Lin, Mei-Na; Shang, De-Shu; Sun, Wei; Li, Bo; Xu, Xin; Fang, Wen-Gang; Zhao, Wei-Dong; Cao, Liu; Chen, Yu-Hua
2013-06-04
Bone marrow-derived mesenchymal stem cells (MSC) represent an important and easily available source of stem cells for potential therapeutic use in neurological diseases. The entry of circulating cells into the central nervous system by intravenous administration requires, firstly, the passage of the cells across the blood-brain barrier (BBB). However, little is known of the details of MSC transmigration across the BBB. In the present study, we employed an in vitro BBB model constructed using a human brain microvascular endothelial cell monolayer to study the mechanism underlying MSC transendothelial migration. Transmigration assays, transendothelial electrical resistance (TEER) and horseradish peroxidase (HRP) flux assays showed that MSC could transmigrate through human brain microvascular endothelial cell monolayers by a paracellular pathway. Cell fractionation and immunofluorescence assays confirmed the disruption of tight junctions. Inhibition assays showed that a Rho-kinase (ROCK) inhibitor (Y27632) effectively promoted MSC transendothelial migration; conversely, a PI3K inhibitor (LY294002) blocked MSC transendothelial migration. Interestingly, adenovirus-mediated interference with ROCK in MSC significantly increased MSC transendothelial migration, and overexpression of a PI3K dominant negative mutant in MSC cells could block transendothelial migration. Our findings provide clear evidence that the PI3K and ROCK pathways are involved in MSC migration through human brain microvascular endothelial cell monolayers. The information yielded by this study may be helpful in constructing gene-modified mesenchymal stem cells that are able to penetrate the BBB effectively for cell therapy. Copyright © 2013 Elsevier B.V. All rights reserved.
Reverse transendothelial cell migration in inflammation: to help or to hinder?
Burn, Thomas; Alvarez, Jorge Ivan
2017-05-01
The endothelium provides a strong barrier separating circulating blood from tissue. It also provides a significant challenge for immune cells in the bloodstream to access potential sites of infection. To mount an effective immune response, leukocytes traverse the endothelial layer in a process known as transendothelial migration. Decades of work have allowed dissection of the mechanisms through which immune cells gain access into peripheral tissues, and subsequently to inflammatory foci. However, an often under-appreciated or potentially ignored question is whether transmigrated leukocytes can leave these inflammatory sites, and perhaps even return across the endothelium and re-enter circulation. Although evidence has existed to support "reverse" transendothelial migration for a number of years, it is only recently that mechanisms associated with this process have been described. Here we review the evidence that supports both reverse transendothelial migration and reverse interstitial migration within tissues, with particular emphasis on some of the more recent studies that finally hint at potential mechanisms. Additionally, we postulate the biological significance of retrograde migration, and whether it serves as an additional mechanism to limit pathology, or provides a basis for the dissemination of systemic inflammation.
Thankamony, Sai P; Sackstein, Robert
2011-02-08
According to the multistep model of cell migration, chemokine receptor engagement (step 2) triggers conversion of rolling interactions (step 1) into firm adhesion (step 3), yielding transendothelial migration. We recently reported that glycosyltransferase-programmed stereosubstitution (GPS) of CD44 on human mesenchymal stem cells (hMSCs) creates the E-selectin ligand HCELL (hematopoietic cell E-selectin/L-selectin ligand) and, despite absence of CXCR4, systemically administered HCELL(+)hMSCs display robust osteotropism visualized by intravital microscopy. Here we performed studies to define the molecular effectors of this process. We observed that engagement of hMSC HCELL with E-selectin triggers VLA-4 adhesiveness, resulting in shear-resistant adhesion to ligand VCAM-1. This VLA-4 activation is mediated via a Rac1/Rap1 GTPase signaling pathway, resulting in transendothelial migration on stimulated human umbilical vein endothelial cells without chemokine input. These findings indicate that hMSCs coordinately integrate CD44 ligation and integrin activation, circumventing chemokine-mediated signaling, yielding a step 2-bypass pathway of the canonical multistep paradigm of cell migration.
Pignatelli, Jeanine; Goswami, Sumanta; Jones, Joan G.; Rohan, Thomas E.; Pieri, Evan; Chen, Xiaoming; Adler, Esther; Cox, Dianne; Maleki, Sara; Bresnick, Anne; Gertler, Frank B.; Condeelis, John S.; Oktay, Maja H.
2014-01-01
Metastasis is a complex, multistep process of cancer progression that has few treatment options. A critical event is the invasion of cancer cells into blood vessels (intravasation), through which cancer cells disseminate to distant organs. Breast cancer cells with increased abundance of Mena [an epidermal growth factor (EGF)–responsive cell migration protein] are present with macrophages at sites of intravasation, called TMEM sites (for tumor microenvironment of metastasis), in patient tumor samples. Furthermore, the density of these intravasation sites correlates with metastatic risk in patients. We found that intravasation of breast cancer cells may be prevented by blocking the signaling between cancer cells and macrophages. We obtained invasive breast ductal carcinoma cells of various subtypes by fine-needle aspiration (FNA) biopsies from patients and found that, in an in vitro transendothelial migration assay, cells that migrated through a layer of human endothelial cells were enriched for the transcript encoding MenaINV, an invasive isoform of Mena. This enhanced transendothelial migration required macrophages and occurred with all of the breast cancer subtypes. Using mouse macrophages and the human cancer cells from the FNAs, we identified paracrine and autocrine activation of colony-stimulating factor-1 receptor (CSF-1R). The paracrine or autocrine nature of the signal depended on the breast cancer cell subtype. Knocking down MenaINV or adding an antibody that blocks CSF-1R function prevented transendothelial migration. Our findings indicate that MenaINV and TMEM frequency are correlated prognostic markers and CSF-1 and MenaINV may be therapeutic targets to prevent metastasis of multiple breast cancer subtypes. PMID:25429076
Tawadros, T; Brown, M D; Hart, C A; Clarke, N W
2012-01-01
Background: High intake of omega-6 polyunsaturated fatty acids (PUFA) has been associated with clinical progression in prostate cancer (CaP). This study investigates the signalling mechanism by which the omega-6 PUFA arachidonic acid (AA) induces prostatic cellular migration to bone marrow stroma. Methods: Western blot analysis of the PC-3, PC3-GFP, DU 145 and LNCaP cells or their lipid raft (LR) components post AA stimulation was conducted in association with assays for adhesion and invasion through the bone marrow endothelial monolayers. Results: Arachidonic acid increased transendothelial migration of PC3-GFP cells (adhesion 37%±0.08, P=0.0124; transmigration 270%±0.145, P=0.0008). Akt, Src and focal adhesion kinase (FAK) pathways were induced by AA and integrally involved in transendothelial migration. LR were critical in AA uptake and induced Akt activity. Ephrin receptor A2 (EphA2), localised in LR, is expressed in DU 145 and PC-3 cells. Arachidonic acid induced a rapid increase of EphA2 Akt-dependent/ligand-independent activation, while knockdown of the EphrinA1 ligand decreased AA induced transendothelial migration, with an associated decrease in Src and FAK activity. Arachidonic acid activated Akt in EphA2− LNCaP cells but failed to induce BMEC transendothelial invasion. Conclusion: Arachidonic acid induced stimulation of EphA2 in vitro is associated fundamentally with CaP epithelial migration across the endothelial barrier. PMID:23037715
Vliagoftis, Harissios; Ebeling, Cory; Ilarraza, Ramses; Mahmudi-Azer, Salahaddin; Abel, Melanie; Adamko, Darryl; Befus, A Dean; Moqbel, Redwan
2014-01-01
Eosinophils circulate in the blood and are recruited in tissues during allergic inflammation. Gap junctions mediate direct communication between adjacent cells and may represent a new way of communication between immune cells distinct from communication through cytokines and chemokines. We characterized the expression of connexin (Cx)43 by eosinophils isolated from atopic individuals using RT-PCR, Western blotting, and confocal microscopy and studied the biological functions of gap junctions on eosinophils. The formation of functional gap junctions was evaluated measuring dye transfer using flow cytometry. The role of gap junctions on eosinophil transendothelial migration was studied using the inhibitor 18-a-glycyrrhetinic acid. Peripheral blood eosinophils express Cx43 mRNA and protein. Cx43 is localized not only in the cytoplasm but also on the plasma membrane. The membrane impermeable dye BCECF transferred from eosinophils to epithelial or endothelial cells following coculture in a dose and time dependent fashion. The gap junction inhibitors 18-a-glycyrrhetinic acid and octanol did not have a significant effect on dye transfer but reduced dye exit from eosinophils. The gap junction inhibitor 18-a-glycyrrhetinic acid inhibited eosinophil transendothelial migration in a dose dependent manner. Thus, eosinophils from atopic individuals express Cx43 constitutively and Cx43 may play an important role in eosinophil transendothelial migration and function in sites of inflammation.
Regulation of Phagocyte Migration by Signal Regulatory Protein-Alpha Signaling.
Alvarez-Zarate, Julian; Matlung, Hanke L; Matozaki, Takashi; Kuijpers, Taco W; Maridonneau-Parini, Isabelle; van den Berg, Timo K
2015-01-01
Signaling through the inhibitory receptor signal regulatory protein-alpha (SIRPα) controls effector functions in phagocytes. However, there are also indications that interactions between SIRPα and its ligand CD47 are involved in phagocyte transendothelial migration. We have investigated the involvement of SIRPα signaling in phagocyte migration in vitro and in vivo using mice that lack the SIRPα cytoplasmic tail. During thioglycolate-induced peritonitis in SIRPα mutant mice, both neutrophil and macrophage influx were found to occur, but to be significantly delayed. SIRPα signaling appeared to be essential for an optimal transendothelial migration and chemotaxis, and for the amoeboid type of phagocyte migration in 3-dimensional environments. These findings demonstrate, for the first time, that SIRPα signaling can directly control phagocyte migration, and this may contribute to the impaired inflammatory phenotype that has been observed in the absence of SIRPα signaling.
Monfoulet, Laurent-Emmanuel; Mercier, Sylvie; Bayle, Dominique; Tamaian, Radu; Barber-Chamoux, Nicolas; Morand, Christine; Milenkovic, Dragan
2017-11-01
Curcumin is a phenolic compound that exhibits beneficial properties for cardiometabolic health. We previously showed that curcumin reduced the infiltration of immune cells into the vascular wall and prevented atherosclerosis development in mice. This study aimed to investigate the effect of curcumin on monocyte adhesion and transendothelial migration (TEM) and to decipher the underlying mechanisms of these actions. Human umbilical vein endothelial cells (HUVECs) were exposed to curcumin (0.5-1μM) for 3h prior to their activation by Tumor Necrosis Factor alpha (TNF-α). Endothelial permeability, monocyte adhesion and transendothelial migration assays were conducted under static condition and shear stress that mimics blood flow. We further investigated the impact of curcumin on signaling pathways and on the expression of genes using macroarrays. Pre-exposure of endothelial cells to curcumin reduced monocyte adhesion and their transendothelial migration in both static and shear stress conditions. Curcumin also prevented changes in both endothelial permeability and the area of HUVECs when induced by TNF-α. We showed that curcumin modulated the expression of 15 genes involved in the control of cytoskeleton and endothelial junction dynamic. Finally, we showed that curcumin inhibited NF-κB signaling likely through an antagonist interplay with several kinases as suggested by molecular docking analysis. Our findings demonstrate the ability of curcumin to reduce monocyte TEM through a multimodal regulation of the endothelial cell dynamics with a potential benefit on the vascular endothelial function barrier. Copyright © 2017 Elsevier Inc. All rights reserved.
IFN-γ promotes transendothelial migration of CD4+ T cells across the blood-brain barrier.
Sonar, Sandip Ashok; Shaikh, Shagufta; Joshi, Nupura; Atre, Ashwini N; Lal, Girdhari
2017-10-01
Transendothelial migration (TEM) of Th1 and Th17 cells across the blood-brain barrier (BBB) has a critical role in the development of experimental autoimmune encephalomyelitis (EAE). How cytokines produced by inflammatory Th1 and Th17 cells damage the endothelial BBB and promote transendothelial migration of immune cells into the central nervous system (CNS) during autoimmunity is not understood. We therefore investigated the effect of various cytokines on brain endothelial cells. Among the various cytokines tested, such as Th1 (IFN-γ, IL-1α, IL-1β, TNF-α, IL-12), Th2 (IL-3, IL-4, IL-6 and IL-13), Th17 (IL-17A, IL-17F, IL-21, IL-22, IL-23, GM-CSF) and Treg-specific cytokines (IL-10 and TGF-β), IFN-γ predominantly showed increased expression of ICAM-1, VCAM-1, MAdCAM-1, H2-K b and I-A b molecules on brain endothelial cells. Furthermore, IFN-γ induced transendothelial migration of CD4 + T cells from the apical (luminal side) to the basal side (abluminal side) of the endothelial monolayer to chemokine CCL21 in a STAT-1-dependent manner. IFN-γ also favored the transcellular route of TEM of CD4 + T cells. Multicolor immunofluorescence and confocal microscopic analysis showed that IFN-γ induced relocalization of ICAM-1, PECAM-1, ZO-1 and VE-cadherin in the endothelial cells, which affected the migration of CD4 + T cells. These findings reveal that the IFN-γ produced during inflammation could contribute towards disrupting the BBB and promoting TEM of CD4 + T cells. Our findings also indicate that strategies that interfere with the activation of CNS endothelial cells may help in controlling neuroinflammation and autoimmunity.
Regulation of Phagocyte Migration by Signal Regulatory Protein-Alpha Signaling
Alvarez-Zarate, Julian; Matlung, Hanke L.; Matozaki, Takashi; Kuijpers, Taco W.; Maridonneau-Parini, Isabelle; van den Berg, Timo K.
2015-01-01
Signaling through the inhibitory receptor signal regulatory protein-alpha (SIRPα) controls effector functions in phagocytes. However, there are also indications that interactions between SIRPα and its ligand CD47 are involved in phagocyte transendothelial migration. We have investigated the involvement of SIRPα signaling in phagocyte migration in vitro and in vivo using mice that lack the SIRPα cytoplasmic tail. During thioglycolate-induced peritonitis in SIRPα mutant mice, both neutrophil and macrophage influx were found to occur, but to be significantly delayed. SIRPα signaling appeared to be essential for an optimal transendothelial migration and chemotaxis, and for the amoeboid type of phagocyte migration in 3-dimensional environments. These findings demonstrate, for the first time, that SIRPα signaling can directly control phagocyte migration, and this may contribute to the impaired inflammatory phenotype that has been observed in the absence of SIRPα signaling. PMID:26057870
Minocycline affects human neutrophil respiratory burst and transendothelial migration.
Parenti, Astrid; Indorato, Boris; Paccosi, Sara
2017-02-01
This study aimed at investigating the in vitro activity of minocycline and doxycycline on human polymorphonuclear (h-PMN) cell function. h-PMNs were isolated from whole venous blood of healthy subjects; PMN oxidative burst was measured by monitoring ROS-induced oxidation of luminol and transendothelial migration was studied by measuring PMN migration through a monolayer of human umbilical vein endothelial cells. Differences between multiple groups were determined by ANOVA followed by Tukey's multiple comparison test; Student's t test for unpaired data for two groups. Minocycline (1-300 µM) concentration dependently and significantly inhibited oxidative burst of h-PMNs stimulated with 100 nM fMLP. Ten micromolar concentrations, which are superimposable to C max following a standard oral dose of minocycline, promoted a 29.8 ± 4 % inhibition of respiratory burst (P < 0.001; n = 6). Doxycycline inhibited ROS production with a lesser extent and at higher concentrations. 10-100 µM minocycline impaired PMN transendothelial migration, with maximal effect at 100 µM (42.5 ± 7 %, inhibition, n = 5, P < 0.001). These results added new insight into anti-inflammatory effects of minocycline exerted on innate immune h-PMN cell function.
Quantification of transendothelial migration using three-dimensional confocal microscopy.
Cain, Robert J; d'Água, Bárbara Borda; Ridley, Anne J
2011-01-01
Migration of cells across endothelial barriers, termed transendothelial migration (TEM), is an important cellular process that underpins the pathology of many disease states including chronic inflammation and cancer metastasis. While this process can be modeled in vitro using cultured cells, many model systems are unable to provide detailed visual information of cell morphologies and distribution of proteins such as junctional markers, as well as quantitative data on the rate of TEM. Improvements in imaging techniques have made microscopy-based assays an invaluable tool for studying this type of detailed cell movement in physiological processes. In this chapter, we describe a confocal microscopy-based method that can be used to assess TEM of both leukocytes and cancer cells across endothelial barriers in response to a chemotactic gradient, as well as providing information on their migration into a subendothelial extracellular matrix, designed to mimic that found in vivo.
Pietrovito, Laura; Leo, Angela; Gori, Valentina; Lulli, Matteo; Parri, Matteo; Becherucci, Valentina; Piccini, Luisa; Bambi, Franco; Taddei, Maria Letizia; Chiarugi, Paola
2018-05-01
There is growing evidence to suggest that bone marrow-derived mesenchymal stem cells (BM-MSCs) are key players in tumour stroma. Here, we investigated the cross-talk between BM-MSCs and osteosarcoma (OS) cells. We revealed a strong tropism of BM-MSCs towards these tumour cells and identified monocyte chemoattractant protein (MCP)-1, growth-regulated oncogene (GRO)-α and transforming growth factor (TGF)-β1 as pivotal factors for BM-MSC chemotaxis. Once in contact with OS cells, BM-MSCs trans-differentiate into cancer-associated fibroblasts, further increasing MCP-1, GRO-α, interleukin (IL)-6 and IL-8 levels in the tumour microenvironment. These cytokines promote mesenchymal to amoeboid transition (MAT), driven by activation of the small GTPase RhoA, in OS cells, as illustrated by the in vitro assay and live imaging. The outcome is a significant increase of aggressiveness in OS cells in terms of motility, invasiveness and transendothelial migration. In keeping with their enhanced transendothelial migration abilities, OS cells stimulated by BM-MSCs also sustain migration, invasion and formation of the in vitro capillary network of endothelial cells. Thus, BM-MSC recruitment to the OS site and the consequent cytokine-induced MAT are crucial events in OS malignancy. © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
Tsubota, Yoshiaki; Frey, Jeremy M; Raines, Elaine W
2014-01-01
Monocyte recruitment to inflammatory sites and their transendothelial migration into tissues are critical to homeostasis and pathogenesis of chronic inflammatory diseases. However, even short-term suspension culture of primary human monocytes leads to phenotypic changes. In this study, we characterize the functional effects of ex vivo monocyte culture on the steps involved in monocyte transendothelial migration. Our data demonstrate that monocyte diapedesis is impaired by as little as 4 h culture, and the locomotion step is subsequently compromised. After 16 h in culture, monocyte diapedesis is irreversibly reduced by ∼90%. However, maintenance of monocytes under conditions mimicking physiological flow (5-7.5 dyn/cm²) is sufficient to reduce diapedesis impairment significantly. Thus, through the application of shear during ex vivo culture of monocytes, our study establishes a novel protocol, allowing functional analyses of monocytes not currently possible under static culture conditions. These data further suggest that monocyte-based therapeutic applications may be measurably improved by alteration of ex vivo conditions before their use in patients.
Liu, Dan-Qing; Li, Li-Min; Guo, Ya-Lan; Bai, Rui; Wang, Chen; Bian, Zhen; Zhang, Chen-Yu; Zen, Ke
2008-01-01
Background Signal regulate protein α (SIRPα) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPα in regulating β2 integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis. Methodology/Principal Findings THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs) resulted in a decrease of SIRPα expression but an increase of β2 integrin cell surface expression and β2 integrin-mediated adhesion to tumor necrosis factor-α (TNFα)–stimulated human microvascular endothelial cell (HMEC-1) monolayers. In contrast, SIRPα overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1)–triggered cell surface expression of β2 integrins, in particular CD11b/CD18. SIRPα overexpression reduced β2 integrin-mediated firm adhesion of THP-1 cells to either TNFα–stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1). SIRPα overexpression also reduced MCP-1–initiated migration of THP-1 cells across TNFα–stimulated HMEC-1 monolayers. Furthermore, β2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPα overexpression. Conclusions/Significance SIRPα negatively regulates β2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis. PMID:18820737
Krizbai, István A.; Gasparics, Ákos; Nagyőszi, Péter; Fazakas, Csilla; Molnár, Judit; Wilhelm, Imola; Bencs, Rita; Rosivall, László; Sebe, Attila
2015-01-01
Cancer progression towards metastasis follows a defined sequence of events described as the metastatic cascade. For extravasation and transendothelial migration metastatic cells interact first with endothelial cells. Yet the role of endothelial cells during the process of metastasis formation and extravasation is still unclear, and the interaction between metastatic and endothelial cells during transendothelial migration is poorly understood. Since tumor cells are well known to express TGF-β, and the compact endothelial layer undergoes a series of changes during metastatic extravasation (cell contact disruption, cytoskeletal reorganization, enhanced contractility), we hypothesized that an EndMT may be necessary for metastatic extravasation. We demonstrate that primary cultured rat brain endothelial cells (BEC) undergo EndMT upon TGF-β1 treatment, characterized by the loss of tight and adherens junction proteins, expression of fibronectin, β1-integrin, calponin and α-smooth muscle actin (SMA). B16/F10 cell line conditioned and activated medium (ACM) had similar effects: claudin-5 down-regulation, fibronectin and SMA expression. Inhibition of TGF-β signaling during B16/F10 ACM stimulation using SB-431542 maintained claudin-5 levels and mitigated fibronectin and SMA expression. B16/F10 ACM stimulation of BECs led to phosphorylation of Smad2 and Smad3. SB-431542 prevented SMA up-regulation upon stimulation of BECs with A2058, MCF-7 and MDA-MB231 ACM as well. Moreover, B16/F10 ACM caused a reduction in transendothelial electrical resistance, enhanced the number of melanoma cells adhering to and transmigrating through the endothelial layer, in a TGF-β-dependent manner. These effects were not confined to BECs: HUVECs showed TGF-β-dependent SMA expression when stimulated with breast cancer cell line ACM. Our results indicate that an EndMT may be necessary for metastatic transendothelial migration, and this transition may be one of the potential mechanisms occurring during the complex phenomenon known as metastatic extravasation. PMID:25742314
Benvenuto, Federica; Voci, Adriana; Carminati, Enrico; Gualandi, Francesca; Mancardi, Gianluigi; Uccelli, Antonio; Vergani, Laura
2015-12-10
Systemic delivery of bone marrow-derived mesenchymal stem cells (MSC) seems to be of benefit in the treatment of multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS) sustained by migration of T cells across the brain blood barrier (BBB) and subsequent induction of inflammatory lesions into CNS. MSC have been found to modulate several effector functions of T cells. In this study, we investigated the effects of MSC on adhesion molecules and receptors on T cell surface that sustain their transendothelial migration. We used different co-culture methods combined with real-time PCR and flow cytometry to evaluate the expression both at the mRNA and at the plasma-membrane level of α4 integrin, β2 integrin, ICAM-1 and CXCR3. In parallel, we assessed if MSC are able to modulate expression of adhesion molecules on the endothelial cells that interact with T cells during their transendothelial migration. Our in vitro analyses revealed that MSC: (i) inhibit proliferation and activation of both peripheral blood mononuclear cells (PBMC) and CD3(+)-selected lymphocytes through the release of soluble factors; (ii) exert suppressive effects on those surface molecules highly expressed by activated lymphocytes and involved in transendothelial migration; (iii) inhibit CXCL10-driven chemotaxis of CD3(+) cells; (iv) down-regulated expression of adhesion molecules on endothelial cells. Taken together, these data demonstrate that the immunosuppressive effect of MSC does not exclusively depends on their anti-proliferative activity on T cells, but also on the impairment of leukocyte migratory potential through the inhibition of the adhesion molecules and receptors that are responsible for T cell trafficking across BBB. This could suggest a new mechanism through which MSC modulate T cell responses.
Ghousifam, Neda; Mortazavian, Seyyed Hamid; Bhowmick, Rudra; Vasquez, Yolanda; Blum, Frank D.; Gappa-Fahlenkamp, Heather
2017-01-01
Monocyte transendothelial migration is a multi-step process critical for the initiation and development of atherosclerosis. The chemokine monocyte chemoattractant protein-1 (MCP-1) is overexpressed during atheroma and its concentration gradients in the extracellular matrix (ECM) is critical for the transendothelial recruitment of monocytes. Based on prior observations, we hypothesize that both free and bound gradients of MCP-1 within the ECM are involved in directing monocyte migration. The interaction between a three-dimensional (3D), cell-free, collagen matrix and MCP-1; and its effect on monocyte migration was measured in this study. Our results showed such an interaction existed between MCP-1 and collagen, as 26% of the total MCP-1 added to the collagen matrix was bound to the matrix after extensive washes. We also characterized the collagen-MCP-1 interaction using biophysical techniques. The treatment of the collagen matrix with MCP-1 lead to increased monocyte migration, and this phenotype was abrogated by treating the matrix with an anti-MCP-1 antibody. Thus, our results indicate a binding interaction between MCP-1 and the collagen matrix, which could elicit a haptotactic effect on monocyte migration. A better understanding of such mechanisms controlling monocyte migration will help identify target cytokines and lead to the development of better anti-inflammatory therapeutic strategies. PMID:28041913
MAISA, Anna; HEARPS, Anna C.; ANGELOVICH, Thomas A.; PEREIRA, Candida F.; ZHOU, Jingling; SHI, Margaret D.Y.; PALMER, Clovis S.; MULLER, William A.; CROWE, Suzanne M.; JAWOROWSKI, Anthony
2016-01-01
Design HIV+ individuals have an increased risk of atherosclerosis and cardiovascular disease which is independent of antiretroviral therapy and traditional risk factors. Monocytes play a central role in the development of atherosclerosis, and HIV-related chronic inflammation and monocyte activation may contribute to increased atherosclerosis, but the mechanisms are unknown. Methods Using an in vitro model of atherosclerotic plaque formation, we measured the transendothelial migration of purified monocytes from age-matched HIV+ and uninfected donors and examined their differentiation into foam cells. Cholesterol efflux and the expression of cholesterol metabolism genes were also assessed. Results Monocytes from HIV+ individuals showed increased foam cell formation compared to controls (18.9% vs 0% respectively, p=0.004) and serum from virologically suppressed HIV+ individuals potentiated foam cell formation by monocytes from both uninfected and HIV+ donors. Plasma TNF levels were increased in HIV+ vs control donors (5.9 vs 3.5 pg/ml, p=0.02) and foam cell formation was inhibited by blocking antibodies to TNF receptors, suggesting a direct effect on monocyte differentiation to foam cells. Monocytes from virologically suppressed HIV+ donors showed impaired cholesterol efflux and decreased expression of key genes regulating cholesterol metabolism, including the cholesterol transporter ABCA1 (p=0.02). Conclusions Monocytes from HIV+ individuals show impaired cholesterol efflux and are primed for foam cell formation following trans-endothelial migration. Factors present in HIV+ serum, including elevated TNF levels, further enhance foam cell formation. The pro-atherogenic phenotype of monocytes persists in virologically suppressed HIV+ individuals and may contribute mechanistically to increased atherosclerosis in this population. PMID:26244384
Schenk, Birgit I; Petersen, Frank; Flad, Hans-Dieter; Brandt, Ernst
2002-09-01
In this study, we have examined the major platelet-derived CXC chemokines connective tissue-activating peptide III (CTAP-III), its truncation product neutrophil-activating peptide 2 (CXC chemokine ligand 7 (CXCL7)), as well as the structurally related platelet factor 4 (CXCL4) for their impact on neutrophil adhesion to and transmigration through unstimulated vascular endothelium. Using monolayers of cultured HUVEC, we found all three chemokines to promote neutrophil adhesion, while only CXCL7 induced transmigration. Induction of cell adhesion following exposure to CTAP-III, a molecule to date described to lack neutrophil-stimulating capacity, depended on proteolytical conversion of the inactive chemokine into CXCL7 by neutrophils. This was evident from experiments in which inhibition of the CTAP-III-processing protease and simultaneous blockade of the CXCL7 high affinity receptor CXCR-2 led to complete abrogation of CTAP-III-mediated neutrophil adhesion. CXCL4 at substimulatory dosages modulated CTAP-III- as well as CXCL7-induced adhesion. Although cell adhesion following exposure to CTAP-III was drastically reduced, CXCL7-mediated adhesion underwent significant enhancement. Transendothelial migration of neutrophils in response to CXCL7 or IL-8 (CXCL8) was subject to modulation by CTAP-III, but not CXCL4, as seen by drastic desensitization of the migratory response of neutrophils pre-exposed to CTAP-III, which was paralleled by selective down-modulation of CXCR-2. Altogether our results demonstrate that there exist multiple interactions between platelet-derived chemokines in the regulation of neutrophil adhesion and transendothelial migration.
Severe nephrotoxic nephritis following conditional and kidney-specific knockdown of stanniocalcin-1
USDA-ARS?s Scientific Manuscript database
Inflammation is the hallmark of nephrotoxic nephritis. Stanniocalcin-1 (STC1), a pro-survival factor, inhibits macrophages, stabilizes endothelial barrier function, and diminishes trans-endothelial migration of leukocytes; consistently, transgenic (Tg) overexpression of STC1 protects from nephrotoxi...
Endothelial-derived GM-CSF influences expression of oncostatin M
USDA-ARS?s Scientific Manuscript database
During and following transendothelial migration, neutrophils undergo a number of phenotypic changes resulting from encounters with endothelial-derived factors. This report uses an in vitro model with HUVEC and isolated human neutrophils to examine the effects of two locally-derived cytokines, granul...
Liu, L Y; Wang, H; Xenakis, J J; Spencer, L A
2015-07-01
Priming with cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF) enhances eosinophil migration and exacerbates the excessive accumulation of eosinophils within the bronchial mucosa of asthmatics. However, mechanisms that drive GM-CSF priming are incompletely understood. Notch signaling is an evolutionarily conserved pathway that regulates cellular processes, including migration, by integrating exogenous and cell-intrinsic cues. This study investigates the hypothesis that the priming-induced enhanced migration of human eosinophils requires the Notch signaling pathway. Using pan Notch inhibitors and newly developed human antibodies that specifically neutralize Notch receptor 1 activation, we investigated a role for Notch signaling in GM-CSF-primed transmigration of human blood eosinophils in vitro and in the airway accumulation of mouse eosinophils in vivo. Notch receptor 1 was constitutively active in freshly isolated human blood eosinophils, and inhibition of Notch signaling or specific blockade of Notch receptor 1 activation during GM-CSF priming impaired priming-enhanced eosinophil transendothelial migration in vitro. Inclusion of Notch signaling inhibitors during priming was associated with diminished ERK phosphorylation, and ERK-MAPK activation was required for GM-CSF priming-induced transmigration. In vivo in mice, eosinophil accumulation within allergic airways was impaired following systemic treatment with Notch inhibitor, or adoptive transfer of eosinophils treated ex vivo with Notch inhibitor. These data identify Notch signaling as an intrinsic pathway central to GM-CSF priming-induced eosinophil tissue migration. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
CTC-Endothelial Cell Interactions during Metastasis
2013-04-01
endothelial cells via a variety of E-selectin ligands ( ESL ). These ESLs express a unique carbohydrate motif, sLex, which appears to be required for... ESL binding. The chemokine receptor CXCR4 has also been reported to supporting transendothelial migration of prostate cells through bone marrow
2015-09-01
Intravital imaging in animal models has revealed many aspects of meta- stasis (3–6), including the essential roles that macrophages play in the...micro- environments inwhichmammary tumor cells invade,migrate, and intravasate (5, 7). In particular, intravital imaging of rodent mammary tumors shows...cell intravasation, called TMEM (tumor micro- environment of metastasis) sites (22, 23). These sites, initially observed by intravital imaging of
Manes, Thomas D.; Pober, Jordan S.
2013-01-01
Human effector memory (EM) CD4 T cells may be recruited from the blood into a site of inflammation in response either to inflammatory chemokines displayed on or specific antigen presented by venular endothelial cells (ECs), designated as chemokine-driven or TCR-driven transendothelial migration (TEM), respectively. We have previously described differences in the morphological appearance of transmigrating T cells as well as in the molecules that mediate T cell-EC interactions distinguishing these two pathways. Here we report that TCR-driven TEM requires ZAP-70-dependent activation of a pathway involving Vav, Rac and myosin IIA. Chemokine-driven TEM also utilizes ZAP-70, albeit in a quantitatively and spatially different manner of activation, and is independent of Vav, Rac and mysosin IIA, depending instead on an as yet unidentified GTP exchange factor that activates Cdc42. The differential use of small Rho family GTPases to activate the cytoskeleton is consistent with the morphological differences observed in T cells that undergo TEM in response to these distinct recruitment signals. PMID:23420881
Xu, Najia; Lei, Xi; Liu, Lixin
2011-09-24
The recruitment of circulating leukocytes from blood stream to the inflamed tissue is a crucial and complex process of inflammation(1,2). In the postcapillary venules of inflamed tissue, leukocytes initially tether and roll on the luminal surface of venular wall. Rolling leukocytes arrest on endothelium and undergo firm adhesion in response to chemokine or other chemoattractants on the venular surface. Many adherent leukocytes relocate from the initial site of adhesion to the junctional extravasation site in endothelium, a process termed intraluminal crawling(3). Following crawling, leukocytes move across endothelium (transmigration) and migrate in extravascular tissue toward the source of chemoattractant (chemotaxis)(4). Intravital microscopy is a powerful tool for visualizing leukocyte-endothelial cell interactions in vivo and revealing cellular and molecular mechanisms of leukocyte recruitment(2,5). In this report, we provide a comprehensive description of using brightfield intravital microscopy to visualize and determine the detailed processes of neutrophil recruitment in mouse cremaster muscle in response to the gradient of a neutrophil chemoattractant. To induce neutrophil recruitment, a small piece of agarose gel (~1-mm(3) size) containing neutrophil chemoattractant MIP-2 (CXCL2, a CXC chemokine) or WKYMVm (Trp-Lys-Tyr-Val-D-Met, a synthetic analog of bacterial peptide) is placed on the muscle tissue adjacent to the observed postcapillary venule. With time-lapsed video photography and computer software ImageJ, neutrophil intraluminal crawling on endothelium, neutrophil transendothelial migration and the migration and chemotaxis in tissue are visualized and tracked. This protocol allows reliable and quantitative analysis of many neutrophil recruitment parameters such as intraluminal crawling velocity, transmigration time, detachment time, migration velocity, chemotaxis velocity and chemotaxis index in tissue. We demonstrate that using this protocol, these neutrophil recruitment parameters can be stably determined and the single cell locomotion conveniently tracked in vivo.
Roussos, Evanthia T.; Balsamo, Michele; Alford, Shannon K.; Wyckoff, Jeffrey B.; Gligorijevic, Bojana; Wang, Yarong; Pozzuto, Maria; Stobezki, Robert; Goswami, Sumanta; Segall, Jeffrey E.; Lauffenburger, Douglas A.; Bresnick, Anne R.; Gertler, Frank B.; Condeelis, John S.
2011-01-01
We have shown previously that distinct Mena isoforms are expressed in invasive and migratory tumor cells in vivo and that the invasion isoform (MenaINV) potentiates carcinoma cell metastasis in murine models of breast cancer. However, the specific step of metastatic progression affected by this isoform and the effects on metastasis of the Mena11a isoform, expressed in primary tumor cells, are largely unknown. Here, we provide evidence that elevated MenaINV increases coordinated streaming motility, and enhances transendothelial migration and intravasation of tumor cells. We demonstrate that promotion of these early stages of metastasis by MenaINV is dependent on a macrophage–tumor cell paracrine loop. Our studies also show that increased Mena11a expression correlates with decreased expression of colony-stimulating factor 1 and a dramatically decreased ability to participate in paracrine-mediated invasion and intravasation. Our results illustrate the importance of paracrine-mediated cell streaming and intravasation on tumor cell dissemination, and demonstrate that the relative abundance of MenaINV and Mena11a helps to regulate these key stages of metastatic progression in breast cancer cells. PMID:21670198
Roussos, Evanthia T; Balsamo, Michele; Alford, Shannon K; Wyckoff, Jeffrey B; Gligorijevic, Bojana; Wang, Yarong; Pozzuto, Maria; Stobezki, Robert; Goswami, Sumanta; Segall, Jeffrey E; Lauffenburger, Douglas A; Bresnick, Anne R; Gertler, Frank B; Condeelis, John S
2011-07-01
We have shown previously that distinct Mena isoforms are expressed in invasive and migratory tumor cells in vivo and that the invasion isoform (Mena(INV)) potentiates carcinoma cell metastasis in murine models of breast cancer. However, the specific step of metastatic progression affected by this isoform and the effects on metastasis of the Mena11a isoform, expressed in primary tumor cells, are largely unknown. Here, we provide evidence that elevated Mena(INV) increases coordinated streaming motility, and enhances transendothelial migration and intravasation of tumor cells. We demonstrate that promotion of these early stages of metastasis by Mena(INV) is dependent on a macrophage-tumor cell paracrine loop. Our studies also show that increased Mena11a expression correlates with decreased expression of colony-stimulating factor 1 and a dramatically decreased ability to participate in paracrine-mediated invasion and intravasation. Our results illustrate the importance of paracrine-mediated cell streaming and intravasation on tumor cell dissemination, and demonstrate that the relative abundance of Mena(INV) and Mena11a helps to regulate these key stages of metastatic progression in breast cancer cells.
The CD157-integrin partnership controls transendothelial migration and adhesion of human monocytes.
Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada
2011-05-27
CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β(1) and β(2) integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes.
The CD157-Integrin Partnership Controls Transendothelial Migration and Adhesion of Human Monocytes*
Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L.; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada
2011-01-01
CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β1 and β2 integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes. PMID:21478153
Cyr61 as mediator of Src signaling in triple negative breast cancer cells
Molinari, Agnese; Wagner, Kay-Uwe; Losada, Jesús Pérez; Ciordia, Sergio; Albar, Juan Pablo; Martín-Pérez, Jorge
2015-01-01
SFKs are involved in tumorigenesis and metastasis. Here we analyzed c-Src contribution to initial steps of metastasis by tetracycline-dependent expression of a specific shRNA-c-Src, which suppressed c-Src mRNA and protein levels in metastatic MDA-MB-231 cells. c-Src suppression did not alter cell proliferation or survival, but it significantly reduced anchorage-independent growth. Concomitantly with diminished tyrosine-phosphorylation/activation of Fak, caveolin-1, paxillin and p130CAS, c-Src depletion also inhibited cellular migration, invasion and transendothelial migration. Quantitative proteomic analyses of the secretome showed that Cyr61 levels, which were detected in the exosomal fraction, were diminished upon shRNA-c-Src expression. In contrast, Cyr61 expression was unaltered inside cells. Cyr61 partially colocalized with cis-Golgi gp74 marker and with exosomal marker CD63, but c-Src depletion did not alter their cellular distribution. In SUM159PT cells, transient c-Src suppression also reduced secreted exosomal Cyr61 levels. Furthermore, conditional expression of a c-Src dominant negative mutant (SrcDN, c-Src-K295M/Y527F) in MDA-MB-231 and in SUM159PT diminished secreted Cyr61 as well. Cyr61 transient suppression in MDA-MB-231 inhibited invasion and transendothelial migration. Finally, in both MDA-MB-231 and SUM159PT, a neutralizing Cyr61 antibody restrained migration. Collectively, these results suggest that c-Src regulates secreted proteins, including the exosomal Cyr61, which are involved in modulating the metastatic potential of triple negative breast cancer cells. PMID:25980494
Gap junction coupling is required for tumor cell migration through lymphatic endothelium.
Karpinich, Natalie O; Caron, Kathleen M
2015-05-01
The lymphatic vasculature is a well-established conduit for metastasis, but the mechanisms by which tumor cells interact with lymphatic endothelial cells (LECs) to facilitate escape remain poorly understood. Elevated levels of the lymphangiogenic peptide adrenomedullin are found in many tumors, and we previously characterized that its expression is necessary for lymphatic vessel growth within both tumors and sentinel lymph nodes and for distant metastasis. This study used a tumor cell-LEC coculture system to identify a series of adrenomedullin-induced events that facilitated transendothelial migration of the tumor cells through a lymphatic monolayer. High levels of adrenomedullin expression enhanced adhesion of tumor cells to LECs, and further analysis revealed that adrenomedullin promoted gap junction coupling between LECs as evidenced by spread of Lucifer yellow dye. Adrenomedullin also enhanced heterocellular gap junction coupling as demonstrated by Calcein dye transfer from tumor cells into LECs. This connexin-mediated gap junction intercellular communication was necessary for tumor cells to undergo transendothelial migration because pharmacological blockade of this heterocellular communication prevented the ability of tumor cells to transmigrate through the lymphatic monolayer. In addition, treatment of LECs with adrenomedullin caused nuclear translocation of β-catenin, a component of endothelial cell junctions, causing an increase in transcription of the downstream target gene C-MYC. Importantly, blockade of gap junction intercellular communication prevented β-catenin nuclear translocation. Our findings indicate that maintenance of cell-cell communication is necessary to facilitate a cascade of events that lead to tumor cell migration through the lymphatic endothelium. © 2015 American Heart Association, Inc.
Dietary Lipids, Cell Adhesion and Breast Cancer Metastasis
2003-10-01
an official Department of the Army position, policy or decision unless so designated by other documentation. r Form Approved REPORT DOCUMENTATION PAGE...10, or 15 in transendothelial migration of cancer cells during meta- ipM. Similar experimental design was used in our previ- static process, we...Millicell-ERS voltohm- S, Eumn el al. / Eperimental Cell Research 296 (2004) 231-244 233 meter (Millipore, Bedford, MA). The resistance increased
Chemotaxis of primitive hematopoietic cells in response to stromal cell–derived factor-1
Jo, Deog-Yeon; Rafii, Shahin; Hamada, Tsuneyoshi; Moore, Malcolm A.S.
2000-01-01
Stromal cell–derived factor-1 (SDF-1) provides a potent chemotactic stimulus for CD34+ hematopoietic cells. We cultured mobilized peripheral blood (PB) and umbilical cord blood (CB) for up to 5 weeks and examined the migratory activity of cobblestone area–forming cells (CAFCs) and long-term culture–initiating cells (LTC-ICs) in a transwell assay. In this system, SDF-1 or MS-5 marrow stromal cells placed in the lower chamber induced transmembrane and transendothelial migration by 2- and 5-week-old CAFCs and LTC-ICs in 3 hours. Transmigration was blocked by preincubation of input CD34+ cells with antibody to CXCR4. Transendothelial migration of CB CAFCs and LTC-ICs was higher than that of PB. We expanded CD34+ cells from CB in serum-free medium with thrombopoietin, flk-2 ligand, and c-kit ligand, with or without IL-3 and found that CAFCs cultured in the absence of IL-3 had a chemotactic response equivalent to noncultured cells, even after 5 weeks. However, addition of IL-3 to the culture reduced this response by 20–50%. These data indicate that SDF-1 induces chemotaxis of primitive hematopoietic cells signaling through CXCR4 and that the chemoattraction could be downmodulated by culture ex vivo. PMID:10619866
Peled, A; Kollet, O; Ponomaryov, T; Petit, I; Franitza, S; Grabovsky, V; Slav, M M; Nagler, A; Lider, O; Alon, R; Zipori, D; Lapidot, T
2000-06-01
Hematopoietic stem cell homing and engraftment require several adhesion interactions, which are not fully understood. Engraftment of nonobese/severe combined immunodeficiency (NOD/SCID) mice by human stem cells is dependent on the major integrins very late activation antigen-4 (VLA-4); VLA-5; and to a lesser degree, lymphocyte function associated antigen-1 (LFA-1). Treatment of human CD34(+) cells with antibodies to either VLA-4 or VLA-5 prevented engraftment, and treatment with anti-LFA-1 antibodies significantly reduced the levels of engraftment. Activation of CD34(+) cells, which bear the chemokine receptor CXCR4, with stromal derived factor 1 (SDF-1) led to firm adhesion and transendothelial migration, which was dependent on LFA-1/ICAM-1 (intracellular adhesion molecule-1) and VLA-4/VCAM-1 (vascular adhesion molecule-1). Furthermore, SDF-1-induced polarization and extravasation of CD34(+)/CXCR4(+) cells through the extracellular matrix underlining the endothelium was dependent on both VLA-4 and VLA-5. Our results demonstrate that repopulating human stem cells functionally express LFA-1, VLA-4, and VLA-5. Furthermore, this study implies a novel approach to further advance clinical transplantation.
2016-09-01
cell dissem- ination and, ultimately, patient death (1). The outcome of breast cancer patients with metastatic disease has not improved in the past 30...breast cancer is a heterogeneous disease consisting of several distinct subtypes with substantially different responses to therapy and clinical...and Triple-Negative Disease PRINCIPAL INVESTIGATOR: Jeanine Pignatelli CONTRACTING ORGANIZATION: Albert Einstein College of Medicine Bronx, NY 10461
Estin, Miriam L.; Thompson, Scott B.; Traxinger, Brianna; Fisher, Marlie H.; Friedman, Rachel S.; Jacobelli, Jordan
2017-01-01
Vasodilator-stimulated phosphoprotein (VASP) and Ena-VASP–like (EVL) are cytoskeletal effector proteins implicated in regulating cell morphology, adhesion, and migration in various cell types. However, the role of these proteins in T-cell motility, adhesion, and in vivo trafficking remains poorly understood. This study identifies a specific role for EVL and VASP in T-cell diapedesis and trafficking. We demonstrate that EVL and VASP are selectively required for activated T-cell trafficking but are not required for normal T-cell development or for naïve T-cell trafficking to lymph nodes and spleen. Using a model of multiple sclerosis, we show an impairment in trafficking of EVL/VASP-deficient activated T cells to the inflamed central nervous system of mice with experimental autoimmune encephalomyelitis. Additionally, we found a defect in trafficking of EVL/VASP double-knockout (dKO) T cells to the inflamed skin and secondary lymphoid organs. Deletion of EVL and VASP resulted in the impairment in α4 integrin (CD49d) expression and function. Unexpectedly, EVL/VASP dKO T cells did not exhibit alterations in shear-resistant adhesion to, or in crawling on, primary endothelial cells under physiologic shear forces. Instead, deletion of EVL and VASP impaired T-cell diapedesis. Furthermore, T-cell diapedesis became equivalent between control and EVL/VASP dKO T cells upon α4 integrin blockade. Overall, EVL and VASP selectively mediate activated T-cell trafficking by promoting the diapedesis step of transendothelial migration in a α4 integrin-dependent manner. PMID:28320969
NASA Astrophysics Data System (ADS)
Shih, Po-Chen; Su, Yi-Jr; Chen, Ke-Min; Jen, Lin-Ni; Liu, Cheng-tzu; Hsu, Long
2005-08-01
Granulocytes are a group of white blood cells belonging to the innate immune system in human and in murine in which eosinophils play an important role in worm infection-induced inflammation. The migration of these cells is well characterized and has been separated into four steps: rolling, adhesion, transendothelial migration, and chemotaxis, however, the physical characteristics of the chemotactic force to eosinophils from worm component remain largely unknown. Note that optical tweezers are featured in the manipulation of a single cell and the measurement of biological forces. Therefore, we propose to use optical tweezers to examine the chemotactic force to a eosinophil from a T. canis lavae preparation in terms of distance during the migration of eosinophil.
Voura, Evelyn B.; English, Jane L.; Yu, Hoi-Ying E.; Ho, Andrew T.; Subarsky, Patrick; Hill, Richard P.; Hojilla, Carlo V.; Khokha, Rama
2013-01-01
To test if proteolysis is involved in tumor cell extravasation, we developed an in vitro model where tumor cells cross an endothelial monolayer cultured on a basement membrane. Using this model we classified the ability of the cells to transmigrate through the endothelial cell barrier onto the underlying matrix, and scored this invasion according to the stage of passage through the endothelium. Metalloproteinase inhibitors reduced tumor cell extravasation by at least 35%. Visualization of protease and cell adhesion molecules by confocal microscopy demonstrated the cell surface localization of MMP-2, MMP-9, MT1-MMP, furin, CD44 and αvβ3, during the process of transendothelial migration. By the addition of inhibitors and bio-modulators we assessed the functional requirement of the aforementioned molecules for efficient migration. Proteolytic digestion occurred at the cell-matrix interface and was most evident during the migratory stage. All of the inhibitors and biomodulators affected the transition of the tumor cells into the migratory stage, highlighting the most prevalent use of proteolysis at this particular step of tumor cell extravasation. These data suggest that a proteolytic interface operates at the tumor cell surface within the tumor-endothelial cell microenvironment. PMID:24194929
Bartolomé, Rubén A; Torres, Sofía; Isern de Val, Soledad; Escudero-Paniagua, Beatriz; Calviño, Eva; Teixidó, Joaquín; Casal, J Ignacio
2017-01-03
We have investigated the role of vascular-endothelial (VE)-cadherin in melanoma and breast cancer metastasis. We found that VE-cadherin is expressed in highly aggressive melanoma and breast cancer cell lines. Remarkably, inactivation of VE-cadherin triggered a significant loss of malignant traits (proliferation, adhesion, invasion and transendothelial migration) in melanoma and breast cancer cells. These effects, except transendothelial migration, were induced by the VE-cadherin RGD motifs. Co-immunoprecipitation experiments demonstrated an interaction between VE-cadherin and α2β1 integrin, with the RGD motifs found to directly affect β1 integrin activation. VE-cadherin-mediated integrin signaling occurred through specific activation of SRC, ERK and JNK, including AKT in melanoma. Knocking down VE-cadherin suppressed lung colonization capacity of melanoma or breast cancer cells inoculated in mice, while pre-incubation with VE-cadherin RGD peptides promoted lung metastasis for both cancer types. Finally, an in silico study revealed the association of high VE-cadherin expression with poor survival in a subset of melanoma patients and breast cancer patients showing low CD34 expression. These findings support a general role for VE-cadherin and other RGD cadherins as critical regulators of lung and liver metastasis in multiple solid tumours. These results pave the way for cadherin-specific RGD targeted therapies to control disseminated metastasis in multiple cancers.
An agent-based model of leukocyte transendothelial migration during atherogenesis.
Bhui, Rita; Hayenga, Heather N
2017-05-01
A vast amount of work has been dedicated to the effects of hemodynamics and cytokines on leukocyte adhesion and trans-endothelial migration (TEM) and subsequent accumulation of leukocyte-derived foam cells in the artery wall. However, a comprehensive mechanobiological model to capture these spatiotemporal events and predict the growth and remodeling of an atherosclerotic artery is still lacking. Here, we present a multiscale model of leukocyte TEM and plaque evolution in the left anterior descending (LAD) coronary artery. The approach integrates cellular behaviors via agent-based modeling (ABM) and hemodynamic effects via computational fluid dynamics (CFD). In this computational framework, the ABM implements the diffusion kinetics of key biological proteins, namely Low Density Lipoprotein (LDL), Tissue Necrosis Factor alpha (TNF-α), Interlukin-10 (IL-10) and Interlukin-1 beta (IL-1β), to predict chemotactic driven leukocyte migration into and within the artery wall. The ABM also considers wall shear stress (WSS) dependent leukocyte TEM and compensatory arterial remodeling obeying Glagov's phenomenon. Interestingly, using fully developed steady blood flow does not result in a representative number of leukocyte TEM as compared to pulsatile flow, whereas passing WSS at peak systole of the pulsatile flow waveform does. Moreover, using the model, we have found leukocyte TEM increases monotonically with decreases in luminal volume. At critical plaque shapes the WSS changes rapidly resulting in sudden increases in leukocyte TEM suggesting lumen volumes that will give rise to rapid plaque growth rates if left untreated. Overall this multi-scale and multi-physics approach appropriately captures and integrates the spatiotemporal events occurring at the cellular level in order to predict leukocyte transmigration and plaque evolution.
Liu, Yi; Liu, Yong-Shuo; Wu, Peng-Fei; Li, Qiang; Dai, Wu-Min; Yuan, Shuai; Xu, Zhi-Hua; Liu, Ting-Ting; Miao, Zi-Wei; Fang, Wen-Gang; Chen, Yu-Hua; Li, Bo
2015-09-01
Small cell lung cancer is the most aggressive histologic subtype of lung cancer, with a strong predilection for metastasizing to brain early. However, the cellular and molecular basis is poorly known. Here, we provided evidence to reveal the role of annexin A1 in small cell lung cancer metastasis to brain. Firstly, the elevated annexin A1 serum levels in small cell lung cancer patients were associated with brain metastasis. The levels of annexin A1 were also upregulated in NCI-H446 cells, a small cell lung cancer cell line, upon migration into the mice brain. More interestingly, annexin A1 was secreted by NCI-H446 cells in a time-dependent manner when co-culturing with human brain microvascular endothelial cells, which was identified with the detections of annexin A1 in the co-cultured cellular supernatants by ELISA and western blot. Further results showed that blockage of annexin A1 in the co-cultured cellular supernatants using a neutralized antibody significantly inhibited NCI-H446 cells adhesion to brain endothelium and its transendothelial migration. Conversely, the addition of Ac2-26, an annexin A1 mimic peptide, enhanced these effects. Furthermore, knockdown of annexin A1 in NCI-H446 cells prevented its transendothelial migration in vitro and metastasis to mice brain in vivo. Our data showed that small cell lung cancer cell in brain microvasculature microenvironment could express much more annexin A1 and release it outside, which facilitated small cell lung cancer cell to gain malignant properties of entry into brain. These findings provided a potential target for the management of SCLC brain metastasis. Copyright © 2015 Elsevier Ltd. All rights reserved.
An agent-based model of leukocyte transendothelial migration during atherogenesis
Bhui, Rita; Hayenga, Heather N.
2017-01-01
A vast amount of work has been dedicated to the effects of hemodynamics and cytokines on leukocyte adhesion and trans-endothelial migration (TEM) and subsequent accumulation of leukocyte-derived foam cells in the artery wall. However, a comprehensive mechanobiological model to capture these spatiotemporal events and predict the growth and remodeling of an atherosclerotic artery is still lacking. Here, we present a multiscale model of leukocyte TEM and plaque evolution in the left anterior descending (LAD) coronary artery. The approach integrates cellular behaviors via agent-based modeling (ABM) and hemodynamic effects via computational fluid dynamics (CFD). In this computational framework, the ABM implements the diffusion kinetics of key biological proteins, namely Low Density Lipoprotein (LDL), Tissue Necrosis Factor alpha (TNF-α), Interlukin-10 (IL-10) and Interlukin-1 beta (IL-1β), to predict chemotactic driven leukocyte migration into and within the artery wall. The ABM also considers wall shear stress (WSS) dependent leukocyte TEM and compensatory arterial remodeling obeying Glagov’s phenomenon. Interestingly, using fully developed steady blood flow does not result in a representative number of leukocyte TEM as compared to pulsatile flow, whereas passing WSS at peak systole of the pulsatile flow waveform does. Moreover, using the model, we have found leukocyte TEM increases monotonically with decreases in luminal volume. At critical plaque shapes the WSS changes rapidly resulting in sudden increases in leukocyte TEM suggesting lumen volumes that will give rise to rapid plaque growth rates if left untreated. Overall this multi-scale and multi-physics approach appropriately captures and integrates the spatiotemporal events occurring at the cellular level in order to predict leukocyte transmigration and plaque evolution. PMID:28542193
Jy, Wenche; Minagar, Alireza; Jimenez, Joaquin J; Sheremata, William A; Mauro, Lucia M; Horstman, Lawrence L; Bidot, Carlos; Ahn, Yeon S
2004-09-01
Elevated plasma endothelial microparticles (EMP) have been documented in MS during exacerbation. However, the role of EMP in pathogenesis of MS remains unclear. We investigated the formation of EMP-monocyte conjugates (EMP-MoC) and their potential role in transendothelial migration of inflammatory cells in MS. EMP-MoC were assayed in 30 MS patients in exacerbation, 20 in remission and in 35 controls. EMP-leukocyte conjugation was investigated flowcytometrically by employing alpha-CD54 or alpha-CD62E for EMP, and alpha-CD45 for leukocytes. EMP-MoC were characterized by identifying adhesion molecules involved and their effect on monocyte function. In vivo (clinical): EMP-MoC were markedly elevated in exacerbation vs. remission and controls, correlating with presence of GD+ MRI lesions. Free CD54+ EMP were not elevated but free CD62E+ EMP were. In vitro: EMP bound preferentially to monocytes, less to neutrophils, but little to lymphocytes. Bound EMP activated monocytes: CD11b expression increased 50% and migration through cerebral endothelial cell layer increased 2.6-fold. Blockade of CD54 reduced binding by 80%. Most CD54+ EMP bound to monocytes, leaving little free EMP, while CD62+ EMP were found both free and bound. These results demonstrated that phenotypic subsets of EMP interacted differently with monocytes. Based on our observations, EMP may enhance inflammation and increase transendothelial migration of monocytes in MS by binding to and activating monocytes through CD54. EMP-MoC were markedly increased in MS patients in exacerbation compared to remission and may serve as a sensitive marker of MS disease activity.
Hortelano, Sonsoles; López-Fontal, Raquel; Través, Paqui G; Villa, Natividad; Grashoff, Carsten; Boscá, Lisardo; Luque, Alfonso
2010-05-01
The inflammatory response to injurious agents is tightly regulated to avoid adverse consequences of inappropriate leucocyte accumulation or failed resolution. Lipopolysaccharide (LPS)-activated endothelium recruits leucocytes to the inflamed tissue through controlled expression of membrane-associated adhesion molecules. LPS responses in macrophages are known to be regulated by integrin-linked kinase (ILK); in this study, we investigated the role of ILK in the regulation of the LPS-elicited inflammatory response in endothelium. This study was performed on immortalized mouse endothelial cells (EC) isolated from lung and coronary vasculature. Cells were thoroughly characterized and the role of ILK in the regulation of the LPS response was investigated by suppressing ILK expression using siRNA and shRNA technologies. Phenotypic and functional analyses confirmed that the immortalized cells behaved as true EC. LPS induced the expression of the inflammatory genes E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). ILK knockdown impaired LPS-mediated endothelial activation by preventing the induction of ICAM-1 and VCAM-1. Blockade of the LPS-induced response inhibited the inflammatory-related processes of firm adhesion and trans-endothelial migration of leucocytes. ILK is involved in the expression of cell adhesion molecules by EC activated with the inflammatory stimulus LPS. This reduced expression modulates leucocyte adhesion to the endothelium and the extravasation process. This finding suggests ILK as a potential anti-inflammatory target for the development of vascular-specific treatments for inflammation-related diseases.
Cyrus, Bita F.; Muller, William A.
2017-01-01
A reservoir of parajunctional membrane in endothelial cells, the lateral border recycling compartment (LBRC), is critical for transendothelial migration (TEM). We have previously shown that targeted recycling of the LBRC to the site of TEM requires microtubules and a kinesin molecular motor. However, the identity of the kinesin and mechanism of cargo binding were not known. We show that microinjection of endothelial cells with a monoclonal antibody specific for kinesin-1 significantly blocked LBRC-targeted recycling and TEM. In complementary experiments, knocking down KIF5B, a ubiquitous kinesin-1 isoform, in endothelial cells significantly decreased targeted recycling of the LBRC and leukocyte TEM. Kinesin heavy chains move cargo along microtubules by one of many kinesin light chains (KLCs), which directly bind the cargo. Knocking down KLC 1 isoform variant 1 (KLC1C) significantly decreased LBRC-targeted recycling and TEM, whereas knocking down other isoforms of KLC1 had no effect. Re-expression of KLC1C resistant to the knockdown shRNA restored targeted recycling and TEM. Thus kinesin-1 and KLC1C are specifically required for targeted recycling and TEM. These data suggest that of the many potential combinations of the 45 kinesin family members and multiple associated light chains, KLC1C links the LBRC to kinesin-1 (KIF5B) during targeted recycling and TEM. Thus, KLC1C can potentially be used as a target for anti-inflammatory therapy. PMID:26994343
Huang, Chongbiao; Li, Na; Li, Zengxun; Chang, Antao; Chen, Yanan; Zhao, Tiansuo; Li, Yang; Wang, Xiuchao; Zhang, Wei; Wang, Zhimin; Luo, Lin; Shi, Jingjing; Yang, Shengyu; Ren, He; Hao, Jihui
2017-01-01
Interleukin 35 (IL-35) is a novel member of the IL-12 family, consisting of an EBV-induced gene 3 (EBI3) subunit and a P35 subunit. IL-35 is an immune-suppressive cytokine mainly produced by regulatory T cells. However, the role of IL-35 in cancer metastasis and progression is not well understood. Here we demonstrate that IL-35 is overexpressed in human pancreatic ductal adenocarcinoma (PDAC) tissues, and that IL-35 overexpression is associated with poor prognosis in PDAC patients. IL-35 has critical roles in PDAC cell extravasation and metastasis by facilitating the adhesion to endothelial cells and transendothelial extravasation. Mechanistically, IL-35 promotes ICAM1 overexpression through a GP130-STAT1 signalling pathway, which facilitates endothelial adhesion and transendothelial migration via an ICAM1–fibrinogen–ICAM1 bridge. In an orthotopic xenograft model, IL-35 promotes spontaneous pancreatic cancer metastasis in an ICAM1-dependent manner. Together, our results indicate additional functions of IL-35 in promoting PDAC metastasis through mediating ICAM1 expression. PMID:28102193
Roberts, Steven A; Waziri, Allen E; Agrawal, Nitin
2016-03-01
Cell migration through three-dimensional (3D) tissue spaces is integral to many biological and pathological processes, including metastasis. Circulating tumor cells (CTCs) are phenotypically heterogeneous, and in vitro analysis of their extravasation behavior is often impeded by the inability to establish complex tissue-like extracellular matrix (ECM) environments and chemotactic gradients within microfluidic devices. We have developed a novel microfluidic strategy to manipulate surface properties of enclosed microchannels and create 3D ECM structures for real-time observation of individual migrating cells. The wettability of selective interconnected channels is controlled by a plasma pulse, enabling the incorporation of ECM exclusively within the transmigration regions. We applied this approach to collectively analyze CTC-endothelial adhesion, trans-endothelial migration, and subsequent motility of breast cancer cells (MDA-MB-231) through a 3D ECM under artificial gradients of SDF-1α. We observed migration velocities ranging from 5.12 to 12.8 μm/h, which closely correspond to single-cell migration in collagen blocks, but are significantly faster than the migration of cell aggregates. The compartmentalized microchannels separated by the porous ECM makes this in vitro assay versatile and suitable for a variety of applications such as inflammation studies, drug screening, and coculture interactions.
Lennon, Paul F.; Taylor, Cormac T.; Stahl, Gregory L.; Colgan, Sean P.
1998-01-01
During episodes of inflammation, polymorphonuclear leukocyte (PMN) transendothelial migration has the potential to disturb vascular barrier function and give rise to intravascular fluid extravasation and edema. However, little is known regarding innate mechanisms that dampen fluid loss during PMN-endothelial interactions. Using an in vitro endothelial paracellular permeability model, we observed a PMN-mediated decrease in endothelial paracellular permeability. A similar decrease was elicited by cell-free supernatants from activated PMN (FMLP 10−6 M), suggesting the presence of a PMN-derived soluble mediator(s). Biophysical and biochemical analysis of PMN supernatants revealed a role for PMN-derived 5′-adenosine monophosphate (AMP) and its metabolite, adenosine, in modulation of endothelial paracellular permeability. Supernatants from activated PMN contained micromolar concentrations of bioactive 5′-AMP and adenosine. Furthermore, exposure of endothelial monolayers to authentic 5′-AMP and adenosine increased endothelial barrier function more than twofold in both human umbilical vein endothelial cells and human microvascular endothelial cells. 5′-AMP bioactivity required endothelial CD73-mediated conversion of 5′-AMP to adenosine via its 5′-ectonucleotidase activity. Decreased endothelial paracellular permeability occurred through adenosine A2B receptor activation and was accompanied by a parallel increase in intracellular cAMP. We conclude that activated PMN release soluble mediators, such as 5′-AMP and adenosine, that promote endothelial barrier function. During inflammation, this pathway may limit potentially deleterious increases in endothelial paracellular permeability and could serve as a basic mechanism of endothelial resealing during PMN transendothelial migration. PMID:9782120
Hempel, Randy J.; Bannantine, John P.
2016-01-01
Johne’s disease is a chronic infection of the small intestine caused by Mycobacterium avium subspecies paratuberculosis (MAP), an intracellular bacterium. The events of pathogen survival within the host cell(s), chronic inflammation and the progression from asymptomatic subclinical stage to an advanced clinical stage of infection, are poorly understood. This study examines gene expression in the ileocecal valve (ICV) of Holstein dairy cows at different stages of MAP infection. The ICV is known to be a primary site of MAP colonization and provides an ideal location to identify genes that are relevant to the progression of this disease. RNA was prepared from ICV tissues and RNA-Seq was used to compare gene transcription between clinical, subclinical, and uninfected control animals. Interpretation of the gene expression data was performed using pathway analysis and gene ontology categories containing multiple differentially expressed genes. Results demonstrated that many of the pathways that had strong differential gene expression between uninfected control and clinical cows were related to the immune system, such as the T- and B-cell receptor signaling, apoptosis, NOD-like receptor signaling, and leukocyte transendothelial migration pathways. In contrast, the comparison of gene transcription between control and subclinical cows identified pathways that were primarily involved in metabolism. The results from the comparison between clinical and subclinical animals indicate recruitment of neutrophils, up regulation of lysosomal peptidases, increase in immune cell transendothelial migration, and modifications of the extracelluar matrix. This study provides important insight into how cattle respond to a natural MAP infection at the gene transcription level within a key target tissue for infection. PMID:27093613
Sarafidis, K; Drossou-Agakidou, V; Kanakoudi-Tsakalidou, F; Taparkou, A; Tsakalidis, C; Tsandali, C; Kremenopoulos, G
2001-03-01
Several observations imply that the early inflammatory response involving activated neutrophils, tissue macrophages, and cytokines plays an important role in the pathogenesis of neonatal respiratory distress syndrome (RDS) and progression to bronchopulmonary dysplasia (BPD). The aim of this study was to test the hypothesis that changes in circulating neutrophil number and function and plasma levels of cytokines, consistent with neutrophil activation and migration to the tissues, occur during the early stages of neonatal RDS. For this purpose we measured peripheral blood levels of certain immunological parameters that promote neutrophil activation and transendothelial migration. Twenty preterm neonates with severe RDS and 20 healthy infants matched for gestational age were the subjects. The absolute neutrophil count (ANC), and plasma levels of interleukin-6 (IL-6), granulocyte colony-stimulating factor (G-CSF), and sL-selectin using an enzyme-linked immunosorbent assay (ELISA), neutrophil CD11b expression, and respiratory burst activity (RBA) using flow cytometry, were measured within 24 h after birth. The two groups were comparable regarding perinatal characteristics. None of the neonates studied had any clinical or laboratory evidence of infection by the time of blood sampling. The immunological investigation showed that the RDS neonates had significantly lower ANC (P = 0.032), higher expression of the CD11b on neutrophils (P = 0.0065), and higher G-CSF and IL-6 plasma levels (P = 0.0047 and P < 0.0001, respectively) in comparison to healthy preterm neonates. The neutrophil RBA and plasma sL-selectin levels did not differ significantly between the two groups. We conclude that in neonates with severe RDS, there is evidence of a systemic neutrophil activation early in the course of the disease, supporting the view of a contributing role of activated neutrophils in the pathogenesis of RDS. Copyright 2001 Wiley-Liss, Inc.
Nguyen, Chinh; Feng, Chiguang; Zhan, Min; Cross, Alan S; Goldblum, Simeon E
2012-01-09
A common finding amongst patients with inhalational anthrax is a paucity of polymorphonuclear leukocytes (PMNs) in infected tissues in the face of abundant circulating PMNs. A major virulence determinant of anthrax is edema toxin (ET), which is formed by the combination of two proteins produced by the organism, edema factor (EF), which is an adenyl cyclase, and protective antigen (PA). Since cAMP, a product of adenyl cyclase, is known to enhance endothelial barrier integrity, we asked whether ET might decrease extravasation of PMNs into tissues through closure of the paracellular pathway through which PMNs traverse. Pretreatment of human microvascular endothelial cell(EC)s of the lung (HMVEC-L) with ET decreased interleukin (IL)-8-driven transendothelial migration (TEM) of PMNs with a maximal reduction of nearly 60%. This effect required the presence of both EF and PA. Conversely, ET did not diminish PMN chemotaxis in an EC-free system. Pretreatment of subconfluent HMVEC-Ls decreased transendothelial 14 C-albumin flux by ~ 50% compared to medium controls. Coadministration of ET with either tumor necrosis factor-α or bacterial lipopolysaccharide, each at 100 ng/mL, attenuated the increase of transendothelial 14 C-albumin flux caused by either agent alone. The inhibitory effect of ET on TEM paralleled increases in protein kinase A (PKA) activity, but could not be blocked by inhibition of PKA with either H-89 or KT-5720. Finally, we were unable to replicate the ET effect with either forskolin or 3-isobutyl-1-methylxanthine, two agents known to increase cAMP. We conclude that ET decreases IL-8-driven TEM of PMNs across HMVEC-L monolayers independent of cAMP/PKA activity.
NASA Astrophysics Data System (ADS)
Zhang, Zhihong
2017-02-01
Inflammatory monocytes/macrophages (Mon/Mφ) play an important role in cutaneous allergic inflammation. However, their migration and activation in dermatitis and how they accelerate the inflammatory reaction are largely unknown. Optical molecular imaging is the most promising tool for investigating the function and motility of immune cells in vivo. We have developed a multi-scale optical imaging approach to evaluate the spatio-temporal dynamic behavior and properties of immune cells from the whole field of organs to the cellular level at the inflammatory site in delayed type hypersensitivity reaction. Here, we developed some multi-color labeling mouse models based on the endogenous labeling with fluorescent proteins and the exogenous labeling with fluorescent dyes. We investigated the cell movement, cell interaction and function of immunocytes (e.g. Mon/Mφ, DC, T cells and neutrophils) in the skin allergy inflammation (e.g., contact hypersensitivity) by using intravital microscopy. The long-term imaging data showed that after inflammatory Mon/Mφ transendothelial migration in dermis, they migrating in interstitial space of dermis. Depletion of blood monocyte with clodronate liposome extremely reduced the inflammatory reaction. Our finding provided further insight into inflammatory Mon/Mφ mediating the inflammatory cascade through functional migration in allergic contact dermatitis.
Mittal, Manish; Nepal, Saroj; Tsukasaki, Yoshikazu; Hecquet, Claudie M; Soni, Dheeraj; Rehman, Jalees; Tiruppathi, Chinnaswamy; Malik, Asrar B
2017-10-13
TRPM2 (transient receptor potential melastatin-2) expressed in endothelial cells (ECs) is a cation channel mediating Ca 2+ entry in response to intracellular generation of adenosine diphosphoribose-the TRPM2 ligand. Because polymorphonuclear neutrophils (PMN) interaction with ECs generates reactive oxygen species, we addressed the possible role of TRPM2 expressed in ECs in the mechanism of transendothelial migration of PMNs. We observed defective PMN transmigration in response to lipopolysaccharide challenge in adult mice in which the EC expressed TRPM2 is conditionally deleted ( Trpm2 iΔEC ). PMN interaction with ECs induced the entry of Ca 2+ in ECs via the EC-expressed TRPM2. Prevention of generation of adenosine diphosphoribose in ECs significantly reduced Ca 2+ entry in response to PMN activation of TRPM2 in ECs. PMNs isolated from gp91phox -/- mice significantly reduced Ca 2+ entry in ECs via TRPM2 as compared with wild-type PMNs and failed to induce PMN transmigration. Overexpression of the adenosine diphosphoribose insensitive TRPM2 mutant channel (C1008→A) in ECs suppressed the Ca 2+ entry response. Further, the forced expression of TRPM2 mutant channel (C1008→A) or silencing of poly ADP-ribose polymerase in ECs of mice prevented PMN transmigration. Thus, endotoxin-induced transmigration of PMNs was secondary to TRPM2-activated Ca 2+ signaling and VE-cadherin phosphorylation resulting in the disassembly of adherens junctions and opening of the paracellular pathways. These results suggest blocking TRPM2 activation in ECs is a potentially important means of therapeutically modifying PMN-mediated vascular inflammation. © 2017 American Heart Association, Inc.
αB-crystallin: a Novel Regulator of Breast Cancer Metastasis to the Brain
Malin, Dmitry; Strekalova, Elena; Petrovic, Vladimir; Deal, Allison M.; Ahmad, Abraham Al; Adamo, Barbara; Miller, C. Ryan; Ugolkov, Andrey; Livasy, Chad; Fritchie, Karen; Hamilton, Erika; Blackwell, Kimberly; Geradts, Joseph; Ewend, Matt; Carey, Lisa; Shusta, Eric V.; Anders, Carey K.; Cryns, Vincent L.
2013-01-01
Purpose Basal-like breast tumors are typically (ER/PR/HER2) triple-negative and are associated with a high incidence of brain metastases and poor clinical outcomes. The molecular chaperone αB-crystallin is predominantly expressed in triple-negative breast cancer (TNBC) and contributes to an aggressive tumor phenotype in preclinical models. We investigated the potential role of αB-crystallin in brain metastasis in TNBC. Experimental Design αB-crystallin expression in primary breast carcinomas and brain metastases was analyzed by immunohistochemistry among breast cancer patients with brain metastases. αB-crystallin was overexpressed or silenced in two different TNBC cell lines. The effects on cell adhesion to human brain microvascular endothelial cells (HBMECs) or extracellular matrix proteins, transendothelial migration, and transmigration across a HBMEC/astrocyte co-culture blood-brain barrier (BBB) model were examined. Additionally, the effects of overexpressing or silencing αB-crystallin on brain metastasis in vivo were investigated using orthotopic TNBC models. Results In a cohort of women with breast cancer brain metastasis, αB-crystallin expression in primary breast carcinomas was associated with poor overall survival and poor survival after brain metastasis, even among TNBC patients. Stable overexpression of αB-crystallin in TNBC cells enhanced adhesion to HBMECs, transendothelial migration, and BBB transmigration in vitro, while silencing αB-crystallin inhibited these events. αB-crystallin promoted adhesion of TNBC cells to HBMECs at least in part through an α3β1 integrin-dependent mechanism. αB-crystallin overexpression promoted brain metastasis, while silencing αB-crystallin inhibited brain metastasis in orthotopic TNBC models. Conclusion αB-crystallin is a novel regulator of brain metastasis in TNBC and represents a potential biomarker and drug target for this aggressive disease. PMID:24132917
αB-crystallin: a novel regulator of breast cancer metastasis to the brain.
Malin, Dmitry; Strekalova, Elena; Petrovic, Vladimir; Deal, Allison M; Al Ahmad, Abraham; Adamo, Barbara; Miller, C Ryan; Ugolkov, Andrey; Livasy, Chad; Fritchie, Karen; Hamilton, Erika; Blackwell, Kimberly; Geradts, Joseph; Ewend, Matt; Carey, Lisa; Shusta, Eric V; Anders, Carey K; Cryns, Vincent L
2014-01-01
Basal-like breast tumors are typically (ER/PR/HER2) triple-negative and are associated with a high incidence of brain metastases and poor clinical outcomes. The molecular chaperone αB-crystallin is predominantly expressed in triple-negative breast cancer (TNBC) and contributes to an aggressive tumor phenotype in preclinical models. We investigated the potential role of αB-crystallin in brain metastasis in TNBCs. αB-crystallin expression in primary breast carcinomas and brain metastases was analyzed by immunohistochemistry among patients with breast cancer with brain metastases. αB-crystallin was overexpressed or silenced in two different TNBC cell lines. The effects on cell adhesion to human brain microvascular endothelial cells (HBMEC) or extracellular matrix proteins, transendothelial migration, and transmigration across a HBMEC/astrocyte coculture blood-brain barrier (BBB) model were examined. In addition, the effects of overexpressing or silencing αB-crystallin on brain metastasis in vivo were investigated using orthotopic TNBC models. In a cohort of women with breast cancer brain metastasis, αB-crystallin expression in primary breast carcinomas was associated with poor overall survival and poor survival after brain metastasis, even among patients with TNBC. Stable overexpression of αB-crystallin in TNBC cells enhanced adhesion to HBMECs, transendothelial migration, and BBB transmigration in vitro, whereas silencing αB-crystallin inhibited these events. αB-crystallin promoted adhesion of TNBC cells to HBMECs, at least in part, through an α3β1 integrin-dependent mechanism. αB-crystallin overexpression promoted brain metastasis, whereas silencing αB-crystallin inhibited brain metastasis in orthotopic TNBC models. αB-crystallin is a novel regulator of brain metastasis in TNBC and represents a potential biomarker and drug target for this aggressive disease.
Abdala Valencia, H; Loffredo, L F; Misharin, A V; Berdnikovs, S
2016-02-01
Eosinophil recruitment in asthma is a multistep process, involving both trans-endothelial migration to the lung interstitium and trans-epithelial migration into the airways. While the trans-endothelial step is well studied, trans-epithelial recruitment is less understood. To contrast eosinophil recruitment between these two compartments, we employed a murine kinetics model of asthma. Eosinophils were phenotyped by multicolor flow cytometry in digested lung tissue and bronchoalveolar lavage (BAL) simultaneously, 6 h after each ovalbumin (OVA) challenge. There was an early expansion of tissue eosinophils after OVA challenge followed by eosinophil buildup in both compartments and a shift in phenotype over the course of the asthma model. Gradual transition from a Siglec-F(med) CD11c(-) to a Siglec-F(high) CD11c(low) phenotype in lung tissue was associated with eosinophil recruitment to the airways, as all BAL eosinophils were of the latter phenotype. Secondary microarray analysis of tissue-activated eosinophils demonstrated upregulation of specific integrin and chemokine receptor signature suggesting interaction with the mucosa. Using adhesion assays, we demonstrated that integrin CD11c mediated adhesion of eosinophils to fibrinogen, a significant component of epithelial barrier repair and remodeling. To the best of our knowledge, this is the only report to date dissecting compartmentalization of eosinophil recruitment as it unfolds during allergic inflammation. By capturing the kinetics of eosinophil phenotypic change in both tissue and BAL using flow cytometry and sorting, we were able to demonstrate a previously undocumented association between phenotypic shift of tissue-recruited eosinophils and their trans-epithelial movement, which implicates the existence of a specific mechanism targeting these cells to mucosal airways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Konya, Viktoria; Üllen, Andreas; Kampitsch, Nora; Theiler, Anna; Philipose, Sonia; Parzmair, Gerald P; Marsche, Gunther; Peskar, Bernhard A; Schuligoi, Rufina; Sattler, Wolfgang; Heinemann, Akos
2013-02-01
Increased vascular permeability is a fundamental characteristic of inflammation. Substances that are released during inflammation, such as prostaglandin (PG) E(2), can counteract vascular leakage, thereby hampering tissue damage. In this study we investigated the role of PGE(2) and its receptors in the barrier function of human pulmonary microvascular endothelial cells and in neutrophil trafficking. Endothelial barrier function was determined based on electrical impedance measurements. Neutrophil recruitment was assessed based on adhesion and transendothelial migration. Morphologic alterations are shown by using immunofluorescence microscopy. We observed that activation of E-type prostanoid (EP) 4 receptor by PGE(2) or an EP4-selective agonist (ONO AE1-329) enhanced the barrier function of human microvascular lung endothelial cells. EP4 receptor activation prompted similar responses in pulmonary artery and coronary artery endothelial cells. These effects were reversed by an EP4 antagonist (ONO AE3-208), as well as by blocking actin polymerization with cytochalasin B. The EP4 receptor-induced increase in barrier function was independent of the classical cyclic AMP/protein kinase A signaling machinery, endothelial nitric oxide synthase, and Rac1. Most importantly, EP4 receptor stimulation showed potent anti-inflammatory activities by (1) facilitating wound healing of pulmonary microvascular endothelial monolayers, (2) preventing junctional and cytoskeletal reorganization of activated endothelial cells, and (3) impairing neutrophil adhesion to endothelial cells and transendothelial migration. The latter effects could be partially attributed to reduced E-selectin expression after EP4 receptor stimulation. These data indicate that EP4 agonists as anti-inflammatory agents represent a potential therapy for diseases with increased vascular permeability and neutrophil extravasation. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Moricoli, Diego; Muller, William Anthony; Carbonella, Damiano Cosimo; Balducci, Maria Cristina; Dominici, Sabrina; Watson, Richard; Fiori, Valentina; Weber, Evan; Cianfriglia, Maurizio; Scotlandi, Katia; Magnani, Mauro
2014-06-01
Migration of leukocytes into site of inflammation involves several steps mediated by various families of adhesion molecules. CD99 play a significant role in transendothelial migration (TEM) of leukocytes. Inhibition of TEM by specific monoclonal antibody (mAb) can provide a potent therapeutic approach to treating inflammatory conditions. However, the therapeutic utilization of whole IgG can lead to an inappropriate activation of Fc receptor-expressing cells, inducing serious adverse side effects due to cytokine release. In this regard, specific recombinant antibody in single chain variable fragments (scFvs) originated by phage library may offer a solution by affecting TEM function in a safe clinical context. However, this consideration requires large scale production of functional scFv antibodies and the absence of toxic reagents utilized for solubilization and refolding step of inclusion bodies that may discourage industrial application of these antibody fragments. In order to apply the scFv anti-CD99 named C7A in a clinical setting, we herein describe an efficient and large scale production of the antibody fragments expressed in E. coli as periplasmic insoluble protein avoiding gel filtration chromatography approach, and laborious refolding step pre- and post-purification. Using differential salt elution which is a simple, reproducible and effective procedure we are able to separate scFv in monomer format from aggregates. The purified scFv antibody C7A exhibits inhibitory activity comparable to an antagonistic conventional mAb, thus providing an excellent agent for blocking CD99 signaling. This protocol can be useful for the successful purification of other monomeric scFvs which are expressed as periplasmic inclusion bodies in bacterial systems. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, Burkhard; Mikesch, Jan-Hendrik; Simon, Ronald
2005-04-01
By differential-display-PCR a subclone of the SK-BR-3 cell line with high in vitro transendothelial invasiveness was identified to express increased levels of a new alternative splice variant of decay-accelerating factor (DAF). DAF seems to play an important role in some malignant tumours since on the one hand the expression of complement inhibitors on the surface of tumour cells prevents the accumulation of complement factors and in consequence cell lysis. On the other hand, DAF has been identified as a ligand for the CD97 surface receptor which induces cell migration. Immunofluorescence procedures, Western blot analyses, and cDNA clone sequencing were employedmore » to confirm the expression of DAF restricted to invasive tumour cells. Using a radioactive RNA-in situ hybridisation on freshly frozen tissue microarrays and RT-PCR on native tumour tissue, the expression of alternative spliced DAF mRNA was demonstrated in invasive breast cancer. Due to the fact that it could thereby not be detected in normal mammary tissues, it has to be confirmed in larger studies that the DAF splice variant might be a specific tumour marker for invasive breast cancer.« less
Multiplex Analysis of Serum Cytokines in Humans with Hantavirus Pulmonary Syndrome.
Morzunov, Sergey P; Khaiboullina, Svetlana F; St Jeor, Stephen; Rizvanov, Albert A; Lombardi, Vincent C
2015-01-01
Hantavirus pulmonary syndrome (HPS) is an acute zoonotic disease transmitted primarily through inhalation of virus-contaminated aerosols. Hantavirus infection of endothelial cells leads to increased vascular permeability without a visible cytopathic effect. For this reason, it has been suggested that the pathogenesis of HPS is indirect with immune responses, such as cytokine production, playing a dominant role. In order to investigate their potential contribution to HPS pathogenesis, we analyzed the serum of hantavirus-infected subjects and healthy controls for 68 different cytokines, chemokines, angiogenic, and growth factors. Our analysis identified differential expression of cytokines that promote tissue migration of mononuclear cells including T lymphocytes, natural killer cells, and dendritic cells. Additionally, we observed a significant upregulation of cytokines known to regulate leukocyte migration and subsequent repair of lung tissue, as well as cytokines known to increase endothelial monolayer permeability and facilitate leukocyte transendothelial migration. Conversely, we observed a downregulation of cytokines associated with platelet numbers and function, consistent with the thrombocytopenia observed in subjects with HPS. This study corroborates clinical findings and extends our current knowledge regarding immunological and laboratory findings in subjects with HPS.
Merkel, Steven F; Andrews, Allison M; Lutton, Evan M; Mu, Dakai; Hudry, Eloise; Hyman, Bradley T; Maguire, Casey A; Ramirez, Servio H
2017-01-01
Developing therapies for central nervous system (CNS) diseases is exceedingly difficult because of the blood-brain barrier (BBB). Notably, emerging technologies may provide promising new options for the treatment of CNS disorders. Adeno-associated virus serotype 9 (AAV9) has been shown to transduce cells in the CNS following intravascular administration in rodents, cats, pigs, and non-human primates. These results suggest that AAV9 is capable of crossing the BBB. However, mechanisms that govern AAV9 transendothelial trafficking at the BBB remain unknown. Furthermore, possibilities that AAV9 may transduce brain endothelial cells or affect BBB integrity still require investigation. Using primary human brain microvascular endothelial cells as a model of the human BBB, we performed transduction and transendothelial trafficking assays comparing AAV9 to AAV2, a serotype that does not cross the BBB or transduce endothelial cells effectively in vivo. Results of our in vitro studies indicate that AAV9 penetrates brain microvascular endothelial cells barriers more effectively than AAV2, but has reduced transduction efficiency. In addition, our data suggest that (i) AAV9 penetrates endothelial barriers through an active, cell-mediated process, and (ii) AAV9 fails to disrupt indicators of BBB integrity such as transendothelial electrical resistance, tight junction protein expression/localization, and inflammatory activation status. Overall, this report shows how human brain endothelial cells configured in BBB models can be utilized for evaluating transendothelial movement and transduction kinetics of various AAV capsids. Importantly, the use of a human in vitro BBB model can provide import insight into the possible effects that candidate AVV gene therapy vectors may have on the status of BBB integrity. Read the Editorial Highlight for this article on page 192. © 2016 International Society for Neurochemistry.
The role and mechanism of KCa3.1 channels in human monocyte migration induced by palmitic acid.
Ma, Xiao-Zhen; Pang, Zheng-Da; Wang, Jun-Hong; Song, Zheng; Zhao, Li-Mei; Du, Xiao-Jun; Deng, Xiu-Ling
2018-05-21
Monocyte migration into diseased tissues contributes to the pathogenesis of diseases. Intermediate-conductance Ca 2+ -activated K + (K Ca 3.1) channels play an important role in cell migration. However, the role of K Ca 3.1 channels in mediating monocyte migration induced by palmitic acid (PA) is still unclear. Using cultured THP-1 cells and peripheral blood mononuclear cells from healthy subjects, we investigated the role and signaling mechanisms of K Ca 3.1 channels in mediating the migration induced by PA. Using methods of Western blotting analysis, RNA interference, cell migration assay and ELISA, we found that PA-treated monocytes exhibited increment of the protein levels of K Ca 3.1 channel and monocyte chemoattractant protein-1 (MCP-1), and the effects were reversed by co-incubation of PA with anti-TLR2/4 antibodies or by specific inhibitors of p38-MAPK, or NF-κB. In addition, PA increased monocyte migration, which was abolished by a specific K Ca 3.1 channel blocker, TRAM-34, or K Ca 3.1 small interfering RNA (siRNA). The expression and secretion of MCP-1 induced by PA was also similarly prevented by TRAM-34 and K Ca 3.1 siRNA. These results demonstrate for the first time that PA upregulates K Ca 3.1 channels through TLR2/4, p38-MAPK and NF-κB pathway to promote the expression of MCP-1, and then induce the trans-endothelial migration of monocytes. Copyright © 2018 Elsevier Inc. All rights reserved.
Ectoenzymes and innate immunity: the role of human CD157 in leukocyte trafficking.
Funaro, Ada; Ortolan, Erika; Bovino, Paola; Lo Buono, Nicola; Nacci, Giulia; Parrotta, Rossella; Ferrero, Enza; Malavasi, Fabio
2009-01-01
CD157 is a glycosylphosphatidylinositol-anchored molecule encoded by a member of the CD38/ADP-ribosyl cyclase gene family, involved in the metabolism of NAD. Expressed mainly by cells of the myeloid lineage and by vascular endothelial cells, CD157 has a dual nature behaving both as an ectoenzyme and as a receptor. Although it lacks a cytoplasmic domain, and cannot transduce signals on its own, the molecule compensates for this structural limit by interacting with conventional receptors. Recent experimental evidence suggests that CD157 orchestrates critical functions of human neutrophils. Indeed, CD157-mediated signals promote cell polarization, regulate chemotaxis induced through the high affinity fMLP receptor and control transendothelial migration.
Freeman, Spencer A; McLeod, Sarah J; Dukowski, Janet; Austin, Pamela; Lee, Crystal C Y; Millen-Martin, Brandie; Kubes, Paul; McCafferty, Donna-Marie; Gold, Michael R; Roskelley, Calvin D
2010-06-01
The Rap1 GTPase is a master regulator of cell adhesion, polarity, and migration. We show that both blocking Rap1 activation and expressing a constitutively active form of Rap1 reduced the ability of B16F1 melanoma cells to extravasate from the microvasculature and form metastatic lesions in the lungs. This correlated with a decreased ability of the tumor cells to undergo transendothelial migration (TEM) in vitro and form dynamic, F-actin-rich pseudopodia that penetrate capillary endothelial walls in vivo. Using multiple tumor cell lines, we show that the inability to form these membrane protrusions, which likely promote TEM and extravasation, can be explained by altered adhesion dynamics and impaired cell polarization that result when Rap1 activation or cycling is perturbed. Thus, targeting Rap1 could be a useful approach for reducing the metastatic dissemination of tumor cells that undergo active TEM. Copyright 2010 AACR.
Zozulya, Alla L.; Reinke, Emily; Baiu, Dana C.; Karman, Jozsef; Sandor, Matyas; Fabry, Zsuzsanna
2007-01-01
Dendritic cells (DCs) accumulate in the CNS during inflammatory diseases, but the exact mechanism regulating their traffic into the CNS remains to be defined. We now report that MIP-1α increases the transmigration of bone marrow-derived, GFP-labeled DCs across brain microvessel endothelial cell monolayers. Furthermore, occludin, an important element of endothelial tight junctions, is reorganized when DCs migrate across brain capillary endothelial cell monolayers without causing significant changes in the barrier integrity as measured by transendothelial electrical resistance. We show that DCs produce matrix metalloproteinases (MMP) -2 and -9 and GM6001, an MMP inhibitor, decreases both baseline and MIP-1α -induced DC transmigration. These observations suggest that DC transmigration across brain endothelial cell monolayers is partly MMP dependent. The migrated DCs express higher levels of CD40, CD80, and CD86 costimulatory molecules and induce T cell proliferation, indicating that the transmigration of DCs across brain endothelial cell monolayers contributes to the maintenance of DC Ag-presenting function. The MMP dependence of DC migration across brain endothelial cell monolayers raises the possibility that MMP blockers may decrease the initiation of T cell recruitment and neuroinflammation in the CNS. PMID:17182592
Moricoli, Diego; Muller, William A.; Carbonella, Damiano Cosimo; Balducci, Maria Cristina; Dominici, Sabrina; Fiori, Valentina; Watson, Richard; Weber, Evan; Cianfriglia, Maurizio; Scotlandi, Katia; Magnani, Mauro
2015-01-01
Migration of leukocytes into a site of inflammation involves several steps mediated by various families of adhesion molecules. CD99 play a significant role in transendothelial migration (TEM) of leukocytes. Inhibition of TEM by specific monoclonal antibody (mAb) can provide a potent therapeutic approach to treating inflammatory conditions. However, the therapeutic utilization of whole IgG can lead to an inappropriate activation of Fc receptor-expressing cells inducing serious adverse side effects due to cytokine release. In this regard, specific recombinant antibody in single chain variable fragments (scFvs) originated by phage library may offer a solution by affecting TEM function in a safe clinical context. However, this consideration requires large scale production of functional scFv antibodies under GMP conditions and hence, the absence of toxic reagents utilized for the solubilization and refolding steps of inclusion bodies that may discourage industrial application of these antibody fragments. In order to apply the scFv anti-CD99 named C7A in a clinical setting we herein describe an efficient and large scale production of the antibody fragments expressed in E.coli as insoluble protein avoiding gel filtration chromatography approach, and laborious refolding step pre- and post-purification. Using differential salt elution which is a simple, reproducible and effective procedure we are able to separate scFv in monomer format from aggregates. The purified scFv antibody C7A exhibits inhibitory activity comparable to an antagonistic conventional mAb, thus providing an excellent agent for blocking CD99 signalling. Thanks to the original purification protocol that can be extended to other scFvs that are expressed as inclusion bodies in bacterial systems, the scFv anti-CD99 C7A herein described represents the first step towards the construction of new antibody therapeutic. PMID:24798881
Elevated CXCL1 expression in gp130-deficient endothelial cells impairs neutrophil migration in mice
Yao, Longbiao; Yago, Tadayuki; Shao, Bojing; Liu, Zhenghui; Silasi-Mansat, Robert; Setiadi, Hendra; Lupu, Florea
2013-01-01
Neutrophils emigrate from venules to sites of infection or injury in response to chemotactic gradients. How these gradients form is not well understood. Some IL-6 family cytokines stimulate endothelial cells to express adhesion molecules and chemokines that recruit leukocytes. Receptors for these cytokines share the signaling subunit gp130. We studied knockout mice lacking gp130 in endothelial cells. Unexpectedly, gp130-deficient endothelial cells constitutively expressed more CXCL1 in vivo and in vitro, and even more upon stimulation with tumor necrosis factor-α. Mobilization of this increased CXCL1 from intracellular stores to the venular surface triggered β2 integrin–dependent arrest of neutrophils rolling on selectins but impaired intraluminal crawling and transendothelial migration. Superfusing CXCL1 over venules promoted neutrophil migration only after intravenously injecting mAb to CXCL1 to diminish its intravascular function or heparinase to release CXCL1 from endothelial proteoglycans. Remarkably, mice lacking gp130 in endothelial cells had impaired histamine-induced venular permeability, which was restored by injecting anti–P-selectin mAb to prevent neutrophil rolling and arrest. Thus, excessive CXCL1 expression in gp130-deficient endothelial cells augments neutrophil adhesion but hinders migration, most likely by disrupting chemotactic gradients. Our data define a role for endothelial cell gp130 in regulating integrin-dependent adhesion and de-adhesion of neutrophils during inflammation. PMID:24081661
Ugarte-Berzal, Estefanía; Bailón, Elvira; Amigo-Jiménez, Irene; Albar, Juan Pablo; García-Marco, José A; García-Pardo, Angeles
2014-05-30
(pro)MMP-9 binds to CLL cells through the PEX9 domain and contributes to CLL progression. To biochemically characterize this interaction and identify potential therapeutic targets, we prepared GST-PEX9 forms containing structural blades B1B2 or B3B4. We recently described a sequence in blade B4 (P3 sequence) that bound α4β1 integrin and partially impaired cell adhesion and migration. We have now studied the possible contribution of the B1B2 region to cell interaction with PEX9. CLL cells bound to GST-B1B2 and CD44 was the primary receptor. GST-B1B2 inhibited CLL cell migration as effectively as GST-B3B4. Overlapping synthetic peptides spanning the B1B2 region identified the sequence FDAIAEIGNQLYLFKDGKYW, present in B1 and contained in peptide P6, as the most effective site. P6 inhibited cell adhesion to PEX9 in a dose-dependent manner and with an IC50 value of 90 μM. P6 also inhibited cell adhesion to hyaluronan but had no effect on adhesion to VCAM-1 (α4β1 integrin ligand), confirming its specific interaction with CD44. Spatial localization analyses mapped P6 to the central cavity of PEX9, in close proximity to the previously identified P3 sequence. Both P6 and P3 equally impaired cell adhesion to (pro)MMP-9. Moreover, P6 synergistically cooperated with P3, resulting in complete inhibition of CLL cell binding to PEX9, chemotaxis, and transendothelial migration. Thus, P6 is a novel sequence in PEX9 involved in cell-PEX9/(pro)MMP-9 binding by interacting with CD44. Targeting both sites, P6 and P3, should efficiently prevent (pro)MMP-9 binding to CLL cells and its pathological consequences. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Nikolskaia, Olga V.; de A. Lima, Ana Paula C.; Kim, Yuri V.; Lonsdale-Eccles, John D.; Fukuma, Toshihide; Scharfstein, Julio; Grab, Dennis J.
2006-01-01
In this study we investigated why bloodstream forms of Trypanosoma brucei gambiense cross human brain microvascular endothelial cells (BMECs), a human blood-brain barrier (BBB) model system, at much greater efficiency than do T. b. brucei. After noting that T. b. gambiense displayed higher levels of cathepsin L–like cysteine proteases, we investigated whether these enzymes contribute to parasite crossing. First, we found that T. b. gambiense crossing of human BMECs was abrogated by N-methylpiperazine-urea-Phe-homopheylalanine-vinylsulfone-benzene (K11777), an irreversible inhibitor of cathepsin L–like cysteine proteases. Affinity labeling and immunochemical studies characterized brucipain as the K11777-sensitive cysteine protease expressed at higher levels by T. b. gambiense. K11777-treated T. b. gambiense failed to elicit calcium fluxes in BMECs, suggesting that generation of activation signals for the BBB is critically dependant on brucipain activity. Strikingly, crossing of T. b. brucei across the BBB was enhanced upon incubation with brucipain-rich supernatants derived from T. b. gambiense. The effects of the conditioned medium, which correlated with ability to evoke calcium fluxes, were canceled by K11777, but not by the cathepsin B inhibitor CA074. Collectively, these in vitro studies implicate brucipain as a critical driver of T. b. gambiense transendothelial migration of the human BBB. PMID:16998589
Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling
Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier
2015-01-01
Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model. Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells. PMID:26396176
Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling.
Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier
2015-09-29
Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model.Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells.
Ingangi, Vincenzo; Bifulco, Katia; Yousif, Ali Munaim; Ragone, Concetta; Motti, Maria Letizia; Rea, Domenica; Minopoli, Michele; Botti, Giovanni; Scognamiglio, Giuseppe; Fazioli, Flavio; Gallo, Michele; De Chiara, Annarosaria; Arra, Claudio; Grieco, Paolo; Carriero, Maria Vincenza
2016-08-23
The receptor for the urokinase-type plasminogen activator (uPAR) is a widely recognized master regulator of cell migration and uPAR88-92 is the minimal sequence required to induce cell motility and angiogenesis by interacting with the formyl peptide receptor type 1 (FPR1). In this study, we present evidence that the cyclization of the uPAR88-92 sequence generates a new potent inhibitor of migration, and extracellular matrix invasion of human osteosarcoma and chondrosarcoma cells expressing comparable levels of FPR1 on cell surface. In vitro, the cyclized peptide [SRSRY] prevents formation of capillary-like tubes by endothelial cells co-cultured with chondrosarcoma cells and trans-endothelial migration of osteosarcoma and chondrosarcoma cells. When chondrosarcoma cells were subcutaneously injected in nude mice, tumor size, intra-tumoral microvessel density and circulating tumor cells in blood samples collected before the sacrifice, were significantly reduced in animals treated daily with i.p-administration of 6 mg/Kg [SRSRY] as compared to animals treated with vehicle only. Our findings indicate that [SRSRY] prevents three key events occurring during the metastatic process of osteosarcoma and chondrosarcoma cells: the extracellular matrix invasion, the formation of a capillary network and the entry into bloodstream.
Ingangi, Vincenzo; Bifulco, Katia; Yousif, Ali Munaim; Ragone, Concetta; Motti, Maria Letizia; Rea, Domenica; Minopoli, Michele; Botti, Giovanni; Scognamiglio, Giuseppe; Fazioli, Flavio; Gallo, Michele; De Chiara, Annarosaria; Arra, Claudio; Grieco, Paolo; Carriero, Maria Vincenza
2016-01-01
The receptor for the urokinase-type plasminogen activator (uPAR) is a widely recognized master regulator of cell migration and uPAR88–92 is the minimal sequence required to induce cell motility and angiogenesis by interacting with the formyl peptide receptor type 1 (FPR1). In this study, we present evidence that the cyclization of the uPAR88–92 sequence generates a new potent inhibitor of migration, and extracellular matrix invasion of human osteosarcoma and chondrosarcoma cells expressing comparable levels of FPR1 on cell surface. In vitro, the cyclized peptide [SRSRY] prevents formation of capillary-like tubes by endothelial cells co-cultured with chondrosarcoma cells and trans-endothelial migration of osteosarcoma and chondrosarcoma cells. When chondrosarcoma cells were subcutaneously injected in nude mice, tumor size, intra-tumoral microvessel density and circulating tumor cells in blood samples collected before the sacrifice, were significantly reduced in animals treated daily with i.p-administration of 6 mg/Kg [SRSRY] as compared to animals treated with vehicle only. Our findings indicate that [SRSRY] prevents three key events occurring during the metastatic process of osteosarcoma and chondrosarcoma cells: the extracellular matrix invasion, the formation of a capillary network and the entry into bloodstream. PMID:27323409
A novel regulator of angiogenesis in endothelial cells: 5-hydroxytriptamine 4 receptor.
Profirovic, Jasmina; Strekalova, Elena; Urao, Norifumi; Krbanjevic, Aleksandar; Andreeva, Alexandra V; Varadarajan, Sudhahar; Fukai, Tohru; Hen, René; Ushio-Fukai, Masuko; Voyno-Yasenetskaya, Tatyana A
2013-01-01
The 5-hydroxytryptamine type 4 receptor (5-HT(4)R) regulates many physiological processes, including learning and memory, cognition, and gastrointestinal motility. Little is known about its role in angiogenesis. Using mouse hindlimb ischemia model of angiogenesis, we observed a significant reduction of limb blood flow recovery 14 days after ischemia and a decrease in density of CD31-positive vessels in adductor muscles in 5-HT(4)R(-/-) mice compared to wild type littermates. Our in vitro data indicated that 5-HT(4)R endogenously expressed in endothelial cells (ECs) may promote angiogenesis. Inhibition of the receptor with 5-HT(4)R antagonist RS 39604 reduced EC capillary tube formation in the reconstituted basement membrane. Using Boyden chamber migration assay and wound healing "scratch" assay, we demonstrated that RS 39604 treatment significantly suppressed EC migration. Transendothelial resistance measurement and immunofluorescence analysis showed that a 5-HT(4)R agonist RS 67333 led to an increase in endothelial permeability, actin stress fiber and interendothelial gap formation. Importantly, we provided the evidence that 5-HT(4)R-regulated EC migration may be mediated by Gα13 and RhoA. Our results suggest a prominent role of 5-HT(4)R in promoting angiogenesis and identify 5-HT(4)R as a potential therapeutic target for modulating angiogenesis under pathological conditions.
Vascular barrier protective effects of 3-N- or 3-O-cinnamoyl carbazole derivatives.
Ku, Sae-Kwang; Lee, Jee-Hyun; O, Yuseok; Lee, Wonhwa; Song, Gyu-Yong; Bae, Jong-Sup
2015-10-01
In this Letter, we investigated the barrier protective effects of 3-N-(MeO)n-cinnamoyl carbazoles (BS 1; n=1, BS 2; n=2, BS 3; n=3) and 3-O-(MeO)3-cinnamoyl carbazole (BS 4) against high-mobility group box 1 (HMGB1)-mediated vascular disruptive responses in human umbilical vein endothelial cells (HUVECs) and in mice for the first time. Data showed that BS 2, BS 3, and BS 4, but not BS 1, inhibited HMGB1-mediated vascular disruptive responses and transendothelial migration of human neutrophils to HUVECs. BS 2, BS3, and BS 4 also suppressed HMGB1-induced hyperpermeability and leukocyte migration in mice. Interestingly, the barrier protective effects of BS 3 and BS 4 were better than those of BS 2. These results suggest that the number of methoxy groups substituted on the cinnamamide or cinnamate moiety of the 9H-3-carbazole derivative is an important pharmacophore for the barrier protective effects of these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.
Suppression of colon cancer metastasis by Aes through inhibition of Notch signaling.
Sonoshita, Masahiro; Aoki, Masahiro; Fuwa, Haruhiko; Aoki, Koji; Hosogi, Hisahiro; Sakai, Yoshiharu; Hashida, Hiroki; Takabayashi, Arimichi; Sasaki, Makoto; Robine, Sylvie; Itoh, Kazuyuki; Yoshioka, Kiyoko; Kakizaki, Fumihiko; Kitamura, Takanori; Oshima, Masanobu; Taketo, Makoto Mark
2011-01-18
Metastasis is responsible for most cancer deaths. Here, we show that Aes (or Grg5) gene functions as an endogenous metastasis suppressor. Expression of Aes was decreased in liver metastases compared with primary colon tumors in both mice and humans. Aes inhibited Notch signaling by converting active Rbpj transcription complexes into repression complexes on insoluble nuclear matrix. In tumor cells, Notch signaling was triggered by ligands on adjoining blood vessels, and stimulated transendothelial migration. Genetic depletion of Aes in Apc(Δ716) intestinal polyposis mice caused marked tumor invasion and intravasation that were suppressed by Notch signaling inhibition. These results suggest that inhibition of Notch signaling can be a promising strategy for prevention and treatment of colon cancer metastasis. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Wonhwa; Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University; Kim, Tae Hoon
2012-07-01
Withaferin A (WFA), an active compound from Withania somnifera, is widely researched for its anti-inflammatory, cardioactive and central nervous system effects. In this study, we first investigated the possible barrier protective effects of WFA against pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs) and in mice induced by high mobility group box 1 protein (HMGB1) and the associated signaling pathways. The barrier protective activities of WFA were determined by measuring permeability, leukocytes adhesion and migration, and activation of pro-inflammatory proteins in HMGB1-activated HUVECs. We found that WFA inhibited lipopolysaccharide (LPS)-induced HMGB1 release and HMGB1-mediated barrier disruption, expression of cellmore » adhesion molecules (CAMs) and adhesion/transendothelial migration of leukocytes to human endothelial cells. WFA also suppressed acetic acid-induced hyperpermeability and carboxymethylcellulose-induced leukocytes migration in vivo. Further studies revealed that WFA suppressed the production of interleukin 6, tumor necrosis factor-α (TNF-α) and activation of nuclear factor-κB (NF-κB) by HMGB1. Collectively, these results suggest that WFA protects vascular barrier integrity by inhibiting hyperpermeability, expression of CAMs, adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases. -- Highlights: ► Withaferin A inhibited LPS induced HMGB1 release. ► Withaferin A reduced HMGB1-mediated hyperpermeability. ► Withaferin A inhibited HMGB1-mediated adhesion and migration of leukocytes. ► Withaferin A inhibited HMGB1-mediated activation of NF-κB, IL-6 and TNF-α.« less
Anti-inflammatory effects of methylthiouracil in vitro and in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ku, Sae-Kwang; Baek, Moon-Chang, E-mail: mcbaek@knu.ac.kr; Bae, Jong-Sup, E-mail: baejs@knu.ac.kr
The screening of bioactive compound libraries can be an effective approach for repositioning FDA-approved drugs or discovering new treatments for human diseases. Here, methylthiouracil (MTU), an antithyroid drug, was examined for its effects on lipopolysaccharide (LPS)-mediated vascular inflammatory responses. The anti-inflammatory activities of MTU were determined by measuring permeability, human neutrophil adhesion and migration, and activation of pro-inflammatory proteins in LPS-activated human umbilical vein endothelial cells and mice. We found that post-treatment with MTU inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs), and adhesion/transendothelial migration of human neutrophils to human endothelial cells. MTU induced potent inhibition of LPS-inducedmore » endothelial cell protein C receptor (EPCR) shedding. It also suppressed LPS-induced hyperpermeability and neutrophil migration in vivo. Furthermore, MTU suppressed the production of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, and the activation of nuclear factor-κB (NF-κB) and extracellular regulated kinases (ERK) 1/2 by LPS. Moreover, post-treatment with MTU resulted in reduced LPS-induced lethal endotoxemia. These results suggest that MTU exerts anti-inflammatory effects by inhibiting hyperpermeability, expression of CAMs, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases. - Highlights: • MTU reduced LPS-mediated hyperpermeability in vitro and in vivo. • MTU inhibited LPS-mediated leukocyte adhesion and migration. • MTU inhibited LPS-mediated production of IL-6 and TNF-α. • MTU reduced LPS-mediated mortality and lung injury.« less
Perretti, Mauro; Ingegnoli, Francesca; Wheller, Samantha K.; Blades, Mark C.; Solito, Egle; Pitzalis, Costantino
2015-01-01
The effect of the glucocorticoid inducible protein annexin 1 (ANXA1) on the process of monocytic cell migration was studied using transfected U937 cells expressing variable protein levels. An antisense (AS) (36.4AS; ~50% less ANXA1) and a sense (S) clone (15S; overexpressing the bioactive 24-kDa fragment) together with the empty plasmid CMV clone were obtained and compared with wild-type U937 cells in various models of cell migration in vitro and in vivo. 15S-transfected U937 cells displayed a reduced (50%) degree of trans-endothelial migration in response to stromal cell-derived factor-1α (CXC chemokine ligand 12 (CXCL12)). In addition, the inhibitory role of endogenous ANXA1 on U937 cell migration in vitro was confirmed by the potentiating effect of a neutralizing anti-ANXA1 serum. Importantly, overexpression of ANXA1 in clone 15S inhibited the extent of cell migration into rheumatoid synovial grafts transplanted into SCID mice. ANXA1 inhibitory effects were not due to modifications in adhesion molecule or CXCL12 receptor (CXCR4) expression as shown by the similar amounts of surface molecules found in transfected and wild-type U937 cells. Likewise, an equal chemotactic response to CXCL12 in vitro excluded an intrinsic defect in cell motility in clones 15S and 36.4AS. These data strongly support the notion that ANXA1 critically interferes with a leukocyte endothelial step essential for U937 cell, and possibly monocyte, transmigration both in vitro and in vivo. PMID:12165536
Plasmalemma vesicle-associated protein: A crucial component of vascular homeostasis
Guo, Ling; Zhang, Hongyan; Hou, Yinglong; Wei, Tianshu; Liu, Ju
2016-01-01
Endothelial subcellular structures, including caveolae, fenestrae and transendothelial channels, are crucial for regulating microvascular function. Plasmalemma vesicle-associated protein (PLVAP) is an endothelial cell-specific protein that forms the stomatal and fenestral diaphragms of blood vessels and regulates basal permeability, leukocyte migration and angiogenesis. Loss of PLVAP in mice leads to premature mortality due to disrupted homeostasis. Evidence from previous studies suggested that PLVAP is involved in cancer, traumatic spinal cord injury, acute ischemic brain disease, transplant glomerulopathy, Norrie disease and diabetic retinopathy. Specifically, PLVAP expression has been demonstrated to be upregulated in these diseases, accompanied by pro-angiogenic or pro-inflammatory responses. Therefore, PLVAP is considered a novel therapeutic target, in addition to an endothelial cell marker. The present review summarizes the structure and functions of PLVAP, and its roles in pathophysiological processes. PMID:27602081
El Hasasna, Hussain; Saleh, Alaaeldin; Samri, Halima Al; Athamneh, Khawlah; Attoub, Samir; Arafat, Kholoud; Benhalilou, Nehla; Alyan, Sofyan; Viallet, Jean; Dhaheri, Yusra Al; Eid, Ali; Iratni, Rabah
2016-01-01
Recently, we reported that Rhus coriaria exhibits anticancer activities by promoting cell cycle arrest and autophagic cell death of the metastatic triple negative MDA-MB-231 breast cancer cells. Here, we investigated the effect of Rhus coriaria on the migration, invasion, metastasis and tumor growth of TNBC cells. Our current study revealed that non-cytotoxic concentrations of Rhus coriaria significantly inhibited migration and invasion, blocked adhesion to fibronectin and downregulated MMP-9 and prostaglandin E2 (PgE2). Not only did Rhus coriaria decrease their adhesion to HUVECs and to lung microvascular endothelial (HMVEC-L) cells, but it also inhibited the transendothelial migration of MDA-MB-231 cells through TNF-α-activated HUVECs. Furthermore, we found that Rhus coriaria inhibited angiogenesis, reduced VEGF production in both MDA-MB-231 and HUVECs and downregulated the inflammatory cytokines TNF-α, IL-6 and IL-8. The underlying mechanism for Rhus coriaria effects appears to be through inhibiting NFκB, STAT3 and nitric oxide (NO) pathways. Most importantly, by using chick embryo tumor growth assay, we showed that Rhus coriaria suppressed tumor growth and metastasis in vivo. The results described in the present study identify Rhus coriaria as a promising chemopreventive and therapeutic candidate that modulate triple negative breast cancer growth and metastasis. PMID:26888313
Grote, Karsten; Salguero, Gustavo; Ballmaier, Matthias; Dangers, Marc; Drexler, Helmut; Schieffer, Bernhard
2007-08-01
Tissue regeneration involves the formation of new blood vessels regulated by angiogenic factors. We reported recently that the expression of the angiogenic factor CCN1 is up-regulated under various pathophysiologic conditions within the cardiovascular system. Because CD34+ progenitor cells participate in cardiovascular tissue regeneration, we investigated whether CCN1-detected for the first time in human plasma-promotes the recruitment of CD34+ progenitor cells to endothelial cells, thereby enhancing endothelial proliferation and neovascularization. In this study, we demonstrated that CCN1 and supernatants from CCN1-stimulated human CD34+ progenitor cells promoted proliferation of endothelial cells and angiogenesis in vitro and in vivo. In addition, CCN1 induced migration and transendothelial migration of CD34+ cells and the release of multiple growth factors, chemokines, and matrix metalloproteinase-9 (MMP-9) from these cells. Moreover, the CCN1-specific integrins alpha(M)beta(2) and alpha(V)beta(3) are expressed on CD34+ cells and CCN1 stimulated integrin-dependent signaling. Furthermore, integrin antagonists (RGD-peptides) suppressed both binding of CCN1 to CD34+ cells and CCN1-induced adhesion of CD34+ cells to endothelial cells. These data suggest that CCN1 promotes integrin-dependent recruitment of CD34+ progenitor cells to endothelial cells, which may contribute to paracrine effects on angiogenesis and tissue regeneration.
Ortiz, Rina; Díaz, Jorge; Díaz, Natalia; Lobos-Gonzalez, Lorena; Cárdenas, Areli; Contreras, Pamela; Díaz, María Inés; Otte, Ellen; Cooper-White, Justin; Torres, Vicente; Leyton, Lisette; Quest, Andrew F.G.
2016-01-01
Caveolin-1 (CAV1) is a scaffolding protein that plays a dual role in cancer. In advanced stages of this disease, CAV1 expression in tumor cells is associated with enhanced metastatic potential, while, at earlier stages, CAV1 functions as a tumor suppressor. We recently implicated CAV1 phosphorylation on tyrosine 14 (Y14) in CAV1-enhanced cell migration. However, the contribution of this modification to the dual role of CAV1 in cancer remained unexplored. Here, we used in vitro [2D and transendothelial cell migration (TEM), invasion] and in vivo (metastasis) assays, as well as genetic and biochemical approaches to address this question in B16F10 murine melanoma cells. CAV1 promoted directional migration on fibronectin or laminin, two abundant lung extracellular matrix (ECM) components, which correlated with enhanced Y14 phosphorylation during spreading. Moreover, CAV1-driven migration, invasion, TEM and metastasis were ablated by expression of the phosphorylation null CAV1(Y14F), but not the phosphorylation mimicking CAV1(Y14E) mutation. Finally, CAV1-enhanced focal adhesion dynamics and surface expression of beta1 integrin were required for CAV1-driven TEM. Importantly, CAV1 function as a tumor suppressor in tumor formation assays was not altered by the Y14F mutation. In conclusion, our results provide critical insight to the mechanisms of CAV1 action during cancer development. Specific ECM-integrin interactions and Y14 phosphorylation are required for CAV1-enhanced melanoma cell migration, invasion and metastasis to the lung. Because Y14F mutation diminishes metastasis without inhibiting the tumor suppressor function of CAV1, Y14 phosphorylation emerges as an attractive therapeutic target to prevent metastasis without altering beneficial traits of CAV1. PMID:27259249
ICAM-1 expression and organization in human endothelial cells is sensitive to gravity
NASA Astrophysics Data System (ADS)
Zhang, Yu; Sang, Chen; Paulsen, Katrin; Arenz, Andrea; Zhao, Ziyan; Jia, Xiaoling; Ullrich, Oliver; Zhuang, Fengyuan
2010-11-01
Transendothelial migration (TEM) of immune cells is a crucial process during a multitude of physiological and pathological conditions such as development, defense against infections and wound healing. Migration within the body tissues and through endothelial barriers is strongly dependent and regulated both by cytoskeletal processes and by expression of surface adhesion molecules such as ICAM-1 and VCAM-1. Space flight experiments have confirmed that TEM will be inhibited and may cause astronauts' immune function decreased and make them easy for infection. We used NASA RCCS to provide a simulated microgravity environment; endothelial cells were cultured on microcarrier beads and activated by TNF-α. Results demonstrate after clinorotation ICAM-1 expression increased, consistent with the notion in parabolic flights. However, VCAM-1 showed no significant change between activated or inactivated cells. Depolymerization of F-actin and clustering of ICAM-1 on cell membrane were also observed in short-term simulated microgravity, and after 24 h clinorotation, actin fiber rearrangement was initiated and clustering of ICAM-1 became stable. ICAM-1 mRNA and VCAM-1 mRNA were up-regulated after 30 min clinorotation, and returned to the same level with controls after 24 h clinorotation.
Differential effects of immunosuppressive drugs on T-cell motility.
Datta, A; David, R; Glennie, S; Scott, D; Cernuda-Morollon, E; Lechler, R I; Ridley, A J; Marelli-Berg, F M
2006-12-01
The best-characterized mechanism of the action of immunosuppressive drugs is to prevent T-cell clonal expansion, thus containing the magnitude of the ensuing immune response. As T-cell recruitment to the inflammatory site is another key step in the development of T-cell-mediated inflammation, we analyzed and compared the effects of two commonly used immunosuppressants, cyclosporin A (CsA) and the rapamycin-related compound SDZ-RAD, on the motility of human CD4+ T cells. We show that CsA, but not SDZ-RAD, inhibits T-cell transendothelial migration in vitro. CsA selectively impaired chemokine-induced T-cell chemotaxis while integrin-mediated migration was unaffected. The inhibition of T-cell chemotaxis correlated with reduced AKT/PKB but not ERK activation following exposure to the chemokine CXCL-12/SDF-1. In addition, CsA, but not SDZ-RAD, prevents some T-cell receptor-mediated effects on T-cell motility. Finally, we show that CsA, but not SDZ-RAD inhibits tissue infiltration by T cells in vivo. Our data suggest a prominent antiinflammatory role for CsA in T-cell-mediated tissue damage, by inhibiting T-cell trafficking into tissues in addition to containing clonal expansion.
Vogel, Megan E.; Kindel, Tammy L.; Smith, Darcey L. H.; Idelman, Gila; Avissar, Uri; Kakarlapudi, Ganesh; Masnovi, Michelle E.
2015-01-01
Bilirubin is thought to exert anti-inflammatory effects by inhibiting vascular cell adhesion molecule-1 (VCAM-1)-dependent leukocyte migration and by suppressing the expression of inducible nitric oxide synthase (iNOS). As VCAM-1 and iNOS are important mediators of tissue injury in the dextran sodium sulfate (DSS) murine model of inflammatory colitis, we examined whether bilirubin prevents colonic injury in DSS-treated mice. Male C57BL/6 mice were administered 2.5% DSS in the drinking water for 7 days, while simultaneously receiving intraperitoneal injections of bilirubin (30 mg/kg) or potassium phosphate vehicle. Disease activity was monitored, peripheral blood counts and serum nitrate levels were determined, and intestinal specimens were analyzed for histological injury, leukocyte infiltration, and iNOS expression. The effect of bilirubin on IL-5 production by HSB-2 cells and on Jurkat cell transendothelial migration also was determined. DSS-treated mice that simultaneously received bilirubin lost less body weight, had lower serum nitrate levels, and exhibited reduced disease severity than vehicle-treated animals. Concordantly, histopathological analyses revealed that bilirubin-treated mice manifested significantly less colonic injury, including reduced infiltration of eosinophils, lymphocytes, and monocytes, and diminished iNOS expression. Bilirubin administration also was associated with decreased eosinophil and monocyte infiltration into the small intestine, with a corresponding increase in peripheral blood eosinophilia. Bilirubin prevented Jurkat migration but did not alter IL-5 production. In conclusion, bilirubin prevents DSS-induced colitis by inhibiting the migration of leukocytes across the vascular endothelium and by suppressing iNOS expression. PMID:26381705
Zucker, Stephen D; Vogel, Megan E; Kindel, Tammy L; Smith, Darcey L H; Idelman, Gila; Avissar, Uri; Kakarlapudi, Ganesh; Masnovi, Michelle E
2015-11-15
Bilirubin is thought to exert anti-inflammatory effects by inhibiting vascular cell adhesion molecule-1 (VCAM-1)-dependent leukocyte migration and by suppressing the expression of inducible nitric oxide synthase (iNOS). As VCAM-1 and iNOS are important mediators of tissue injury in the dextran sodium sulfate (DSS) murine model of inflammatory colitis, we examined whether bilirubin prevents colonic injury in DSS-treated mice. Male C57BL/6 mice were administered 2.5% DSS in the drinking water for 7 days, while simultaneously receiving intraperitoneal injections of bilirubin (30 mg/kg) or potassium phosphate vehicle. Disease activity was monitored, peripheral blood counts and serum nitrate levels were determined, and intestinal specimens were analyzed for histological injury, leukocyte infiltration, and iNOS expression. The effect of bilirubin on IL-5 production by HSB-2 cells and on Jurkat cell transendothelial migration also was determined. DSS-treated mice that simultaneously received bilirubin lost less body weight, had lower serum nitrate levels, and exhibited reduced disease severity than vehicle-treated animals. Concordantly, histopathological analyses revealed that bilirubin-treated mice manifested significantly less colonic injury, including reduced infiltration of eosinophils, lymphocytes, and monocytes, and diminished iNOS expression. Bilirubin administration also was associated with decreased eosinophil and monocyte infiltration into the small intestine, with a corresponding increase in peripheral blood eosinophilia. Bilirubin prevented Jurkat migration but did not alter IL-5 production. In conclusion, bilirubin prevents DSS-induced colitis by inhibiting the migration of leukocytes across the vascular endothelium and by suppressing iNOS expression. Copyright © 2015 the American Physiological Society.
A proteomics study of hyperhomocysteinemia injury of the hippocampal neurons using iTRAQ.
Fang, Min; Wang, Jing; Yan, Han; Zhao, Yan-Xin; Liu, Xue-Yuan
2014-11-01
High levels of homocysteine, caused by abnormal methionine metabolism, can induce degeneration of mouse hippocampal neurons. iTRAQ™ technology has been widely used in the field of proteomics research and through employing this technology, the present study identified that hyperhomocysteinemia induced the downregulation of 52 proteins and upregulation of 44 proteins in the mouse hippocampus. Through gene ontology and pathway analysis, the upregulation of components of the cytoskeleton, actin, regulators of focal adhesion, calcium signaling pathways, tight junctions, ErbB and gonadotrophin‑releasing hormone signaling, leukocyte, transendothelial migration, propanoate and pyruvate metabolism, valine, leucine and isoleucine biosynthesis, synthesis and degradation of ketone bodies and benzoate degradation via CoA ligation pathway, was identified. It was additionally verified that tau protein was highly expressed in the hyperhomocysteinemic neurons. Further analysis revealed that tau network proteins played functional roles in homocysteine‑induced neuronal damage.
CD146/MCAM defines functionality of human bone marrow stromal stem cell populations.
Harkness, Linda; Zaher, Walid; Ditzel, Nicholas; Isa, Adiba; Kassem, Moustapha
2016-01-11
Identification of surface markers for prospective isolation of functionally homogenous populations of human skeletal (stromal, mesenchymal) stem cells (hMSCs) is highly relevant for cell therapy protocols. Thus, we examined the possible use of CD146 to subtype a heterogeneous hMSC population. Using flow cytometry and cell sorting, we isolated two distinct hMSC-CD146(+) and hMSC-CD146(-) cell populations from the telomerized human bone marrow-derived stromal cell line (hMSC-TERT). Cells were examined for differences in their size, shape and texture by using high-content analysis and additionally for their ability to differentiate toward osteogenesis in vitro and form bone in vivo, and their migrational ability in vivo and in vitro was investigated. In vitro, the two cell populations exhibited similar growth rate and differentiation capacity to osteoblasts and adipocytes on the basis of gene expression and protein production of lineage-specific markers. In vivo, hMSC-CD146(+) and hMSC-CD146(-) cells formed bone and bone marrow organ when implanted subcutaneously in immune-deficient mice. Bone was enriched in hMSC-CD146(-) cells (12.6 % versus 8.1 %) and bone marrow elements enriched in implants containing hMSC-CD146(+) cells (0.5 % versus 0.05 %). hMSC-CD146(+) cells exhibited greater chemotactic attraction in a transwell migration assay and, when injected intravenously into immune-deficient mice following closed femoral fracture, exhibited wider tissue distribution and significantly increased migration ability as demonstrated by bioluminescence imaging. Our studies demonstrate that CD146 defines a subpopulation of hMSCs capable of bone formation and in vivo trans-endothelial migration and thus represents a population of hMSCs suitable for use in clinical protocols of bone tissue regeneration.
CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier
Haskó, János; Fazakas, Csilla; Molnár, Judit; Nyúl-Tóth, Ádám; Herman, Hildegard; Hermenean, Anca; Wilhelm, Imola; Persidsky, Yuri; Krizbai, István A.
2014-01-01
During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB). The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2); therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A), GPR18 (transcriptional variant 1) and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A), GPR18 (transcriptional variants 1 and 2), GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma. PMID:24815068
Hug tightly and say goodbye: role of endothelial ICAM-1 in leukocyte transmigration.
Rahman, Arshad; Fazal, Fabeha
2009-04-01
Stable adhesion of leukocytes to endothelium is crucial for transendothelial migration (TEM) of leukocytes evoked during inflammatory responses, immune surveillance, and homing and mobilization of hematopoietic progenitor cells. The basis of stable adhesion involves expression of intercellular adhesion molecule-1 (ICAM-1), an inducible endothelial adhesive protein that serves as a counter-receptor for beta(2)-integrins on leukocytes. Interaction of ICAM-1 with beta(2)-integrins enables leukocytes to adhere firmly to the vascular endothelium and subsequently, to migrate across the endothelial barrier. The emerging paradigm is that ICAM-1, in addition to firmly capturing leukocytes, triggers intracellular signaling events that may contribute to active participation of the endothelium in facilitating the TEM of adherent leukocytes. The nature, duration, and intensity of ICAM-1-dependent signaling events may contribute to the determination of the route (paracellular vs. transcellular) of leukocyte passage; these aspects of ICAM-1 signaling may in turn be influenced by density and distribution of ICAM-1 on the endothelial cell surface, the source of endothelial cells it is present on, and the type of leukocytes with which it is engaged. This review summarizes our current understanding of the "ICAM-1 paradigm" of TEM with an emphasis on the signaling events mediating ICAM-1 expression and activated by ICAM-1 engagement in endothelial cells.
Migration efficiency ratios and the optimal distribution of population.
Gallaway, L; Vedder, R
1985-01-01
The authors present a theoretical description of the migration process and criticize the conventional interpretation of the migration efficiency ratio, which is defined as the ratio of the net number of moves of individuals between areas to the gross number of moves that take place. "The conventional interpretation of the migration efficiency ratio is that the closer it lies to zero the less efficient the migration process....However, [the authors] feel that this is a somewhat misleading conception of the notion of efficiency in migration in that it emphasizes the physical efficiency of the migration process rather than focusing on the contribution of migration to a socially efficient allocation of population. Thus, to redirect attention, [they] have chosen to judge migration efficiency on the basis of its contribution to producing an equilibrium population distribution." The focus is on internal migration. excerpt
Zhang, Rui-Li; Zhang, Jing-Ping; Wang, Qian-Qiu
2014-01-01
The recombinant Treponema pallidum protein Tp0965 (rTp0965), one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs) with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells) to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis. PMID:25514584
Schnoor, Michael; Alcaide, Pilar; Voisin, Mathieu-Benoit; van Buul, Jaap D.
2015-01-01
Leukocyte extravasation is one of the essential and first steps during the initiation of inflammation. Therefore, a better understanding of the key molecules that regulate this process may help to develop novel therapeutics for treatment of inflammation-based diseases such as atherosclerosis or rheumatoid arthritis. The endothelial adhesion molecules ICAM-1 and VCAM-1 are known as the central mediators of leukocyte adhesion to and transmigration across the endothelium. Engagement of these molecules by their leukocyte integrin receptors initiates the activation of several signaling pathways within both leukocytes and endothelium. Several of such events have been described to occur during transendothelial migration of all leukocyte subsets, whereas other mechanisms are known only for a single leukocyte subset. Here, we summarize current knowledge on regulatory mechanisms of leukocyte extravasation from a leukocyte and endothelial point of view, respectively. Specifically, we will focus on highlighting common and unique mechanisms that specific leukocyte subsets exploit to succeed in crossing endothelial monolayers. PMID:26568666
Isoforms of Vitamin E Differentially Regulate PKC α and Inflammation: A Review
Cook-Mills, Joan M.
2013-01-01
Vitamin E regulation of disease has been extensively studied but most studies focus on the α-tocopherol isoform of vitamin E. These reports indicate contradictory outcomes for anti-inflammatory functions of the α-tocopherol isoform of vitamin E with regards to animal and clinical studies. These seemingly disparate results are consistent with our recent studies demonstrating that purified natural forms of vitamin E have opposing regulatory functions during inflammation. In this review, we discuss that α-tocopherol inhibits whereas γ-tocopherol elevates allergic inflammation, airway hyperresponsiveness, leukocyte transendothelial migration, and endothelial cell adhesion molecule signaling through protein kinase Cα. Moreover, we have demonstrated that α-tocopherol is an antagonist and γ-tocopherol is an agonist of PKCα through direct binding to a regulatory domain of PKCα. In summary, we have determined mechanisms for opposing regulatory functions of α-tocopherol and γ-tocopherol on inflammation. Information from our studies will have significant impact on the design of clinical studies and on vitamin E consumption. PMID:23977443
RhoC and ROCKs regulate cancer cell interactions with endothelial cells.
Reymond, Nicolas; Im, Jae Hong; Garg, Ritu; Cox, Susan; Soyer, Magali; Riou, Philippe; Colomba, Audrey; Muschel, Ruth J; Ridley, Anne J
2015-06-01
RhoC is a member of the Rho GTPase family that is implicated in cancer progression by stimulating cancer cell invasiveness. Here we report that RhoC regulates the interaction of cancer cells with vascular endothelial cells (ECs), a crucial step in the metastatic process. RhoC depletion by RNAi reduces PC3 prostate cancer cell adhesion to ECs, intercalation between ECs as well as transendothelial migration in vitro. Depletion of the kinases ROCK1 and ROCK2, two known RhoC downstream effectors, similarly decreases cancer interaction with ECs. RhoC also regulates the extension of protrusions made by cancer cells on vascular ECs in vivo. Transient RhoC depletion is sufficient to reduce both early PC3 cell retention in the lungs and experimental metastasis formation in vivo. Our results indicate RhoC plays a central role in cancer cell interaction with vascular ECs, which is a critical event for cancer progression. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Aragonès, Gemma; Auguet, Teresa; Guiu-Jurado, Esther; Berlanga, Alba; Curriu, Marta; Martinez, Salomé; Alibalic, Ajla; Aguilar, Carmen; Hernández, Esteban; Camara, María-Luisa; Canela, Núria; Herrero, Pol; Ruyra, Xavier; Martín-Paredero, Vicente; Richart, Cristóbal
2016-03-04
Because of the clinical significance of carotid atherosclerosis, the search for novel biomarkers has become a priority. The aim of the present study was to compare the protein secretion profile of the carotid atherosclerotic plaque (CAP, n = 12) and nonatherosclerotic mammary artery (MA, n = 10) secretomes. We used a nontargeted proteomic approach that incorporated tandem immunoaffinity depletion, iTRAQ labeling, and nanoflow liquid chromatography coupled to high-resolution mass spectrometry. In total, 162 proteins were quantified, of which 25 showed statistically significant differences in secretome levels between carotid atherosclerotic plaque and nondiseased mammary artery. We found increased levels of neutrophil defensin 1, apolipoprotein E, clusterin, and zinc-alpha-2-glycoprotein in CAP secretomes. Results were validated by ELISA assays. Also, differentially secreted proteins are involved in pathways such as focal adhesion and leukocyte transendothelial migration. In conclusion, this study provides a subset of identified proteins that are differently expressed in secretomes of clinical significance.
Microgravity Effects on Transendothelial Transport
NASA Technical Reports Server (NTRS)
Tarbell, John M.
1996-01-01
The Endothelial Cell (EC) layer which lines blood vessels from the aorta to the capillaries provides the principal barrier to transport of water and solutes between blood and underlying tissue. Endothelial cells are continuously exposed to the mechanical shearing force (shear stress) and normal force (pressure) imposed by flowing blood on their surface, and they are adapted to this mechanical environment. When the cardiovascular system is exposed to microgravity, the mechanical environmental of endothelial cells is perturbed drastically and the transport properties of EC layers are altered in response. We have shown recently that step changes in shear stress have an acute effect on transport properties of EC layers in a cell culture model, and several recent studies in different vessels of live animals have confirmed the shear-dependent transport properties of the endothelium. We hypothesize that alterations in mechanical forces induced by microgravity and their resultant influence on transendothelial transport of water and solutes are, in large measure, responsible for the characteristic cephalad fluid shift observed in humans experiencing microgravity. To study the effects of altered mechanical forces on transendothelial transport and to test pharmacologic agents as counter measures to microgravity induced fluid shifts we have proposed ground-based studies using well defined cell culture models.
Cieslik, Katarzyna A; Trial, JoAnn; Crawford, Jeffrey R; Taffet, George E; Entman, Mark L
2014-05-01
Aging has been associated with adverse fibrosis. Here we formulate a new hypothesis and present new evidence that unresponsiveness of mesenchymal stem cells (MSC) and fibroblasts to transforming growth factor beta (TGF-β), due to reduced expression of TGF-β receptor I (TβRI), provides a foundation for cardiac fibrosis in the aging heart via two mechanisms. 1) TGF-β promotes expression of Nanog, a transcription factor that retains MSC in a primitive state. In MSC derived from the aging heart, Nanog expression is reduced and therefore MSC gradually differentiate and the number of mesenchymal fibroblasts expressing collagen increases. 2) As TGF-β signaling pathway components negatively regulate transcription of monocyte chemoattractant protein-1 (MCP-1), a reduced expression of TβRI prevents aging mesenchymal cells from shutting down their own MCP-1 expression. Elevated MCP-1 levels that originated from MSC attract transendothelial migration of mononuclear leukocytes from blood to the tissue. MCP-1 expressed by mesenchymal fibroblasts promotes further migration of monocytes and T lymphocytes away from the endothelial barrier and supports the monocyte transition into macrophages and finally into myeloid fibroblasts. Both myeloid and mesenchymal fibroblasts contribute to fibrosis in the aging heart via collagen synthesis. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium ". © 2013. Published by Elsevier Ltd. All rights reserved.
Yin, Qian; Tang, Li; Cai, Kaimin; Yang, Xujuan; Yin, Lichen; Zhang, Yanfeng; Dobrucki, Lawrence W; Helferich, William G; Fan, Timothy M; Cheng, Jianjun
2018-05-01
Although polymeric nanoconjugates (NCs) hold great promise for the treatment of cancer patients, their clinical utility has been hindered by the lack of efficient delivery of therapeutics to targeted tumor sites. Here, we describe an albumin-functionalized polymeric NC (Alb-NC) capable of crossing the endothelium barrier through a caveolae-mediated transcytosis pathway to better target cancer. The Alb-NC is prepared by nanoprecipitation of doxorubicin (Doxo) conjugates of poly(phenyl O-carboxyanhydrides) bearing aromatic albumin-binding domains followed by subsequent surface decoration of albumin. The administration of Alb-NCs into mice bearing MCF-7 human breast cancer xenografts with limited tumor vascular permeability resulted in markedly increased tumor accumulation and anti-tumor efficacy compared to their conventional counterpart PEGylated NCs (PEG-NCs). The Alb-NC provides a simple, low-cost and broadly applicable strategy to improve the cancer targeting efficiency and therapeutic effectiveness of polymeric nanomedicine.
Al Dhaheri, Yusra; Attoub, Samir; Arafat, Kholoud; AbuQamar, Synan; Viallet, Jean; Saleh, Alaaeldin; Al Agha, Hala; Eid, Ali; Iratni, Rabah
2013-01-01
Background We have recently reported that Origanum majorana exhibits anticancer activity by promoting cell cycle arrest and apoptosis of the metastatic MDA-MB-231 breast cancer cell line. Here, we extended our study by investigating the effect of O . majorana on the migration, invasion and tumor growth of these cells. Results We demonstrate that non-cytotoxic concentrations of O . majorana significantly inhibited the migration and invasion of the MDA-MB-231 cells as shown by wound-healing and matrigel invasion assays. We also show that O . majorana induce homotypic aggregation of MDA-MB-231 associated with an upregulation of E-cadherin protein and promoter activity. Furthermore, we show that O . majorana decrease the adhesion of MDA-MB-231 to HUVECs and inhibits transendothelial migration of MDA-MB-231 through TNF-α-activated HUVECs. Gelatin zymography assay shows that O . majorana suppresses the activities of matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9). ELISA, RT-PCR and Western blot results revealed that O . majorana decreases the expression of MMP-2, MMP-9, urokinase plasminogen activator receptor (uPAR), ICAM-1 and VEGF. Further investigation revealed that O . majorana suppresses the phosphorylation of IκB, downregulates the nuclear level of NFκB and reduces Nitric Oxide (NO) production in MDA-MB-231 cells. Most importantly, by using chick embryo tumor growth assay, we also show that O . majorana promotes inhibition of tumor growth and metastasis in vivo. Conclusion Our findings identify Origanum majorana as a promising chemopreventive and therapeutic candidate that modulate breast cancer growth and metastasis. PMID:23874773
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheong, Chee Man; Chow, Annie W.S.; Department of Haematology, SA Pathology, Adelaide 5000, SA
Background: Increased expression of the tetraspanin TSPAN7 has been observed in a number of cancers; however, it is unclear how TSPAN7 plays a role in cancer progression. Methods: We investigated the expression of TSPAN7 in the haematological malignancy multiple myleoma (MM) and assessed the consequences of TSPAN7 expression in the adhesion, migration and growth of MM plasma cells (PC) in vitro and in bone marrow (BM) homing and tumour growth in vivo. Finally, we characterised the association of TSPAN7 with cell surface partner molecules in vitro. Results: TSPAN7 was found to be highly expressed at the RNA and protein levelmore » in CD138{sup +} MM PC from approximately 50% of MM patients. TSPAN7 overexpression in the murine myeloma cell line 5TGM1 significantly reduced tumour burden in 5TGM1/KaLwRij mice 4 weeks after intravenous adminstration of 5TGM1 cells. While TSPAN7 overexpression did not affect cell proliferation in vitro, TSPAN7 increased 5TGM1 cell adhesion to BM stromal cells and transendothelial migration. In addition, TSPAN7 was found to associate with the molecular chaperone calnexin on the cell surface. Conclusion: These results suggest that elevated TSPAN7 may be associated with better outcomes for up to 50% of MM patients. - Highlights: • TSPAN7 expression is upregulated in newly-diagnosed patients with active multiple myeloma. • Overexpression of TSPAN7 inhibits myeloma tumour development in vivo. • TSPAN7 interacts with calnexin at the plasma membrane in a myeloma cell line.« less
Kuo, Yi-Zih; Fang, Wei-Yu; Huang, Cheng-Chih; Tsai, Sen-Tien; Wang, Yi-Ching; Yang, Chih-Li; Wu, Li-Wha
2017-01-01
Hyaluronan (HA) is a major extracellular matrix component. However, its role and mediation in oral cancer remains elusive. Hyaluronan synthase 3 (HAS3), involved in pro-inflammatory short chain HA synthesis, was the predominant synthase in oral cancer cells and tissues. HAS3 overexpression significantly increased oral cancer cell migration, invasion and xenograft tumorigenesis accompanied with the increased expression of tumor necrosis factor alpha (TNF-α) and monocyte chemoattractant protein 1 (MCP-1). Conversely, HAS3 depletion abrogated HAS3-mediated stimulation. HAS3 induced oncogenic actions partly through activating EGFR-SRC signaling. HAS3-derived HA release into extracellular milieu enhanced transendothelial monocyte migration and MCP-1 expression, which was attenuated by anti-HAS3 antibodies or a HAS inhibitor, 4-Methylumbelliferone (4-MU). The NF-κB-binding site III at -1692 to -1682 bp upstream from the transcript 1 start site in HAS3 proximal promoter was the most responsive to TNF-α-stimulated transcription. ChIP-qPCR analysis confirmed the highest NF-κB-p65 enrichment on site III. Increased HAS3 mRNA expression was negatively correlated with the overall survival of oral cancer patients. A concomitant increase of TNF-α, a stimulus for HAS3 expression, with HAS3 expression was not only associated with lymph node metastasis but also negated clinical outcome. Together, HAS3 and TNF-α formed an inter-regulation loop to enhance tumorigenesis in oral cancer. PMID:28107185
David, Rachel; Ma, Liang; Ivetic, Aleksandar; Takesono, Aya; Ridley, Anne J.; Chai, Jian-Guo; Tybulewicz, Victor; Marelli-Berg, Federica M.
2016-01-01
Localization of primed T cells to antigenic tissue is essential for the development of effective immunity. Together with tissue-selective homing molecules, T-cell receptor (TCR)- and CD28-mediated signals have been shown to promote transendothelial migration of specific T cells into non-lymphoid antigen-rich tissue tissue. However, the cellular and molecular requirements for T-cell accumulation to target tissue following their recruitment are largely undefined. The guanine nucleotide exchange factor (GEF) Vav1 has an integral role in coupling TCR and CD28 to signalling pathways that regulate T cell activation and migration. Here, we have investigated the contribution of TCR- and CD28-induced Vav1 activity to the trafficking and localization of primed HY-specific CD4+ T cells to antigenic sites. Severe migratory defects displayed by Vav1-/- T cells in vitro were fully compensated by a combination of shear flow and chemokines, leading to normal recruitment of Vav1-/- T cells in vivo. In contrast, Vav1-/- T-cell retention into antigen-rich tissue was severely impaired, reflecting their inability to engage in sustained TCR- and CD28-mediated interactions with tissue-resident antigen-presenting cells (APCs). This novel function of APC-induced, TCR- and CD28-mediated Vav1 activity in the regulation of effector T-cell immunity highlights its potential as a therapeutic target in T-cell-mediated tissue damage. PMID:19060239
Jang, Cholsoon; Oh, Sungwhan F; Wada, Shogo; Rowe, Glenn C; Liu, Laura; Chan, Mun Chun; Rhee, James; Hoshino, Atsushi; Kim, Boa; Ibrahim, Ayon; Baca, Luisa G; Kim, Esl; Ghosh, Chandra C; Parikh, Samir M; Jiang, Aihua; Chu, Qingwei; Forman, Daniel E.; Lecker, Stewart H.; Krishnaiah, Saikumari; Rabinowitz, Joshua D; Weljie, Aalim M; Baur, Joseph A; Kasper, Dennis L; Arany, Zoltan
2016-01-01
Epidemiological and experimental data implicate branched chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms underlying this link remain unclear.1–3 Insulin resistance in skeletal muscle stems from excess accumulation of lipid species4, a process that requires blood-borne lipids to first traverse the blood vessel wall. Little is known, however, of how this trans-endothelial transport occurs or is regulated. Here, we leverage PGC-1α, a transcriptional coactivator that regulates broad programs of FA consumption, to identify 3-hydroxy-isobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a novel paracrine regulator of trans-endothelial fatty acids (FA) transport. 3-HIB is secreted from muscle cells, activates endothelial FA transport, stimulates muscle FA uptake in vivo, and promotes muscle lipid accumulation and insulin resistance in animals. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the promotion of endothelial FA uptake. 3-HIB levels are elevated in muscle from db/db mice and from subjects with diabetes. These data thus unveil a novel mechanism that regulates trans-endothelial flux of FAs, revealing 3-HIB as a new bioactive signaling metabolite that links the regulation of FA flux to BCAA catabolism and provides a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes. PMID:26950361
Jang, Cholsoon; Oh, Sungwhan F; Wada, Shogo; Rowe, Glenn C; Liu, Laura; Chan, Mun Chun; Rhee, James; Hoshino, Atsushi; Kim, Boa; Ibrahim, Ayon; Baca, Luisa G; Kim, Esl; Ghosh, Chandra C; Parikh, Samir M; Jiang, Aihua; Chu, Qingwei; Forman, Daniel E; Lecker, Stewart H; Krishnaiah, Saikumari; Rabinowitz, Joshua D; Weljie, Aalim M; Baur, Joseph A; Kasper, Dennis L; Arany, Zoltan
2016-04-01
Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear. Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species, a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1α; encoded by Ppargc1a), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes.
NASA Astrophysics Data System (ADS)
Budhwani, Karim Ismail
The tremendous quality of life impact notwithstanding, cardiovascular diseases and Cancer add up to over US$ 700bn each year in financial costs alone. Aging and population growth are expected to further expand the problem space while drug research and development remain expensive. However, preclinical costs can be substantially mitigated by substituting animal models with in vitro devices that accurately model human cardiovascular transport. Here we present a novel physiologically relevant lab-on-a-brane that simulates in vivo pressure, flow, strain, and shear waveforms associated with normal and pathological conditions in large and small blood vessels for studying molecular transport across the endothelial monolayer. The device builds upon previously demonstrated integrated microfluidic loop design by: (a) introducing nanoscale pores in the substrate membrane to enable transmembrane molecular transport, (b) transforming the substrate membrane into a nanofibrous matrix for 3D smooth muscle cell (SMC) tissue culture, (c) integrating electrospinning fabrication methods, (d) engineering an invertible sandwich cell culture device architecture, and (e) devising a healthy co-culture mechanism for human arterial endothelial cell (HAEC) monolayer and multiple layers of human smooth muscle cells (HSMC) to accurately mimic arterial anatomy. Structural and mechanical characterization was conducted using confocal microscopy, SEM, stress/strain analysis, and infrared spectroscopy. Transport was characterized using FITC-Dextran hydraulic permeability protocol. Structure and transport characterization successfully demonstrate device viability as a physiologically relevant arterial mimic for testing transendothelial transport. Thus, our lab-on-a-brane provides a highly effective and efficient, yet considerably inexpensive, physiologically relevant alternative for pharmacokinetic evaluation; possibly reducing animals used in pre-clinical testing, clinical trials cost from false starts, and time-to-market. Furthermore, this platform can be easily configured for testing targeted therapeutic delivery and in multiple simultaneous arrays for personalized and precision medicine applications.
DNA methylome signature in rheumatoid arthritis.
Nakano, Kazuhisa; Whitaker, John W; Boyle, David L; Wang, Wei; Firestein, Gary S
2013-01-01
Epigenetics can influence disease susceptibility and severity. While DNA methylation of individual genes has been explored in autoimmunity, no unbiased systematic analyses have been reported. Therefore, a genome-wide evaluation of DNA methylation loci in fibroblast-like synoviocytes (FLS) isolated from the site of disease in rheumatoid arthritis (RA) was performed. Genomic DNA was isolated from six RA and five osteoarthritis (OA) FLS lines and evaluated using the Illumina HumanMethylation450 chip. Cluster analysis of data was performed and corrected using Benjamini-Hochberg adjustment for multiple comparisons. Methylation was confirmed by pyrosequencing and gene expression was determined by qPCR. Pathway analysis was performed using the Kyoto Encyclopedia of Genes and Genomes. RA and control FLS segregated based on DNA methylation, with 1859 differentially methylated loci. Hypomethylated loci were identified in key genes relevant to RA, such as CHI3L1, CASP1, STAT3, MAP3K5, MEFV and WISP3. Hypermethylation was also observed, including TGFBR2 and FOXO1. Hypomethylation of individual genes was associated with increased gene expression. Grouped analysis identified 207 hypermethylated or hypomethylated genes with multiple differentially methylated loci, including COL1A1, MEFV and TNF. Hypomethylation was increased in multiple pathways related to cell migration, including focal adhesion, cell adhesion, transendothelial migration and extracellular matrix interactions. Confirmatory studies with OA and normal FLS also demonstrated segregation of RA from control FLS based on methylation pattern. Differentially methylated genes could alter FLS gene expression and contribute to the pathogenesis of RA. DNA methylation of critical genes suggests that RA FLS are imprinted and implicate epigenetic contributions to inflammatory arthritis.
Endothelial cells actively concentrate insulin during its transendothelial transport
Genders, Amanda J.; Frison, Vera; Abramson, Sarah R.; Barrett, Eugene J.
2013-01-01
We examined insulin's uptake and transendothelial transport (TET) by cultured bovine aortic endothelial cells (BAECs) in order to: a) ascertain whether insulin accumulates within the cells to concentrations greater than in the media; b) compare the TET of insulin to that of inulin (using the latter as a tracer for passive transport or leak); and c) determine whether insulin's TET depended on insulin action. Using 125I-insulin at physiologic concentrations, we found that BAECs accumulate insulin >5-fold above media concentrations and that the TET of insulin, but not inulin, is saturable and requires intact PI-3-kinase and MEK-kinase signaling. We conclude that the insulin receptor and downstream signaling from the receptor regulate endothelial insulin transport. Based on comparison of the kinetics of BAEC insulin uptake with insulin TET, we suggest that insulin uptake is rate limiting for insulin TET. PMID:23350546
Koudelkova, Petra; Costina, Victor; Weber, Gerhard; Dooley, Steven; Findeisen, Peter; Winter, Peter; Agarwal, Rahul; Schlangen, Karin; Mikulits, Wolfgang
2017-10-10
The entry of malignant hepatocytes into blood vessels is a key step in the dissemination and metastasis of hepatocellular carcinoma (HCC). The identification of molecular mechanisms involved in the transmigration of malignant hepatocytes through the endothelial barrier is of high relevance for therapeutic intervention and metastasis prevention. In this study, we employed a model of hepatocellular transmigration that mimics vascular invasion using hepatic sinusoidal endothelial cells and malignant hepatocytes evincing a mesenchymal-like, invasive phenotype by transforming growth factor (TGF)-β. Labelling of respective cell populations with various stable isotopes and subsequent mass spectrometry analyses allowed the "real-time" detection of molecular changes in both transmigrating hepatocytes and endothelial cells. Interestingly, the proteome profiling revealed 36 and 559 regulated proteins in hepatocytes and endothelial cells, respectively, indicating significant changes during active transmigration that mostly depends on cell-cell interaction rather than on TGF-β alone. Importantly, matching these in vitro findings with HCC patient data revealed a panel of common molecular alterations including peroxiredoxin-3, epoxide hydrolase, transgelin-2 and collectin 12 that are clinically relevant for the patient's survival. We conclude that hepatocellular plasticity induced by TGF-β is crucially involved in blood vessel invasion of HCC cells.
Transforming Growth Factor-β Drives the Transendothelial Migration of Hepatocellular Carcinoma Cells
Koudelkova, Petra; Costina, Victor; Weber, Gerhard; Dooley, Steven; Findeisen, Peter; Winter, Peter; Agarwal, Rahul; Schlangen, Karin
2017-01-01
The entry of malignant hepatocytes into blood vessels is a key step in the dissemination and metastasis of hepatocellular carcinoma (HCC). The identification of molecular mechanisms involved in the transmigration of malignant hepatocytes through the endothelial barrier is of high relevance for therapeutic intervention and metastasis prevention. In this study, we employed a model of hepatocellular transmigration that mimics vascular invasion using hepatic sinusoidal endothelial cells and malignant hepatocytes evincing a mesenchymal-like, invasive phenotype by transforming growth factor (TGF)-β. Labelling of respective cell populations with various stable isotopes and subsequent mass spectrometry analyses allowed the “real-time” detection of molecular changes in both transmigrating hepatocytes and endothelial cells. Interestingly, the proteome profiling revealed 36 and 559 regulated proteins in hepatocytes and endothelial cells, respectively, indicating significant changes during active transmigration that mostly depends on cell–cell interaction rather than on TGF-β alone. Importantly, matching these in vitro findings with HCC patient data revealed a panel of common molecular alterations including peroxiredoxin-3, epoxide hydrolase, transgelin-2 and collectin 12 that are clinically relevant for the patient’s survival. We conclude that hepatocellular plasticity induced by TGF-β is crucially involved in blood vessel invasion of HCC cells. PMID:28994702
NASA Astrophysics Data System (ADS)
Mittelbrunn, María; Molina, Ana; Escribese, María M.; Yáñez-Mó, María; Escudero, Ester; Ursa, Ángeles; Tejedor, Reyes; Mampaso, Francisco; Sánchez-Madrid, Francisco
2004-07-01
The integrin 41 (VLA-4) not only mediates the adhesion and transendothelial migration of leukocytes, but also provides costimulatory signals that contribute to the activation of T lymphocytes. However, the behavior of 41 during the formation of the immune synapse is currently unknown. Here, we show that 41 is recruited to both human and murine antigen-dependent immune synapses, when the antigen-presenting cell is a B lymphocyte or a dendritic cell, colocalizing with LFA-1 at the peripheral supramolecular activation complex. However, when conjugates are formed in the presence of anti-4 antibodies, VLA-4 colocalizes with the CD3- chain at the center of the synapse. In addition, antibody engagement of 4 integrin promotes polarization toward a T helper 1 (Th1) response in human in vitro models of CD4+ T cell differentiation and naïve T cell priming by dendritic cells. The in vivo administration of anti-4 integrin antibodies also induces an immune deviation to Th1 response that dampens a Th2-driven autoimmune nephritis in Brown Norway rats. These data reveal a regulatory role of 4 integrins on T lymphocyte-antigen presenting cell cognate immune interactions.
Role of the blood-brain barrier in multiple sclerosis.
Ortiz, Genaro Gabriel; Pacheco-Moisés, Fermín Paul; Macías-Islas, Miguel Ángel; Flores-Alvarado, Luis Javier; Mireles-Ramírez, Mario A; González-Renovato, Erika Daniela; Hernández-Navarro, Vanessa Elizabeth; Sánchez-López, Angélica Lizeth; Alatorre-Jiménez, Moisés Alejandro
2014-11-01
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system associated with demyelination and axonal loss eventually leading to neurodegeneration. MS exhibits many of the hallmarks of an inflammatory autoimmune disorder including breakdown of the blood-brain barrier (BBB). The BBB is a complex organization of cerebral endothelial cells, pericytes and their basal lamina, which are surrounded and supported by astrocytes and perivascular macrophages. In pathological conditions, lymphocytes activated in the periphery infiltrate the central nervous system to trigger a local immune response that ultimately damages myelin and axons. Cytotoxic factors including pro-inflammatory cytokines, proteases, and reactive oxygen and nitrogen species accumulate and may contribute to myelin destruction. Dysregulation of the BBB and transendothelial migration of activated leukocytes are among the earliest cerebrovascular abnormalities seen in MS brains and parallel the release of inflammatory cytokines. In this review we establish the importance of the role of the BBB in MS. Improvements in our understanding of molecular mechanism of BBB functioning in physiological and pathological conditions could lead to improvement in the quality of life of MS patients. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.
Wu, Florence TH; Lee, Christina R; Bogdanovic, Elena; Prodeus, Aaron; Gariépy, Jean; Kerbel, Robert S
2015-01-01
Angiopoietin-1 (Ang1) activation of Tie2 receptors on endothelial cells (ECs) reduces adhesion by tumor cells (TCs) and limits junctional permeability to TC diapedesis. We hypothesized that systemic therapy with Vasculotide (VT)—a purported Ang1 mimetic, Tie2 agonist—can reduce the extravasation of potentially metastatic circulating TCs by similarly stabilizing the host vasculature. In vitro, VT and Ang1 treatments impeded endothelial hypermeability and the transendothelial migration of MDA-MB-231•LM2-4 (breast), HT29 (colon), or SN12 (renal) cancer cells to varying degrees. In mice, VT treatment inhibited the transit of TCs through the pulmonary endothelium, but not the hepatic or lymphatic endothelium. In the in vivo LM2-4 model, VT monotherapy had no effect on primary tumors, but significantly delayed distant metastatic dissemination to the lungs. In the post-surgical adjuvant treatment setting, VT therapeutically complemented sunitinib therapy, an anti-angiogenic tyrosine kinase inhibitor which limited the local growth of residual disease. Unexpectedly, detailed investigations into the putative mechanism of action of VT revealed no evidence of Tie2 agonism or Tie2 binding; alternative mechanisms have yet to be determined. PMID:25851538
Yoo, Ki-Yeon; Hwang, In Koo; Kim, Young Sup; Kwon, Dae Young; Won, Moo Ho
2008-02-01
Folate deficiency increases stroke risk. We examined whether folate deficiency affects platelet endothelial cell adhesion molecule-1 (PECAM-1), which is an immunoglobulin-associated cell adhesion molecule and mediates the final common pathway of neutrophil transendothelial migration, in blood vessels in the gerbil dentate gyrus after transient forebrain ischemia. Gerbils were exposed to a folic acid-deficient diet (FAD) for 3 months and then subjected to common carotid artery occlusion for 5 min. In the control diet (CD)- and FAD-treated sham-operated groups, weak PECAM-1 immunoreactivity was detected in the blood vessels located in the dentate gyrus. PECAM-1 immunoreactivity in both groups was increased by 4 days after ischemic insult. PECAM-1 immunoreactivity in the FAD-treated group was twice as high that in the CD-treated-sham-operated group 4 days after ischemic insult. Western blot analyses showed that the change patterns in PECAM-1 protein levels in the dentate gyrus in both groups after ischemic insult were similar to changes in PECAM-1 immunohistochemistry in the ischemic dentate gyrus. Our results suggest that folate deficiency enhances PECAM-1 in the dentate gyrus induced by transient ischemia.
Yang, Mei; Cong, Min; Peng, Xiuming; Wu, Junrui; Wu, Rina; Liu, Biao; Ye, Wenhui; Yue, Xiqing
2016-05-18
Milk fat globule membrane (MFGM) proteins have many functions. To explore the different proteomics of human and bovine MFGM, MFGM proteins were separated from human and bovine colostrum and mature milk, and analyzed by the iTRAQ proteomic approach. A total of 411 proteins were recognized and quantified. Among these, 232 kinds of differentially expressed proteins were identified. These differentially expressed proteins were analyzed based on multivariate analysis, gene ontology (GO) annotation and KEGG pathway. Biological processes involved were response to stimulus, localization, establishment of localization, and the immune system process. Cellular components engaged were the extracellular space, extracellular region parts, cell fractions, and vesicles. Molecular functions touched upon were protein binding, nucleotide binding, and enzyme inhibitor activity. The KEGG pathway analysis showed several pathways, including regulation of the actin cytoskeleton, focal adhesion, neurotrophin signaling pathway, leukocyte transendothelial migration, tight junction, complement and coagulation cascades, vascular endothelial growth factor signaling pathway, and adherens junction. These results enhance our understanding of different proteomes of human and bovine MFGM across different lactation phases, which could provide important information and potential directions for the infant milk powder and functional food industries.
Fate of Neutrophils during the Recovery Phase of Ischemia/Reperfusion Induced Acute Kidney Injury
2017-01-01
Effective clearance of inflammatory cells is required for resolution of inflammation. Here, we show in vivo evidence that apoptosis and reverse transendothelial migration (rTEM) are important mechanisms in eliminating neutrophils and facilitating recovery following ischemia/reperfusion injury (IRI) of the kidney. The clearance of neutrophils was delayed in the Bax knockout (KO)BM → wild-type (WT) chimera in which bone marrow derived cells are partially resistant to apoptosis, compared to WTBM → WT mice. These mice also showed delayed functional, histological recovery, increased tissue cytokines, and accelerated fibrosis. The circulating intercellular adhesion molecule-1 (ICAM-1)+ Gr-1+ neutrophils displaying rTEM phenotype increased during the recovery phase and blockade of junctional adhesion molecule-C (JAM-C), a negative regulator of rTEM, resulted in an increase in circulating ICAM-1+ neutrophils, faster resolution of inflammation and recovery. The presence of Tamm-Horsfall protein (THP) in circulating ICAM-1+ neutrophils could suggest that they are derived from injured kidneys. In conclusion, we suggest that apoptosis and rTEM are critically involved in the clearance mechanisms of neutrophils during the recovery phase of IRI. PMID:28875605
Gziut, M; MacGregor, HJ; Nevell, TG; Mason, T; Laight, D; Shute, JK
2013-01-01
Background and Purpose Airway inflammation in cystic fibrosis (CF) patients is characterized by accumulations of neutrophils in the airway and T cells in bronchial tissue, with activation of platelets in the circulation. CF patients are routinely treated with systemic or inhaled tobramycin for airway infection with Pseudomonas aeruginosa. Clinical trials have indicated an anti-inflammatory effect of tobramycin beyond its bactericidal activity. Here, we investigate the anti-inflammatory properties of tobramycin in vitro and consider if these relate to the ability of tobramycin to bind copper, which is elevated in blood and sputum in CF. Experimental Approach A copper–tobramycin complex was synthesized. The effect of tobramycin and copper–tobramycin on neutrophil activation and migration of T cells and neutrophils across human lung microvascular endothelial cells in response to thrombin-activated platelets were investigated in vitro. Tobramycin uptake was detected by immunocytochemistry. Intracellular reactive oxygen species were detected using the fluorescent indicator, 2′,7′-dichlorofluorescein diacetate (DCFDA). Neutrophil superoxide, hydrogen peroxide and neutrophil elastase activity were measured using specific substrates. Copper was measured using atomic absorption spectroscopy. Key Results Tobramycin and copper–tobramycin were taken up by endothelial cells via a heparan sulphate-dependent mechanism and significantly inhibited T-cell and neutrophil transendothelial migration respectively. Copper–tobramycin has intracellular and extracellular superoxide dismutase-like activity. Neutrophil elastase inhibition by α1-antitrypsin is enhanced in the presence of copper–tobramycin. Tobramycin and copper–tobramycin are equally effective anti-pseudomonal antibiotics. Conclusions and Implications Anti-inflammatory effects of tobramycin in vivo may relate to the spontaneous formation of a copper–tobramycin complex, implying that copper–tobramycin may be more effective therapy. PMID:23072509
Lopes Pinheiro, Melissa A; Kroon, Jeffrey; Hoogenboezem, Mark; Geerts, Dirk; van Het Hof, Bert; van der Pol, Susanne M A; van Buul, Jaap D; de Vries, Helga E
2016-01-01
Multiple sclerosis (MS) is a chronic demyelinating disorder of the CNS characterized by immune cell infiltration across the brain vasculature into the brain, a process not yet fully understood. We previously demonstrated that the sphingolipid metabolism is altered in MS lesions. In particular, acid sphingomyelinase (ASM), a critical enzyme in the production of the bioactive lipid ceramide, is involved in the pathogenesis of MS; however, its role in the brain vasculature remains unknown. Transmigration of T lymphocytes is highly dependent on adhesion molecules in the vasculature such as intercellular adhesion molecule-1 (ICAM-1). In this article, we hypothesize that ASM controls T cell migration by regulating ICAM-1 function. To study the role of endothelial ASM in transmigration, we generated brain endothelial cells lacking ASM activity using a lentiviral shRNA approach. Interestingly, although ICAM-1 expression was increased in cells lacking ASM activity, we measured a significant decrease in T lymphocyte adhesion and consequently transmigration both in static and under flow conditions. As an underlying mechanism, we revealed that upon lack of endothelial ASM activity, the phosphorylation of ezrin was perturbed as well as the interaction between filamin and ICAM-1 upon ICAM-1 clustering. Functionally this resulted in reduced microvilli formation and impaired transendothelial migration of T cells. In conclusion, in this article, we show that ASM coordinates ICAM-1 function in brain endothelial cells by regulating its interaction with filamin and phosphorylation of ezrin. The understanding of these underlying mechanisms of T lymphocyte transmigration is of great value to develop new strategies against MS lesion formation. Copyright © 2015 by The American Association of Immunologists, Inc.
Prevention of neutrophil extravasation by α2-adrenoceptor-mediated endothelial stabilization.
Herrera-García, Ada María; Domínguez-Luis, María Jesús; Arce-Franco, María; Armas-González, Estefanía; Álvarez de La Rosa, Diego; Machado, José David; Pec, Martina K; Feria, Manuel; Barreiro, Olga; Sánchez-Madrid, Francisco; Díaz-González, Federico
2014-09-15
Adrenergic receptors are expressed on the surface of inflammation-mediating cells, but their potential role in the regulation of the inflammatory response is still poorly understood. The objectives of this work were to study the effects of α2-adrenergic agonists on the inflammatory response in vivo and to determine their mechanism of action. In two mouse models of inflammation, zymosan air pouch and thioglycolate-induced peritonitis models, the i.m. treatment with xylazine or UK14304, two α2-adrenergic agonists, reduced neutrophil migration by 60%. The α2-adrenergic antagonist RX821002 abrogated this effect. In flow cytometry experiments, the basal surface expression of L-selectin and CD11b was modified neither in murine nor in human neutrophils upon α2-agonist treatment. Similar experiments in HUVEC showed that UK14304 prevented the activation-dependent upregulation of ICAM-1. In contrast, UK14304 augmented electrical resistance and reduced macromolecular transport through a confluent HUVEC monolayer. In flow chamber experiments, under postcapillary venule-like flow conditions, the pretreatment of HUVECs, but not neutrophils, with α2-agonists decreased transendothelial migration, without affecting neutrophil rolling. Interestingly, α2-agonists prevented the TNF-α-mediated decrease in expression of the adherens junctional molecules, VE-cadherin, β-catenin, and plakoglobin, and reduced the ICAM-1-mediated phosphorylation of VE-cadherin by immunofluorescence and confocal analysis and Western blot analysis, respectively. These findings indicate that α2-adrenoceptors trigger signals that protect the integrity of endothelial adherens junctions during the inflammatory response, thus pointing at the vascular endothelium as a therapeutic target for the management of inflammatory processes in humans. Copyright © 2014 by The American Association of Immunologists, Inc.
Archacki, Stephen R; Angheloiu, George; Moravec, Christine S; Liu, Hui; Topol, Eric J; Wang, Qing Kenneth
2012-03-15
Coronary artery disease (CAD) is the leading cause of death worldwide. It has been established that internal mammary arteries (IMA) are resistant to the development of atherosclerosis, whereas left anterior descending (LAD) coronary arteries are athero-prone. The contrasting properties of these two arteries provide an innovative strategy to identify the genes that play important roles in the development of atherosclerosis. We carried out microarray analysis to identify genes differentially expressed between IMA and LAD. Twenty-nine genes showed significant differences in their expression levels between IMA and LAD, which included the TES gene encoding Testin. The role of TES in the cardiovascular system is unknown. Here we show that TES is involved in endothelial cell (EC) functions relevant to atherosclerosis. Western blot analysis showed higher TES expression in IMA than in LAD. Reverse transcription polymerase chain reaction and western blot analyses showed that TES was consistently and markedly down-regulated by more than 6-fold at both mRNA and protein levels in patients with CAD compared with controls without CAD (P= 0.000049). The data suggest that reduced TES expression is associated with the development of CAD. Knockdown of TES expression by small-interfering RNA promoted oxidized-LDL-mediated monocyte adhesion to ECs, EC migration and the transendothelial migration of monocytes, while the over-expression of TES in ECs blunted these processes. These results demonstrate association between reduced TES expression and CAD, establish a novel role for TES in EC functions and raise the possibility that reduced TES expression increases susceptibility to the development of CAD.
Mantle, Jennifer L; Min, Lie; Lee, Kelvin H
2016-12-05
A human cell-based in vitro model that can accurately predict drug penetration into the brain as well as metrics to assess these in vitro models are valuable for the development of new therapeutics. Here, human induced pluripotent stem cells (hPSCs) are differentiated into a polarized monolayer that express blood-brain barrier (BBB)-specific proteins and have transendothelial electrical resistance (TEER) values greater than 2500 Ω·cm 2 . By assessing the permeabilities of several known drugs, a benchmarking system to evaluate brain permeability of drugs was established. Furthermore, relationships between TEER and permeability to both small and large molecules were established, demonstrating that different minimum TEER thresholds must be achieved to study the brain transport of these two classes of drugs. This work demonstrates that this hPSC-derived BBB model exhibits an in vivo-like phenotype, and the benchmarks established here are useful for assessing functionality of other in vitro BBB models.
β1 integrin signaling promotes neuronal migration along vascular scaffolds in the post-stroke brain.
Fujioka, Teppei; Kaneko, Naoko; Ajioka, Itsuki; Nakaguchi, Kanako; Omata, Taichi; Ohba, Honoka; Fässler, Reinhard; García-Verdugo, José Manuel; Sekiguchi, Kiyotoshi; Matsukawa, Noriyuki; Sawamoto, Kazunobu
2017-02-01
Cerebral ischemic stroke is a main cause of chronic disability. However, there is currently no effective treatment to promote recovery from stroke-induced neurological symptoms. Recent studies suggest that after stroke, immature neurons, referred to as neuroblasts, generated in a neurogenic niche, the ventricular-subventricular zone, migrate toward the injured area, where they differentiate into mature neurons. Interventions that increase the number of neuroblasts distributed at and around the lesion facilitate neuronal repair in rodent models for ischemic stroke, suggesting that promoting neuroblast migration in the post-stroke brain could improve efficient neuronal regeneration. To move toward the lesion, neuroblasts form chain-like aggregates and migrate along blood vessels, which are thought to increase their migration efficiency. However, the molecular mechanisms regulating these migration processes are largely unknown. Here we studied the role of β1-class integrins, transmembrane receptors for extracellular matrix proteins, in these migrating neuroblasts. We found that the neuroblast chain formation and blood vessel-guided migration critically depend on β1 integrin signaling. β1 integrin facilitated the adhesion of neuroblasts to laminin and the efficient translocation of their soma during migration. Moreover, artificial laminin-containing scaffolds promoted neuroblast chain formation and migration toward the injured area. These data suggest that laminin signaling via β1 integrin supports vasculature-guided neuronal migration to efficiently supply neuroblasts to injured areas. This study also highlights the importance of vascular scaffolds for cell migration in development and regeneration. Copyright © 2017 3-V Biosciences. Published by Elsevier B.V. All rights reserved.
Guzman, Raphael; De Los Angeles, Alejandro; Cheshier, Samuel; Choi, Raymond; Hoang, Stanley; Liauw, Jason; Schaar, Bruce; Steinberg, Gary
2008-04-01
Intravascular delivery of neural stem cells (NSCs) after stroke has been limited by the low efficiency of transendothelial migration. Vascular cell adhesion molecule-1 is an endothelial adhesion molecule known to be upregulated early after stroke and is responsible for the firm adhesion of inflammatory cells expressing the surface integrin, CD49d. We hypothesize that enriching for NSCs that express CD49d and injecting them into the carotid artery would improve targeted cell delivery to the injured brain. Mouse NSCs were analyzed for the expression of CD49d by fluorescence activated cell sorting. A CD49d-enriched (CD49d(+)) (>95%) and -depleted (CD49d(-); <5%) NSC population was obtained by cell sorting. C57/Bl6 mice underwent left-sided hypoxia-ischemia surgery and were assigned to receive 3 x 10(5) CD49d(+), CD49d(-) NSCs, or vehicle injection into the left common carotid artery 48 hours after stroke. Behavioral recovery was measured using a rotarod for 2 weeks after cell injection. Fluorescence activated cell sorting analysis revealed 25% CD49d(+) NSCs. In a static adhesion assay, NSCs adhered to vascular cell adhesion molecule-1 in a dose-dependent manner. Significantly more NSCs were found in the cortex, the hippocampus, and the subventricular zone in the ischemic hemisphere in animals receiving CD49d(+) NSCs as compared with CD49d(-) NSCs (P<0.05). Animals treated with CD49d(+) cells showed a significantly better behavioral recovery as compared with CD49d(-) and vehicle-treated animals. We show that enrichment of NSCs by fluorescence activated cell sorting for the surface integrin, CD49d, and intracarotid delivery promotes cell homing to the area of stroke in mice and improves behavioral recovery.
Mooren, Olivia L.; Li, Jinmei; Nawas, Julie; Cooper, John A.
2014-01-01
The vascular endothelium is a highly dynamic structure, and the integrity of its barrier function is tightly regulated. Normally impenetrable to cells, the endothelium actively assists lymphocytes to exit the bloodstream during inflammation. The actin cytoskeleton of the endothelial cell (EC) is known to facilitate transmigration, but the cellular and molecular mechanisms are not well understood. Here we report that actin assembly in the EC, induced by Arp2/3 complex under control of WAVE2, is important for several steps in the process of transmigration. To begin transmigration, ECs deploy actin-based membrane protrusions that create a cup-shaped docking structure for the lymphocyte. We found that docking structure formation involves the localization and activation of Arp2/3 complex by WAVE2. The next step in transmigration is creation of a migratory pore, and we found that endothelial WAVE2 is needed for lymphocytes to follow a transcellular route through an EC. Later, ECs use actin-based protrusions to close the gap behind the lymphocyte, which we discovered is also driven by WAVE2. Finally, we found that ECs in resting endothelial monolayers use lamellipodial protrusions dependent on WAVE2 to form and maintain contacts and junctions between cells. PMID:25355948
Howell, Gareth R; Soto, Ileana; Zhu, Xianjun; Ryan, Margaret; Macalinao, Danilo G; Sousa, Gregory L; Caddle, Lura B; MacNicoll, Katharine H; Barbay, Jessica M; Porciatti, Vittorio; Anderson, Michael G; Smith, Richard S; Clark, Abbot F; Libby, Richard T; John, Simon W M
2012-04-01
Glaucoma is a common ocular disorder that is a leading cause of blindness worldwide. It is characterized by the dysfunction and loss of retinal ganglion cells (RGCs). Although many studies have implicated various molecules in glaucoma, no mechanism has been shown to be responsible for the earliest detectable damage to RGCs and their axons in the optic nerve. Here, we show that the leukocyte transendothelial migration pathway is activated in the optic nerve head at the earliest stages of disease in an inherited mouse model of glaucoma. This resulted in proinflammatory monocytes entering the optic nerve prior to detectable neuronal damage. A 1-time x-ray treatment prevented monocyte entry and subsequent glaucomatous damage. A single x-ray treatment of an individual eye in young mice provided that eye with long-term protection from glaucoma but had no effect on the contralateral eye. Localized radiation treatment prevented detectable neuronal damage and dysfunction in treated eyes, despite the continued presence of other glaucomatous stresses and signaling pathways. Injection of endothelin-2, a damaging mediator produced by the monocytes, into irradiated eyes, combined with the other glaucomatous stresses, restored neural damage with a topography characteristic of glaucoma. Together, these data support a model of glaucomatous damage involving monocyte entry into the optic nerve.
De Laere, Maxime; Sousa, Carmelita; Meena, Megha; Buckinx, Roeland; Timmermans, Jean-Pierre; Berneman, Zwi; Cools, Nathalie
2017-01-01
Many neuroinflammatory diseases are characterized by massive immune cell infiltration into the central nervous system. Identifying the underlying mechanisms could aid in the development of therapeutic strategies specifically interfering with inflammatory cell trafficking. To achieve this, we implemented and validated a blood-brain barrier (BBB) model to study chemokine secretion, chemokine transport, and leukocyte trafficking in vitro. In a coculture model consisting of a human cerebral microvascular endothelial cell line and human astrocytes, proinflammatory stimulation downregulated the expression of tight junction proteins, while the expression of adhesion molecules and chemokines was upregulated. Moreover, chemokine transport across BBB cocultures was upregulated, as evidenced by a significantly increased concentration of the inflammatory chemokine CCL3 at the luminal side following proinflammatory stimulation. CCL3 transport occurred independently of the chemokine receptors CCR1 and CCR5, albeit that migrated cells displayed increased expression of CCR1 and CCR5. However, overall leukocyte transmigration was reduced in inflammatory conditions, although higher numbers of leukocytes adhered to activated endothelial cells. Altogether, our findings demonstrate that prominent barrier activation following proinflammatory stimulation is insufficient to drive immune cell recruitment, suggesting that additional traffic cues are crucial to mediate the increased immune cell infiltration seen in vivo during neuroinflammation.
Weber, Martin R; Zuka, Masahiko; Lorger, Mihaela; Tschan, Mario; Torbett, Bruce E; Zijlstra, Andries; Quigley, James P; Staflin, Karin; Eliceiri, Brian P; Krueger, Joseph S; Marchese, Patrizia; Ruggeri, Zaverio M; Felding, Brunhilde H
2016-04-01
Metastasis is the main cause of death in cancer patients, and understanding mechanisms that control tumor cell dissemination may lead to improved therapy. Tumor cell adhesion receptors contribute to cancer spreading. We noted earlier that tumor cells can expressing the adhesion receptor integrin αvβ3 in distinct states of activation, and found that cells which metastasize from the blood stream express it in a constitutively high affinity form. Here, we analyzed steps of the metastatic cascade in vivo and asked, when and how the affinity state of integrin αvβ3 confers a critical advantage to cancer spreading. Following tumor cells by real time PCR, non-invasive bioluminescence imaging, intravital microscopy and histology allowed us to identify tumor cell extravasation from the blood stream as a rate-limiting step supported by high affinity αvβ3. Successful transendothelial migration depended on cooperation between tumor cells and platelets involving the high affinity tumor cell integrin and release of platelet granules. Thus, this study identifies the high affinity conformer of integrin αvβ3 and its interaction with platelets as critical for early steps during hematogenous metastasis and target for prevention of metastatic disease. © 2016 Elsevier Ltd. All rights reserved.
Wu, Florence T H; Lee, Christina R; Bogdanovic, Elena; Prodeus, Aaron; Gariépy, Jean; Kerbel, Robert S
2015-06-01
Angiopoietin-1 (Ang1) activation of Tie2 receptors on endothelial cells (ECs) reduces adhesion by tumor cells (TCs) and limits junctional permeability to TC diapedesis. We hypothesized that systemic therapy with Vasculotide (VT)-a purported Ang1 mimetic, Tie2 agonist-can reduce the extravasation of potentially metastatic circulating TCs by similarly stabilizing the host vasculature. In vitro, VT and Ang1 treatments impeded endothelial hypermeability and the transendothelial migration of MDA-MB-231∙LM2-4 (breast), HT29 (colon), or SN12 (renal) cancer cells to varying degrees. In mice, VT treatment inhibited the transit of TCs through the pulmonary endothelium, but not the hepatic or lymphatic endothelium. In the in vivo LM2-4 model, VT monotherapy had no effect on primary tumors, but significantly delayed distant metastatic dissemination to the lungs. In the post-surgical adjuvant treatment setting, VT therapeutically complemented sunitinib therapy, an anti-angiogenic tyrosine kinase inhibitor which limited the local growth of residual disease. Unexpectedly, detailed investigations into the putative mechanism of action of VT revealed no evidence of Tie2 agonism or Tie2 binding; alternative mechanisms have yet to be determined. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.
Blocking the Adhesion Cascade at the Premetastatic Niche for Prevention of Breast Cancer Metastasis
Kang, Shin-Ae; Hasan, Nafis; Mann, Aman P; Zheng, Wei; Zhao, Lichao; Morris, Lynsie; Zhu, Weizhu; Zhao, Yan D; Suh, K Stephen; Dooley, William C; Volk, David; Gorenstein, David G; Cristofanilli, Massimo; Rui, Hallgeir; Tanaka, Takemi
2015-01-01
Shear-resistant adhesion and extravasation of disseminated cancer cells at the target organ is a crucial step in hematogenous metastasis. We found that the vascular adhesion molecule E-selectin preferentially promoted the shear-resistant adhesion and transendothelial migration of the estrogen receptor (ER)–/CD44+ hormone-independent breast cancer cells, but not of the ER+/CD44-/low hormone-dependent breast cancer cells. Coincidentally, CD44+ breast cancer cells were abundant in metastatic lung and brain lesions in ER– breast cancer, suggesting that E-selectin supports hematogenous metastasis of ER–/CD44+ breast cancer. In an attempt to prevent hematogenous metastasis through the inhibition of a shear-resistant adhesion of CD44+ cancer cells to E-selectin-expressing blood vessels on the premetastatic niche, an E-selectin targeted aptamer (ESTA) was developed. We demonstrated that a single intravenous injection of ESTA reduced metastases to a baseline level in both syngeneic and xenogeneic forced breast cancer metastasis models without relocating the site of metastasis. The effect of ESTA was absent in E-selectin knockout mice, suggesting that E-selectin is a molecular target of ESTA. Our data highlight the potential application of an E-selectin antagonist for the prevention of hematogenous metastasis of ER–/CD44+ breast cancer. PMID:25815697
Blocking the adhesion cascade at the premetastatic niche for prevention of breast cancer metastasis.
Kang, Shin-Ae; Hasan, Nafis; Mann, Aman P; Zheng, Wei; Zhao, Lichao; Morris, Lynsie; Zhu, Weizhu; Zhao, Yan D; Suh, K Stephen; Dooley, William C; Volk, David; Gorenstein, David G; Cristofanilli, Massimo; Rui, Hallgeir; Tanaka, Takemi
2015-06-01
Shear-resistant adhesion and extravasation of disseminated cancer cells at the target organ is a crucial step in hematogenous metastasis. We found that the vascular adhesion molecule E-selectin preferentially promoted the shear-resistant adhesion and transendothelial migration of the estrogen receptor (ER)(-)/CD44(+) hormone-independent breast cancer cells, but not of the ER(+)/CD44(-/low) hormone-dependent breast cancer cells. Coincidentally, CD44(+) breast cancer cells were abundant in metastatic lung and brain lesions in ER(-) breast cancer, suggesting that E-selectin supports hematogenous metastasis of ER(-)/CD44(+) breast cancer. In an attempt to prevent hematogenous metastasis through the inhibition of a shear-resistant adhesion of CD44(+) cancer cells to E-selectin-expressing blood vessels on the premetastatic niche, an E-selectin targeted aptamer (ESTA) was developed. We demonstrated that a single intravenous injection of ESTA reduced metastases to a baseline level in both syngeneic and xenogeneic forced breast cancer metastasis models without relocating the site of metastasis. The effect of ESTA was absent in E-selectin knockout mice, suggesting that E-selectin is a molecular target of ESTA. Our data highlight the potential application of an E-selectin antagonist for the prevention of hematogenous metastasis of ER(-)/CD44(+) breast cancer.
Weber, Martin R.; Zuka, Masahiko; Lorger, Mihaela; Tschan, Mario; Torbett, Bruce E.; Zijlstra, Andries; Quigley, James P.; Staflin, Karin; Eliceiri, Brian P.; Krueger, Joseph S.; Marchese, Patricia; Ruggeri, Zaverio M.; Felding, Brunhilde H.
2016-01-01
Metastasis is the main cause of death in cancer patients, and understanding mechanisms that control tumor cell dissemination may lead to improved therapy. Tumor cell adhesion receptors contribute to cancer spreading. We noted earlier that tumor cells can expressing the adhesion receptor integrin αvβ3 in distinct states of activation, and found that cells which metastasize from the blood stream express it in a constitutively high affinity form. Here, we analyzed steps of the metastatic cascade in vivo and asked, when and how the affinity state of integrin αvβ3 confers a critical advantage to cancer spreading. Following tumor cells by real time PCR, non-invasive bioluminescence imaging, intravital microscopy and histology allowed us to identify tumor cell extravasation from the blood stream as a rate-limiting step supported by high affinity αvβ3. Successful transendothelial migration depended on cooperation between tumor cells and platelets involving the high affinity tumor cell integrin and release of platelet granules. Thus, this study identifies the high affinity conformer of integrin αvβ3 and its interaction with platelets as critical for early steps during hematogenous metastasis and target for prevention of metastatic disease. PMID:27067975
Gilardi, M; Bersini, S; Calleja, A Boussomier; Kamm, R D; Vanoni, M; Moretti, M
2016-04-01
Metastases are responsible for more than 90% of cancer related mortality. The hematogenous metastatic invasion is a complex process in which the endothelium plays a key role. Extravasation is a dynamic process involving remodeling and change in cell shape and in cytoskeleton whereby a series of strongly dependent interactions between CTCs and endothelium occurs [1]. Talins are proteins regulating focal adhesions and cytoskeleton remodeling. Talin-1 seems to be involved in the aggressiveness, motility, survival and invadopodia formation of cancer cells throughout the entire metastatic cascade [2], being up-regulated in breast cancer cells and mutated in sarcomas. Understand the implication of talin-1 in extravasation could facilitate the design of new therapies and finally fight cancer. We hypothesized that Talin-1 could be specifically involved in extravasation driving each of its steps. We developed a human 3D microfluidic model that enables the study of human cancer cell extravasation within a perfusable human microvascularized organ specific environment[3]. For the study of extravasation we applied microfluidic approach through the development of a microfluidic device in which endothelial cells and fibroblasts generated a 3D human functional vascular networks. Microvessel characterization was performed with immunofluorescence and permeability assays. We knocked-down talin-1 in triple negative breast cancer cell line MDA-MB231 and metastatic fibro-sarcoma cell line HT1080 with SiRNA and verified by Western-blot. Cancer cells were then perfused in the vessels and extravasation monitored through confocal imaging. We developed a human vascularized 3D microfluidic device with human perfusable capillary-like structures embedded in fibrin matrix, characterized by mature endothelium markers and physiological permeability (1.5±0.76)×10(-6) cm/s. We focused on the role of Talin-1 in adhesion to endothelium, trans-endothelial migration (TEM) and early invasion. Adhesion to the endothelium, TEM and migration within the ECM were monitored through confocal analyses. We demonstrated that Talin-1 KD significantly reduced the adhesion efficiency and TEM in both cell lines. Early invasion was also strongly and statistically reduced by the SiRNA treatment in both cell lines. We proved Talin-1 function in driving the extravasation mechanism in a human 3D vascularized environment. We demonstrated that Talin-1 is involved in each part of extravasation significantly affecting adhesion, TEM and the invasion stages. Targeting this protein could thus be an effective strategy to block metastasis. © 2016 Elsevier Ltd. All rights reserved.
Scaling Relations for the Efficiency of Radial Migration in Disk Galaxies
NASA Astrophysics Data System (ADS)
Daniel, Kathryne J.
2018-01-01
Radial migration is frequently recognized as an internal, secular process that could play an important role in disk galaxy evolution. The driving mechanism for radial migration is transient spiral patterns, which rearrange the orbital angular momentum distribution of disk stars around corotation without causing kinematic heating. Should radial migration be an efficient process, it could cause a substantial fraction of disk stars to move large radial distances over the lifetime of the disk, thus having a significant impact on the disk’s kinematic, structural and chemical evolution. Observational and simulated data are consistent with radial migration being important for kinematically cold stellar populations and less so for populations with hot kinematics. I will present an analytic criterion that determines which stars are in orbits that could lead to radial migration. I will then show some scaling relations for the efficacy of radial migration that result from applying this analytic criterion to a series of models that have a variety of distribution functions and spiral patterns in systems with an assumed flat rotation curve. Most importantly, I will argue that these scaling relations can be used to place constraints on the efficiency of radial migration, where stronger spiral patterns and kinematically cold populations will lead to a higher fraction of stars in orbits that can lead to radial migration.
Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby; Nielsen, Carsten Uhd; Brodin, Birger
2012-05-01
The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial resistance values of 1014 ± 70 Ω cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids accumulated in the cocultures when applied from the abluminal side. The transcellular transport kinetics were characterized with a K(m) of 69 ± 15 μM and a J(max) of 44 ± 3.1 pmol min(-1) cm(-2) for L-aspartate and a K(m) of 138 ± 49 μM and J(max) of 28 ± 3.1 pmol min(-1) cm(-2) for L-glutamate. The EAAT inhibitor, DL-threo-ß-Benzyloxyaspartate, inhibited transendothelial brain-to-blood fluxes of L-glutamate and L-aspartate. Expression of EAAT-1 (Slc1a3), -2 (Slc1a2), and -3 (Slc1a1) mRNA in the endothelial cells was confirmed by conventional PCR and localization of EAAT-1 and -3 in endothelial cells was shown with immunofluorescence. Overall, the findings suggest that the blood-brain barrier itself may participate in regulating brain L-glutamate concentrations. Copyright © 2012 Wiley Periodicals, Inc.
Brandsch, Rainer
2017-10-01
Migration modelling provides reliable migration estimates from food-contact materials (FCM) to food or food simulants based on mass-transfer parameters like diffusion and partition coefficients related to individual materials. In most cases, mass-transfer parameters are not readily available from the literature and for this reason are estimated with a given uncertainty. Historically, uncertainty was accounted for by introducing upper limit concepts first, turning out to be of limited applicability due to highly overestimated migration results. Probabilistic migration modelling gives the possibility to consider uncertainty of the mass-transfer parameters as well as other model inputs. With respect to a functional barrier, the most important parameters among others are the diffusion properties of the functional barrier and its thickness. A software tool that accepts distribution as inputs and is capable of applying Monte Carlo methods, i.e., random sampling from the input distributions of the relevant parameters (i.e., diffusion coefficient and layer thickness), predicts migration results with related uncertainty and confidence intervals. The capabilities of probabilistic migration modelling are presented in the view of three case studies (1) sensitivity analysis, (2) functional barrier efficiency and (3) validation by experimental testing. Based on the predicted migration by probabilistic migration modelling and related exposure estimates, safety evaluation of new materials in the context of existing or new packaging concepts is possible. Identifying associated migration risk and potential safety concerns in the early stage of packaging development is possible. Furthermore, dedicated material selection exhibiting required functional barrier efficiency under application conditions becomes feasible. Validation of the migration risk assessment by probabilistic migration modelling through a minimum of dedicated experimental testing is strongly recommended.
Favrot, Scott D.; Kwak, Thomas J.
2016-01-01
Potamodromy (i.e., migration entirely in freshwater) is a common life history strategy of North American lotic fishes, and efficient sampling methods for potamodromous fishes are needed to formulate conservation and management decisions. Many potamodromous fishes inhabit medium-sized rivers and are mobile during spawning migrations, which complicates sampling with conventional gears (e.g., nets and electrofishing). We compared the efficiency of a passive migration technique (resistance board weirs) and an active technique (prepositioned areal electrofishers; [PAEs]) for sampling migrating potamodromous fishes in Valley River, a southern Appalachian Mountain river, from March through July 2006 and 2007. A total of 35 fish species from 10 families were collected, 32 species by PAE and 19 species by weir. Species richness and diversity were higher for PAE catch, and species dominance (i.e., proportion of assemblage composed of the three most abundant species) was higher for weir catch. Prepositioned areal electrofisher catch by number was considerably higher than weir catch, but biomass was lower for PAE catch. Weir catch decreased following the spawning migration, while PAEs continued to collect fish. Sampling bias associated with water velocity was detected for PAEs, but not weirs, and neither gear demonstrated depth bias in wadeable reaches. Mean fish mortality from PAEs was five times greater than that from weirs. Catch efficiency and composition comparisons indicated that weirs were effective at documenting migration chronology, sampling nocturnal migration, and yielding samples unbiased by water velocity or habitat, with low mortality. Prepositioned areal electrofishers are an appropriate sampling technique for seasonal fish occupancy objectives, while weirs are more suitable for quantitatively describing spawning migrations. Our comparative results may guide fisheries scientists in selecting an appropriate sampling gear and regime for research, monitoring, conservation, and management of potamodromous fishes.
Himi, N; Hamaguchi, A; Hashimoto, K; Koga, T; Narita, K; Miyamoto, O
2012-01-01
Atherosclerosis is thought to be initiated by the transendothelial migration of monocytes. In the early stage of this process, the adhesion of monocytes to endothelial cells is supported by an increase in the intracellular concentration of calcium ion ([Ca(2+)]i) in endothelial cells. However, the main source of Ca(2+) has been unclear. In this study, the changes in ionic transmittance and [Ca(2+)]i due to the adhesion of monocytes were continuously measured by an electrophysiological technique and fluorescent imaging. Especially, we focused on transient receptor potential vanilloid channel 1 (TRPV1) as a Ca(2+) channel that could influence the adhesion of monocytes. Whole-cell current was continuously recorded in human umbilical vein endothelial cells (HUVECs) by a patch electrode. The adhesion of monocytes (THP-1) induced a transient inward current in HUVECs, as well as an elevation of [Ca(2+)]i. This inward element was abolished by the application of 100 nM SB366,791, a selective antagonist of TRPV1 channel. Furthermore, SB366,791 significantly decreased the number of THP-1 cells that adhered to HUVECs (control: 231 ± 38, SB366,791: 96 ± 16 cells/mm2). These results suggest that an inward calcium current via the TRPV1 channels of endothelial cells correlates with a stronger adhesion between monocytes and endothelial cells.
Srikrishna, G; Panneerselvam, K; Westphal, V; Abraham, V; Varki, A; Freeze, H H
2001-04-01
We recently showed that a class of novel carboxylated N:-glycans was constitutively expressed on endothelial cells. Activated, but not resting, neutrophils expressed binding sites for the novel glycans. We also showed that a mAb against these novel glycans (mAbGB3.1) inhibited leukocyte extravasation in a murine model of peritoneal inflammation. To identify molecules that mediated these interactions, we isolated binding proteins from bovine lung by their differential affinity for carboxylated or neutralized glycans. Two leukocyte calcium-binding proteins that bound in a carboxylate-dependent manner were identified as S100A8 and annexin I. An intact N terminus of annexin I and heteromeric assembly of S100A8 with S100A9 (another member of the S100 family) appeared necessary for this interaction. A mAb to S100A9 blocked neutrophil binding to immobilized carboxylated glycans. Purified human S100A8/A9 complex and recombinant human annexin I showed carboxylate-dependent binding to immobilized bovine lung carboxylated glycans and recognized a subset of mannose-labeled endothelial glycoproteins immunoprecipitated by mAbGB3.1. Saturable binding of S100A8/A9 complex to endothelial cells was also blocked by mAbGB3.1. These results suggest that the carboxylated glycans play important roles in leukocyte trafficking by interacting with proteins known to modulate extravasation.
Rayon-Estrada, Violeta; Harjanto, Dewi; Hamilton, Claire E; Berchiche, Yamina A; Gantman, Emily Conn; Sakmar, Thomas P; Bulloch, Karen; Gagnidze, Khatuna; Harroch, Sheila; McEwen, Bruce S; Papavasiliou, F Nina
2017-12-12
Epitranscriptomics refers to posttranscriptional alterations on an mRNA sequence that are dynamic and reproducible, and affect gene expression in a similar way to epigenetic modifications. However, the functional relevance of those modifications for the transcript, the cell, and the organism remain poorly understood. Here, we focus on RNA editing and show that Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-1 (APOBEC1), together with its cofactor RBM47, mediates robust editing in different tissues. The majority of editing events alter the sequence of the 3'UTR of targeted transcripts, and we focus on one cell type (monocytes) and on a small set of highly edited transcripts within it to show that editing alters gene expression by modulating translation (but not RNA stability or localization). We further show that specific cellular processes (phagocytosis and transendothelial migration) are enriched for transcripts that are targets of editing and that editing alters their function. Finally, we survey bone marrow progenitors and demonstrate that common monocyte progenitor cells express high levels of APOBEC1 and are susceptible to loss of the editing enzyme. Overall, APOBEC1-mediated transcriptome diversification is required for the fine-tuning of protein expression in monocytes, suggesting an epitranscriptomic mechanism for the proper maintenance of homeostasis in innate immune cells. Copyright © 2017 the Author(s). Published by PNAS.
Howell, Gareth R.; Soto, Ileana; Zhu, Xianjun; Ryan, Margaret; Macalinao, Danilo G.; Sousa, Gregory L.; Caddle, Lura B.; MacNicoll, Katharine H.; Barbay, Jessica M.; Porciatti, Vittorio; Anderson, Michael G.; Smith, Richard S.; Clark, Abbot F.; Libby, Richard T.; John, Simon W.M.
2012-01-01
Glaucoma is a common ocular disorder that is a leading cause of blindness worldwide. It is characterized by the dysfunction and loss of retinal ganglion cells (RGCs). Although many studies have implicated various molecules in glaucoma, no mechanism has been shown to be responsible for the earliest detectable damage to RGCs and their axons in the optic nerve. Here, we show that the leukocyte transendothelial migration pathway is activated in the optic nerve head at the earliest stages of disease in an inherited mouse model of glaucoma. This resulted in proinflammatory monocytes entering the optic nerve prior to detectable neuronal damage. A 1-time x-ray treatment prevented monocyte entry and subsequent glaucomatous damage. A single x-ray treatment of an individual eye in young mice provided that eye with long-term protection from glaucoma but had no effect on the contralateral eye. Localized radiation treatment prevented detectable neuronal damage and dysfunction in treated eyes, despite the continued presence of other glaucomatous stresses and signaling pathways. Injection of endothelin-2, a damaging mediator produced by the monocytes, into irradiated eyes, combined with the other glaucomatous stresses, restored neural damage with a topography characteristic of glaucoma. Together, these data support a model of glaucomatous damage involving monocyte entry into the optic nerve. PMID:22426214
Schnoor, Michael; Lai, Frank P L; Zarbock, Alexander; Kläver, Ruth; Polaschegg, Christian; Schulte, Dörte; Weich, Herbert A; Oelkers, J Margit; Rottner, Klemens; Vestweber, Dietmar
2011-08-01
Neutrophil extravasation and the regulation of vascular permeability require dynamic actin rearrangements in the endothelium. In this study, we analyzed in vivo whether these processes require the function of the actin nucleation-promoting factor cortactin. Basal vascular permeability for high molecular weight substances was enhanced in cortactin-deficient mice. Despite this leakiness, neutrophil extravasation in the tumor necrosis factor-stimulated cremaster was inhibited by the loss of cortactin. The permeability defect was caused by reduced levels of activated Rap1 (Ras-related protein 1) in endothelial cells and could be rescued by activating Rap1 via the guanosine triphosphatase (GTPase) exchange factor EPAC (exchange protein directly activated by cAMP). The defect in neutrophil extravasation was caused by enhanced rolling velocity and reduced adhesion in postcapillary venules. Impaired rolling interactions were linked to contributions of β(2)-integrin ligands, and firm adhesion was compromised by reduced ICAM-1 (intercellular adhesion molecule 1) clustering around neutrophils. A signaling process known to be critical for the formation of ICAM-1-enriched contact areas and for transendothelial migration, the ICAM-1-mediated activation of the GTPase RhoG was blocked in cortactin-deficient endothelial cells. Our results represent the first physiological evidence that cortactin is crucial for orchestrating the molecular events leading to proper endothelial barrier function and leukocyte recruitment in vivo.
Angelovich, Thomas A; Shi, Margaret D Y; Zhou, Jingling; Maisa, Anna; Hearps, Anna C; Jaworowski, Anthony
2016-07-01
Aging is the strongest predictor of cardiovascular diseases such as atherosclerosis, which are the leading causes of morbidity and mortality in elderly men. Monocytes play an important role in atherosclerosis by differentiating into foam cells (lipid-laden macrophages) and producing atherogenic proinflammatory cytokines. Monocytes from the elderly have an inflammatory phenotype that may promote atherosclerotic plaque development; here we examined whether they are more atherogenic than those from younger individuals. Using an in vitro model of monocyte transmigration and foam cell formation, monocytes from older men (median age [range]: 75 [58-85] years, n=20) formed foam cells more readily than those of younger men (32 [23-46] years, n=20) (P<0.003) following transmigration across a TNF-activated endothelial monolayer. Compared to young men, monocytes from the elderly had impaired cholesterol efflux and lower expression of regulators of cholesterol transport and metabolism. Foam cell formation was enhanced by soluble factors in serum from older men, but did not correlate with plasma lipid levels. Of the three subsets, intermediate monocytes formed the most foam cells. Therefore, both cellular changes to monocytes and soluble plasma factors in older men primes monocytes for foam cell formation following transendothelial migration, which may contribute to enhanced atherosclerosis in this population. Copyright © 2016 Elsevier Inc. All rights reserved.
Huang, Jiqing; Kast, Juergen
2015-08-07
Physiological stimuli, such as thrombin, or pathological stimuli, such as lysophosphatidic acid (LPA), activate platelets circulating in blood. Once activated, platelets bind to monocytes via P-selectin-PSGL-1 interactions but also release the stored contents of their granules. These platelet releasates, in addition to direct platelet binding, activate monocytes and facilitate their recruitment to atherosclerotic sites. Consequently, understanding the changes platelet releasates induce in monocyte membrane proteins is critical. We studied the glyco-proteome changes of THP-1 monocytic cells affected by LPA- or thrombin-induced platelet releasates. We employed lectin affinity chromatography combined with filter aided sample preparation to achieve high glyco- and membrane protein and protein sequence coverage. Using stable isotope labeling by amino acids in cell culture, we quantified 1715 proteins, including 852 membrane and 500 glycoproteins, identifying the up-regulation of multiple proteins involved in monocyte extracellular matrix binding and transendothelial migration. Flow cytometry indicated expression changes of integrin α5, integrin β1, PECAM-1, and PSGL-1. The observed increase in monocyte adhesion to fibronectin was determined to be mediated by the up-regulation of very late antigen 5 via a P-selectin-PSGL-1 independent mechanism. This novel aspect could be validated on CD14+ human primary monocytes, highlighting the benefits of the improved enrichment method regarding high membrane protein coverage and reliable quantification.
A novel immunotoxin reveals a new role for CD321 in endothelial cells
Kim, Jia; Hokaiwado, Shintaro; Nawa, Makiko; Okamoto, Hayato; Kogiso, Tomohiko; Watabe, Tetsuro; Hattori, Nobutaka
2017-01-01
There are currently several antibody therapies that directly target tumors, and antibody-drug conjugates represent a novel moiety as next generation therapeutics. Here, we used a unique screening probe, DT3C, to identify functional antibodies that recognized surface molecules and functional epitopes, and which provided toxin delivery capability. Accordingly, we generated the 90G4 antibody, which induced DT3C-dependent cytotoxicity in endothelial cells. Molecular analysis revealed that 90G4 recognized CD321, a protein localized at tight junctions. Although CD321 plays a pivotal role in inflammation and lymphocyte trans-endothelial migration, little is known about its mechanism of action in endothelial cells. Targeting of CD321 by the 90G4 immunotoxin induced cell death. Moreover, 90G4 immunotoxin caused cytotoxicity primarily in migratory endothelial cells, but not in those forming sheets, suggesting a critical role for CD321 in tumor angiogenesis. We also found that hypoxia triggered redistribution of CD321 to a punctate localization on the basal side of cells, resulting in functional impairment of tight junctions and increased motility. Thus, our findings raise the intriguing possibility that endothelial CD321 presented cellular localization in tight junction as well as multifunctional dynamics in several conditions, leading to illuminate the importance of widely-expressed CD321 as a potential target for antitumor therapy. PMID:29028806
Ueno, Norikiyo; Harker, Katherine S.; Clarke, Elizabeth V.; McWhorter, Frances Y.; Liu, Wendy F.; Tenner, Andrea J.; Lodoen, Melissa B.
2014-01-01
Summary Peripheral blood monocytes are actively infected by Toxoplasma gondii and can function as “Trojan horses” for parasite spread in the bloodstream. Using dynamic live-cell imaging, we visualized the transendothelial migration (TEM) of T. gondii-infected primary human monocytes during the initial minutes following contact with human endothelium. On average, infected and uninfected monocytes required only 9.8 and 4.1 minutes, respectively, to complete TEM. Infection increased monocyte crawling distances and velocities on endothelium, but overall TEM frequencies were comparable between infected and uninfected cells. In the vasculature, monocytes adhere to endothelium under the conditions of shear stress found in rapidly flowing blood. Remarkably, the addition of fluidic shear stress increased the TEM frequency of infected monocytes 4.5-fold compared to static conditions (to 45.2% from 10.3%). Infection led to a modest increase in expression of the high affinity conformation of the monocyte integrin Mac-1, and Mac-1 accumulated near endothelial junctions during TEM. Blocking Mac-1 inhibited the crawling and TEM of infected monocytes to a greater degree than uninfected monocytes, and blocking the Mac-1 ligand, ICAM-1, dramatically reduced crawling and TEM for both populations. These findings contribute to a greater understanding of parasite dissemination from the vasculature into tissues. PMID:24245749
Transendothelial Transport and Its Role in Therapeutics
Upadhyay, Ravi Kant
2014-01-01
Present review paper highlights role of BBB in endothelial transport of various substances into the brain. More specifically, permeability functions of BBB in transendothelial transport of various substances such as metabolic fuels, ethanol, amino acids, proteins, peptides, lipids, vitamins, neurotransmitters, monocarbxylic acids, gases, water, and minerals in the peripheral circulation and into the brain have been widely explained. In addition, roles of various receptors, ATP powered pumps, channels, and transporters in transport of vital molecules in maintenance of homeostasis and normal body functions have been described in detail. Major role of integral membrane proteins, carriers, or transporters in drug transport is highlighted. Both diffusion and carrier mediated transport mechanisms which facilitate molecular trafficking through transcellular route to maintain influx and outflux of important nutrients and metabolic substances are elucidated. Present review paper aims to emphasize role of important transport systems with their recent advancements in CNS protection mainly for providing a rapid clinical aid to patients. This review also suggests requirement of new well-designed therapeutic strategies mainly potential techniques, appropriate drug formulations, and new transport systems for quick, easy, and safe delivery of drugs across blood brain barrier to save the life of tumor and virus infected patients. PMID:27355037
Collagen-based brain microvasculature model in vitro using three-dimensional printed template
Kim, Jeong Ah; Kim, Hong Nam; Im, Sun-Kyoung; Chung, Seok
2015-01-01
We present an engineered three-dimensional (3D) in vitro brain microvasculature system embedded within the bulk of a collagen matrix. To create a hydrogel template for the functional brain microvascular structure, we fabricated an array of microchannels made of collagen I using microneedles and a 3D printed frame. By culturing mouse brain endothelial cells (bEnd.3) on the luminal surface of cylindrical collagen microchannels, we reconstructed an array of brain microvasculature in vitro with circular cross-sections. We characterized the barrier function of our brain microvasculature by measuring transendothelial permeability of 40 kDa fluorescein isothiocyanate-dextran (Stoke's radius of ∼4.5 nm), based on an analytical model. The transendothelial permeability decreased significantly over 3 weeks of culture. We also present the disruption of the barrier function with a hyperosmotic mannitol as well as a subsequent recovery over 4 days. Our brain microvasculature model in vitro, consisting of system-in-hydrogel combined with the widely emerging 3D printing technique, can serve as a useful tool not only for fundamental studies associated with blood-brain barrier in physiological and pathological settings but also for pharmaceutical applications. PMID:25945141
Fang, Wei-Yu; Chen, Yi-Wen; Hsiao, Jenn-Ren; Liu, Chiang-Shin; Kuo, Yi-Zih; Wang, Yi-Ching; Chang, Kung-Chao; Tsai, Sen-Tien; Chang, Mei-Zhu; Lin, Siao-Han; Wu, Li-Wha
2015-01-01
S100A9 is a calcium-binding protein with two EF-hands and frequently deregulated in several cancer types, however, with no clear role in oral cancer. In this report, the expression of S100A9 in cancer and adjacent tissues from 79 early-stage oral cancer patients was detected by immunohistochemical staining. Although S100A9 protein was present in both tumor and stromal cells, only the early-stage oral cancer patients with high stromal expression had reduced recurrence-free survival. High stromal S100A9 expression was also significantly associated with non-well differentiation and recurrence. In addition to increasing cell migration and invasion, ectopic S100A9 expression in tumor cells promoted xenograft tumorigenesis as well as the dominant expression of myeloid cell markers and pro-inflammatory IL-6. The expression of S100A9 in one stromal component, monocytes, stimulated the aggressiveness of co-cultured oral cancer cells. We also detected the elevation of serum S100A9 levels in early-stage oral cancer patients of a separate cohort of 73 oral cancer patients. The release of S100A9 protein into extracellular milieu enhanced tumor cell invasion, transendothelial monocyte migration and angiogenic activity. S100A9-mediated release of IL-6 requires the crosstalk of tumor cells with monocytes through the activation of NF-κB and STAT-3. Early-stage oral cancer patients with both high S100A9 expression and high CD68+ immune infiltrates in stroma had shortest recurrence-free survival, suggesting the use of both S100A9 and CD68 as poor prognostic markers for oral cancer. Together, both intracellular and extracellular S100A9 exerts a tumor-promoting action through the activation of oral cancer cells and their associated stroma in oral carcinogenesis. PMID:26315114
Characterization of αX I-Domain Binding to Receptors for Advanced Glycation End Products (RAGE).
Buyannemekh, Dolgorsuren; Nham, Sang-Uk
2017-05-31
The β2 integrins are cell surface transmembrane proteins regulating leukocyte functions, such as adhesion and migration. Two members of β2 integrin, αMβ2 and αXβ2, share the leukocyte distribution profile and integrin αXβ2 is involved in antigen presentation in dendritic cells and transendothelial migration of monocytes and macrophages to atherosclerotic lesions. Receptor for advanced glycation end products (RAGE), a member of cell adhesion molecules, plays an important role in chronic inflammation and atherosclerosis. Although RAGE and αXβ2 play an important role in inflammatory response and the pathogenesis of atherosclerosis, the nature of their interaction and structure involved in the binding remain poorly defined. In this study, using I-domain as a ligand binding motif of αXβ2, we characterize the binding nature and the interacting moieties of αX I-domain and RAGE. Their binding requires divalent cations (Mg 2+ and Mn 2+ ) and shows an affinity on the sub-micro molar level: the dissociation constant of αX I-domains binding to RAGE being 0.49 μM. Furthermore, the αX I-domains recognize the V-domain, but not the C1 and C2-domains of RAGE. The acidic amino acid substitutions on the ligand binding site of αX I-domain significantly reduce the I-domain binding activity to soluble RAGE and the alanine substitutions of basic amino acids on the flat surface of the V-domain prevent the V-domain binding to αX I-domain. In conclusion, the main mechanism of αX I-domain binding to RAGE is a charge interaction, in which the acidic moieties of αX I-domains, including E244, and D249, recognize the basic residues on the RAGE V-domain encompassing K39, K43, K44, R104, and K107.
A Microfluidic System for the Investigation of Tumor Cell Extravasation.
Kühlbach, Claudia; da Luz, Sabrina; Baganz, Frank; Hass, Volker C; Mueller, Margareta M
2018-05-23
Metastatic dissemination of cancer cells is a very complex process. It includes the intravasation of cells into the metastatic pathways, their passive distribution within the blood or lymph flow, and their extravasation into the surrounding tissue. Crucial steps during extravasation are the adhesion of the tumor cells to the endothelium and their transendothelial migration. However, the molecular mechanisms that are underlying this process are still not fully understood. Novel three dimensional (3D) models for research on the metastatic cascade include the use of microfluidic devices. Different from two dimensional (2D) models, these devices take cell⁻cell, structural, and mechanical interactions into account. Here we introduce a new microfluidic device in order to study tumor extravasation. The device consists of three different parts, containing two microfluidic channels and a porous membrane sandwiched in between them. A smaller channel together with the membrane represents the vessel equivalent and is seeded separately with primary endothelial cells (EC) that are isolated from the lung artery. The second channel acts as reservoir to collect the migrated tumor cells. In contrast to many other systems, this device does not need an additional coating to allow EC growth, as the primary EC that is used produces their own basement membrane. VE-Cadherin, an endothelial adherence junction protein, was expressed in regular localization, which indicates a tight barrier function and cell⁻cell connections of the endothelium. The EC in the device showed in vivo-like behavior under flow conditions. The GFP-transfected tumor cells that were introduced were of epithelial or mesenchymal origin and could be observed by live cell imaging, which indicates tightly adherent tumor cells to the endothelial lining under different flow conditions. These results suggest that the new device can be used for research on molecular requirements, conditions, and mechanism of extravasation and its inhibition.
Fang, Wei-Yu; Chen, Yi-Wen; Hsiao, Jenn-Ren; Liu, Chiang-Shin; Kuo, Yi-Zih; Wang, Yi-Ching; Chang, Kung-Chao; Tsai, Sen-Tien; Chang, Mei-Zhu; Lin, Siao-Han; Wu, Li-Wha
2015-09-29
S100A9 is a calcium-binding protein with two EF-hands and frequently deregulated in several cancer types, however, with no clear role in oral cancer. In this report, the expression of S100A9 in cancer and adjacent tissues from 79 early-stage oral cancer patients was detected by immunohistochemical staining. Although S100A9 protein was present in both tumor and stromal cells, only the early-stage oral cancer patients with high stromal expression had reduced recurrence-free survival. High stromal S100A9 expression was also significantly associated with non-well differentiation and recurrence. In addition to increasing cell migration and invasion, ectopic S100A9 expression in tumor cells promoted xenograft tumorigenesis as well as the dominant expression of myeloid cell markers and pro-inflammatory IL-6. The expression of S100A9 in one stromal component, monocytes, stimulated the aggressiveness of co-cultured oral cancer cells. We also detected the elevation of serum S100A9 levels in early-stage oral cancer patients of a separate cohort of 73 oral cancer patients. The release of S100A9 protein into extracellular milieu enhanced tumor cell invasion, transendothelial monocyte migration and angiogenic activity. S100A9-mediated release of IL-6 requires the crosstalk of tumor cells with monocytes through the activation of NF-κB and STAT-3. Early-stage oral cancer patients with both high S100A9 expression and high CD68+ immune infiltrates in stroma had shortest recurrence-free survival, suggesting the use of both S100A9 and CD68 as poor prognostic markers for oral cancer. Together, both intracellular and extracellular S100A9 exerts a tumor-promoting action through the activation of oral cancer cells and their associated stroma in oral carcinogenesis.
A Kirchhoff Approach to Seismic Modeling and Prestack Depth Migration
1993-05-01
continuation of sources and geophones by finite difference (S-G finite - difference migration ), are relatively slow and dip-limited. Compared to S-G... finite - difference migration , the Kirchhoff integral implements prestack migration relatively efficiently and has no dip limitation. Liu .Mlodeling and...for modeling and migration . In this paper, a finite - difference algorithm is used to calculate traveltimes and amplitudes. With the help of
A PDMS Device Coupled with Culture Dish for In Vitro Cell Migration Assay.
Lv, Xiaoqing; Geng, Zhaoxin; Fan, Zhiyuan; Wang, Shicai; Pei, WeiHua; Chen, Hongda
2018-04-30
Cell migration and invasion are important factors during tumor progression and metastasis. Wound-healing assay and the Boyden chamber assay are efficient tools to investigate tumor development because both of them could be applied to measure cell migration rate. Therefore, a simple and integrated polydimethylsiloxane (PDMS) device was developed for cell migration assay, which could perform quantitative evaluation of cell migration behaviors, especially for the wound-healing assay. The integrated device was composed of three units, which included cell culture dish, PDMS chamber, and wound generation mold. The PDMS chamber was integrated with cell culture chamber and could perform six experiments under different conditions of stimuli simultaneously. To verify the function of this device, it was utilized to explore the tumor cell migration behaviors under different concentrations of fetal bovine serum (FBS) and transforming growth factor (TGF-β) at different time points. This device has the unique capability to create the "wound" area in parallel during cell migration assay and provides a simple and efficient platform for investigating cell migration assay in biomedical application.
NASA Astrophysics Data System (ADS)
Rastogi, Richa; Londhe, Ashutosh; Srivastava, Abhishek; Sirasala, Kirannmayi M.; Khonde, Kiran
2017-03-01
In this article, a new scalable 3D Kirchhoff depth migration algorithm is presented on state of the art multicore CPU based cluster. Parallelization of 3D Kirchhoff depth migration is challenging due to its high demand of compute time, memory, storage and I/O along with the need of their effective management. The most resource intensive modules of the algorithm are traveltime calculations and migration summation which exhibit an inherent trade off between compute time and other resources. The parallelization strategy of the algorithm largely depends on the storage of calculated traveltimes and its feeding mechanism to the migration process. The presented work is an extension of our previous work, wherein a 3D Kirchhoff depth migration application for multicore CPU based parallel system had been developed. Recently, we have worked on improving parallel performance of this application by re-designing the parallelization approach. The new algorithm is capable to efficiently migrate both prestack and poststack 3D data. It exhibits flexibility for migrating large number of traces within the available node memory and with minimal requirement of storage, I/O and inter-node communication. The resultant application is tested using 3D Overthrust data on PARAM Yuva II, which is a Xeon E5-2670 based multicore CPU cluster with 16 cores/node and 64 GB shared memory. Parallel performance of the algorithm is studied using different numerical experiments and the scalability results show striking improvement over its previous version. An impressive 49.05X speedup with 76.64% efficiency is achieved for 3D prestack data and 32.00X speedup with 50.00% efficiency for 3D poststack data, using 64 nodes. The results also demonstrate the effectiveness and robustness of the improved algorithm with high scalability and efficiency on a multicore CPU cluster.
Prevention of stone migration with the Accordion during endoscopic ureteral lithotripsy.
Pagnani, Christopher J; El Akkad, Magdy; Bagley, Demetrius H
2012-05-01
Endoscopic lithotripsy is often prolonged secondary to the retrograde migration of calculous fragments. Various balloons, baskets, and other devices have been used to prevent this migration. Our purpose is to analyze the effect of the Accordion(®) on stone migration and overall efficiency during lithotripsy. We prospectively evaluated 21 patients with a total of 23 distal ureteral stones. Patients underwent lithotripsy using an endoscopic impact lithotriptor. The Accordion was randomly used in 11 of these 21 patients. Data were collected regarding stone migration, stone size, stone ablation, ureteral clearing, and lengths of time for various stages of each procedure. Patients who were treated with the Accordion device experienced significantly less retrograde migration during fragmentation (P=0.0064). When stone volume was taken into account (but not on a per stone basis), ablation and ureteral clearing were also expedited, and fewer lithotripter "hits" and basket "sweeps" were needed. The Accordion device is effective in preventing the migration of stone fragments during endoscopic ureteral lithotripsy. Our data suggest that this device may also increase efficiency of the fragmentation and clearance of ureteral calculi.
Debbage, P L; Sölder, E; Seidl, S; Hutzler, P; Hugl, B; Ofner, D; Kreczy, A
2001-10-01
We previously applied intravital lectin perfusion in mouse models to elucidate mechanisms underlying vascular permeability. The present work transfers this technique to human models, analysing vascular permeability in macro- and microvessels. Human vascular endothelial surface carbohydrate biochemistry differs significantly from its murine counterpart, lacking alpha-galactosyl epitopes and expressing the L-fucose moiety in the glycocalyx; the poly-N-lactosamine glycan backbone is common to all mammals. We examined extensively lectin binding specificities in sections and in vivo, and then applied the poly-N-lactosamine-specific lectin LEA and the L-fucose-specific lectin UEA-I in human intravital perfusions. Transendothelial transport differed in macrovessels and microvessels. In microvessels of adult human fat tissue, rectal wall and rectal carcinomas, slow transendothelial transport by vesicles was followed by significant retention at the subendothelial basement membrane; paracellular passage was not observed. Passage time exceeded 1 h. Thus we found barrier mechanisms resembling those we described previously in murine tissues. In both adult and fetal macrovessels, the vena saphena magna and the umbilical vein, respectively, rapid passage across the endothelial lining was observed, the tracer localising completely in the subendothelial tissues within 15 min; vesicular transport was more rapid than in microvessels, and retention at the subendothelial basement membrane briefer.
Neutral amino acid transport across brain microvessel endothelial cell monolayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Audus, K.L.; Borchardt, R.T.
1986-03-01
Brain microvessel endothelial cells (BMEC) which form the blood-brain barrier (BBB) possess an amino acid carrier specific for large neutral amino acids (LNAA). The carrier is important for facilitating the delivery of nutrient LNAA's and centrally acting drugs that are LNAA's, to the brain. Bovine BMEC's were isolated and grown up to complete monolayers on regenerated cellulose-membranes in primary culture. To study the transendothelial transport of leucine, the monolayers were placed in a side-by-side diffusion cell, and transport across the monolayers followed with (/sup 3/H)-leucine. The transendothelial transport of leucine in this in vitro model was determined to be bidirectional,more » and time-, temperature-, and concentration-dependent. The transport of leucine was saturable and the apparent K/sub m/ and V/sub max/, 0.18 mM and 6.3 nmol/mg/min, respectively. Other LNAA's, including the centrally acting drugs, ..cap alpha..-methyldopa, L-DOPA, ..cap alpha..-methyl-tyrosine, and baclofen, inhibited leucine transport. The leucine carrier was also found to be stereospecific and not sensitive to inhibitors of active transport. These results are consistent with previous in vitro and in vivo studies. Primary cultures of BMEC's appear to be a potentially important tool for investigating at the cellular level, the transport mechanisms of the BBB.« less
Zidan, Ahmed S; Aldawsari, Hibah
2015-01-01
Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood-brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood-brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (<200 nm) of narrow size distribution. Optimized ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes.
Quantification of cancer cell extravasation in vivo.
Kim, Yohan; Williams, Karla C; Gavin, Carson T; Jardine, Emily; Chambers, Ann F; Leong, Hon S
2016-05-01
Cancer cell 'invasiveness' is one of the main driving forces in cancer metastasis, and assays that quantify this key attribute of cancer cells are crucial in cancer metastasis research. The research goal of many laboratories is to elucidate the signaling pathways and effectors that are responsible for cancer cell invasion, but many of these experiments rely on in vitro methods that do not specifically simulate individual steps of the metastatic cascade. Cancer cell extravasation is arguably the most important example of invasion in the metastatic cascade, whereby a single cancer cell undergoes transendothelial migration, forming invasive processes known as invadopodia to mediate translocation of the tumor cell from the vessel lumen into tissue in vivo. We have developed a rapid, reproducible and economical technique to evaluate cancer cell invasiveness by quantifying in vivo rates of cancer cell extravasation in the chorioallantoic membrane (CAM) of chicken embryos. This technique enables the investigator to perform well-powered loss-of-function studies of cancer cell extravasation within 24 h, and it can be used to identify and validate drugs with potential antimetastatic effects that specifically target cancer cell extravasation. A key advantage of this technique over similar assays is that intravascular cancer cells within the capillary bed of the CAM are clearly distinct from extravasated cells, which makes cancer cell extravasation easy to detect. An intermediate level of experience in injections of the chorioallantoic membrane of avian embryos and cell culture techniques is required to carry out the protocol.
Piao, Junjie; Sun, Jie; Yang, Yang; Jin, Tiefeng; Chen, Liyan; Lin, Zhenhua
2018-03-20
Non-small cell lung cancer (NSCLC) is the major leading cause of cancer-related deaths worldwide. This study aims to explore molecular mechanism of NSCLC. Microarray dataset was obtained from the Gene Expression Omnibus (GEO) database, and analyzed by using GEO2R. Functional and pathway enrichment analysis were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Then, STRING, Cytoscape and MCODE were applied to construct the Protein-protein interaction (PPI) network and screen hub genes. Following, overall survival (OS) analysis of hub genes was performed by using the Kaplan-Meier plotter online tool. Moreover, miRecords was also applied to predict the targets of the differentially expressed microRNAs (DEMs). A total of 228 DEGs were identified, and they were mainly enriched in the terms of cell adhesion molecules, leukocyte transendothelial migration and ECM-receptor interaction. A PPI network was constructed, and 16 hub genes were identified, including TEK, ANGPT1, MMP9, VWF, CDH5, EDN1, ESAM, CCNE1, CDC45, PRC1, CCNB2, AURKA, MELK, CDC20, TOP2A and PTTG1. Among the genes, expressions of 14 hub genes were associated with prognosis of NSCLC patients. Additionally, a total of 11 DEMs were also identified. Our results provide some potential underlying biomarkers for NSCLC. Further studies are required to elucidate the pathogenesis of NSCLC. Copyright © 2018 Elsevier B.V. All rights reserved.
Berger, Christian; Rossaint, Jan; Van Aken, Hugo; Westphal, Martin; Hahnenkamp, Klaus; Zarbock, Alexander
2014-01-01
The inappropriate activation, positioning, and recruitment of leukocytes are implicated in the pathogenesis of multiple organ failure in sepsis. Although the local anesthetic lidocaine modulates inflammatory processes, the effects of lidocaine in sepsis are still unknown. This double-blinded, prospective, randomized clinical trial was conducted to investigate the effect of lidocaine on leukocyte recruitment in septic patients. Fourteen septic patients were randomized to receive either a placebo (n = 7) or a lidocaine (n = 7) bolus (1.5 mg/kg), followed by continuous infusion (100 mg/h for patients >70 kg or 70 mg/h for patients <70 kg) over a period of 48 h. Selectin-mediated slow rolling, chemokine-induced arrest, and transmigration were investigated by using flow chamber and transmigration assays. Lidocaine treatment abrogated chemokine-induced neutrophil arrest and significantly impaired neutrophil transmigration through endothelial cells by inhibition of the protein kinase C-θ while not affecting the selectin-mediated slow leukocyte rolling. The observed results were not attributable to changes in surface expression of adhesion molecules or selectin-mediated capturing capacity, indicating a direct effect of lidocaine on signal transduction in neutrophils. These data suggest that lidocaine selectively inhibits chemokine-induced arrest and transmigration of neutrophils by inhibition of protein kinase C-θ while not affecting selectin-mediated slow rolling. These findings may implicate a possible therapeutic role for lidocaine in decreasing the inappropriate activation, positioning, and recruitment of leukocytes during sepsis.
Morikis, Vasilios A; Chase, Shannon; Wun, Ted; Chaikof, Elliot L; Magnani, John L; Simon, Scott I
2017-11-09
E-selectin extends from the plasma membrane of inflamed endothelium and serves to capture leukocytes from flowing blood via long-lived catch-bonds that support slow leukocyte rolling under shear stress. Its ligands are glycosylated with the tetrasaccharide sialyl Lewis x (sLe x ), which contributes to bond affinity and specificity. E-selectin-mediated rolling transmits signals into neutrophils that trigger activation of high-affinity β 2 -integrins necessary for transition to shear-resistant adhesion and transendothelial migration. Rivipansel is a glycomimetic drug that inhibits E-selectin-mediated vaso-occlusion induced by integrin-dependent sickle-red blood cell-leukocyte adhesion. How Rivipansel antagonizes ligand recognition by E-selectin and blocks outside-in signaling of integrin-mediated neutrophil arrest while maintaining rolling immune-surveillance is unknown. Here, we demonstrate that sLe x expressed on human L-selectin is preferentially bound by E-selectin and, on ligation, initiates secretion of MRP8/14 that binds TLR4 to elicit the extension of β 2 -integrin to an intermediate affinity state. Neutrophil rolling over E-selectin at precise shear stress transmits tension and catch-bond formation with L-selectin via sLe x , resulting in focal clusters that deliver a distinct signal to upshift β 2 -integrins to a high-affinity state. Rivipansel effectively blocked formation of selectin catch-bonds, revealing a novel mechanotransduction circuit that rapidly converts extended β 2 -integrins to high-affinity shear-resistant bond clusters with intracellular adhesion molecule 1 on inflamed endothelium.
Transmigration of Neural Stem Cells across the Blood Brain Barrier Induced by Glioma Cells
Díaz-Coránguez, Mónica; Segovia, José; López-Ornelas, Adolfo; Puerta-Guardo, Henry; Ludert, Juan; Chávez, Bibiana; Meraz-Cruz, Noemi; González-Mariscal, Lorenza
2013-01-01
Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB) was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs) cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM) from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2. PMID:23637756
Hirata, Akira; Inatani, Masaru; Inomata, Yasuya; Yonemura, Naoko; Kawaji, Takahiro; Honjo, Megumi; Tanihara, Hidenobu
2008-01-01
Transient retinal ischemia induces the death of retinal neuronal cells. Postischemic damage is associated with the infiltration of leukocytes into the neural tissue through vascular endothelia. The current study aimed to investigate whether this damage was attenuated by the inhibition of Rho/ROCK (Rho kinases) signaling, recently shown to play a critical role in the transendothelial migration of leukocytes. Y-27632, a selective inhibitor of ROCK, was injected intravitreally into rat eyes with transient retinal ischemia. Cell loss of the ganglion cell layer (GCL) and thinning of the inner plexiform layer (IPL) with and without the administration of Y-27632 were evaluated by histological analysis, TUNEL assay and retrograde labeling of retinal ganglion cells (RGCs). To examine the attenuation of leukocyte infiltration in postischemic retinas with the administration of Y-27632, silver nitrate staining and immunohistochemistry using an anti-LCA antibody were performed. Cell loss of the GCL and thinning of the IPL were significantly attenuated when 100 nmol Y-27632 was administered within three hours of the induction of ischemia. TUNEL assay and retrograde labeling of RGCs showed a decreased number of apoptotic cells and an increased number of RGCs in Y-27632-injected retinas. Moreover, silver nitrate staining and immunohistochemical analysis using an anti-LCA antibody showed that Y-27632 injection dramatically inhibited leukocyte infiltration and endothelial disarrangement. Our data suggest that inhibition of Rho/ROCK signaling offers neuroprotective therapy against postischemic neural damage, by regulating leukocyte infiltration in the neural tissue.
NASA Astrophysics Data System (ADS)
Rastogi, Richa; Srivastava, Abhishek; Khonde, Kiran; Sirasala, Kirannmayi M.; Londhe, Ashutosh; Chavhan, Hitesh
2015-07-01
This paper presents an efficient parallel 3D Kirchhoff depth migration algorithm suitable for current class of multicore architecture. The fundamental Kirchhoff depth migration algorithm exhibits inherent parallelism however, when it comes to 3D data migration, as the data size increases the resource requirement of the algorithm also increases. This challenges its practical implementation even on current generation high performance computing systems. Therefore a smart parallelization approach is essential to handle 3D data for migration. The most compute intensive part of Kirchhoff depth migration algorithm is the calculation of traveltime tables due to its resource requirements such as memory/storage and I/O. In the current research work, we target this area and develop a competent parallel algorithm for post and prestack 3D Kirchhoff depth migration, using hybrid MPI+OpenMP programming techniques. We introduce a concept of flexi-depth iterations while depth migrating data in parallel imaging space, using optimized traveltime table computations. This concept provides flexibility to the algorithm by migrating data in a number of depth iterations, which depends upon the available node memory and the size of data to be migrated during runtime. Furthermore, it minimizes the requirements of storage, I/O and inter-node communication, thus making it advantageous over the conventional parallelization approaches. The developed parallel algorithm is demonstrated and analysed on Yuva II, a PARAM series of supercomputers. Optimization, performance and scalability experiment results along with the migration outcome show the effectiveness of the parallel algorithm.
Morphological constraints on changing avian migration phenology.
Møller, A P; Rubolini, D; Saino, N
2017-06-01
Many organisms at northern latitudes have responded to climate warming by advancing their spring phenology. Birds are known to show earlier timing of spring migration and reproduction in response to warmer springs. However, species show heterogeneous phenological responses to climate warming, with those that have not advanced or have delayed migration phenology experiencing population declines. Although some traits (such as migration distance) partly explain heterogeneity in phenological responses, the factors affecting interspecies differences in the responsiveness to climate warming have yet to be fully explored. In this comparative study, we investigate whether variation in wing aspect ratio (reflecting relative wing narrowness), an ecomorphological trait that is strongly associated with flight efficiency and migratory behaviour, affects the ability to advance timing of spring migration during 1960-2006 in a set of 80 European migratory bird species. Species with larger aspect ratio (longer and narrower wings) showed smaller advancement of timing of spring migration compared to species with smaller aspect ratio (shorter and wider wings) while controlling for phylogeny, migration distance and other life-history traits. In turn, migration distance positively predicted aspect ratio across species. Hence, species that are better adapted to migration appear to be more constrained in responding phenologically to rapid climate warming by advancing timing of spring migration. Our findings corroborate the idea that aspect ratio is a major evolutionary correlate of migration, and suggest that selection for energetically efficient flights, as reflected by high aspect ratio, may hinder phenotypically plastic/microevolutionary adjustments of migration phenology to ongoing climatic changes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Toward a Deterministic Model of Planetary Formation. IV. Effects of Type I Migration
NASA Astrophysics Data System (ADS)
Ida, S.; Lin, D. N. C.
2008-01-01
In a further development of a deterministic planet formation model (Ida & Lin), we consider the effect of type I migration of protoplanetary embryos due to their tidal interaction with their nascent disks. During the early phase of protostellar disks, although embryos rapidly emerge in regions interior to the ice line, uninhibited type I migration leads to their efficient self-clearing. But embryos continue to form from residual planetesimals, repeatedly migrate inward, and provide a main channel of heavy-element accretion onto their host stars. During the advanced stages of disk evolution (a few Myr), the gas surface density declines to values comparable to or smaller than that of the minimum mass nebula model, and type I migration is no longer effective for Mars-mass embryos. Over wide ranges of initial disk surface densities and type I migration efficiencies, the surviving population of embryos interior to the ice line has a total mass of several M⊕. With this reservoir, there is an adequate inventory of residual embryos to subsequently assemble into rocky planets similar to those around the Sun. However, the onset of efficient gas accretion requires the emergence and retention of cores more massive than a few M⊕ prior to the severe depletion of the disk gas. The formation probability of gas giant planets and hence the predicted mass and semimajor axis distributions of extrasolar gas giants are sensitively determined by the strength of type I migration. We suggest that the distributions consistent with observations can be reproduced only if the actual type I migration timescale is at least an order of magnitude longer than that deduced from linear theories.
Mechanical confinement triggers glioma linear migration dependent on formin FHOD3
Monzo, Pascale; Chong, Yuk Kien; Guetta-Terrier, Charlotte; Krishnasamy, Anitha; Sathe, Sharvari R.; Yim, Evelyn K. F.; Ng, Wai Hoe; Ang, Beng Ti; Tang, Carol; Ladoux, Benoit; Gauthier, Nils C.; Sheetz, Michael P.
2016-01-01
Glioblastomas are extremely aggressive brain tumors with highly invasive properties. Brain linear tracks such as blood vessel walls constitute their main invasive routes. Here we analyze rat C6 and patient-derived glioma cell motility in vitro using micropatterned linear tracks to mimic blood vessels. On laminin-coated tracks (3–10 μm), these cells used an efficient saltatory mode of migration similar to their in vivo migration. This saltatory migration was also observed on larger tracks (50–400 μm in width) at high cell densities. In these cases, the mechanical constraints imposed by neighboring cells triggered this efficient mode of migration, resulting in the formation of remarkable antiparallel streams of cells along the tracks. This motility involved microtubule-dependent polarization, contractile actin bundles and dynamic paxillin-containing adhesions in the leading process and in the tail. Glioma linear migration was dramatically reduced by inhibiting formins but, surprisingly, accelerated by inhibiting Arp2/3. Protein expression and phenotypic analysis indicated that the formin FHOD3 played a role in this motility but not mDia1 or mDia2. We propose that glioma migration under confinement on laminin relies on formins, including FHOD3, but not Arp2/3 and that the low level of adhesion allows rapid antiparallel migration. PMID:26912794
NASA Astrophysics Data System (ADS)
Azimzade, Youness; Mashaghi, Alireza
2017-12-01
Efficient search acts as a strong selective force in biological systems ranging from cellular populations to predator-prey systems. The search processes commonly involve finding a stationary or mobile target within a heterogeneously structured environment where obstacles limit migration. An open generic question is whether random or directionally biased motions or a combination of both provide an optimal search efficiency and how that depends on the motility and density of targets and obstacles. To address this question, we develop a simple model that involves a random walker searching for its targets in a heterogeneous medium of bond percolation square lattice and used mean first passage time (〈T 〉 ) as an indication of average search time. Our analysis reveals a dual effect of directional bias on the minimum value of 〈T 〉 . For a homogeneous medium, directionality always decreases 〈T 〉 and a pure directional migration (a ballistic motion) serves as the optimized strategy, while for a heterogeneous environment, we find that the optimized strategy involves a combination of directed and random migrations. The relative contribution of these modes is determined by the density of obstacles and motility of targets. Existence of randomness and motility of targets add to the efficiency of search. Our study reveals generic and simple rules that govern search efficiency. Our findings might find application in a number of areas including immunology, cell biology, ecology, and robotics.
Efficiency of photochemical stages of photosynthesis in purple bacteria (a critical survey).
Borisov, A Yu
2014-03-01
Based on currently available data, the energy transfer efficiency in the successive photophysical and photochemical stages has been analyzed for purple bacteria. This analysis covers the stages starting from migration of the light-induced electronic excitations from the bulk antenna pigments to the reaction centers up to irreversible stage of the electron transport along the transmembrane chain of cofactors-carriers. Some natural factors are revealed that significantly increase the rates of efficient processes in these stages. The influence on their efficiency by the "bottleneck" in the energy migration chain is established. The overall quantum yield of photosynthesis in these stages is determined.
Nanotopography guides and directs cell migration in amoeboid and epithelial cells
NASA Astrophysics Data System (ADS)
Lee, Rachel; Das, Satarupa; Hourwitz, Matthew; Sun, Xiaoyu; Parent, Carole; Fourkas, John; Losert, Wolfgang
Cell migration plays a critical role in development, angiogenesis, immune response, wound healing, and cancer metastasis. In many cases, cells also move in the context of a matrix of collagen fibers, and the alignment of these fibers can both affect the migration phenotype and guide cells. Here we show that both fast and slow migrating cells - amoeboid HL-60 and epithelial MCF10A - are affected in similar ways by micro/nanostructures with dimensions similar to those of collagen fibers. Cell alignment enhances the efficiency of migration by increasing directional persistence.
Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin
2017-01-01
Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Correlation of transarterial transport of various dextrans with their physicochemical properties.
Elmalak, O; Lovich, M A; Edelman, E
2000-11-01
Local vascular drug delivery provides elevated concentrations of drug in the target tissue while minimizing systemic side effects. To better characterize local pharmacokinetics we examined the arterial transport of locally applied dextran and dextran derivatives in vivo. Using a two-compartment pharmacokinetic model to correct the measured transmural flux of these compounds for systemic redistribution and elimination as delivered from a photopolymerizable hydrogel surrounding rat carotid arteries, we found that the diffusivities and the transendothelial permeabilities were strongly dependent on molecular weight and charge. For neutral dextrans, the effective diffusive resistance in the media increased with molecular weight approximately 4.1-fold between the molecular weights of 10 and 282 kDa. Similarly, endothelial resistance increased 28-fold over the same molecular weight range. The effective medial diffusive resistance was unaffected by cationic charge as such molecules moved identically to neutral compounds, but increased approximately 40% when dextrans were negatively charged. Transendothelial resistance was 20-fold lower for the cationic dextrans, and 11-fold higher for the anionic dextrans, when both were compared to neutral counterparts. These results suggest that, while low molecular weight drugs will rapidly traverse the arterial wall with the endothelium posing a minimal barrier, the reverse is true for high molecular weight agents. With these data, the deposition and distribution of locally released vasotherapeutic compounds might be predicted based upon chemical properties, such as molecular weight and charge.
Delivery of therapeutic peptides and proteins to the CNS.
Salameh, Therese S; Banks, William A
2014-01-01
Peptides and proteins have potent effects on the brain after their peripheral administration, suggesting that they may be good substrates for the development of CNS therapeutics. Major hurdles to such development include their relation to the blood-brain barrier (BBB) and poor pharmacokinetics. Some peptides cross the BBB by transendothelial diffusion and others cross in the blood-to-brain direction by saturable transporters. Some regulatory proteins are also transported across the BBB and antibodies can enter the CNS via the extracellular pathways. Glycoproteins and some antibody fragments can be taken up and cross the BBB by mechanisms related to adsorptive endocytosis/transcytosis. Many peptides and proteins are transported out of the CNS by saturable efflux systems and enzymatic activity in the blood, CNS, or BBB are substantial barriers to others. Both influx and efflux transporters are altered by various substances and in disease states. Strategies that manipulate these interactions between the BBB and peptides and proteins provide many opportunities for the development of therapeutics. Such strategies include increasing transendothelial diffusion of small peptides, upregulation of saturable influx transporters with allosteric regulators and other posttranslational means, use of vectors and other Trojan horse strategies, inhibition of efflux transporters including with antisense molecules, and improvement in pharmacokinetic parameters to overcome short half-lives, tissue sequestration, and enzymatic degradation. © 2014 Elsevier Inc. All rights reserved.
Mendes, Bárbara; Marques, Cláudia; Carvalho, Isabel; Costa, Paulo; Martins, Susana; Ferreira, Domingos; Sarmento, Bruno
2015-07-25
The blood-brain barrier plays an important role in protecting the brain from injury and diseases, but also restrains the delivery of potential therapeutic drugs for the treatment of brain illnesses, such as tumors. Glioma is most common cancer type of central nervous system in adults and the most lethal in children. The treatment is normally poor and ineffective. To better understand the ability of drug delivery systems to permeate this barrier, a blood-brain barrier model using human brain endothelial cells and a glioma cell line is herein proposed. The consistent trans-endothelial electrical values, immunofluorescence and scanning electronic microscopy showed a confluent endothelial cell monolayer with high restrictiveness. Upon inclusion of glioma cell line, the trans-endothelial electrical resistance decreased, with consequent increase of apparent permeability of fluorescein isothiocyanate dextran used as model drug, revealing a reduction of the barrier robustness. In addition, it was demonstrated a cell shape modification in the co-culture, with loss of tight junctions. The microenvironment of co-cultured model presented significant increase of of CCL2/MCP-1 and IL-6 production, correlating with the modulation of permeation. The results encourage the use of the proposed in vitro model as a screening tool when performing drugs permeability for the treatment of disorders among the central nervous system. Copyright © 2015 Elsevier B.V. All rights reserved.
Ugarte-Berzal, Estefanía; Bailón, Elvira; Amigo-Jiménez, Irene; Vituri, Cidonia L.; del Cerro, Mercedes Hernández; Terol, María José; Albar, Juan P.; Rivas, Germán; García-Marco, José A.; García-Pardo, Angeles
2012-01-01
We previously showed that pro-matrix metalloproteinase-9 (proMMP-9) binds to B chronic lymphocytic leukemia (B-CLL) cells and contributes to B-CLL progression by regulating cell migration and survival. Induction of cell survival involves a non-proteolytic mechanism and the proMMP-9 hemopexin domain (PEX9). To help design specific inhibitors of proMMP-9-cell binding, we have now characterized B-CLL cell interaction with the isolated PEX9. B-CLL cells bound soluble and immobilized GST-PEX9, but not GST, and binding was mediated by α4β1 integrin. The ability to recognize PEX9 was observed in all 20 primary samples studied irrespective of their clinical stage or prognostic marker phenotype. By preparing truncated forms of GST-PEX9 containing structural blades B1B2 or B3B4, we have identified B3B4 as the primary α4β1 integrin-interacting region within PEX9. Overlapping synthetic peptides spanning B3B4 were then tested in functional assays. Peptide P3 (FPGVPLDTHDVFQYREKAYFC), a sequence present in B4 or smaller versions of this sequence (peptides P3a/P3b), inhibited B-CLL cell adhesion to GST-PEX9 or proMMP-9, with IC50 values of 138 and 279 μm, respectively. Mutating the two aspartate residues to alanine rendered the peptides inactive. An anti-P3 antibody also inhibited adhesion to GST-PEX9 and proMMP-9. GST-PEX9, GST-B3B4, and P3/P3a/P3b peptides inhibited B-CLL cell transendothelial migration, whereas the mutated peptide did not. B-CLL cell incubation with GST-PEX9 induced intracellular survival signals, namely Lyn phosphorylation and Mcl-1 up-regulation, and this was also prevented by the P3 peptides. The P3 sequence may, therefore, constitute an excellent target to prevent proMMP-9 contribution to B-CLL pathogenesis. PMID:22730324
2015-09-28
the performance of log-and- replay can degrade significantly for VMs configured with multiple virtual CPUs, since the shared memory communication...whether based on checkpoint replication or log-and- replay , existing HA ap- proaches use in- memory backups. The backup VM sits in the memory of a...efficiently. 15. SUBJECT TERMS High-availability virtual machines, live migration, memory and traffic overheads, application suspension, Java
Efficient Process Migration for Parallel Processing on Non-Dedicated Networks of Workstations
NASA Technical Reports Server (NTRS)
Chanchio, Kasidit; Sun, Xian-He
1996-01-01
This paper presents the design and preliminary implementation of MpPVM, a software system that supports process migration for PVM application programs in a non-dedicated heterogeneous computing environment. New concepts of migration point as well as migration point analysis and necessary data analysis are introduced. In MpPVM, process migrations occur only at previously inserted migration points. Migration point analysis determines appropriate locations to insert migration points; whereas, necessary data analysis provides a minimum set of variables to be transferred at each migration pint. A new methodology to perform reliable point-to-point data communications in a migration environment is also discussed. Finally, a preliminary implementation of MpPVM and its experimental results are presented, showing the correctness and promising performance of our process migration mechanism in a scalable non-dedicated heterogeneous computing environment. While MpPVM is developed on top of PVM, the process migration methodology introduced in this study is general and can be applied to any distributed software environment.
Classification of Stellar Orbits Near Corotation
NASA Astrophysics Data System (ADS)
Breet, Jessica; Daniel, Kathryne J.; Bryn Mawr College Galaxy Lab
2018-01-01
The process of radial migration is frequently invoked as an important process to spiral galaxy evolution, but the physical properties that determine the efficiency of radial migration are poorly defined. In order for a star to migrate radially it must first be trapped in a resonant orbit at the corotation radius of a spiral pattern. Stars in such trapped orbits have changing average orbital radii — and thus orbital angular momenta — without any change in orbital eccentricity. It follows that transient spiral patterns can permanently rearrange the distribution of orbital angular momentum in the disk without kinematically heating it. It is also known that orbits can also have a significant dynamical response at Lindblad Resonances (LRs), where the Ultraharmonic Lindblad Resonances (ULRs) have a lesser impact on the disk. The goal of our project is to examine and constrain the efficiency of radial migration via an investigation into whether or not stars in trapped orbits have a dynamical response at the ULRs. We produced a dataset of nearly 105 orbits with initial conditions across a range of radii and 2-D velocities. We then classified these orbits into four categories based on analytic criteria for whether or not they are in trapped orbits and/or cross the ULR over 1 gigayear. Preliminary investigations show that trapped orbits that also meet the ULR have a chaotic response, putting a potential limit on the efficiency of radial migration.
Onore, Charity E.; Nordahl, Christine Wu; Young, Gregory S.; Van de Water, Judy A.; Rogers, Sally J.; Ashwood, Paul
2012-01-01
Background Although the etiopathology of Autism Spectrum Disorder (ASD) is not clear there is increasing evidence that dysfunction in the immune system affects many children with ASD. Findings of immune dysfunction in ASD include increases in inflammatory cytokines, chemokines and microglial activity in brain tissue and CSF, as well as abnormal peripheral immune cell function. Methods Adhesion molecules, such as platelet endothelial adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), P-Selectin, and L-Selectin, function to facilitate leukocyte transendothelial migration. We assessed concentrations of soluble adhesion molecules, sPECAM-1, sICAM-1, sVCAM-1, sP-Selectin, and sL-Selectin in the plasma of 49 participants with ASD, and 31 typically developing controls of the same age, all of whom were enrolled as part of the Autism Phenome Project (APP). Behavioral assessment, the levels of soluble adhesion molecules, head circumference and MRI measurements of brain volume were compared in the same subjects. Results Levels of sPECAM-1 and sP-Selectin were significantly reduced in the ASD group compared to typically developing controls (p < 0.02). Soluble PECAM-1 levels were negatively associated with repetitive behavior and abnormal brain growth in children with ASD (p=0.03). Conclusions As adhesion molecules modulate the permeability and signaling at the blood brain barrier as well as leukocyte infiltration into the CNS, current data suggests a role for these molecules in the complex pathophysiology of ASD. PMID:22717029
Role of reactive oxygen and nitrogen species in the vascular responses to inflammation
Kvietys, Peter R.; Granger, D. Neil
2012-01-01
Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation. PMID:22154653
Lanz, Tobias V.; Becker, Simon; Osswald, Matthias; Bittner, Stefan; Schuhmann, Michael K.; Opitz, Christiane A.; Gaikwad, Sadanand; Wiestler, Benedikt; Litzenburger, Ulrike M.; Sahm, Felix; Ott, Martina; Iwantscheff, Simeon; Grabitz, Carl; Mittelbronn, Michel; von Deimling, Andreas; Winkler, Frank; Meuth, Sven G.; Wick, Wolfgang; Platten, Michael
2013-01-01
Disruption of the blood–brain barrier (BBB) is a hallmark of acute inflammatory lesions in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis. This disruption may precede and facilitate the infiltration of encephalitogenic T cells. The signaling events that lead to this BBB disruption are incompletely understood but appear to involve dysregulation of tight-junction proteins such as claudins. Pharmacological interventions aiming at stabilizing the BBB in MS might have therapeutic potential. Here, we show that the orally available small molecule LY-317615, a synthetic bisindolylmaleimide and inhibitor of protein kinase Cβ, which is clinically under investigation for the treatment of cancer, suppresses the transmigration of activated T cells through an inflamed endothelial cell barrier, where it leads to the induction of the tight-junction molecules zona occludens-1, claudin 3, and claudin 5 and other pathways critically involved in transendothelial leukocyte migration. Treatment of mice with ongoing experimental autoimmune encephalomyelitis with LY-317615 ameliorates inflammation, demyelination, axonal damage, and clinical symptoms. Although LY-317615 dose-dependently suppresses T-cell proliferation and cytokine production independent of antigen specificity, its therapeutic effect is abrogated in a mouse model requiring pertussis toxin. This abrogation indicates that the anti-inflammatory and clinical efficacy is mainly mediated by stabilization of the BBB, thus suppressing the transmigration of encephalitogenic T cells. Collectively, our data suggest the involvement of endothelial protein kinase Cβ in stabilizing the BBB in autoimmune neuroinflammation and imply a therapeutic potential of BBB-targeting agents such as LY-317615 as therapeutic approaches for MS. PMID:23959874
Ye, Hua; Xiao, Shijun; Wang, Xiaoqing; Wang, Zhiyong; Zhang, Zhengshi; Zhu, Chengke; Hu, Bingjie; Lv, Changhuan; Zheng, Shuming; Luo, Hui
2018-04-01
Schizothorax prenanti (S. prenanti) is an indigenous fish species and is popularly cultured in southwestern China. In recent years, intensive farming of S. prenanti and water quality deterioration has increased the susceptibility of this fish to various pathogens, including Aeromonas hydrophila (A. hydrophila), which has caused severe damage to S. prenanti production. However, the understanding of molecular immune response of S. prenanti to A. hydrophila infection is still lacking. In order to better comprehend the S. prenanti time series immune response process against A. hydrophila, we conducted the first transcriptomic comparison in S. prenanti spleen at 4, 24, and 48 h after the infection challenge of A. hydrophila against their control counterparts. In total, 628 million clean reads were obtained from 18 libraries and assembled into 262,745 transcripts. After eliminating sequence redundancy, 69,373 unigenes with an average length of 1476 bp were obtained. Comparative analysis revealed 1890 unigenes with significantly differential expression, including 172, 455, 589 upregulated and 27, 676, 551 unigenes downregulated genes for 4, 24, and 48 h post-infection, respectively. Differentially expressed genes (DEGs) were validated using qPCR for 15 randomly selected genes. Enrichment and pathway analysis of DEGs was carried out to understand the functions of the immune-related genes. Our results revealed that many important functional genes relating to complement and coagulation cascades, chemokine signaling pathway, toll-like receptor signaling pathway, NOD-like receptor signaling pathway and leukocyte transendothelial migration were regulated during the infection of A. hydrophila, and the expression of those genes reflected the transcriptome profiles during the challenging stages.
Naikawadi, Ram P.; Cheng, Ni; Vogel, Stephen M.; Qian, Feng; Wu, Dianqing; Malik, Asrar B.; Ye, Richard D.
2013-01-01
Rationale The small GTPase Rac is critical to vascular endothelial functions, yet its regulation in endothelial cells remains unclear. Understanding the upstream pathway may delineate Rac activation mechanisms and its role in maintaining vascular endothelial barrier integrity. Objective By investigating P-Rex1, one of the Rac-specific guanine nucleotide exchange factors (GEFs) previously known for G protein-coupled receptor (GPCR) signaling, we sought to determine whether Rac-GEF is a nodal for signal integration and potential target for drug intervention. Methods and Results Using gene deletion and siRNA silencing approach, we investigated the role of P-Rex1 in lung microvascular endothelial cells (HLMVECs). TNF-α exposure led to disruption of endothelial junctions, and silencing P-Rex1 protected junction integrity. TNF-α stimulated Rac activation and ROS production in a P-Rex1-dependent manner. Removal of P-Rex1 significantly reduced ICAM-1 expression, PMN transendothelial migration and leukocyte sequestration in TNF-α challenged mouse lungs. The P-Rex1 knockout mice were also refractory to lung vascular hyper-permeability and edema in a LPS-induced sepsis model. Conclusions These results demonstrate for the first time that P-Rex1 expressed in endothelial cells is activated downstream of TNF-α, which is not a GPCR agonist. Our data identify P-Rex1 as a critical mediator of vascular barrier disruption. Targeting P-Rex1 may effectively protect against TNF-α and LPS-induced endothelial junction disruption and vascular hyper-permeability. PMID:22965143
Polymicrobial periodontal pathogens transcriptomes in calvarial bone and soft tissue
Bakthavatchalu, Vasudevan; Meka, Archana; Mans, Jeffrey J.; Sathishkumar, Sabapathi; Lopez, M. Cecilia; Bhattacharyya, Indraneel; Boyce, Brendan F.; Baker, Henry V.; Lamont, Richard J.; Ebersole, Jeffrey L.; Kesavalu, L.
2011-01-01
Summary Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia are consistently associated with adult periodontitis. This study sought to document the host transcriptome to a P. gingivalis, T. denticola, and T. forsythia challenge as a polymicrobial infection using a murine calvarial model of acute inflammation and bone resorption. Mice were infected with P. gingivalis, T. denticola, and T. forsythia over the calvaria, after which the soft tissues and calvarial bones were excised. A Murine GeneChip® array analysis of transcript profiles showed that 6997 genes were differentially expressed in calvarial bones (P < 0.05) and 1544 genes were differentially transcribed in the inflamed tissues after the polymicrobial infection. Of these genes, 4476 and 1035 genes in the infected bone and tissues were differentially expressed by upregulation. Biological pathways significantly impacted by the polymicrobial infection in calvarial bone included leukocyte transendothelial migration (LTM), cell adhesion molecules, adherens junction, major histocompatibility complex antigen, extracellular matrix-receptor interaction (ECM), and antigen processing and presentation resulting in inflammatory/cytokine/chemokine transcripts stimulation in bone and soft tissue. Intense inflammation and increased activated osteoclasts was observed in calvarias compared to sham-infected controls. Quantitative real-time RT-PCR analysis confirmed mRNA level of selected genes corresponded with the microarray expression. The polymicrobial infection regulated several LTM and extracellular membrane (ECM) pathway genes in a manner distinct from monoinfection with P. gingivalis, T. denticola, or T. forsythia. To our knowledge, this is the first definition of the polymicrobial induced transcriptome in calvarial bone and soft tissue in response to periodontal pathogens. PMID:21896157
Lu, Yan; Wang, Liang; Liu, Pengyuan; Yang, Ping; You, Ming
2012-01-01
About 30% stage I non-small cell lung cancer (NSCLC) patients undergoing resection will recur. Robust prognostic markers are required to better manage therapy options. The purpose of this study is to develop and validate a novel gene-expression signature that can predict tumor recurrence of stage I NSCLC patients. Cox proportional hazards regression analysis was performed to identify recurrence-related genes and a partial Cox regression model was used to generate a gene signature of recurrence in the training dataset −142 stage I lung adenocarcinomas without adjunctive therapy from the Director's Challenge Consortium. Four independent validation datasets, including GSE5843, GSE8894, and two other datasets provided by Mayo Clinic and Washington University, were used to assess the prediction accuracy by calculating the correlation between risk score estimated from gene expression and real recurrence-free survival time and AUC of time-dependent ROC analysis. Pathway-based survival analyses were also performed. 104 probesets correlated with recurrence in the training dataset. They are enriched in cell adhesion, apoptosis and regulation of cell proliferation. A 51-gene expression signature was identified to distinguish patients likely to develop tumor recurrence (Dxy = −0.83, P<1e-16) and this signature was validated in four independent datasets with AUC >85%. Multiple pathways including leukocyte transendothelial migration and cell adhesion were highly correlated with recurrence-free survival. The gene signature is highly predictive of recurrence in stage I NSCLC patients, which has important prognostic and therapeutic implications for the future management of these patients. PMID:22292069
PKCε Is an Essential Mediator of Prostate Cancer Bone Metastasis.
Gutierrez-Uzquiza, Alvaro; Lopez-Haber, Cynthia; Jernigan, Danielle L; Fatatis, Alessandro; Kazanietz, Marcelo G
2015-09-01
The bone is a preferred site for metastatic homing of prostate cancer cells. Once prostate cancer patients develop skeletal metastases, they eventually succumb to the disease; therefore, it is imperative to identify key molecular drivers of this process. This study examines the involvement of protein kinase C epsilon (PKCε), an oncogenic protein that is abnormally overexpressed in human tumor specimens and cell lines, on prostate cancer cell bone metastasis. PC3-ML cells, a highly invasive prostate cancer PC3 derivative with bone metastatic colonization properties, failed to induce skeletal metastatic foci upon inoculation into nude mice when PKCε expression was silenced using shRNA. Interestingly, while PKCε depletion had only marginal effects on the proliferative, adhesive, and migratory capacities of PC3-ML cells in vitro or in the growth of xenografts upon s.c. inoculation, it caused a significant reduction in cell invasiveness. Notably, PKCε was required for transendothelial cell migration (TEM) as well as for the growth of PC3-ML cells in a bone biomimetic environment. At a mechanistic level, PKCε depletion abrogates the expression of IL1β, a cytokine implicated in skeletal metastasis. Taken together, PKCε is a key factor for driving the formation of bone metastasis by prostate cancer cells and is a potential therapeutic target for advanced stages of the disease. This study uncovers an important new function of PKCε in the dissemination of cancer cells to the bone; thus, highlighting the promising potential of this oncogenic kinase as a therapeutic target for skeletal metastasis. ©2015 American Association for Cancer Research.
Junctional adhesion molecule-C promotes metastatic potential of HT1080 human fibrosarcoma.
Fuse, Chiaki; Ishida, Yuuki; Hikita, Tomoya; Asai, Tomohiro; Oku, Naoto
2007-03-16
The junctional adhesion molecule (JAM) family is a key molecule in a process called transendothelial migration or diapedesis. Here, we report implications of JAM-C in cancer metastasis. We first determined the mRNA expression of JAMs in 19 kinds of cancer cell lines. JAM-C was expressed in most of tumors having potent metastatic properties. Especially in murine K-1735 melanoma cell lines, the highly metastatic sublines (M2 and X21) strongly expressed JAM-C when compared with the poorly metastatic ones (C-10 and C23). Next, we investigated the role of JAM-C in cancer metastasis by using human JAM-C (hJAM-C) gene-transfected HT1080 fibrosarcoma cells. In comparison with mock-transfected HT1080 cells, these cells showed a significant increase in the adhesion to various extracellular substrates and the invasion across a Matrigel-coated membrane. The knockdown of hJAM-C using small interfering RNA resulted in the suppression of both the adhesion and the invasion of HT1080 cells, suggesting that endogenous hJAM-C might be involved in tumor metastasis. Finally, we studied the role of hJAM-C in an in vivo experimental metastatic model. The results showed that the overexpression of hJAM-C in HT1080 cells significantly decreased the life spans of the tumorbearing mice. In contrast, the knockdown of hJAM-C in HT1080 cells suppressed the weight gain of the lungs with metastatic colonies. We conclude that the expression of JAM-C promotes metastasis by enhancing both the adhesion of cancer cells to extracellular matrices and the subsequent invasion.
Mooren, Olivia L; Li, Jinmei; Nawas, Julie; Cooper, John A
2014-12-15
The vascular endothelium is a highly dynamic structure, and the integrity of its barrier function is tightly regulated. Normally impenetrable to cells, the endothelium actively assists lymphocytes to exit the bloodstream during inflammation. The actin cytoskeleton of the endothelial cell (EC) is known to facilitate transmigration, but the cellular and molecular mechanisms are not well understood. Here we report that actin assembly in the EC, induced by Arp2/3 complex under control of WAVE2, is important for several steps in the process of transmigration. To begin transmigration, ECs deploy actin-based membrane protrusions that create a cup-shaped docking structure for the lymphocyte. We found that docking structure formation involves the localization and activation of Arp2/3 complex by WAVE2. The next step in transmigration is creation of a migratory pore, and we found that endothelial WAVE2 is needed for lymphocytes to follow a transcellular route through an EC. Later, ECs use actin-based protrusions to close the gap behind the lymphocyte, which we discovered is also driven by WAVE2. Finally, we found that ECs in resting endothelial monolayers use lamellipodial protrusions dependent on WAVE2 to form and maintain contacts and junctions between cells. © 2014 Mooren et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Cellular mechanisms of IL-17-induced blood-brain barrier disruption.
Huppert, Jula; Closhen, Dorothea; Croxford, Andrew; White, Robin; Kulig, Paulina; Pietrowski, Eweline; Bechmann, Ingo; Becher, Burkhard; Luhmann, Heiko J; Waisman, Ari; Kuhlmann, Christoph R W
2010-04-01
Recently T-helper 17 (Th17) cells were demonstrated to disrupt the blood-brain barrier (BBB) by the action of IL-17A. The aim of the present study was to examine the mechanisms that underlie IL-17A-induced BBB breakdown. Barrier integrity was analyzed in the murine brain endothelial cell line bEnd.3 by measuring the electrical resistance values using electrical call impedance sensing technology. Furthermore, in-cell Western blots, fluorescence imaging, and monocyte adhesion and transendothelial migration assays were performed. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. IL-17A induced NADPH oxidase- or xanthine oxidase-dependent reactive oxygen species (ROS) production. The resulting oxidative stress activated the endothelial contractile machinery, which was accompanied by a down-regulation of the tight junction molecule occludin. Blocking either ROS formation or myosin light chain phosphorylation or applying IL-17A-neutralizing antibodies prevented IL-17A-induced BBB disruption. Treatment of mice with EAE using ML-7, an inhibitor of the myosin light chain kinase, resulted in less BBB disruption at the spinal cord and less infiltration of lymphocytes via the BBB and subsequently reduced the clinical characteristics of EAE. These observations indicate that IL-17A accounts for a crucial step in the development of EAE by impairing the integrity of the BBB, involving augmented production of ROS.-Huppert, J., Closhen, D., Croxford, A., White, R., Kulig, P., Pietrowski, E., Bechmann, I., Becher, B., Luhmann, H. J., Waisman, A., Kuhlmann, C. R. W. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.
Freely-migrating-defect production during irradiation at elevated temperatures
NASA Astrophysics Data System (ADS)
Hashimoto, T.; Rehn, L. E.; Okamoto, P. R.
1988-12-01
Radiation-induced segregation in a Cu-1 at. % Au alloy was investigated using in situ Rutherford backscattering spectrometry. The amount of Au atom depletion in the near surface region was measured as a function of dose during irradiation at 350 °C with four ions of substantially different masses. Relative efficiencies for producing freely migrating defects were evaluated for 1.8-MeV 1H, 4He, 20Ne, and 84Kr ions by determining beam current densities that gave similar radiation-induced segregation rates. Irradiations with primary knock-on atom median energies of 1.7, 13, and 79 keV yielded relative efficiencies of 53, 7, and 6 %, respectively, compared to the irradiation with a 0.83-keV median energy. Despite quite different defect and host alloy properties, the relative efficiencies for producing freely migrating defects determined in Cu-Au are remarkably similar to those found previously in Ni-Si alloys. Hence, the reported efficiencies appear to offer a reliable basis for making quantitative correlations of microstructural changes induced in different alloy systems by a wide variety of irradiation particles.
NASA Astrophysics Data System (ADS)
Qu, Jing; Zhou, Dandan; Xu, Xiaojing; Zhang, Feng; He, Lihong; Ye, Rong; Zhu, Ziyu; Zuo, Baoqi; Zhang, Huanxiang
2012-11-01
Silk fibroin scaffolds are a naturally derived biocompatible matrix with the potential for reconstructive surgical applications. In this study, tussah silk fibroin (TSF) nanofiber with different diameters (400 nm, 800 nm and 1200 nm) and alignment (random and aligned) were prepared by electrospinning, then the growth and migration of mesenchymal stem cells (MSCs) on these materials were further evaluated. CD90 immunofluorescence staining showed that fiber alignment exhibited a strong influence on the morphology of MSCs, indicating that the alignment of the scaffolds could determine the distribution of cells. Moreover, smaller diameter and aligned TSF scaffolds are more favorable to the growth of MSCs as compared with 800 nm and 1200 nm random TSF scaffolds. In addition, the increased migration speed and efficiency of MSCs induced by three-D TSF were verified, highlighting the guiding roles of TSF to the migrated MSCs. More importantly, 400 nm aligned TSF scaffolds dramatically improved cell migratory speed and further induced the most efficient migration of MSCs as compared with larger diameter TSF scaffolds. In conclusion, the data demonstrate that smaller diameter and aligned electrospun TSF represent valuable scaffolds for supporting and promoting MSCs growth and migration, thus raising the possibility of manipulating TSF scaffolds to enhance homing and therapeutic potential of MSCs in cellular therapy.
Cryan, Paul M.; Diehl, Robert H.
2009-01-01
T HE MIGRATORY MOVEIvl.ENTS OF BATS have proven ex tremely difficult to determine. Despite extensive efforts during the past century to track the movements of bats across landscapes, efficient methods of following small- to medium-size volant animals <240 gl for extended periods (>8 weeks) over long distances (>100 km) have not been developed. Important questions about bat migration remain unanswered: Which bats migrate? Where do they go? How far do they move? How high and fast do they fly? What are their habitat needs during migration? How do bats orient and navigate during migration? Addressing these apparently simple questions will be a considerable challenge to anyone interested in advancing the study of bat migration. In this chapter, we present direct and indirect methods used to study bat migration as well as techniques that have worked for studying bird migration that could feasibly be adapted to the study of bats.
Taslimifar, Mehdi; Buoso, Stefano; Verrey, Francois; Kurtcuoglu, Vartan
2018-01-01
The homeostatic regulation of large neutral amino acid (LNAA) concentration in the brain interstitial fluid (ISF) is essential for proper brain function. LNAA passage into the brain is primarily mediated by the complex and dynamic interactions between various solute carrier (SLC) transporters expressed in the neurovascular unit (NVU), among which SLC7A5/LAT1 is considered to be the major contributor in microvascular brain endothelial cells (MBEC). The LAT1-mediated trans-endothelial transport of LNAAs, however, could not be characterized precisely by available in vitro and in vivo standard methods so far. To circumvent these limitations, we have incorporated published in vivo data of rat brain into a robust computational model of NVU-LNAA homeostasis, allowing us to evaluate hypotheses concerning LAT1-mediated trans-endothelial transport of LNAAs across the blood brain barrier (BBB). We show that accounting for functional polarity of MBECs with either asymmetric LAT1 distribution between membranes and/or intrinsic LAT1 asymmetry with low intraendothelial binding affinity is required to reproduce the experimentally measured brain ISF response to intraperitoneal (IP) L-tyrosine and L-phenylalanine injection. On the basis of these findings, we have also investigated the effect of IP administrated L-tyrosine and L-phenylalanine on the dynamics of LNAAs in MBECs, astrocytes and neurons. Finally, the computational model was shown to explain the trans-stimulation of LNAA uptake across the BBB observed upon ISF perfusion with a competitive LAT1 inhibitor. PMID:29593549
Strauss, Juliette A.; Shepherd, Sam O.; Keske, Michelle A.; Cocks, Matthew
2015-01-01
Abstract This review concludes that a sedentary lifestyle, obesity and ageing impair the vasodilator response of the muscle microvasculature to insulin, exercise and VEGF‐A and reduce microvascular density. Both impairments contribute to the development of insulin resistance, obesity and chronic age‐related diseases. A physically active lifestyle keeps both the vasodilator response and microvascular density high. Intravital microscopy has shown that microvascular units (MVUs) are the smallest functional elements to adjust blood flow in response to physiological signals and metabolic demands on muscle fibres. The luminal diameter of a common terminal arteriole (TA) controls blood flow through up to 20 capillaries belonging to a single MVU. Increases in plasma insulin and exercise/muscle contraction lead to recruitment of additional MVUs. Insulin also increases arteriolar vasomotion. Both mechanisms increase the endothelial surface area and therefore transendothelial transport of glucose, fatty acids (FAs) and insulin by specific transporters, present in high concentrations in the capillary endothelium. Future studies should quantify transporter concentration differences between healthy and at risk populations as they may limit nutrient supply and oxidation in muscle and impair glucose and lipid homeostasis. An important recent discovery is that VEGF‐B produced by skeletal muscle controls the expression of FA transporter proteins in the capillary endothelium and thus links endothelial FA uptake to the oxidative capacity of skeletal muscle, potentially preventing lipotoxic FA accumulation, the dominant cause of insulin resistance in muscle fibres. PMID:25627798
Hemispheric-scale wind selection facilitates bar-tailed godwit circum-migration of the Pacific
Gill, Robert E.; Douglas, David C.; Handel, Colleen M.; Tibbitts, T. Lee; Hufford, Gary; Piersma, Theunis
2014-01-01
The annual 29 000 km long migration of the bar-tailed godwit, Limosa lapponica baueri, around the Pacific Ocean traverses what is arguably the most complex and seasonally structured atmospheric setting on Earth. Faced with marked variation in wind regimes and storm conditions across oceanic migration corridors, individuals must make critical decisions about when and where to fly during nonstop flights of a week's duration or longer. At a minimum, their decisions will affect wind profitability and thus reduce energetic costs of migration; in the extreme, poor decisions or unpredictable weather events will risk survival. We used satellite telemetry to track the annual migration of 24 bar-tailed godwits and analysed their flight performance relative to wind conditions during three major migration legs between nonbreeding grounds in New Zealand and breeding grounds in Alaska. Because flight altitudes of birds en route were unknown, we modelled flight efficiency at six geopotential heights across each migratory segment. Birds selected departure dates when atmospheric conditions conferred the greatest wind assistance both at departure and throughout their flights. This behaviour suggests that there exists a cognitive mechanism, heretofore unknown among migratory birds, that allows godwits to assess changes in weather conditions that are linked (i.e. teleconnected) across widely separated atmospheric regions. Godwits also showed adaptive flexibility in their response not only to cues related to seasonal changes in macrometeorology, such as spatial shifting of storm tracks and temporal periods of cyclogenesis, but also to cues associated with stochastic events, especially at departure sites. Godwits showed limits to their response behaviours, however, especially relative to rapidly developing stochastic events while en route. We found that flight efficiency depended significantly upon altitude and hypothesize that godwits exhibit further adaptive flexibility by varying flight altitude en route to optimize flight efficiency.
Dimension-Factorized Range Migration Algorithm for Regularly Distributed Array Imaging
Guo, Qijia; Wang, Jie; Chang, Tianying
2017-01-01
The two-dimensional planar MIMO array is a popular approach for millimeter wave imaging applications. As a promising practical alternative, sparse MIMO arrays have been devised to reduce the number of antenna elements and transmitting/receiving channels with predictable and acceptable loss in image quality. In this paper, a high precision three-dimensional imaging algorithm is proposed for MIMO arrays of the regularly distributed type, especially the sparse varieties. Termed the Dimension-Factorized Range Migration Algorithm, the new imaging approach factorizes the conventional MIMO Range Migration Algorithm into multiple operations across the sparse dimensions. The thinner the sparse dimensions of the array, the more efficient the new algorithm will be. Advantages of the proposed approach are demonstrated by comparison with the conventional MIMO Range Migration Algorithm and its non-uniform fast Fourier transform based variant in terms of all the important characteristics of the approaches, especially the anti-noise capability. The computation cost is analyzed as well to evaluate the efficiency quantitatively. PMID:29113083
Effector CD8^+ T cells migrate via chemokine-enhanced generalized L'evy walks
NASA Astrophysics Data System (ADS)
Banigan, Edward; Harris, Tajie; Christian, David; Liu, Andrea; Hunter, Christopher
2012-02-01
Chemokines play a central role in regulating processes essential to the immune function of T cells, such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. In order to understand the role of the chemokine CXCL10 during chronic infection by the parasite T. gondii, we analyze tracks of migrating CD8^+ T cells in brain tissue. Surprisingly, we find that T cell motility is not described by a Brownian walk, but instead is consistent with a generalized L'evy walk consisting of L'evy-distributed runs alternating with pauses of L'evy-distributed durations. According to our model, this enables T cells to find rare targets more than an order of magnitude more efficiently than Brownian random walkers. The chemokine CXCL10 increases the migration speed without changing the character of the walk statistics. Thus, CD8^+ T cells use an efficient search strategy to facilitate an effective immune response, and CXCL10 aids them in shortening the average time to find rare targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakowatz, C.V. Jr.; Wahl, D.E.; Thompson, P.A.
1996-12-31
Wavefront curvature defocus effects can occur in spotlight-mode SAR imagery when reconstructed via the well-known polar formatting algorithm (PFA) under certain scenarios that include imaging at close range, use of very low center frequency, and/or imaging of very large scenes. The range migration algorithm (RMA), also known as seismic migration, was developed to accommodate these wavefront curvature effects. However, the along-track upsampling of the phase history data required of the original version of range migration can in certain instances represent a major computational burden. A more recent version of migration processing, the Frequency Domain Replication and Downsampling (FReD) algorithm, obviatesmore » the need to upsample, and is accordingly more efficient. In this paper the authors demonstrate that the combination of traditional polar formatting with appropriate space-variant post-filtering for refocus can be as efficient or even more efficient than FReD under some imaging conditions, as demonstrated by the computer-simulated results in this paper. The post-filter can be pre-calculated from a theoretical derivation of the curvature effect. The conclusion is that the new polar formatting with post filtering algorithm (PF2) should be considered as a viable candidate for a spotlight-mode image formation processor when curvature effects are present.« less
Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury.
Kang, Soo-Kyung; Shin, Myung-Joo; Jung, Jin Sup; Kim, Yong Geun; Kim, Cheul-Hong
2006-08-01
Isolated rat adipose tissue-derived stromal cells (rATSCs) contain pluripotent cells that can be differentiated into a variety of cell lineages, including neural cells. Recent work has shown that ATSCs can make neurosphere-like clumps and differentiate into neuron-like cells expressing neuronal markers, but their therapeutic effect is unclear. Here we report that intravenous infusion of oligodendrocyte precursor cells (OPCs) derived from rATSC autograft cells sources improve motor function in rat models of spinal cord injury (SCI). After 4-5 weeks, transplanted rATSC-OPC cells survived and migrated into the injured region of SCI very efficiently (30-35%) and migrated cells were partially differentiated into neurons and oligodendrocyte. Also, we found some of the engrafted OPCs migrated and integrated in the kidney, brain, lung, and liver through the intravenous system. Behavioral analysis revealed the locomotor functions of OPC-autografted SCI rats were significantly restored. Efficient migration of intravenously engrafted rATSC-OPCs cells into SCI lesion suggests that SCI-induced chemotaxic factors facilitate migration of rATSC-OPCs. Here, we verified that engrafted rATSCs and SCI-induced chemotaxic factors indeed play an important role in proliferation, migration, and differentiation of endogeneous spinal cord-derived neural progenitor cells in the injured region. In transplantation paradigms, the interaction between engrafted rATSC-OPCs and endogeneous spinal cord-derived neuronal progenitor cells will be important in promoting healing through fate decisions, resulting in coordinated induction of cell migration and differentiation.
NASA Astrophysics Data System (ADS)
Tolfree, Kathryne; Wyse, R. F.
2014-01-01
Radial migration is a way to rearrange the orbital angular momentum of stars in an spiral disk without inducing kinematic heating. When radial migration is very efficient, a large fraction of disk stars experience significant changes in their orbital angular momenta in a short period of time. Such scenarios have strong implications for the chemical and kinematic evolution of disk galaxies. We have undertaken an investigation of the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure by deriving the fraction of stars that can migrate radially given certain conditions. In order for a star in a spiral disk to migrate radially, it must first be “captured" in a family of resonant orbits near the radius of corotation with a spiral pattern. Thus far, the only analytic criterion for capture has been for stars in circular orbits. We present the capture criterion for stars on non-circular orbits in a disk galaxy. We then use our analytically derived capture criteria to model the radial distribution of the captured fraction in an exponential disk with a flat rotation curve as well as the dependence of the total captured fraction in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential at corotation (|Φs|CR). We find that the captured fraction goes as Exp[-σR2/|Φs|CR].
NASA Astrophysics Data System (ADS)
Tolfree, K. J. D.; Wyse, R. F. G.
2014-03-01
Radial migration is a mechanism that can rearrange the orbital angular momentum of stars in a spiral disk without inducing kinematic heating. When radial migration is very efficient, a large fraction of disk stars experience significant changes in their orbital angular momenta over a short period of time. Such scenarios have strong implications for the chemical and kinematic evolution of disk galaxies. We have undertaken an investigation of the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure by deriving the fraction of stars that can migrate radially. In order for a star in a spiral disk to migrate radially, it must first be “captured” in a family of resonant orbits near the radius of corotation with a transient spiral pattern. To date, the only analytic criterion for capture has been for stars in circular orbits. We present the capture criterion for disk stars on non-circular orbits. We then use our analytically derived capture criterion to model the radial distribution of the captured fraction in an exponential disk with a flat rotation curve. Further, we derive the dependence of the total captured fraction in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential evaluated at corotation (|Φs|CR). We find that within an annulus centered around corotation where σR is constant, the captured fraction goes as e-σR2/|Φs|CR.
Wang, Pan; Feng, Liang-Wen; Wang, Lijia; Li, Jun-Fang; Liao, Saihu; Tang, Yong
2015-04-15
This study has led to the development of a novel, highly efficient, 1,2-perfluoro-alkyl/-aryl migration process in reactions of hydrate of 1-perfluoro-alkyl/-aryl-1,2-diketones with alcohols, which are promoted by a Zn(II)/bisoxazoline and form α-perfluoro-alkyl/-aryl-substituted α-hydroxy esters. With (-)-8-phenylmenthol as the alcohol, the corresponding menthol esters are generated in high yields with excellent levels of diastereoselectivity. The mechanistic studies show that the benzilic ester-type rearrangement reaction takes place via an unusual 1,2-migration of electron-deficient trifluoromethyl group rather than the phenyl group. The overall process serves as a novel, efficient, and simple approach for the synthesis of highly enantioenriched, biologically relevant α-hydroxy-α-perfluoroalkyl carboxylic acid derivatives.
Jin, Honglin; Qian, Yuan; Dai, Yanfeng; Qiao, Sha; Huang, Chuan; Lu, Lisen; Luo, Qingming; Chen, Jing; Zhang, Zhihong
2016-01-01
Dendritic cell (DC) migration to the lymph node is a key component of DC-based immunotherapy. However, the DC homing rate to the lymphoid tissues is poor, thus hindering the DC-mediated activation of antigen-specific T cells. Here, we developed a system using fluorescent magnetic nanoparticles (α-AP-fmNPs; loaded with antigen peptide, iron oxide nanoparticles, and indocyanine green) in combination with magnetic pull force (MPF) to successfully manipulate DC migration in vitro and in vivo. α-AP-fmNPs endowed DCs with MPF-responsiveness, antigen presentation, and simultaneous optical and magnetic resonance imaging detectability. We showed for the first time that α-AP-fmNP-loaded DCs were sensitive to MPF, and their migration efficiency could be dramatically improved both in vitro and in vivo through MPF treatment. Due to the enhanced migration of DCs, MPF treatment significantly augmented antitumor efficacy of the nanoparticle-loaded DCs. Therefore, we have developed a biocompatible approach with which to improve the homing efficiency of DCs and subsequent anti-tumor efficacy, and track their migration by multi-modality imaging, with great potential applications for DC-based cancer immunotherapy. PMID:27698936
Stellar Angular Momentum Distributions and Preferential Radial Migration
NASA Astrophysics Data System (ADS)
Wyse, Rosemary; Daniel, Kathryne J.
2018-04-01
I will present some results from our recent investigations into the efficiency of radial migration in stellar disks of differing angular momentum distributions, within a given adopted 2D spiral disk potential. We apply to our models an analytic criterion that determines whether or not individual stars are in orbits that could lead to radial migration around the corotation resonance. We couch our results in terms of the local stellar velocity dispersion and find that the fraction of stars that could migrate radially decreases as the velocity dispersion increases. I will discuss implications and comparisons with the results of other approaches.
Rotics, Shay; Kaatz, Michael; Resheff, Yehezkel S; Turjeman, Sondra Feldman; Zurell, Damaris; Sapir, Nir; Eggers, Ute; Flack, Andrea; Fiedler, Wolfgang; Jeltsch, Florian; Wikelski, Martin; Nathan, Ran
2016-07-01
Migration conveys an immense challenge, especially for juvenile birds coping with enduring and risky journeys shortly after fledging. Accordingly, juveniles exhibit considerably lower survival rates compared to adults, particularly during migration. Juvenile white storks (Ciconia ciconia), which are known to rely on adults during their first fall migration presumably for navigational purposes, also display much lower annual survival than adults. Using detailed GPS and body acceleration data, we examined the patterns and potential causes of age-related differences in fall migration properties of white storks by comparing first-year juveniles and adults. We compared juvenile and adult parameters of movement, behaviour and energy expenditure (estimated from overall dynamic body acceleration) and placed this in the context of the juveniles' lower survival rate. Juveniles used flapping flight vs. soaring flight 23% more than adults and were estimated to expend 14% more energy during flight. Juveniles did not compensate for their higher flight costs by increased refuelling or resting during migration. When juveniles and adults migrated together in the same flock, the juvenile flew mostly behind the adult and was left behind when they separated. Juveniles showed greater improvement in flight efficiency throughout migration compared to adults which appears crucial because juveniles exhibiting higher flight costs suffered increased mortality. Our findings demonstrate the conflict between the juveniles' inferior flight skills and their urge to keep up with mixed adult-juvenile flocks. We suggest that increased flight costs are an important proximate cause of juvenile mortality in white storks and likely in other soaring migrants and that natural selection is operating on juvenile variation in flight efficiency. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Stockwell, Jason D.; Yule, Daniel L.; Sass, Greg G.
2011-01-01
Diel vertical migrations are common among many aquatic species and are often associated with changing light levels. The underlying mechanisms are generally attributed to optimizing foraging efficiency or growth rates and avoiding predation risk (μ). The objectives of this study were to (1) assess seasonal and interannual changes in vertical migration patterns of three trophic levels in the Lake Superior pelagic food web and (2) examine the mechanisms underlying the observed variability by using models of foraging, growth, and μ. Our results suggest that the opossum shrimp Mysis diluviana, kiyi Coregonus kiyi, and siscowet lake trout Salvelinus namaycush migrate concurrently during each season, but spring migrations are less extensive than summer and fall migrations. In comparison with M. diluviana, kiyis, and siscowets, the migrations by ciscoes C. artedi were not as deep in the water column during the day, regardless of season. Foraging potential and μ probably drive the movement patterns of M. diluviana, while our modeling results indicate that movements by kiyis and ciscoes are related to foraging opportunity and growth potential and receive a lesser influence from μ. The siscowet is an abundant apex predator in the pelagia of Lake Superior and probably undertakes vertical migrations in the water column to optimize foraging efficiency and growth. The concurrent vertical movement patterns of most species are likely to facilitate nutrient transport in this exceedingly oligotrophic ecosystem, and they demonstrate strong linkages between predators and prey. Fishery management strategies should use an ecosystem approach and should consider how altering the densities of long-lived top predators produces cascading effects on the nutrient cycling and energy flow in lower trophic levels.
Convergence of broad-scale migration strategies in terrestrial birds.
La Sorte, Frank A; Fink, Daniel; Hochachka, Wesley M; Kelling, Steve
2016-01-27
Migration is a common strategy used by birds that breed in seasonal environments. Selection for greater migration efficiency is likely to be stronger for terrestrial species whose migration strategies require non-stop transoceanic crossings. If multiple species use the same transoceanic flyway, then we expect the migration strategies of these species to converge geographically towards the most optimal solution. We test this by examining population-level migration trajectories within the Western Hemisphere for 118 migratory species using occurrence information from eBird. Geographical convergence of migration strategies was evident within specific terrestrial regions where geomorphological features such as mountains or isthmuses constrained overland migration. Convergence was also evident for transoceanic migrants that crossed the Gulf of Mexico or Atlantic Ocean. Here, annual population-level movements were characterized by clockwise looped trajectories, which resulted in faster but more circuitous journeys in the spring and more direct journeys in the autumn. These findings suggest that the unique constraints and requirements associated with transoceanic migration have promoted the spatial convergence of migration strategies. The combination of seasonal atmospheric and environmental conditions that has facilitated the use of similar broad-scale migration strategies may be especially prone to disruption under climate and land-use change. © 2016 The Author(s).
Three-dimensional near-field MIMO array imaging using range migration techniques.
Zhuge, Xiaodong; Yarovoy, Alexander G
2012-06-01
This paper presents a 3-D near-field imaging algorithm that is formulated for 2-D wideband multiple-input-multiple-output (MIMO) imaging array topology. The proposed MIMO range migration technique performs the image reconstruction procedure in the frequency-wavenumber domain. The algorithm is able to completely compensate the curvature of the wavefront in the near-field through a specifically defined interpolation process and provides extremely high computational efficiency by the application of the fast Fourier transform. The implementation aspects of the algorithm and the sampling criteria of a MIMO aperture are discussed. The image reconstruction performance and computational efficiency of the algorithm are demonstrated both with numerical simulations and measurements using 2-D MIMO arrays. Real-time 3-D near-field imaging can be achieved with a real-aperture array by applying the proposed MIMO range migration techniques.
Wei, Dong; Ma, Fusheng; Wang, Rui; Dou, Shangyi; Cui, Peng; Huang, Hao; Ji, Jun; Jia, Endong; Jia, Xiaojie; Sajid, Sajid; Elseman, Ahmed Mourtada; Chu, Lihua; Li, Yingfeng; Jiang, Bing; Qiao, Juan; Yuan, Yongbo; Li, Meicheng
2018-06-25
Migration of ions can lead to photoinduced phase separation, degradation, and current-voltage hysteresis in perovskite solar cells (PSCs), and has become a serious drawback for the organic-inorganic hybrid perovskite materials (OIPs). Here, the inhibition of ion migration is realized by the supramolecular cation-π interaction between aromatic rubrene and organic cations in OIPs. The energy of the cation-π interaction between rubrene and perovskite is found to be as strong as 1.5 eV, which is enough to immobilize the organic cations in OIPs; this will thus will lead to the obvious reduction of defects in perovskite films and outstanding stability in devices. By employing the cation-immobilized OIPs to fabricate perovskite solar cells (PSCs), a champion efficiency of 20.86% and certified efficiency of 20.80% with negligible hysteresis are acquired. In addition, the long-term stability of cation-immobilized PSCs is improved definitely (98% of the initial efficiency after 720 h operation), which is assigned to the inhibition of ionic diffusions in cation-immobilized OIPs. This cation-π interaction between cations and the supramolecular π system enhances the stability and the performance of PSCs efficiently and would be a potential universal approach to get the more stable perovskite devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Definition of molecular determinants of prostate cancer cell bone extravasation.
Barthel, Steven R; Hays, Danielle L; Yazawa, Erika M; Opperman, Matthew; Walley, Kempland C; Nimrichter, Leonardo; Burdick, Monica M; Gillard, Bryan M; Moser, Michael T; Pantel, Klaus; Foster, Barbara A; Pienta, Kenneth J; Dimitroff, Charles J
2013-01-15
Advanced prostate cancer commonly metastasizes to bone, but transit of malignant cells across the bone marrow endothelium (BMEC) remains a poorly understood step in metastasis. Prostate cancer cells roll on E-selectin(+) BMEC through E-selectin ligand-binding interactions under shear flow, and prostate cancer cells exhibit firm adhesion to BMEC via β1, β4, and αVβ3 integrins in static assays. However, whether these discrete prostate cancer cell-BMEC adhesive contacts culminate in cooperative, step-wise transendothelial migration into bone is not known. Here, we describe how metastatic prostate cancer cells breach BMEC monolayers in a step-wise fashion under physiologic hemodynamic flow. Prostate cancer cells tethered and rolled on BMEC and then firmly adhered to and traversed BMEC via sequential dependence on E-selectin ligands and β1 and αVβ3 integrins. Expression analysis in human metastatic prostate cancer tissue revealed that β1 was markedly upregulated compared with expression of other β subunits. Prostate cancer cell breaching was regulated by Rac1 and Rap1 GTPases and, notably, did not require exogenous chemokines as β1, αVβ3, Rac1, and Rap1 were constitutively active. In homing studies, prostate cancer cell trafficking to murine femurs was dependent on E-selectin ligand, β1 integrin, and Rac1. Moreover, eliminating E-selectin ligand-synthesizing α1,3 fucosyltransferases in transgenic adenoma of mouse prostate mice dramatically reduced prostate cancer incidence. These results unify the requirement for E-selectin ligands, α1,3 fucosyltransferases, β1 and αVβ3 integrins, and Rac/Rap1 GTPases in mediating prostate cancer cell homing and entry into bone and offer new insight into the role of α1,3 fucosylation in prostate cancer development.
Trinidad, Eva M.; García, Dolores; Soler, Gloria; Ortuño, Francisco J.; Zapata, Agustín G.; Alonso, Luis M.
2016-01-01
A role of endothelial cells in the survival of CLL cells during extravasation is presently unknown. Herein we show that CLL cells but not normal B cells can receive apoptotic signals through physical contact with TNF-α activated endothelium impairing survival in transendothelial migration (TEM) assays. In addition, the CLL cells of patients having lymphadenopathy (LApos) show a survival advantage during TEM that can be linked to increased expression of α4 and αL integrin chains. Within this context, ephrinA4 expressed on the surface of CLL cells sequestrates integrins and inactivates them resulting in reduced adhesion and inhibition of apoptotic/survival signals through them. In agreement, ephrinA4 silencing resulted in increased survival of CLL cells of LApos patients but not LA neg patients. Similarly was observed when a soluble ephrinA4 isoform was added to TEM assays strongly suggesting that accumulation of this isoform in the serum of LApos patients could contribute to CLL cells dissemination and survival in vivo. In supporting, CLL lymphadenopathies showed a preferential accumulation of apoptotic CLL cells around high endothelial venules lacking ephrinA4. Moreover, soluble ephrinA4 isolated from sera of patients increased the number and viability of CLL cells recovered from the lymph nodes of adoptively transferred mice. Finally, we present evidence suggesting that soluble ephrinA4 mediated survival during TEM could enhance a transcellular TEM route of the CLL cells. Together these findings point to an important role of ephrinA4 in the nodal dissemination of CLL cells governing extravasation and survival. PMID:27374180
Yan, Meiping; Zhang, Xinhua; Chen, Ao; Gu, Wei; Liu, Jie; Ren, Xiaojiao; Zhang, Jianping; Wu, Xiaoxiong; Place, Aaron T; Minshall, Richard D; Liu, Guoquan
2017-11-01
Intercellular adhesion molecule-1 (ICAM-1) mediates the firm adhesion of leukocytes to endothelial cells and initiates subsequent signaling that promotes their transendothelial migration (TEM). Vascular endothelial (VE)-cadherin plays a critical role in endothelial cell-cell adhesion, thereby controlling endothelial permeability and leukocyte transmigration. This study aimed to determine the molecular signaling events that originate from the ICAM-1-mediated firm adhesion of neutrophils that regulate VE-cadherin's role as a negative regulator of leukocyte transmigration. We observed that ICAM-1 interacts with Src homology domain 2-containing phosphatase-2 (SHP-2), and SHP-2 down-regulation via silencing of small interfering RNA in endothelial cells enhanced neutrophil adhesion to endothelial cells but inhibited neutrophil transmigration. We also found that VE-cadherin associated with the ICAM-1-SHP-2 complex. Moreover, whereas the activation of ICAM-1 leads to VE-cadherin dissociation from ICAM-1 and VE-cadherin association with actin, SHP-2 down-regulation prevented ICAM-1-VE-cadherin association and promoted VE-cadherin-actin association. Furthermore, SHP-2 down-regulation in vivo promoted LPS-induced neutrophil recruitment in mouse lung but delayed neutrophil extravasation. These results suggest that SHP-2- via association with ICAM-1-mediates ICAM-1-induced Src activation and modulates VE-cadherin switching association with ICAM-1 or actin, thereby negatively regulating neutrophil adhesion to endothelial cells and enhancing their TEM.-Yan, M., Zhang, X., Chen, A., Gu, W., Liu, J., Ren, X., Zhang, J., Wu, X., Place, A. T., Minshall, R. D., Liu, G. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction. © FASEB.
Chen, Michelle B.; Whisler, Jordan A.; Fröse, Julia; Yu, Cathy; Shin, Yoojin
2017-01-01
Distant metastasis, which results in >90% of cancer related deaths, is enabled by hematogenous dissemination of tumor cells via the circulation. This requires the completion of a sequence of complex steps including transit, initial arrest, extravasation, survival and proliferation. Increased understanding of the cellular and molecular players enabling each of these steps is key in uncovering new opportunities for therapeutic intervention during early metastatic dissemination. Here, we describe an in vitro model of the human microcirculation with the potential to recapitulate discrete steps of early metastatic seeding, including arrest, transendothelial migration and early micrometastases formation. The microdevice features self-organized human microvascular networks formed over 4–5 days, after which tumor can be perfused and extravasation events easily tracked over 72 hours, via standard confocal microscopy. Contrary to most in vivo and in vitro extravasation assays, robust and rapid scoring of extravascular cells combined with high-resolution imaging can be easily achieved due to the confinement of the vascular network to one plane close to the surface of the device. This renders extravascular cells clearly distinct and allows tumor cells of interest to be identified quickly compared to those in thick tissues. The ability to generate large numbers of devices (~36) per experiment coupled with fast quantitation further allows for highly parametric studies, which is required when testing multiple genetic or pharmacological perturbations. This is coupled with the capability for live tracking of single cell extravasation events allowing both tumor and endothelial morphological dynamics to be observed in high detail with a moderate number of data points. This Protocol Extension describes an adaptation of an existing Protocol describing a microfluidic platform that offers additional applications. PMID:28358393
Blaheta, R A; Hailer, N P; Brude, N; Wittig, B; Leckel, K; Oppermann, E; Bachmann, M; Harder, S; Cinatl, J; Scholz, M; Bereiter-Hahn, J; Weber, S; Encke, A; Markus, B H
2000-02-27
Cyclosporine A (CsA) and tacrolimus prevent proliferation but not transendothelial migration of alloreactive lymphocytes into donor organs. As a result, serious adverse effects, such as nephrotoxicity and neurotoxicity, have been observed under CsA/tacrolimus therapy. The incorporation of new drugs with infiltration blocking properties might enhance the efficacy of the current immunosuppressive protocol, allowing lower CsA/tacrolimus dosage. Because Ca2+ plays a critical role in cell-cell interaction, the Ca2+-channel blocker verapamil might be a good cany. didate for supporting CsA/tacrolimus-based therapy. A T-cell endothelial cell coculture model or immobilized immunoglobulin G globulin chimeras were employed to investigate how S- and R- verapamil interfere with the lymphocytic infiltration process. The expression and arrangement of membranous adhesion receptors and cytoskeletal F-actin filaments were analyzed by fluorometric method in the presence of. verapamil. Both verapamil enantiomers strongly inhibited lymphocyte infiltration. CD4+ and CD8+ T-cells were influenced to a similar extent with regard to horizontal locomotion (CD4+=CD8+), but to a different extent with regard to adhesion and penetration (CD4+ > CD8+). Moreover, penetration was blocked to a higher extent than was adhesion. ID50-values were 31 microM (CD4+-adhesion) and 11 microM (CD4+-penetration). Verapamil reduced P-selectin expression on endothelial cells and effectively down-regulated binding of T-cells to immobilized P-selectin immunoglobulin G globulins (ID50=4.4 microM; CD4+). A verapamil-induced reduction of intracellular F-actin in T-lymphocytes was proven to be mainly responsible for diminished cell locomotion. The prevention of CD4+ T-cell penetration by verapamil might argue for its use as an adjunct to CsA/tacrolimus-based immunosuppressive therapy.
Huang, Yu-Ting; Lan, Qiang; Lorusso, Girieca; Duffey, Nathalie; Rüegg, Curzio
2017-02-07
Matricellular proteins play multiple roles in primary tumor growth, local invasion and tumor angiogenesis. However, their contribution to metastasis and the putative mechanisms involved are less well characterized. In ER-negative human breast cancer, elevated expression levels of the matricellular protein Cysteine-rich angiogenic inducer 61 (CYR61) are associated with more aggressive progression. Here, we investigated the role of CYR61 in breast cancer lung metastasis using the triple negative human breast cancer cell lines MDA-MB-231 and SUM159. Silencing of CYR61 significantly decreased lung metastasis from tumors orthotopically implanted in pre-irradiated or naive mammary tissue and upon tail vein injection. Constitutive CYR61 silencing impaired cancer cell extravasation to the lung during the first 24 hours after tail vein injection. In contrast, CYR61 inducible silencing starting 24 hours after cancer cell injection had no impact on lung metastasis formation. In vitro experiments revealed that CYR61 silencing decreased cancer cell transendothelial migration and motility, reduced CYR61 levels present at the cell surface and sensitized cancer cells to anoikis. Furthermore, we demonstrate that CYR61-dependent cell survival under non-adhesive conditions relied, at least partially, on β1 integrin ligation and AMPKα signaling while it was independent of AKT, FAK and ERK1/2 activation. Our data provide the first evidence that CYR61 promotes breast cancer lung metastasis by facilitating tumor cell extravasation and protecting from anoikis during initial seeding to the lung. The uncovered CYR61-β1 integrin-AMPKα axis may serve as a potential therapeutic target to prevent breast cancer metastasis to the lung.
Kerkentzes, Konstantinos; Lagani, Vincenzo; Tsamardinos, Ioannis; Vyberg, Mogens; Røe, Oluf Dimitri
2014-01-01
Novel statistical methods and increasingly more accurate gene annotations can transform "old" biological data into a renewed source of knowledge with potential clinical relevance. Here, we provide an in silico proof-of-concept by extracting novel information from a high-quality mRNA expression dataset, originally published in 2001, using state-of-the-art bioinformatics approaches. The dataset consists of histologically defined cases of lung adenocarcinoma (AD), squamous (SQ) cell carcinoma, small-cell lung cancer, carcinoid, metastasis (breast and colon AD), and normal lung specimens (203 samples in total). A battery of statistical tests was used for identifying differential gene expressions, diagnostic and prognostic genes, enriched gene ontologies, and signaling pathways. Our results showed that gene expressions faithfully recapitulate immunohistochemical subtype markers, as chromogranin A in carcinoids, cytokeratin 5, p63 in SQ, and TTF1 in non-squamous types. Moreover, biological information with putative clinical relevance was revealed as potentially novel diagnostic genes for each subtype with specificity 93-100% (AUC = 0.93-1.00). Cancer subtypes were characterized by (a) differential expression of treatment target genes as TYMS, HER2, and HER3 and (b) overrepresentation of treatment-related pathways like cell cycle, DNA repair, and ERBB pathways. The vascular smooth muscle contraction, leukocyte trans-endothelial migration, and actin cytoskeleton pathways were overexpressed in normal tissue. Reanalysis of this public dataset displayed the known biological features of lung cancer subtypes and revealed novel pathways of potentially clinical importance. The findings also support our hypothesis that even old omics data of high quality can be a source of significant biological information when appropriate bioinformatics methods are used.
Haidari, Mehran; Zhang, Wei; Wakame, Koji
2013-12-18
The effect of antioxidants on treatment of cancer is still controversial. Previously, we demonstrated that interaction of breast cancer cells with endothelial cells leads to tyrosine phosphorylation of VE-cadherin and disruption of endothelial adherens junction (EAJ). The molecular mechanism underlying the anti-metastatic effects of mushroom-derived active hexode correlated compound (AHCC) remains elusive. Several cellular and biochemical techniques were used to determine the contribution of oxidative stress in the disruption of EAJ and to test this hypothesis that AHCC inhibits the breast cancer cell-induced disruption of EAJ. Interaction of breast cancer cells (MDA-MB-231 cells) with human umbilical vein endothelial cells (HUVECs) leads to an increase in generation of reactive oxygen species (ROS). Treatment of HUVECs with H2O2 or phorbol myristate acetate (PMA) led to tyrosine phosphorylation of VE-cadherin, dissociation of β-catenin from VE-cadherin complex and increased transendothelial migration (TEM) of MDA-MB-231 cells. Induction of VE-cadherin tyrosine phosphorylation by PMA or by interaction of MDA-MB-231 cells with HUVECs was mediated by HRas and protein kinase C-α signaling pathways. Disruption of EAJ and phosphorylation of VE-cadherin induced by interaction of MDA-MB-231 cells with HUVECs were attenuated when HUVECs were pretreated with an antioxidant, N-acetylcysteine (NAC) or AHCC. AHCC inhibited TEM of MDA-MB-231 cells and generation of ROS induced by interaction of MDA-MB-231 cells with HUVECs. Our studies suggest that ROS contributes to disruption of EAJ induced by interaction of MDA-MB-231 cells with HUVECs and AHCC attenuates this alteration. Copyright © 2013 Elsevier Inc. All rights reserved.
Kukolj, Tamara; Trivanović, Drenka; Djordjević, Ivana Okić; Mojsilović, Slavko; Krstić, Jelena; Obradović, Hristina; Janković, Srdja; Santibanez, Juan Francisco; Jauković, Aleksandra; Bugarski, Diana
2018-01-01
Lipopolysaccharide (LPS) is a pertinent deleterious factor in oral microenvironment for cells which are carriers of regenerative processes. The aim of this study was to investigate the emerging in vitro effects of LPS (Escherichia coli) on human periodontal ligament stem cell (PDLSC) functions and associated signaling pathways. We demonstrated that LPS did not affect immunophenotype, proliferation, viability, and cell cycle of PDLSCs. However, LPS modified lineage commitment of PDLSCs inhibiting osteogenesis by downregulating Runx2, ALP, and Ocn mRNA expression, while stimulating chondrogenesis and adipogenesis by upregulating Sox9 and PPARγ mRNA expression. LPS promoted myofibroblast-like phenotype of PDLSCs, since it significantly enhanced PDLSC contractility, as well as protein and/or gene expression of TGF-β, fibronectin (FN), α-SMA, and NG2. LPS also increased protein and gene expression levels of anti-inflammatory COX-2 and pro-inflammatory IL-6 molecules in PDLSCs. Inhibition of peripheral blood mononuclear cells (MNCs) transendothelial migration in presence of LPS-treated PDLSCs was accompanied by the reduction of CD29 expression within MNCs. However, LPS treatment did not change the inhibitory effect of PDLSCs on mitogen-stimulated proliferation of CD4 + and the ratio of CD4 + CD25 high /CD4 + CD25 low lymphocytes. LPS-treated PDLSCs did not change the frequency of CD34 + and CD45 + cells, but decreased the frequency of CD33 + and CD14 + myeloid cells within MNCs. Moreover, LPS treatment attenuated the stimulatory effect of PDLSCs on CFC activity of MNCs, predominantly the CFU-GM number. The results indicated that LPS-activated ERK1,2 was at least partly involved in the observed effects on PDLSC differentiation capacity, acquisition of myofibroblastic attributes, and changes of their immunomodulatory features. © 2017 Wiley Periodicals, Inc.
Fazal, Nadeem; Shelip, Alla; Siddiqui, Erum; Ali, Ashraf; Azim, Anser C; Al-Ghoul, Walid M
2012-03-01
Recently we found that superimposition of Enterococcus faecalis infection on burn injury caused an eruption of host mortality not seen with either individual challenge. We hypothesized that the Enterococcus bacteria, and/or factors related to these organisms, aggravate burn-induced modulations in host defense by neutrophils. Our study focuses on alterations in neutrophils' oxidative, proteolytic, and adhesive functions and transendothelial migration of neutrophils in burn rats inoculated with E. faecalis. Rats were subjected to burn (30% total body surface area) and then intra-abdominally inoculated with E. faecalis (10(4)CFU kg(-1) b.w). Polymorphonuclear neutrophils (PMNs) were harvested from circulating/blood and tissue/peritoneal cavity at day-2 post injury. Extracellular release of O(-)(2) anion production was determined by luminometry, and intracellular production of reactive oxygen species was measured by digital imaging technique. Fluoroscan analysis and confocal microscopy determined intracellular elastase production. The expression of adhesion molecule CD11b/CD18 was performed by flow cytometry. Calcein AM-labeled PMNs were co-cultured with TNF-α-stimulated rat lung microvascular endothelial cells, and their ability to adhere was assessed by fluorometry and digital imaging and finally, chemotaxis was measured by neutrophil transmigration assays. The results showed differential effector responses by circulatory and/or tissue PMNs. Tissue/peritoneal PMNs produced more O(-)(2), less intracellular elastase, and increased expression of CD11b/CD18 accompanied with increased adhesivity of MIP-2-stimulated PMNs to endothelial cells as compared to circulatory/blood PMNs. This differential effect was more pronounced following burn plus E. faecalis infection, indicating that the combined injury changed neutrophil functions. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Li, Ru; Klockenbusch, Cordula; Lin, Liwen; Jiang, Honghui; Lin, Shujun; Kast, Juergen
2016-12-02
Physiological stimuli such as thrombin, or pathological stimuli such as lysophosphatidic acid (LPA), activate platelets. The activated platelets bind to monocytes through P-selectin-PSGL-1 interactions but also release the contents of their granules, commonly called "platelet releasate". It is known that monocytes in contact with platelet releasate produce reactive oxygen species (ROS). Reversible cysteine oxidation by ROS is considered to be a potential regulator of protein function. In a previous study, we used THP-1 monocytic cells exposed to LPA- or thrombin-induced platelet releasate and a modified biotin switch assay to unravel the biological processes that are influenced by reversible cysteine oxidation. To gain a better understanding of the redox regulation of monocytes in atherosclerosis, we have now altered the modified biotin switch to selectively quantify protein sulfenic acid, a subpopulation of reversible cysteine oxidation. Using arsenite as reducing agent in the modified biotin switch assay, we were able to quantify 1161 proteins, in which more than 100 sulfenic acid sites were identified. Bioinformatics analysis of the quantified sulfenic acid sites highlighted the relevant, previously missed biological process of monocyte transendothelial migration, which included integrin β 2 . Flow cytometry validated the activation of LFA-1 (α L β 2 ) and Mac-1 (α M β 2 ), two subfamilies of integrin β 2 complexes, on human primary monocytes following platelet releasate treatment. The activation of LFA-1 was mediated by ROS from NADPH oxidase (NOX) activation. Production of ROS and activation of LFA-1 in human primary monocytes were independent of P-selectin-PSGL-1 interaction. Our results proved the modified biotin switch assay to be a powerful tool with the ability to reveal new regulatory mechanisms and identify new therapeutic targets.
Hwang, In Koo; Yoo, Ki-Yeon; Suh, Hong-Won; Kim, Young Sup; Kwon, Dae Young; Kwon, Young-Guen; Yoo, Jun-Hyun; Won, Moo-Ho
2008-07-01
Folic acid deficiency increases stroke risk. In the present study, we examined whether folic acid deficiency enhances neuronal damage and gliosis via oxidative stress in the gerbil hippocampus after transient forebrain ischemia. Animals were exposed to a folic acid-deficient diet (FAD) for 3 months and then subjected to occlusion of both common carotid arteries for 5 min. Exposure to an FAD increased plasma homocysteine levels by five- to eightfold compared with those of animals fed with a control diet (CD). In CD-treated animals, most neurons were dead in the hippocampal CA1 region 4 days after ischemia/reperfusion, whereas, in FAD-treated animals, this occurred 3 days after ischemia/reperfusion. Immunostaining for 8-hydroxy-2'-deoxyguanosine (8-OHdG) was performed to examine DNA damage in CA1 neurons in both groups after ischemia, and it was found that 8-OHdG immunoreactivity in both FAD and CD groups peaked at 12 hr after reperfusion, although the immunoreactivity in the FAD group was much greater than that in the CD group. Platelet endothelial cell adhesion molecule-1 (PECAM-1; a final mediator of neutrophil transendothelial migration) immunoreactivity in both groups increased with time after ischemia/reperfusion: Its immunoreactivity in the FAD group was much higher than that in the CD group 3 days after ischemia/reperfusion. In addition, reactive gliosis in the ischemic CA1 region increased with time after ischemia in both groups, but astrocytosis and microgliosis in the FAD group were more severe than in the CD group at all times after ischemia. Our results suggest that folic acid deficiency enhances neuronal damage induced by ischemia. 2008 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Liu, Shengqiang; Wu, Ruofan; Huang, Jiang; Yu, Junsheng
2013-09-01
A voltage-controlled color-tunable and high-efficiency organic light-emitting diode (OLED) by inserting 16-nm N,N'-dicarbazolyl-3,5-benzene (mCP) interlayer between two complementary emitting layers (EMLs) was fabricated. The OLED emitted multicolor ranging from blue (77.4 cd/A @ 6 V), white (70.4 cd/A @ 7 V), to yellow (33.7 cd/A @ 9 V) with voltage variation. An equivalent model was proposed to reveal the color-tunable and high-efficiency emission of OLEDs, resulting from the swing of exciton bilateral migration zone near mCP/blue-EML interface. Also, the model was verified with a theoretical arithmetic using single-EML OLEDs to disclose the crucial role of mCP exciton adjusting layer.
Flight response of slope-soaring birds to seasonal variation in thermal generation
Adam E. Duerr; Tricia A. Miller; Michael Lanzone; David Brandes; Jeff Cooper; Kieran O' Malley; Charles Maisonneuve; Junior A. Tremblay; Todd Katzner
2014-01-01
Animals respond to a variety of environmental cues, including weather conditions, when migrating. Understanding the relationship between weather and migration behaviour is vital to assessing time- and energy limitations of soaring birds. Different soaring modes have different efficiencies, are dependent upon different types of subsidized lift and are weather dependent...
Syndecan-4 Phosphorylation Is a Control Point for Integrin Recycling
Morgan, Mark R.; Hamidi, Hellyeh; Bass, Mark D.; Warwood, Stacey; Ballestrem, Christoph; Humphries, Martin J.
2013-01-01
Summary Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of αVβ3 to the plasma membrane at the expense of α5β1. The resultant elevation in αVβ3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of α5β1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration. PMID:23453597
Pati, Shibani; Peng, Zhanglong; Wataha, Katherine; Miyazawa, Byron; Potter, Daniel R; Kozar, Rosemary A
2018-01-01
In severe trauma and hemorrhage the early and empiric use of fresh frozen plasma (FFP) is associated with decreased morbidity and mortality. However, utilization of FFP comes with the significant burden of shipping and storage of frozen blood products. Dried or lyophilized plasma (LP) can be stored at room temperature, transported easily, reconstituted rapidly with ready availability in remote and austere environments. We have previously demonstrated that FFP mitigates the endothelial injury that ensues after hemorrhagic shock (HS). In the current study, we sought to determine whether LP has similar properties to FFP in its ability to modulate endothelial dysfunction in vitro and in vivo. Single donor LP was compared to single donor FFP using the following measures of endothelial cell (EC) function in vitro: permeability and transendothelial monolayer resistance; adherens junction preservation; and leukocyte-EC adhesion. In vivo, using a model of murine HS, LP and FFP were compared in measures of HS- induced pulmonary vascular inflammation and edema. Both in vitro and in vivo in all measures of EC function, LP demonstrated similar effects to FFP. Both FFP and LP similarly reduced EC permeability, increased transendothelial resistance, decreased leukocyte-EC binding and persevered adherens junctions. In vivo, LP and FFP both comparably reduced pulmonary injury, inflammation and vascular leak. Both FFP and LP have similar potent protective effects on the vascular endothelium in vitro and in lung function in vivo following hemorrhagic shock. These data support the further development of LP as an effective plasma product for human use after trauma and hemorrhagic shock.
Triacca, Valentina; Güç, Esra; Kilarski, Witold W; Pisano, Marco; Swartz, Melody A
2017-04-28
The transport of interstitial fluid and solutes into lymphatic vessels is important for maintaining interstitial homeostasis and delivering antigens and soluble factors to the lymph node for immune surveillance. Transendothelial transport across lymphatic endothelial cells (LECs) is commonly considered to occur paracellularly, or between cell-cell junctions, and driven by local pressure and concentration gradients. However, emerging evidence suggests that LECs also play active roles in regulating interstitial solute balance and can scavenge and store antigens, raising the possibility that vesicular or transcellular pathways may be important in lymphatic solute transport. The aim of this study was to determine the relative importance of transcellular (vesicular) versus paracellular transport pathways by LECs and how mechanical stress (ie, fluid flow conditioning) alters either pathway. We demonstrate that transcellular transport mechanisms substantially contribute to lymphatic solute transport and that solute uptake occurs in both caveolae- and clathrin-coated vesicles. In vivo, intracelluar uptake of fluorescently labeled albumin after intradermal injection by LECs was similar to that of dermal dendritic cells. In vitro, we developed a method to differentially quantify intracellular solute uptake versus transendothelial transport by LECs. LECs preconditioned to 1 µm/s transmural flow demonstrated increased uptake and basal-to-apical solute transport, which could be substantially reversed by blocking dynamin-dependent vesicle formation. These findings reveal the importance of intracellular transport in steady-state lymph formation and suggest that LECs use transcellular mechanisms in parallel to the well-described paracellular route to modulate solute transport from the interstitium according to biomechanical cues. © 2017 American Heart Association, Inc.
Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium.
Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M; Jan, Kung-ming; Rumschitzki, David S
2015-05-01
Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. Copyright © 2015 the American Physiological Society.
Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium
Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M.; Jan, Kung-ming
2015-01-01
Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. PMID:25659484
Wagenmakers, Anton J M; Strauss, Juliette A; Shepherd, Sam O; Keske, Michelle A; Cocks, Matthew
2016-04-15
This review concludes that a sedentary lifestyle, obesity and ageing impair the vasodilator response of the muscle microvasculature to insulin, exercise and VEGF-A and reduce microvascular density. Both impairments contribute to the development of insulin resistance, obesity and chronic age-related diseases. A physically active lifestyle keeps both the vasodilator response and microvascular density high. Intravital microscopy has shown that microvascular units (MVUs) are the smallest functional elements to adjust blood flow in response to physiological signals and metabolic demands on muscle fibres. The luminal diameter of a common terminal arteriole (TA) controls blood flow through up to 20 capillaries belonging to a single MVU. Increases in plasma insulin and exercise/muscle contraction lead to recruitment of additional MVUs. Insulin also increases arteriolar vasomotion. Both mechanisms increase the endothelial surface area and therefore transendothelial transport of glucose, fatty acids (FAs) and insulin by specific transporters, present in high concentrations in the capillary endothelium. Future studies should quantify transporter concentration differences between healthy and at risk populations as they may limit nutrient supply and oxidation in muscle and impair glucose and lipid homeostasis. An important recent discovery is that VEGF-B produced by skeletal muscle controls the expression of FA transporter proteins in the capillary endothelium and thus links endothelial FA uptake to the oxidative capacity of skeletal muscle, potentially preventing lipotoxic FA accumulation, the dominant cause of insulin resistance in muscle fibres. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Deterministic Migration-Based Separation of White Blood Cells.
Kim, Byeongyeon; Choi, Young Joon; Seo, Hyekyung; Shin, Eui-Cheol; Choi, Sungyoung
2016-10-01
Functional and phenotypic analyses of peripheral white blood cells provide useful clinical information. However, separation of white blood cells from peripheral blood requires a time-consuming, inconvenient process and thus analyses of separated white blood cells are limited in clinical settings. To overcome this limitation, a microfluidic separation platform is developed to enable deterministic migration of white blood cells, directing the cells into designated positions according to a ridge pattern. The platform uses slant ridge structures on the channel top to induce the deterministic migration, which allows efficient and high-throughput separation of white blood cells from unprocessed whole blood. The extent of the deterministic migration under various rheological conditions is explored, enabling highly efficient migration of white blood cells in whole blood and achieving high-throughput separation of the cells (processing 1 mL of whole blood less than 7 min). In the separated cell population, the composition of lymphocyte subpopulations is well preserved, and T cells secrete cytokines without any functional impairment. On the basis of the results, this microfluidic platform is a promising tool for the rapid enrichment of white blood cells, and it is useful for functional and phenotypic analyses of peripheral white blood cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
del Pozo, Miguel Angel; Cabañas, Carlos; Montoya, María C.; Ager, Ann; Sánchez-Mateos, Paloma; Sánchez-Madrid, Francisco
1997-01-01
The recruitment of leukocytes from the bloodstream is a key step in the inflammatory reaction, and chemokines are among the main regulators of this process. During lymphocyte–endothelial interaction, chemokines induce the polarization of T lymphocytes, with the formation of a cytoplasmic projection (uropod) and redistribution of several adhesion molecules (ICAM-1,-3, CD43, CD44) to this structure. Although it has been reported that these cytokines regulate the adhesive state of integrins in leukocytes, their precise mechanisms of chemoattraction remain to be elucidated. We have herein studied the functional role of the lymphocyte uropod. Confocal microscopy studies clearly showed that cell uropods project away from the cell bodies of adhered lymphocytes and that polarized T cells contact other T cells through the uropod structure. Time-lapse videomicroscopy studies revealed that uropod-bearing T cells were able, through this cellular projection, to contact, capture, and transport additional bystander T cells. Quantitative analysis revealed that the induction of uropods results in a 5–10-fold increase in cell recruitment. Uropod-mediated cell recruitment seems to have physiological relevance, since it was promoted by both CD45R0+ peripheral blood memory T cells as well as by in vivo activated lymphocytes. Additional studies showed that the cell recruitment mediated by uropods was abrogated with antibodies to ICAM-1, -3, and LFA-1, whereas mAb to CD43, CD44, CD45, and L-selectin did not have a significant effect, thus indicating that the interaction of LFA-1 with ICAM-1 and -3 appears to be responsible for this process. To determine whether the increment in cell recruitment mediated by uropod may affect the transendothelial migration of T cells, we carried out chemotaxis assays through confluent monolayers of endothelial cells specialized in lymphocyte extravasation. An enhancement of T cell migration was observed under conditions of uropod formation, and this increase was prevented by incubation with either blocking anti– ICAM-3 mAbs or drugs that impair uropod formation. These data indicate that the cell interactions mediated by cell uropods represent a cooperative mechanism in lymphocyte recruitment, which may act as an amplification system in the inflammatory response. PMID:9128258
[Avoidance of injuries to migrating fish by hydropower and water intake plants].
Adam, B
2004-03-01
Every year numerous downstream migrating fish are lethally injured by hydro power plants and inlet works. Especially the katadromous Eel (Anguilla anguilla) and anadromous species like Atlantic Salmon (Salmo salar), which have to migrate downstream into the ocean for closing their life cycle, are highly endangered. Due to their specific migratory behavioral pattern, size and morphology conventional protection techniques, like screens do not properly keep them out from getting into the power plant intakes. Despite of the relevance of this problem for ecology and fishing, there are no protection and downstream migration facilities in Europe available, which can efficiently avoid the damage of all species and sizes of downstream migrating fish. Nevertheless according to protect the fish populations it's necessary to use consequently fish protection and downstream migration facilities, i.e. mechanical barrieres or alternative techniques like early warning systems as a prerequisit for a fish-friendly operational management of hydro power plants.
NASA Astrophysics Data System (ADS)
Miyakawa, Erina; Fujii, Hiroyuki; Hattori, Kiyohito; Tatekura, Yuki; Kobayashi, Kazumichi; Watanabe, Masao
2016-12-01
Diffuse optical tomography (DOT), which is still under development, has a potential to enable non-invasive diagnoses of thyroid cancers in the human neck using the near-infrared light. This modality needs a photon migration model because scattered light is used. There are two types of photon migration models: the radiative transport equation (RTE) and diffusion equation (DE). The RTE can describe photon migration in the human neck with accuracy, while the DE enables an efficient calculation. For developing the accurate and efficient model of photon migration, it is crucial to investigate a condition where the DE holds in a scattering medium including a void region under the refractive-index mismatch at the void boundary because the human neck has a trachea (void region) and the refractive indices are different between the human neck and trachea. Hence, in this paper, we compare photon migration using the RTE with that using the DE in the medium. The numerical results show that the DE is valid under the refractive-index match at the void boundary even though the void region is near the source and detector positions. Under the refractive-index mismatch at the boundary, the numerical results using the DE disagree with those using the RTE when the void region is near the source and detector positions. This is probably because the anisotropy of the light scattering remains around the void boundary.
Huang, Jie; Xie, Liang-di; Luo, Li; Zheng, Su-Li; Wang, Hua-Jun; Xu, Chang-Sheng
2014-05-01
The objective of this study was to examine the role of heat shock protein 27 (HSP27) in proliferation and migration of vascular smooth muscle cells (VSMCs). Three complementary DNA sequences targeting rat HSP27 gene were designed, synthesized, and subcloned into lentiviral vector. The interfering efficiency was detected by reverse transcriptase-polymerase chain reaction and Western blot. Methyl thiazolyl tetrazolium bromide assay was used for examining cell proliferation. F-actin polymerization was detected by FITC-Phalloidin staining using confocal microscopy. Modified Boyden chamber technique was used to assess VSMCs migration. The recombinant lentivirus containing RNAi targeting HSP27 gene significantly inhibited expression of HSP27 at both mRNA and protein levels. The interfering efficiencies of pNL-HSP27-EGFP-1, pNL-HSP27-EGFP-2, and pNL-HSP27-EGFP-3 were 71 %, 77 %, and 43 %, respectively. Reorganization of actin stimulated by PDGF-BB was markedly blocked by pretreatment with pNL-HSP27-EGFP-2. Proliferation and migration rates of VSMCs induced by PDGF-BB were inhibited by 30.8 % and 45.6 %, respectively, by pNL-HSP27-EGFP-2 (all P < 0.01). To conclude, these data indicate that HSP27 may regulate the proliferation, actin reorganization, and the migration of VSMCs. RNAi targeting at HSP27 may be a potential approach for inhibition of cell migration involved in pathogenesis of proliferative vascular diseases.
NASA Astrophysics Data System (ADS)
Liu, Peng; Wang, Yanfei
2018-04-01
We study problems associated with seismic data decomposition and migration imaging. We first represent the seismic data utilizing Gaussian beam basis functions, which have nonzero curvature, and then consider the sparse decomposition technique. The sparse decomposition problem is an l0-norm constrained minimization problem. In solving the l0-norm minimization, a polynomial Radon transform is performed to achieve sparsity, and a fast gradient descent method is used to calculate the waveform functions. The waveform functions can subsequently be used for sparse Gaussian beam migration. Compared with traditional sparse Gaussian beam methods, the seismic data can be properly reconstructed employing fewer Gaussian beams with nonzero initial curvature. The migration approach described in this paper is more efficient than the traditional sparse Gaussian beam migration.
Lateral migration of dual droplet trains in a double spiral microchannel
NASA Astrophysics Data System (ADS)
Xue, ChunDong; Chen, XiaoDong; Liu, Chao; Hu, GuoQing
2016-07-01
Microfluidic droplets have emerged as novel platforms for chemical and biological applications. Manipulation of droplets has thus attracted increasing attention. Different from solid particles, deformable droplets cannot be efficiently controlled by inertia-driven approaches. Here, we report a study on the lateral migration of dual droplet trains in a double spiral microchannel at low Reynolds numbers. The dominant driving mechanism is elucidated as wall effect originated from the droplet deformation. Three types of migration modes are observed with varying Reynolds numbers and the size-dependent mode is intensively investigated. We obtain empirical formulas by relating the migration to Reynolds numbers and droplet sizes. The effect of droplet deformability on the migration and the detailed migration behavior along the double spiral channel are discussed. Numerical simulations are also performed and yielded in qualitative agreement with the experiments. This proposed low Re approach based on lateral migration could be a promising alternative to existing inertia-driven approaches especially concerning deformable entities and susceptible bio-particles.
Gaylo, Alison; Schrock, Dillon C.; Fernandes, Ninoshka R. J.; Fowell, Deborah J.
2016-01-01
Effector T cells exit the inflamed vasculature into an environment shaped by tissue-specific structural configurations and inflammation-imposed extrinsic modifications. Once within interstitial spaces of non-lymphoid tissues, T cells migrate in an apparent random, non-directional, fashion. Efficient T cell scanning of the tissue environment is essential for successful location of infected target cells or encounter with antigen-presenting cells that activate the T cell’s antimicrobial effector functions. The mechanisms of interstitial T cell motility and the environmental cues that may promote or hinder efficient tissue scanning are poorly understood. The extracellular matrix (ECM) appears to play an important scaffolding role in guidance of T cell migration and likely provides a platform for the display of chemotactic factors that may help to direct the positioning of T cells. Here, we discuss how intravital imaging has provided insight into the motility patterns and cellular machinery that facilitates T cell interstitial migration and the critical environmental factors that may optimize the efficiency of effector T cell scanning of the inflamed tissue. Specifically, we highlight the local micro-positioning cues T cells encounter as they migrate within inflamed tissues, from surrounding ECM and signaling molecules, as well as a requirement for appropriate long-range macro-positioning within distinct tissue compartments or at discrete foci of infection or tissue damage. The central nervous system (CNS) responds to injury and infection by extensively remodeling the ECM and with the de novo generation of a fibroblastic reticular network that likely influences T cell motility. We examine how inflammation-induced changes to the CNS landscape may regulate T cell tissue exploration and modulate function. PMID:27790220
Gaylo, Alison; Schrock, Dillon C; Fernandes, Ninoshka R J; Fowell, Deborah J
2016-01-01
Effector T cells exit the inflamed vasculature into an environment shaped by tissue-specific structural configurations and inflammation-imposed extrinsic modifications. Once within interstitial spaces of non-lymphoid tissues, T cells migrate in an apparent random, non-directional, fashion. Efficient T cell scanning of the tissue environment is essential for successful location of infected target cells or encounter with antigen-presenting cells that activate the T cell's antimicrobial effector functions. The mechanisms of interstitial T cell motility and the environmental cues that may promote or hinder efficient tissue scanning are poorly understood. The extracellular matrix (ECM) appears to play an important scaffolding role in guidance of T cell migration and likely provides a platform for the display of chemotactic factors that may help to direct the positioning of T cells. Here, we discuss how intravital imaging has provided insight into the motility patterns and cellular machinery that facilitates T cell interstitial migration and the critical environmental factors that may optimize the efficiency of effector T cell scanning of the inflamed tissue. Specifically, we highlight the local micro-positioning cues T cells encounter as they migrate within inflamed tissues, from surrounding ECM and signaling molecules, as well as a requirement for appropriate long-range macro-positioning within distinct tissue compartments or at discrete foci of infection or tissue damage. The central nervous system (CNS) responds to injury and infection by extensively remodeling the ECM and with the de novo generation of a fibroblastic reticular network that likely influences T cell motility. We examine how inflammation-induced changes to the CNS landscape may regulate T cell tissue exploration and modulate function.
Liu, Lingling; Luo, Qing; Sun, Jinghui; Wang, Aoli; Shi, Yisong; Ju, Yang; Morita, Yasuyuki; Song, Guanbin
2017-06-15
Migration of bone marrow-derived mesenchymal stem cells (BMSCs) plays an important role in many physiological and pathological settings, including wound healing. During the migration of BMSCs through interstitial tissues, the movement of the nucleus must be coordinated with the cytoskeletal dynamics, which in turn affects the cell migration efficiency. Our previous study indicated that osteopontin (OPN) significantly promotes the migration of rat BMSCs. However, the nuclear behaviors and involved molecular mechanisms in OPN-mediated BMSC migration are largely unclear. In the present study, using an atomic force microscope (AFM), we found that OPN could decrease the nuclear stiffness of BMSCs and reduce the expression of lamin A/C, which is the main determinant of nuclear stiffness. Increased lamin A/C expression attenuates BMSC migration by increasing nuclear stiffness. Decreased lamin A/C expression promotes BMSC migration by decreasing nuclear stiffness. Furthermore, OPN promotes BMSC migration by diminishing lamin A/C expression and decreasing nuclear stiffness via the FAK-ERK1/2 signaling pathway. This study provides strong evidence for the role of nuclear mechanics in BMSC migration as well as new insight into the molecular mechanisms of OPN-promoted BMSC migration. Copyright © 2017 Elsevier Inc. All rights reserved.
Shear-coupled grain-boundary migration dependence on normal strain/stress
NASA Astrophysics Data System (ADS)
Combe, N.; Mompiou, F.; Legros, M.
2017-08-01
In specific conditions, grain-boundary (GB) migration occurs in polycrystalline materials as an alternative vector of plasticity compared to the usual dislocation activity. The shear-coupled GB migration, the expected most efficient GB based mechanism, couples the GB motion to an applied shear stress. Stresses on GB in polycrystalline materials seldom have, however, a unique pure shear component. This work investigates the influence of a normal strain on the shear coupled migration of a Σ 13 (320 )[001 ] GB in a copper bicrystal using atomistic simulations. We show that the yield shear stress inducing the GB migration strongly depends on the applied normal stress. Beyond, the application of a normal stress on this GB qualitatively modifies the GB migration: while the Σ 13 (320 )[001 ] GB shear couples following the 〈110 〉 migration mode without normal stress, we report the observation of the 〈010 〉 mode under a sufficiently high tensile normal stress. Using the nudge elastic band method, we uncover the atomistic mechanism of this 〈010 〉 migration mode and energetically characterize it.
SCM: A method to improve network service layout efficiency with network evolution.
Zhao, Qi; Zhang, Chuanhao; Zhao, Zheng
2017-01-01
Network services are an important component of the Internet, which are used to expand network functions for third-party developers. Network function virtualization (NFV) can improve the speed and flexibility of network service deployment. However, with the evolution of the network, network service layout may become inefficient. Regarding this problem, this paper proposes a service chain migration (SCM) method with the framework of "software defined network + network function virtualization" (SDN+NFV), which migrates service chains to adapt to network evolution and improves the efficiency of the network service layout. SCM is modeled as an integer linear programming problem and resolved via particle swarm optimization. An SCM prototype system is designed based on an SDN controller. Experiments demonstrate that SCM could reduce the network traffic cost and energy consumption efficiently.
Meza-Sánchez, David; Pérez-Montesinos, Gibrán; Sánchez-García, Javier; Moreno, José; Bonifaz, Laura C
2011-10-01
The nature of CD4(+) T-cell responses after skin immunization and the role of migrating DCs in the presence of adjuvants in the elicited response are interesting issues to be investigated. Here, we evaluated the priming of CD4(+) T cells following ear immunization with low doses of model antigens in combination with either cholera toxin (CT) or the non-toxic β CT subunit (CTB) as an adjuvant. Following immunization with CT, we found efficient antigen presentation that is reflected in the production of IFN-γ and IL-17 by CD4(+) T cells over IL-4 or IL-5 production. The CTB-induced activation of DCs in the ear occurred without visible inflammation, which reflects a similar type of CD4(+) T-cell differentiation. In both cases, the elicited response was dependent on the presence of migrating skin cells. Remarkably, immunization with CT or with CTB led to the induction of a delayed-type hypersensitivity (DTH) response in the ear. The DTH response that was induced by CT immunization was dependent on IL-17 and partially dependent on IFN-γ activity. These results indicate that both CT and CTB induce an efficient CD4(+) T-cell response to a co-administered antigen following ear immunization that is dependent on migrating DCs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Rai, P.; Gautam, N.; Chandra, H.
2018-06-01
This work deals with the analysis and modification of operational parameters for meeting the emission standards, set by Central Pollution Control Board (CPCB)/State Pollution Control Board (SPCB) from time to time of electrostatic precipitator (ESP). The analysis is carried out by using standard chemical analysis supplemented by the relevant data collected from Korba East Phase (Ph)-III thermal power plant, under Chhattisgarh State Electricity Board (CSEB) operating at Korba, Chhattisgarh. Chemical analysis is used to predict the emission level for different parameters of ESP. The results reveal that for a constant outlet PM concentration and fly ash percentage, the total collection area decreases with the increase in migration velocity. For constant migration velocity and outlet PM concentration, the total collection area increases with the increase in the fly ash percent. For constant migration velocity and outlet e PM concentration, the total collection area increases with the ash content in the coal. i.e. from minimum ash to maximum ash. As far as the efficiency is concerned, it increases with the fly ash percent, ash content and the inlet dust concentration but decreases with the outlet PM concentration at constant migration velocity, fly ash and ash content.
Hochmann, Jimena; Sobrinho, João S; Villa, Luisa L; Sichero, Laura
2016-05-01
Asian-American (AA) HPV-16 variants are associated with higher risk of cancer. Abnormal activation of intracellular signaling play a critical role in cancer development and progression. Our aim was to elucidate mechanisms underlying the higher oncogenic potential attributed to AA variant. We evaluated activation of MAPK and PI3K/AKT pathways in primary human keratinocytes (PHKs) transduced with E6/E7 of three HPV-16 variants: E-P, AA, E-350G. Phenotypes examined included migration, anchorage independent growth and invasion. AA PHKs presented the highest levels of active proteins involved in all cascades analyzed: MAPK-ERK, MAPK-p38 and PI3K-AKT. AA PHKs were more efficient in promoting anchorage independent growth, and in stimulating cell migration and invasion. MEK1 inhibition decreased migration. The mesenchymal phenotype marker vimentin was increased in AA PHKs. Our results suggest that MEK1, ERK2, AKT2 hyperactivation influence cellular behavior by means of GSK-3b inactivation and EMT induction prompting AA immortalized PHKs to more efficiently surpass carcinogenesis steps. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rai, P.; Gautam, N.; Chandra, H.
2018-02-01
This work deals with the analysis and modification of operational parameters for meeting the emission standards, set by Central Pollution Control Board (CPCB)/State Pollution Control Board (SPCB) from time to time of electrostatic precipitator (ESP). The analysis is carried out by using standard chemical analysis supplemented by the relevant data collected from Korba East Phase (Ph)-III thermal power plant, under Chhattisgarh State Electricity Board (CSEB) operating at Korba, Chhattisgarh. Chemical analysis is used to predict the emission level for different parameters of ESP. The results reveal that for a constant outlet PM concentration and fly ash percentage, the total collection area decreases with the increase in migration velocity. For constant migration velocity and outlet PM concentration, the total collection area increases with the increase in the fly ash percent. For constant migration velocity and outlet e PM concentration, the total collection area increases with the ash content in the coal. i.e. from minimum ash to maximum ash. As far as the efficiency is concerned, it increases with the fly ash percent, ash content and the inlet dust concentration but decreases with the outlet PM concentration at constant migration velocity, fly ash and ash content.
Hoeppli, Romy E; MacDonald, Katherine N; Leclair, Pascal; Fung, Vivian C W; Mojibian, Majid; Gillies, Jana; Rahavi, Seyed M R; Campbell, Andrew I M; Gandhi, Sanjiv K; Pesenacker, Anne M; Reid, Gregor; Lim, Chinten J; Levings, Megan K
2018-05-15
Cell-based therapy with CD4 + FOXP3 + Regulatory T cells (Tregs) is a promising strategy to limit organ rejection and graft-versus-host disease. Ongoing clinical applications have yet to consider how human Tregs could be modified to direct their migration to specific inflammation sites and/or tissues for more targeted immunosuppression. We show here that stable, homing-receptor-tailored human Tregs can be generated from thymic Tregs isolated from pediatric thymus or adult blood. To direct migration to Th1-inflammatory sites, addition of IFN-γ and IL-12 during Treg expansion produced suppressive, epigenetically-stable CXCR3 + TBET + FOXP3 + Th1-Tregs. CXCR3 remained expressed after injection in vivo and Th1-Tregs migrated efficiently towards CXCL10 in vitro. To induce tissue-specific migration, addition of retinoic acid (RA) during Treg expansion induced expression of the gut-homing receptors α4β7-integrin and CCR9. FOXP3 + RA-Tregs had elevated expression of the functional markers LAP and GARP, increased suppressive capacity in vitro and migrated efficiently to healthy and inflamed intestine after injection into mice. Homing-receptor-tailored Tregs were epigenetically stable even after long-term exposure to inflammatory conditions, suppressive in vivo and characterized by Th1- or gut-homing-specific transcriptomes. Tailoring human thymic Treg homing during in vitro expansion offers a new and clinically-applicable approach to improving the potency and specificity of Treg therapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain.
Nakamuta, Shinichi; Yang, Yu-Ting; Wang, Chia-Lin; Gallo, Nicholas B; Yu, Jia-Ray; Tai, Yilin; Van Aelst, Linda
2017-12-04
Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS. © 2017 Nakamuta et al.
Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain
Yang, Yu-Ting; Yu, Jia-Ray; Tai, Yilin
2017-01-01
Throughout life, stem cells in the ventricular–subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts’ morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase–RhoA–interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS. PMID:29089377
Evolution of cooperation driven by social-welfare-based migration
NASA Astrophysics Data System (ADS)
Li, Yan; Ye, Hang; Zhang, Hong
2016-03-01
Individuals' migration behavior may play a significant role in the evolution of cooperation. In reality, individuals' migration behavior may depend on their perceptions of social welfare. To study the relationship between social-welfare-based migration and the evolution of cooperation, we consider an evolutionary prisoner's dilemma game (PDG) in which an individual's migration depends on social welfare but not on the individual's own payoff. By introducing three important social welfare functions (SWFs) that are commonly studied in social science, we find that social-welfare-based migration can promote cooperation under a wide range of parameter values. In addition, these three SWFs have different effects on cooperation, especially through the different spatial patterns formed by migration. Because the relative efficiency of the three SWFs will change if the parameter values are changed, we cannot determine which SWF is optimal for supporting cooperation. We also show that memory capacity, which is needed to evaluate individual welfare, may affect cooperation levels in opposite directions under different SWFs. Our work should be helpful for understanding the evolution of human cooperation and bridging the chasm between studies of social preferences and studies of social cooperation.
Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells
Vargas, Pablo; Maiuri, Paolo; Bretou, Marine; Sáez, Pablo J.; Pierobon, Paolo; Maurin, Mathieu; Chabaud, Mélanie; Lankar, Danielle; Obino, Dorian; Terriac, Emmanuel; Raab, Matthew; Thiam, Hawa-Racine; Brocker, Thomas; Kitchen-Goosen, Susan M.; Alberts, Arthur S.; Sunareni, Praveen; Xia, Sheng; Li, Rong; Voituriez, Raphael; Piel, Matthieu; Lennon-Duménil, Ana-Maria
2018-01-01
Dendritic cell (DC) migration in peripheral tissues serves two main functions: antigen sampling by immature DCs, and chemokine-guided migration towards lymphatic vessels (LVs) on maturation. These migratory events determine the efficiency of the adaptive immune response. Their regulation by the core cell locomotion machinery has not been determined. Here, we show that the migration of immature DCs depends on two main actin pools: a RhoA–mDia1-dependent actin pool located at their rear, which facilitates forward locomotion; and a Cdc42–Arp2/3-dependent actin pool present at their front, which limits migration but promotes antigen capture. Following TLR4–MyD88-induced maturation, Arp2/3-dependent actin enrichment at the cell front is markedly reduced. Consequently, mature DCs switch to a faster and more persistent mDia1-dependent locomotion mode that facilitates chemotactic migration to LVs and lymph nodes. Thus, the differential use of actin-nucleating machineries optimizes the migration of immature and mature DCs according to their specific function. PMID:26641718
Direct quantification of transendothelial electrical resistance in organs-on-chips.
van der Helm, Marinke W; Odijk, Mathieu; Frimat, Jean-Philippe; van der Meer, Andries D; Eijkel, Jan C T; van den Berg, Albert; Segerink, Loes I
2016-11-15
Measuring transendothelial or transepithelial electrical resistance (TEER) is a widely used method to monitor cellular barrier tightness in organs-on-chips. Unfortunately, integrated electrodes close to the cellular barrier hamper visual inspection of the cells or require specialized cleanroom processes to fabricate see-through electrodes. Out-of-view electrodes inserted into the chip's outlets are influenced by the fluid-filled microchannels with relatively high resistance. In this case, small changes in temperature or medium composition strongly affect the apparent TEER. To solve this, we propose a simple and universally applicable method to directly determine the TEER in microfluidic organs-on-chips without the need for integrated electrodes close to the cellular barrier. Using four electrodes inserted into two channels - two on each side of the porous membrane - and six different measurement configurations we can directly derive the isolated TEER independent of channel properties. We show that this method removes large variation of non-biological origin in chips filled with culture medium. Furthermore, we demonstrate the use of our method by quantifying the TEER of a monolayer of human hCMEC/D3 cerebral endothelial cells, mimicking the blood-brain barrier inside our microfluidic organ-on-chip device. We found stable TEER values of 22 Ω cm(2)±1.3 Ω cm(2) (average ± standard error of the mean of 4 chips), comparable to other TEER values reported for hCMEC/D3 cells in well-established Transwell systems. In conclusion, we demonstrate a simple and robust way to directly determine TEER that is applicable to any organ-on-chip device with two channels separated by a membrane. This enables stable and easily applicable TEER measurements without the need for specialized cleanroom processes and with visibility on the measured cell layer. Copyright © 2016 Elsevier B.V. All rights reserved.
Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films
Shao, Yuchuan; Fang, Yanjun; Li, Tao; ...
2016-03-21
The efficiency of perovskite solar cells is approaching that of single-crystalline silicon solar cells despite the presence of large grain boundary (GB) area in the polycrystalline thin films. Here, by using a combination of nanoscopic and macroscopic level measurements, we show that the ion migration in polycrystalline perovskites is dominated through GBs. Conducting atomic force microscopy measurements reveal much stronger hysteresis both for photocurrent and dark-current at the GBs than on the grains interiors, which can be explained by faster ion migration at the GBs. The dramatically enhanced ion migration results in a redistribution of ions along the GBs aftermore » electric poling, in contrast to the intact grain area. The perovskite single-crystal devices without GBs show negligible current hysteresis and no ion-migration signal. Furthermore, the discovery of dominating ion migration through GBs in perovskites can lead to broad applications in many types of devices including photovoltaics, memristors, and ion batteries.« less
Gupta, Tripti; Kumar, Arun; Cattenoz, Pierre B.; VijayRaghavan, K; Giangrande, Angela
2016-01-01
Collective migration is a complex process that contributes to build precise tissue and organ architecture. Several molecules implicated in cell interactions also control collective migration, but their precise role and the finely tuned expression that orchestrates this complex developmental process are poorly understood. Here, we show that the timely and threshold expression of the Netrin receptor Frazzled triggers the initiation of glia migration in the developing Drosophila wing. Frazzled expression is induced by the transcription factor Glide/Gcm in a dose-dependent manner. Thus, the glial determinant also regulates the efficiency of collective migration. NetrinB but not NetrinA serves as a chemoattractant and Unc5 contributes as a repellant Netrin receptor for glia migration. Our model includes strict spatial localization of a ligand, a cell autonomously acting receptor and a fate determinant that act coordinately to direct glia toward their final destination. DOI: http://dx.doi.org/10.7554/eLife.15983.001 PMID:27740455
Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin.
Erdogan, Begum; Ao, Mingfang; White, Lauren M; Means, Anna L; Brewer, Bryson M; Yang, Lijie; Washington, M Kay; Shi, Chanjuan; Franco, Omar E; Weaver, Alissa M; Hayward, Simon W; Li, Deyu; Webb, Donna J
2017-11-06
Cancer-associated fibroblasts (CAFs) are major components of the carcinoma microenvironment that promote tumor progression. However, the mechanisms by which CAFs regulate cancer cell migration are poorly understood. In this study, we show that fibronectin (Fn) assembled by CAFs mediates CAF-cancer cell association and directional migration. Compared with normal fibroblasts, CAFs produce an Fn-rich extracellular matrix with anisotropic fiber orientation, which guides the cancer cells to migrate directionally. CAFs align the Fn matrix by increasing nonmuscle myosin II- and platelet-derived growth factor receptor α-mediated contractility and traction forces, which are transduced to Fn through α5β1 integrin. We further show that prostate cancer cells use αv integrin to migrate efficiently and directionally on CAF-derived matrices. We demonstrate that aligned Fn is a prominent feature of invasion sites in human prostatic and pancreatic carcinoma samples. Collectively, we present a new mechanism by which CAFs organize the Fn matrix and promote directional cancer cell migration. © 2017 Erdogan et al.
Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin
Ao, Mingfang; White, Lauren M.; Means, Anna L.; Yang, Lijie; Washington, M. Kay; Franco, Omar E.; Li, Deyu; Webb, Donna J.
2017-01-01
Cancer-associated fibroblasts (CAFs) are major components of the carcinoma microenvironment that promote tumor progression. However, the mechanisms by which CAFs regulate cancer cell migration are poorly understood. In this study, we show that fibronectin (Fn) assembled by CAFs mediates CAF–cancer cell association and directional migration. Compared with normal fibroblasts, CAFs produce an Fn-rich extracellular matrix with anisotropic fiber orientation, which guides the cancer cells to migrate directionally. CAFs align the Fn matrix by increasing nonmuscle myosin II- and platelet-derived growth factor receptor α–mediated contractility and traction forces, which are transduced to Fn through α5β1 integrin. We further show that prostate cancer cells use αv integrin to migrate efficiently and directionally on CAF-derived matrices. We demonstrate that aligned Fn is a prominent feature of invasion sites in human prostatic and pancreatic carcinoma samples. Collectively, we present a new mechanism by which CAFs organize the Fn matrix and promote directional cancer cell migration. PMID:29021221
SCM: A method to improve network service layout efficiency with network evolution
Zhao, Qi; Zhang, Chuanhao
2017-01-01
Network services are an important component of the Internet, which are used to expand network functions for third-party developers. Network function virtualization (NFV) can improve the speed and flexibility of network service deployment. However, with the evolution of the network, network service layout may become inefficient. Regarding this problem, this paper proposes a service chain migration (SCM) method with the framework of “software defined network + network function virtualization” (SDN+NFV), which migrates service chains to adapt to network evolution and improves the efficiency of the network service layout. SCM is modeled as an integer linear programming problem and resolved via particle swarm optimization. An SCM prototype system is designed based on an SDN controller. Experiments demonstrate that SCM could reduce the network traffic cost and energy consumption efficiently. PMID:29267299
N-Body Simulations of Planetary Accretion Around M Dwarf Stars
NASA Astrophysics Data System (ADS)
Ogihara, Masahiro; Ida, Shigeru
2009-07-01
We have investigated planetary accretion from planetesimals in terrestrial planet regions inside the ice line around M dwarf stars through N-body simulations including tidal interactions with disk gas. Because of low luminosity of M dwarfs, habitable zones (HZs) are located in inner regions (~0.1 AU). In the close-in HZ, type-I migration and the orbital decay induced by eccentricity damping are efficient according to the high disk gas density in the small orbital radii. Since the orbital decay is terminated around the disk inner edge and the disk edge is close to the HZ, the protoplanets accumulated near the disk edge affect formation of planets in the HZ. Ice lines are also in relatively inner regions at ~0.3 AU. Due to the small orbital radii, icy protoplanets accrete rapidly and undergo type-I migration before disk depletion. The rapid orbital decay, the proximity of the disk inner edge, and large amount of inflow of icy protoplanets are characteristic in planetary accretion in terrestrial planet regions around M dwarfs. In the case of full efficiency of type-I migration predicted by the linear theory, we found that protoplanets that migrate to the vicinity of the host star undergo close scatterings and collisions, and four to six planets eventually remain in mutual mean-motion resonances and their orbits have small eccentricities (lsim0.01) and they are stable both before and after disk gas decays. In the case of slow migration, the resonant capture is so efficient that densely packed ~40 small protoplanets remain in mutual mean-motion resonances. In this case, they start orbit crossing, after the disk gas decays and eccentricity damping due to tidal interaction with gas is no more effective. Through merging of the protoplanets, several planets in widely separated non-resonant orbits with relatively large eccentricities (~0.05) are formed. Thus, the final orbital configurations (separations, resonant or non-resonant, eccentricity, and distribution) of the terrestrial planets around M dwarfs sensitively depend on strength of type-I migration. We also found that large amount of water-ice is delivered by type-I migration from outer regions and final planets near the inner disk edge around M dwarfs are generally abundant in water-ice except for the innermost one that is shielded by the outer planets, unless type-I migration speed is reduced by a factor of more than 100 from that predicted by the linear theory.
NASA Astrophysics Data System (ADS)
Guan, Fengyi; Lu, Jiaju; Wang, Xiumei
2017-03-01
A clear understanding on cell migration behaviors contributes to designing novel biomaterials in tissue engineering and elucidating related tissue regeneration processes. Many traditional evaluation methods on cell migration including scratch assay and transwell migration assay possess all kinds of limitations. In this study, a novel honeycomb cell assay kit was designed and made of photosensitive resin by 3D printing. This kit has seven hexagonal culture chambers so that it can evaluate the horizontal cell migration behavior in response to six surrounding environments simultaneously, eliminating the effect of gravity on cells. Here this cell assay kit was successfully applied to evaluate endothelial cell migration cultured on self-assembling peptide (SAP) RADA (AcN-RADARADARADARADA-CONH2) nanofiber hydrogel toward different functionalized SAP hydrogels. Our results indicated that the functionalized RADA hydrogels with different concentration of bioactive motifs of KLT or PRG could induce cell migration in a dose-dependent manner. The total number and migration distance of endothelial cells on functionalized SAP hydrogels significantly increased with increasing concentration of bioactive motif PRG or KLT. Therefore, the honeycomb cell assay kit provides a simple, efficient and convenient tool to investigate cell migration behavior in response to multi-environments simultaneously.
Dancing Styles of Collective Cell Migration: Image-Based Computational Analysis of JRAB/MICAL-L2.
Sakane, Ayuko; Yoshizawa, Shin; Yokota, Hideo; Sasaki, Takuya
2018-01-01
Collective cell migration is observed during morphogenesis, angiogenesis, and wound healing, and this type of cell migration also contributes to efficient metastasis in some kinds of cancers. Because collectively migrating cells are much better organized than a random assemblage of individual cells, there seems to be a kind of order in migrating clusters. Extensive research has identified a large number of molecules involved in collective cell migration, and these factors have been analyzed using dramatic advances in imaging technology. To date, however, it remains unclear how myriad cells are integrated as a single unit. Recently, we observed unbalanced collective cell migrations that can be likened to either precision dancing or awa-odori , Japanese traditional dancing similar to the style at Rio Carnival, caused by the impairment of the conformational change of JRAB/MICAL-L2. This review begins with a brief history of image-based computational analyses on cell migration, explains why quantitative analysis of the stylization of collective cell behavior is difficult, and finally introduces our recent work on JRAB/MICAL-L2 as a successful example of the multidisciplinary approach combining cell biology, live imaging, and computational biology. In combination, these methods have enabled quantitative evaluations of the "dancing style" of collective cell migration.
Silk Film Topography Directs Collective Epithelial Cell Migration
Rosenblatt, Mark I.
2012-01-01
The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573
Resolving ultrafast exciton migration in organic solids at the nanoscale
NASA Astrophysics Data System (ADS)
Ginsberg, Naomi
The migration of Frenkel excitons, tightly-bound electron-hole pairs, in photosynthesis and in organic semiconducting films is critical to the efficiency of natural and artificial light harvesting. While these materials exhibit a high degree of structural heterogeneity on the nanoscale, traditional measurements of exciton migration lengths are performed on bulk samples. Since both the characteristic length scales of structural heterogeneity and the reported bulk diffusion lengths are smaller than the optical diffraction limit, we adapt far-field super-resolution fluorescence imaging to uncover the correlations between the structural and energetic landscapes that the excitons explore. By combining the ultrafast super-resolved measurements with exciton hopping simulations we furthermore specify the nature (in addition to the extent) of exciton migration as a function of the intrinsic and ensemble chromophore energy scales that determine a spatio-energetic landscape for migration. In collaboration with: Samuel Penwell, Lucas Ginsberg, University of California, Berkeley and Rodrigo Noriega University of Utah.
Wynn, Robert F; Hart, Claire A; Corradi-Perini, Carla; O'Neill, Liam; Evans, Caroline A; Wraith, J Ed; Fairbairn, Leslie J; Bellantuono, Ilaria
2004-11-01
Homing of bone marrow stromal cells (MSCs) to bone and bone marrow after transplantation, important for the correction of conditions such as metabolic storage disorders, can occur but with poor efficiency. Substantial improvements in engraftment will be required in order to derive a clinical benefit from MSC transplantation. Chemokines are the most important factors controlling cellular migration. Stromal-derived factor-1 (SDF-1) has been shown to be critical in promoting the migration of cells to the bone marrow, via its specific receptor CXCR4. The aim of our study was to investigate CXCR4 expression on MSCs and its role in mediating migration to bone marrow. We show that CXCR4, although present at the surface of a small subset of MSCs, is important for mediating specific migration of these cells to bone marrow.
NASA Astrophysics Data System (ADS)
Steinberg, Deborah K.; Cope, Joseph S.; Wilson, Stephanie E.; Kobari, T.
2008-07-01
Mesopelagic mesozooplankton communities of an oligotrophic (Hawaii Ocean Time series-HOT station ALOHA) and a mesotrophic (Japanese time-series station K2) environment in the North Pacific Ocean are compared as part of a research program investigating the factors that control the efficiency of particle export to the deep sea (VERtical Transport In the Global Ocean—VERTIGO). We analyzed zooplankton (>350 μm) collected from net tows taken between 0 and 1000 m at each site to investigate the biomass size structure and the abundance of the major taxonomic groups in discrete depth intervals throughout the water column. Biomass of zooplankton at K2 over all depths was approximately an order of a magnitude higher than at ALOHA, with a significantly higher proportion of the biomass at K2 in the larger (>2 mm) size classes. This difference was mostly due to the abundance at K2 of the large calanoid copepods Neocalanus spp. and Eucalanus bungii, which undergo ontogenetic (seasonal) vertical migration. The overall strength of diel vertical migration was higher at K2, with a mean night:day biomass ratio in the upper 150 m of 2.5, vs. a ratio of 1.7 at ALOHA. However, the amplitude of the diel migration (change in weighted mean depth between day and night) was higher at ALOHA for all biomass size classes, perhaps due to deeper light penetration causing deeper migration to avoid visual predators. A number of taxa known to feed on suspended or sinking detritus showed distinct peaks in the mesopelagic zone, which affects particle transport efficiency at both sites. These taxa include calanoid and poecilostomatoid (e.g., Oncaea spp.) copepods, salps, polychaetes, and phaeodarian radiolaria at K2, harpacticoid copepods at ALOHA, and ostracods at both sites. We found distinct layers of carnivores (mainly gelatinous zooplankton) in the mesopelagic at K2 including chaetognaths, hydrozoan medusae, polychaetes, and gymnosome pteropods, and, in the upper mesopelagic zone, of ctenophores and siphonophores; at both sites a mesopelagic layer of hyperiid amphipods was found. The large population of ontogenetically migrating calanoid copepods is likely supporting large carnivorous populations at depth at K2. The contrasting zooplankton taxonomic structure at the two sites helps explain the higher efficiency of the biological pump at K2. Factors responsible for increased transport efficiency at K2 include rapid transport of POC via larger fecal pellets produced by zooplankton at K2, and enhanced active carbon export at K2 vs. ALOHA, due to the greater strength of diel vertical migration and to additional ontogenetic migration at K2.
NASA Astrophysics Data System (ADS)
Morris, Michael D.; Goodship, Allen E.; Draper, Edward R. C.; Matousek, Pavel; Towrie, Michael; Parker, Anthony W.
2004-07-01
We show that Raman spectroscopy with visible lasers, even in the deep blue is possible with time-gated Raman spectroscopy. A 4 picosec time gate allows efficient fluorescence rejection, up to 1000X, and provides almost background-free Raman spectra with low incident laser power. The technology enables spectroscopy with better than 10X higher scattering efficiency than is possible with the NIR (785 nm and 830 nm) lasers that are conventionally used. Raman photon migration is shown to allow depth penetration. We show for the first time that Kerr-gated Raman spectra of bone tissue with blue laser excitation enables both fluorescence rejection and depth penetration.
Design and implementation of scalable tape archiver
NASA Technical Reports Server (NTRS)
Nemoto, Toshihiro; Kitsuregawa, Masaru; Takagi, Mikio
1996-01-01
In order to reduce costs, computer manufacturers try to use commodity parts as much as possible. Mainframes using proprietary processors are being replaced by high performance RISC microprocessor-based workstations, which are further being replaced by the commodity microprocessor used in personal computers. Highly reliable disks for mainframes are also being replaced by disk arrays, which are complexes of disk drives. In this paper we try to clarify the feasibility of a large scale tertiary storage system composed of 8-mm tape archivers utilizing robotics. In the near future, the 8-mm tape archiver will be widely used and become a commodity part, since recent rapid growth of multimedia applications requires much larger storage than disk drives can provide. We designed a scalable tape archiver which connects as many 8-mm tape archivers (element archivers) as possible. In the scalable archiver, robotics can exchange a cassette tape between two adjacent element archivers mechanically. Thus, we can build a large scalable archiver inexpensively. In addition, a sophisticated migration mechanism distributes frequently accessed tapes (hot tapes) evenly among all of the element archivers, which improves the throughput considerably. Even with the failures of some tape drives, the system dynamically redistributes hot tapes to the other element archivers which have live tape drives. Several kinds of specially tailored huge archivers are on the market, however, the 8-mm tape scalable archiver could replace them. To maintain high performance in spite of high access locality when a large number of archivers are attached to the scalable archiver, it is necessary to scatter frequently accessed cassettes among the element archivers and to use the tape drives efficiently. For this purpose, we introduce two cassette migration algorithms, foreground migration and background migration. Background migration transfers cassettes between element archivers to redistribute frequently accessed cassettes, thus balancing the load of each archiver. Background migration occurs the robotics are idle. Both migration algorithms are based on access frequency and space utility of each element archiver. To normalize these parameters according to the number of drives in each element archiver, it is possible to maintain high performance even if some tape drives fail. We found that the foreground migration is efficient at reducing access response time. Beside the foreground migration, the background migration makes it possible to track the transition of spatial access locality quickly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lingling, E-mail: liulingling2012@163.com; Luo, Qing, E-mail: qing.luo@cqu.edu.cn; Sun, Jinghui, E-mail: sunjhemail@163.com
Migration of bone marrow-derived mesenchymal stem cells (BMSCs) plays an important role in many physiological and pathological settings, including wound healing. During the migration of BMSCs through interstitial tissues, the movement of the nucleus must be coordinated with the cytoskeletal dynamics, which in turn affects the cell migration efficiency. Our previous study indicated that osteopontin (OPN) significantly promotes the migration of rat BMSCs. However, the nuclear behaviors and involved molecular mechanisms in OPN-mediated BMSC migration are largely unclear. In the present study, using an atomic force microscope (AFM), we found that OPN could decrease the nuclear stiffness of BMSCs andmore » reduce the expression of lamin A/C, which is the main determinant of nuclear stiffness. Increased lamin A/C expression attenuates BMSC migration by increasing nuclear stiffness. Decreased lamin A/C expression promotes BMSC migration by decreasing nuclear stiffness. Furthermore, OPN promotes BMSC migration by diminishing lamin A/C expression and decreasing nuclear stiffness via the FAK-ERK1/2 signaling pathway. This study provides strong evidence for the role of nuclear mechanics in BMSC migration as well as new insight into the molecular mechanisms of OPN-promoted BMSC migration. - Highlights: • OPN promotes BMSC migration by decreasing nuclear stiffness. • Lamin A/C knockdown decreases, while its overexpression enhances, the nuclear stiffness of BMSCs. • Lamin A/C overexpression and downregulation affect the migration of BMSCs. • OPN diminishes lamin A/C expression and decreases nuclear stiffness through the activation of the FAK-ERK1/2 signaling pathway. • OPN promotes BMSC migration via the FAK-ERK1/2 signaling pathway.« less
Neural differentiation of mesenchymal stem cells influences chemotactic responses to HGF.
Zheng, Bing; Wang, Chunyan; He, Lihong; Xu, Xiaojing; Qu, Jing; Hu, Jun; Zhang, Huanxiang
2013-01-01
Recently, mesenchymal stem cells (MSCs) have been extensively used for cell-based therapies in neuronal degenerative disease. Although much effort has been devoted to the delineation of factors involved in the migration of MSCs, the relationship between the chemotactic responses and the differentiation status of these cells remains elusive. Here, we report that MSCs in varying neural differentiation states display different chemotactic responses to hepatocyte growth factor (HGF): first, the number of chemotaxing MSCs and the optimal concentrations of HGF that induced the peak migration varied greatly; second, time-lapse video analysis showed that MSCs in certain differentiation state migrated more efficiently toward HGF; third, the phosphorylation levels of Akt, ERK1/2, SAPK/JNK, and p38MAPK were closely related to the differentiation levels of MSCs subjected to HGF; and finally, although inhibition of ERK1/2 signaling significantly attenuated HGF-stimulated transfilter migration of both undifferentiated and differentiating MSCs, abolishment of PI3K/Akt, p38MAPK, or SAPK/JNK signaling only decreased the number of migrated cells in certain differentiation state(s). Blocking of PI3K/Akt or MAPK signaling impaired the migration efficiency and/or speed, the extent of which depends on the cell differentiation states. Meanwhile, F-actin rearrangement, which is essential for MSCs chemotaxis, was induced by HGF, and the time points of cytoskeletal reorganization were different among these cells. Collectively, these results demonstrate that neural differentiation of MSCs influences their chemotactic responses to HGF: MSCs in varying differentiation states possess different migratory capacities, thereby shedding light on optimization of the therapeutic potential of MSCs to be employed for neural regeneration after injury. Copyright © 2012 Wiley Periodicals, Inc.
Nucleus and nucleus-cytoskeleton connections in 3D cell migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lingling, E-mail: liulingling2012@163.com; Luo, Qing, E-mail: qing.luo@cqu.edu.cn; Sun, Jinghui, E-mail: sunjhemail@163.com
Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and reviewmore » how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from receptors at the cell membrane through the cytoskeletal architecture to the nucleus and into the chromosomes. On a 2D substrate (B), the nucleus can be subjected to tensional forces emanating from the stress fibers and compressive forces due to the actin cap structures and the resistance of the surface. In a 3D environment (C), the migration process requires reshaping of the nucleus and squeezing it through narrow openings in the ECM. During this process the cells may also experience both tension generated by the actomyosin filaments and compression resulting from the high pressure of the anterior compartment. - Highlights: • The influence of nuclear size and stiffness in cell migration is discussed. • We describe molecular components that govern the mechanical properties of the nucleus. • We discuss the roles of chromatin, lamin A/C in nuclear mechanical properties and cell migration. • We review how nuclear dynamics are connected to cytoskeleton. • We discuss the role of nucleo-cytoskeletal coupling in cell migration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zydlewski, Gayle; Winter, Christiane; McClanahan, Dee
2003-02-01
Two remote Streamwidth PIT tag Interrogation systems (SPIs) were operated continuously for over one year to test the feasibility of these systems for generating movement, migration, survival and smolt production estimates for salmonids. A total of 1,588 juvenile (< 100 mm FL) naturally produced salmonids (7 coho salmon, 482 cutthroat trout, and 1,099 steelhead) were PIT tagged above the upstream-most SPI (9 sites approximately 1 linear km each) in Fall 2001. Age at tagging for wild caught cutthroat and steelhead was 1 year. SPIs were operating before any PIT tagged fish were released in the creek. Over 390,000 detections weremore » recorded from October 2001 to 31 July 2002. Efficiencies were site dependent, but overall detection efficiency for the creek was 97% with 95% confidence intervals of 91-100%. PIT tag detection efficiency ranged from 55-100% depending on the SPI and varied throughout the year with average efficiencies of 73% and 89%. SPI efficiency of PIT tag detection was not completely dependent on electronics noise levels or environmental conditions. Fish from all tagging locations were detected at the SPIs. Steelhead and cutthroat trout were primarily detected moving in the Spring (April-June) coincident with the anticipated smolt migration. Steelhead were also detected moving past SPIs at lower numbers in the Fall and Winter. Travel time between SPIs (downstream movement) was highly dependent on time of year. Travel time in the Spring was significantly faster (34.4 {+-} 7.0 hours) for all species than during any other time of year (763.1 {+-} 267.0 hours). Steelhead and cutthroat migrating in the Spring were the same age as those that did not migrate in the Spring. Peak of steelhead migration recorded at the two SPIs was 5/11 and 5/12 and the peak in the screw trap was recorded on 5/17. Steelhead smolt production estimates using SPIs (3,802 with 95% confidence intervals of 3,440 - 4,245) was similar to those using more standard screw trap methods (approximately 5,400). All species used the faster moving/deeper section of the creek at both SPIs. A backpack PIT tag detector was also developed and used as another remote 'recapture' for additional accuracy in estimating population survival and recapture probability. This unit was used at an approximate efficiency of 24% to survey the creek after the Spring migration. Twenty-five individual fish were re-located. All PIT tag data were used to calculate survival and recapture probabilities using the Cormack-Jolly-Seber population model. Survival for steelhead was high and recapture probability depended greatly on season. Probability of recapture was highest in Spring (29.5%) and relatively low in all other seasons (< 7% in Fall, Winter, and Summer). Wild steelhead PIT tagged in the field and returned to the laboratory had a tag retention rate of 97.6%. A laboratory study was designed to determine the effects of 3-sized PIT tags (12 mm, 20 mm, and 23 mm) on survival and growth of individuals. Survival from surgical implantation of 23 mm PIT tags was > 98% for fish (coho salmon and steelhead). Retention of 23 mm PIT tags was 100% for coho salmon and 89% for steelhead. For both coho and steelhead, growth rates during the first month were affected by tagging, but by the end of 2 months growth effects equalized for all tag sizes. Life history characteristics quantified with SPI techniques are comparable to standard techniques. For example, peaks of Spring migration for steelhead and cutthroat were amazingly similar to those reported from the screw trap. These techniques will enable application of less laborious methods which are more accurate at estimating life history parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zydlewski, Gayle B.; Casey, Sean
2003-02-01
Two remote Streamwidth PIT tag Interrogation systems (SPIs) were operated continuously for over one year to test the feasibility of these systems for generating movement, migration, survival and smolt production estimates for salmonids. A total of 1,588 juvenile (< 100 mm FL) naturally produced salmonids (7 coho salmon, 482 cutthroat trout, and 1,099 steelhead) were PIT tagged above the upstream-most SPI (9 sites approximately 1 linear km each) in Fall 2001. Age at tagging for wild caught cutthroat and steelhead was 1 year. SPIs were operating before any PIT tagged fish were released in the creek. Over 390,000 detections weremore » recorded from October 2001 to 31 July 2002. Efficiencies were site dependent, but overall detection efficiency for the creek was 97% with 95% confidence intervals of 91-100%. PIT tag detection efficiency ranged from 55-100% depending on the SPI and varied throughout the year with average efficiencies of 73% and 89%. SPI efficiency of PIT tag detection was not completely dependent on electronics noise levels or environmental conditions. Fish from all tagging locations were detected at the SPIs. Steelhead and cutthroat trout were primarily detected moving in the Spring (April-June) coincident with the anticipated smolt migration. Steelhead were also detected moving past SPIs at lower numbers in the Fall and Winter. Travel time between SPIs (downstream movement) was highly dependent on time of year. Travel time in the Spring was significantly faster (34.4 {+-} 7.0 hours) for all species than during any other time of year (763.1 {+-} 267.0 hours). Steelhead and cutthroat migrating in the Spring were the same age as those that did not migrate in the Spring. Peak of steelhead migration recorded at the two SPIs was 5/11 and 5/12 and the peak in the screw trap was recorded on 5/17. Steelhead smolt production estimates using SPIs (3,802 with 95% confidence intervals of 3,440-4,245) was similar to those using more standard screw trap methods (approximately 5,400). All species used the faster moving/deeper section of the creek at both SPIs. A backpack PIT tag detector was also developed and used as another remote ''recapture'' for additional accuracy in estimating population survival and recapture probability. This unit was used at an approximate efficiency of 24% to survey the creek after the Spring migration. Twenty-five individual fish were re-located. All PIT tag data were used to calculate survival and recapture probabilities using the Cormack-Jolly-Seber population model. Survival for steelhead was high and recapture probability depended greatly on season. Probability of recapture was highest in Spring (29.5%) and relatively low in all other seasons (< 7% in Fall, Winter, and Summer). Wild steelhead PIT tagged in the field and returned to the laboratory had a tag retention rate of 97.6%. A laboratory study was designed to determine the effects of 3-sized PIT tags (12 mm, 20 mm, and 23 mm) on survival and growth of individuals. Survival from surgical implantation of 23 mm PIT tags was > 98% for fish (coho salmon and steelhead). Retention of 23 mm PIT tags was 100% for coho salmon and 89% for steelhead. For both coho and steelhead, growth rates during the first month were affected by tagging, but by the end of 2 months growth effects equalized for all tag sizes. Life history characteristics quantified with SPI techniques are comparable to standard techniques. For example, peaks of Spring migration for steelhead and cutthroat were amazingly similar to those reported from the screw trap. These techniques will enable application of less laborious methods which are more accurate at estimating life history parameters.« less
Sroka, Jolanta; Krecioch, Izabela; Zimolag, Eliza; Lasota, Slawomir; Rak, Monika; Kedracka-Krok, Sylwia; Borowicz, Pawel; Gajek, Marta; Madeja, Zbigniew
2016-01-01
The endogenous electric field (EF) may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement—specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC) and lamellipodia forming (LC) WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1–3 V/cm). The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes) than LC cells (30 minutes). We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways. PMID:26863616
Sroka, Jolanta; Krecioch, Izabela; Zimolag, Eliza; Lasota, Slawomir; Rak, Monika; Kedracka-Krok, Sylwia; Borowicz, Pawel; Gajek, Marta; Madeja, Zbigniew
2016-01-01
The endogenous electric field (EF) may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement-specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC) and lamellipodia forming (LC) WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1-3 V/cm). The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes) than LC cells (30 minutes). We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways.
Wang, Jianlong; Zhang, Pingping; Yang, Liqiong; Huang, Tao
2016-01-01
Bioretention technology, a low-impact development stormwater management measure, was evaluated for its ability to remove heavy metals (specifically cadmium, Cd) from urban stormwater runoff. Fine sand, zeolite, sand and quartz sand were selected as composite bioretention media. The effects of these materials on the removal efficiency, chemical forms, and accumulation and migration characteristics of Cd were examined in laboratory scale bioretention columns. Heretofore, few studies have examined the removal of Cd by bioretention. A five-step sequential extraction method, a single-contamination index method, and an empirical migration equation were used in the experiments. The average Cd removal efficiency of quartz sand approached 99%, and removal by the other media all exceeded 90%. The media types markedly affected the forms of Cd found in the columns as well as its vertical migration rate. The Cd accumulated in the four media was mainly in residual form; moreover, accumulation of Cd occurred mainly in the surface layer of the bioretention column. The migration depth of Cd in the four media increased with elapsed time, in the following sequence: zeolite>quartz sand>fine sand>sand. In contrast, the migration rate decreased with elapsed time, and the migration rate of Cd was lowest in sand (0.015 m per annum over the first ten years). The comprehensive risk index analysis indicated that the risk arising from Cd discharge to surface water was "intermediate", and that the degree of risk was lowest in sand, then quartz sand, zeolite, and fine sand in sequence. These results indicate that the adsorption and accumulation of Cd in the four media are more significant than the migration of Cd. In addition, the results of Cd risk assessment for the effluent indicate that each of the four media can serve as long-term adsorption material in a bioretention facility for purifying stormwater runoff. Copyright © 2016 Elsevier B.V. All rights reserved.
Therapeutic effect of apatinib-loaded nanoparticles on diabetes-induced retinal vascular leakage.
Jeong, Ji Hoon; Nguyen, Hong Khanh; Lee, Jung Eun; Suh, Wonhee
2016-01-01
Apatinib, a novel and selective inhibitor of vascular endothelial growth factor (VEGF) receptor 2, has been demonstrated recently to exhibit anticancer efficacy by inhibiting the VEGF signaling pathway. Given the importance of VEGF in retinal vascular leakage, the present study was designed to investigate whether apatinib-loaded polymeric nanoparticles inhibit VEGF-mediated retinal vascular hyperpermeability and block diabetes-induced retinal vascular leakage. For the delivery of water-insoluble apatinib, the drug was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro paracellular permeability and transendothelial electric resistance assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles significantly inhibited VEGF-induced endothelial hyperpermeability in human retinal microvascular endothelial cells. In addition, they substantially reduced the VEGF-induced junctional loss and internalization of vascular endothelial-cadherin, a major component of endothelial junction complexes. In vivo intravitreal injection of Apa-HSA-PEG nanoparticles in mice blocked VEGF-induced retinal vascular leakage. These in vitro and in vivo data indicated that Apa-HSA-PEG nanoparticles efficiently blocked VEGF-induced breakdown of the blood-retinal barrier. In vivo experiments with streptozotocin-induced diabetic mice showed that an intravitreal injection of Apa-HSA-PEG nanoparticles substantially inhibited diabetes-induced retinal vascular leakage. These results demonstrated, for the first time, that apatinib-loaded nanoparticles may be a promising therapeutic agent for the prevention and treatment of diabetes-induced retinal vascular disorders.
Therapeutic effect of apatinib-loaded nanoparticles on diabetes-induced retinal vascular leakage
Jeong, Ji Hoon; Nguyen, Hong Khanh; Lee, Jung Eun; Suh, Wonhee
2016-01-01
Apatinib, a novel and selective inhibitor of vascular endothelial growth factor (VEGF) receptor 2, has been demonstrated recently to exhibit anticancer efficacy by inhibiting the VEGF signaling pathway. Given the importance of VEGF in retinal vascular leakage, the present study was designed to investigate whether apatinib-loaded polymeric nanoparticles inhibit VEGF-mediated retinal vascular hyperpermeability and block diabetes-induced retinal vascular leakage. For the delivery of water-insoluble apatinib, the drug was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro paracellular permeability and transendothelial electric resistance assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles significantly inhibited VEGF-induced endothelial hyperpermeability in human retinal microvascular endothelial cells. In addition, they substantially reduced the VEGF-induced junctional loss and internalization of vascular endothelial-cadherin, a major component of endothelial junction complexes. In vivo intravitreal injection of Apa-HSA-PEG nanoparticles in mice blocked VEGF-induced retinal vascular leakage. These in vitro and in vivo data indicated that Apa-HSA-PEG nanoparticles efficiently blocked VEGF-induced breakdown of the blood–retinal barrier. In vivo experiments with streptozotocin-induced diabetic mice showed that an intravitreal injection of Apa-HSA-PEG nanoparticles substantially inhibited diabetes-induced retinal vascular leakage. These results demonstrated, for the first time, that apatinib-loaded nanoparticles may be a promising therapeutic agent for the prevention and treatment of diabetes-induced retinal vascular disorders. PMID:27462154
Practical aspects of prestack depth migration with finite differences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ober, C.C.; Oldfield, R.A.; Womble, D.E.
1997-07-01
Finite-difference, prestack, depth migrations offers significant improvements over Kirchhoff methods in imaging near or under salt structures. The authors have implemented a finite-difference prestack depth migration algorithm for use on massively parallel computers which is discussed. The image quality of the finite-difference scheme has been investigated and suggested improvements are discussed. In this presentation, the authors discuss an implicit finite difference migration code, called Salvo, that has been developed through an ACTI (Advanced Computational Technology Initiative) joint project. This code is designed to be efficient on a variety of massively parallel computers. It takes advantage of both frequency and spatialmore » parallelism as well as the use of nodes dedicated to data input/output (I/O). Besides giving an overview of the finite-difference algorithm and some of the parallelism techniques used, migration results using both Kirchhoff and finite-difference migration will be presented and compared. The authors start out with a very simple Cartoon model where one can intuitively see the multiple travel paths and some of the potential problems that will be encountered with Kirchhoff migration. More complex synthetic models as well as results from actual seismic data from the Gulf of Mexico will be shown.« less
A Kirchhoff approach to seismic modeling and prestack depth migration
NASA Astrophysics Data System (ADS)
Liu, Zhen-Yue
1993-05-01
The Kirchhoff integral provides a robust method for implementing seismic modeling and prestack depth migration, which can handle lateral velocity variation and turning waves. With a little extra computation cost, the Kirchoff-type migration can obtain multiple outputs that have the same phase but different amplitudes, compared with that of other migration methods. The ratio of these amplitudes is helpful in computing some quantities such as reflection angle. I develop a seismic modeling and prestack depth migration method based on the Kirchhoff integral, that handles both laterally variant velocity and a dip beyond 90 degrees. The method uses a finite-difference algorithm to calculate travel times and WKBJ amplitudes for the Kirchhoff integral. Compared to ray-tracing algorithms, the finite-difference algorithm gives an efficient implementation and single-valued quantities (first arrivals) on output. In my finite difference algorithm, the upwind scheme is used to calculate travel times, and the Crank-Nicolson scheme is used to calculate amplitudes. Moreover, interpolation is applied to save computation cost. The modeling and migration algorithms require a smooth velocity function. I develop a velocity-smoothing technique based on damped least-squares to aid in obtaining a successful migration.
Pugsley, Haley R.; Swearingen, Kristian E.; Dovichi, Norman J.
2009-01-01
A number of algorithms have been developed to correct for migration time drift in capillary electrophoresis. Those algorithms require identification of common components in each run. However, not all components may be present or resolved in separations of complex samples, which can confound attempts for alignment. This paper reports the use of fluorescein thiocarbamyl derivatives of amino acids as internal standards for alignment of 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ)-labeled proteins in capillary sieving electrophoresis. The fluorescein thiocarbamyl derivative of aspartic acid migrates before FQ-labeled proteins and the fluorescein thiocarbamyl derivative of arginine migrates after the FQ-labeled proteins. These compounds were used as internal standards to correct for variations in migration time over a two-week period in the separation of a cellular homogenate. The experimental conditions were deliberately manipulated by varying electric field and sample preparation conditions. Three components of the homogenate were used to evaluate the alignment efficiency. Before alignment, the average relative standard deviation in migration time for these components was 13.3%. After alignment, the average relative standard deviation in migration time for these components was reduced to 0.5%. PMID:19249052
Zhang, Yupeng; Wang, Yusheng; Xu, Zai-Quan; Liu, Jingying; Song, Jingchao; Xue, Yunzhou; Wang, Ziyu; Zheng, Jialu; Jiang, Liangcong; Zheng, Changxi; Huang, Fuzhi; Sun, Baoquan; Cheng, Yi-Bing; Bao, Qiaoliang
2016-07-26
Ion migration in hybrid organic-inorganic perovskites has been suggested to be an important factor for many unusual behaviors in perovskite-based optoelectronics, such as current-voltage hysteresis, low-frequency giant dielectric response, and the switchable photovoltaic effect. However, the role played by ion migration in the photoelectric conversion process of perovskites is still unclear. In this work, we provide microscale insights into the influence of ion migration on the microstructure, stability, and light-matter interaction in perovskite micro/nanowires by using spatially resolved optical characterization techniques. We observed that ion migration, especially the migration of MA(+) ions, will induce a reversible structural swell-shrink in perovskites and recoverably affect the reflective index, quantum efficiency, light-harvesting, and photoelectric properties. The maximum ion migration quantity in perovskites was as high as approximately 30%, resulting in lattice swell or shrink of approximately 4.4%. Meanwhile, the evidence shows that ion migration in perovskites could gradually accelerate the aging of perovskites because of lattice distortion in the reversible structural swell-shrink process. Knowledge regarding reversible structural swell-shrink and recoverable optical properties may shed light on the development of optoelectronic and converse piezoelectric devices based on perovskites.
Reim, Ingolf; Hollfelder, Dominik; Ismat, Afshan; Frasch, Manfred
2013-01-01
Fibroblast growth factors (FGFs) frequently fulfill prominent roles in the regulation of cell migration in various contexts. In Drosophila, the FGF8-like ligands Pyramus (Pyr) and Thisbe (Ths), which signal through their receptor Heartless (Htl), are known to regulate early mesodermal cell migration after gastrulation as well as glial cell migration during eye development. Herein, we show that Pyr and Ths also exert key roles during the long-distance migration of a specific sub-population of mesodermal cells that migrate from the caudal visceral mesoderm within stereotypic bilateral paths along the trunk visceral mesoderm toward the anterior. These cells constitute the founder myoblasts of the longitudinal midgut muscles. In a forward genetic screen for regulators of this morphogenetic process we identified loss of function alleles for pyr. We show that pyr and ths are expressed along the paths of migration in the trunk visceral mesoderm and endoderm and act largely redundantly to help guide the founder myoblasts reliably onto and along their substrate of migration. Ectopically-provided Pyr and Ths signals can efficiently re-rout the migrating cells, both in the presence and absence of endogenous signals. Our data indicate that the guidance functions of these FGFs must act in concert with other important attractive or adhesive activities of the trunk visceral mesoderm. Apart from their guidance functions, the Pyr and Ths signals play an obligatory role for the survival of the migrating cells. Without these signals, essentially all of these cells enter cell death and detach from the migration substrate during early migration. We present experiments that allowed us to dissect the roles of these FGFs as guidance cues versus trophic activities during the migration of the longitudinal visceral muscle founders. PMID:22609944
Steering cell migration by alternating blebs and actin-rich protrusions.
Diz-Muñoz, Alba; Romanczuk, Pawel; Yu, Weimiao; Bergert, Martin; Ivanovitch, Kenzo; Salbreux, Guillaume; Heisenberg, Carl-Philipp; Paluch, Ewa K
2016-09-02
High directional persistence is often assumed to enhance the efficiency of chemotactic migration. Yet, cells in vivo usually display meandering trajectories with relatively low directional persistence, and the control and function of directional persistence during cell migration in three-dimensional environments are poorly understood. Here, we use mesendoderm progenitors migrating during zebrafish gastrulation as a model system to investigate the control of directional persistence during migration in vivo. We show that progenitor cells alternate persistent run phases with tumble phases that result in cell reorientation. Runs are characterized by the formation of directed actin-rich protrusions and tumbles by enhanced blebbing. Increasing the proportion of actin-rich protrusions or blebs leads to longer or shorter run phases, respectively. Importantly, both reducing and increasing run phases result in larger spatial dispersion of the cells, indicative of reduced migration precision. A physical model quantitatively recapitulating the migratory behavior of mesendoderm progenitors indicates that the ratio of tumbling to run times, and thus the specific degree of directional persistence of migration, are critical for optimizing migration precision. Together, our experiments and model provide mechanistic insight into the control of migration directionality for cells moving in three-dimensional environments that combine different protrusion types, whereby the proportion of blebs to actin-rich protrusions determines the directional persistence and precision of movement by regulating the ratio of tumbling to run times.
Designer self-assembling hydrogel scaffolds can impact skin cell proliferation and migration
Bradshaw, Michael; Ho, Diwei; Fear, Mark W.; Gelain, Fabrizio; Wood, Fiona M.; Iyer, K. Swaminathan
2014-01-01
There is a need to develop economical, efficient and widely available therapeutic approaches to enhance the rate of skin wound healing. The optimal outcome of wound healing is restoration to the pre-wound quality of health. In this study we investigate the cellular response to biological stimuli using functionalized nanofibers from the self-assembling peptide, RADA16. We demonstrate that adding different functional motifs to the RADA16 base peptide can influence the rate of proliferation and migration of keratinocytes and dermal fibroblasts. Relative to unmodified RADA16; the Collagen I motif significantly promotes cell migration, and reduces proliferation. PMID:25384420
Effect of migration in a diffusion model for template coexistence in protocells.
Fontanari, José F; Serva, Maurizio
2014-03-01
The compartmentalization of distinct templates in protocells and the exchange of templates between them (migration) are key elements of a modern scenario for prebiotic evolution. Here we use the diffusion approximation of population genetics to study analytically the steady-state properties of such a prebiotic scenario. The coexistence of distinct template types inside a protocell is achieved by a selective pressure at the protocell level (group selection) favoring protocells with a mixed template composition. In the degenerate case, where the templates have the same replication rate, we find that a vanishingly small migration rate suffices to eliminate the segregation effect of random drift and so to promote coexistence. In the nondegenerate case, a small migration rate greatly boosts coexistence as compared with the situation where there is no migration. However, increase of the migration rate beyond a critical value leads to the complete dominance of the more efficient template type (homogeneous regime). In this case, we find a continuous phase transition separating the homogeneous and the coexistence regimes, with the order parameter vanishing linearly with the distance to the transition point.
NASA Astrophysics Data System (ADS)
Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.
2015-11-01
The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.
Non-muscle myosin IIB is critical for nuclear translocation during 3D invasion
Yenepalli, Aishwarya; Denais, Celine Marie; Rape, Andrew; Beach, Jordan R.; Wang, Yu-li; Schiemann, William P.; Baskaran, Harihara; Lammerding, Jan
2015-01-01
Non-muscle myosin II (NMII) is reported to play multiple roles during cell migration and invasion. However, the exact biophysical roles of different NMII isoforms during these processes remain poorly understood. We analyzed the contributions of NMIIA and NMIIB in three-dimensional (3D) migration and in generating the forces required for efficient invasion by mammary gland carcinoma cells. Using traction force microscopy and microfluidic invasion devices, we demonstrated that NMIIA is critical for generating force during active protrusion, and NMIIB plays a major role in applying force on the nucleus to facilitate nuclear translocation through tight spaces. We further demonstrate that the nuclear membrane protein nesprin-2 is a possible linker coupling NMIIB-based force generation to nuclear translocation. Together, these data reveal a central biophysical role for NMIIB in nuclear translocation during 3D invasive migration, a result with relevance not only to cancer metastasis but for 3D migration in other settings such as embryonic cell migration and wound healing. PMID:26261182
Thiam, Hawa-Racine; Vargas, Pablo; Carpi, Nicolas; Crespo, Carolina Lage; Raab, Matthew; Terriac, Emmanuel; King, Megan C.; Jacobelli, Jordan; Alberts, Arthur S.; Stradal, Theresia; Lennon-Dumenil, Ana-Maria; Piel, Matthieu
2016-01-01
Cell migration has two opposite faces: although necessary for physiological processes such as immune responses, it can also have detrimental effects by enabling metastatic cells to invade new organs. In vivo, migration occurs in complex environments and often requires a high cellular deformability, a property limited by the cell nucleus. Here we show that dendritic cells, the sentinels of the immune system, possess a mechanism to pass through micrometric constrictions. This mechanism is based on a rapid Arp2/3-dependent actin nucleation around the nucleus that disrupts the nuclear lamina, the main structure limiting nuclear deformability. The cells' requirement for Arp2/3 to pass through constrictions can be relieved when nuclear stiffness is decreased by suppressing lamin A/C expression. We propose a new role for Arp2/3 in three-dimensional cell migration, allowing fast-moving cells such as leukocytes to rapidly and efficiently migrate through narrow gaps, a process probably important for their function. PMID:26975831
NASA Astrophysics Data System (ADS)
Xia, Huifen; Pan, Junliang; Niu, Lijuan; Xu, Tianhan
2018-02-01
The results illustrate that under the condition of the same viscosity of ASP system, oil displacement efficiency is different while the ASP system with different alkali concentration has the same order of magnitude as the interfacial tension of oil. In this paper, the microscopic simulation visual model is used to study the mechanism of starting migration of residual oil by doing ASP flooding experiments with different alkali concentration. The results indicate that the migration of residual oil is different from that in the ASP systems with different alkali concentration. ASP system with high alkali concentration can start the migration by means of emulsifying residual oil into oil droplets and oil threads, on this account, increasing the alkali concentration can make the recovery degree of ASP system higher, which will finally be beneficial to the oil recovery.
Intermediate mass black holes in AGN discs - I. Production and growth
NASA Astrophysics Data System (ADS)
McKernan, B.; Ford, K. E. S.; Lyra, W.; Perets, H. B.
2012-09-01
Here we propose a mechanism for efficiently growing intermediate mass black holes (IMBH) in discs around supermassive black holes. Stellar mass objects can efficiently agglomerate when facilitated by the gas disc. Stars, compact objects and binaries can migrate, accrete and merge within discs around supermassive black holes. While dynamical heating by cusp stars excites the velocity dispersion of nuclear cluster objects (NCOs) in the disc, gas in the disc damps NCO orbits. If gas damping dominates, NCOs remain in the disc with circularized orbits and large collision cross-sections. IMBH seeds can grow extremely rapidly by collisions with disc NCOs at low relative velocities, allowing for super-Eddington growth rates. Once an IMBH seed has cleared out its feeding zone of disc NCOs, growth of IMBH seeds can become dominated by gas accretion from the active galactic nucleus (AGN) disc. However, the IMBH can migrate in the disc and expand its feeding zone, permitting a super-Eddington accretion rate to continue. Growth of IMBH seeds via NCO collisions is enhanced by a pile-up of migrators. We highlight the remarkable parallel between the growth of IMBH in AGN discs with models of giant planet growth in protoplanetary discs. If an IMBH becomes massive enough it can open a gap in the AGN disc. IMBH migration in AGN discs may stall, allowing them to survive the end of the AGN phase and remain in galactic nuclei. Our proposed mechanisms should be more efficient at growing IMBH in AGN discs than the standard model of IMBH growth in stellar clusters. Dynamical heating of disc NCOs by cusp stars is transferred to the gas in an AGN disc helping to maintain the outer disc against gravitational instability. Model predictions, observational constraints and implications are discussed in a companion paper (Paper II).
Diverse matrix metalloproteinase functions regulate cancer amoeboid migration
Orgaz, Jose L.; Pandya, Pahini; Viros, Amaya; Albrengues, Jean; Nestle, Frank O.; Ridley, Anne J.; Gaggioli, Cedric; Marais, Richard; Karagiannis, Sophia N.; Sanz-Moreno, Victoria
2014-01-01
Rounded-amoeboid cancer cells use actomyosin contractility driven by Rho-ROCK and JAK-STAT3 to migrate efficiently. It has been suggested that rounded-amoeboid cancer cells do not require matrix metalloproteinases (MMPs) to invade. Here we compare MMP levels in rounded-amoeboid and elongated-mesenchymal melanoma cells. Surprisingly, we find that rounded-amoeboid melanoma cells secrete higher levels of several MMPs, including collagenase MMP-13 and gelatinase MMP-9. As a result, rounded-amoeboid melanoma cells degrade collagen I more efficiently than elongated-mesenchymal cells. Furthermore, using a non-catalytic mechanism, MMP-9 promotes rounded-amoeboid 3D migration through regulation of actomyosin contractility via CD44 receptor. MMP-9 is upregulated in a panel of rounded-amoeboid compared with elongated-mesenchymal melanoma cell lines and its levels are controlled by ROCK-JAK-STAT3 signalling. MMP-9 expression increases during melanoma progression and it is particularly prominent in the invasive fronts of lesions, correlating with cell roundness. Therefore, rounded-amoeboid cells use both catalytic and non-catalytic activities of MMPs for invasion. PMID:24963846
Evidence of K+ channel function in epithelial cell migration, proliferation, and repair
Girault, Alban
2013-01-01
Efficient repair of epithelial tissue, which is frequently exposed to insults, is necessary to maintain its functional integrity. It is therefore necessary to better understand the biological and molecular determinants of tissue regeneration and to develop new strategies to promote epithelial repair. Interestingly, a growing body of evidence indicates that many members of the large and widely expressed family of K+ channels are involved in regulation of cell migration and proliferation, key processes of epithelial repair. First, we briefly summarize the complex mechanisms, including cell migration, proliferation, and differentiation, engaged after epithelial injury. We then present evidence implicating K+ channels in the regulation of these key repair processes. We also describe the mechanisms whereby K+ channels may control epithelial repair processes. In particular, changes in membrane potential, K+ concentration, cell volume, intracellular Ca2+, and signaling pathways following modulation of K+ channel activity, as well as physical interaction of K+ channels with the cytoskeleton or integrins are presented. Finally, we discuss the challenges to efficient, specific, and safe targeting of K+ channels for therapeutic applications to improve epithelial repair in vivo. PMID:24196531
Donor-Acceptor-Collector Ternary Crystalline Films for Efficient Solid-State Photon Upconversion.
Ogawa, Taku; Hosoyamada, Masanori; Yurash, Brett; Nguyen, Thuc-Quyen; Yanai, Nobuhiro; Kimizuka, Nobuo
2018-06-25
It is pivotal to achieve efficient triplet-triplet annihilation based photon upconversion (TTA-UC) in the solid-state for enhancing potentials of renewable energy production devices. However, the UC efficiency of solid materials is largely limited by low fluorescence quantum yields that originate from the aggregation of TTA-UC chromophores, and also by severe back energy transfer from the acceptor singlet state to the singlet state of the triplet donor in the condensed state. In this work, to overcome these issues, we introduce a highly fluorescent singlet energy collector as the third component of donor-doped acceptor crystalline films, in which dual energy migration, i.e., triplet energy migration for TTA-UC and succeeding singlet energy migration for transferring energy to a collector, takes place. To demonstrate this scheme, a highly fluorescent singlet energy collector was added as the third component of donor-doped acceptor crystalline films. An anthracene-based acceptor containing alkyl chains and a carboxylic moiety is mixed with the triplet donor Pt(II) octaethylporphyrin (PtOEP) and the energy collector 2,5,8,11-tetra- tert-butylperylene (TTBP) in solution, and spin-coating of the mixed solution gives acceptor films of nanofibrous crystals homogeneously doped with PtOEP and TTBP. Interestingly, delocalized singlet excitons in acceptor crystals are found to diffuse effectively over the distance of ~37 nm. Thanks to this high diffusivity, only 0.5 mol% of doped TTBP can harvest most of the singlet excitons, which successfully doubles the solid-state fluorescent quantum yield of acceptor/TTBP blend films to 76%. Furthermore, since the donor PtOEP and the collector TTBP are separately isolated in the nanofibrous acceptor crystals, the singlet back energy transfer from the collector to the donor is effectively avoided. Such efficient singlet energy collection and inhibited back energy transfer processes result in a large increase of UC efficiency up to 9.0%, offering rational design principles towards ultimately efficient solid-state upconverters.
Seismic imaging using finite-differences and parallel computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ober, C.C.
1997-12-31
A key to reducing the risks and costs of associated with oil and gas exploration is the fast, accurate imaging of complex geologies, such as salt domes in the Gulf of Mexico and overthrust regions in US onshore regions. Prestack depth migration generally yields the most accurate images, and one approach to this is to solve the scalar wave equation using finite differences. As part of an ongoing ACTI project funded by the US Department of Energy, a finite difference, 3-D prestack, depth migration code has been developed. The goal of this work is to demonstrate that massively parallel computersmore » can be used efficiently for seismic imaging, and that sufficient computing power exists (or soon will exist) to make finite difference, prestack, depth migration practical for oil and gas exploration. Several problems had to be addressed to get an efficient code for the Intel Paragon. These include efficient I/O, efficient parallel tridiagonal solves, and high single-node performance. Furthermore, to provide portable code the author has been restricted to the use of high-level programming languages (C and Fortran) and interprocessor communications using MPI. He has been using the SUNMOS operating system, which has affected many of his programming decisions. He will present images created from two verification datasets (the Marmousi Model and the SEG/EAEG 3D Salt Model). Also, he will show recent images from real datasets, and point out locations of improved imaging. Finally, he will discuss areas of current research which will hopefully improve the image quality and reduce computational costs.« less
Xiao, Jun; Wu, Xu; Yu, Wenbo; Liang, Sha; Yu, Jiangwei; Gu, Yueyuan; Deng, Huali; Hu, Jiukun; Xiao, Keke; Yang, Jiakuan
2017-12-01
In this study, the influence of Na 2 SO 4 on electro-dewatering (EDW) of waste activated sludge (WAS) was investigated. The highest water removal efficiency of 42.5% was achieved at the optimum Na 2 SO 4 dosage of 12.5 g kg -1 DS during EDW process at a constant voltage of 20 V. The migration and distribution of water, organic matters and Na + at different Na 2 SO 4 dosages were investigated through layered experiments. The results indicated the entire EDW process followed the S curve model, and it can be divided into three stages: (1) initial desalination stage: at the initial few min of EDW process, the rate of electroosmosis was extremely slow while electromigration of ions like Na + was intense, and the electromigration was more obvious with increased Na 2 SO 4 dosage; (2) dewatering stage: the dewatering efficiency increased dramatically via electroosmosis; (3) the dewaterability limit stage: the maximum value of dewatering efficiency has been achieved, while the water removal efficiency and dry solids content remained constant. During the EDW process, the possible electrolysis resulted in a pH gradient in the sludge cake. With the addition of Na 2 SO 4 in the EDW, the pH gradient was intensified, and the migration rate of organic matters moving from cathode to anode increased while compared with the raw WAS. This study provided insights into the mechanism of EDW process at different dosages of Na 2 SO 4 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A; Davidson, Michael W; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M; Fabry, Ben
2015-11-01
Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton-ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell-ECM adhesion and traction force generation. © FASEB.
Analysis of Histone Deacetylase-Dependent Effects on Cell Migration Using the Stripe Assay.
Mertsch, Sonja; Thanos, Solon
2017-01-01
For normal embryonic development/morphogenesis, cell migration and homing are well-orchestrated and important events requiring specific cellular mechanisms. In diseases such as cancer deregulated cell migration represents a major problem. Therefore, numerous efforts are under way to understand the molecular mechanisms of tumor cell migration and to generate more efficient tumor therapies. Cell migration assays are one of the most commonly used functional assays. The wound-healing assay or the Boyden chamber assay are variations of these assays. Nearly all of them are two-dimensional assays and the cells can only migrate on one substrate at a time. This is in contrast to the in vivo situation where the cells are faced simultaneously with different surfaces and interact with different cell types. To approach this in vivo situation we used a modified version of the stripe assay designed by Bonhoeffer and colleagues to examine mechanisms of axonal guidance. The design of this assay allows cells to decide between two different substrates offered at the same time. Utilizing alternating neuronal substrates for migration analyses we can partially mimic the complex in vivo situation for brain tumor cells. Here we describe the detailed protocol to perform a modified version of the stripe assay in order to observe substrate-dependent migration effects in vitro, to analyze the effect of Rho-dependent kinases (ROCKS), of histone deacetylases (HDACs) and of other molecules on glioma cells.
Computational model of mesenchymal migration in 3D under chemotaxis.
Ribeiro, F O; Gómez-Benito, M J; Folgado, J; Fernandes, P R; García-Aznar, J M
2017-01-01
Cell chemotaxis is an important characteristic of cellular migration, which takes part in crucial aspects of life and development. In this work, we propose a novel in silico model of mesenchymal 3D migration with competing protrusions under a chemotactic gradient. Based on recent experimental observations, we identify three main stages that can regulate mesenchymal chemotaxis: chemosensing, dendritic protrusion dynamics and cell-matrix interactions. Therefore, each of these features is considered as a different module of the main regulatory computational algorithm. The numerical model was particularized for the case of fibroblast chemotaxis under a PDGF-bb gradient. Fibroblasts migration was simulated embedded in two different 3D matrices - collagen and fibrin - and under several PDGF-bb concentrations. Validation of the model results was provided through qualitative and quantitative comparison with in vitro studies. Our numerical predictions of cell trajectories and speeds were within the measured in vitro ranges in both collagen and fibrin matrices. Although in fibrin, the migration speed of fibroblasts is very low, because fibrin is a stiffer and more entangling matrix. Testing PDGF-bb concentrations, we noticed that an increment of this factor produces a speed increment. At 1 ng mL -1 a speed peak is reached after which the migration speed diminishes again. Moreover, we observed that fibrin exerts a dampening behavior on migration, significantly affecting the migration efficiency.
Anguiano, María; Castilla, Carlos; Maška, Martin; Ederra, Cristina; Peláez, Rafael; Morales, Xabier; Muñoz-Arrieta, Gorka; Mujika, Maite; Kozubek, Michal; Muñoz-Barrutia, Arrate; Rouzaut, Ana; Arana, Sergio; Garcia-Aznar, José Manuel; Ortiz-de-Solorzano, Carlos
2017-01-01
Microfluidic devices are becoming mainstream tools to recapitulate in vitro the behavior of cells and tissues. In this study, we use microfluidic devices filled with hydrogels of mixed collagen-Matrigel composition to study the migration of lung cancer cells under different cancer invasion microenvironments. We present the design of the microfluidic device, characterize the hydrogels morphologically and mechanically and use quantitative image analysis to measure the migration of H1299 lung adenocarcinoma cancer cells in different experimental conditions. Our results show the plasticity of lung cancer cell migration, which turns from mesenchymal in collagen only matrices, to lobopodial in collagen-Matrigel matrices that approximate the interface between a disrupted basement membrane and the underlying connective tissue. Our quantification of migration speed confirms a biphasic role of Matrigel. At low concentration, Matrigel facilitates migration, most probably by providing a supportive and growth factor retaining environment. At high concentration, Matrigel slows down migration, possibly due excessive attachment. Finally, we show that antibody-based integrin blockade promotes a change in migration phenotype from mesenchymal or lobopodial to amoeboid and analyze the effect of this change in migration dynamics, in regards to the structure of the matrix. In summary, we describe and characterize a robust microfluidic platform and a set of software tools that can be used to study lung cancer cell migration under different microenvironments and experimental conditions. This platform could be used in future studies, thus benefitting from the advantages introduced by microfluidic devices: precise control of the environment, excellent optical properties, parallelization for high throughput studies and efficient use of therapeutic drugs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Bin; Li, Huiying; Du, Xiaoming
2016-02-01
During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significantmore » positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well.« less
Hahn, Steffen; Korner-Nievergelt, Fränzi; Emmenegger, Tamara; Amrhein, Valentin; Csörgő, Tibor; Gursoy, Arzu; Ilieva, Mihaela; Kverek, Pavel; Pérez-Tris, Javier; Pirrello, Simone; Zehtindjiev, Pavel; Salewski, Volker
2016-01-01
In migratory birds, morphological adaptations for efficient migratory flight often oppose morphological adaptations for efficient behavior during resident periods. This includes adaptations in wing shape for either flying long distances or foraging in the vegetation and in climate-driven variation of body size. In addition, the timing of migratory flights and particularly the timely arrival at local breeding sites is crucial because fitness prospects depend on site-specific phenology. Thus, adaptations for efficient long-distance flights might be also related to conditions at destination areas. For an obligatory long-distance migrant, the common nightingale, we verified that wing length as the aerodynamically important trait, but not structural body size increased from the western to the eastern parts of the species range. In contrast with expectation from aerodynamic theory, however, wing length did not increase with increasing migration distances. Instead, wing length was associated with the phenology at breeding destinations, namely the speed of local spring green-up. We argue that longer wings are beneficial for adjusting migration speed to local conditions for birds breeding in habitats with fast spring green-up and thus short optimal arrival periods. We suggest that the speed of spring green-up at breeding sites is a fundamental variable determining the timing of migration that fine tune phenotypes in migrants across their range.
Imaging tilted transversely isotropic media with a generalised screen propagator
NASA Astrophysics Data System (ADS)
Shin, Sung-Il; Byun, Joongmoo; Seol, Soon Jee
2015-01-01
One-way wave equation migration is computationally efficient compared with reverse time migration, and it provides a better subsurface image than ray-based migration algorithms when imaging complex structures. Among many one-way wave-based migration algorithms, we adopted the generalised screen propagator (GSP) to build the migration algorithm. When the wavefield propagates through the large velocity variation in lateral or steeply dipping structures, GSP increases the accuracy of the wavefield in wide angle by adopting higher-order terms induced from expansion of the vertical slowness in Taylor series with each perturbation term. To apply the migration algorithm to a more realistic geological structure, we considered tilted transversely isotropic (TTI) media. The new GSP, which contains the tilting angle as a symmetric axis of the anisotropic media, was derived by modifying the GSP designed for vertical transversely isotropic (VTI) media. To verify the developed TTI-GSP, we analysed the accuracy of wave propagation, especially for the new perturbation parameters and the tilting angle; the results clearly showed that the perturbation term of the tilting angle in TTI media has considerable effects on proper propagation. In addition, through numerical tests, we demonstrated that the developed TTI-GS migration algorithm could successfully image a steeply dipping salt flank with high velocity variation around anisotropic layers.
The ultrastructure of cerebral blood capillaries in the ratfish, Chimaera monstrosa.
Bundgaard, M
1982-01-01
Sharks and skates (Chondrichthyes: Elasmobranchii) have a glial blood-brain barrier, while all other vertebrates examined so far have an endothelial barrier. For comparative reasons it is desirable to examine the blood-brain barrier in species from the other subclass of cartilaginous fish, the holocephalans. The ultrastructure of cerebral capillaries in the chimaera (Chondrichthyes: Holocephali) is described in the present study. The endothelial cells are remarkably thick. Fenestrae and transendothelial channels were not observed. The endothelial cells are joined by elaborate tight junctions. The perivascular glial processes are separated by wide spaces (15-60 nm) without obliterating junctional complexes. These findings indicate that the chimaera has an endothelial blood-brain barrier.
Ye, Baixin; Xiong, Xiaoxing; Deng, Xu; Gu, Lijuan; Wang, Qiongyu; Zeng, Zhi; Gao, Xiang; Gao, Qingping; Wang, Yueying
2017-12-01
Inflammatory disease is a big threat to human health. Leukocyte chemotactic migration is required for efficient inflammatory response. Inhibition of leukocyte chemotactic migration to the inflammatory site has been shown to provide therapeutic targets for treating inflammatory diseases. Our study was designed to discover effective and safe compounds that can inhibit leukocyte chemotactic migration, thus providing possible novel therapeutic strategy for treating inflammatory diseases. In this study, we used transgenic zebrafish model (Tg:zlyz-EGFP line) to visualize the process of leukocyte chemotactic migration. Then, we used this model to screen the hit compound and evaluate its biological activity on leukocyte chemotactic migration. Furthermore, western blot analysis was performed to evaluate the effect of the hit compound on the AKT or ERK-mediated pathway, which plays an important role in leukocyte chemotactic migration. In this study, using zebrafish-based chemical screening, we identified that the hit compound meisoindigo (25 μM, 50 μM, 75 μM) can significantly inhibit zebrafish leukocyte chemotactic migration in a dose-dependent manner (p = 0.01, p = 0.0006, p < 0.0001). Also, we found that meisoindigo did not affect the process of leukocyte reverse migration (p = 0.43). Furthermore, our results unexpectedly showed that indirubin, the core structure of meisoindigo, had no significant effect on zebrafish leukocyte chemotactic migration (p = 0.6001). Additionally, our results revealed that meisoindigo exerts no effect on the Akt or Erk-mediated signalling pathway. Our results suggest that meisoindigo, but not indirubin, is effective for inhibiting leukocyte chemotactic migration, thus providing a potential therapeutic agent for treating inflammatory diseases.
Shepard, Jaclyn A.; Huang, Alyssa; Shikanova, Ariella; Shea, Lonnie D.
2010-01-01
In regenerative medicine, hydrogels are employed to fill defects and support the infiltration of cells that can ultimately regenerate tissue. Gene delivery within hydrogels targeting infiltrating cells has the potential to promote tissue formation, but the delivery efficiency of nonviral vectors within hydrogels is low hindering their applicability in tissue regeneration. To improve their functionality, we have conducted a mechanistic study to investigate the contribution of cell migration and matrix degradation on gene delivery. In this report, lipoplexes were entrapped within hydrogels based on poly(ethylene glycol) (PEG) crosslinked with peptides containing matrix metalloproteinase degradable sequences. The mesh size of these hydrogels is substantially less than the size of the entrapped lipoplexes, which can function to retain vectors. Cell migration and transfection were simultaneously measured within hydrogels with varying density of cell adhesion sites (Arg-Gly-Asp peptides) and solids content. Increasing RGD density increased expression levels up to 100-fold, while greater solids content sustained expression levels for 16 days. Increasing RGD density and decreasing solids content increased cell migration, which indicates expression levels increase with increased cell migration. Initially exposing cells to vector resulted in transient expression that declined after 2 days, verifying the requirement of migration to sustain expression. Transfected cells were predominantly located within the population of migrating cells for hydrogels that supported cell migration. Although the small mesh size retained at least 70% of the lipoplexes in the absence of cells after 32 days, the presence of cells decreased retention to 10% after 16 days. These results indicate that vectors retained within hydrogels contact migrating cells, and that persistent cell migration can maintain elevated expression levels. Thus matrix degradation and cell migration are fundamental design parameters for maximizing gene delivery from hydrogels. PMID:20450944
Konda, Naoko; Saeki, Noritaka; Nishino, Shingo; Ogawa, Kazushige
2017-03-01
We previously established a J774.1 monocyte/macrophage subline expressing a truncated EphA2 construct lacking the kinase domain. We demonstrated that following ephrin-A1 stimulation, endogenous EphA2 promotes cell adhesion through interaction with integrins and integrin ligands such as ICAM1 and that truncated EphA2 potentiates the adhesion and becomes associated with the integrin/integrin ligand complex. Based on these findings, we hypothesized that the EphA/ephrin-A system, particularly EphA2/ephrin-A1, regulates transendothelial migration/tissue infiltration of monocytes/macrophages, because ephrin-A1 is widely recognized to be upregulated in inflammatory vasculatures. To evaluate whether this hypothesis is applicable in the spleen, we screened for EphA2/ephrin-A1 expression and reexamined the cellular properties of the J774.1 subline. We found that ephrin-A1 was expressed in the vasculature of the marginal zone and the red pulp and that its expression was upregulated in response to phagocyte depletion; further, CD115, F4/80, and CXCR4 were expressed in J774.1 cells, which serve as a usable substitute for monocytes/macrophages. Moreover, following ephrin-A1 stimulation, truncated EphA2 did not detectably interfere with the phosphorylation of endogenous EphA2, and it potentiated cell adhesion possibly through modulation of integrin avidity. Accordingly, by intravenously injecting mice with equal numbers of J774.1 and the subline cells labeled with distinct fluorochromes, we determined that truncated EphA2 markedly potentiated preferential cell infiltration into the red pulp and the marginal zone. Thus, modulation of EphA2 signaling might contribute to effective transplantation of tissue-specific resident macrophages and/or monocytes.
Chrifi, Ihsan; Louzao-Martinez, Laura; Brandt, Maarten; van Dijk, Christian G M; Burgisser, Petra; Zhu, Changbin; Kros, Johan M; Duncker, Dirk J; Cheng, Caroline
2017-06-01
Decrease in VE-cadherin adherens junctions reduces vascular stability, whereas disruption of adherens junctions is a requirement for neovessel sprouting during angiogenesis. Endocytosis plays a key role in regulating junctional strength by altering bioavailability of cell surface proteins, including VE-cadherin. Identification of new mediators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we assessed the function of CMTM3 (CKLF-like MARVEL transmembrane domain 3), which we have previously identified as highly expressed in Flk1 + endothelial progenitor cells during embryonic development. Using a 3-dimensional coculture of human umbilical vein endothelial cells-GFP (green fluorescent protein) and pericytes-RFP (red fluorescent protein), we demonstrated that siRNA-mediated CMTM3 silencing in human umbilical vein endothelial cells impairs angiogenesis. In vivo CMTM3 inhibition by morpholino injection in developing zebrafish larvae confirmed that CMTM3 expression is required for vascular sprouting. CMTM3 knockdown in human umbilical vein endothelial cells does not affect proliferation or migration. Intracellular staining demonstrated that CMTM3 colocalizes with early endosome markers EEA1 (early endosome marker 1) and Clathrin + vesicles and with cytosolic VE-cadherin in human umbilical vein endothelial cells. Adenovirus-mediated CMTM3 overexpression enhances endothelial endocytosis, shown by an increase in Clathrin + , EEA1 + , Rab11 + , Rab5 + , and Rab7 + vesicles. CMTM3 overexpression enhances, whereas CMTM3 knockdown decreases internalization of cell surface VE-cadherin in vitro. CMTM3 promotes loss of endothelial barrier function in thrombin-induced responses, shown by transendothelial electric resistance measurements in vitro. In this study, we have identified a new regulatory function for CMTM3 in angiogenesis. CMTM3 is involved in VE-cadherin turnover and is a regulator of the cell surface pool of VE-cadherin. Therefore, CMTM3 mediates cell-cell adhesion at adherens junctions and contributes to the control of vascular sprouting. © 2017 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Kaneda, Megan Marie
Early steps in the progression of inflammatory diseases such as atherosclerosis involve the recruitment of leukocytes to the vascular endothelium through the expression or up-regulation of adhesion molecules. These adhesion molecules are critical mediators of leukocyte attachment and subsequent extravasation through transendothelial migration. One of these adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) is particularly attractive as a marker of early atherosclerotic activity due to its low expression level on normal endothelium and up-regulation prior to and during the development of early lesions. With this in mind, the purpose of this thesis was to develop nanostructures for the detection and down-regulation of adhesion molecules by the vascular endothelium. To detect early inflammation we designed a perfluorocarbon nanoparticle (PFC-NP) probe, which was used for in vivo targeting of VCAM-1. Nanoparticles were detected ex vivo by the magnetic resonance (MR) signature from the fluorine core of the particle. Nanoparticles accumulated in tissues characterized by early inflammatory processes. To down-regulate VCAM-1 expression by vascular endothelial cells, cationic PFC-NP were produced through the addition of the cationic lipid 1,2-Dioleoyl-3-Trimethylammonium-Propane. Cationic PFC-NP were able to deliver anti-VCAM-1 siRNA to endothelial cells through a non-standard lipid raft mediated endocytic pathway. VCAM-1 levels were significantly reduced in treated cells indicating that this delivery mechanism may be advantageous for delivery of cargo into the cytoplasm. Using the fluorine signature from the core of the cationic PFC-NP, we were able to quantify and localize this siRNA delivery agent both in vitro and in vivo. The ability to quantify the local concentrations of these particles could be of great benefit for estimating local drug concentrations and developing new pharmacokinetic and pharmacodynamic paradigms to describe this new class of nucleotide agents.
Roe, Kelsey; Orillo, Beverly; Verma, Saguna
2014-01-01
Characterizing the mechanisms by which West Nile virus (WNV) causes blood-brain barrier (BBB) disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs) in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE). Infection with WNV (NY99 strain) significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1) did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101) strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.
Zhu, Yanji; Zhang, Ling; Lu, Qing; Gao, Yushuo; Cai, Yujuan; Sui, Ailing; Su, Ting; Shen, Xi; Xie, Bing
2017-01-01
The aim of the present study was to characterize the phenotypic shift, quantity and role changes in different subgroups of retinal macrophages in a mouse model of oxygen-induced retinopathy (OIR). The mRNA expression levels of macrophage M1 and M2 subgroup marker genes and polarization-associated genes were analyzed by RT-qPCR. The number of M1 and M2 macrophages in our mouse model of OIR was analyzed by flow cytometry at different time points during the progression of OIR. Immunofluorescence whole mount staining of the retinas of mice with OIR was performed at different time points to examine the influx of macrophages, as well as the morphological characteristics and roles of M1 and M2 macrophages. An increased number of macrophages was recruited during the progression of angiogenesis in the retinas of mice with OIR due to the pro-inflammatory microenvironment containing high levels of cell adhesion and leukocyte transendothelial migration molecules. RT-qPCR and flow cytometric analysis at different time points revealed a decline in the number of M1 cells from a significantly high level at post-natal day (P)13 to a relatively normal level at P21, as well as an increase in the number of M2 cells from P13 to P21 in the mice with OIR, implicating a shift of macrophage polarization towards the M2 subtype. Immunofluorescence staining suggested that the M1 cells interacted with endothelial tip cells at the vascular front, while M2 cells embraced the emerging vessels and bridged the neighboring vessel sprouts. Thus, our data indicate that macrophages play an active role in OIR by contributing to the different steps of neovascularization. Our findings indicate that tissue macrophages may be considered as a potential target for the anti-angiogenic therapy of ocular neovascularization disease. PMID:28627621
Lin, Jian; Xia, Jing; Zhang, Tian; Zhang, Keyun; Yang, Qian
2018-05-10
The antigen-presenting ability of dendritic cells (DCs) plays an important and irreplaceable role in recognising and clearing viruses. Antiviral responses must rapidly defend against infection while minimising inflammatory damage, but the mechanisms that regulate the magnitude of response within an infected cell are not well understood. MicroRNAs (microRNAs), small non-coding RNAs, can regulate mouse or avian DCs to inhibit the infection and replication of avian influenza virus (AIV). Here, we performed a global analysis to understand how avian DCs respond to H9N2 AIV and provide a potential mechanism to explain how avian microRNAs can defend against H9N2 AIV replication. First, we found that both active and inactive H9N2 AIV enhanced the ability of DCs to present antigens and activate T lymphocytes. Next, total microarray analyses suggested that H9N2 AIV stimulation involved protein localisation, nucleotide binding, leucocyte transendothelial migration and MAPK signalling. Moreover, we constructed 551 transcription factor (TF)-miRNA-mRNA loops based on the above analyses. Furthermore, we found that the haemagglutinin (HA) fragment, neither H5N1-HA or H9N2-HA, could not activate DCs, while truncated HA greatly increased the immune function of DCs by activating ERK and STAT3 signalling pathways. Lastly, our results not only suggested that gga-miR1644 targets muscleblind-like protein 2 (MBNL2) to enhance the ability of avian DCs to inhibit virus replication, but also suggested that gga-miR6675 targets the nuclear localisation sequence of polymerase basic protein 1 (PB1) to trigger the silencing of PB1 genes, resulting in the inhibition of H9N2 AIV replication. Altogether, our innovative study will shed new light on the role of avian microRNAs in evoking avian DCs and inhibiting virus replication.
Physical break-down of the classical view on cancer cell invasion and metastasis.
Mierke, Claudia T
2013-03-01
Eight classical hallmarks of cancer have been proposed and are well-defined by using biochemical or molecular genetic methods, but are not yet precisely defined by cellular biophysical processes. To define the malignant transformation of neoplasms and finally reveal the functional pathway, which enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific biomechanical properties of cancer cells and their microenvironment such as the extracellular matrix and embedded cells such as fibroblasts, macrophages or endothelial cells. Nonetheless a main novel ninth hallmark of cancer is still elusive in classical tumor biological reviews, which is the aspect of physics in cancer disease by the natural selection of an aggressive (highly invasive) subtype of cancer cells. The physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present current cancer research in a different light and will focus on novel physical methods to investigate the aggressiveness of cancer cells from a biophysicist's point of view. This may lead to novel insights into cancer disease and will overcome classical views on cancer. In addition, this review will discuss how physics of cancer can help to reveal whether cancer cells will invade connective tissue and metastasize. In particular, this review will point out how physics can improve, break-down or support classical approaches to examine tumor growth even across primary tumor boundaries, the invasion of single or collective cancer cells, transendothelial migration of cancer cells and metastasis in targeted organs. Finally, this review will show how physical measurements can be integrated into classical tumor biological analysis approaches. The insights into physical interactions between cancer cells, the primary tumor and the microenvironment may help to solve some "old" questions in cancer disease progression and may finally lead to novel approaches for development and improvement of cancer diagnostics and therapies. Copyright © 2013 Elsevier GmbH. All rights reserved.
Shahmanesh, Mohsen; Phillips, Kenneth; Boothby, Meg; Tomlinson, Jeremy W.
2015-01-01
Objective To compare changes in gene expression by microarray from subcutaneous adipose tissue from HIV treatment naïve patients treated with efavirenz based regimens containing abacavir (ABC), tenofovir (TDF) or zidovidine (AZT). Design Subcutaneous fat biopsies were obtained before, at 6- and 18–24-months after treatment, and from HIV negative controls. Groups were age, ethnicity, weight, biochemical profile, and pre-treatment CD4 count matched. Microarray data was generated using the Agilent Whole Human Genome Microarray. Identification of differentially expressed genes and genomic response pathways was performed using limma and gene set enrichment analysis. Results There were significant divergences between ABC and the other two groups 6 months after treatment in genes controlling cell adhesion and environmental information processing, with some convergence at 18–24 months. Compared to controls the ABC group, but not AZT or TDF showed enrichment of genes controlling adherence junction, at 6 months and 18–24 months (adjusted p<0.05) and focal adhesions and tight junction at 6 months (p<0.5). Genes controlling leukocyte transendothelial migration (p<0.05) and ECM-receptor interactions (p = 0.04) were over-expressed in ABC compared to TDF and AZT at 6 months but not at 18–24 months. Enrichment of pathways and individual genes controlling cell adhesion and environmental information processing were specifically dysregulated in the ABC group in comparison with other treatments. There was little difference between AZT and TDF. Conclusion After initiating treatment, there is divergence in the expression of genes controlling cell adhesion and environmental information processing between ABC and both TDF and AZT in subcutaneous adipose tissue. If similar changes are also taking place in other tissues including the coronary vasculature they may contribute to the increased risk of cardiovascular events reported in patients recently started on abacavir-containing regimens. PMID:25617630
Ourradi, Khadija; Blythe, Thomas; Jarrett, Caroline; Barratt, Shaney L; Welsh, Gavin I; Millar, Ann B
2017-06-02
Alternative splicing of Vascular endothelial growth factor-A mRNA transcripts (commonly referred as VEGF) leads to the generation of functionally differing isoforms, the relative amounts of which have potentially significant physiological outcomes in conditions such as acute respiratory distress syndrome (ARDS). The effect of such isoforms on pulmonary vascular permeability is unknown. We hypothesised that VEGF 165 a and VEGF 165 b isoforms would have differing effects on pulmonary vascular permeability caused by differential activation of intercellular signal transduction pathways. To test this hypothesis we investigated the physiological effect of VEGF 165 a and VEGF 165 b on Human Pulmonary Microvascular Endothelial Cell (HPMEC) permeability using three different methods: trans-endothelial electrical resistance (TEER), Electric cell-substrate impedance sensing (ECIS) and FITC-BSA passage. In addition, potential downstream signalling pathways of the VEGF isoforms were investigated by Western blotting and the use of specific signalling inhibitors. VEGF 165 a increased HPMEC permeability using all three methods (paracellular and transcellular) and led to associated VE-cadherin and actin stress fibre changes. In contrast, VEGF 165 b decreased paracellular permeability and did not induce changes in VE-cadherin cell distribution. Furthermore, VEGF 165 a and VEGF 165 b had differing effects on both the phosphorylation of VEGF receptors and downstream signalling proteins pMEK, p42/44MAPK, p38 MAPK, pAKT and peNOS. Interestingly specific inhibition of the pMEK, p38 MAPK, PI3 kinase and eNOS pathways blocked the effects of both VEGF 165 a and VEGF 165 b on paracellular permeability and the effect of VEGF 165 a on proliferation/migration, suggesting that this difference in cellular response is mediated by an as yet unidentified signalling pathway(s). This study demonstrates that the novel isoform VEGF 165 a and VEGF 165 b induce differing effects on permeability in pulmonary microvascular endothelial cells.
Long, Yong; Li, Qing; Zhou, Bolan; Song, Guili; Li, Tao; Cui, Zongbin
2013-01-01
Fish skin serves as the first line of defense against a wide variety of chemical, physical and biological stressors. Secretion of mucus is among the most prominent characteristics of fish skin and numerous innate immune factors have been identified in the epidermal mucus. However, molecular mechanisms underlying the mucus secretion and immune activities of fish skin remain largely unclear due to the lack of genomic and transcriptomic data for most economically important fish species. In this study, we characterized the skin transcriptome of mud loach using Illumia paired-end sequencing. A total of 40364 unigenes were assembled from 86.6 million (3.07 gigabases) filtered reads. The mean length, N50 size and maximum length of assembled transcripts were 387, 611 and 8670 bp, respectively. A total of 17336 (43.76%) unigenes were annotated by blast searches against the NCBI non-redundant protein database. Gene ontology mapping assigned a total of 108513 GO terms to 15369 (38.08%) unigenes. KEGG orthology mapping annotated 9337 (23.23%) unigenes. Among the identified KO categories, immune system is the largest category that contains various components of multiple immune pathways such as chemokine signaling, leukocyte transendothelial migration and T cell receptor signaling, suggesting the complexity of immune mechanisms in fish skin. As for mucin biosynthesis, 37 unigenes were mapped to 7 enzymes of the mucin type O-glycan biosynthesis pathway and 8 members of the polypeptide N-acetylgalactosaminyltransferase family were identified. Additionally, 38 unigenes were mapped to 23 factors of the SNARE interactions in vesicular transport pathway, indicating that the activity of this pathway is required for the processes of epidermal mucus storage and release. Moreover, 1754 simple sequence repeats (SSRs) were detected in 1564 unigenes and dinucleotide repeats represented the most abundant type. These findings have laid the foundation for further understanding the secretary processes and immune functions of loach skin mucus. PMID:23437293
Long, Yong; Li, Qing; Zhou, Bolan; Song, Guili; Li, Tao; Cui, Zongbin
2013-01-01
Fish skin serves as the first line of defense against a wide variety of chemical, physical and biological stressors. Secretion of mucus is among the most prominent characteristics of fish skin and numerous innate immune factors have been identified in the epidermal mucus. However, molecular mechanisms underlying the mucus secretion and immune activities of fish skin remain largely unclear due to the lack of genomic and transcriptomic data for most economically important fish species. In this study, we characterized the skin transcriptome of mud loach using Illumia paired-end sequencing. A total of 40364 unigenes were assembled from 86.6 million (3.07 gigabases) filtered reads. The mean length, N50 size and maximum length of assembled transcripts were 387, 611 and 8670 bp, respectively. A total of 17336 (43.76%) unigenes were annotated by blast searches against the NCBI non-redundant protein database. Gene ontology mapping assigned a total of 108513 GO terms to 15369 (38.08%) unigenes. KEGG orthology mapping annotated 9337 (23.23%) unigenes. Among the identified KO categories, immune system is the largest category that contains various components of multiple immune pathways such as chemokine signaling, leukocyte transendothelial migration and T cell receptor signaling, suggesting the complexity of immune mechanisms in fish skin. As for mucin biosynthesis, 37 unigenes were mapped to 7 enzymes of the mucin type O-glycan biosynthesis pathway and 8 members of the polypeptide N-acetylgalactosaminyltransferase family were identified. Additionally, 38 unigenes were mapped to 23 factors of the SNARE interactions in vesicular transport pathway, indicating that the activity of this pathway is required for the processes of epidermal mucus storage and release. Moreover, 1754 simple sequence repeats (SSRs) were detected in 1564 unigenes and dinucleotide repeats represented the most abundant type. These findings have laid the foundation for further understanding the secretary processes and immune functions of loach skin mucus.
Breaking mean-motion resonances during Type I planet migration
NASA Astrophysics Data System (ADS)
Hands, T. O.; Alexander, R. D.
2018-03-01
We present 2D hydrodynamical simulations of pairs of planets migrating simultaneously in the Type I regime in a protoplanetary disc. Convergent migration naturally leads to the trapping of these planets in mean-motion resonances. Once in resonance the planets' eccentricity grows rapidly, and disc-planet torques cause the planets to escape resonance on a time-scale of a few hundred orbits. The effect is more pronounced in highly viscous discs, but operates efficiently even in inviscid discs. We attribute this resonance-breaking to overstable librations driven by moderate eccentricity damping, but find that this mechanism operates differently in hydrodynamic simulations than in previous analytic calculations. Planets escaping resonance in this manner can potentially explain the observed paucity of resonances in Kepler multitransiting systems, and we suggest that simultaneous disc-driven migration remains the most plausible means of assembling tightly packed planetary systems.
Del Raye, Gen; Jorgensen, Salvador J.; Krumhansl, Kira; Ezcurra, Juan M.; Block, Barbara A.
2013-01-01
Many species undertake long-distance annual migrations between foraging and reproductive areas. Such migrants depend on the efficient packaging, storage and utilization of energy to succeed. A diverse assemblage of organisms accomplishes this through the use of lipid reserves; yet, it remains unclear whether the migrations of elasmobranchs, which include the largest gill breathers on Earth, depend on such a mechanism. We examine depth records from pop-up satellite archival tags to discern changes in buoyancy as a proxy for energy storage in Eastern Pacific white sharks, and assess whether lipid depletion fuels long-distance (approx. 4000 km) migrations. We develop new algorithms to assess body condition, buoyancy and drift rate during drift dives and validate the techniques using a captive white shark. In the wild, we document a consistent increase in drift rate over the course of all migrations, indicating a decrease in buoyancy caused by the depletion of lipid reserves. These results comprise, to our knowledge, the first assessment of energy storage and budgeting in migrating sharks. The methods provide a basis for further insights into using electronic tags to reveal the energetic strategies of a wide range of elasmobranchs. PMID:23864595
Putting on the brakes: Bacterial impediment of wound healing
Brothers, Kimberly M.; Stella, Nicholas A.; Hunt, Kristin M.; Romanowski, Eric G.; Liu, Xinyu; Klarlund, Jes K.; Shanks, Robert M. Q.
2015-01-01
The epithelium provides a crucial barrier to infection, and its integrity requires efficient wound healing. Bacterial cells and secretomes from a subset of tested species of bacteria inhibited human and porcine corneal epithelial cell migration in vitro and ex vivo. Secretomes from 95% of Serratia marcescens, 71% of Pseudomonas aeruginosa, 29% of Staphylococcus aureus strains, and other bacterial species inhibited epithelial cell migration. Migration of human foreskin fibroblasts was also inhibited by S. marcescens secretomes indicating that the effect is not cornea specific. Transposon mutagenesis implicated lipopolysaccharide (LPS) core biosynthetic genes as being required to inhibit corneal epithelial cell migration. LPS depletion of S. marcescens secretomes with polymyxin B agarose rendered secretomes unable to inhibit epithelial cell migration. Purified LPS from S. marcescens, but not from Escherichia coli or S. marcescens strains with mutations in the waaG and waaC genes, inhibited epithelial cell migration in vitro and wound healing ex vivo. Together these data suggest that S. marcescens LPS is sufficient for inhibition of epithelial wound healing. This study presents a novel host-pathogen interaction with implications for infections where bacteria impact wound healing and provides evidence that secreted LPS is a key factor in the inhibitory mechanism. PMID:26365869
Shu, Xing-Zhong; Li, Xiaoxun; Shu, Dongxu; Huang, Suyu; Schienebeck, Casi M.; Zhou, Xin; Robichaux, Patrick J.; Tang, Weiping
2012-01-01
A new type of rhodium-catalyzed [5+2] cycloaddition was developed for the synthesis of seven-membered rings with diverse functionalities. The ring formation was accompanied by a 1,2-acyloxy migration event. The 5- and 2-carbon components of the cycloaddition are 3-acyloxy-1,4-enynes (ACEs) and alkynes respectively. Cationic rhodium (I) catalysts worked most efficiently for the intramolecular cycloaddition, while only neutral rhodium (I) complexes could facilitate the intermolecular reaction. In both cases, electron-poor phosphite or phosphine ligands often improved the efficiency of the cycloadditions. The scope of ACEs and alkynes was investigated in both intra- and intermolecular reactions. The resulting seven-membered ring products have three double bonds that could be selectively functionalized. PMID:22364320
Constraints on the Efficiency of Radial Migration in Spiral Galaxies
NASA Astrophysics Data System (ADS)
Daniel, Kathryne J.; Wyse, Rosemary F. G.
2015-01-01
A transient spiral arm can permanently rearrange the orbital angular momentum of the stellar disk without inducing kinematic heating. This phenomenon is called radial migration because a star's orbital angular momentum determines its mean orbital radius. Should radial migration be an efficient process it could cause a large fraction of disk stars to experience significant changes in their individual orbital angular momenta on dynamically short timescales. Such scenarios have strong implications for the chemical, structural and kinematic evolution of disk galaxies. We have undertaken an investigation into the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure. In order for a disk star to migrate radially, it must first be 'trapped' in a particular family of orbits, called horseshoe orbits, that occur near the radius of corotation with a spiral pattern. Thus far, the only analytic criterion for horseshoe orbits has been for stars with zero random orbital energy. We present our analytically derived 'capture criterion' for stars with some finite random orbital energy in a disk with a given rotation curve. Our capture criterion predict that trapping in a horseshoe orbit is primarily determined by whether or not the position of a star's mean orbital radius (determined by its orbital angular momentum) is within the 'capture region', the location and shape of which can be derived from the capture criterion. We visualize and confirm this prediction via numerically integrated orbits. We then apply our capture criterion to snap shot models of disk galaxies to determine (1) the radial distribution of the fraction of stars initially trapped in horseshoe orbits, and (2) the dependence of the total fraction of captured stars in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential at corotation. We here present a model of an exponential disk with a flat rotation curve where the initial fraction of stars trapped in horseshoe orbits falls with increasing velocity dispersion as exp[-σR^2].
Lin, Kuan-Hung; Hong, Shu-Ting; Wang, Hsiang-Tsui; Lo, Yu-Li; Lin, Anya Maan-Yuh; Yang, James Chih-Hsin
2016-01-01
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI), such as gefitinib, have been demonstrated to effectively treat the patients of extracranial non-small cell lung cancer (NSCLC). However, these patients often develop brain metastasis (BM) during their disease course. The major obstacle to treat BM is the limited penetration of anticancer drugs across the blood–brain barrier (BBB). In the present study, we utilized gefitinib-loaded liposomes with different modifications to improve gefitinib delivery across the in vitro BBB model of bEnd.3 cells. Gefitinib was encapsulated in small unilamellar liposomes modified with glutathione (GSH) and Tween 80 (SUV-G+T; one ligand plus one surfactant) or RF (SUV-RF; one α-helical cell-penetrating peptide). GSH, Tween 80, and RF were tested by the sulforhodamine B (SRB) assay to find their non-cytotoxic concentrations on bEnd.3 cells. The enhancement on gefitinib across the BBB was evaluated by cytotoxicity assay on human lung adenocarcinoma PC9 cells under the bEnd.3 cells grown on the transwell inserts. Our findings showed that gefitinib incorporated in SUV-G+T or SUV-RF across the bEnd.3 cells significantly reduced the viability of PC9 cells more than that of free gefitinib. Furthermore, SUV-RF showed no cytotoxicity on bEnd.3 cells and did not affect the transendothelial electrical resistance (TEER) and transendothelial permeability of sodium fluorescein across the BBB model. Moreover, flow cytometry and confocal laser scanning microscopy were employed to evaluate the endocytosis pathways of SUV-RF. The results indicated that the uptake into bEnd.3 cells was mainly through adsorptive-mediated mechanism via electrostatic interaction and partially through clathrin-mediated endocytosis. In conclusion, cell penetrating peptide-conjugated SUV-RF shed light on improving drug transport across the BBB via modulating the transcytosis pathway(s). PMID:27916828
Patabendige, Adjanie; Skinner, Robert A.; Abbott, N. Joan
2013-01-01
Good in vitro blood–brain barrier (BBB) models that mimic the in vivo BBB phenotype are essential for studies on BBB functionality and for initial screening in drug discovery programmes, as many potential therapeutic drug candidates have poor BBB permeation. Difficulties associated with the availability of human brain tissue, coupled with the time and cost associated with using animals for this kind of research have led to the development of non-human cell culture models. However, most BBB models display a low transendothelial electrical resistance (TEER), which is a measure of the tightness of the BBB. To address these issues we have established and optimised a robust, simple to use in vitro BBB model using porcine brain endothelial cells (PBECs). The PBEC model gives high TEER without the need for co-culture with astrocytes (up to 1300 Ω cm2 with a mean TEER of ∼800 Ω cm2) with well organised tight junctions as shown by immunostaining for occludin and claudin-5. Functional assays confirmed the presence of high levels of alkaline phosphatase (ALP), and presence of the efflux transporter, P-glycoprotein (P-gp, ABCB1). Presence of the breast cancer resistance protein (BCRP, ABCG2) was confirmed by TaqMan real-time RT-PCR assay. Real-time RT-PCR assays for BCRP, occludin and claudin-5 demonstrated no significant differences between batches of PBECs, and also between primary and passage 1 PBECs. A permeability screen of 10 compounds demonstrated the usefulness of the model as a tool for drug permeability studies. Qualitative and quantitative results from this study confirm that this in vitro porcine BBB model is reliable and robust; it is also simpler to generate than most other BBB models. This article is part of a Special Issue entitled Electrical Synapses. PMID:22789905
Blaheta, Roman A; Daher, Frederick H; Michaelis, Martin; Hasenberg, Christoph; Weich, Eva M; Jonas, Dietger; Kotchetkov, Rouslan; Doerr, Hans Willhelm; Cinatl, Jindrich
2006-01-01
Background Drug resistance to chemotherapy is often associated with increased malignancy in neuroblastoma (NB). One explanation for the link between resistance and malignancy might be that resistance facilitates cancer progression and invasion. To investigate this hypothesis, adhesion, transendothelial penetration and NCAM (CD56) adhesion receptor expression of drug-resistant versus drug-sensitive NB tumor cells were evaluated. Methods Acquired drug resistance was mimicked by exposing parental UKF-NB-2, UKF-NB-3 or IMR-32 tumor cells to increasing concentrations of vincristine- (VCR) or doxorubicin (DOX) to establish the resistant tumor cell sublines UKF-NB-2VCR, UKF-NB-2DOX, UKF-NB-3VCR, UKF-NB-3DOX, IMR-32VCR and IMR-32DOX. Additionally, the malignant behaviour of UKF-NB-4, which already possessed the intrinsic multidrug resistance (MDR) phenotype, was analyzed. UKF-NB-4 exposed to VCR or DOX were designated UKF-NB-4VCR or UKF-NB-4DOX. Combined phase contrast – reflection interference contrast microscopy was used to separately evaluate NB cell adhesion and penetration. NCAM was analyzed by flow cytometry, western blot and RT-PCR. Results VCR and DOX resistant tumor sublines showed enhanced adhesion and penetration capacity, compared to their drug naïve controls. Strongest effects were seen with UKF-NB-2VCR, UKF-NB-3VCR and IMR-32DOX. DOX or VCR treatment also evoked increased invasive behaviour of UKF-NB-4. The process of accelerated tumor invasion was accompanied by decreased NCAM surface and protein expression, and down-regulation of NCAM coding mRNA. Transfection of UKF-NB-4VCR cells with NCAM cDNA led to a significant receptor up-regulation, paralleled by diminished adhesion to an endothelial cell monolayer. Conclusion It is concluded that NB cells resistant to anticancer drugs acquire increased invasive capacity relative to non-resistant parental cells, and that enhanced invasion is caused by strong down-regulation of NCAM adhesion receptors. PMID:17181871
A Novel Artificial Bee Colony Approach of Live Virtual Machine Migration Policy Using Bayes Theorem
Xu, Gaochao; Hu, Liang; Fu, Xiaodong
2013-01-01
Green cloud data center has become a research hotspot of virtualized cloud computing architecture. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on the VM placement selection of live migration for power saving. We present a novel heuristic approach which is called PS-ABC. Its algorithm includes two parts. One is that it combines the artificial bee colony (ABC) idea with the uniform random initialization idea, the binary search idea, and Boltzmann selection policy to achieve an improved ABC-based approach with better global exploration's ability and local exploitation's ability. The other one is that it uses the Bayes theorem to further optimize the improved ABC-based process to faster get the final optimal solution. As a result, the whole approach achieves a longer-term efficient optimization for power saving. The experimental results demonstrate that PS-ABC evidently reduces the total incremental power consumption and better protects the performance of VM running and migrating compared with the existing research. It makes the result of live VM migration more high-effective and meaningful. PMID:24385877
A novel artificial bee colony approach of live virtual machine migration policy using Bayes theorem.
Xu, Gaochao; Ding, Yan; Zhao, Jia; Hu, Liang; Fu, Xiaodong
2013-01-01
Green cloud data center has become a research hotspot of virtualized cloud computing architecture. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on the VM placement selection of live migration for power saving. We present a novel heuristic approach which is called PS-ABC. Its algorithm includes two parts. One is that it combines the artificial bee colony (ABC) idea with the uniform random initialization idea, the binary search idea, and Boltzmann selection policy to achieve an improved ABC-based approach with better global exploration's ability and local exploitation's ability. The other one is that it uses the Bayes theorem to further optimize the improved ABC-based process to faster get the final optimal solution. As a result, the whole approach achieves a longer-term efficient optimization for power saving. The experimental results demonstrate that PS-ABC evidently reduces the total incremental power consumption and better protects the performance of VM running and migrating compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.
A Continuous Method for Gene Flow
Palczewski, Michal; Beerli, Peter
2013-01-01
Most modern population genetics inference methods are based on the coalescence framework. Methods that allow estimating parameters of structured populations commonly insert migration events into the genealogies. For these methods the calculation of the coalescence probability density of a genealogy requires a product over all time periods between events. Data sets that contain populations with high rates of gene flow among them require an enormous number of calculations. A new method, transition probability-structured coalescence (TPSC), replaces the discrete migration events with probability statements. Because the speed of calculation is independent of the amount of gene flow, this method allows calculating the coalescence densities efficiently. The current implementation of TPSC uses an approximation simplifying the interaction among lineages. Simulations and coverage comparisons of TPSC vs. MIGRATE show that TPSC allows estimation of high migration rates more precisely, but because of the approximation the estimation of low migration rates is biased. The implementation of TPSC into programs that calculate quantities on phylogenetic tree structures is straightforward, so the TPSC approach will facilitate more general inferences in many computer programs. PMID:23666937
Environmental Constraints Guide Migration of Malaria Parasites during Transmission
Hellmann, Janina Kristin; Münter, Sylvia; Kudryashev, Mikhail; Schulz, Simon; Heiss, Kirsten; Müller, Ann-Kristin; Matuschewski, Kai; Spatz, Joachim P.; Schwarz, Ulrich S.; Frischknecht, Friedrich
2011-01-01
Migrating cells are guided in complex environments mainly by chemotaxis or structural cues presented by the surrounding tissue. During transmission of malaria, parasite motility in the skin is important for Plasmodium sporozoites to reach the blood circulation. Here we show that sporozoite migration varies in different skin environments the parasite encounters at the arbitrary sites of the mosquito bite. In order to systematically examine how sporozoite migration depends on the structure of the environment, we studied it in micro-fabricated obstacle arrays. The trajectories observed in vivo and in vitro closely resemble each other suggesting that structural constraints can be sufficient to guide Plasmodium sporozoites in complex environments. Sporozoite speed in different environments is optimized for migration and correlates with persistence length and dispersal. However, this correlation breaks down in mutant sporozoites that show adhesion impairment due to the lack of TRAP-like protein (TLP) on their surfaces. This may explain their delay in infecting the host. The flexibility of sporozoite adaption to different environments and a favorable speed for optimal dispersal ensures efficient host switching during malaria transmission. PMID:21698220
Tarbashevich, Katsiaryna; Reichman-Fried, Michal; Grimaldi, Cecilia; Raz, Erez
2015-04-20
Directional cell migration requires cell polarization with respect to the distribution of the guidance cue. Cell polarization often includes asymmetric distribution of response components as well as elements of the motility machinery. Importantly, the function and regulation of most of these molecules are known to be pH dependent. Intracellular pH gradients were shown to occur in certain cells migrating in vitro, but the functional relevance of such gradients for cell migration and for the response to directional cues, particularly in the intact organism, is currently unknown. In this study, we find that primordial germ cells migrating in the context of the developing embryo respond to the graded distribution of the chemokine Cxcl12 by establishing elevated intracellular pH at the cell front. We provide insight into the mechanisms by which a polar pH distribution contributes to efficient cell migration. Specifically, we show that Carbonic Anhydrase 15b, an enzyme controlling the pH in many cell types, including metastatic cancer cells, is expressed in migrating germ cells and is crucial for establishing and maintaining an asymmetric pH distribution within them. Reducing the level of the protein and thereby erasing the pH elevation at the cell front resulted in abnormal cell migration and impaired arrival at the target. The basis for the disrupted migration is found in the stringent requirement for pH conditions in the cell for regulating contractility, for the polarization of Rac1 activity, and hence for the formation of actin-rich structures at the leading edge of the migrating cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Maška, Martin; Ederra, Cristina; Peláez, Rafael; Morales, Xabier; Muñoz-Arrieta, Gorka; Mujika, Maite; Kozubek, Michal; Muñoz-Barrutia, Arrate; Rouzaut, Ana; Arana, Sergio; Garcia-Aznar, José Manuel; Ortiz-de-Solorzano, Carlos
2017-01-01
Microfluidic devices are becoming mainstream tools to recapitulate in vitro the behavior of cells and tissues. In this study, we use microfluidic devices filled with hydrogels of mixed collagen-Matrigel composition to study the migration of lung cancer cells under different cancer invasion microenvironments. We present the design of the microfluidic device, characterize the hydrogels morphologically and mechanically and use quantitative image analysis to measure the migration of H1299 lung adenocarcinoma cancer cells in different experimental conditions. Our results show the plasticity of lung cancer cell migration, which turns from mesenchymal in collagen only matrices, to lobopodial in collagen-Matrigel matrices that approximate the interface between a disrupted basement membrane and the underlying connective tissue. Our quantification of migration speed confirms a biphasic role of Matrigel. At low concentration, Matrigel facilitates migration, most probably by providing a supportive and growth factor retaining environment. At high concentration, Matrigel slows down migration, possibly due excessive attachment. Finally, we show that antibody-based integrin blockade promotes a change in migration phenotype from mesenchymal or lobopodial to amoeboid and analyze the effect of this change in migration dynamics, in regards to the structure of the matrix. In summary, we describe and characterize a robust microfluidic platform and a set of software tools that can be used to study lung cancer cell migration under different microenvironments and experimental conditions. This platform could be used in future studies, thus benefitting from the advantages introduced by microfluidic devices: precise control of the environment, excellent optical properties, parallelization for high throughput studies and efficient use of therapeutic drugs. PMID:28166248
Observational hints of radial migration in disc galaxies from CALIFA
NASA Astrophysics Data System (ADS)
Ruiz-Lara, T.; Pérez, I.; Florido, E.; Sánchez-Blázquez, P.; Méndez-Abreu, J.; Sánchez-Menguiano, L.; Sánchez, S. F.; Lyubenova, M.; Falcón-Barroso, J.; van de Ven, G.; Marino, R. A.; de Lorenzo-Cáceres, A.; Catalán-Torrecilla, C.; Costantin, L.; Bland-Hawthorn, J.; Galbany, L.; García-Benito, R.; Husemann, B.; Kehrig, C.; Márquez, I.; Mast, D.; Walcher, C. J.; Zibetti, S.; Ziegler, B.; Califa Team
2017-07-01
Context. According to numerical simulations, stars are not always kept at their birth galactocentric distances but they have a tendency to migrate. The importance of this radial migration in shaping galactic light distributions is still unclear. However, if radial migration is indeed important, galaxies with different surface brightness (SB) profiles must display differences in their stellar population properties. Aims: We investigate the role of radial migration in the light distribution and radial stellar content by comparing the inner colour, age, and metallicity gradients for galaxies with different SB profiles. We define these inner parts, avoiding the bulge and bar regions and up to around three disc scale lengths (type I, pure exponential) or the break radius (type II, downbending; type III, upbending). Methods: We analysed 214 spiral galaxies from the CALIFA survey covering different SB profiles. We made use of GASP2D and SDSS data to characterise the light distribution and obtain colour profiles of these spiral galaxies. The stellar age and metallicity profiles were computed using a methodology based on full-spectrum fitting techniques (pPXF, GANDALF, and STECKMAP) to the Integral Field Spectroscopic CALIFA data. Results: The distributions of the colour, stellar age, and stellar metallicity gradients in the inner parts for galaxies displaying different SB profiles are unalike as suggested by Kolmogorov-Smirnov and Anderson-Darling tests. We find a trend in which type II galaxies show the steepest profiles of all, type III show the shallowest, and type I display an intermediate behaviour. Conclusions: These results are consistent with a scenario in which radial migration is more efficient for type III galaxies than for type I systems, where type II galaxies present the lowest radial migration efficiency. In such a scenario, radial migration mixes the stellar content, thereby flattening the radial stellar properties and shaping different SB profiles. However, in light of these results we cannot further quantify the importance of radial migration in shaping spiral galaxies, and other processes, such as recent star formation or satellite accretion, might play a role. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A4
Tracking from the tropics reveals behaviour of juvenile songbirds on their first spring migration.
McKinnon, Emily A; Fraser, Kevin C; Stanley, Calandra Q; Stutchbury, Bridget J M
2014-01-01
Juvenile songbirds on spring migration travel from tropical wintering sites to temperate breeding destinations thousands of kilometres away with no prior experience to guide them. We provide a first glimpse at the migration timing, routes, and stopover behaviour of juvenile wood thrushes (Hylocichla mustelina) on their inaugural spring migration by using miniaturized archival geolocators to track them from Central America to the U.S. and Canada. We found significant differences between the timing of juvenile migration and that of more experienced adults: juveniles not only departed later from tropical wintering sites relative to adults, they also became progressively later as they moved northward. The increasing delay was driven by more frequent short stops by juveniles along their migration route, particularly in the U.S. as they got closer to breeding sites. Surprisingly, juveniles were just as likely as adults to cross the Gulf of Mexico, an open-water crossing of 800-1000 km, and migration route at the Gulf was not significantly different for juveniles relative to adults. To determine if the later departure of juveniles was related to poor body condition in winter relative to adults, we examined percent lean body mass, fat scores, and pectoral muscle scores of juvenile versus adult birds at a wintering site in Belize. We found no age-related differences in body condition. Later migration timing of juveniles relative to adults could be an adaptive strategy (as opposed to condition-dependent) to avoid the high costs of fast migration and competition for breeding territories with experienced and larger adults. We did find significant differences in wing size between adults and juveniles, which could contribute to lower flight efficiency of juveniles and thus slower overall migration speed. We provide the first step toward understanding the "black box" of juvenile songbird migration by documenting their migration timing and en route performance.
Tracking from the Tropics Reveals Behaviour of Juvenile Songbirds on Their First Spring Migration
McKinnon, Emily A.; Fraser, Kevin C.; Stanley, Calandra Q.; Stutchbury, Bridget J. M.
2014-01-01
Juvenile songbirds on spring migration travel from tropical wintering sites to temperate breeding destinations thousands of kilometres away with no prior experience to guide them. We provide a first glimpse at the migration timing, routes, and stopover behaviour of juvenile wood thrushes (Hylocichla mustelina) on their inaugural spring migration by using miniaturized archival geolocators to track them from Central America to the U.S. and Canada. We found significant differences between the timing of juvenile migration and that of more experienced adults: juveniles not only departed later from tropical wintering sites relative to adults, they also became progressively later as they moved northward. The increasing delay was driven by more frequent short stops by juveniles along their migration route, particularly in the U.S. as they got closer to breeding sites. Surprisingly, juveniles were just as likely as adults to cross the Gulf of Mexico, an open-water crossing of 800–1000 km, and migration route at the Gulf was not significantly different for juveniles relative to adults. To determine if the later departure of juveniles was related to poor body condition in winter relative to adults, we examined percent lean body mass, fat scores, and pectoral muscle scores of juvenile versus adult birds at a wintering site in Belize. We found no age-related differences in body condition. Later migration timing of juveniles relative to adults could be an adaptive strategy (as opposed to condition-dependent) to avoid the high costs of fast migration and competition for breeding territories with experienced and larger adults. We did find significant differences in wing size between adults and juveniles, which could contribute to lower flight efficiency of juveniles and thus slower overall migration speed. We provide the first step toward understanding the “black box” of juvenile songbird migration by documenting their migration timing and en route performance. PMID:25141193
2013-01-01
Abstract This paper investigates the influence of internal managerial patterns of heath care authorities on the decision of patients to migrate towards different health care organizations to avail treatments. The efficiency and productivity issues are analyzed, considering the (passive) migration as a proxy for the (in)efficient service availed. We follow the “vote by feet” theorization by Tiebout , assuming that citizens can choose to avail a health treatment in a public service provider different from their resident one. The choice for a center that is far from home implies a negative judgment to the alternative health care supplier that is closer to the patient. Testing Fixed Effects Panel Model on a sample of Italian health care authorities, a strong correlation is found among variables in our model and some relevant dependence is tested between patients’ mobility behavior and their resident authorities’ efficiency in allocating resources on the proper operating cost. Spending in the proper way on health care could bring about an enhancement of performances. Instead, wasting resources is immediately perceived by the patient, who consequently seems to move to a different health care authority. JEL code M48 PMID:23422329
Park, Jihye; Xu, Ming; Li, Fuyou; Zhou, Hong-Cai
2018-04-25
Triplet-triplet annihilation upconversion (TTA-UC) has gained increasing attention because it allows for harvesting of low-energy photons in the solar spectrum with high efficiency in relevant applications including solar cells and bioimaging. However, the utilization of conventional TTA-UC systems for low-power bioapplications is significantly hampered by their general incompatibility and low efficiency in aqueous media. Herein we report a metal-organic framework (MOF) as a biocompatible nanoplatform for TTA-UC to realize low-power in vivo imaging. Our MOF consists of a porphyrinic sensitizer in an anthracene-based Zr-MOF as a TTA-UC platform. In particular, closely aligned chromophores in the MOF facilitate a long-range 3D triplet diffusion of 1.6 μm allowing efficient energy migration in water. The tunable ratio between sensitizer and annihilator by our synthetic method also allows an optimization of the system for maximized TTA-UC efficiency in water at a very low excitation power density. Consequently, the low-power imaging of lymph node in a live mouse was successfully demonstrated with an excellent signal-to-noise ratio (SNR > 30 at 5 mW cm -2 ).
Kuo, Yung-Chih; Rajesh, Rajendiran
2017-08-07
Rosmarinic acid-loaded polyacrylamide-chitosan-poly(lactide-co-glycolide) nanoparticles (RA-PAAM-CH-PLGA NPs) were grafted with cross-reacting material 197 (CRM197) and apolipoprotein E (ApoE) for targeting of the blood-brain barrier (BBB) and rescuing degenerated neurons. The polymeric nanocarriers were prepared by microemulsion, solvent diffusion, grafting, and surface modification, and CRM197-ApoE-RA-PAAM-CH-PLGA NPs were used to treat human brain-microvascular endothelial cells, RWA264.7 cells, and Aβ-insulted SK-N-MC cells. Experimental results revealed that an increase in the weight percentage of PAAM decreased the particle size, zeta potential, and grafting efficiency of CRM197 and ApoE. In addition, surface DSPE-PEG(2000) could protect CRM197-ApoE-RA-PAAM-CH-PLGA NPs against uptake by RWA264.7 cells. An increase in the concentration of CRM197 and ApoE decreased the transendothelial electrical resistance and increased the ability of propidium iodide and RA to cross the BBB. The order in the viability of apoptotic SK-N-MC cells was CRM197-ApoE-RA-PAAM-CH-PLGA NPs > CRM197-RA-PAAM-CH-PLGA NPs > RA. Thus, CRM197-ApoE-RA-PAAM-CH-PLGA NPs can be a promising formulation to deliver RA to Aβ-insulted neurons in the pharmacotherapy of Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Krishnan, Subramanian; Prasadarao, Nemani V.
2014-01-01
Bacterial meningitis is a serious central nervous system infection and Escherichia coli K1 (E. coli K1) is one of the leading etiological agents that cause meningitis in neonates. Outer membrane protein A (OmpA) of E. coli K1 is a major virulence factor in the pathogenesis of meningitis, and interacts with human brain microvascular endothelial cells (HBMEC) to cross the blood-brain barrier. Using site-directed mutagenesis, we demonstrate that two N-glycosylation sites (NG1 and NG2) in the extracellular domain of OmpA receptor, Ecgp96 are critical for bacterial binding to HBMEC. E. coli invasion assays using CHO-Lec1 cells that express truncated N-glycans, and sequential digestion of HBMEC surface N-glycans using specific glycosidases showed that GlcNAc1-4GlcNAc epitopes are sufficient for OmpA interaction with HBMEC. Lack of NG1 and NG2 sites in Ecgp96 inhibits E. coli OmpA induced F-actin polymerization, phosphorylation of protein kinase C-α, and disruption of transendothelial electrical resistance required for efficient invasion of E. coli in HBMEC. Furthermore, the microvessels of cortex and hippocampus of the brain sections of E. coli K1 infected mice showed increased expression of glycosylated Ecgp96. Therefore, the interface of OmpA and GlcNAc1-4GlcNAc epitope interaction would be a target for preventative strategies against E. coli K1 meningitis. PMID:24932957
Resonant Transneptunian Binaries: Evidence for Slow Migration of Neptune
NASA Technical Reports Server (NTRS)
Noll, Keith S.; Grundy, W. M.; Schlichting, H. E.; Murray-Clay, R. A.; Benecchi, S. B.
2012-01-01
As Neptune migrated, its mean-motion resonances preceded it into the planetesimal disk. The efficiency of capture into mean motion resonances depends on the smoothness of Neptune's migration and the local population available to be captured. The two strongest resonances, the 3:2 at 39.4 AU and 2:1 at 47.7 AU, straddle the core repository of the physically distinct and binary-rich Cold Classicals, providing a unique opportunity to test the details of Neptune's migration. Smooth migration should result in a measurable difference between the 3:2 and 2:1 resonant object properties, with low inclination 2:1s having a high fraction of red binaries, mirroring that of the Cold Classicals while the 3:2 will would have fewer binaries. Rapid migration would generate a more homogeneous result. Resonant objects observed with HST show a higher rate of binaries in the 2:1 relative to the 3:2, significant at the 2cr level. This suggests slow Neptune migration over a large enough distance that the 2:1 swept through the Cold Classical region. Colors are available for only a fraction of these targets but a prevalence of red objects in outer Resonances has been reported. We report here on ongoing observations with HST in cycle 19 targeting all unobserved Resonants with observations that will measure color and search for binary companions using the WFC3.
Law, Jessica Ka Yan; Susloparova, Anna; Vu, Xuan Thang; Zhou, Xiao; Hempel, Felix; Qu, Bin; Hoth, Markus; Ingebrandt, Sven
2015-05-15
Cytotoxic T lymphocytes (CTLs) play an important role in the immune system by recognizing and eliminating pathogen-infected and tumorigenic cells. In order to achieve their function, T cells have to migrate throughout the whole body and identify the respective targets. In conventional immunology studies, interactions between CTLs and targets are usually investigated using tedious and time-consuming immunofluorescence imaging. However, there is currently no straightforward measurement tool available to examine the interaction strengths. In the present study, adhesion strengths and migration of single human CD8(+) T cells on pre-coated field-effect transistor (FET) devices (i.e. fibronectin, anti-CD3 antibody, and anti-LFA-1 antibody) were measured using impedance spectroscopy. Adhesion strengths to different protein and antibody coatings were compared. By fitting the data to an electronically equivalent circuit model, cell-related parameters (cell membrane capacitance referring to cell morphology and seal resistance referring to adhesion strength) were obtained. This electronically-assessed adhesion strength provides a novel, fast, and important index describing the interaction efficiency. Furthermore, the size of our detection transistor gates as well as their sensitivity reaches down to single cell resolution. Real-time motions of individually migrating T cells can be traced using our FET devices. The in-house fabricated FETs used in the present study are providing a novel and very efficient insight to individual cell interactions. Copyright © 2014 Elsevier B.V. All rights reserved.
Macrophages as Drug Delivery Carriers for Acoustic Phase-Change Droplets.
Fan, Ching-Hsiang; Lee, Ya-Hsuan; Ho, Yi-Ju; Wang, Chung-Hsin; Kang, Shih-Tsung; Yeh, Chih-Kuang
2018-07-01
The major challenges in treating malignant tumors are transport of therapeutic agents to hypoxic regions and real-time assessment of successful drug release via medical imaging modalities. In this study, we propose the use of macrophages (RAW 264.7 cells) as carriers of drug-loaded phase-change droplets to penetrate ischemic or hypoxic regions within tumors. The droplets consist of perfluoropentane, lipid and the chemotherapeutic drug doxorubicin (DOX, DOX-droplets). The efficiency of DOX-droplet uptake, migration mobility and viability of DOX-droplet-loaded macrophages (DLMs) were measured using a transmembrane cell migration assay, the alamarBlue assay and flow cytometric analysis, respectively. Our results indicate the feasibility of utilizing macrophages as DOX-droplet carriers (DOX payload of DOX-droplets: 459.3 ± 35.8 µg/mL, efficiency of cell uptake DOX-droplets: 88.8 ± 3.5%). The migration mobility (total number of migrated microphages) of DLMs decreased to 32.3% compared with that of healthy macrophages, but the DLMs provided contrast-enhanced ultrasound imaging (1.7-fold enhancement) and anti-tumor effect (70.9% cell viability) after acoustic droplet vaporization, suggesting the potential theranostic applications of DLMs. Future work will assess the tumor penetration ability of DLMs, mechanical effect of droplet vaporization on in vivo anti-tumor therapy and the release of the carried drug by ultrasound-triggered vaporization. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy
NASA Astrophysics Data System (ADS)
Guo, Zhi; Wan, Yan; Yang, Mengjin; Snaider, Jordan; Zhu, Kai; Huang, Libai
2017-04-01
The Shockley-Queisser limit for solar cell efficiency can be overcome if hot carriers can be harvested before they thermalize. Recently, carrier cooling time up to 100 picoseconds was observed in hybrid perovskites, but it is unclear whether these long-lived hot carriers can migrate long distance for efficient collection. We report direct visualization of hot-carrier migration in methylammonium lead iodide (CH3NH3PbI3) thin films by ultrafast transient absorption microscopy, demonstrating three distinct transport regimes. Quasiballistic transport was observed to correlate with excess kinetic energy, resulting in up to 230 nanometers transport distance that could overcome grain boundaries. The nonequilibrium transport persisted over tens of picoseconds and ~600 nanometers before reaching the diffusive transport limit. These results suggest potential applications of hot-carrier devices based on hybrid perovskites.
Survival and migration behavior of juvenile salmonids at Lower Granite Dam, 2006
Beeman, John W.; Fielding, Scott D.; Braatz, Amy C.; Wilkerson, Tamara S.; Pope, Adam C.; Walker, Christopher E.; Hardiman, Jill M.; Perry, Russell W.; Counihan, Timothy D.
2008-01-01
We described behavior and estimated passage and survival parameters of juvenile salmonids during spring and summer migration periods at Lower Granite Dam in 2006. During the spring, the study was designed to examine the effects of the Behavioral Guidance Structure (BGS) by using a randomized-block BGS Stored / BGS Deployed treatment design. The summer study was designed to compare passage and survival through Lower Granite Dam using a randomized-block design during two spill treatments while the BGS was in the stored position. We used the Route Specific Survival Model to estimate survival and passage probabilities of hatchery yearling Chinook salmon, hatchery juvenile steelhead, and hatchery and wild subyearling Chinook salmon. We also estimated fish guidance efficiency (FGE), fish passage efficiency (FPE), Removable Spillway Weir passage effectiveness (RPE), spill passage effectiveness (SPY), and combined spill and RSW passage effectiveness.
A location selection policy of live virtual machine migration for power saving and load balancing.
Zhao, Jia; Ding, Yan; Xu, Gaochao; Hu, Liang; Dong, Yushuang; Fu, Xiaodong
2013-01-01
Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.
A Location Selection Policy of Live Virtual Machine Migration for Power Saving and Load Balancing
Xu, Gaochao; Hu, Liang; Dong, Yushuang; Fu, Xiaodong
2013-01-01
Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful. PMID:24348165
Vascular Function, Insulin Action and Exercise: An Intricate Interplay
Zheng, Chao; Liu, Zhenqi
2015-01-01
Insulin enhances the compliance of conduit arteries, relaxes resistance arterioles to increase tissue blood flow and dilates precapillary arterioles to expand muscle microvascular blood volume. These actions are impaired in the insulin resistant states. Exercise ameliorates endothelial dysfunction and improves insulin responses in insulin resistant patients, but the precise underlying mechanisms remain unclear. The microvasculature critically regulates insulin action in muscle by modulating insulin delivery to the capillaries nurturing the myocytes and trans-endothelial insulin transport. Recent data suggest that exercise may exert its insulin-sensitizing effect via recruiting muscle microvasculature to increase insulin delivery to and action in muscle. The current review focuses on how the interplay among exercise, insulin action and the vasculature contributes to exercise-mediated insulin sensitization in muscle. PMID:25735473
Cougoule, Céline; Lastrucci, Claire; Guiet, Romain; Mascarau, Rémi; Meunier, Etienne; Lugo-Villarino, Geanncarlo; Neyrolles, Olivier; Poincloux, Renaud; Maridonneau-Parini, Isabelle
2018-01-01
Dendritic cells (DC) are professional Antigen-Presenting Cells scattered throughout antigen-exposed tissues and draining lymph nodes, and survey the body for pathogens. Their ability to migrate through tissues, a 3D environment, is essential for an effective immune response. Upon infection, recognition of Pathogen-Associated Molecular Patterns (PAMP) by Toll-like receptors (TLR) triggers DC maturation. Mature DC (mDC) essentially use the protease-independent, ROCK-dependent amoeboid mode in vivo , or in collagen matrices in vitro . However, the mechanisms of 3D migration used by human immature DC (iDC) are still poorly characterized. Here, we reveal that human monocyte-derived DC are able to use two migration modes in 3D. In porous matrices of fibrillar collagen I, iDC adopted the amoeboid migration mode. In dense matrices of gelled collagen I or Matrigel, iDC used the protease-dependent, ROCK-independent mesenchymal migration mode. Upon TLR4 activation by LPS, mDC-LPS lose the capacity to form podosomes and degrade the matrix along with impaired mesenchymal migration. TLR2 activation by Pam 3 CSK 4 resulted in DC maturation, podosome maintenance, and efficient mesenchymal migration. Under all these conditions, when DC used the mesenchymal mode in dense matrices, they formed 3D podosomes at the tip of cell protrusions. Using PGE 2 , known to disrupt podosomes in DC, we observed that the cells remained in an immature status and the mesenchymal migration mode was abolished. We also observed that, while CCL5 (attractant of iDC) enhanced both amoeboid and mesenchymal migration of iDC, CCL19 and CCL21 (attractants of mDC) only enhanced mDC-LPS amoeboid migration without triggering mesenchymal migration. Finally, we examined the migration of iDC in tumor cell spheroids, a tissue-like 3D environment. We observed that iDC infiltrated spheroids of tumor cells using both migration modes. Altogether, these results demonstrate that human DC adopt the mesenchymal mode to migrate in 3D dense environments, which relies on their capacity to form podosomes independent of their maturation status, paving the way of further investigations on in vivo DC migration in dense tissues and its regulation during infections.
NASA Astrophysics Data System (ADS)
Kim, W.; Kim, Y.; Min, D.; Oh, J.; Huh, C.; Kang, S.
2012-12-01
During last two decades, CO2 sequestration in the subsurface has been extensively studied and progressed as a direct tool to reduce CO2 emission. Commercial projects such as Sleipner, In Salah and Weyburn that inject more than one million tons of CO2 per year are operated actively as well as test projects such as Ketzin to study the behavior of CO2 and the monitoring techniques. Korea also began the CCS (CO2 capture and storage) project. One of the prospects for CO2 sequestration in Korea is the southwestern continental margin of Ulleung basin. To monitor the behavior of CO2 underground for the evaluation of stability and safety, several geophysical monitoring techniques should be applied. Among various geophysical monitoring techniques, seismic survey is considered as the most effective tool. To verify CO2 migration in the subsurface more effectively, seismic numerical simulation is an essential process. Furthermore, the efficiency of the seismic migration techniques should be investigated for various cases because numerical seismic simulation and migration test help us accurately interpret CO2 migration. In this study, we apply the reverse-time migration and Kirchhoff migration to synthetic seismic monitoring data generated for the simplified model based on the geological structures of Ulleung basin in Korea. Synthetic seismic monitoring data are generated for various cases of CO2 migration in the subsurface. From the seismic migration images, we can investigate CO2 diffusion patterns indirectly. From seismic monitoring simulation, it is noted that while the reverse-time migration generates clear subsurface images when subsurface structures are steeply dipping, Kirchhoff migration has an advantage in imaging horizontal-layered structures such as depositional sediments appearing in the continental shelf. The reverse-time migration and Kirchhoff migration present reliable subsurface images for the potential site characterized by stratigraphical traps. In case of vertical CO2 migration at injection point, the reverse time migration yields better images than Kirchhoff migration does. On the other hand, Kirchhoff migration images horizontal CO2 migration clearer than the reverse time migration does. From these results, we can conclude that the reverse-time migration and Kirchhoff migration can complement with each other to describe the behavior of CO2 in the subsurface. Acknowledgement This work was financially supported by the Brain Korea 21 project of Energy Systems Engineering, the "Development of Technology for CO2 Marine Geological Storage" program funded by the Ministry of Land, Transport and Maritime Affairs (MLTM) of Korea and the Korea CCS R&D Center (KCRC) grant funded by the Korea government (Ministry of Education, Science and Technology) (No. 2012-0008926).
Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R. Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A.; Davidson, Michael W.; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M.; Fabry, Ben
2015-01-01
Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton–ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell–ECM adhesion and traction force generation.—Thievessen, I., Fakhri, N., Steinwachs, J., Kraus, V., McIsaac, R. S., Gao, L., Chen, B.-C., Baird, M. A., Davidson, M. W., Betzig, E., Oldenbourg, R., Waterman, C., M., Fabry, B. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen. PMID:26195589
A three phase optimization method for precopy based VM live migration.
Sharma, Sangeeta; Chawla, Meenu
2016-01-01
Virtual machine live migration is a method of moving virtual machine across hosts within a virtualized datacenter. It provides significant benefits for administrator to manage datacenter efficiently. It reduces service interruption by transferring the virtual machine without stopping at source. Transfer of large number of virtual machine memory pages results in long migration time as well as downtime, which also affects the overall system performance. This situation becomes unbearable when migration takes place over slower network or a long distance migration within a cloud. In this paper, precopy based virtual machine live migration method is thoroughly analyzed to trace out the issues responsible for its performance drops. In order to address these issues, this paper proposes three phase optimization (TPO) method. It works in three phases as follows: (i) reduce the transfer of memory pages in first phase, (ii) reduce the transfer of duplicate pages by classifying frequently and non-frequently updated pages, and (iii) reduce the data sent in last iteration of migration by applying the simple RLE compression technique. As a result, each phase significantly reduces total pages transferred, total migration time and downtime respectively. The proposed TPO method is evaluated using different representative workloads on a Xen virtualized environment. Experimental results show that TPO method reduces total pages transferred by 71 %, total migration time by 70 %, downtime by 3 % for higher workload, and it does not impose significant overhead as compared to traditional precopy method. Comparison of TPO method with other methods is also done for supporting and showing its effectiveness. TPO method and precopy methods are also tested at different number of iterations. The TPO method gives better performance even with less number of iterations.
Migration & Extra-solar Terrestrial Planets: Watering the Planets
NASA Astrophysics Data System (ADS)
Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.
2014-04-01
A diverse range of terrestrial planet compositions is believed to exist within known extrasolar planetary systems, ranging from those that are relatively Earth-like to those that are highly unusual, dominated by species such as refractory elements (Al and Ca) or C (as pure C, TiC and SiC)(Bond et al. 2010b). However, all prior simulations have ignored the impact that giant planet migration during planetary accretion may have on the final terrestrial planetary composition. Here, we combined chemical equilibrium models of the disk around five known planetary host stars (Solar, HD4203, HD19994, HD213240 and Gl777) with dynamical models of terrestrial planet formation incorporating various degrees of giant planet migration. Giant planet migration is found to drastically impact terrestrial planet composition by 1) increasing the amount of Mg-silicate species present in the final body; and 2) dramatically increasing the efficiency and amount of water delivered to the terrestrial bodies during their formation process.
Lin, Hong Reng; Heish, Chao-Wen; Liu, Cheng-Hui; Muduli, Saradaprasan; Li, Hsing-Fen; Higuchi, Akon; Kumar, S. Suresh; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Hsu, Shih-Tien; Chen, Da-Chung; Benelli, Giovanni; Murugan, Kadarkarai; Cheng, Nai-Chen; Wang, Han-Chow; Wu, Gwo-Jang
2017-01-01
Human adipose-derived stem cells (hADSCs) are easily isolated from fat tissue without ethical concerns, but differ in purity, pluripotency, differentiation ability, and stem cell marker expression, depending on the isolation method. We isolated hADSCs from a primary fat tissue solution using: (1) conventional culture, (2) a membrane filtration method, (3) a membrane migration method where the primary cell solution was permeated through membranes, adhered hADSCs were cultured, and hADSCs migrated out from the membranes. Expression of mesenchymal stem cell markers and pluripotency genes, and osteogenic differentiation were compared for hADSCs isolated by different methods using nylon mesh filter membranes with pore sizes ranging from 11 to 80 μm. hADSCs isolated by the membrane migration method had the highest MSC surface marker expression and efficient differentiation into osteoblasts. Osteogenic differentiation ability of hADSCs and MSC surface marker expression were correlated, but osteogenic differentiation ability and pluripotent gene expression were not. PMID:28071738
Imhof, Simon; Vu, Xuan Lan; Bütikofer, Peter; Roditi, Isabel
2015-06-01
Transmission of African trypanosomes by tsetse flies requires that the parasites migrate out of the midgut lumen and colonize the ectoperitrophic space. Early procyclic culture forms correspond to trypanosomes in the lumen; on agarose plates they exhibit social motility, migrating en masse as radial projections from an inoculation site. We show that an Rft1(-/-) mutant needs to reach a greater threshold number before migration begins, and that it forms fewer projections than its wild-type parent. The mutant is also up to 4 times less efficient at establishing midgut infections. Ectopic expression of Rft1 rescues social motility defects and restores the ability to colonize the fly. These results are consistent with social motility reflecting movement to the ectoperitrophic space, implicate N-glycans in the signaling cascades for migration in vivo and in vitro, and provide the first evidence that parasite-parasite interactions determine the success of transmission by the insect host. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Clavel, Carlos; Grisanti, Laura; Zemla, Roland; Rezza, Amelie; Barros, Rita; Sennett, Rachel; Mazloom, Amin; Chung, Chi-Yeh; Cai, Xiaoqiang; Cai, Chen-Leng; Pevny, Larysa; Nicolis, Silvia; Ma’ayan, Avi; Rendl, Michael
2012-01-01
SUMMARY How dermal papilla (DP) niche cells regulate hair follicle progenitors to control hair growth remains unclear. Using Tbx18Cre to target embryonic DP precursors, we ablate the transcription factor Sox2 early and efficiently, resulting in diminished hair shaft outgrowth. We find that DP niche expression of Sox2 controls the migration rate of differentiating hair shaft progenitors. Transcriptional profiling of Sox2 null DPs reveals increased Bmp6 and decreased Bmp inhibitor Sostdc1, a direct Sox2 transcriptional target. Subsequently, we identify upregulated Bmp signaling in knockout hair shaft progenitors and demonstrate that Bmps inhibit cell migration, an effect that can be attenuated by Sostdc1. A shorter and Sox2-negative hair type lacks Sostdc1 in the DP and shows reduced migration and increased Bmp activity of hair shaft progenitors. Collectively, our data identify Sox2 as a key regulator of hair growth that controls progenitor migration by fine-tuning Bmp-mediated mesenchymal-epithelial crosstalk. PMID:23153495
Chen, Mingming; Shan, Xin; Geske, Thomas; Li, Junqiang; Yu, Zhibin
2017-06-27
Ion migration has been commonly observed as a detrimental phenomenon in organometal halide perovskite semiconductors, causing the measurement hysteresis in solar cells and ultrashort operation lifetimes in light-emitting diodes. In this work, ion migration is utilized for the formation of a p-i-n junction at ambient temperature in single-crystalline organometal halide perovskites. The junction is subsequently stabilized by quenching the ionic movement at a low temperature. Such a strategy of manipulating the ion migration has led to efficient single-crystalline light-emitting diodes that emit 2.3 eV photons starting at 1.8 V and sustain a continuous operation for 54 h at ∼5000 cd m -2 without degradation of brightness. In addition, a whispering-gallery-mode cavity and exciton-exciton interaction in the perovskite microplatelets have both been observed that can be potentially useful for achieving electrically driven laser diodes based on single-crystalline organometal halide perovskite semiconductors.
NASA Astrophysics Data System (ADS)
Spinlove, K. E.; Vacher, M.; Bearpark, M.; Robb, M. A.; Worth, G. A.
2017-01-01
Recent work, particularly by Cederbaum and co-workers, has identified the phenomenon of charge migration, whereby charge flow occurs over a static molecular framework after the creation of an electronic wavepacket. In a real molecule, this charge migration competes with charge transfer, whereby the nuclear motion also results in the re-distribution of charge. To study this competition, quantum dynamics simulations need to be performed. To break the exponential scaling of standard grid-based algorithms, approximate methods need to be developed that are efficient yet able to follow the coupled electronic-nuclear motion of these systems. Using a simple model Hamiltonian based on the ionisation of the allene molecule, the performance of different methods based on Gaussian Wavepackets is demonstrated.
Migration of tungsten dust in tokamaks: role of dust-wall collisions
NASA Astrophysics Data System (ADS)
Ratynskaia, S.; Vignitchouk, L.; Tolias, P.; Bykov, I.; Bergsåker, H.; Litnovsky, A.; den Harder, N.; Lazzaro, E.
2013-12-01
The modelling of a controlled tungsten dust injection experiment in TEXTOR by the dust dynamics code MIGRAINe is reported. The code, in addition to the standard dust-plasma interaction processes, also encompasses major mechanical aspects of dust-surface collisions. The use of analytical expressions for the restitution coefficients as functions of the dust radius and impact velocity allows us to account for the sticking and rebound phenomena that define which parts of the dust size distribution can migrate efficiently. The experiment provided unambiguous evidence of long-distance dust migration; artificially introduced tungsten dust particles were collected 120° toroidally away from the injection point, but also a selectivity in the permissible size of transported grains was observed. The main experimental results are reproduced by modelling.
NASA Astrophysics Data System (ADS)
Benson, S. M.; Chabora, E.
2009-12-01
The transport properties of seals, namely permeability, relative permeability, and capillary pressure control both migration of carbon dioxide and brine through the seal. Only recently has the the importance of brine migration emerged as key issue in the environmental performance of carbon dioxide sequestration projects. In this study we use numerical simulation to show that brine migration through the seal can be either advantageous or deleterious to the environmental performance of a carbon dioxide sequestration project. Brine migration through the seal can lower the pressure buildup in the storage reservoir, thereby reducing the risk of leakage or geomechanical stresses on the seal. On the other hand, if the seal is penetrated by a permeable fault it can lead to focused flow up a fault, which could lead to brine migration into drinking water aquifers. We also show that as the carbon dioxide plume grows, brine flow undergoes a complex evolution from upward flow to downward flows driven by countercurrent migration of carbon dioxide and brine in the seal and capillary pressure gradients at the base of the seal. Finally, we discuss desirable attributes seals, taking into account both carbon dioxide and brine migration through the seal. In particular, identifying seals that provide an effective capillary barrier to block the flow of carbon dioxide while allowing some brine migration through the seal can help to control pressure buildup and allow more efficient utilization of a sequestration reservoir. This could be particularly important in those settings that may be limited by the maximum allowable pressure buildup.
Microtubule release from the centrosome in migrating cells
Abal, Miguel; Piel, Matthieu; Bouckson-Castaing, Veronique; Mogensen, Mette; Sibarita, Jean-Baptiste; Bornens, Michel
2002-01-01
In migrating cells, force production relies essentially on a polarized actomyosin system, whereas the spatial regulation of actomyosin contraction and substrate contact turnover involves a complex cooperation between the microtubule (MT) and the actin filament networks (Goode, B.L., D.G. Drubin, and G. Barnes. 2000. Curr. Opin. Cell Biol., 12:63–71). Targeting and capture of MT plus ends at the cell periphery has been described, but whether or not the minus ends of these MTs are anchored at the centrosome is not known. Here, we show that release of short MTs from the centrosome is frequent in migrating cells and that their transport toward the cell periphery is blocked when dynein activity is impaired. We further show that MT release, but not MT nucleation or polymerization dynamics, is abolished by overexpression of the centrosomal MT-anchoring protein ninein. In addition, a dramatic inhibition of cell migration was observed; but, contrary to cells treated by drugs inhibiting MT dynamics, polarized membrane ruffling activity was not affected in ninein overexpressing cells. We thus propose that the balance between MT minus-end capture and release from the centrosome is critical for efficient cell migration. PMID:12473683
Wei, Min; Zhang, Yan-Ling; Chen, Lan; Cai, Cui-Xia; Wang, Han-Duo
2016-02-20
To explore the effects of silencing HERC4 on the proliferation, apoptosis, and migration of cervical cancer cell line Hela and the possible molecular mechanisms. Three HERC4-specific small interfering RNAs (siRNAs) were transfected into Hela cells, and HERC4 expression in the cells was examined with Western blotting. CCK-8 assay, annexin V-FITC/PI assay, and wound healing assay were used to assess the effect of HERC4 silencing on the proliferation, apoptosis and migration ability of Hela cells. The expression levels of cyclin D1 and Bcl-2 in the cells were detected using Western blotting. Transfection of siRNA-3 resulted in significantly decreased HERC4 protein expression (P<0.01). HERC4 silencing by siRNA-3 markedly suppressed the proliferation and migration of Hela cells, increased the apoptosis rate (P<0.01) and reduced the expression levels of cyclin D1 and Bcl-2 (P<0.01). Silencing of HERC4 efficiently inhibits the proliferation, migration, and invasion of Hela cells in vitro, and the underlying mechanisms may involve the down-regulation of cyclin D1 and Bcl-2.
Song, Jiho; Shawky, Joseph H; Kim, YongTae; Hazar, Melis; LeDuc, Philip R; Sitti, Metin; Davidson, Lance A
2015-07-01
Cells in tissues encounter a range of physical cues as they migrate. Probing single cell and collective migratory responses to physically defined three-dimensional (3D) microenvironments and the factors that modulate those responses are critical to understanding how tissue migration is regulated during development, regeneration, and cancer. One key physical factor that regulates cell migration is topography. Most studies on surface topography and cell mechanics have been carried out with single migratory cells, yet little is known about the spreading and motility response of 3D complex multi-cellular tissues to topographical cues. Here, we examine the response to complex topographical cues of microsurgically isolated tissue explants composed of epithelial and mesenchymal cell layers from naturally 3D organized embryos of the aquatic frog Xenopus laevis. We control topography using fabricated micropost arrays (MPAs) and investigate the collective 3D migration of these multi-cellular systems in these MPAs. We find that the topography regulates both collective and individual cell migration and that dense MPAs reduce but do not eliminate tissue spreading. By modulating cell size through the cell cycle inhibitor Mitomycin C or the spacing of the MPAs we uncover how 3D topographical cues disrupt collective cell migration. We find surface topography can direct both single cell motility and tissue spreading, altering tissue-scale processes that enable efficient conversion of single cell motility into collective movement. Copyright © 2015 Elsevier Ltd. All rights reserved.
Long-term Stabilization of Disturbed Slopes Resulting from Construction Operations
DOT National Transportation Integrated Search
2018-01-01
Highway construction disturbs soil, which must be stabilized to prevent migration of soil particles into water bodies. Stabilization is enforced by law, regulation, and a permit system. Stabilization is most efficiently attained by reestablishment of...
Alternative stable qP wave equations in TTI media with their applications for reverse time migration
NASA Astrophysics Data System (ADS)
Zhou, Yang; Wang, Huazhong; Liu, Wenqing
2015-10-01
Numerical instabilities may arise if the spatial variation of symmetry axis is handled improperly when implementing P-wave modeling and reverse time migration in heterogeneous tilted transversely isotropic (TTI) media, especially in the cases where fast changes exist in TTI symmetry axis’ directions. Based on the pseudo-acoustic approximation to anisotropic elastic wave equations in Cartesian coordinates, alternative second order qP (quasi-P) wave equations in TTI media are derived in this paper. Compared with conventional stable qP wave equations, the proposed equations written in stress components contain only spatial derivatives of wavefield variables (stress components) and are free from spatial derivatives involving media parameters. These lead to an easy and efficient implementation for stable P-wave modeling and imaging. Numerical experiments demonstrate the stability and computational efficiency of the presented equations in complex TTI media.
Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Zhi; Wan, Yan; Yang, Mengjin
The Shockley-Queisser limit for solar cell efficiency can be overcome if hot carriers can be harvested before they thermalize. Recently, carrier cooling time up to 100 picoseconds was observed in hybrid perovskites, but it is unclear whether these long-lived hot carriers can migrate long distance for efficient collection. Here, we report direct visualization of hot-carrier migration in methylammonium lead iodide (CH 3NH 3PbI 3) thin films by ultrafast transient absorption microscopy, demonstrating three distinct transport regimes. Quasiballistic transport was observed to correlate with excess kinetic energy, resulting in up to 230 nanometers transport distance that could overcome grain boundaries. Themore » nonequilibrium transport persisted over tens of picoseconds and ~600 nanometers before reaching the diffusive transport limit. Lastly, these results suggest potential applications of hot-carrier devices based on hybrid perovskites.« less
A Novel General Imaging Formation Algorithm for GNSS-Based Bistatic SAR.
Zeng, Hong-Cheng; Wang, Peng-Bo; Chen, Jie; Liu, Wei; Ge, LinLin; Yang, Wei
2016-02-26
Global Navigation Satellite System (GNSS)-based bistatic Synthetic Aperture Radar (SAR) recently plays a more and more significant role in remote sensing applications for its low-cost and real-time global coverage capability. In this paper, a general imaging formation algorithm was proposed for accurately and efficiently focusing GNSS-based bistatic SAR data, which avoids the interpolation processing in traditional back projection algorithms (BPAs). A two-dimensional point target spectrum model was firstly presented, and the bulk range cell migration correction (RCMC) was consequently derived for reducing range cell migration (RCM) and coarse focusing. As the bulk RCMC seriously changes the range history of the radar signal, a modified and much more efficient hybrid correlation operation was introduced for compensating residual phase errors. Simulation results were presented based on a general geometric topology with non-parallel trajectories and unequal velocities for both transmitter and receiver platforms, showing a satisfactory performance by the proposed method.
Fractional kinetics of glioma treatment by a radio-frequency electric field
NASA Astrophysics Data System (ADS)
Iomin, A.
2013-09-01
A realistic model for estimation of the medical effect of brain cancer (glioma) treatment by a radio-frequency (RF) electric field is suggested. This low intensity, intermediate-frequency alternating electric field is known as the tumor-treating field (TTF). The model is based on a construction of 3D comb model for a description of the cancer cells dynamics, where the migration-proliferation dichotomy becomes naturally apparent, and the outer-invasive region of glioma cancer is considered as a fractal composite embedded in the 3D space. In the framework of this model, the interplay between the TTF and the migration-proliferation dichotomy of cancer cells is considered, and the efficiency of this TTF is estimated. It is shown that the efficiency of the medical treatment by the TTF depends essentially on the mass fractal dimension of the cancer in the outer-invasive region.
Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy
Guo, Zhi; Wan, Yan; Yang, Mengjin; ...
2017-04-07
The Shockley-Queisser limit for solar cell efficiency can be overcome if hot carriers can be harvested before they thermalize. Recently, carrier cooling time up to 100 picoseconds was observed in hybrid perovskites, but it is unclear whether these long-lived hot carriers can migrate long distance for efficient collection. Here, we report direct visualization of hot-carrier migration in methylammonium lead iodide (CH 3NH 3PbI 3) thin films by ultrafast transient absorption microscopy, demonstrating three distinct transport regimes. Quasiballistic transport was observed to correlate with excess kinetic energy, resulting in up to 230 nanometers transport distance that could overcome grain boundaries. Themore » nonequilibrium transport persisted over tens of picoseconds and ~600 nanometers before reaching the diffusive transport limit. Lastly, these results suggest potential applications of hot-carrier devices based on hybrid perovskites.« less
A Novel General Imaging Formation Algorithm for GNSS-Based Bistatic SAR
Zeng, Hong-Cheng; Wang, Peng-Bo; Chen, Jie; Liu, Wei; Ge, LinLin; Yang, Wei
2016-01-01
Global Navigation Satellite System (GNSS)-based bistatic Synthetic Aperture Radar (SAR) recently plays a more and more significant role in remote sensing applications for its low-cost and real-time global coverage capability. In this paper, a general imaging formation algorithm was proposed for accurately and efficiently focusing GNSS-based bistatic SAR data, which avoids the interpolation processing in traditional back projection algorithms (BPAs). A two-dimensional point target spectrum model was firstly presented, and the bulk range cell migration correction (RCMC) was consequently derived for reducing range cell migration (RCM) and coarse focusing. As the bulk RCMC seriously changes the range history of the radar signal, a modified and much more efficient hybrid correlation operation was introduced for compensating residual phase errors. Simulation results were presented based on a general geometric topology with non-parallel trajectories and unequal velocities for both transmitter and receiver platforms, showing a satisfactory performance by the proposed method. PMID:26927117
GPU-accelerated element-free reverse-time migration with Gauss points partition
NASA Astrophysics Data System (ADS)
Zhou, Zhen; Jia, Xiaofeng; Qiang, Xiaodong
2018-06-01
An element-free method (EFM) has been demonstrated successfully in elasticity, heat conduction and fatigue crack growth problems. We present the theory of EFM and its numerical applications in seismic modelling and reverse time migration (RTM). Compared with the finite difference method and the finite element method, the EFM has unique advantages: (1) independence of grids in computation and (2) lower expense and more flexibility (because only the information of the nodes and the boundary of the concerned area is required). However, in EFM, due to improper computation and storage of some large sparse matrices, such as the mass matrix and the stiffness matrix, the method is difficult to apply to seismic modelling and RTM for a large velocity model. To solve the problem of storage and computation efficiency, we propose a concept of Gauss points partition and utilise the graphics processing unit to improve the computational efficiency. We employ the compressed sparse row format to compress the intermediate large sparse matrices and attempt to simplify the operations by solving the linear equations with CULA solver. To improve the computation efficiency further, we introduce the concept of the lumped mass matrix. Numerical experiments indicate that the proposed method is accurate and more efficient than the regular EFM.
NASA Astrophysics Data System (ADS)
Cai, Xiaohui; Liu, Yang; Ren, Zhiming
2018-06-01
Reverse-time migration (RTM) is a powerful tool for imaging geologically complex structures such as steep-dip and subsalt. However, its implementation is quite computationally expensive. Recently, as a low-cost solution, the graphic processing unit (GPU) was introduced to improve the efficiency of RTM. In the paper, we develop three ameliorative strategies to implement RTM on GPU card. First, given the high accuracy and efficiency of the adaptive optimal finite-difference (FD) method based on least squares (LS) on central processing unit (CPU), we study the optimal LS-based FD method on GPU. Second, we develop the CPU-based hybrid absorbing boundary condition (ABC) to the GPU-based one by addressing two issues of the former when introduced to GPU card: time-consuming and chaotic threads. Third, for large-scale data, the combinatorial strategy for optimal checkpointing and efficient boundary storage is introduced for the trade-off between memory and recomputation. To save the time of communication between host and disk, the portable operating system interface (POSIX) thread is utilized to create the other CPU core at the checkpoints. Applications of the three strategies on GPU with the compute unified device architecture (CUDA) programming language in RTM demonstrate their efficiency and validity.
Lukman, Salihu; Bukhari, Alaadin; Al-Malack, Muhammad H; Mu'azu, Nuhu D; Essa, Mohammed H
2014-01-01
Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75%.
Bukhari, Alaadin; Al-Malack, Muhammad H.; Mu'azu, Nuhu D.; Essa, Mohammed H.
2014-01-01
Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75 %. PMID:25152905
Robotic Patterning a Superhydrophobic Surface for Collective Cell Migration Screening.
Pang, Yonggang; Yang, Jing; Hui, Zhixin; Grottkau, Brian E
2018-04-01
Collective cell migration, in which cells migrate as a group, is fundamental in many biological and pathological processes. There is increasing interest in studying the collective cell migration in high throughput. Cell scratching, insertion blocker, and gel-dissolving techniques are some methodologies used previously. However, these methods have the drawbacks of cell damage, substrate surface alteration, limitation in medium exchange, and solvent interference. The superhydrophobic surface, on which the water contact angle is greater than 150 degrees, has been recently utilized to generate patterned arrays. Independent cell culture areas can be generated on a substrate that functions the same as a conventional multiple well plate. However, so far there has been no report on superhydrophobic patterning for the study of cell migration. In this study, we report on the successful development of a robotically patterned superhydrophobic array for studying collective cell migration in high throughput. The array was developed on a rectangular single-well cell culture plate consisting of hydrophilic flat microwells separated by the superhydrophobic surface. The manufacturing process is robotic and includes patterning discrete protective masks to the substrate using 3D printing, robotic spray coating of silica nanoparticles, robotic mask removal, robotic mini silicone blocker patterning, automatic cell seeding, and liquid handling. Compared with a standard 96-well plate, our system increases the throughput by 2.25-fold and generates a cell-free area in each well non-destructively. Our system also demonstrates higher efficiency than conventional way of liquid handling using microwell plates, and shorter processing time than manual operating in migration assays. The superhydrophobic surface had no negative impact on cell viability. Using our system, we studied the collective migration of human umbilical vein endothelial cells and cancer cells using assays of endpoint quantification, dynamic cell tracking, and migration quantification following varied drug treatments. This system provides a versatile platform to study collective cell migration in high throughput for a broad range of applications.
Han, Liping; Zhao, Qingwei; Liang, Xianhong; Wang, Xiaoqing; Zhang, Zhen; Ma, Zhiguo; Zhao, Miaoqing; Wang, Aihua; Liu, Shuai
2017-07-11
Inhibition of Brd4 by JQ1 treatment showed potential in the treatment of glioma, however, some cases showed low sensitivity of JQ1. In addition, the pre-clinical analysis showed its limitation by demonstrating that transient treatment with JQ1 leads to aggressive tumor development. Thus, an improved understanding of the mechanisms underlying JQ1 is urgently required to design strategies to improve its efficiency, as well as overcome its limitation. HEXIM1 has been confirmed to have an important role in regulating JQ1 sensitivity. In our study, ubenimex, a classical anti-cancer drug showed potential in regulating the JQ1 sensitivity of glioma cells using the WST-1 proliferation assay. Further studies demonstrated that ubenimex inhibited autophagy and downregulated the autophagic degradation of HEXIM1. The role of HEXIM1 in regulating JQ1 sensitivity was verified by the HEXIM1 knockdown. Since ubenimex was verified as an Akt inhibitor, we further studied the role of Akt inhibition in regulating JQ1 sensitivity and migration of glioma cells. Data showed that ubenimex improved the efficiency of JQ1 treatment and suppressed migration both in the in vitro and in vivo xenografts models. The Akt agonist attenuated these effects, pointing to the role of Akt inhibition in JQ1 sensitivity and suppressed migration. Our findings suggest the potential of ubenimex adjuvant treatment to enhance JQ1 efficiency and attenuate parts of its side effect (enhancing tumor aggressive) by regulating the autophagic degradation of HEXIM1 and Akt inhibition.
CROWDING-OUT OF GIANTS BY DWARFS: AN ORIGIN FOR THE LACK OF COMPANION PLANETS IN HOT JUPITER SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogihara, Masahiro; Inutsuka, Shu-ichiro; Kobayashi, Hiroshi, E-mail: ogihara@nagoya-u.jp
2013-11-20
We investigate the formation of close-in terrestrial planets from planetary embryos under the influence of a hot Jupiter (HJ) using gravitational N-body simulations that include gravitational interactions between the gas disk and the terrestrial planet (e.g., type I migration). Our simulations show that several terrestrial planets efficiently form outside the orbit of the HJ, making a chain of planets, and all of them gravitationally interact directly or indirectly with the HJ through resonance, which leads to inward migration of the HJ. We call this mechanism of induced migration of the HJ ''crowding-out''. The HJ is eventually lost through collision withmore » the central star, and only several terrestrial planets remain. We also find that the efficiency of the crowding-out effect depends on the model parameters; for example, the heavier the disk is, the more efficient the crowding-out is. When planet formation occurs in a massive disk, the HJ can be lost to the central star and is never observed. On the other hand, for a less massive disk, the HJ and terrestrial planets can coexist; however, the companion planets may be below the detection limit of current observations. In both cases, systems with a HJ and terrestrial planets have little chance of detection. Therefore, our model naturally explains the lack of companion planets in HJ systems regardless of the disk mass. In effect, our model provides a theoretical prediction for future observations; additional planets can be discovered just outside the HJ, and their masses should generally be small.« less
Douglas, Alison M.; Fragkopoulos, Alexandros A.; Gaines, Michelle K.; Lyon, L. Andrew; Fernandez-Nieves, Alberto
2017-01-01
In regenerative medicine, natural protein-based polymers offer enhanced endogenous bioactivity and potential for seamless integration with tissue, yet form weak hydrogels that lack the physical robustness required for surgical manipulation, making them difficult to apply in practice. The use of higher concentrations of protein, exogenous cross-linkers, and blending synthetic polymers has all been applied to form more mechanically robust networks. Each relies on generating a smaller network mesh size, which increases the elastic modulus and robustness, but critically inhibits cell spreading and migration, hampering tissue regeneration. Here we report two unique observations; first, that colloidal suspensions, at sufficiently high volume fraction (ϕ), dynamically assemble into a fully percolated 3D network within high-concentration protein polymers. Second, cells appear capable of leveraging these unique domains for highly efficient cell migration throughout the composite construct. In contrast to porogens, the particles in our system remain embedded within the bulk polymer, creating a network of particle-filled tunnels. Whereas this would normally physically restrict cell motility, when the particulate network is created using ultralow cross-linked microgels, the colloidal suspension displays viscous behavior on the same timescale as cell spreading and migration and thus enables efficient cell infiltration of the construct through the colloidal-filled tunnels. PMID:28100492
NASA Astrophysics Data System (ADS)
Douglas, Alison M.; Fragkopoulos, Alexandros A.; Gaines, Michelle K.; Lyon, L. Andrew; Fernandez-Nieves, Alberto; Barker, Thomas H.
2017-01-01
In regenerative medicine, natural protein-based polymers offer enhanced endogenous bioactivity and potential for seamless integration with tissue, yet form weak hydrogels that lack the physical robustness required for surgical manipulation, making them difficult to apply in practice. The use of higher concentrations of protein, exogenous cross-linkers, and blending synthetic polymers has all been applied to form more mechanically robust networks. Each relies on generating a smaller network mesh size, which increases the elastic modulus and robustness, but critically inhibits cell spreading and migration, hampering tissue regeneration. Here we report two unique observations; first, that colloidal suspensions, at sufficiently high volume fraction (ϕ), dynamically assemble into a fully percolated 3D network within high-concentration protein polymers. Second, cells appear capable of leveraging these unique domains for highly efficient cell migration throughout the composite construct. In contrast to porogens, the particles in our system remain embedded within the bulk polymer, creating a network of particle-filled tunnels. Whereas this would normally physically restrict cell motility, when the particulate network is created using ultralow cross-linked microgels, the colloidal suspension displays viscous behavior on the same timescale as cell spreading and migration and thus enables efficient cell infiltration of the construct through the colloidal-filled tunnels.
Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation
NASA Astrophysics Data System (ADS)
Zhang, Zhen-dong; Liu, Yike; Alkhalifah, Tariq; Wu, Zedong
2018-04-01
The computational cost of quasi-P wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyse the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of SV-wave artefacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modelling engine performs better than an isotropic migration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Barden, E-mail: cchan@bidmc.harvard.edu; VanderLaan, Paul A.; Sukhatme, Vikas P.
2013-09-20
Highlights: •Expression of 6PGD positively correlates with advancing stage of lung carcinoma. •Knockdown of 6PGD by shRNA potently inhibits c-Met tyrosine phosphorylation. •Exogenous HGF fails to restore c-Met phosphorylation in cells with 6PGD knocked down. •6PGD knockdown results in inhibition of cell migration in vitro. •Constitutively active TPR-cMet significantly restores migration of cells without 6PGD. -- Abstract: 6-Phosphogluconate dehydrogenase (6PGD) is the third enzyme in the oxidative pentose phosphate pathway (PPP). Recently, we reported that knockdown of 6PGD inhibited lung tumor growth in vitro and in a xenograft model in mice. In this study, we continued to examine the functionalmore » role of 6PGD in cancer. We show that 6PGD expression positively correlates with advancing stage of lung carcinoma. In search of functional signals related to 6PGD, we discovered that knockdown of 6PGD significantly inhibited phosphorylation of c-Met at tyrosine residues known to be critical for activity. This downregulation of c-Met phosphorylation correlated with inhibition of cell migration in vitro. Overexpression of a constitutively active c-Met specifically rescued the migration but not proliferation phenotype of 6PGD knockdown. Therefore, 6PGD appears to be required for efficient c-Met signaling and migration of tumor cells in vitro.« less
The structured ancestral selection graph and the many-demes limit.
Slade, Paul F; Wakeley, John
2005-02-01
We show that the unstructured ancestral selection graph applies to part of the history of a sample from a population structured by restricted migration among subpopulations, or demes. The result holds in the limit as the number of demes tends to infinity with proportionately weak selection, and we have also made the assumptions of island-type migration and that demes are equivalent in size. After an instantaneous sample-size adjustment, this structured ancestral selection graph converges to an unstructured ancestral selection graph with a mutation parameter that depends inversely on the migration rate. In contrast, the selection parameter for the population is independent of the migration rate and is identical to the selection parameter in an unstructured population. We show analytically that estimators of the migration rate, based on pairwise sequence differences, derived under the assumption of neutrality should perform equally well in the presence of weak selection. We also modify an algorithm for simulating genealogies conditional on the frequencies of two selected alleles in a sample. This permits efficient simulation of stronger selection than was previously possible. Using this new algorithm, we simulate gene genealogies under the many-demes ancestral selection graph and identify some situations in which migration has a strong effect on the time to the most recent common ancestor of the sample. We find that a similar effect also increases the sensitivity of the genealogy to selection.
The fundamental role of mechanical properties in the progression of cancer disease and inflammation
NASA Astrophysics Data System (ADS)
Mierke, Claudia Tanja
2014-07-01
The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in particular the understanding of mechano-coupling and mechano-regulating functions in cell invasion, appears as an important step in cancer progression and inflammatory response to injuries. This may lead to novel insights into cancer disease and inflammatory diseases and will overcome classical views on cancer and inflammation. In addition, this review will discuss how the physics of cancer and inflammation can help to reveal whether cancer cells will invade connective tissue and metastasize or how leukocytes extravasate and migrate through the tissue. In this review, the physical concepts of cancer progression, including the tissue basement membrane a cancer cell is crossing, its invasion and transendothelial migration as well as the basic physical concepts of inflammatory processes and the cellular responses to the mechanical stress of the microenvironment such as external forces and matrix stiffness, are presented and discussed. In conclusion, this review will finally show how physical measurements can improve classical approaches that investigate cancer and inflammatory diseases, and how these physical insights can be integrated into classical tumor biological approaches.
The Comparison Study of gas source between two hydrate expeditions in ShenHu area, SCS
NASA Astrophysics Data System (ADS)
Cong, X. R.
2016-12-01
Two gas hydrate expeditions (GMGS 01&03) were conducted in the Pearl River Mouth Basin, SCS, which were organized by Guangzhou Marine Geological Survey in 2007 and 2015, respectively. Compared with the drilling results of "mixed bio-thermogenic gas and generally dominated by biogenic gas" in 2007, hydrocarbon component measurements revealed a higher content of ethane and propane in 2015 drilling, providing direct evidence that deep thermogenic gas was the source for shallow hydrate formation. According to the geochemical analyses of the results obtained from the industrial boreholes in Baiyun sag, the deep hydrocarbon gas obviously leaked from the reservoir as escape caused by Dongsha movement in the late Miocene, as a result thermogenic gas from Wenchang, Enping and Zhuhai hydrocarbon source rocks migrated to late Miocene shallow strata through faults, diapirs and gas chimney vertically migration. In this paper we report the differences in fluid migration channel types and discuss their effect in fluid vertical migration efficiency in the two Shenhu hydrate drilling areas. For the drilling area in 2007,when the limited deep thermogenic gas experienced long distance migration process from bottom to up along inefficient energy channel, the gas composition might have changed and the carbon isotope fractionation might have happened, which were reflected in the results of higher C1/C2 ratios and lighter carbon isotope in gas hydrate bearing sediments. As a result the gas is with more "biogenic gas" features. It means thermogenic gases in the deep to contributed the formation of shallow gas hydrate indirectly in 2007 Shenhu drill area. On another hand, the gases were transported to the shallow sediment layers efficiently, where gas hydrate formed, through faults and fractures from deep hydrocarbon reservoirs, and as the result they experienced less changes in both components and isotopes in 2015 drilling site.
Xu, Wei-li; Li, Suo-lin; Wen, Ming; Wen, Jun-ye; Han, Jie; Zhang, Hong-zhen; Gao, Fei; Cai, Jian-hui
2013-08-01
Killing of targeted tumors during adoptive cell transfer therapy is associated with cytotoxic T lymphocyte (CTL) numbers, immunophenotype, tumor-specificity, and in vivo residence time, migration, and distribution. Therefore, tracing in vivo persistence, migration, and distribution of CTLs is important for cancer immunotherapy. Optimal staining concentration for CTL proliferation was determined by cell counting kit-8 (CCK-8) assay and killing efficiencies of CTLs or carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled melanoma antigen-specific cytotoxic T lymphocytes (CFSE-CTLs) for malignant melanoma cells in vitro were compared. Additionally, CFSE-CTLs were intravenously transfused to mice receiving B16 melanoma, and their residence time, migration, and distribution in vivo were observed by measuring fluorescence intensities of CFSE-CTLs per gram of tissue (%FI/g) in various tissues and analyzing tumor/non-tumor (T/NT) values. Anti-tumor effects of transferred CTLs and correlation between %FI/g and D-value of tumor size were analyzed. Five-micromolar CFSE was optimal for labeling CTLs with minimal cytotoxicity. No significant difference occurred between CTLs and CFSE-CTLs for tumor cell killing (P = 0.849) or interleukin-2 (P = 0.318) and interferon-γ (P = 0.201) levels. Distribution of CTLs in vivo varied with time. A negative correlation between %FI/g in tumors and D-value of tumor sizes by Spearman correlation analysis was observed. CTLs were recruited to and killed tumors from 6 hours to 3 days after cell infusion. CTLs were observed up to three weeks later in the tumor, liver, kidneys, and spleen; this was related to the abundant blood supply or the nature of immune organs. CCK-8 assay is a novel method to select optimal CFSE staining concentrations. Fluorescence intensity of transferred CTLs reflects their killing efficiency of tumors. CFSE fluorescent markers can trace in vivo CTL persistence, migration, and distribution because of its stability, long half-life, and low toxicity.
In vitro study of LDL transport under pressurized (convective) conditions.
Cancel, Limary M; Fitting, Andrew; Tarbell, John M
2007-07-01
It is difficult to assess the transport pathways that carry low-density lipoprotein (LDL) into the artery wall in vivo, and there has been no previous in vitro study that has examined transendothelial transport under physiologically relevant pressurized (convective) conditions. Therefore, we measured water, albumin, and LDL fluxes across bovine aortic endothelial cell (BAEC) monolayers in vitro and determined the relative contributions of vesicles, paracellular transport through "breaks" in the tight junction, and "leaky" junctions associated with dying or dividing cells. Our results show that leaky junctions are the dominant pathway for LDL transport (>90%) under convective conditions and that albumin also has a significant component of transport through leaky junctions (44%). Transcellular transport of LDL by receptor-mediated processes makes a minor contribution (<10%) to overall transport under convective conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fenxi, E-mail: fxzhang0824@gmail.com; Hong, Yan; Liang, Wenmei
Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neuralmore » stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.« less
High Altitude Bird Migration at Temperate Latitudes: A Synoptic Perspective on Wind Assistance
Dokter, Adriaan M.; Shamoun-Baranes, Judy; Kemp, Michael U.; Tijm, Sander; Holleman, Iwan
2013-01-01
At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts. PMID:23300969
High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.
Dokter, Adriaan M; Shamoun-Baranes, Judy; Kemp, Michael U; Tijm, Sander; Holleman, Iwan
2013-01-01
At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts.
McGonigle, Terence A.; Dwyer, Amy R.; Greenland, Eloise L.; Scott, Naomi M.; Keane, Kevin N.; Newsholme, Philip; Goodridge, Helen S.; Zon, Leonard I.; Pixley, Fiona J.; Hart, Prue H.
2018-01-01
Monocytes/macrophages differentiating from bone marrow (BM) cells pulsed for 2 hours at 37°C with a stabilized derivative of prostaglandin E2, 16,16-dimethyl PGE2 (dmPGE2), migrated less efficiently toward a chemoattractant than monocytes/macrophages differentiated from BM cells pulsed with vehicle. To confirm that the effect on BM cells was long lasting and to replicate human BM transplantation, chimeric mice were established with donor BM cells pulsed for 2 hours with dmPGE2 before injection into marrow-ablated congenic recipient mice. After 12 weeks, when high levels (90%) of engraftment were obtained, regenerated BM-derived monocytes/macrophages differentiating in vitro or in vivo migrated inefficiently toward the chemokines colony-stimulating factor-1 (CSF-1) and chemokine (C-C motif) ligand 2 (CCL2) or thioglycollate, respectively. Our results reveal long-lasting changes to progenitor cells of monocytes/macrophages by a 2-hour dmPGE2 pulse that, in turn, limits the migration of their daughter cells to chemoattractants and inflammatory mediators. PMID:28822771
Diverse roles of guanine nucleotide exchange factors in regulating collective cell migration
Tseng, Yun-Yu; Rabadán, M. Angeles; Krishna, Shefali; Hall, Alan
2017-01-01
Efficient collective migration depends on a balance between contractility and cytoskeletal rearrangements, adhesion, and mechanical cell–cell communication, all controlled by GTPases of the RHO family. By comprehensive screening of guanine nucleotide exchange factors (GEFs) in human bronchial epithelial cell monolayers, we identified GEFs that are required for collective migration at large, such as SOS1 and β-PIX, and RHOA GEFs that are implicated in intercellular communication. Down-regulation of the latter GEFs differentially enhanced front-to-back propagation of guidance cues through the monolayer and was mirrored by down-regulation of RHOA expression and myosin II activity. Phenotype-based clustering of knockdown behaviors identified RHOA-ARHGEF18 and ARHGEF3-ARHGEF28-ARHGEF11 clusters, indicating that the latter may signal through other RHO-family GTPases. Indeed, knockdown of RHOC produced an intermediate between the two phenotypes. We conclude that for effective collective migration, the RHOA-GEFs → RHOA/C → actomyosin pathways must be optimally tuned to compromise between generation of motility forces and restriction of intercellular communication. PMID:28512143
3D receiver function Kirchhoff depth migration image of Cascadia subduction slab weak zone
NASA Astrophysics Data System (ADS)
Cheng, C.; Allen, R. M.; Bodin, T.; Tauzin, B.
2016-12-01
We have developed a highly computational efficient algorithm of applying 3D Kirchhoff depth migration to telesismic receiver function data. Combine primary PS arrival with later multiple arrivals we are able to reveal a better knowledge about the earth discontinuity structure (transmission and reflection). This method is highly useful compare with traditional CCP method when dipping structure is met during the imaging process, such as subduction slab. We apply our method to the reginal Cascadia subduction zone receiver function data and get a high resolution 3D migration image, for both primary and multiples. The image showed us a clear slab weak zone (slab hole) in the upper plate boundary under Northern California and the whole Oregon. Compare with previous 2D receiver function image from 2D array(CAFE and CASC93), the position of the weak zone shows interesting conherency. This weak zone is also conherent with local seismicity missing and heat rising, which lead us to think about and compare with the ocean plate stucture and the hydralic fluid process during the formation and migration of the subduction slab.
Pageler, Natalie M; Grazier G'Sell, Max Jacob; Chandler, Warren; Mailes, Emily; Yang, Christine; Longhurst, Christopher A
2016-09-01
The objective of this project was to use statistical techniques to determine the completeness and accuracy of data migrated during electronic health record conversion. Data validation during migration consists of mapped record testing and validation of a sample of the data for completeness and accuracy. We statistically determined a randomized sample size for each data type based on the desired confidence level and error limits. The only error identified in the post go-live period was a failure to migrate some clinical notes, which was unrelated to the validation process. No errors in the migrated data were found during the 12- month post-implementation period. Compared to the typical industry approach, we have demonstrated that a statistical approach to sampling size for data validation can ensure consistent confidence levels while maximizing efficiency of the validation process during a major electronic health record conversion. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Carlsten, Mattias; Levy, Emily; Karambelkar, Amrita; Li, Linhong; Reger, Robert; Berg, Maria; Peshwa, Madhusudan V; Childs, Richard W
2016-01-01
For more than a decade, investigators have pursued methods to genetically engineer natural killer (NK) cells for use in clinical therapy against cancer. Despite considerable advances in viral transduction of hematopoietic stem cells and T cells, transduction efficiencies for NK cells have remained disappointingly low. Here, we show that NK cells can be genetically reprogramed efficiently using a cGMP-compliant mRNA electroporation method that induces rapid and reproducible transgene expression in nearly all transfected cells, without negatively influencing their viability, phenotype, and cytotoxic function. To study its potential therapeutic application, we used this approach to improve key aspects involved in efficient lymphoma targeting by adoptively infused ex vivo-expanded NK cells. Electroporation of NK cells with mRNA coding for the chemokine receptor CCR7 significantly promoted migration toward the lymph node-associated chemokine CCL19. Further, introduction of mRNA coding for the high-affinity antibody-binding receptor CD16 (CD16-158V) substantially augmented NK cell cytotoxicity against rituximab-coated lymphoma cells. Based on these data, we conclude that this approach can be utilized to genetically modify multiple modalities of NK cells in a highly efficient manner with the potential to improve multiple facets of their in vivo tumor targeting, thus, opening a new arena for the development of more efficacious adoptive NK cell-based cancer immunotherapies.
NASA Astrophysics Data System (ADS)
Yang, Xiaojun; Damen, Michiel C. J.; van Zuidam, Robert A.
Channel migration in deltaic lowlands tends to be complicated by marine processes and intensified cultural practices. Understanding the ways in which river channels have migrated through time is critical to tackling many geomorphologic and river management problems. Because of large magnitude and rapid rates of change, special surveillance systems are needed to efficiently measure and monitor channel migration. This study presents an application of geographic information technologies for the study of channel migration in the active Yellow River Delta, China. The main source of data was a series of time-sequential Landsat images spanning a period of approximately 19 years. A geographic information system (GIS) was used to support modernized channel position mapping and measurement. The spatio-temporal changes of river banks and channel centerlines were systematically examined, and an attempt was made to relate these computational results with appropriate natural and human processes affecting the delta. This study demonstrates the utility of satellite remote sensing integrated with a GIS in investigating channel migration.
Extrinsic ion migration in perovskite solar cells
Li, Zhen; Xiao, Chuanxiao; Yang, Ye; ...
2017-04-10
In this study, the migration of intrinsic ions (e.g., MA +, Pb 2+, I –) in organic–inorganic hybrid perovskites has received significant attention with respect to the critical roles of these ions in the hysteresis and degradation in perovskite solar cells (PSCs). Here, we demonstrate that extrinsic ions (e.g., Li +, H +, Na +), when used in the contact layers in PSCs, can migrate across the perovskite layer and strongly impact PSC operation. In a TiO 2/perovskite/spiro-OMeTAD-based PSC, Li +-ion migration from spiro-OMeTAD to the perovskite and TiO 2 layer is illustrated by time-of-flight secondary-ion mass spectrometry. The movementmore » of Li + ions in PSCs plays an important role in modulating the solar cell performance, tuning TiO 2 carrier-extraction properties, and affecting hysteresis in PSCs. The influence of Li +-ion migration was investigated using time-resolved photoluminescence, Kelvin probe force microscopy, and external quantum efficiency spectra. Other extrinsic ions such as H + and Na + also show a clear impact on the performance and hysteresis in PSCs. Understanding the impacts of extrinsic ions in perovskite-based devices could lead to new material and device designs to further advance perovskite technology for various applications.« less
The activation of directional stem cell motility by green light-emitting diode irradiation.
Ong, Wei-Kee; Chen, How-Foo; Tsai, Cheng-Ting; Fu, Yun-Ju; Wong, Yi-Shan; Yen, Da-Jen; Chang, Tzu-Hao; Huang, Hsien-Da; Lee, Oscar Kuang-Sheng; Chien, Shu; Ho, Jennifer Hui-Chun
2013-03-01
Light-emitting diode (LED) irradiation is potentially a photostimulator to manipulate cell behavior by opsin-triggered phototransduction and thermal energy supply in living cells. Directional stem cell motility is critical for the efficiency and specificity of stem cells in tissue repair. We explored that green LED (530 nm) irradiation directed the human orbital fat stem cells (OFSCs) to migrate away from the LED light source through activation of extracellular signal-regulated kinases (ERK)/MAP kinase/p38 signaling pathway. ERK inhibitor selectively abrogated light-driven OFSC migration. Phosphorylation of these kinases as well as green LED irradiation-induced cell migration was facilitated by increasing adenosine triphosphate (ATP) production in OFSCs after green LED exposure, and which was thermal stress-independent mechanism. OFSCs, which are multi-potent mesenchymal stem cells isolated from human orbital fat tissue, constitutionally express three opsins, i.e. retinal pigment epithelium-derived rhodopsin homolog (RRH), encephalopsin (OPN3) and short-wave-sensitive opsin 1 (OPN1SW). However, only two non-visual opsins, i.e. RRH and OPN3, served as photoreceptors response to green LED irradiation-induced OFSC migration. In conclusion, stem cells are sensitive to green LED irradiation-induced directional cell migration through activation of ERK signaling pathway via a wavelength-dependent phototransduction. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Roy, M.; Rios, D.; Cosburn, K.
2017-12-01
Shear between the moving lithosphere and the underlying asthenospheric mantle can produce dynamic pressure gradients that control patterns of melt migration by percolative flow. Within continental interiors these pressure gradients may be large enough to focus melt migration into zones of low dynamic pressure and thus influence the surface distribution of magmatism. We build upon previous work to show that for a lithospheric keel that protrudes into the "mantle wind," spatially-variable melt migration can lead to spatially-variable thermal weakening of the lithosphere. Our models treat advective heat transfer in porous flow in the limit that heat transfer between the melt and surrounding matrix dominates over conductive heat transfer within either the melt or the solid alone. The models are parameterized by a heat transfer coefficient that we interpret to be related to the efficiency of heat transfer across the fluid-rock interface, related to the geometry and distribution of porosity. Our models quantitatively assess the viability of spatially variable thermal-weakening caused by melt-migration through continental regions that are characterized by variations in lithospheric thickness. We speculate upon the relevance of this process in producing surface patterns of Cenozoic magmatism and heatflow at the Colorado Plateau in the western US.
Tummers, Jeroen S; Hudson, Steve; Lucas, Martyn C
2016-11-01
A more holistic approach towards testing longitudinal connectivity restoration is needed in order to establish that intended ecological functions of such restoration are achieved. We illustrate the use of a multi-method scheme to evaluate the effectiveness of 'nature-like' connectivity restoration for stream fish communities in the River Deerness, NE England. Electric-fishing, capture-mark-recapture, PIT telemetry and radio-telemetry were used to measure fish community composition, dispersal, fishway efficiency and upstream migration respectively. For measuring passage and dispersal, our rationale was to evaluate a wide size range of strong swimmers (exemplified by brown trout Salmo trutta) and weak swimmers (exemplified by bullhead Cottus perifretum) in situ in the stream ecosystem. Radio-tracking of adult trout during the spawning migration showed that passage efficiency at each of five connectivity-restored sites was 81.3-100%. Unaltered (experimental control) structures on the migration route had a bottle-neck effect on upstream migration, especially during low flows. However, even during low flows, displaced PIT tagged juvenile trout (total n=153) exhibited a passage efficiency of 70.1-93.1% at two nature-like passes. In mark-recapture experiments juvenile brown trout and bullhead tagged (total n=5303) succeeded in dispersing upstream more often at most structures following obstacle modification, but not at the two control sites, based on a Laplace kernel modelling approach of observed dispersal distance and barrier traverses. Medium-term post-restoration data (2-3years) showed that the fish assemblage remained similar at five of six connectivity-restored sites and two control sites, but at one connectivity-restored headwater site previously inhabited by trout only, three native non-salmonid species colonized. We conclude that stream habitat reconnection should support free movement of a wide range of species and life stages, wherever retention of such obstacles is not needed to manage non-native invasive species. Evaluation of the effectiveness of fish community restoration in degraded streams benefits from a similarly holistic approach. Copyright © 2016 Elsevier B.V. All rights reserved.
SAR correlation technique - An algorithm for processing data with large range walk
NASA Technical Reports Server (NTRS)
Jin, M.; Wu, C.
1983-01-01
This paper presents an algorithm for synthetic aperture radar (SAR) azimuth correlation with extraneously large range migration effect which can not be accommodated by the existing frequency domain interpolation approach used in current SEASAT SAR processing. A mathematical model is first provided for the SAR point-target response in both the space (or time) and the frequency domain. A simple and efficient processing algorithm derived from the hybrid algorithm is then given. This processing algorithm enables azimuth correlation by two steps. The first step is a secondary range compression to handle the dispersion of the spectra of the azimuth response along range. The second step is the well-known frequency domain range migration correction approach for the azimuth compression. This secondary range compression can be processed simultaneously with range pulse compression. Simulation results provided here indicate that this processing algorithm yields a satisfactory compressed impulse response for SAR data with large range migration.
Job Scheduling in a Heterogeneous Grid Environment
NASA Technical Reports Server (NTRS)
Shan, Hong-Zhang; Smith, Warren; Oliker, Leonid; Biswas, Rupak
2004-01-01
Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.
Magneto-ionic control of interfacial magnetism
NASA Astrophysics Data System (ADS)
Bauer, Uwe; Yao, Lide; Tan, Aik Jun; Agrawal, Parnika; Emori, Satoru; Tuller, Harry L.; van Dijken, Sebastiaan; Beach, Geoffrey S. D.
2015-02-01
In metal/oxide heterostructures, rich chemical, electronic, magnetic and mechanical properties can emerge from interfacial chemistry and structure. The possibility to dynamically control interface characteristics with an electric field paves the way towards voltage control of these properties in solid-state devices. Here, we show that electrical switching of the interfacial oxidation state allows for voltage control of magnetic properties to an extent never before achieved through conventional magneto-electric coupling mechanisms. We directly observe in situ voltage-driven O2- migration in a Co/metal-oxide bilayer, which we use to toggle the interfacial magnetic anisotropy energy by >0.75 erg cm-2 at just 2 V. We exploit the thermally activated nature of ion migration to markedly increase the switching efficiency and to demonstrate reversible patterning of magnetic properties through local activation of ionic migration. These results suggest a path towards voltage-programmable materials based on solid-state switching of interface oxygen chemistry.
The genetics of monarch butterfly migration and warning colouration.
Zhan, Shuai; Zhang, Wei; Niitepõld, Kristjan; Hsu, Jeremy; Haeger, Juan Fernández; Zalucki, Myron P; Altizer, Sonia; de Roode, Jacobus C; Reppert, Steven M; Kronforst, Marcus R
2014-10-16
The monarch butterfly, Danaus plexippus, is famous for its spectacular annual migration across North America, recent worldwide dispersal, and orange warning colouration. Despite decades of study and broad public interest, we know little about the genetic basis of these hallmark traits. Here we uncover the history of the monarch's evolutionary origin and global dispersal, characterize the genes and pathways associated with migratory behaviour, and identify the discrete genetic basis of warning colouration by sequencing 101 Danaus genomes from around the globe. The results rewrite our understanding of this classic system, showing that D. plexippus was ancestrally migratory and dispersed out of North America to occupy its broad distribution. We find the strongest signatures of selection associated with migration centre on flight muscle function, resulting in greater flight efficiency among migratory monarchs, and that variation in monarch warning colouration is controlled by a single myosin gene not previously implicated in insect pigmentation.
Yusof, Siti R; Avdeef, Alex; Abbott, N Joan
2014-12-18
In vitro blood-brain barrier (BBB) models from primary brain endothelial cells can closely resemble the in vivo BBB, offering valuable models to assay BBB functions and to screen potential central nervous system drugs. We have recently developed an in vitro BBB model using primary porcine brain endothelial cells. The model shows expression of tight junction proteins and high transendothelial electrical resistance, evidence for a restrictive paracellular pathway. Validation studies using small drug-like compounds demonstrated functional uptake and efflux transporters, showing the suitability of the model to assay drug permeability. However, one limitation of in vitro model permeability measurement is the presence of the aqueous boundary layer (ABL) resulting from inefficient stirring during the permeability assay. The ABL can be a rate-limiting step in permeation, particularly for lipophilic compounds, causing underestimation of the permeability. If the ABL effect is ignored, the permeability measured in vitro will not reflect the permeability in vivo. To address the issue, we explored the combination of in vitro permeability measurement using our porcine model with the pKa(FLUX) method in pCEL-X software to correct for the ABL effect and allow a detailed analysis of in vitro (transendothelial) permeability data, Papp. Published Papp using porcine models generated by our group and other groups are also analyzed. From the Papp, intrinsic transcellular permeability (P0) is derived by simultaneous refinement using a weighted nonlinear regression, taking into account permeability through the ABL, paracellular permeability and filter restrictions on permeation. The in vitro P0 derived for 22 compounds (35 measurements) showed good correlation with P0 derived from in situ brain perfusion data (r(2)=0.61). The analysis also gave evidence for carrier-mediated uptake of naloxone, propranolol and vinblastine. The combination of the in vitro porcine model and the software analysis provides a useful tool to better predict BBB permeability in vivo and gain better mechanistic information about BBB permeation. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Dormishian, Mojdeh; Turkeri, Gulen; Urayama, Kyoji; Nguyen, Thu Lan; Boulberdaa, Mounia; Messaddeq, Nadia; Renault, Gilles; Henrion, Daniel; Nebigil, Canan G.
2013-01-01
Background Reciprocal relationships between endothelial dysfunction and insulin resistance result in a vicious cycle of cardiovascular, renal, and metabolic disorders. The mechanisms underlying these impairments are unclear. The peptide hormones prokineticins exert their angiogenic function via prokineticin receptor‐1 (PKR1). We explored the extent to which endothelial PKR1 contributes to expansion of capillary network and the transcapillary passage of insulin into the heart, kidney, and adipose tissues, regulating organ functions and metabolism in a specific mice model. Methods and Results By combining cellular studies and studies in endothelium‐specific loss‐of‐function mouse model (ec‐PKR1−/−), we showed that a genetically induced PKR1 loss in the endothelial cells causes the impaired capillary formation and transendothelial insulin delivery, leading to insulin resistance and cardiovascular and renal disorders. Impaired insulin delivery in endothelial cells accompanied with defective expression and activation of endothelial nitric oxide synthase in the ec‐PKR1−/− aorta, consequently diminishing endothelium‐dependent relaxation. Despite having a lean body phenotype, ec‐PKR1−/− mice exhibited polyphagia, polydipsia, polyurinemia, and hyperinsulinemia, which are reminiscent of human lipodystrophy. High plasma free fatty acid levels and low leptin levels further contribute to the development of insulin resistance at the later age. Peripheral insulin resistance and ectopic lipid accumulation in mutant skeletal muscle, heart, and kidneys were accompanied by impaired insulin‐mediated Akt signaling in these organs. The ec‐PKR1−/− mice displayed myocardial fibrosis, low levels of capillary formation, and high rates of apoptosis, leading to diastolic dysfunction. Compact fibrotic glomeruli and high levels of phosphate excretion were found in mutant kidneys. PKR1 restoration in ec‐PKR1−/− mice reversed the decrease in capillary recruitment and insulin uptake and improved heart and kidney function and insulin resistance. Conclusions We show a novel role for endothelial PKR1 signaling in cardiac, renal, and metabolic functions by regulating transendothelial insulin uptake and endothelial cell proliferation. Targeting endothelial PKR1 may serve as a therapeutic strategy for ameliorating these disorders. PMID:24152983
Migration of Gas Giant Planets in a Gravitationally Unstable Disk
NASA Astrophysics Data System (ADS)
Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Durisen, Richard H.
2017-01-01
Understanding the migration of giant planets in gravitationally unstable protoplanetary disks is important for understanding planetary system architecture, especially the existence of planets orbiting close to and at large distances from their stars. Migration rates can determine the efficiency of planet formation and survival rates of planets. We present results from simulations of 0.3, 1, and 3 Jupiter-mass planets in a 0.14 M⊙ protoplanetary disk around a 1 M⊙ star, where the disk is marginally unstable to gravitational instabilities (GIs). Each planet is simulated separately. We use CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include radiative cooling governed by realistic dust opacities. The planets are inserted into the disk, once the disk has settled into its quasi-steady GI-active phase. We simulate each of the 0.3, 1, and 3 Jupiter-mass planets by inserting it at three different locations in the disk, at the corotation radius and at the inner and outer Lindblad resonances. No matter where placed, the 3 Jupiter-mass planets tend to drift inexorably inward but with a rate that slows after many orbital periods. The 1 Jupiter-mass planets migrate mostly inward, but their motion can be delayed or reversed near the corotation of the two-armed wave. The 0.3 Jupiter-mass planets are much less predictable and frequently migrate outward. We analyze how the density of matter and waves in the disk at different azimuthal locations affect the migration.
Cross-correlation least-squares reverse time migration in the pseudo-time domain
NASA Astrophysics Data System (ADS)
Li, Qingyang; Huang, Jianping; Li, Zhenchun
2017-08-01
The least-squares reverse time migration (LSRTM) method with higher image resolution and amplitude is becoming increasingly popular. However, the LSRTM is not widely used in field land data processing because of its sensitivity to the initial migration velocity model, large computational cost and mismatch of amplitudes between the synthetic and observed data. To overcome the shortcomings of the conventional LSRTM, we propose a cross-correlation least-squares reverse time migration algorithm in pseudo-time domain (PTCLSRTM). Our algorithm not only reduces the depth/velocity ambiguities, but also reduces the effect of velocity error on the imaging results. It relieves the accuracy requirements on the migration velocity model of least-squares migration (LSM). The pseudo-time domain algorithm eliminates the irregular wavelength sampling in the vertical direction, thus it can reduce the vertical grid points and memory requirements used during computation, which makes our method more computationally efficient than the standard implementation. Besides, for field data applications, matching the recorded amplitudes is a very difficult task because of the viscoelastic nature of the Earth and inaccuracies in the estimation of the source wavelet. To relax the requirement for strong amplitude matching of LSM, we extend the normalized cross-correlation objective function to the pseudo-time domain. Our method is only sensitive to the similarity between the predicted and the observed data. Numerical tests on synthetic and land field data confirm the effectiveness of our method and its adaptability for complex models.
Effect of single-strand break on branch migration and folding dynamics of Holliday junctions.
Palets, Dmytro; Lushnikov, Alexander Y; Karymov, Mikhail A; Lyubchenko, Yuri L
2010-09-22
The Holliday junction (HJ), or four-way junction, is a central intermediate state of DNA for homologous genetic recombination and other genetic processes such as replication and repair. Branch migration is the process by which the exchange of homologous DNA regions occurs, and it can be spontaneous or driven by proteins. Unfolding of the HJ is required for branch migration. Our previous single-molecule fluorescence studies led to a model according to which branch migration is a stepwise process consisting of consecutive migration and folding steps. Folding of the HJ in one of the folded conformations terminates the branch migration phase. At the same time, in the unfolded state HJ rapidly migrates over entire homology region of the HJ in one hop. This process can be affected by irregularities in the DNA double helical structure, so mismatches almost terminate a spontaneous branch migration. Single-stranded breaks or nicks are the most ubiquitous defects in the DNA helix; however, to date, their effect on the HJ branch migration has not been studied. In addition, although nicked HJs are specific substrates for a number of enzymes involved in DNA recombination and repair, the role of this substrate specificity remains unclear. Our main goal in this work was to study the effect of nicks on the efficiency of HJ branch migration and the dynamics of the HJ. To accomplish this goal, we applied two single-molecule methods: atomic force microscopy and fluorescence resonance energy transfer. The atomic force microscopy data show that the nick does not prevent branch migration, but it does decrease the probability that the HJ will pass the DNA lesion. The single-molecule fluorescence resonance energy transfer approaches were instrumental in detailing the effects of nicks. These studies reveal a dramatic change of the HJ dynamics. The nick changes the structure and conformational dynamics of the junctions, leading to conformations with geometries that are different from those for the intact HJ. On the basis of these data, we propose a model of branch migration in which the propensity of the junction to unfold decreases the lifetimes of folded states, thereby increasing the frequency of junction fluctuations between the folded states. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Shitomi, Yasuyuki; Thøgersen, Ida B.; Ito, Noriko; Leitinger, Birgit; Enghild, Jan J.; Itoh, Yoshifumi
2015-01-01
Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that binds and transmits signals from various collagens in epithelial cells. However, how DDR1–dependent signaling is regulated has not been understood. Here we report that collagen binding induces ADAM10-dependent ectodomain shedding of DDR1. DDR1 shedding is not a result of an activation of its signaling pathway, since DDR1 mutants defective in signaling were shed in an efficient manner. DDR1 and ADAM10 were found to be in a complex on the cell surface, but shedding did not occur unless collagen bound to DDR1. Using a shedding-resistant DDR1 mutant, we found that ADAM10-dependent DDR1 shedding regulates the half-life of collagen-induced phosphorylation of the receptor. Our data also revealed that ADAM10 plays an important role in regulating DDR1-mediated cell adhesion to achieve efficient cell migration on collagen matrices. PMID:25540428
Liu, Zhuqing; Huang, Fei; Wu, Ping; Wang, Quannan; Yu, Zhengkun
2018-05-18
Amide bond formation is one of the most important transformations in organic synthesis, drug development, and materials science. Efficient construction of amides has been among the most challenging tasks for organic chemists. Herein, we report a concise methodology for amide bond (-CONH-) formation assisted by vicinal group migration in alkylthio-functionalized enaminones (α-oxo ketene N, S-acetals) under mild conditions. Simple treatment of such enaminones with PhI(OAc) 2 at ambient temperature in air afforded diverse multiply functionalized α,β-unsaturated amides including β-cyclopropylated acrylamides, in which a wide array of functional groups such as aryl, (hetero)aryl, alkenyl, and alkyl can be conveniently introduced to a ketene moiety. The reaction mechanism was investigated by exploring the origins of the amide oxygen and carbon atoms as well as isolation and structural characterization of the reaction intermediates. The amide bond formation reactions could also be efficiently performed under solventless mechanical milling conditions.
Gunes, Zeynep; Zucconi, Adriana; Cioce, Mario; Meola, Annalisa; Pezzanera, Monica; Acali, Stefano; Zampaglione, Immacolata; De Pratti, Valeria; Bova, Luca; Talamo, Fabio; Demartis, Anna; Monaci, Paolo; La Monica, Nicola; Ciliberto, Gennaro; Vitelli, Alessandra
2011-01-01
RON belongs to the c-MET family of receptor tyrosine kinases. As its well-known family member MET, RON and its ligand macrophage-stimulating protein have been implicated in the progression and metastasis of tumors and have been shown to be overexpressed in cancer. We generated and tested a large number of human monoclonal antibodies (mAbs) against human RON. Our screening yielded three high-affinity antibodies that efficiently block ligand-dependent intracellular AKT and MAPK signaling. This effect correlates with the strong reduction of ligand-activated migration of T47D breast cancer cell line. By cross-competition experiments, we showed that the antagonistic antibodies fall into three distinct epitope regions of the RON extracellular Sema domain. Notably, no inhibition of tumor growth was observed in different epithelial tumor xenografts in nude mice with any of the antibodies. These results suggest that distinct properties beside ligand antagonism are required for anti-RON mAbs to exert antitumor effects in vivo. PMID:21286376
A simple method for the enrichment of bisphenols using boron nitride.
Fischnaller, Martin; Bakry, Rania; Bonn, Günther K
2016-03-01
A simple solid-phase extraction method for the enrichment of 5 bisphenol derivatives using hexagonal boron nitride (BN) was developed. BN was applied to concentrate bisphenol derivatives in spiked water samples and the compounds were analyzed using HPLC coupled to fluorescence detection. The effect of pH and organic solvents on the extraction efficiency was investigated. An enrichment factor up to 100 was achieved without evaporation and reconstitution. The developed method was applied for the determination of bisphenol A migrated from some polycarbonate plastic products. Furthermore, bisphenol derivatives were analyzed in spiked and non-spiked canned food and beverages. None of the analyzed samples exceeded the migration limit set by the European Union of 0.6mg/kg food. The method showed good recovery rates ranging from 80% to 110%. Validation of the method was performed in terms of accuracy and precision. The applied method is robust, fast, efficient and easily adaptable to different analytical problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dynamic VMs placement for energy efficiency by PSO in cloud computing
NASA Astrophysics Data System (ADS)
Dashti, Seyed Ebrahim; Rahmani, Amir Masoud
2016-03-01
Recently, cloud computing is growing fast and helps to realise other high technologies. In this paper, we propose a hieratical architecture to satisfy both providers' and consumers' requirements in these technologies. We design a new service in the PaaS layer for scheduling consumer tasks. In the providers' perspective, incompatibility between specification of physical machine and user requests in cloud leads to problems such as energy-performance trade-off and large power consumption so that profits are decreased. To guarantee Quality of service of users' tasks, and reduce energy efficiency, we proposed to modify Particle Swarm Optimisation to reallocate migrated virtual machines in the overloaded host. We also dynamically consolidate the under-loaded host which provides power saving. Simulation results in CloudSim demonstrated that whatever simulation condition is near to the real environment, our method is able to save as much as 14% more energy and the number of migrations and simulation time significantly reduces compared with the previous works.
A New Finite Difference Q-compensated RTM Algorithm in Tilted Transverse Isotropic (TTI) Media
NASA Astrophysics Data System (ADS)
Zhou, T.; Hu, W.; Ning, J.
2017-12-01
Attenuating anisotropic geological body is difficult to image with conventional migration methods. In such kind of scenarios, recorded seismic data suffer greatly from both amplitude decay and phase distortion, resulting in degraded resolution, poor illumination and incorrect migration depth in imaging results. To efficiently obtain high quality images, we propose a novel TTI QRTM algorithm based on Generalized Standard Linear Solid model combined with a unique multi-stage optimization technique to simultaneously correct the decayed amplitude and the distorted phase velocity. Numerical tests (shown in the figure) demonstrate that our TTI QRTM algorithm effectively corrects migration depth, significantly improves illumination, and enhances resolution within and below the low Q regions. The result of our new method is very close to the reference RTM image, while QRTM without TTI cannot get a correct image. Compared to the conventional QRTM method based on a pseudo-spectral operator for fractional Laplacian evaluation, our method is more computationally efficient for large scale applications and more suitable for GPU acceleration. With the current multi-stage dispersion optimization scheme, this TTI QRTM method best performs in the frequency range 10-70 Hz, and could be used in a wider frequency range. Furthermore, as this method can also handle frequency dependent Q, it has potential to be applied in imaging deep structures where low Q exists, such as subduction zones, volcanic zones or fault zones with passive source observations.
Khaiboullina, Svetlana F; Levis, Silvana; Morzunov, Sergey P; Martynova, Ekaterina V; Anokhin, Vladimir A; Gusev, Oleg A; St Jeor, Stephen C; Lombardi, Vincent C; Rizvanov, Albert A
2017-01-01
Hantavirus infection is an acute zoonosis that clinically manifests in two primary forms, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). HFRS is endemic in Europe and Russia, where the mild form of the disease is prevalent in the Tatarstan region. HPS is endemic in Argentina, as well as other countries of North and South American. HFRS and HPS are usually acquired via the upper respiratory tract by inhalation of virus-contaminated aerosol. Although the pathogenesis of HFRS and HPS remains largely unknown, postmortem tissue studies have identified endothelial cells as the primary target of infection. Importantly, cell damage due to virus replication, or subsequent tissue repair, has not been documented. Since no single factor has been identified that explains the complexity of HFRS or HPS pathogenesis, it has been suggested that a cytokine storm may play a crucial role in the manifestation of both diseases. In order to identify potential serological markers that distinguish HFRS and HPS, serum samples collected during early and late phases of the disease were analyzed for 48 analytes using multiplex magnetic bead-based assays. Overall, serum cytokine profiles associated with HPS revealed a more pro-inflammatory milieu as compared to HFRS. Furthermore, HPS was strictly characterized by the upregulation of cytokine levels, in contrast to HFRS where cases were distinguished by a dichotomy in serum cytokine levels. The severe form of hantavirus zoonosis, HPS, was characterized by the upregulation of a higher number of cytokines than HFRS (40 vs 21). In general, our analysis indicates that, although HPS and HFRS share many characteristic features, there are distinct cytokine profiles for these diseases. These profiles suggest a strong activation of an innate immune and inflammatory responses are associated with HPS, relative to HFRS, as well as a robust activation of Th1-type immune responses. Finally, the results of our analysis suggest that serum cytokines profiles of HPS and HFRS cases are consistent with the presence of extracellular matrix degradation, increased mononuclear leukocyte proliferation, and transendothelial migration.
Bozzetti, Cecilia; Quaini, Federico; Squadrilli, Anna; Tiseo, Marcello; Frati, Caterina; Lagrasta, Costanza; Azzoni, Cinzia; Bottarelli, Lorena; Galetti, Maricla; Alama, Angela; Belletti, Silvana; Gatti, Rita; Passaro, Antonio; Gradilone, Angela; Cavazzoni, Andrea; Alfieri, Roberta; Petronini, Pier Giorgio; Bonelli, Mara; Falco, Angela; Carubbi, Cecilia; Pedrazzi, Giuseppe; Nizzoli, Rita; Naldi, Nadia; Pinto, Carmine; Ardizzoni, Andrea
2015-01-01
The exclusion of circulating tumor cells (CTCs) that have lost epithelial antigens during the epithelial-to-mesenchymal transition (EMT) process by using Epithelial Cell Adhesion Molecule (EpCAM) based capture methods is still a matter of debate. In this study, cells obtained after depletion procedure from blood samples of squamous cell lung cancer (SQCLC) patients were identified based on morphology and characterized with the combination of FISH assessment and immunophenotypic profile. Five mL blood samples, collected from 55 advanced SQCLC patients, were analyzed by a non-EpCAM-based capture method. After depletion of leukocytes and erythroid cells, the negative fraction was characterized by both FISH using a fibroblast growth factor receptor 1 (FGFR1) probe and by immunocytochemistry. Thirty healthy donors were also tested. Based on morphology (nuclear dimension ≥10 μm, shape and hypercromatic aspect) suspicious circulating cells clearly distinguishable from contaminant leukocytes were observed in 49/55 (89%) SQCLC patients. Thirty-four of the 44 (77%) samples evaluable for FGFR1 FISH showed ≥ 6 FGFR1 gene copy number on average per cell. Vimentin expression involved 43% (18/42) of pooled circulating SQCLC cells, whereas only 29% (14/48) were EpCAM positive. Confocal microscopy confirmed the localization of FGFR1 probe in suspicious circulating cells. Suspicious circulating elements were also observed in healthy donors and did not show any epithelial associated antigens. A significantly lower number of suspicious circulating cells in healthy donors compared to SQCLC patients was found. Among the heterogeneous cell population isolated by depletion procedure, the coexistence of cells with epithelial and/or mesenchymal phenotype suggests that EMT may participate to transendothelial invasion and migration of tumor cells in advanced SQCLC. The finding of cells with neither EpCAM or EMT phenotype, retrieved after non-EpCAM-based systems, underlines the presence of suspicious elements in the blood of both SQCLC patients and healthy donors. Further phenotyping and molecular analyses are necessary to fully characterize these circulating elements.
Borrelia burgdorferi Keeps Moving and Carries on: A Review of Borrelial Dissemination and Invasion
Hyde, Jenny A.
2017-01-01
Borrelia burgdorferi is the etiological agent of Lyme disease, a multisystemic, multistage, inflammatory infection resulting in patients experiencing cardiac, neurological, and arthritic complications when not treated with antibiotics shortly after exposure. The spirochetal bacterium transmits through the Ixodes vector colonizing the dermis of a mammalian host prior to hematogenous dissemination and invasion of distal tissues all the while combating the immune response as it traverses through its pathogenic lifecycle. The innate immune response controls the borrelial burden in the dermis, but is unable to clear the infection and thereby prevent progression of disease. Dissemination in the mammalian host requires temporal regulation of virulence determinants to allow for vascular interactions, invasion, and colonization of distal tissues. Virulence determinants and/or adhesins are highly heterogenetic among environmental B. burgdorferi strains with particular genotypes being associated with the ability to disseminate to specific tissues and the severity of disease, but fail to generate cross-protective immunity between borrelial strains. The unique motility of B. burgdorferi rendered by the endoflagella serves a vital function for dissemination and protection from immune recognition. Progress has been made toward understanding the chemotactic regulation coordinating the activity of the two polar localized flagellar motors and their role in borrelial virulence, but this regulation is not yet fully understood. Distinct states of motility allow for dynamic interactions between several B. burgdorferi adhesins and host targets that play roles in transendothelial migration. Transmigration across endothelial and blood–brain barriers allows for the invasion of tissues and elicits localized immune responses. The invasive nature of B. burgdorferi is lacking in proactive mechanisms to modulate disease, such as secretion systems and toxins, but recent work has shown degradation of host extracellular matrices by B. burgdorferi contributes to the invasive capabilities of the pathogen. Additionally, B. burgdorferi may use invasion of eukaryotic cells for immune evasion and protection against environmental stresses. This review provides an overview of B. burgdorferi mechanisms for dissemination and invasion in the mammalian host, which are essential for pathogenesis and the development of persistent infection. PMID:28270812
Oudin, Madeleine Julie; Doherty, Patrick; Lalli, Giovanna
2013-01-01
The subventricular zone (SVZ) is one of the main neurogenic niches in the postnatal brain. Here, neural progenitors proliferate and give rise to neuroblasts able to move along the rostral migratory stream (RMS) towards the olfactory bulb (OB). This long-distance migration is required for the subsequent maturation of newborn neurons in the OB, but the molecular mechanisms regulating this process are still unclear. Investigating the signaling pathways controlling neuroblast motility may not only help understand a fundamental step in neurogenesis, but also have therapeutic regenerative potential, given the ability of these neuroblasts to target brain sites affected by injury, stroke, or degeneration. In this manuscript we describe a detailed protocol for in vivo postnatal electroporation and subsequent time-lapse imaging of neuroblast migration in the mouse RMS. Postnatal electroporation can efficiently transfect SVZ progenitor cells, which in turn generate neuroblasts migrating along the RMS. Using confocal spinning disk time-lapse microscopy on acute brain slice cultures, neuroblast migration can be monitored in an environment closely resembling the in vivo condition. Moreover, neuroblast motility can be tracked and quantitatively analyzed. As an example, we describe how to use in vivo postnatal electroporation of a GFP-expressing plasmid to label and visualize neuroblasts migrating along the RMS. Electroporation of shRNA or CRE recombinase-expressing plasmids in conditional knockout mice employing the LoxP system can also be used to target genes of interest. Pharmacological manipulation of acute brain slice cultures can be performed to investigate the role of different signaling molecules in neuroblast migration. By coupling in vivo electroporation with time-lapse imaging, we hope to understand the molecular mechanisms controlling neuroblast motility and contribute to the development of novel approaches to promote brain repair. PMID:24326479
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Subo; Katz, Boaz; Socrates, Aristotle
2014-01-20
We propose a stringent observational test on the formation of warm Jupiters (gas-giant planets with 10 days ≲ P ≲ 100 days) by high-eccentricity (high-e) migration mechanisms. Unlike hot Jupiters, the majority of observed warm Jupiters have pericenter distances too large to allow efficient tidal dissipation to induce migration. To access the close pericenter required for migration during a Kozai-Lidov cycle, they must be accompanied by a strong enough perturber to overcome the precession caused by general relativity, placing a strong upper limit on the perturber's separation. For a warm Jupiter at a ∼ 0.2 AU, a Jupiter-mass (solar-mass) perturbermore » is required to be ≲ 3 AU (≲ 30 AU) and can be identified observationally. Among warm Jupiters detected by radial velocities (RVs), ≳ 50% (5 out of 9) with large eccentricities (e ≳ 0.4) have known Jovian companions satisfying this necessary condition for high-e migration. In contrast, ≲ 20% (3 out of 17) of the low-e (e ≲ 0.2) warm Jupiters have detected additional Jovian companions, suggesting that high-e migration with planetary perturbers may not be the dominant formation channel. Complete, long-term RV follow-ups of the warm-Jupiter population will allow a firm upper limit to be put on the fraction of these planets formed by high-e migration. Transiting warm Jupiters showing spin-orbit misalignments will be interesting to apply our test. If the misalignments are solely due to high-e migration as commonly suggested, we expect that the majority of warm Jupiters with low-e (e ≲ 0.2) are not misaligned, in contrast with low-e hot Jupiters.« less
Contact guidance is cell cycle-dependent.
Pourfarhangi, Kamyar Esmaeili; De La Hoz, Edgar Cardenas; Cohen, Andrew R; Gligorijevic, Bojana
2018-09-01
Cancer cell migration is essential for metastasis, during which cancer cells move through the tumor and reach the blood vessels. In vivo , cancer cells are exposed to contact guidance and chemotactic cues. Depending on the strength of such cues, cells will migrate in a random or directed manner. While similar cues may also stimulate cell proliferation, it is not clear whether cell cycle progression affects migration of cancer cells and whether this effect is different in random versus directed migration. In this study, we tested the effect of cell cycle progression on contact guided migration in 2D and 3D environments, in the breast carcinoma cell line, FUCCI-MDA-MB-231. The results were quantified from live cell microscopy images using the open source lineage editing and validation image analysis tools (LEVER). In 2D, cells were placed inside 10 μ m-wide microchannels to stimulate contact guidance, with or without an additional chemotactic gradient of the soluble epidermal growth factor. In 3D, contact guidance was modeled by aligned collagen fibers. In both 2D and 3D, contact guidance was cell cycle-dependent, while the addition of the chemo-attractant gradient in 2D increased cell velocity and persistence in directionally migrating cells, regardless of their cell cycle phases. In both 2D and 3D contact guidance, cells in the G1 phase of the cell cycle outperformed cells in the S/G2 phase in terms of migration persistence and instantaneous velocity. These data suggest that in the presence of contact guidance cues in vivo , breast carcinoma cells in the G1 phase of the cell cycle may be more efficient in reaching the neighboring vasculature.
NASA Astrophysics Data System (ADS)
Kemper, Björn; Schnekenburger, Jürgen; Ketelhut, Steffi
2017-02-01
We investigated the capabilities of digital holographic microscopy (DHM) for label-free quantification of the response of living single cells to chemical stimuli in 3D assays. Fibro sarcoma cells were observed in a collagen matrix inside 3D chemotaxis chambers with a Mach-Zehnder interferometer-based DHM setup. From the obtained series of quantitative phase images, the migration trajectories of single cells were retrieved by automated cell tracking and subsequently analyzed for maximum migration distance and motility. Our results demonstrate DHM as a highly reliable and efficient tool for label-free quantification of chemotaxis in 2D and 3D environments.
Extremely-efficient, miniaturized, long-lived alpha-voltaic power source using liquid gallium
NASA Technical Reports Server (NTRS)
Snyder, G. Jeffrey (Inventor); Patel, Jagdishbhai (Inventor); Fleurial, Jean-Pierre (Inventor)
2004-01-01
A power source converts .alpha.-particle energy to electricity for use in electrical systems. Liquid gallium or other liquid medium is subjected to .alpha.-particle emissions. Electrons are freed by collision from neutral gallium atoms to provide gallium ions. The electrons migrate to a cathode while the gallium ions migrate to an anode. A current and/or voltage difference then arises between the cathode and anode because of the work function difference of the cathode and anode. Gallium atoms are regenerated by the receiving of electrons from the anode enabling the generation of additional electrons from additional .alpha.-particle collisions.
Performance of hashed cache data migration schemes on multicomputers
NASA Technical Reports Server (NTRS)
Hiranandani, Seema; Saltz, Joel; Mehrotra, Piyush; Berryman, Harry
1991-01-01
After conducting an examination of several data-migration mechanisms which permit an explicit and controlled mapping of data to memory, a set of schemes for storage and retrieval of off-processor array elements is experimentally evaluated and modeled. All schemes considered have their basis in the use of hash tables for efficient access of nonlocal data. The techniques in question are those of hashed cache, partial enumeration, and full enumeration; in these, nonlocal data are stored in hash tables, so that the operative difference lies in the amount of memory used by each scheme and in the retrieval mechanism used for nonlocal data.
Allen, M. Brady; Connolly, Patrick J.
2011-01-01
Information about the composition and relative abundance of fish species was collected by a rotary screw trap and backpack electrofishing in the lower White Salmon River, Washington. The information was collected downstream of Condit Dam, which is at river kilometer (rkm) 5.2, and is proposed for removal in October 2011. A rotary screw trap was installed in the White Salmon River at rkm 1.5 and operated from March through June during 2006–09. All captured fish were identified to species and enumerated. Daily subsets of fish were weighed, measured, and fin clipped for a genetic analysis by the U.S. Fish and Wildlife Service.Fall Chinook salmon (Oncorhynchus tshawytscha) were captured in the highest numbers (n=18, 640), and were composed of two stocks: tule and upriver bright. Almost all captured fall Chinook salmon were age-0, with only 16 (0.09 percent) being age-1 or older.Tule fall Chinook salmon, the native stock, generally out-migrated from mid-March through early April. The tule stock was the more abundant fall Chinook salmon subspecies, comprising 85 percent of those captured in the trap.Upriver bright fall Chinook salmon comprised 15 percent of the Chinook salmon catch and generally out-migrated from late May to early June.Coho salmon ( kisutch) and steelhead trout (O. mykiss) were captured by the rotary screw trap in all years. Coho salmon were caught in low numbers (n=661) and 69 percent were age-0 fish. Steelhead were slightly more abundant (n=679) than coho salmon and 84 percent were age-1 or older fish.Trap efficiency estimates varied widely (range, 0-10 percent) by species, fish size, and time of year. However, if we use only the estimates from efficiency tests where more than 300 wild age-0 Chinook salmon were released, there was a mean trapping efficiency of 1.4 percent (n=4, median, 1.3 percent, range, 0.3–2.4 percent) during the tule out-migration period, and a mean trapping efficiency of 0.8 percent (n=2, range, 0.3–1.2 percent) during the upriver bright fall Chinook salmon out-migration period.When water levels in the White Salmon River declined in late summer, we electrofished the river margins in 2006–09 along three sites at rkm 1.5, 2.3, and 4.2. Age-0 steelhead were the most abundant fish captured (n=565, 62 percent), followed by age-0 coho salmon (n=222, 24 percent). In autumn, age-0 Chinook salmon were collected while electrofishing (n=40, 4 percent). This suggests that there may be a migration in the autumn as age-0 Chinook salmon or in the spring as age-1 Chinook salmon, since the Chinook salmon that migrate as age-0 fish in the spring departed several months earlier (the typical life history for fall Chinook salmon). The only age-1 salmonids captured while electrofishing were steelhead (n=84, 9 percent). Fish distribution and abundance will likely change when Condit Dam is removed and anadromous fish gain access to their historical spawning and rearing areas in the White Salmon River. These findings should provide a baseline with which to compare juvenile fish species composition and relative abundance after Condit Dam is removed.
Due to complex population dynamics and migration behaviors, the well-being of animal populations that host human diseases sometimes varies across landscapes in ways that cannot be deduced from geographic abundance patterns alone. In such cases, efficient management of ecological...
An efficient smolt trap for sandy and debris-laden streams
Scace, J.G.; Letcher, B.H.; Noreika, J.
2007-01-01
Tripod weir and box traps are traditionally used to capture and enumerate out-migrating salmonid smolts in short-term studies and in streams where temporary or portable traps are the only practical option. Although traditional traps can be effective when conditions are ideal, they are often unable to withstand high-discharge events in streams containing a large amount of debris or sandy substrates. We created a rotary-screw trap and resistance board weir hybrid design that we evaluated along with a tripod weir and box trap, both in a 6.1-m-wide flume and in the field. The new design outperformed the tripod weir in both situations. The tripod weir failed in 10 min in the flume trial, whereas the new design was still operating at the conclusion of an 8-h trial under the same conditions. The new design operated continuously in the field during a high-discharge event that caused the tripod weir to fail. The new design also required less frequent cleaning than the tripod weir. The trap efficiency of the new design was estimated by using passive integrated transponder (PIT) tag antennas and radiotelemetry. The trap was 80% efficient (n = 40) in capturing migrating PIT-tagged individuals detected at an antenna upstream of the trap and 87.5% efficient (n = 48) at recapturing fish that had been tagged and released upstream. With its high efficiency and increased resiliency over the tripod weir, the new trap design will benefit management and research efforts in streams where traditional traps are unsuitable. ?? Copyright by the American Fisheries Society 2007.
Yang, Lei; Gu, Wenxing; Hong, Ling; Mi, Yang; Liu, Feng; Liu, Ming; Yang, Yufei; Sharma, Bigyan; Liu, Xinfeng; Huang, Hui
2017-08-16
Nonradiative Förster resonance energy transfer (FRET) is an important mechanism of organic solar cells, which can improve the exciton migration over a long distance, resulting in improvement of efficiency of solar cells. However, the current observations of FRET are very limited, and the efficiencies are less than 9%. In this study, FRET effect was first observed between two nonfullerene acceptors in ternary solar cells, which improved both the absorption range and exciton harvesting, leading to the dramatic enhancement in the short circuit current and power conversion efficiency. Moreover, this strategy is proved to be a versatile platform for conjugated polymers with different bandgaps, resulting in a remarkable efficiency of 10.4%. These results demonstrated a novel method to enhance the efficiency of organic soar cells.
Strain effects on oxygen migration in perovskites.
Mayeshiba, Tam; Morgan, Dane
2015-01-28
Fast oxygen transport materials are necessary for a range of technologies, including efficient and cost-effective solid oxide fuel cells, gas separation membranes, oxygen sensors, chemical looping devices, and memristors. Strain is often proposed as a method to enhance the performance of oxygen transport materials, but the magnitude of its effect and its underlying mechanisms are not well-understood, particularly in the widely-used perovskite-structured oxygen conductors. This work reports on an ab initio prediction of strain effects on migration energetics for nine perovskite systems of the form LaBO3, where B = [Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Ga]. Biaxial strain, as might be easily produced in epitaxial systems, is predicted to lead to approximately linear changes in migration energy. We find that tensile biaxial strain reduces the oxygen vacancy migration barrier across the systems studied by an average of 66 meV per percent strain for a single selected hop, with a low of 36 and a high of 89 meV decrease in migration barrier per percent strain across all systems. The estimated range for the change in migration barrier within each system is ±25 meV per percent strain when considering all hops. These results suggest that strain can significantly impact transport in these materials, e.g., a 2% tensile strain can increase the diffusion coefficient by about three orders of magnitude at 300 K (one order of magnitude at 500 °C or 773 K) for one of the most strain-responsive materials calculated here (LaCrO3). We show that a simple elasticity model, which assumes only dilative or compressive strain in a cubic environment and a fixed migration volume, can qualitatively but not quantitatively model the strain dependence of the migration energy, suggesting that factors not captured by continuum elasticity play a significant role in the strain response.
Agricultural practices and residual corn during spring crane and waterfowl migration in Nebraska
Sherfy, M.H.; Anteau, M.J.; Bishop, A.A.
2011-01-01
Nebraska's Central Platte River Valley (CPRV) is a major spring-staging area for migratory birds. Over 6 million ducks, geese, and sandhill cranes (Grus canadensis) stage there en route to tundra, boreal forest, and prairie breeding habitats, storing nutrients for migration and reproduction by consuming primarily corn remaining in fields after harvest (hereafter residual corn). In springs 2005-2007, we measured residual corn density in randomly selected harvested cornfields during early (n=188) and late migration (n=143) periods. We estimated the mean density of residual corn for the CPRV and examined the influence of agricultural practices (post-harvest field management) and migration period on residual corn density. During the early migration period, residual corn density was greater in idle harvested fields than any other treatments of fields (42%, 48%, 53%, and 92% more than grazed, grazed and mulched, mulched, and tilled fields, respectively). Depletion of residual corn from early to late migration did not differ among post-harvest treatments but was greatest during the year when overall corn density was lowest (2006). Geometric mean early-migration residual corn density for the CPRV in 2005-2007 (42.4 kg/ha; 95% CI=35.2-51.5 kg/ha) was markedly lower than previously published estimates, indicating that there has been a decrease in abundance of residual corn available to waterfowl during spring staging. Increases in harvest efficiency have been implicated as a cause for decreasing corn densities since the 1970s. However, our data show that post-harvest management of cornfields also can substantially influence the density of residual corn remaining in fields during spring migration. Thus, managers may be able to influence abundance of high-energy foods for spring-staging migratory birds in the CPRV through programs that influence post-harvest management of cornfields. ?? 2011 The Wildlife Society.
Sangani, Rajnikumar; Pandya, Chirayu D; Bhattacharyya, Maryka H; Periyasamy-Thandavan, Sudharsan; Chutkan, Norman; Markand, Shanu; Hill, William D; Hamrick, Mark; Isales, Carlos; Fulzele, Sadanand
2014-03-01
Bone marrow stromal cell (BMSC) adhesion and migration are fundamental to a number of pathophysiologic processes, including fracture and wound healing. Vitamin C is beneficial for bone formation, fracture repair and wound healing. However, the role of the vitamin C transporter in BMSC adhesion, migration and wound healing is not known. In this study, we knocked-down the sodium-dependent vitamin C transporter, SVCT2, the only known transporter of vitamin C in BMSCs, and performed cell adhesion, migration, in-vitro scratch wound healing and F-actin re-arrangement studies. We also investigated the role of oxidative stress on the above processes. Our results demonstrate that both oxidative stress and down-regulation of SVCT2 decreased cell attachment and spreading. A trans-well cell migration assay showed that vitamin C helped in BMSC migration and that knockdown of SVCT2 decreased cell migration. In the in-vitro scratch wound healing studies, we established that oxidative stress dose-dependently impairs wound healing. Furthermore, the supplementation of vitamin C significantly rescued the BMSCs from oxidative stress and increased wound closing. The knockdown of SVCT2 in BMSCs strikingly decreased wound healing, and supplementing with vitamin C failed to rescue cells efficiently. The knockdown of SVCT2 and induction of oxidative stress in cells produced an alteration in cytoskeletal dynamics. Signaling studies showed that oxidative stress phosphorylated members of the MAP kinase family (p38) and that vitamin C inhibited their phosphorylation. Taken together, these results indicate that both the SVCT2 transporter and oxidative stress play a vital role in BMSC attachment, migration and cytoskeletal re-arrangement. BMSC-based cell therapy and modulation of SVCT2 could lead to a novel therapeutic approach that enhances bone remodeling, fracture repair and wound healing in chronic disease conditions. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Su, Jinghong; Chen, Xiaodong; Hu, Guoqing
2018-03-01
Inertial migration has emerged as an efficient tool for manipulating both biological and engineered particles that commonly exist with non-spherical shapes in microfluidic devices. There have been numerous studies on the inertial migration of spherical particles, whereas the non-spherical particles are still largely unexplored. Here, we conduct three-dimensional direct numerical simulations to study the inertial migration of rigid cylindrical particles in rectangular microchannels with different width/height ratios under the channel Reynolds numbers (Re) varying from 50 to 400. Cylindrical particles with different length/diameter ratios and blockage ratios are also concerned. Distributions of surface force with the change of rotation angle show that surface stresses acting on the particle end near the wall are the major contributors to the particle rotation. We obtain lift forces experienced by cylindrical particles at different lateral positions on cross sections of two types of microchannels at various Re. It is found that there are always four stable equilibrium positions on the cross section of a square channel, while the stable positions are two or four in a rectangular channel, depending on Re. By comparing the equilibrium positions of cylindrical particles and spherical particles, we demonstrate that the equivalent diameter of cylindrical particles monotonously increases with Re. Our work indicates the influence of a non-spherical shape on the inertial migration and can be useful for the precise manipulation of non-spherical particles.
Sea Turtle Navigation and the Detection of Geomagnetic Field Features
NASA Astrophysics Data System (ADS)
Lohmann, Kenneth J.; Lohmann, Catherine M. F.
The lives of sea turtles consist of a continuous series of migrations. As hatchlings, the turtles swim from their natal beaches into the open sea, often taking refuge in circular current systems (gyres) that serve as moving, open-ocean nursery grounds. The juveniles of many populations subsequently take up residence in coastal feeding areas that are located hundreds or thousands of kilometres from the beaches on which the turtles hatched; some juveniles also migrate between summer and winter habitats. As adults, turtles periodically leave their feeding grounds and migrate to breeding and nesting regions, after which many return to their own specific feeding sites. The itinerant lifestyle characteristic of most sea turtle species is thus inextricably linked to an ability to orient and navigate accurately across large expanses of seemingly featureless ocean.In some sea turtle populations, migratory performance reaches extremes. The total distances certain green turtles (Chelonia mydas) and loggerheads (Caretta caretta) traverse over the span of their lifetimes exceed tens of thousands of kilometres, several times the diameter of the turtle's home ocean basin. Adult migrations between feeding and nesting habitats can require continuous swimming for periods of several weeks. In addition, the paths of migrating turtles often lead almost straight across the open ocean and directly to the destination, leaving little doubt that turtles can navigate to distant target sites with remarkable efficiency.
Neutrophil migration under spatially-varying chemoattractant gradient profiles.
Halilovic, Iris; Wu, Jiandong; Alexander, Murray; Lin, Francis
2015-01-01
Chemotaxis plays an important role in biological processes such as cancer metastasis, embryogenesis, wound healing, and immune response. Neutrophils are the frontline defenders against invasion of foreign microorganisms into our bodies. To achieve this important immune function, a neutrophil can sense minute chemoattractant concentration differences across its cell body and effectively migrate toward the chemoattractant source. Furthermore, it has been demonstrated in various studies that neutrophils are highly sensitive to changes in the surrounding chemoattractant environments, suggesting the role of a chemotactic memory for processing the complex spatiotemporal chemical guiding signals. Using a microfluidic device, in the present study we characterized neutrophil migration under spatially varying profiles of interleukine-8 gradients, which consist of three spatially ordered regions of a shallow gradient, a steep gradient and a nearly saturated gradient. This design allowed us to examine how neutrophils migrate under different chemoattractant gradient profiles, and how the migratory response is affected when the cell moves from one gradient profile to another in a single experiment. Our results show robust neutrophil chemotaxis in the shallow and steep gradient, but not the saturated gradient. Furthermore, neutrophils display a transition from chemotaxis to flowtaxis when they migrate across the steep gradient interface, and the relative efficiency of this transition depends on the cell's chemotaxis history. Finally, some neutrophils were observed to adjust their morphology to different gradient profiles.
Iterative methods for 3D implicit finite-difference migration using the complex Padé approximation
NASA Astrophysics Data System (ADS)
Costa, Carlos A. N.; Campos, Itamara S.; Costa, Jessé C.; Neto, Francisco A.; Schleicher, Jörg; Novais, Amélia
2013-08-01
Conventional implementations of 3D finite-difference (FD) migration use splitting techniques to accelerate performance and save computational cost. However, such techniques are plagued with numerical anisotropy that jeopardises the correct positioning of dipping reflectors in the directions not used for the operator splitting. We implement 3D downward continuation FD migration without splitting using a complex Padé approximation. In this way, the numerical anisotropy is eliminated at the expense of a computationally more intensive solution of a large-band linear system. We compare the performance of the iterative stabilized biconjugate gradient (BICGSTAB) and that of the multifrontal massively parallel direct solver (MUMPS). It turns out that the use of the complex Padé approximation not only stabilizes the solution, but also acts as an effective preconditioner for the BICGSTAB algorithm, reducing the number of iterations as compared to the implementation using the real Padé expansion. As a consequence, the iterative BICGSTAB method is more efficient than the direct MUMPS method when solving a single term in the Padé expansion. The results of both algorithms, here evaluated by computing the migration impulse response in the SEG/EAGE salt model, are of comparable quality.
NASA Astrophysics Data System (ADS)
Sun, Xiao-Dong; Ge, Zhong-Hui; Li, Zhen-Chun
2017-09-01
Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain reliable reflectivity of the subsurface it is necessary to solve the imaging problem using inversion. The least-square reverse time migration (LSRTM) (also known as linearized reflectivity inversion) aims to obtain relatively high-resolution amplitude preserving imaging by including the inverse of the Hessian matrix. In practice, the conjugate gradient algorithm is proven to be an efficient iterative method for enabling use of LSRTM. The velocity gradient can be derived from a cross-correlation between observed data and simulated data, making LSRTM independent of wavelet signature and thus more robust in practice. Tests on synthetic and marine data show that LSRTM has good potential for use in reservoir description and four-dimensional (4D) seismic images compared to traditional RTM and Fourier finite difference (FFD) migration. This paper investigates the first order approximation of LSRTM, which is also known as the linear Born approximation. However, for more complex geological structures a higher order approximation should be considered to improve imaging quality.
The nucleus is an intracellular propagator of tensile forces in NIH 3T3 fibroblasts
Alam, Samer G.; Lovett, David; Kim, Dae In; Roux, Kyle J.; Dickinson, Richard B.; Lele, Tanmay P.
2015-01-01
ABSTRACT Nuclear positioning is a crucial cell function, but how a migrating cell positions its nucleus is not understood. Using traction-force microscopy, we found that the position of the nucleus in migrating fibroblasts closely coincided with the center point of the traction-force balance, called the point of maximum tension (PMT). Positioning of the nucleus close to the PMT required nucleus–cytoskeleton connections through linker of nucleoskeleton-to-cytoskeleton (LINC) complexes. Although the nucleus briefly lagged behind the PMT following spontaneous detachment of the uropod during migration, the nucleus quickly repositioned to the PMT within a few minutes. Moreover, traction-generating spontaneous protrusions deformed the nearby nucleus surface to pull the nuclear centroid toward the new PMT, and subsequent retraction of these protrusions relaxed the nuclear deformation and restored the nucleus to its original position. We propose that the protruding or retracting cell boundary transmits a force to the surface of the nucleus through the intervening cytoskeletal network connected by the LINC complexes, and that these forces help to position the nucleus centrally and allow the nucleus to efficiently propagate traction forces across the length of the cell during migration. PMID:25908852
Massive photothermal trapping and migration of particles by a tapered optical fiber.
Xin, Hongbao; Li, Xingmin; Li, Baojun
2011-08-29
A simple but highly efficient method for particles or bacteria trapping and removal from water is of great importance for local water purification, particularly, for sanitation. Here, we report a massive photothermal trapping and migration of dielectric particles (SiO2, 2.08-µm diameter) in water by using a tapered optical fiber (3.1-µm diameter for taper). With a laser beam of 1.55 µm (170 mW) injected into the fiber, particles moved towards the position, which is about 380 µm away from the tip of the fiber, and assembled at a 290 µm × 100 µm spindle-shaped region. The highest assembly speed of particles is 22.1 ind./s and the highest moving velocity is 20.5 µm/s, which were induced by both negative photophoresis and temperature gradient. The number of assembled particles can reach 10,150 in 15 minutes. With a move of the fiber, the assembled particles will also migrate. We found that, when the fiber was moved 172 µm away from its original location, almost all of the assembled 10,150 particles were migrated to a new location in 140 s with a distance of 172 µm from their original location.
Binaries in Transneptunian Resonances: Evidence for Slow Migration of Neptune?
NASA Technical Reports Server (NTRS)
Noll, Keith
2012-01-01
A distinguishing feature of trans neptunian objects (TNO) is the high fraction that arc binary. This is particularly true for the Cold Classicals (CC), objects in lowe and low i orbits concentrated between the 3:2 and 2: 1 mean-motion resonances. CCs have other physical markers: red colors, high albedos, and equal-mass binaries. The CCs appear to be a coherent and physically distinct population of planetesimals that has survived to the present with their physical properties relatively unaltered. Their spatial concentration between 39.4 and 47.7 AU has made identification of the CCs as a physical group possible. However, objects that started out as CCs arc almost certainly 1101 limited to this one dynamical niche. We can, therefore, use the measurable physical properties of CCs as tracers of Neptune-driven dynamical mixing in the Kuiper Belt. As Neptune migrated, its mean-motion resonances preceded it into the planetesimal disk. The efficiency of capture into mean motion resonances depends on the smoothness of Neptune's migration and the local population available to be captured. The two strongest resonances, the 3:2 at 39.4 AU and 2: 1 at 47.7 AU, straddle the core repository of the physically distinct CCs, providing a unique opportunity to test the details of Neptune's migration. Smooth migration should result in a measurable difference between the 3:2 and 2:1 with low inclination 2:1s having a red, binary population mirroring that of the CC itself while the 3:2 will be less contaminated. Alternative models with rapid migration would generate a more homogeneous result.
Due to complex population dynamics and migration behaviors, the well-being of animal populations that host human diseases sometimes varies across landscapes in ways that cannot be deduced from geographic abundance patterns alone. In such cases, efficient management of ecologica...
Aquino-Martínez, Rubén; Angelo, Alcira P; Pujol, Francesc Ventura
2017-11-16
Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca 2+ -containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO 4 ) on MSC migration. In addition, to evaluate the influence of CaSO 4 on MSC differentiation and the potential molecular mechanisms involved. A circular calvarial bone defect (5 mm diameter) was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO 4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO 4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO 4 treatment was also evaluated by qPCR. CaSO 4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO 4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO 4 -containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO 4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO 4 effects on MSC migration. Specific CaSO 4 concentrations induce bone regeneration of calvarial defects in part by acting on the host's undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO 4 regulates BMP-2-induced MSC migration by differentially activating the PI3K/AKT pathway. Altogether, these results suggest that CaSO 4 scaffolds could have potential applications for bone regeneration.
NASA Astrophysics Data System (ADS)
Zygoura, Panagiota D.; Paleologos, Evangelos K.; Kontominas, Michael G.
2011-08-01
The primary objective of the present study was to evaluate the extent to which the affinity of the surrounding medium for the migrant, as well as the packaging material, affects the specific migration characteristics of the latter. For this purpose, migration tests were conducted with vinylidene chloride copolymer (PVDC/PVC) in contact with the EU specified solvents simulating all food types: namely, distilled water, 3% w/v acetic acid, 10% v/v ethanol and isooctane. Migration testing was carried out at 40 °C for 10 days for the aqueous simulants, and at 20 °C for 2 days for the fatty food simulant (EC, 1997; EEC, 1993). In addition, food-grade saran film was subjected to ionizing radiation treatment with a [60Co] source at doses equal to 5, 15 and 25 kGy. Acetyl tributyl citrate (ATBC) plasticizer levels were monitored as a function of time for untreated, as well as gamma-irradiated packaging material, with a secondary objective to investigate the effect of ionizing radiation on polymer/migrant/surrounding medium interactions. Depending on the food simulant, determination of the analyte was performed by either direct gas chromatographic analysis, or surfactant (Triton X-114) mediated extraction followed by gas chromatographic-flame ionization detection (GC-FID). ATBC concentrations determined in aqueous and fatty food simulants were 0.216-0.497 and 5.0-5.9 mg/L, respectively. Therefore, the most efficient extracting medium of plasticizers in vinyl chloride copolymers is the non-polar isooctane. Moreover, an extremely high rate of ATBC migration into isooctane during the early stages of contact was observed. The above observation verifies the aggressiveness of isooctane towards plastic packaging materials. Amongst the aqueous food simulants tested, the 10% ethanol solution demonstrated the highest migration levels. Gamma-irradiation enhanced ATBC migration; specific migration levels increased with increasing contact time and radiation dose. This was expected, since ATBC did not undergo chemical decomposition upon irradiation up to 25 kGy. Finally, specific migration decreased proportionally with increasing polarity of the food-simulating solvent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivasan, Sanjay
2014-09-30
In-depth understanding of the long-term fate of CO₂ in the subsurface requires study and analysis of the reservoir formation, the overlaying caprock formation, and adjacent faults. Because there is significant uncertainty in predicting the location and extent of geologic heterogeneity that can impact the future migration of CO₂ in the subsurface, there is a need to develop algorithms that can reliably quantify this uncertainty in plume migration. This project is focused on the development of a model selection algorithm that refines an initial suite of subsurface models representing the prior uncertainty to create a posterior set of subsurface models thatmore » reflect injection performance consistent with that observed. Such posterior models can be used to represent uncertainty in the future migration of the CO₂ plume. Because only injection data is required, the method provides a very inexpensive method to map the migration of the plume and the associated uncertainty in migration paths. The model selection method developed as part of this project mainly consists of assessing the connectivity/dynamic characteristics of a large prior ensemble of models, grouping the models on the basis of their expected dynamic response, selecting the subgroup of models that most closely yield dynamic response closest to the observed dynamic data, and finally quantifying the uncertainty in plume migration using the selected subset of models. The main accomplishment of the project is the development of a software module within the SGEMS earth modeling software package that implements the model selection methodology. This software module was subsequently applied to analyze CO₂ plume migration in two field projects – the In Salah CO₂ Injection project in Algeria and CO₂ injection into the Utsira formation in Norway. These applications of the software revealed that the proxies developed in this project for quickly assessing the dynamic characteristics of the reservoir were highly efficient and yielded accurate grouping of reservoir models. The plume migration paths probabilistically assessed by the method were confirmed by field observations and auxiliary data. The report also documents the application of the software to answer practical questions such as the optimum location of monitoring wells to reliably assess the migration of CO₂ plume, the effect of CO₂-rock interactions on plume migration and the ability to detect the plume under those conditions and the effect of a slow, unresolved leak on the predictions of plume migration.« less
NASA Astrophysics Data System (ADS)
Bromiley, G.; Berg, M.; Le Godec, Y.; Mezouar, N.; Atwood, R. C.; Phillipe, J.
2015-12-01
Although core formation was a key stage in the evolution of terrestrial planets, the physical processes which resulted in segregation of iron and silicate remain poorly understood. Formation of a silicate magma oceans provides an obvious mechanism for segregation of core-forming liquids, although recent work has strengthened arguments for a complex, multi-stage model of core formation. Extreme pressure1 and the effects of deformation2 have both been shown to promote percolation of Fe-rich melts in a solid silicate matrix, providing mechanisms for early, low temperature core-formation. However, the efficiency of these processes remains untested and we lack meaningful experimental data on resulting melt segregation velocities. Arguments regarding the efficiency of core formation through percolation of Fe-rich melts in solid silicate are based on simple, empirical models. Here, we review textural evidence from recent experiments which supports early core formation driven by deformation-aided percolation of Fe-rich melts. We then present results of novel in-situ synchrotron studies designed to provide time-resolved 3-D microimaging of percolating melt in model systems under extreme conditions. Under low strain rates characteristic of deformation-aided core formation, segregation of metallic (core-forming) melts by percolation is driven by stress gradients. This is expected to ultimately result in channelization and efficient segregation of melts noted in high-strain, low pressure experiments3. In-situ visualization also demonstrates that percolation of viscous metallic melts is surprisingly rapid. A combination of melt channelization and hydraulic fracture results in rapid, episodic melt migration, even over the limited time scale of experiments. The efficiency of this process depends strongly on the geometry of the melt network and is scaled to grain size in the matrix. We use both in-situ visualization and high-resolution ex-situ analysis to provide accurate constraints on melt migration velocities via this combined mechanism and will propose a model by which results can be scaled to core formation in the early solar system. References[1] Shi et al. Nature GeoSc. 6, 971 (2013).[2] Bruhn et al. Nature 403, 883 (2000).[3] Kohlstedt & Holtzman Ann. Rev. Earth. Planet. Sci. 37, 561 (2009).
Computational model for amoeboid motion: Coupling membrane and cytosol dynamics
NASA Astrophysics Data System (ADS)
Moure, Adrian; Gomez, Hector
2016-10-01
A distinguishing feature of amoeboid motion is that the migrating cell undergoes large deformations, caused by the emergence and retraction of actin-rich protrusions, called pseudopods. Here, we propose a cell motility model that represents pseudopod dynamics, as well as its interaction with membrane signaling molecules. The model accounts for internal and external forces, such as protrusion, contraction, adhesion, surface tension, or those arising from cell-obstacle contacts. By coupling the membrane and cytosol interactions we are able to reproduce a realistic picture of amoeboid motion. The model results are in quantitative agreement with experiments and show how cells may take advantage of the geometry of their microenvironment to migrate more efficiently.
Dunn, William D; Cobb, Jake; Levey, Allan I; Gutman, David A
2016-09-01
A memory clinic at an academic medical center has relied on several ad hoc data capture systems including Microsoft Access and Excel for cognitive assessments over the last several years. However these solutions are challenging to maintain and limit the potential of hypothesis-driven or longitudinal research. REDCap, a secure web application based on PHP and MySQL, is a practical solution for improving data capture and organization. Here, we present a workflow and toolset to facilitate legacy data migration and real-time clinical research data collection into REDCap as well as challenges encountered. Legacy data consisted of neuropsychological tests stored in over 4000 Excel workbooks. Functions for data extraction, norm scoring, converting to REDCap-compatible formats, accessing the REDCap API, and clinical report generation were developed and executed in Python. Over 400 unique data points for each workbook were migrated and integrated into our REDCap database. Moving forward, our REDCap-based system replaces the Excel-based data collection method as well as eases the integration into the standard clinical research workflow and Electronic Health Record. In the age of growing data, efficient organization and storage of clinical and research data is critical for advancing research and providing efficient patient care. We believe that the workflow and tools described in this work to promote legacy data integration as well as real time data collection into REDCap ultimately facilitate these goals. Published by Elsevier Ireland Ltd.
Dunn, William D; Cobb, Jake; Levey, Allan I; Gutman, David A
2017-01-01
Objective A memory clinic at an academic medical center has relied on several ad hoc data capture systems including Microsoft Access and Excel for cognitive assessments over the last several years. However these solutions are challenging to maintain and limit the potential of hypothesis-driven or longitudinal research. REDCap, a secure web application based on php and MySQL, is a practical solution for improving data capture and organization. Here, we present a workflow and toolset to facilitate legacy data migration and real-time clinical research data collection into REDCap as well as challenges encountered. Materials and Methods Legacy data consisted of neuropsychological tests stored in over 4,000 Excel workbooks. Functions for data extraction, norm scoring, converting to REDCap-compatible formats, accessing the REDCap API, and clinical report generation were developed and executed in Python. Results Over 400 unique data points for each workbook were migrated and integrated into our REDCap database. Moving forward, our REDCap-based system replaces the Excel-based data collection method as well as eases the integration to the Electronic Health Record. Conclusion In the age of growing data, efficient organization and storage of clinical and research data is critical for advancing research and providing efficient patient care. We believe that the tools and workflow described in this work to promote legacy data integration as well as real time data collection into REDCap ultimately facilitate these goals. PMID:27396629
Nano selenium as antioxidant agent in a multilayer food packaging material.
Vera, Paula; Echegoyen, Yolanda; Canellas, Elena; Nerín, Cristina; Palomo, María; Madrid, Yolanda; Cámara, Carmen
2016-09-01
Selenium nanoparticles (SeNPs) were incorporated in a flexible multilayer plastic material using a water-base adhesive as vehicle for SeNPs. The antioxidant performance of the original solutions containing spherical SeNPs of 50-60 nm diameter, the adhesive containing these SeNPs, and the final multilayer plastic material to be used as food packaging were quantitatively measured. The radical scavenging capacity due to SeNPs was quantified by a free radical assay developed in the laboratory and by the diphenyl-1-picrylhydrazyl (DPPH) method. DPPH was not efficient to measure the scavenging capacity in the multilayer when the free radical scavenger is not in the surface in contact with it. Several multilayer laminated structures composed by [PET (20 m)-adhesive-LDPE (with variable thickness from 35 to 90 μm)] were prepared and measured, demonstrating for the first time that free radicals derived from oxygen (OH·, O2·, and O2H) cross the PE layer and arrive at the adhesive. SeNPs remain as such after manufacture and the final laminate is stable after 3 months of storage. The antioxidant multilayer is a non-migrating efficient free radical scavenger, able to protect the packaged product versus oxidation and extending the shelf life without being in direct contact with the product. Migration tests of both Se and SeNPs to simulants and hazelnuts demonstrated the non-migrating performance of this new active packaging. Graphical abstract ᅟ.
Sidhaye, Jaydeep; Norden, Caren
2017-01-01
Organ formation is a multi-scale event that involves changes at the intracellular, cellular and tissue level. Organogenesis often starts with the formation of characteristically shaped organ precursors. However, the cellular mechanisms driving organ precursor formation are often not clear. Here, using zebrafish, we investigate the epithelial rearrangements responsible for the development of the hemispherical retinal neuroepithelium (RNE), a part of the optic cup. We show that in addition to basal shrinkage of RNE cells, active migration of connected epithelial cells into the RNE is a crucial player in its formation. This cellular movement is driven by progressive cell-matrix contacts and actively translocates prospective RNE cells to their correct location before they adopt neuroepithelial fate. Failure of this migration during neuroepithelium formation leads to ectopic determination of RNE cells and consequently impairs optic cup formation. Overall, this study illustrates how spatiotemporal coordination between morphogenic movements and fate determination critically influences organogenesis. DOI: http://dx.doi.org/10.7554/eLife.22689.001 PMID:28372636
Tsukahara, Tamotsu; Murakami-Murofushi, Kimiko
2012-01-01
Microparticle and nanoparticle formulations are widely used to improve the bioavailability of low-solubility drugs and as vehicles for organ- and tissue-specific targeted drug delivery. We investigated the effect of a novel, controlled-release form of a bioactive lipid, cyclic phosphatidic acid (cPA), on human colon cancer cell line functions. We encapsulated cPA in gelatin-based hydrogels and examined its ability to inhibit the viability and migration of HT-29 and DLD-1 cells in vitro and the LPA-induced activity of the transcription factor peroxisome proliferator-activated receptor gamma (PPARγ). The hydrogel delivery system prolonged cPA release into the culture medium. Accordingly, cPA-hydrogel microspheres substantially inhibited LPA-induced PPARγ activity and cell growth and migration compared with that of cells cultured with cPA alone. Thus, hydrogel microspheres are a potential system for stable and efficient delivery of bioactive lipids such as cPA and may offer a new strategy for targeted colon cancer treatment. PMID:23008752
Qiu, Hailong; Yang, Chunhui; Shao, Wei; Damasco, Jossana; Wang, Xianliang; Ågren, Hans; Prasad, Paras N; Chen, Guanying
2014-01-03
The luminescence efficiency of lanthanide-doped upconversion nanoparticles is of particular importance for their embodiment in biophotonic and photonic applications. Here, we show that the upconversion luminescence of typically used NaYF₄:Yb 3+ 30%/Tm 3+ 0.5% nanoparticles can be enhanced by ~240 times through a hierarchical active core/active shell/inert shell (NaYF₄:Yb 3+ 30%/Tm 3+ 0.5%)/NaYbF₄/NaYF₄ design, which involves the use of directed energy migration in the second active shell layer. The resulting active core/active shell/inert shell nanoparticles are determined to be about 11 times brighter than that of well-investigated (NaYF₄:Yb 3+ 30%/Tm 3+ 0.5%)/NaYF₄ active core/inert shell nanoparticles when excited at ~980 nm. The strategy for enhanced upconversion in Yb 3+ /Tm 3+ -codoped NaYF₄ nanoparticles through directed energy migration might have implications for other types of lanthanide-doped upconversion nanoparticles.
Lab-on-a-brane: nanofibrous polymer membranes to recreate organ-capillary interfaces
NASA Astrophysics Data System (ADS)
Budhwani, Karim I.; Thomas, Vinoy; Sethu, Palaniappan
2016-03-01
Drug discovery is a complex and time consuming process involving significant basic research and preclinical evaluation prior to testing in patients. Preclinical studies rely extensively on animal models which often fail in human trials. Biomimetic microphysiological systems (MPS) using human cells can be a promising alternative to animal models; where critical interactions between different organ systems are recreated to provide physiologically relevant in vitro human models. Central here are blood-vessel networks, the interface controlling transport of cellular and biomolecular components between the circulating fluid and underlying tissue. Here we present a novel lab-on-a-brane (or lab-on-a-membrane) nanofluidics MPS that combines the elegance of lab-on-a-chip with the more realistic morphology of 3D fibrous tissue-engineering constructs. Our blood-vessel lab-on-a-brane effectively simulates in vivo vessel-tissue interface for evaluating transendothelial transport in various pharmacokinetic and nanomedicine applications. Attributes of our platform include (a) nanoporous barrier interface enabling transmembrane molecular transport, (b) transformation of substrate into nanofibrous 3D tissue matrix, (c) invertible-sandwich architecture, and (d) simple co-culture mechanism for endothelial and smooth muscle layers to accurately mimic arterial anatomy. Structural, mechanical, and transport characterization using scanning electron microscopy, stress/strain analysis, infrared spectroscopy, immunofluorescence, and FITC-Dextran hydraulic permeability confirm viability of this in vitro system. Thus, our lab-on-a-brane provides an effective and efficient, yet considerably inexpensive, physiologically relevant alternative for pharmacokinetic evaluation; possibly reducing animals used in preclinical testing, costs from false starts, and time-to-market. Furthermore, it can be configured in multiple simultaneous arrays for personalized and precision medicine applications and for evaluating localized and targeted therapeutic delivery.
Bonoiu, Adela; Mahajan, Supriya D.; Ye, Ling; Kumar, Rajiv; Ding, Hong; Yong, Ken-Tye; Roy, Indrajit; Aalinkeel, Ravikumar; Nair, Bindukumar; Reynolds, Jessica L; Sykes, Donald E; Imperiale, Marco A; Bergey, Earl J.; Schwartz, Stanley A.; Prasad, Paras N.
2009-01-01
The matrix-degrading metalloproteinases (MMPs), particularly MMP-9, are involved in the neuroinflammation processes leading to disrupting of the blood brain barrier (BBB), thereby exacerbating neurological diseases such as HIV-1 AIDS dementia and cerebral ischemia. Nanoparticles have been proposed to act as non-viral gene delivery vectors and have great potential for therapeutic applications in several disease states. In this study, we evaluated the specificity and efficiency of quantum dot (QD) complexed with MMP-9-siRNA (nanoplex) in downregulating the expression of MMP-9 gene in brain microvascular endothelial cells (BMVEC) that constitute the BBB. We hypothesize that silencing MMP-9 gene expression in BMVECs and other cells such as leukocytes may help prevent breakdown of the BBB and inhibit subsequent invasion of the central nervous system (CNS) by infected and inflammatory cells. Our results show that silencing of MMP-9 gene expression resulted in the upregulation of extracellular matrix (ECM) proteins like collagen I, IV, V and a decrease in endothelial permeability, as reflected by reduction of transendothelial resistance across the BBB in a well validated in-vitro BBB model. MMP-9 gene silencing also resulted in an increase in expression of the gene tissue inhibitor of metalloproteinase-1 (TIMP-1). This indicates the importance of a balance between the levels of MMP-9 and its natural inhibitor TIMP-1 in maintaining the basement membrane integrity. These studies promise the application of a novel nanoparticle based siRNA delivery system in modulating the MMP-9 activity in BMVECs and other MMP-9 producing cells. This will prevent neuroinflammation and maintain the integrity of the BBB. PMID:19477169
Li, Hai-juan; Yang, Long-long; Tian, Wei; Liu, Jun-ju; Xie, Xue-jun; Guo, Guo-zhen
2012-03-01
To establish the inner blood-retinal barrier (BRB) model in vitro by co-culturing RF/6A cells and C6 cells and to investigate the effects of EMP (200 kV/m, 200 pulses) exposure on the permeability of the inner BRB model in vitro. RF/6A cells and C6 cells were co-cultured on transwell, and the characteristic of the inner BRB model was assessed by detecting transendothelial electrical resistance (TEER) and the permeability of horseradish peroxidase (HRP). The co-cultured model was exposed or sham exposed to the EMP (200 kV/m 200 pulses) for 0.5, 3, 6, 12, 24 h in vitro, then TEER and the permeability of HRP were measured for studying the effects of EMP on the permeability of inner BRB model in vitro. TEER value (145 Ωcm(2)) of the co-culturing inner BRB model significantly increased, as compared to that of RF/6A cells alone model (P < 0.05) on the 6th day after inoculation. There was significant difference of permeability of HRP between the co-culturing inner BRB model and RF/6A cells alone model (P < 0.05). The ability of inhibiting large molecular materials in the co-culturing inner BRB model enhanced. The TEER value decreased and the permeability of HRP increased as compared to the sham group at 0.5, 3, 6 h after the exposure. The inner BRB model by co-culturing RF/6A cells and C6 cells in vitro is efficient and suitable to study the alterations of the restricted permeability function of the inner BRB. EMP (200 kV/m for 200 pulses) could induce the enhanced permeability of the inner BRB model in vitro.
Krishnan, Subramanian; Prasadarao, Nemani V
2014-07-01
Bacterial meningitis is a serious central nervous system infection and Escherichia coli K1 (E. coli K1) is one of the leading etiological agents that cause meningitis in neonates. Outer membrane protein A (OmpA) of E. coli K1 is a major virulence factor in the pathogenesis of meningitis, and interacts with human brain microvascular endothelial cells (HBMEC) to cross the blood-brain barrier. Using site-directed mutagenesis, we demonstrate that two N-glycosylation sites (NG1 and NG2) in the extracellular domain of OmpA receptor, Ecgp96 are critical for bacterial binding to HBMEC. E. coli K1 invasion assays using CHO-Lec1 cells that express truncated N-glycans, and sequential digestion of HBMEC surface N-glycans using specific glycosidases showed that GlcNAc1-4GlcNAc epitopes are sufficient for OmpA interaction with HBMEC. Lack of NG1 and NG2 sites in Ecgp96 inhibits E. coli K1 OmpA induced F-actin polymerization, phosphorylation of protein kinase C-α, and disruption of transendothelial electrical resistance required for efficient invasion of E. coli K1 in HBMEC. Furthermore, the microvessels of cortex and hippocampus of the brain sections of E. coli K1 infected mice showed increased expression of glycosylated Ecgp96. Therefore, the interface of OmpA and GlcNAc1-4GlcNAc epitope interaction would be a target for preventative strategies against E. coli K1 meningitis. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Chemical regeneration of emitter surface increases thermionic diode life
NASA Technical Reports Server (NTRS)
Breiteieser, R.
1966-01-01
Chemical regeneration of sublimated emitter electrode increases the operating efficiency and life of thermionic diodes. A gas which forms chemical compounds with the sublimated emitter material is introduced into the space between the emitter and the collector. The compounds migrate to the emitter where they decompose and redeposit the emitter material.
Energy Efficient Window Coatings that Please the Eye - Continuum Magazine
voltage polarity reverses the lithium-ion flow, decreasing the glass tint and allowing more light to be transparent contact layers bookending a counterelectrode layer, ion-conducting layer, and electrochromic layer . Low voltage applied across the stacked layers causes lithium ions to migrate out of the
USDA-ARS?s Scientific Manuscript database
Wound healing and inflammation are both significantly reduced in mice that lack gammadelta T cells. Here, the role of epithelial intercellular adhesion molecule-1 (ICAM-1) in gammadelta T cell migration in corneal wound healing was assessed. Wild-type mice had an approximate fivefold increase in epi...
Lynen, Frederic; Saavedra, Luis; Saveedra, Luis; Nickerson, Beverly; Sandra, Pat
2011-05-15
A multiplexed capillary electrophoresis (CE) system equipped with 96 channels was evaluated for high-throughput screening in drug discovery by microemulsion electrokinetic chromatography (MEEKC). Method transfer from a single channel to a multichannel CE system is described. Loss of efficiency and reduced migration times could be elucidated to the poor efficacy in Joule heat dissipation by forced air cooling in the multiarray system compared to liquid cooling in the single channel instrument. On the other hand, only 48 channels could actually be used because of the maximum total current of 3 mA. Precision data remained below 8% and 9% for migration times and peak areas, respectively. Some UV-detector cross-talk interference between neighboring capillary channels was noted. Impurities at 0.5% compared to the main peak (100%) could be detected with the multiplexed system which is 10 times lower compared to the single capillary system. Higher efficiency and improved figures of merit (absolute sensitivity and no cross-talk interferences) were obtained by using an array of only 24 capillaries. Copyright © 2011 Elsevier B.V. All rights reserved.
Zlotnik, Alexander; Cuchi, Miguel Alfaro; Pérez Pérez, Maria Carmen
Public healthcare providers in all Spanish Regions - Autonomous Communities (ACs) use All Patients Diagnosis-Related Groups (AP-DRGs) for billing non-insured patients, cost accounting and inpatient efficiency indicators. A national migration to All Patients Refined Diagnosis-Related Groups (APR-DRGs) has been scheduled for 2016. The analysis was performed on 202,912 inpatient care episodes ranging from 2005 to 2010. All episodes were grouped using AP-DRG v25.0 and APR-DRG v24.0. Normalised DRG weight variations for an AP-DRG to APR-DRG migration scenario were calculated and compared. Major differences exist between normalised weights for inpatient episodes depending on the DRGs family used. The usage of the APR-DRG system in Spain without any adjustments, as it was developed in the United States, should be approached with care. In order to avoid reverse incentives and provider financial risks, coding practices should be reviewed and structural differences between DRG families taken into account.
Enhancing energy transport in conjugated polymers
NASA Astrophysics Data System (ADS)
Holmes, Russell J.
2018-05-01
The conversion of light into usable chemical energy by plants is enabled by the precise spatial arrangement of light-absorbing photosynthetic systems and associated molecular complexes (1). In organic solar cells, there is also the need to control intermolecular spacing and molecular orientation, as well as thin-film crystallinity and morphology, so as to enable efficient energy migration and photoconversion (2). In an organic solar cell, light absorption creates excitons, tightly bound electron-hole pairs that must be efficiently dissociated into their component charge carriers in order to create an electrical current. Thus, long-range exciton migration must occur from the point of photogeneration to a dissociating site. On page 897 of this issue, Jin et al. (3) report on a conjugated polymer nanofiber system that yields exciton diffusion lengths greater than 200 nm. In comparison, organic solar cells are typically constructed with materials having exciton diffusion lengths one order of magnitude smaller than this value, which limits device thickness and optical absorption. Their approach exploits a sequential synthesis method that enables measurement of this long exciton diffusion length (see the figure).
NASA Astrophysics Data System (ADS)
Gong, Xiangbo; Feng, Fei; Jiao, Xuming; Wang, Shengchao
2017-10-01
Simultaneous seismic source separation, also known as deblending, is an essential process for blended acquisition. With the assumption that the blending noise is coherent in the common shot domain but is incoherent in other domains, traditional deblending methods are commonly performed in the common receiver, common midpoint or common offset domain. In this paper, we propose an improved apex-shifted hyperbolic radon transform (ASHRT) to deblend directly in the common shot domain. A time-axis stretch strategy named Stolt-stretch is introduced to overcome the limitation of the constant velocity assumption of Stolt-based operators. To improve the sparsity in the transform domain, a total variation (TV) norm inversion is implemented to enhance the energy convergence in the radon panel. Because of highly efficient Stolt migration and the demigration operator in the frequency-wavenumber domain, as well as the flexible geometry condition of the source-receiver, this approach is quite suitable for quality control (QC) during streamer acquisition. The synthetic and field examples demonstrate that our proposition is robust and efficient.
Huang, Fei; Li, Zhen; Yan, Aihua; Zhao, Hui; Liang, Huagen; Gao, Qingyu; Qiang, Yinghuai
2017-01-06
Novel semiconductor photocatalysts have been the research focus and received much attention in recent years. The key issues for novel semiconductor photocatalysts are to effectively harvest solar energy and enhance the separation efficiency of the electron-hole pairs. In this work, novel Nb 3 O 7 F/CNTs hybrid nanocomposites with enhanced photocatalytic activity have been successfully synthesized by a facile hydrothermal plus etching technique. The important finding is that appropriate pH values lead to the formation of Nb 3 O 7 F nanocrystal directly. A general strategy to introdue interaction between Nb 3 O 7 F and CNTs markedly enhances the photocatalytic activity of Nb 3 O 7 F. Comparatively, Nb 3 O 7 F/CNTs nanocomposites exhibit higher photodegradation efficiency and faster photodegradation rate in the solution of methylene blue (MB) under visible-light irradiation. The higher photocatalytic activity may be attributed to more exposed active sites, higher carrier migration and narrower bandgap because of good synergistic effect. The results here may inspire more engineering, new design and facile fabrication of novel photocatalysts with highly photocatalytic activity.
Ascorbic Acid Efflux and Re-uptake in Endothelial Cells: Maintenance of Intracellular Ascorbate
May, James M.; Qu, Zhi-chao
2013-01-01
Entry of vitamin C or ascorbate into most tissues requires its movement across the endothelial cell barrier of vessels. If trans-cellular ascorbate movement occurs, then it should be evident as ascorbate efflux from endothelial cells. Cultured EA.926 endothelial cells that had been loaded to about 3.5 mM intracellular ascorbate lost 70–80% of ascorbate to the medium over several hours at 37 °C via a non-saturable process that was insensitive to anion transport inhibitors and thiol reagents. Oxidation of this extracellular ascorbate by ascorbate oxidase or ferricyanide enhanced apparent ascorbate efflux, suggesting that efflux of the vitamin was countered in part by its re-uptake on ascorbate transporters. Although basal ascorbate efflux was not calcium-dependent, increased entry of calcium into the cells enhanced ascorbate release. These results support the hypothesis that ascorbate efflux reflects trans-endothelial cell ascorbate movement out of the blood vessel. PMID:19148707
Ascorbic acid efflux and re-uptake in endothelial cells: maintenance of intracellular ascorbate.
May, James M; Qu, Zhi-chao
2009-05-01
Entry of vitamin C or ascorbate into most tissues requires its movement across the endothelial cell barrier of vessels. If trans-cellular ascorbate movement occurs, then it should be evident as ascorbate efflux from endothelial cells. Cultured EA.926 endothelial cells that had been loaded to about 3.5 mM intracellular ascorbate lost 70-80% of ascorbate to the medium over several hours at 37 degrees C via a non-saturable process that was insensitive to anion transport inhibitors and thiol reagents. Oxidation of this extracellular ascorbate by ascorbate oxidase or ferricyanide enhanced apparent ascorbate efflux, suggesting that efflux of the vitamin was countered in part by its re-uptake on ascorbate transporters. Although basal ascorbate efflux was not calcium-dependent, increased entry of calcium into the cells enhanced ascorbate release. These results support the hypothesis that ascorbate efflux reflects trans-endothelial cell ascorbate movement out of the blood vessel.
Zhang, Wen; Li, Shaojun; Zhao, Yunlong; Guo, Nannan; Li, Yingjie
2016-12-01
Objective To observe the expression of the neural precursor cell expressed, developmentally down-regulated 9 (NEDD9) in esophageal cancer, to investigate the impact of decreased expression of NEDD9 on invasion and migration, and to explicit the function of NEDD9 in EC109 human esophageal cancer cell line. Methods Immunohistochemical staining was used to detect the expression of NEDD9 in human esophageal cancer tissues and paracancerous normal tissues. RNA interfering (RNAi) was used to knockdown NEDD9 in EC109 cells. The interference efficiency was detected by reverse transcription PCR (RT-PCR) and Western blot analysis. Cell proliferation was determined by MTT assay and the invasion and migration abilities of EC109 cells were monitored by Transwell TM assay. The protein levels of proliferating cell nuclear antigen (PCNA), Bax and Bcl-2 were tested by Western blotting. Results The positive expression rate of NEDD9 in esophageal carcinoma tissues was significantly higher compared with that in the paracancerous tissues. After NEDD9 expression was successfully downregulated in EC109 cells by siRNA, the proliferation, invasion and migration rates in transfection group were significantly lower than those in control group; meanwhile, the expression of Bcl-2 was reduced and Bax expression was enhanced. Conclusion The protein expression level of NEDD9 is higher in esophageal carcinoma tissues than that in adjacent normal tissues. Knockdown of NEDD9 expression can restrain the proliferation, invasion and migration of EC109 cells.
Results of the Utah-Arizona stage-by-stage migrations
Ellis, D.H.; Mellon, C.; Kinloch, M.; Dolbeare, T.; Ossi, D.P.
2001-01-01
In an effort to find a safer means of teaching cranes new migration routes, each year (in 1998 and 1999) we transported a group of greater sandhill cranes (Grus canadensis tabida) stage-by-stage, in a horse trailer, with stops for brief flights at about 30-km intervals, along a 1300-1400-km fall migration route from Fish Springs National Wildlife Refuge (Fish Springs) in west-central Utah to the vicinity of Gila Bend, Arizona. Thereafter, we released them into a wild flock of sandhill cranes. All stage-by-stage birds were hand-reared with both a plastic crane decoy (to encourage them to roost in water) and a costume-draped humanoid form (called a scare-eagle and used for its namesake purpose). When these 2 teaching aids were placed in water, our cranes readily roosted nearby. All but 4 of our cranes proved cooperative (i.e., catchable at each of the ca 25-36 stops) during the migration. All were efficiently released into a wild flock and experienced good survival. The stage-by-stage method proved to be a safe means of transporting cranes south and giving them experience along the route. Some cranes apparently learned their route from the limited experience afforded by releasing them at intervals, and the 1999 cranes have made repealed migrations to or near our chosen northern terminus. However, after 1 winter in our chosen area, the birds have moved elsewhere to winter.
Kozyulina, Polina Y.; Loskutov, Yuriy V.; Kozyreva, Varvara K.; Rajulapati, Anuradha; Ice, Ryan J.; Jones, Brandon. C.; Pugacheva, Elena N.
2014-01-01
The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of pro-metastatic protein, NEDD9, in breast cancer (BC) cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and co-localizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand/integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Re-expression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9 depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. PMID:25319010
River morphodynamics from space: the Landsat frontier
NASA Astrophysics Data System (ADS)
Schwenk, Jon; Khandelwal, Ankush; Fratkin, Mulu; Kumar, Vipin; Foufoula-Georgiou, Efi
2017-04-01
NASA's Landsat family of satellites have been observing the entire globe since 1984, providing over 30 years of snapshots with an 18 day frequency and 30 meter resolution. These publicly-available Landsat data are particularly exciting to researchers interested in river morphodynamics, who are often limited to use of historical maps, aerial photography, and field surveys with poor and irregular time resolutions and limited spatial extents. Landsat archives show potential for overcoming these limitations, but techniques and tools for accurately and efficiently mining the vault of scenes must first be developed. In this PICO presentation, we detail the problems we encountered while mapping and quantifying planform dynamics of over 1,300 km of the actively-migrating, meandering Ucayali River in Peru from Landsat imagery. We also present methods to overcome these obstacles and introduce the Matlab-based RivMAP (River Morphodynamics from Analysis of Planforms) toolbox that we developed to extract banklines and centerlines, compute widths, curvatures, and angles, identify cutoffs, and quantify planform changes via centerline migration and erosion/accretion over large spatial domains with high temporal resolution. Measurement uncertainties were estimated by analyzing immobile, abandoned oxbow lakes. Our results identify hotspots of planform changes, and combined with limited precipitation, stage, and topography data, we parse three simultaneous controls on river migration: climate, sediment, and meander cutoff. Overall, this study demonstrates the vast potential locked within Landsat archives to identify multi-scale controls on river migration, observe the co-evolution of width, curvature, discharge, and migration, and discover and develop new geomorphic insights.
Wang, Congrui; Wang, Huaibin; Lu, Ming; Li, Yonghai; Feng, Huigen; Yuan, Zhiqing
2013-01-01
Bone marrow-derived mesenchymal stem cells (bmMSCs) are the most important cell source for stem cell transplant therapy. The migration capacity of MSCs is one of the determinants of the efficiency of MSC-based transplant therapy. Our recent study has shown that low concentrations of oxidized low-density lipoprotein (ox-LDL) can stimulate proliferation of bmMSCs. In this study, we investigated the effects of ox-LDL on bmMSC migration and adhesion, as well as the related mechanisms. Our results show that transmigration rates of bmMSCs and cell-cell adhesion between bmMSCs and monocytes are significantly increased by treatments with ox-LDL in a dose- and time-dependent manner. Expressions of ICAM-1, PECAM-1, and VCAM-1 as well as the levels of intracellular Ca2+ are also markedly increased by ox-LDL in a dose-dependent manner. Cytoskeleton analysis shows that ox-LDL treatment benefits to spreading of bmMSCs and organization of F-actin fibers after being plated for 6 hours. More interestingly, treatments with ox-LDL also markedly increase expressions of LOX-1, MCP-1, and TGF-β; however, LOX-1 antibody and MCP-1 shRNA markedly inhibit ox-LDL-induced migration and adhesion of bmMSCs, which suggests that ox-LDL-induced bmMSC migration and adhesion are dependent on LOX-1 activation and MCP-1 expression. PMID:23956504
Matchmaker, Matchmaker, Make Me a Match: Migration of Populations via Marriages in the Past
NASA Astrophysics Data System (ADS)
Lee, Sang Hoon; Ffrancon, Robyn; Abrams, Daniel M.; Kim, Beom Jun; Porter, Mason A.
2014-10-01
The study of human mobility is both of fundamental importance and of great potential value. For example, it can be leveraged to facilitate efficient city planning and improve prevention strategies when faced with epidemics. The newfound wealth of rich sources of data—including banknote flows, mobile phone records, and transportation data—has led to an explosion of attempts to characterize modern human mobility. Unfortunately, the dearth of comparable historical data makes it much more difficult to study human mobility patterns from the past. In this paper, we present an analysis of long-term human migration, which is important for processes such as urbanization and the spread of ideas. We demonstrate that the data record from Korean family books (called "jokbo") can be used to estimate migration patterns via marriages from the past 750 years. We apply two generative models of long-term human mobility to quantify the relevance of geographical information to human marriage records in the data, and we find that the wide variety in the geographical distributions of the clans poses interesting challenges for the direct application of these models. Using the different geographical distributions of clans, we quantify the "ergodicity" of clans in terms of how widely and uniformly they have spread across Korea, and we compare these results to those obtained using surname data from the Czech Republic. To examine population flow in more detail, we also construct and examine a population-flow network between regions. Based on the correlation between ergodicity and migration in Korea, we identify two different types of migration patterns: diffusive and convective. We expect the analysis of diffusive versus convective effects in population flows to be widely applicable to the study of mobility and migration patterns across different cultures.
Provost, Véronique; Larose, Marie-Chantal; Langlois, Anick; Rola-Pleszczynski, Marek; Flamand, Nicolas; Laviolette, Michel
2013-08-01
CCL11, CCL24, and CCL26 are chemokines involved in the recruitment of eosinophils into tissues and mainly activate CCR3. Whereas the genomic or pharmacological inhibition of CCR3 prevents the development of experimental asthma in rodents, it only impairs the recruitment of eosinophils by ∼40% in humans. As humans, but not rodents, express CCL26, we investigated the impact of CCL11, CCL24, and CCL26 on human eosinophils recruitment and evaluated the involvement of CCR3. The migration of eosinophils of healthy volunteers was similar for the three eotaxins. Eosinophils of mild asthmatics had a greater response to CCL11 and a much greater response to CCL26. Whereas all eotaxins induced the migration of eosinophil of asthmatics from 0 to 6 h, CCL26 triggered a second phase of migration between 12 and 18 h. Given that the CCR3 antagonists SB 328437 and SB 297006 inhibited the 5-oxo-eicosatetraenoate-induced migration of eosinophils and that the CCR3 antagonist UCB 35625 was not specific for CCR3, CCR3 blockade was performed with the CCR3 mAb. This antibody completely blocked the effect of all eotaxins on eosinophils of healthy subjects and the effect of CCL24 on the eosinophils of asthmatics. Interestingly, CCR3 blockade did not affect the second migration phase induced by CCL26 on eosinophils of asthmatics. In conclusion, CCL26 is a more effective chemoattractant than CCL11 and CCL24 for eosinophils of asthmatics. The mechanism of this greater efficiency is not yet defined. However, these results suggest that CCL26 may play a unique and important role in the recruitment of eosinophils in persistent asthma.
Kozyulina, Polina Y; Loskutov, Yuriy V; Kozyreva, Varvara K; Rajulapati, Anuradha; Ice, Ryan J; Jones, Brandon C; Pugacheva, Elena N
2015-03-01
The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of the prometastatic protein, NEDD9, in breast cancer cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and colocalizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand-integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Reexpression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9-depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. This study provides valuable new insight into the potential therapeutic benefit of NEDD9 depletion to reduce dissemination of tumor cells and discovers a new regulatory role of NEDD9 in promoting migration through modulation of CAV1-dependent trafficking of integrins. ©2014 American Association for Cancer Research.
Notch2 and Notch3 suppress the proliferation and mediate invasion of trophoblast cell lines
Zhao, Wei-Xiu; Wu, Zhen-Ming; Liu, Wei
2017-01-01
ABSTRACT Notch signaling pathways play important roles in cell fate and many diseases, including preeclampsia, the dysregulation of which may be the main cause of maternal mortality. This study aimed to investigate the roles of Notch2 and Notch3 in proliferation and invasion in trophoblast cell lines (BeWo and JAR). Small hairpin RNAs targeting Notch2/Notch3 and Notch2/Notch3-overexpression vectors were designed, constructed and transfected into BeWo and JAR cells. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were then used to detect Notch2 and Notch3 mRNA and protein levels, and confirm the efficiency of silence and overexpression. Flow cytometry assays were conducted to evaluate the cell cycle of the two cell lines, and transwell assays were used to detect migration and invasion. Western blot analysis was also performed to show the alteration of the cell lines' physiological activities at protein level. When Notch2 was downregulated in BeWo cells, proliferation was dramatically promoted, while migration and invasion were significantly inhibited. When Notch2 was upregulated in JAR cells, proliferation was inhibited, but migration and invasion were promoted. After overexpression of Notch3 in BeWo cells, proliferation was downregulated, but migration and invasion were both upregulated. By contrast, the silencing of Notch3 expression in JAR cells significantly enhanced proliferation, but suppressed migration and invasion. These data indicated that Notch2 and Notch3 mediate the invasion and migration of BeWo and JAR cells, and may play a potential role in early onset severe preeclampsia. PMID:28606936
Notch2 and Notch3 suppress the proliferation and mediate invasion of trophoblast cell lines.
Zhao, Wei-Xiu; Wu, Zhen-Ming; Liu, Wei; Lin, Jian-Hua
2017-08-15
Notch signaling pathways play important roles in cell fate and many diseases, including preeclampsia, the dysregulation of which may be the main cause of maternal mortality. This study aimed to investigate the roles of Notch2 and Notch3 in proliferation and invasion in trophoblast cell lines (BeWo and JAR). Small hairpin RNAs targeting Notch2/Notch3 and Notch2/Notch3-overexpression vectors were designed, constructed and transfected into BeWo and JAR cells. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were then used to detect Notch2 and Notch3 mRNA and protein levels, and confirm the efficiency of silence and overexpression. Flow cytometry assays were conducted to evaluate the cell cycle of the two cell lines, and transwell assays were used to detect migration and invasion. Western blot analysis was also performed to show the alteration of the cell lines' physiological activities at protein level.When Notch2 was downregulated in BeWo cells, proliferation was dramatically promoted, while migration and invasion were significantly inhibited. When Notch2 was upregulated in JAR cells, proliferation was inhibited, but migration and invasion were promoted. After overexpression of Notch3 in BeWo cells, proliferation was downregulated, but migration and invasion were both upregulated. By contrast, the silencing of Notch3 expression in JAR cells significantly enhanced proliferation, but suppressed migration and invasion. These data indicated that Notch2 and Notch3 mediate the invasion and migration of BeWo and JAR cells, and may play a potential role in early onset severe preeclampsia. © 2017. Published by The Company of Biologists Ltd.
Least-squares reverse time migration in elastic media
NASA Astrophysics Data System (ADS)
Ren, Zhiming; Liu, Yang; Sen, Mrinal K.
2017-02-01
Elastic reverse time migration (RTM) can yield accurate subsurface information (e.g. PP and PS reflectivity) by imaging the multicomponent seismic data. However, the existing RTM methods are still insufficient to provide satisfactory results because of the finite recording aperture, limited bandwidth and imperfect illumination. Besides, the P- and S-wave separation and the polarity reversal correction are indispensable in conventional elastic RTM. Here, we propose an iterative elastic least-squares RTM (LSRTM) method, in which the imaging accuracy is improved gradually with iteration. We first use the Born approximation to formulate the elastic de-migration operator, and employ the Lagrange multiplier method to derive the adjoint equations and gradients with respect to reflectivity. Then, an efficient inversion workflow (only four forward computations needed in each iteration) is introduced to update the reflectivity. Synthetic and field data examples reveal that the proposed LSRTM method can obtain higher-quality images than the conventional elastic RTM. We also analyse the influence of model parametrizations and misfit functions in elastic LSRTM. We observe that Lamé parameters, velocity and impedance parametrizations have similar and plausible migration results when the structures of different models are correlated. For an uncorrelated subsurface model, velocity and impedance parametrizations produce fewer artefacts caused by parameter crosstalk than the Lamé coefficient parametrization. Correlation- and convolution-type misfit functions are effective when amplitude errors are involved and the source wavelet is unknown, respectively. Finally, we discuss the dependence of elastic LSRTM on migration velocities and its antinoise ability. Imaging results determine that the new elastic LSRTM method performs well as long as the low-frequency components of migration velocities are correct. The quality of images of elastic LSRTM degrades with increasing noise.
Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.; ,; Gillikin, Daniel; ,
2010-01-01
To better understand and partition mortality among life stages of chum salmon (Oncorhynchus keta), we used inclined-plane traps to monitor the migration of juveniles in the Kwethluk River, Alaska in 2007 and 2008. The migration of juvenile chum salmon peaked in mid-May and catch rates were greatest when water levels were rising. Movement of chum salmon was diurnal with highest catch rates occurring during the hours of low light (that is, 22:00 to 10:00). Trap efficiency ranged from 0.37 to 4.04 percent (overall efficiency = 1.94 percent). Total abundance of juvenile chum salmon was estimated to be 2.0 million fish in 2007 and 2.9 million fish in 2008. On the basis of the estimate of chum salmon females passing the Kwethluk River weir and age-specific fecundity, we estimated the potential egg deposition (PED) upstream of the weir and trapping site. Egg-to-smolt survival, calculated by dividing the estimate of juvenile chum salmon emigrating past the weir site by the estimate of PED, was 4.6 percent in 2007 and 5.2 percent in 2008. In addition to chum salmon, Chinook salmon O. tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and pink salmon (O. gorbuscha), as well as ten other fish species, were captured in the traps. As with chum salmon, catch of these species increased during periods of increasing discharge and peaked during hours of low light. This study successfully determined the characteristics of juvenile salmon migrations and estimated egg-to-smolt survival for chum salmon. This is the first estimate of survival for any juvenile salmon in the Arctic-Yukon-Kuskokwim region of Alaska and demonstrates an approach that can help to partition mortality between freshwater and marine life stages, information critical to understanding the dynamics of salmon in this region.
Kaakinen, M; Huttunen, S; Paavolainen, L; Marjomäki, V; Heikkilä, J; Eklund, L
2014-01-01
Phase-contrast illumination is simple and most commonly used microscopic method to observe nonstained living cells. Automatic cell segmentation and motion analysis provide tools to analyze single cell motility in large cell populations. However, the challenge is to find a sophisticated method that is sufficiently accurate to generate reliable results, robust to function under the wide range of illumination conditions encountered in phase-contrast microscopy, and also computationally light for efficient analysis of large number of cells and image frames. To develop better automatic tools for analysis of low magnification phase-contrast images in time-lapse cell migration movies, we investigated the performance of cell segmentation method that is based on the intrinsic properties of maximally stable extremal regions (MSER). MSER was found to be reliable and effective in a wide range of experimental conditions. When compared to the commonly used segmentation approaches, MSER required negligible preoptimization steps thus dramatically reducing the computation time. To analyze cell migration characteristics in time-lapse movies, the MSER-based automatic cell detection was accompanied by a Kalman filter multiobject tracker that efficiently tracked individual cells even in confluent cell populations. This allowed quantitative cell motion analysis resulting in accurate measurements of the migration magnitude and direction of individual cells, as well as characteristics of collective migration of cell groups. Our results demonstrate that MSER accompanied by temporal data association is a powerful tool for accurate and reliable analysis of the dynamic behaviour of cells in phase-contrast image sequences. These techniques tolerate varying and nonoptimal imaging conditions and due to their relatively light computational requirements they should help to resolve problems in computationally demanding and often time-consuming large-scale dynamical analysis of cultured cells. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Lifestyle and food habits changes after migration: a focus on immigrant women in Modena (Italy).
Casali, M E; Borsari, L; Marchesi, I; Borella, P; Bargellini, A
2015-01-01
This study aimed to explore post-migration lifestyle and weight changes in a sample of migrant women recruited in Modena, Italy. Taking into account the importance of the perceived personal susceptibility in improving prevention and treatment seeking behaviors, we further investigated women's self-recognition of overweight/obesity. We also examined the changes in self-perceived quality of life after the arrival in Modena. A cross-sectional study was conducted among 97 female migrants visiting a family counseling in Modena. Socio-demographic information, post-migration changes in lifestyle, dietary habits and self-perceived quality of life were obtained by administering an anonymous questionnaire, created ad hoc with expert consultation and previously tested in a pilot study. Thereafter blood pressure, height and weight were measured. More than half of the sample met criteria for overweight/obesity and 58% reported a weight increase after the arrival in Italy. The increased risk of weight gain after migration was significantly associated with women age, lower education level, African ethnicity and post-migration increased consumption of cheese and snacks/sweets. After applying a conditional multiple logistic regression, ethnicity, age and increased post-migration cheese consumption remained the main predictors of weight gain. More than half of subjects with BMI ≥ 25 Kg/m² were not aware of their own overweight or obesity. Such weight underestimation was more common in African migrants than in other ethnicities. Findings about the perceived quality of life showed an overall improved economic situation, although more than half of women revealed deterioration in their social relationships after migration. Our results are important to identify the gaps in the current migrant populations' health promotion in Modena and suggest that strategies to support female migrants to reinforce good dietary patterns may be the key in preventing unhealthy weight gain. Indeed, understanding immigrant women's culture, beliefs and traditions of their country of origin, as well as food acculturation, is essential to improve the efficiency of these interventions.
Mechanical guidance of collective cell migration and invasion
NASA Astrophysics Data System (ADS)
Trepat, Xavier
A broad range of biological processes such as morphogenesis, tissue regeneration, and cancer invasion depend on the collective migration of epithelial cells. Guidance of collective cell migration is commonly attributed to soluble or immobilized chemical gradients. I will present novel mechanisms of collective cellular guidance that are physical in origin rather than chemical. Firstly, I will focus on how the mechanical interaction between the tumor and its stroma guides cancer cell invasion. I will show that cancer associated fibroblasts exert a physical force on cancer cells that enables their collective invasion. In the second part of my talk I will focus on durotaxis, the ability of cells to follow gradients of extracellular matrix stiffness. Durotaxis is well established as a single cell phenomenon but whether it can direct the motion of cell collectives is unknown. I will show that durotaxis emerges in cell collectives even if isolated constituent cells are unable to durotax. Collective durotaxis applies to a broad variety of epithelial cell types and requires the action of myosin motors and the integrity of cell-cell junctions. Collective durotaxis is more efficient than any previous report of single cell durotaxis; it thus emerges as robust mechanism to direct collective cell migration in development and disease.eplace this text with your abstract.
Applying graph partitioning methods in measurement-based dynamic load balancing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatele, Abhinav; Fourestier, Sebastien; Menon, Harshitha
Load imbalance leads to an increasing waste of resources as an application is scaled to more and more processors. Achieving the best parallel efficiency for a program requires optimal load balancing which is a NP-hard problem. However, finding near-optimal solutions to this problem for complex computational science and engineering applications is becoming increasingly important. Charm++, a migratable objects based programming model, provides a measurement-based dynamic load balancing framework. This framework instruments and then migrates over-decomposed objects to balance computational load and communication at runtime. This paper explores the use of graph partitioning algorithms, traditionally used for partitioning physical domains/meshes, formore » measurement-based dynamic load balancing of parallel applications. In particular, we present repartitioning methods developed in a graph partitioning toolbox called SCOTCH that consider the previous mapping to minimize migration costs. We also discuss a new imbalance reduction algorithm for graphs with irregular load distributions. We compare several load balancing algorithms using microbenchmarks on Intrepid and Ranger and evaluate the effect of communication, number of cores and number of objects on the benefit achieved from load balancing. New algorithms developed in SCOTCH lead to better performance compared to the METIS partitioners for several cases, both in terms of the application execution time and fewer number of objects migrated.« less
Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang
2016-12-01
A significant number of therapeutic proteins are marketed as pre-filled syringes or other drug/device combination products and have been safely used in these formats for years. Silicone oil, which is used as lubricant, can migrate into the drug product and may interact with therapeutic proteins. In this study, particles in the size range of 0.2-5 μm and ≥1 μm as determined by resonant mass measurement and micro-flow imaging/light obscuration, respectively, resulted from silicone sloughing off the container barrel after agitation. The degree of droplet formation correlated well with the applied baked-on silicone levels of 13 μg and 94 μg per cartridge. Silicone migration was comparable in placebo, 2 mg/mL and 33 mg/mL IgG1 formulations containing 0.04% (w/v) polysorbate 20. Headspace substantially increased the formation of silicone droplets during agitation. The highest particle concentrations reached, however, were still very low compared to numbers described for spray-on siliconized containers. When applying adequate baked-on silicone levels below 100 μg, bake-on siliconization efficiently limits silicone migration into the drug product without compromising device functionality. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Daniel, Kathryne J.; Wyse, Rosemary F. G.
2018-05-01
The orbital angular momentum of individual stars in galactic discs can be permanently changed through torques from transient spiral patterns. Interactions at the corotation resonance dominate these changes and have the further property of conserving orbital circularity. We derived in an earlier paper an analytic criterion that an unperturbed stellar orbit must satisfy in order for such an interaction to occur, i.e. for it to be in a trapped orbit around corotation. We here use this criterion in an investigation of how the efficiency of induced radial migration for a population of disc stars varies with the angular momentum distribution of that population. We frame our results in terms of the velocity dispersion of the population, this being an easier observable than is the angular momentum distribution. Specifically, we investigate how the fraction of stars in trapped orbits at corotation varies with the velocity dispersion of the population, for a system with an assumed flat rotation curve. Our analytic results agree with the finding from simulations that radial migration is less effective in populations with `hotter' kinematics. We further quantify the dependence of this trapped fraction on the strength of the spiral pattern, finding a higher trapped fraction for higher amplitude perturbations.
NASA Astrophysics Data System (ADS)
Xiang, Yuren; Zhang, Fan; He, Junjie; Lian, Jiarong; Zeng, Pengju; Song, Jun; Qu, Junle
2018-04-01
The photo-conversion efficiency of perovskite solar cells (PSCs) has been improved considerably in recent years, but the poor stability of PSCs still prevents their commercialization. In this report, we use the rate of the integrated short-circuit current change (Drate) to investigate the performance degradation kinetics and identify the degradation of PSCs that is accelerated by the light current. The value of Drate increases by an order of magnitude from about 0.02 to 0.35 mA cm-2·min-1 after light-IV testing. The accelerated degradation progress is proven to be dominated by the hydration process and the migration of the iodine ions of the light current. The migration of the iodine ions enhances the hydration process through a chain reaction, enabling the formation of fast diffusion channels for both H2O and O2, which induce the rapid decomposition of the perovskite film and increase the density of the trap state. The X-ray photoelectron spectroscopy measurement data also indicate that the super oxygen may be formed due to the PCBM damage caused by the migration iodine ions. An understanding of the degradation acceleration mechanism would provide an insight into the effect of ion migration on the stability of PSCs.
Boron, Ignacio; Bustamante, Juan Pablo; Davidge, Kelly S; Singh, Sandip; Bowman, Lesley Ah; Tinajero-Trejo, Mariana; Carballal, Sebastián; Radi, Rafael; Poole, Robert K; Dikshit, Kanak; Estrin, Dario A; Marti, Marcelo A; Boechi, Leonardo
2015-01-01
Mycobacterium tuberculosis, the causative agent of human tuberculosis, has two proteins belonging to the truncated hemoglobin (trHb) family. Mt-trHbN presents well-defined internal hydrophobic tunnels that allow O 2 and • NO to migrate easily from the solvent to the active site, whereas Mt-trHbO possesses tunnels interrupted by a few bulky residues, particularly a tryptophan at position G8. Differential ligand migration rates allow Mt-trHbN to detoxify • NO, a crucial step for pathogen survival once under attack by the immune system, much more efficiently than Mt-trHbO. In order to investigate the differences between these proteins, we performed experimental kinetic measurements, • NO decomposition, as well as molecular dynamics simulations of the wild type Mt-trHbN and two mutants, VG8F and VG8W. These mutations affect both the tunnels accessibility as well as the affinity of distal site water molecules, thus modifying the ligand access to the iron. We found that a single mutation allows Mt-trHbN to acquire ligand migration rates comparable to those observed for Mt-trHbO, confirming that ligand migration is regulated by the internal tunnel architecture as well as by water molecules stabilized in the active site.
Influence of reinforcement mesh configuration for improvement of concrete durability
NASA Astrophysics Data System (ADS)
Pan, Chong-gen; Jin, Wei-liang; Mao, Jiang-hong; Zhang, Hua; Sun, Li-hao; Wei, Dong
2017-10-01
Steel bar in concrete structures under harsh environmental conditions, such as chlorine corrosion, seriously affects its service life. Bidirectional electromigration rehabilitation (BIEM) is a new method of repair technology for reinforced concrete structures in such chloride corrosion environments. By applying the BIEM, chloride ions can be removed from the concrete and the migrating corrosion inhibit can be moved to the steel surface. In conventional engineering, the concrete structure is often configured with a multi-layer steel mesh. However, the effect of the BIEM in such structures has not yet been investigated. In this paper, the relevant simulation test is carried out to study the migration law of chloride ions and the migrating corrosion inhibitor in a concrete specimen with complex steel mesh under different energizing modes. The results show that the efficiency of the BIEM increases 50% in both the monolayer steel mesh and the double-layer steel mesh. By using the single-sided BIEM, 87% of the chloride ions are removed from the steel surface. The different step modes can affect the chloride ion removal. The chloride ions within the range of the reinforcement protective cover are easier to be removed than those in the concrete between the two layers of steel mesh. However, the amount of migrating corrosion inhibitor is larger in the latter circumstances.
Jakubowska, Natalia; Beldì, Giorgia; Peychès Bach, Aurélie; Simoneau, Catherine
2014-01-01
This paper presents the outcome of the development, optimisation and validation at European Union level of an analytical method for using poly(2,6-diphenyl phenylene oxide--PPPO), which is stipulated in Regulation (EU) No. 10/2011, as food simulant E for testing specific migration from plastics into dry foodstuffs. Two methods for fortifying respectively PPPO and a low-density polyethylene (LDPE) film with surrogate substances that are relevant to food contact were developed. A protocol for cleaning the PPPO and an efficient analytical method were developed for the quantification of butylhydroxytoluene (BHT), benzophenone (BP), diisobutylphthalate (DiBP), bis(2-ethylhexyl) adipate (DEHA) and 1,2-cyclohexanedicarboxylic acid, diisononyl ester (DINCH) from PPPO. A protocol for a migration test from plastics using small migration cells was also developed. The method was validated by an inter-laboratory comparison (ILC) with 16 national reference laboratories for food contact materials in the European Union. This allowed for the first time data to be obtained on the precision and laboratory performance of both migration and quantification. The results showed that the validation ILC was successful even when taking into account the complexity of the exercise. The results showed that the method performance was 7-9% repeatability standard deviation (rSD) for most substances (regardless of concentration), with 12% rSD for the high level of BHT and for DiBP at very low levels. The reproducibility standard deviation results for the 16 European Union laboratories were in the range of 20-30% for the quantification from PPPO (for the three levels of concentrations of the five substances) and 15-40% from migration experiments from the fortified plastic at 60°C for 10 days and subsequent quantification. Considering the lack of data previously available in the literature, this work has demonstrated that the validation of a method is possible both for migration from a film and for quantification into a corresponding simulant for specific migration.
Effects of ROCK inhibitor Y-27632 on cell fusion through a microslit.
Wada, Ken-Ichi; Hosokawa, Kazuo; Ito, Yoshihiro; Maeda, Mizuo
2015-11-01
We previously reported a direct cytoplasmic transfer method using a microfluidic device, in which cell fusion was induced through a microslit (slit-through-fusion) by the Sendai virus envelope (HVJ-E) to prevent nuclear mixing. However, the method was impractical due to low efficiency of slit-through-fusion formation and insufficient prevention of nuclear mixing. The purpose of this study was to establish an efficient method for inducing slit-through-fusion without nuclear mixing. We hypothesized that modulation of cytoskeletal component can decrease nuclear migration through the microslit considering its functions. Here we report that supplementation with Y-27632, a specific ROCK inhibitor, significantly enhances cell fusion induction and prevention of nuclear mixing. Supplementation with Y-27632 increased the formation of slit-through-fusion efficiency by more than twofold. Disruption of F-actin by Y-27632 prevented nuclear migration between fused cells through the microslit. These two effects of Y-27632 led to promotion of the slit-through-fusion without nuclear mixing with a 16.5-fold higher frequency compared to our previous method (i.e., cell fusion induction by HVJ-E without supplementation with Y-27632). We also confirmed that mitochondria were successfully transferred to the fusion partner under conditions of Y-27632 supplementation. These findings demonstrate the practicality of our cell fusion system in producing direct cytoplasmic transfer between live cells. © 2015 Wiley Periodicals, Inc.
Barber, Jared; Tanase, Roxana; Yotov, Ivan
2016-06-01
Several Kalman filter algorithms are presented for data assimilation and parameter estimation for a nonlinear diffusion model of epithelial cell migration. These include the ensemble Kalman filter with Monte Carlo sampling and a stochastic collocation (SC) Kalman filter with structured sampling. Further, two types of noise are considered -uncorrelated noise resulting in one stochastic dimension for each element of the spatial grid and correlated noise parameterized by the Karhunen-Loeve (KL) expansion resulting in one stochastic dimension for each KL term. The efficiency and accuracy of the four methods are investigated for two cases with synthetic data with and without noise, as well as data from a laboratory experiment. While it is observed that all algorithms perform reasonably well in matching the target solution and estimating the diffusion coefficient and the growth rate, it is illustrated that the algorithms that employ SC and KL expansion are computationally more efficient, as they require fewer ensemble members for comparable accuracy. In the case of SC methods, this is due to improved approximation in stochastic space compared to Monte Carlo sampling. In the case of KL methods, the parameterization of the noise results in a stochastic space of smaller dimension. The most efficient method is the one combining SC and KL expansion. Copyright © 2016 Elsevier Inc. All rights reserved.
Santo Tomas, P
1999-01-01
This study examined policies in receiving countries, evaluated their effectiveness in protecting low skilled Filipino migrant workers, and discusses the potential for quantifying and objectifying labor migrant gains or losses. Data were obtained from focus groups among 10 technical managers of the Philippine Overseas Employment Administration and interviews with 10 policy-makers in order to establish a hierarchy of aims in labor migration and policy indicators. The aims are identified as good jobs abroad, an orderly process, efficient and fair recruitment, and easy transfers of remittances. Findings are that Philippine policies facilitate remittance transfers. Government was least effective in ensuring orderliness. Government was fairly effective in ensuring fairness and efficiency and ensuring good jobs overseas. It succeeded the most in ensuring that nationals can easily transfer their earnings. Allocation data reveal that more resources were expended on searching for good jobs and least on fairness and efficiency. Remittances increased after mandatory remittances were ended as imposed by the Marcos regime. De-skilling often resulted from overseas employment, but rehired workers received better pay on their second and third assignments. This research was exploratory and more research is needed for developing sensitive indicators and refining the process of evaluating key government policies. The Philippine Development Policy that encourages labor migration and protection of overseas workers is a necessity during the ongoing Asian economic crisis.
A GIS-based Model for Natural Gas Data Conversion
NASA Astrophysics Data System (ADS)
Bitik, E.; Seker, D. Z.; Denli, H. H.
2014-12-01
In Turkey gas utility sector has undergone major changes in terms of increased competition between gas providers, efforts in improving services, and applying new technological solutions. This paper discusses the challenges met by gas companies to switch from long workflows of gas distribution, sales and maintenance into IT driven efficient management of complex information both spatially and non-spatially. The aim of this study is migration of all gas data and information into a GIS environment in order to manage and operate all infrastructure investments with a Utility Management System. All data conversion model for migration was designed and tested during the study. A flowchart is formed to transfer the old data layers to the new structure based on geodatabase.
Using the High-Level Based Program Interface to Facilitate the Large Scale Scientific Computing
Shang, Yizi; Shang, Ling; Gao, Chuanchang; Lu, Guiming; Ye, Yuntao; Jia, Dongdong
2014-01-01
This paper is to make further research on facilitating the large-scale scientific computing on the grid and the desktop grid platform. The related issues include the programming method, the overhead of the high-level program interface based middleware, and the data anticipate migration. The block based Gauss Jordan algorithm as a real example of large-scale scientific computing is used to evaluate those issues presented above. The results show that the high-level based program interface makes the complex scientific applications on large-scale scientific platform easier, though a little overhead is unavoidable. Also, the data anticipation migration mechanism can improve the efficiency of the platform which needs to process big data based scientific applications. PMID:24574931
NASA Astrophysics Data System (ADS)
Mitchell, B.; Lee, D.; Lee, D.; Fujiwara, Y.; Dierolf, V.
2013-12-01
Europium doped gallium nitride (GaN:Eu) is a promising candidate as a material for red light emitting diodes. When Mg was co-doped into GaN:Eu, additional incorporation environments were discovered that show high excitation efficiency at room temperature and have been attributed to the coupling of Mg-H complexes to the majority Eu site. Electron beam irradiation, indirect and resonant (direct) laser excitation were found to modify these complexes, indicating that vibrational energy alone can trigger the migration of the H while the presence of additional charges and excess energy controls the type of reconfiguration and the activation of non-radiative decay channels.
NaCl osmotic perturbation can modulate hydration control in rabbit cornea.
Ruberti, Jeffrey W; Klyce, Stephen D
2003-03-01
The corneal endothelium transports solute from the stroma to the aqueous humor, maintaining corneal hydration. Currently, little is known about how this active transport system is controlled. The purpose of this study is to investigate in greater detail the corneal response to small NaCl osmotic perturbations using a more refined automatic thickness measurement system in a search for response signatures of transport control. Adult New Zealand White rabbit corneas were debrided of their epithelium, excised and mounted in perfusion chambers. The endothelium, thus isolated, was bathed in isotonic Glutathione Bicarbonate Ringer's (GBR) solution and the bare anterior stroma was covered with silicone oil. Following stabilization in isotonic GBR, the endothelial perfusate was altered by +/-15 mOsm or+/-45 mOsm for 1 hr and 45 min by addition or removal of NaCl and returned (reversal) to GBR for 1 hr and 45 min. An enhanced, automatic scanning specular microscope monitored stromal thickness. The effective membrane transport coefficients were determined from the stromal thickness vs. time curves using an established numerical model of corneal hydration dynamics. It was found that the small (+/-15 mOsm) NaCl perturbations of the rabbit corneal endothelium resulted in a rapid trans-endothelial stromal volume control response that was not reversible after return to GBR. Long after the expected dissipation of the induced transients, this thickness 'controlling' response ultimately resulted in a sustained net thinning of 14 microm following the hypotonic perturbation and reversal, and a net swelling of 16 microm following the hypertonic perturbation and reversal. Model calculations indicated that the change induced by the perturbation could be explained by an immediate and persistent reduction of the passive endothelial NaCl permeability by 26% for the -15 mOsm perturbation compared to the +15 mOsm perturbation. This change persisted even after return to GBR. In contrast, the larger (+/-45 mOsm) perturbations did not elicit a similar response consistently. Our data suggest that trans-endothelial fluid transport can be rapidly modulated to control stromal hydration in response to small NaCl osmotic stresses in a way that cushions the shock and reduces the change in corneal thickness. Moreover, this behavior is not reversible in the short term, and may assist the regulation of corneal hydration homeostatically.
Imaging Tumor Necrosis with Ferumoxytol
Aghighi, Maryam; Golovko, Daniel; Ansari, Celina; Marina, Neyssa M.; Pisani, Laura; Kurlander, Lonnie; Klenk, Christopher; Bhaumik, Srabani; Wendland, Michael; Daldrup-Link, Heike E.
2015-01-01
Objective Ultra-small superparamagnetic iron oxide nanoparticles (USPIO) are promising contrast agents for magnetic resonance imaging (MRI). USPIO mediated proton relaxation rate enhancement is strongly dependent on compartmentalization of the agent and can vary depending on their intracellular or extracellular location in the tumor microenvironment. We compared the T1- and T2-enhancement pattern of intracellular and extracellular USPIO in mouse models of cancer and pilot data from patients. A better understanding of these MR signal effects will enable non-invasive characterizations of the composition of the tumor microenvironment. Materials and Methods Six 4T1 and six MMTV-PyMT mammary tumors were grown in mice and imaged with ferumoxytol-enhanced MRI. R1 relaxation rates were calculated for different tumor types and different tumor areas and compared with histology. The transendothelial leakage rate of ferumoxytol was obtained by our measured relaxivity of ferumoxytol and compared between different tumor types, using a t-test. Additionally, 3 patients with malignant sarcomas were imaged with ferumoxytol-enhanced MRI. T1- and T2-enhancement patterns were compared with histopathology in a descriptive manner as a proof of concept for clinical translation of our observations. Results 4T1 tumors showed central areas of high signal on T1 and low signal on T2 weighted MR images, which corresponded to extracellular nanoparticles in a necrotic core on histopathology. MMTV-PyMT tumors showed little change on T1 but decreased signal on T2 weighted images, which correlated to compartmentalized nanoparticles in tumor associated macrophages. Only 4T1 tumors demonstrated significantly increased R1 relaxation rates of the tumor core compared to the tumor periphery (p<0.001). Transendothelial USPIO leakage was significantly higher for 4T1 tumors (3.4±0.9x10-3 mL/min/100cm3) compared to MMTV-PyMT tumors (1.0±0.9x10-3 mL/min/100 cm3). Likewise, ferumoxytol imaging in patients showed similar findings with high T1 signal in areas of tumor necrosis and low signal in areas of intracellularly compartmentalized iron. Conclusion Differential T1- and T2-enhancement patterns of USPIO in tumors enable conclusions about their intracellular and extracellular location. This information can be used to characterize the composition of the tumor microenvironment. PMID:26569397
Wei, Zhengrong; Nakamura, Takumi; Takeuchi, Satoshi; Tahara, Tahei
2011-06-01
Understanding ultrafast reactions, which proceed on a time scale of nuclear motions, requires a quantitative characterization of the structural dynamics. To track such structural changes with time, we studied a nuclear wavepacket motion in photoisomerization of a prototype cyanine dye, 1,1'-diethyl-4,4'-cyanine, by ultrafast pump-dump-probe measurements in solution. The temporal evolution of wavepacket motion was examined by monitoring the efficiency of stimulated emission dumping, which was obtained from the recovery of a ground-state bleaching signal. The dump efficiency versus pump-dump delay exhibited a finite rise time, and it became longer (97 fs → 330 fs → 390 fs) as the dump pulse was tuned to longer wavelengths (690 nm → 950 nm → 1200 nm). This result demonstrates a continuous migration of the leading edge of the wavepacket on the excited-state potential from the Franck-Condon region toward the potential minimum. A slowly decaying feature of the dump efficiency indicated a considerable broadening of the wavepacket over a wide range of the potential, which results in the spread of a population distribution on the flat S(1) potential energy surface. The rapid migration as well as broadening of the wavepacket manifests a continuous nature of the structural dynamics and provides an intuitive visualization of this ultrafast reaction. We also discussed experimental strategies to evaluate reliable dump efficiencies separately from other ultrafast processes and showed a high capability and possibility of the pump-dump-probe method for spectroscopic investigation of unexplored potential regions such as conical intersections. © 2011 American Chemical Society
Alcaide, Benito; Almendros, Pedro; Aragoncillo, Cristina; Busto, Eduardo; López-Calixto, Carmen G; Liras, Marta; de la Peña O'Shea, Víctor A; García-Sánchez, Alba; Stone, Hannah V
2018-05-28
New azahelicenes having interesting photophysical properties have been prepared in a four-step sequence. These [7]helicenocarbazoles are efficient blue luminophores, demonstrating the utility of gold catalysis in the preparation of advanced materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lonsdorf, Eric V.; Thogmartin, Wayne E.; Jacobi, Sarah; Coppen, Jorge; Davis, Amélie Y.; Fox, Timothy J.; Heglund, Patricia J.; Johnson, Rex; Jones, Tim; Kenow, Kevin P.; Lyons, James E.; Luke, Kirsten E.; Still, Shannon; Tavernia, Brian G.
2016-01-01
Conserving migratory birds is made especially difficult because of movement among spatially disparate locations across the annual cycle. In light of challenges presented by the scale and ecology of migratory birds, successful conservation requires integrating objectives, management, and monitoring across scales, from local management units to ecoregional and flyway administrative boundaries. We present an integrated approach using a spatially explicit energetic-based mechanistic bird migration model useful to conservation decision-making across disparate scales and locations. This model moves a mallard-like bird (Anas platyrhynchos), through spring and fall migration as a function of caloric gains and losses across a continental scale energy landscape. We predicted with this model that fall migration, where birds moved from breeding to wintering habitat, took a mean of 27.5 days of flight with a mean seasonal survivorship of 90.5% (95% CI = 89.2%, 91.9%) whereas spring migration took a mean of 23.5 days of flight with mean seasonal survivorship of 93.6% (95% CI = 92.5%, 94.7%). Sensitivity analyses suggested that survival during migration was sensitive to flight speed, flight cost, the amount of energy the animal could carry and the spatial pattern of energy availability, but generally insensitive to total energy availability per se. Nevertheless, continental patterns in the bird-use days occurred principally in relation to wetland cover and agricultural habitat in the fall. Bird-use days were highest in both spring and fall in the Mississippi Alluvial Valley and along the coast and near-shore environments of South Carolina. Spatial sensitivity analyses suggested that locations nearer to migratory endpoints were less important to survivorship; for instance, removing energy from a 1,036 km2 stopover site at a time from the Atlantic Flyway suggested coastal areas between New Jersey and North Carolina, including Chesapeake Bay and the North Carolina piedmont, are essential locations for efficient migration and increasing survivorship during spring migration but not locations in Ontario and Massachusetts. This sort of spatially explicit information may allow decision-makers to prioritize their conservation actions toward locations most influential to migratory success. Thus, this mechanistic model of avian migration provides a decision-analytic medium integrating the potential consequences of local actions to flyway-scale phenomena.
NASA Astrophysics Data System (ADS)
Wang, Ying; Zhou, Ji-lin; hui-gen, Liu; Meng, Zeyang
2017-10-01
Exoplanets discovered over the past decades have provided a new sample of giant exoplanets: hot Jupiters. For lack of enough materials in the current locations of hot Jupiters, they are perceived to form outside the snowline. Then, they migrate to the locations observed through interactions with gas disks or high-eccentricity mechanisms. We examined the efficiencies of different high-eccentricity mechanisms for forming hot Jupiters in near-coplanar multi-planet systems. These mechanisms include planet-planet scattering, the Kozai-Lidov mechanism, coplanar high-eccentricity migration, and secular chaos, as well as other two new mechanisms that we present in this work, which can produce hot Jupiters with high inclinations even in retrograde. We find that the Kozai-Lidov mechanism plays the most important role in producing hot Jupiters among these mechanisms. Secular chaos is not the usual channel for the formation of hot Jupiters due to the lack of an angular momentum deficit within {10}7{T}{in} (periods of the inner orbit). According to comparisons between the observations and simulations, we speculate that there are at least two populations of hot Jupiters. One population migrates into the boundary of tidal effects due to interactions with the gas disk, such as ups And b, WASP-47 b, and HIP 14810 b. These systems usually have at least two planets with lower eccentricities, and remain dynamically stable in compact orbital configurations. Another population forms through high-eccentricity mechanisms after the excitation of eccentricity due to dynamical instability. These kinds of hot Jupiters usually have Jupiter-like companions in distant orbits with moderate or high eccentricities.
Self-organization of bacterial biofilms is facilitated by extracellular DNA
Gloag, Erin S.; Turnbull, Lynne; Huang, Alan; Vallotton, Pascal; Wang, Huabin; Nolan, Laura M.; Mililli, Lisa; Hunt, Cameron; Lu, Jing; Osvath, Sarah R.; Monahan, Leigh G.; Cavaliere, Rosalia; Charles, Ian G.; Wand, Matt P.; Gee, Michelle L.; Prabhakar, Ranganathan; Whitchurch, Cynthia B.
2013-01-01
Twitching motility-mediated biofilm expansion is a complex, multicellular behavior that enables the active colonization of surfaces by many species of bacteria. In this study we have explored the emergence of intricate network patterns of interconnected trails that form in actively expanding biofilms of Pseudomonas aeruginosa. We have used high-resolution, phase-contrast time-lapse microscopy and developed sophisticated computer vision algorithms to track and analyze individual cell movements during expansion of P. aeruginosa biofilms. We have also used atomic force microscopy to examine the topography of the substrate underneath the expanding biofilm. Our analyses reveal that at the leading edge of the biofilm, highly coherent groups of bacteria migrate across the surface of the semisolid media and in doing so create furrows along which following cells preferentially migrate. This leads to the emergence of a network of trails that guide mass transit toward the leading edges of the biofilm. We have also determined that extracellular DNA (eDNA) facilitates efficient traffic flow throughout the furrow network by maintaining coherent cell alignments, thereby avoiding traffic jams and ensuring an efficient supply of cells to the migrating front. Our analyses reveal that eDNA also coordinates the movements of cells in the leading edge vanguard rafts and is required for the assembly of cells into the “bulldozer” aggregates that forge the interconnecting furrows. Our observations have revealed that large-scale self-organization of cells in actively expanding biofilms of P. aeruginosa occurs through construction of an intricate network of furrows that is facilitated by eDNA. PMID:23798445
Bai, Weiwei; Liu, Shuhui; Cao, Jiangping; Fan, Yingying; Xie, Qilong
2013-03-01
A new method was established for the simultaneous determination of the migration amounts of bisphenol A (BPA) and phenol from polycarbonate (PC) bottles based on subcritical water extraction (SWE) and high performance liquid chromatography. The optimum extraction conditions included an extraction temperature of 120 degree C, a pressure of 6.89 MPa (1000 psi), a static extraction time of 1 h and one cycle. Under the conditions, the migration amounts of the BPA ranged from 6.81 to 1116 micro g/g in 11 samples. Phenol was not detectable in 5 samples, and in other ones the migration amounts of phenol varied in the range of 3.25 -6. 08 micro g/g. The traditional soaking extraction experiments showed that PC was subjected to weak hydrolysis after long-time leaching. The BPA and phenol were separated in 8 min. Good linearities were obtained in the range of 0. 05 - 20 mg/L for BPA and 0.02 - 20 mg/L for phenol ( r > 0.999 7). The limits of detection were 7.6 micro g/L for BPA and 2.0 micro g/L for phenol. Intra-day and inter-day repeatabilities (expressed as RSD) were less than 5.21% and 11.63%, respectively. Compared with traditional water soaking extraction, the extraction efficiencies increased 49 - 106 times using this developed SWE method. The procedure is simple, rapid and environment friendly, and can be utilized to determine the migration amounts of BPA and phenol in PC bottles.
Wagh, Ajay A.; Roan, Esra; Chapman, Kenneth E.; Desai, Leena P.; Rendon, David A.; Eckstein, Eugene C.; Waters, Christopher M.
2008-01-01
Restoration of lung homeostasis following injury requires efficient wound healing by the epithelium. The mechanisms of lung epithelial wound healing include cell spreading and migration into the wounded area and later cell proliferation. We hypothesized that mechanical properties of cells vary near the wound edge, and this may provide cues to direct cell migration. To investigate this hypothesis, we measured variations in the stiffness of migrating human bronchial epithelial cells (16HBE cells) ∼2 h after applying a scratch wound. We used atomic force microscopy (AFM) in contact mode to measure the cell stiffness in 1.5-μm square regions at different locations relative to the wound edge. In regions far from the wound edge (>2.75 mm), there was substantial variation in the elastic modulus in specific cellular regions, but the median values measured from multiple fields were consistently lower than 5 kPa. At the wound edge, cell stiffness was significantly lower within the first 5 μm but increased significantly between 10 and 15 μm before decreasing again below the median values away from the wound edge. When cells were infected with an adenovirus expressing a dominant negative form of RhoA, cell stiffness was significantly decreased compared with cells infected with a control adenovirus. In addition, expression of dominant negative RhoA abrogated the peak increase in stiffness near the wound edge. These results suggest that cells near the wound edge undergo localized changes in cellular stiffness that may provide signals for cell spreading and migration. PMID:18487359