkhani@sci.ui.ac.ir

    2016-03-15

    Efficient synthesis of various benzimidazoles and benzothiazoles under mild conditions catalyzed by Cu(II) anchored onto UiO-66–NH{sub 2} metal organic framework is reported. In this manner, first, the aminated UiO-66 was modified with thiophene-2-carbaldehyde and then the prepared Schiff base was reacted with CuCl{sub 2}. The prepared catalyst was characterized by FT-IR, UV–vis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N{sub 2} adsorption, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). The UiO-66–NH{sub 2}–TC–Cu was applied as a highly efficient catalyst for synthesis of benzimidazole and benzothiazole derivatives by the reaction of aldehydes with 1,2-diaminobenzenemore » or 2-aminothiophenol. The Cu(II)-containing MOF was reused several times without any appreciable loss of its efficiency. - Graphical abstract: Efficient synthesis of benzimidazoles and benzothiazoles catalyzed by Cu(II) anchored onto UiO-66–NH{sub 2} metal organic framework is reported. - Highlights: • A copper Schiff base was immobilized on UiO-66 via postsynthetic modification. • The modified MOFs were fully characterized by a variety of methods. • The catalyst was used for the preparation of benzimidazoles and benzothiazoles. • In comparison of other catalysts, our catalyst was more efficient and forceful.« less

  14. Synthesis of 1-O-methylchlorogenic acid: reassignment of structure for MCGA3 isolated from bamboo (Phyllostachys edulis) leaves

    USDA-ARS?s Scientific Manuscript database

    The first synthesis of 1-O-methylchlorogenic acid is described. The short and efficient synthesis of this compound provides laboratory-scale quantities of the material to investigate its biological properties. The synthesis involved C-1 alkylation of the known (-)-4,5-cyclohexylidenequinic acid lact...

  15. Total Synthesis of (+)- and (±)-Hosieine A.

    PubMed

    Huang, Yu-Wen; Kong, Ke; Wood, John

    2018-05-03

    Described here is a concise total synthesis of the highly potent nicotinic acetylcholine receptor antagonist hosieine A in racemic ((±)-2) and enantioenriched ((+)-2) forms. The synthesis requires only 7-steps and features a telescoped reaction sequence initiated by a gold-catalyzed Rautenstrauch reaction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Gammaretroviral pol sequences act in cis to direct polysome loading and NXF1/NXT-dependent protein production by gag-encoded RNA.

    PubMed

    Bartels, Hanni; Luban, Jeremy

    2014-09-12

    All retroviruses synthesize essential proteins via alternatively spliced mRNAs. Retrovirus genera, though, exploit different mechanisms to coordinate the synthesis of proteins from alternatively spliced mRNAs. The best studied of these retroviral, post-transcriptional effectors are the trans-acting Rev protein of lentiviruses and the cis-acting constitutive transport element (CTE) of the betaretrovirus Mason-Pfizer monkey virus (MPMV). How members of the gammaretrovirus genus translate protein from unspliced RNA has not been elucidated. The mechanism by which two gammaretroviruses, XMRV and MLV, synthesize the Gag polyprotein (Pr65Gag) from full-length, unspliced mRNA was investigated here. The yield of Pr65Gag from a gag-only expression plasmid was found to be at least 30-fold less than that from an otherwise isogenic gag-pol expression plasmid. A frameshift mutation disrupting the pol open reading frame within the gag-pol expression plasmid did not decrease Pr65Gag production and 398 silent nucleotide changes engineered into gag rendered Pr65Gag synthesis pol-independent. These results are consistent with pol-encoded RNA acting in cis to promote Pr65Gag translation. Two independently-acting pol fragments were identified by screening 17 pol deletion mutations. To determine the mechanism by which pol promoted Pr65Gag synthesis, gag RNA in total and cytoplasmic fractions was quantitated by northern blot and by RT-PCR. The pol sequences caused, maximally, three-fold increase in total or cytoplasmic gag mRNA. Instead, pol sequences increased gag mRNA association with polyribosomes ~100-fold, a magnitude sufficient to explain the increase in Pr65Gag translation efficiency. The MPMV CTE, an NXF1-binding element, substituted for pol in promoting Pr65Gag synthesis. A pol RNA stem-loop resembling the CTE promoted Pr65Gag synthesis. Over-expression of NXF1 and NXT, host factors that bind to the MPMV CTE, synergized with pol to promote gammaretroviral gag RNA loading onto polysomes and to increase Pr65Gag synthesis. Conversely, Gag polyprotein synthesis was decreased by NXF1 knockdown. Finally, overexpression of SRp20, a shuttling protein that binds to NXF1 and promotes NXF1 binding to RNA, also increased gag RNA loading onto polysomes and increased Pr65Gag synthesis. These experiments demonstrate that gammaretroviral pol sequences act in cis to recruit NXF1 and SRp20 to promote polysome loading of gag RNA and, thereby license the synthesis of Pr65Gag from unspliced mRNA.

  17. Peptide synthesis on glass substrate using acoustic droplet ejector.

    PubMed

    Youngki Choe; Shih-Jui Chen; Eun Sok Kim

    2014-03-01

    This paper describes the synthesis of a 9-mers-long peptide ladder structure of glycine on a modified glass surface using a nanoliter droplet ejector. To synthesize peptide on a glass substrate, SPOT peptide synthesis protocol was followed with a nozzleless acoustic droplet ejector being used to eject about 300 droplets of preactivated amino acid solution to dispense 60 nL of the solution per mer. The coupling efficiency of each mer was measured with FITC fluorescent tag to be 96%, resulting in net 70% efficiency for the whole 9-mer-long peptide of glycine. Usage of a nanoliter droplet ejector for SPOT peptide synthesis increases the density of protein array on a chip.

  18. Peptide o-aminoanilides as crypto-thioesters for protein chemical synthesis.

    PubMed

    Wang, Jia-Xing; Fang, Ge-Min; He, Yao; Qu, Da-Liang; Yu, Min; Hong, Zhang-Yong; Liu, Lei

    2015-02-09

    Fully unprotected peptide o-aminoanilides can be efficiently activated by NaNO2 in aqueous solution to furnish peptide thioesters for use in native chemical ligation. This finding enables the convergent synthesis of proteins from readily synthesizable peptide o-aminoanilides as a new type of crypto-thioesters. The practicality of this approach is shown by the synthesis of histone H2B from five peptide segments. Purification or solubilization tags, which are sometimes needed to improve the efficiency of protein chemical synthesis, can be incorporated into the o-aminoanilide moiety, as demonstrated in the preparation of the cyclic protein lactocyclicin Q. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Short Enantioselective Total Synthesis of Tatanan A and 3‐epi‐Tatanan A Using Assembly‐Line Synthesis

    PubMed Central

    Noble, Adam; Roesner, Stefan

    2016-01-01

    Abstract Short and highly stereoselective total syntheses of the sesquilignan natural product tatanan A and its C3 epimer are described. An assembly‐line synthesis approach, using iterative lithiation–borylation reactions, was applied to install the three contiguous stereocenters with high enantio‐ and diastereoselectivity. One of the stereocenters was installed using a configurationally labile lithiated primary benzyl benzoate, resulting in high levels of substrate‐controlled (undesired) diastereoselectivity. However, reversal of selectivity was achieved by using a novel diastereoselective Matteson homologation. Stereospecific alkynylation of a hindered secondary benzylic boronic ester enabled completion of the synthesis in a total of eight steps. PMID:27865037

  20. Synthesis of a new class of Betti bases by the Mannich-type reaction: efficient, facile, solvent-free and one-pot protocol.

    PubMed

    Shahrisa, Aziz; Teimuri-Mofrad, Reza; Gholamhosseini-Nazari, Mahdi

    2015-02-01

    A variety of organocatalysts has been screened for the synthesis of arylaminonaphthols. It has been shown that (N,N-dimethylethanolamine) is a highly efficient organocatalyst for the direct synthesis of a novel class of arylaminonaphthols via three-component condensation of 2-naphthol, aldehydes, and arylamines under solvent-free conditions. Mild, one-pot, and green reaction conditions, relatively short reaction times and good yields make this protocol highly significant. 25 new compounds have been synthesized by this method.

  1. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes.

    PubMed

    Huang, Hailong; Zhao, Fangchao; Liu, Lige; Zhang, Feng; Wu, Xian-gang; Shi, Lijie; Zou, Bingsuo; Pei, Qibing; Zhong, Haizheng

    2015-12-30

    We report a facile nonaqueous emulsion synthesis of colloidal halide perovskite quantum dots by controlled addition of a demulsifier into an emulsion of precursors. The size of resulting CH3NH3PbBr3 quantum dots can be tuned from 2 to 8 nm by varying the amount of demulsifier. Moreover, this emulsion synthesis also allows the purification of these quantum dots by precipitation from the colloidal solution and obtains solid-state powder which can be redissolved for thin film coating and device fabrication. The photoluminescence quantum yields of the quantum dots is generally in the range of 80-92%, and can be well-preserved after purification (∼80%). Green light-emitting diodes fabricated comprising a spin-cast layer of the colloidal CH3NH3PbBr3 quantum dots exhibited maximum current efficiency of 4.5 cd/A, power efficiency of 3.5 lm/W, and external quantum efficiency of 1.1%. This provides an alternative route toward high efficient solution-processed perovskite-based light-emitting diodes. In addition, the emulsion synthesis is versatile and can be extended for the fabrication of inorganic halide perovskite colloidal CsPbBr3 nanocrystals.

  2. A general and efficient palladium-catalyzed carbonylative synthesis of 2-aryloxazolines and 2-aryloxazines from aryl bromides.

    PubMed

    Wu, Xiao-Feng; Neumann, Helfried; Neumann, Stephan; Beller, Matthias

    2012-10-22

    Oxazoline is OK! A general and efficient method for the synthesis of oxazolines has been developed. This allowed the preparation of 27 five-membered-ring heterocycles and 11 six-membered-ring heterocycles in moderate to good yields. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Efficient Nazarov Cyclization/Wagner-Meerwein Rearrangement Terminated by a Cu(II)-Promoted Oxidation: Synthesis of 4-Alkylidene Cyclopentenones

    PubMed Central

    Lebœuf, David; Theiste, Eric; Gandon, Vincent; Daifuku, Stephanie L.; Neidig, Michael L.

    2013-01-01

    The discovery and elucidation of a novel Nazarov cyclization/Wagner-Meerwein rearrangement/oxidation sequence is described, which constitutes an efficient strategy for the synthesis of 4-alkylidene cyclopentenones. DFT computations and EPR experiments were conducted to gain further mechanistic insight into the reaction pathways. PMID:23436470

  4. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block.

    PubMed

    Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-Ichi; Nokami, Toshiki; Itoh, Toshiyuki

    2017-01-01

    The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.

  5. Recognition of iron ions by carbazole-desferrioxamine fluorescent sensor and its application in total iron detection in airbone particulate matter.

    PubMed

    Delattre, François; Cazier-Dennin, Francine; Leleu, Ludovic; Dewaele, Dorothée; Landy, David; Mallard, Isabelle; Danjou, Pierre-Edouard

    2015-11-01

    This work reports on an efficient microwave irradiation synthesis of a new fluorescent chemosensor based on desferrioxamine B (DFO-B) and carbazole moiety. Furthermore, this novel chemosensor was employed for a comparative study of real environmental samples of airbone particulate matter collected from Dunkirk (Northern of France). Among selected relevant metal cations present in its airbone particulate matter, such as Na(+), K(+), Mg(2+), Ca(2+), Al(3+), Cr(3+), Mn(2+) and Zn(2+), this molecular device proved to be outstandingly sensitive toward Fe(3+) with a limit of detection of 1.49 ppb (2.1×10(-8) M) in methanol allowing the estimation of total iron in atmospheric particles. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Total synthesis of (+)-achalensolide based on the rh(i)-catalyzed allenic Pauson-Khand-type reaction.

    PubMed

    Hirose, Toshiyuki; Miyakoshi, Naoki; Mukai, Chisato

    2008-02-01

    The first total synthesis of (+)-achalensolide was achieved from a commercially available d-(-)-isoascorbic acid. The known epoxide, derived from d-(-)-isoascorbic acid, was converted into the allenyne, the Rh(I)-catalyzed Pauson-Khand-type reaction of which directly provided the bicyclo[5.3.0]decane system, a core framework of the title natural product. The construction of the gamma-lactone moiety and some chemical modifications resulted in the completion of the total synthesis of (+)-achalensolide.

  7. Butelase-mediated cyclization and ligation of peptides and proteins.

    PubMed

    Nguyen, Giang K T; Qiu, Yibo; Cao, Yuan; Hemu, Xinya; Liu, Chuan-Fa; Tam, James P

    2016-10-01

    Enzymes that catalyze efficient macrocyclization or site-specific ligation of peptides and proteins can enable tools for drug design and protein engineering. Here we describe a protocol to use butelase 1, a recently discovered peptide ligase, for high-efficiency cyclization and ligation of peptides and proteins ranging in size from 10 to >200 residues. Butelase 1 is the fastest known ligase and is found in pods of the common medicinal plant Clitoria ternatea (also known as butterfly pea). It has a very simple C-terminal-specific recognition motif that requires Asn/Asp (Asx) at the P1 position and a dipeptide His-Val at the P1' and P2' positions. Substrates for butelase-mediated ligation can be prepared by standard Fmoc (9-fluorenylmethyloxycarbonyl) chemistry or recombinant expression with the minimal addition of this tripeptide Asn-His-Val motif at the C terminus. Butelase 1 achieves cyclizations that are 20,000 times faster than those of sortase A, a commonly used enzyme for backbone cyclization. Unlike sortase A, butelase is traceless, and it can be used for the total synthesis of naturally occurring peptides and proteins. Furthermore, butelase 1 is also useful for intermolecular ligations and synthesis of peptide or protein thioesters, which are versatile activated intermediates necessary for and compatible with many chemical ligation methods. The protocol describes steps for isolation and purification of butelase 1 from plant extract using a four-step chromatography procedure, which takes ∼3 d. We then describe steps for intramolecular cyclization, intermolecular ligation and butelase-mediated synthesis of protein thioesters. Butelase reactions are generally completed within minutes and often achieve excellent yields.

  8. An efficient and practical synthesis of [2- 11C]indole via superfast nucleophilic [ 11C]cyanation and RANEY® Nickel catalyzed reductive cyclization

    DOE PAGES

    So Jeong Lee; Fowler, Joanna S.; Alexoff, David; ...

    2015-09-21

    We developed a rapid method for the synthesis of carbon-11 radiolabeled indole using a sub-nanomolar quantity of no-carrier-added [ 11C]cyanide as radio-precursor. Based upon a reported synthesis of 2-(2-nitrophenyl)acetonitrile (2), a highly reactive substrate 2-nitrobenzyl bromide (1) was evaluated for nucleophilic [ 11C]cyanation. Additionally, related reaction conditions were explored with the goal of obtaining of highly reactive 2-(2-nitrophenyl)-[1- 11C]acetonitrile ([ 11C]-2) while inhibiting its rapid conversion to 2,3-bis(2-nitrophenyl)-[1- 11C]propanenitrile ([ 11C]-3). Next, a Raney Nickel catalyzed reductive cyclization method was utilized for synthesizing the desired [2- 11C]indole with hydrazinium monoformate as the active reducing agent. Extensive and iterative screening ofmore » basicity, temperature and stoichiometry was required to overcome the large stoichiometry bias that favored 2-nitrobenzylbromide (1) over [ 11C]cyanide, which both caused further alkylation of the desired nitrile and poisoned the Raney Nickel catalyst. The result is an efficient two-step, streamlined method to reliably synthesize [2- 11C]indole with an entire radiochemical yield of 21 ± 2.2% (n = 5, ranging from 18 – 24%). The radiochemical purity of the final product was > 98% and specific activity was 176 ± 24.8 GBq/μmol (n = 5, ranging from 141 – 204 GBq/μmol). The total radiosynthesis time including product purification by semi-preparative HPLC was 50 – 55 min from end of cyclotron bombardment.« less

  9. An efficient and practical synthesis of [2- 11C]indole via superfast nucleophilic [ 11C]cyanation and RANEY® Nickel catalyzed reductive cyclization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    So Jeong Lee; Fowler, Joanna S.; Alexoff, David

    We developed a rapid method for the synthesis of carbon-11 radiolabeled indole using a sub-nanomolar quantity of no-carrier-added [ 11C]cyanide as radio-precursor. Based upon a reported synthesis of 2-(2-nitrophenyl)acetonitrile (2), a highly reactive substrate 2-nitrobenzyl bromide (1) was evaluated for nucleophilic [ 11C]cyanation. Additionally, related reaction conditions were explored with the goal of obtaining of highly reactive 2-(2-nitrophenyl)-[1- 11C]acetonitrile ([ 11C]-2) while inhibiting its rapid conversion to 2,3-bis(2-nitrophenyl)-[1- 11C]propanenitrile ([ 11C]-3). Next, a Raney Nickel catalyzed reductive cyclization method was utilized for synthesizing the desired [2- 11C]indole with hydrazinium monoformate as the active reducing agent. Extensive and iterative screening ofmore » basicity, temperature and stoichiometry was required to overcome the large stoichiometry bias that favored 2-nitrobenzylbromide (1) over [ 11C]cyanide, which both caused further alkylation of the desired nitrile and poisoned the Raney Nickel catalyst. The result is an efficient two-step, streamlined method to reliably synthesize [2- 11C]indole with an entire radiochemical yield of 21 ± 2.2% (n = 5, ranging from 18 – 24%). The radiochemical purity of the final product was > 98% and specific activity was 176 ± 24.8 GBq/μmol (n = 5, ranging from 141 – 204 GBq/μmol). The total radiosynthesis time including product purification by semi-preparative HPLC was 50 – 55 min from end of cyclotron bombardment.« less

  10. Hynol: An economic process for methanol production from biomass and natural gas with reduced CO2 emission

    NASA Astrophysics Data System (ADS)

    Steinberg, M.; Dong, Yuanji

    1993-10-01

    The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO2 emission. This new process consists of three reaction steps: (1) hydrogasification of biomass, (2) steam reforming of the produced gas with additional natural gas feedstock, and (3) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps. The H2-rich gas remaining after methanol synthesis is recycled to gasify the biomass in an energy neutral reactor so that there is no need for an expensive oxygen plant as required by commercial steam gasifiers. Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventional while the plant still maintains high methanol yield. Energy recovery designed into the process minimizes heat loss and increases the process thermal efficiency. If the Hynol methanol is used as an alternative and more efficient automotive fuel, an overall 41% reduction in CO2 emission can be achieved compared to the use of conventional gasoline fuel. A preliminary economic estimate shows that the total capital investment for a Hynol plant is 40% lower than that for a conventional biomass gasification plant. The methanol production cost is $0.43/gal for a 1085 million gal/yr Hynol plant which is competitive with current U.S. methanol and equivalent gasoline prices. Process flowsheet and simulation data using biomass and natural gas as cofeedstocks are presented. The Hynol process can convert any condensed carbonaceous material, especially municipal solid waste (MSW), to produce methanol.

  11. Common Distribution of gad Operon in Lactobacillus brevis and its GadA Contributes to Efficient GABA Synthesis toward Cytosolic Near-Neutral pH

    PubMed Central

    Wu, Qinglong; Tun, Hein Min; Law, Yee-Song; Khafipour, Ehsan; Shah, Nagendra P.

    2017-01-01

    Many strains of lactic acid bacteria (LAB) and bifidobacteria have exhibited strain-specific capacity to produce γ-aminobutyric acid (GABA) via their glutamic acid decarboxylase (GAD) system, which is one of amino acid-dependent acid resistance (AR) systems in bacteria. However, the linkage between bacterial AR and GABA production capacity has not been well established. Meanwhile, limited evidence has been provided to the global diversity of GABA-producing LAB and bifidobacteria, and their mechanisms of efficient GABA synthesis. In this study, genomic survey identified common distribution of gad operon-encoded GAD system in Lactobacillus brevis for its GABA production among varying species of LAB and bifidobacteria. Importantly, among four commonly distributed amino acid-dependent AR systems in Lb. brevis, its GAD system was a major contributor to maintain cytosolic pH homeostasis by consuming protons via GABA synthesis. This highlights that Lb. brevis applies GAD system as the main strategy against extracellular and intracellular acidification demonstrating its high capacity of GABA production. In addition, the abundant GadA retained its activity toward near-neutral pH (pH 5.5–6.5) of cytosolic acidity thus contributing to efficient GABA synthesis in Lb. brevis. This is the first global report illustrating species-specific characteristic and mechanism of efficient GABA synthesis in Lb. brevis. PMID:28261168

  12. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block

    PubMed Central

    Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-ichi

    2017-01-01

    The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block. PMID:28684973

  13. One-Pot Parallel Synthesis of Lipid Library via Thiolactone Ring Opening and Screening for Gene Delivery.

    PubMed

    Molla, Mijanur R; Böser, Alexander; Rana, Akshita; Schwarz, Karina; Levkin, Pavel A

    2018-04-18

    Efficient delivery of nucleic acids into cells is of great interest in the field of cell biology and gene therapy. Despite a lot of research, transfection efficiency and structural diversity of gene-delivery vectors are still limited. A better understanding of the structure-function relationship of gene delivery vectors is also essential for the design of novel and intelligent delivery vectors, efficient in "difficult-to-transfect" cells and in vivo clinical applications. Most of the existing strategies for the synthesis of gene-delivery vectors require multiple steps and lengthy procedures. Here, we demonstrate a facile, three-component one-pot synthesis of a combinatorial library of 288 structurally diverse lipid-like molecules termed "lipidoids" via a thiolactone ring opening reaction. This strategy introduces the possibility to synthesize lipidoids with hydrophobic tails containing both unsaturated bonds and reducible disulfide groups. The whole synthesis and purification are convenient, extremely fast, and can be accomplished within a few hours. Screening of the produced lipidoids using HEK293T cells without addition of helper lipids resulted in identification of highly stable liposomes demonstrating ∼95% transfection efficiency with low toxicity.

  14. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nad, Shreya; Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824; Gu, Yajun

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficienciesmore » (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.« less

  15. Using Decision Procedures to Build Domain-Specific Deductive Synthesis Systems

    NASA Technical Reports Server (NTRS)

    VanBaalen, Jeffrey; Roach, Steven; Lau, Sonie (Technical Monitor)

    1998-01-01

    This paper describes a class of decision procedures that we have found useful for efficient, domain-specific deductive synthesis. These procedures are called closure-based ground literal satisfiability procedures. We argue that this is a large and interesting class of procedures and show how to interface these procedures to a theorem prover for efficient deductive synthesis. Finally, we describe some results we have observed from our implementation. Amphion/NAIF is a domain-specific, high-assurance software synthesis system. It takes an abstract specification of a problem in solar system mechanics, such as 'when will a signal sent from the Cassini spacecraft to Earth be blocked by the planet Saturn?', and automatically synthesizes a FORTRAN program to solve it.

  16. Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst.

    PubMed

    Chen, Shiming; Perathoner, Siglinda; Ampelli, Claudio; Mebrahtu, Chalachew; Su, Dangsheng; Centi, Gabriele

    2017-03-01

    Ammonia is synthesized directly from water and N 2 at room temperature and atmospheric pressure in a flow electrochemical cell operating in gas phase (half-cell for the NH 3 synthesis). Iron supported on carbon nanotubes (CNTs) was used as the electrocatalyst in this half-cell. A rate of ammonia formation of 2.2×10 -3  gNH3  m -2  h -1 was obtained at room temperature and atmospheric pressure in a flow of N 2 , with stable behavior for at least 60 h of reaction, under an applied potential of -2.0 V. This value is higher than the rate of ammonia formation obtained using noble metals (Ru/C) under comparable reaction conditions. Furthermore, hydrogen gas with a total Faraday efficiency as high as 95.1 % was obtained. Data also indicate that the active sites in NH 3 electrocatalytic synthesis may be associated to specific carbon sites formed at the interface between iron particles and CNT and able to activate N 2 , making it more reactive towards hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Total Synthesis and Structural Revision of Antibiotic CJ-16,264.

    PubMed

    Nicolaou, K C; Shah, Akshay A; Korman, Henry; Khan, Tabrez; Shi, Lei; Worawalai, Wisuttaya; Theodorakis, Emmanuel A

    2015-08-03

    The total synthesis and structural revision of antibiotic CJ-16,264 is described. Starting with citronellal, the quest for the target molecule featured a novel bis-transannular Diels-Alder reaction that casted stereoselectively the decalin system and included the synthesis of six isomers before demystification of its true structure. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Enantioselective modular synthesis of cyclohexenones: total syntheses of (+)-crypto- and (+)-infectocaryone.

    PubMed

    Franck, Géraldine; Brödner, Kerstin; Helmchen, Günter

    2010-09-03

    A modular synthesis of cyclohexenones is described and applied to the first enantioselective total syntheses of (+)-crypto- and (+)-infectocaryone. Key steps in the synthesis of cyclohexenones are an iridium-catalyzed allylic alkylation, nucleophilic allylation, and ring-closing metathesis. On the way to (+)-cryptocaryone, a catch and release strategy involving an iodolactonization/elimination and a regioselective C-acylation were used.

  19. Dynamic behavior of a rolling housing

    NASA Astrophysics Data System (ADS)

    Gentile, A.; Messina, A. M.; Trentadue, Bartolo

    1994-09-01

    One of the major objectives of industry is to curtail costs. An element, among others, that enables to achieve such goal is the efficiency of the production cycle machines. Such efficiency lies in the reliability of the upkeeping operations. Among maintenance procedures, measuring and analyzing vibrations is a way to detect structure modifications over the machine's lifespan. Further, the availability of a mathematical model describing the influence of each individual part of the machine on the total dynamic behavior of the whole machine may help localizing breakdowns during diagnosis operations. The paper hereof illustrates an analytical-numerical model which can simulate the behavior of a rolling housing. The aforesaid mathematical model has been obtained by FEM techniques, the dynamic response by mode superposition and the synthesis of the vibration time sequence in the frequency versus by FFT numerical techniques.

  20. Highly efficient preparation of sphingoid bases from glucosylceramides by chemoenzymatic method[S

    PubMed Central

    Gowda, Siddabasave Gowda B.; Usuki, Seigo; Hammam, Mostafa A. S.; Murai, Yuta; Igarashi, Yasuyuki; Monde, Kenji

    2016-01-01

    Sphingoid base derivatives have attracted increasing attention as promising chemotherapeutic candidates against lifestyle diseases such as diabetes and cancer. Natural sphingoid bases can be a potential resource instead of those derived by time-consuming total organic synthesis. In particular, glucosylceramides (GlcCers) in food plants are enriched sources of sphingoid bases, differing from those of animals. Several chemical methodologies to transform GlcCers to sphingoid bases have already investigated; however, these conventional methods using acid or alkaline hydrolysis are not efficient due to poor reaction yield, producing complex by-products and resulting in separation problems. In this study, an extremely efficient and practical chemoenzymatic transformation method has been developed using microwave-enhanced butanolysis of GlcCers and a large amount of readily available almond β-glucosidase for its deglycosylation reaction of lysoGlcCers. The method is superior to conventional acid/base hydrolysis methods in its rapidity and its reaction cleanness (no isomerization, no rearrangement) with excellent overall yield. PMID:26667669

  1. Synthesis, characterization and catalytic performance of ZnO-CeO2 nanoparticles in wet oxidation of wastewater containing chlorinated compounds

    NASA Astrophysics Data System (ADS)

    Anushree; Kumar, S.; Sharma, C.

    2017-11-01

    Here we report the catalytic property of ZnO-CeO2 nanoparticles towards oxidative degradation of organic pollutants present in industrial wastewater. The catalysts were prepared by co-precipitation method without using any surfactant. The physicochemical properties of catalysts were studied by XRD, Raman, XPS, N2-sorption, FE-SEM, TEM and EDX techniques. The characterization results confirmed the formation of porous ZnO-CeO2 nanocatalysts with high surface area, pore volume and oxygen vacancies. ZnO-CeO2 nanocatalysts exhibited appreciable efficiency in CWAO of industrial wastewater under mild conditions. The Ce40Zn60 catalyst was found to be most efficient with 72% color, 64% chemical oxygen demand (COD) and 63% total organic carbon (TOC) removal. Efficient removal of chlorophenolics (CHPs, 59%) and adsorbable organic halides (AOX, 54%) indicated the feasibility of using ZnO-CeO2 nanocatalysts in degradation of non-biodegradable and toxic chlorinated compounds.

  2. A comparative study of three different synthesis routes for hydrophilic fluorophore-doped silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Shahabi, Shakiba; Treccani, Laura; Rezwan, Kurosch

    2016-01-01

    The synthesis of fluorophore-doped silica nanoparticles (FDS NPs) with two conventional approaches, Stöber and microemulsion, as well as a novel amino acid-catalyzed seeds regrowth technique (ACSRT) is presented. The efficiency of each applied synthesis route toward incorporation of selected hydrophilic fluorophores, including rhodamine B isothiocyanate and fluorescein isothiocyanate, without and with an amine-containing crosslinker, into silica matrix was systematically studied. Our results clearly highlight the advantages of ACSRT to obtain FDS NPs with a remarkable encapsulation efficiency, high quantum yield, and enhanced stability against bleaching and dye leaking due to efficient embedding of the dyes inside silica network even without the amine-containing silane reagent. Moreover, evaluation of photostability of FDNPs internalized in human bone cells demonstrates the merits of ACSRT.

  3. Asymmetric total synthesis of onoseriolide, bolivianine, and isobolivianine.

    PubMed

    Du, Biao; Yuan, Changchun; Yu, Tianzi; Yang, Li; Yang, Yang; Liu, Bo; Qin, Song

    2014-02-24

    In this article, we describe our efforts on the total synthesis of bolivianine (1) and isobolivianine (2), involving the synthesis of onoseriolide (3). The first generation synthesis of bolivianine was completed in 21 steps by following a chiral resolution strategy. Based on the potential biogenetic relationship between bolivianine (1), onoseriolide (3), and β-(E)-ocimene (8), the second generation synthesis of bolivianine was biomimetically achieved from commercially available (+)-verbenone in 14 steps. The improved total synthesis features an unprecedented palladium-catalyzed intramolecular cyclopropanation through an allylic metal carbene, for the construction of the ABC tricyclic system, and a Diels-Alder/intramolecular hetero-Diels-Alder (DA/IMHDA) cascade for installation of the EFG tricyclic skeleton with the correct stereochemistry. Transformation from bolivianine to isobolivianine was facilitated in the presence of acid. The biosynthetic mechanism and the excellent regio- and endo selectivities in the cascade are well supported by theoretical chemistry based on the DFT calculations. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Peer review of health research funding proposals: A systematic map and systematic review of innovations for effectiveness and efficiency.

    PubMed

    Shepherd, Jonathan; Frampton, Geoff K; Pickett, Karen; Wyatt, Jeremy C

    2018-01-01

    To investigate methods and processes for timely, efficient and good quality peer review of research funding proposals in health. A two-stage evidence synthesis: (1) a systematic map to describe the key characteristics of the evidence base, followed by (2) a systematic review of the studies stakeholders prioritised as relevant from the map on the effectiveness and efficiency of peer review 'innovations'. Standard processes included literature searching, duplicate inclusion criteria screening, study keyword coding, data extraction, critical appraisal and study synthesis. A total of 83 studies from 15 countries were included in the systematic map. The evidence base is diverse, investigating many aspects of the systems for, and processes of, peer review. The systematic review included eight studies from Australia, Canada, and the USA, evaluating a broad range of peer review innovations. These studies showed that simplifying the process by shortening proposal forms, using smaller reviewer panels, or expediting processes can speed up the review process and reduce costs, but this might come at the expense of peer review quality, a key aspect that has not been assessed. Virtual peer review using videoconferencing or teleconferencing appears promising for reducing costs by avoiding the need for reviewers to travel, but again any consequences for quality have not been adequately assessed. There is increasing international research activity into the peer review of health research funding. The studies reviewed had methodological limitations and variable generalisability to research funders. Given these limitations it is not currently possible to recommend immediate implementation of these innovations. However, many appear promising based on existing evidence, and could be adapted as necessary by funders and evaluated. Where feasible, experimental evaluation, including randomised controlled trials, should be conducted, evaluating impact on effectiveness, efficiency and quality.

  5. Detection of Viable Cryptosporidium parvum in Soil by Reverse Transcription–Real-Time PCR Targeting hsp70 mRNA ▿

    PubMed Central

    Liang, Zhanbei; Keeley, Ann

    2011-01-01

    Extraction of high-quality mRNA from Cryptosporidium parvum is a key step in PCR detection of viable oocysts in environmental samples. Current methods for monitoring oocysts are limited to water samples; therefore, the goal of this study was to develop a rapid and sensitive procedure for Cryptosporidium detection in soil samples. The efficiencies of five RNA extraction methods were compared (mRNA extraction with the Dynabeads mRNA Direct kit after chemical and physical sample treatments, and total RNA extraction methods using the FastRNA Pro Soil-Direct, PowerSoil Total RNA, E.Z.N.A. soil RNA, and Norgen soil RNA purification kits) for the direct detection of Cryptosporidium with oocyst-spiked sandy, loamy, and clay soils by using TaqMan reverse transcription-PCR. The study also evaluated the presence of inhibitors by synthesis and incorporation of an internal positive control (IPC) RNA into reverse transcription amplifications, used different facilitators (bovine serum albumin, yeast RNA, salmon DNA, skim milk powder, casein, polyvinylpyrrolidone, sodium hexametaphosphate, and Salmonella enterica serovar Typhi) to mitigate RNA binding on soil components, and applied various treatments (β-mercaptoethanol and bead beating) to inactivate RNase and ensure the complete lysis of oocysts. The results of spiking studies showed that Salmonella cells most efficiently relieved binding of RNA. With the inclusion of Salmonella during extraction, the most efficient mRNA method was Dynabeads, with a detection limit of 6 × 102 oocysts g−1 of sandy soil. The most efficient total RNA method was PowerSoil, with detection limits of 1.5 × 102, 1.5 × 103, and 1.5 × 104 C. parvum oocysts g−1 soil for sandy, loamy, and clay samples, respectively. PMID:21803904

  6. Studies toward brevisulcenal F via convergent strategies for marine ladder polyether synthesis.

    PubMed

    Katcher, Matthew; Jamison, Timothy F

    2018-03-15

    Shortly after the initial isolation of marine ladder polyether natural products, biomimetic epoxide-opening cascade reactions were proposed as an efficient strategy for the synthesis of these compounds. However, difficulties in assembling the cascade precursors have limited the realization of these cascades. In this report, we describe strategies that provide convergent access to cascade precursors via regioselective allylation and efficient fragment coupling. We then investigate epoxide-opening cascades promoted by strong bases for the formation of fused tetrahydropyrans. These strategies are evaluated in the context of the synthesis of rings CDEFG of brevisulcenal F.

  7. Automated production at the curie level of no-carrier-added 6-[(18)F]fluoro-L-dopa and 2-[(18)F]fluoro-L-tyrosine on a FASTlab synthesizer.

    PubMed

    Lemaire, C; Libert, L; Franci, X; Genon, J-L; Kuci, S; Giacomelli, F; Luxen, A

    2015-06-15

    An efficient, fully automated, enantioselective multi-step synthesis of no-carrier-added (nca) 6-[(18)F]fluoro-L-dopa ([(18)F]FDOPA) and 2-[(18)F]fluoro-L-tyrosine ([(18)F]FTYR) on a GE FASTlab synthesizer in conjunction with an additional high- performance liquid chromatography (HPLC) purification has been developed. A PTC (phase-transfer catalyst) strategy was used to synthesize these two important radiopharmaceuticals. According to recent chemistry improvements, automation of the whole process was implemented in a commercially available GE FASTlab module, with slight hardware modification using single use cassettes and stand-alone HPLC. [(18)F]FDOPA and [(18)F]FTYR were produced in 36.3 ± 3.0% (n = 8) and 50.5 ± 2.7% (n = 10) FASTlab radiochemical yield (decay corrected). The automated radiosynthesis on the FASTlab module requires about 52 min. Total synthesis time including HPLC purification and formulation was about 62 min. Enantiomeric excesses for these two aromatic amino acids were always >95%, and the specific activity of was >740 GBq/µmol. This automated synthesis provides high amount of [(18)F]FDOPA and [(18)F]FTYR (>37 GBq end of synthesis (EOS)). The process, fully adaptable for reliable production across multiple PET sites, could be readily implemented into a clinical good manufacturing process (GMP) environment. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Microwave-assisted solid-phase peptide synthesis of the 60-110 domain of human pleiotrophin on 2-chlorotrityl resin.

    PubMed

    Friligou, Irene; Papadimitriou, Evangelia; Gatos, Dimitrios; Matsoukas, John; Tselios, Theodore

    2011-05-01

    A fast and efficient microwave-assisted solid phase peptide synthesis (MW-SPPS) of a 51mer peptide, the main heparin-binding site (60-110) of human pleiotrophin (hPTN), using 2-chlorotrityl chloride resin (CLTR-Cl) following the 9-fluorenylmethyloxycarbonyl/tert-butyl (Fmoc/tBu) methodology and with the standard N,N'-diisopropylcarbodiimide/1-hydroxybenzotriazole (DIC/HOBt) coupling reagents, is described. An MW-SPPS protocol was for the first time successfully applied to the acid labile CLTR-Cl for the faster synthesis of long peptides (51mer peptide) and with an enhanced purity in comparison to conventional SPPS protocols. The synthesis of such long peptides is not trivial and it is generally achieved by recombinant techniques. The desired linear peptide was obtained in only 30 h of total processing time and in 51% crude yield, in which 60% was the purified product obtained with 99.4% purity. The synthesized peptide was purified by reversed phase high performance liquid chromatography (RP-HPLC) and identified by electrospray ionization mass spectrometry (ESI-MS). Then, the regioselective formation of the two disulfide bridges of hPTN 60-110 was successfully achieved by a two-step procedure, involving an oxidative folding step in dimethylsulfoxide (DMSO) to form the Cys(77)-Cys(109) bond, followed by iodine oxidation to form the Cys(67)-Cys(99) bond.

  9. Scientific bases of biomass processing into basic component of aviation fuel

    NASA Astrophysics Data System (ADS)

    Kachalov, V. V.; Lavrenov, V. A.; Lishchiner, I. I.; Malova, O. V.; Tarasov, A. L.; Zaichenko, V. M.

    2016-11-01

    A combination of feedstock pyrolysis and the cracking of the volatile pyrolysis products on the charcoal at 1000 °C allows to obtain a tarless synthesis gas which contains 90 vol% or more of carbon monoxide and hydrogen in approximately equal proportions. Basic component of aviation fuel was synthesized in a two-stage process from gas obtained by pyrolytic processing of biomass. Methanol and dimethyl ether can be efficiently produced in a two-layer loading of methanolic catalyst and γ-Al2O3. The total conversion of CO per pass was 38.2% using for the synthesis of oxygenates a synthesis gas with adverse ratio of H2/CO = 0.96. Conversion of CO to CH3OH was 15.3% and the conversion of CO to dimethyl ether was 20.9%. A high yield of basic component per oxygenates mass (44.6%) was obtained during conversion. The high selectivity of the synthesis process for liquid hydrocarbons was observed. An optimal recipe of aviation fuel B-92 based on a synthesized basic component was developed. The prototype of aviation fuel meets the requirements for B-92 when straight fractions of 50-100 °C (up to 35 wt%), isooctane (up to 10 wt%) and ethyl fluid (2.0 g/kg calculated as tetraethyl lead) is added to the basic component.

  10. Facile solid-phase synthesis of sulfated tyrosine-containing peptides: total synthesis of human big gastrin-II and cholecystokinin (CCK)-39.

    PubMed

    Kitagawa, K; Aida, C; Fujiwara, H; Yagami, T; Futaki, S; Kogire, M; Ida, J; Inoue, K

    2001-01-12

    Chemical synthesis of tyrosine O-sulfated peptides is still a laborious task for peptide chemists because of the intrinsic acid-lability of the sulfate moiety. An efficient cleavage/deprotection procedure without loss of the sulfate is the critical difficulty remaining to be solved for fluoren-9-ylmethoxycarbonyl (Fmoc)-based solid-phase synthesis of sulfated peptides. To overcome the difficulty, TFA-mediated solvolysis rates of a tyrosine O-sulfate [Tyr(SO3H)] residue and two protecting groups, tBu for the hydroxyl group of Ser and 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl (Pbf) for the guanidino group of Arg, were examined in detail. The desulfation obeyed first-order kinetics with a large entropy (59.6 J.K-1.mol-1) and enthalpy (110.5 kJ.mol-1) of activation. These values substantiated that the desulfation rate of the rigidly solvated Tyr(SO3H) residue was strongly temperature-dependent. By contrast, the SN1-type deprotections were less temperature-dependent and proceeded smoothly in TFA of a high ionizing power. Based on the large rate difference between the desulfation and the SN1-type deprotections in cold TFA, an efficient deprotection protocol for the sulfated peptides was developed. Our synthetic strategy for Tyr(SO3H)-containing peptides with this effective deprotection protocol is as follows: (i) a sulfated peptide chain is directly constructed on 2-chlorotrityl resin with Fmoc-based solid-phase chemistry using Fmoc-Tyr(SO3Na)-OH as a building block; (ii) the protected peptide-resin is treated with 90% aqueous TFA at 0 degree C for an appropriate period of time for the cleavage and deprotection. Human cholecystokinin (CCK)-12, mini gastrin-II (14 residues), and little gastrin-II (17 residues) were synthesized with this method in 26-38% yields without any difficulties. This method was further applied to the stepwise synthesis of human big gastrin-II (34 residues), CCK-33 and -39. Despite the prolonged acid treatment (15-18 h at 0 degree C), the ratios of the desulfated peptides were less than 15%, and the pure sulfated peptides were obtained in around 10% yields.

  11. An Efficient Synthesis of de novo Imidates via Aza-Claisen Rearrangements of N-Allyl Ynamides

    PubMed Central

    DeKorver, Kyle A.; North, Troy D.; Hsung, Richard P.

    2010-01-01

    A novel thermal 3-aza-Claisen rearrangement of N-allyl ynamides for the synthesis of α-allyl imidates is described. Also, a sequential aza-Claisen, Pd-catalyzed Overman rearrangement is described for the synthesis of azapine-2-ones. PMID:21278848

  12. [Fatty acids in the species of several zygomycete taxa].

    PubMed

    Konova, I V; Galanina, L A; Kochkina, G A; Pan'kina, O I

    2002-01-01

    The composition of fatty acids synthesized de novo by thirty strains of zygomycetes from various taxa was studied. The qualitative fatty acid compositions of the fungal lipids were found to be virtually identical, but there were significant differences in the contents of individual acids. Highly active producers of essential C18 fatty acids, with their content exceeding 30-40% of total fatty acids, were discovered among the fungi of the families Mucoraceae, Pilobolaceae, and Radiomycetaceae. Linoleic acid was found to predominate in the fungi of the genera Radiomyces, Mycotypha, and Circinella, and linolenic acid (identified as its gamma-isomer by gas-liquid chromatography), in the fungi of the genera Absidia, Circinella, Pilaira, and Hesseltinella. The total yield (mg/l) of bioactive acids (C18:3, C18:2, C18:1) varied from 761.4 in Pilaira anomala to 3477.9 in Syncephalastrum racemosum; the total yield of essential acids, from 520.7 in Pilaira anomala to 1154.5 in Hesseltinella vesiculosa; of linoleic acid, from 279.7 in Pilaira anomala to 836.3 in Mycotypha indica; and of linolenic acid, from 120.8 in Mycotypha indica to 708.0 in Hesseltinella vesiculosa. The data on the efficient synthesis of these acids make the actively producing strains promising for biotechnological synthesis of commercially valuable lipids. Linderina pennispora VKM F-1219, a zygomycete of the family Kickxellaceae, which was earlier singled out into the order Kickxellales [12], was shown to differ from zygomycetes of the order Mucorales in having a high content of cis-9-hexadecenoic (palmitoleic) acid, reaching 37.0% of the fatty acid total.

  13. Phellilane L, Sesquiterpene Metabolite of Phellinus linteus: Isolation, Structure Elucidation, and Asymmetric Total Synthesis.

    PubMed

    Ota, Koichiro; Yamazaki, Ikuma; Saigoku, Takahiro; Fukui, Mei; Miyata, Tomoki; Kamaike, Kazuo; Shirahata, Tatsuya; Mizuno, Fumi; Asada, Yoshihisa; Hirotani, Masao; Ino, Chieko; Yoshikawa, Takafumi; Kobayashi, Yoshinori; Miyaoka, Hiroaki

    2017-12-01

    A new cyclopropane-containing sesquiterpenoid, phellilane L (1), was isolated from the medicinal mushroom Phellinus linteus ("Meshimakobu" in Japanese), a member of the Hymenochaetaceae family and a well-known fungus that is widely used in East Asia. The planar structure of 1 was determined on the basis of spectroscopic analysis. The authors achieved the first total synthesis of 1. Our protecting group-free synthesis features a highly stereoselective one-pot synthesis involving an intermolecular alkylation/cyclization/lactonization strategy for construction of the key cyclopropane-γ-lactone intermediate. Additionally, our synthesis determined the absolute configuration of phellilane L (1).

  14. Temperature-sensitive Mutants of Sindbis Virus: Biochemical Correlates of Complementation

    PubMed Central

    Burge, Boyce W.; Pfefferkorn, E. R.

    1967-01-01

    Temperature-sensitive mutants of Sindbis virus fail to grow at a temperature that permits growth of the wild type, but when certain pairs of these mutants, mixed together, infect cells at that temperature, viral growth (i.e., complementation) occurs. The yield from this complementation, however, is of the same order of magnitude as the infectivity in the inoculum. Since in animal virus infections the protein components of the virion probably enter the cell with the viral nucleic acid, it was necessary to demonstrate that the observed complementation required synthesis of new viral protein and nucleic acid rather than some sort of rearrangement of the structural components of the inoculum. To demonstrate that complementation does require new biosynthesis, three biochemical events of normal virus growth have been observed during complementation and correlated with the efficiency of viral growth seen in complementation. These events include: (i) entrance of parental viral ribonucleic acid (RNA) into a double-stranded form; (ii) subsequent synthesis of viral RNA; and (iii) synthesis and subsequent incorporation of viral protein(s) into cell membranes where they were detected by hemadsorption. Although the infecting single-stranded RNA genome of the wild type was converted to a ribonuclease-resistant form, the genome of a mutant (ts-11) incapable of RNA synthesis at a nonpermissive temperature was not so converted. However, during complementation with another mutant also defective in viral RNA synthesis, some of the RNA of mutant ts-11 was converted to a ribonuclease-resistant form, and total synthesis of virus-specific RNA was markedly enhanced. The virus-specific alteration of the cell surface, detected by hemadsorption, was also extensively increased during complementation. These observations support the view that complementation between temperature-sensitive mutants and replication of wild-type virus are similar processes. PMID:5630228

  15. Solid phase synthesis of phosphorothioate oligonucleotides utilizing diethyldithiocarbonate disulfide (DDD) as an efficient sulfur transfer reagent.

    PubMed

    Cheruvallath, Zacharia S; Kumar, R Krishna; Rentel, Claus; Cole, Douglas L; Ravikumar, Vasulinga T

    2003-04-01

    Diethyldithiodicarbonate (DDD), a cheap and easily prepared compound, is found to be a rapid and efficient sulfurizing reagent in solid phase synthesis of phosphorothioate oligodeoxyribonucleotides via the phosphoramidite approach. Product yield and quality based on IP-LC-MS compares well with high quality oligonucleotides synthesized using phenylacetyl disulfide (PADS) which is being used for manufacture of our antisense drugs.

  16. Organocatalytic sequential α-amination/Corey-Chaykovsky reaction of aldehydes: a high yield synthesis of 4-hydroxypyrazolidine derivatives.

    PubMed

    Kumar, B Senthil; Venkataramasubramanian, V; Sudalai, Arumugam

    2012-05-18

    A tandem reaction of in situ generated α-amino aldehydes with dimethyloxosulfonium methylide under Corey-Chaykovsky reaction conditions proceeds efficiently to give 4-hydroxypyrazolidine derivatives in high yields with excellent enantio- and diastereoselectivities. This organocatalytic sequential method provides for the efficient synthesis of anti-1,2-aminoalcohols, structural subunits present in several bioactive molecules as well.

  17. Efficient Nazarov cyclization/Wagner-Meerwein rearrangement terminated by a Cu(II)-promoted oxidation: synthesis of 4-alkylidene cyclopentenones.

    PubMed

    Lebœuf, David; Theiste, Eric; Gandon, Vincent; Daifuku, Stephanie L; Neidig, Michael L; Frontier, Alison J

    2013-04-08

    The discovery and elucidation of a new Nazarov cyclization/Wagner-Meerwein rearrangement/oxidation sequence is described that constitutes an efficient strategy for the synthesis of 4-alkylidene cyclopentenones. DFT computations and EPR experiments were conducted to gain further mechanistic insight into the reaction pathways. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. An efficient and highly stereoselective synthesis of new P-chiral 1,5-diphosphanylferrocene ligands and their use in enantioselective hydrogenation.

    PubMed

    Chen, Weiping; Roberts, J Stanley M; Whittall, John; Steiner, Alexander

    2006-07-21

    An efficient and highly stereoselective synthesis of P-chiral 1,5-diphosphanylferrocene ligands has been developed, and the introduction of P-chirality in ferrocene-based phosphine ligands enhances the enantioselective discrimination produced by the corresponding catalyst when matching of the planar chirality, the chirality at carbon and the chirality at phosphorus occurs.

  19. An efficient protocol for the synthesis of highly sensitive indole imines utilizing green chemistry: optimization of reaction conditions.

    PubMed

    Nisar, Bushra; Rubab, Syeda Laila; Raza, Abdul Rauf; Tariq, Sobia; Sultan, Ayesha; Tahir, Muhammad Nawaz

    2018-04-11

    Novel and highly sensitive indole-based imines have been synthesized. Their synthesis has been compared employing a variety of protocols. Ultimately, a convenient, economical and high yielding set of conditions employing green chemistry have been designed for their synthesis.

  20. Measurement of host-to-activator transfer efficiency in nano-crystalline Y{sub 2}O{sub 3}:Eu{sup 3+} under VUV excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waite, Christopher; Mann, Rusty; Diaz, Anthony L., E-mail: DiazA@cwu.edu

    2013-02-15

    We have conducted a systematic study of the excitation and reflectance spectra of nano-crystalline Y{sub 2}O{sub 3}:Eu prepared by combustion synthesis. Excitation through the host lattice becomes relatively more efficient as the firing temperature of the precursor is increased, while reflectance properties remain essentially unchanged. Using these data, host-to-activator transfer efficiencies were calculated for excitation at the band edge of Y{sub 2}O{sub 3}, and evaluated using a competition kinetics model. From this analysis we conclude that the relatively low luminous efficiency of these materials is due more to poor bulk crystallinity than to surface loss effects. - Graphical abstract: Themore » low luminous efficiency of nano-crystalline Y{sub 2}O{sub 3}:Eu{sup 3+} prepared by combustion synthesis is due to poor bulk crystallinity rather than surface loss effects. Highlights: Black-Right-Pointing-Pointer We report on the optical properties of Y{sub 2}O{sub 3}:Eu{sup 3+} prepared by combustion synthesis. Black-Right-Pointing-Pointer Host-to-activator transfer efficiencies under VUV excitation were calculated. Black-Right-Pointing-Pointer The low luminous efficiency of these materials is due to poor bulk crystallinity.« less

  1. Enhancement of the reduction efficiency of soluble starch for platinum nanoparticles synthesis.

    PubMed

    Tongsakul, Duangta; Wongravee, Kanet; Thammacharoen, Chuchaat; Ekgasit, Sanong

    2012-08-01

    In this work, the efficiency of soluble starch as a reducing and a stabilizing agent in the synthesis of platinum nanoparticles under acidic-alkaline treatment is systematically studied. The degraded intermediates with reducing potential (i.e., small molecules containing aldehyde and α-hydroxy ketone moieties) are concomitantly generated when the alkaline concentration is greater than 0.025 M. The in situ generated species could completely reduce platinum ions (20 mM) and sufficiently stabilize the obtained platinum nanoparticles (5 mM) of uniform particle size (2-4 nm). The reduction is efficient and rapid as a complete conversion is achieved within 5 min. In a stronger alkaline condition, the platinum nanoparticles tend to aggregate and form a bigger domain because extensive degradation generates small starch fragments with less stabilization efficiency. This observation suggests that starch is a promising green material which could be chemically treated and transformed to a powerful reducing agent and stabilizer for the synthesis of metal nanoparticles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Rapid and accurate synthesis of TALE genes from synthetic oligonucleotides.

    PubMed

    Wang, Fenghua; Zhang, Hefei; Gao, Jingxia; Chen, Fengjiao; Chen, Sijie; Zhang, Cuizhen; Peng, Gang

    2016-01-01

    Custom synthesis of transcription activator-like effector (TALE) genes has relied upon plasmid libraries of pre-fabricated TALE-repeat monomers or oligomers. Here we describe a novel synthesis method that directly incorporates annealed synthetic oligonucleotides into the TALE-repeat units. Our approach utilizes iterative sets of oligonucleotides and a translational frame check strategy to ensure the high efficiency and accuracy of TALE-gene synthesis. TALE arrays of more than 20 repeats can be constructed, and the majority of the synthesized constructs have perfect sequences. In addition, this novel oligonucleotide-based method can readily accommodate design changes to the TALE repeats. We demonstrated an increased gene targeting efficiency against a genomic site containing a potentially methylated cytosine by incorporating non-conventional repeat variable di-residue (RVD) sequences.

  3. Efficient assessment of modified nucleoside stability under conditions of automated oligonucleotide synthesis: characterization of the oxidation and oxidative desulfurization of 2-thiouridine.

    PubMed

    Sochacka, E

    2001-01-01

    In order to efficiently assess the chemical stability of modified nucleosides to the reagents and conditions of automated oligonucleotide synthesis, we designed, developed and tested a scheme in which the modified nucleoside, directly attached to a solid support, is exposed to the cyclic chemistry of the instrument. Stability of 2-thiouridine against different oxidizers was investigated. Tertbutyl hydroperoxide (1 M) in anhydrous acetonitrile was a more effective oxidizer for the incorporation of 2-thiouridine into oligonucleotide chains than the same oxidizer in methylene chloride. Carbon tetrachloride/water in the presence of a basic catalyst was superior in maintaining the thiocarbonyl function, but its utility for RNA synthesis has yet to be fully tested, whereas 2-phenylsulfonyloxaziridine was a very efficient reagent for oxidative desulfurization of 2-thiouridine.

  4. Design and efficient synthesis of novel GM2 analogues with respect to the elucidation of the function of GM2 activator.

    PubMed

    Komori, Tatsuya; Ando, Takayuki; Imamura, Akihiro; Li, Yu-Teh; Ishida, Hideharu; Kiso, Makoto

    2008-10-01

    To elucidate the mechanism underlying the hydrolysis of the GalNAcbeta1-->4Gal linkage in ganglioside GM2 [GalNAcbeta1-->4(NeuAcalpha2-->3)Galbeta1-->4Glcbeta1-->1' Cer] by beta-hexosaminidase A (Hex A) with GM2 activator protein, we designed and synthesized two kinds of GM2 linkage analogues-6'-NeuAc-GM2 and alpha-GalNAc-GM2. In this paper, the efficient and systematic synthesis of these GM2 analogues was described. The highlight of our synthesis process is that the key intermediates, newly developed sialyllactose derivatives, were efficiently prepared in sufficient quantities; these derivatives directly served as highly reactive glycosyl acceptors and coupled with GalNTroc donors to furnish the assembly of GM2 tetrasaccharides in large quantities.

  5. Approximation concepts for efficient structural synthesis

    NASA Technical Reports Server (NTRS)

    Schmit, L. A., Jr.; Miura, H.

    1976-01-01

    It is shown that efficient structural synthesis capabilities can be created by using approximation concepts to mesh finite element structural analysis methods with nonlinear mathematical programming techniques. The history of the application of mathematical programming techniques to structural design optimization problems is reviewed. Several rather general approximation concepts are described along with the technical foundations of the ACCESS 1 computer program, which implements several approximation concepts. A substantial collection of structural design problems involving truss and idealized wing structures is presented. It is concluded that since the basic ideas employed in creating the ACCESS 1 program are rather general, its successful development supports the contention that the introduction of approximation concepts will lead to the emergence of a new generation of practical and efficient, large scale, structural synthesis capabilities in which finite element analysis methods and mathematical programming algorithms will play a central role.

  6. Eco-efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones at room temperature in water.

    PubMed

    Tian, Xin-Chuan; Huang, Xing; Wang, Dan; Gao, Feng

    2014-01-01

    An efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones was developed. First, the reactions of anthranilic acid derivatives with potassium cyanate afforded the corresponding urea derivatives. Then, cyclization of the urea derivatives with NaOH afforded the monosodium salts of benzoylene urea. Finally, HCl treatment afforded the desired products in near-quantitative yields. This is an eco-efficient method because all the reactions were carried out in water, and the desired products were obtained simply by filtration. The aqueous filtrate was the only waste generated from the reaction. We scaled up the reaction to 1 kg starting material, thus establishing an alternative approach for the green synthesis of quinazoline-2,4(1H,3H)-diones in the chemical and pharmaceutical industries.

  7. Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes.

    PubMed

    Celik, Ilke; Mason, Brooke E; Phillips, Adam B; Heben, Michael J; Apul, Defne

    2017-04-18

    An ex-ante life cycle inventory was developed for single walled carbon nanotube (SWCNT) PV cells, including a laboratory-made 1% efficient device and an aspirational 28% efficient four-cell tandem device. The environmental impact of unit energy generation from the mono-Si PV technology was used as a reference point. Compared to monocrystalline Si (mono-Si), the environmental impacts from 1% SWCNT was ∼18 times higher due mainly to the short lifetime of three years. However, even with the same short lifetime, the 28% cell had lower environmental impacts than mono-Si. The effects of lifetime and efficiency on the environmental impacts were further examined. This analysis showed that if the SWCNT device efficiency had the same value as the best efficiency of the material under comparison, to match the total normalized impacts of the mono- and poly-Si, CIGS, CdTe, and a-Si devices, the SWCNT devices would need a lifetime of 2.8, 3.5, 5.3, 5.1, and 10.8 years, respectively. It was also found that if the SWCNT PV has an efficiency of 4.5% or higher, its energy payback time would be lower than other existing and emerging PV technologies. The major impacts of SWCNT PV came from the cell's materials synthesis.

  8. Solid-Phase Synthesis of Difficult Purine-Rich PNAs through Selective Hmb Incorporation: Application to the Total Synthesis of Cell Penetrating Peptide-PNAs

    PubMed Central

    Tailhades, Julien; Takizawa, Hotake; Gait, Michael J.; Wellings, Don A.; Wade, John D.; Aoki, Yoshitsugu; Shabanpoor, Fazel

    2017-01-01

    Antisense oligonucleotide (ASO)-based drug development is gaining significant momentum following the recent FDA approval of Eteplirsen (an ASO based on phosphorodiamidate morpholino) and Spinraza (2′-O-methoxyethyl-phosphorothioate) in late 2016. Their attractiveness is mainly due to the backbone modifications which have improved the in vivo characteristics of oligonucleotide drugs. Another class of ASO, based on peptide nucleic acid (PNA) chemistry, is also gaining popularity as a platform for development of gene-specific therapy for various disorders. However, the chemical synthesis of long PNAs, which are more target-specific, remains an ongoing challenge. Most of the reported methodology for the solid-phase synthesis of PNA suffer from poor coupling efficiency which limits production to short PNA sequences of less than 15 residues. Here, we have studied the effect of backbone modifications with Hmb (2-hydroxy-4-methoxybenzyl) and Dmb (2,4-dimethoxybenzyl) to ameliorate difficult couplings and reduce “on-resin” aggregation. We firstly synthesized a library of PNA dimers incorporating either Hmb or Dmb and identified that Hmb is superior to Dmb in terms of its ease of removal. Subsequently, we used Hmb backbone modification to synthesize a 22-mer purine-rich PNA, targeting dystrophin RNA splicing, which could not be synthesized by standard coupling methodology. Hmb backbone modification allowed this difficult PNA to be synthesized as well as to be continued to include a cell-penetrating peptide on the same solid support. This approach provides a novel and straightforward strategy for facile solid-phase synthesis of difficult purine-rich PNA sequences. PMID:29094037

  9. Solid-Phase Synthesis of Difficult Purine-Rich PNAs through Selective Hmb Incorporation: Application to the Total Synthesis of Cell Penetrating Peptide-PNAs.

    PubMed

    Tailhades, Julien; Takizawa, Hotake; Gait, Michael J; Wellings, Don A; Wade, John D; Aoki, Yoshitsugu; Shabanpoor, Fazel

    2017-01-01

    Antisense oligonucleotide (ASO)-based drug development is gaining significant momentum following the recent FDA approval of Eteplirsen (an ASO based on phosphorodiamidate morpholino) and Spinraza (2'- O -methoxyethyl-phosphorothioate) in late 2016. Their attractiveness is mainly due to the backbone modifications which have improved the in vivo characteristics of oligonucleotide drugs. Another class of ASO, based on peptide nucleic acid (PNA) chemistry, is also gaining popularity as a platform for development of gene-specific therapy for various disorders. However, the chemical synthesis of long PNAs, which are more target-specific, remains an ongoing challenge. Most of the reported methodology for the solid-phase synthesis of PNA suffer from poor coupling efficiency which limits production to short PNA sequences of less than 15 residues. Here, we have studied the effect of backbone modifications with Hmb (2-hydroxy-4-methoxybenzyl) and Dmb (2,4-dimethoxybenzyl) to ameliorate difficult couplings and reduce "on-resin" aggregation. We firstly synthesized a library of PNA dimers incorporating either Hmb or Dmb and identified that Hmb is superior to Dmb in terms of its ease of removal. Subsequently, we used Hmb backbone modification to synthesize a 22-mer purine-rich PNA, targeting dystrophin RNA splicing, which could not be synthesized by standard coupling methodology. Hmb backbone modification allowed this difficult PNA to be synthesized as well as to be continued to include a cell-penetrating peptide on the same solid support. This approach provides a novel and straightforward strategy for facile solid-phase synthesis of difficult purine-rich PNA sequences.

  10. Solid-phase synthesis of difficult purine-rich PNAs through selective Hmb incorporation: Application to the total synthesis of cell penetrating peptide-PNAs

    NASA Astrophysics Data System (ADS)

    Tailhades, Julien; Takizawa, Hotake; Gait, Michael J.; Wellings, Don A.; Wade, John D.; Aoki, Yoshitsugu; Shabanpoor, Fazel

    2017-10-01

    Antisense oligonucleotide (ASO)-based drug development is gaining significant momentum following the recent FDA approval of Eteplirsen (an ASO based on phosphorodiamidate morpholino) and Spinraza (2’-O-methoxyethyl-phosphorothioate) in late 2016. Their attractiveness is mainly due to the backbone modifications which have improved the in vivo characteristics of oligonucleotide drugs. Another class of ASO, based on peptide nucleic acid (PNA) chemistry, is also gaining popularity as a platform for development of gene-specific therapy for various disorders. However, the chemical synthesis of long PNAs, which are more target-specific, remains an ongoing challenge. Most of the reported methodology for the solid-phase synthesis of PNA suffer from poor coupling efficiency which limits production to short PNA sequences of less than 15 residues. Here we have studied the effect of backbone modifications with Hmb (2-hydroxy-4-methoxybenzyl) and Dmb (2,4-dimethoxybenzyl) to ameliorate difficult couplings and reduce “on-resin” aggregation. We firstly synthesized a library of PNA dimers incorporating either Hmb or Dmb and identified that Hmb is superior to Dmb in terms of its ease of removal. Subsequently, we used Hmb backbone modification to synthesize a 22-mer purine-rich PNA, targeting dystrophin RNA splicing, which could not be synthesized by standard coupling methodology. Hmb backbone modification allowed this difficult PNA to be synthesized as well as to be continued to include a cell-penetrating peptide on the same solid support. This approach provides a novel and straightforward strategy for facile solid-phase synthesis of difficult purine-rich PNA sequences.

  11. Beet sugar syrup and molasses as low-cost feedstock for the enzymatic production of fructo-oligosaccharides.

    PubMed

    Ghazi, Iraj; Fernandez-Arrojo, Lucia; Gomez De Segura, Aranzazu; Alcalde, Miguel; Plou, Francisco J; Ballesteros, Antonio

    2006-04-19

    Sugar syrup and molasses from beet processing containing 620 and 570 mg/mL sucrose, respectively, were assayed as low-cost and available substrates for the enzymatic synthesis of fructo-oligosaccharides (FOSs). A commercial pectinase (Pectinex Ultra SP-L, from Aspergillus aculeatus) characterized by the presence of a transfructosylating activity was used as a biocatalyst. The FOS production increased when lowering the initial pH value of syrup (7.5) and molasses (8.9) to 5.5. Sugar syrup and molasses were diluted in order to reduce substrate viscosity; interestingly, the percentage of FOS with regards to total sugars remained almost constant, which indicated a high transferase-to-hydrolase ratio for this enzyme. Kinetics of FOS production was analyzed. Using approximately 10 U transfructosylating activity per g sucrose, the FOS concentration reached a maximum of 388 mg/mL after 30 h using syrup and 235 mg/mL in 65 h with molasses. These values corresponded to approximately 56 and 49% (w/w), respectively, of the total amount of carbohydrates in the mixture. The enzyme was also covalently immobilized on an epoxy-activated polymethacrylate-based polymer (Sepabeads EC-EP5). We found that immobilized Pectinex Ultra SP-L can be efficiently applied to the synthesis of FOS using syrup and molasses as substrates.

  12. Total synthesis and stereochemical assignment of the salicylate antitumor macrolide lobatamide C(1).

    PubMed

    Shen, Ruichao; Lin, Cheng Ting; Porco, John A

    2002-05-22

    The total synthesis and stereochemical assignment of the potent antitumor macrolide lobatamide C is reported. The synthesis involves Cu(I)-mediated enamide formation and Na(2)CO(3)-mediated esterification of a beta-hydroxy acid and a salicylate cyanomethyl ester. Macrolactonization was accomplished using a Mitsunobu protocol. The stereochemical assignment of lobatamide C was achieved by Mosher ester analysis and comparison with prepared stereoisomers.

  13. Development of the Vinylogous Pictet-Spengler Cyclization and Total Synthesis of (±)-Lundurine A.

    PubMed

    Nash, Aaron; Qi, Xiangbing; Maity, Pradip; Owens, Kyle; Tambar, Uttam K

    2018-04-16

    A novel vinylogous Pictet-Spengler cyclization has been developed for the generation of indole-annulated medium-sized rings. The method enables the synthesis of tetrahydroazocinoindoles with a fully substituted carbon center, a prevalent structural motif in many biologically active alkaloids. The strategy has been applied to the total synthesis of (±)-lundurine A. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Sarpagine and related alkaloids

    PubMed Central

    Namjoshi, Ojas A.; Cook, James M.

    2016-01-01

    The sarpagine-related macroline and ajmaline alkaloids share a common biosynthetic origin, and bear important structural similarities, as expected. These indole alkaloids are widely dispersed in 25 plant genera, principally in the Apocynaceae family. Very diverse and interesting biological properties have been reported for this group of natural products. Isolation of new sarpagine-related alkaloids as well as the asymmetric synthesis of these structurally complex molecules are of paramount importance to the synthetic and medicinal chemists. A total of 115 newly isolated sarpagine-related macroline and ajmaline alkaloids, along with their physicochemical properties have been included in this chapter. A general and efficient strategy for the synthesis of these monomeric alkaloids, as well as bisindoles has been presented, which involves application of the asymmetric Pictet–Spengler reaction (>98% ee) as a key step because of the ease of scale up of the tetracyclic template. Also included in this chapter are the syntheses of the sarpagine-related alkaloids, published since the year 2000. PMID:26827883

  15. Activation of IFN-beta element by IRF-1 requires a posttranslational event in addition to IRF-1 synthesis.

    PubMed Central

    Watanabe, N; Sakakibara, J; Hovanessian, A G; Taniguchi, T; Fujita, T

    1991-01-01

    Expression of the Type I IFN (i.e., IFN-alpha s and IFN-beta) genes is efficiently induced by viruses at the transcriptional level. This induction is mediated by at least two types of positive regulatory elements located in the human IFN-beta gene promoter: (1) the repeated elements which bind both the transcriptional activator IRF-1 and the repressor IRF-2 (IRF-elements; IRF-Es), and (2) the kappa B element (kappa B-E), which binds NF kappa B and is located between the IRF-Es and the TATA box. In this study we demonstrate that a promoter containing synthetic IRF-E, which displays high affinity for the IRFs can be efficiently activated by Newcastle disease virus (NDV). In contrast, such activation was either very weak or nil when cells were treated by IFN-beta or tumor necrosis factor-alpha (TNF-alpha), despite the fact they both efficiently induce de novo synthesis of the short-lived IRF-1 in L929 cells. In fact, efficient activation of the IRF-E apparently requires an event in addition to de novo IRF-1 induction, which can be elicited by NDV even in the presence of protein synthesis inhibitor, cycloheximide. Moreover, efficient activation of the IRF-E by NDV is specifically inhibited by the protein kinase inhibitor, Staurosporin. Hence our results suggest the importance of IRF-1 synthesis and post-translational modification event(s), possibly phosphorylation for the efficient activation of IRF-Es, which are otherwise under negative regulation by IRF-2. Images PMID:1886766

  16. The thermodynamic efficiency of ATP synthesis in oxidative phosphorylation.

    PubMed

    Nath, Sunil

    2016-12-01

    As the chief energy source of eukaryotic cells, it is important to determine the thermodynamic efficiency of ATP synthesis in oxidative phosphorylation (OX PHOS). Previous estimates of the thermodynamic efficiency of this vital process have ranged from Lehninger's original back-of-the-envelope calculation of 38% to the often quoted value of 55-60% in current textbooks of biochemistry, to high values of 90% from recent information theoretic considerations, and reports of realizations of close to ideal 100% efficiencies by single molecule experiments. Hence this problem has been reinvestigated from first principles. The overall thermodynamic efficiency of ATP synthesis in the mitochondrial energy transduction OX PHOS process has been found to lie between 40 and 41% from four different approaches based on a) estimation using structural and biochemical data, b) fundamental nonequilibrium thermodynamic analysis, c) novel insights arising from Nath's torsional mechanism of energy transduction and ATP synthesis, and d) the overall balance of cellular energetics. The torsional mechanism also offers an explanation for the observation of a thermodynamic efficiency approaching 100% in some experiments. Applications of the unique, molecular machine mode of functioning of F 1 F O -ATP synthase involving direct inter-conversion of chemical and mechanical energies in the design and fabrication of novel, man-made mechanochemical devices have been envisaged, and some new ways to exorcise Maxwell's demon have been proposed. It is hoped that analysis of the fundamental problem of energy transduction in OX PHOS from a fresh perspective will catalyze new avenues of research in this interdisciplinary field. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Chemistry of Renieramycins. Part 14: Total Synthesis of Renieramycin I and Practical Synthesis of Cribrostatin 4 (Renieramycin H).

    PubMed

    Yokoya, Masashi; Kobayashi, Keiichiro; Sato, Mitsuhiro; Saito, Naoki

    2015-08-06

    The first total synthesis of (±)-renieramycin I, which was isolated from the Indian bright blue sponge Haliclona cribricutis, is described. The key step is the selenium oxide oxidation of pentacyclic bis-p-quinone derivative (3) stereo- and regioselectively. We also report a large-scale synthesis of cribrostatin 4 (renieramycin H) via the C3-C4 double bond formation in an early stage based on the Avendaño's protocol, from readily available 1-acetyl-3-(3-methyl-2,4,5-trimethylphenyl)methyl-piperazine-2,5-dione (8) in 18 steps (8.3% overall yield). The synthesis provides unambiguous evidence supporting the original structure of renieramycin I.

  18. Rapid Size- Controlled Synthesis of Dextran-Coated, Copper-Doped Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wong, Ray M.

    2011-12-01

    Development of dual modality probes enabled for magnetic resonance imaging (MRI) and positron emission tomography (PET) has been on the rise in recent years due to the potential for these probes to facilitate combining the complementary high resolution of MRI and the high sensitivity of PET. The efficient synthesis of multimodal probes that include the radiolabels for PET can be hindered due to prolonged reaction times during radioisotope incorporation, and the resulting decay of the radiolabel. Along with a time-efficient synthesis, one also needs an optimal synthesis that yields products in a desirable size range (between 20-100 nm) to increase blood retention time. In this work, we describe a novel, rapid, microwave-based synthesis of dextran-coated iron oxide nanoparticles doped with copper (DIO/Cu). Traditional methods for synthesizing dextran-coated iron oxide particles require refluxing for 2 hours and result in approximately 50 nm particles. We demonstrate that microwave synthesis can produce 50 nm nanoparticles in 5 minutes of heating. We discuss the various parameters used in the microwave synthesis protocol to vary the size distribution of DIO/Cu, and demonstrate the successful incorporation of copper into these particles with the aim of future use for rapid 64Cu incorporation.

  19. Efficient synthesis of dichlorodenafil, an unapproved sildenafil analogue appearing in non-prescription supplements.

    PubMed

    Kim, Jong Yup; Hwang, In Gyun; Oh, Jae Ho; Kang, Il Hyun; Kwon, Sung Won; Kim, Deukjoon

    2013-01-01

    We have developed an efficient synthesis of dichlorodenafil (4), an unapproved sildenafil analogue isolated from dietary supplements. Our sequence employs POCl(3)-mediated chlorination of readily available chloroacetyl compound 7 followed by selective hydrolysis of the chloro-heterocycle function. Our synthesis confirms the structure of the illegal additive, and will provide regulatory agencies with ready access to authentic standard samples of dichlorodenafil (4) to aid in their mission to protect the public from unapproved and potentially harmful erectile dysfunction (ED) drug analogues that are added to herbal and dietary supplements without providing users with appropriate toxicological or pharmacological information.

  20. Synthesis of Ureas from CO2.

    PubMed

    Wang, Hua; Xin, Zhuo; Li, Yuehui

    2017-04-01

    Ureas are an important class of bioactive organic compounds in organic chemistry and exist widely in natural products, agricultural pesticides, uron herbicides, pharmaceuticals. Even though urea itself has been synthesized from CO 2 and ammonia for a long time, the selective and efficient synthesis of substituted ureas is still challenging due to the difficulty of dehydration processes. Efficient and economic fixation of CO 2 is of great importance in solving the problems of resource shortages, environmental issues, global warming, etc. During recent decades, chemists have developed different catalytic systems to synthesize ureas from CO 2 and amines. Herein, we focus on catalytic synthesis of ureas using CO 2 and amines.

  1. Facile Synthesis of Monodisperse Gold Nanocrystals Using Virola oleifera

    NASA Astrophysics Data System (ADS)

    Milaneze, Bárbara A.; Oliveira, Jairo P.; Augusto, Ingrid; Keijok, Wanderson J.; Côrrea, Andressa S.; Ferreira, Débora M.; Nunes, Otalíbio C.; Gonçalves, Rita de Cássia R.; Kitagawa, Rodrigo R.; Celante, Vinícius G.; da Silva, André Romero; Pereira, Ana Claudia H.; Endringer, Denise C.; Schuenck, Ricardo P.; Guimarães, Marco C. C.

    2016-10-01

    The development of new routes and strategies for nanotechnology applications that only employ green synthesis has inspired investigators to devise natural systems. Among these systems, the synthesis of gold nanoparticles using plant extracts has been actively developed as an alternative, efficient, cost-effective, and environmentally safe method for producing nanoparticles, and this approach is also suitable for large-scale synthesis. This study reports reproducible and completely natural gold nanocrystals that were synthesized using Virola oleifera extract. V. oleifera resin is rich in epicatechin, ferulic acid, gallic acid, and flavonoids (i.e., quercetin and eriodictyol). These gold nanoparticles play three roles. First, these nanoparticles exhibit remarkable stability based on their zeta potential. Second, these nanoparticles are functionalized with flavonoids, and third, an efficient, economical, and environmentally friendly mechanism can be employed to produce green nanoparticles with organic compounds on the surface. Our model is capable of reducing the resin of V. oleifera, which creates stability and opens a new avenue for biological applications. This method does not require painstaking conditions or hazardous agents and is a rapid, efficient, and green approach for the fabrication of monodisperse gold nanoparticles.

  2. Glucocorticoid-induced skeletal muscle atrophy in vitro is attenuated by mechanical stimulation

    NASA Technical Reports Server (NTRS)

    Chromiak, J. A.; Vandenburgh, H. H.

    1992-01-01

    Glucocorticoids induce rapid atrophy of fast skeletal myofibers in vivo, and either weight lifting or endurance exercise reduces this atrophy by unknown mechanisms. We examined the effects of the synthetic glucocorticoid dexamethasone (Dex) on protein turnover in tissue-cultured avian fast skeletal myofibers and determined whether repetitive mechanical stretch altered the myofiber response to Dex. In static cultures after 3-5 days, 10(-8) M Dex decreased total protein content 42-74%, total protein synthesis rates 38-56%, mean myofiber diameter 35%, myosin heavy chain (MHC) content 86%, MHC synthesis rate 44%, and fibronectin synthesis rate 29%. Repetitive 10% stretch-relaxations of the cultured myofibers for 60 s every 5 min for 3-4 days prevented 52% of the Dex-induced decrease in protein content, 42% of the decrease in total protein synthesis rate, 77% of the decrease in MHC content, 42% of the decrease in MHC synthesis rate, and 67% of the decrease in fibronectin synthesis rate. This in vitro model system will complement in vivo studies in understanding the mechanism by which mechanical activity and glucocorticoids interact to regulate skeletal muscle growth.

  3. Parallelizing quantum circuit synthesis

    NASA Astrophysics Data System (ADS)

    Di Matteo, Olivia; Mosca, Michele

    2016-03-01

    Quantum circuit synthesis is the process in which an arbitrary unitary operation is decomposed into a sequence of gates from a universal set, typically one which a quantum computer can implement both efficiently and fault-tolerantly. As physical implementations of quantum computers improve, the need is growing for tools that can effectively synthesize components of the circuits and algorithms they will run. Existing algorithms for exact, multi-qubit circuit synthesis scale exponentially in the number of qubits and circuit depth, leaving synthesis intractable for circuits on more than a handful of qubits. Even modest improvements in circuit synthesis procedures may lead to significant advances, pushing forward the boundaries of not only the size of solvable circuit synthesis problems, but also in what can be realized physically as a result of having more efficient circuits. We present a method for quantum circuit synthesis using deterministic walks. Also termed pseudorandom walks, these are walks in which once a starting point is chosen, its path is completely determined. We apply our method to construct a parallel framework for circuit synthesis, and implement one such version performing optimal T-count synthesis over the Clifford+T gate set. We use our software to present examples where parallelization offers a significant speedup on the runtime, as well as directly confirm that the 4-qubit 1-bit full adder has optimal T-count 7 and T-depth 3.

  4. The effect of methyl jasmonate and light irradiation treatments on the stilbenoid biosynthetic pathway in Vitis vinifera cell suspension cultures.

    PubMed

    Andi, Seyed Ali; Gholami, Mansour; Ford, Christopher M

    2018-04-01

    Grape stilbenes are a well-known family of plant polyphenolics that have been confirmed to have many biological activities in relation to health benefits. In the present study, we investigated the effect of methyl jasmonate (MeJA) elicitor at four different concentrations (25, 50, 100 and 200 μM) in combination or not with high-level light irradiation (10,000 LUX) on a cell line obtained from the pulp of Vitis vinifera cv. Shahani. Our results showed that the stilbene synthesis pathway is inhibited by high-light conditions. A concentration of 50 μM MeJA was optimum for efficient production and high accumulation of total phenolics and total flavonoids as well as total stilbenoids. Furthermore, we showed that there is a significant negative correlation between the production of these metabolites and cell growth. These data provide valuable information for the future scale-up of cell cultures for the production of these very high value compounds in bioreactor system.

  5. Effect of heavy-metal on synthesis of siderophores by Pseudomonas aeruginosa ZGKD3

    NASA Astrophysics Data System (ADS)

    Shi, Peili; Xing, Zhukang; Zhang, Yuxiu; Chai, Tuanyao

    2017-01-01

    Most siderophore-producing bacteria could improve the plant growth. Here, the effect of heavy-metal on the growth, total siderophore and pyoverdine production of the Cd tolerance Pseudomonas aeruginosa ZGKD3 were investigated. The results showed that ZGKD3 exhibited tolerance to heavy metals, and the metal tolerance decreased in the order Mn2+>Pb2+>Ni2+>Cu2+>Zn2+>Cd2+. The total siderophore and pyoverdine production of ZGKD3 induced by metals of Cd2+, Cu2+, Zn2+, Ni2+, Pb2+ and Mn2+ were different, the total siderophore and pyoverdine production reduced in the order Cd2+>Pb2+>Mn2+>Ni2+>Zn2+ >Cu2+ and Zn2+>Cd2+>Mn2+>Pb2+>Ni2+>Cu2+, respectively. These results suggested that ZGKD3 could grow in heavy-metal contaminated soil and had the potential of improving phytoremediation efficiency in Cd and Zn contaminated soils.

  6. Total replacement of corn by mesquite pod meal considering nutritional value, performance, feeding behavior, nitrogen balance, and microbial protein synthesis of Holstein-Zebu crossbred dairy steers.

    PubMed

    de Oliveira Moraes, Gláucia Sabrine; de Souza, Evaristo Jorge Oliveira; Véras, Antonia Sherlânea Chaves; de Paula Almeida, Marina; da Cunha, Márcio Vieira; Torres, Thaysa Rodrigues; da Silva, Camila Sousa; Pereira, Gerfesson Felipe Cavalcanti

    2016-10-01

    The objective of the present study to assess the effects of mesquite pod addition replacing corn (0, 250, 500, 750, and 1000 g/kg in the dry matter basis) on nutrient intake, animal performance, feeding behavior, nutrient digestibility, nitrogen balance, and microbial protein synthesis. Twenty-five Holstein-Zebu crossbred dairy steers at 219 ± 22 kg initial body weight and 18 months of age were used. The experiment lasted 84 days, divided into three periods of 28 days. A completely randomized design was used, and data were submitted to analysis using PROC GLM for analysis of variance and PROC REG for regression analysis using the software Statistical Analysis Systems version 9.1. Experimental diets were composed of Tifton 85 hay, soybean meal, ground corn, mesquite pod meal, and mineral salt. Samples of food offered were collected during the last 3 days of each period, and the leftovers were collected daily, with samples bulked per week. At the end of each 28-day period, the remaining animals were weighed to determine total weight gain and average daily gain. The assessment of behavioral patterns was performed through instantaneous scans in 5-min intervals for three consecutive 12-h days. A single urine sample from each animal was collected on the last day of each collection period at about 4 h after the first feeding. The replacement of corn by mesquite pod meal did not significantly influence treatments regarding nutrients intake, animal performance, and feeding behavior. Retained and consumed nitrogen ratio did not statistically differ between replacement levels. Likewise, there were no statistical differences regarding microbial protein synthesis and efficiency between replacement levels. Mesquite pod meal can be used in Holstein-Zebu crossbred dairy steers' diet with total corn replacement.

  7. Asymmetric total synthesis of (+)-fusarisetin A via the intramolecular Pauson-Khand reaction.

    PubMed

    Huang, Jun; Fang, Lichao; Long, Rong; Shi, Li-Li; Shen, Hong-Juan; Li, Chuang-chuang; Yang, Zhen

    2013-08-02

    An asymmetic total synthesis of (+)-fusarisetin A has been achieved. The essential to our strategy was the application of the intramolecular Pauson-Khand reaction for the stereoselective construction of the trans-decalin subunit of (+)-fusarisetin A with a unique C16 quarternary chiral center. The developed chemistry offers an alternative to the IMDA reaction that has been used for fusarisetin A, and is applicable to analogue synthesis for biological evaluation.

  8. Constructing Molecular Complexity and Diversity: Total Synthesis of Natural Products of Biological and Medicinal Importance

    PubMed Central

    Nicolaou, K. C.; Hale, Christopher R. H.; Nilewski, Christian; Ioannidou, Heraklidia A.

    2012-01-01

    The advent of organic synthesis and the understanding of the molecule as they occurred in the nineteenth century and were refined in the twentieth century constitute two of the most profound scientific developments of all time. These discoveries set in motion a revolution that shaped the landscape of the molecular sciences and changed the world. Organic synthesis played a major role in this revolution through its ability to construct the molecules of the living world and others like them whose primary element is carbon. Although the early beginnings of organic synthesis came about serendipitously, organic chemists quickly recognized its potential and moved decisively to advance and exploit it in myriad ways for the benefit of mankind. Indeed, from the early days of the synthesis of urea and the construction of the first carbon-carbon bond, the art of organic synthesis improved to impressively high levels of sophistication. Through its practice, today chemists can synthesize organic molecules—natural and designed—of all types of structural motifs and for all intents and purposes. The endeavor of constructing natural products—the organic molecules of nature—is justly called both a creative art and an exact science. Often called simply total synthesis, the replication of nature’s molecules in the laboratory reflects and symbolizes the state of the art of synthesis in general. In the last few decades a surge in total synthesis endeavors around the world led to a remarkable collection of achievements that covers a wide ranging landscape of molecular complexity and diversity. In this article, we present highlights of some of our contributions in the field of total synthesis of natural products of biological and medicinal importance. For perspective, we also provide a listing of selected examples of additional natural products synthesized in other laboratories around the world over the last few years. PMID:22743704

  9. Constructing molecular complexity and diversity: total synthesis of natural products of biological and medicinal importance.

    PubMed

    Nicolaou, K C; Hale, Christopher R H; Nilewski, Christian; Ioannidou, Heraklidia A

    2012-08-07

    The advent of organic synthesis and the understanding of the molecule as they occurred in the nineteenth century and were refined in the twentieth century constitute two of the most profound scientific developments of all time. These discoveries set in motion a revolution that shaped the landscape of the molecular sciences and changed the world. Organic synthesis played a major role in this revolution through its ability to construct the molecules of the living world and others like them whose primary element is carbon. Although the early beginnings of organic synthesis came about serendipitously, organic chemists quickly recognized its potential and moved decisively to advance and exploit it in myriad ways for the benefit of mankind. Indeed, from the early days of the synthesis of urea and the construction of the first carbon-carbon bond, the art of organic synthesis improved to impressively high levels of sophistication. Through its practice, today chemists can synthesize organic molecules--natural and designed--of all types of structural motifs and for all intents and purposes. The endeavor of constructing natural products--the organic molecules of nature--is justly called both a creative art and an exact science. Often called simply total synthesis, the replication of nature's molecules in the laboratory reflects and symbolizes the state of the art of synthesis in general. In the last few decades a surge in total synthesis endeavors around the world led to a remarkable collection of achievements that covers a wide ranging landscape of molecular complexity and diversity. In this article, we present highlights of some of our contributions in the field of total synthesis of natural products of biological and medicinal importance. For perspective, we also provide a listing of selected examples of additional natural products synthesized in other laboratories around the world over the last few years.

  10. Low-protein, high-carbohydrate diet increases glucose uptake and fatty acid synthesis in brown adipose tissue of rats.

    PubMed

    Aparecida de França, Suélem; Pavani Dos Santos, Maísa; Nunes Queiroz da Costa, Roger Vinícius; Froelich, Mendalli; Buzelle, Samyra Lopes; Chaves, Valéria Ernestânia; Giordani, Morenna Alana; Pereira, Mayara Peron; Colodel, Edson Moleta; Marlise Balbinotti Andrade, Cláudia; Kawashita, Nair Honda

    2014-04-01

    The aim of this study was to evaluate glucose uptake and the contribution of glucose to fatty acid (FA) synthesis and the glycerol-3-phosphate (G3P) of triacylglycerol synthesis by interscapular brown adipose tissue (IBAT) of low-protein, high-carbohydrate (LPHC) diet-fed rats. LPHC (6% protein; 74% carbohydrate) or control (17% protein; 63% carbohydrate) diets were administered to rats (∼ 100 g) for 15 d. Total FA and G3P synthesis and the synthesis of FA and G3P from glucose were evaluated in vivo by (3)H2O and (14)C-glucose. Sympathetic neural contribution for FA synthesis was evaluated by comparing the synthesis in denervated (7 d before) IBAT with that of the contralateral innervated side. The insulin signaling and β3 adrenergic receptor (β3-AR) contents, as well as others, were determined by Western blot (Student's t test or analysis of variance; P ≤ 0.05). Total FA synthesis in IBAT was 133% higher in the LPHC group and was reduced 85% and 70% by denervation for the LPHC and control groups, respectively. Glucose uptake was 3.5-fold higher in the IBAT of LPHC rats than in that of the control rats, and the contribution of glucose to the total FA synthesis increased by 12% in control rats compared with 18% in LPHC rats. The LPHC diet increased the G3P generation from glucose by 270% and the insulin receptor content and the p-AKT insulin stimulation in IBAT by 120% and reduced the β3-AR content by 50%. The LPHC diet stimulated glucose uptake, both the total rates and the rates derived from glucose-dependent FA and G3P synthesis, by increasing the insulin sensitivity and the sympathetic flux, despite a reduction in the β3-AR content. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Bioinspired total synthesis and structural revision of yuremamine, an alkaloid from the entheogenic plant Mimosa tenuiflora.

    PubMed

    Calvert, Matthew B; Sperry, Jonathan

    2015-04-11

    Guided by a biosynthetic hypothesis, a serendipitous total synthesis of yuremamine has resulted in its structural revision from the putative pyrroloindole (1) to the flavonoidal indole (2), which was initially proposed as a biosynthetic intermediate.

  12. Catalytic asymmetric total synthesis of (+)-yohimbine.

    PubMed

    Mergott, Dustin J; Zuend, Stephan J; Jacobsen, Eric N

    2008-03-06

    The total synthesis of (+)-yohimbine was achieved in 11 steps and 14% overall yield. The absolute configuration was established through a highly enantioselective thiourea-catalyzed acyl-Pictet-Spengler reaction, and the remaining 4 stereocenters were set simultaneously in a substrate-controlled intramolecular Diels-Alder reaction.

  13. An Easy-to-Machine Electrochemical Flow Microreactor: Efficient Synthesis of Isoindolinone and Flow Functionalization.

    PubMed

    Folgueiras-Amador, Ana A; Philipps, Kai; Guilbaud, Sébastien; Poelakker, Jarno; Wirth, Thomas

    2017-11-27

    Flow electrochemistry is an efficient methodology to generate radical intermediates. An electrochemical flow microreactor has been designed and manufactured to improve the efficiency of electrochemical flow reactions. With this device only little or no supporting electrolytes are needed, making processes less costly and enabling easier purification. This is demonstrated by the facile synthesis of amidyl radicals used in intramolecular hydroaminations to produce isoindolinones. The combination with inline mass spectrometry facilitates a much easier combination of chemical steps in a single flow process. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. Asymmetric Synthesis of Apratoxin E.

    PubMed

    Mao, Zhuo-Ya; Si, Chang-Mei; Liu, Yi-Wen; Dong, Han-Qing; Wei, Bang-Guo; Lin, Guo-Qiang

    2016-10-21

    An efficient method for asymmetric synthesis of apratoxin E 2 is described in this report. The chiral lactone 8, recycled from the degradation of saponin glycosides, was utilized to prepare the non-peptide fragment 6. In addition to this "from nature to nature" strategy, olefin cross-metathesis (CM) was applied as an alternative approach for the formation of the double bond. Moreover, pentafluorophenyl diphenylphosphinate was found to be an efficient condensation reagent for the macrocyclization.

  15. Chemoenzymatic convergent synthesis of 2'-O,4'-C-methyleneribonucleosides.

    PubMed

    Sharma, Vivek K; Kumar, Manish; Olsen, Carl E; Prasad, Ashok K

    2014-07-03

    Novozyme-435-catalyzed efficient regioselective acetylation of one of the two diastereotopic hydroxymethyl functions in 3-O-benzyl-4-C-hydroxymethyl-1,2-O-isopropylidene-α-d-ribofuranose has been achieved. The enzymatic methodology has been successfully utilized for convergent synthesis of bicyclic nucleosides (LNA monomers) T, U, A, and C. Further, it has been demonstrated that Novozyme-435 can be used for 10 cycles of the acylation reaction without losing selectivity and efficiency.

  16. [Pd(μ-Cl)Cl(IPr*)]2: a highly hindered pre-catalyst for the synthesis of tetra-ortho-substituted biaryls via Grignard reagent cross-coupling.

    PubMed

    Lesieur, Mathieu; Slawin, Alexandra M Z; Cazin, Catherine S J

    2014-08-14

    The new well-defined catalyst [Pd(μ-Cl)Cl(IPr*)]2 enables the efficient Grignard reagent cross-coupling for the synthesis of tetra-ortho-substituted biaryls. The high reactivity of the complex is associated with the important bulkiness of the IPr* ligand. The dimer represents the most efficient catalyst reported to date for this challenging transformation.

  17. Enantioselective syntheses of lignin models: an efficient synthesis of B-O-4 dimers and trimers by using the Evans chiral auxiliary

    Treesearch

    Costyl N. Njiojob; Joseph J. Bozell; Brian K. Long; Thomas Elder; Rebecca E. Key; William T. Hartwig

    2016-01-01

    We describe an efficient five-step, enantioselective synthesis of (R,R)- and (S,S)-lignin dimer models possessing a B-O-4 linkage, by using the Evans chiral aldol reaction as a key step. Mitsunobu inversion of the (R,R)- or (S,S)-isomers generates the corresponding (R,S)- and (S,R)-diastereomers. We further extend this approach to the...

  18. Time- and energy-efficient solution combustion synthesis of binary metal tungstate nanoparticles with enhanced photocatalytic activity.

    PubMed

    Thomas, Abegayl; Janáky, Csaba; Samu, Gergely F; Huda, Muhammad N; Sarker, Pranab; Liu, J Ping; van Nguyen, Vuong; Wang, Evelyn H; Schug, Kevin A; Rajeshwar, Krishnan

    2015-05-22

    In the search for stable and efficient photocatalysts beyond TiO2 , the tungsten-based oxide semiconductors silver tungstate (Ag2 WO4 ), copper tungstate (CuWO4 ), and zinc tungstate (ZnWO4 ) were prepared using solution combustion synthesis (SCS). The tungsten precursor's influence on the product was of particular relevance to this study, and the most significant effects are highlighted. Each sample's photocatalytic activity towards methyl orange degradation was studied and benchmarked against their respective commercial oxide sample obtained by solid-state ceramic synthesis. Based on the results herein, we conclude that SCS is a time- and energy-efficient method to synthesize crystalline binary tungstate nanomaterials even without additional excessive heat treatment. As many of these photocatalysts possess excellent photocatalytic activity, the discussed synthetic strategy may open sustainable materials chemistry avenues to solar energy conversion and environmental remediation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Comparison of typical mega cities in China using emergy synthesis

    NASA Astrophysics Data System (ADS)

    Zhang, L. X.; Chen, B.; Yang, Z. F.; Chen, G. Q.; Jiang, M. M.; Liu, G. Y.

    2009-06-01

    An emergy-based comparison analysis is conducted for three typical mega cities in China, i.e., Beijing, Shanghai and Guangzhou, from 1990 to 2005 in four perspectives including emergy intensity, resource structure, environmental pressure and resource use efficiency. A new index of non-renewable emergy/money ratio is established to indicate the utilization efficiency of the non-renewable resources. The results show that for the three mega urban systems, Beijing, Shanghai and Guangzhou, the total emergy inputs were 3.76E+23, 3.54E+23, 2.52E+23 sej in 2005, of which 64.88%, 91.45% and 72.28% were imported from the outsides, respectively. As to the indicators of emergy intensity involving the total emergy use, emergy density and emergy use per cap, three cities exhibited similar overall increase trends with annual fluctuations from 1990 to 2005. Shanghai achieved the highest level of economic development and non-renewable resource use efficiency, and meanwhile, lower proportion of renewable resource use and higher environmental pressure compared to those of Beijing and Guangzhou. Guangzhou has long term sustainability considering an amount of local renewable resources used, per capita emergy used, energy consumption per unit GDP and the ratio of waste to renewable emergy. It can be concluded that different emergy-based evaluation results arise from different geographical locations, resources endowments, industrial structures and urban orientations of the concerned mega cities.

  20. The Total Synthesis Problem of linear multivariable control. II - Unity feedback and the design morphism

    NASA Technical Reports Server (NTRS)

    Sain, M. K.; Antsaklis, P. J.; Gejji, R. R.; Wyman, B. F.; Peczkowski, J. L.

    1981-01-01

    Zames (1981) has observed that there is, in general, no 'separation principle' to guarantee optimality of a division between control law design and filtering of plant uncertainty. Peczkowski and Sain (1978) have solved a model matching problem using transfer functions. Taking into consideration this investigation, Peczkowski et al. (1979) proposed the Total Synthesis Problem (TSP), wherein both the command/output-response and command/control-response are to be synthesized, subject to the plant constraint. The TSP concept can be subdivided into a Nominal Design Problem (NDP), which is not dependent upon specific controller structures, and a Feedback Synthesis Problem (FSP), which is. Gejji (1980) found that NDP was characterized in terms of the plant structural matrices and a single, 'good' transfer function matrix. Sain et al. (1981) have extended this NDP work. The present investigation is concerned with a study of FSP for the unity feedback case. NDP, together with feedback synthesis, is understood as a Total Synthesis Problem.

  1. Efficiency, error and yield in light-directed maskless synthesis of DNA microarrays

    PubMed Central

    2011-01-01

    Background Light-directed in situ synthesis of DNA microarrays using computer-controlled projection from a digital micromirror device--maskless array synthesis (MAS)--has proved to be successful at both commercial and laboratory scales. The chemical synthetic cycle in MAS is quite similar to that of conventional solid-phase synthesis of oligonucleotides, but the complexity of microarrays and unique synthesis kinetics on the glass substrate require a careful tuning of parameters and unique modifications to the synthesis cycle to obtain optimal deprotection and phosphoramidite coupling. In addition, unintended deprotection due to scattering and diffraction introduce insertion errors that contribute significantly to the overall error rate. Results Stepwise phosphoramidite coupling yields have been greatly improved and are now comparable to those obtained in solid phase synthesis of oligonucleotides. Extended chemical exposure in the synthesis of complex, long oligonucleotide arrays result in lower--but still high--final average yields which approach 99%. The new synthesis chemistry includes elimination of the standard oxidation until the final step, and improved coupling and light deprotection. Coupling Insertions due to stray light are the limiting factor in sequence quality for oligonucleotide synthesis for gene assembly. Diffraction and local flare are by far the largest contributors to loss of optical contrast. Conclusions Maskless array synthesis is an efficient and versatile method for synthesizing high density arrays of long oligonucleotides for hybridization- and other molecular binding-based experiments. For applications requiring high sequence purity, such as gene assembly, diffraction and flare remain significant obstacles, but can be significantly reduced with straightforward experimental strategies. PMID:22152062

  2. Enantioselective total synthesis of hyperforin.

    PubMed

    Sparling, Brian A; Moebius, David C; Shair, Matthew D

    2013-01-16

    A modular, 18-step total synthesis of hyperforin is described. The natural product was quickly accessed using latent symmetry elements, whereby a group-selective, Lewis acid-catalyzed epoxide-opening cascade cyclization was used to furnish the bicyclo[3.3.1]nonane core and set two key quaternary stereocenters.

  3. Synthesis of modified proanthocyanidins: easy and general introduction of a hydroxy group at C-6 of catechin; efficient synthesis of elephantorrhizol.

    PubMed

    Boyer, François-Didier; Es-Safi, Nour-Eddine; Beauhaire, Josiane; Guernevé, Christine Le; Ducrot, Paul-Henri

    2005-02-01

    A general procedure for the oxidation of catechin derivatives is described, leading to the introduction of a new hydroxy group at C-6. This procedure has been applied for the synthesis of elephantorrhizol, a natural flavan-3-ol exhibiting a fully substituted cycle A.

  4. Witting Reaction Using a Stabilized Phosphorus Ylid: An Efficient and Stereoselective Synthesis of Ethyl Trans-Cinnamate

    ERIC Educational Resources Information Center

    Speed, Traci J.; Mclntyre, Jean P.; Thamattoor, Dasan M.

    2004-01-01

    An instructive experiment for the synthesis of ethyl trans-cinnamate, a pleasant smelling ester used in perfumery and flavoring by the reaction of benzaldehyde with the stable ylid triphenylphosphorane is described. The synthesis, workup and characterization of trans-cinnamate may be accomplished in a single laboratory session with commonly…

  5. Photochemical approaches to ordered polymers

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.; Abdulaziz, Mahmoud; Meador, Mary Ann B.

    1990-01-01

    The photocyclization of o-benzyloxyphenyl ketone chromophores provides an efficient, high yield route to the synthesis of 2,3-diphenylbenzofurans. The synthesis and solution of photochemistry of a series of polymers containing this chromophore is described. The photocuring of these polymers is a potential new approach to the synthesis of highly conjugated polymers based upon a p-phenylene bisbenzofuran repeat unit.

  6. Synthesis of Bisindole Alkaloids from the Apocynaceae Which Contain a Macroline or Sarpagine Unit: A Review

    PubMed Central

    Rahman, Md Toufiqur; Phani Babu Tiruveedhula, Veera V. N.; Cook, James M.

    2016-01-01

    Bisindole natural products consist of two monomeric indole alkaloid units as their obligate constituents. Bisindoles are more potent with respect to their biological activity than their corresponding monomeric units. In addition, the synthesis of bisindoles are far more challenging than the synthesis of monomeric indole alkaloids. Herein is reviewed the enantiospecific total and partial synthesis of bisindole alkaloids isolated primarily from the Alstonia genus of the Apocynaceae family. The monomeric units belong to the sarpagine, ajmaline, macroline, vobasine, and pleiocarpamine series. An up-to-date discussion of their isolation, characterization, biological activity as well as approaches to their partial and total synthesis by means of both synthetic and biosynthetic strategies are presented. PMID:27854259

  7. Tidbits for the synthesis of bis(2-sulfanylethyl)amido (SEA) polystyrene resin, SEA peptides and peptide thioesters.

    PubMed

    Ollivier, Nathalie; Raibaut, Laurent; Blanpain, Annick; Desmet, Rémi; Dheur, Julien; Mhidia, Reda; Boll, Emmanuelle; Drobecq, Hervé; Pira, Silvain L; Melnyk, Oleg

    2014-02-01

    Protein total chemical synthesis enables the atom-by-atom control of the protein structure and therefore has a great potential for studying protein function. Native chemical ligation of C-terminal peptide thioesters with N-terminal cysteinyl peptides and related methodologies are central to the field of protein total synthesis. Consequently, methods enabling the facile synthesis of peptide thioesters using Fmoc-SPPS are of great value. Herein, we provide a detailed protocol for the preparation of bis(2-sulfanylethyl)amino polystyrene resin as a starting point for the synthesis of C-terminal bis(2-sulfanylethyl)amido peptides and of peptide thioesters derived from 3-mercaptopropionic acid. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.

  8. Stereoselective Total Synthesis of (±)-5- epi-Cyanthiwigin I via an Intramolecular Pauson-Khand Reaction as the Key Step.

    PubMed

    Chang, Yuanyuan; Shi, Linlin; Huang, Jun; Shi, Lili; Zhang, Zichun; Hao, Hong-Dong; Gong, Jianxian; Yang, Zhen

    2018-05-09

    A convenient approach to the construction of the 5-6-7 tricarbocyclic fused core structure of cyanthiwigins via a Co-mediated Pauson-Khand reaction as a key step has been developed. The cyathane core intermediate obtained by this strategy was used in the concise synthesis of (±)-5- epi-cyanthiwigin I. The developed chemistry paves the way for the total synthesis of structurally diverse cyanthiwigins.

  9. A direct method for the synthesis of orthogonally protected furyl- and thienyl- amino acids.

    PubMed

    Hudson, Alex S; Caron, Laurent; Colgin, Neil; Cobb, Steven L

    2015-04-01

    The synthesis of unnatural amino acids plays a key part in expanding the potential application of peptide-based drugs and in the total synthesis of peptide natural products. Herein, we report a direct method for the synthesis of orthogonally protected 5-membered heteroaromatic amino acids.

  10. An efficient preparation of labelling precursor of [11C]L-deprenyl-D2 and automated radiosynthesis.

    PubMed

    Zirbesegger, Kevin; Buccino, Pablo; Kreimerman, Ingrid; Engler, Henry; Porcal, Williams; Savio, Eduardo

    2017-01-01

    The synthesis of [ 11 C]L-deprenyl-D 2 for imaging of astrocytosis with positron emission tomography (PET) in neurodegenerative diseases has been previously reported. [ 11 C]L-deprenyl-D 2 radiosynthesis requires a precursor, L-nordeprenyl-D 2 , which has been previously synthesized from L-amphetamine as starting material with low overall yields. Here, we present an efficient synthesis of L-nordeprenyl-D 2 organic precursor as free base and automated radiosynthesis of [ 11 C]L-deprenyl-D 2 for PET imaging of astrocytosis. The L-nordeprenyl-D 2 precursor was synthesized from the easily commercial available and cheap reagent L-phenylalanine in five steps. Next, N -alkylation of L-nordeprenyl-D 2 free base with [ 11 C]MeOTf was optimized using the automated commercial platform GE TRACERlab® FX C Pro. A simple and efficient synthesis of L-nordeprenyl-D 2 precursor of [ 11 C]L-deprenyl-D 2 as free base has been developed in five synthetic steps with an overall yield of 33%. The precursor as free base has been stable for 9 months stored at low temperature (-20 °C). The labelled product was obtained with 44 ± 13% ( n  = 12) (end of synthesis, decay corrected) radiochemical yield from [ 11 C]MeI after 35 min synthesis time. The radiochemical purity was over 99% in all cases and specific activity was (170 ± 116) GBq/μmol. A high-yield synthesis of [ 11 C]L-deprenyl-D 2 has been achieved with high purity and specific activity. L-nordeprenyl-D 2 precursor as free amine was applicable for automated production in a commercial synthesis module for preclinical and clinical application.

  11. Thickness-self-controlled synthesis of porous transparent polyaniline-reduced graphene oxide composites towards advanced bifacial dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Sheng; Li, Shin-Ming; Hsiao, Sheng-Tsung; Liao, Wei-Hao; Yang, Shin-Yi; Tien, Hsi-Wen; Ma, Chen-Chi M.; Hu, Chi-Chang

    2014-08-01

    A powerful synthesis strategy is proposed for fabricating porous polyaniline-reduced graphene oxide (PANI-RGO) composites with transparency up to 80% and thickness from 300 to 1000 nm for the counter electrode (CE) of bifacial dye-sensitizing solar cells (DSSCs). The first step is to combine the in-situ positive charge transformation of graphene oxide (GO) through aniline (ANI) prepolymerization and the electrostatic adsorption of ANI oligomer-GO to effectively control the thickness of ultrathin PANI-GO films by adjusting pH of the polymerization media. In the second step, PANI-GO films are reduced with hydroiodic acid to simultaneously enhance the apparent redox activity for the I3-/I- couple and their electronic conductivity. Incorporating the RGO increases the transparency of PANI and facilitates the light-harvesting from the rear side. A DSSC assembled with such a transparent PANI-RGO CE exhibits an excellent efficiency of 7.84%, comparable to 8.19% for a semi-transparent Pt-based DSSC. The high light-harvesting ability of PANI-RGO enhances the efficiency retention between rear- and front-illumination modes to 76.7%, compared with 69.1% for a PANI-based DSSC. The higher retention reduces the power-to-weight ratio and the total cost of bifacial DSSCs, which is also promising in other applications, such as windows, power generators, and panel screens.

  12. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient.

    PubMed

    Gutfleisch, Oliver; Willard, Matthew A; Brück, Ekkes; Chen, Christina H; Sankar, S G; Liu, J Ping

    2011-02-15

    A new energy paradigm, consisting of greater reliance on renewable energy sources and increased concern for energy efficiency in the total energy lifecycle, has accelerated research into energy-related technologies. Due to their ubiquity, magnetic materials play an important role in improving the efficiency and performance of devices in electric power generation, conditioning, conversion, transportation, and other energy-use sectors of the economy. This review focuses on the state-of-the-art hard and soft magnets and magnetocaloric materials, with an emphasis on their optimization for energy applications. Specifically, the impact of hard magnets on electric motor and transportation technologies, of soft magnetic materials on electricity generation and conversion technologies, and of magnetocaloric materials for refrigeration technologies, are discussed. The synthesis, characterization, and property evaluation of the materials, with an emphasis on structure-property relationships, are discussed in the context of their respective markets, as well as their potential impact on energy efficiency. Finally, considering future bottlenecks in raw materials, options for the recycling of rare-earth intermetallics for hard magnets will be discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Municipal wastewater biological nutrient removal driven by the fermentation liquid of dairy wastewater.

    PubMed

    Liu, Hui; Chen, Yinguang; Wu, Jiang

    2017-11-01

    Carbon substrate is required by biological nutrient removal (BNR) microorganism, but it is usually insufficient in the influent of many municipal wastewater treatment plants. In this study the use of ethanol-enriched fermentation liquid, which was derived from dairy wastewater, as the preferred carbon substrate of BNR was reported. First, the application of dairy wastewater and food processing wastewater and their fermentation liquid as the carbon substrate of BNR was compared in the short-term tests. The fermented wastewater showed higher BNR performance than the unfermented one, and the fermentation liquid of dairy wastewater (FL-DW), which was obtained under pH 8 and fermentation time of 6 day, exhibited the highest phosphorus (95.5%) and total nitrogen (97.6%) removal efficiencies due to its high ethanol content (57.9%). Then, the long-term performance of FL-DW acting as the carbon substrate of BNR was compared with that of acetate and ethanol, and the FL-DW showed the greatest phosphorus and total nitrogen removal. Further investigation showed that the use of FL-DW caused the highest polyhydroxyalkanoates (PHAs) synthesis in BNR microbial cells, and more PHAs were used for phosphorus uptake and denitrification rather than glycogen synthesis and microbial growth. The FL-DW can be used as a preferred carbon substrate for BNR microbes. AB: aerobic end sludge active biomass; BNR: biological nutrient removal; DW: dairy wastewater; FL-DW: fermentation liquid of dairy wastewater; FPW: food processing wastewater; FL-FPW: fermentation liquid of food processing wastewater; PHAs: polyhydroxyalkanoates; PHB: poly-3-hydroxybutyrate; PHV: poly-3-hydroxyvalerate; PH2MV: poly-3-hydroxy-2- methylvalerate; PAOs: phosphorus accumulating organisms; SBR: sequencing batch reactor; SOP: soluble ortho-phosphorus; TN: total nitrogen; TSS: total suspended solids; VSS: volatile suspended solids; VFAs: volatile fatty acids; WWTPs: wastewater treatment plants.

  14. Synthesis of Magnetic Rattle-Type Silica with Controllable Magnetite and Tunable Size by Pre-Shell-Post-Core Method.

    PubMed

    Chen, Xue; Tan, Longfei; Meng, Xianwei

    2016-03-01

    In this study, we have developed the pre-shell-post-core route to synthesize the magnetic rattle-type silica. This method has not only simplified the precursor's process and reduced the reacting time, but also ameliorated the loss of magnetite and made the magnetite content and the inner core size controllable and tunable. The magnetite contents and inner core size can be easily controlled by changing the type and concentration of alkali, reaction system and addition of water. The results show that alkali aqueous solution promotes the escape of the precursor iron ions from the inner space of rattle-type silica and results in the loss of magnetite. In this case, NaOH ethanol solution is better for the formation of magnetite than ammonia because it not only offers an appropriate alkalinity to facilitate the synthesis of. magnetic particles, but also avoids the escape of the iron ions from the mesopores of rattle-type silica. The synthesis process is very simple and efficient, and it takes no more than 2 hours to complete the total preparation and handling of the magnetic rattle-type silica. The end-product Fe3O4@SiO2 nanocomposites also have good magnetic properties which will perform potential application in biomedical science.

  15. Coal-to-methanol: an engineering evaluation of Texaco gasification and ICI methanol-synthesis route. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckingham, P.A.; Cobb, D.D.; Leavitt, A.A.

    1981-08-01

    This report presents the results of a technical and economic evaluation of producing methanol from bituminous coal using Texaco coal gasification and ICI methanol synthesis. The scope of work included the development of an overall configuration for a large plant comprising coal preparation, air separation, coal gasification, shift conversion, COS hydrolysis, acid gas removal, methanol synthesis, methanol refining, and all required utility systems and off-site facilities. Design data were received from both Texaco and ICI while a design and cost estimate were received from Lotepro covering the Rectisol acid gas removal unit. The plant processes 14,448 tons per day (drymore » basis) of Illinois No. 6 bituminous coal and produces 10,927 tons per day of fuel-grade methanol. An overall thermal efficiency of 57.86 percent was calculated on an HHV basis and 52.64 percent based on LHV. Total plant investment at an Illinois plant site was estimated to be $1159 million dollars in terms of 1979 investment. Using EPRI's economic premises, the first-year product costs were calculated to $4.74 per million Btu (HHV) which is equivalent to $30.3 cents per gallon and $5.37 per million Btu (LHV).« less

  16. Improved Synthesis of Caged Glutamate and Caging Each Functional Group.

    PubMed

    Guruge, Charitha; Ouedraogo, Yannick P; Comitz, Richard L; Ma, Jingxuan; Losonczy, Attila; Nesnas, Nasri

    2018-05-25

    Glutamate is an excitatory neurotransmitter that controls numerous pathways in the brain. Neuroscientists make use of photoremovable protecting groups, also known as cages, to release glutamate with precise spatial and temporal control. Various cage designs have been developed and among the most effective has been the nitroindolinyl caging of glutamate. We, hereby, report an improved synthesis of one of the current leading molecules of caged glutamate, 4-carboxymethoxy-5,7-dinitroindolinyl glutamate (CDNI-Glu), which possesses efficiencies with the highest reported quantum yield of at least 0.5. We present the shortest route, to date, for the synthesis of CDNI-Glu in 4 steps, with a total reaction time of 40 h and an overall yield of 20%. We also caged glutamate at the other two functional groups, thereby, introducing two new cage designs: α-CDNI-Glu and N-CDNI-Glu. We included a study of their photocleavage properties using UV-vis, NMR, as well as a physiology experiment of a two-photon uncaging of CDNI-Glu in acute hippocampal brain slices. The newly introduced cage designs may have the potential to minimize the interference that CDNI-Glu has with the GABA A receptor. We are broadly disseminating this to enable neuroscientists to use these photoactivatable tools.

  17. High-yielding continuous-flow synthesis of antimalarial drug hydroxychloroquine

    PubMed Central

    Telang, Nakul S; Kong, Caleb J; Verghese, Jenson; Gilliland III, Stanley E; Ahmad, Saeed; Dominey, Raymond N

    2018-01-01

    Numerous synthetic methods for the continuous preparation of fine chemicals and active pharmaceutical ingredients (API’s) have been reported in recent years resulting in a dramatic improvement in process efficiencies. Herein we report a highly efficient continuous synthesis of the antimalarial drug hydroxychloroquine (HCQ). Key improvements in the new process include the elimination of protecting groups with an overall yield improvement of 52% over the current commercial process. The continuous process employs a combination of packed bed reactors with continuous stirred tank reactors for the direct conversion of the starting materials to the product. This high-yielding, multigram-scale continuous synthesis provides an opportunity to achieve increase global access to hydroxychloroquine for treatment of malaria. PMID:29623120

  18. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage

    NASA Astrophysics Data System (ADS)

    Raja, K.; Saravanakumar, A.; Vijayakumar, R.

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.

  19. Invited review: Current representation and future trends of predicting amino acid utilization in the lactating dairy cow.

    PubMed

    Arriola Apelo, S I; Knapp, J R; Hanigan, M D

    2014-07-01

    In current dairy production systems, an average of 25% of dietary N is captured in milk, with the remainder being excreted in urine and feces. About 60% of total N losses occur postabsorption. Splanchnic tissues extract a fixed proportion of total inflow of each essential AA (EAA). Those EAA removed by splanchnic tissues and not incorporated into protein are subjected to catabolism, with the resulting N converted to urea. Splanchnic affinity varies among individual EAA, from several fold lower than mammary glands' affinity for the branched-chain AA to similar or higher affinity for Phe, Met, His, and Arg. On average, 85% of absorbed EAA appear in peripheral circulation, indicating that first-pass removal is not the main source of loss. Essential AA in excess of the needs of the mammary glands return to general circulation. High splanchnic blood flow dictates that a large proportion of EAA that return to general circulation flow through splanchnic tissues. In association with this constant recycling, EAA are removed and catabolized by splanchnic tissues. This results in splanchnic catabolism equaling or surpassing the use of many EAA for milk protein synthesis. Recent studies have demonstrated that EAA, energy substrates, and hormones activate signaling pathways that in turn regulate local blood flow, tissue extraction of EAA, and rates of milk protein synthesis. These recent findings would allow manipulation of dairy diets to maximize mammary uptake of EAA and reduce catabolism by splanchnic tissues. Dairy cattle nutrient requirement systems consider EAA requirements in aggregate as metabolizable protein (MP) and assume a fixed efficiency of MP use for milk protein. Lysine and Met sufficiency is only considered after MP requirements have been met. By doing so, requirement systems limit the scope of diet manipulation to achieve improved gross N efficiency. Therefore, this review focuses on understanding the dynamics of EAA metabolism in mammary and splanchnic tissues that would lead to improved requirement prediction systems. Inclusion of variable individual EAA efficiencies derived from splanchnic and mammary responses to nutrient and hormonal signals should help reduce dietary protein levels. Supplementing reduced crude protein diets with individual EAA should increase gross N efficiency to more than 30%, reducing N excretion by the US dairy industry by 92,000 t annually. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Highly efficient molybdenum-based catalysts for enantioselective alkene metathesis

    PubMed Central

    Malcolmson, Steven J.; Meek, Simon J.; Sattely, Elizabeth S.; Schrock, Richard R.; Hoveyda, Amir H.

    2009-01-01

    Discovery of efficient catalysts is one of the most compelling objectives of modern chemistry. Chiral catalysts are in particularly high demand, as they facilitate synthesis of enantiomerically enriched small molecules that are critical to developments in medicine, biology and materials science1. Especially noteworthy are catalysts that promote—with otherwise inaccessible efficiency and selectivity levels—reactions demonstrated to be of great utility in chemical synthesis. Here we report a class of chiral catalysts that initiate alkene metathesis1 with very high efficiency and enantioselectivity. Such attributes arise from structural fluxionality of the chiral catalysts and the central role that enhanced electronic factors have in the catalytic cycle. The new catalysts have a stereogenic metal centre and carry only monodentate ligands; the molybdenum-based complexes are prepared stereoselectively by a ligand exchange process involving an enantiomerically pure aryloxide, a class of ligands scarcely used in enantioselective catalysis2,3. We demonstrate the application of the new catalysts in an enantioselective synthesis of the Aspidosperma alkaloid, quebrachamine, through an alkene metathesis reaction that cannot be promoted by any of the previously reported chiral catalysts. PMID:19011612

  1. Total synthesis of steroids and heterosteroids from BISTRO.

    PubMed

    Ibrahim-Ouali, Malika

    2015-06-01

    Due to their high profile biological activity, the steroids are among the most important secondary metabolites. A review of literature on the total synthesis of steroids starting from BISTRO (1,8-bis(trimethylsilyl)-2,6-octadiene) is presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. An Eco-Friendly Improved Protocol for the Synthesis of Bis(3-indolyl)methanes Using Poly(4-vinylpyridinium)hydrogen Sulfate as Efficient, Heterogeneous, and Recyclable Solid Acid Catalyst

    PubMed Central

    Banothu, Janardhan; Gali, Rajitha; Velpula, Ravibabu; Bavantula, Rajitha; Crooks, Peter A.

    2013-01-01

    Highly efficient and eco-friendly protocol for the synthesis of bis(3-indolyl)methanes by the electrophilic substitution reaction of indole with aldehydes catalyzed by poly(4-vinylpyridinium)hydrogen sulfate was described. Excellent yields, shorter reaction times, simple work-up procedure, avoiding hazardous organic solvents, and reusability of the catalyst are the most obvious advantages of this method. PMID:24052864

  3. Reaction of cytidine nucleotides with cyanoacetylene: support for the intermediacy of nucleoside-2',3'-cyclic phosphates in the prebiotic synthesis of RNA.

    PubMed

    Crowe, Michael A; Sutherland, John D

    2006-06-01

    A robust and prebiotically plausible synthesis of RNA is a key requirement of the "RNA World" hypothesis, but, to date, no such synthesis has been demonstrated. Monomer synthesis strategies involving attachment of preformed nucleobases to sugars have failed, and, even if activated 5'-nucleotides could be made, the hydrolysis of these intermediates in water makes their efficient oligomerisation appear unlikely. We recently reported a synthesis of cytidine-2',3'-cyclic phosphate 1 (C>p) in which the nucleobase was assembled in stages on a sugar-phosphate template. However, 2',3'-cyclic nucleotides (N>p's) also undergo hydrolysis, in this case giving a mixture of the 2'- and 3'-monophosphates. This hydrolysis has previously been seen as making the, otherwise promising, oligomerisation of N>p's seem as unlikely as that of the 5'-activated nucleotides. We now find that cyanoacetylene, the reagent used for the second stage of nucleobase assembly in the synthesis of C>p, also reverses the effect of the hydrolysis by driving efficient cyclisation of C2'p and C3'p back to C>p. Excess cyanoacetylene also derivatises the nucleobase, but this modification is reversible at neutral pH. These findings significantly strengthen the case for N>p's in a prebiotic synthesis of RNA.

  4. Total synthesis of (±)-antroquinonol d.

    PubMed

    Sulake, Rohidas S; Jiang, Yan-Feng; Lin, Hsiao-Han; Chen, Chinpiao

    2014-11-21

    Total synthesis of (±)-antroquinonol D, which is isolated from very expensive and rarely found Antrodia camphorata and which has potential anticancer properties, was achieved from 4-methoxyphenol. In addition, a Michael addition to dimethoxy cyclohexadienones was studied. The main step involved chelation and substrate-controlled diastereoselective reduction of cyclohexenone and lactonization. Lactone synthesis facilitated the diastereoselective reduction of ketone, which help control the desired stereochemistry at the crucial stereogenic center in the natural product. Other key reactions in the synthesis involved a Michael addition of dimethyl malonate on cyclohexadienone, dihydroxylation, and Wittig olefination. A sesquiterpene side chain was synthesized through coupling with geranyl phenyl sulfide and Bouveault-Blanc reduction.

  5. Effect of supplementation of mustard oil cake on intake, digestibility and microbial protein synthesis of cattle in a straw-based diet in Bangladesh.

    PubMed

    Khandaker, Zahirul Haque; Uddin, Mohammad Mohi; Sultana, Nadira; Peters, Kurt J

    2012-04-01

    The objective of this study was to analyse the effects of different levels of rumen-degradable protein (RDP) on intake, digestibility and microbial protein synthesis by supplementing mustard oil cake (MOC) on rice straw-based diet of cattle (Bos indicus) in Bangladesh. A 4 × 4 Latin square design was applied. Four diets having constant energy (7.0 MJ/kg of dry matter (DM)) with varying levels of RDP (M(0) = 4.1 g/MJ (control), M(1) = 6.3 g/MJ, M(2) = 8.3 g/MJ and M(3) = 12.4 g/MJ of metabolizable energy (ME)) were received by each animal for a period of 28 days. A metabolism trial was conducted for 7 days. Results indicate that with increasing levels of RDP, crude protein (CP) and RDP intake increased significantly (P < 0.01). The significant (P < 0.01) increase in digestibility values are obtained for DM, organic matter, CP and digestible organic matter in the rumen. The digestibility of neutral detergent fibre and acid detergent fibre was also increased significantly (P < 0.05). The total nitrogen (N), ammonia-N and total volatile fatty acids increase significantly (P < 0.01) while the rumen pH increased from M(0) to M(2) and decreased thereafter. The efficiency microbial N intake increased significantly (P < 0.01) but showed a curvilinear response with higher RDP level (12.40 g/RDP/MJ ME). This study concludes that supplementation of RDP from MOC enhances the intake, digestibility and microbial protein synthesis which ultimately increases utilization of low-quality feed resources that can be used for developing cost-effective feeding systems on a straw-based diet in tropical regions.

  6. Stereospecific synthesis of syn-α-oximinoamides by a three-component reaction of isocyanides, syn-chlorooximes, and carboxylic acids.

    PubMed

    Pirali, Tracey; Mossetti, Riccardo; Galli, Simona; Tron, Gian Cesare

    2011-07-15

    A stereospecific multicomponent reaction among isocyanides, syn-chlorooximes, and carboxylic acids provides an efficient synthesis of biologically relevant syn-α-oximinoamides. © 2011 American Chemical Society

  7. Investigation of innovative synthesis of biologically active compounds on the basis of newly developed reactions.

    PubMed

    Honda, Toshio

    2012-01-01

    Synthesis of biologically active compounds, including natural products and pharmaceutical agents, is an important and interesting research area since the large structural diversity and complexity of bioactive compounds make them an important source of leads and scaffolds in drug discovery and development. Many structurally and also biologically interesting compounds, including marine natural products, have been isolated from nature and have also been prepared on the basis of a computational design for the purpose of developing medicinal chemistry. In order to obtain a wide variety of derivatives of biologically active compounds from the viewpoint of medicinal chemistry, it is essential to establish efficient synthetic procedures for desired targets. Newly developed reactions should also be used for efficient synthesis of desired compounds. Thus, recent progress in the synthesis of biologically active compounds by focusing on the development of new reactions is summarized in this review article.

  8. Elucidating the reaction pathways in the synthesis of organolead trihalide perovskite for high-performance solar cells.

    PubMed

    Wang, Baohua; Young Wong, King; Xiao, Xudong; Chen, Tao

    2015-05-28

    The past two years have witnessed unprecedentedly rapid development of organic-inorganic halide perovskite-based solar cells. The solution-processability and high efficiency make this technology extraordinarily attractive. The intensive investigations have accumulated rich experiences in the perovskite fabrication; while the mechanism of the chemical synthesis still remains unresolved. Here, we set up the chemical equation of the synthesis and elucidate the reactions from both thermodynamic and kinetic perspectives. Our study shows that gaseous products thermodynamically favour the reaction, while the activation energy and "collision" probability synergistically determine the reaction rate. These understandings enable us to finely tune the crystal size for high-quality perovskite film, leading to a record fill factor among similar device structures in the literature. This investigation provides a general strategy to explore the mechanism of perovskite synthesis and benefits the fabrication of high-efficiency perovskite photoactive layer.

  9. Producing a glycosylating Escherichia coli cell factory: The placement of the bacterial oligosaccharyl transferase pglB onto the genome.

    PubMed

    Strutton, Benjamin; Jaffé, Stephen R P; Pandhal, Jagroop; Wright, Phillip C

    2018-01-01

    Although Escherichia coli has been engineered to perform N-glycosylation of recombinant proteins, an optimal glycosylating strain has not been created. By inserting a codon optimised Campylobacter oligosaccharyltransferase onto the E. coli chromosome, we created a glycoprotein platform strain, where the target glycoprotein, sugar synthesis and glycosyltransferase enzymes, can be inserted using expression vectors to produce the desired homogenous glycoform. To assess the functionality and glycoprotein producing capacity of the chromosomally based OST, a combined Western blot and parallel reaction monitoring mass spectrometry approach was applied, with absolute quantification of glycoprotein. We demonstrated that chromosomal oligosaccharyltransferase remained functional and facilitated N-glycosylation. Although the engineered strain produced less total recombinant protein, the glycosylation efficiency increased by 85%, and total glycoprotein production was enhanced by 17%. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production.

    PubMed

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Chandra, Ceria; Doan, Yen T T; Ma, Yiwei; Zheng, Hongli; Cheng, Sibo; Griffith, Richard; Chen, Paul; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Gislerød, Hans R; Ruan, Roger

    2015-12-01

    In this work, Chlorella sp. (UM6151) was selected to treat meat processing wastewater for nutrient removal and biomass production. To balance the nutrient profile and improve biomass yield at low cost, an innovative algae cultivation model based on wastewater mixing was developed. The result showed that biomass yield (0.675-1.538 g/L) of algae grown on mixed wastewater was much higher than that on individual wastewater and artificial medium. Wastewater mixing eased the bottleneck for algae growth and contributed to the improved biomass yield. Furthermore, in mixed wastewater with sufficient nitrogen, ammonia nitrogen removal efficiencies (68.75-90.38%) and total nitrogen removal efficiencies (30.06-50.94%) were improved. Wastewater mixing also promoted the synthesis of protein in algal cells. Protein content of algae growing on mixed wastewater reached 60.87-68.65%, which is much higher than that of traditional protein source. Algae cultivation model based on wastewater mixing is an efficient and economical way to improve biomass yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Is there no end to the total syntheses of strychnine? Lessons to be learned for strategy and tactics in total synthesis**

    PubMed Central

    Cannon, Jeffrey S.; Overman, Larry E.

    2013-01-01

    From the 19th century to the present, the complex indole alkaloid strychnine has engaged the chemical community. In this review, we examine why strychnine has been and remains today an important target for directed synthesis efforts. A selection of the diverse syntheses of strychnine is discussed with the aim of identifying their influence on the evolution of the strategy and tactics of organic synthesis. PMID:22431197

  12. Total synthesis of the proposed structure of trichodermatide A.

    PubMed

    Myers, Eddie; Herrero-Gómez, Elena; Albrecht, Irina; Lachs, Jennifer; Mayer, Peter; Hanni, Matti; Ochsenfeld, Christian; Trauner, Dirk

    2014-10-17

    A short total synthesis of the published structure of racemic trichodermatide A is reported. Our synthesis involves a Knoevenagel condensation/Michael addition sequence, followed by the formation of tricyclic hexahydroxanthene-dione and a diastereoselective bis-hydroxylation. The final product, the structure of which was confirmed by X-ray crystallography, has NMR spectra that are very similar, but not identical, to those of the isolated natural product. Quantum chemically computed (13)C shifts agree well with the present NMR measurements.

  13. The formal total synthesis of (+/-)-strychnine via a cobalt-mediated [2 + 2 + 2]cycloaddition.

    PubMed

    Eichberg, M J; Dorta, R L; Lamottke, K; Vollhardt, K P

    2000-08-10

    A short, highly convergent total synthesis of racemic isostrychnine, and thus strychnine, has been completed. The route involves 14 steps in the longest linear sequence and is highlighted by a cobalt-mediated [2 + 2 + 2]cycloaddition of an alkynylindole nucleus to acetylene.

  14. The total chemical synthesis of the monoglycosylated GM2 ganglioside activator using a novel cysteine surrogate.

    PubMed

    Sato, Kohei; Kitakaze, Keisuke; Nakamura, Takahiro; Naruse, Naoto; Aihara, Keisuke; Shigenaga, Akira; Inokuma, Tsubasa; Tsuji, Daisuke; Itoh, Kohji; Otaka, Akira

    2015-06-21

    We describe a novel peptide ligation/desulfurization strategy using a β-mercapto-N-glycosylated asparagine derivative. The newly developed procedure was successfully applied to the total chemical synthesis of the GM2 ganglioside activator protein bearing a monosaccharide on the native glycosylation site.

  15. Total synthesis of nepetoidin B

    USDA-ARS?s Scientific Manuscript database

    The total synthesis of nepetoidin B (the 2-(3,4-dihydroxyphenyl)ethenyl ester of 3-(3,4-dihydroxy¬phenyl)-2-propenoic acid) has been achieved in two steps from commercially available 1,5-bis(3,4-dimethoxyphenyl)-1,4-pentadien-3-one. Tetramethylated nepetoidin B was prepared directly by Baeyer-Villig...

  16. Efficient synthesis of gamma-lactams by a tandem reductive amination/lactamization sequence.

    PubMed

    Nöth, Julica; Frankowski, Kevin J; Neuenswander, Benjamin; Aubé, Jeffrey; Reiser, Oliver

    2008-01-01

    A three-component method for the synthesis of highly substituted gamma-lactams from readily available maleimides, aldehydes, and amines is described. A new reductive amination/intramolecular lactamization sequence provides a straightforward route to the lactam products in a single manipulation. The general utility of this method is demonstrated by the parallel synthesis of a gamma-lactam library.

  17. Musical sound analysis/synthesis using vector-quantized time-varying spectra

    NASA Astrophysics Data System (ADS)

    Ehmann, Andreas F.; Beauchamp, James W.

    2002-11-01

    A fundamental goal of computer music sound synthesis is accurate, yet efficient resynthesis of musical sounds, with the possibility of extending the synthesis into new territories using control of perceptually intuitive parameters. A data clustering technique known as vector quantization (VQ) is used to extract a globally optimum set of representative spectra from phase vocoder analyses of instrument tones. This set of spectra, called a Codebook, is used for sinusoidal additive synthesis or, more efficiently, for wavetable synthesis. Instantaneous spectra are synthesized by first determining the Codebook indices corresponding to the best least-squares matches to the original time-varying spectrum. Spectral index versus time functions are then smoothed, and interpolation is employed to provide smooth transitions between Codebook spectra. Furthermore, spectral frames are pre-flattened and their slope, or tilt, extracted before clustering is applied. This allows spectral tilt, closely related to the perceptual parameter ''brightness,'' to be independently controlled during synthesis. The result is a highly compressed format consisting of the Codebook spectra and time-varying tilt, amplitude, and Codebook index parameters. This technique has been applied to a variety of harmonic musical instrument sounds with the resulting resynthesized tones providing good matches to the originals.

  18. Synthesis of Oligosaccharides Derived from Lactulose (OsLu) Using Soluble and Immobilized Aspergillus oryzae β-Galactosidase

    PubMed Central

    Cardelle-Cobas, Alejandra; Olano, Agustin; Irazoqui, Gabriela; Giacomini, Cecilia; Batista-Viera, Francisco; Corzo, Nieves; Corzo-Martínez, Marta

    2016-01-01

    β-Galactosidase from Aspergillus oryzae offers a high yield for the synthesis of oligosaccharides derived from lactulose (OsLu) by transgalactosylation. Oligosaccharides with degree of polymerization (DP) ≥ 3 have shown to possess higher in vitro bifidogenic effect than di- and tetrasaccharides. Thus, in this work, an optimization of reaction conditions affecting the specific selectivity of A. oryzae β-galactosidase for synthesis of OsLu has been carried out to enhance OsLu with DP ≥ 3 production. Assays with β-galactosidase immobilized onto a glutaraldehyde–agarose support were also carried out with the aim of making the process cost-effective and industrially viable. Optimal conditions with both soluble and immobilized enzyme for the synthesis of OsLu with DP ≥ 3 were 50 °C, pH 6.5, 450 g/L of lactulose, and 8 U/mL of enzyme, reaching yields of ca. 50% (w/v) of total OsLu and ca. 20% (w/v) of OsLu with DP 3, being 6′-galactosyl-lactulose the major one, after a short reaction time. Selective formation of disaccharides, however, was favored at 60 °C, pH 4.5, 450 g/L of lactulose and 8 U/mL of enzyme. Immobilization increased the enzymatic stability to temperature changes and allowed to reuse the enzyme. We can conclude that the use, under determined optimal conditions, of the A. oryzae β-galactosidase immobilized on a support of glutaraldehyde–agarose constitutes an efficient and cost-effective alternative to the use of soluble β-galactosidases for the synthesis of prebiotic OsLu mixtures. PMID:27014684

  19. A review on green synthesis of silver nanoparticles and their applications.

    PubMed

    Rafique, Muhammad; Sadaf, Iqra; Rafique, M Shahid; Tahir, M Bilal

    2017-11-01

    Development of reliable and eco-accommodating methods for the synthesis of nanoparticles is a vital step in the field of nanotechnology. Silver nanoparticles are important because of their exceptional chemical, physical, and biological properties, and hence applications. In the last decade, numerous efforts were made to develop green methods of synthesis to avoid the hazardous byproducts. This review describes the methods of green synthesis for Ag-NPs and their numerous applications. It also describes the comparison of efficient synthesis methods via green routes over physical and chemical methods, which provide strong evidence for the selection of suitable method for the synthesis of Ag-NPs.

  20. Nonenzymatic synthesis of RNA and DNA oligomers on hexitol nucleic acid templates: the importance of the A structure

    NASA Technical Reports Server (NTRS)

    Kozlov, I. A.; Politis, P. K.; Van Aerschot, A.; Busson, R.; Herdewijn, P.; Orgel, L. E.; Bada, J. L. (Principal Investigator); Dolan, M. (Principal Investigator)

    1999-01-01

    Hexitol nucleic acid (HNA) is an analogue of DNA containing the standard nucleoside bases, but with a phosphorylated 1,5-anhydrohexitol backbone. HNA oligomers form duplexes having the nucleic acid A structure with complementary DNA or RNA oligomers. The HNA decacytidylate oligomer is an efficient template for the oligomerization of the 5'-phosphoroimidazolides of guanosine or deoxyguanosine. Comparison of the oligomerization efficiencies on HNA, RNA, and DNA decacytidylate templates under various conditions suggests strongly that only nucleic acid double helices with the A structure support efficient template-directed synthesis when 5'-phosphoroimidazolides of nucleosides are used as substrates.

  1. Natural Products Synthesis: Enabling Tools to Penetrate Nature’s Secrets of Biogenesis and Biomechanism†

    PubMed Central

    Williams, Robert M.

    2011-01-01

    Selected examples from our laboratory of how synthetic technology platforms developed for the total synthesis of several disparate families of natural products was harnessed to penetrate biomechanistic and/or biosynthetic queries is discussed. Unexpected discoveries of biomechanistic reactivity and/or penetrating the biogenesis of naturally occurring substances were made possible through access to substances available only through chemical synthesis. Hypothesis-driven total synthesis programs are emerging as very useful conceptual templates for penetrating and exploiting the inherent reactivity of biologically active natural substances. In many instances, new enabling synthetic technologies were required to be developed. The examples demonstrate the often un-tapped richness of complex molecule synthesis to provide powerful tools to understand, manipulate and exploit Nature’s vast and creative palette of secondary metabolites. PMID:21438619

  2. Compound Synthesis or Growth and Development of Roots/Stomata Regulate Plant Drought Tolerance or Water Use Efficiency/Water Uptake Efficiency.

    PubMed

    Meng, Lai-Sheng

    2018-04-11

    Water is crucial to plant growth and development because it serves as a medium for all cellular functions. Thus, the improvement of plant drought tolerance or water use efficiency/water uptake efficiency is important in modern agriculture. In this review, we mainly focus on new genetic factors for ameliorating drought tolerance or water use efficiency/water uptake efficiency of plants and explore the involvement of these genetic factors in the regulation of improving plant drought tolerance or water use efficiency/water uptake efficiency, which is a result of altered stomata density and improving root systems (primary root length, hair root growth, and lateral root number) and enhanced production of osmotic protectants, which is caused by transcription factors, proteinases, and phosphatases and protein kinases. These results will help guide the synthesis of a model for predicting how the signals of genetic and environmental stress are integrated at a few genetic determinants to control the establishment of either water use efficiency or water uptake efficiency. Collectively, these insights into the molecular mechanism underpinning the control of plant drought tolerance or water use efficiency/water uptake efficiency may aid future breeding or design strategies to increase crop yield.

  3. Stereoselective synthesis of novel highly substituted isochromanone and isoquinolinone-containing exocyclic tetrasubstituted alkenes.

    PubMed

    Arthuis, Martin; Pontikis, Renée; Florent, Jean-Claude

    2009-03-06

    An efficient synthetic route toward the synthesis of highly substituted arylethylidene-isoquinolinones/isochromanones is reported. The tandem carbopalladation/Suzuki-Miyaura coupling sequence stereoselectively provided various functionalized polycyclic compounds in moderate to excellent yields.

  4. A facile and eco-friendly synthesis of diarylthiazoles and diarylimidazoles in water

    EPA Science Inventory

    A simple, efficient and high yielding greener protocol for the synthesis of substituted thiazoles and imidazoles is described that utilizes the reaction of readily available α-tosyloxy ketones with variety of thioamides/amidines in water

  5. Catalyst-Free Difunctionalization of Activated Alkenes in Water: Efficient Synthesis of β-Keto Sulfides and Sulfones.

    PubMed

    Wang, Huamin; Wang, Guangyu; Lu, Qingquan; Chiang, Chien-Wei; Peng, Pan; Zhou, Jiufu; Lei, Aiwen

    2016-10-04

    Difunctionalization of activated alkenes, a powerful strategy in chemical synthesis, has been accomplished for direct synthesis of a series of β-keto sulfides and β-keto sulfones. The transformation, mediated by O2 , proceeds smoothly in water and without any catalyst. Prominent advantages of this method include mild reaction conditions, purification simplicity, and gram-scale synthesis, underlining the practical utility of this methodology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. An efficient synthesis strategy for metal-organic frameworks: Dry-gel synthesis of MOF-74 framework with high yield and improved performance

    DOE PAGES

    Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor; ...

    2016-06-16

    Here, vapor-assisted dry-gel synthesis of MOF-74 structure, specifically NiMOF-74 from its synthetic precursors, was conducted with high yield and improved performance showing promise for gas (CO 2) and water adsorption applications. Unlike conventional synthesis, which takes 72 h, this kinetic study showed that NiMOF-74 forms within 12 h under dry-gel conditions with similar performance characteristics and exhibits the best performance characteristics after 48 h of heating.

  7. Modal control theory and application to aircraft lateral handling qualities design

    NASA Technical Reports Server (NTRS)

    Srinathkumar, S.

    1978-01-01

    A multivariable synthesis procedure based on eigenvalue/eigenvector assignment is reviewed and is employed to develop a systematic design procedure to meet the lateral handling qualities design objectives of a fighter aircraft over a wide range of flight conditions. The closed loop modal characterization developed provides significant insight into the design process and plays a pivotal role in the synthesis of robust feedback systems. The simplicity of the synthesis algorithm yields an efficient computer aided interactive design tool for flight control system synthesis.

  8. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels.

    PubMed

    Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T

    2015-11-10

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  9. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    NASA Astrophysics Data System (ADS)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-11-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  10. Chemoselective synthesis of functional homocysteine residues in polypeptides and peptides.

    PubMed

    Gharakhanian, Eric G; Deming, Timothy J

    2016-04-18

    A methodology was developed for efficient, chemoselective transformation of methionine residues into stable, functional homocysteine derivatives. Methionine residues can undergo highly chemoselective alkylation reactions at low pH to yield stable sulfonium ions, which could then be selectively demethylated to give stable alkyl homocysteine residues. This mild, two-step process is chemoselective, efficient, tolerates many functional groups, and provides a means for creation of new functional biopolymers, site-specific peptide tagging, and synthesis of biomimetic and structural analogs of peptides.

  11. Indirect synthesis of multi-degree of freedom transient systems. [linear programming for a kinematically linear system

    NASA Technical Reports Server (NTRS)

    Pilkey, W. D.; Chen, Y. H.

    1974-01-01

    An indirect synthesis method is used in the efficient optimal design of multi-degree of freedom, multi-design element, nonlinear, transient systems. A limiting performance analysis which requires linear programming for a kinematically linear system is presented. The system is selected using system identification methods such that the designed system responds as closely as possible to the limiting performance. The efficiency is a result of the method avoiding the repetitive systems analyses accompanying other numerical optimization methods.

  12. ACCESS 1: Approximation Concepts Code for Efficient Structural Synthesis program documentation and user's guide

    NASA Technical Reports Server (NTRS)

    Miura, H.; Schmit, L. A., Jr.

    1976-01-01

    The program documentation and user's guide for the ACCESS-1 computer program is presented. ACCESS-1 is a research oriented program which implements a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and general mathematical programming algorithms are applied in the design optimization procedure. Implementation of the computer program, preparation of input data and basic program structure are described, and three illustrative examples are given.

  13. Protein Synthesis in Mucin-Producing Tissues Is Conserved When Dietary Threonine Is Limiting in Piglets.

    PubMed

    Munasinghe, Lalani L; Robinson, Jason L; Harding, Scott V; Brunton, Janet A; Bertolo, Robert F

    2017-02-01

    The neonatal gastrointestinal tract extracts the majority of dietary threonine on the first pass to maintain synthesis of threonine-rich mucins in mucus. As dietary threonine becomes limiting, this extraction must limit protein synthesis in extraintestinal tissues at the expense of maintaining protein synthesis in mucin-producing tissues. The objective was to determine the dietary threonine concentration at which protein synthesis is reduced in various tissues. Twenty Yucatan miniature piglets (10 females; mean ± SD age, 15 ± 1 d; mean ± SD weight, 3.14 ± 0.30 kg) were fed 20 test diets with different threonine concentrations, from 0.5 to 6.0 g/100 g total amino acids (AAs; i.e., 20-220% of requirement), and various tissues were analyzed for protein synthesis by administering a flooding dose of [ 3 H]phenylalanine. The whole-body requirement was determined by [1- 14 C]phenylalanine oxidation and plasma threonine concentrations. Breakpoint analysis indicated a whole-body requirement of 2.8-3.0 g threonine/100 g total AAs. For all of the non-mucin-producing tissues as well as lung and colon, breakpoint analyses indicated decreasing protein synthesis rates below the following concentrations (expressed in g threonine/100 g total AAs; mean ± SE): gastrocnemius muscle, 1.76 ± 0.23; longissimus dorsi muscle, 2.99 ± 0.50; liver, 2.45 ± 0.60; kidney, 3.81 ± 0.97; lung, 1.95 ± 0.14; and colon, 1.36 ± 0.29. Protein synthesis in the other mucin-producing tissues (i.e., stomach, proximal jejunum, midjejunum, and ileum) did not change with decreasing threonine concentrations, but mucin synthesis in the ileum and colon decreased over threonine concentrations <4.54 ± 1.50 and <3.20 ± 4.70 g/100 g total AAs, respectively. The results of this study illustrate that dietary threonine is preferentially used for protein synthesis in gastrointestinal tissues in piglets. If dietary threonine intake is deficient, then muscle growth and the functions of other tissues are likely compromised at the expense of maintenance of the mucus layer in mucin-producing tissues. © 2017 American Society for Nutrition.

  14. WRINKLED1 Rescues Feedback Inhibition of Fatty Acid Synthesis in Hydroxylase-Expressing Seeds1[OPEN

    PubMed Central

    Browse, John

    2016-01-01

    Previous attempts at engineering Arabidopsis (Arabidopsis thaliana) to produce seed oils containing hydroxy fatty acids (HFA) have resulted in low yields of HFA compared with the native castor (Ricinus communis) plant and caused undesirable effects, including reduced total oil content. Recent studies have led to an understanding of problems involved in the accumulation of HFA in oils of transgenic plants, which include metabolic bottlenecks and a decrease in the rate of fatty acid synthesis. Focusing on engineering the triacylglycerol assembly mechanisms led to modest increases in the HFA content of seed oil, but much room for improvement still remains. We hypothesized that engineering fatty acid synthesis in the plastids to increase flux would facilitate enhanced total incorporation of fatty acids, including HFA, into seed oil. The transcription factor WRINKLED1 (WRI1) positively regulates the expression of genes involved in fatty acid synthesis and controls seed oil levels. We overexpressed Arabidopsis WRI1 in seeds of a transgenic line expressing the castor fatty acid hydroxylase. The proportion of HFA in the oil, the total HFA per seed, and the total oil content of seeds increased to an average of 20.9%, 1.26 µg, and 32.2%, respectively, across five independent lines, compared with 17.6%, 0.83 µg, and 27.9%, respectively, for isogenic segregants. WRI1 and WRI1-regulated genes involved in fatty acid synthesis were up-regulated, providing for a corresponding increase in the rate of fatty acid synthesis. PMID:27208047

  15. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis

    DOE PAGES

    Kitano, Masaaki; Kanbara, Shinji; Inoue, Yasunori; ...

    2015-03-30

    We actively sough novel approaches to efficient ammonia synthesis at an ambient pressure so as to reduce the cost of ammonia production and to allow for compact production facilities. It is accepted that the key is the development of a high-performance catalyst that significantly enhances dissociation of the nitrogen-nitrogen triple bond, which is generally considered a rate-determining step. Here we examine the kinetics of nitrogen and hydrogen isotope exchange and hydrogen adsorption/desorption reactions for a recently discovered efficient catalyst for ammonia synthesis --ruthenium-loaded 12CaO∙7AI 2O 3 electride (Ru/C12A7:more » $$\\bar{e}$$ )--and find that the rate controlling step of ammonia synthesis over Ru/C12A7:$$\\bar{e}$$ is not dissociation of the nitrogen-nitrogen triple bond but the subsequent formation of N-H n species. A mechanism of ammonia synthesis involving reversible storage and release of hydrogen atoms on the Ru/C12A7:$$\\bar{e}$$ surface is proposed on the basis of observed hydrogen adsorption/desorption kinetics.« less

  16. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitano, Masaaki; Kanbara, Shinji; Inoue, Yasunori

    We actively sough novel approaches to efficient ammonia synthesis at an ambient pressure so as to reduce the cost of ammonia production and to allow for compact production facilities. It is accepted that the key is the development of a high-performance catalyst that significantly enhances dissociation of the nitrogen-nitrogen triple bond, which is generally considered a rate-determining step. Here we examine the kinetics of nitrogen and hydrogen isotope exchange and hydrogen adsorption/desorption reactions for a recently discovered efficient catalyst for ammonia synthesis --ruthenium-loaded 12CaO∙7AI 2O 3 electride (Ru/C12A7:more » $$\\bar{e}$$ )--and find that the rate controlling step of ammonia synthesis over Ru/C12A7:$$\\bar{e}$$ is not dissociation of the nitrogen-nitrogen triple bond but the subsequent formation of N-H n species. A mechanism of ammonia synthesis involving reversible storage and release of hydrogen atoms on the Ru/C12A7:$$\\bar{e}$$ surface is proposed on the basis of observed hydrogen adsorption/desorption kinetics.« less

  17. Synthesis of the human insulin gene. Part III. Chemical synthesis of 5'-phosphomonoester group containing deoxyribooligonucleotides by the modified phosphotriester method. Its application in the synthesis of seventeen fragments constituting human insulin C-chain DNA.

    PubMed Central

    Hsiung, H M; Sung, W L; Brousseau, R; Wu, R; Narang, S A

    1980-01-01

    A method for phosphorylating a protected deoxyribooligonucleotide containing phosphotriester linkages is described. The modified phosphotriester method of chemical synthesis is further refined in terms of (i) better final deblocking conditions and (ii) new chromatography solvent systems containing acetone-water-ethyl acetate to yield pure oligomers. The effectiveness of these improvements has been demonstrated in the rapid and efficient synthesis of seventeen fragments constituting the sequence of human insulin C-chain DNA. Images PMID:7008029

  18. Rate in template-directed polymer synthesis.

    PubMed

    Saito, Takuya

    2014-06-01

    We discuss the temporal efficiency of template-directed polymer synthesis, such as DNA replication and transcription, under a given template string. To weigh the synthesis speed and accuracy on the same scale, we propose a template-directed synthesis (TDS) rate, which contains an expression analogous to that for the Shannon entropy. Increasing the synthesis speed accelerates the TDS rate, but the TDS rate is lowered if the produced sequences are diversified. We apply the TDS rate to some production system models and investigate how the balance between the speed and the accuracy is affected by changes in the system conditions.

  19. Energy efficiency in nanoscale synthesis using nanosecond plasmas.

    PubMed

    Pai, David Z; Ken Ostrikov, Kostya; Kumar, Shailesh; Lacoste, Deanna A; Levchenko, Igor; Laux, Christophe O

    2013-01-01

    We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO₃ nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges.

  20. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage.

    PubMed

    Raja, K; Saravanakumar, A; Vijayakumar, R

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Harnessing Thin-Film Continuous-Flow Assembly Lines.

    PubMed

    Britton, Joshua; Castle, Jared W; Weiss, Gregory A; Raston, Colin L

    2016-07-25

    Inspired by nature's ability to construct complex molecules through sequential synthetic transformations, an assembly line synthesis of α-aminophosphonates has been developed. In this approach, simple starting materials are continuously fed through a thin-film reactor where the intermediates accrue molecular complexity as they progress through the flow system. Flow chemistry allows rapid multistep transformations to occur via reaction compartmentalization, an approach not amenable to using conventional flasks. Thin film processing can also access facile in situ solvent exchange to drive reaction efficiency, and through this method, α-aminophosphonate synthesis requires only 443 s residence time to produce 3.22 g h(-1) . Assembly-line synthesis allows unprecedented reaction flexibility and processing efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Total synthesis and stereochemical assignment of the spiroisoxazoline natural product (+)-calafianin.

    PubMed

    Bardhan, Sujata; Schmitt, Daniel C; Porco, John A

    2006-03-02

    Synthesis of the spiroisoxazoline natural product (+)-calafianin is reported using asymmetric nucleophilic epoxidation and nitrile oxide cycloaddition as key steps. Synthesis and spectral analysis of all calafianin stereoisomers led to unambiguous assignment of relative and absolute stereochemistry.

  3. Stereoselective total synthesis of Oxylipin from open chain gluco-configured building block.

    PubMed

    Borkar, Santosh Ramdas; Aidhen, Indrapal Singh

    2017-04-18

    Total synthesis of naturally occurring Oxylipin has been achieved from open chain gluco-configured building block which is readily assembled from inexpensive and commercially available D-(+)-gluconolactone. Grignard reaction and Wittig olefination reactions are key steps for the requisite CC bond formation. Copyright © 2017. Published by Elsevier Ltd.

  4. Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting.

    PubMed

    Fominykh, Ksenia; Chernev, Petko; Zaharieva, Ivelina; Sicklinger, Johannes; Stefanic, Goran; Döblinger, Markus; Müller, Alexander; Pokharel, Aneil; Böcklein, Sebastian; Scheu, Christina; Bein, Thomas; Fattakhova-Rohlfing, Dina

    2015-05-26

    Efficient electrochemical water splitting to hydrogen and oxygen is considered a promising technology to overcome our dependency on fossil fuels. Searching for novel catalytic materials for electrochemical oxygen generation is essential for improving the total efficiency of water splitting processes. We report the synthesis, structural characterization, and electrochemical performance in the oxygen evolution reaction of Fe-doped NiO nanocrystals. The facile solvothermal synthesis in tert-butanol leads to the formation of ultrasmall crystalline and highly dispersible FexNi1-xO nanoparticles with dopant concentrations of up to 20%. The increase in Fe content is accompanied by a decrease in particle size, resulting in nonagglomerated nanocrystals of 1.5-3.8 nm in size. The Fe content and composition of the nanoparticles are determined by X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy measurements, while Mössbauer and extended X-ray absorption fine structure analyses reveal a substitutional incorporation of Fe(III) into the NiO rock salt structure. The excellent dispersibility of the nanoparticles in ethanol allows for the preparation of homogeneous ca. 8 nm thin films with a smooth surface on various substrates. The turnover frequencies (TOF) of these films could be precisely calculated using a quartz crystal microbalance. Fe0.1Ni0.9O was found to have the highest electrocatalytic water oxidation activity in basic media with a TOF of 1.9 s(-1) at the overpotential of 300 mV. The current density of 10 mA cm(-2) is reached at an overpotential of 297 mV with a Tafel slope of 37 mV dec(-1). The extremely high catalytic activity, facile preparation, and low cost of the single crystalline FexNi1-xO nanoparticles make them very promising catalysts for the oxygen evolution reaction.

  5. Effect of Different Agrobacterium rhizogenes Strains on Hairy Root Induction and Phenylpropanoid Biosynthesis in Tartary Buckwheat (Fagopyrum tataricum Gaertn)

    PubMed Central

    Thwe, Aye; Valan Arasu, Mariadhas; Li, Xiaohua; Park, Chang Ha; Kim, Sun Ju; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2016-01-01

    The development of an efficient protocol for successful hairy root induction by Agrobacterium rhizogenes is the key step toward an in vitro culturing method for the mass production of secondary metabolites. The selection of an effective Agrobacterium strain for the production of hairy roots is highly plant species dependent and must be determined empirically. Therefore, our goal was to investigate the transformation efficiency of different A. rhizogenes strains for the induction of transgenic hairy roots in Fagopyrum tataricum ‘Hokkai T10’ cultivar; to determine the expression levels of the polypropanoid biosynthetic pathway genes, such as ftpAL, FtC4H, Ft4CL, FrCHS, FrCH1, FrF3H, FtFLS1, FtFLS2, FtF3, H1, FtF3′H2, FtANS, and FtDFR; and to quantify the in vitro synthesis of phenolic compounds and anthocyanins. Among different strains, R1000 was the most promising candidate for hairy root stimulation because it induced the highest growth rate, root number, root length, transformation efficiency, and total anthocyanin and rutin content. The R1000, 15834, and A4 strains provided higher transcript levels for most metabolic pathway genes for the synthesis of rutin (22.31, 15.48, and 13.04 μg/mg DW, respectively), cyanidin 3-O-glucoside (800, 750, and 650 μg/g DW, respectively), and cyanidin 3-O-rutinoside (2410, 1530, and 1170 μg/g DW, respectively). A suitable A. rhizogenes strain could play a vital role in the fast growth of the bulk amount of hairy roots and secondary metabolites. Overall, R1000 was the most promising strain for hairy root induction in buckwheat. PMID:27014239

  6. Ceramic oxygen transport membrane array reactor and reforming method

    DOEpatents

    Kelly, Sean M.; Christie, Gervase Maxwell; Rosen, Lee J.; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-09-27

    A commercially viable modular ceramic oxygen transport membrane reforming reactor for producing a synthesis gas that improves the thermal coupling of reactively-driven oxygen transport membrane tubes and catalyst reforming tubes required to efficiently and effectively produce synthesis gas.

  7. Enantioselective synthesis of spirooxoindoles via chiral auxiliary (bicyclic lactam) controlled SNAr reactions.

    PubMed

    Sen, Subhabrata; Potti, Venkata R; Surakanti, Ramu; Murthy, Y L N; Pallepogu, Raghavaiah

    2011-01-21

    A highly efficient enantioselective S(N)Ar reaction of chiral acyl bicyclic lactam with substituted-2,4-dinitrobenzenes was developed, affording products containing quarternary stereogenic centers. They are further utilized towards an enantioselective synthesis of spirooxoindoles.

  8. Enantioselective total synthesis of (-)-strychnine using the catalytic asymmetric Michael reaction and tandem cyclization.

    PubMed

    Ohshima, Takashi; Xu, Youjun; Takita, Ryo; Shimizu, Satoshi; Zhong, Dafang; Shibasaki, Masakatsu

    2002-12-11

    The enantioselective total synthesis of (-)-strychnine was accomplished through the use of the highly practical catalytic asymmetric Michael reaction (0.1 mol % of (R)-ALB, more than kilogram scale, without chromatography, 91% yield and >99% ee) as well as a tandem cyclization that simultaneously constructed B- and D-rings (>77% yield). Moreover, newly developed reaction conditions for thionium ion cyclization, NaBH3CN reduction of the imine moiety in the presence of Lewis acid to prevent ring opening reaction, and chemoselective reduction of the thioether (desulfurization) in the presence of exocyclic olefin were pivotal to complete the synthesis. The described chemistry paves the way for the synthesis of more advanced Strychnos alkaloids.

  9. Total Synthesis of Ionic Liquid Systems for Dissolution of Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Sharpe, Robert J.; Karr, Laurel J.; Paley, Mark S.

    2010-01-01

    For purposes of Space Resource Utilization, work in the total synthesis of a new ionic liquid system for the extraction of oxygen and metals from lunar soil is studied and described. Reactions were carried out according to procedures found in the chemical literature, analyzed via Thin-Layer Chromatography and 1H Nuclear Magnetic Resonance Spectroscopy and purified via vacuum distillation and rotary evaporation. Upon final analysis via 1H NMR, it was found that while the intermediates of the synthesis had been achieved, unexpected side products were also present. The mechanisms and constraints of the synthesis are described as well as the final results of the project and recommendations for continued study

  10. Synthesis of substituted tetrahydroisoquinolines by lithiation then electrophilic quench.

    PubMed

    Talk, Ruaa A; Duperray, Alexia; Li, Xiabing; Coldham, Iain

    2016-06-07

    Substituted N-tert-butoxycarbonyl (Boc)-1,2,3,4-tetrahydroisoquinolines were prepared and treated with n-butyllithium in THF at -50 °C to test the scope of the metallation and electrophilic quench. The lithiation was optimised by using in situ ReactIR spectroscopy and the rate of rotation of the carbamate was determined. The 1-lithiated intermediates could be trapped with a variety of electrophiles to give good yields of 1-substituted tetrahydroisoquinoline products. Treatment with acid or reduction with LiAlH4 allows conversion to the N-H or N-Me compound. The chemistry was applied to the efficient total syntheses of the alkaloids (±)-crispine A and (±)-dysoxyline.

  11. 7alpha- and 12alpha-Hydroxysteroid dehydrogenases from Acinetobacter calcoaceticus lwoffii: a new integrated chemo-enzymatic route to ursodeoxycholic acid.

    PubMed

    Giovannini, Pier Paolo; Grandini, Alessandro; Perrone, Daniela; Pedrini, Paola; Fantin, Giancarlo; Fogagnolo, Marco

    2008-12-22

    We report the very efficient biotransformation of cholic acid to 7-keto- and 7,12-diketocholic acids with Acinetobacter calcoaceticus lwoffii. The enzymes responsible of the biotransformation (i.e. 7alpha- and 12alpha-hydroxysteroid dehydrogenases) are partially purified and employed in a new chemo-enzymatic synthesis of ursodeoxycholic acid starting from cholic acid. The first step is the 12alpha-HSDH-mediated total oxidation of sodium cholate followed by the Wolf-Kishner reduction of the carbonyl group to chenodeoxycholic acid. This acid is then quantitatively oxidized with 7alpha-HSDH to 7-ketochenodeoxycholic acid, that was chemically reduced to ursodeoxycholic acid (70% overall yield).

  12. Biocompatible artificial DNA linker that is read through by DNA polymerases and is functional in Escherichia coli

    PubMed Central

    El-Sagheer, Afaf H.; Sanzone, A. Pia; Gao, Rachel; Tavassoli, Ali; Brown, Tom

    2011-01-01

    A triazole mimic of a DNA phosphodiester linkage has been produced by templated chemical ligation of oligonucleotides functionalized with 5′-azide and 3′-alkyne. The individual azide and alkyne oligonucleotides were synthesized by standard phosphoramidite methods and assembled using a straightforward ligation procedure. This highly efficient chemical equivalent of enzymatic DNA ligation has been used to assemble a 300-mer from three 100-mer oligonucleotides, demonstrating the total chemical synthesis of very long oligonucleotides. The base sequences of the DNA strands containing this artificial linkage were copied during PCR with high fidelity and a gene containing the triazole linker was functional in Escherichia coli. PMID:21709264

  13. Time Course of the Response of Myofibrillar and Sarcoplasmic Protein Metabolism to Unweighting of the Soleus Muscle

    NASA Technical Reports Server (NTRS)

    Munoz, Kathryn A.; Satarug, Soisungwan; Tischler, Marc E.

    1993-01-01

    Contributions of altered in vivo protein synthesis and degradation to unweighting atrophy of the soleus muscle in tail-suspended young female rats were analyzed daily for up to 6 days. Specific changes in myofibrillar and sarcoplasmic proteins were also evaluated to assess their contributions to the loss of total protein. Synthesis of myofibrillar and sarcoplasmic proteins was estimated by intramuscular (IM) injection and total protein by intraperitoneal (IP) injection of flooding doses of H-3-phenylaianine. Total protein loss was greatest during the first 3 days following suspension and was a consequence of the loss of myofibrillar rather than sarcoplasmic proteins. However, synthesis of total myofibrillar and sarcoplasmic proteins diminished in parallel beginning in the first 24 hours. Therefore sarcoplasmic proteins must be spared due to a decrease in their degradation. In contrast, myofibrillar protein degradation increased, thus explaining the elevated degradation of the total pool. Following 72 hours of suspension, protein synthesis remained low, but the rate of myofibrillar protein loss diminished, suggesting a slowing of degradation. These various results show acute loss of protein during unweighting atrophy is a consequence of decreased synthesis and increased degradation of myofibrillar proteins, and sarcoplasmic proteins are spared due to slower degradation, likely explaining the sparing of plasma membrane receptors. Based on other published data, we propose that the slowing of atrophy after the initial response may be attributed to an increased effect of insulin.

  14. One-pot green synthesis of doxorubicin loaded-silica nanoparticles for in vivo cancer therapy.

    PubMed

    Jiang, Shan; Hua, Li; Guo, Zilong; Sun, Lin

    2018-09-01

    The present work reveals a new and simple one-pot green method to load doxorubicin (DOX) drugs in silica nanoparticles for efficient in vivo cancer therapy. The synthesis of DOX loaded silica nanoparticles (SiNPs/DOX) is based on the efficient encapsulation of DOX in surfactant Tween 80 micelles which act as a template for the formation of silica nanoparticles. The release profile, cellular uptake behavior, cytotoxicity and antitumor effect of SiNPs/DOX nanoparticles were investigated and compared to free DOX. The silica nanoparticles improved the cellular drug delivery efficiency and exhibited high cytotoxicity, successfully achieving the inhibition of tumor growth. Notably, the tumor size and weight of SiNPs/DOX group was 2-fold and 1.7-fold smaller than that of free DOX group, and 4-fold and 2-fold smaller than that of PBS group. The one-pot green synthesis system may have the potential to be developed as a promising drug delivery system. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Palladium-catalyzed one-pot three- or four-component coupling of aryl iodides, alkynes, and amines through C-N bond cleavage: efficient synthesis of indole derivatives.

    PubMed

    Hao, Wei; Geng, Weizhi; Zhang, Wen-Xiong; Xi, Zhenfeng

    2014-02-24

    An efficient synthesis of N-substituted indole derivatives was realized by combining the Pd-catalyzed one-pot multicomponent coupling approach with cleavage of the C(sp(3))-N bonds. Three or four components of aryl iodides, alkynes, and amines were involved in this coupling process. The cyclopentadiene-phosphine ligand showed high efficiency. A variety of aryl iodides, including cyclic and acyclic tertiary amino aryl iodides, and substituted 1-bromo-2-iodobenzene derivatives could be used. Both symmetric and unsymmetric alkynes substituted with alkyl, aryl, or trimethylsilyl groups could be applied. Cyclic secondary amines such as piperidine, morpholine, 4-methylpiperidine, 1-methylpiperazine, 2-methylpiperidine, and acyclic amines including secondary and primary amines all showed good reactivity. Further application of the resulting indole derivatives was demonstrated by the synthesis of benzosilolo[2,3-b]indole. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Two-dimensional parallel array technology as a new approach to automated combinatorial solid-phase organic synthesis

    PubMed

    Brennan; Biddison; Frauendorf; Schwarcz; Keen; Ecker; Davis; Tinder; Swayze

    1998-01-01

    An automated, 96-well parallel array synthesizer for solid-phase organic synthesis has been designed and constructed. The instrument employs a unique reagent array delivery format, in which each reagent utilized has a dedicated plumbing system. An inert atmosphere is maintained during all phases of a synthesis, and temperature can be controlled via a thermal transfer plate which holds the injection molded reaction block. The reaction plate assembly slides in the X-axis direction, while eight nozzle blocks holding the reagent lines slide in the Y-axis direction, allowing for the extremely rapid delivery of any of 64 reagents to 96 wells. In addition, there are six banks of fixed nozzle blocks, which deliver the same reagent or solvent to eight wells at once, for a total of 72 possible reagents. The instrument is controlled by software which allows the straightforward programming of the synthesis of a larger number of compounds. This is accomplished by supplying a general synthetic procedure in the form of a command file, which calls upon certain reagents to be added to specific wells via lookup in a sequence file. The bottle position, flow rate, and concentration of each reagent is stored in a separate reagent table file. To demonstrate the utility of the parallel array synthesizer, a small combinatorial library of hydroxamic acids was prepared in high throughput mode for biological screening. Approximately 1300 compounds were prepared on a 10 μmole scale (3-5 mg) in a few weeks. The resulting crude compounds were generally >80% pure, and were utilized directly for high throughput screening in antibacterial assays. Several active wells were found, and the activity was verified by solution-phase synthesis of analytically pure material, indicating that the system described herein is an efficient means for the parallel synthesis of compounds for lead discovery. Copyright 1998 John Wiley & Sons, Inc.

  17. Control of RNA synthesis in Escherichia coli after a shift to higher temperature.

    PubMed Central

    Ryals, J; Little, R; Bremer, H

    1982-01-01

    Parameters of RNA synthesis were measured after a temperature upshift in a pair of Escherichia coli B/r strains that are isogenic except for having relA and relA+ loci, to examine the cause for a reported anomaly in the correlation between guanosine tetraphosphate (ppGpp) and stable RNA (rRNA, tRNA) synthesis under such conditions. Two main results were: (i) the specific stable RNA gene activity (stable RNA per total RNA synthesis) correlated in the conventionally expected fashion with the level of ppGpp but was obscured by a nonspecific increase in the RNA chain elongation rate due to the higher temperature; (ii) the temperature upshift caused a transient reduction in the RNA polymerase activity (transcribing per total enzyme) that accounts for the previously observed oscillating RNA synthesis rate after a temperature shift. PMID:6179925

  18. Peer review of health research funding proposals: A systematic map and systematic review of innovations for effectiveness and efficiency

    PubMed Central

    Frampton, Geoff K.; Pickett, Karen; Wyatt, Jeremy C.

    2018-01-01

    Objective To investigate methods and processes for timely, efficient and good quality peer review of research funding proposals in health. Methods A two-stage evidence synthesis: (1) a systematic map to describe the key characteristics of the evidence base, followed by (2) a systematic review of the studies stakeholders prioritised as relevant from the map on the effectiveness and efficiency of peer review ‘innovations’. Standard processes included literature searching, duplicate inclusion criteria screening, study keyword coding, data extraction, critical appraisal and study synthesis. Results A total of 83 studies from 15 countries were included in the systematic map. The evidence base is diverse, investigating many aspects of the systems for, and processes of, peer review. The systematic review included eight studies from Australia, Canada, and the USA, evaluating a broad range of peer review innovations. These studies showed that simplifying the process by shortening proposal forms, using smaller reviewer panels, or expediting processes can speed up the review process and reduce costs, but this might come at the expense of peer review quality, a key aspect that has not been assessed. Virtual peer review using videoconferencing or teleconferencing appears promising for reducing costs by avoiding the need for reviewers to travel, but again any consequences for quality have not been adequately assessed. Conclusions There is increasing international research activity into the peer review of health research funding. The studies reviewed had methodological limitations and variable generalisability to research funders. Given these limitations it is not currently possible to recommend immediate implementation of these innovations. However, many appear promising based on existing evidence, and could be adapted as necessary by funders and evaluated. Where feasible, experimental evaluation, including randomised controlled trials, should be conducted, evaluating impact on effectiveness, efficiency and quality. PMID:29750807

  19. Synthesis of heterocycles: Indolo (2,1-a) isoquinolines, renewables, and aptamer ligands for cellular imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beasley, Jonathan

    2013-01-01

    In this thesis, we explore both total syntheses and methodologies of several aromatic heterocyclic molecules. Extensions of the Kraus indole synthesis toward 2-substituted and 2,3-disubstituted indoles, as well as biologically attractive indolo[2,1-a]isoquinolines are described. Recent renewable efforts directed to commodity maleic acid and the first reported furan-based ionic liquids are described. Our total synthesis of mRNA aptamer ligand PDC-Gly, and its dye coupled forms, plus aminoglycoside dye coupled ligands used in molecular imaging, are described.

  20. Total Synthesis of Strychnine.

    PubMed

    Lee, Geun Seok; Namkoong, Gil; Park, Jisook; Chen, David Y-K

    2017-11-16

    The total synthesis of the flagship Strychnos indole alkaloid, strychnine, has been accomplished. The developed synthetic sequence features a novel vinylogous 1,4-addition, a challenging iodinium salt mediated silyl enol ether arylation, a palladium-catalyzed Heck reaction, and a streamlined late-stage conversion to strychnine. Furthermore, an application of asymmetric counterion-directed catalysis (ACDC) in the context of target-oriented organic synthesis has been rendered access to an optically active material. The synthetic sequence described herein represents the most concise entry to optically active strychnine to date. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Is there no end to the total syntheses of strychnine? Lessons learned in strategy and tactics in total synthesis.

    PubMed

    Cannon, Jeffrey S; Overman, Larry E

    2012-04-27

    From the 19th century to the present, the complex indole alkaloid strychnine has engaged the chemical community. In this Review, we examine why strychnine has been and remains today an important target for directed synthesis efforts. A selection of the diverse syntheses of strychnine is discussed with the aim of identifying their influence on the evolution of the strategy and tactics of organic synthesis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The Catalytic Enantioselective Total Synthesis of (+)-Liphagal**

    PubMed Central

    Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.; Kolding, Helene; Alleva, Jennifer L.; Stoltz, Brian M.

    2012-01-01

    Ring a ding: The first catalytic enantioselective total synthesis of the meroterpenoid natural product (+)-liphagal is disclosed. The approach showcases a variety of technology including enantioselective enolate alkylation, a photochemical alkyne-alkene [2+2] reaction, microwave-assisted metal catalysis, and an intramolecular aryne capture cyclization reaction. Pivotal to the successful completion of the synthesis was a sequence involving ring expansion from a [6-5-4] tricycle to a [6-7] bicyclic core followed by stereoselective hydrogenation of a sterically occluded tri-substituted olefin to establish the trans homodecalin system found in the natural product. PMID:21671325

  3. Recent Advances in the Synthesis of Morphine and Related Alkaloids

    NASA Astrophysics Data System (ADS)

    Chida, Noritaka

    Morphine, an alkaloid isolated from the opium poppy, has been widely used as an analgesic, and has been a fascinating synthetic target of organic chemists. After the first total synthesis reported in 1952, a number of synthetic studies toward morphine have been reported, and findings obtained in such studies have greatly contributed to the progress of synthetic organic chemistry as well as medicinal chemistry. This review provides an overview of recent studies toward the total synthesis of morphine and related alkaloids. Work reported in the literature since 2004 will be reviewed.

  4. Development of a gene synthesis platform for the efficient large scale production of small genes encoding animal toxins.

    PubMed

    Sequeira, Ana Filipa; Brás, Joana L A; Guerreiro, Catarina I P D; Vincentelli, Renaud; Fontes, Carlos M G A

    2016-12-01

    Gene synthesis is becoming an important tool in many fields of recombinant DNA technology, including recombinant protein production. De novo gene synthesis is quickly replacing the classical cloning and mutagenesis procedures and allows generating nucleic acids for which no template is available. In addition, when coupled with efficient gene design algorithms that optimize codon usage, it leads to high levels of recombinant protein expression. Here, we describe the development of an optimized gene synthesis platform that was applied to the large scale production of small genes encoding venom peptides. This improved gene synthesis method uses a PCR-based protocol to assemble synthetic DNA from pools of overlapping oligonucleotides and was developed to synthesise multiples genes simultaneously. This technology incorporates an accurate, automated and cost effective ligation independent cloning step to directly integrate the synthetic genes into an effective Escherichia coli expression vector. The robustness of this technology to generate large libraries of dozens to thousands of synthetic nucleic acids was demonstrated through the parallel and simultaneous synthesis of 96 genes encoding animal toxins. An automated platform was developed for the large-scale synthesis of small genes encoding eukaryotic toxins. Large scale recombinant expression of synthetic genes encoding eukaryotic toxins will allow exploring the extraordinary potency and pharmacological diversity of animal venoms, an increasingly valuable but unexplored source of lead molecules for drug discovery.

  5. Chemical Synthesis of Complex Molecules Using Nanoparticle Catalysis

    PubMed Central

    Cong, Huan; Porco, John A.

    2011-01-01

    Nanoparticle catalysis has emerged as an active topic in organic synthesis. Of particular interest is the development of enabling methodologies to efficiently assemble complex molecules using nanoparticle catalysis. This Viewpoint highlights recent developments and discusses future perspectives in this emerging field. PMID:22347681

  6. A synthesis of the "state-of-the-practice for advancing planning and operations integration opportunities within transportation agencies".

    DOT National Transportation Integrated Search

    2014-12-01

    Linking Planning and Operations is vital to improving transportation decision-making and overall : efficiency of transportation systems management. This synthesis summarizes current state of : knowledge and practices in Planning and Operations Integr...

  7. Efficient synthesis of phosphatidylserine in 2-methyltetrahydrofuran.

    PubMed

    Duan, Zhang-Qun; Hu, Fei

    2013-01-10

    2-Methyltetrahydrofuran has recently been described as a promising and green solvent. Herein, it was successfully used as the reaction medium for enzyme-mediated transphosphatidylation of phosphatidylcholine with L-serine with the aim of phosphatidylserine synthesis for the first time. Our results indicated that as high as 90% yield of phosphatidylserine could be achieved after 12 h combined with no byproduct (phosphatidic acid) forming. The present work accommodated a facilely and efficiently enzymatic strategy for preparing phosphatidylserine, which possessed obvious advantages over the reported processes in terms of high efficiency and environmental friendliness. This work is also a proof-of-concept opening the use of 2-methyltetrahydrofuran in biosynthesis as well. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Are Polyphosphates or Phosphate Esters Prebiotic Reagents?

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.

    1995-01-01

    It is widely held that there was a phosphate compound in prebiotic chemistry that played the role of adenosine triphosphate and that the first living organisms had ribose-phosphate in the backbone of their genetic material. However, there are no known efficient prebiotic synthesis of high-energy phosphates or phosphate esters. We review the occurrence of phosphates in nature, the efficiency of the volcanic synthesis of P4O10, the efficiency of polyphosphate synthesis by heating phosphate minerals under geological conditions, and the use of high-energy organic compounds such as cyanamide or hydrogen cyanide. These are shown to be inefficient processes especially when the hydrolysis of the polyphosphates is taken into account. For example, if a whole atmosphere of methane or carbon monoxide were converted to cyanide which somehow synthesized polyphosphates quantitatively, the polyphosphate concentration in the ocean would still have been insignificant. We also attempted to find more efficient high-energy polymerizing agents by spark discharge syntheses, but without success. There may still be undiscovered robust prebiotic syntheses of polyphosphates, or mechanisms for concentrating them, but we conclude that phosphate esters may not have been constituents of the first genetic material. Phosphoanhydrides are also unlikely as prebiotic energy sources.

  9. Construction of 1,3,4-Oxadiazole and 1,3,4-Thiadiazole Library with a High Level of Skeletal Diversity Based on Branching Diversity-Oriented Synthesis on Solid-Phase Supports.

    PubMed

    Ha, Ji-Eun; Yang, Seung-Ju; Gong, Young-Dae

    2018-02-12

    An efficient solid-phase synthetic route for the construction of 1,3,4-oxadiazole and 1,3,4-thiadiazole libraries based on branching diversity-oriented synthesis (DOS) has been developed in this study. The core skeleton resins, 1,3,4-oxadiazole and 1,3,4-thiadiazole, were obtained through desulfurative and dehydrative cyclizations of thiosemicarbazide resin, respectively. Various functional groups have been introduced to the core skeleton resins, such as aryl, amine, amide, urea, thiourea, and an amino acid. Most of the libraries were purified by simple trituration without extraction or column chromatography after cleavage of the products from the solid-supported resin. As a result, we obtained high yields of pure 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives (total numbers = 128). Finally, we confirmed the drug-like properties of our library by calculation of physicochemical properties, displays of the skeletal diversities of the library in 3D-space, and occupation of a broad range of areas by their functional groups.

  10. Improvement of the BiOI photocatalytic activity optimizing the solvothermal synthesis

    NASA Astrophysics Data System (ADS)

    Mera, Adriana C.; Moreno, Yanko; Contreras, David; Escalona, Nestor; Meléndrez, Manuel F.; Mangalaraja, Ramalinga Viswanathan; Mansilla, Héctor D.

    2017-01-01

    BiOI nanostructured microspheres were obtained from the solvothermal synthesis route in the presence of ethylene glycol and KI as solvent and source of iodide, respectively. Optimal conditions for the synthesis were obtained by using multivariate analysis and choosing the photocatalytic oxidation rate constant of 3,4,5-trihydroxybenzoic acid (gallic acid) as response factor under simulated solar radiation. Response surface methodology (RSM) was used to determine the optimum values of the reaction time and temperature which were 18 h and 126 °C, respectively, to obtain the most active catalyst. In addition, BiOI synthesis using ionic liquid 1-butyl-3-methylimidazolium iodide ([bmim]I) as iodide source was also carried out for the comparison of microstructure and its photocatalytic efficiency. The obtained BiOI nanostructures were characterized by scanning electron microscopy (SEM) attached with energy dispersive spectrometer (EDS), nitrogen adsorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), Fourier transform infrared (FTIR) spectrometry, diffuse reflectance spectroscopy (DRS) and cyclic voltammetry (CV) analyses for their changes in morphological and structural behaviors. It was observed that the synthesis temperature of BiOI nanostructures strongly influenced the morphology, crystalline phase, surface area and electrochemical behavior, and thus affecting the photocatalytic efficiency. The higher photocatalytic removal of gallic acid (60%) was reached within 30 min of irradiation with UV-A on microspheres obtained with ionic liquid. The (1 1 0) crystal phase of BiOI influenced the photocatalytic efficiency.

  11. Enantioselective Total Synthesis of (−)-Minovincine in Nine Chemical Steps: An Approach to Ketone Activation in Cascade Catalysis

    PubMed Central

    Laforteza, Brian N.; Pickworth, Mark

    2014-01-01

    More cycling–fewer steps The first enantioselective total synthesis of (−)-minovincine has been accomplished in nine chemical steps and 13% overall yield. A novel, one-step Diels–Alder/β-elimination/conjugate addition organocascade sequence allowed rapid access to the central tetracyclic core in an asymmetric manner. PMID:24000234

  12. Total Synthesis of Jiadifenolide**

    PubMed Central

    Paterson, Ian; Xuan, Mengyang; Dalby, Stephen M

    2014-01-01

    As a potent neurotrophic agent, the sesquiterpenoid jiadifenolide represents a valuable small-molecule lead for the potential therapeutic treatment of neurodegenerative diseases. A stereocontrolled total synthesis of this densely functionalized natural product is reported, central to which is an adventurous samarium-mediated cyclization reaction to establish the tricyclic core and the adjacent C5 and C6 quaternary stereocenters. PMID:24861364

  13. Accessibility of selenomethionine proteins by total chemical synthesis: structural studies of human herpesvirus-8 MIP-II.

    PubMed

    Shao, W; Fernandez, E; Wilken, J; Thompson, D A; Siani, M A; West, J; Lolis, E; Schweitzer, B I

    1998-12-11

    The determination of high resolution three-dimensional structures by X-ray crystallography or nuclear magnetic resonance (NMR) is a time-consuming process. Here we describe an approach to circumvent the cloning and expression of a recombinant protein as well as screening for heavy atom derivatives. The selenomethionine-modified chemokine macrophage inflammatory protein-II (MIP-II) from human herpesvirus-8 has been produced by total chemical synthesis, crystallized, and characterized by NMR. The protein has a secondary structure typical of other chemokines and forms a monomer in solution. These results indicate that total chemical synthesis can be used to accelerate the determination of three-dimensional structures of new proteins identified in genome programs.

  14. Mechanisms of cardiac hypertrophy in canine volume overload

    NASA Technical Reports Server (NTRS)

    Matsuo, T.; Carabello, B. A.; Nagatomo, Y.; Koide, M.; Hamawaki, M.; Zile, M. R.; McDermott, P. J.

    1998-01-01

    This study tested whether the modest hypertrophy that develops in dogs in response to mitral regurgitation is due to a relatively small change in the rate of protein synthesis or, alternatively, is due to a decreased rate of protein degradation. After 3 mo of severe experimental mitral regurgitation, the left ventricular (LV) mass-to-body weight ratio increased by 23% compared with baseline values. This increase in LV mass occurred with a small, but not statistically significant, increase in the fractional rate of myosin heavy chain (MHC) synthesis (Ks), as measured using continuous infusion with [3H]leucine in dogs at 2 wk, 4 wk, and 3 mo after creation of severe mitral regurgitation. Translational efficiency was unaffected by mitral regurgitation as measured by the distribution of MHC mRNA in polysome gradients. Furthermore, there was no detectable increase in translational capacity as measured by either total RNA content or the rate of ribosome formation. These data indicate that translational mechanisms that accelerate the rate of cardiac protein synthesis are not responsive to the stimulus of mitral regurgitation. Most of the growth after mitral regurgitation was accounted for by a decrease in the fractional rate of protein degradation, calculated by subtracting fractional rates of protein accumulation at each time point from the corresponding Ks values. We conclude that 1) volume overload produced by severe mitral regurgitation does not trigger substantial increases in the rate of protein synthesis and 2) the modest increase in LV mass results primarily from a decrease in the rate of protein degradation.

  15. Developing Inhibitors of Translesion DNA Synthesis as Therapeutic Agents against Lung Cancer

    DTIC Science & Technology

    2015-12-01

    normal DNA synthesis. In contrast, pol eta shows a combination of high efficiency and low fidelity when replicating 8-oxo-G. These combined properties...are consistent with a pro- mutagenic role for pol eta when replicating this DNA lesion under cellular conditions. Studies with modified nucleotide...analogs indicate that pol eta relies heavily on hydrogen-bonding interactions during normal and translesion synthesis. However, some nucleobase

  16. Highly Efficient Flexible Hybrid Photovoltaic Cells Based on Low-Band-Gap Conjugated Polymers Sensitized by Nanoparticle-Grafted Carbon

    DTIC Science & Technology

    2010-09-01

    modeling, synthesis , and characterization of several series functional and processable electro-active conjugated polymers with evolving frontier...tasks as a basic obligation of this award: Task #1. Low Band Gap Polymers The awardee (Professor Sun’s group at NSU) shall design, synthesis , and...design, modeling, synthesis , and characterizations of several series functional and processable electro-active conjugated polymers with evolving

  17. Formal Synthesis of (±)-Aplykurodinone-1 through a Hetero-Pauson-Khand Cycloaddition Approach.

    PubMed

    Tao, Cheng; Zhang, Jing; Chen, Xiaoming; Wang, Huifei; Li, Yun; Cheng, Bin; Zhai, Hongbin

    2017-03-03

    The tricyclic intermediate 2 has been synthesized in eight steps from known compound 6 in 20% overall yield. As such, this constitutes a highly efficient formal synthesis of (±)-aplykurodinone-1. This synthesis features a unique, one-pot, intramolecular hetero-Pauson-Khand reaction (h-PKR)/desilylation sequence to expeditiously construct the tricyclic framework, providing valuable insights for expanding the scope and boundaries of h-PKR.

  18. Synthesis of boron nitride powders

    NASA Astrophysics Data System (ADS)

    Dreissig, Dirk Horst

    2002-09-01

    In the materials science community there is much interest in the development of new, efficient approaches for preparing ceramic powders having properties or performance characteristics not found with powders produced by traditional metallurgical synthesis methods. In this regard, aerosol-based syntheses are finding general acceptance for the preparation of non-metal and metal oxide powders. In contrast, much less effort has been given to aerosol-type syntheses for non-oxide powders despite potentially useful benefits. This dissertation describes the application of two chemical systems in aerosol assisted vapor phase synthesis (AAVS) for the preparation of spherical morphology boron oxynitride, BNxOy, powders that are subsequently converted to spherical morphology boron nitride in a second nitridation step. Chapter 1 describes the AAVS synthesis of BNxOy powders using a reaction of an aqueous boric acid containing aerosol with ammonia at 1000°C. The effect of reactor tube material, total gas flow rate, ammonia concentration, boric acid concentration, and urea addition to the boric acid aerosol on the percent oxygen composition is described. The resulting BNxOy powders contain significant amounts of oxygen that require replacement in a second stage nitridation reaction at elevated temperature under ammonia. The influences of the reaction temperature profile, crucible geometry and transformation additive on final oxygen composition and powder crystallinity are described. Chapter 2 outlines the formation of BNxOy powders from an AAVS reaction between the boron precursor (MeO)3B and ammonia. The formation of the powders is studied as a function of total gas flow rate and ammonia concentration. In all cases the resulting powders contain lower levels of oxygen compared to powders produced from aqueous boric acid aerosols. The conversion of the BNxOy powders in the second stage nitridation reaction with ammonia is examined as a function of crucible geometry, temperature profile and ammonia flow rate. In support of this process, the molecular reaction between (MeO)3B and NH3 was reexamined. The adduct, (MeO)3B·NH3, was isolated and its molecular structure determined by single crystal X-ray diffraction techniques. The results of these studies provide guidance for more detailed studies that should result in industrial scale synthesis of spherical morphology BN which currently is not formed by standard metallurgical syntheses. This new material has potential applications in several areas including the formation of BN loaded organic polymer composites.

  19. An efficient synthesis of tetramic acid derivatives with extended conjugation from L-Ascorbic Acid

    PubMed Central

    Singh, Biswajit K; Bisht, Surendra S; Tripathi, Rama P

    2006-01-01

    Background Tetramic acids with polyenyl substituents are an important class of compounds in medicinal chemistry. Both solid and solution phase syntheses of such molecules have been reported recently. Thiolactomycin, a clinical candidate for treatment of tuberculosis has led to further explorations in this class. We have recently developed an efficient synthesis of tetramic acids derivatives from L- ascorbic acid. In continuation of this work, we have synthesised dienyl tetramic acid derivatives. Results 5,6-O-Isopropylidene-ascorbic acid on reaction with DBU led to the formation of tetronolactonyl allyl alcohol, which on oxidation with pyridinium chlorochromate gave the respective tetranolactonyl allylic aldehydes. Wittig olefination followed by reaction of the resulting tetranolactonyl dienyl esters with different amines resulted in the respective 5-hydroxy lactams. Subsequent dehydration of the hydroxy lactams with p-toluene sulphonic acid afforded the dienyl tetramic acid derivatives. All reactions were performed at ambient temperature and the yields are good. Conclusion An efficient and practical method for the synthesis of dienyl tetramic acid derivatives from inexpensive and easily accessible ascorbic acid has been developed. The compounds bear structural similarities to the tetramic acid based polyenic antibiotics and thus this method offers a new and short route for the synthesis of tetramic acid derivatives of biological significance. PMID:17147830

  20. An efficient synthesis of tetramic acid derivatives with extended conjugation from L-ascorbic acid.

    PubMed

    Singh, Biswajit K; Bisht, Surendra S; Tripathi, Rama P

    2006-12-06

    Tetramic acids with polyenyl substituents are an important class of compounds in medicinal chemistry. Both solid and solution phase syntheses of such molecules have been reported recently. Thiolactomycin, a clinical candidate for treatment of tuberculosis has led to further explorations in this class. We have recently developed an efficient synthesis of tetramic acids derivatives from L-ascorbic acid. In continuation of this work, we have synthesised dienyl tetramic acid derivatives. 5,6-O-isopropylidene-ascorbic acid on reaction with DBU led to the formation of tetronolactonyl allyl alcohol, which on oxidation with pyridinium chlorochromate gave the respective tetranolactonyl allylic aldehydes. Wittig olefination followed by reaction of the resulting tetranolactonyl dienyl esters with different amines resulted in the respective 5-hydroxy lactams. Subsequent dehydration of the hydroxy lactams with p-toluene sulphonic acid afforded the dienyl tetramic acid derivatives. All reactions were performed at ambient temperature and the yields are good. An efficient and practical method for the synthesis of dienyl tetramic acid derivatives from inexpensive and easily accessible ascorbic acid has been developed. The compounds bear structural similarities to the tetramic acid based polyenic antibiotics and thus this method offers a new and short route for the synthesis of tetramic acid derivatives of biological significance.

  1. A concise synthesis of benzimidazoles via the microwave-assisted one-pot batch reaction of amino acids up to a 10-g scale.

    PubMed

    Peng, Pai; Xiong, Jin-Feng; Mo, Guang-Zhen; Zheng, Jia-Li; Chen, Ren-Hong; Chen, Xiao-Yun; Wang, Zhao-Yang

    2014-10-01

    An efficient method for the synthesis of aminomethyl benzimidazoles is developed by using a one-pot batch reaction between amino acids and o-phenylenediamines. This reaction proceeds smoothly in an unmodified household microwave oven, even though scale-up is to 10 g. A desirable method for the quick synthesis of benzimidazoles, which are used as a kind of important intermediates in drug synthesis, is provided by the scale-up utilization of amino acid resource.

  2. A Student Synthesis of the Housefly Sex Attractant.

    ERIC Educational Resources Information Center

    Cormier, Russell; And Others

    1979-01-01

    A novel and efficient (34 percent overall) multi-step synthesis of the housefly sex attractant, muscalure, is described. Each of the steps involves types of reactions with which the undergraduate student would be familiar after one-and-one-half semesters of organic chemistry. (BB)

  3. Facile synthesis of the cyclohexane fragment of enacloxins, a series of antibiotics isolated from Frateuria sp. W-315.

    PubMed

    Saito, Aki; Igarashi, Wataru; Furukawa, Hiroyuki; Yamada, Teiko; Kuwahara, Shigefumi; Kiyota, Hiromasa

    2014-01-01

    An efficient and good yield synthesis of the cyclohexane moiety of enacyloxins, a series of antibiotics isolated from Frateuria sp. W-315, was achieved from d-quinic acid using a successive Barton-McCombie deoxygenation.

  4. Synthesis and toughness properties of resins and composites

    NASA Technical Reports Server (NTRS)

    Johnston, N. J.

    1984-01-01

    Tensile and shear moduli of four ACEE (Aircraft Energy Efficiency Program) resins are presented along with ACEE composite material modulus predictions based on micromechanics. Compressive strength and fracture toughness of the resins and composites were discussed. In addition, several resin synthesis techniques are reviewed.

  5. Flow Chemistry for Designing Sustainable Chemical Synthesis (journal article)

    EPA Science Inventory

    An efficiently designed continuous flow chemical process can lead to significant advantages in developing a sustainable chemical synthesis or process. These advantages are the direct result of being able to impart a higher degree of control on several key reactor and reaction par...

  6. REVISITING NUCLEOPHILIC SUBSTITUTION REACTIONS: MICROWAVE-ASSISTED SYNTHESIS OF AZIDES, THIOCYANATES AND SULFONES IN AQUEOUS MEDIUM

    EPA Science Inventory

    A practical, rapid and efficient microwave (MW) promoted synthesis of various azides, thiocyanates and sulfones, is described in aqueous medium. This general and expeditious MW-enhanced nucleophilic substitution approach uses easily accessible starting materials such as halides o...

  7. NAP enzyme recruitment in simultaneous bioremediation and nanoparticles synthesis.

    PubMed

    Eltarahony, Marwa; Zaki, Sahar; Kheiralla, Zeinab; Abd-El-Haleem, Desouky

    2018-06-01

    The periplasmic nitrate reductase enzyme (NAP) has become attractive catalyst, whose exploitation has emerged as one of the indispensable strategies toward environmentally benign applications. To achieve them efficiently and overcome the sensitivity of NAP in harsh environmental circumstances, the immobilization for denitrifying bacteria and NAP enzyme for simultaneous bioremediation and bionanoparticles synthesis was studied. NAP catalyzed NO 3 - reduction at V max of 0.811 μM/min and K m of 14.02 mM. Concurrently, the immobilized MMT cells completely removed NO 3 - upon 192 h with AgNPs synthesis ranging from 23.26 to 58.14 nm as indicated by SEM. Wherase, immobilized NAP exhibited lower efficiency with 28.6% of NO 3 - elimination within 288 h and large aggregated AgNPs ranging from 94.44 nm to 172.22 nm. To the best of author knowledge, the immobilization for denitrifying bacteria and NAP enzyme for simultaneous bioremediation and bionanoparticles synthesis was not studied before.

  8. Synthesis of palladium nanoparticles with leaf extract of Chrysophyllum cainito (Star apple) and their applications as efficient catalyst for C-C coupling and reduction reactions

    NASA Astrophysics Data System (ADS)

    Majumdar, Rakhi; Tantayanon, Supawan; Bag, Braja Gopal

    2017-10-01

    A simple green chemical method for the one-step synthesis of palladium nanoparticles (PdNPs) has been described by reducing palladium (II) chloride with the leaf extract of Chrysophyllum cainito in aqueous medium. The synthesis of the palladium nanoparticles completed within 2-3 h at room temperature, whereas on heat treatment (70-80 °C), the synthesis of colloidal PdNPs completed almost instantly. The stabilized PdNPs have been characterized in detail by spectroscopic, electron microscopic and light scattering measurements. The synthesized PdNPs have been utilized as a green catalyst for C-C coupling reactions under aerobic and phosphine-free conditions in aqueous medium. In addition, the synthesized PdNPs have also been utilized as a catalyst for a very efficient sodium borohydride reduction of 3- and 4-nitrophenols. The synthesized PdNPs can retain their catalytic activity for several months.

  9. Sustainable and Continuous Synthesis of Enantiopure l-Amino Acids by Using a Versatile Immobilised Multienzyme System.

    PubMed

    Velasco-Lozano, Susana; da Silva, Eunice S; Llop, Jordi; López-Gallego, Fernando

    2018-02-16

    The enzymatic synthesis of α-amino acids is a sustainable and efficient alternative to chemical processes, through which achieving enantiopure products is difficult. To more address this synthesis efficiently, a hierarchical architecture that irreversibly co-immobilises an amino acid dehydrogenase with polyethyleneimine on porous agarose beads has been designed and fabricated. The cationic polymer acts as an irreversible anchoring layer for the formate dehydrogenase. In this architecture, the two enzymes and polymer colocalise across the whole microstructure of the porous carrier. This multifunctional heterogeneous biocatalyst was kinetically characterised and applied to the enantioselective synthesis of a variety of canonical and noncanonical α-amino acids in both discontinuous (batch) and continuous modes. The co-immobilised bienzymatic system conserves more than 50 % of its initial effectiveness after five batch cycles and 8 days of continuous operation. Additionally, the environmental impact of this process has been semiquantitatively calculated and compared with the state of the art. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers.

    PubMed

    Nagel, Lilly; Plattner, Carolin; Budke, Carsten; Majer, Zsuzsanna; DeVries, Arthur L; Berkemeier, Thomas; Koop, Thomas; Sewald, Norbert

    2011-08-01

    In Arctic and Antarctic marine regions, where the temperature declines below the colligative freezing point of physiological fluids, efficient biological antifreeze agents are crucial for the survival of polar fish. One group of such agents is classified as antifreeze glycoproteins (AFGP) that usually consist of a varying number (n = 4-55) of [AAT]( n )-repeating units. The threonine side chain of each unit is glycosidically linked to β-D: -galactosyl-(1 → 3)-α-N-acetyl-D: -galactosamine. These biopolymers can be considered as biological antifreeze foldamers. A preparative route for stepwise synthesis of AFGP allows for efficient synthesis. The diglycosylated threonine building block was introduced into the peptide using microwave-enhanced solid phase synthesis. By this versatile solid phase approach, glycosylated peptides of varying sequences and lengths could be obtained. Conformational studies of the synthetic AFGP analogs were performed by circular dichroism experiments (CD). Furthermore, the foldamers were analysed microphysically according to their inhibiting effect on ice recrystallization and influence on the crystal habit.

  11. Synthesis of Resveratrol Tetramers via a Stereoconvergent Radical Equilibrium

    PubMed Central

    Keylor, Mitchell H.; Matsuura, Bryan S.; Griesser, Markus; Chauvin, Jean-Philippe R.; Harding, Ryan A.; Kirillova, Mariia S.; Zhu, Xu; Fischer, Oliver J.; Pratt, Derek A.; Stephenson, Corey R. J.

    2017-01-01

    Persistent free radicals have become indispensable in the synthesis of organic materials by living radical polymerization. However, examples of their use in the synthesis of small molecules are rare. Herein, we report the application of persistent radical and quinone methide intermediates to the synthesis of the resveratrol tetramers nepalensinol B and vateriaphenol C. The spontaneous cleavage and reconstitution of exceptionally weak carbon-carbon bonds has enabled a stereoconvergent oxidative dimerization of racemic materials in a transformation that likely coincides with the biogenesis of these natural products. The efficient synthesis of higher-order oligomers of resveratrol will facilitate the biological studies necessary to elucidate their mechanism(s) of action. PMID:27940867

  12. Microwave promoted simple, efficient and regioselective synthesis of trisubstituted imidazo[1,2-a]benzimidazoles on soluble support.

    PubMed

    Chen, Li-Hsun; Hsiao, Ya-Shan; Yellol, Gorakh S; Sun, Chung-Ming

    2011-03-14

    An efficient microwave-assisted and soluble polymer-supported synthesis of medicinally important imidazole-fused benzimidazoles has been developed. The protocol involves the rapid condensation of polymer-bound amino benzimidazoles with various α-bromoketones and subsequent in situ intramolecular cyclization under microwave irradiation resulting in a one pot synthesis of imidazole interlacing benzimidazole polymer conjugates. The condensed product was obtained with excellent regioselectivity. The biologically interesting imidazo[1,2-a]benzimidazoles was released from polymer support at ambient temperature. Diversity in the triheterocyclic nucleus was achieved by the different substitutions at its 2, 3, and 9 positions. The new protocol has the advantages of short reaction time, easy workup process, excellent yields, reduced environmental impact, wide substrate scope and convenient procedure.

  13. Copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines: synthesis of imidazopyridine derivatives.

    PubMed

    Yu, Jipan; Jin, Yunhe; Zhang, Hao; Yang, Xiaobo; Fu, Hua

    2013-12-02

    A novel, efficient, and practical method for the synthesis of imidazopyridine derivatives has been developed through the copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines with N-(alkylidene)-4H-1,2,4-triazol-4-amines. The procedure occurs by cleavage of the N-N bond in the N-(alkylidene)-4H-1,2,4-triazol-4-amines and activation of an aryl C-H bond in the substituted pyridines. This is the first example of the preparation of imidazopyridine derivatives by using pyridines as the substrates by transition-metal-catalyzed C-H functionalization. This method should provide a novel and efficient strategy for the synthesis of other nitrogen heterocycles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Energy efficiency in nanoscale synthesis using nanosecond plasmas

    PubMed Central

    Pai, David Z.; (Ken) Ostrikov, Kostya; Kumar, Shailesh; Lacoste, Deanna A.; Levchenko, Igor; Laux, Christophe O.

    2013-01-01

    We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO3 nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges. PMID:23386976

  15. Streamlined Total Synthesis of Trioxacarcins and Its Application to the Design, Synthesis, and Biological Evaluation of Analogues Thereof. Discovery of Simpler Designed and Potent Trioxacarcin Analogues.

    PubMed

    Nicolaou, K C; Chen, Pengxi; Zhu, Shugao; Cai, Quan; Erande, Rohan D; Li, Ruofan; Sun, Hongbao; Pulukuri, Kiran Kumar; Rigol, Stephan; Aujay, Monette; Sandoval, Joseph; Gavrilyuk, Julia

    2017-11-01

    A streamlined total synthesis of the naturally occurring antitumor agents trioxacarcins is described, along with its application to the construction of a series of designed analogues of these complex natural products. Biological evaluation of the synthesized compounds revealed a number of highly potent, and yet structurally simpler, compounds that are effective against certain cancer cell lines, including a drug-resistant line. A novel one-step synthesis of anthraquinones and chloro anthraquinones from simple ketone precursors and phenylselenyl chloride is also described. The reported work, featuring novel chemistry and cascade reactions, has potential applications in cancer therapy, including targeted approaches as in antibody-drug conjugates.

  16. Synthesis of the biologically active natural product cyclodepsipeptides apratoxin A and its analogues.

    PubMed

    Doi, Takayuki

    2014-01-01

    This paper describes the synthetic studies conducted on a marine natural product, cyclodepsipeptide apratoxin A. Total synthesis of the oxazoline analogue of apratoxin A was achieved. The conversion of oxazoline to thioamide, as well as thioamide formation from a serine-derived compound, were both unsuccessful. However, thiazoline formation from a cysteine-derived compound led to the total synthesis of apratoxin A. An in vivo study on synthetic apratoxin A revealed that it has potent antitumor activity, but with significant toxicity. Solid-phase synthesis of apratoxin A was accomplished using a preformed thiazoline derivative as a coupling unit. This method was used to synthesize several azido-containing analogues as precursors of molecular probes, and these analogues exhibited potent biological activity.

  17. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    PubMed Central

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-01-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215

  18. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    DOE PAGES

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-10-26

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO 2 reduction on silver and coppermore » cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H 2 and CO) and Hythane (H 2 and CH 4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. Finally, we show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C 2H 4 have high profitability indices.« less

  19. Facile synthesis of semi-library of low charge density cationic polyesters from poly(alkylene maleate)s for efficient local gene delivery.

    PubMed

    Yan, Huijie; Zhu, Dingcheng; Zhou, Zhuxian; Liu, Xin; Piao, Ying; Zhang, Zhen; Liu, Xiangrui; Tang, Jianbin; Shen, Youqing

    2018-03-30

    Cationic polymers are one of the main non-viral vectors for gene therapy, but their applications are hindered by the toxicity and inefficient transfection, particularly in the presence of serum or other biological fluids. While rational design based on the current understanding of gene delivery process has produced various cationic polymers with improved overall transfection, high-throughput parallel synthesis of libraries of cationic polymers seems a more effective strategy to screen out efficacious polymers. Herein, we demonstrate a novel platform for parallel synthesis of low cationic charge-density polyesters for efficient gene delivery. Unsaturated polyester poly(alkylene maleate) (PAM) readily underwent Michael-addition reactions with various mercaptamines to produce polyester backbones with pendant amine groups, poly(alkylene maleate mercaptamine)s (PAMAs). Variations of the alkylenes in the backbone and the mercaptamines on the side chain produced PAMAs with tunable hydrophobicity and DNA-condensation ability, the key parameters dominating transfection efficiency of the resulting polymer/DNA complexes (polyplexes). A semi-library of such PAMAs was exampled from 7 alkylenes and 18 mercaptamines, from which a lead PAMA, G-1, synthesized from poly(1,4-phenylene bis(methylene) maleate) and N,N-dimethylcysteamine, showed remarkable transfection efficiency even in the presence of serum, owing to its efficient lysosome-circumventing cellular uptake. Furthermore, G-1 polyplexes efficiently delivered the suicide gene pTRAIL to intraperitoneal tumors and elicited effective anticancer activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Sequence and structure-specific elements of HERG mRNA determine channel synthesis and trafficking efficiency

    PubMed Central

    Sroubek, Jakub; Krishnan, Yamini; McDonald, Thomas V.

    2013-01-01

    Human ether-á-gogo-related gene (HERG) encodes a potassium channel that is highly susceptible to deleterious mutations resulting in susceptibility to fatal cardiac arrhythmias. Most mutations adversely affect HERG channel assembly and trafficking. Why the channel is so vulnerable to missense mutations is not well understood. Since nothing is known of how mRNA structural elements factor in channel processing, we synthesized a codon-modified HERG cDNA (HERG-CM) where the codons were synonymously changed to reduce GC content, secondary structure, and rare codon usage. HERG-CM produced typical IKr-like currents; however, channel synthesis and processing were markedly different. Translation efficiency was reduced for HERG-CM, as determined by heterologous expression, in vitro translation, and polysomal profiling. Trafficking efficiency to the cell surface was greatly enhanced, as assayed by immunofluorescence, subcellular fractionation, and surface labeling. Chimeras of HERG-NT/CM indicated that trafficking efficiency was largely dependent on 5′ sequences, while translation efficiency involved multiple areas. These results suggest that HERG translation and trafficking rates are independently governed by noncoding information in various regions of the mRNA molecule. Noncoding information embedded within the mRNA may play a role in the pathogenesis of hereditary arrhythmia syndromes and could provide an avenue for targeted therapeutics.—Sroubek, J., Krishnan, Y., McDonald, T V. Sequence- and structure-specific elements of HERG mRNA determine channel synthesis and trafficking efficiency. PMID:23608144

  1. Gold nanoparticles supported on titanium dioxide: an efficient catalyst for highly selective synthesis of benzoxazoles and benzimidazoles.

    PubMed

    Tang, Lin; Guo, Xuefeng; Yang, Yu; Zha, Zhenggen; Wang, Zhiyong

    2014-06-11

    A highly efficient and selective reaction for the synthesis of 2-substituted benzoxazoles and benzimidazoles catalyzed by Au/TiO2 has been developed via two hydrogen-transfer processes. This reaction has a good tolerance to air and water, a wide substrate scope, and represents a new avenue for practical C-N and C-O bond formation. More importantly, no additional additives, oxidants and reductants are required for the reaction and the catalyst can be recovered and reused readily.

  2. An Efficient Synthesis of 2-Substituted Benzimidazoles via Photocatalytic Condensation of o-Phenylenediamines and Aldehydes.

    PubMed

    Kovvuri, Jeshma; Nagaraju, Burri; Kamal, Ahmed; Srivastava, Ajay K

    2016-10-10

    A photocatalytic method has been developed for the efficient synthesis of functionalized benzimidazoles. This protocol involves photocatalytic condensation of o-phenylenediamines with various aldehydes using the Rose Bengal as photocatalyst. The method was found to be general and was successfully employed for accessing pharmaceutically important benzimidazoles by the condensation of aromatic, heteroaromatic and aliphatic aldehydes with o-phenylenediamines, in good-to-excellent yields. Notably, the method was found to be effective for the condensation of less reactive heterocyclic aldehydes with o-phenylenediamines.

  3. New Efficient Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones Catalyzed by Benzotriazolium-Based Ionic Liquids under Solvent-Free Conditions.

    PubMed

    Liu, Zhiqing; Ma, Rong; Cao, Dawei; Liu, Chenjiang

    2016-04-07

    An efficient synthesis of novel 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) and their derivatives, using Brønsted acidic ionic liquid [C₂O₂BBTA][TFA] as a catalyst, from the condensation of aryl aldehyde, β-ketoester and urea was described. Reactions proceeded smoothly for 40 min under solvent-free conditions and gave the desirable products with good to excellent yields (up to 99%). The catalyst could be easily recycled and reused with similar efficacies for at least six cycles.

  4. Synthesis of a Monophosphoryl Derivative of Escherichia coli Lipid A and Its Efficient Coupling to a Tumor-Associated Carbohydrate Antigen

    PubMed Central

    Tang, Shouchu; Wang, Qianli

    2010-01-01

    Monophosphoryl lipid A is a safe and potent immunostimulant and vaccine adjuvant, which is potentially useful for the development of effective carbohydrate-based conjugate vaccines. This paper presented a convergent and efficient synthesis of a monophosphoryl derivative of E. coli lipid A having an alkyne functionality at the reducing end, which is suitable for the coupling with various molecules. The coupling of this derivative to an N-modified analog of tumor-associated antigen GM3 by click chemistry is also presented. PMID:19943286

  5. Low-temperature synthesis of allyl dimethylamine by selective heating under microwave irradiation used for water treatment

    NASA Astrophysics Data System (ADS)

    Tian, Binghui; Luan, Zhaokun; Li, Mingming

    2005-08-01

    Low-temperature synthesis of allyl dimethylamine (ADA) by selective heating under microwave irradiation (MI) used for water treatment is investigated. The effect of MI, ultrasound irradiation (UI) and conventional heating on yield of ADA, reaction time and the flocculation efficiency of polydiallyl dimethylammunion chloride (PDADMAC) prepared form ADA were studied. The results show that by selective heating at low temperature, MI not only increases yield of ADA and reduces reaction time, but also greatly enhances the flocculation efficiency of PDADMAC.

  6. Fabrication of highly efficient ZnO nanoscintillators

    NASA Astrophysics Data System (ADS)

    Procházková, Lenka; Gbur, Tomáš; Čuba, Václav; Jarý, Vítězslav; Nikl, Martin

    2015-09-01

    Photo-induced synthesis of high-efficiency ultrafast nanoparticle scintillators of ZnO was demonstrated. Controlled doping with Ga(III) and La(III) ions together with the optimized method of ZnO synthesis and subsequent two-step annealing in air and under reducing atmosphere allow to achieve very high intensity of UV exciton luminescence, up to 750% of BGO intensity magnitude. Fabricated nanoparticles feature extremely short sub-nanosecond photoluminescence decay times. Temperature dependence of the photoluminescence spectrum within 8-340 K range was investigated and shows the absence of visible defect-related emission within all temperature intervals.

  7. A highly efficient green synthesis of 1, 8-dioxo-octahydroxanthenes

    PubMed Central

    2011-01-01

    SmCl3 (20 mol%) has been used as an efficient catalyst for reaction between aromatic aldehydes and 5,5-dimethyl-1,3-cyclohexanedione at 120°C to give 1,8-dioxo-octahydroxanthene derivatives in high yield. The same reaction in water, at room temperature gave only the open chain analogue of 1,8-dioxo-octahydroxanthene. Use of eco-friendly green Lewis acid, readily available catalyst and easy isolation of the product makes this a convenient method for the synthesis of either of the products. PMID:22152051

  8. Integrated process design for biocatalytic synthesis by a Leloir Glycosyltransferase: UDP-glucose production with sucrose synthase.

    PubMed

    Schmölzer, Katharina; Lemmerer, Martin; Gutmann, Alexander; Nidetzky, Bernd

    2017-04-01

    Nucleotide sugar-dependent ("Leloir") glycosyltransferases (GTs), represent a new paradigm for the application of biocatalytic glycosylations to the production of fine chemicals. However, it remains to be shown that GT processes meet the high efficiency targets of industrial biotransformations. We demonstrate in this study of uridine-5'-diphosphate glucose (UDP-glc) production by sucrose synthase (from Acidithiobacillus caldus) that a holistic process design, involving coordinated development of biocatalyst production, biotransformation, and downstream processing (DSP) was vital for target achievement at ∼100 g scale synthesis. Constitutive expression in Escherichia coli shifted the recombinant protein production mainly to the stationary phase and enhanced the specific enzyme activity to a level (∼480 U/g cell dry weight ) suitable for whole-cell biotransformation. The UDP-glc production had excellent performance metrics of ∼100 g product /L, 86% yield (based on UDP), and a total turnover number of 103 g UDP-glc /g cell dry weight at a space-time yield of 10 g/L/h. Using efficient chromatography-free DSP, the UDP-glc was isolated in a single batch with ≥90% purity and in 73% isolated yield. Overall, the process would allow production of ∼0.7 kg of isolated product/L E. coli bioreactor culture, thus demonstrating how integrated process design promotes the practical use of a GT conversion. Biotechnol. Bioeng. 2017;114: 924-928. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Knockdown of Triglyceride Synthesis Does Not Enhance Palmitate Lipotoxicity or Prevent Oleate-Mediated Rescue in Rat Hepatocytes

    PubMed Central

    Leamy, Alexandra K.; Hasenour, Clinton M.; Egnatchik, Robert A.; Trenary, Irina A.; Yao, Conghui; Patti, Gary J.; Shiota, Masakazu; Young, Jamey D.

    2016-01-01

    Experiments in a variety of cell types, including hepatocytes, consistently demonstrate the acutely lipotoxic effects of saturated fatty acids, such as palmitate (PA), but not unsaturated fatty acids, such as oleate (OA). PA+OA co-treatment fully prevents PA lipotoxicity through mechanisms that are not well defined but which have been previously attributed to more efficient esterification and sequestration of PA into triglycerides (TGs) when OA is abundant. However, this hypothesis has never been directly tested by experimentally modulating the relative partitioning of PA/OA between TGs and other lipid fates in hepatocytes. In this study, we found that addition of OA to PA-treated hepatocytes enhanced TG synthesis, reduced total PA uptake and PA lipid incorporation, decreased phospholipid saturation and rescued PA-induced ER stress and lipoapotosis. Knockdown of diacylglycerol acyltransferase (DGAT), the rate-limiting step in TG synthesis, significantly reduced TG accumulation without impairing OAmediated rescue of PA lipotoxicity. In both wild-type and DGAT-knockdown hepatocytes, OA cotreatment significantly reduced PA lipid incorporation and overall phospholipid saturation compared to PA-treated hepatocytes. These data indicate that OA’s protective effects do not require increased conversion of PA into inert TGs, but instead may be due to OA’s ability to compete against PA for cellular uptake and/or esterification and, thereby, normalize the composition of cellular lipids in the presence of a toxic PA load. PMID:27249207

  10. Carbon nanotubes shynthesis in fluidized bed reactor equipped with a cyclone

    NASA Astrophysics Data System (ADS)

    Setyopratomo, P.; Sudibandriyo, M.; Wulan, P. P. D. K.

    2018-03-01

    This work aimed to observe the performance of a fluidized bed reactor which was equipped with a cyclone in the synthesis of carbon nanotubes (CNT) by chemical vapor deposition. Liquefied petroleum gas with a constant volumetric flow rate of 1940 cm3/minutes was fed to the reactor as a carbon source, while a combination of metal components of Fe-Co-Mo supported on MgO was used as catalyst. The CNT synthesis was carried out at a reaction temperature which was maintained at around 800 – 850 °C for 1 hour. The CNT yield was decreased sharply when the catalyst feed was increased. The carbon efficiency is directly proportional to the mass of catalyst fed. It was found from the experiment that the mass of as-grown CNT increased in proportion to the increase of the catalyst mass fed. A sharp increase of the mass percentage of carbon nanotubes entrainment happened when the catalyst feed was raised from 3 to 7 grams. Agglomerates of carbon nanotubes have been formed. The agglomerates composed of mutually entangled carbon nanotubes which have an outer diameter range 8 – 14 nm and an inner diameter range 4 – 10 nm, which confirmed that the multi-walled carbon nanotubes were formed in this synthesis. It was found that the mesopores dominate the pore structure of the CNT product and contribute more than 90 % of the total pore volume.

  11. Development of noncytotoxic silver–chitosan nanocomposites for efficient control of biofilm forming microbes† †Electronic supplementary information (ESI) available: ICP-MS, DLS, FTIR, contact angle measurements, TEM/EDS, cytotoxicity results. See DOI: 10.1039/c7ra08359a

    PubMed Central

    Kus-Liśkiewicz, Małgorzata; Sebastian, Victor; Irusta, Silvia; Kyzioł, Agnieszka

    2017-01-01

    Severe bacterial and fungal infections have become a major clinical and public health concern. Nowadays, additional efforts are needed to develop effective antimicrobial materials that are not harmful to human cells. This work describes the synthesis and characterization of chitosan–ascorbic acid–silver nanocomposites as films exhibiting high antimicrobial activity and non-cytotoxicity towards human cells. The reductive and stabilizing activity of both the biocompatible polymer chitosan and ascorbic acid were used in the synthesis of silver nanoparticles (AgNPs). Herein, we propose an improved composite synthesis based on medium average molecular weight chitosan with a high deacetylation degree, that together with ascorbic acid gave films with a uniform distribution of small AgNPs (<10 nm) exhibiting high antimicrobial activity against biofilm forming bacterial and fungal strains of Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans. At the same time, the resulting solid nanocomposites showed, at the same doses, reduced or totally excluded cytotoxicity on mammalian somatic and tumoral cells. Data obtained in the present study suggest that adequately designed chitosan–silver nanocomposites are powerful and promising materials for reducing pathogenic microorganism-associated infections without harmful effects towards mammalian cells. PMID:29308194

  12. Expedient Route To Access Rare Deoxy Amino l-Sugar Building Blocks for the Assembly of Bacterial Glycoconjugates.

    PubMed

    Sanapala, Someswara Rao; Kulkarni, Suvarn S

    2016-04-13

    Bacterial glycoproteins and oligosaccharides contain several rare deoxy amino l-sugars which are virtually absent in the human cells. This structural difference between the bacterial and host cell surface glycans can be exploited for the development of carbohydrate based vaccines and target specific drugs. However, the unusual deoxy amino l-sugars present in the bacterial glycoconjugates are not available from natural sources. Thus, procurement of orthogonally protected rare l-sugar building blocks through efficient chemical synthesis is a crucial step toward the synthesis of structurally well-defined and homogeneous complex glycans. Herein, we report a general and expedient methodology to access a variety of unusual deoxy amino l-sugars starting from readily available l-rhamnose and l-fucose via highly regioselective, one-pot double serial and double parallel displacements of the corresponding 2,4-bistriflates using azide and nitrite anions as nucleophiles. Alternatively, regioselective monotriflation at O2, O3, and O4 of l-rhamnose/l-fucose allowed selective inversions at respective positions leading to diverse rare sugars. The orthogonally protected deoxy amino l-sugar building blocks could be stereoselectively assembled to obtain biologically relevant bacterial O-glycans, as exemplified by the first total synthesis of the amino linker-attached, conjugation-ready tetrasaccharide of O-PS of Yersinia enterocolitica O:50 strain 3229 and the trisaccharide of Pseudomonas chlororaphis subsp. aureofaciens strain M71.

  13. Information and Efficiency in the Nervous System—A Synthesis

    PubMed Central

    Sengupta, Biswa; Stemmler, Martin B.; Friston, Karl J.

    2013-01-01

    In systems biology, questions concerning the molecular and cellular makeup of an organism are of utmost importance, especially when trying to understand how unreliable components—like genetic circuits, biochemical cascades, and ion channels, among others—enable reliable and adaptive behaviour. The repertoire and speed of biological computations are limited by thermodynamic or metabolic constraints: an example can be found in neurons, where fluctuations in biophysical states limit the information they can encode—with almost 20–60% of the total energy allocated for the brain used for signalling purposes, either via action potentials or by synaptic transmission. Here, we consider the imperatives for neurons to optimise computational and metabolic efficiency, wherein benefits and costs trade-off against each other in the context of self-organised and adaptive behaviour. In particular, we try to link information theoretic (variational) and thermodynamic (Helmholtz) free-energy formulations of neuronal processing and show how they are related in a fundamental way through a complexity minimisation lemma. PMID:23935475

  14. Synthesis of the C(18) -norditerpenoid alkaloid neofinaconitine: a lesson in convergent synthesis planning.

    PubMed

    Liu, Xiao-Yu; Chen, David Y-K

    2014-01-20

    Hexacyclic framework: The total synthesis of the complex C18 -norditerpenoid alkaloid neofinaconitine has been achieved by a convergent approach. This remarkable synthesis featured two Diels-Alder cycloadditions and subsequent Mannich-type N-acyliminium and radical cyclizations to establish the unique hexacyclic core structure of the target molecule. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A model of binding on DNA microarrays: understanding the combined effect of probe synthesis failure, cross-hybridization, DNA fragmentation and other experimental details of affymetrix arrays

    PubMed Central

    2012-01-01

    Background DNA microarrays are used both for research and for diagnostics. In research, Affymetrix arrays are commonly used for genome wide association studies, resequencing, and for gene expression analysis. These arrays provide large amounts of data. This data is analyzed using statistical methods that quite often discard a large portion of the information. Most of the information that is lost comes from probes that systematically fail across chips and from batch effects. The aim of this study was to develop a comprehensive model for hybridization that predicts probe intensities for Affymetrix arrays and that could provide a basis for improved microarray analysis and probe development. The first part of the model calculates probe binding affinities to all the possible targets in the hybridization solution using the Langmuir isotherm. In the second part of the model we integrate details that are specific to each experiment and contribute to the differences between hybridization in solution and on the microarray. These details include fragmentation, wash stringency, temperature, salt concentration, and scanner settings. Furthermore, the model fits probe synthesis efficiency and target concentration parameters directly to the data. All the parameters used in the model have a well-established physical origin. Results For the 302 chips that were analyzed the mean correlation between expected and observed probe intensities was 0.701 with a range of 0.88 to 0.55. All available chips were included in the analysis regardless of the data quality. Our results show that batch effects arise from differences in probe synthesis, scanner settings, wash strength, and target fragmentation. We also show that probe synthesis efficiencies for different nucleotides are not uniform. Conclusions To date this is the most complete model for binding on microarrays. This is the first model that includes both probe synthesis efficiency and hybridization kinetics/cross-hybridization. These two factors are sequence dependent and have a large impact on probe intensity. The results presented here provide novel insight into the effect of probe synthesis errors on Affymetrix microarrays; furthermore, the algorithms developed in this work provide useful tools for the analysis of cross-hybridization, probe synthesis efficiency, fragmentation, wash stringency, temperature, and salt concentration on microarray intensities. PMID:23270536

  16. Nafion®-catalyzed microwave-assisted Ritter reaction: An atom-economic solvent-free synthesis of amides

    EPA Science Inventory

    An atom-economic solvent-free synthesis of amides by the Ritter reaction of alcohols and nitriles under microwave irradiation is reported. This green protocol is catalyzed by solid supported Nafion®NR50 with improved efficiency and reduced waste production.

  17. Multivariate Meta-Analysis Using Individual Participant Data

    ERIC Educational Resources Information Center

    Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.

    2015-01-01

    When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is…

  18. REVISITING CLASSICAL NUCLEOPHILIC SUBSTITUTIONS IN AQUEOUS MEDIUM: MICROWAVE-ASSISTED SYNTHESIS OF ALKYL AZIDES

    EPA Science Inventory

    An efficient and clean synthesis of alkyl azides using microwave (MW) radiation is described in aqueous medium by reacting alkyl halides or tosylates with alkali azides. This general and expeditious MW-enhanced approach to nucleophilic substitution reactions is applicable to the ...

  19. Total chemical synthesis of human matrix Gla protein

    PubMed Central

    Hackeng, Tilman M.; Rosing, Jan; Spronk, Henri M.H.; Vermeer, Cees

    2001-01-01

    Human matrix Gla protein (MGP) is a vitamin K–dependent extracellular matrix protein that binds Ca2+ ions and that is involved in the prevention of vascular calcification. MGP is a 10.6-kD protein (84 amino acids) containing five γ-carboxyglutamic acid (Gla) residues and one disulfide bond. Studies of the mechanism by which MGP prevents calcification of the arterial media are hampered by the low solubility of the protein (<10 μg/mL). Because of solubility problems, processing of a recombinantly expressed MGP-fusion protein chimera to obtain MGP was unsuccessful. Here we describe the total chemical synthesis of MGP by tBoc solid-phase peptide synthesis (SPPS) and native chemical ligation. Peptide Tyr1-Ala53 was synthesized on a derivatized resin yielding a C-terminal thioester group. Peptide Cys54-Lys84 was synthesized on Lys-PAM resin yielding a C-terminal carboxylic acid. Subsequent native chemical ligation of the two peptides resulted in the formation of a native peptide bond between Ala53 and Cys54. Folding of the 1–84-polypeptide chain in 3 M guanidine (pH 8) resulted in a decrease of molecular mass from 10,605 to 10,603 (ESI-MS), representing the loss of two protons because of the formation of the Cys54-Cys60 internal disulfide bond. Like native MGP, synthetic MGP had the same low solubility when brought into aqueous buffer solutions with physiological salt concentrations, confirming its native like structure. However, the solubility of MGP markedly increased in borate buffer at pH 7.4 in the absence of sodium chloride. Ca2+-binding to MGP was confirmed by analytical HPLC, on which the retention time of MGP was reduced in the presence of CaCl2. Circular dichroism studies revealed a sharp increase in α-helicity at 0.2 mM CaCl2 that may explain the Ca2+-dependent shift in high-pressure liquid chromatography (HPLC)-retention time of MGP. In conclusion, facile and efficient chemical synthesis in combination with native chemical ligation yielded MGP preparations that can aid in unraveling the mechanism by which MGP prevents vascular calcification. PMID:11274477

  20. Total synthesis of (+)-antroquinonol and (+)-antroquinonol D.

    PubMed

    Sulake, Rohidas S; Chen, Chinpiao

    2015-03-06

    The first total synthesis of (+)-antroquinonol and (+)-antroquinonol D, two structurally unique quinonols with a sesquiterpene side chain, is described. The route features an iridium-catalyzed olefin isomerization-Claisen rearrangement reaction (ICR), lactonization, and Grubbs olefin metathesis. The requisite α,β-unsaturation was achieved via the selenylation/oxidation protocol and elimination of β-methoxy group to provide two natural products from a common intermediate.

  1. Total Synthesis of the Marine Phosphomacrolide, (-)-Enigmazole A, Exploiting Multicomponent Type I Anion Relay Chemistry (ARC) in Conjunction with a Late-Stage Petasis-Ferrier Union/Rearrangement.

    PubMed

    Ai, Yanran; Kozytska, Mariya V; Zou, Yike; Khartulyari, Anton S; Maio, William A; Smith, Amos B

    2018-06-01

    An effective late-stage large-fragment union/rearrangement exploiting the Petasis-Ferrier protocol, in conjunction with multicomponent Type I Anion Relay Chemistry (ARC) to access advanced intermediates, permits completion of a convergent, stereocontrolled total synthesis of the architecturally complex phosphomacrolide (-)-enigmazole A (1).

  2. Flow “Fine” Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods

    PubMed Central

    2015-01-01

    Abstract The concept of flow “fine” synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow “fine” synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society. PMID:26337828

  3. Synthetic versatility of 2-substituted-6-methyl 2,3-dihydropyridinones in the synthesis of polyfunctional piperidine-based compounds and related β amino acid derivatives.

    PubMed

    Yang, Yang; Hardman, Clayton

    2017-10-18

    Chiral 2-substituted-6-methyl 2,3-dihydropyidinones 9, which can be facilely obtained from an asymmetric vinylogous Mannich reaction (VMR) with 1,3-bis-trimethysily enol ether, were used as versatile intermediates in constructing chiral polyfunctional piperidine-based compounds. The 6-methyl group of such compounds can be conveniently functionalized via alkylation and acylation reactions to provide efficient entries to the synthesis of a variety of chiral multi-substituted piperidine-based compounds. Further elaboration of the corresponding intermediates also provided access to polyfunctional indolizidine-based compounds. These methods were showcased in an asymmetric synthesis of 2,6-di-substituted piperidine compound 13, reported as the key intermediate in the synthesis of (+)-calvine and a natural alkaloid (-)-indolizidine 209D. Furthermore, selective C5 iodination of compound 9 enabled the installation of additional functional groups at this position. Finally, we demonstrated that the oxidative cleavage of 2-substituted-6-methyl-2,3-dihydropyidinones is a practical and efficient method for the enantioselective synthesis of β-amino acids, which can undergo further intra-molecular cyclization to give the corresponding chiral four-membered β-lactam derivatives.

  4. Computerized Design Synthesis (CDS), A database-driven multidisciplinary design tool

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; Bolukbasi, A. O.

    1989-01-01

    The Computerized Design Synthesis (CDS) system under development at McDonnell Douglas Helicopter Company (MDHC) is targeted to make revolutionary improvements in both response time and resource efficiency in the conceptual and preliminary design of rotorcraft systems. It makes the accumulated design database and supporting technology analysis results readily available to designers and analysts of technology, systems, and production, and makes powerful design synthesis software available in a user friendly format.

  5. Combustion and Plasma Synthesis of High Temperature Materials

    DTIC Science & Technology

    1989-10-01

    photodetectors were constructed having tin oxide electrodes deposited under more and less severe condi- tions. The relative quantum efficiencies of these de ...PROPAGATING REACTION PROCESS 19 N. Sata, N. Sanada, T. Hirano, and M. Nilno COMBUSTION SYNTHESIS OF OXIDE -CARBIDE COMPOSITES L. L. Wang, Z. A. Munir, and J...SYNTHESIS OF CERAMIC POWDERS J. S. McFeaters and J. J. Moore 46 DEVELOPMENT OF TIN OXIDE COATINGS FOR USE AS ELECTRODES IN MERCURIC IODIDE

  6. Convenient divergent strategy for the synthesis of TunePhos-type chiral diphosphine ligands and their applications in highly enantioselective Ru-catalyzed hydrogenations.

    PubMed

    Sun, Xianfeng; Zhou, Le; Li, Wei; Zhang, Xumu

    2008-02-01

    A convenient, divergent strategy for the synthesis of a series of modular and fine-tunable C3-TunePhos-type chiral diphosphine ligands and their applications in highly efficient Ru-catalyzed asymmetric hydrogenations were explored. Up to 97 and 99% ee values were achieved for the enantioselective synthesis of beta-methyl chiral amines and alpha-hydroxy acid derivatives, respectively.

  7. Amino acid substrates impose polyamine, eIF5A, or hypusine requirement for peptide synthesis

    PubMed Central

    Shin, Byung-Sik; Katoh, Takayuki; Gutierrez, Erik; Kim, Joo-Ran; Suga, Hiroaki

    2017-01-01

    Abstract Whereas ribosomes efficiently catalyze peptide bond synthesis by most amino acids, the imino acid proline is a poor substrate for protein synthesis. Previous studies have shown that the translation factor eIF5A and its bacterial ortholog EF-P bind in the E site of the ribosome where they contact the peptidyl-tRNA in the P site and play a critical role in promoting the synthesis of polyproline peptides. Using misacylated Pro-tRNAPhe and Phe-tRNAPro, we show that the imino acid proline and not tRNAPro imposes the primary eIF5A requirement for polyproline synthesis. Though most proline analogs require eIF5A for efficient peptide synthesis, azetidine-2-caboxylic acid, a more flexible four-membered ring derivative of proline, shows relaxed eIF5A dependency, indicating that the structural rigidity of proline might contribute to the requirement for eIF5A. Finally, we examine the interplay between eIF5A and polyamines in promoting translation elongation. We show that eIF5A can obviate the polyamine requirement for general translation elongation, and that this activity is independent of the conserved hypusine modification on eIF5A. Thus, we propose that the body of eIF5A functionally substitutes for polyamines to promote general protein synthesis and that the hypusine modification on eIF5A is critically important for poor substrates like proline. PMID:28637321

  8. Synthesis of public water supply use in the United States: Spatio-temporal patterns and socio-economic controls

    NASA Astrophysics Data System (ADS)

    Sankarasubramanian, A.; Sabo, J. L.; Larson, K. L.; Seo, S. B.; Sinha, T.; Bhowmik, R.; Vidal, A. Ruhi; Kunkel, K.; Mahinthakumar, G.; Berglund, E. Z.; Kominoski, J.

    2017-07-01

    Recent U.S. Geological Survey water-use report suggests that increasing water-use efficiency could mitigate the supply-and-demand imbalance arising from changing climate and growing population. However, this rich data have neither analyzed to understand the underlying patterns, nor have been investigated to identify the factors contributing to this increased efficiency. A national-scale synthesis of public supply withdrawals ("withdrawals") reveals a strong North-south gradient in public supply water use with the increasing population in the South contributing to increased withdrawal. Contrastingly, a reverse South-north gradient exists in per capita withdrawals ("efficiency"), with northern states consistently improving the efficiency, while the southern states' efficiency declined. Our analyses of spatial patterns of per capita withdrawals further demonstrate that urban counties exhibit improved efficiency over rural counties. Improved efficiency is also demonstrated over high-income and well-educated counties. Given the potential implications of the findings in developing long-term water conservation measures (i.e., increasing block rates), we argue the need for frequent updates, perhaps monthly to annual, of water-use data for identifying effective strategies that control the water-use efficiency in various geographic settings under a changing climate.

  9. Anti-Candida albicans natural products, sources of new antifungal drugs: A review.

    PubMed

    Zida, A; Bamba, S; Yacouba, A; Ouedraogo-Traore, R; Guiguemdé, R T

    2017-03-01

    Candida albicans is the most prevalent fungal pathogen in humans. Due to the development of drug resistance, there is today a need for new antifungal agents for the efficient management of C. albicans infections. Therefore, we reviewed antifungal activity, mechanisms of action, possible synergism with antifungal drugs of all natural substances experimented to be efficient against C. albicans for future. An extensive and systematic review of the literature was undertaken and all relevant abstracts and full-text articles analyzed and included in the review. A total of 111 documents were published and highlighted 142 anti-C. albicans natural products. These products are mostly are reported in Asia (44.37%) and America (28.17%). According to in vitro model criteria, from the 142 natural substances, antifungal activity can be considered as important for 40 (28.20%) and moderate for 24 (16.90%). Sixteen products have their antifungal activity confirmed by in vivo gold standard experimentation. Microbial natural products, source of antifungals, have their antifungal mechanism well described in the literature: interaction with ergosterol (polyenes), inhibition 1,3-β-d-glucan synthase (Echinocandins), inhibition of the synthesis of cell wall components (chitin and mannoproteins), inhibition of sphingolipid synthesis (serine palmitoyltransferase, ceramide synthase, inositol phosphoceramide synthase) and inhibition of protein synthesis (sordarins). Natural products from plants mostly exert their antifungal effects by membrane-active mechanism. Some substances from arthropods are also explored to act on the fungal membrane. Interestingly, synergistic effects were found between different classes of natural products as well as between natural products and azoles. Search for anti-C. albicans new drugs is promising since the list of natural substances, which disclose activity against this yeast is today long. Investigations must be pursued not only to found more new anti-Candida compounds from plants and organisms but also to carried out details on molecules from already known anti-Candida compounds and to more elucidate mechanisms of action. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Exploring the Fundamentals of Microreactor Technology with Multidisciplinary Lab Experiments Combining the Synthesis and Characterization of Inorganic Nanoparticles

    ERIC Educational Resources Information Center

    Emmanuel, Noemie; Emonds-Alt, Gauthier; Lismont, Marjorie; Eppe, Gauthier; Monbaliu, Jean-Christophe M.

    2017-01-01

    Multidisciplinary lab experiments combining microfluidics, nanoparticle synthesis, and characterization are presented. These experiments rely on the implementation of affordable yet efficient microfluidic setups based on perfluoroalkoxyalkane (PFA) capillary coils and standard HPLC connectors in upper undergraduate chemistry laboratories.…

  11. GREENER AND RAPID ACCESS TO BIO-ACTIVE HETEROCYCLES: ROOM TEMPERATURE SYNTHESIS OF PYRAZOLES AND DIAZEPINES IN AQUEOUS MEDIUM

    EPA Science Inventory

    An expeditious room temperature synthesis of pyrazoles and diazepines by condensation of hydrazines/hydrazides and diamines with various 1,3-diketones is described. This greener protocol was catalyzed by polystyrene supported sulfonic acid (PSSA) and proceeded efficiently in wate...

  12. An efficient and more sustainable one-step continuous-flow multicomponent synthesis approach to chromene derivatives

    EPA Science Inventory

    A simple and rapid one-step continuous-flow synthesis route has been developed for the preparation of chromene derivatives from the reaction of aromatic aldehydes, α-cyanomethylene compounds and naphthols. In this contribution, a one-step continuous-flow protocol in a continuous ...

  13. Improved Method for the Synthesis of β-Carbonyl Silyl-1,3-Dithianes by the Double Conjugate Addition of 1,3-Dithiol to Propargylic Carbonyl Compounds

    PubMed Central

    Mukherjee, Sumit; Kontokosta, Dimitra; Patil, Aditi; Rallapalli, Sivakumar; Lee, Daesung

    2009-01-01

    Base-mediated double conjugate addition of 1,3-propane dithiol to various silylated propargylic aldehydes and ketones allows for an efficient and scalable synthesis of β-carbonyl silyl-1,3-dithianes. PMID:19877611

  14. A totally phosphine-free synthesis of metal telluride nanocrystals by employing alkylamides to replace alkylphosphines for preparing highly reactive tellurium precursors.

    PubMed

    Yao, Dong; Liu, Yi; Zhao, Wujun; Wei, Haotong; Luo, Xintao; Wu, Zhennan; Dong, Chunwei; Zhang, Hao; Yang, Bai

    2013-10-21

    Despite the developments in the wet chemical synthesis of high-quality semiconductor nanocrystals (NCs) with diverse elemental compositions, telluride NCs are still irreplaceable materials owing to their excellent photovoltaic and thermoelectric performances. Herein we demonstrate the dissolution of elemental tellurium (Te) in a series of alkylamides by sodium borohydride (NaBH4) reduction at relatively low temperature to produce highly reactive precursors for hot-injection synthesis of telluride NCs. The capability to tune the reactivity of Te precursors by selecting injection temperature permits control of NC size over a broad range. The current preparation of Te precursors is simple, economical, and totally phosphine-free, which will promote the commercial synthesis and applications of telluride NCs.

  15. Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor.

    PubMed

    Wang, Shige; Li, Kai; Chen, Yu; Chen, Hangrong; Ma, Ming; Feng, Jingwei; Zhao, Qinghua; Shi, Jianlin

    2015-01-01

    Two-dimensional transition metal dichalcogenides, particularly MoS2 nanosheets, have been deemed as a novel category of NIR photothermal transducing agent. Herein, an efficient and versatile one-pot solvothermal synthesis based on "bottom-up" strategy has been, for the first time, proposed for the controlled synthesis of PEGylated MoS2 nanosheets by using a novel "integrated" precursor containing both Mo and S elements. This facile but unique PEG-mediated solvothermal procedure endowed MoS2 nanosheets with controlled size, increased crystallinity and excellent colloidal stability. The photothermal performance of nanosheets was optimized via modulating the particulate size and surface PEGylation. PEGylated MoS2 nanosheets with desired photothermal conversion performance and excellent colloidal and photothermal stability were further utilized for highly efficient photothermal therapy of cancer in a tumor-bearing mouse xenograft. Without showing observable in vitro and in vivo hemolysis, coagulation and toxicity, the optimized MoS2-PEG nanosheets showed promising in vitro and in vivo anti-cancer efficacy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. An enhanced chemoenzymatic method for loading substrates onto carrier protein domains.

    PubMed

    Kittilä, Tiia; Cryle, Max J

    2018-06-01

    Non-ribosomal peptide synthetase (NRPS) machineries produce many medically relevant peptides that cannot be easily accessed by chemical synthesis. Thus, understanding NRPS mechanism is of crucial importance to allow efficient redesign of these machineries to produce new compounds. During NRPS-mediated synthesis, substrates are covalently attached to peptidyl carrier proteins (PCPs), and studies of NRPSs are impeded by difficulties in producing PCPs loaded with substrates. Different approaches to load substrates onto PCP domains have been described, but all suffer from difficulties in either the complexity of chemical synthesis or low enzymatic efficiency. Here, we describe an enhanced chemoenzymatic loading method that combines 2 approaches into a single, highly efficient one-pot loading reaction. First, d-pantetheine and ATP are converted into dephospho-coenzyme A via the actions of 2 enzymes from coenzyme A (CoA) biosynthesis. Next, phosphoadenylates are dephosphorylated using alkaline phosphatase to allow linker attachment to PCP domain by Sfp mutant R4-4, which is inhibited by phosphoadenylates. This route does not depend on activity of the commonly problematic dephospho-CoA kinase and, therefore, offers an improved method for substrate loading onto PCP domains.

  17. High performance nonvolatile memory devices based on Cu2-xSe nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Yan; Wu, Yi-Liang; Wang, Wen-Jian; Mao, Dun; Yu, Yong-Qiang; Wang, Li; Xu, Jun; Hu, Ji-Gang; Luo, Lin-Bao

    2013-11-01

    We report on the rational synthesis of one-dimensional Cu2-xSe nanowires (NWs) via a solution method. Electrical analysis of Cu2-xSe NWs based memory device exhibits a stable and reproducible bipolar resistive switching behavior with a low set voltage (0.3-0.6 V), which can enable the device to write and erase data efficiently. Remarkably, the memory device has a record conductance switching ratio of 108, much higher than other devices ever reported. At last, a conducting filaments model is introduced to account for the resistive switching behavior. The totality of this study suggests that the Cu2-xSe NWs are promising building blocks for fabricating high-performance and low-consumption nonvolatile memory devices.

  18. Biotechnological storage and utilization of entrapped solar energy.

    PubMed

    Bhattacharya, Sumana; Schiavone, Marc; Nayak, Amiya; Bhattacharya, Sanjoy K

    2005-03-01

    Our laboratory has recently developed a device employing immobilized F0F1 adenosine triphosphatase (ATPase) that allows synthesis of adenosine triphosphate (ATP) from adenosine 5'-diphosphate and inorganic phosphate using solar energy. We present estimates of total solar energy received by Earth's land area and demonstrate that its efficient capture may allow conversion of solar energy and storage into bonds of biochemicals using devices harboring either immobilized ATPase or NADH dehydrogenase. Capture and storage of solar energy into biochemicals may also enable fixation of CO2 emanating from polluting units. The cofactors ATP and NADH synthesized using solar energy could be used for regeneration of acceptor D-ribulose-1,5-bisphosphate from 3-phosphoglycerate formed during CO2 fixation.

  19. Assembly of Four Diverse Heterocyclic Libraries Enabled by Prins Cyclization, Au-Catalyzed Enyne Cycloisomerization, and Automated Amide Synthesis

    PubMed Central

    Cui, Jiayue; Chai, David I.; Miller, Christopher; Hao, Jason; Thomas, Christopher; Wang, JingQi; Scheidt, Karl A.; Kozmin, Sergey A.

    2013-01-01

    We describe a unified synthetic strategy for efficient assembly of four new heterocyclic libraries. The synthesis began by creating a range of structurally diverse pyrrolidinones or piperidinones. Such compounds were obtained in a simple one-flask operation starting with readily available amines, ketoesters, and unsaturated anhydrides. The use of tetrahydropyran-containing ketoesters, which were rapidly assembled by our Prins cyclization protocol, enabled efficient fusion of pyran and piperidinone cores. A newly developed Au(I)-catalyzed cycloisomerization of alkyne-containing enamides further expanded heterocyclic diversity by providing rapid entry into a wide range of bicyclic and tricyclic dienamides. The final stage of the process entailed diversification of each of the initially produced carboxylic acids using a fully automated platform for amide synthesis, which delivered 1872 compounds in high diastereomeric and chemical purity. PMID:22860634

  20. Optimality principle for the coupled chemical reactions of ATP synthesis and its molecular interpretation

    NASA Astrophysics Data System (ADS)

    Nath, Sunil

    2018-05-01

    Metabolic energy obtained from the coupled chemical reactions of oxidative phosphorylation (OX PHOS) is harnessed in the form of ATP by cells. We experimentally measured thermodynamic forces and fluxes during ATP synthesis, and calculated the thermodynamic efficiency, η and the rate of free energy dissipation, Φ. We show that the OX PHOS system is tuned such that the coupled nonequilibrium processes operate at optimal η. This state does not coincide with the state of minimum Φ but is compatible with maximum Φ under the imposed constraints. Conditions that must hold for species concentration in order to satisfy the principle of optimal efficiency are derived analytically and a molecular explanation based on Nath's torsional mechanism of energy transduction and ATP synthesis is suggested. Differences of the proposed principle with Prigogine's principle are discussed.

  1. Design and Synthesis of Self-Assembled Monolayers on Mesoporous Supports (SAMMS): The Importance of Ligand Posture in Functional Nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryxell, Glen E.; Mattigod, Shas V.; Lin, Yuehe

    2007-07-01

    Water, and water quality, are issues of critical importance to the future of humankind. The Earth’s water supplies have been contaminated by a wide variety of industrial, military and natural sources. The need exists for an efficient separation technology to remove heavy metal and radionuclide contamination from water. Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to build high efficiency environmental sorbents. These nanoporous ceramics condense a huge amount of surface area into a very small volume. These mesoporous architectures can be subsequently functionalized through molecular self-assembly. These functional mesoporous materials offer significant capabilities in termsmore » of removal of heavy metals and radionuclides from a variety of liquid media, including groundwater, contaminated oils and contaminated chemical weapons. They are highly efficient sorbents, whose rigid, open pore structure allows for rapid, efficient sorption kinetics. Their interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometallate anions and radionuclides. This manuscript provides a review of the design, synthesis and performance of the sorbent materials. The role that ligand posture plays in the chemistry of these interfacial ligand fields is discussed.« less

  2. Diels-Alder and Stille Coupling Approach for the Short Protecting-Group-Free Synthesis of Mycophenolic Acid, Its Phenylsulfenyl and Phenylselenyl Analogues, and Reactive Oxygen Species (ROS) Probing Capacity in Water.

    PubMed

    Halle, Mahesh B; Yudhistira, Tesla; Lee, Woo-Hyun; Mulay, Sandip V; Churchill, David G

    2018-06-15

    A short, protecting-group-free synthesis is achieved. The synthesis is step-efficient and general. A Diels-Alder and Stille cross-coupling approach includes key transformations, allowing for a competitive synthesis which involves a rare halophenol Stille cross-coupling study. The phenylselenyl and phenylsulfenyl analogues were prepared as novel compounds in good overall yield. The applicability of one of the intermediates as a potential probe for reactive oxygen species (ROS) in water is investigated.

  3. Influence of Synthesis Mode of Supplement Based on Calcium Hydrosylicates on the Structure and Properties of Lime Compositions

    NASA Astrophysics Data System (ADS)

    Loganina, V. I.; Pyshkina, I. S.

    2017-11-01

    It was proposed to use synthesized calcium hydrosilicates in finishing lime dry mixes as a modifying supplement. The effect of substances containing amorphous silica which are used for synthesis on the activity of the modifying supplement was established. The effect of the synthesis mode of supplement on the structure formation of lime compositions was illustrated. It was found that the injection of supplements of hydrosilicates accelerates the increase of mechanical strength. The efficiency of the modifying supplements of amorphous silica, such as diatomite, in the synthesis was shown.

  4. Flow microreactor synthesis in organo-fluorine chemistry

    PubMed Central

    Nagaki, Aiichiro

    2013-01-01

    Summary Organo-fluorine compounds are the substances of considerable interest in various industrial fields due to their unique physical and chemical properties. Despite increased demand in wide fields of science, synthesis of fluoro-organic compounds is still often faced with problems such as the difficulties in handling of fluorinating reagents and in controlling of chemical reactions. Recently, flow microreactor synthesis has emerged as a new methodology for producing chemical substances with high efficiency. This review outlines the successful examples of synthesis and reactions of fluorine-containing molecules by the use of flow microreactor systems to overcome long-standing problems in fluorine chemistry. PMID:24367443

  5. Flow microreactor synthesis in organo-fluorine chemistry.

    PubMed

    Amii, Hideki; Nagaki, Aiichiro; Yoshida, Jun-Ichi

    2013-12-05

    Organo-fluorine compounds are the substances of considerable interest in various industrial fields due to their unique physical and chemical properties. Despite increased demand in wide fields of science, synthesis of fluoro-organic compounds is still often faced with problems such as the difficulties in handling of fluorinating reagents and in controlling of chemical reactions. Recently, flow microreactor synthesis has emerged as a new methodology for producing chemical substances with high efficiency. This review outlines the successful examples of synthesis and reactions of fluorine-containing molecules by the use of flow microreactor systems to overcome long-standing problems in fluorine chemistry.

  6. Stereoselective heterocycle synthesis through oxidative carbon-hydrogen bond activation.

    PubMed

    Liu, Lei; Floreancig, Paul E

    2010-01-01

    Heterocycles are ubiquitous structures in both drugs and natural products, and efficient methods for their construction are being pursued constantly. Carbon-hydrogen bond activation offers numerous advantages for the synthesis of heterocycles with respect to minimizing the length of synthetic routes and reducing waste. As interest in chiral medicinal leads increases, stereoselective methods for heterocycle synthesis must be developed. The use of carbon-hydrogen bond activation reactions for stereoselective heterocycle synthesis has produced a range of creative transformations that provide a wide array of structural motifs, selected examples of which are described in this review.

  7. Effect of supplementing orchardgrass herbage with a total mixed ration or flaxseed fermentation profile and bacterial protein synthesis in continuous culture

    USDA-ARS?s Scientific Manuscript database

    A 4-unit dual-flow continuous culture fermentor system was used to evaluate the effects of herbage, a total mixed ration (TMR) and flaxseed on nutrient digestibility and microbial N synthesis. Treatments were randomly assigned to fermentors in a 4 x 4 Latin square design. Each fermentor was fed a to...

  8. Total chemical synthesis and X-ray structure of kaliotoxin by racemic protein crystallography.

    PubMed

    Pentelute, Brad L; Mandal, Kalyaneswar; Gates, Zachary P; Sawaya, Michael R; Yeates, Todd O; Kent, Stephen B H

    2010-11-21

    Here we report the total synthesis of kaliotoxin by 'one pot' native chemical ligation of three synthetic peptides. A racemic mixture of D- and L-kaliotoxin synthetic protein molecules gave crystals in the centrosymmetric space group P1 that diffracted to atomic-resolution (0.95 Å), enabling the X-ray structure of kaliotoxin to be determined by direct methods.

  9. Total synthesis of teixobactin

    NASA Astrophysics Data System (ADS)

    Jin, Kang; Sam, Iek Hou; Po, Kathy Hiu Laam; Lin, Du'an; Ghazvini Zadeh, Ebrahim H.; Chen, Sheng; Yuan, Yu; Li, Xuechen

    2016-08-01

    To cope with the global bacterial multidrug resistance, scientific communities have devoted significant efforts to develop novel antibiotics, particularly those with new modes of actions. Teixobactin, recently isolated from uncultured bacteria, is considered as a promising first-in-class drug candidate for clinical development. Herein, we report its total synthesis by a highly convergent Ser ligation approach and this strategy allows us to prepare several analogues of the natural product.

  10. Total synthesis of Ivorenolide A following a base-induced elimination protocol.

    PubMed

    Mohapatra, Debendra K; Umamaheshwar, Gonela; Rao, R Nageshwar; Rao, T Srinivasa; R, Sudheer Kumar; Yadav, Jhillu S

    2015-02-20

    A concise and stereocontrolled first total synthesis of Ivorenolide A (1) is reported in 16 longest linear steps with a 13.4% overall yield starting from (+)-diethyl tartrate (DET). Key features are base-induced elimination protocol for the construction of chiral propargyl alcohols in both fragments, Pd-catalyzed cross-coupling of terminal acetylenes, and Shiina's 2-methyl-6-nitrobezoic anhydride (MNBA) mediated macrolactonization.

  11. Total Synthesis and Absolute Configuration of Laurenditerpenol: A Hypoxia Inducible Factor-1 Activation Inhibitor

    PubMed Central

    Chittiboyina, Amar G.; Kumar, Gundluru Mahesh; Carvalho, Paulo B.; Liu, Yang; Zhou, Yu-Dong; Nagle, Dale G.

    2010-01-01

    The absolute stereo structure of the natural product laurenditerpenol (1S, 6R, 7S, 10R, 11R, 14S, 15R) has been accomplished from eight plausible stereoisomers by its first asymmetric total synthesis in a highly convergent and flexible synthetic pathway. Six stereoisomers of laurenditerpenol were synthesized and evaluated for their biological activity. PMID:18004798

  12. A Safer and Convenient Synthesis of Sulfathiazole for Undergraduate Organic and Medicinal Chemistry Classes

    ERIC Educational Resources Information Center

    Boyle, Jeff; Otty, Sandra; Sarojini, Vijayalekshmi

    2012-01-01

    A safer method for the synthesis of the sulfonamide drug sulfathiazole, for undergraduate classes, is described. This method improves upon procedures currently followed in several undergraduate teaching laboratories for the synthesis of sulfathiazole. Key features of this procedure include the total exclusion of pyridine, which has potential…

  13. Thermolysis of Geminal Diazides: Reagent-Free Synthesis of 3-Hydroxypyridines.

    PubMed

    Erhardt, Hellmuth; Kunz, Kevin A; Kirsch, Stefan F

    2017-01-06

    An operationally simple protocol for the rapid and efficient construction of highly substituted 3-hydroxypyridines is presented. The thermally induced cyclization of easily constructed geminal diazides derived from β-ketoesters having an additional olefin moiety affords the title compounds in yields up to 97% under reagent-free conditions. The new method allows for the synthesis of preparative quantities of material. Additionally, the synthetic utility of the pyridine products for the synthesis of valuable heterocycles is described.

  14. Hyper-Acetylation of Histone H3K56 Limits Break-Induced Replication by Inhibiting Extensive Repair Synthesis

    PubMed Central

    Che, Jun; Smith, Stephanie; Kim, Yoo Jung; Shim, Eun Yong; Myung, Kyungjae; Lee, Sang Eun

    2015-01-01

    Break-induced replication (BIR) has been implicated in restoring eroded telomeres and collapsed replication forks via single-ended invasion and extensive DNA synthesis on the recipient chromosome. Unlike other recombination subtypes, DNA synthesis in BIR likely relies heavily on mechanisms enabling efficient fork progression such as chromatin modification. Herein we report that deletion of HST3 and HST4, two redundant de-acetylases of histone H3 Lysine 56 (H3K56), inhibits BIR, sensitizes checkpoint deficient cells to deoxyribonucleotide triphosphate pool depletion, and elevates translocation-type gross chromosomal rearrangements (GCR). The basis for deficiency in BIR and gene conversion with long gap synthesis in hst3Δ hst4Δ cells can be traced to a defect in extensive DNA synthesis. Distinct from other cellular defects associated with deletion of HST3 and HST4 including thermo-sensitivity and elevated spontaneous mutagenesis, the BIR defect in hst3Δ hst4Δ cannot be offset by the deletion of RAD17 or MMS22, but rather by the loss of RTT109 or ASF1, or in combination with the H3K56R mutation, which also restores tolerance to replication stress in mrc1 mutants. Our studies suggest that acetylation of H3K56 limits extensive repair synthesis and interferes with efficient fork progression in BIR. PMID:25705897

  15. A Simple and Efficient Synthesis of 4-Arylacridinediones and 6-Aryldiindeno[1,2-b:2,1-e]pyridinediones using CuI Nanoparticles as Catalyst under Solvent-Free Conditions.

    PubMed

    Abdolmohammadi, Shahrzad; Dahi-Azar, Saman; Mohammadnejad, Mahdieh; Hosseinian, Akram

    2017-01-01

    The importance of acridine core structure and other heterocycles containing its framework is well known, as they are found in numerous compounds with a variety of biological effects. Pyridine is also an important solvent and heterocyclic nucleus for the design and synthesis of novel molecules with biological properties. It occurs in several natural compounds which are used as a precursor in agrochemicals and pharmaceuticals. The utility of nanostructured metal salts because of their small size and high surface area as catalysts in organic synthesis has drawn special attention due to their better properties such as slower reaction rate, reusability of the catalyst, and higher yields of products compared to the bulk size. Nanosized copper iodide is one reusable Lewis acid catalyst which has revealed several catalytic activities for the synthesis of organic compounds and others. As part of our recent study to develop heterocyclic syntheses using nanostructured catalysts, we now report an efficient and clean synthetic route to 4-arylacridinediones and 6-aryldiindeno[1,2-b:2,1-e]pyridinediones via a condensation reaction catalyzed by CuI nanoparticles under solvent-free conditions. The present work deals with the condensation reaction of aromatic aldehydes, ammonium acetate and active methylene compounds comprising dimedone or 1,3- indanedione in the presence of a catalytic amount of the synthesized CuI nanoparticles could be applied for the solvent-free preparation of 4-arylacridinediones and 6-aryldiindeno[1,2-b:2,1- e]pyridinediones at 70 °C within 60 min. A series of 9-aryl-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydro-1,8(2H,5H)-acridinediones and 6-aryldiindeno[1,2-b:2,1-e]pyridine-5,7-diones were synthesized in high to excellent yields via a simple one-pot three-component coupling reaction using the synthesized CuI nanoparticles as an efficient and recyclable catalyst. All synthesized compounds were well characterized by their satisfactory elemental analyses, IR, 1 H and 13 C NMR spectroscopy. The synthesized catalyst was fully characterized by XRD, TEM and SEM techniques. A solvent-free condensation between aromatic aldehydes, ammonium acetate and active methylene compounds comprising dimedone or 1,3-indanedione, in the presence of CuI nanoparticles as an efficient and recyclable catalyst leads to the formation of 4-arylacridinediones and 6-aryldiindeno[1,2-b:2,1-e]pyridinediones. This novel and practical approach has a number of advantages for instance, the condensation itself is solvent-free, the total amount of solvent used in the whole process is significantly decreased, the yields of pure products are high to excellent without any by-products, the catalyst is reusable, and the work-up is very simple. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Development of a model describing regulation of casein synthesis by the mammalian target of rapamycin (mTOR) signaling pathway in response to insulin, amino acids, and acetate.

    PubMed

    Castro, J J; Arriola Apelo, S I; Appuhamy, J A D R N; Hanigan, M D

    2016-08-01

    To improve dietary protein use efficiency in lactating cows, mammary protein synthesis responses to AA, energy substrates, and hormones must be better understood. These entities exert their effects through stimulation of mRNA translation via control of initiation and elongation rates at the cellular level. A central protein kinase of this phenomenon is the mammalian target of rapamycin (mTOR), which transfers the nutritional and hormonal stimuli onto a series of proteins downstream through a cascade of phosphorylation reactions that ultimately affect protein synthesis. The objective of this work was to further develop an existing mechanistic model of mTOR phosphorylation responses to insulin and total essential AA to include the effects of specific essential AA and acetate mediated by signaling proteins including protein kinase B (Akt), adenosine monophosphate activated protein kinase (AMPK), and mTOR and to add a representation of milk protein synthesis. Data from 6 experiments in MAC-T cells and mammary tissue slices previously conducted in our laboratory were assembled and used to parameterize the dynamic system of differential equations representing Akt, AMPK, and mTOR in their phosphorylated and dephosphorylated states and the resulting regulation of milk protein synthesis. The model predicted phosphorylated Akt, mTOR, AMPK, and casein synthesis rates with root mean square prediction errors of 16.8, 28.4, 33.0, and 54.9%, respectively. All other dependent variables were free of mean and slope bias, indicating an adequate representation of the data. Whereas mTOR was not very sensitive to changes in insulin or acetate levels, it was highly sensitive to leucine and isoleucine, and this signal appeared to be effectively transduced to casein synthesis. Although prior work had observed a relationship with additional essential AA, and data supporting those conclusions were present in the data set, we were unable to derive significant relationships with any essential AA other than leucine and isoleucine. The signaling properties and dynamics of AMPK under nutrient depletion and sufficiency, the responses to additional essential AA, and the consequent effects on protein synthesis remain to be better understood. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Effects of a salivary stimulant, slaframine, on ruminal fermentation, bacterial protein synthesis and digestion in frequently fed steers.

    PubMed

    Froetschel, M A; Amos, H E; Evans, J J; Croom, W J; Hagler, W M

    1989-03-01

    Slaframine (SF), a parasympathomimetic salivary stimulant, was administered i.m. (10, 15 or 20 micrograms SF/kg BW) to ruminally and abomasally fistulated steers at 12-h intervals for 18-d periods in a latin square-designed experiment. Steers were fed semicontinuously (12 times daily) a 40:60 roughage:concentrate diet at twice their net energy requirement for maintenance. Ruminal digestion coefficients for DM, ADF and starch were 10 to 16% lower and linearly related in an inverse manner to the level of SF administered (P less than .05). Postruminal digestion of DM, ADF and starch increased as much as 46.7, 9.5 and 44.0%, respectively, in a fashion linearly related (P less than .05) to the level of SF administered. Total tract digestion of DM and ADF were not affected by SF; however, total tract starch digestion was increased as much as 5% and was related linearly (P less than .05) to SF treatment. With SF administration, as much as 13% more bacterial protein exited the rumen, resulting in a 16.5% linear improvement (P less than .1) in the efficiency of ruminal bacterial protein production per 100 g of OM fermented. Ruminal concentrations of VFA, ammonia and pH were not affected by SF. These results demonstrate a positive relationship between salivation and ruminal bacterial protein synthesis and suggest that feed utilization by ruminants may be improved by pharmacological stimulation of salivary secretions.

  18. Conducting polymers: Synthesis and industrial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottesfeld, S.

    1997-04-01

    The Conducting Polymer project funded by the AIM Program has developed new methods for the synthesis of conducting polymers and evaluated new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1996 included two ongoing efforts on membranes for gas separation and on electrochemical capacitors and a third new application: electrochemical reactors (ECRs) based on polymeric electrolytes. As a gas separation membrane, conducting polymers offer high selectivity and the potential to chemically or electrically adapt the membrane for specific gas combinations. Potential energy savings in themore » US for this application are estimated at 1 to 3 quads/yr. As an active material in electrochemical capacitors, electronically conducting polymers have the potential of storing large amounts of electric energy in low cost materials. Potential energy savings estimated at 1 quad/yr would result from introduction of electrochemical capacitors as energy storage devices in power trains of electric and hybrid vehicles, once such vehicles reach 20% of the total transportation market in the US. In the chlor-alkali industry, electrochemical reactors based on polymer electrolyte membranes consume around 1 % of the total electric power in the US. A new activity, started in FY 1996, is devoted to energy efficient ECRs. In the case of the chlor-alkali industry, energy savings as high as 50% seem possible with the novel ECR technology demonstrated by the author in 1996.« less

  19. Heterologous expression of AtMYB12 in kale (Brassica oleracea var. acephala) leads to high flavonol accumulation.

    PubMed

    Lännenpää, Mika

    2014-08-01

    Overexpression of Arabidopsis AtMYB12 transcription factor greatly increases the total phenolic and flavonol content in transgenic kale leaves. Flavonoids are a diverse group of plant secondary metabolites exhibiting a number of health-promoting effects. There has been a growing interest to develop biotechnological methods for the enhanced production of flavonoids in crop plants. AtMYB12 is an Arabidopsis transcription factor which specifically activates flavonol synthesis and its overexpression has led to increased flavonol accumulation in several transgenic plants. In the present study, AtMYB12 was overexpressed in a commercial cultivar of kale and the transgenic plants were tested both in in vitro and in semi-field conditions in cages under natural light. Using this method, a severalfold increase in both total phenolics content and flavonol accumulation was achieved. This study provides a reliable and efficient transformation protocol for kale and suggests the potential of this flavonol-enriched vegetable for the production of kaempferol.

  20. Ultrasonic activated efficient synthesis of chromenes using amino-silane modified Fe3O4 nanoparticles: A versatile integration of high catalytic activity and facile recovery

    NASA Astrophysics Data System (ADS)

    Safari, Javad; Zarnegar, Zohre

    2014-08-01

    An efficient synthesis of 2-amino-4H-chromenes is achieved by one pot three component coupling reaction of aldehyde, malononitrile, and resorcinol using amino-silane modified Fe3O4 nanoparticles (MNPs-NH2) heterogeneous nanocatalyst under sonic condition. The attractive advantages of the present process are mild reaction conditions, short reaction times, easy isolation of products, good yields and simple operational procedures. Combination of the advantages of ultrasonic irradiation and magnetic nanoparticles provides important methodology to carry out catalytic transformations.

  1. Complete regioselective addition of grignard reagents to pyrazine N-oxides, toward an efficient enantioselective synthesis of substituted piperazines.

    PubMed

    Andersson, Hans; Banchelin, Thomas Sainte-Luce; Das, Sajal; Gustafsson, Magnus; Olsson, Roger; Almqvist, Fredrik

    2010-01-15

    A conceptually new one-pot strategy for the synthesis of protected substituted piperazines via the addition of Grignard reagents to pyrazine N-oxides is presented. This strategy is high yielding (33-91% over three steps), step-efficient, and fast. The synthesized N,N-diprotected piperazines are convenient to handle and allow for orthogonal deprotection at either nitrogen for selective transformations. In addition, this is a synthetic route to enantiomerically enriched piperazines by using a combination of phenyl magnesium chloride and (-)-sparteine, which resulted in enantiomeric excesses up to 83%.

  2. Studies towards asymmetric synthesis of 4(S)-11-dihydroxydocosahexaenoic acid (diHDHA) featuring cross-coupling of chiral stannane under mild conditions.

    PubMed

    Wang, Rui; He, Anyu; Ramu, Errabelli; Falck, John R

    2015-02-14

    An efficient and asymmetric synthetic approach towards one of the biologically interesting 4(S)-11-diHDHA derivatives was developed. This process mainly relied on two reactions, one is the copper-catalyzed mild cross-coupling that allows for the efficient construction of a chiral α-alkynyl α-hydroxy motif and another is the synthesis of chiral α-hydroxy α-stannanes that has previously been developed by our group featuring the asymmetric stannylation using the well-established tributyltin hydride/diethyl zinc system from an aldehyde.

  3. Structure elucidation of nigricanoside A through enantioselective total synthesis† †Electronic supplementary information (ESI) available: Complete experimental details and characterization data. See DOI: 10.1039/c5sc00281h Click here for additional data file.

    PubMed Central

    Chen, Jie; Koswatta, Panduka; DeBergh, J. Robb; Fu, Peng; Pan, Ende

    2015-01-01

    Nigricanoside A was isolated from green alga, and its dimethyl ester was found to display potent cytotoxicity. Its scarcity prevented a full structure elucidation, leaving total synthesis as the only means to determine its relative and absolute stereochemistry and to explore its biological activity. Here we assign the stereochemistry of the natural product through enantioselective total synthesis and provide initial studies of its cytotoxicity. PMID:26877863

  4. Advances on Semisynthesis, Total Synthesis, and Structure-Activity Relationships of Honokiol and Magnolol Derivatives.

    PubMed

    Yang, Chun; Zhi, Xiaoyan; Xu, Hui

    2016-01-01

    Honokiol and magnolol (an isomer of honokiol) are small-molecule polyphenols isolated from the barks of Magnolia officinalis, which have been widely used in traditional Chinese and Japanese medicines. In the last decade, a variety of biological properties of honokiol and magnolol (e.g., anti-oxidativity, antitumor activity, anti-depressant activity, anti-inflammatory activity, neuroprotective activity, anti-diabetic activity, antiviral activity, and antimicrobial activity) have been reported. Meanwhile, certain mechanisms of action of some biological activities were also investigated. Moreover, many analogs of honokiol and magnolol were prepared by structural modification or total synthesis, and some exhibited very potent pharmacological activities with improved water solubility. Therefore, the present review will provide a systematic coverage on recent developments of honokiol and magnolol derivatives in regard to semisynthesis, total synthesis, and structure-activity relationships from 2000 up to now.

  5. Studies of a Diazo Cyclopropanation Strategy for the Total Synthesis of (-)-Lundurine A.

    PubMed

    Huang, Hong-Xiu; Jin, Shuai-Jiang; Gong, Jin; Zhang, Dan; Song, Hao; Qin, Yong

    2015-09-14

    The bioactive Kopsia alkaloids lundurines A-D are the only natural products known to contain indolylcyclopropane. Achieving their syntheses can provide important insights into their biogenesis, as well as novel synthetic routes for complex natural products. Asymmetric total synthesis of (-)-lundurine A has previously been achieved through a Simmons-Smith cyclopropanation strategy. Here, the total synthesis of (-)-lundurine A was carried out using a metal-catalyzed diazo cyclopropanation strategy. In order to avoid a carbene CH insertion side reaction during cyclopropanation of α-diazo- carboxylates or cyanides, a one-pot, copper-catalyzed Bamford-Stevens diazotization/diazo decomposition/cyclopropanation cascade was developed, involving hydrazone. This approach simultaneously generates the C/D/E ring system and the two chiral quaternary centers at C2 and C7. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Peloruside B, a Potent Antitumor Macrolide from the New Zealand Marine Sponge Mycale hentscheli: Isolation, Structure, Total Synthesis and Bioactivity

    PubMed Central

    Singh, A. Jonathan; Xu, Chun-Xiao; Xu, Xiaoming; West, Lyndon M.; Wilmes, Anja; Chan, Ariane; Hamel, Ernest; Miller, John H.; Northcote, Peter T.; Ghosh, Arun K.

    2009-01-01

    Peloruside B (2), a natural congener of peloruside A (1), was isolated in sub-milligram quantities from the New Zealand marine sponge Mycale hentscheli. Peloruside B promotes microtubule polymerization and arrests cells in the G2M phase of mitosis similar to paclitaxel, and its bioactivity was comparable to that of peloruside A. NMR-directed isolation, structure elucidation, structure confirmation by total synthesis and bioactivity of peloruside B are described in this article. The synthesis features Sharpless dihydroxylation, Brown's asymmetric allylboration reaction, reductive aldol coupling, Yamaguchi macrolactonization and selective methylation. PMID:19957922

  7. Total synthesis of agalloside, isolated from Aquilaria agallocha, by the 5-O-glycosylation of flavan.

    PubMed

    Arai, Midori A; Yamaguchi, Yumi; Ishibashi, Masami

    2017-06-14

    Agalloside (1) is a neural stem cell differentiation activator isolated from Aquilaria agallocha by our group using Hes1 immobilized beads. We conducted the first total synthesis of agalloside (1) via the 5-O-glycosylation of flavan 25 using glycosyl fluoride 20 in the presence of BF 3 ·Et 2 O. Subsequent oxidation with DDQ to flavanone 2 and deprotection successively provided agalloside (1). This synthetic strategy holds promise for use in the synthesis of 5-O-glycosylated flavonoids. The synthesized agalloside (1) accelerated neural stem cell differentiation, which is a result comparable to that for the naturally occurring compound 1.

  8. Nonlinear multivariable design by total synthesis. [of gas turbine engine control systems

    NASA Technical Reports Server (NTRS)

    Sain, M. K.; Peczkowski, J. L.

    1982-01-01

    The Nominal Design Problem (NDP) is extended to nonlinear cases, and a new case study of robust feedback synthesis for gas turbine control design is presented. The discussion of NDP extends and builds on earlier Total Synthesis Problem theory and ideas. Some mathematical preliminaries are given in which a bijection from a set S onto a set T is considered, with T admitting the structure of an F-vector space. NDP is then discussed for a nonlinear plant, and nonlinear nominal design is defined and characterized. The design of local controllers for a turbojet and the scheduling of these controls into a global control are addressed.

  9. Rh(I)-catalyzed [(3 + 2) + 1] cycloaddition of 1-yne/ene-vinylcyclopropanes and CO: homologous Pauson-Khand reaction and total synthesis of (+/-)-alpha-agarofuran.

    PubMed

    Jiao, Lei; Lin, Mu; Zhuo, Lian-Gang; Yu, Zhi-Xiang

    2010-06-04

    A novel Rh(I)-catalyzed [(3 + 2) + 1] cycloaddition, which can be regarded as a homologous Pauson-Khand reaction, was developed to synthesize bicyclic cyclohexenones and cyclohexanones, enabling a new approach for synthesis of six-membered carbocycles ubiquitously found in natural products and pharmaceutics. The significance of the Rh-catalyzed [(3 + 2) + 1] cycloaddition has been demonstrated by the total synthesis of a furanoid sesquiterpene natural product, alpha-agarofuran, in which the bicyclic skeleton was constructed by the [(3 + 2) + 1] reaction of 1-yne-VCP and CO.

  10. Transamination at the Crossroad of the One-Pot Synthesis of N-Substituted Quinonediimines and C-Substituted Benzobisimidazoles.

    PubMed

    Andeme Edzang, Judicaelle; Chen, Zhongrui; Audi, Hassib; Canard, Gabriel; Siri, Olivier

    2016-10-10

    A green and very efficient synthesis of N-substituted benzoquinonediimines or C-substituted benzo-bis(imidazole) derivatives is described under similar conditions. The different reaction pathway is only controlled by the nature of the primary amines, which tunes the reactivity of the intermediates.

  11. Efficient synthesis of methylene exo-glycals: another use of glycosylthiomethyl chlorides.

    PubMed

    Zhu, Xiangming; Jin, Ying; Wickham, John

    2007-03-30

    A new approach to the synthesis of methylene exo-glycals is described. Oxidation of glycosylthiolmethyl chloride (GTM-Cl) with mCPBA afforded the corresponding glycosylchloromethyl sulfone in almost quantitative yield, which underwent KOtBu-induced Ramberg-Bäcklund rearrangement to furnish the desired methylene exo-glycal in excellent yield.

  12. Pd-catalyzed one-pot synthesis of polysubstituted acrylamidines from isocyanides, diazo compounds, and imines.

    PubMed

    Yan, Xu; Liao, Jinxi; Lu, Yongzhi; Liu, Jinsong; Zeng, Youlin; Cai, Qian

    2013-05-17

    A novel and efficient Pd-catalyzed one-pot reaction of ethyl diazoacetate, isocyanides, and imines for the synthesis of acrylamidines was developed. The multicomponent reaction may have occurred through an unpredicted ring-opening process of the ketenimine-imine [2 + 2] intermediate to form the acrylamidine products.

  13. Rhodium-catalyzed synthesis of silafluorene derivatives via cleavage of silicon-hydrogen and carbon-hydrogen bonds.

    PubMed

    Ureshino, Tomonari; Yoshida, Takuya; Kuninobu, Yoichiro; Takai, Kazuhiko

    2010-10-20

    The rhodium-catalyzed synthesis of silafluorenes from biphenylhydrosilanes is described. This highly efficient reaction proceeds via both Si-H and C-H bond activation, producing only H(2) as a side product. Using this method, a ladder-type bis-silicon-bridged p-terphenyl could also be synthesized.

  14. Synthesis and antibacterial activity of novel enolphosphate derivatives.

    PubMed

    Grison, Claude; Barthes, Nicolas; Finance, Chantal; Duval, Raphael E

    2010-10-01

    A new class of enolphosphates derivatives, the 1-alkenyldiphosphates, was designed and a rapid and efficient synthesis for these compounds was developed. These new molecules showed interesting in vitro antibacterial activities (MIC) against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative pathogens including Pseudomonas aeruginosa and Escherichia coli. 2010 Elsevier Inc. All rights reserved.

  15. Microwave assisted synthesis of bridgehead alkenes.

    PubMed

    Cleary, Leah; Yoo, Hoseong; Shea, Kenneth J

    2011-04-01

    A new, concise method to synthesize triene precursors for the type 2 intramolecular Diels-Alder reaction has been developed. Microwave irradiation of the trienes provides a convenient method for the synthesis of bridgehead alkenes. Higher yields, shorter reaction times, and lower reaction temperatures provide a general and efficient route to this interesting class of molecules.

  16. Microwave Assisted Synthesis of Bridgehead Alkenes

    PubMed Central

    Cleary, Leah; Yoo, Hoseong; Shea, Kenneth J.

    2011-01-01

    A new, concise method to synthesize triene precursors for the type 2 intramolecular Diels–Alder reaction has been developed. Microwave irradiation of the trienes provides a convenient method for the synthesis of bridgehead alkenes. Higher yields, shorter reaction times and lower reaction temperatures provide a general and efficient route to this interesting class of molecules. PMID:21384818

  17. A new practical approach towards the synthesis of unsymmetric and symmetric 1,10-phenanthroline derivatives at room temperature.

    PubMed

    Cheng, Yongfeng; Han, Xuesong; Ouyang, Huangche; Rao, Yu

    2012-03-18

    An efficient method towards synthesis of 1,10-phenanthrolines is described. Through Lewis acid-catalyzed annulation reaction between 3-ethoxycyclobutanones and 8-aminoquinolines, a variety of unsymmetric and symmetric 1,10-phenanthroline derivatives were readily prepared with high regioselectivity at room temperature.

  18. Apparatus for the laser ablative synthesis of carbon nanotubes

    DOEpatents

    Smith, Michael W.; Jordan, Kevin

    2010-02-16

    An RF-induction heated side-pumped synthesis chamber for the production of carbon nanotubes. Such an apparatus, while capable of producing large volumes of carbon nanotubes, concurrently provides a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization.

  19. MCAT is not required for in vitro polyketide synthesis in a minimal actinorhodin polyketide synthase from Streptomyces coelicolor.

    PubMed

    Matharu, A L; Cox, R J; Crosby, J; Byrom, K J; Simpson, T J

    1998-12-01

    It has been proposed that Streptomyces malonyl CoA: holo acyl carrier protein transacylases (MCATs) provide a link between fatty acid and polyketide biosynthesis. Two recent studies have provided evidence that the presence of MCAT is essential for polyketide synthesis to proceed in reconstituted minimal polyketide synthases (PKSs). In contrast to this, we previously showed that the holo acyl carrier proteins (ACPs) from type II PKSs are capable of catalytic self-malonylation in the presence of malonyl CoA, which suggests that MCAT might not be necessary for polyketide biosynthesis. We reconstituted a homologous actinorhodin (act) type II minimal PKS in vitro. When act holo-ACP is present in limiting concentrations, MCAT is required by the synthase complex in order for polyketide biosynthesis to proceed. When holo-ACP is present in excess, however, efficient polyketide synthesis proceeds without MCAT. The rate of polyketide production increases with holo-ACP concentration, but at low ACP concentration or equimolar AC:KS:CLF (KS, ketosynthase; CLF, chain length determining factor) concentrations this rate is significantly lower than expected, indicating that free holo-ACP is sequestered by the KS/CLF complex. The rate of polyketide biosynthesis is dictated by the ratio of holo-ACP to KS and CLF, as well as by the total protein concentration. There is no absolute requirement for MCAT in polyketide biosynthesis in vitro, although the role of MCAT during polyketide synthesis in vivo remains an open question. MCAT might be responsible for the rate enhancement of malonyl transfer at very low free holo-ACP concentrations or it could be required to catalyse the transfer of malonyl groups from malonyl CoA to sequestered holo-ACP.

  20. Production of carbon nanotubes: Chemical vapor deposition synthesis from liquefied petroleum gas over Fe-Co-Mo tri-metallic catalyst supported on MgO

    NASA Astrophysics Data System (ADS)

    Setyopratomo, P.; Wulan, Praswasti P. D. K.; Sudibandriyo, M.

    2016-06-01

    Carbon nanotubes were produced by chemical vapor deposition method to meet the specifications for hydrogen storage. So far, the various catalyst had been studied outlining their activities, performances, and efficiencies. In this work, tri-metallic catalyst consist of Fe-Co-Mo supported on MgO was used. The catalyst was prepared by wet-impregnation method. Liquefied Petroleum Gas (LPG) was used as carbon source. The synthesis was conducted in atmospheric fixed bed reactor at reaction temperature range 750 - 850 °C for 30 minutes. The impregnation method applied in this study successfully deposed metal component on the MgO support surface. It found that the deposited metal components might partially replace Mg(OH)2 or MgO molecules in their crystal lattice. Compare to the original MgO powder; it was significant increases in pore volume and surface area has occurred during catalyst preparation stages. The size of obtained carbon nanotubes is ranging from about 10.83 nm OD/4.09 nm ID up to 21.84 nm OD/6.51 nm ID, which means that multiwall carbon nanotubes were formed during the synthesis. Yield as much as 2.35 g.CNT/g.catalyst was obtained during 30 minutes synthesis and correspond to carbon nanotubes growth rate of 0.2 μm/min. The BET surface area of the obtained carbon nanotubes is 181.13 m2/g and around 50 % of which is contributed by mesopores. Micropore with half pore width less than 1 nm contribute about 10% volume of total micro and mesopores volume of the carbon nanotubes. The existence of these micropores is very important to increase the hydrogen storage capacity of the carbon nanotubes.

  1. Low‐Temperature Combustion Synthesis of a Spinel NiCo2O4 Hole Transport Layer for Perovskite Photovoltaics

    PubMed Central

    Papadas, Ioannis T.; Ioakeimidis, Apostolos; Armatas, Gerasimos S.

    2018-01-01

    Abstract The synthesis and characterization of low‐temperature solution‐processable monodispersed nickel cobaltite (NiCo2O4) nanoparticles (NPs) via a combustion synthesis is reported using tartaric acid as fuel and the performance as a hole transport layer (HTL) for perovskite solar cells (PVSCs) is demonstrated. NiCo2O4 is a p‐type semiconductor consisting of environmentally friendly, abundant elements and higher conductivity compared to NiO. It is shown that the combustion synthesis of spinel NiCo2O4 using tartaric acid as fuel can be used to control the NPs size and provide smooth, compact, and homogeneous functional HTLs processed by blade coating. Study of PVSCs with different NiCo2O4 thickness as HTL reveals a difference on hole extraction efficiency, and for 15 nm, optimized thickness enhanced hole carrier collection is achieved. As a result, p‐i‐n structure of PVSCs with 15 nm NiCo2O4 HTLs shows reliable performance and power conversion efficiency values in the range of 15.5% with negligible hysteresis. PMID:29876223

  2. Nonenzymatic template-directed synthesis on hairpin oligonucleotides. 3. Incorporation of adenosine and uridine residues

    NASA Technical Reports Server (NTRS)

    Wu, T.; Orgel, L. E.

    1992-01-01

    We have used [32P]-labeled hairpin oligonucleotides to study template-directed synthesis on templates containing one or more A or T residues within a run of C residues. When nucleoside-5'-phosphoro(2-methyl)imidazolides are used as substrates, isolated A and T residues function efficiently in facilitating the incorporation of U and A, respectively. The reactions are regiospecific, producing mainly 3'-5'-phosphodiester bonds. Pairs of consecutive non-C residues are copied much less efficiently. Limited synthesis of CA and AC sequences on templates containing TG and GT sequences was observed along with some synthesis of the AA sequences on templates containing TT sequences. The other dimer sequences investigated, AA, AG, GA, TA, and AT, could not be copied. If A is absent from the reaction mixture, misincorporation of G residues is a significant reaction on templates containing an isolated T residue or two consecutive T residues. However, if both A and G are present, A is incorporated to a much greater extent than G. We believe that wobble-pairing between T and G is responsible for misincorporation when only G is present.

  3. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy.

    PubMed

    Dou, Shuo; Tao, Li; Wang, Ruilun; El Hankari, Samir; Chen, Ru; Wang, Shuangyin

    2018-05-01

    Renewable energy technology has been considered as a "MUST" option to lower the use of fossil fuels for industry and daily life. Designing critical and sophisticated materials is of great importance in order to realize high-performance energy technology. Typically, efficient synthesis and soft surface modification of nanomaterials are important for energy technology. Therefore, there are increasing demands on the rational design of efficient electrocatalysts or electrode materials, which are the key for scalable and practical electrochemical energy devices. Nevertheless, the development of versatile and cheap strategies is one of the main challenges to achieve the aforementioned goals. Accordingly, plasma technology has recently appeared as an extremely promising alternative for the synthesis and surface modification of nanomaterials for electrochemical devices. Here, the recent progress on the development of nonthermal plasma technology is highlighted for the synthesis and surface modification of advanced electrode materials for renewable energy technology including electrocatalysts for fuel cells, water splitting, metal-air batteries, and electrode materials for batteries and supercapacitors, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis and Luminescence Characteristics of Cr 3+ doped Y 3Al 5O 12 Phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Brenda A.; Dabestani, Reza T.; Lewis, Linda A.

    2015-10-01

    Luminescence performance of yttrium aluminum garnet (Y 3Al 5O 12) phosphors as a function of Cr 3+ concentration has been investigated via two different wet-chemical synthesis techniques, direct- (DP) and hydrothermal-precipitation (HP). Using either of these methods, the red-emitting phosphor [Y 3Al 5-xCr xO 12 (YAG: Cr 3+)] showed similar photoluminescence (PL) intensities once the dopant concentration was optimized. Specifically, the YAG: Cr 3+ PL emission intensity reached a maximum at Cr3+ concentrations of x = 0.02 (0.4 at.%) and x = 0.13 (2.6 at.%) for DP and HP processed samples, respectively. The results indicated the strong influence of themore » processing method on the optimized YAG: Cr 3+ performance, where a more effective energy transfer rate between a pair of Cr3+ activators at low concentration levels was observed by using the DP synthesis technique. Development of a highly efficient phosphor, using a facile synthesis approach, could significantly benefit consumer and industrial applications by improving the operational efficiency of a wide range of practical devices.« less

  5. Synthesis of energy-efficient FSMs implemented in PLD circuits

    NASA Astrophysics Data System (ADS)

    Nawrot, Radosław; Kulisz, Józef; Kania, Dariusz

    2017-11-01

    The paper presents an outline of a simple synthesis method of energy-efficient FSMs. The idea consists in using local clock gating to selectively block the clock signal, if no transition of a state of a memory element is required. The research was dedicated to logic circuits using Programmable Logic Devices as the implementation platform, but the conclusions can be applied to any synchronous circuit. The experimental section reports a comparison of three methods of implementing sequential circuits in PLDs with respect to clock distribution: the classical fully synchronous structure, the structure exploiting the Enable Clock inputs of memory elements, and the structure using clock gating. The results show that the approach based on clock gating is the most efficient one, and it leads to significant reduction of dynamic power consumed by the FSM.

  6. Rates of insulin secretion in INS-1 cells are enhanced by coupling to anaplerosis and Kreb's cycle flux independent of ATP synthesis.

    PubMed

    Cline, Gary W; Pongratz, Rebecca L; Zhao, Xiaojian; Papas, Klearchos K

    2011-11-11

    Mechanistic models of glucose stimulated insulin secretion (GSIS) established in minimal media in vitro, may not accurately describe the complexity of coupling metabolism with insulin secretion that occurs in vivo. As a first approximation, we have evaluated metabolic pathways in a typical growth media, DMEM as a surrogate in vivo medium, for comparison to metabolic fluxes observed under the typical experimental conditions using the simple salt-buffer of KRB. Changes in metabolism in response to glucose and amino acids and coupling to insulin secretion were measured in INS-1 832/13 cells. Media effects on mitochondrial function and the coupling efficiency of oxidative phosphorylation were determined by fluorometrically measured oxygen consumption rates (OCRs) combined with (31)P NMR measured rates of ATP synthesis. Substrate preferences and pathways into the TCA cycle, and the synthesis of mitochondrial 2nd messengers by anaplerosis were determined by (13)C NMR isotopomer analysis of the fate of [U-(13)C] glucose metabolism. Despite similar incremental increases in insulin secretion, the changes of OCR in response to increasing glucose from 2.5 to 15mM were blunted in DMEM relative to KRB. Basal and stimulated rates of insulin secretion rates were consistently higher in DMEM, while ATP synthesis rates were identical in both DMEM and KRB, suggesting greater mitochondrial uncoupling in DMEM. The relative rates of anaplerosis, and hence synthesis and export of 2nd messengers from the mitochondria were found to be similar in DMEM to those in KRB. And, the correlation of total PC flux with insulin secretion rates in DMEM was found to be congruous with the correlation in KRB. Together, these results suggest that signaling mechanisms associated with both TCA cycle flux and with anaplerotic flux, but not ATP production, may be responsible for the enhanced rates of insulin secretion in more complex, and physiologically-relevant media. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Effects of replacing dietary starch with neutral detergent-soluble fibre on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC).

    PubMed

    Zhao, X H; Liu, C J; Liu, Y; Li, C Y; Yao, J H

    2013-12-01

    A rumen simulation technique (RUSITEC) apparatus with eight 800 ml fermenters was used to investigate the effects of replacing dietary starch with neutral detergent-soluble fibre (NDSF) by inclusion of sugar beet pulp in diets on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria. Experimental diets contained 12.7, 16.4, 20.1 or 23.8% NDSF substituted for starch on a dry matter basis. The experiment was conducted over two independent 15-day incubation periods with the last 8 days used for data collection. There was a tendency that 16.4% NDSF in the diet increased the apparent disappearance of organic matter (OM) and neutral detergent fibre (NDF). Increasing dietary NDSF level increased carboxymethylcellulase and xylanase activity in the solid fraction and apparent disappearance of acid detergent fibre (ADF) but reduced the 16S rDNA copy numbers of Ruminococcus albus in both liquid and solid fractions and R. flavefaciens in the solid fraction. The apparent disappearance of dietary nitrogen (N) was reduced by 29.6% with increased dietary NDSF. Substituting NDSF for starch appeared to increase the ratios of acetate/propionate and methane/volatile fatty acids (VFA) (mol/mol). Replacing dietary starch with NDSF reduced the daily production of ammonia-N and increased the growth of the solid-associated microbial pellets (SAM). Total microbial N flow and efficiency of microbial synthesis (EMS), expressed as g microbial N/kg OM fermented, tended to increase with increased dietary NDSF, but the numerical increase did not continue as dietary NDSF exceeded 20.1% of diet DM. Results suggested that substituting NDSF for starch up to 16.4% of diet DM increased digestion of nutrients (except for N) and microbial synthesis, and further increases (from 16.4% to 23.8%) in dietary NDSF did not repress microbial synthesis but did significantly reduce digestion of dietary N. © 2012 Blackwell Verlag GmbH.

  8. Highly efficient solid phase synthesis of oligonucleotide analogs containing phosphorodithioate linkages.

    PubMed

    Capaldi, D C; Cole, D L; Ravikumar, V T

    2000-05-01

    A triester method for the synthesis of deoxynucleoside phosphorodithioate dimers is described. The phosphorodithioate linkage is introduced using a new dithiophosphorylating reagent DPSE-SP(S)Cl(2)where DPSE = 2-diphenylmethylsilylethyl. This group is removed quickly using tetra-butylammonium fluoride leading to the quantitative formation of phosphorodithioate diesters uncontaminated with the corresponding phosphorothioates. The utility of this group is demonstrated by the synthesis of a penta-decathymidylic acid, [T(PS(2))T(PO(2))](7)T, which contains alternating phosphorodithioate/phosphate diester internucleotide linkages.

  9. Synthesis of S-linked trisaccharide glycal of derhodinosylurdamycin A: Discovery of alkyl thiocyanate as an efficient electrophile for stereoselective sulfenylation of 2-deoxy glycosyl lithium.

    PubMed

    Acharya, Padam P; Baryal, Kedar N; Reno, Cristin E; Zhu, Jianglong

    2017-08-07

    Stereoselective synthesis of S-linked trisaccharide glycal of angucycline antitumor antibiotic derhodinosylurdamycin A is described. The synthesis has been accomplished employing our previously reported umpolung S-glycosylation strategy - stereoselective sulfenylation of 2-deoxy glycosyl lithium. It was found that sugar-derived thiocyanate was a better electrophile than corresponding asymmetric disulfide in this type of stereoselective sulfenylation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Parallel synthesis of ureas and carbamates from amines and CO2 under mild conditions.

    PubMed

    Peterson, Scott L; Stucka, Sabrina M; Dinsmore, Christopher J

    2010-03-19

    A mild and efficient library synthesis technique has been developed for the synthesis of ureas and carbamates from carbamic acids derived from the DBU-catalyzed reaction of amines and gaseous carbon dioxide. Carbamic acids derived from primary amines reacted with Mitsunobu reagents to generate isocyanates in situ which were condensed with primary and secondary amines to afford the desired ureas. Similarly, carbamic acids from secondary amines reacted with alcohols activated with Mitsunobu reagents to form carbamates.

  11. Discovery and gram-scale synthesis of BMS-593214, a potent, selective FVIIa inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priestley, E. Scott; De Lucca, Indawati; Zhou, Jinglan

    A 6-amidinotetrahydroquinoline screening hit was driven to a structurally novel, potent, and selective FVIIa inhibitor through a combination of library synthesis and rational design. An efficient gram-scale synthesis of the active enantiomer BMS-593214 was developed, which required significant optimization of the key Povarov annulation. Importantly, BMS-593214 showed antithrombotic efficacy in a rabbit arterial thrombosis model. A crystal structure of BMS-593214 bound to FVIIa highlights key contacts with Asp 189, Lys 192, and the S2 pocket.

  12. Proceedings of the International Conference on Lasers 󈨛 Held at Lake Tahoe, Nevada on 7-11 December 1987.

    DTIC Science & Technology

    1988-01-01

    the synthesis . DONOR • - TRIPLETLAE DY QUUENCHER Figure 1 Scheme of an ideal laser dyel. More realistic improvements in the development of new and...fluorescence efficiency and bathochromic spectral shifts are the 7-julolidylcoumarins as shown in the general structure 1 . R, The synthesis of these...julolidylcoumarins is depicted in Scheme 1 . The most critical step in the entire synthesis is the preparation of 8-hydroxyjulolidine which was formed in

  13. Stereoselective protecting group free synthesis of D,L-gulose ethyl glycoside via multicomponent enyne cross metathesis--hetero Diels-Alder reaction.

    PubMed

    Castagnolo, Daniele; Botta, Lorenzo; Botta, Maurizio

    2009-07-27

    An efficient and stereoselective synthesis of D,L-gulose was described. The key step of the synthetic route is represented by a multicomponent enyne cross metathesis-hetero Diels-Alder reaction which allows the formation of the pyran ring from cheap and commercially available substrates in a single synthetic step. The synthesis of D,L-gulose was accomplished without the use of protecting groups making this approach highly desirable also in terms of atom economy.

  14. Regio- and enantioselective synthesis of N-substituted pyrazoles by rhodium-catalyzed asymmetric addition to allenes.

    PubMed

    Haydl, Alexander M; Xu, Kun; Breit, Bernhard

    2015-06-08

    The rhodium-catalyzed asymmetric N-selective coupling of pyrazole derivatives with terminal allenes gives access to enantioenriched secondary and tertiary allylic pyrazoles, which can be employed for the synthesis of medicinally important targets. The reaction tolerates a large variety of functional groups and labelling experiments gave insights into the reaction mechanism. This new methodology was further applied in a highly efficient synthesis of JAK 1/2 inhibitor (R)-ruxolitinib. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Stereoselectivity in N-Iminium Ion Cyclization: Development of an Efficient Synthesis of (±)-Cephalotaxine.

    PubMed

    Liu, Hao; Yu, Jing; Li, Xinyu; Yan, Rui; Xiao, Ji-Chang; Hong, Ran

    2015-09-18

    A stereoselective N-iminium ion cyclization with allylsilane to construct vicinal quaternary-tertiary carbon centers was developed for the concise synthesis of (±)-cephalotaxine. The current strategy features a TiCl4-promoted cyclization and ring-closure metathesis to furnish the spiro-ring system. The stereochemical outcome in the N-acyliminium ion cyclization was rationalized by the stereoelectronic effect of the Z- or E-allylsilane. Two diastereomers arising from the cyclization were merged into the formal synthesis of (±)-cephalotaxine.

  16. Effects of synchronization of carbohydrate and protein supply in total mixed ration with korean rice wine residue on ruminal fermentation, nitrogen metabolism and microbial protein synthesis in holstein steers.

    PubMed

    Piao, Min Yu; Kim, Hyun J; Seo, J K; Park, T S; Yoon, J S; Kim, K H; Ha, Jong K

    2012-11-01

    Three Holstein steers in the growing phase, each with a ruminal cannula, were used to test the hypothesis that the synchronization of the hourly rate of carbohydrate and nitrogen (N) released in the rumen would increase the amount of retained nitrogen for growth and thus improve the efficiency of microbial protein synthesis (EMPS). In Experiment 1, in situ degradability coefficients of carbohydrate and N in feeds including Korean rice wine residue (RWR) were determined. In Experiment 2, three total mixed ration (TMR) diets having different rates of carbohydrate and N release in the rumen were formulated using the in situ degradability of the feeds. All diets were made to contain similar contents of crude protein (CP) and neutral detergent fiber (NDF) but varied in their hourly pattern of nutrient release. The synchrony index of the three TMRs was 0.51 (LS), 0.77 (MS) and 0.95 (HS), respectively. The diets were fed at a restricted level (2% of the animal's body weight) in a 3×3 Latin-square design. Synchronizing the hourly supply of energy and N in the rumen did not significantly alter the digestibility of dry matter, organic matter, crude protein, NDF or acid detergent fiber (ADF) (p>0.05). The ruminal NH3-N content of the LS group at three hours after feeding was significantly higher (p<0.05) than that of the other groups; however, the mean values of ruminal NH3-N, pH and VFA concentration among the three groups were not significantly different (p>0.05). In addition, the purine derivative (PD) excretion in urine and microbial-N production (MN) among the three groups were not significantly different (p>0.05). In conclusion, synchronizing dietary energy and N supply to the rumen did not have a major effect on nutrient digestion or microbial protein synthesis (MPS) in Holstein steers.

  17. Efficiency and Fidelity of Human DNA Polymerases λ and β during Gap-Filling DNA Synthesis

    PubMed Central

    Brown, Jessica A.; Pack, Lindsey R.; Sanman, Laura E.; Suo, Zucai

    2010-01-01

    The base excision repair (BER) pathway coordinates the replacement of 1 to 10 nucleotides at sites of single-base lesions. This process generates DNA substrates with various gap sizes which can alter the catalytic efficiency and fidelity of a DNA polymerase during gap-filling DNA synthesis. Here, we quantitatively determined the substrate specificity and base substitution fidelity of human DNA polymerase λ (Pol λ), an enzyme proposed to support the known BER DNA polymerase β (Pol β), as it filled 1- to 10-nucleotide gaps at 1-nucleotide intervals. Pol λ incorporated a correct nucleotide with relatively high efficiency until the gap size exceeded 9 nucleotides. Unlike Pol λ, Pol β did not have an absolute threshold on gap size as the catalytic efficiency for a correct dNTP gradually decreased as the gap size increased from 2 to 10 nucleotides and then recovered for non-gapped DNA. Surprisingly, an increase in gap size resulted in lower polymerase fidelity for Pol λ, and this downregulation of fidelity was controlled by its non-enzymatic N-terminal domains. Overall, Pol λ was up to 160-fold more error-prone than Pol β, thereby suggesting Pol λ would be more mutagenic during long gap-filling DNA synthesis. In addition, dCTP was the preferred misincorporation for Pol λ and its N-terminal domain truncation mutants. This nucleotide preference was shown to be dependent upon the identity of the adjacent 5′-template base. Our results suggested that both Pol λ and Pol β would catalyze nucleotide incorporation with the highest combination of efficiency and accuracy when the DNA substrate contains a single-nucleotide gap. Thus, Pol λ, like Pol β, is better suited to catalyze gap-filling DNA synthesis during short-patch BER in vivo, although, Pol λ may play a role in long-patch BER. PMID:20961817

  18. Amino acid substrates impose polyamine, eIF5A, or hypusine requirement for peptide synthesis.

    PubMed

    Shin, Byung-Sik; Katoh, Takayuki; Gutierrez, Erik; Kim, Joo-Ran; Suga, Hiroaki; Dever, Thomas E

    2017-08-21

    Whereas ribosomes efficiently catalyze peptide bond synthesis by most amino acids, the imino acid proline is a poor substrate for protein synthesis. Previous studies have shown that the translation factor eIF5A and its bacterial ortholog EF-P bind in the E site of the ribosome where they contact the peptidyl-tRNA in the P site and play a critical role in promoting the synthesis of polyproline peptides. Using misacylated Pro-tRNAPhe and Phe-tRNAPro, we show that the imino acid proline and not tRNAPro imposes the primary eIF5A requirement for polyproline synthesis. Though most proline analogs require eIF5A for efficient peptide synthesis, azetidine-2-caboxylic acid, a more flexible four-membered ring derivative of proline, shows relaxed eIF5A dependency, indicating that the structural rigidity of proline might contribute to the requirement for eIF5A. Finally, we examine the interplay between eIF5A and polyamines in promoting translation elongation. We show that eIF5A can obviate the polyamine requirement for general translation elongation, and that this activity is independent of the conserved hypusine modification on eIF5A. Thus, we propose that the body of eIF5A functionally substitutes for polyamines to promote general protein synthesis and that the hypusine modification on eIF5A is critically important for poor substrates like proline. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  19. Tailor Made Synthesis of T-Shaped and π-STACKED Dimers in the Gas Phase: Concept for Efficient Drug Design and Material Synthesis

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Das, Aloke

    2013-06-01

    Non-covalent interactions play a key role in governing the specific functional structures of biomolecules as well as materials. Thus molecular level understanding of these intermolecular interactions can help in efficient drug design and material synthesis. It has been found from X-ray crystallography that pure hydrocarbon solids (i.e. benzene, hexaflurobenzene) have mostly slanted T-shaped (herringbone) packing arrangement whereas mixed solid hydrocarbon crystals (i.e. solid formed from mixtures of benzene and hexafluorobenzene) exhibit preferentially parallel displaced (PD) π-stacked arrangement. Gas phase spectroscopy of the dimeric complexes of the building blocks of solid pure benzene and mixed benzene-hexafluorobenzene adducts exhibit similar structural motifs observed in the corresponding crystal strcutures. In this talk, I will discuss about the jet-cooled dimeric complexes of indole with hexafluorobenzene and p-xylene in the gas phase using Resonant two photon ionzation and IR-UV double resonance spectroscopy combined with quantum chemistry calculations. In stead of studying benzene...p-xylene and benzene...hexafluorobenzene dimers, we have studied corresponding indole complexes because N-H group is much more sensitive IR probe compared to C-H group. We have observed that indole...hexafluorobenzene dimer has parallel displaced (PD) π-stacked structure whereas indole...p-xylene has slanted T-shaped structure. We have shown here selective switching of dimeric structure from T-shaped to π-stacked by changing the substituent from electron donating (-CH3) to electron withdrawing group (fluorine) in one of the complexing partners. Thus, our results demonstrate that efficient engineering of the non-covalent interactions can lead to efficient drug design and material synthesis.

  20. Template Dimerization Promotes an Acceptor Invasion-Induced Transfer Mechanism during Human Immunodeficiency Virus Type 1 Minus-Strand Synthesis

    PubMed Central

    Balakrishnan, Mini; Roques, Bernard P.; Fay, Philip J.; Bambara, Robert A.

    2003-01-01

    The biochemical mechanism of template switching by human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and the role of template dimerization were examined. Homologous donor-acceptor template pairs derived from the HIV-1 untranslated leader region and containing the wild-type and mutant dimerization initiation sequences (DIS) were used to examine the efficiency and distribution of transfers. Inhibiting donor-acceptor interaction was sufficient to reduce transfers in DIS-containing template pairs, indicating that template dimerization, and not the mere presence of the DIS, promotes efficient transfers. Additionally, we show evidence that the overall transfer process spans an extended region of the template and proceeds through a two-step mechanism. Transfer is initiated through an RNase H-facilitated acceptor invasion step, while synthesis continues on the donor template. The invasion then propagates towards the primer terminus by branch migration. Transfer is completed with the translocation of the primer terminus at a site distant from the invasion point. In our system, most invasions initiated before synthesis reached the DIS. However, transfer of the primer terminus predominantly occurred after synthesis through the DIS. The two steps were separated by 60 to 80 nucleotides. Sequence markers revealed the position of primer terminus switch, whereas DNA oligomers designed to block acceptor-cDNA interactions defined sites of invasion. Within the region of homology, certain positions on the template were inherently more favorable for invasion than others. In templates with DIS, the proximity of the acceptor facilitates invasion, thereby enhancing transfer efficiency. Nucleocapsid protein enhanced the overall efficiency of transfers but did not alter the mechanism. PMID:12663778

  1. ZnO nanoparticles as an efficient, heterogeneous, reusable, and ecofriendly catalyst for four-component one-pot green synthesis of pyranopyrazole derivatives in water.

    PubMed

    Sachdeva, Harshita; Saroj, Rekha

    2013-01-01

    An extremely efficient catalytic protocol for the synthesis of a series of pyranopyrazole derivatives developed in a one-pot four-component approach in the presence of ZnO nanoparticles as heterogeneous catalyst using water as a green solvent is reported. Greenness of the process is well instituted as water is exploited both as reaction media and medium for synthesis of catalyst. The ZnO nanoparticles exhibited excellent catalytic activity, and the proposed methodology is capable of providing the desired products in good yield (85-90%) and short reaction time. After reaction course, ZnO nanoparticles can be recycled and reused without any apparent loss of activity which makes this process cost effective and hence ecofriendly. All the synthesized compounds have been characterized on the basis of elemental analysis, IR, ¹H NMR, and ¹³C NMR spectral studies.

  2. An efficient synthesis of the constrained peptidomimetic 2-oxo-3-(N-9-fluorenyloxycarbonylamino)-1-azabicyclo[4.3.0]nonane-9-carboxylic acid from pyroglutamic acid.

    PubMed

    Mandal, Pijus Kumar; Kaluarachchi, Kumar K; Ogrin, Douglas; Bott, Simon G; McMurray, John S

    2005-11-25

    [reaction: see text] Azabicyclo[X.Y.0]alkane amino acids are rigid dipeptide mimetics that are useful tools for structure-activity studies in peptide-based drug discovery. Herein, we report an efficient synthesis of three diastereomers of 9-tert-butoxycarbonyl-2-oxo-3-(N-tert-butoxycarbonylamino)-1-azabicyclo[4.3.0]nonane (3S,6S,9S, 3S,6R,9R, and 3S,6R,9S). Methyl N-Boc-pyroglutamate is cleaved with vinylmagnesium bromide to produce an acyclic gamma-vinyl ketone. Michael addition of N-diphenylmethyleneglycine tert-butyl ester produces the N-Boc-delta-oxo-alpha,omega-diaminoazelate intermediate, which, on hydrogenloysis, gives the fused ring system. Acidolytic deprotection followed by Fmoc-protection provided building blocks suitable for solid-phase synthesis.

  3. Seamless integration of dose-response screening and flow chemistry: efficient generation of structure-activity relationship data of β-secretase (BACE1) inhibitors.

    PubMed

    Werner, Michael; Kuratli, Christoph; Martin, Rainer E; Hochstrasser, Remo; Wechsler, David; Enderle, Thilo; Alanine, Alexander I; Vogel, Horst

    2014-02-03

    Drug discovery is a multifaceted endeavor encompassing as its core element the generation of structure-activity relationship (SAR) data by repeated chemical synthesis and biological testing of tailored molecules. Herein, we report on the development of a flow-based biochemical assay and its seamless integration into a fully automated system comprising flow chemical synthesis, purification and in-line quantification of compound concentration. This novel synthesis-screening platform enables to obtain SAR data on b-secretase (BACE1) inhibitors at an unprecedented cycle time of only 1 h instead of several days. Full integration and automation of industrial processes have always led to productivity gains and cost reductions, and this work demonstrates how applying these concepts to SAR generation may lead to a more efficient drug discovery process. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Part 1. Synthetic approaches to indole/imidazole marine alkaloids. Part 2. 1-cyanobenzotriazole as a cyanating agent. Part 3. Synthesis of potential molecular rectifiers

    NASA Astrophysics Data System (ADS)

    Hughes, Terry Vincent

    1999-12-01

    This dissertation consists of four chapters. The first chapter details the progress toward a total synthesis of securine A (1). Securine A is an indole/imidazole containing marine alkaloid which contains a 2,3-disubstituted indole ring and a 4,5- disubstituted imidazole ring with a 12-membered lactam connecting the two. The approach into the securine A ring system utilized the opening of a pyrano[3,4-b]indol-3-one ring system with a modified histamine derivative. Efforts in the synthesis of securine A were not successful, but the synthesis of a similar analogue, compound 53, which contained a 13-membered ring was achieved. Chapter two deals with the total synthesis of the indole/maleimide/imidazole containing marine alkaloids: the didemnimides A-D (84- 87). The total syntheses of didemnimide A-D were successful and utilized a base catalyzed condensation reaction of methyl indolyl-3-glyoxylate (102) and 1-trityl-4-imidazoleacetamide (104). Chapter three details a new and convenient synthesis of 1-cyanobenzotriazole (123) and efforts to use it as a source of +CN in carbon-carbon forming reactions. The synthesis is safer than previously reported methods and allows for 123 to be made in multi-gram scale rather inexpensively. It was demonstrated that 1-cyanobenzotriazole (123) is a good source of +CN in carbon-carbon forming reactions by reacting with a variety of sp3, Sp 2, and sp carbanions. Chapter four details a new synthesis of hexadecylquinolinium tricyanoquinodimethanide (171) which has been shown to be a molecular rectifier. In search of additional molecular rectifiers, this new methodology was applied to the synthesis of Z- β-(N-n -hexadecyl-2-benzothiazolium)-α-cyano-4-styryldicyanomethanide (181) as well as its selenium and tellurium analogues 190 and 200; respectively. Additionally, the synthesis of other T- D+-π-A- types of molecules was explored in search for other molecular rectifiers. However, of all the compounds synthesized herein, only 171 has been shown to rectify.

  5. Aggregation and lack of secretion of most newly synthesized proinsulin in non-beta-cell lines.

    PubMed

    Zhu, Yong Lian; Abdo, Alexander; Gesmonde, Joan F; Zawalich, Kathleen C; Zawalich, Walter; Dannies, Priscilla S

    2004-08-01

    Myoblasts transfected with HB10D insulin secrete more hormone than those transfected with wild-type insulin, as published previously, indicating that production of wild-type insulin is not efficient in these cells. The ability of non-beta-cells to produce insulin was examined in several cell lines. In clones of neuroendocrine GH(4)C(1) cells stably transfected with proinsulin, two thirds of (35)S-proinsulin was degraded within 3 h of synthesis, whereas (35)S-prolactin was stable. In transiently transfected neuroendocrine AtT20 cells, half of (35)S-proinsulin was degraded within 3 h after synthesis, whereas (35)S-GH was stable. In transiently transfected fibroblast COS cells, (35)S-proinsulin was stable for longer, but less than 10% was secreted 8 h after synthesis. Proinsulin formed a concentrated patch detected by immunofluorescence in transfected cells that did not colocalize with calreticulin or BiP, markers for the endoplasmic reticulum, but did colocalize with membrin, a marker for the cis-medial Golgi complex. Proinsulin formed a Lubrol-insoluble aggregate within 30 min after synthesis in non-beta-cells but not in INS-1E cells, a beta-cell line that normally produces insulin. More than 45% of (35)S-HB10D proinsulin was secreted from COS cells 3 h after synthesis, and this mutant formed less Lubrol-insoluble aggregate in the cells than did wild-type hormone. These results indicate that proinsulin production from these non-beta-cells is not efficient and that proinsulin aggregates in their secretory pathways. Factors in the environment of the secretory pathway of beta-cells may prevent aggregation of proinsulin to allow efficient production.

  6. Sodium hydroxide catalyzed monodispersed high surface area silica nanoparticles.

    PubMed

    Bhakta, Snehasis; Dixit, Chandra K; Bist, Itti; Jalil, Karim Abdel; Suib, Steven L; Rusling, James F

    2016-07-01

    Understanding of the synthesis kinetics and our ability to modulate medium conditions allowed us to generate nanoparticles via an ultra-fast process. The synthesis medium is kept quite simple with tetraethyl orthosilicate (TEOS) as precursor and 50% ethanol and sodium hydroxide catalyst. Synthesis is performed under gentle conditions at 20 °C for 20 min Long synthesis time and catalyst-associated drawbacks are most crucial in silica nanoparticle synthesis. We have addressed both these bottlenecks by replacing the conventional Stober catalyst, ammonium hydroxide, with sodium hydroxide. We have reduced the overall synthesis time from 20 to 1/3 h, ~60-fold decrease, and obtained highly monodispersed nanoparticles with 5-fold higher surface area than Stober particles. We have demonstrated that the developed NPs with ~3-fold higher silane can be used as efficient probes for biosensor applications.

  7. Synthesis of enantiomerically pure, highly functionalized, medium-sized carbocycles from carbohydrates: formal total synthesis of (+)-calystegine b(2).

    PubMed

    Marco-Contelles, José; de Opazo, Elsa

    2002-05-31

    The free radical cyclization (FR) and the ring-closing metathesis (RCM) reaction have been analyzed in order to develop new and original synthetic protocols for the synthesis of enantiomerically pure, highly functionalized, medium-sized carbocycles from carbohydrates. As a result, we report here for the first time examples of the 7-exo FR cyclization of acyclic radical precursors derived from sugars. This process appears to be extremely sensitive to the conformational mobility of the radical species in the transition state. The use of two isopropylidene groups blocking four of the total present hydroxyl groups and a good radical acceptor (as an alpha,beta-unsaturated ester) are mandatory conditions for a successful ring closure protocol. The RCM reaction by using Grubbs' catalyst on selected carbohydrate-derived precursors has afforded variable yields of the expected unsaturated cycloheptane or cycloctane derivatives. The synthesis of the cycloheptitols has been carried out in good yields, regardless of the absolute configuration at the different stereocenters and the nature of the O-functional groups bound in allylic positions to one of the double bonds implicated in the metathesis reaction. Conversely, in the cyclooctane synthesis, we have observed that the success of the reaction depends not only on the absolute configuration at the different stereocenters close to the double bonds but also on the nature of the O-protecting groups on these stereocenters. Finally, the RCM strategy has been used in an attempt to prepare natural (+)-calystegine B(2) from D-glucose. The synthesis of compound 92 from D-glucose constitutes a formal total synthesis of (+)-calystegine B(2), showing the importance of the steric hindrance in allylic positions for a successful RCM reaction.

  8. More than anticipated - production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42.

    PubMed

    Chen, Xiao-Hua; Koumoutsi, Alexandra; Scholz, Romy; Borriss, Rainer

    2009-01-01

    The genome of environmental Bacillus amyloliquefaciens FZB42 harbors numerous gene clusters involved in synthesis of antifungal and antibacterial acting secondary metabolites. Five gene clusters, srf, bmy, fen, nrs, dhb, covering altogether 137 kb, direct non-ribosomal synthesis of the cyclic lipopeptides surfactin, bacillomycin, fengycin, an unknown peptide, and the iron siderophore bacillibactin. Bacillomycin and fengycin were shown to act against phytopathogenic fungi in a synergistic manner. Three gene clusters, mln, bae, and dif, with a total length of 199 kb were shown to direct synthesis of the antibacterial acting polyketides macrolactin, bacillaene, and difficidin. Both, non-ribosomal synthesis of cyclic lipopeptides and synthesis of polyketides are dependent on the presence of a functional sfp gene product, 4'-phosphopantetheinyl transferase, as evidenced by knockout mutation of the sfp gene resulting in complete absence of all those eight compounds. In addition, here we present evidence that a gene cluster encoding enzymes involved in synthesis and export of the antibacterial acting dipeptide bacilysin is also functional in FZB42. In summary, environmental FZB42 devoted about 340 kb, corresponding to 8.5% of its total genetic capacity, to synthesis of secondary metabolites useful to cope with other competing microorganisms present in the plant rhizosphere. Copyright (c) 2008 S. Karger AG, Basel.

  9. Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis.

    PubMed

    Mohy El Dine, Tharwat; Erb, William; Berhault, Yohann; Rouden, Jacques; Blanchet, Jérôme

    2015-05-01

    An efficient method has been developed for direct amide bond synthesis between carboxylic acids and amines via (2-(thiophen-2-ylmethyl)phenyl)boronic acid as a highly active bench-stable catalyst. This catalyst was found to be very effective at room temperature for a large range of substrates with slightly higher temperatures required for challenging ones. This methodology can be applied to aliphatic, α-hydroxyl, aromatic, and heteroaromatic acids as well as primary, secondary, heterocyclic, and even functionalized amines. Notably, N-Boc-protected amino acids were successfully coupled in good yields with very little racemization. An example of catalytic dipeptide synthesis is reported.

  10. The effect of reactor geometry on the synthesis of graphene materials in plasma jets

    NASA Astrophysics Data System (ADS)

    Shavelkina, M. B.; Amirov, R. H.; Shatalova, T. B.

    2017-05-01

    The possibility of synthesis of graphene and graphane (hydrogenated graphene) using the decomposition of hydrocarbons by thermal plasma has been investigated. Investigations of the influence of the plasma-forming gas on the efficiency of synthesis and the morphology of graphene materials were carried out. The synthesis products have been characterized by the methods of scanning microscopy, Raman spectroscopy and thermal analysis. It is found that the morphology of graphene materials is affected by the geometry of the reactor. It was demonstrated that the obtained graphene materials are uniformly distributed in the volume of plastic based on cyanate ester resins under mixing.

  11. Use of the 2-chlorotrityl chloride resin for microwave-assisted solid phase peptide synthesis.

    PubMed

    Ieronymaki, Matthaia; Androutsou, Maria Eleni; Pantelia, Anna; Friligou, Irene; Crisp, Molly; High, Kirsty; Penkman, Kirsty; Gatos, Dimitrios; Tselios, Theodore

    2015-09-01

    A fast and efficient microwave (MW)-assisted solid-phase peptide synthesis protocol using the 2-chlorotrityl chloride resin and the Fmoc/tBu methodology, has been developed. The established protocol combines the advantages of MW irradiation and the acid labile 2-chlorotrityl chloride resin. The effect of temperature during the MW irradiation, the degree of resin substitution during the coupling of the first amino acids and the rate of racemization for each amino acid were evaluated. The suggested solid phase methodology is applicable for orthogonal peptide synthesis and for the synthesis of cyclic peptides. © 2015 Wiley Periodicals, Inc.

  12. The origin of polynucleotide-directed protein synthesis

    NASA Technical Reports Server (NTRS)

    Orgel, Leslie E.

    1989-01-01

    If protein synthesis evolved in an RNA world it was probably preceded by simpler processes by means of which interaction with amino acids conferred selective advantage on replicating RNA molecules. It is suggested that at first the simple attachment of amino acids to the 2'(3') termini of RNA templates favored initiation of replication at the end of the template rather than at internal positions. The second stage in the evolution of protein synthesis would probably have been the association of pairs of charged RNA adaptors in such a way as to favor noncoded formation of peptides. Only after this process had become efficient could coded synthesis have begun.

  13. Direct C-H Arylation Meets Perovskite Solar Cells: Sn-Free Synthesis Shortcut to High Performance Hole-Transporting Materials.

    PubMed

    Chang, Yu-Chieh; Lee, Kun-Mu; Lai, Chia-Hsin; Liu, Ching-Yuan

    2018-03-30

    In contrast to the traditional multistep synthesis, we demonstrate herein a two-step synthesis-shortcut to triphenylamine-based hole-transporting materials (HTMs) through sequential direct C-H arylations. These hole-transporting molecules are fabricated in perovskite-based solar cells (PSCs), exhibiting promising efficiencies up to 17.69%, which is comparable to PSCs utilizing the commercially available spiro-OMeTAD as HTM. This is the first report describing the use of step-saving C-H activations/arylations in the facile synthesis of small-molecule HTMs for perovskite solar cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesizing alkali ferrates using a waste as a raw material

    NASA Astrophysics Data System (ADS)

    Kanari, N.; Ostrosi, E.; Ninane, L.; Neveux, N.; Evrard, O.

    2005-08-01

    This study focused on the potential to transform a waste, hydrated iron sulfate, into a useful product. The waste was generated from titanium dioxide production and from the surface treatment of steel. Its disposal is restricted by environmental regulations, and consequently, it has to be recycled and/or treated. The described recycling was achieved through synthesis of potassium ferrate, which contains iron in a hexavalent state (FeVI). The synthesis process was achieved in a rotary reactor at room temperature using chlorine as an oxidant. The efficiency of potassium ferrate synthesis was about 60%. This paper presents details of the kinetics of the potassium ferrate synthesis.

  15. Solvent- and catalyst-free mechanochemical synthesis of alkali metal monohydrides

    DOE PAGES

    Hlova, Ihor Z.; Castle, Andra; Goldston, Jennifer F.; ...

    2016-07-06

    Alkali metal monohydrides, AH (A = Li–Cs) have been synthesized in quantitative yields at room temperature by reactive milling of alkali metals in the presence of hydrogen gas at 200 bar or less. The mechanochemical approach reported here eliminates problems associated with the malleability of alkali metals — especially Li, Na, and K — and promotes effective solid–gas reactions, ensuring their completion. This is achieved by incorporating a certain volume fraction of the corresponding hydride powder as a process control agent, which allows continuous and efficient milling primarily by coating the surface of metal particles, effectively blocking cold welding. Formationmore » of high-purity crystalline monohydrides has been confirmed by powder X-ray diffraction, solid-state NMR spectroscopy, and volumetric analyses of reactively desorbed H 2 from as-milled samples. The proposed synthesis method is scalable and particularly effective for extremely air-sensitive materials, such as alkali and alkaline earth metal hydrides. Furthermore, the technique may also be favorable for production in continuous reactors operating at room temperature, thereby reducing the total processing time, energy consumption and, hence, the cost of production of these hydrides or their derivatives and composites.« less

  16. Progress of reduction of graphene oxide by ascorbic acid

    NASA Astrophysics Data System (ADS)

    De Silva, K. Kanishka H.; Huang, Hsin-Hui; Yoshimura, Masamichi

    2018-07-01

    Graphene oxide (GO) and reduced graphene oxide (RGO) are in greater demand in many research fields. As a result, the synthesis of these materials on a large scale in a costeffective manner is more concerned for numerous applications. In the present work, GO was synthesized by oxidizing natural graphite and reduced by ascorbic acid (AA), which is a green reductant. The reduced products obtained at different time periods were in detail characterized by UV-Visible spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Results showed that the oxidation of graphite has given highly oxidized GO with a 9.30 Å interlayer space and about 33% of oxygen atomic percentage. Until 50 min of the reduction, both GO and RGO coexist. The reduction rate is fast within the first 30 min. In addition, the suitability of natural graphite over synthetic graphite for the synthesis of GO is shown. The findings of this work pave the way to select GO and RGO for applications of interest in a cheap, green and efficient manner.

  17. D-seco-Vitamin D analogs having reversed configurations at C-13 and C-14: Synthesis, docking studies and biological evaluation.

    PubMed

    Szybinski, Marcin; Sokolowska, Katarzyna; Sicinski, Rafal R; Plum, Lori A; DeLuca, Hector F

    2017-10-01

    Prompted by results of molecular modeling performed on the seco-d-ring-vitamins D, we turned our attention to such analogs, having reversed configurations at C-13 and C-14, as the next goals of our studies on the structure-activity relationship for vitamin D compounds. First, we developed an efficient total synthesis of the "upper" C/seco-d-ring fragment with a 7-carbon side chain. Then, we coupled it with A-ring fragments using Sonogashira or Wittig-Horner protocol, providing the targeted D-seco analogs of 1α,25-dihydroxyvitamin D 3 and 1α,25-dihydroxy-19-norvitamin D 3 possessing a vinyl substituent at C-14 and a double bond between C-17 and C-20. The affinities of the synthesized vitamin D analogs to the full-length recombinant rat VDR were examined, as well as their differentiating and transcriptional activities. In these in vitro tests, they were significantly less active compared to 1α,25-(OH) 2 D 3 . Moreover, it was established that the analogs tested in vivo in rats showed no calcemic potency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Efficient synthesis and activity of beneficial intestinal flora of two lactulose-derived oligosaccharides.

    PubMed

    Zhu, Zhen-Yuan; Cui, Di; Gao, Hui; Dong, Feng-Ying; Liu, Xiao-cui; Liu, Fei; Chen, Lu; Zhang, Yong-min

    2016-05-23

    Lactulose is considered as a prebiotic because it promotes the intestinal proliferation of Lactobacillus acidophilus which is added to various milk products. Moreover, lactulose is used in pharmaceuticals as a gentle laxative and to treat hyperammonemia. This study was aimed at the total synthesis of two Lactulose-derived oligosaccharides: one is 3-O-β-d-galactopyranosyl-d-fructose, d-fructose and β-d-galactose bounded together with β-1,3-glycosidic bound, the other is 1-O-β-d-galactopyranosyl-d-fructose, d-fructose and β-d-galactose bounded together with β-1,1-glycosidic bound, which were accomplished in seven steps from d-fructose and β-d-galactose and every step of yield above 75%. This synthetic route provided a practical and effective synthetic strategy for galactooligosaccharides, starting from commercially available monosaccharides. Then we evaluated on their prebiotic properties in the search for potential agents of regulating and improving the intestinal flora of human. The result showed that the prebiotic properties of Lactulose-derived oligosaccharides was much better than Lactulose. Among them, 3-O-β-d-galactopyranosyl-d-fructose displayed the most potent activity of proliferation of L. acidophilus. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. A Facile Hydrothermal Route for Synthesis of ZnS Hollow Spheres with Photocatalytic Degradation of Dyes Under Visible Light

    NASA Astrophysics Data System (ADS)

    Han, Zh.; Wang, N.; Zhang, H.; Yang, X.

    2017-01-01

    A facile hydrothermal method was employed for the synthesis of ZnS hollow spheres by using thioglycolic acid (TGA) as a capping agent under hydrothermal condition. The obtained products were characterized by X-ray powder diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). No diffraction peaks from other crystalline forms were detected, the synthesized ZnS hierarchical hollow spheres were relatively pure. The photocatalytic activities of as-synthesized samples were evaluated by the degradation of methyl orange (MO) and rhodamine B (RhB) under the condition of visible-light irradiation. The higher the initial MO and RhB concentrations, the longer it takes to reach the same residual concentration, implying that the apparent rates of MO and RhB degradation decrease with increase in the initial MO and RhB concentration. The increase of photocatalyst dosage from 0.2 to 0.6 g/L results in a sharp increase of the photodegradation efficiency from 68.50 to 92.66% after 180 min of visible-light irradiation for MO degradation, and the increase of photocatalyst dosage from 0.2 to 0.4 g/L results in a distinct increase of the photodegradation efficiency from 65.72 to 90.85% after 180 min of visible-light irradiation for RhB. The elution of intermediates generated in the photocatalytic mineralization of MO and RhB resulted in an increase in total organic carbon (TOC) level, leading to the difference between TOC removal rate and MO and RhB decolorization rates.

  20. Manipulation of rumen ecology by dietary lemongrass (Cymbopogon citratus Stapf.) powder supplementation.

    PubMed

    Wanapat, M; Cherdthong, A; Pakdee, P; Wanapat, S

    2008-12-01

    This experiment was conducted to investigate the effect of lemongrass [Cymbopogon citratus (DC.) Stapf.] powder (LGP) on rumen ecology, rumen microorganisms, and digestibility of nutrients. Four ruminally fistulated crossbred (Brahman native) beef cattle were randomly assigned according to a 4 x 4 Latin square design. The dietary treatments were LGP supplementation at 0, 100, 200, and 300 g/d with urea-treated rice straw (5%) fed to allow ad libitum intake. Digestibilities of DM, ether extract, and NDF were significantly different among treatments and were greatest at 100 g/d of supplementation. However, digestibility of CP was decreased with LGP supplementation (P < 0.05), whereas ruminal NH(3)-N and plasma urea N were decreased with incremental additions of LGP (P < 0.05). Ruminal VFA concentrations were similar among supplementation concentrations (P > 0.05). Total viable bacteria, amylolytic bacteria, and cellulolytic bacteria were significantly different among treatments and were greatest at 100 g/d of supplementation (4.7 x 10(9), 1.7 x 10(7), and 2.0 x 10(9) cfu/mL, respectively). Protozoal populations were significantly decreased by LGP supplementation. In addition, efficiency of rumen microbial N synthesis based on OM truly digested in the rumen was enriched by LGP supplementation, especially at 100 g/d (34.2 g of N/kg of OM truly digested in the rumen). Based on this study, it could be concluded that supplementation of LGP at 100 g/d improved digestibilities of nutrients, rumen microbial population, and microbial protein synthesis efficiency, thus improving rumen ecology in beef cattle.

  1. De Novo Synthesis and Degradation of Lx and V Cycle Pigments during Shade and Sun Acclimation in Avocado Leaves1

    PubMed Central

    Förster, Britta; Osmond, C. Barry; Pogson, Barry J.

    2009-01-01

    The photoprotective role of the universal violaxanthin cycle that interconverts violaxanthin (V), antheraxanthin (A), and zeaxanthin (Z) is well established, but functions of the analogous conversions of lutein-5,6-epoxide (Lx) and lutein (L) in the selectively occurring Lx cycle are still unclear. We investigated carotenoid pools in Lx-rich leaves of avocado (Persea americana) during sun or shade acclimation at different developmental stages. During sun exposure of mature shade leaves, an unusual decrease in L preceded the deepoxidation of Lx to L and of V to A+Z. In addition to deepoxidation, de novo synthesis increased the L and A+Z pools. Epoxidation of L was exceptionally slow, requiring about 40 d in the shade to restore the Lx pool, and residual A+Z usually persisted overnight. In young shade leaves, the Lx cycle was reversed initially, with Lx accumulating in the sun and declining in the shade. De novo synthesis of xanthophylls did not affect α- and β-carotene pools on the first day, but during long-term acclimation α-carotene pools changed noticeably. Nonetheless, the total change in α- and β-branch carotenoid pools was equal. We discuss the implications for regulation of metabolic flux through the α- and β-branches of carotenoid biosynthesis and potential roles for L in photoprotection and Lx in energy transfer to photosystem II and explore physiological roles of both xanthophyll cycles as determinants of photosystem II efficiency. PMID:19060099

  2. Synthesis and microwave absorbing characteristics of functionally graded carbonyl iron/polyurethane composites

    NASA Astrophysics Data System (ADS)

    Yang, R. B.; Liang, W. F.; Wu, C. H.; Chen, C. C.

    2016-05-01

    Radar absorbing materials (RAMs) also known as microwave absorbers, which can absorb and dissipate incident electromagnetic wave, are widely used in the fields of radar-cross section reduction, electromagnetic interference (EMI) reduction and human health protection. In this study, the synthesis of functionally graded material (FGM) (CI/Polyurethane composites), which is fabricated with semi-sequentially varied composition along the thickness, is implemented with a genetic algorithm (GA) to optimize the microwave absorption efficiency and bandwidth of FGM. For impedance matching and broad-band design, the original 8-layered FGM was obtained by the GA method to calculate the thickness of each layer for a sequential stacking of FGM from 20, 30, 40, 50, 60, 65, 70 and 75 wt% of CI fillers. The reflection loss of the original 8-layered FGM below -10 dB can be obtained in the frequency range of 5.12˜18 GHz with a total thickness of 9.66 mm. Further optimization reduces the number of the layers and the stacking sequence of the optimized 4-layered FGM is 20, 30, 65, 75 wt% with thickness of 0.8, 1.6, 0.6 and 1.0 mm, respectively. The synthesis and measurement of the optimized 4-layered FGM with a thickness of 4 mm reveal a minimum reflection loss of -25.2 dB at 6.64 GHz and its bandwidth below - 10 dB is larger than 12.8 GHz.

  3. Role for tryptophan in regulation of protein synthesis in porcine muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, F.D.; Smith, T.K.; Bayley, H.S.

    1988-04-01

    Experiments were conducted to determine the effect of varying concentrations of dietary tryptophan on growth rate and protein synthesis in edible muscle tissues of growing swine. A total of 45 immature swine (initial weight approximately 24 kg) were fed corn-gelatin diets containing 0.5 (n = 8), 0.8 (n = 10), 1.3 (n = 10), 1.5 (n = 7) or 2.0 (n = 10) g tryptophan/kg diet for 35 d. Animals fed 0.5 and 0.8 g tryptophan/kg grew more slowly, consumed less feed and had a lower efficiency of feed utilization than animals fed higher concentrations of tryptophan. Thirty similar animalsmore » were used in a second experiment. Diets containing 0.5, 0.8, 1.0, 1.5 or 2.0 g tryptophan/kg diet (n = 6) were fed for 14 d, after which all animals were killed and samples were taken of longissimus dorsi, triceps brachii and biceps femoris. Protein synthetic activity was determined by monitoring the incorporation of (/sup 14/C)phenylalanine into protein in vitro. There was no significant difference in synthetic activity between different muscle types. There was no effect of diet on the activity of the muscle soluble protein fraction. The activity of the muscle ribosomal fraction, however, was positively correlated with increasing concentrations of dietary tryptophan. It was concluded that tryptophan has the potential to regulate muscle protein synthesis in a manner beyond serving simply as a component of protein.« less

  4. A Review of Study on Thermal Energy Transport System by Synthesis and Decomposition Reactions of Methanol

    NASA Astrophysics Data System (ADS)

    Liu, Qiusheng; Yabe, Akira; Kajiyama, Shiro; Fukuda, Katsuya

    The study on thermal energy transport system by synthesis and decomposition reactions of methanol was reviewed. To promote energy conservation and global environment protection, a two-step liquid-phase methanol synthesis process, which starts with carbonylation of methanol to methyl formate, then followed by the hydrogenolysis of the formate, was studied to recover wasted or unused discharged heat from industrial sources for the thermal energy demands of residential and commercial areas by chemical reactions. The research and development of the system were focused on the following three points. (1) Development of low-temperature decomposition and synthetic catalysts, (2) Development of liquid phase reactor (heat exchanger accompanying chemical reaction), (3) Simulation of the energy transport efficiency of entire system which contains heat recovery and supply sections. As the result of the development of catalyst, promising catalysts which agree with the development purposes for the methyl formate decomposition reaction and the synthetic reaction are being developed though some studies remain for the methanol decomposition and synthetic reactions. In the fundamental development of liquid phase reactor, the solubilities of CO and H2 gases in methanol and methyl formate were measured by the method of total pressure decrease due to absorption under pressures up to 1500kPa and temperatures up to 140°C. The diffusivity of CO gas in methanol was determined by measuring the diameter and solution time of single CO bubbles in methanol. The chemical reaction rate of methanol synthesis by hydrogenolysis of methyl formate was measured using a plate-type of Raney copper catalyst in a reactor with rectangular channel and in an autoclave reactor. The reaction characteristics were investigated by carrying out the experiments at various temperatures, flow rates and at various catalyst development conditions. We focused on the effect of Raney copper catalyst thickness on the liquid-phase chemical reaction by varying the development time of the catalyst. Investigation results of the catalyst such as surface area, pore radius, lattice size, and photographs of scanning electron microscope (SEM) were also given. In the simulation of energy transport efficiency of this system, by simulating the energy transfer system using two-step liquid phase methanol decomposition and synthetic reactions, and comparing with the technology so far, it can be expected that an innovative energy transfer system is possible to realize.

  5. Iron Oxide-Supported Copper Oxide Nanoparticles (Nanocat-Fe-CuO): Magnetically Recyclable Catalysts for the Synthesis of Pyrazole Derivatives, 4-Methoxyaniline, and Ullmann-type Condensation Reactions

    EPA Science Inventory

    An efficient and benign protocol is reported for the synthesis of 4-methoxyaniline, medicinally important pyrazole derivatives, and Ullmann-type condensation reaction using magnetically separable and reusable magnetite-supported copper (nanocat-Fe-CuO) nanoparticles under mild co...

  6. Facile, eco-friendly, catalyst-free synthesis of polyfunctionalized quinoxalines.

    PubMed

    Zhang, Yaohong; Luo, Mengqiang; Li, Yan; Wang, Hai; Ren, Xiaorong; Qi, Chenze

    2018-02-01

    A novel, facile and eco-friendly synthesis of quinoxalines from [Formula: see text] and 1,2-diamines was developed. An attractive feature of this protocol is that the desired products could be generated efficiently in water and without any catalyst, which is in accordance with the aim of green chemistry. A plausible mechanism has been proposed.

  7. Nano-particulate Aluminium Nitride/Al: An Efficient and Versatile Heterogeneous Catalyst for the Synthesis of Biginelli Scaffolds

    NASA Astrophysics Data System (ADS)

    Tekale, S. U.; Tekale, A. B.; Kanhe, N. S.; Bhoraskar, S. V.; Pawar, R. P.

    2011-12-01

    Nano-particulate aluminium nitride/Al (7:1) is reported as a new heterogeneous solid acid catalyst for the synthesis of 3, 4-dihydroxypyrimidi-2-(1H)-ones and their sulphur analogues using the Biginelli reaction. This method involves short reaction time, easy separation, high yields and purity of products.

  8. GREEN AND CONTROLLED SYNTHESIS OF GOLD AND PLATINUM NANOMATERIALS USING VITAMIN B2: DENSITY-ASSISTED SELF-ASSEMBLY OF NANOSPHERES, WIRES AND RODS

    EPA Science Inventory

    For the first time, we report density-assisted self-assembly and efficient synthesis of gold (Au) and platinum (Pt) nanospheres, nanowires and nanorods using vitamin B2 (riboflavin) without employing any special capping or dispersing agent at room temperature; this env...

  9. A facile synthesis of substituted 2-alkylquinolines through [3+3] annulation between 3-ethoxycyclobutanones and aromatic amines at room temperature.

    PubMed

    Shan, Gang; Sun, Xiuyun; Xia, Qian; Rao, Yu

    2011-11-04

    An efficient single-step approach toward the synthesis of 2-alkylquinolines is described. Through a Lewis acid mediated [3+3] annulation reaction between 3-ethoxycyclobutanones and aromatic amines, a variety of multisubstituted 2-alkylquinoline derivatives were prepared regioselectively at room temperature. © 2011 American Chemical Society

  10. Synthesis of 2-Ethenylcyclopropyl Aryl Ketones via Intramolecular SN2-like Displacement of an Ester.

    PubMed

    Jung, Michael E; Sun, Daniel L; Dwight, Timothy A; Yu, Peiyuan; Li, Wei; Houk, K N

    2016-10-07

    The efficient synthesis of trans-2-ethenylcyclopropyl aryl ketones via an intramolecular S N 2-like displacement of an allylic ester is reported. A novel 1,5-acyl shift process is also observed that contributes to the product mixture. Theoretical calculations provide a rationale for the observed product ratio.

  11. Direct synthesis of alkenyl iodides via indium-catalyzed iodoalkylation of alkynes with alcohols and aqueous HI.

    PubMed

    Wu, Chao; Wang, Zheng; Hu, Zhan; Zeng, Fei; Zhang, Xing-Yu; Cao, Zhong; Tang, Zilong; He, Wei-Min; Xu, Xin-Hua

    2018-05-02

    A convenient and efficient indium-catalyzed approach to synthesize alkenyl iodides has been developed through direct iodoalkylation of alkynes with alcohols and aqueous HI under mild conditions. This catalytic protocol offers an attractive approach for the synthesis of a diverse range of alkenyl iodides in good to excellent yields.

  12. Synthesis of functionalized chromenes from Meldrum's acid, 4-hydroxycoumarin, and ketones or aldehydes.

    PubMed

    Sabbaghan, Maryam; Yavari, Issa; Hossaini, Zinatossadat

    2010-11-01

    An efficient synthesis of 4-alkyl-4-methyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromene-2,5-dione or 4-aryl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromene-2,5-diones via reaction 4-hydroxycoumarin with Meldrum's acid and ketones or aldehydes is described.

  13. Effect of replacing grass silage with red clover silage on nutrient digestion, nitrogen metabolism, and milk fat composition in lactating cows fed diets containing a 60:40 forage-to-concentrate ratio.

    PubMed

    Halmemies-Beauchet-Filleau, A; Vanhatalo, A; Toivonen, V; Heikkilä, T; Lee, M R F; Shingfield, K J

    2014-01-01

    Diets based on red clover silage (RCS) typically increase the concentration of polyunsaturated fatty acids (PUFA) in ruminant meat and milk and lower the efficiency of N utilization compared with grass silages (GS). Four multiparous Finnish Ayrshire cows (108 d postpartum) fitted with rumen cannulas were used in a 4 × 4 Latin square design with 21-d periods to evaluate the effect of incremental replacement of GS with RCS on milk production, nutrient digestion, whole-body N metabolism, and milk fatty acid composition. Treatments comprised total mixed rations offered ad libitum, containing 600 g of forage/kg of diet dry matter (DM), with RCS replacing GS in ratios of 0:100, 33:67, 67:33, and 100:0 on a DM basis. Intake of DM and milk yield tended to be higher when RCS and GS were offered as a mixture than when fed alone. Forage species had no influence on the concentration or secretion of total milk fat, whereas replacing GS with RCS tended to decrease milk protein concentration and yield. Substitution of GS with RCS decreased linearly whole-tract apparent organic matter, fiber, and N digestion. Forage species had no effect on total nonammonia N at the omasum, whereas the flow of most AA at the omasum was higher for diets based on a mixture of forages. Replacing GS with RCS progressively lowered protein degradation in the rumen, increased linearly ruminal escape of dietary protein, and decreased linearly microbial protein synthesis. Incremental inclusion of RCS in the diet tended to lower whole-body N balance, increased linearly the proportion of dietary N excreted in feces and urine, and decreased linearly the utilization of dietary N for milk protein synthesis. Furthermore, replacing GS with RCS decreased linearly milk fat 4:0 to 8:0, 14:0, and 16:0 concentrations and increased linearly 18:2n-6 and 18:3n-3 concentrations, in the absence of changes in cis-9 18:1, cis-9, trans-11 18:2, or total trans fatty acid concentration. Inclusion of RCS in the diet progressively increased the apparent transfer of 18-carbon PUFA from the diet into milk, but had no effect on the amount of 18:2n-6 or 18:3n-3 at the omasum recovered in milk. In conclusion, forage species modified ruminal N metabolism, the flow of AA at the omasum, and whole-body N partitioning. A lower efficiency of N utilization for milk protein synthesis with RCS relative to GS was associated with decreased availability of AA for absorption, with some evidence of an imbalance in the supply of AA relative to requirements. Higher enrichment of PUFA in milk for diets based on RCS was related to an increased supply for absorption, with no indication that forage species substantially altered PUFA bioavailability. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Roles of exonucleases and translesion synthesis DNA polymerases during mitotic gap repair in yeast

    PubMed Central

    Guo, Xiaoge; Jinks-Robertson, Sue

    2013-01-01

    Transformation-based gap-repair assays have long been used to model the repair of mitotic double-strand breaks (DSBs) by homologous recombination in yeast. In the current study, we examine genetic requirements of two key processes involved in DSB repair: (1) the processive 5′-end resection that is required to efficiently engage a repair template and (2) the filling of resected ends by DNA polymerases. The specific gap-repair assay used allows repair events resolved as crossover versus noncrossover products to be distinguished, as well as the extent of heteroduplex DNA formed during recombination to be measured. To examine end resection, the efficiency and outcome of gap repair were monitored in the absence of the Exo1 exonuclease and the Sgs1 helicase. We found that either Exo1 or Sgs1 presence is sufficient to inhibit gap-repair efficiency over 10-fold, consistent with resection-mediated destruction of the introduced plasmid. In terms of DNA polymerase requirements for gap repair, we focused specifically on potential roles of the Pol ζ and Pol η translesion synthesis DNA polymerases. We found that both Pol ζ and Pol η are necessary for efficient gap repair and that each functions independently of the other. These polymerases may be either in the initiation of DNA synthesis from the an invading end, or in a gap-filling process that is required to complete recombination. PMID:24210827

  15. Hydrothermal Synthesis of VO2 Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows.

    PubMed

    Li, Ming; Magdassi, Shlomo; Gao, Yanfeng; Long, Yi

    2017-09-01

    Vanadium dioxide (VO 2 ) is a widely studied inorganic phase change material, which has a reversible phase transition from semiconducting monoclinic to metallic rutile phase at a critical temperature of τ c ≈ 68 °C. The abrupt decrease of infrared transmittance in the metallic phase makes VO 2 a potential candidate for thermochromic energy efficient windows to cut down building energy consumption. However, there are three long-standing issues that hindered its application in energy efficient windows: high τ c , low luminous transmittance (T lum ), and undesirable solar modulation ability (ΔT sol ). Many approaches, including nano-thermochromism, porous films, biomimetic surface reconstruction, gridded structures, antireflective overcoatings, etc, have been proposed to tackle these issues. The first approach-nano-thermochromism-which is to integrate VO 2 nanoparticles in a transparent matrix, outperforms the rest; while the thermochromic performance is determined by particle size, stoichiometry, and crystallinity. A hydrothermal method is the most common method to fabricate high-quality VO 2 nanoparticles, and has its own advantages of large-scale synthesis and precise phase control of VO 2 . This Review focuses on hydrothermal synthesis, physical properties of VO 2 polymorphs, and their transformation to thermochromic VO 2 (M), and discusses the advantages, challenges, and prospects of VO 2 (M) in energy-efficient smart windows application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Total syntheses of hyperforin and papuaforins A-C, and formal synthesis of nemorosone through a gold(I)-catalyzed carbocyclization.

    PubMed

    Bellavance, Gabriel; Barriault, Louis

    2014-06-23

    The remarkable biological activities of polyprenylated polycyclic acylphloroglucinols (PPAPs) combined with their highly decorated bicyclo[3.3.1]nonane-2,4,9-trione frameworks have inspired synthetic organic chemists over the last decade. The concise total syntheses of four natural products PPAPs; hyperforin and papuaforins A-C, and the formal synthesis of nemorosone are reported. Key to the realization of this strategy is the short and scalable synthesis of densely substituted PPAP scaffolds through a gold(I)-catalyzed 6-endo-dig carbocyclization of cyclic enol ethers for late-stage functionalization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Enantioselective Total Synthesis of Antibiotic CJ-16,264, Synthesis and Biological Evaluation of Designed Analogues, and Discovery of Highly Potent and Simpler Antibacterial Agents.

    PubMed

    Nicolaou, K C; Pulukuri, Kiran Kumar; Rigol, Stephan; Buchman, Marek; Shah, Akshay A; Cen, Nicholas; McCurry, Megan D; Beabout, Kathryn; Shamoo, Yousif

    2017-11-08

    An improved and enantioselective total synthesis of antibiotic CJ-16,264 through a practical kinetic resolution and an iodolactonization reaction to form the iodo pyrrolizidinone fragment of the molecule is described. A series of racemic and enantiopure analogues of CJ-16,264 was designed and synthesized through the developed synthetic technologies and tested against drug-resistant bacterial strains. These studies led to interesting structure-activity relationships and the identification of a number of simpler, and yet equipotent, or even more potent, antibacterial agents than the natural product, thereby setting the foundation for further investigations in the quest for new anti-infective drugs.

  18. Rapid Total Synthesis of DARPin pE59 and RNase B. a

    PubMed Central

    Mong, Surin K.; Vinogradov, Alexander A.; Simon, Mark D.

    2014-01-01

    Here we report the convergent total synthesis of two proteins: DARPin pE59 and RNase B. a. (Barnase). Leveraging our recently developed fast flow peptide synthesis platform, we rapidly explored numerous conditions for the assembly of long polypeptides and were able to mitigate common side reactions including deletion and aspartimide products. We report general strategies for improving the synthetic quality of difficult peptide sequences with our system. High-quality protein fragments produced under optimal synthetic conditions were subjected to convergent native chemical ligation, which afforded native full-length proteins after a final desulfurization step. Both DARPin and Barnase were folded and found to be as active as their recombinant analogues. PMID:24616257

  19. Divergent Synthesis of Revised Apratoxin E, 30-epi-Apratoxin E, and 30S/30R-Oxoapratoxin E.

    PubMed

    Mao, Zhuo-Ya; Si, Chang-Mei; Liu, Yi-Wen; Dong, Han-Qing; Wei, Bang-Guo; Lin, Guo-Qiang

    2017-10-20

    In this report, originally proposed apratoxin E (30S-7), revised apratoxin E (30R-7), and (30S)/(30R)-oxoapratoxin E (30S)-38/(30R)-38 were efficiently prepared by two synthetic methods. The chiral lactone 10, recycled from the degradation of saponin glycosides, was utilized to prepare the key nonpeptide fragment 9. Our alternative convergent assembly strategy was applied to the divergent synthesis of revised apratoxin E and its three analogues. Moreover, ring-closing metathesis (RCM) was for the first time found to be an efficient strategy for the macrocyclization of apratoxins.

  20. Practical synthesis of Shi's diester fructose derivative for catalytic asymmetric epoxidation of alkenes.

    PubMed

    Nieto, N; Molas, P; Benet-Buchholz, J; Vidal-Ferran, A

    2005-11-25

    [reaction: see text] A practical synthesis of Shi's diester 3 for catalytic asymmetric epoxidations has been developed. The catalyst has been prepared in multigram quantities from D-fructose in four steps with a 66% overall yield. Efficiency, cost, and selectivity aspects of the reagents involved for its preparation have been taken care of during its preparation. The workup procedures have been simplified to the bare minimum, rendering a very practical preparation method. The well-known high efficiency of this catalyst 3 in the epoxidation of alpha,beta-unsaturated carbonyl compounds has also proved to be high in unfunctionalized alkenes.

Top