Stevens, Stewart G.; Brown, Chris M
2013-01-01
Recently large scale transcriptome and proteome datasets for human cells have become available. A striking finding from these studies is that the level of an mRNA typically predicts no more than 40% of the abundance of protein. This correlation represents the overall figure for all genes. We present here a bioinformatic analysis of translation efficiency – the rate at which mRNA is translated into protein. We have analysed those human datasets that include genome wide mRNA and protein levels determined in the same study. The analysis comprises five distinct human cell lines that together provide comparable data for 8,170 genes. For each gene we have used levels of mRNA and protein combined with protein stability data from the HeLa cell line to estimate translation efficiency. This was possible for 3,990 genes in one or more cell lines and 1,807 genes in all five cell lines. Interestingly, our analysis and modelling shows that for many genes this estimated translation efficiency has considerable consistency between cell lines. Some deviations from this consistency likely result from the regulation of protein degradation. Others are likely due to known translational control mechanisms. These findings suggest it will be possible to build improved models for the interpretation of mRNA expression data. The results we present here provide a view of translation efficiency for many genes. We provide an online resource allowing the exploration of translation efficiency in genes of interest within different cell lines (http://bioanalysis.otago.ac.nz/TranslationEfficiency). PMID:23460887
Evfratov, Sergey A.; Osterman, Ilya A.; Komarova, Ekaterina S.; Pogorelskaya, Alexandra M.; Rubtsova, Maria P.; Zatsepin, Timofei S.; Semashko, Tatiana A.; Kostryukova, Elena S.; Mironov, Andrey A.; Burnaev, Evgeny; Krymova, Ekaterina; Gelfand, Mikhail S.; Govorun, Vadim M.; Bogdanov, Alexey A.; Dontsova, Olga A.
2017-01-01
Abstract Yield of protein per translated mRNA may vary by four orders of magnitude. Many studies analyzed the influence of mRNA features on the translation yield. However, a detailed understanding of how mRNA sequence determines its propensity to be translated is still missing. Here, we constructed a set of reporter plasmid libraries encoding CER fluorescent protein preceded by randomized 5΄ untranslated regions (5΄-UTR) and Red fluorescent protein (RFP) used as an internal control. Each library was transformed into Escherchia coli cells, separated by efficiency of CER mRNA translation by a cell sorter and subjected to next generation sequencing. We tested efficiency of translation of the CER gene preceded by each of 48 natural 5΄-UTR sequences and introduced random and designed mutations into natural and artificially selected 5΄-UTRs. Several distinct properties could be ascribed to a group of 5΄-UTRs most efficient in translation. In addition to known ones, several previously unrecognized features that contribute to the translation enhancement were found, such as low proportion of cytidine residues, multiple SD sequences and AG repeats. The latter could be identified as translation enhancer, albeit less efficient than SD sequence in several natural 5΄-UTRs. PMID:27899632
Non-canonical mechanism for translational control in bacteria: synthesis of ribosomal protein S1
Boni, Irina V.; Artamonova, Valentina S.; Tzareva, Nina V.; Dreyfus, Marc
2001-01-01
Translation initiation region (TIR) of the rpsA mRNA encoding ribosomal protein S1 is one of the most efficient in Escherichia coli despite the absence of a canonical Shine–Dalgarno-element. Its high efficiency is under strong negative autogenous control, a puzzling phenomenon as S1 has no strict sequence specificity. To define sequence and structural elements responsible for translational efficiency and autoregulation of the rpsA mRNA, a series of rpsA′–′lacZ chromosomal fusions bearing various mutations in the rpsA TIR was created and tested for β-galactosidase activity in the absence and presence of excess S1. These in vivo results, as well as data obtained by in vitro techniques and phylogenetic comparison, allow us to propose a model for the structural and functional organization of the rpsA TIR specific for proteobacteria related to E.coli. According to the model, the high efficiency of translation initiation is provided by a specific fold of the rpsA leader forming a non-contiguous ribosome entry site, which is destroyed upon binding of free S1 when it acts as an autogenous repressor. PMID:11483525
Hockenberry, Adam J; Pah, Adam R; Jewett, Michael C; Amaral, Luís A N
2017-01-01
Studies dating back to the 1970s established that sequence complementarity between the anti-Shine-Dalgarno (aSD) sequence on prokaryotic ribosomes and the 5' untranslated region of mRNAs helps to facilitate translation initiation. The optimal location of aSD sequence binding relative to the start codon, the full extents of the aSD sequence and the functional form of the relationship between aSD sequence complementarity and translation efficiency have not been fully resolved. Here, we investigate these relationships by leveraging the sequence diversity of endogenous genes and recently available genome-wide estimates of translation efficiency. We show that-after accounting for predicted mRNA structure-aSD sequence complementarity increases the translation of endogenous mRNAs by roughly 50%. Further, we observe that this relationship is nonlinear, with translation efficiency maximized for mRNAs with intermediate levels of aSD sequence complementarity. The mechanistic insights that we observe are highly robust: we find nearly identical results in multiple datasets spanning three distantly related bacteria. Further, we verify our main conclusions by re-analysing a controlled experimental dataset. © 2017 The Authors.
Borkowski, Olivier; Goelzer, Anne; Schaffer, Marc; Calabre, Magali; Mäder, Ulrike; Aymerich, Stéphane; Jules, Matthieu; Fromion, Vincent
2016-05-17
Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.
Changes in Polysome Association of mRNA Throughout Growth and Development in Arabidopsis thaliana.
Yamasaki, Shotaro; Matsuura, Hideyuki; Demura, Taku; Kato, Ko
2015-11-01
Translational control is a key regulatory step in the expression of genes as proteins. In plant cells, the translational efficiency of mRNAs differs for different mRNA species, and the efficiency dynamically changes in various conditions. To gain a global view of translational control throughout growth and development, we performed genome-wide analysis of polysome association of mRNA during growth and leaf development in Arabidopsis thaliana by subjecting the mRNAs in polysomes to DNA microarray. This analysis revealed that the degree of polysome association of mRNA was different depending on the mRNA species, and the polysome association changed greatly throughout growth and development for each. In the growth stage, transcripts showed varying changes in polysome association from strongly depressed to unchanged, with the majority of transcripts showing dissociation from ribosomes. On the other hand, during leaf development, the polysome association of transcripts showed a normal distribution from repressed to activated mRNAs when comparing expanding and expanded leaves. In addition, functional category analysis of the microarray data suggested that translational control has a physiological significance in the plant growth and development process, especially in the categories of signaling and protein synthesis. In addition to this, we compared changes in polysome association of mRNAs between various conditions and characterized translational controls in each. This result suggested that mRNA translation might be controlled by complicated mechanisms for response to each condition. Our results highlight the importance of dynamic changes in mRNA translation in plant development and growth. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mie, Masayasu; Shimizu, Shun; Takahashi, Fumio
2008-08-15
The 5'-untranslated region (5'-UTR) of mRNAs functions as a translation enhancer, promoting translation efficiency. Many in vitro translation systems exhibit a reduced efficiency in protein translation due to decreased translation initiation. The use of a 5'-UTR sequence with high translation efficiency greatly enhances protein production in these systems. In this study, we have developed an in vitro selection system that favors 5'-UTRs with high translation efficiency using a ribosome display technique. A 5'-UTR random library, comprised of 5'-UTRs tagged with a His-tag and Renilla luciferase (R-luc) fusion, were in vitro translated in rabbit reticulocytes. By limiting the translation period, onlymore » mRNAs with high translation efficiency were translated. During translation, mRNA, ribosome and translated R-luc with His-tag formed ternary complexes. They were collected with translated His-tag using Ni-particles. Extracted mRNA from ternary complex was amplified using RT-PCR and sequenced. Finally, 5'-UTR with high translation efficiency was obtained from random 5'-UTR library.« less
Ribosome profiling-guided depletion of an mRNA increases cell growth rate and protein secretion
NASA Astrophysics Data System (ADS)
Kallehauge, Thomas Beuchert; Li, Shangzhong; Pedersen, Lasse Ebdrup; Ha, Tae Kwang; Ley, Daniel; Andersen, Mikael Rørdam; Kildegaard, Helene Faustrup; Lee, Gyun Min; Lewis, Nathan E.
2017-01-01
Recombinant protein production coopts the host cell machinery to provide high protein yields of industrial enzymes or biotherapeutics. However, since protein translation is energetically expensive and tightly controlled, it is unclear if highly expressed recombinant genes are translated as efficiently as host genes. Furthermore, it is unclear how the high expression impacts global translation. Here, we present the first genome-wide view of protein translation in an IgG-producing CHO cell line, measured with ribosome profiling. Through this we found that our recombinant mRNAs were translated as efficiently as the host cell transcriptome, and sequestered up to 15% of the total ribosome occupancy. During cell culture, changes in recombinant mRNA translation were consistent with changes in transcription, demonstrating that transcript levels influence specific productivity. Using this information, we identified the unnecessary resistance marker NeoR to be a highly transcribed and translated gene. Through siRNA knock-down of NeoR, we improved the production- and growth capacity of the host cell. Thus, ribosomal profiling provides valuable insights into translation in CHO cells and can guide efforts to enhance protein production.
Balanced Codon Usage Optimizes Eukaryotic Translational Efficiency
Qian, Wenfeng; Yang, Jian-Rong; Pearson, Nathaniel M.; Maclean, Calum; Zhang, Jianzhi
2012-01-01
Cellular efficiency in protein translation is an important fitness determinant in rapidly growing organisms. It is widely believed that synonymous codons are translated with unequal speeds and that translational efficiency is maximized by the exclusive use of rapidly translated codons. Here we estimate the in vivo translational speeds of all sense codons from the budding yeast Saccharomyces cerevisiae. Surprisingly, preferentially used codons are not translated faster than unpreferred ones. We hypothesize that this phenomenon is a result of codon usage in proportion to cognate tRNA concentrations, the optimal strategy in enhancing translational efficiency under tRNA shortage. Our predicted codon–tRNA balance is indeed observed from all model eukaryotes examined, and its impact on translational efficiency is further validated experimentally. Our study reveals a previously unsuspected mechanism by which unequal codon usage increases translational efficiency, demonstrates widespread natural selection for translational efficiency, and offers new strategies to improve synthetic biology. PMID:22479199
The control of lambda DNA terminase synthesis.
Murialdo, H; Davidson, A; Chow, S; Gold, M
1987-01-01
Nu1 and A, the genes coding for bacteriophage lambda DNA terminase, rank among the most poorly translated genes expressed in E. coli. To understand the reason for this low level of translation the genes were cloned into plasmids and their expression measured. In addition, the wild type DNA sequences immediately preceding the genes were reduced and modified. It was found that the elements that control translation are contained in the 100 base pairs upstream from the initiation codon. Interchanging these upstream sequences with those of an efficiently translated gene dramatically increased the translation of terminase subunits. It seems unlikely that the rare codons present in the genes, and any feature of their mRNA secondary structure play a role in the control of their translation. The elimination of cos from plasmids containing Nu1 and A also resulted in an increase in terminase production. This result suggests a role for cos in the control of late gene expression. The terminase subunit overproducer strains are potentially very useful for the design of improved DNA packaging and cosmid mapping techniques. Images PMID:3029667
Translational Redefinition of UGA Codons Is Regulated by Selenium Availability*
Howard, Michael T.; Carlson, Bradley A.; Anderson, Christine B.; Hatfield, Dolph L.
2013-01-01
Incorporation of selenium into ∼25 mammalian selenoproteins occurs by translational recoding whereby in-frame UGA codons are redefined to encode the selenium containing amino acid, selenocysteine (Sec). Here we applied ribosome profiling to examine the effect of dietary selenium levels on the translational mechanisms controlling selenoprotein synthesis in mouse liver. Dietary selenium levels were shown to control gene-specific selenoprotein expression primarily at the translation level by differential regulation of UGA redefinition and Sec incorporation efficiency, although effects on translation initiation and mRNA abundance were also observed. Direct evidence is presented that increasing dietary selenium causes a vast increase in ribosome density downstream of UGA-Sec codons for a subset of selenoprotein mRNAs and that the selenium-dependent effects on Sec incorporation efficiency are mediated in part by the degree of Sec-tRNA[Ser]Sec Um34 methylation. Furthermore, we find evidence for translation in the 5′-UTRs for a subset of selenoproteins and for ribosome pausing near the UGA-Sec codon in those mRNAs encoding the selenoproteins most affected by selenium availability. These data illustrate how dietary levels of the trace element selenium can alter the readout of the genetic code to affect the expression of an entire class of proteins. PMID:23696641
Ji, Yingbiao
2017-01-01
The RNA-binding proteins (RBPs) play a pivotal role in controlling gene expression through posttranscriptional processes. As the trans-acting factors, RBPs interact with the cis-regulatory elements located within mRNAs to regulate mRNA translational efficiency. Adding a new-layer regulation, recent studies suggest that poly(ADP-ribosyl)ation of the RNA-binding proteins often inhibit the RNA-binding ability of RBPs, thus regulating RBP-dependent mRNA metabolism including translational control. Here, we describe a biotin-based UV cross-linking method to determine if excessive accumulation of pADPr in the cell disrupts the interaction between RBPs and their target mRNAs. In addition, we illustrate the protocol of using the luciferase reporter assay to determine the effect of poly(ADP-ribosyl)ation on mRNA translation.
Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization
NASA Astrophysics Data System (ADS)
Engelis, Nikolaos G.; Anastasaki, Athina; Nurumbetov, Gabit; Truong, Nghia P.; Nikolaou, Vasiliki; Shegiwal, Ataulla; Whittaker, Michael R.; Davis, Thomas P.; Haddleton, David M.
2017-02-01
Translating the precise monomer sequence control achieved in nature over macromolecular structure (for example, DNA) to whole synthetic systems has been limited due to the lack of efficient synthetic methodologies. So far, chemists have only been able to synthesize monomer sequence-controlled macromolecules by means of complex, time-consuming and iterative chemical strategies such as solid-state Merrifield-type approaches or molecularly dissolved solution-phase systems. Here, we report a rapid and quantitative synthesis of sequence-controlled multiblock polymers in discrete stable nanoscale compartments via an emulsion polymerization approach in which a vinyl-terminated macromolecule is used as an efficient chain-transfer agent. This approach is environmentally friendly, fully translatable to industry and thus represents a significant advance in the development of complex macromolecule synthesis, where a high level of molecular precision or monomer sequence control confers potential for molecular targeting, recognition and biocatalysis, as well as molecular information storage.
Miras, Manuel; Rodríguez-Hernández, Ana M; Romero-López, Cristina; Berzal-Herranz, Alfredo; Colchero, Jaime; Aranda, Miguel A; Truniger, Verónica
2018-01-01
In eukaryotes, the formation of a 5'-cap and 3'-poly(A) dependent protein-protein bridge is required for translation of its mRNAs. In contrast, several plant virus RNA genomes lack both of these mRNA features, but instead have a 3'-CITE (for cap-independent translation enhancer), a RNA element present in their 3'-untranslated region that recruits translation initiation factors and is able to control its cap-independent translation. For several 3'-CITEs, direct RNA-RNA long-distance interactions based on sequence complementarity between the 5'- and 3'-ends are required for efficient translation, as they bring the translation initiation factors bound to the 3'-CITE to the 5'-end. For the carmovirus melon necrotic spot virus (MNSV), a 3'-CITE has been identified, and the presence of its 5'-end in cis has been shown to be required for its activity. Here, we analyze the secondary structure of the 5'-end of the MNSV RNA genome and identify two highly conserved nucleotide sequence stretches that are complementary to the apical loop of its 3'-CITE. In in vivo cap-independent translation assays with mutant constructs, by disrupting and restoring sequence complementarity, we show that the interaction between the 3'-CITE and at least one complementary sequence in the 5'-end is essential for virus RNA translation, although efficient virus translation and multiplication requires both connections. The complementary sequence stretches are invariant in all MNSV isolates, suggesting that the dual 5'-3' RNA:RNA interactions are required for optimal MNSV cap-independent translation and multiplication.
NRF2: Translating the Redox Code
Tummala, Krishna S.; Kottakis, Filippos; Bardeesy, Nabeel
2016-01-01
Cancer requires mechanisms to mitigate reactive oxygen species (ROS) generated during rapid growth, such as induction of the antioxidant transcription factor, Nrf2. However, the targets of ROS-mediated cytotoxicity are unclear. Recent studies in pancreatic cancer show that redox control by Nrf2 prevents cysteine oxidation of the mRNA translational machinery, thereby supporting efficient protein synthesis. PMID:27555347
Batman, Angela M.; Miles, Michael F.
2015-01-01
Alcohol use disorder (AUD) and its sequelae impose a major burden on the public health of the United States, and adequate long-term control of this disorder has not been achieved. Molecular and behavioral basic science research findings are providing the groundwork for understanding the mechanisms underlying AUD and have identified multiple candidate targets for ongoing clinical trials. However, the translation of basic research or clinical findings into improved therapeutic approaches for AUD must become more efficient. Translational research is a multistage process of streamlining the movement of basic biomedical research findings into clinical research and then to the clinical target populations. This process demands efficient bidirectional communication across basic, applied, and clinical science as well as with clinical practitioners. Ongoing work suggests rapid progress is being made with an evolving translational framework within the alcohol research field. This is helped by multiple interdisciplinary collaborative research structures that have been developed to advance translational work on AUD. Moreover, the integration of systems biology approaches with collaborative clinical studies may yield novel insights for future translational success. Finally, appreciation of genetic variation in pharmacological or behavioral treatment responses and optimal communication from bench to bedside and back may strengthen the success of translational research applications to AUD. PMID:26259085
Translating Alcohol Research: Opportunities and Challenges.
Batman, Angela M; Miles, Michael F
2015-01-01
Alcohol use disorder (AUD) and its sequelae impose a major burden on the public health of the United States, and adequate long-term control of this disorder has not been achieved. Molecular and behavioral basic science research findings are providing the groundwork for understanding the mechanisms underlying AUD and have identified multiple candidate targets for ongoing clinical trials. However, the translation of basic research or clinical findings into improved therapeutic approaches for AUD must become more efficient. Translational research is a multistage process of stream-lining the movement of basic biomedical research findings into clinical research and then to the clinical target populations. This process demands efficient bidirectional communication across basic, applied, and clinical science as well as with clinical practitioners. Ongoing work suggests rapid progress is being made with an evolving translational framework within the alcohol research field. This is helped by multiple interdisciplinary collaborative research structures that have been developed to advance translational work on AUD. Moreover, the integration of systems biology approaches with collaborative clinical studies may yield novel insights for future translational success. Finally, appreciation of genetic variation in pharmacological or behavioral treatment responses and optimal communication from bench to bedside and back may strengthen the success of translational research applications to AUD.
Böhm, H; Gross, B; Gaestel, M; Bommer, U A; Ryffel, G; Bielka, H
1991-01-01
The growth-related protein p23 of the Ehrlich ascites tumor (EAT) is preferentially expressed in the exponentially growing tumor; its synthesis is translationally controlled. p23 mRNA is efficiently translated in the wheat germ cell-free lysate. In contrast, p23 mRNA present in poly(A)+RNA isolated from EAT is not translated in cell-free systems of EAT and reticulocytes. Moreover, translation of a p23 transcript is inhibited in the presence of total poly(A)+RNA. This inhibition is abolished by the removal of the 5'-UTR of the p23 transcript. Solution hybridization/RNase protection experiments point to the presence of a nucleotide sequence complementary to the 5'-UTR of p23 mRNA which might be involved in p23 mRNA inhibition.
Translational Control of Viral Gene Expression in Eukaryotes
Gale, Michael; Tan, Seng-Lai; Katze, Michael G.
2000-01-01
As obligate intracellular parasites, viruses rely exclusively on the translational machinery of the host cell for the synthesis of viral proteins. This relationship has imposed numerous challenges on both the infecting virus and the host cell. Importantly, viruses must compete with the endogenous transcripts of the host cell for the translation of viral mRNA. Eukaryotic viruses have thus evolved diverse mechanisms to ensure translational efficiency of viral mRNA above and beyond that of cellular mRNA. Mechanisms that facilitate the efficient and selective translation of viral mRNA may be inherent in the structure of the viral nucleic acid itself and can involve the recruitment and/or modification of specific host factors. These processes serve to redirect the translation apparatus to favor viral transcripts, and they often come at the expense of the host cell. Accordingly, eukaryotic cells have developed antiviral countermeasures to target the translational machinery and disrupt protein synthesis during the course of virus infection. Not to be outdone, many viruses have answered these countermeasures with their own mechanisms to disrupt cellular antiviral pathways, thereby ensuring the uncompromised translation of virion proteins. Here we review the varied and complex translational programs employed by eukaryotic viruses. We discuss how these translational strategies have been incorporated into the virus life cycle and examine how such programming contributes to the pathogenesis of the host cell. PMID:10839817
Polysome Fractionation to Analyze mRNA Distribution Profiles.
Panda, Amaresh C; Martindale, Jennifer L; Gorospe, Myriam
2017-02-05
Eukaryotic cells adapt to changes in external or internal signals by precisely modulating the expression of specific gene products. The expression of protein-coding genes is controlled at the transcriptional and post-transcriptional levels. Among the latter steps, the regulation of translation is particularly important in cellular processes that require rapid changes in protein expression patterns. The translational efficiency of mRNAs is altered by RNA-binding proteins (RBPs) and noncoding (nc)RNAs such as microRNAs (Panda et al. , 2014a and 2014b; Abdelmohsen et al. , 2014). The impact of factors that regulate selective mRNA translation is a critical question in RNA biology. Polyribosome (polysome) fractionation analysis is a powerful method to assess the association of ribosomes with a given mRNA. It provides valuable information about the translational status of that mRNA, depending on the number of ribosomes with which they are associated, and identifies mRNAs that are not translated (Panda et al. , 2016). mRNAs associated with many ribosomes form large polysomes that are predicted to be actively translated, while mRNAs associated with few or no ribosomes are expected to be translated poorly if at all. In sum, polysome fractionation analysis allows the direct determination of translation efficiencies at the level of the whole transcriptome as well as individual mRNAs.
Nakamura, Masayuki; Sugiura, Masahiro
2007-01-01
Codon usage in chloroplasts is different from that in prokaryotic and eukaryotic nuclear genomes. However, no experimental approach has been made to analyse the translation efficiency of individual codons in chloroplasts. We devised an in vitro assay for translation efficiencies using synthetic mRNAs, and measured the translation efficiencies of five synonymous codon groups in tobacco chloroplasts. Among four alanine codons (GCN, where N is U, C, A or G), GCU was the most efficient for translation, whereas the chloroplast genome lacks tRNA genes corresponding to GCU. Phenylalanine and tyrosine are each encoded by two codons (UUU/C and UAU/C, respectively). Phenylalanine UUC and tyrosine UAC were translated more than twice as efficiently than UUU and UAU, respectively, contrary to their codon usage, whereas translation efficiencies of synonymous codons for alanine, aspartic acid and asparagine were parallel to their codon usage. These observations indicate that translation efficiencies of individual codons are not always correlated with codon usage in vitro in chloroplasts. This raises an important issue for foreign gene expression in chloroplasts.
How Messenger RNA and Nascent Chain Sequences Regulate Translation Elongation.
Choi, Junhong; Grosely, Rosslyn; Prabhakar, Arjun; Lapointe, Christopher P; Wang, Jinfan; Puglisi, Joseph D
2018-06-20
Translation elongation is a highly coordinated, multistep, multifactor process that ensures accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of translated messenger RNA (mRNA). Although translation elongation is heavily regulated by external factors, there is clear evidence that mRNA and nascent-peptide sequences control elongation dynamics, determining both the sequence and structure of synthesized proteins. Advances in methods have driven experiments that revealed the basic mechanisms of elongation as well as the mechanisms of regulation by mRNA and nascent-peptide sequences. In this review, we highlight how mRNA and nascent-peptide elements manipulate the translation machinery to alter the dynamics and pathway of elongation.
Studtmann, Katrin; Ölschläger-Schütt, Janin; Buck, Friedrich; Richter, Dietmar; Sala, Carlo; Bockmann, Jürgen; Kindler, Stefan; Kreienkamp, Hans-Jürgen
2014-01-01
Local protein synthesis in dendrites enables neurons to selectively change the protein complement of individual postsynaptic sites. Though it is generally assumed that this mechanism requires tight translational control of dendritically transported mRNAs, it is unclear how translation of dendritic mRNAs is regulated. We have analyzed here translational control elements of the dendritically localized mRNA coding for the postsynaptic scaffold protein Shank1. In its 5′ region, the human Shank1 mRNA exhibits two alternative translation initiation sites (AUG+1 and AUG+214), three canonical upstream open reading frames (uORFs1-3) and a high GC content. In reporter assays, fragments of the 5′UTR with high GC content inhibit translation, suggesting a contribution of secondary structures. uORF3 is most relevant to translation control as it overlaps with the first in frame start codon (AUG+1), directing translation initiation to the second in frame start codon (AUG+214). Surprisingly, our analysis points to an additional uORF initiated at a non-canonical ACG start codon. Mutation of this start site leads to an almost complete loss of translation initiation at AUG+1, demonstrating that this unconventional uORF is required for Shank1 synthesis. Our data identify a novel mechanism whereby initiation at a non-canonical site allows for translation of the main Shank1 ORF despite a highly structured 5′UTR. PMID:24533096
Bolinger, Cheryl; Boris-Lawrie, Kathleen
2009-01-01
Retroviruses have evolved multiple strategies to direct the synthesis of a complex proteome from a single primary transcript. Their mechanisms are modulated by a breadth of virus-host interactions, which are of significant fundamental interest because they ultimately affect the efficiency of virus replication and disease pathogenesis. Motifs located within the untranslated region (UTR) of the retroviral RNA have established roles in transcriptional trans-activation, RNA packaging, and genome reverse transcription; and a growing literature has revealed a necessary role of the UTR in modulating the efficiency of viral protein synthesis. Examples include a 5' UTR post-transcriptional control element (PCE), present in at least eight retroviruses, that interacts with cellular RNA helicase A to facilitate cap-dependent polyribosome association; and 3' UTR constitutive transport element (CTE) of Mason-Pfizer monkey virus that interacts with Tap/NXF1 and SR protein 9G8 to facilitate RNA export and translational utilization. By contrast, nuclear protein hnRNP E1 negatively modulates HIV-1 Gag, Env, and Rev protein synthesis. Alternative initiation strategies by ribosomal frameshifting and leaky scanning enable polycistronic translation of the cap-dependent viral transcript. Other studies posit cap-independent translation initiation by internal ribosome entry at structural features of the 5' UTR of selected retroviruses. The retroviral armamentarium also commands mechanisms to counter cellular post-transcriptional innate defenses, including protein kinase R, 2',5'-oligoadenylate synthetase and the small RNA pathway. This review will discuss recent and historically-recognized insights into retrovirus translational control. The expanding knowledge of retroviral post-transcriptional control is vital to understanding the biology of the retroviral proteome. In a broad perspective, each new insight offers a prospective target for antiviral therapy and strategic improvement of gene transfer vectors. PMID:19166625
Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement efficiency
2012-01-01
Background Whole plants or plant cell cultures can serve as low cost bioreactors to produce massive amounts of a specific protein for pharmacological or industrial use. To maximize protein expression, translation of mRNA must be optimized. Many plant viral RNAs harbor extremely efficient translation enhancers. However, few of these different translation elements have been compared side-by-side. Thus, it is unclear which are the most efficient translation enhancers. Here, we compare the effects of untranslated regions (UTRs) containing translation elements from six plant viruses on translation in wheat germ extract and in monocotyledenous and dicotyledenous plant cells. Results The highest expressing uncapped mRNAs contained viral UTRs harboring Barley yellow dwarf virus (BYDV)-like cap-independent translation elements (BTEs). The BYDV BTE conferred the most efficient translation of a luciferase reporter in wheat germ extract and oat protoplasts, while uncapped mRNA containing the BTE from Tobacco necrosis virus-D translated most efficiently in tobacco cells. Capped mRNA containing the Tobacco mosaic virus omega sequence was the most efficient mRNA in tobacco cells. UTRs from Satellite tobacco necrosis virus, Tomato bushy stunt virus, and Crucifer-infecting tobamovirus (crTMV) did not stimulate translation efficiently. mRNA with the crTMV 5′ UTR was unstable in tobacco protoplasts. Conclusions BTEs confer the highest levels of translation of uncapped mRNAs in vitro and in vivo, while the capped omega sequence is most efficient in tobacco cells. These results provide a basis for understanding mechanisms of translation enhancement, and for maximizing protein synthesis in cell-free systems, transgenic plants, or in viral expression vectors. PMID:22559081
Jin, Erqing; Wong, Lynn; Jiao, Yun; Engel, Jake; Holdridge, Benjamin; Xu, Peng
2017-12-01
Engineering cell factories for producing biofuels and pharmaceuticals has spurred great interests to develop rapid and efficient synthetic biology tools customized for modular pathway engineering. Along the way, combinatorial gene expression control through modification of regulatory element offered tremendous opportunity for fine-tuning gene expression and generating digital-like genetic circuits. In this report, we present an efficient evolutionary approach to build a range of regulatory control elements. The reported method allows for rapid construction of promoter, 5'UTR, terminator and trans -activating RNA libraries. Synthetic overlapping oligos with high portion of degenerate nucleotides flanking the regulatory element could be efficiently assembled to a vector expressing fluorescence reporter. This approach combines high mutation rate of the synthetic DNA with the high assembly efficiency of Gibson Mix. Our constructed library demonstrates broad range of transcriptional or translational gene expression dynamics. Specifically, both the promoter library and 5'UTR library exhibits gene expression dynamics spanning across three order of magnitude. The terminator library and trans -activating RNA library displays relatively narrowed gene expression pattern. The reported study provides a versatile toolbox for rapidly constructing a large family of prokaryotic regulatory elements. These libraries also facilitate the implementation of combinatorial pathway engineering principles and the engineering of more efficient microbial cell factory for various biomanufacturing applications.
RNA helicase A modulates translation of HIV-1 and infectivity of progeny virions
Bolinger, Cheryl; Sharma, Amit; Singh, Deepali; Yu, Lianbo; Boris-Lawrie, Kathleen
2010-01-01
Retroviruses rely on host RNA-binding proteins to modulate various steps in their replication. Previously several animal retroviruses were determined to mediate Dhx9/RNA helicase A (RHA) interaction with a 5′ terminal post-transcriptional control element (PCE) for efficient translation. Herein PCE reporter assays determined HTLV-1 and HIV-1 RU5 confer orientation-dependent PCE activity. The effect of Dhx9/RHA down-regulation and rescue with siRNA-resistant RHA on expression of HIV-1NL4–3 provirus determined that RHA is necessary for efficient HIV-1 RNA translation and requires ATPase-dependent helicase function. Quantitative analysis determined HIV-1 RNA steady-state and cytoplasmic accumulation were not reduced; rather the translational activity of viral RNA was reduced. Western blotting determined that RHA-deficient virions assemble with Lys-tRNA synthetase, exhibit processed reverse transcriptase and contain similar level of viral RNA, but they are poorly infectious on primary lymphocytes and HeLa cells. The results demonstrate RHA is an important host factor within the virus-producer cell and within the viral particle. The identification of RHA-dependent PCE activity in cellular junD RNA and in six of seven genera of Retroviridae suggests conservation of this translational control mechanism among vertebrates, and convergent evolution of Retroviridae to utilize this host mechanism. PMID:20007598
NRF2: Translating the Redox Code.
Tummala, Krishna S; Kottakis, Filippos; Bardeesy, Nabeel
2016-10-01
Cancer requires mechanisms to mitigate reactive oxygen species (ROS) generated during rapid growth, such as induction of the antioxidant transcription factor, Nrf2. However, the targets of ROS-mediated cytotoxicity are unclear. Recent studies in pancreatic cancer show that redox control by Nrf2 prevents cysteine oxidation of the mRNA translational machinery, thereby supporting efficient protein synthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Holstein, Josephin M; Anhäuser, Lea; Rentmeister, Andrea
2016-08-26
The 5'-cap is a hallmark of eukaryotic mRNAs and plays fundamental roles in RNA metabolism, ranging from quality control to export and translation. Modifying the 5'-cap may thus enable modulation of the underlying processes and investigation or tuning of several biological functions. A straightforward approach is presented for the efficient production of a range of N7-modified caps based on the highly promiscuous methyltransferase Ecm1. We show that these, as well as N(2) -modified 5'-caps, can be used to tune translation of the respective mRNAs both in vitro and in cells. Appropriate modifications allow subsequent bioorthogonal chemistry, as demonstrated by intracellular live-cell labeling of a target mRNA. The efficient and versatile N7 manipulation of the mRNA cap makes mRNAs amenable to both modulation of their biological function and intracellular labeling, and represents a valuable addition to the chemical biology toolbox. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tran, Lee; Hanavan, Paul D; Campbell, Latoya E; De Filippis, Elena; Lake, Douglas F; Coletta, Dawn K; Roust, Lori R; Mandarino, Lawrence J; Carroll, Chad C; Katsanos, Christos S
2016-01-01
Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = - 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish impaired β-F1-ATPase translation as an important consequence of obesity.
Translation efficiency is determined by both codon bias and folding energy
Tuller, Tamir; Waldman, Yedael Y.; Kupiec, Martin; Ruppin, Eytan
2010-01-01
Synonymous mutations do not alter the protein produced yet can have a significant effect on protein levels. The mechanisms by which this effect is achieved are controversial; although some previous studies have suggested that codon bias is the most important determinant of translation efficiency, a recent study suggested that mRNA folding at the beginning of genes is the dominant factor via its effect on translation initiation. Using the Escherichia coli and Saccharomyces cerevisiae transcriptomes, we conducted a genome-scale study aiming at dissecting the determinants of translation efficiency. There is a significant association between codon bias and translation efficiency across all endogenous genes in E. coli and S. cerevisiae but no association between folding energy and translation efficiency, demonstrating the role of codon bias as an important determinant of translation efficiency. However, folding energy does modulate the strength of association between codon bias and translation efficiency, which is maximized at very weak mRNA folding (i.e., high folding energy) levels. We find a strong correlation between the genomic profiles of ribosomal density and genomic profiles of folding energy across mRNA, suggesting that lower folding energies slow down the ribosomes and decrease translation efficiency. Accordingly, we find that selection forces act near uniformly to decrease the folding energy at the beginning of genes. In summary, these findings testify that in endogenous genes, folding energy affects translation efficiency in a global manner that is not related to the expression levels of individual genes, and thus cannot be detected by correlation with their expression levels. PMID:20133581
Man, Orna; Pilpel, Yitzhak
2007-03-01
A major challenge in comparative genomics is to understand how phenotypic differences between species are encoded in their genomes. Phenotypic divergence may result from differential transcription of orthologous genes, yet less is known about the involvement of differential translation regulation in species phenotypic divergence. In order to assess translation effects on divergence, we analyzed approximately 2,800 orthologous genes in nine yeast genomes. For each gene in each species, we predicted translation efficiency, using a measure of the adaptation of its codons to the organism's tRNA pool. Mining this data set, we found hundreds of genes and gene modules with correlated patterns of translational efficiency across the species. One signal encompassed entire modules that are either needed for oxidative respiration or fermentation and are efficiently translated in aerobic or anaerobic species, respectively. In addition, the efficiency of translation of the mRNA splicing machinery strongly correlates with the number of introns in the various genomes. Altogether, we found extensive selection on synonymous codon usage that modulates translation according to gene function and organism phenotype. We conclude that, like factors such as transcription regulation, translation efficiency affects and is affected by the process of species divergence.
Atger, Florian; Gobet, Cédric; Marquis, Julien; Martin, Eva; Wang, Jingkui; Weger, Benjamin; Lefebvre, Grégory; Descombes, Patrick; Naef, Felix; Gachon, Frédéric
2015-01-01
Diurnal oscillations of gene expression are a hallmark of rhythmic physiology across most living organisms. Such oscillations are controlled by the interplay between the circadian clock and feeding rhythms. Although rhythmic mRNA accumulation has been extensively studied, comparatively less is known about their transcription and translation. Here, we quantified simultaneously temporal transcription, accumulation, and translation of mouse liver mRNAs under physiological light–dark conditions and ad libitum or night-restricted feeding in WT and brain and muscle Arnt-like 1 (Bmal1)-deficient animals. We found that rhythmic transcription predominantly drives rhythmic mRNA accumulation and translation for a majority of genes. Comparison of wild-type and Bmal1 KO mice shows that circadian clock and feeding rhythms have broad impact on rhythmic gene expression, Bmal1 deletion affecting surprisingly both transcriptional and posttranscriptional levels. Translation efficiency is differentially regulated during the diurnal cycle for genes with 5′-Terminal Oligo Pyrimidine tract (5′-TOP) sequences and for genes involved in mitochondrial activity, many harboring a Translation Initiator of Short 5′-UTR (TISU) motif. The increased translation efficiency of 5′-TOP and TISU genes is mainly driven by feeding rhythms but Bmal1 deletion also affects amplitude and phase of translation, including TISU genes. Together this study emphasizes the complex interconnections between circadian and feeding rhythms at several steps ultimately determining rhythmic gene expression and translation. PMID:26554015
Accurate, Streamlined Analysis of mRNA Translation by Sucrose Gradient Fractionation
Aboulhouda, Soufiane; Di Santo, Rachael; Therizols, Gabriel; Weinberg, David
2017-01-01
The efficiency with which proteins are produced from mRNA molecules can vary widely across transcripts, cell types, and cellular states. Methods that accurately assay the translational efficiency of mRNAs are critical to gaining a mechanistic understanding of post-transcriptional gene regulation. One way to measure translational efficiency is to determine the number of ribosomes associated with an mRNA molecule, normalized to the length of the coding sequence. The primary method for this analysis of individual mRNAs is sucrose gradient fractionation, which physically separates mRNAs based on the number of bound ribosomes. Here, we describe a streamlined protocol for accurate analysis of mRNA association with ribosomes. Compared to previous protocols, our method incorporates internal controls and improved buffer conditions that together reduce artifacts caused by non-specific mRNA–ribosome interactions. Moreover, our direct-from-fraction qRT-PCR protocol eliminates the need for RNA purification from gradient fractions, which greatly reduces the amount of hands-on time required and facilitates parallel analysis of multiple conditions or gene targets. Additionally, no phenol waste is generated during the procedure. We initially developed the protocol to investigate the translationally repressed state of the HAC1 mRNA in S. cerevisiae, but we also detail adapted procedures for mammalian cell lines and tissues. PMID:29170751
Tran, Lee; Hanavan, Paul D.; Campbell, Latoya E.; De Filippis, Elena; Lake, Douglas F.; Coletta, Dawn K.; Roust, Lori R.; Mandarino, Lawrence J.; Carroll, Chad C.; Katsanos, Christos S.
2016-01-01
Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = – 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish impaired β-F1-ATPase translation as an important consequence of obesity. PMID:27532680
Aranda-Orgillés, Beatriz; Rutschow, Désirée; Zeller, Raphael; Karagiannidis, Antonios I.; Köhler, Andrea; Chen, Changwei; Wilson, Timothy; Krause, Sven; Roepcke, Stefan; Lilley, David; Schneider, Rainer; Schweiger, Susann
2011-01-01
We have shown previously that the ubiquitin ligase MID1, mutations of which cause the midline malformation Opitz BBB/G syndrome (OS), serves as scaffold for a microtubule-associated protein complex that regulates protein phosphatase 2A (PP2A) activity in a ubiquitin-dependent manner. Here, we show that the MID1 protein complex associates with mRNAs via a purine-rich sequence motif called MIDAS (MID1 association sequence) and thereby increases stability and translational efficiency of these mRNAs. Strikingly, inclusion of multiple copies of the MIDAS motif into mammalian mRNAs increases production of the encoded proteins up to 20-fold. Mutated MID1, as found in OS patients, loses its influence on MIDAS-containing mRNAs, suggesting that the malformations in OS patients could be caused by failures in the regulation of cytoskeleton-bound protein translation. This is supported by the observation that the majority of mRNAs that carry MIDAS motifs is involved in developmental processes and/or energy homeostasis. Further analysis of one of the proteins encoded by a MIDAS-containing mRNA, namely PDPK-1 (3-phosphoinositide dependent protein kinase-1), which is an important regulator of mammalian target of rapamycin/PP2A signaling, showed that PDPK-1 protein synthesis is significantly reduced in cells from an OS patient compared with an age-matched control and can be rescued by functional MID1. Together, our data uncover a novel messenger ribonucleoprotein complex that regulates microtubule-associated protein translation. They suggest a novel mechanism underlying OS and point at an enormous potential of the MIDAS motif to increase the efficiency of biotechnological protein production in mammalian cells. PMID:21930711
Dana, Alexandra; Tuller, Tamir
2014-12-01
Gene translation modeling and prediction is a fundamental problem that has numerous biomedical implementations. In this work we present a novel, user-friendly tool/index for calculating the mean of the typical decoding rates that enables predicting translation elongation efficiency of protein coding genes for different tissue types, developmental stages, and experimental conditions. The suggested translation efficiency index is based on the analysis of the organism's ribosome profiling data. This index could be used for example to predict changes in translation elongation efficiency of lowly expressed genes that usually have relatively low and/or biased ribosomal densities and protein levels measurements, or can be used for example for predicting translation efficiency of new genetically engineered genes. We demonstrate the usability of this index via the analysis of six organisms in different tissues and developmental stages. Distributable cross platform application and guideline are available for download at: http://www.cs.tau.ac.il/~tamirtul/MTDR/MTDR_Install.html. Copyright © 2015 Dana and Tuller.
Thiel, Kati; Mulaku, Edita; Dandapani, Hariharan; Nagy, Csaba; Aro, Eva-Mari; Kallio, Pauli
2018-03-02
Photosynthetic cyanobacteria have been studied as potential host organisms for direct solar-driven production of different carbon-based chemicals from CO 2 and water, as part of the development of sustainable future biotechnological applications. The engineering approaches, however, are still limited by the lack of comprehensive information on most optimal expression strategies and validated species-specific genetic elements which are essential for increasing the intricacy, predictability and efficiency of the systems. This study focused on the systematic evaluation of the key translational control elements, ribosome binding sites (RBS), in the cyanobacterial host Synechocystis sp. PCC 6803, with the objective of expanding the palette of tools for more rigorous engineering approaches. An expression system was established for the comparison of 13 selected RBS sequences in Synechocystis, using several alternative reporter proteins (sYFP2, codon-optimized GFPmut3 and ethylene forming enzyme) as quantitative indicators of the relative translation efficiencies. The set-up was shown to yield highly reproducible expression patterns in independent analytical series with low variation between biological replicates, thus allowing statistical comparison of the activities of the different RBSs in vivo. While the RBSs covered a relatively broad overall expression level range, the downstream gene sequence was demonstrated in a rigorous manner to have a clear impact on the resulting translational profiles. This was expected to reflect interfering sequence-specific mRNA-level interaction between the RBS and the coding region, yet correlation between potential secondary structure formation and observed translation levels could not be resolved with existing in silico prediction tools. The study expands our current understanding on the potential and limitations associated with the regulation of protein expression at translational level in engineered cyanobacteria. The acquired information can be used for selecting appropriate RBSs for optimizing over-expression constructs or multicistronic pathways in Synechocystis, while underlining the complications in predicting the activity due to gene-specific interactions which may reduce the translational efficiency for a given RBS-gene combination. Ultimately, the findings emphasize the need for additional characterized insulator sequence elements to decouple the interaction between the RBS and the coding region for future engineering approaches.
Global analysis of translation termination in E. coli.
Baggett, Natalie E; Zhang, Yan; Gross, Carol A
2017-03-01
Terminating protein translation accurately and efficiently is critical for both protein fidelity and ribosome recycling for continued translation. The three bacterial release factors (RFs) play key roles: RF1 and 2 recognize stop codons and terminate translation; and RF3 promotes disassociation of bound release factors. Probing release factors mutations with reporter constructs containing programmed frameshifting sequences or premature stop codons had revealed a propensity for readthrough or frameshifting at these specific sites, but their effects on translation genome-wide have not been examined. We performed ribosome profiling on a set of isogenic strains with well-characterized release factor mutations to determine how they alter translation globally. Consistent with their known defects, strains with increasingly severe release factor defects exhibit increasingly severe accumulation of ribosomes over stop codons, indicative of an increased duration of the termination/release phase of translation. Release factor mutant strains also exhibit increased occupancy in the region following the stop codon at a significant number of genes. Our global analysis revealed that, as expected, translation termination is generally efficient and accurate, but that at a significant number of genes (≥ 50) the ribosome signature after the stop codon is suggestive of translation past the stop codon. Even native E. coli K-12 exhibits the ribosome signature suggestive of protein extension, especially at UGA codons, which rely exclusively on the reduced function RF2 variant of the K-12 strain for termination. Deletion of RF3 increases the severity of the defect. We unambiguously demonstrate readthrough and frameshifting protein extensions and their further accumulation in mutant strains for a few select cases. In addition to enhancing recoding, ribosome accumulation over stop codons disrupts attenuation control of biosynthetic operons, and may alter expression of some overlapping genes. Together, these functional alterations may either augment the protein repertoire or produce deleterious proteins.
Hess, M A; Duncan, R F
1996-01-01
Preferential translation of Drosophila heat shock protein 70 (Hsp70) mRNA requires only the 5'-untranslated region (5'-UTR). The sequence of this region suggests that it has relatively little secondary structure, which may facilitate efficient protein synthesis initiation. To determine whether minimal 5'-UTR secondary structure is required for preferential translation during heat shock, the effect of introducing stem-loops into the Hsp70 mRNA 5'-UTR was measured. Stem-loops of -11 kcal/mol abolished translation during heat shock, but did not reduce translation in non-heat shocked cells. A -22 kcal/mol stem-loop was required to comparably inhibit translation during growth at normal temperatures. To investigate whether specific sequence elements are also required for efficient preferential translation, deletion and mutation analyses were conducted in a truncated Hsp70 5'-UTR containing only the cap-proximal and AUG-proximal segments. Linker-scanner mutations in the cap-proximal segment (+1 to +37) did not impair translation. Re-ordering the segments reduced mRNA translational efficiency by 50%. Deleting the AUG-proximal segment severely inhibited translation. A 5-extension of the full-length leader specifically impaired heat shock translation. These results indicate that heat shock reduces the capacity to unwind 5-UTR secondary structure, allowing only mRNAs with minimal 5'-UTR secondary structure to be efficiently translated. A function for specific sequences is also suggested. PMID:8710519
NASA Technical Reports Server (NTRS)
Pham, Kim; Bialas, Thomas
2012-01-01
The DDS SDOGS Integration Manager (DSIM) provides translation between native control and status formats for systems within DDS and SDOGS, and the ASIST (Advanced Spacecraft Integration and System Test) control environment in the SDO MOC (Solar Dynamics Observatory Mission Operations Center). This system was created in response for a need to centralize remote monitor and control of SDO Ground Station equipments using ASIST control environment in SDO MOC, and to have configurable table definition for equipment. It provides translation of status and monitoring information from the native systems into ASIST-readable format to display on pages in the MOC. The manager is lightweight, user friendly, and efficient. It allows data trending, correlation, and storing. It allows using ASIST as common interface for remote monitor and control of heterogeneous equipments. It also provides failover capability to back up machines.
The translational regulator Cup controls NMJ presynaptic terminal morphology.
Menon, Kaushiki P; Carrillo, Robert A; Zinn, Kai
2015-07-01
During oogenesis and early embryonic development in Drosophila, translation of proteins from maternally deposited mRNAs is tightly controlled. We and others have previously shown that translational regulatory proteins that function during oogenesis also have essential roles in the nervous system. Here we examine the role of Cup in neuromuscular system development. Maternal Cup controls translation of localized mRNAs encoding the Oskar and Nanos proteins and binds to the general translation initiation factor eIF4E. In this paper, we show that zygotic Cup protein is localized to presynaptic terminals at larval neuromuscular junctions (NMJs). cup mutant NMJs have strong phenotypes characterized by the presence of small clustered boutons called satellite boutons. They also exhibit an increase in the frequency of spontaneous glutamate release events (mEPSPs). Reduction of eIF4E expression synergizes with partial loss of Cup expression to produce satellite bouton phenotypes. The presence of satellite boutons is often associated with increases in retrograde bone morphogenetic protein (BMP) signaling, and we show that synaptic BMP signaling is elevated in cup mutants. cup genetically interacts with two genes, EndoA and Dap160, that encode proteins involved in endocytosis that are also neuronal modulators of the BMP pathway. Endophilin protein, encoded by the EndoA gene, is downregulated in a cup mutant. Our results are consistent with a model in which Cup and eIF4E work together to ensure efficient localization and translation of endocytosis proteins in motor neurons and control the strength of the retrograde BMP signal. Copyright © 2015 Elsevier Inc. All rights reserved.
The translational regulator Cup controls NMJ presynaptic terminal morphology
Menon, Kaushiki P.; Carrillo, Robert A.; Zinn, Kai
2015-01-01
During oogenesis and early embryonic development in Drosophila, translation of proteins from maternally deposited mRNAs is tightly controlled. We and others have previously shown that translational regulatory proteins that function during oogenesis also have essential roles in the nervous system. Here we examine the role of Cup in neuromuscular system development. Maternal Cup controls translation of localized mRNAs encoding the Oskar and Nanos proteins and binds to the general translation initiation factor eIF4E. In this paper, we show that zygotic Cup protein is localized to presynaptic terminals at larval neuromuscular junctions (NMJs). cup mutant NMJs have strong phenotypes characterized by the presence of small clustered boutons called satellite boutons. They also exhibit an increase in the frequency of spontaneous glutamate release events (mEPSPs). Reduction of eIF4E expression synergizes with partial loss of Cup expression to produce satellite bouton phenotypes. The presence of satellite boutons is often associated with increases in retrograde bone morphogenetic protein (BMP) signaling, and we show that synaptic BMP signaling is elevated in cup mutants. cup genetically interacts with four genes (EndoA, WASp, Dap160, and Synj) encoding proteins involved in endocytosis that are also neuronal modulators of the BMP pathway. Endophilin protein, encoded by the EndoA gene, is downregulated in a cup mutant. Our results are consistent with a model in which Cup and eIF4E work together to ensure efficient localization and translation of endocytosis proteins in motor neurons and control the strength of the retrograde BMP signal. PMID:26102195
Xing, Yang; Ge, Yuqing; Liu, Chanjuan; Zhang, Xiaobiao; Jiang, Jianhai; Wei, Yuanyan
2016-06-14
Glioma-initiating cells possess tumor-initiating potential and are relatively resistant to conventional chemotherapy and irradiation. Therefore, their elimination is an essential factor for the development of efficient therapy. Here, we report that endoplasmic reticulum (ER) stress inducer tunicamycin inhibits glioma-initiating cell self-renewal as determined by neurosphere formation assay. Moreover, tunicamycin decreases the efficiency of glioma-initiating cell to initiate tumor formation. Although tunicamycin induces glioma-initiating cell apoptosis, apoptosis inhibitor z-VAD-fmk only partly abrogates the reduction in glioma-initiating cell self-renewal induced by tunicamycin. Indeed, tunicamycin reduces the expression of self-renewal regulator Sox2 at translation level. Overexpression of Sox2 obviously abrogates the reduction in glioma-initiating cell self-renewal induced by tunicamycin. Taken together, tunicamycin suppresses the self-renewal and tumorigenic potential of glioma-initiating cell partly through reducing Sox2 translation. This finding provides a cue to potential effective treatment of glioblastoma through controlling stem cells.
López-Aguilar, Celeste; Romero-López, Cristina; Espinosa, Manuel; Berzal-Herranz, Alfredo; del Solar, Gloria
2015-01-01
Rolling-circle replication of streptococcal plasmid pMV158 is controlled by the concerted action of two trans-acting elements, namely transcriptional repressor CopG and antisense RNAII, which inhibit expression of the repB gene encoding the replication initiator protein. The pMV158-encoded antisense RNAII exerts its activity of replication control by inhibiting translation of the essential repB gene. RNAII is the smallest and simplest among the characterized antisense RNAs involved in control of plasmid replication. Structure analysis of RNAII revealed that it folds into an 8-bp-long stem containing a 1-nt bulge and closed by a 6-nt apical loop. This hairpin is flanked by a 17-nt-long single-stranded 5′-tail and an 8-nt-long 3′-terminal U-rich stretch. Here, the 3′ and 5′ regions of the 5′-tail of RNAII are shown to play a critical role in the binding to the target mRNA and in the inhibition of repB translation, respectively. In contrast, the apical loop of the single hairpin of RNAII plays a rather secondary role and the upper stem region hardly contributes to the binding or inhibition processes. The entire 5′-tail is required for efficient inhibition of repB translation, though only the 8-nt-long region adjacent to the hairpin seems to be essential for rapid binding to the mRNA. These results show that a “kissing” interaction involving base-pairing between complementary hairpin loops in RNAII and mRNA is not critical for efficient RNA/RNA binding or repB translation inhibition. A singular binding mechanism is envisaged whereby initial pairing between complementary single-stranded regions in the antisense and sense RNAs progresses upwards into the corresponding hairpin stems to form the intermolecular duplex. PMID:26175752
Heller, Caren; de Melo-Martín, Inmaculada
2009-04-01
Most agree that the recent decades-long boom in biomedical research discoveries has not had a sufficient effect on the public's health. To overcome some of the barriers to speeding clinical and translational (C/T) research, the National Institutes of Health has established the Institutional Clinical and Translational Science Award (CTSA). To explore whether the CTSA proposal addresses major C/T barriers and whether funded institutions offer adequate solutions, the authors reviewed the obstacles to C/T research described in the literature and examined the completeness of the solutions offered by the 12 initial CTSA awardees. Through an analysis of the literature, the authors categorized C/T barriers into three categories (research workforce, research operations, and organizational silos). They then analyzed each CTSA proposal regarding the types of programs offered to address these barriers. They found that, in general, institutions developed detailed programs to address research workforce and research operations barriers but had limited to no solutions for organizational silos. The authors suggest that differences in how barriers are addressed are consistent with the degree of control that CTSA centers have over these obstacles and solutions. They argue that although CTSA centers might have an important role in successfully addressing some of the barriers to C/T research, CTSA centers might ultimately have difficulties achieving their purported goal of facilitating and increasing the efficiency and speed of C/T research because of a lack of control over solutions to some important obstacles facing such research.
Shaw-Jackson, Chloë; Michiels, Thomas
1999-01-01
The 5′ noncoding regions of the genomes of picornaviruses form a complex structure that directs cap-independent initiation of translation. This structure has been termed the internal ribosome entry site (IRES). The efficiency of translation initiation was shown, in vitro, to be influenced by the binding of cellular factors to the IRES. Hence, we hypothesized that the IRES might control picornavirus tropism. In order to test this possibility, we made a bicistronic construct in which translation of the luciferase gene is controlled by the IRES of Theiler’s murine encephalomyelitis virus. In vitro, we observed that the IRES functions in various cell types and in macrophages, irrespective of their activation state. In vivo, we observed that the IRES is functional in different tissues of transgenic mice. Thus, it seems that the IRES is not an essential determinant of Theiler’s virus tropism. On the other hand, the age of the mouse could be critical for IRES function. Indeed, the IRES was found to be more efficient in young mice. Picornavirus IRESs are becoming popular tools in transgenesis technology, since they allow the expression of two genes from the same transcription unit. Our results show that the Theiler’s virus IRES is functional in cells of different origins and that it is thus a broad-spectrum tool. The possible age dependency of the IRES function, however, could be a drawback for gene expression in adult mice. PMID:10074119
2006-01-01
Most eukaryotic mRNAs are monocistronic and translated by cap-dependent initiation. LINE-1 RNA is exceptional because it is naturally dicistronic, encoding two proteins essential for retrotransposition, ORF1p and ORF2p. Here, we show that sequences upstream of ORF1 and ORF2 in mouse L1 function as internal ribosome entry sites (IRESes). Deletion analysis of the ORF1 IRES indicates that RNA structure is critical for its function. Conversely, the ORF2 IRES localizes to 53 nt near the 3′ end of ORF1, and appears to depend upon sequence rather than structure. The 40 nt intergenic region (IGR) is not essential for ORF2 IRES function or retrotransposition. Because of strong cis-preference for both proteins during L1 retrotransposition, correct stoichiometry of the two proteins can only be achieved post-transcriptionally. Although the precise stoichiometry is unknown, the retrotransposition intermediate likely contains hundreds of ORF1ps for every ORF2p, together with one L1 RNA. IRES-mediated translation initiation is a well-established mechanism of message-specific regulation, hence, unique mechanisms for the recognition and control of these two IRESes in the L1 RNA could explain differences in translational efficiency of ORF1 and ORF2. In addition, translational regulation may provide an additional layer of control on L1 retrotransposition efficiency, thereby protecting the integrity of the genome. PMID:16464823
CCC CGA is a weak translational recoding site in Escherichia coli.
Shu, Ping; Dai, Huacheng; Mandecki, Wlodek; Goldman, Emanuel
2004-12-08
Previously published experiments had indicated unexpected expression of a control vector in which a beta-galactosidase reporter was in the +1 reading frame relative to the translation start. This control vector contained the codon pair CCC CGA in the zero reading frame, raising the possibility that ribosomes rephased on this sequence, with peptidyl-tRNA(Pro) pairing with CCC in the +1 frame. This putative rephasing might also be exacerbated by the rare CGA Arg codon in the second position due to increased vacancy of the ribosomal A-site. To test this hypothesis, a series of site-directed mutants was constructed, including mutations in both the first and second codons of this codon pair. The results show that interrupting the continuous run of C residues with synonymous codon changes essentially abolishes the frameshift. Further, changing the rare Arg codon to a common Arg codon also reduces the frequency of the frameshift. These results provide strong support for the hypothesis that CCC CGA in the zero frame is indeed a weak translational frameshift site in Escherichia coli, with a 1-2% efficiency. Because the vector sequence also contains another CCC triplet in the +1 reading frame starting within the next codon after the CGA, our data also support possible contribution to expression of a +7 nucleotide ribosome hop into the same +1 reading frame. We also confirm here a previous report that CCC UGA is a translational frameshift site, in these experiments, with about 5% efficiency.
Viglianti, G A; Rubinstein, E P; Graves, K L
1992-01-01
The untranslated leader sequences of rhesus macaque simian immunodeficiency virus mRNAs form a stable secondary structure, TAR. This structure can be modified by RNA splicing. In this study, the role of TAR splicing in virus replication was investigated. The proportion of viral RNAs containing a spliced TAR structure is high early after infection and decreases at later times. Moreover, proviruses containing mutations which prevent TAR splicing are significantly delayed in replication. These mutant viruses require approximately 20 days to achieve half-maximal virus production, in contrast to wild-type viruses, which require approximately 8 days. We attribute this delay to the inefficient translation of unspliced-TAR-containing mRNAs. The molecular basis for this translational effect was examined in in vitro assays. We found that spliced-TAR-containing mRNAs were translated up to 8.5 times more efficiently than were similar mRNAs containing an unspliced TAR leader. Furthermore, these spliced-TAR-containing mRNAs were more efficiently associated with ribosomes. We postulate that the level of TAR splicing provides a balance for the optimal expression of both viral proteins and genomic RNA and therefore ultimately controls the production of infectious virions. Images PMID:1629957
Kim, Younghyun; Lee, Goeun; Jeon, Eunhyun; Sohn, Eun ju; Lee, Yongjik; Kang, Hyangju; Lee, Dong wook; Kim, Dae Heon; Hwang, Inhwan
2014-01-01
The nucleotide sequence around the translational initiation site is an important cis-acting element for post-transcriptional regulation. However, it has not been fully understood how the sequence context at the 5′-untranslated region (5′-UTR) affects the translational efficiency of individual mRNAs. In this study, we provide evidence that the 5′-UTRs of Arabidopsis genes showing a great difference in the nucleotide sequence vary greatly in translational efficiency with more than a 200-fold difference. Of the four types of nucleotides, the A residue was the most favourable nucleotide from positions −1 to −21 of the 5′-UTRs in Arabidopsis genes. In particular, the A residue in the 5′-UTR from positions −1 to −5 was required for a high-level translational efficiency. In contrast, the T residue in the 5′-UTR from positions −1 to −5 was the least favourable nucleotide in translational efficiency. Furthermore, the effect of the sequence context in the −1 to −21 region of the 5′-UTR was conserved in different plant species. Based on these observations, we propose that the sequence context immediately upstream of the AUG initiation codon plays a crucial role in determining the translational efficiency of plant genes. PMID:24084084
Williams, N P; Mueller, P P; Hinnebusch, A G
1988-01-01
Translational control of GCN4 expression in the yeast Saccharomyces cerevisiae is mediated by multiple AUG codons present in the leader of GCN4 mRNA, each of which initiates a short open reading frame of only two or three codons. Upstream AUG codons 3 and 4 are required to repress GCN4 expression in normal growth conditions; AUG codons 1 and 2 are needed to overcome this repression in amino acid starvation conditions. We show that the regulatory function of AUG codons 1 and 2 can be qualitatively mimicked by the AUG codons of two heterologous upstream open reading frames (URFs) containing the initiation regions of the yeast genes PGK and TRP1. These AUG codons inhibit GCN4 expression when present singly in the mRNA leader; however, they stimulate GCN4 expression in derepressing conditions when inserted upstream from AUG codons 3 and 4. This finding supports the idea that AUG codons 1 and 2 function in the control mechanism as translation initiation sites and further suggests that suppression of the inhibitory effects of AUG codons 3 and 4 is a general consequence of the translation of URF 1 and 2 sequences upstream. Several observations suggest that AUG codons 3 and 4 are efficient initiation sites; however, these sequences do not act as positive regulatory elements when placed upstream from URF 1. This result suggests that efficient translation is only one of the important properties of the 5' proximal URFs in GCN4 mRNA. We propose that a second property is the ability to permit reinitiation following termination of translation and that URF 1 is optimized for this regulatory function. Images PMID:3065626
Honda, M; Brown, E A; Lemon, S M
1996-01-01
The initiation of translation on the positive-sense RNA genome of hepatitis C virus (HCV) is directed by an internal ribosomal entry site (IRES) that occupies most of the 341-nt 5' nontranslated RNA (5'NTR). Previous studies indicate that this IRES differs from picornaviral IRESs in that its activity is dependent upon RNA sequence downstream of the initiator AUG. Here, we demonstrate that the initiator AUG of HCV is located within a stem-loop (stem-loop IV) involving nt -12 to +12 (with reference to the AUG). This structure is conserved among HCV strains, and is present in the 5'NTR of the phylogenetically distant GB virus B. Mutant, nearly genome-length RNAs containing nucleotide substitutions predicted to enhance the stability of stem-loop IV were generally deficient in cap-independent translation both in vitro and in vivo. Additional mutations that destabilize the stem-loop restored translation to normal. Thus, the stability of the stem-loop is strongly but inversely correlated with the efficiency of internal initiation of translation. In contrast, mutations that stabilize this stem-loop had comparatively little effect on translation of 5' truncated RNAs by scanning ribosomes, suggesting that internal initiation of translation follows binding of the 40S ribosome directly at the site of stem-loop IV. Because stem-loop IV is not required for internal entry of ribosomes but is able to regulate this process, we speculate that it may be stabilized by interactions with a viral protein, providing a mechanism for feedback regulation of translation, which may be important for viral persistence. PMID:8849773
2008-12-31
component hybrid nanocrystals constituting pentacene or single wall carbon nanotube (SWCNT) as well as through control of interfacial chemistry and linkage...nanotubes-quantum dot conjugates or pentacene -quantum dot composits into organic matrices significantly improved photoconductivity of polymer/nanocrystal
Binary translation using peephole translation rules
Bansal, Sorav; Aiken, Alex
2010-05-04
An efficient binary translator uses peephole translation rules to directly translate executable code from one instruction set to another. In a preferred embodiment, the translation rules are generated using superoptimization techniques that enable the translator to automatically learn translation rules for translating code from the source to target instruction set architecture.
NASA Technical Reports Server (NTRS)
Raghavan, V.
1992-01-01
Poly(A)-RNA fractions of dormant, dark-imbibed (non-germinating) and photoinduced (germinating) spores of Onoclea sensibilis were poor templates in the rabbit reticulocyte lysate protein synthesizing system, but the translational efficiency of poly(A)+RNA was considerably higher than that of unfractionated RNA. Poly(A)+RNA isolated from photoinduced spores had a consistently higher translational efficiency than poly(A)+RNA from dark-imbibed spores. Analysis of the translation products by one-dimensional polyacrylamide gel electrophoresis showed no qualitative differences in the mRNA populations of dormant, dark-imbibed, and photoinduced spores. However, poly(A)+RNA from dark-imbibed spores appeared to encode in vitro fewer detectable polypeptides at a reduced intensity than photoinduced spores. A DNA clone encoding the large subunit of maize ribulose bisphosphate carboxylase hybridized at strong to moderate intensity to RNA isolated from dark-imbibed spores, indicating the absence of mRNA degradation. Although alpha-amanitin did not inhibit the germination of spores, the drug prevented the elongation of the rhizoid and protonemal initial with a concomitant effect on the synthesis of poly(A)+RNA. These results are consistent with the view that some form of translational control involving stored mRNA operates during dark-imbibition and photoinduced germination of spores.
DLVO THEORY APPLIED TO TIO2 PIGMENTS AND OTHER MATERIALS IN LATEX PAINTS. (R828081E01)
Understanding how a paint formulation translates into comparative numbers of particles, how the spacing between particles compares to their size and what controls their stabilization mechanisms improves efficient formulation design. The application of Derjaguin, Landau, Verwey...
NASA Astrophysics Data System (ADS)
Franchetti, Franz; Sandryhaila, Aliaksei; Johnson, Jeremy R.
2014-06-01
In this paper we introduce High Assurance SPIRAL to solve the last mile problem for the synthesis of high assurance implementations of controllers for vehicular systems that are executed in today's and future embedded and high performance embedded system processors. High Assurance SPIRAL is a scalable methodology to translate a high level specification of a high assurance controller into a highly resource-efficient, platform-adapted, verified control software implementation for a given platform in a language like C or C++. High Assurance SPIRAL proves that the implementation is equivalent to the specification written in the control engineer's domain language. Our approach scales to problems involving floating-point calculations and provides highly optimized synthesized code. It is possible to estimate the available headroom to enable assurance/performance trade-offs under real-time constraints, and enables the synthesis of multiple implementation variants to make attacks harder. At the core of High Assurance SPIRAL is the Hybrid Control Operator Language (HCOL) that leverages advanced mathematical constructs expressing the controller specification to provide high quality translation capabilities. Combined with a verified/certified compiler, High Assurance SPIRAL provides a comprehensive complete solution to the efficient synthesis of verifiable high assurance controllers. We demonstrate High Assurance SPIRALs capability by co-synthesizing proofs and implementations for attack detection and sensor spoofing algorithms and deploy the code as ROS nodes on the Landshark unmanned ground vehicle and on a Synthetic Car in a real-time simulator.
Program Translation via Abstraction and Reimplementation.
1986-12-01
fromn particular datai flow and control flow constructs. In add non , the analysis is narrow in scope. aiming onlx to gather enoiugh intoination to...NUMSIERS 545 Technology Square U) Cambridge, MA 02139 00 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Advanced Research Projects Agency December... designed which generates extremely efficient PDP-II object code for Pascal programs. Currently, work is proceeding toward the implementation of a
Nakada, Satoshi; Ogasawara, Riki; Kawada, Shigeo; Maekawa, Takahiro; Ishii, Naokata
2016-01-01
External loads applied to skeletal muscle cause increases in the protein translation rate, which leads to muscle hypertrophy. Although some studies have demonstrated that increases in the capacity and efficiency of translation are involved in this process, it remains unclear how these two factors are related to the magnitude of muscle hypertrophy. The present study aimed to clarify the roles played by the capacity and efficiency of translation in muscle hypertrophy. We used an improved synergist ablation in which the magnitude of compensatory hypertrophy could be controlled by partial removal of synergist muscles. Male rats were assigned to four groups in which the plantaris muscle was unilaterally subjected to weak (WK), moderate (MO), middle (MI), and strong (ST) overloading by four types of synergist ablation. Fourteen days after surgery, the weight of the plantaris muscle per body weight increased by 8%, 22%, 32% and 45%, in the WK, MO, MI and ST groups, respectively. Five days after surgery, 18+28S rRNA content (an indicator of translational capacity) increased with increasing overload, with increases of 1.8-fold (MO), 2.2-fold (MI), and 2.5-fold (ST), respectively, relative to non-overloaded muscle (NL) in the WK group. rRNA content showed a strong correlation with relative muscle weight measured 14 days after surgery (r = 0.98). The phosphorylated form of p70S6K (a positive regulator of translational efficiency) showed a marked increase in the MO group, but no further increase was observed with further increase in overload (increases of 22.6-fold (MO), 17.4-fold (MI), and 18.2-fold (ST), respectively, relative to NL in the WK group). These results indicate that increases in ribosome biogenesis at the early phase of overloading are strongly dependent on the amount of overloading, and may play an important role in increasing the translational capacity for further gain of muscular size.
Double-tick realization of binary control program
NASA Astrophysics Data System (ADS)
Kobylecki, Michał; Kania, Dariusz
2016-12-01
This paper presents a procedure for the implementation of control algorithms for hardware-bit compatible with the standard IEC61131-3. The described transformation based on the sets of calculus and graphs, allows translation of the original form of the control program to the form in full compliance with the original, giving the architecture represented by two tick. The proposed method enables the efficient implementation of the control bits in the FPGA with the use of a standardized programming language LD.
Master, Adam; Wójcicka, Anna; Giżewska, Kamilla; Popławski, Piotr; Williams, Graham R.; Nauman, Alicja
2016-01-01
Background Translational control is a mechanism of protein synthesis regulation emerging as an important target for new therapeutics. Naturally occurring microRNAs and synthetic small inhibitory RNAs (siRNAs) are the most recognized regulatory molecules acting via RNA interference. Surprisingly, recent studies have shown that interfering RNAs may also activate gene transcription via the newly discovered phenomenon of small RNA-induced gene activation (RNAa). Thus far, the small activating RNAs (saRNAs) have only been demonstrated as promoter-specific transcriptional activators. Findings We demonstrate that oligonucleotide-based trans-acting factors can also specifically enhance gene expression at the level of protein translation by acting at sequence-specific targets within the messenger RNA 5’-untranslated region (5’UTR). We designed a set of short synthetic oligonucleotides (dGoligos), specifically targeting alternatively spliced 5’UTRs in transcripts expressed from the THRB and CDKN2A suppressor genes. The in vitro translation efficiency of reporter constructs containing alternative TRβ1 5’UTRs was increased by up to more than 55-fold following exposure to specific dGoligos. Moreover, we found that the most folded 5’UTR has higher translational regulatory potential when compared to the weakly folded TRβ1 variant. This suggests such a strategy may be especially applied to enhance translation from relatively inactive transcripts containing long 5’UTRs of complex structure. Significance This report represents the first method for gene-specific translation enhancement using selective trans-acting factors designed to target specific 5’UTR cis-acting elements. This simple strategy may be developed further to complement other available methods for gene expression regulation including gene silencing. The dGoligo-mediated translation-enhancing approach has the potential to be transferred to increase the translation efficiency of any suitable target gene and may have future application in gene therapy strategies to enhance expression of proteins including tumor suppressors. PMID:27171412
Global analysis of translation termination in E. coli
Baggett, Natalie E.
2017-01-01
Terminating protein translation accurately and efficiently is critical for both protein fidelity and ribosome recycling for continued translation. The three bacterial release factors (RFs) play key roles: RF1 and 2 recognize stop codons and terminate translation; and RF3 promotes disassociation of bound release factors. Probing release factors mutations with reporter constructs containing programmed frameshifting sequences or premature stop codons had revealed a propensity for readthrough or frameshifting at these specific sites, but their effects on translation genome-wide have not been examined. We performed ribosome profiling on a set of isogenic strains with well-characterized release factor mutations to determine how they alter translation globally. Consistent with their known defects, strains with increasingly severe release factor defects exhibit increasingly severe accumulation of ribosomes over stop codons, indicative of an increased duration of the termination/release phase of translation. Release factor mutant strains also exhibit increased occupancy in the region following the stop codon at a significant number of genes. Our global analysis revealed that, as expected, translation termination is generally efficient and accurate, but that at a significant number of genes (≥ 50) the ribosome signature after the stop codon is suggestive of translation past the stop codon. Even native E. coli K-12 exhibits the ribosome signature suggestive of protein extension, especially at UGA codons, which rely exclusively on the reduced function RF2 variant of the K-12 strain for termination. Deletion of RF3 increases the severity of the defect. We unambiguously demonstrate readthrough and frameshifting protein extensions and their further accumulation in mutant strains for a few select cases. In addition to enhancing recoding, ribosome accumulation over stop codons disrupts attenuation control of biosynthetic operons, and may alter expression of some overlapping genes. Together, these functional alterations may either augment the protein repertoire or produce deleterious proteins. PMID:28301469
Strategies for Protein Overproduction in Escherichia coli.
ERIC Educational Resources Information Center
Mott, John E.
1984-01-01
Examines heterologous expression in Escherichia coli and the role of regulatory sequences which control gene expression at transcription resulting in abundant production of messenger RNA and regulatory sequences in mRNA which promote efficient translation. Also examines the role of E. coli cells in stabilizing mRNA and protein that is…
Enzymes Involved in Post-transcriptional RNA Metabolism in Gram-negative bacteria
Mohanty, Bijoy K.
2018-01-01
Gene expression in Gram-negative bacteria is regulated at many levels, including transcription initiation, RNA processing, RNA/RNA interactions, mRNA decay, and translational controls involving enzymes that alter translational efficiency. In this chapter we discuss the various enzymes that control transcription, translation and RNA stability through RNA processing and degradation. RNA processing is essential to generate functional RNAs, while degradation helps control the steady-state level of each individual transcript. For example, all the pre-tRNAs are transcribed with extra nucleotides at both their 5′ and 3′ termini, which are subsequently processed to produce mature tRNAs that can be aminoacylated. Similarly, rRNAs that are transcribed as part of a 30S polycistronic transcript, are matured to individual 16S, 23S and 5S rRNAs. Decay of mRNAs plays a key role in gene regulation through controlling the steady-state level of each transcript, which is essential for maintaining appropriate protein levels. In addition, degradation of both translated and non-translated RNAs recycles nucleotides to facilitate new RNA synthesis. To carry out all these reactions Gram-negative bacteria employ a large number of endonucleases, exonucleases, RNA helicases, and poly(A) polymerase as well as proteins that regulate the catalytic activity of particular ribonucleases. Under certain stress conditions an additional group of specialized endonucleases facilitate the cell’s ability to adapt and survive. Many of the enzymes, such as RNase E, RNase III, polynucleotide phosphorylase, RNase R, and poly(A) polymerase I participate in multiple RNA processing and decay pathways. PMID:29676246
Düvel, Katrin; Valerius, Oliver; Mangus, David A; Jacobson, Allan; Braus, Gerhard H
2002-01-01
The mRNA poly(A) tail serves different purposes, including the facilitation of nuclear export, mRNA stabilization, efficient translation, and, finally, specific degradation. The posttranscriptional addition of a poly(A) tail depends on sequence motifs in the 3' untranslated region (3' UTR) of the mRNA and a complex trans-acting protein machinery. In this study, we have replaced the 3' UTR of the yeast TRP4 gene with sequences encoding a hammerhead ribozyme that efficiently cleaves itself in vivo. Expression of the TRP4-ribozyme allele resulted in the accumulation of a nonpolyadenylated mRNA. Cells expressing the TRP4-ribozyme mRNA showed a reduced growth rate due to a reduction in Trp4p enzyme activity. The reduction in enzyme activity was not caused by inefficient mRNA export from the nucleus or mRNA destabilization. Rather, analyses of mRNA association with polyribosomes indicate that translation of the ribozyme-containing mRNA is impaired. This translational defect allows sufficient synthesis of Trp4p to support growth of trp4 cells, but is, nevertheless, of such magnitude as to activate the general control network of amino acid biosynthesis. PMID:12003493
Vladimirov, N V; Likhoshvaĭ, V A; Matushkin, Iu G
2007-01-01
Gene expression is known to correlate with degree of codon bias in many unicellular organisms. However, such correlation is absent in some organisms. Recently we demonstrated that inverted complementary repeats within coding DNA sequence must be considered for proper estimation of translation efficiency, since they may form secondary structures that obstruct ribosome movement. We have developed a program for estimation of potential coding DNA sequence expression in defined unicellular organism using its genome sequence. The program computes elongation efficiency index. Computation is based on estimation of coding DNA sequence elongation efficiency, taking into account three key factors: codon bias, average number of inverted complementary repeats, and free energy of potential stem-loop structures formed by the repeats. The influence of these factors on translation is numerically estimated. An optimal proportion of these factors is computed for each organism individually. Quantitative translational characteristics of 384 unicellular organisms (351 bacteria, 28 archaea, 5 eukaryota) have been computed using their annotated genomes from NCBI GenBank. Five potential evolutionary strategies of translational optimization have been determined among studied organisms. A considerable difference of preferred translational strategies between Bacteria and Archaea has been revealed. Significant correlations between elongation efficiency index and gene expression levels have been shown for two organisms (S. cerevisiae and H. pylori) using available microarray data. The proposed method allows to estimate numerically the coding DNA sequence translation efficiency and to optimize nucleotide composition of heterologous genes in unicellular organisms. http://www.mgs.bionet.nsc.ru/mgs/programs/eei-calculator/.
Raimondeau, Etienne; Bufton, Joshua C; Schaffitzel, Christiane
2018-06-19
Faulty mRNAs with a premature stop codon (PTC) are recognized and degraded by nonsense-mediated mRNA decay (NMD). Recognition of a nonsense mRNA depends on translation and on the presence of NMD-enhancing or the absence of NMD-inhibiting factors in the 3'-untranslated region. Our review summarizes our current understanding of the molecular function of the conserved NMD factors UPF3B and UPF1, and of the anti-NMD factor Poly(A)-binding protein, and their interactions with ribosomes translating PTC-containing mRNAs. Our recent discovery that UPF3B interferes with human translation termination and enhances ribosome dissociation in vitro , whereas UPF1 is inactive in these assays, suggests a re-interpretation of previous experiments and modification of prevalent NMD models. Moreover, we discuss recent work suggesting new functions of the key NMD factor UPF1 in ribosome recycling, inhibition of translation re-initiation and nascent chain ubiquitylation. These new findings suggest that the interplay of UPF proteins with the translation machinery is more intricate than previously appreciated, and that this interplay quality-controls the efficiency of termination, ribosome recycling and translation re-initiation. © 2018 The Author(s).
Translation of 5′ leaders is pervasive in genes resistant to eIF2 repression
Fahey, Ciara; Kenny, Elaine M; Terenin, Ilya M; Dmitriev, Sergey E; Cormican, Paul; Morris, Derek W; Shatsky, Ivan N; Baranov, Pavel V
2015-01-01
Eukaryotic cells rapidly reduce protein synthesis in response to various stress conditions. This can be achieved by the phosphorylation-mediated inactivation of a key translation initiation factor, eukaryotic initiation factor 2 (eIF2). However, the persistent translation of certain mRNAs is required for deployment of an adequate stress response. We carried out ribosome profiling of cultured human cells under conditions of severe stress induced with sodium arsenite. Although this led to a 5.4-fold general translational repression, the protein coding open reading frames (ORFs) of certain individual mRNAs exhibited resistance to the inhibition. Nearly all resistant transcripts possess at least one efficiently translated upstream open reading frame (uORF) that represses translation of the main coding ORF under normal conditions. Site-specific mutagenesis of two identified stress resistant mRNAs (PPP1R15B and IFRD1) demonstrated that a single uORF is sufficient for eIF2-mediated translation control in both cases. Phylogenetic analysis suggests that at least two regulatory uORFs (namely, in SLC35A4 and MIEF1) encode functional protein products. DOI: http://dx.doi.org/10.7554/eLife.03971.001 PMID:25621764
Levin-Karp, Ayelet; Barenholz, Uri; Bareia, Tasneem; Dayagi, Michal; Zelcbuch, Lior; Antonovsky, Niv; Noor, Elad; Milo, Ron
2013-06-21
Translational coupling is the interdependence of translation efficiency of neighboring genes encoded within an operon. The degree of coupling may be quantified by measuring how the translation rate of a gene is modulated by the translation rate of its upstream gene. Translational coupling was observed in prokaryotic operons several decades ago, but the quantitative range of modulation translational coupling leads to and the factors governing this modulation were only partially characterized. In this study, we systematically quantify and characterize translational coupling in E. coli synthetic operons using a library of plasmids carrying fluorescent reporter genes that are controlled by a set of different ribosome binding site (RBS) sequences. The downstream gene expression level is found to be enhanced by the upstream gene expression via translational coupling with the enhancement level varying from almost no coupling to over 10-fold depending on the upstream gene's sequence. Additionally, we find that the level of translational coupling in our system is similar between the second and third locations in the operon. The coupling depends on the distance between the stop codon of the upstream gene and the start codon of the downstream gene. This study is the first to systematically and quantitatively characterize translational coupling in a synthetic E. coli operon. Our analysis will be useful in accurate manipulation of gene expression in synthetic biology and serves as a step toward understanding the mechanisms involved in translational expression modulation.
Du, Meng-Ze; Wei, Wen; Qin, Lei; Liu, Shuo; Zhang, An-Ying; Zhang, Yong; Zhou, Hong
2017-01-01
Abstract Although more and more entangled participants of translation process were realized, how they cooperate and co-determine the final translation efficiency still lacks details. Here, we reasoned that the basic translation components, tRNAs and amino acids should be consistent to maximize the efficiency and minimize the cost. We firstly revealed that 310 out of 410 investigated genomes of three domains had significant co-adaptions between the tRNA gene copy numbers and amino acid compositions, indicating that maximum efficiency constitutes ubiquitous selection pressure on protein translation. Furthermore, fast-growing and larger bacteria are found to have significantly better co-adaption and confirmed the effect of this pressure. Within organism, highly expressed proteins and those connected to acute responses have higher co-adaption intensity. Thus, the better co-adaption probably speeds up the growing of cells through accelerating the translation of special proteins. Experimentally, manipulating the tRNA gene copy number to optimize co-adaption between enhanced green fluorescent protein (EGFP) and tRNA gene set of Escherichia coli indeed lifted the translation rate (speed). Finally, as a newly confirmed translation rate regulating mechanism, the co-adaption reflecting translation rate not only deepens our understanding on translation process but also provides an easy and practicable method to improve protein translation rates and productivity. PMID:28992099
Machine-Aided Translation: From Terminology Banks to Interactive Translation Systems.
ERIC Educational Resources Information Center
Greenfield, Concetta C.; Serain, Daniel
The rapid growth of the need for technical translations in recent years has led specialists to utilize computer technology to improve the efficiency and quality of translation. The two approaches considered were automatic translation and terminology banks. Since the results of fully automatic translation were considered unsatisfactory by various…
An efficient blocking M2L translation for low-frequency fast multipole method in three dimensions
NASA Astrophysics Data System (ADS)
Takahashi, Toru; Shimba, Yuta; Isakari, Hiroshi; Matsumoto, Toshiro
2016-05-01
We propose an efficient scheme to perform the multipole-to-local (M2L) translation in the three-dimensional low-frequency fast multipole method (LFFMM). Our strategy is to combine a group of matrix-vector products associated with M2L translation into a matrix-matrix product in order to diminish the memory traffic. For this purpose, we first developed a grouping method (termed as internal blocking) based on the congruent transformations (rotational and reflectional symmetries) of M2L-translators for each target box in the FMM hierarchy (adaptive octree). Next, we considered another method of grouping (termed as external blocking) that was able to handle M2L translations for multiple target boxes collectively by using the translational invariance of the M2L translation. By combining these internal and external blockings, the M2L translation can be performed efficiently whilst preservingthe numerical accuracy exactly. We assessed the proposed blocking scheme numerically and applied it to the boundary integral equation method to solve electromagnetic scattering problems for perfectly electrical conductor. From the numerical results, it was found that the proposed M2L scheme achieved a few times speedup compared to the non-blocking scheme.
Web application for automatic prediction of gene translation elongation efficiency.
Sokolov, Vladimir; Zuraev, Bulat; Lashin, Sergei; Matushkin, Yury
2015-09-03
Expression efficiency is one of the major characteristics describing genes in various modern investigations. Expression efficiency of genes is regulated at various stages: transcription, translation, posttranslational protein modification and others. In this study, a special EloE (Elongation Efficiency) web application is described. The EloE sorts the organism's genes in a descend order on their theoretical rate of the elongation stage of translation based on the analysis of their nucleotide sequences. Obtained theoretical data have a significant correlation with available experimental data of gene expression in various organisms. In addition, the program identifies preferential codons in organism's genes and defines distribution of potential secondary structures energy in 5´ and 3´ regions of mRNA. The EloE can be useful in preliminary estimation of translation elongation efficiency for genes for which experimental data are not available yet. Some results can be used, for instance, in other programs modeling artificial genetic structures in genetically engineered experiments.
Translational Control of FOG-2 Expression in Cardiomyocytes by MicroRNA-130a
Kim, Gene H.; Samant, Sadhana A.; Earley, Judy U.; Svensson, Eric C.
2009-01-01
MicroRNAs are increasingly being recognized as regulators of embryonic development; however, relatively few microRNAs have been identified to regulate cardiac development. FOG-2 (also known as zfpm2) is a transcriptional co-factor that we have previously shown is critical for cardiac development. In this report, we demonstrate that FOG-2 expression is controlled at the translational level by microRNA-130a. We identified a conserved region in the FOG-2 3′ untranslated region predicted to be a target for miR-130a. To test the functional significance of this site, we generated an expression construct containing the luciferase coding region fused with the 3′ untranslated region of FOG-2 or a mutant version lacking this microRNA binding site. When these constructs were transfected into NIH 3T3 fibroblasts (which are known to express miR-130a), we observed a 3.3-fold increase in translational efficiency when the microRNA target site was disrupted. Moreover, knockdown of miR-130a in fibroblasts resulted in a 3.6-fold increase in translational efficiency. We also demonstrate that cardiomyocytes express miR-130a and can attenuate translation of mRNAs with a FOG-2 3′ untranslated region. Finally, we generated transgenic mice with cardiomyocyte over-expression of miR-130a. In the hearts of these mice, FOG-2 protein levels were reduced by as much as 80%. Histological analysis of transgenic embryos revealed ventricular wall hypoplasia and ventricular septal defects, similar to that seen in FOG-2 deficient hearts. These results demonstrate the importance of miR-130a for the regulation of FOG-2 protein expression and suggest that miR-130a may also play a role in the regulation of cardiac development. PMID:19582148
Du, Meng-Ze; Wei, Wen; Qin, Lei; Liu, Shuo; Zhang, An-Ying; Zhang, Yong; Zhou, Hong; Guo, Feng-Biao
2017-12-01
Although more and more entangled participants of translation process were realized, how they cooperate and co-determine the final translation efficiency still lacks details. Here, we reasoned that the basic translation components, tRNAs and amino acids should be consistent to maximize the efficiency and minimize the cost. We firstly revealed that 310 out of 410 investigated genomes of three domains had significant co-adaptions between the tRNA gene copy numbers and amino acid compositions, indicating that maximum efficiency constitutes ubiquitous selection pressure on protein translation. Furthermore, fast-growing and larger bacteria are found to have significantly better co-adaption and confirmed the effect of this pressure. Within organism, highly expressed proteins and those connected to acute responses have higher co-adaption intensity. Thus, the better co-adaption probably speeds up the growing of cells through accelerating the translation of special proteins. Experimentally, manipulating the tRNA gene copy number to optimize co-adaption between enhanced green fluorescent protein (EGFP) and tRNA gene set of Escherichia coli indeed lifted the translation rate (speed). Finally, as a newly confirmed translation rate regulating mechanism, the co-adaption reflecting translation rate not only deepens our understanding on translation process but also provides an easy and practicable method to improve protein translation rates and productivity. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Enterovirus Control of Translation and RNA Granule Stress Responses.
Lloyd, Richard E
2016-03-30
Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.
A neo-strategic planning approach to enhance local tobacco control programs.
Douglas, Malinda R; Carter, Sara Sally R; Wilson, Andrew P; Chan, Andie
2015-01-01
Research in tobacco control demonstrating best practices is widely disseminated; however, application at the local level is often difficult. Translating research into practice requires a concerted effort to develop an understanding of the evidence and how it can be applied within diverse contexts. A strategic planning infrastructure was developed to support the translation of evidence-based interventions into community practice. This paper highlights the strategic process of turning "know-what" into "know-how" to facilitate the strategic planning and implementation of tobacco control best practices at the local level. The purpose, people, process, and product strategies of knowledge management and translation provided a framework for the strategic planning infrastructure. The knowledge translation concepts of audience, motivations, and mechanisms were synergized in the neo-strategic planning component design. The participants were 20 community coalitions funded to implement local tobacco control programs. From 2004 to 2011, the strategic planners facilitated a cyclical process to translate research into practice using a trio of integrated tools, skill-building workshops on strategic planning, and grantee-driven technical assistance and consultation. In the short term, the usefulness of the strategic planning components to the programs was measured. The intermediate outcome was the successful movement of the community programs from the planning stage to the implementation stage. The achievement of community-level changes in planned tobacco control efforts was the overall outcome measure for the success of the local coalitions. Seventeen of 20 communities that began the planning process implemented strategic plans. All 17 of the programs implemented evidence-based practices, resulting in numerous tobacco-free policies, increased cessation, and increased support from the media and community. Bridging the gap between research and practice can enhance the practicality, efficiency, and effectiveness of tobacco control programs at the local level, maximizing the potential positive health impact. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
A Major Controversy in Codon-Anticodon Adaptation Resolved by a New Codon Usage Index
Xia, Xuhua
2015-01-01
Two alternative hypotheses attribute different benefits to codon-anticodon adaptation. The first assumes that protein production is rate limited by both initiation and elongation and that codon-anticodon adaptation would result in higher elongation efficiency and more efficient and accurate protein production, especially for highly expressed genes. The second claims that protein production is rate limited only by initiation efficiency but that improved codon adaptation and, consequently, increased elongation efficiency have the benefit of increasing ribosomal availability for global translation. To test these hypotheses, a recent study engineered a synthetic library of 154 genes, all encoding the same protein but differing in degrees of codon adaptation, to quantify the effect of differential codon adaptation on protein production in Escherichia coli. The surprising conclusion that “codon bias did not correlate with gene expression” and that “translation initiation, not elongation, is rate-limiting for gene expression” contradicts the conclusion reached by many other empirical studies. In this paper, I resolve the contradiction by reanalyzing the data from the 154 sequences. I demonstrate that translation elongation accounts for about 17% of total variation in protein production and that the previous conclusion is due to the use of a codon adaptation index (CAI) that does not account for the mutation bias in characterizing codon adaptation. The effect of translation elongation becomes undetectable only when translation initiation is unrealistically slow. A new index of translation elongation ITE is formulated to facilitate studies on the efficiency and evolution of the translation machinery. PMID:25480780
Rolling Circle Translation of Circular RNA in Living Human Cells.
Abe, Naoko; Matsumoto, Ken; Nishihara, Mizuki; Nakano, Yukiko; Shibata, Aya; Maruyama, Hideto; Shuto, Satoshi; Matsuda, Akira; Yoshida, Minoru; Ito, Yoshihiro; Abe, Hiroshi
2015-11-10
We recently reported that circular RNA is efficiently translated by a rolling circle amplification (RCA) mechanism in a cell-free Escherichia coli translation system. Recent studies have shown that circular RNAs composed of exonic sequences are abundant in human cells. However, whether these circular RNAs can be translated into proteins within cells remains unclear. In this study, we prepared circular RNAs with an infinite open reading frame and tested their translation in eukaryotic systems. Circular RNAs were translated into long proteins in rabbit reticulocyte lysate in the absence of any particular element for internal ribosome entry, a poly-A tail, or a cap structure. The translation systems in eukaryote can accept much simpler RNA as a template for protein synthesis by cyclisation. Here, we demonstrated that the circular RNA is efficiently translated in living human cells to produce abundant protein product by RCA mechanism. These findings suggest that translation of exonic circular RNAs present in human cells is more probable than previously thought.
Rolling Circle Translation of Circular RNA in Living Human Cells
Abe, Naoko; Matsumoto, Ken; Nishihara, Mizuki; Nakano, Yukiko; Shibata, Aya; Maruyama, Hideto; Shuto, Satoshi; Matsuda, Akira; Yoshida, Minoru; Ito, Yoshihiro; Abe, Hiroshi
2015-01-01
We recently reported that circular RNA is efficiently translated by a rolling circle amplification (RCA) mechanism in a cell-free Escherichia coli translation system. Recent studies have shown that circular RNAs composed of exonic sequences are abundant in human cells. However, whether these circular RNAs can be translated into proteins within cells remains unclear. In this study, we prepared circular RNAs with an infinite open reading frame and tested their translation in eukaryotic systems. Circular RNAs were translated into long proteins in rabbit reticulocyte lysate in the absence of any particular element for internal ribosome entry, a poly-A tail, or a cap structure. The translation systems in eukaryote can accept much simpler RNA as a template for protein synthesis by cyclisation. Here, we demonstrated that the circular RNA is efficiently translated in living human cells to produce abundant protein product by RCA mechanism. These findings suggest that translation of exonic circular RNAs present in human cells is more probable than previously thought. PMID:26553571
Pakulska, Malgosia M.; Elliott Donaghue, Irja; Obermeyer, Jaclyn M.; Tuladhar, Anup; McLaughlin, Christopher K.; Shendruk, Tyler N.; Shoichet, Molly S.
2016-01-01
Encapsulation of therapeutic molecules within polymer particles is a well-established method for achieving controlled release, yet challenges such as low loading, poor encapsulation efficiency, and loss of protein activity limit clinical translation. Despite this, the paradigm for the use of polymer particles in drug delivery has remained essentially unchanged for several decades. By taking advantage of the adsorption of protein therapeutics to poly(lactic-co-glycolic acid) (PLGA) nanoparticles, we demonstrate controlled release without encapsulation. In fact, we obtain identical, burst-free, extended-release profiles for three different protein therapeutics with and without encapsulation in PLGA nanoparticles embedded within a hydrogel. Using both positively and negatively charged proteins, we show that short-range electrostatic interactions between the proteins and the PLGA nanoparticles are the underlying mechanism for controlled release. Moreover, we demonstrate tunable release by modifying nanoparticle concentration, nanoparticle size, or environmental pH. These new insights obviate the need for encapsulation and offer promising, translatable strategies for a more effective delivery of therapeutic biomolecules. PMID:27386554
Timing Is Everything: Coordinated Control of Host Shutoff by Influenza A Virus NS1 and PA-X Proteins
Khaperskyy, Denys A.
2015-01-01
Like all viruses, influenza viruses (IAVs) use host translation machinery to decode viral mRNAs. IAVs ensure efficient translation of viral mRNAs through host shutoff, a process whereby viral proteins limit the accumulation of host proteins through subversion of their biogenesis. Despite its small genome, the virus deploys multiple host shutoff mechanisms at different stages of infection, thereby ensuring successful replication while limiting the communication of host antiviral responses. In this Gem, we review recent data on IAV host shutoff proteins, frame the outstanding questions in the field, and propose a temporally coordinated model of IAV host shutoff. PMID:25878098
Two-axis tracking using translation stages for a lens-to-channel waveguide solar concentrator.
Liu, Yuxiao; Huang, Ran; Madsen, Christi K
2014-10-20
A two-axis tracking scheme designed for <250x concentration realized by a single-axis mechanical tracker and a translation stage is discussed. The translation stage is used for adjusting positions for seasonal sun movement. It has two-dimensional x-y tracking instead of horizontal movement x-only. This tracking method is compatible with planar waveguide solar concentrators. A prototype system with 50x concentration shows >75% optical efficiency throughout the year in simulation and >65% efficiency experimentally. This efficiency can be further improved by the use of anti-reflection layers and a larger waveguide refractive index.
RNA turnover and protein synthesis in fish cells.
Smith, R W; Palmer, R M; Houlihan, D F
2000-03-01
Protein synthesis in fish has been previously correlated with RNA content. The present study investigates whether protein and RNA synthesis rates are similarly related. Protein and RNA synthesis rates were determined from 3H-phenylalanine and 3H-uridine incorporation, respectively, and expressed as % x day(-1) and half-lives, respectively. Three fibroblast cell lines were used: BF-2, RTP, CHSE 214, which are derived from the bluegill, rainbow trout and Chinook salmon, respectively. These cells contained similar RNA concentrations (approximately 175 microg RNA x mg(-1) cell protein). Therefore differences in protein synthesis rates, BF-2 (31.3 +/- 1.8)>RTP (25.1 +/- 1.7)>CHSE 214 (17.6 +/-1.1), were attributable to RNA translational efficiency. The most translationally efficient RNA (BF-2 cells), 1.8 mg protein synthesised x microg(-1) RNA x day(-1), corresponded to the lowest RNA half-life, 75.4 +/- 6.4 h. Translationally efficient RNA was also energetically efficient with BF-2 cells exploiting the least costly route of nucleotide supply (i.e. exogenous salvage) 3.5-6.0 times more than the least translationally efficient RNA (CHSE 214 cells). These data suggest that differential nucleotide supply, between intracellular synthesis and exogenous salvage, constitutes the area of pre-translational flexibility exploited to maintain RNA synthesis as a fixed energetic cost component of protein synthesis.
Factors affecting expression of the recF gene of Escherichia coli K-12.
Sandler, S J; Clark, A J
1990-01-31
This report describes four factors which affect expression of the recF gene from strong upstream lambda promoters under temperature-sensitive cIAt2-encoded repressor control. The first factor was the long mRNA leader sequence consisting of the Escherichia coli dnaN gene and 95% of the dnaA gene and lambda bet, N (double amber) and 40% of the exo gene. When most of this DNA was deleted, RecF became detectable in maxicells. The second factor was the vector, pBEU28, a runaway replication plasmid. When we substituted pUC118 for pBEU28, RecF became detectable in whole cells by the Coomassie blue staining technique. The third factor was the efficiency of initiation of translation. We used site-directed mutagenesis to change the mRNA leader, ribosome-binding site and the 3 bp before and after the translational start codon. Monitoring the effect of these mutational changes by translational fusion to lacZ, we discovered that the efficiency of initiation of translation was increased 30-fold. Only an estimated two- or threefold increase in accumulated levels of RecF occurred, however. This led us to discover the fourth factor, namely sequences in the recF gene itself. These sequences reduce expression of the recF-lacZ fusion genes 100-fold. The sequences responsible for this decrease in expression occur in four regions in the N-terminal half of recF. Expression is reduced by some sequences at the transcriptional level and by others at the translational level.
Speed Controls in Translating Secretory Proteins in Eukaryotes - an Evolutionary Perspective
Mahlab, Shelly; Linial, Michal
2014-01-01
Protein translation is the most expensive operation in dividing cells from bacteria to humans. Therefore, managing the speed and allocation of resources is subject to tight control. From bacteria to humans, clusters of relatively rare tRNA codons at the N′-terminal of mRNAs have been implicated in attenuating the process of ribosome allocation, and consequently the translation rate in a broad range of organisms. The current interpretation of “slow” tRNA codons does not distinguish between protein translations mediated by free- or endoplasmic reticulum (ER)-bound ribosomes. We demonstrate that proteins translated by free- or ER-bound ribosomes exhibit different overall properties in terms of their translation efficiency and speed in yeast, fly, plant, worm, bovine and human. We note that only secreted or membranous proteins with a Signal peptide (SP) are specified by segments of “slow” tRNA at the N′-terminal, followed by abundant codons that are considered “fast.” Such profiles apply to 3100 proteins of the human proteome that are composed of secreted and signal peptide (SP)-assisted membranous proteins. Remarkably, the bulks of the proteins (12,000), or membranous proteins lacking SP (3400), do not have such a pattern. Alternation of “fast” and “slow” codons was found also in proteins that translocate to mitochondria through transit peptides (TP). The differential clusters of tRNA adapted codons is not restricted to the N′-terminal of transcripts. Specifically, Glycosylphosphatidylinositol (GPI)-anchored proteins are unified by clusters of low adapted tRNAs codons at the C′-termini. Furthermore, selection of amino acids types and specific codons was shown as the driving force which establishes the translation demands for the secretory proteome. We postulate that “hard-coded” signals within the secretory proteome assist the steps of protein maturation and folding. Specifically, “speed control” signals for delaying the translation of a nascent protein fulfill the co- and post-translational stages such as membrane translocation, proteins processing and folding. PMID:24391480
A web application for automatic prediction of gene translation elongation efficiency.
Sokolov, Vladimir S; Zuraev, Bulat S; Lashin, Sergei A; Matushkin, Yury G
2015-03-01
Expression efficiency is one of the major characteristics describing genes in various modern investigations. Expression efficiency of genes is regulated at various stages: transcription, translation, posttranslational protein modification and others. In this study, a special EloE (Elongation Efficiency) web application is described. The EloE sorts the organism's genes in a descend order on their theoretical rate of the elongation stage of translation based on the analysis of their nucleotide sequences. Obtained theoretical data have a significant correlation with available experimental data of gene expression in various organisms. In addition, the program identifies preferential codons in organism's genes and defines distribution of potential secondary structures energy in 5´ and 3´ regions of mRNA. The EloE can be useful in preliminary estimation of translation elongation efficiency for genes for which experimental data are not available yet. Some results can be used, for instance, in other programs modeling artificial genetic structures in genetically engineered experiments. The EloE web application is available at http://www-bionet.sscc.ru:7780/EloE.
Millonigg, Sophia; Eckmann, Christian R.
2014-01-01
To avoid organ dysfunction as a consequence of tissue diminution or tumorous growth, a tight balance between cell proliferation and differentiation is maintained in metazoans. However, cell-intrinsic gene expression mechanisms controlling adult tissue homeostasis remain poorly understood. By focusing on the adult Caenorhabditis elegans reproductive tissue, we show that translational activation of mRNAs is a fundamental mechanism to maintain tissue homeostasis. Our genetic experiments identified the Trf4/5-type cytoplasmic poly(A) polymerase (cytoPAP) GLD-4 and its enzymatic activator GLS-1 to perform a dual role in regulating the size of the proliferative zone. Consistent with a ubiquitous expression of GLD-4 cytoPAP in proliferative germ cells, its genetic activity is required to maintain a robust proliferative adult germ cell pool, presumably by regulating many mRNA targets encoding proliferation-promoting factors. Based on translational reporters and endogenous protein expression analyses, we found that gld-4 activity promotes GLP-1/Notch receptor expression, an essential factor of continued germ cell proliferation. RNA-protein interaction assays documented also a physical association of the GLD-4/GLS-1 cytoPAP complex with glp-1 mRNA, and ribosomal fractionation studies established that GLD-4 cytoPAP activity facilitates translational efficiency of glp-1 mRNA. Moreover, we found that in proliferative cells the differentiation-promoting factor, GLD-2 cytoPAP, is translationally repressed by the stem cell factor and PUF-type RNA-binding protein, FBF. This suggests that cytoPAP-mediated translational activation of proliferation-promoting factors, paired with PUF-mediated translational repression of differentiation factors, forms a translational control circuit that expands the proliferative germ cell pool. Our additional genetic experiments uncovered that the GLD-4/GLS-1 cytoPAP complex promotes also differentiation, forming a redundant translational circuit with GLD-2 cytoPAP and the translational repressor GLD-1 to restrict proliferation. Together with previous findings, our combined data reveals two interconnected translational activation/repression circuitries of broadly conserved RNA regulators that maintain the balance between adult germ cell proliferation and differentiation. PMID:25254367
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyoung Mi; Cho, Hana; Kim, Yoon Ki, E-mail: yk-kim@korea.ac.kr
Highlights: Black-Right-Pointing-Pointer CDKN1A mRNA is a bona fide NMD substrate. Black-Right-Pointing-Pointer The uORF of CDKN1A mRNA is efficiently translated. Black-Right-Pointing-Pointer Translation of downstream main ORF is negatively regulated by translation of uORF in CDKN1A mRNA. -- Abstract: The first round of translation occurs on mRNAs bound by nuclear cap-binding complex (CBC), which is composed of nuclear cap-binding protein 80 and 20 (CBP80/20). During this round of translation, aberrant mRNAs are recognized and downregulated in abundance by nonsense-mediated mRNA decay (NMD), which is one of the mRNA quality control mechanisms. Here, our microarray analysis reveals that the level of cyclin-dependent kinasemore » inhibitor 1A (CDKN1A; also known as Waf1/p21) mRNAs increases in cells depleted of cellular NMD factors. Intriguingly, CDKN1A mRNA contains an upstream open reading frame (uORF), which is a NMD-inducing feature. Using chimeric reporter constructs, we find that the uORF of CDKN1A mRNA negatively modulates translation of the main downstream ORF. These findings provide biological insights into the possible role of NMD in diverse biological pathways mediated by CDKN1A.« less
Truniger, Verónica; Miras, Manuel; Aranda, Miguel A
2017-01-01
Most of the positive-strand RNA plant viruses lack the 5'-cap and/or the poly(A)-tail that act synergistically to stimulate canonical translation of cellular mRNAs. However, they have RNA elements in the 5'- or 3'-untranslated regions of their RNAs that are required for their cap-independent translation. Cap-independent translation enhancers (CITEs) have been identified in the genomic 3'-end of viruses belonging to the family Tombusviridae and the genus Luteovirus . Seven classes of 3'-CITEs have been described to date based on their different RNA structures. They generally control the efficient formation of the translation initiation complex by varying mechanisms. Some 3'-CITEs bind eukaryotic translation initiation factors, others ribosomal subunits, bridging these to the 5'-end by different mechanisms, often long-distance RNA-RNA interactions. As previously proposed and recently found in one case in nature, 3'-CITEs are functionally independent elements that are transferable through recombination between viral genomes, leading to potential advantages for virus multiplication. In this review, the knowledge on 3'-CITEs and their functioning is updated. We also suggest that there is local structural conservation in the regions interacting with eIF4E of 3'-CITEs belonging to different classes.
Truniger, Verónica; Miras, Manuel; Aranda, Miguel A.
2017-01-01
Most of the positive-strand RNA plant viruses lack the 5′-cap and/or the poly(A)-tail that act synergistically to stimulate canonical translation of cellular mRNAs. However, they have RNA elements in the 5′- or 3′-untranslated regions of their RNAs that are required for their cap-independent translation. Cap-independent translation enhancers (CITEs) have been identified in the genomic 3′-end of viruses belonging to the family Tombusviridae and the genus Luteovirus. Seven classes of 3′-CITEs have been described to date based on their different RNA structures. They generally control the efficient formation of the translation initiation complex by varying mechanisms. Some 3′-CITEs bind eukaryotic translation initiation factors, others ribosomal subunits, bridging these to the 5′-end by different mechanisms, often long-distance RNA–RNA interactions. As previously proposed and recently found in one case in nature, 3′-CITEs are functionally independent elements that are transferable through recombination between viral genomes, leading to potential advantages for virus multiplication. In this review, the knowledge on 3′-CITEs and their functioning is updated. We also suggest that there is local structural conservation in the regions interacting with eIF4E of 3′-CITEs belonging to different classes. PMID:29238357
Dissecting limiting factors of the Protein synthesis Using Recombinant Elements (PURE) system
Li, Jun; Zhang, Chi; Huang, Poyi; Kuru, Erkin; Forster-Benson, Eliot T. C.; Church, George M.
2017-01-01
ABSTRACT Reconstituted cell-free protein synthesis systems such as the Protein synthesis Using Recombinant Elements (PURE) system give high-throughput and controlled access to in vitro protein synthesis. Here we show that compared with the commercial S30 crude extract based RTS 100 E. coli HY system, the PURE system has less mRNA degradation and produces up to ∼6-fold full-length proteins. However the majority of polypeptides PURE produces are partially translated or inactive since the signal from firefly luciferase (Fluc) translated in PURE is only ∼2/3rd of that measured using the RTS 100 E. coli HY S30 system. Both of the 2 batch systems suffer from low ribosome recycling efficiency when translating proteins from 82 kD to 224 kD. A systematic fed-batch analysis of PURE shows replenishment of 6 small molecule substrates individually or in combination before energy depletion increased Fluc protein yield by ∼1.5 to ∼2-fold, while creatine phosphate and magnesium have synergistic effects when added to the PURE system. Additionally, while adding EF-P to PURE reduced full-length protein translated, it increased the fraction of functional protein and reduced partially translated protein probably by slowing down the translation process. Finally, ArfA, rather than YaeJ or PrfH, helped reduce ribosome stalling when translating Fluc and improved system productivity in a template-dependent fashion. PMID:28702280
Dissecting limiting factors of the Protein synthesis Using Recombinant Elements (PURE) system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Zhang, Chi; Huang, Poyi
Reconstituted cell-free protein synthesis systems such as the Protein synthesis Using Recombinant Elements (PURE) system give high-throughput and controlled access to in vitro protein synthesis. Here we show that compared with the commercial S30 crude extract based RTS 100 E. coli HY system, the PURE system has less mRNA degradation and produces up to ~6-fold full-length proteins. However the majority of polypeptides PURE produces are partially translated or inactive since the signal from firefly luciferase (Fluc) translated in PURE is only ~2/3 rd of that measured using the RTS 100 E. coli HY S30 system. Both of the 2 batchmore » systems suffer from low ribosome recycling efficiency when translating proteins from 82 k D to 224 k D. A systematic fed-batch analysis of PURE shows replenishment of 6 small molecule substrates individually or in combination before energy depletion increased Fluc protein yield by ~1.5 to ~2-fold, while creatine phosphate and magnesium have synergistic effects when added to the PURE system. Additionally, while adding EF-P to PURE reduced full-length protein translated, it increased the fraction of functional protein and reduced partially translated protein probably by slowing down the translation process. Finally, ArfA, rather than YaeJ or PrfH, helped reduce ribosome stalling when translating Fluc and improved system productivity in a template-dependent fashion.« less
Dissecting limiting factors of the Protein synthesis Using Recombinant Elements (PURE) system
Li, Jun; Zhang, Chi; Huang, Poyi; ...
2017-05-09
Reconstituted cell-free protein synthesis systems such as the Protein synthesis Using Recombinant Elements (PURE) system give high-throughput and controlled access to in vitro protein synthesis. Here we show that compared with the commercial S30 crude extract based RTS 100 E. coli HY system, the PURE system has less mRNA degradation and produces up to ~6-fold full-length proteins. However the majority of polypeptides PURE produces are partially translated or inactive since the signal from firefly luciferase (Fluc) translated in PURE is only ~2/3 rd of that measured using the RTS 100 E. coli HY S30 system. Both of the 2 batchmore » systems suffer from low ribosome recycling efficiency when translating proteins from 82 k D to 224 k D. A systematic fed-batch analysis of PURE shows replenishment of 6 small molecule substrates individually or in combination before energy depletion increased Fluc protein yield by ~1.5 to ~2-fold, while creatine phosphate and magnesium have synergistic effects when added to the PURE system. Additionally, while adding EF-P to PURE reduced full-length protein translated, it increased the fraction of functional protein and reduced partially translated protein probably by slowing down the translation process. Finally, ArfA, rather than YaeJ or PrfH, helped reduce ribosome stalling when translating Fluc and improved system productivity in a template-dependent fashion.« less
Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency
Barna, Maria; Pusic, Aya; Zollo, Ornella; Costa, Maria; Kondrashov, Nadya; Rego, Eduardo; Rao, Pulivarthi H; Ruggero, Davide
2008-01-01
The Myc oncogene regulates the expression of multiple components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, Pol III, and rDNA1,2. An outstanding question is whether and how increasing the cellular protein synthesis capacity can affect the multi-step process leading to cancer. We utilized ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in Eμ–Myc/+ transgenic mice to normal levels and show that in this context Myc's oncogenic potential is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a novel paradigm that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation employed to regulate the expression of selective mRNAs. We show that an aberrant increase in cap-dependent translation downstream Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site (IRES)-dependent translation required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic-specific expression of the endogenous IRES-dependent form of Cdk11 (p58-PITSLRE)3-5, which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in Eμ–Myc/+ mice. When accurate translational control is re-established in Eμ–Myc/+ mice, genome instability is suppressed. Our findings reveal how perturbations in translational control provide a highly specific outcome on gene expression, genome stability, and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post-genomic level. PMID:19011615
Wallace, Adam; Filbin, Megan E.; Veo, Bethany; McFarland, Craig; Stepinski, Janusz; Jankowska-Anyszka, Marzena; Darzynkiewicz, Edward; Davis, Richard E.
2010-01-01
Eukaryotic mRNA translation begins with recruitment of the 40S ribosome complex to the mRNA 5′ end through the eIF4F initiation complex binding to the 5′ m7G-mRNA cap. Spliced leader (SL) RNA trans splicing adds a trimethylguanosine (TMG) cap and a sequence, the SL, to the 5′ end of mRNAs. Efficient translation of TMG-capped mRNAs in nematodes requires the SL sequence. Here we define a core set of nucleotides and a stem-loop within the 22-nucleotide nematode SL that stimulate translation of mRNAs with a TMG cap. The structure and core nucleotides are conserved in other nematode SLs and correspond to regions of SL1 required for early Caenorhabditis elegans development. These SL elements do not facilitate translation of m7G-capped RNAs in nematodes or TMG-capped mRNAs in mammalian or plant translation systems. Similar stem-loop structures in phylogenetically diverse SLs are predicted. We show that the nematode eukaryotic translation initiation factor 4E/G (eIF4E/G) complex enables efficient translation of the TMG-SL RNAs in diverse in vitro translation systems. TMG-capped mRNA translation is determined by eIF4E/G interaction with the cap and the SL RNA, although the SL does not increase the affinity of eIF4E/G for capped RNA. These results suggest that the mRNA 5′ untranslated region (UTR) can play a positive and novel role in translation initiation through interaction with the eIF4E/G complex in nematodes and raise the issue of whether eIF4E/G-RNA interactions play a role in the translation of other eukaryotic mRNAs. PMID:20154140
Wallace, Adam; Filbin, Megan E; Veo, Bethany; McFarland, Craig; Stepinski, Janusz; Jankowska-Anyszka, Marzena; Darzynkiewicz, Edward; Davis, Richard E
2010-04-01
Eukaryotic mRNA translation begins with recruitment of the 40S ribosome complex to the mRNA 5' end through the eIF4F initiation complex binding to the 5' m(7)G-mRNA cap. Spliced leader (SL) RNA trans splicing adds a trimethylguanosine (TMG) cap and a sequence, the SL, to the 5' end of mRNAs. Efficient translation of TMG-capped mRNAs in nematodes requires the SL sequence. Here we define a core set of nucleotides and a stem-loop within the 22-nucleotide nematode SL that stimulate translation of mRNAs with a TMG cap. The structure and core nucleotides are conserved in other nematode SLs and correspond to regions of SL1 required for early Caenorhabditis elegans development. These SL elements do not facilitate translation of m(7)G-capped RNAs in nematodes or TMG-capped mRNAs in mammalian or plant translation systems. Similar stem-loop structures in phylogenetically diverse SLs are predicted. We show that the nematode eukaryotic translation initiation factor 4E/G (eIF4E/G) complex enables efficient translation of the TMG-SL RNAs in diverse in vitro translation systems. TMG-capped mRNA translation is determined by eIF4E/G interaction with the cap and the SL RNA, although the SL does not increase the affinity of eIF4E/G for capped RNA. These results suggest that the mRNA 5' untranslated region (UTR) can play a positive and novel role in translation initiation through interaction with the eIF4E/G complex in nematodes and raise the issue of whether eIF4E/G-RNA interactions play a role in the translation of other eukaryotic mRNAs.
Hoe, N P; Goguen, J D
1993-01-01
The lcrF gene of Yersinia pestis encodes a transcription activator responsible for inducing expression of several virulence-related proteins in response to temperature. The mechanism of this thermoregulation was investigated. An lcrF clone was found to produce much lower levels of LcrF protein at 26 than at 37 degrees C in Y. pestis, although it was transcribed at similar levels at both temperatures. High-level T7 polymerase-directed transcription of the lcrF gene in Escherichia coli also resulted in temperature-dependent production of the LcrF protein. Pulse-chase experiments showed that the LcrF protein was stable at 26 and 37 degrees C, suggesting that translation rate or message degradation is thermally controlled. The lcrF mRNA appears to be highly unstable and could not be reliably detected in Y. pestis. Insertion of the lcrF gene into plasmid pET4a, which produces high levels of plasmid-length RNA, aided detection of lcrF-specific message in E. coli. Comparison of the amount of LcrF protein produced per unit of message at 26 and 37 degrees C indicated that the efficiency of translation of lcrF message increased with temperature. mRNA secondary structure predictions suggest that the lcrF Shine-Dalgarno sequence is sequestered in a stem-loop. A model in which decreased stability of this stem-loop with increasing temperature leads to increased efficiency of translation initiation of lcrF message is presented. Images PMID:7504666
Emerging functions of alternative splicing coupled with nonsense-mediated decay.
Hamid, Fursham M; Makeyev, Eugene V
2014-08-01
Higher eukaryotes rely on AS (alternative splicing) of pre-mRNAs (mRNA precursors) to generate more than one protein product from a single gene and to regulate mRNA stability and translational activity. An important example of the latter function involves an interplay between AS and NMD (nonsense-mediated decay), a cytoplasmic quality control mechanism eliminating mRNAs containing PTCs (premature translation termination codons). Although originally identified as an error surveillance process, AS-NMD additionally provides an efficient strategy for deterministic regulation of gene expression outputs. In this review, we discuss recently published examples of AS-NMD and delineate functional contexts where recurrent use of this mechanism orchestrates expression of important genes.
Versatile control of Plasmodium falciparum gene expression with an inducible protein-RNA interaction
Goldfless, Stephen J.; Wagner, Jeffrey C.; Niles, Jacquin C.
2014-01-01
The available tools for conditional gene expression in Plasmodium falciparum are limited. Here, to enable reliable control of target gene expression, we build a system to efficiently modulate translation. We overcame several problems associated with other approaches for regulating gene expression in P. falciparum. Specifically, our system functions predictably across several native and engineered promoter contexts, and affords control over reporter and native parasite proteins irrespective of their subcellular compartmentalization. Induction and repression of gene expression are rapid, homogeneous, and stable over prolonged periods. To demonstrate practical application of our system, we used it to reveal direct links between antimalarial drugs and their native parasite molecular target. This is an important out come given the rapid spread of resistance, and intensified efforts to efficiently discover and optimize new antimalarial drugs. Overall, the studies presented highlight the utility of our system for broadly controlling gene expression and performing functional genetics in P. falciparum. PMID:25370483
Zhelyabovskaya, Olga B.; Berlin, Yuri A.; Birikh, Klara R.
2004-01-01
In bacterial expression systems, translation initiation is usually the rate limiting and the least predictable stage of protein synthesis. Efficiency of a translation initiation site can vary dramatically depending on the sequence context. This is why many standard expression vectors provide very poor expression levels of some genes. This notion persuaded us to develop an artificial genetic selection protocol, which allows one to find for a given target gene an individual efficient ribosome binding site from a random pool. In order to create Darwinian pressure necessary for the genetic selection, we designed a system based on translational coupling, in which microorganism survival in the presence of antibiotic depends on expression of the target gene, while putting no special requirements on this gene. Using this system we obtained superproducing constructs for the human protein RACK1 (receptor for activated C kinase). PMID:15034151
A highly efficient, cell-free translation/translocation system prepared from Xenopus eggs.
Matthews, G; Colman, A
1991-01-01
We describe the use of a Xenopus laevis egg extract for the in vitro translation and post translational modification of membrane and secretory proteins. This extract is capable of the translation and segregation into membranes of microgram per millilitre levels of protein from added mRNAs. Signal sequences of segregated proteins are efficiently cleaved and appropriate N-linked glycosylation patterns are produced. The extract also supports the quantitative assembly of murine immunoglobulin heavy and light chains into tetramers, and two events which take place beyond the endoplasmic reticulum, mannose 6 phosphorylation of murine cathepsin D and O-linked glycosylation of coronavirus E1 protein, also occur, but at reduced efficiency. The stability of the membranes allows protease protection studies and quantitative centrifugal fractionation of segregated and unsegregated proteins to be performed. Conditions for the use of stored extract have also been determined. Images PMID:1754376
Sharma, Vivek; Salwan, Richa; Sharma, P. N.; Gulati, Arvind
2017-01-01
Genome-wide studies of transcripts expression help in systematic monitoring of genes and allow targeting of candidate genes for future research. In contrast to relatively stable genomic data, the expression of genes is dynamic and regulated both at time and space level at different level in. The variation in the rate of translation is specific for each protein. Both the inherent nature of an mRNA molecule to be translated and the external environmental stimuli can affect the efficiency of the translation process. In biocontrol agents (BCAs), the molecular response at translational level may represents noise-like response of absolute transcript level and an adaptive response to physiological and pathological situations representing subset of mRNAs population actively translated in a cell. The molecular responses of biocontrol are complex and involve multistage regulation of number of genes. The use of high-throughput techniques has led to rapid increase in volume of transcriptomics data of Trichoderma. In general, almost half of the variations of transcriptome and protein level are due to translational control. Thus, studies are required to integrate raw information from different “omics” approaches for accurate depiction of translational response of BCAs in interaction with plants and plant pathogens. The studies on translational status of only active mRNAs bridging with proteome data will help in accurate characterization of only a subset of mRNAs actively engaged in translation. This review highlights the associated bottlenecks and use of state-of-the-art procedures in addressing the gap to accelerate future accomplishment of biocontrol mechanisms. PMID:28900417
Efficiency of Iranian Translation Syllabus at BA Level; Deficiency: A New Comprehensive Model
ERIC Educational Resources Information Center
Sohrabi, Sarah; Rahimi, Ramin; Arjmandi, Masoume
2015-01-01
This study aims at investigating the practicality of the current curriculum for translation studies at national level (Iranian curriculum). It is going to have a comprehensive idea of translation students and teachers (university lecturers) over the current translation syllabus at BA level in Iran. A researcher-made CEQ questionnaire (Curriculum…
ERIC Educational Resources Information Center
McCulloh, Ian A.; Morton, Jillian; Jantzi, Jennifer K.; Rodriguez, Amy M.; Graham, John
2008-01-01
This study introduces a new method of evaluating human comprehension in the context of machine translation using a language translation program known as the FALCon (Forward Area Language Converter). The participants include 48 freshmen from the United States Military Academy enrolled in the General Psychology course, PL100. Results of this study…
The low noise limit in gene expression
Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; ...
2015-10-21
Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiencymore » can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.« less
Dendritic mRNA targeting and translation.
Kindler, Stefan; Kreienkamp, Hans-Jürgen
2012-01-01
Selective targeting of specific mRNAs into neuronal dendrites and their locally regulated translation at particular cell contact sites contribute to input-specific synaptic plasticity. Thus, individual synapses become decision-making units, which control gene expression in a spatially restricted and nucleus-independent manner. Dendritic targeting of mRNAs is achieved by active, microtubule-dependent transport. For this purpose, mRNAs are packaged into large ribonucleoprotein (RNP) particles containing an array of trans-acting RNA-binding proteins. These are attached to molecular motors, which move their RNP cargo into dendrites. A variety of proteins may be synthesized in dendrites, including signalling and scaffold proteins of the synapse and neurotransmitter receptors. In some cases, such as the alpha subunit of the calcium/calmodulin-dependent protein kinase II (αCaMKII) and the activity-regulated gene of 3.1 kb (Arg3.1, also referred to as activity-regulated cDNA, Arc), their local synthesis at synapses can modulate long-term changes in synaptic efficiency. Local dendritic translation is regulated by several signalling cascades including Akt/mTOR and Erk/MAP kinase pathways, which are triggered by synaptic activity. More recent findings show that miRNAs also play an important role in protein synthesis at synapses. Disruption of local translation control at synapses, as observed in the fragile X syndrome (FXS) and its mouse models and possibly also in autism spectrum disorders, interferes with cognitive abilities in mice and men.
Mohamed, Omar; Wang, Jihong; Khalil, Ashraf; Limhabrash, Marwan
2016-01-01
This paper presents a novel strategy for implementing model predictive control (MPC) to a large gas turbine power plant as a part of our research progress in order to improve plant thermal efficiency and load-frequency control performance. A generalized state space model for a large gas turbine covering the whole steady operational range is designed according to subspace identification method with closed loop data as input to the identification algorithm. Then the model is used in developing a MPC and integrated into the plant existing control strategy. The strategy principle is based on feeding the reference signals of the pilot valve, natural gas valve, and the compressor pressure ratio controller with the optimized decisions given by the MPC instead of direct application of the control signals. If the set points for the compressor controller and turbine valves are sent in a timely manner, there will be more kinetic energy in the plant to release faster responses on the output and the overall system efficiency is improved. Simulation results have illustrated the feasibility of the proposed application that has achieved significant improvement in the frequency variations and load following capability which are also translated to be improvements in the overall combined cycle thermal efficiency of around 1.1 % compared to the existing one.
Dauber, Bianca; Saffran, Holly A; Smiley, James R
2014-09-01
We recently demonstrated that the virion host shutoff (vhs) protein, an mRNA-specific endonuclease, is required for efficient herpes simplex virus 1 (HSV-1) replication and translation of viral true-late mRNAs, but not other viral and cellular mRNAs, in many cell types (B. Dauber, J. Pelletier, and J. R. Smiley, J. Virol. 85:5363-5373, 2011, http://dx.doi.org/10.1128/JVI.00115-11). Here, we evaluated whether the structure of true-late mRNAs or the timing of their transcription is responsible for the poor translation efficiency in the absence of vhs. To test whether the highly structured 5' untranslated region (5'UTR) of the true-late gC mRNA is the primary obstacle for translation initiation, we replaced it with the less structured 5'UTR of the γ-actin mRNA. However, this mutation did not restore translation in the context of a vhs-deficient virus. We then examined whether the timing of transcription affects translation efficiency at late times. To this end, we engineered a vhs-deficient virus mutant that transcribes the true-late gene US11 with immediate-early kinetics (IEUS11-ΔSma). Interestingly, IEUS11-ΔSma showed increased translational activity on the US11 transcript at late times postinfection, and US11 protein levels were restored to wild-type levels. These results suggest that mRNAs can maintain translational activity throughout the late stage of infection if they are present before translation factors and/or ribosomes become limiting. Taken together, these results provide evidence that in the absence of the mRNA-destabilizing function of vhs, accumulation of viral mRNAs overwhelms the capacity of the host translational machinery, leading to functional exclusion of the last mRNAs that are made during infection. The process of mRNA translation accounts for a significant portion of a cell's energy consumption. To ensure efficient use of cellular resources, transcription, translation, and mRNA decay are tightly linked and highly regulated. However, during virus infection, the overall amount of mRNA may increase drastically, possibly overloading the capacity of the translation apparatus. Our results suggest that the HSV-1 vhs protein, an mRNA-specific endoribonuclease, prevents mRNA overload during infection, thereby allowing translation of late viral mRNAs. The requirement for vhs varies between cell types. Further studies of the basis for this difference likely will offer insights into how cells regulate overall mRNA levels and access to the translational apparatus. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
A U-Rich Element in the 5′ Untranslated Region Is Necessary for the Translation of p27 mRNA
Millard, S. Sean; Vidal, Anxo; Markus, Maurice; Koff, Andrew
2000-01-01
Increased translation of p27 mRNA correlates with withdrawal of cells from the cell cycle. This raised the possibility that antimitogenic signals might mediate their effects on p27 expression by altering complexes that formed on p27 mRNA, regulating its translation. In this report, we identify a U-rich sequence in the 5′ untranslated region (5′UTR) of p27 mRNA that is necessary for efficient translation in proliferating and nonproliferating cells. We show that a number of factors bind to the 5′UTR in vitro in a manner dependent on the U-rich element, and their availability in the cytosol is controlled in a growth- and cell cycle-dependent fashion. One of these factors is HuR, a protein previously implicated in mRNA stability, transport, and translation. Another is hnRNP C1 and C2, proteins implicated in mRNA processing and the translation of a specific subset of mRNAs expressed in differentiated cells. In lovastatin-treated MDA468 cells, the mobility of the associated hnRNP C1 and C2 proteins changed, and this correlated with increased p27 expression. Together, these data suggest that the U-rich dependent RNP complex on the 5′UTR may regulate the translation of p27 mRNA and may be a target of antimitogenic signals. PMID:10913178
Pfleger, Brian; Mendez-Perez, Daniel
2013-11-05
Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.
Pfleger, Brian; Mendez-Perez, Daniel
2015-05-19
Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.
Miras, Manuel; Sempere, Raquel N.; Kraft, Jelena J.; Miller, W. Allen; Aranda, Miguel A.; Truniger, Veronica
2015-01-01
Summary Many plant viruses depend on functional RNA elements, called 3′-UTR cap-independent translation enhancers (3′-CITEs), for translation of their RNAs. In this manuscript we provide direct proof for the existing hypothesis that 3′-CITEs are modular and transferable by recombination in nature, and that this is associated with an advantage for the created virus. By characterizing a newly identified Melon necrotic spot virus (MNSV; Tombusviridae) isolate, which is able to overcome eukaryotic translation initiation factor 4E (eIF4E)-mediated resistance, we found that it contains a 55 nucleotide insertion in its 3′-UTR. We provide strong evidence that this insertion was acquired by interfamilial recombination with the 3′-UTR of an Asiatic Cucurbit aphid-borne yellows virus (CABYV; Luteoviridae). By constructing chimeric viruses, we showed that this recombined sequence is responsible for resistance breaking. Analysis of the translational efficiency of reporter constructs showed that this sequence functions as a novel 3′-CITE in both resistant and susceptible plants, being essential for translation control in resistant plants. In conclusion, we showed that a recombination event between two clearly identified viruses from different families led to the transfer of exactly the sequence corresponding to a functional RNA element, giving rise to a new isolate with the capacity to infect an otherwise non-susceptible host. PMID:24372390
Miras, Manuel; Sempere, Raquel N; Kraft, Jelena J; Miller, W Allen; Aranda, Miguel A; Truniger, Veronica
2014-04-01
Many plant viruses depend on functional RNA elements, called 3'-UTR cap-independent translation enhancers (3'-CITEs), for translation of their RNAs. In this manuscript we provide direct proof for the existing hypothesis that 3'-CITEs are modular and transferable by recombination in nature, and that this is associated with an advantage for the created virus. By characterizing a newly identified Melon necrotic spot virus (MNSV; Tombusviridae) isolate, which is able to overcome eukaryotic translation initiation factor 4E (eIF4E)-mediated resistance, we found that it contains a 55 nucleotide insertion in its 3'-UTR. We provide strong evidence that this insertion was acquired by interfamilial recombination with the 3'-UTR of an Asiatic Cucurbit aphid-borne yellows virus (CABYV; Luteoviridae). By constructing chimeric viruses, we showed that this recombined sequence is responsible for resistance breaking. Analysis of the translational efficiency of reporter constructs showed that this sequence functions as a novel 3'-CITE in both resistant and susceptible plants, being essential for translation control in resistant plants. In conclusion, we showed that a recombination event between two clearly identified viruses from different families led to the transfer of exactly the sequence corresponding to a functional RNA element, giving rise to a new isolate with the capacity to infect an otherwise nonsusceptible host. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
ERIC Educational Resources Information Center
McCulloh, Ian A.; Morton, Jillian; Jantzi, Jennifer K.; Rodriguez, Amy M.; Graham, John
2008-01-01
The purpose of this study is to introduce a new method of evaluating human comprehension in the context of machine translation using a language translation program known as the FALCon (Forward Area Language Converter). The FALCon works by converting documents into digital images via scanner, and then converting those images to electronic text by…
Kim, Julie J; Yu, Jaeju; Bag, Jnanankur; Bakovic, Marica; Cant, John P
2015-01-01
The rate of secretion of αs2-casein into bovine milk is approximately 25% of that of β-casein, yet mammary expression of their respective mRNA transcripts (csn1s2 and csn2) is not different. Our objective was to identify molecular mechanisms that explain the difference in translation efficiency between csn1s2 and csn2. Cell-free translational efficiency of csn2 was 5 times that of csn1s2. Transcripts of csn1s2 distributed into heavier polysomes than csn2 transcripts, indicating an attenuation of elongation and/or termination. Stimulatory and inhibitory effects of the 5′ and 3′ UTRs on translational efficiency were different with luciferase and casein sequences in the coding regions. Substituting the 5′ and 3′ UTRs from csn2 into csn1s2 did not improve csn1s2 translation, implicating the coding region itself in the translation difference. Deletion of a 28-codon fragment from the 3′ terminus of the csn1s2 coding region, which displays codons with low correlations to cell fitness, increased translation to a par with csn2. We conclude that the usage of the last 28 codons of csn1s2 is the main regulatory element that attenuates its expression and is responsible for the differential translational expression of csn1s2 and csn2. PMID:25826667
Home Performance XML to Real Estate Standards Organization Data Dictionary Translator
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-10-27
This translator takes fields from the HPXML and translates them into RESO’s Data Dictionary, which is used in MLS systems for real estate transactions across the country. The purpose is to get energy efficiency data into the real estate transaction.
Chen, Jie; Yuan, Zhaoyuan; Liu, Yu; Zheng, Rui; Dai, Yao; Tao, Ran; Xia, Huitang; Liu, Hairong; Zhang, Zhiyong; Zhang, Wenjie; Liu, Wei; Cao, Yilin
2016-01-01
Abstract In vitro three‐dimensional (3D) cartilage regeneration is a promising strategy for repair of cartilage defects. However, inferior mechanical strength and tissue homogeneity greatly restricted its clinical translation. Simulation of mechanical stress through a bioreactor is an important approach for improving in vitro cartilage regeneration. The current study developed a hydrostatic pressure (HP) bioreactor based on a novel pressure‐transmitting mode achieved by slight deformation of a flexible membrane in a completely sealed stainless steel device. The newly developed bioreactor efficiently avoided the potential risks of previously reported pressure‐transmitting modes and simultaneously addressed a series of important issues, such as pressure scopes, culture chamber sizes, sealability, contamination control, and CO2 balance. The whole bioreactor system realized stable long‐term (8 weeks) culture under high HP (5–10 MPa) without the problems of medium leakage and contamination. Furthermore, the results of in vitro 3D tissue culture based on a cartilage regeneration model revealed that HP provided by the newly developed bioreactor efficiently promoted in vitro 3D cartilage formation by improving its mechanical strength, thickness, and homogeneity. Detailed analysis in cell proliferation, cartilage matrix production, and cross‐linking level of collagen macromolecules, as well as density and alignment of collagen fibers, further revealed the possible mechanisms that HP regulated in vitro cartilage regeneration. The current study provided a highly efficient and stable bioreactor system for improving in vitro 3D cartilage regeneration and thus will help to accelerate its clinical translation. Stem Cells Translational Medicine 2017;6:982–991 PMID:28297584
Targeting the eIF4F translation initiation complex: a critical nexus for cancer development.
Pelletier, Jerry; Graff, Jeremy; Ruggero, Davide; Sonenberg, Nahum
2015-01-15
Elevated protein synthesis is an important feature of many cancer cells and often arises as a consequence of increased signaling flux channeled to eukaryotic initiation factor 4F (eIF4F), the key regulator of the mRNA-ribosome recruitment phase of translation initiation. In many cellular and preclinical models of cancer, eIF4F deregulation results in changes in translational efficiency of specific mRNA classes. Importantly, many of these mRNAs code for proteins that potently regulate critical cellular processes, such as cell growth and proliferation, enhanced cell survival and cell migration that ultimately impinge on several hallmarks of cancer, including increased angiogenesis, deregulated growth control, enhanced cellular survival, epithelial-to-mesenchymal transition, invasion, and metastasis. By being positioned as the molecular nexus downstream of key oncogenic signaling pathways (e.g., Ras, PI3K/AKT/TOR, and MYC), eIF4F serves as a direct link between important steps in cancer development and translation initiation. Identification of mRNAs particularly responsive to elevated eIF4F activity that typifies tumorigenesis underscores the critical role of eIF4F in cancer and raises the exciting possibility of developing new-in-class small molecules targeting translation initiation as antineoplastic agents. ©2014 American Association for Cancer Research.
Erales, Jenny; Marchand, Virginie; Panthu, Baptiste; Gillot, Sandra; Belin, Stéphane; Ghayad, Sandra E; Garcia, Maxime; Laforêts, Florian; Marcel, Virginie; Baudin-Baillieu, Agnès; Bertin, Pierre; Couté, Yohann; Adrait, Annie; Meyer, Mélanie; Therizols, Gabriel; Yusupov, Marat; Namy, Olivier; Ohlmann, Théophile; Motorin, Yuri; Catez, Frédéric; Diaz, Jean-Jacques
2017-12-05
Ribosomal RNAs (rRNAs) are main effectors of messenger RNA (mRNA) decoding, peptide-bond formation, and ribosome dynamics during translation. Ribose 2'-O-methylation (2'-O-Me) is the most abundant rRNA chemical modification, and displays a complex pattern in rRNA. 2'-O-Me was shown to be essential for accurate and efficient protein synthesis in eukaryotic cells. However, whether rRNA 2'-O-Me is an adjustable feature of the human ribosome and a means of regulating ribosome function remains to be determined. Here we challenged rRNA 2'-O-Me globally by inhibiting the rRNA methyl-transferase fibrillarin in human cells. Using RiboMethSeq, a nonbiased quantitative mapping of 2'-O-Me, we identified a repertoire of 2'-O-Me sites subjected to variation and demonstrate that functional domains of ribosomes are targets of 2'-O-Me plasticity. Using the cricket paralysis virus internal ribosome entry site element, coupled to in vitro translation, we show that the intrinsic capability of ribosomes to translate mRNAs is modulated through a 2'-O-Me pattern and not by nonribosomal actors of the translational machinery. Our data establish rRNA 2'-O-Me plasticity as a mechanism providing functional specificity to human ribosomes.
Na, Dokyun; Lee, Doheon
2010-10-15
RBSDesigner predicts the translation efficiency of existing mRNA sequences and designs synthetic ribosome binding sites (RBSs) for a given coding sequence (CDS) to yield a desired level of protein expression. The program implements the mathematical model for translation initiation described in Na et al. (Mathematical modeling of translation initiation for the estimation of its efficiency to computationally design mRNA sequences with a desired expression level in prokaryotes. BMC Syst. Biol., 4, 71). The program additionally incorporates the effect on translation efficiency of the spacer length between a Shine-Dalgarno (SD) sequence and an AUG codon, which is crucial for the incorporation of fMet-tRNA into the ribosome. RBSDesigner provides a graphical user interface (GUI) for the convenient design of synthetic RBSs. RBSDesigner is written in Python and Microsoft Visual Basic 6.0 and is publicly available as precompiled stand-alone software on the web (http://rbs.kaist.ac.kr). dhlee@kaist.ac.kr
Afrashtehfar, Kelvin I; Assery, Mansour K
2017-07-01
It has been claimed that in order to decrease the gap between what we know and what we do, research findings must be translated from knowledge to action. Such practices better enable dentists to make evidence-based decisions instead of personal ideas and judgments. To this end, this literature review aims to revisit the concepts of knowledge translation and evidence-based dentistry (EBD) and depict their role and influence within dental education. It addresses some possible strategies to facilitate knowledge translation (KT), encourage dental students to use EBD principles, and to encourage dental educators to create an environment in which students become self-directed learners. It concludes with a call to develop up-to-date and efficient online platforms that could grant dentists better access to EBD sources in order to more efficiently translate research evidence into the clinic.
A Novel Approach to Measuring Efficiency of Scientific Research Projects: Data Envelopment Analysis.
Dilts, David M; Zell, Adrienne; Orwoll, Eric
2015-10-01
Measuring the efficiency of resource allocation for the conduct of scientific projects in medical research is difficult due to, among other factors, the heterogeneity of resources supplied (e.g., dollars or FTEs) and outcomes expected (e.g., grants, publications). While this is an issue in medical science, it has been approached successfully in other fields by using data envelopment analysis (DEA). DEA has a number of advantages over other techniques as it simultaneously uses multiple heterogeneous inputs and outputs to determine which projects are performing most efficiently, referred to as being at the efficiency frontier, when compared to others in the data set. This research uses DEA for the evaluation of supported translational science projects by the Oregon Clinical and Translational Research Institute (OCTRI), a NCATS Clinical & Translational Science Award (CTSA) recipient. These results suggest that the primary determinate of overall project efficiency at OCTRI is the amount of funding, with smaller amounts of funding providing more efficiency than larger funding amounts. These results, and the use of DEA, highlight both the success of using this technique in helping determine medical research efficiency and those factors to consider when distributing funds for new projects at CTSAs. © 2015 Wiley Periodicals, Inc.
Pervasive, Coordinated Protein-Level Changes Driven by Transcript Isoform Switching during Meiosis.
Cheng, Ze; Otto, George Maxwell; Powers, Emily Nicole; Keskin, Abdurrahman; Mertins, Philipp; Carr, Steven Alfred; Jovanovic, Marko; Brar, Gloria Ann
2018-02-22
To better understand the gene regulatory mechanisms that program developmental processes, we carried out simultaneous genome-wide measurements of mRNA, translation, and protein through meiotic differentiation in budding yeast. Surprisingly, we observed that the levels of several hundred mRNAs are anti-correlated with their corresponding protein products. We show that rather than arising from canonical forms of gene regulatory control, the regulation of at least 380 such cases, or over 8% of all measured genes, involves temporally regulated switching between production of a canonical, translatable transcript and a 5' extended isoform that is not efficiently translated into protein. By this pervasive mechanism for the modulation of protein levels through a natural developmental program, a single transcription factor can coordinately activate and repress protein synthesis for distinct sets of genes. The distinction is not based on whether or not an mRNA is induced but rather on the type of transcript produced. Copyright © 2018 Elsevier Inc. All rights reserved.
Lukes, Julius; Paris, Zdenek; Regmi, Sandesh; Breitling, Reinhard; Mureev, Sergey; Kushnir, Susanna; Pyatkov, Konstantin; Jirků, Milan; Alexandrov, Kirill A
2006-08-01
To investigate the influence of sequence context of translation initiation codon on translation efficiency in Kinetoplastida, we constructed a library of expression plasmids randomized in the three nucleotides prefacing ATG of a reporter gene encoding enhanced green fluorescent protein (EGFP). All 64 possible combinations of pre-ATG triplets were individually stably integrated into the rDNA locus of Leishmania tarentolae and the resulting cell lines were assessed for EGFP expression. The expression levels were quantified directly by measuring the fluorescence of EGFP protein in living cells and confirmed by Western blotting. We observed a strong influence of the pre-ATG triplet on the level of protein expression over a 20-fold range. To understand the degree of evolutionary conservation of the observed effect, we transformed Phytomonas serpens, a trypanosomatid parasite of plants, with a subset of the constructs. The pattern of translational efficiency mediated by individual pre-ATG triplets in this species was similar to that observed in L. tarentolae. However, the pattern of translational efficiency of two other proteins (red fluorescent protein and tetracycline repressor) containing selected pre-ATG triplets did not correlate with either EGFP or each other. Thus, we conclude that a conserved mechanism of translation initiation site selection exists in kinetoplastids that is strongly influenced not only by the pre-ATG sequences but also by the coding region of the gene.
Sroubek, Jakub; Krishnan, Yamini; McDonald, Thomas V.
2013-01-01
Human ether-á-gogo-related gene (HERG) encodes a potassium channel that is highly susceptible to deleterious mutations resulting in susceptibility to fatal cardiac arrhythmias. Most mutations adversely affect HERG channel assembly and trafficking. Why the channel is so vulnerable to missense mutations is not well understood. Since nothing is known of how mRNA structural elements factor in channel processing, we synthesized a codon-modified HERG cDNA (HERG-CM) where the codons were synonymously changed to reduce GC content, secondary structure, and rare codon usage. HERG-CM produced typical IKr-like currents; however, channel synthesis and processing were markedly different. Translation efficiency was reduced for HERG-CM, as determined by heterologous expression, in vitro translation, and polysomal profiling. Trafficking efficiency to the cell surface was greatly enhanced, as assayed by immunofluorescence, subcellular fractionation, and surface labeling. Chimeras of HERG-NT/CM indicated that trafficking efficiency was largely dependent on 5′ sequences, while translation efficiency involved multiple areas. These results suggest that HERG translation and trafficking rates are independently governed by noncoding information in various regions of the mRNA molecule. Noncoding information embedded within the mRNA may play a role in the pathogenesis of hereditary arrhythmia syndromes and could provide an avenue for targeted therapeutics.—Sroubek, J., Krishnan, Y., McDonald, T V. Sequence- and structure-specific elements of HERG mRNA determine channel synthesis and trafficking efficiency. PMID:23608144
Modeling and prediction of human word search behavior in interactive machine translation
NASA Astrophysics Data System (ADS)
Ji, Duo; Yu, Bai; Ma, Bin; Ye, Na
2017-12-01
As a kind of computer aided translation method, Interactive Machine Translation technology reduced manual translation repetitive and mechanical operation through a variety of methods, so as to get the translation efficiency, and played an important role in the practical application of the translation work. In this paper, we regarded the behavior of users' frequently searching for words in the translation process as the research object, and transformed the behavior to the translation selection problem under the current translation. The paper presented a prediction model, which is a comprehensive utilization of alignment model, translation model and language model of the searching words behavior. It achieved a highly accurate prediction of searching words behavior, and reduced the switching of mouse and keyboard operations in the users' translation process.
Translational autocontrol of the Escherichia coli hfq RNA chaperone gene.
Vecerek, Branislav; Moll, Isabella; Bläsi, Udo
2005-06-01
The conserved bacterial RNA chaperone Hfq has been shown to play an important role in post-transcriptional regulation. Here, we demonstrate that Hfq synthesis is autoregulated at the translational level. We have mapped two Hfq binding sites in the 5'-untranslated region of hfq mRNA and show that Hfq binding inhibits formation of the translation initiation complex. In vitro translation and in vivo studies further revealed that Hfq binding to both sites is required for efficient translational repression of hfq mRNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Arnim, Albrecht G.
2015-02-04
Protein synthesis, or translation, consumes a sizable fraction of the cell’s energy budget, estimated at 5% and up to 50% in differentiated and growing cells, respectively. Plants also invest significant energy and biomass to construct and maintain the translation apparatus. Translation is regulated by a variety of external stimuli. Compared to transcriptional control, attributes of translational control include reduced sensitivity to stochastic fluctuation, a finer gauge of control, and more rapid responsiveness to environmental stimuli. Yet, our murky understanding of translational control allows few generalizations. Consequently, translational regulation is underutilized in the context of transgene regulation, although synthetic biologists aremore » now beginning to appropriate RNA-level gene regulation into their regulatory circuits. We also know little about how translational control contributes to the diversity of plant form and function. This project explored how an emerging regulatory mRNA sequence element, upstream open reading frames (uORFs), is integrated with the general translation initiation machinery to permit translational regulation on specific mRNAs.« less
Dai, Ning; Zhao, Liping; Wrighting, Diedra; Krämer, Dana; Majithia, Amit; Wang, Yanqun; Cracan, Valentin; Borges-Rivera, Diego; Mootha, Vamsi K; Nahrendorf, Matthias; Thorburn, David R; Minichiello, Liliana; Altshuler, David; Avruch, Joseph
2015-04-07
Although variants in the IGF2BP2/IMP2 gene confer risk for type 2 diabetes, IMP2, an RNA binding protein, is not known to regulate metabolism. Imp2(-/-) mice gain less lean mass after weaning and have increased lifespan. Imp2(-/-) mice are highly resistant to diet-induced obesity and fatty liver and display superior glucose tolerance and insulin sensitivity, increased energy expenditure, and better defense of core temperature on cold exposure. Imp2(-/-) brown fat and Imp2(-/-) brown adipocytes differentiated in vitro contain more UCP1 polypeptide than Imp2(+/+) despite similar levels of Ucp1 mRNA; the Imp2(-/-)adipocytes also exhibit greater uncoupled oxygen consumption. IMP2 binds the mRNAs encoding Ucp1 and other mitochondrial components, and most exhibit increased translational efficiency in the absence of IMP2. In vitro IMP2 inhibits translation of mRNAs bearing the Ucp1 untranslated segments. Thus IMP2 limits longevity and regulates nutrient and energy metabolism in the mouse by controlling the translation of its client mRNAs. Copyright © 2015 Elsevier Inc. All rights reserved.
Phosphorylation decelerates conformational dynamics in bacterial translation elongation factors
Talavera, Ariel; Hendrix, Jelle; Versées, Wim; Jurėnas, Dukas; Van Nerom, Katleen; Vandenberk, Niels; Singh, Ranjan Kumar; Konijnenberg, Albert; De Gieter, Steven; Castro-Roa, Daniel; Barth, Anders; De Greve, Henri; Sobott, Frank; Hofkens, Johan; Zenkin, Nikolay; Loris, Remy; Garcia-Pino, Abel
2018-01-01
Bacterial protein synthesis is intricately connected to metabolic rate. One of the ways in which bacteria respond to environmental stress is through posttranslational modifications of translation factors. Translation elongation factor Tu (EF-Tu) is methylated and phosphorylated in response to nutrient starvation upon entering stationary phase, and its phosphorylation is a crucial step in the pathway toward sporulation. We analyze how phosphorylation leads to inactivation of Escherichia coli EF-Tu. We provide structural and biophysical evidence that phosphorylation of EF-Tu at T382 acts as an efficient switch that turns off protein synthesis by decoupling nucleotide binding from the EF-Tu conformational cycle. Direct modifications of the EF-Tu switch I region or modifications in other regions stabilizing the β-hairpin state of switch I result in an effective allosteric trap that restricts the normal dynamics of EF-Tu and enables the evasion of the control exerted by nucleotides on G proteins. These results highlight stabilization of a phosphorylation-induced conformational trap as an essential mechanism for phosphoregulation of bacterial translation and metabolism. We propose that this mechanism may lead to the multisite phosphorylation state observed during dormancy and stationary phase. PMID:29546243
uAUG-mediated translational initiations are responsible for human mu opioid receptor gene expression
Song, Kyu Young; Kim, Chun Sung; Hwang, Cheol Kyu; Choi, Hack Sun; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H
2010-01-01
Abstract Mu opioid receptor (MOR) is the main site of interaction for major clinical analgesics, particularly morphine. MOR expression is regulated at the transcriptional and post-transcriptional levels. However, the protein expression of the MOR gene is relatively low and the translational control of MOR gene has not been well studied. The 5′-untranslated region (UTR) of the human MOR (OPRM1) mRNA contains four upstream AUG codons (uAUG) preceding the main translation initiation site. We mutated the four uAUGs individually and in combination. Mutations of the third uAUG, containing the same open reading frame, had the strongest inhibitory effect. The inhibitory effect caused by the third in-frame uAUG was confirmed by in vitro translation and receptor-binding assays. Toeprinting results showed that OPRM1 ribosomes initiated efficiently at the first uAUG, and subsequently re-initiated at the in-frame #3 uAUG and the physiological AUG site. This re-initiation resulted in negative expression of OPRM1 under normal conditions. These results indicate that re-initiation in MOR gene expression could play an important role in OPRM1 regulation. PMID:19438807
A time-based concept for terminal-area traffic management
NASA Technical Reports Server (NTRS)
Erzberger, H.; Tobias, L.
1986-01-01
An automated air-traffic-management concept that has the potential for significantly increasing the efficiency of traffic flows in high-density terminal areas is discussed. The concept's implementation depends on the techniques for controlling the landing time of all aircraft entering the terminal area, both those that are equipped with on-board four dimensional guidance systems as well as those aircraft types that are conventionally equipped. The two major ground-based elements of the system are a scheduler which assigns conflict-free landing times and a profile descent advisor. Landing times provided by the scheduler are uplinked to equipped aircraft and translated into the appropriate four dimensional trajectory by the on-board flight-management system. The controller issues descent advisories to unequipped aircraft to help them achieve the assigned landing times. Air traffic control simulations have established that the concept provides an efficient method for controlling various mixes of four dimensional-equipped and unequipped, as well as low-and high-performance, aircraft.
Flow Control Opportunities for Propulsion Systems
NASA Technical Reports Server (NTRS)
Cutley, Dennis E.
2008-01-01
The advancement of technology in gas turbine engines used for aerospace propulsion has been focused on achieving significant performance improvements. At the system level, these improvements are expressed in metrics such as engine thrust-to-weight ratio and system and component efficiencies. The overall goals are directed at reducing engine weight, fuel burn, emissions, and noise. At a component level, these goals translate into aggressive designs of each engine component well beyond the state of the art.
2016-09-26
toolkit of additional promoters, RBS, and proteolysis tags to control gene expression at the transcrip- tional, translational, and protein levels. CRISPR ...synthetic promoters, high efficiency RBS, and terminators. Furthermore, the CRISPR -Cas system has been investigated for one cyanobacteria species,10 which...Development of a CRISPR -Cas9 toolkit for comprehensive engineer- ing of Bacillus subtilis. Appl. Environ. Microbiol. 82, 01159−01116. (9) Hussein, A. H
Ground Operations Aerospace Language (GOAL). Volume 4: Interpretive code translator
NASA Technical Reports Server (NTRS)
1973-01-01
This specification identifies and describes the principal functions and elements of the Interpretive Code Translator which has been developed for use with the GOAL Compiler. This translator enables the user to convert a compliled GOAL program to a highly general binary format which is designed to enable interpretive execution. The translator program provides user controls which are designed to enable the selection of various output types and formats. These controls provide a means for accommodating many of the implementation options which are discussed in the Interpretive Code Guideline document. The technical design approach is given. The relationship between the translator and the GOAL compiler is explained and the principal functions performed by the Translator are described. Specific constraints regarding the use of the Translator are discussed. The control options are described. These options enable the user to select outputs to be generated by the translator and to control vrious aspects of the translation processing.
Rosenblum, Daniel
2011-01-01
Recognizing the need to increase the efficiency and quality of translating basic discovery into treatment and prevention strategies for patients and the public, the National Institutes of Health (NIH) announced the Clinical and Translational Science Awards (CTSAs) in 2006. Academic health centers that competed successfully for these awards agreed to work as a consortium and in cooperation with the NIH to improve the translation process by training the next generation of investigators to work in interdisciplinary teams, developing public-private partnerships in the movement of basic discovery to preclinical and clinical studies and trials, improving clinical research management, and engaging with communities to ensure their involvement in shaping research questions and in implementing research results. The CTSAs have addressed the crucial need to improve the quality and efficiency of clinical research by (1) providing training for clinical investigators and for bench researchers to facilitate their participation in the clinical and translational research environment, (2) developing more systematic approaches to clinical research management, and (3) engaging communities as active participants in the design and conduct of clinical research studies and trials and as leaders in implementing health advances that are of high importance to them. We provide an overview of the CTSA activities with attention to these three areas, which are essential to developing efficient clinical research efforts and effective implementation of research results on a national level. PMID:21896519
Zhou, Y; Dong, F; Lanz, T A; Reinhart, V; Li, M; Liu, L; Zou, J; Xi, H S; Mao, Y
2018-01-01
Recent genome-wide association studies identified over 100 genetic loci that significantly associate with schizophrenia (SZ). A top candidate gene, ZNF804A, was robustly replicated in different populations. However, its neural functions are largely unknown. Here we show in mouse that ZFP804A, the homolog of ZNF804A, is required for normal progenitor proliferation and neuronal migration. Using a yeast two-hybrid genome-wide screen, we identified novel interacting proteins of ZNF804A. Rather than transcriptional factors, genes involved in mRNA translation are highly represented in our interactome result. ZNF804A co-fractionates with translational machinery and modulates the translational efficiency as well as the mTOR pathway. The ribosomal protein RPSA interacts with ZNF804A and rescues the migration and translational defects caused by ZNF804A knockdown. RNA immunoprecipitation–RNAseq (RIP-Seq) identified transcripts bound to ZFP804A. Consistently, ZFP804A associates with many short transcripts involved in translational and mitochondrial regulation. Moreover, among the transcripts associated with ZFP804A, a SZ risk gene, neurogranin (NRGN), is one of ZFP804A targets. Interestingly, downregulation of ZFP804A decreases NRGN expression and overexpression of NRGN can ameliorate ZFP804A-mediated migration defect. To verify the downstream targets of ZNF804A, a Duolink in situ interaction assay confirmed genes from our RIP-Seq data as the ZNF804A targets. Thus, our work uncovered a novel mechanistic link of a SZ risk gene to neurodevelopment and translational control. The interactome-driven approach here is an effective way for translating genome-wide association findings into novel biological insights of human diseases. PMID:28924186
Application of LSP Texts in Translator Training
ERIC Educational Resources Information Center
Ilynska, Larisa; Smirnova, Tatjana; Platonova, Marina
2017-01-01
The paper presents discussion of the results of extensive empirical research into efficient methods of educating and training translators of LSP (language for special purposes) texts. The methodology is based on using popular LSP texts in the respective fields as one of the main media for translator training. The aim of the paper is to investigate…
Enabling international adoption of LOINC through translation
Vreeman, Daniel J.; Chiaravalloti, Maria Teresa; Hook, John; McDonald, Clement J.
2012-01-01
Interoperable health information exchange depends on adoption of terminology standards, but international use of such standards can be challenging because of language differences between local concept names and the standard terminology. To address this important barrier, we describe the evolution of an efficient process for constructing translations of LOINC terms names, the foreign language functions in RELMA, and the current state of translations in LOINC. We also present the development of the Italian translation to illustrate how translation is enabling adoption in international contexts. We built a tool that finds the unique list of LOINC Parts that make up a given set of LOINC terms. This list enables translation of smaller pieces like the core component “hepatitis c virus” separately from all the suffixes that could appear with it, such “Ab.IgG”, “DNA”, and “RNA”. We built another tool that generates a translation of a full LOINC name from all of these atomic pieces. As of version 2.36 (June 2011), LOINC terms have been translated into 9 languages from 15 linguistic variants other than its native English. The five largest linguistic variants have all used the Part-based translation mechanism. However, even with efficient tools and processes, translation of standard terminology is a complex undertaking. Two of the prominent linguistic challenges that translators have faced include: the approach to handling acronyms and abbreviations, and the differences in linguistic syntax (e.g. word order) between languages. LOINC’s open and customizable approach has enabled many different groups to create translations that met their needs and matched their resources. Distributing the standard and its many language translations at no cost worldwide accelerates LOINC adoption globally, and is an important enabler of interoperable health information exchange PMID:22285984
Rezgui, Vanessa Anissa Nathalie; Tyagi, Kshitiz; Ranjan, Namit; Konevega, Andrey L; Mittelstaet, Joerg; Rodnina, Marina V; Peter, Matthias; Pedrioli, Patrick G A
2013-07-23
tRNA modifications are crucial to ensure translation efficiency and fidelity. In eukaryotes, the URM1 and ELP pathways increase cellular resistance to various stress conditions, such as nutrient starvation and oxidative agents, by promoting thiolation and methoxycarbonylmethylation, respectively, of the wobble uridine of cytoplasmic (tK(UUU)), (tQ(UUG)), and (tE(UUC)). Although in vitro experiments have implicated these tRNA modifications in modulating wobbling capacity and translation efficiency, their exact in vivo biological roles remain largely unexplored. Using a combination of quantitative proteomics and codon-specific translation reporters, we find that translation of a specific gene subset enriched for AAA, CAA, and GAA codons is impaired in the absence of URM1- and ELP-dependent tRNA modifications. Moreover, in vitro experiments using native tRNAs demonstrate that both modifications enhance binding of tK(UUU) to the ribosomal A-site. Taken together, our data suggest that tRNA thiolation and methoxycarbonylmethylation regulate translation of genes with specific codon content.
Cao, Yingxiu; Li, Xiaofei; Li, Feng; Song, Hao
2017-09-15
Extracellular electron transfer (EET) in Shewanella oneidensis MR-1, which is one of the most well-studied exoelectrogens, underlies many microbial electrocatalysis processes, including microbial fuel cells, microbial electrolysis cells, and microbial electrosynthesis. However, regulating the efficiency of EET remains challenging due to the lack of efficient genome regulation tools that regulate gene expression levels in S. oneidensis. Here, we systematically established a transcriptional regulation technology, i.e., clustered regularly interspaced short palindromic repeats interference (CRISPRi), in S. oneidensis MR-1 using green fluorescent protein (GFP) as a reporter. We used this CRISPRi technology to repress the expression levels of target genes, individually and in combination, in the EET pathways (e.g., the MtrCAB pathway and genes affecting the formation of electroactive biofilms in S. oneidensis), which in turn enabled the efficient regulation of EET efficiency. We then established a translational regulation technology, i.e., Hfq-dependent small regulatory RNA (sRNA), in S. oneidensis by repressing the GFP reporter and mtrA, which is a critical gene in the EET pathways in S. oneidensis. To achieve coordinated transcriptional and translational regulation at the genomic level, the CRISPRi and Hfq-dependent sRNA systems were incorporated into a single plasmid harbored in a recombinant S. oneidensis strain, which enabled an even higher efficiency of mtrA gene repression in the EET pathways than that achieved by the CRISPRi and Hfq-dependent sRNA system alone, as exhibited by the reduced electricity output. Overall, we developed a combined CRISPRi-sRNA method that enabled the synergistic transcriptional and translational regulation of target genes in S. oneidensis. This technology involving CRISPRi-sRNA transcriptional-translational regulation of gene expression at the genomic level could be applied to other microorganisms.
Janich, Peggy; Arpat, Alaaddin Bulak; Castelo-Szekely, Violeta; Lopes, Maykel; Gatfield, David
2015-01-01
Mammalian gene expression displays widespread circadian oscillations. Rhythmic transcription underlies the core clock mechanism, but it cannot explain numerous observations made at the level of protein rhythmicity. We have used ribosome profiling in mouse liver to measure the translation of mRNAs into protein around the clock and at high temporal and nucleotide resolution. We discovered, transcriptome-wide, extensive rhythms in ribosome occupancy and identified a core set of approximately 150 mRNAs subject to particularly robust daily changes in translation efficiency. Cycling proteins produced from nonoscillating transcripts revealed thus-far-unknown rhythmic regulation associated with specific pathways (notably in iron metabolism, through the rhythmic translation of transcripts containing iron responsive elements), and indicated feedback to the rhythmic transcriptome through novel rhythmic transcription factors. Moreover, estimates of relative levels of core clock protein biosynthesis that we deduced from the data explained known features of the circadian clock better than did mRNA expression alone. Finally, we identified uORF translation as a novel regulatory mechanism within the clock circuitry. Consistent with the occurrence of translated uORFs in several core clock transcripts, loss-of-function of Denr, a known regulator of reinitiation after uORF usage and of ribosome recycling, led to circadian period shortening in cells. In summary, our data offer a framework for understanding the dynamics of translational regulation, circadian gene expression, and metabolic control in a solid mammalian organ. PMID:26486724
Improved transcription and translation with L-leucine stimulation of mTORC1 in Roberts syndrome.
Xu, Baoshan; Gogol, Madelaine; Gaudenz, Karin; Gerton, Jennifer L
2016-01-05
Roberts syndrome (RBS) is a human developmental disorder caused by mutations in the cohesin acetyltransferase ESCO2. We previously reported that mTORC1 signaling was depressed and overall translation was reduced in RBS cells and zebrafish models for RBS. Treatment of RBS cells and zebrafish RBS models with L-leucine partially rescued mTOR function and protein synthesis, correlating with increased cell division and improved development. In this study, we use RBS cells to model mTORC1 repression and analyze transcription and translation with ribosome profiling to determine gene-level effects of L-leucine. L-leucine treatment partially rescued translational efficiency of ribosomal subunits, translation initiation factors, snoRNA production, and mitochondrial function in RBS cells, consistent with these processes being mTORC1 controlled. In contrast, other genes are differentially expressed independent of L-leucine treatment, including imprinted genes such as H19 and GTL2, miRNAs regulated by GTL2, HOX genes, and genes in nucleolar associated domains. Our study distinguishes between gene expression changes in RBS cells that are TOR dependent and those that are independent. Some of the TOR independent gene expression changes likely reflect the architectural role of cohesin in chromatin looping and gene expression. This study reveals the dramatic rescue effects of L-leucine stimulation of mTORC1 in RBS cells and supports that normal gene expression and translation requires ESCO2 function.
Neuropathological biomarker candidates in brain tumors: key issues for translational efficiency.
Hainfellner, J A; Heinzl, H
2010-01-01
Brain tumors comprise a large spectrum of rare malignancies in children and adults that are often associated with severe neurological symptoms and fatal outcome. Neuropathological tumor typing provides both prognostic and predictive tissue information which is the basis for optimal postoperative patient management and therapy. Molecular biomarkers may extend and refine prognostic and predictive information in a brain tumor case, providing more individualized and optimized treatment options. In the recent past a few neuropathological brain tumor biomarkers have translated smoothly into clinical use whereas many candidates show protracted translation. We investigated the causes of protracted translation of candidate brain tumor biomarkers. Considering the research environment from personal, social and systemic perspectives we identified eight determinants of translational success: methodology, funding, statistics, organization, phases of research, cooperation, self-reflection, and scientific progeny. Smoothly translating biomarkers are associated with low degrees of translational complexity whereas biomarkers with protracted translation are associated with high degrees. Key issues for translational efficiency of neuropathological brain tumor biomarker research seem to be related to (i) the strict orientation to the mission of medical research, that is the improval of medical practice as primordial purpose of research, (ii) definition of research priorities according to clinical needs, and (iii) absorption of translational complexities by means of operatively beneficial standards. To this end, concrete actions should comprise adequate scientific education of young investigators, and shaping of integrative diagnostics and therapy research both on the local level and the level of influential international brain tumor research platforms.
The ever-evolving role of mTOR in translation.
Fonseca, Bruno D; Smith, Ewan M; Yelle, Nicolas; Alain, Tommy; Bushell, Martin; Pause, Arnim
2014-12-01
Control of translation allows for the production of stoichiometric levels of each protein in the cell. Attaining such a level of fine-tuned regulation of protein production requires the coordinated temporal and spatial control of numerous cellular signalling cascades impinging on the various components of the translational machinery. Foremost among these is the mTOR signalling pathway. The mTOR pathway regulates both the initiation and elongation steps of protein synthesis through the phosphorylation of numerous translation factors, while simultaneously ensuring adequate folding of nascent polypeptides through co-translational degradation of misfolded proteins. Perhaps most remarkably, mTOR is also a key regulator of the synthesis of ribosomal proteins and translation factors themselves. Two seminal studies have recently shown in translatome analysis that the mTOR pathway preferentially regulates the translation of mRNAs encoding ribosomal proteins and translation factors. Therefore, the role of the mTOR pathway in the control of protein synthesis extends far beyond immediate translational control. By controlling ribosome production (and ultimately ribosome availability), mTOR is a master long-term controller of protein synthesis. Herein, we review the literature spanning the early discoveries of mTOR on translation to the latest advances in our understanding of how the mTOR pathway controls the synthesis of ribosomal proteins. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Efficient initiation of mammalian mRNA translation at a CUG codon.
Dasso, M C; Jackson, R J
1989-01-01
Nucleotide substitutions were made at the initiation codon of an influenza virus NS cDNA clone in a vector carrying the bacteriophage T7 promoter. When capped mRNA transcripts of these constructs were translated in the rabbit reticulocyte lysate, a change in the initiation codon from...AUAAUGG...to...AUACUGG...reduced the in vitro translational efficiency by only 50-60%, and resulted in only a small increase in the yield of short products presumed to be initiated at downstream sites. Synthesis of the full-length product was initiated exclusively at the mutated codon, with negligible use either of in-frame upstream CUG or GUG codons, or of an in-frame downstream GUG codon. We conclude that CUG has the potential to function as an efficient initiation codon in mammalian systems, at least in certain contexts. Images PMID:2780285
Dysregulated mTORC1-Dependent Translational Control: From Brain Disorders to Psychoactive Drugs
Santini, Emanuela; Klann, Eric
2011-01-01
In the last decade, a plethora of studies utilizing pharmacological, biochemical, and genetic approaches have shown that precise translational control is required for long-lasting synaptic plasticity and the formation of long-term memory. Moreover, more recent studies indicate that alterations in translational control are a common pathophysiological feature of human neurological disorders, including developmental disorders, neuropsychiatric disorders, and neurodegenerative diseases. Finally, translational control mechanisms are susceptible to modification by psychoactive drugs. Taken together, these findings point to a central role for translational control in the regulation of synaptic function and behavior. PMID:22073033
Protein functional features are reflected in the patterns of mRNA translation speed.
López, Daniel; Pazos, Florencio
2015-07-09
The degeneracy of the genetic code makes it possible for the same amino acid string to be coded by different messenger RNA (mRNA) sequences. These "synonymous mRNAs" may differ largely in a number of aspects related to their overall translational efficiency, such as secondary structure content and availability of the encoded transfer RNAs (tRNAs). Consequently, they may render different yields of the translated polypeptides. These mRNA features related to translation efficiency are also playing a role locally, resulting in a non-uniform translation speed along the mRNA, which has been previously related to some protein structural features and also used to explain some dramatic effects of "silent" single-nucleotide-polymorphisms (SNPs). In this work we perform the first large scale analysis of the relationship between three experimental proxies of mRNA local translation efficiency and the local features of the corresponding encoded proteins. We found that a number of protein functional and structural features are reflected in the patterns of ribosome occupancy, secondary structure and tRNA availability along the mRNA. One or more of these proxies of translation speed have distinctive patterns around the mRNA regions coding for certain protein local features. In some cases the three patterns follow a similar trend. We also show specific examples where these patterns of translation speed point to the protein's important structural and functional features. This support the idea that the genome not only codes the protein functional features as sequences of amino acids, but also as subtle patterns of mRNA properties which, probably through local effects on the translation speed, have some consequence on the final polypeptide. These results open the possibility of predicting a protein's functional regions based on a single genomic sequence, and have implications for heterologous protein expression and fine-tuning protein function.
Banerjee, Bidisha; Goss, Dixie J.
2014-01-01
Eukaryotic initiation factor (eIF) 4F binding to mRNA is the first committed step in cap-dependent protein synthesis. Barley yellow dwarf virus (BYDV) employs a cap-independent mechanism of translation initiation that is mediated by a structural BYDV translation element (BTE) located in the 3′-UTR of its mRNA. eIF4F bound the BTE and a translationally inactive mutant with high affinity, thus questioning the role of eIF4F in translation of BYDV. To examine the effects of eIF4F in BYDV translation initiation, BTE mutants with widely different in vitro translation efficiencies ranging from 5 to 164% compared with WT were studied. Using fluorescence anisotropy to obtain quantitative data, we show 1) the equilibrium binding affinity (complex stability) correlated well with translation efficiency, whereas the “on” rate of binding did not; 2) other unidentified proteins or small molecules in wheat germ extract prevented eIF4F binding to mutant BTE but not WT BTE; 3) BTE mutant-eIF4F interactions were found to be both enthalpically and entropically favorable with an enthalpic contribution of 52–90% to ΔG° at 25 °C, suggesting that hydrogen bonding contributes to stability; and 4) in contrast to cap-dependent and tobacco etch virus internal ribosome entry site interaction with eIF4F, poly(A)-binding protein did not increase eIF4F binding. Further, the eIF4F bound to the 3′ BTE with higher affinity than for either m7G cap or tobacco etch virus internal ribosome entry site, suggesting that the 3′ BTE may play a role in sequestering host cell initiation factors and possibly regulating the switch from replication to translation. PMID:24379412
A set of ligation-independent in vitro translation vectors for eukaryotic protein production.
Bardóczy, Viola; Géczi, Viktória; Sawasaki, Tatsuya; Endo, Yaeta; Mészáros, Tamás
2008-03-27
The last decade has brought the renaissance of protein studies and accelerated the development of high-throughput methods in all aspects of proteomics. Presently, most protein synthesis systems exploit the capacity of living cells to translate proteins, but their application is limited by several factors. A more flexible alternative protein production method is the cell-free in vitro protein translation. Currently available in vitro translation systems are suitable for high-throughput robotic protein production, fulfilling the requirements of proteomics studies. Wheat germ extract based in vitro translation system is likely the most promising method, since numerous eukaryotic proteins can be cost-efficiently synthesized in their native folded form. Although currently available vectors for wheat embryo in vitro translation systems ensure high productivity, they do not meet the requirements of state-of-the-art proteomics. Target genes have to be inserted using restriction endonucleases and the plasmids do not encode cleavable affinity purification tags. We designed four ligation independent cloning (LIC) vectors for wheat germ extract based in vitro protein translation. In these constructs, the RNA transcription is driven by T7 or SP6 phage polymerase and two TEV protease cleavable affinity tags can be added to aid protein purification. To evaluate our improved vectors, a plant mitogen activated protein kinase was cloned in all four constructs. Purification of this eukaryotic protein kinase demonstrated that all constructs functioned as intended: insertion of PCR fragment by LIC worked efficiently, affinity purification of translated proteins by GST-Sepharose or MagneHis particles resulted in high purity kinase, and the affinity tags could efficiently be removed under different reaction conditions. Furthermore, high in vitro kinase activity testified of proper folding of the purified protein. Four newly designed in vitro translation vectors have been constructed which allow fast and parallel cloning and protein purification, thus representing useful molecular tools for high-throughput production of eukaryotic proteins.
Translational Control in Cancer Etiology
Ruggero, Davide
2013-01-01
The link between perturbations in translational control and cancer etiology is becoming a primary focus in cancer research. It has now been established that genetic alterations in several components of the translational apparatus underlie spontaneous cancers as well as an entire class of inherited syndromes known as “ribosomopathies” associated with increased cancer susceptibility. These discoveries have illuminated the importance of deregulations in translational control to very specific cellular processes that contribute to cancer etiology. In addition, a growing body of evidence supports the view that deregulation of translational control is a common mechanism by which diverse oncogenic pathways promote cellular transformation and tumor development. Indeed, activation of these key oncogenic pathways induces rapid and dramatic translational reprogramming both by increasing overall protein synthesis and by modulating specific mRNA networks. These translational changes promote cellular transformation, impacting almost every phase of tumor development. This paradigm represents a new frontier in the multihit model of cancer formation and offers significant promise for innovative cancer therapies. Current research, in conjunction with cutting edge technologies, will further enable us to explore novel mechanisms of translational control, functionally identify translationally controlled mRNA groups, and unravel their impact on cellular transformation and tumorigenesis. PMID:22767671
A Novel Approach to Measuring Efficiency of Scientific Research Projects: Data Envelopment Analysis
Zell, Adrienne; Orwoll, Eric
2015-01-01
Abstract Purpose Measuring the efficiency of resource allocation for the conduct of scientific projects in medical research is difficult due to, among other factors, the heterogeneity of resources supplied (e.g., dollars or FTEs) and outcomes expected (e.g., grants, publications). While this is an issue in medical science, it has been approached successfully in other fields by using data envelopment analysis (DEA). DEA has a number of advantages over other techniques as it simultaneously uses multiple heterogeneous inputs and outputs to determine which projects are performing most efficiently, referred to as being at the efficiency frontier, when compared to others in the data set. Method This research uses DEA for the evaluation of supported translational science projects by the Oregon Clinical and Translational Research Institute (OCTRI), a NCATS Clinical & Translational Science Award (CTSA) recipient. Results These results suggest that the primary determinate of overall project efficiency at OCTRI is the amount of funding, with smaller amounts of funding providing more efficiency than larger funding amounts. Conclusion These results, and the use of DEA, highlight both the success of using this technique in helping determine medical research efficiency and those factors to consider when distributing funds for new projects at CTSAs. PMID:26243147
Hui, A; Hayflick, J; Dinkelspiel, K; de Boer, H A
1984-01-01
The effect on the translation efficiency of various mutations in the three bases (the -1 triplet) that precede the AUG start codon of the beta-galactosidase mRNA in Escherichia coli was studied. Of the 39 mutants examined, the level of expression varies over a 20-fold range. The most favorable combinations of bases in the -1 triplet are UAU and CUU. The expression levels in the mutants with UUC, UCA or AGG as the -1 triplet are 20-fold lower than those with UAU or CUU. In general, a U residue immediately preceding the start codon is more favorable for expression than any other base; furthermore, an A residue at the -2 position enhances the translation efficiency in most instances. In both cases, however, the degree of enhancement depends on its context, i.e. the neighboring bases. Although the rules derived from this study are complex, the results show that mutations in any of the three bases preceding the start codon can strongly affect the translational efficiency of the beta-galactosidase mRNA. PMID:6425057
RACK1 and the microRNA pathway: is it déjà-vu all over again?
Speth, Corinna; Laubinger, Sascha
2014-01-01
MicroRNAs (miRNAs) control many aspects of development and adaption in plants and in animals by post-transcriptional control of mRNA stability and translatability. Over the last years numerous proteins have been identified in the miRNA pathway. The versatile scaffold protein RACK1 has been associated with efficient miRNA production and function in plants and metazoans. Here, we briefly summarize the differences of RACK1 function in the plant and animal miRNA pathways and discuss putative mechanisms and functional roles of RACK1 in miRNA biogenesis and action.
Johansson, Magnus; Zhang, Jingji; Ehrenberg, Måns
2012-01-03
Rapid and accurate translation of the genetic code into protein is fundamental to life. Yet due to lack of a suitable assay, little is known about the accuracy-determining parameters and their correlation with translational speed. Here, we develop such an assay, based on Mg(2+) concentration changes, to determine maximal accuracy limits for a complete set of single-mismatch codon-anticodon interactions. We found a simple, linear trade-off between efficiency of cognate codon reading and accuracy of tRNA selection. The maximal accuracy was highest for the second codon position and lowest for the third. The results rationalize the existence of proofreading in code reading and have implications for the understanding of tRNA modifications, as well as of translation error-modulating ribosomal mutations and antibiotics. Finally, the results bridge the gap between in vivo and in vitro translation and allow us to calibrate our test tube conditions to represent the environment inside the living cell.
Collins, John M; Reizes, Ofer; Dempsey, Michael K
2016-01-01
Academic investigators are generating a plethora of insights and technologies that have the potential to significantly improve patient care. However, to address the imperative to improve the quality, cost and access to care with ever more constrained funding, the efficiency and the consistency with which they are translated into cost effective products and/or services need to improve. Healthcare commercialization programs (HCPs) are described and proposed as an option that institutions can add to their portfolio to improve translational research. In helping teams translate specific healthcare innovations into practice, HCPs expand the skillset of investigators and enhance an institution's innovation capacity. Lessons learned are shared from configuring and delivering HCPs, which build on the fundamentals of the National Science Foundation's Innovation Corps program, to address the unique challenges in supporting healthcare innovations and innovators.
Translational autocontrol of the Escherichia coli hfq RNA chaperone gene
VEČEREK, BRANISLAV; MOLL, ISABELLA; BLÄSI, UDO
2005-01-01
The conserved bacterial RNA chaperone Hfq has been shown to play an important role in post-transcriptional regulation. Here, we demonstrate that Hfq synthesis is autoregulated at the translational level. We have mapped two Hfq binding sites in the 5′-untranslated region of hfq mRNA and show that Hfq binding inhibits formation of the translation initiation complex. In vitro translation and in vivo studies further revealed that Hfq binding to both sites is required for efficient translational repression of hfq mRNA. PMID:15872186
In, Kyungmin; Zaini, Mohamad A.; Müller, Christine; Warren, Alan J.; von Lindern, Marieke; Calkhoven, Cornelis F.
2016-01-01
Mutations in the Shwachman–Bodian–Diamond Syndrome (SBDS) gene cause Shwachman–Diamond Syndrome (SDS), a rare congenital disease characterized by bone marrow failure with neutropenia, exocrine pancreatic dysfunction and skeletal abnormalities. The SBDS protein is important for ribosome maturation and therefore SDS belongs to the ribosomopathies. It is unknown, however, if loss of SBDS functionality affects the translation of specific mRNAs and whether this could play a role in the development of the clinical features of SDS. Here, we report that translation of the C/EBPα and -β mRNAs, that are indispensible regulators of granulocytic differentiation, is altered by SBDS mutations or knockdown. We show that SBDS function is specifically required for efficient translation re-initiation into the protein isoforms C/EBPα-p30 and C/EBPβ-LIP, which is controlled by a single cis-regulatory upstream open reading frame (uORF) in the 5′ untranslated regions (5′ UTRs) of both mRNAs. Furthermore, we show that as a consequence of the C/EBPα and -β deregulation the expression of MYC is decreased with associated reduction in proliferation, suggesting that failure of progenitor proliferation contributes to the haematological phenotype of SDS. Therefore, our study provides the first indication that disturbance of specific translation by loss of SBDS function may contribute to the development of the SDS phenotype. PMID:26762974
Van de Velde, Stijn; Macken, Lieve; Vanneste, Koen; Goossens, Martine; Vanschoenbeek, Jan; Aertgeerts, Bert; Vanopstal, Klaar; Vander Stichele, Robert; Buysschaert, Joost
2015-10-09
The construction of EBMPracticeNet, a national electronic point-of-care information platform in Belgium, began in 2011 to optimize quality of care by promoting evidence-based decision making. The project involved, among other tasks, the translation of 940 EBM Guidelines of Duodecim Medical Publications from English into Dutch and French. Considering the scale of the translation process, it was decided to make use of computer-aided translation performed by certificated translators with limited expertise in medical translation. Our consortium used a hybrid approach, involving a human translator supported by a translation memory (using SDL Trados Studio), terminology recognition (using SDL MultiTerm terminology databases) from medical terminology databases, and support from online machine translation. This resulted in a validated translation memory, which is now in use for the translation of new and updated guidelines. The objective of this experiment was to evaluate the performance of the hybrid human and computer-assisted approach in comparison with translation unsupported by translation memory and terminology recognition. A comparison was also made with the translation efficiency of an expert medical translator. We conducted a pilot study in which two sets of 30 new and 30 updated guidelines were randomized to one of three groups. Comparable guidelines were translated (1) by certificated junior translators without medical specialization using the hybrid method, (2) by an experienced medical translator without this support, and (3) by the same junior translators without the support of the validated translation memory. A medical proofreader who was blinded for the translation procedure, evaluated the translated guidelines for acceptability and adequacy. Translation speed was measured by recording translation and post-editing time. The human translation edit rate was calculated as a metric to evaluate the quality of the translation. A further evaluation was made of translation acceptability and adequacy. The average number of words per guideline was 1195 and the mean total translation time was 100.2 minutes/1000 words. No meaningful differences were found in the translation speed for new guidelines. The translation of updated guidelines was 59 minutes/1000 words faster (95% CI 2-115; P=.044) in the computer-aided group. Revisions due to terminology accounted for one third of the overall revisions by the medical proofreader. Use of the hybrid human and computer-aided translation by a non-expert translator makes the translation of updates of clinical practice guidelines faster and cheaper because of the benefits of translation memory. For the translation of new guidelines, there was no apparent benefit in comparison with the efficiency of translation unsupported by translation memory (whether by an expert or non-expert translator).
2015-01-01
Background The construction of EBMPracticeNet, a national electronic point-of-care information platform in Belgium, began in 2011 to optimize quality of care by promoting evidence-based decision making. The project involved, among other tasks, the translation of 940 EBM Guidelines of Duodecim Medical Publications from English into Dutch and French. Considering the scale of the translation process, it was decided to make use of computer-aided translation performed by certificated translators with limited expertise in medical translation. Our consortium used a hybrid approach, involving a human translator supported by a translation memory (using SDL Trados Studio), terminology recognition (using SDL MultiTerm terminology databases) from medical terminology databases, and support from online machine translation. This resulted in a validated translation memory, which is now in use for the translation of new and updated guidelines. Objective The objective of this experiment was to evaluate the performance of the hybrid human and computer-assisted approach in comparison with translation unsupported by translation memory and terminology recognition. A comparison was also made with the translation efficiency of an expert medical translator. Methods We conducted a pilot study in which two sets of 30 new and 30 updated guidelines were randomized to one of three groups. Comparable guidelines were translated (1) by certificated junior translators without medical specialization using the hybrid method, (2) by an experienced medical translator without this support, and (3) by the same junior translators without the support of the validated translation memory. A medical proofreader who was blinded for the translation procedure, evaluated the translated guidelines for acceptability and adequacy. Translation speed was measured by recording translation and post-editing time. The human translation edit rate was calculated as a metric to evaluate the quality of the translation. A further evaluation was made of translation acceptability and adequacy. Results The average number of words per guideline was 1195 and the mean total translation time was 100.2 minutes/1000 words. No meaningful differences were found in the translation speed for new guidelines. The translation of updated guidelines was 59 minutes/1000 words faster (95% CI 2-115; P=.044) in the computer-aided group. Revisions due to terminology accounted for one third of the overall revisions by the medical proofreader. Conclusions Use of the hybrid human and computer-aided translation by a non-expert translator makes the translation of updates of clinical practice guidelines faster and cheaper because of the benefits of translation memory. For the translation of new guidelines, there was no apparent benefit in comparison with the efficiency of translation unsupported by translation memory (whether by an expert or non-expert translator). PMID:26453372
Split Cas9, Not Hairs - Advancing the Therapeutic Index of CRISPR Technology.
Schmelas, Carolin; Grimm, Dirk
2018-01-05
The discovery that the bacterial CRISPR/Cas9 system can be translated into mammalian cells continues to have an unprecedented impact on the biomedical research community, as it largely facilitates efforts to experimentally interrogate or therapeutically modify the cellular genome. In particular, CRISPR promises the ability to correct disease-associated genetic defects, or to target and destroy invading foreign DNA, in a simple, efficient, and selective manner directly in affected human cells or tissues. Here, we highlight a set of exciting new strategies that aim at further increasing the therapeutic index of CRISPR technologies, by reducing the size of Cas9 expression cassettes and thus enhancing their compatibility with viral gene delivery vectors. Specifically, we discuss the concept of splitCas9 whereby the Cas9 holo-protein is segregated into two parts that are expressed individually and reunited in the cell by various means, including use of 1) the gRNA as a scaffold for Cas9 assembly; 2) the rapamycin-controlled FKBP/FRB system; 3) the light-regulated Magnet system; or 4) inteins. We describe how these avenues, despite pursuing the identical aim, differ in critical features comprising the extent of spatio-temporal control of CRISPR activity, and discuss additional improvements to their efficiency or specificity that should foster their clinical translation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fan, Z.; Chen, D.; Deng, C.X.
2013-01-01
Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. We conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmid coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9% ± 2.2% (n = 9), comparable with lipofection (7.5% ± 0.8%, n = 9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. PMID:23770009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velden, Yme U. van der; Kleibeuker, Wendy; Harwig, Alex
Conditionally replicating HIV-1 variants that can be switched on and off at will are attractive tools for HIV research. We previously developed a genetically modified HIV-1 variant that replicates exclusively when doxycycline (dox) is administered. The nef gene in this HIV-rtTA variant was replaced with the gene encoding the dox-dependent rtTA transcriptional activator. Because loss of Nef expression compromises virus replication in primary cells and precludes studies on Nef function, we tested different approaches to restore Nef production in HIV-rtTA. Strategies that involved translation via an EMCV or synthetic internal ribosome entry site (IRES) failed because these elements were incompatiblemore » with efficient virus replication. Fusion protein approaches with the FMDV 2A peptide and human ubiquitin were successful and resulted in genetically-stable Nef-expressing HIV-rtTA strains that replicate more efficiently in primary T-cells and human immune system (HIS) mice than Nef-deficient variants, thus confirming the positive effect of Nef on in vivo virus replication. - Highlights: • Different approaches to encode additional proteins in the HIV-1 genome were tested. • IRES translation elements are incompatible with efficient HIV-1 replication. • Ubiquitin and 2A fusion protein approaches allow efficient HIV-1 replication. • Doxycycline-controlled HIV-1 variants that encode all viral proteins were developed. • Nef stimulates HIV-rtTA replication in primary cells and human immune system mice.« less
Morrison, J Kaitlin; Friday, Andrew J; Henderson, Melissa A; Hao, Enhui; Keiper, Brett D
2014-01-01
During apoptosis, activated caspases cleave the translation initiation factor eIF4G. This cleavage disrupts cap-dependent mRNA translation initiation within the cell. However, a specific subset of mRNAs can still be recruited for protein synthesis in a cap-independent manner by the residual initiation machinery. Many of these mRNAs, including cell death related mRNAs, contain internal ribosome entry sites (IRESes) that promote their enhanced translation during apoptosis. Still other mRNAs have little dependence on the cap recognition mechanism. The expression of the encoded proteins, both anti- and pro-apoptotic, allows for an initial period of attempted cell survival, then commitment to cell death when damage is extensive. In this study we address the translational regulation of the stress and apoptosis-related mRNAs in C. elegans: BiP (hsp-3) (hsp-4), Hif-1 (hif-1), p53 (cep-1), Bcl-2 (ced-9) and Apaf-1 (ced-4). Altered translational efficiency of these messages was observed upon depletion of cap-dependent translation and induction of apoptosis within the C. elegans gonad. Our findings suggest a physiological link between the cap-independent mechanism and the enhanced translation of hsp-3 and ced-9. This increase in the efficiency of translation may be integral to the stress response during the induction of physiological apoptosis. PMID:26779406
Stolárik, Tibor; Hedtke, Boris; Šantrůček, Jiří; Ilík, Petr; Grimm, Bernhard; Pavlovič, Andrej
2017-05-01
Unlike angiosperms, gymnosperms use two different enzymes for the reduction of protochlorophyllide to chlorophyllide: the light-dependent protochlorophyllide oxidoreductase (LPOR) and the dark-operative protochlorophyllide oxidoreductase (DPOR). In this study, we examined the specific role of both enzymes for chlorophyll synthesis in response to different light/dark and temperature conditions at different developmental stages (cotyledons and needles) of Norway spruce (Picea abies Karst.). The accumulation of chlorophyll and chlorophyll-binding proteins strongly decreased during dark growth in secondary needles at room temperature as well as in cotyledons at low temperature (7 °C) indicating suppression of DPOR activity. The levels of the three DPOR subunits ChlL, ChlN, and ChlB and the transcripts of their encoding genes were diminished in dark-grown secondary needles. The low temperature had minor effects on the transcription and translation of these genes in cotyledons, which is suggestive for post-translational control in chlorophyll biosynthesis. Taking into account the higher solubility of oxygen at low temperature and oxygen sensitivity of DPOR, we mimicked low-temperature condition by the exposure of seedlings to higher oxygen content (33%). The treatment resulted in an etiolated phenotype of dark-grown seedlings, confirming an oxygen-dependent control of DPOR activity in spruce cotyledons. Moreover, light-dependent suppression of mRNA and protein level of DPOR subunits indicates that more efficiently operating LPOR takes over the DPOR function under light conditions, especially in secondary needles.
Hu, Xiao-Pan; Yang, Yi; Ma, Bin-Guang
2015-06-09
Protein translation is a central step in gene expression and affected by many factors such as codon usage bias, mRNA folding energy and tRNA abundance. Despite intensive previous studies, how metabolic amino acid supply correlates with protein translation efficiency remains unknown. In this work, we estimated the amino acid flux from metabolic network for each protein in Escherichia coli and Saccharomyces cerevisiae by using Flux Balance Analysis. Integrated with the mRNA expression level, protein abundance and ribosome profiling data, we provided a detailed description of the role of amino acid supply in protein translation. Our results showed that amino acid supply positively correlates with translation efficiency and ribosome density. Moreover, with the rank-based regression model, we found that metabolic amino acid supply facilitates ribosome utilization. Based on the fact that the ribosome density change of well-amino-acid-supplied genes is smaller than poorly-amino-acid-supply genes under amino acid starvation, we reached the conclusion that amino acid supply may buffer ribosome density change against amino acid starvation and benefit maintaining a relatively stable translation environment. Our work provided new insights into the connection between metabolic amino acid supply and protein translation process by revealing a new regulation strategy that is dependent on resource availability.
Efficient computation of co-transcriptional RNA-ligand interaction dynamics.
Wolfinger, Michael T; Flamm, Christoph; Hofacker, Ivo L
2018-05-04
Riboswitches form an abundant class of cis-regulatory RNA elements that mediate gene expression by binding a small metabolite. For synthetic biology applications, they are becoming cheap and accessible systems for selectively triggering transcription or translation of downstream genes. Many riboswitches are kinetically controlled, hence knowledge of their co-transcriptional mechanisms is essential. We present here an efficient implementation for analyzing co-transcriptional RNA-ligand interaction dynamics. This approach allows for the first time to model concentration-dependent metabolite binding/unbinding kinetics. We exemplify this novel approach by means of the recently studied I-A 2 ' -deoxyguanosine (2 ' dG)-sensing riboswitch from Mesoplasma florum. Copyright © 2018 Elsevier Inc. All rights reserved.
Biologically-inspired robust and adaptive multi-sensor fusion and active control
NASA Astrophysics Data System (ADS)
Khosla, Deepak; Dow, Paul A.; Huber, David J.
2009-04-01
In this paper, we describe a method and system for robust and efficient goal-oriented active control of a machine (e.g., robot) based on processing, hierarchical spatial understanding, representation and memory of multimodal sensory inputs. This work assumes that a high-level plan or goal is known a priori or is provided by an operator interface, which translates into an overall perceptual processing strategy for the machine. Its analogy to the human brain is the download of plans and decisions from the pre-frontal cortex into various perceptual working memories as a perceptual plan that then guides the sensory data collection and processing. For example, a goal might be to look for specific colored objects in a scene while also looking for specific sound sources. This paper combines three key ideas and methods into a single closed-loop active control system. (1) Use high-level plan or goal to determine and prioritize spatial locations or waypoints (targets) in multimodal sensory space; (2) collect/store information about these spatial locations at the appropriate hierarchy and representation in a spatial working memory. This includes invariant learning of these spatial representations and how to convert between them; and (3) execute actions based on ordered retrieval of these spatial locations from hierarchical spatial working memory and using the "right" level of representation that can efficiently translate into motor actions. In its most specific form, the active control is described for a vision system (such as a pantilt- zoom camera system mounted on a robotic head and neck unit) which finds and then fixates on high saliency visual objects. We also describe the approach where the goal is to turn towards and sequentially foveate on salient multimodal cues that include both visual and auditory inputs.
Efficient Translation of LTL Formulae into Buchi Automata
NASA Technical Reports Server (NTRS)
Giannakopoulou, Dimitra; Lerda, Flavio
2001-01-01
Model checking is a fully automated technique for checking that a system satisfies a set of required properties. With explicit-state model checkers, properties are typically defined in linear-time temporal logic (LTL), and are translated into B chi automata in order to be checked. This report presents how we have combined and improved existing techniques to obtain an efficient LTL to B chi automata translator. In particular, we optimize the core of existing tableau-based approaches to generate significantly smaller automata. Our approach has been implemented and is being released as part of the Java PathFinder software (JPF), an explicit state model checker under development at the NASA Ames Research Center.
Translational control of auditory imprinting and structural plasticity by eIF2α.
Batista, Gervasio; Johnson, Jennifer Leigh; Dominguez, Elena; Costa-Mattioli, Mauro; Pena, Jose L
2016-12-23
The formation of imprinted memories during a critical period is crucial for vital behaviors, including filial attachment. Yet, little is known about the underlying molecular mechanisms. Using a combination of behavior, pharmacology, in vivo surface sensing of translation (SUnSET) and DiOlistic labeling we found that, translational control by the eukaryotic translation initiation factor 2 alpha (eIF2α) bidirectionally regulates auditory but not visual imprinting and related changes in structural plasticity in chickens. Increasing phosphorylation of eIF2α (p-eIF2α) reduces translation rates and spine plasticity, and selectively impairs auditory imprinting. By contrast, inhibition of an eIF2α kinase or blocking the translational program controlled by p-eIF2α enhances auditory imprinting. Importantly, these manipulations are able to reopen the critical period. Thus, we have identified a translational control mechanism that selectively underlies auditory imprinting. Restoring translational control of eIF2α holds the promise to rejuvenate adult brain plasticity and restore learning and memory in a variety of cognitive disorders.
Ishida, Yoko; Nguyen, Trinh Thi My; Izawa, Shingo
2017-06-20
Lignocellulosic biomass conversion inhibitors such as vanillin, furfural, and 5-hydroxymethylfurfural (HMF) inhibit the growth of and fermentation by Saccharomyces cerevisiae. A high concentration of each fermentation inhibitor represses translation and increases non-translated mRNAs. We previously reported that the mRNAs of ADH7 and BDH2, which encode putative NADPH- and NADH-dependent alcohol dehydrogenases, respectively, were efficiently translated even with translation repression in response to severe vanillin stress. However, the combined effects of these fermentation inhibitors on the expression of ADH7 and BDH2 remain unclear. We herein demonstrated that exposure to a combined stress of vanillin, furfural, and HMF repressed translation. The protein synthesis of Adh7, but not Bdh2 was significantly induced under combined stress conditions, even though the mRNA levels of ADH7 and BDH2 were up-regulated. Additionally, adh7Δ cells were more sensitive to the combined stress than wild-type and bdh2Δ cells. These results suggest that induction of the ADH7 expression plays a role in the tolerance to the combined stress of vanillin, furfural, and HMF. Furthermore, we succeeded in improving yeast tolerance to the combined stress by controlling the expression of ALD6 with the ADH7 promoter. Our results demonstrate that the ADH7 promoter can overcome the pronounced translation repression caused by the combined stress of vanillin, furfural, and HMF, and also suggest a new gene engineering strategy to breed robust and optimized yeasts for bioethanol production from a lignocellulosic biomass. Copyright © 2017 Elsevier B.V. All rights reserved.
Pelletier, J; Kaplan, G; Racaniello, V R; Sonenberg, N
1988-01-01
Poliovirus mRNA contains a long 5' noncoding region of about 750 nucleotides (the exact number varies among the three virus serotypes), which contains several AUG codons upstream of the major initiator AUG. Unlike most eucaryotic mRNAs, poliovirus does not contain a m7GpppX (where X is any nucleotide) cap structure at its 5' end and is translated by a cap-independent mechanism. To study the manner by which poliovirus mRNA is expressed, we examined the translational efficiencies of a series of deletion mutants within the 5' noncoding region of the mRNA. In this paper we report striking translation system-specific differences in the ability of the altered mRNAs to be translated. The results suggest the existence of an inhibitory cis-acting element(s) within the 5' noncoding region of poliovirus (between nucleotides 70 and 381) which restricts mRNA translation in reticulocyte lysate, wheat germ extract, and Xenopus oocytes, but not in HeLa cell extracts. In addition, we show that HeLa cell extracts contain a trans-acting factor(s) that overcomes this restriction. Images PMID:2836606
The CTSA Consortium's Catalog of Assets for Translational and Clinical Health Research (CATCHR)
Mapes, Brandy; Basford, Melissa; Zufelt, Anneliese; Wehbe, Firas; Harris, Paul; Alcorn, Michael; Allen, David; Arnim, Margaret; Autry, Susan; Briggs, Michael S.; Carnegie, Andrea; Chavis‐Keeling, Deborah; De La Pena, Carlos; Dworschak, Doris; Earnest, Julie; Grieb, Terri; Guess, Marilyn; Hafer, Nathaniel; Johnson, Tesheia; Kasper, Amanda; Kopp, Janice; Lockie, Timothy; Lombardo, Vincetta; McHale, Leslie; Minogue, Andrea; Nunnally, Beth; O'Quinn, Deanna; Peck, Kelly; Pemberton, Kieran; Perry, Cheryl; Petrie, Ginny; Pontello, Andria; Posner, Rachel; Rehman, Bushra; Roth, Deborah; Sacksteder, Paulette; Scahill, Samantha; Schieri, Lorri; Simpson, Rosemary; Skinner, Anne; Toussant, Kim; Turner, Alicia; Van der Put, Elaine; Wasser, June; Webb, Chris D.; Williams, Maija; Wiseman, Lori; Yasko, Laurel; Pulley, Jill
2014-01-01
Abstract The 61 CTSA Consortium sites are home to valuable programs and infrastructure supporting translational science and all are charged with ensuring that such investments translate quickly to improved clinical care. Catalog of Assets for Translational and Clinical Health Research (CATCHR) is the Consortium's effort to collect and make available information on programs and resources to maximize efficiency and facilitate collaborations. By capturing information on a broad range of assets supporting the entire clinical and translational research spectrum, CATCHR aims to provide the necessary infrastructure and processes to establish and maintain an open‐access, searchable database of consortium resources to support multisite clinical and translational research studies. Data are collected using rigorous, defined methods, with the resulting information made visible through an integrated, searchable Web‐based tool. Additional easy‐to‐use Web tools assist resource owners in validating and updating resource information over time. In this paper, we discuss the design and scope of the project, data collection methods, current results, and future plans for development and sustainability. With increasing pressure on research programs to avoid redundancy, CATCHR aims to make available information on programs and core facilities to maximize efficient use of resources. PMID:24456567
Reizes, Ofer; Dempsey, Michael K.
2016-01-01
Academic investigators are generating a plethora of insights and technologies that have the potential to significantly improve patient care. However, to address the imperative to improve the quality, cost and access to care with ever more constrained funding, the efficiency and the consistency with which they are translated into cost effective products and/or services need to improve. Healthcare commercialization programs (HCPs) are described and proposed as an option that institutions can add to their portfolio to improve translational research. In helping teams translate specific healthcare innovations into practice, HCPs expand the skillset of investigators and enhance an institution’s innovation capacity. Lessons learned are shared from configuring and delivering HCPs, which build on the fundamentals of the National Science Foundation’s Innovation Corps program, to address the unique challenges in supporting healthcare innovations and innovators. PMID:27766188
Ohnheiser, Johanna; Ferlemann, Eva; Haas, Astrid; Müller, Jan P; Werwein, Eugen; Fehler, Olesja; Biyanee, Abhiruchi; Klempnauer, Karl-Heinz
2015-07-01
The tumor suppressor protein programmed cell death 4 (Pdcd4) is a highly conserved RNA-binding protein that inhibits the translation of specific mRNAs. Here, we have identified the homeobox-interacting protein kinase-2 (Hipk2) mRNA as a novel translational target of Pdcd4. Unlike most other protein kinases Hipk2 is constitutively active after being synthesized by the ribosome and its expression and activity are thought to be mainly controlled by modulation of the half-life of the kinase. Our work provides the first evidence that Hipk2 expression is also controlled on the level of translation. We show that Hipk2 stimulates the translation of its own mRNA and that Pdcd4 suppresses the translation of Hipk2 mRNA by interfering with this auto-regulatory feedback mechanism. We also show that the translation of the related kinase Hipk1 is controlled by a similar feedback loop and that Hipk2 also stimulates the translation of Hipk1 mRNA. Taken together, our work describes a novel mechanism of translational suppression by Pdcd4 and shows for the first time that Hipk2 controls its own synthesis by an auto-regulatory feedback mechanism. Furthermore, the effect of Hipk2 on the translation of Hipk1 RNA suggests that Hipk2 and Pdcd4 can act in similar manner to control the translation of other mRNAs. Copyright © 2015 Elsevier B.V. All rights reserved.
Identification of Conflicting Selective Effects on Highly Expressed Genes
Higgs, Paul G.; Hao, Weilong; Golding, G. Brian
2007-01-01
Many different selective effects on DNA and proteins influence the frequency of codons and amino acids in coding sequences. Selection is often stronger on highly expressed genes. Hence, by comparing high- and low-expression genes it is possible to distinguish the factors that are selected by evolution. It has been proposed that highly expressed genes should (i) preferentially use codons matching abundant tRNAs (translational efficiency), (ii) preferentially use amino acids with low cost of synthesis, (iii) be under stronger selection to maintain the required amino acid content, and (iv) be selected for translational robustness. These effects act simultaneously and can be contradictory. We develop a model that combines these factors, and use Akaike’s Information Criterion for model selection. We consider pairs of paralogues that arose by whole-genome duplication in Saccharmyces cerevisiae. A codon-based model is used that includes asymmetric effects due to selection on highly expressed genes. The largest effect is translational efficiency, which is found to strongly influence synonymous, but not non-synonymous rates. Minimization of the cost of amino acid synthesis is implicated. However, when a more general measure of selection for amino acid usage is used, the cost minimization effect becomes redundant. Small effects that we attribute to selection for translational robustness can be identified as an improvement in the model fit on top of the effects of translational efficiency and amino acid usage. PMID:19430600
Salgado, Roy M; Sheard, Ailish C; Vaughan, Roger A; Parker, Daryl L; Schneider, Suzanne M; Kenefick, Robert W; McCormick, James J; Gannon, Nicholas P; Van Dusseldorp, Trisha A; Kravitz, Len R; Mermier, Christine M
2017-02-01
Heat stress has been reported to reduce uncoupling proteins (UCP) expression, which in turn should improve mitochondrial efficiency. Such an improvement in efficiency may translate to the systemic level as greater exercise economy. However, neither the heat-induced improvement in mitochondrial efficiency (due to decrease in UCP), nor its potential to improve economy has been studied. Determine: (i) if heat stress in vitro lowers UCP3 thereby improving mitochondrial efficiency in C2C12 myocytes; (ii) whether heat acclimation (HA) in vivo improves exercise economy in trained individuals; and (iii) the potential improved economy during exercise at altitude. In vitro, myocytes were heat stressed for 24 h (40°C), followed by measurements of UCP3, mitochondrial uncoupling, and efficiency. In vivo, eight trained males completed: (i) pre-HA testing; (ii) 10 days of HA (40°C, 20% RH); and (iii) post-HA testing. Pre- and posttesting consisted of maximal exercise test and submaximal exercise at two intensities to assess exercise economy at 1600 m (Albuquerque, NM) and 4350 m. Heat-stressed myocytes displayed significantly reduced UCP3 mRNA expression and, mitochondrial uncoupling (77.1 ± 1.2%, P < 0.0001) and improved mitochondrial efficiency (62.9 ± 4.1%, P < 0.0001) compared to control. In humans, at both 1600 m and 4350 m, following HA, submaximal exercise economy did not change at low and moderate exercise intensities. Our findings indicate that while heat-induced reduction in UCP3 improves mitochondrial efficiency in vitro, this is not translated to in vivo improvement of exercise economy at 1600 m or 4350 m. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
2018-01-01
Chloroplast translation is essential for cellular viability and plant development. Its positioning at the intersection of organellar RNA and protein metabolism makes it a unique point for the regulation of gene expression in response to internal and external cues. Recently obtained high-resolution structures of plastid ribosomes, the development of approaches allowing genome-wide analyses of chloroplast translation (i.e., ribosome profiling), and the discovery of RNA binding proteins involved in the control of translational activity have greatly increased our understanding of the chloroplast translation process and its regulation. In this review, we provide an overview of the current knowledge of the chloroplast translation machinery, its structure, organization, and function. In addition, we summarize the techniques that are currently available to study chloroplast translation and describe how translational activity is controlled and which cis-elements and trans-factors are involved. Finally, we discuss how translational control contributes to the regulation of chloroplast gene expression in response to developmental, environmental, and physiological cues. We also illustrate the commonalities and the differences between the chloroplast and bacterial translation machineries and the mechanisms of protein biosynthesis in these two prokaryotic systems. PMID:29610211
Kim, Yong Y; Von Weymarn, Linda; Larsson, Ola; Fan, Danhua; Underwood, Jon M; Hecht, Stephen S; Polunovsky, Vitaly A; Bitterman, Peter B
2009-01-01
The usurping of translational control by sustained activation of translation initiation factors is oncogenic. Here we show that the primary negative regulators of these oncogenic initiation factors - the 4E-BP protein family - operate as guardians of a translational control checkpoint in lung tumor defense. When challenged with the tobacco carcinogen NNK, 4ebp1−/−/4ebp2−/− mice showed increased sensitivity to tumorigenesis compared to their wild type counterparts. The 4E-BP deficient state per se creates pro-oncogenic, genome-wide skewing of the molecular landscape - with translational activation of genes governing angiogenesis, growth and proliferation; and translational activation of the precise cytochrome p450 enzyme isoform (CYP2A5) that bioactivates NNK into mutagenic metabolites. Our study provides in vivo proof for a translational control checkpoint in lung tumor defense. PMID:19843855
Translation regulation of mammalian selenoproteins.
Vindry, Caroline; Ohlmann, Théophile; Chavatte, Laurent
2018-05-09
Interest in selenium research has considerably grown over the last decades owing to the association of selenium deficiencies with an increased risk of several human diseases, including cancers, cardiovascular disorders and infectious diseases. The discovery of a genetically encoded 21 st amino acid, selenocysteine, is a fascinating breakthrough in molecular biology as it is the first addition to the genetic code deciphered in the 1960s. Selenocysteine is a structural and functional analog of cysteine, where selenium replaces sulfur, and its presence is critical for the catalytic activity of selenoproteins. The insertion of selenocysteine is a non-canonical translational event, based on the recoding of a UGA codon in selenoprotein mRNAs, normally used as a stop codon in other cellular mRNAs. Two RNA molecules and associated partners are crucial components of the selenocysteine insertion machinery, the Sec-tRNA [Ser]Sec devoted to UGA codon recognition and the SECIS elements located in the 3'UTR of selenoprotein mRNAs. The translational UGA recoding event is a limiting stage of selenoprotein expression and its efficiency is regulated by several factors. The control of selenoproteome expression is crucial for redox homeostasis and antioxidant defense of mammalian organisms. In this review, we summarize current knowledge on the co-translational insertion of selenocysteine into selenoproteins, and its layers of regulation. Copyright © 2018. Published by Elsevier B.V.
Cross-Cultural Adaptation of the Urticaria Control Test From German to Castilian Spanish.
García-Díez, I; Curto-Barredo, L; Weller, K; Pujol, R M; Maurer, M; Giménez-Arnau, A M
2015-11-01
The clinical concept of urticaria embraces a heterogeneous group of conditions classified according to their clinical course as acute (lasting less than 6 weeks) or chronic (lasting 6 weeks or more). Chronic urticaria may be either spontaneous or induced. Few tools are available for monitoring the various clinical forms of this disease or for evaluating its impact on quality of life. The recently developed Urticaria Control Test to evaluate disease control is available in German, the original language, and American English. To culturally adapt the long and short versions of the Urticaria Control Test to Castilian Spanish to ensure equivalence between the translated items and those of the original version. To translate the Urticaria Control Test we followed the International Society for Pharmacoeconomics and Outcomes Research good practice guidelines, starting with forward translation and moving through back translation and cognitive debriefing steps. Three items were modified when the first Spanish version, translated from German, was discussed (cognitive debriefing). The revised translation was then translated back to German and sent to the Urticaria Control Test authors, who modified one item they considered had acquired a different focus through translation. A third Spanish version was then prepared and after minor proofreading changes was considered definitive. This study was the first step in making it possible to use the Urticaria Control Test questionnaire in Castilian Spanish. The next step will be to validate the translated questionnaire. Copyright © 2015 Elsevier España, S.L.U. and AEDV. All rights reserved.
NASA Astrophysics Data System (ADS)
Olschanowsky, C.; Flores, A. N.; FitzGerald, K.; Masarik, M. T.; Rudisill, W. J.; Aguayo, M.
2017-12-01
Dynamic models of the spatiotemporal evolution of water, energy, and nutrient cycling are important tools to assess impacts of climate and other environmental changes on ecohydrologic systems. These models require spatiotemporally varying environmental forcings like precipitation, temperature, humidity, windspeed, and solar radiation. These input data originate from a variety of sources, including global and regional weather and climate models, global and regional reanalysis products, and geostatistically interpolated surface observations. Data translation measures, often subsetting in space and/or time and transforming and converting variable units, represent a seemingly mundane, but critical step in the application workflows. Translation steps can introduce errors, misrepresentations of data, slow execution time, and interrupt data provenance. We leverage a workflow that subsets a large regional dataset derived from the Weather Research and Forecasting (WRF) model and prepares inputs to the Parflow integrated hydrologic model to demonstrate the impact translation tool software quality on scientific workflow results and performance. We propose that such workflows will benefit from a community approved collection of data transformation components. The components should be self-contained composable units of code. This design pattern enables automated parallelization and software verification, improving performance and reliability. Ensuring that individual translation components are self-contained and target minute tasks increases reliability. The small code size of each component enables effective unit and regression testing. The components can be automatically composed for efficient execution. An efficient data translation framework should be written to minimize data movement. Composing components within a single streaming process reduces data movement. Each component will typically have a low arithmetic intensity, meaning that it requires about the same number of bytes to be read as the number of computations it performs. When several components' executions are coordinated the overall arithmetic intensity increases, leading to increased efficiency.
NASA Technical Reports Server (NTRS)
Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.
1990-01-01
Proposed walking-beam robot simpler and more rugged than articulated-leg walkers. Requires less data processing, and uses power more efficiently. Includes pair of tripods, one nested in other. Inner tripod holds power supplies, communication equipment, computers, instrumentation, sampling arms, and articulated sensor turrets. Outer tripod holds mast on which antennas for communication with remote control site and video cameras for viewing local and distant terrain mounted. Propels itself by raising, translating, and lowering tripods in alternation. Steers itself by rotating raised tripod on turntable.
Compact and high-efficiency device for Raman scattering measurement using optical fibers.
Mitsui, Tadashi
2014-11-01
We describe the design and development of a high-efficiency optical measurement device for operation within the small bore of a high-power magnet at low temperature. For the high-efficiency measurement of light emitted from this small region, we designed a compact confocal optics with lens focusing and tilting systems, and used a piezodriven translation stage that allows micron-scale focus control of the sample position. We designed a measurement device that uses 10 m-long optical fibers in order to avoid the influence of mechanical vibration and magnetic field leakage of high-power magnets, and we also describe a technique for minimizing the fluorescence signal of optical fibers. The operation of the device was confirmed by Raman scattering measurements of monolayer graphene on quartz glass with a high signal-to-noise ratio.
Cheol Kim, Seong; Eun Min, Byung; Gyu Hwang, Hyun; Woo Seo, Sang; Yeol Jung, Gyoo
2015-01-01
L-tyrosine is a commercially important compound in the food, pharmaceutical, chemical, and cosmetic industries. Although several attempts have been made to improve L-tyrosine production, translation-level expression control and carbon flux rebalancing around phosphoenolpyruvate (PEP) node still remain to be achieved for optimizing the pathway. Here, we demonstrate pathway optimization by altering gene expression levels for L-tyrosine production in Escherichia coli. To optimize the L-tyrosine biosynthetic pathway, a synthetic constitutive promoter and a synthetic 5′-untranslated region (5′-UTR) were introduced for each gene of interest to allow for control at both transcription and translation levels. Carbon flux rebalancing was achieved by controlling the expression level of PEP synthetase using UTR Designer. The L-tyrosine productivity of the engineered E. coli strain was increased through pathway optimization resulting in 3.0 g/L of L-tyrosine titer, 0.0354 g L-tyrosine/h/g DCW of productivity, and 0.102 g L-tyrosine/g glucose yield. Thus, this work demonstrates that pathway optimization by 5′-UTR redesign is an effective strategy for the development of efficient L-tyrosine-producing bacteria. PMID:26346938
Rathi, Sangeeta; Taylor, Nicholas F; Soo, Brendan; Green, Rodney A
2018-03-02
To determine whether patients with symptomatic rotator cuff pathology had more glenohumeral joint translation and different patterns of rotator cuff muscle activity compared to controls. Repeated measurements of glenohumeral translation and muscle activity in two positions and six testing conditions in two groups. Twenty participants with a symptomatic and diagnosed rotator cuff tear and 20 age, and gender matched controls were included. Neuromuscular activity was tested by inserting intramuscular electrodes in the rotator cuff muscles. Anterior and posterior glenohumeral translations were measured using real time ultrasound in testing conditions (with and without translation force, with and without isometric internal and external rotation), in two positions (shoulder neutral, 90° of abduction) and two force directions (anterior, posterior). Symptomatic pathology group demonstrated increased passive glenohumeral translation with posterior translation force (p<0.05). Overall, rotator cuff muscle contraction in the pathology group limited joint translation in a similar manner to the control group, but they did not show the normal direction specific pattern in the neutral posterior position (p<0.03). The pathology group demonstrated reduced EMG activity in the upper infraspinatus muscle relative to the reference position (p<0.02) with anterior translation force and in the supraspinatus (p<0.05) muscle with anterior and posterior translation force in the abducted position. Symptomatic pathology resulted in increased passive glenohumeral joint translation. Although there were some reductions in muscle activity with injury, their rotator cuff still controlled glenohumeral translation. These results highlight the need to consider joint translation in the assessment and management of patients with rotator cuff injury. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Superparamagnetic Iron Oxide Nanoparticle-Based Delivery Systems for Biotherapeutics
Mok, Hyejung; Zhang, Miqin
2014-01-01
Introduction Superparamagnetic iron oxide nanoparticle (SPION)-based carrier systems have many advantages over other nanoparticle-based systems. They are biocompatible, biodegradable, facilely tunable, and superparamagnetic and thus controllable by an external magnetic field. These attributes enable their broad biomedical applications. In particular, magnetically-driven carriers are drawing considerable interest as an emerging therapeutic delivery system because of their superior delivery efficiency. Area covered This article reviews the recent advances in use of SPION-based carrier systems to improve the delivery efficiency and target specificity of biotherapeutics. We examine various formulations of SPION-based delivery systems, including SPION micelles, clusters, hydrogels, liposomes, and micro/nanospheres, as well as their specific applications in delivery of biotherapeutics. Expert opinion Recently, biotherapeutics including therapeutic cells, proteins and genes have been studied as alternative treatments to various diseases. Despite the advantages of high target specificity and low adverse effects, clinical translation of biotherapeutics has been hindered by the poor stability and low delivery efficiency compared to chemical drugs. Accordingly, biotherapeutic delivery systems that can overcome these limitations are actively pursued. SPION-based materials can be ideal candidates for developing such delivery systems because of their excellent biocompatibility and superparamagnetism that enables long-term accumulation/retention at target sites by utilization of a suitable magnet. In addition, synthesis technologies for production of finely-tuned, homogeneous SPIONs have been well developed, which may promise their rapid clinical translation. PMID:23199200
Translational science: past, present, and future.
Curry, Stephen H
2008-02-01
The concept of translational science is at least 15 years old. However, in its most recent incarnation, it represents the identification of a funding category designed to encourage academic participation in a critical stage of the drug discovery and product development process. It is hoped that this will make the process both shorter and more efficient. In this review, the author first considers the historical development of the pharmaceutical R&D process. The place of translational science in the process, the scientific techniques involved, and aspects of the business environment necessary for its success are then considered. Translational science does not displace preclinical development. Both concepts are relevant to the paramount importance of successfully and expeditiously bridging the gap between preclinical science and clinical testing, "from bench to bedside." Translational science is particularly likely to stimulate biomarker research in the universities and related business community and will probably give a modest boost to early clinical testing and commercialization of discoveries within the academic setting. Whether there will be a consequent improvement in the quality and efficiency of the overall process remains to be seen.
ERIC Educational Resources Information Center
Mollaei, Fatemeh; Taghinezhad, Ali; Sadighi, Firooz
2017-01-01
It has been found that translation is an efficient means to teach/learn grammar, syntax, and lexis of a foreign language. Meanwhile, translation is good for beginners who do not still enjoy the critical level of proficiency in their target language for expression. This study was conducted to examine the teachers' and learners' perceptions of…
Choe, Junho; Oh, Nara; Park, Sungjin; Lee, Ye Kyung; Song, Ok-Kyu; Locker, Nicolas; Chi, Sung-Gil; Kim, Yoon Ki
2012-05-25
In the cytoplasm of mammalian cells, either cap-binding proteins 80 and 20 (CBP80/20) or eukaryotic translation initiation factor (eIF) 4E can direct the initiation of translation. Although the recruitment of ribosomes to mRNAs during eIF4E-dependent translation (ET) is well characterized, the molecular mechanism for CBP80/20-dependent translation (CT) remains obscure. Here, we show that CBP80/20-dependent translation initiation factor (CTIF), which has been shown to be preferentially involved in CT but not ET, specifically interacts with eIF3g, a component of the eIF3 complex involved in ribosome recruitment. By interacting with eIF3g, CTIF serves as an adaptor protein to bridge the CBP80/20 and the eIF3 complex, leading to efficient ribosome recruitment during CT. Accordingly, down-regulation of CTIF using a small interfering RNA causes a redistribution of CBP80 from polysome fractions to subpolysome fractions, without significant consequence to eIF4E distribution. In addition, down-regulation of eIF3g inhibits the efficiency of nonsense-mediated mRNA decay, which is tightly coupled to CT but not to ET. Moreover, the artificial tethering of CTIF to an intercistronic region of dicistronic mRNA results in translation of the downstream cistron in an eIF3-dependent manner. These findings support the idea that CT mechanistically differs from ET.
The applicability of Lean and Six Sigma techniques to clinical and translational research.
Schweikhart, Sharon A; Dembe, Allard E
2009-10-01
Lean and Six Sigma are business management strategies commonly used in production industries to improve process efficiency and quality. During the past decade, these process improvement techniques increasingly have been applied outside the manufacturing sector, for example, in health care and in software development. This article concerns the potential use of Lean and Six Sigma in improving the processes involved in clinical and translational research. Improving quality, avoiding delays and errors, and speeding up the time to implementation of biomedical discoveries are prime objectives of the National Institutes of Health (NIH) Roadmap for Medical Research and the NIH's Clinical and Translational Science Award program. This article presents a description of the main principles, practices, and methods used in Lean and Six Sigma. Available literature involving applications of Lean and Six Sigma to health care, laboratory science, and clinical and translational research is reviewed. Specific issues concerning the use of these techniques in different phases of translational research are identified. Examples of Lean and Six Sigma applications that are being planned at a current Clinical and Translational Science Award site are provided, which could potentially be replicated elsewhere. We describe how different process improvement approaches are best adapted for particular translational research phases. Lean and Six Sigma process improvement methods are well suited to help achieve NIH's goal of making clinical and translational research more efficient and cost-effective, enhancing the quality of the research, and facilitating the successful adoption of biomedical research findings into practice.
Dhungel, Pragyesh; Cao, Shuai
2017-01-01
The poly(A) leader at the 5’-untranslated region (5’-UTR) is an unusually striking feature of all poxvirus mRNAs transcribed after viral DNA replication (post-replicative mRNAs). These poly(A) leaders are non-templated and of heterogeneous lengths; and their function during poxvirus infection remains a long-standing question. Here, we discovered that a 5’-poly(A) leader conferred a selective translational advantage to mRNA in poxvirus-infected cells. A constitutive and uninterrupted 5’-poly(A) leader with 12 residues was optimal. Because the most frequent lengths of the 5’-poly(A) leaders are 8–12 residues, the result suggests that the poly(A) leader has been evolutionarily optimized to boost poxvirus protein production. A 5’-poly(A) leader also could increase protein production in the bacteriophage T7 promoter-based expression system of vaccinia virus, the prototypic member of poxviruses. Interestingly, although vaccinia virus post-replicative mRNAs do have 5’- methylated guanosine caps and can use cap-dependent translation, in vaccinia virus-infected cells, mRNA with a 5’-poly(A) leader could also be efficiently translated in cells with impaired cap-dependent translation. However, the translation was not mediated through an internal ribosome entry site (IRES). These results point to a fundamental mechanism poxvirus uses to efficiently translate its post-replicative mRNAs. PMID:28854224
A time-based concept for terminal-area traffic management
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Tobias, Leonard
1986-01-01
An automated air-traffic-management concept that has the potential for significantly increasing the efficiency of traffic flows in high-density terminal areas is discussed. The concept's implementation depends on techniques for controlling the landing time of all aircraft entering the terminal area, both those that are equipped with on-board four-dimensional (4D) guidance systems as well as those aircraft types that are conventionally equipped. The two major ground-based elements of the system are a scheduler which assigns conflict-free landing times and a profile descent advisor. Landing time provided by the scheduler is uplinked to equipped aircraft and translated into the appropriate 4D trajectory by the-board flight-management system. The controller issues descent advisories to unequipped aircraft to help them achieve the assigned landing times. Air traffic control simulations have established that the concept provides an efficient method for controlling various mixes of 4D-equipped and unequipped, as well as low- and high-performance, aircraft. Piloted simulations of profiles flown with the aid of advisories have verified the ability to meet specified descent times with prescribed accuracy.
Translational control of auditory imprinting and structural plasticity by eIF2α
Batista, Gervasio; Johnson, Jennifer Leigh; Dominguez, Elena; Costa-Mattioli, Mauro; Pena, Jose L
2016-01-01
The formation of imprinted memories during a critical period is crucial for vital behaviors, including filial attachment. Yet, little is known about the underlying molecular mechanisms. Using a combination of behavior, pharmacology, in vivo surface sensing of translation (SUnSET) and DiOlistic labeling we found that, translational control by the eukaryotic translation initiation factor 2 alpha (eIF2α) bidirectionally regulates auditory but not visual imprinting and related changes in structural plasticity in chickens. Increasing phosphorylation of eIF2α (p-eIF2α) reduces translation rates and spine plasticity, and selectively impairs auditory imprinting. By contrast, inhibition of an eIF2α kinase or blocking the translational program controlled by p-eIF2α enhances auditory imprinting. Importantly, these manipulations are able to reopen the critical period. Thus, we have identified a translational control mechanism that selectively underlies auditory imprinting. Restoring translational control of eIF2α holds the promise to rejuvenate adult brain plasticity and restore learning and memory in a variety of cognitive disorders. DOI: http://dx.doi.org/10.7554/eLife.17197.001 PMID:28009255
Protecting the proteome: Eukaryotic cotranslational quality control pathways
2014-01-01
The correct decoding of messenger RNAs (mRNAs) into proteins is an essential cellular task. The translational process is monitored by several quality control (QC) mechanisms that recognize defective translation complexes in which ribosomes are stalled on substrate mRNAs. Stalled translation complexes occur when defects in the mRNA template, the translation machinery, or the nascent polypeptide arrest the ribosome during translation elongation or termination. These QC events promote the disassembly of the stalled translation complex and the recycling and/or degradation of the individual mRNA, ribosomal, and/or nascent polypeptide components, thereby clearing the cell of improper translation products and defective components of the translation machinery. PMID:24535822
Makowski, Piotr L; Zaperty, Weronika; Kozacki, Tomasz
2018-01-01
A new framework for in-plane transformations of digital holograms (DHs) is proposed, which provides improved control over basic geometrical features of holographic images reconstructed optically in full color. The method is based on a Fourier hologram equivalent of the adaptive affine transformation technique [Opt. Express18, 8806 (2010)OPEXFF1094-408710.1364/OE.18.008806]. The solution includes four elementary geometrical transformations that can be performed independently on a full-color 3D image reconstructed from an RGB hologram: (i) transverse magnification; (ii) axial translation with minimized distortion; (iii) transverse translation; and (iv) viewing angle rotation. The independent character of transformations (i) and (ii) constitutes the main result of the work and plays a double role: (1) it simplifies synchronization of color components of the RGB image in the presence of mismatch between capture and display parameters; (2) provides improved control over position and size of the projected image, particularly the axial position, which opens new possibilities for efficient animation of holographic content. The approximate character of the operations (i) and (ii) is examined both analytically and experimentally using an RGB circular holographic display system. Additionally, a complex animation built from a single wide-aperture RGB Fourier hologram is presented to demonstrate full capabilities of the developed toolset.
Liu, Wanting; Xiang, Lunping; Zheng, Tingkai; Jin, Jingjie
2018-01-01
Abstract Translation is a key regulatory step, linking transcriptome and proteome. Two major methods of translatome investigations are RNC-seq (sequencing of translating mRNA) and Ribo-seq (ribosome profiling). To facilitate the investigation of translation, we built a comprehensive database TranslatomeDB (http://www.translatomedb.net/) which provides collection and integrated analysis of published and user-generated translatome sequencing data. The current version includes 2453 Ribo-seq, 10 RNC-seq and their 1394 corresponding mRNA-seq datasets in 13 species. The database emphasizes the analysis functions in addition to the dataset collections. Differential gene expression (DGE) analysis can be performed between any two datasets of same species and type, both on transcriptome and translatome levels. The translation indices translation ratios, elongation velocity index and translational efficiency can be calculated to quantitatively evaluate translational initiation efficiency and elongation velocity, respectively. All datasets were analyzed using a unified, robust, accurate and experimentally-verifiable pipeline based on the FANSe3 mapping algorithm and edgeR for DGE analyzes. TranslatomeDB also allows users to upload their own datasets and utilize the identical unified pipeline to analyze their data. We believe that our TranslatomeDB is a comprehensive platform and knowledgebase on translatome and proteome research, releasing the biologists from complex searching, analyzing and comparing huge sequencing data without needing local computational power. PMID:29106630
Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins.
Chen, Eileen; Joseph, Simpson
2015-07-01
Translational control is a common mechanism used to regulate gene expression and occur in bacteria to mammals. Typically in translational control, an RNA-binding protein binds to a unique sequence in the mRNA to regulate protein synthesis by the ribosomes. Alternatively, a protein may bind to or modify a translation factor to globally regulate protein synthesis by the cell. Here, we review translational control by the fragile X mental retardation protein (FMRP), the absence of which causes the neurological disease, fragile X syndrome (FXS). Copyright © 2015 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.
An optimized proportional-derivative controller for the human upper extremity with gravity.
Jagodnik, Kathleen M; Blana, Dimitra; van den Bogert, Antonie J; Kirsch, Robert F
2015-10-15
When Functional Electrical Stimulation (FES) is used to restore movement in subjects with spinal cord injury (SCI), muscle stimulation patterns should be selected to generate accurate and efficient movements. Ideally, the controller for such a neuroprosthesis will have the simplest architecture possible, to facilitate translation into a clinical setting. In this study, we used the simulated annealing algorithm to optimize two proportional-derivative (PD) feedback controller gain sets for a 3-dimensional arm model that includes musculoskeletal dynamics and has 5 degrees of freedom and 22 muscles, performing goal-oriented reaching movements. Controller gains were optimized by minimizing a weighted sum of position errors, orientation errors, and muscle activations. After optimization, gain performance was evaluated on the basis of accuracy and efficiency of reaching movements, along with three other benchmark gain sets not optimized for our system, on a large set of dynamic reaching movements for which the controllers had not been optimized, to test ability to generalize. Robustness in the presence of weakened muscles was also tested. The two optimized gain sets were found to have very similar performance to each other on all metrics, and to exhibit significantly better accuracy, compared with the three standard gain sets. All gain sets investigated used physiologically acceptable amounts of muscular activation. It was concluded that optimization can yield significant improvements in controller performance while still maintaining muscular efficiency, and that optimization should be considered as a strategy for future neuroprosthesis controller design. Published by Elsevier Ltd.
Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System.
Díaz-Muñoz, Manuel D; Turner, Martin
2018-01-01
Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome.
Epilepsy and optogenetics: can seizures be controlled by light?
Tønnesen, Jan; Kokaia, Merab
2017-07-15
Over the past decade, 'optogenetics' has been consolidated as a game-changing tool in the neuroscience field, by allowing optical control of neuronal activity with high cell-type specificity. The ability to activate or inhibit targeted neurons at millisecond resolution not only offers an investigative tool, but potentially also provides a therapeutic intervention strategy for acute correction of aberrant neuronal activity. As efficient therapeutic tools are in short supply for neurological disorders, optogenetic technology has therefore spurred considerable enthusiasm and fostered a new wave of translational studies in neuroscience. Epilepsy is among the disorders that have been widely explored. Partial epilepsies are characterized by seizures arising from excessive excitatory neuronal activity that emerges from a focal area. Based on the constricted seizure focus, it appears feasible to intercept partial seizures by acutely shutting down excitatory neurons by means of optogenetics. The availability of both inhibitory and excitatory optogenetic probes, along with the available targeting strategies for respective excitatory or inhibitory neurons, allows multiple conceivable scenarios for controlling abnormal circuit activity. Several such scenarios have been explored in the settings of experimental epilepsy and have provided encouraging translational findings and revealed interesting and unexpected new aspects of epileptogenesis. However, it has also emerged that considerable challenges persist before clinical translation becomes feasible. This review provides a general introduction to optogenetics, and an overview of findings that are relevant for understanding how optogenetics may be utilized therapeutically as a highly innovative treatment for epilepsy. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Behavioral and electrophysiological signatures of word translation processes.
Jost, Lea B; Radman, Narges; Buetler, Karin A; Annoni, Jean-Marie
2018-01-31
Translation is a demanding process during which a message is analyzed, translated and communicated from one language to another. Despite numerous studies on translation mechanisms, the electrophysiological processes underlying translation with overt production remain largely unexplored. Here, we investigated how behavioral response patterns and spatial-temporal brain dynamics differ in a translation compared to a control within-language word-generation task. We also investigated how forward and backward translation differs on the behavioral and electrophysiological level. To address these questions, healthy late bilingual subjects performed a translation and a within-language control task while a 128-channel EEG was recorded. Behavioral data showed faster responses for translation compared to within-language word generation and faster responses for backward than forward translation. The ERP-analysis revealed stronger early ( < 200ms) preparatory and attentional processes for between than within word generation. Later (424-630ms) differences were characterized by distinct engagement of domain-general control networks, namely self-monitoring and lexical access interference. Language asymmetry effects occurred at a later stage (600ms), reflecting differences in conceptual processing characterized by a larger involvement of areas implicated in attention, arousal and awareness for forward versus backward translation. Copyright © 2017 Elsevier Ltd. All rights reserved.
47 CFR 73.3540 - Application for voluntary assignment or transfer of control.
Code of Federal Regulations, 2010 CFR
2010-10-01
... control of a corporate licensee or permittee for an FM or TV translator station, a low power TV station and any associated auxiliary station, such as translator microwave relay stations and UHF translator... Licensee or Permittee, or Assignment of License or Permit for an FM or TV translator Station, or a Low...
Translational Research on Habit and Alcohol.
McKim, Theresa H; Shnitko, Tatiana A; Robinson, Donita L; Boettiger, Charlotte A
2016-03-01
Habitual actions enable efficient daily living, but they can also contribute to pathological behaviors that resistant change, such as alcoholism. Habitual behaviors are learned actions that appear goal-directed but are in fact no longer under the control of the action's outcome. Instead, these actions are triggered by stimuli, which may be exogenous or interoceptive, discrete or contextual. A major hallmark characteristic of alcoholism is continued alcohol use despite serious negative consequences. In essence, although the outcome of alcohol seeking and drinking is dramatically devalued, these actions persist, often triggered by environmental cues associated with alcohol use. Thus, alcoholism meets the definition of an initially goal-directed behavior that converts to a habit-based process. Habit and alcohol have been well investigated in rodent models, with comparatively less research in non-human primates and people. This review focuses on translational research on habit and alcohol with an emphasis on cross-species methodology and neural circuitry.
Methods and systems for integrating fluid dispensing technology with stereolithography
Medina, Francisco; Wicker, Ryan; Palmer, Jeremy A.; Davis, Don W.; Chavez, Bart D.; Gallegos, Phillip L.
2010-02-09
An integrated system and method of integrating fluid dispensing technologies (e.g., direct-write (DW)) with rapid prototyping (RP) technologies (e.g., stereolithography (SL)) without part registration comprising: an SL apparatus and a fluid dispensing apparatus further comprising a translation mechanism adapted to translate the fluid dispensing apparatus along the Z-, Y- and Z-axes. The fluid dispensing apparatus comprises: a pressurized fluid container; a valve mechanism adapted to control the flow of fluid from the pressurized fluid container; and a dispensing nozzle adapted to deposit the fluid in a desired location. To aid in calibration, the integrated system includes a laser sensor and a mechanical switch. The method further comprises building a second part layer on top of the fluid deposits and optionally accommodating multi-layered circuitry by incorporating a connector trace. Thus, the present invention is capable of efficiently building single and multi-material SL fabricated parts embedded with complex three-dimensional circuitry using DW.
Daudelin, Denise H; Selker, Harry P; Leslie, Laurel K
2015-12-01
There is growing appreciation that process improvement holds promise for improving quality and efficiency across the translational research continuum but frameworks for such programs are not often described. The purpose of this paper is to present a framework and case examples of a Research Process Improvement Program implemented at Tufts CTSI. To promote research process improvement, we developed online training seminars, workshops, and in-person consultation models to describe core process improvement principles and methods, demonstrate the use of improvement tools, and illustrate the application of these methods in case examples. We implemented these methods, as well as relational coordination theory, with junior researchers, pilot funding awardees, our CTRC, and CTSI resource and service providers. The program focuses on capacity building to address common process problems and quality gaps that threaten the efficient, timely and successful completion of clinical and translational studies. © 2015 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc.
Ong, Eng Teo; Lee, Heow Pueh; Lim, Kian Meng
2004-09-01
This article presents a fast algorithm for the efficient solution of the Helmholtz equation. The method is based on the translation theory of the multipole expansions. Here, the speedup comes from the convolution nature of the translation operators, which can be evaluated rapidly using fast Fourier transform algorithms. Also, the computations of the translation operators are accelerated by using the recursive formulas developed recently by Gumerov and Duraiswami [SIAM J. Sci. Comput. 25, 1344-1381(2003)]. It is demonstrated that the algorithm can produce good accuracy with a relatively low order of expansion. Efficiency analyses of the algorithm reveal that it has computational complexities of O(Na), where a ranges from 1.05 to 1.24. However, this method requires substantially more memory to store the translation operators as compared to the fast multipole method. Hence, despite its simplicity in implementation, this memory requirement issue may limit the application of this algorithm to solving very large-scale problems.
Oyana, Tonny J; Achenie, Luke E K; Heo, Joon
2012-01-01
The objective of this paper is to introduce an efficient algorithm, namely, the mathematically improved learning-self organizing map (MIL-SOM) algorithm, which speeds up the self-organizing map (SOM) training process. In the proposed MIL-SOM algorithm, the weights of Kohonen's SOM are based on the proportional-integral-derivative (PID) controller. Thus, in a typical SOM learning setting, this improvement translates to faster convergence. The basic idea is primarily motivated by the urgent need to develop algorithms with the competence to converge faster and more efficiently than conventional techniques. The MIL-SOM algorithm is tested on four training geographic datasets representing biomedical and disease informatics application domains. Experimental results show that the MIL-SOM algorithm provides a competitive, better updating procedure and performance, good robustness, and it runs faster than Kohonen's SOM.
Oyana, Tonny J.; Achenie, Luke E. K.; Heo, Joon
2012-01-01
The objective of this paper is to introduce an efficient algorithm, namely, the mathematically improved learning-self organizing map (MIL-SOM) algorithm, which speeds up the self-organizing map (SOM) training process. In the proposed MIL-SOM algorithm, the weights of Kohonen's SOM are based on the proportional-integral-derivative (PID) controller. Thus, in a typical SOM learning setting, this improvement translates to faster convergence. The basic idea is primarily motivated by the urgent need to develop algorithms with the competence to converge faster and more efficiently than conventional techniques. The MIL-SOM algorithm is tested on four training geographic datasets representing biomedical and disease informatics application domains. Experimental results show that the MIL-SOM algorithm provides a competitive, better updating procedure and performance, good robustness, and it runs faster than Kohonen's SOM. PMID:22481977
mRNA Translation Gone Awry: Translation Fidelity and Neurological Disease.
Kapur, Mridu; Ackerman, Susan L
2018-03-01
Errors during mRNA translation can lead to a reduction in the levels of functional proteins and an increase in deleterious molecules. Advances in next-generation sequencing have led to the discovery of rare genetic disorders, many caused by mutations in genes encoding the mRNA translation machinery, as well as to a better understanding of translational dynamics through ribosome profiling. We discuss here multiple neurological disorders that are linked to errors in tRNA aminoacylation and ribosome decoding. We draw on studies from genetic models, including yeast and mice, to enhance our understanding of the translational defects observed in these diseases. Finally, we emphasize the importance of tRNA, their associated enzymes, and the inextricable link between accuracy and efficiency in the maintenance of translational fidelity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gan, Rui; Perez, Jessica G; Carlson, Erik D; Ntai, Ioanna; Isaacs, Farren J; Kelleher, Neil L; Jewett, Michael C
2017-05-01
The ability to site-specifically incorporate non-canonical amino acids (ncAAs) into proteins has made possible the study of protein structure and function in fundamentally new ways, as well as the bio synthesis of unnatural polymers. However, the task of site-specifically incorporating multiple ncAAs into proteins with high purity and yield continues to present a challenge. At the heart of this challenge lies the lower efficiency of engineered orthogonal translation system components compared to their natural counterparts (e.g., translation elements that specifically use a ncAA and do not interact with the cell's natural translation apparatus). Here, we show that evolving and tuning expression levels of multiple components of an engineered translation system together as a whole enhances ncAA incorporation efficiency. Specifically, we increase protein yield when incorporating multiple p-azido-phenylalanine(pAzF) residues into proteins by (i) evolving the Methanocaldococcus jannaschii p-azido-phenylalanyl-tRNA synthetase anti-codon binding domain, (ii) evolving the elongation factor Tu amino acid-binding pocket, and (iii) tuning the expression of evolved translation machinery components in a single vector. Use of the evolved translation machinery in a genomically recoded organism lacking release factor one enabled enhanced multi-site ncAA incorporation into proteins. We anticipate that our approach to orthogonal translation system development will accelerate and expand our ability to site-specifically incorporate multiple ncAAs into proteins and biopolymers, advancing new horizons for synthetic and chemical biotechnology. Biotechnol. Bioeng. 2017;114: 1074-1086. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Rapid rotational/translational maneuvering experiments of a flexible steel beam
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Yang, Li-Farn; Huanag, Jen-Kuang; Macauley, Richard
1989-01-01
Future space manipulators may need translational base motion to expand the access region of a manipulator. An experiment was conducted to demonstrate slewing of flexible structures with coupled rotational and translational axes while simultaneously suppressing vibrational motion during the maneuver. In the experiment, a flexible steel beam carried by a translational cart was maneuvered by an active controller to perform position-control tasks. Experimental results are presented to show how the flexibility of the steel beam influences the multi-input multi-output feedback controller.
Experimental evaluation of a translating nozzle sidewall radial turbine
NASA Technical Reports Server (NTRS)
Roelke, Richard J.; Rogo, Casimir
1987-01-01
An experimental performance evaluation was made of two movable sidewall variable area radial turbines. The turbine designs were representative of the gas generator turbine of a variable flow capacity rotorcraft engine. The first turbine was an uncooled design while the second turbine had a cooled nozzle but an uncooled rotor. The cooled nozzle turbine was evaluated both with and without coolant flow. The test results showed that the movable nozzle wall is a viable and efficient means to effectively control the flow capacity of a radial turbine. Peak efficiencies of the second turbine with and without nozzle coolant were 86.5 and 88 percent respectively. These values are comparable to pivoting vane variable geometry turbines; however, the decrease in efficiency as the flow was varied from the design value was much less for the movable wall turbine. Several design improvements which should increase the turbine efficiency one or two more points are identified. These design improvements include reduced leakage losses and relocation of the vane coolant ejection holes to reduce mainstream disturbance.
The 5′ RNA Terminus of Spleen Necrosis Virus Stimulates Translation of Nonviral mRNA
Roberts, Tiffiney M.; Boris-Lawrie, Kathleen
2000-01-01
The RU5 region at the 5′ RNA terminus of spleen necrosis virus (SNV) has been shown to facilitate expression of human immunodeficiency virus type 1 (HIV) unspliced RNA independently of the Rev-responsive element (RRE) and Rev. The SNV sequences act as a distinct posttranscriptional control element to stimulate gag RNA nuclear export and association with polyribosomes. Here we sought to determine whether RU5 functions to neutralize the cis-acting inhibitory sequences (INSs) in HIV RNA that confer RRE/Rev dependence or functions as an independent stimulatory sequence. Experiments with HIV gag reporter plasmids that contain inactivated INS-1 indicated that neutralization of INSs does not account for RU5 function. Results with luciferase reporter gene (luc) plasmids further indicated that RU5 stimulates expression of a nonretroviral RNA that lacks INSs. Northern blot and RT-PCR analyses indicated that RU5 does not increase the steady-state levels or nuclear export of the luc transcript but rather that the U5 region facilitates efficient polyribosomal association of the mRNA. RU5 does not function as an internal ribosome entry site in bicistronic reporter plasmids, and it requires the 5′-proximal position for efficient function. Our results indicate that RU5 contains stimulatory sequences that function in a 5′-proximal position to enhance initiation of translation of a nonretroviral reporter gene RNA. We speculate that RU5 evolved to overcome the translation-inhibitory effect of the highly structured encapsidation signal and other replication motifs in the 5′ untranslated region of the retroviral RNA. PMID:10933721
Translational Regulation in Nutrigenomics12
Liu, Botao; Qian, Shu-Bing
2011-01-01
The emergence of genome-wide analysis to interrogate cellular DNA, RNA, and protein content has revolutionized the study of the control network that mediates cellular homeostasis. Nutrigenomics addresses the effect of nutrients on gene expression, which provides a basis for understanding the biological activity of dietary components. Translation of mRNAs represents the last step of genetic flow and primarily defines the proteome. Translational regulation is thus critical for gene expression, in particular, under nutrient excess or deficiency. Until recently, it was unclear how the global effects of translational control are influenced by nutrient signaling. An emerging concept of translational reprogramming addresses how to maintain the expression of specific proteins during pathophysiological conditions by translation of selective mRNAs. Here we describe recent advances in our understanding of translational control, nutrient signaling, and their dysregulation in aging and cancer. The mechanistic understanding of translational regulation in response to different nutrient conditions may help identify potential dietary and therapeutic targets to improve human health. PMID:22332093
Translational Control in Plasmodium and Toxoplasma Parasites
Joyce, Bradley R.; Sullivan, William J.; Nussenzweig, Victor
2013-01-01
The life cycles of apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii are complex, consisting of proliferative and latent stages within multiple hosts. Dramatic transformations take place during the cycles, and they demand precise control of gene expression at all levels, including translation. This review focuses on the mechanisms that regulate translational control in Plasmodium and Toxoplasma, with a particular emphasis on the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α∼P) is a conserved mechanism that eukaryotic cells use to repress global protein synthesis while enhancing gene-specific translation of a subset of mRNAs. Elevated levels of eIF2α∼P have been observed during latent stages in both Toxoplasma and Plasmodium, indicating that translational control plays a role in maintaining dormancy. Parasite-specific eIF2α kinases and phosphatases are also required for proper developmental transitions and adaptation to cellular stresses encountered during the life cycle. Identification of small-molecule inhibitors of apicomplexan eIF2α kinases may selectively interfere with parasite translational control and lead to the development of new therapies to treat malaria and toxoplasmosis. PMID:23243065
Translational control in Plasmodium and toxoplasma parasites.
Zhang, Min; Joyce, Bradley R; Sullivan, William J; Nussenzweig, Victor
2013-02-01
The life cycles of apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii are complex, consisting of proliferative and latent stages within multiple hosts. Dramatic transformations take place during the cycles, and they demand precise control of gene expression at all levels, including translation. This review focuses on the mechanisms that regulate translational control in Plasmodium and Toxoplasma, with a particular emphasis on the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α∼P) is a conserved mechanism that eukaryotic cells use to repress global protein synthesis while enhancing gene-specific translation of a subset of mRNAs. Elevated levels of eIF2α∼P have been observed during latent stages in both Toxoplasma and Plasmodium, indicating that translational control plays a role in maintaining dormancy. Parasite-specific eIF2α kinases and phosphatases are also required for proper developmental transitions and adaptation to cellular stresses encountered during the life cycle. Identification of small-molecule inhibitors of apicomplexan eIF2α kinases may selectively interfere with parasite translational control and lead to the development of new therapies to treat malaria and toxoplasmosis.
Essential role of eIF5-mimic protein in animal development is linked to control of ATF4 expression
USDA-ARS?s Scientific Manuscript database
Translational control of ATF4 through upstream ORFs (uORFs) plays an important role in eukaryotic gene regulation. While ATF4 translation is typically induced by inhibitory phosphorylation of eIF2, ATF4 translation can be also induced by expression of a new translational inhibitor protein, eIF5-mimi...
Liu, Wanting; Xiang, Lunping; Zheng, Tingkai; Jin, Jingjie; Zhang, Gong
2018-01-04
Translation is a key regulatory step, linking transcriptome and proteome. Two major methods of translatome investigations are RNC-seq (sequencing of translating mRNA) and Ribo-seq (ribosome profiling). To facilitate the investigation of translation, we built a comprehensive database TranslatomeDB (http://www.translatomedb.net/) which provides collection and integrated analysis of published and user-generated translatome sequencing data. The current version includes 2453 Ribo-seq, 10 RNC-seq and their 1394 corresponding mRNA-seq datasets in 13 species. The database emphasizes the analysis functions in addition to the dataset collections. Differential gene expression (DGE) analysis can be performed between any two datasets of same species and type, both on transcriptome and translatome levels. The translation indices translation ratios, elongation velocity index and translational efficiency can be calculated to quantitatively evaluate translational initiation efficiency and elongation velocity, respectively. All datasets were analyzed using a unified, robust, accurate and experimentally-verifiable pipeline based on the FANSe3 mapping algorithm and edgeR for DGE analyzes. TranslatomeDB also allows users to upload their own datasets and utilize the identical unified pipeline to analyze their data. We believe that our TranslatomeDB is a comprehensive platform and knowledgebase on translatome and proteome research, releasing the biologists from complex searching, analyzing and comparing huge sequencing data without needing local computational power. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Applicability of Lean and Six Sigma Techniques to Clinical and Translational Research
Schweikhart, Sharon A.; Dembe, Allard E
2010-01-01
Background Lean and Six Sigma are business management strategies commonly used in production industries to improve process efficiency and quality. During the past decade, these process improvement techniques increasingly have been applied outside of the manufacturing sector, for example, in health care and in software development. This article concerns the potential use of Lean and Six Sigma to improve the processes involved in clinical and translational research. Improving quality, avoiding delays and errors, and speeding up the time to implementation of biomedical discoveries are prime objectives of the NIH Roadmap for Biomedical Research and the NIH Clinical and Translational Science Award (CTSA) program. Methods This article presents a description of the main principles, practices, and methodologies used in Lean and Six Sigma. Available literature involving applications of Lean and Six Sigma to health care, laboratory science, and clinical and translational research is reviewed. Specific issues concerning the use of these techniques in different phases of translational research are identified. Results Examples are provided of Lean and Six Sigma applications that are being planned at a current CTSA site, which could potentially be replicated elsewhere. We describe how different process improvement approaches are best adapted for particularly translational research phases. Conclusions Lean and Six Sigma process improvement methodologies are well suited to help achieve NIH’s goal of making clinical and translational research more efficient and cost-effective, enhancing the quality of the research, and facilitating the successful adoption of biomedical research findings into practice. PMID:19730130
Taymans, Jean-Marc; Nkiliza, Aurore; Chartier-Harlin, Marie-Christine
2015-08-01
Protein translation is one of the most fundamental and exquisitely controlled processes in biology, and is energetically demanding. The deregulation of this process is deleterious to cells, as demonstrated by several diseases caused by mutations in protein translation machinery. Emerging evidence now points to a role for protein translation in the pathogenesis of Parkinson's disease (PD); a debilitating neurodegenerative movement disorder. In this paper, we propose a hypothesis that protein translation machinery, PD-associated proteins and PD pathology are connected in a functional network linking cell survival to protein translation control. This hypothesis is a potential game changer in the field of the molecular pathogenesis of PD, with implications for the development of PD diagnostics and disease-modifying therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schmale, H; Ivell, R; Breindl, M; Darmer, D; Richter, D
1984-01-01
The vasopressin gene from normal and diabetes insipidus (Brattleboro) rats has been isolated and sequenced. Except for a single deletion of a G residue in region coding for the neurophysin carrier protein the approximately 2300 nucleotides of both genes are identical. Blot analysis of hypothalamic RNA as well as transfection and microinjection experiments indicate that the mutant gene is correctly transcribed and spliced, however the resulting mRNA is not efficiently translated. Images Fig. 2. Fig. 3. PMID:6526016
Non-coding functions of alternative pre-mRNA splicing in development
Mockenhaupt, Stefan; Makeyev, Eugene V.
2015-01-01
A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization. PMID:26493705
Bandyopadhyay, S; Huang, X; Cho, H; Greig, N H; Youdim, M B; Rogers, J T
2006-01-01
Iron closely regulates the expression of the Alzheimer's Amyloid Precursor Protein (APP) gene at the level of message translation by a pathway similar to iron control of the translation of the ferritin L- and H mRNAs by Iron-responsive Elements in their 5' untranslated regions (5'UTRs). Using transfection based assays in SH-SY5Y neuroblastoma cells we tested the relative efficiency by which iron, copper and zinc up-regulate IRE activity in the APP 5'UTR. Desferrioxamine (high affinity Fe3+ chelator), (ii) clioquinol (low affinity Fe/Cu/Zn chelator), (iii) piperazine-1 (oral Fe chelator), (iv) VK-28 (oral Fe chelator), were tested for their relative modulation of APP 5' UTR directed translation of a luciferase reporter gene. Iron chelation based therapeutic strategies for slowing the progression of Alzheimer's disease (and other neurological disorders that manifest iron imbalance) are discussed with regard to the relative neural toxic action of each chelator in SH-SY5Y cells and in H4 glioblastoma cells.
Helicopter Flight Simulation Motion Platform Requirements
NASA Technical Reports Server (NTRS)
Schroeder, Jeffery Allyn
1999-01-01
To determine motion fidelity requirements, a series of piloted simulations was performed. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositioning. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.
The Unexpected Tuners: Are LncRNAs Regulating Host Translation during Infections?
Knap, Primoz; Tebaldi, Toma; Di Leva, Francesca; Biagioli, Marta; Dalla Serra, Mauro; Viero, Gabriella
2017-01-01
Pathogenic bacteria produce powerful virulent factors, such as pore-forming toxins, that promote their survival and cause serious damage to the host. Host cells reply to membrane stresses and ionic imbalance by modifying gene expression at the epigenetic, transcriptional and translational level, to recover from the toxin attack. The fact that the majority of the human transcriptome encodes for non-coding RNAs (ncRNAs) raises the question: do host cells deploy non-coding transcripts to rapidly control the most energy-consuming process in cells—i.e., host translation—to counteract the infection? Here, we discuss the intriguing possibility that membrane-damaging toxins induce, in the host, the expression of toxin-specific long non-coding RNAs (lncRNAs), which act as sponges for other molecules, encoding small peptides or binding target mRNAs to depress their translation efficiency. Unravelling the function of host-produced lncRNAs upon bacterial infection or membrane damage requires an improved understanding of host lncRNA expression patterns, their association with polysomes and their function during this stress. This field of investigation holds a unique opportunity to reveal unpredicted scenarios and novel approaches to counteract antibiotic-resistant infections. PMID:29469820
Man-machine analysis of translation and work tasks of Skylab films
NASA Technical Reports Server (NTRS)
Morrow, J. R.; Boelter, J.
1978-01-01
Selected film segments were digitized. An efficiency of translation scale was developed, and each of 200 segments of film were rated with regard to the astronauts translation characteristics. Results indicated that in general the astronauts were able to acclimate themselves to the zero g environment quite well. Results also indicated that astronauts tended to translate in 1 g orientations when in the experimental compartment and the wardroom which were architecturally 1 g. However, when the astronauts were in the forward compartment, which was zero g oriented, they began to translate more frequently in a zero g manner. There appeared to be improvements in translation across time. These improvements appeared more so in the forward compartment than in the wardroom or the experimental compartment. Possible changes in the architecture of the wardroom and the experimental compartment were suggested in order to improve translation within these compartments.
Performance limitations of translationally symmetric nonimaging devices
NASA Astrophysics Data System (ADS)
Bortz, John C.; Shatz, Narkis E.; Winston, Roland
2001-11-01
The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quality, referred to herein as the translational skew invariant, is analogous to the conventional skew invariant, which is conserved in rotationally symmetric optical systems. The invariance of both of these quantities is a consequence of Noether's theorem. We show how performance limits for translationally symmetric nonimaging optical devices can be derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. Examples of computed performance limits are provided. In addition, we show that a numerically optimized non-tracking solar concentrator utilizing symmetry-breaking surface microstructure can overcome the performance limits associated with translational symmetry. The optimized design provides a 47.4% increase in efficiency and concentration relative to an ideal translationally symmetric concentrator.
Engineering Translational Activators with CRISPR-Cas System.
Du, Pei; Miao, Chensi; Lou, Qiuli; Wang, Zefeng; Lou, Chunbo
2016-01-15
RNA parts often serve as critical components in genetic engineering. Here we report a design of translational activators which is composed of an RNA endoribonuclease (Csy4) and two exchangeable RNA modules. Csy4, a member of Cas endoribonuclease, cleaves at a specific recognition site; this cleavage releases a cis-repressive RNA module (crRNA) from the masked ribosome binding site (RBS), which subsequently allows the downstream translation initiation. Unlike small RNA as a translational activator, the endoribonuclease-based activator is able to efficiently unfold the perfect RBS-crRNA pairing. As an exchangeable module, the crRNA-RBS duplex was forwardly and reversely engineered to modulate the dynamic range of translational activity. We further showed that Csy4 and its recognition site, together as a module, can also be replaced by orthogonal endoribonuclease-recognition site homologues. These modularly structured, high-performance translational activators would endow the programming of gene expression in the translation level with higher feasibility.
Gunišová, Stanislava; Valášek, Leoš Shivaya
2014-01-01
One of the extensively studied mechanisms of gene-specific translational regulation is reinitiation. It takes place on messenger RNAs (mRNAs) where main ORF is preceded by upstream ORF (uORF). Even though uORFs generally down-regulate main ORF expression, specific uORFs exist that allow high level of downstream ORF expression. The key is their ability to retain 40S subunits on mRNA upon termination of their translation to resume scanning for the next AUG. Here, we took advantage of the exemplary model system of reinitiation, the mRNA of yeast transcriptional activator GCN4 containing four short uORFs, and show that contrary to previous reports, not only the first but the first two of its uORFs allow efficient reinitiation. Strikingly, we demonstrate that they utilize a similar molecular mechanism relying on several cis-acting 5′ reinitiation-promoting elements, one of which they share, and the interaction with the a/TIF32 subunit of translation initiation factor eIF3. Since a similar mechanism operates also on YAP1 uORF, our findings strongly suggest that basic principles of reinitiation are conserved. Furthermore, presence of two consecutive reinitiation-permissive uORFs followed by two reinitiation-non-permissive uORFs suggests that tightness of GCN4 translational control is ensured by a fail-safe mechanism that effectively prevents or triggers GCN4 expression under nutrient replete or deplete conditions, respectively. PMID:24623812
Ramsay, A; Steingart, K R; Cunningham, J; Pai, M
2011-10-01
Using the example of an international collaboration on tuberculosis (TB) diagnostics, we mapped the key stages and stakeholders involved in translating research into global policies. In our experience, the process begins with advocacy for high-quality, policy-relevant research and appropriate funding. Following the assessment of current policy and the identification of key study areas, policy-relevant research questions need to be formulated and prioritised. It is important that a framework for translating evidence into policy at the target policymaking level, in this case global, is available to researchers. This ensures that research questions, study designs and research standards are appropriate to the type and quality of evidence required. The framework may evolve during the period of research and, as evidence requirements may change, vigilance is required. Formal and informal multi-stakeholder partnerships, as well as information sharing through extensive networking, facilitate efficient building of a broad evidence base. Coordination of activities by an international, neutral body with strong convening powers is important, as is regular interaction with policy makers. It is recognised that studies on diagnostic accuracy provide weak evidence that a new diagnostic will improve patient care when implemented to scale in routine settings. This may be one reason why there has been poor uptake of new tools by national TB control programmes despite global policy recommendations. Stronger engagement with national policy makers and donors during the research-intopolicy process may be needed to ensure that their evidence requirements are met and that global policies translate into national policies. National policies are central to translating global policies into practice.
Mammalian designer cells: Engineering principles and biomedical applications.
Xie, Mingqi; Fussenegger, Martin
2015-07-01
Biotechnology is a widely interdisciplinary field focusing on the use of living cells or organisms to solve established problems in medicine, food production and agriculture. Synthetic biology, the science of engineering complex biological systems that do not exist in nature, continues to provide the biotechnology industry with tools, technologies and intellectual property leading to improved cellular performance. One key aspect of synthetic biology is the engineering of deliberately reprogrammed designer cells whose behavior can be controlled over time and space. This review discusses the most commonly used techniques to engineer mammalian designer cells; while control elements acting on the transcriptional and translational levels of target gene expression determine the kinetic and dynamic profiles, coupling them to a variety of extracellular stimuli permits their remote control with user-defined trigger signals. Designer mammalian cells with novel or improved biological functions not only directly improve the production efficiency during biopharmaceutical manufacturing but also open the door for cell-based treatment strategies in molecular and translational medicine. In the future, the rational combination of multiple sets of designer cells could permit the construction and regulation of higher-order systems with increased complexity, thereby enabling the molecular reprogramming of tissues, organisms or even populations with highest precision. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System
Díaz-Muñoz, Manuel D.; Turner, Martin
2018-01-01
Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome. PMID:29875770
Theron, Chrispian W; Berrios, Julio; Delvigne, Frank; Fickers, Patrick
2018-01-01
The methylotrophic yeast Komagataella (Pichia) pastoris has become one of the most utilized cell factories for the production of recombinant proteins over the last three decades. This success story is linked to its specific physiological traits, i.e., the ability to grow at high cell density in inexpensive culture medium and to secrete proteins at high yield. Exploiting methanol metabolism is at the core of most P. pastoris-based processes but comes with its own challenges. Co-feeding cultures with glycerol/sorbitol and methanol is a promising approach, which can benefit from improved understanding and prediction of metabolic response. The development of profitable processes relies on the construction and selection of efficient producing strains from less efficient ones but also depends on the ability to master the bioreactor process itself. More specifically, how a bioreactor processes could be monitored and controlled to obtain high yield of production. In this review, new perspectives are detailed regarding a multi-faceted approach to recombinant protein production processes by P. pastoris; including gaining improved understanding of the metabolic pathways involved, accounting for variations in transcriptional and translational efficiency at the single cell level and efficient monitoring and control of methanol levels at the bioreactor level.
Steel, L F; Telly, D L; Leonard, J; Rice, B A; Monks, B; Sawicki, J A
1996-10-01
Murine c-mos transcripts isolated from testes have 5'-untranslated regions (5'UTRs) of approximately 300 nucleotides with a series of four overlapping open reading frames (ORFs) upstream of the AUG codon that initiates the Mos ORF. Ovarian c-mos transcripts have shorter 5'UTRs (70-80 nucleotides) and contain only 1-2 of the upstream ORFs (uORFs). To test whether these 5'UTRs affect translational efficiency, we have constructed plasmids for the expression of chimeric transcripts with a mos-derived 5'UTR fused to the Escherichia coli beta-galactosidase coding region. Translational efficiency has been evaluated by measuring beta-galactosidase activity NIH3T3 cells transiently transfected with these plasmids and with plasmids where various mutations have been introduced into the 5'UTR. We show that the 5'UTR characteristic of testis-specific c-mos mRNA strongly represses translation relative to the translation of transcripts that contain a 5'UTR derived from beta-globin mRNA, and this is mainly due to the four uORFs. Each of the four upstream AUG triplets can be recognized as a start site for translation, and no single uAUG dominates the repressive effect. The uORFs repress translation by a mechanism that is not affected by the amino acid sequence in the COOH-terminal region of the uORF-encoded peptides. The very short uORF (AUGUGA) present in ovary-specific transcripts does not repress translation. Staining of testis sections from transgenic mice carrying chimeric beta-galactosidase transgene constructs, which contain a mos 5'UTR with or without the uATGs, suggests that the uORFs can dramatically change the pattern of expression in spermatogenic cells.
An efficient, movable single-particle detector for use in cryogenic ultra-high vacuum environments.
Spruck, Kaija; Becker, Arno; Fellenberger, Florian; Grieser, Manfred; von Hahn, Robert; Klinkhamer, Vincent; Novotný, Oldřich; Schippers, Stefan; Vogel, Stephen; Wolf, Andreas; Krantz, Claude
2015-02-01
A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut für Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to ∼10 K and consist fully of ultra-high vacuum compatible, high-temperature bakeable, and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK's Cryogenic Storage Ring. We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xinmin; Belcher, Andrew H.; Grelewicz, Zachary
Purpose: To develop a control system to correct both translational and rotational head motion deviations in real-time during frameless stereotactic radiosurgery (SRS). Methods: A novel feedback control with a feed-forward algorithm was utilized to correct for the coupling of translation and rotation present in serial kinematic robotic systems. Input parameters for the algorithm include the real-time 6DOF target position, the frame pitch pivot point to target distance constant, and the translational and angular Linac beam off (gating) tolerance constants for patient safety. Testing of the algorithm was done using a 4D (XY Z + pitch) robotic stage, an infrared headmore » position sensing unit and a control computer. The measured head position signal was processed and a resulting command was sent to the interface of a four-axis motor controller, through which four stepper motors were driven to perform motion compensation. Results: The control of the translation of a brain target was decoupled with the control of the rotation. For a phantom study, the corrected position was within a translational displacement of 0.35 mm and a pitch displacement of 0.15° 100% of the time. For a volunteer study, the corrected position was within displacements of 0.4 mm and 0.2° over 98.5% of the time, while it was 10.7% without correction. Conclusions: The authors report a control design approach for both translational and rotational head motion correction. The experiments demonstrated that control performance of the 4D robotic stage meets the submillimeter and subdegree accuracy required by SRS.« less
Pseudoscalar perturbations and polarization of the cosmic microwave background.
Pospelov, Maxim; Ritz, Adam; Skordis, Constantinos
2009-07-31
We show that models of new particle physics containing massless pseudoscalar fields superweakly coupled to photons can be very efficiently probed with CMB polarization anisotropies. The stochastic pseudoscalar fluctuations generated during inflation provide a mechanism for converting E-mode polarization to B-mode during photon propagation from the surface of last scattering. The efficiency of this conversion process is controlled by the dimensionless ratio H/(2pif(a)), where H is the Hubble scale during inflation, and f(a)-1 is the strength of the pseudoscalar coupling to photons. The current observational limits on the B mode constrain this ratio to be less than 0.07, which in many models of inflation translates to a sensitivity to f(a) exceeding 10(14) GeV, which surpasses other tests.
One step DNA assembly for combinatorial metabolic engineering.
Coussement, Pieter; Maertens, Jo; Beauprez, Joeri; Van Bellegem, Wouter; De Mey, Marjan
2014-05-01
The rapid and efficient assembly of multi-step metabolic pathways for generating microbial strains with desirable phenotypes is a critical procedure for metabolic engineering, and remains a significant challenge in synthetic biology. Although several DNA assembly methods have been developed and applied for metabolic pathway engineering, many of them are limited by their suitability for combinatorial pathway assembly. The introduction of transcriptional (promoters), translational (ribosome binding site (RBS)) and enzyme (mutant genes) variability to modulate pathway expression levels is essential for generating balanced metabolic pathways and maximizing the productivity of a strain. We report a novel, highly reliable and rapid single strand assembly (SSA) method for pathway engineering. The method was successfully optimized and applied to create constructs containing promoter, RBS and/or mutant enzyme libraries. To demonstrate its efficiency and reliability, the method was applied to fine-tune multi-gene pathways. Two promoter libraries were simultaneously introduced in front of two target genes, enabling orthogonal expression as demonstrated by principal component analysis. This shows that SSA will increase our ability to tune multi-gene pathways at all control levels for the biotechnological production of complex metabolites, achievable through the combinatorial modulation of transcription, translation and enzyme activity. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Musashi2 sustains the mixed-lineage leukemia–driven stem cell regulatory program
Park, Sun-Mi; Gönen, Mithat; Vu, Ly; Minuesa, Gerard; Tivnan, Patrick; Barlowe, Trevor S.; Taggart, James; Lu, Yuheng; Deering, Raquel P.; Hacohen, Nir; Figueroa, Maria E.; Paietta, Elisabeth; Fernandez, Hugo F.; Tallman, Martin S.; Melnick, Ari; Levine, Ross; Leslie, Christina; Lengner, Christopher J.; Kharas, Michael G.
2015-01-01
Leukemia stem cells (LSCs) are found in most aggressive myeloid diseases and contribute to therapeutic resistance. Leukemia cells exhibit a dysregulated developmental program as the result of genetic and epigenetic alterations. Overexpression of the RNA-binding protein Musashi2 (MSI2) has been previously shown to predict poor survival in leukemia. Here, we demonstrated that conditional deletion of Msi2 in the hematopoietic compartment results in delayed leukemogenesis, reduced disease burden, and a loss of LSC function in a murine leukemia model. Gene expression profiling of these Msi2-deficient animals revealed a loss of the hematopoietic/leukemic stem cell self-renewal program and an increase in the differentiation program. In acute myeloid leukemia patients, the presence of a gene signature that was similar to that observed in Msi2-deficent murine LSCs correlated with improved survival. We determined that MSI2 directly maintains the mixed-lineage leukemia (MLL) self-renewal program by interacting with and retaining efficient translation of Hoxa9, Myc, and Ikzf2 mRNAs. Moreover, depletion of MLL target Ikzf2 in LSCs reduced colony formation, decreased proliferation, and increased apoptosis. Our data provide evidence that MSI2 controls efficient translation of the oncogenic LSC self-renewal program and suggest MSI2 as a potential therapeutic target for myeloid leukemia. PMID:25664853
Object-oriented controlled-vocabulary translator using TRANSOFT + HyperPAD.
Moore, G W; Berman, J J
1991-01-01
Automated coding of surgical pathology reports is demonstrated. This public-domain translation software operates on surgical pathology files, extracting diagnoses and assigning codes in a controlled medical vocabulary, such as SNOMED. Context-sensitive translation algorithms are employed, and syntactically correct diagnostic items are produced that are matched with controlled vocabulary. English-language surgical pathology reports, accessioned over one year at the Baltimore Veterans Affairs Medical Center, were translated. With an interface to a larger hospital information system, all natural language pathology reports are automatically rendered as topography and morphology codes. This translator frees the pathologist from the time-intensive task of personally coding each report, and may be used to flag certain diagnostic categories that require specific quality assurance actions.
Object-oriented controlled-vocabulary translator using TRANSOFT + HyperPAD.
Moore, G. W.; Berman, J. J.
1991-01-01
Automated coding of surgical pathology reports is demonstrated. This public-domain translation software operates on surgical pathology files, extracting diagnoses and assigning codes in a controlled medical vocabulary, such as SNOMED. Context-sensitive translation algorithms are employed, and syntactically correct diagnostic items are produced that are matched with controlled vocabulary. English-language surgical pathology reports, accessioned over one year at the Baltimore Veterans Affairs Medical Center, were translated. With an interface to a larger hospital information system, all natural language pathology reports are automatically rendered as topography and morphology codes. This translator frees the pathologist from the time-intensive task of personally coding each report, and may be used to flag certain diagnostic categories that require specific quality assurance actions. PMID:1807773
Kleine Büning, Maximiliane; Meyer, Denise; Austermann-Busch, Sophia; Roman-Sosa, Gleyder; Rümenapf, Tillmann
2017-01-01
RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5′ terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins. PMID:28338950
The structure of clinical translation: efficiency, information, and ethics.
Kimmelman, Jonathan; London, Alex John
2015-01-01
The so-called drug pipeline is not really about drugs and not much like a pipeline. It is really about the production and dissemination of information, and it is much more like a web. The misunderstanding leads to a poor understanding of what's wrong with clinical translation and how it can be improved.
Beyond Theory and Practice: Towards an Ethics of Translation
ERIC Educational Resources Information Center
Schwimmer, Marina
2017-01-01
In this article, I will discuss the idea of teachers as knowledge translators, not in a pedagogical or didactical sense, but in a "professional" one. A professional practice is supposed to be theoretically informed by academic research. In the name of effectiveness and efficiency, current policies in teaching and higher education…
Kirst, Henning; Melis, Anastasios
2014-01-01
The concept of the Truncated Light-harvesting chlorophyll Antenna (TLA) size, as a tool by which to maximize sunlight utilization and photosynthetic productivity in microalgal mass cultures or high-density plant canopies, is discussed. TLA technology is known to improve sunlight-to-product energy conversion efficiencies and is hereby exemplified by photosynthetic productivity estimates of wild type and a TLA strain under simulated mass culture conditions. Recent advances in the generation of TLA-type mutants by targeting genes of the chloroplast signal-recognition particle (CpSRP) pathway, affecting the thylakoid membrane assembly of light-harvesting proteins, are also summarized. Two distinct CpSRP assembly pathways are recognized, one entailing post-translational, the other a co-translational mechanism. Differences between the post-translational and co-translational integration mechanisms are outlined, as these pertain to the CpSRP-mediated assembly of thylakoid membrane protein complexes in higher plants and green microalgae. The applicability of the CpSRP pathway genes in efforts to generate TLA-type strains with enhanced solar energy conversion efficiency in photosynthesis is evaluated. © 2013.
Performance assessment in brain-computer interface-based augmentative and alternative communication
2013-01-01
A large number of incommensurable metrics are currently used to report the performance of brain-computer interfaces (BCI) used for augmentative and alterative communication (AAC). The lack of standard metrics precludes the comparison of different BCI-based AAC systems, hindering rapid growth and development of this technology. This paper presents a review of the metrics that have been used to report performance of BCIs used for AAC from January 2005 to January 2012. We distinguish between Level 1 metrics used to report performance at the output of the BCI Control Module, which translates brain signals into logical control output, and Level 2 metrics at the Selection Enhancement Module, which translates logical control to semantic control. We recommend that: (1) the commensurate metrics Mutual Information or Information Transfer Rate (ITR) be used to report Level 1 BCI performance, as these metrics represent information throughput, which is of interest in BCIs for AAC; 2) the BCI-Utility metric be used to report Level 2 BCI performance, as it is capable of handling all current methods of improving BCI performance; (3) these metrics should be supplemented by information specific to each unique BCI configuration; and (4) studies involving Selection Enhancement Modules should report performance at both Level 1 and Level 2 in the BCI system. Following these recommendations will enable efficient comparison between both BCI Control and Selection Enhancement Modules, accelerating research and development of BCI-based AAC systems. PMID:23680020
miR-Sens--a retroviral dual-luciferase reporter to detect microRNA activity in primary cells.
Beillard, Emmanuel; Ong, Siau Chi; Giannakakis, Antonis; Guccione, Ernesto; Vardy, Leah A; Voorhoeve, P Mathijs
2012-05-01
MicroRNA-mRNA interactions are commonly validated and deconstructed in cell lines transfected with luciferase reporters. However, due to cell type-specific variations in microRNA or RNA-binding protein abundance, such assays may not reliably reflect microRNA activity in other cell types that are less easily transfected. In order to measure miRNA activity in primary cells, we constructed miR-Sens, a MSCV-based retroviral vector that encodes both a Renilla luciferase reporter gene controlled by microRNA binding sites in its 3' UTR and a Firefly luciferase normalization gene. miR-Sens sensors can be efficiently transduced in primary cells such as human fibroblasts and mammary epithelial cells, and allow the detection of overexpressed and, more importantly, endogenous microRNAs. Notably, we find that the relative luciferase activity is correlated to the miRNA expression, allowing quantitative measurement of microRNA activity. We have subsequently validated the miR-Sens 3' UTR vectors with known human miRNA-372, miRNA-373, and miRNA-31 targets (LATS2 and TXNIP). Overall, we observe that miR-Sens-based assays are highly reproducible, allowing detection of the independent contribution of multiple microRNAs to 3' UTR-mediated translational control of LATS2. In conclusion, miR-Sens is a new tool for the efficient study of microRNA activity in primary cells or panels of cell lines. This vector will not only be useful for studies on microRNA biology, but also more broadly on other factors influencing the translation of mRNAs.
miR-Sens—a retroviral dual-luciferase reporter to detect microRNA activity in primary cells
Beillard, Emmanuel; Ong, Siau Chi; Giannakakis, Antonis; Guccione, Ernesto; Vardy, Leah A.; Voorhoeve, P. Mathijs
2012-01-01
MicroRNA–mRNA interactions are commonly validated and deconstructed in cell lines transfected with luciferase reporters. However, due to cell type-specific variations in microRNA or RNA-binding protein abundance, such assays may not reliably reflect microRNA activity in other cell types that are less easily transfected. In order to measure miRNA activity in primary cells, we constructed miR-Sens, a MSCV-based retroviral vector that encodes both a Renilla luciferase reporter gene controlled by microRNA binding sites in its 3′ UTR and a Firefly luciferase normalization gene. miR-Sens sensors can be efficiently transduced in primary cells such as human fibroblasts and mammary epithelial cells, and allow the detection of overexpressed and, more importantly, endogenous microRNAs. Notably, we find that the relative luciferase activity is correlated to the miRNA expression, allowing quantitative measurement of microRNA activity. We have subsequently validated the miR-Sens 3′ UTR vectors with known human miRNA-372, miRNA-373, and miRNA-31 targets (LATS2 and TXNIP). Overall, we observe that miR-Sens-based assays are highly reproducible, allowing detection of the independent contribution of multiple microRNAs to 3′ UTR–mediated translational control of LATS2. In conclusion, miR-Sens is a new tool for the efficient study of microRNA activity in primary cells or panels of cell lines. This vector will not only be useful for studies on microRNA biology, but also more broadly on other factors influencing the translation of mRNAs. PMID:22417692
Genji, Takahisa; Nozawa, Akira; Tozawa, Yuzuru
2010-10-01
Cell-free translation is one potential approach to the production of functional transmembrane proteins. We have now examined various detergents as supplements to a wheat-germ cell-free system in order to optimize the production and subsequent purification of a functional model transmembrane protein, bacteriorhodopsin. We found that Fos-choline and CHAPS detergents counteracted each other's inhibitory effects on cell-free translation activity and thereby allowed the efficient production and subsequent purification of functional bacteriorhodopsin in high yield. Copyright © 2010 Elsevier Inc. All rights reserved.
NIPTE: a multi-university partnership supporting academic drug development.
Gurvich, Vadim J; Byrn, Stephen R
2013-10-01
The strategic goal of academic translational research is to accelerate translational science through the improvement and development of resources for moving discoveries across translational barriers through 'first in humans' studies. To achieve this goal, access to drug discovery resources and preclinical IND-enabling infrastructure is crucial. One potential approach of research institutions for coordinating preclinical development, based on a model from the National Institute for Pharmaceutical Technology and Education (NIPTE), can provide academic translational and medical centers with access to a wide variety of enabling infrastructure for developing small molecule clinical candidates in an efficient, cost-effective manner. Copyright © 2013 Elsevier Ltd. All rights reserved.
Agabalyan, Natacha A.; Borys, Breanna S.; Sparks, Holly D.; Boon, Kathryn; Raharjo, Eko W.; Abbasi, Sepideh; Kallos, Michael S.
2016-01-01
Abstract Endogenous dermal stem cells (DSCs) reside in the adult hair follicle mesenchyme and can be isolated and grown in vitro as self‐renewing colonies called skin‐derived precursors (SKPs). Following transplantation into skin, SKPs can generate new dermis and reconstitute the dermal papilla and connective tissue sheath, suggesting they could have important therapeutic value for the treatment of skin disease (alopecia) or injury. Controlled cell culture processes must be developed to efficiently and safely generate sufficient stem cell numbers for clinical use. Compared with static culture, stirred‐suspension bioreactors generated fivefold greater expansion of viable SKPs. SKPs from each condition were able to repopulate the dermal stem cell niche within established hair follicles. Both conditions were also capable of inducing de novo hair follicle formation and exhibited bipotency, reconstituting the dermal papilla and connective tissue sheath, although the efficiency was significantly reduced in bioreactor‐expanded SKPs compared with static conditions. We conclude that automated bioreactor processing could be used to efficiently generate large numbers of autologous DSCs while maintaining their inherent regenerative function. Stem Cells Translational Medicine 2017;6:434–443 PMID:28191777
The role of Myc-induced protein synthesis in cancer
Ruggero, Davide
2009-01-01
Deregulation in different steps of translational control is an emerging mechanism for cancer formation. One example of an oncogene with a direct role in control of translation is the Myc transcription factor. Myc directly increases protein synthesis rates by controlling the expression of multiple components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, Pol III and rDNA. However, the contribution of Myc-dependent increases in protein synthesis towards the multi-step process leading to cancer has remained unknown. Recent evidence strongly suggests that Myc oncogenic signaling may monopolize the translational machinery to elicit cooperative effects on cell growth, cell cycle progression, and genome instability as a mechanism for cancer initiation. Moreover, new genetic tools to restore aberrant increases in protein synthesis control are now available, which should enable the dissection of important mechanisms in cancer that rely on the translational machinery. PMID:19934336
Market-based control strategy for long-span structures considering the multi-time delay issue
NASA Astrophysics Data System (ADS)
Li, Hongnan; Song, Jianzhu; Li, Gang
2017-01-01
To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2 N precise algorithm was selected to solve the multi-time-delay issue for long-span structures based on the market-based control (MBC) method. The concept of interval mixed energy was introduced from computational structural mechanics and optimal control research areas, and it translates the design of the MBC multi-time-delay controller into a solution for the segment matrix. This approach transforms the serial algorithm in time to parallel computing in space, greatly improving the solving efficiency and numerical stability. The designed controller is able to consider the issue of time delay with a linear controlling force combination and is especially effective for large time-delay conditions. A numerical example of a long-span structure was selected to demonstrate the effectiveness of the presented controller, and the time delay was found to have a significant impact on the results.
A preliminary 6 DOF attitude and translation control system design for Starprobe
NASA Technical Reports Server (NTRS)
Mak, P.; Mettler, E.; Vijayarahgavan, A.
1981-01-01
The extreme thermal environment near perihelion and the high-accuracy gravitational science experiments impose unique design requirements on various subsystems of Starprobe. This paper examines some of these requirements and their impact on the preliminary design of a six-degree-of-freedom attitude and translational control system. Attention is given to design considerations, the baseline attitude/translational control system, system modeling, and simulation studies.
Mutations That Affect the Efficiency of Translation of mRNA for the cII Gene of Coliphage Lambda
Dul, Ed; Mahoney, Michael E.; Wulff, Daniel L.
1987-01-01
Starting with the λ pRE- strain λctr1 cy3008, which forms clear plaques, we have isolated two mutant strains, λdya2 ctr1 cy3008 and λ dya3 ctr1 cy3008, that form plaques with very slightly turbid centers. The dya2 and dya3 mutations lie in the region of overlap between the PRE promoter and the ribosome recognition region of the cII gene, and have nucleotide alterations at positions -1 and +5 of pRE, and alterations of cII mRNA at -16 and -21 nucleotides before the initial AUG codon of the gene. Both mutations destabilize a stem structure that may be formed by cII mRNA, and dya2 also changes the sequence on cII mRNA that is complementary to the 3'-end of 16 S rRNA from 5'-UAAGGA-3' to 5'-UGAGGA-3'.—The dya2 and dya3 mutations, along with the ctr1 mutation, which destabilizes either of two alternate stem structures which may be formed by cII mRNA (these being more stable stem structures than the one affected by dya2 and dya3), were tested for their ability to reverse two cII- mutations that are characterized by inefficient translation of cII mRNA. These are cII3088, an A → G mutation four bases before the initial AUG codon, and cII3059 , a GUU → GAU (Val2 → Asp) second codon mutation. It was found that ctr1 completely reverses the translation defects of these two mutations, while dya2 partially reverses these translation defects. The dya3 mutation has no effect on translation efficiency under any condition tested. However neither the ctr1 mutation nor the dya2 mutation has much effect on translation efficiency in an otherwise cII+ background, indicating that other factors must limit the rate of translation of cII mRNA under these conditions. PMID:2953647
Tunable riboregulator switches for post-transcriptional control of gene expression
Krishnamurthy, Malathy; Hennelly, Scott Patrick; Dale, Taraka T.; ...
2015-07-13
The most straightforward approach to altering the flux through a particular metabolic step is to increase or decrease the concentration of the enzyme catalyst. Until recently engineering strategies for altering gene expression have focused on transcription control using strong inducible promoters or by using one of several strategies to knock down or knock out a wasteful gene. Recently, synthetic riboregulators have been developed for translational regulation of gene expression. We report a new modular synthetic riboregulator class that has the potential to finely tune protein expression and independently control the concentration of each enzyme in an engineered metabolic pathway. Ourmore » design includes a cis-repressor at the 5’ end of the mRNA that forms a stem-loop helix occluding the ribosome binding site and blocking translation. An activating-RNA, expressed in trans, frees the RBS turning on translation. The overall architecture of the riboregulators is designed using Watson-Crick base-pairing stability followed by directed evolution on a portion of each trans-activator to fine tune translation. We report a cis-repressor that can completely shut off translation of antibiotic resistance reporters and a trans-activator that restores translation. We have shown it is possible to use riboregulators to achieve translational control of gene expression over a wide dynamic range. Using a bioluminescent reporter system, we demonstrated an ON/OFF ratio >300. We have demonstrated that a targeting sequence can be changed to develop riboregulators that can independently regulate translation of many genes with minimal cross-talk. In a SELEX experiment, we demonstrated that by subtly altering the sequence of the trans-activator, it is possible to alter the equilibrium between repressed and activated states and achieve intermediate translational control.« less
High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling
Jones, Joshua D.; Chung, Betty Y.-W.; Siddell, Stuart G.; Brierley, Ian
2016-01-01
Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global “snap-shot” of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal frameshift site. To our knowledge this is the first application of ribosome profiling to an RNA virus. PMID:26919232
Birikh, K R; Lebedenko, E N; Boni, I V; Berlin, Y A
1995-10-27
Synthetic intronless genes, coding for human interleukin 1 alpha (IL 1 alpha) and interleukin 1 receptor antagonist (IL1ra), have been expressed efficiently in a specially designed prokaryotic vector, pGMCE (a pGEM1 derivative), where the target gene forms the second part of a two-cistron system. The first part of the system is a translation enhancer-containing mini-cistron, whose termination codon overlaps the start codon of the target gene. In the case of the IL1 alpha gene, the high expression level is largely due to the direct efficient translation initiation at the second cistron, whereas with the IL1ra gene in the same system, the proximal translation initiation region (TIR) provides a high level of coupled expression of the target gene. Thus, pGMCE is a potentially versatile vector for direct prokaryotic expression.
Selker, Harry P.; Leslie, Laurel K.
2015-01-01
Abstract There is growing appreciation that process improvement holds promise for improving quality and efficiency across the translational research continuum but frameworks for such programs are not often described. The purpose of this paper is to present a framework and case examples of a Research Process Improvement Program implemented at Tufts CTSI. To promote research process improvement, we developed online training seminars, workshops, and in‐person consultation models to describe core process improvement principles and methods, demonstrate the use of improvement tools, and illustrate the application of these methods in case examples. We implemented these methods, as well as relational coordination theory, with junior researchers, pilot funding awardees, our CTRC, and CTSI resource and service providers. The program focuses on capacity building to address common process problems and quality gaps that threaten the efficient, timely and successful completion of clinical and translational studies. PMID:26332869
Tavares, Michelle Gonçalves de Souza; Brümmer, Carolina Finardi; Nicolau, Gabriela Valente; de Melo, José Tavares; Nazário, Nazaré Otilia; Steidle, Leila John Marques; Patino, Cecília Maria; Pizzichini, Marcia Margaret Menezes; Pizzichini, Emílio
2017-01-01
ABSTRACT Objective: To translate the Asthma Control and Communication Instrument (ACCI) to Portuguese and adapt it for use in Brazil. Methods: The ACCI was translated to Portuguese and adapted for use in Brazil in accordance with internationally accepted guidelines. The protocol included the following steps: permission and rights of use granted by the original author; translation of the ACCI from English to Portuguese; reconciliation; back-translation; review and harmonization of the back-translation; approval from the original author; review of the Portuguese version of the ACCI by an expert panel; cognitive debriefing (the clarity, understandability, and acceptability of the translated version being tested in a sample of the target population); and reconciliation and preparation of the final version. Results: During the cognitive debriefing process, 41 asthma patients meeting the inclusion criteria completed the ACCI and evaluated the clarity of the questions/statements. The clarity index for all ACCI items was > 0.9, meaning that all items were considered to be clear. Conclusions: The ACCI was successfully translated to Portuguese and culturally adapted for use in Brazil, the translated version maintaining the psychometric properties of the original version. The ACCI can be used in clinical practice because it is easy to understand and easily applied. PMID:29365000
Digital voice recording: An efficient alternative for data collection
Mark A. Rumble; Thomas M. Juntti; Thomas W. Bonnot; Joshua J. Millspaugh
2009-01-01
Study designs are usually constrained by logistical and budgetary considerations that can affect the depth and breadth of the research. Little attention has been paid to increasing the efficiency of data recording. Digital voice recording and translation may offer improved efficiency of field personnel. Using this technology, we increased our data collection by 55...
Chu, Dominique; Barnes, David J.; von der Haar, Tobias
2011-01-01
Protein synthesis translates information from messenger RNAs into functional proteomes. Because of the finite nature of the resources required by the translational machinery, both the overall protein synthesis activity of a cell and activity on individual mRNAs are controlled by the allocation of limiting resources. Upon introduction of heterologous sequences into an organism—for example for the purposes of bioprocessing or synthetic biology—limiting resources may also become overstretched, thus negatively affecting both endogenous and heterologous gene expression. In this study, we present a mean-field model of translation in Saccharomyces cerevisiae for the investigation of two particular translational resources, namely ribosomes and aminoacylated tRNAs. We firstly use comparisons of experiments with heterologous sequences and simulations of the same conditions to calibrate our model, and then analyse the behaviour of the translational system in yeast upon introduction of different types of heterologous sequences. Our main findings are that: competition for ribosomes, rather than tRNAs, limits global translation in this organism; that tRNA aminoacylation levels exert, at most, weak control over translational activity; and that decoding speeds and codon adaptation exert strong control over local (mRNA specific) translation rates. PMID:21558172
Translational plant proteomics: a perspective.
Agrawal, Ganesh Kumar; Pedreschi, Romina; Barkla, Bronwyn J; Bindschedler, Laurence Veronique; Cramer, Rainer; Sarkar, Abhijit; Renaut, Jenny; Job, Dominique; Rakwal, Randeep
2012-08-03
Translational proteomics is an emerging sub-discipline of the proteomics field in the biological sciences. Translational plant proteomics aims to integrate knowledge from basic sciences to translate it into field applications to solve issues related but not limited to the recreational and economic values of plants, food security and safety, and energy sustainability. In this review, we highlight the substantial progress reached in plant proteomics during the past decade which has paved the way for translational plant proteomics. Increasing proteomics knowledge in plants is not limited to model and non-model plants, proteogenomics, crop improvement, and food analysis, safety, and nutrition but to many more potential applications. Given the wealth of information generated and to some extent applied, there is the need for more efficient and broader channels to freely disseminate the information to the scientific community. This article is part of a Special Issue entitled: Translational Proteomics. Copyright © 2012 Elsevier B.V. All rights reserved.
Computing the Baker-Campbell-Hausdorff series and the Zassenhaus product
NASA Astrophysics Data System (ADS)
Weyrauch, Michael; Scholz, Daniel
2009-09-01
The Baker-Campbell-Hausdorff (BCH) series and the Zassenhaus product are of fundamental importance for the theory of Lie groups and their applications in physics and physical chemistry. Standard methods for the explicit construction of the BCH and Zassenhaus terms yield polynomial representations, which must be translated into the usually required commutator representation. We prove that a new translation proposed recently yields a correct representation of the BCH and Zassenhaus terms. This representation entails fewer terms than the well-known Dynkin-Specht-Wever representation, which is of relevance for practical applications. Furthermore, various methods for the computation of the BCH and Zassenhaus terms are compared, and a new efficient approach for the calculation of the Zassenhaus terms is proposed. Mathematica implementations for the most efficient algorithms are provided together with comparisons of efficiency.
Borlawsky, Tara B.; Dhaval, Rakesh; Hastings, Shannon L.; Payne, Philip R. O.
2009-01-01
In October 2006, the National Institutes of Health launched a new national consortium, funded through Clinical and Translational Science Awards (CTSA), with the primary objective of improving the conduct and efficiency of the inherently multi-disciplinary field of translational research. To help meet this goal, the Ohio State University Center for Clinical and Translational Science has launched a knowledge management initiative that is focused on facilitating widespread semantic interoperability among administrative, basic science, clinical and research computing systems, both internally and among the translational research community at-large, through the integration of domain-specific standard terminologies and ontologies with local annotations. This manuscript describes an agile framework that builds upon prevailing knowledge engineering and semantic interoperability methods, and will be implemented as part this initiative. PMID:21347164
Borlawsky, Tara B; Dhaval, Rakesh; Hastings, Shannon L; Payne, Philip R O
2009-03-01
In October 2006, the National Institutes of Health launched a new national consortium, funded through Clinical and Translational Science Awards (CTSA), with the primary objective of improving the conduct and efficiency of the inherently multi-disciplinary field of translational research. To help meet this goal, the Ohio State University Center for Clinical and Translational Science has launched a knowledge management initiative that is focused on facilitating widespread semantic interoperability among administrative, basic science, clinical and research computing systems, both internally and among the translational research community at-large, through the integration of domain-specific standard terminologies and ontologies with local annotations. This manuscript describes an agile framework that builds upon prevailing knowledge engineering and semantic interoperability methods, and will be implemented as part this initiative.
Simulating the control of molecular reactions via modulated light fields: from gas phase to solution
NASA Astrophysics Data System (ADS)
Thallmair, Sebastian; Keefer, Daniel; Rott, Florian; de Vivie-Riedle, Regina
2017-04-01
Over the past few years quantum control has proven to be very successful in steering molecular processes. By combining theory with experiment, even highly complex control aims were realized in the gas phase. In this topical review, we illustrate the past achievements on several examples in the molecular context. The next step for the quantum control of chemical processes is to translate the fruitful interplay between theory and experiment to the condensed phase and thus to the regime where chemical synthesis can be supported. On the theory side, increased efforts to include solvent effects in quantum control simulations were made recently. We discuss two major concepts, namely an implicit description of the environment via the density matrix algorithm and an explicit inclusion of solvent molecules. By application to chemical reactions, both concepts conclude that despite environmental perturbations leading to more complex control tasks, efficient quantum control in the condensed phase is still feasible.
Traffic Flow Management Using Aggregate Flow Models and the Development of Disaggregation Methods
NASA Technical Reports Server (NTRS)
Sun, Dengfeng; Sridhar, Banavar; Grabbe, Shon
2010-01-01
A linear time-varying aggregate traffic flow model can be used to develop Traffic Flow Management (tfm) strategies based on optimization algorithms. However, there are no methods available in the literature to translate these aggregate solutions into actions involving individual aircraft. This paper describes and implements a computationally efficient disaggregation algorithm, which converts an aggregate (flow-based) solution to a flight-specific control action. Numerical results generated by the optimization method and the disaggregation algorithm are presented and illustrated by applying them to generate TFM schedules for a typical day in the U.S. National Airspace System. The results show that the disaggregation algorithm generates control actions for individual flights while keeping the air traffic behavior very close to the optimal solution.
Synthetic biology: tools to design microbes for the production of chemicals and fuels.
Seo, Sang Woo; Yang, Jina; Min, Byung Eun; Jang, Sungho; Lim, Jae Hyung; Lim, Hyun Gyu; Kim, Seong Cheol; Kim, Se Yeon; Jeong, Jun Hong; Jung, Gyoo Yeol
2013-11-01
The engineering of biological systems to achieve specific purposes requires design tools that function in a predictable and quantitative manner. Recent advances in the field of synthetic biology, particularly in the programmable control of gene expression at multiple levels of regulation, have increased our ability to efficiently design and optimize biological systems to perform designed tasks. Furthermore, implementation of these designs in biological systems highlights the potential of using these tools to build microbial cell factories for the production of chemicals and fuels. In this paper, we review current developments in the design of tools for controlling gene expression at transcriptional, post-transcriptional and post-translational levels, and consider potential applications of these tools. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelletier, J.; Kaplan, G.; Racaniello, V.R.
1988-03-01
Poliovirus polysomal RNA is naturally uncapped, and as such, its translation must bypass any 5' cap-dependent ribosome recognition event. To elucidate the manner by which poliovirus mRNA is translated, the authors determined the translational efficiencies of a series of deletion mutants within the 5' noncoding region of the mRNA. They found striking differences in translatability among the altered mRNAs when assayed in mock-infected and poliovirus-infected HeLa cell extracts. The results identify a functional cis-acting element within the 5' noncoding region of the poliovirus mRNA which enables it to translate in a cap-independent fashion. The major determinant of this element mapsmore » between nucleotides 320 and 631 of the 5' end of the poliovirus mRNA. They also show that this region (320 to 631), when fused to a heterologous mRNA, can function in cis to render the mRNA cap independent in translation.« less
Efficient Embedded Decoding of Neural Network Language Models in a Machine Translation System.
Zamora-Martinez, Francisco; Castro-Bleda, Maria Jose
2018-02-22
Neural Network Language Models (NNLMs) are a successful approach to Natural Language Processing tasks, such as Machine Translation. We introduce in this work a Statistical Machine Translation (SMT) system which fully integrates NNLMs in the decoding stage, breaking the traditional approach based on [Formula: see text]-best list rescoring. The neural net models (both language models (LMs) and translation models) are fully coupled in the decoding stage, allowing to more strongly influence the translation quality. Computational issues were solved by using a novel idea based on memorization and smoothing of the softmax constants to avoid their computation, which introduces a trade-off between LM quality and computational cost. These ideas were studied in a machine translation task with different combinations of neural networks used both as translation models and as target LMs, comparing phrase-based and [Formula: see text]-gram-based systems, showing that the integrated approach seems more promising for [Formula: see text]-gram-based systems, even with nonfull-quality NNLMs.
ERIC Educational Resources Information Center
Kitto, Simon; Bell, Mary; Peller, Jennifer; Sargeant, Joan; Etchells, Edward; Reeves, Scott; Silver, Ivan
2013-01-01
Public and professional concern about health care quality, safety and efficiency is growing. Continuing education, knowledge translation, patient safety and quality improvement have made concerted efforts to address these issues. However, a coordinated and integrated effort across these domains is lacking. This article explores and discusses the…
RNA Transport and Local Control of Translation
Kindler, Stefan; Wang, Huidong; Richter, Dietmar; Tiedge, Henri
2007-01-01
In eukaryotes, the entwined pathways of RNA transport and local translational regulation are key determinants in the spatio-temporal articulation of gene expression. One of the main advantages of this mechanism over transcriptional control in the nucleus lies in the fact that it endows local sites with independent decision-making authority, a consideration that is of particular relevance in cells with complex cellular architecture such as neurons. Localized RNAs typically contain codes, expressed within cis-acting elements, that specify subcellular targeting. Such codes are recognized by trans-acting factors, adaptors that mediate translocation along cytoskeletal elements by molecular motors. Most transported mRNAs are assumed translationally dormant while en route. In some cell types, especially in neurons, it is considered crucial that translation remains repressed after arrival at the destination site (e.g., a postsynaptic microdomain) until an appropriate activation signal is received. Several candidate mechanisms have been suggested to participate in the local implementation of translational repression and activation, and such mechanisms may target translation at the level of initiation and/or elongation. Recent data indicate that untranslated RNAs may play important roles in the local control of translation. PMID:16212494
Remote Control of Gene Function by Local Translation
Jung, Hosung; Gkogkas, Christos G.; Sonenberg, Nahum; Holt, Christine E.
2014-01-01
The subcellular position of a protein is a key determinant of its function. Mounting evidence indicates that RNA localization, where specific mRNAs are transported subcellularly and subsequently translated in response to localized signals, is an evolutionarily conserved mechanism to control protein localization. On-site synthesis confers novel signaling properties to a protein and helps to maintain local proteome homeostasis. Local translation plays particularly important roles in distal neuronal compartments, and dysregulated RNA localization and translation cause defects in neuronal wiring and survival. Here, we discuss key findings in this area and possible implications of this adaptable and swift mechanism for spatial control of gene function. PMID:24679524
Upstream open reading frames regulate the expression of the nuclear Wnt13 isoforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Tao; Rector, Kyle; Barnett, Corey D.
2008-02-22
Wnt proteins control cell survival and cell fate during development. Although Wnt expression is tightly regulated in a spatio-temporal manner, the mechanisms involved both at the transcriptional and translational levels are poorly defined. We have identified a downstream translation initiation codon, AUG(+74), in Wnt13B and Wnt13C mRNAs responsible for the expression of Wnt13 nuclear forms. In this report, we demonstrate that the expression of the nuclear Wnt13C form is translationally regulated in response to stress and apoptosis. Though the 5'-leaders of both Wnt13C and Wnt13B mRNAs have an inhibitory effect on translation, they did not display an internal ribosome entrymore » site activity as demonstrated by dicistronic reporter assays. However, mutations or deletions of the upstream AUG(-99) and AUG(+1) initiation codons abrogate these translation inhibitory effects, demonstrating that Wnt13C expression is controlled by upstream open reading frames. Since long 5'-untranslated region with short upstream open reading frames characterize other Wnt transcripts, our present data on the translational control of Wnt13 expression open the way to further studies on the translation control of Wnt expression as a modulator of their subcellular localization and activity.« less
1994-01-01
The 40-S subunit of eukaryotic ribosomes binds to the capped 5'-end of mRNA and scans for the first AUG in a favorable sequence context to initiate translation. Most eukaryotic mRNAs therefore have a short 5'- untranslated region (5'-UTR) and no AUGs upstream of the translational start site; features that seem to assure efficient translation. However, approximately 5-10% of all eukaryotic mRNAs, particularly those encoding for regulatory proteins, have complex leader sequences that seem to compromise translational initiation. The retinoic-acid- receptor-beta 2 (RAR beta 2) mRNA is such a transcript with a long (461 nucleotides) 5'-UTR that contains five, partially overlapping, upstream open reading frames (uORFs) that precede the major ORF. We have begun to investigate the function of this complex 5'-UTR in transgenic mice, by introducing mutations in the start/stop codons of the uORFs in RAR beta 2-lacZ reporter constructs. When we compared the expression patterns of mutant and wild-type constructs we found that these mutations affected expression of the downstream RAR beta 2-ORF, resulting in an altered regulation of RAR beta 2-lacZ expression in heart and brain. Other tissues were unaffected. RNA analysis of adult tissues demonstrated that the uORFs act at the level of translation; adult brains and hearts of transgenic mice carrying a construct with either the wild-type or a mutant UTR, had the same levels of mRNA, but only the mutant produced protein. Our study outlines an unexpected role for uORFs: control of tissue-specific and developmentally regulated gene expression. PMID:7962071
Butler, J S; Springer, M; Grunberg-Manago, M
1987-01-01
We previously showed that Escherichia coli translation initiation factor IF3 regulates the expression of its own gene infC at the translational level in vivo. Here we create two alterations in the infC gene and test their effects on translational autocontrol of infC expression in vivo by measuring beta-galactosidase activity expressed from infC-lacZ gene fusions under conditions of up to 4-fold derepression or 3-fold repression of infC expression. Replacement of the infC promoter with the trp promoter deletes 120 nucleotides of the infC mRNA 5' to the translation initiation site without affecting autogenous translational control. Mutation of the unusual AUU initiator codon of infC to the more common AUG initiator codon abolishes translation initiation factor IF3-dependent repression and derepression of infC expression in vivo. These results establish the AUU initiator codon of infC as an essential cis-acting element in autogenous translational control of translation initiation factor IF3 expression in vivo. PMID:2954162
Butler, J S; Springer, M; Grunberg-Manago, M
1987-06-01
We previously showed that Escherichia coli translation initiation factor IF3 regulates the expression of its own gene infC at the translational level in vivo. Here we create two alterations in the infC gene and test their effects on translational autocontrol of infC expression in vivo by measuring beta-galactosidase activity expressed from infC-lacZ gene fusions under conditions of up to 4-fold derepression or 3-fold repression of infC expression. Replacement of the infC promoter with the trp promoter deletes 120 nucleotides of the infC mRNA 5' to the translation initiation site without affecting autogenous translational control. Mutation of the unusual AUU initiator codon of infC to the more common AUG initiator codon abolishes translation initiation factor IF3-dependent repression and derepression of infC expression in vivo. These results establish the AUU initiator codon of infC as an essential cis-acting element in autogenous translational control of translation initiation factor IF3 expression in vivo.
Spitzer observatory operations: increasing efficiency in mission operations
NASA Astrophysics Data System (ADS)
Scott, Charles P.; Kahr, Bolinda E.; Sarrel, Marc A.
2006-06-01
This paper explores the how's and why's of the Spitzer Mission Operations System's (MOS) success, efficiency, and affordability in comparison to other observatory-class missions. MOS exploits today's flight, ground, and operations capabilities, embraces automation, and balances both risk and cost. With operational efficiency as the primary goal, MOS maintains a strong control process by translating lessons learned into efficiency improvements, thereby enabling the MOS processes, teams, and procedures to rapidly evolve from concept (through thorough validation) into in-flight implementation. Operational teaming, planning, and execution are designed to enable re-use. Mission changes, unforeseen events, and continuous improvement have often times forced us to learn to fly anew. Collaborative spacecraft operations and remote science and instrument teams have become well integrated, and worked together to improve and optimize each human, machine, and software-system element. Adaptation to tighter spacecraft margins has facilitated continuous operational improvements via automated and autonomous software coupled with improved human analysis. Based upon what we now know and what we need to improve, adapt, or fix, the projected mission lifetime continues to grow - as does the opportunity for numerous scientific discoveries.
Switch from translation to RNA replication in a positive-stranded RNA virus
Gamarnik, Andrea V.; Andino, Raul
1998-01-01
In positive-stranded viruses, the genomic RNA serves as a template for both translation and RNA replication. Using poliovirus as a model, we examined the interaction between these two processes. We show that the RNA polymerase is unable to replicate RNA templates undergoing translation. We discovered that an RNA structure at the 5′ end of the viral genome, next to the internal ribosomal entry site, carries signals that control both viral translation and RNA synthesis. The interaction of this RNA structure with the cellular factor PCBP up-regulates viral translation, while the binding of the viral protein 3CD represses translation and promotes negative-strand RNA synthesis. We propose that the interaction of 3CD with this RNA structure controls whether the genomic RNA is used for translation or RNA replication. PMID:9694795
Non-coding functions of alternative pre-mRNA splicing in development.
Mockenhaupt, Stefan; Makeyev, Eugene V
2015-12-01
A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Iliuk, Anton B.; Arrington, Justine V.; Tao, Weiguo Andy
2014-01-01
Phosphoproteomics is the systematic study of one of the most common protein modifications in high throughput with the aim of providing detailed information of the control, response, and communication of biological systems in health and disease. Advances in analytical technologies and strategies, in particular the contributions of high-resolution mass spectrometers, efficient enrichments of phosphopeptides, and fast data acquisition and annotation, have catalyzed dramatic expansion of signaling landscapes in multiple systems during the past decade. While phosphoproteomics is an essential inquiry to map high-resolution signaling networks and to find relevant events among the apparently ubiquitous and widespread modifications of proteome, it presents tremendous challenges in separation sciences to translate it from discovery to clinical practice. In this mini-review, we summarize the analytical tools currently utilized for phosphoproteomic analysis (with focus on MS), progresses made on deciphering clinically relevant kinase-substrate networks, MS uses for biomarker discovery and validation, and the potential of phosphoproteomics for disease diagnostics and personalized medicine. PMID:24890697
World-Record Solar Cell a Step Closer to Cheap Solar Energy
envelope of solar-cell efficiency, we can begin to visualize the day when energy from the sun will be in efficiency translates into lower costs for harnessing energy from the sun. The cell's excellent
Kleine Büning, Maximiliane; Meyer, Denise; Austermann-Busch, Sophia; Roman-Sosa, Gleyder; Rümenapf, Tillmann; Becher, Paul
2017-04-01
RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5' terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
New Universal Rules of Eukaryotic Translation Initiation Fidelity
Zur, Hadas; Tuller, Tamir
2013-01-01
The accepted model of eukaryotic translation initiation begins with the scanning of the transcript by the pre-initiation complex from the 5′end until an ATG codon with a specific nucleotide (nt) context surrounding it is recognized (Kozak rule). According to this model, ATG codons upstream to the beginning of the ORF should affect translation. We perform for the first time, a genome-wide statistical analysis, uncovering a new, more comprehensive and quantitative, set of initiation rules for improving the cost of translation and its efficiency. Analyzing dozens of eukaryotic genomes, we find that in all frames there is a universal trend of selection for low numbers of ATG codons; specifically, 16–27 codons upstream, but also 5–11 codons downstream of the START ATG, include less ATG codons than expected. We further suggest that there is selection for anti optimal ATG contexts in the vicinity of the START ATG. Thus, the efficiency and fidelity of translation initiation is encoded in the 5′UTR as required by the scanning model, but also at the beginning of the ORF. The observed nt patterns suggest that in all the analyzed organisms the pre-initiation complex often misses the START ATG of the ORF, and may start translation from an alternative initiation start-site. Thus, to prevent the translation of undesired proteins, there is selection for nucleotide sequences with low affinity to the pre-initiation complex near the beginning of the ORF. With the new suggested rules we were able to obtain a twice higher correlation with ribosomal density and protein levels in comparison to the Kozak rule alone (e.g. for protein levels r = 0.7 vs. r = 0.31; p<10−12). PMID:23874179
Redox Regulation of Methionine Aminopeptidase 2 Activity*
Chiu, Joyce; Wong, Jason W. H.; Hogg, Philip J.
2014-01-01
Protein translation is initiated with methionine in eukaryotes, and the majority of proteins have their N-terminal methionine removed by methionine aminopeptidases (MetAP1 and MetAP2) prior to action. Methionine removal can be important for protein function, localization, or stability. No mechanism of regulation of MetAP activity has been identified. MetAP2, but not MetAP1, contains a single Cys228-Cys448 disulfide bond that has an −RHStaple configuration and links two β-loop structures, which are hallmarks of allosteric disulfide bonds. From analysis of crystal structures and using mass spectrometry and activity assays, we found that the disulfide bond exists in oxidized and reduced states in the recombinant enzyme. The disulfide has a standard redox potential of −261 mV and is efficiently reduced by the protein reductant, thioredoxin, with a rate constant of 16,180 m−1 s−1. The MetAP2 disulfide bond also exists in oxidized and reduced states in glioblastoma tumor cells, and stressing the cells by oxygen or glucose deprivation results in more oxidized enzyme. The Cys228-Cys448 disulfide is at the rim of the active site and is only three residues distant from the catalytic His231, which suggested that cleavage of the bond would influence substrate hydrolysis. Indeed, oxidized and reduced isoforms have different catalytic efficiencies for hydrolysis of MetAP2 peptide substrates. These findings indicate that MetAP2 is post-translationally regulated by an allosteric disulfide bond, which controls substrate specificity and catalytic efficiency. PMID:24700462
Translations on Near East and North Africa, Number 1647
1977-04-28
Production capacity of the two plants is to amount to 220,000 tons of ammonia and 800,000 tons of uric acid . Improving operations efficiency at the...JPRS 69019 28 April 1977 TRANSLATIONS’ON NEAR EAST AND NORTH AFRICA No, 1647 < 2 w ÜJCEE »- .Q-5 ^ Q. C «MM H— —• £2 a« ES.Q...3. Recipient’s Accession No. 4. Title and Subtitle TRANSLATIONS ON NEAR EAST AND NORTH AFRICA , No. 164 7 5. Report Date 28 April 1977 6
Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin.
He, Zhiyu; Santos, Jose Luis; Tian, Houkuan; Huang, Huahua; Hu, Yizong; Liu, Lixin; Leong, Kam W; Chen, Yongming; Mao, Hai-Quan
2017-06-01
Controlled delivery of protein would find diverse therapeutic applications. Formulation of protein nanoparticles by polyelectrolyte complexation between the protein and a natural polymer such as chitosan (CS) is a popular approach. However, the current method of batch-mode mixing faces significant challenges in scaling up while maintaining size control, high uniformity, and high encapsulation efficiency. Here we report a new method, termed flash nanocomplexation (FNC), to fabricate insulin nanoparticles by infusing aqueous solutions of CS, tripolyphosphate (TPP), and insulin under rapid mixing condition (Re > 1600) in a multi-inlet vortex mixer. In comparison with the bulk-mixing method, the optimized FNC process produces CS/TPP/insulin nanoparticles with a smaller size (down to 45 nm) and narrower size distribution, higher encapsulation efficiency (up to 90%), and pH-dependent nanoparticle dissolution and insulin release. The CS/TPP/insulin nanoparticles can be lyophilized and reconstituted without loss of activity, and produced at a throughput of 5.1 g h -1 when a flow rate of 50 mL min -1 is used. Evaluated in a Type I diabetes rat model, the smaller nanoparticles (45 nm and 115 nm) control the blood glucose level through oral administration more effectively than the larger particles (240 nm). This efficient, reproducible and continuous FNC technique is amenable to scale-up in order to address the critical barrier of manufacturing for the translation of protein nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Bin; Voznyy, Oleksandr; Tan, Hairen; Stadler, Philipp; Liu, Mengxia; Walters, Grant; Proppe, Andrew H; Liu, Min; Fan, James; Zhuang, Taotao; Li, Jie; Wei, Mingyang; Xu, Jixian; Kim, Younghoon; Hoogland, Sjoerd; Sargent, Edward H
2017-07-01
Application of pseudohalogens in colloidal quantum dot (CQD) solar-cell active layers increases the solar-cell performance by reducing the trap densities and implementing thick CQD films. Pseudohalogens are polyatomic analogs of halogens, whose chemistry allows them to substitute halogen atoms by strong chemical interactions with the CQD surfaces. The pseudohalide thiocyanate anion is used to achieve a hybrid surface passivation. A fourfold reduced trap state density than in a control is observed by using a suite of field-effect transistor studies. This translates directly into the thickest CQD active layer ever reported, enabled by enhanced transport lengths in this new class of materials, and leads to the highest external quantum efficiency, 80% at the excitonic peak, compared with previous reports of CQD solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Barendt, Pamela A.; Shah, Najaf A.; Barendt, Gregory A.; Kothari, Parth A.; Sarkar, Casim A.
2013-01-01
While the ribosome has evolved to function in complex intracellular environments, these contexts do not easily allow for the study of its inherent capabilities. We have used a synthetic, well-defined, Escherichia coli (E. coli)-based translation system in conjunction with ribosome display, a powerful in vitro selection method, to identify ribosome binding sites (RBSs) that can promote the efficient translation of messenger RNAs (mRNAs) with a leader length representative of natural E. coli mRNAs. In previous work, we used a longer leader sequence and unexpectedly recovered highly efficient cytosine-rich sequences with complementarity to the 16S ribosomal RNA (rRNA) and similarity to eukaryotic RBSs. In the current study, Shine-Dalgarno (SD) sequences were prevalent but non-SD sequences were also heavily enriched and were dominated by novel guanine- and uracil-rich motifs which showed statistically significant complementarity to the 16S rRNA. Additionally, only SD motifs exhibited position-dependent decreases in sequence entropy, indicating that non-SD motifs likely operate by increasing the local concentration of ribosomes in the vicinity of the start codon, rather than by a position-dependent mechanism. These results further support the putative generality of mRNA-rRNA complementarity in facilitating mRNA translation, but also suggest that context (e.g., leader length and composition) dictates the specific subset of possible RBSs that are used for efficient translation of a given transcript. PMID:23427812
A Tensor-Train accelerated solver for integral equations in complex geometries
NASA Astrophysics Data System (ADS)
Corona, Eduardo; Rahimian, Abtin; Zorin, Denis
2017-04-01
We present a framework using the Quantized Tensor Train (QTT) decomposition to accurately and efficiently solve volume and boundary integral equations in three dimensions. We describe how the QTT decomposition can be used as a hierarchical compression and inversion scheme for matrices arising from the discretization of integral equations. For a broad range of problems, computational and storage costs of the inversion scheme are extremely modest O (log N) and once the inverse is computed, it can be applied in O (Nlog N) . We analyze the QTT ranks for hierarchically low rank matrices and discuss its relationship to commonly used hierarchical compression techniques such as FMM and HSS. We prove that the QTT ranks are bounded for translation-invariant systems and argue that this behavior extends to non-translation invariant volume and boundary integrals. For volume integrals, the QTT decomposition provides an efficient direct solver requiring significantly less memory compared to other fast direct solvers. We present results demonstrating the remarkable performance of the QTT-based solver when applied to both translation and non-translation invariant volume integrals in 3D. For boundary integral equations, we demonstrate that using a QTT decomposition to construct preconditioners for a Krylov subspace method leads to an efficient and robust solver with a small memory footprint. We test the QTT preconditioners in the iterative solution of an exterior elliptic boundary value problem (Laplace) formulated as a boundary integral equation in complex, multiply connected geometries.
Hanna, Timothy P; Kangolle, Alfred C T
2010-10-13
Cancer is a rapidly increasing problem in developing countries. Access, quality and efficiency of cancer services in developing countries must be understood to advance effective cancer control programs. Health services research can provide insights into these areas. This article provides an overview of oncology health services in developing countries. We use selected examples from peer-reviewed literature in health services research and relevant publicly available documents. In spite of significant limitations in the available data, it is clear there are substantial barriers to access to cancer control in developing countries. This includes prevention, early detection, diagnosis/treatment and palliation. There are also substantial limitations in the quality of cancer control and a great need to improve economic efficiency. We describe how the application of health data may assist in optimizing (1) Structure: strengthening planning, collaboration, transparency, research development, education and capacity building. (2) PROCESS: enabling follow-up, knowledge translation, patient safety and quality assurance. (3) OUTCOME: facilitating evaluation, monitoring and improvement of national cancer control efforts. There is currently limited data and capacity to use this data in developing countries for these purposes. There is an urgent need to improve health services for cancer control in developing countries. Current resources and much-needed investments must be optimally managed. To achieve this, we would recommend investment in four key priorities: (1) Capacity building in oncology health services research, policy and planning relevant to developing countries. (2) Development of high-quality health data sources. (3) More oncology-related economic evaluations in developing countries. (4) Exploration of high-quality models of cancer control in developing countries. Meeting these needs will require national, regional and international collaboration as well as political leadership. Horizontal integration with programs for other diseases will be important.
Method and system for efficiently searching an encoded vector index
Bui, Thuan Quang; Egan, Randy Lynn; Kathmann, Kevin James
2001-09-04
Method and system aspects for efficiently searching an encoded vector index are provided. The aspects include the translation of a search query into a candidate bitmap, and the mapping of data from the candidate bitmap into a search result bitmap according to entry values in the encoded vector index. Further, the translation includes the setting of a bit in the candidate bitmap for each entry in a symbol table that corresponds to candidate of the search query. Also included in the mapping is the identification of a bit value in the candidate bitmap pointed to by an entry in an encoded vector.
Miller, Thomas F.
2017-01-01
We present a coarse-grained simulation model that is capable of simulating the minute-timescale dynamics of protein translocation and membrane integration via the Sec translocon, while retaining sufficient chemical and structural detail to capture many of the sequence-specific interactions that drive these processes. The model includes accurate geometric representations of the ribosome and Sec translocon, obtained directly from experimental structures, and interactions parameterized from nearly 200 μs of residue-based coarse-grained molecular dynamics simulations. A protocol for mapping amino-acid sequences to coarse-grained beads enables the direct simulation of trajectories for the co-translational insertion of arbitrary polypeptide sequences into the Sec translocon. The model reproduces experimentally observed features of membrane protein integration, including the efficiency with which polypeptide domains integrate into the membrane, the variation in integration efficiency upon single amino-acid mutations, and the orientation of transmembrane domains. The central advantage of the model is that it connects sequence-level protein features to biological observables and timescales, enabling direct simulation for the mechanistic analysis of co-translational integration and for the engineering of membrane proteins with enhanced membrane integration efficiency. PMID:28328943
Codon influence on protein expression in E. coli correlates with mRNA levels
Boël, Grégory; Wong, Kam-Ho; Su, Min; Luff, Jon; Valecha, Mayank; Everett, John K.; Acton, Thomas B.; Xiao, Rong; Montelione, Gaetano T.; Aalberts, Daniel P.; Hunt, John F.
2016-01-01
Degeneracy in the genetic code, which enables a single protein to be encoded by a multitude of synonymous gene sequences, has an important role in regulating protein expression, but substantial uncertainty exists concerning the details of this phenomenon. Here we analyze the sequence features influencing protein expression levels in 6,348 experiments using bacteriophage T7 polymerase to synthesize messenger RNA in Escherichia coli. Logistic regression yields a new codon-influence metric that correlates only weakly with genomic codon-usage frequency, but strongly with global physiological protein concentrations and also mRNA concentrations and lifetimes in vivo. Overall, the codon content influences protein expression more strongly than mRNA-folding parameters, although the latter dominate in the initial ~16 codons. Genes redesigned based on our analyses are transcribed with unaltered efficiency but translated with higher efficiency in vitro. The less efficiently translated native sequences show greatly reduced mRNA levels in vivo. Our results suggest that codon content modulates a kinetic competition between protein elongation and mRNA degradation that is a central feature of the physiology and also possibly the regulation of translation in E. coli. PMID:26760206
Ugolini, Donatella; Neri, Monica; Bennati, Luca; Canessa, Pier Aldo; Casanova, Georgia; Lando, Cecilia; Leoncini, Giacomo; Marroni, Paola; Parodi, Barbara; Simonassi, Claudio; Bonassi, Stefano
2012-03-01
Advances in molecular epidemiology and translational research have led to the need for biospecimen collection. The Cancer of the Respiratory Tract (CREST) biorepository is concerned with pleural malignant mesothelioma (MM) and lung cancer (LC). The biorepository staff has collected demographic and epidemiological data directly from consenting subjects using a structured questionnaire, in agreement with The Public Population Project in Genomics (P(3)G). Clinical and follow-up data were collected. Sample data were also recorded. The architecture is based on a database designed with Microsoft Access. Data standardization was carried out to conform with established conventions or procedures. As from January 31, 2011, the overall number of recruited subjects was 1,857 (454 LC, 245 MM, 130 other cancers and 1,028 controls). Due to its infrastructure, CREST was able to join international projects, sharing samples and/or data with other research groups in the field. The data management system allows CREST to be involved, through a minimum data set, in the national project for the construction of the Italian network of Oncologic BioBanks (RIBBO), and in the infrastructure of a pan-European biobank network (BBMRI). The CREST biorepository is a valuable tool for translational studies on respiratory tract diseases, because of its simple and efficient infrastructure.
Regulation of a maize HD-ZIP IV transcription factor by a non-conventional RDR2-dependent small RNA.
Klein-Cosson, Catherine; Chambrier, Pierre; Rogowsky, Peter M; Vernoud, Vanessa
2015-03-01
Small non-coding RNAs are versatile riboregulators that control gene expression at the transcriptional or post-transcriptional level, governing many facets of plant development. Here we present evidence for the existence of a 24 nt small RNA (named small1) that is complementary to the 3' UTR of OCL1 (Outer Cell Layer1), the founding member of the maize HD-ZIP IV gene family encoding plant-specific transcription factors that are mainly involved in epidermis differentiation and specialization. The biogenesis of small1 depends on DICER-like 3 (DCL3), RNA-dependent RNA polymerase 2 (RDR2) and RNA polymerase IV, components that are usually required for RNA-dependent DNA-methylation. Unexpectedly, GFP sensor experiments in transient and stable transformation systems revealed that small1 may regulate its target at the post-transcriptional level, mainly through translational repression. This translational repression is attenuated in an rdr2 mutant background in which small1 does not accumulate. Our experiments further showed the possible involvement of a secondary stem-loop structure present in the 3' UTR of OCL1 for efficient target repression, suggesting the existence of several regulatory mechanisms affecting OCL1 mRNA stability and translation. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Philippe, Lucas; Vasseur, Jean-Jacques; Debart, Françoise
2018-01-01
Abstract Cell growth is a complex process shaped by extensive and coordinated changes in gene expression. Among these is the tightly regulated translation of a family of growth-related mRNAs defined by a 5′ terminal oligopyrimidine (TOP) motif. TOP mRNA translation is partly controlled via the eukaryotic initiation factor 4F (eIF4F), a translation factor that recognizes the mRNA 5′ cap structure. Recent studies have also implicated La-related protein 1 (LARP1), which competes with eIF4F for binding to mRNA 5′ ends. However, it has remained controversial whether LARP1 represses TOP mRNA translation directly and, if so, what features define its mRNA targets. Here, we show that the C-terminal half of LARP1 is necessary and sufficient to control TOP mRNA translation in cells. This fragment contains the DM15 cap-binding domain as well as an adjacent regulatory region that we identified. We further demonstrate that purified LARP1 represses TOP mRNA translation in vitro through the combined recognition of both the TOP sequence and cap structure, and that its intrinsic repressive activity and affinity for these features are subject to regulation. These results support a model whereby the translation of TOP mRNAs is controlled by a growth-regulated competition between eIF4F and LARP1 for their 5′ ends. PMID:29244122
Shamimuzzaman, Md.
2018-01-01
To understand translational capacity on a genome-wide scale across three developmental stages of immature soybean seed cotyledons, ribosome profiling was performed in combination with RNA sequencing and cluster analysis. Transcripts representing 216 unique genes demonstrated a higher level of translational activity in at least one stage by exhibiting higher translational efficiencies (TEs) in which there were relatively more ribosome footprint sequence reads mapping to the transcript than were present in the control total RNA sample. The majority of these transcripts were more translationally active at the early stage of seed development and included 12 unique serine or cysteine proteases and 16 2S albumin and low molecular weight cysteine-rich proteins that may serve as substrates for turnover and mobilization early in seed development. It would appear that the serine proteases and 2S albumins play a vital role in the early stages. In contrast, our investigation of profiles of 19 genes encoding high abundance seed storage proteins, such as glycinins, beta-conglycinins, lectin, and Kunitz trypsin inhibitors, showed that they all had similar patterns in which the TE values started at low levels and increased approximately 2 to 6-fold during development. The highest levels of these seed protein transcripts were found at the mid-developmental stage, whereas the highest ribosome footprint levels of only up to 1.6 TE were found at the late developmental stage. These experimental findings suggest that the major seed storage protein coding genes are primarily regulated at the transcriptional level during normal soybean cotyledon development. Finally, our analyses also identified a total of 370 unique gene models that showed very low TE values including over 48 genes encoding ribosomal family proteins and 95 gene models that are related to energy and photosynthetic functions, many of which have homology to the chloroplast genome. Additionally, we showed that genes of the chloroplast were relatively translationally inactive during seed development. PMID:29570733
A Practical Guide for Translators (Third Revised Edition). Topics in Translation 13.
ERIC Educational Resources Information Center
Samuelsson-Brown, Geoffrey
This third edition of a guide for translators contains more information than the second edition and looks at translation as a business as well as an occupation, focusing on marketing and quality control. It is designed for people with little or no practical experience with translation in a commercial environment. The 16 chapters examine these…
Dual Nature of Translational Control by Regulatory BC RNAs ▿
Eom, Taesun; Berardi, Valerio; Zhong, Jun; Risuleo, Gianfranco; Tiedge, Henri
2011-01-01
In higher eukaryotes, increasing evidence suggests, gene expression is to a large degree controlled by RNA. Regulatory RNAs have been implicated in the management of neuronal function and plasticity in mammalian brains. However, much of the molecular-mechanistic framework that enables neuronal regulatory RNAs to control gene expression remains poorly understood. Here, we establish molecular mechanisms that underlie the regulatory capacity of neuronal BC RNAs in the translational control of gene expression. We report that regulatory BC RNAs employ a two-pronged approach in translational control. One of two distinct repression mechanisms is mediated by C-loop motifs in BC RNA 3′ stem-loop domains. These C-loops bind to eIF4B and prevent the factor's interaction with 18S rRNA of the small ribosomal subunit. In the second mechanism, the central A-rich domains of BC RNAs target eIF4A, specifically inhibiting its RNA helicase activity. Thus, BC RNAs repress translation initiation in a bimodal mechanistic approach. As BC RNA functionality has evolved independently in rodent and primate lineages, our data suggest that BC RNA translational control was necessitated and implemented during mammalian phylogenetic development of complex neural systems. PMID:21930783
Translational control of Nrf2 within the open reading frame
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Leal, Oscar, E-mail: operez@temple.edu; Barrero, Carlos A.; Merali, Salim, E-mail: smerali@temple.edu
2013-07-19
Highlights: •Identification of a novel Nrf2 translational repression mechanism. •The repressor is within the 3′ portion of the Nrf2 ORF. •The translation of Nrf2 or eGFP is reduced by the regulatory element. •The translational repression can be reversed with synonymous codon substitutions. •The molecular mechanism requires the mRNA sequence, but not the encoded amino acids. -- Abstract: Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is a transcription factor that is essential for the regulation of an effective antioxidant and detoxifying response. The regulation of its activity can occur at transcription, translation and post-translational levels. Evidence suggests that under environmental stressmore » conditions, new synthesis of Nrf2 is required – a process that is regulated by translational control and is not fully understood. Here we described the identification of a novel molecular process that under basal conditions strongly represses the translation of Nrf2 within the open reading frame (ORF). This mechanism is dependent on the mRNA sequence within the 3′ portion of the ORF of Nrf2 but not in the encoded amino acid sequence. The Nrf2 translational repression can be reversed with the use of synonymous codon substitutions. This discovery suggests an additional layer of control to explain the reason for the low Nrf2 concentration under quiescent state.« less
Kübler, Andrea; Holz, Elisa M; Riccio, Angela; Zickler, Claudia; Kaufmann, Tobias; Kleih, Sonja C; Staiger-Sälzer, Pit; Desideri, Lorenzo; Hoogerwerf, Evert-Jan; Mattia, Donatella
2014-01-01
Albeit research on brain-computer interfaces (BCI) for controlling applications has expanded tremendously, we still face a translational gap when bringing BCI to end-users. To bridge this gap, we adapted the user-centered design (UCD) to BCI research and development which implies a shift from focusing on single aspects, such as accuracy and information transfer rate (ITR), to a more holistic user experience. The UCD implements an iterative process between end-users and developers based on a valid evaluation procedure. Within the UCD framework usability of a device can be defined with regard to its effectiveness, efficiency, and satisfaction. We operationalized these aspects to evaluate BCI-controlled applications. Effectiveness was regarded equivalent to accuracy of selections and efficiency to the amount of information transferred per time unit and the effort invested (workload). Satisfaction was assessed with questionnaires and visual-analogue scales. These metrics have been successfully applied to several BCI-controlled applications for communication and entertainment, which were evaluated by end-users with severe motor impairment. Results of four studies, involving a total of N = 19 end-users revealed: effectiveness was moderate to high; efficiency in terms of ITR was low to high and workload low to medium; depending on the match between user and technology, and type of application satisfaction was moderate to high. The here suggested evaluation metrics within the framework of the UCD proved to be an applicable and informative approach to evaluate BCI controlled applications, and end-users with severe impairment and in the locked-in state were able to participate in this process.
Kübler, Andrea; Holz, Elisa M.; Riccio, Angela; Zickler, Claudia; Kaufmann, Tobias; Kleih, Sonja C.; Staiger-Sälzer, Pit; Desideri, Lorenzo; Hoogerwerf, Evert-Jan; Mattia, Donatella
2014-01-01
Albeit research on brain-computer interfaces (BCI) for controlling applications has expanded tremendously, we still face a translational gap when bringing BCI to end-users. To bridge this gap, we adapted the user-centered design (UCD) to BCI research and development which implies a shift from focusing on single aspects, such as accuracy and information transfer rate (ITR), to a more holistic user experience. The UCD implements an iterative process between end-users and developers based on a valid evaluation procedure. Within the UCD framework usability of a device can be defined with regard to its effectiveness, efficiency, and satisfaction. We operationalized these aspects to evaluate BCI-controlled applications. Effectiveness was regarded equivalent to accuracy of selections and efficiency to the amount of information transferred per time unit and the effort invested (workload). Satisfaction was assessed with questionnaires and visual-analogue scales. These metrics have been successfully applied to several BCI-controlled applications for communication and entertainment, which were evaluated by end-users with severe motor impairment. Results of four studies, involving a total of N = 19 end-users revealed: effectiveness was moderate to high; efficiency in terms of ITR was low to high and workload low to medium; depending on the match between user and technology, and type of application satisfaction was moderate to high. The here suggested evaluation metrics within the framework of the UCD proved to be an applicable and informative approach to evaluate BCI controlled applications, and end-users with severe impairment and in the locked-in state were able to participate in this process. PMID:25469774
McCaffery, Anthony J
2015-09-14
Little is known of the mechanism by which H and H2, the principal constituents of the post-re-combination early Universe, cooled sufficiently to permit cluster formation, nucleosynthesis, and, eventually, the formation of structured objects. Radiative decay primarily cools the internal modes of H2, as Δj = - 2 jumps accompany quadrupolar emission. This, however, would be a self-limiting mechanism. In this work, a translational energy cooling mechanism based on collision-induced, translation-to-internal mode conversion, is extended, following an earlier study [A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 139, 234310 (2013)] of ensembles comprising H2 in a H atom bath gas. Here, the possible influence of minor species, such as HD, on this cooling mechanism is investigated. Results suggest that the influence of HD is small but not insignificant. Conversion is very rapid and an overall translation-to-internal energy conversion efficiency of some 5% could be expected. This finding may be of use in the further development of models of this complex phase of early Universe evolution. An unexpected finding in this study was that H2 + HD ensembles are capable of very rapid translation-to-internal conversion with efficiencies of >40% and relaxation rates that appear to be relatively slow. This may have potential as an energy storage mechanism.
Polesskaya, Anna; Cuvellier, Sylvain; Naguibneva, Irina; Duquet, Arnaud; Moss, Eric G; Harel-Bellan, Annick
2007-05-01
Lin-28 is a highly conserved, RNA-binding, microRNA-regulated protein that is involved in regulation of developmental timing in Caenorhabditis elegans. In mammals, Lin-28 is stage-specifically expressed in embryonic muscle, neurons, and epithelia, as well as in embryonic carcinoma cells, but is suppressed in most adult tissues, with the notable exception of skeletal and cardiac muscle. The specific function and mechanism of action of Lin-28 are not well understood. Here we used loss-of-function and gain-of-function assays in cultured myoblasts to show that expression of Lin-28 is essential for skeletal muscle differentiation in mice. In order to elucidate the specific function of Lin-28, we used a combination of biochemical and functional assays, which revealed that, in differentiating myoblasts, Lin-28 binds to the polysomes and increases the efficiency of protein synthesis. An important target of Lin-28 is IGF-2, a crucial growth and differentiation factor for muscle tissue. Interaction of Lin-28 with translation initiation complexes in skeletal myoblasts and in the embryonic carcinoma cell line P19 was confirmed by localization of Lin-28 to the stress granules, temporary structures that contain stalled mRNA-protein translation complexes. Our results unravel novel mechanisms of translational regulation in skeletal muscle and suggest that Lin-28 performs the role of "translational enhancer" in embryonic and adult cells and tissues.
Hepatic translation control in the late-gestation fetal rat.
Gruppuso, Philip A; Tsai, Shu-Whei; Boylan, Joan M; Sanders, Jennifer A
2008-08-01
We have investigated the regulation of translation during the period of rapid liver growth that occurs at the end of gestation in the rat. This work was based on our prior observation that fetal hepatocyte proliferation is resistant to the inhibitory effects of rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), a nutrient-sensing kinase that controls ribosome biogenesis and protein translation. We hypothesized that translation control in late-gestation fetal liver differs from that in adult liver. We first examined the ability of rapamycin to inhibit the translation of mRNAs encoding ribosomal proteins. Consistent with the effect of rapamycin on proliferation, the activation of adult liver 5'-terminal oligopyrimidine tracts (5'-TOP) translation that occurred during refeeding after food deprivation was sensitive to rapamycin. Fetal liver 5'-TOP translation was insensitive. We went on to examine the eukaryotic initiation factor (eIF) 4F cap-binding complex that controls global protein synthesis. The molecular weights of the multiple eIF4G1 isoforms present in fetal and adult liver eIF4F complexes differed. In addition, fetal liver expressed the eIF4A1 form of the eIF4A helicase, whereas adult liver contained eIF4A1 and eIF4A2. Rapamycin administration before refeeding in adult rats inhibited formation of the preinitiation complex to a much greater degree than rapamycin administration to fetal rats in situ. We conclude that there are major structural and functional differences in translation control between late-gestation fetal and adult liver. These differences may confer differential sensitivity to the growth inhibitory effects of rapamycin.
Engineering bacterial translation initiation - Do we have all the tools we need?
Vigar, Justin R J; Wieden, Hans-Joachim
2017-11-01
Reliable tools that allow precise and predictable control over gene expression are critical for the success of nearly all bioengineering applications. Translation initiation is the most regulated phase during protein biosynthesis, and is therefore a promising target for exerting control over gene expression. At the translational level, the copy number of a protein can be fine-tuned by altering the interaction between the translation initiation region of an mRNA and the ribosome. These interactions can be controlled by modulating the mRNA structure using numerous approaches, including small molecule ligands, RNAs, or RNA-binding proteins. A variety of naturally occurring regulatory elements have been repurposed, facilitating advances in synthetic gene regulation strategies. The pursuit of a comprehensive understanding of mechanisms governing translation initiation provides the framework for future engineering efforts. Here we outline state-of-the-art strategies used to predictably control translation initiation in bacteria. We also discuss current limitations in the field and future goals. Due to its function as the rate-determining step, initiation is the ideal point to exert effective translation regulation. Several engineering tools are currently available to rationally design the initiation characteristics of synthetic mRNAs. However, improvements are required to increase the predictability, effectiveness, and portability of these tools. Predictable and reliable control over translation initiation will allow greater predictability when designing, constructing, and testing genetic circuits. The ability to build more complex circuits predictably will advance synthetic biology and contribute to our fundamental understanding of the underlying principles of these processes. "This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.
Tian, Tian; Salis, Howard M.
2015-01-01
Natural and engineered genetic systems require the coordinated expression of proteins. In bacteria, translational coupling provides a genetically encoded mechanism to control expression level ratios within multi-cistronic operons. We have developed a sequence-to-function biophysical model of translational coupling to predict expression level ratios in natural operons and to design synthetic operons with desired expression level ratios. To quantitatively measure ribosome re-initiation rates, we designed and characterized 22 bi-cistronic operon variants with systematically modified intergenic distances and upstream translation rates. We then derived a thermodynamic free energy model to calculate de novo initiation rates as a result of ribosome-assisted unfolding of intergenic RNA structures. The complete biophysical model has only five free parameters, but was able to accurately predict downstream translation rates for 120 synthetic bi-cistronic and tri-cistronic operons with rationally designed intergenic regions and systematically increased upstream translation rates. The biophysical model also accurately predicted the translation rates of the nine protein atp operon, compared to ribosome profiling measurements. Altogether, the biophysical model quantitatively predicts how translational coupling controls protein expression levels in synthetic and natural bacterial operons, providing a deeper understanding of an important post-transcriptional regulatory mechanism and offering the ability to rationally engineer operons with desired behaviors. PMID:26117546
NASA Astrophysics Data System (ADS)
Kelly, Jamie S.; Bowman, Hiroshi C.; Rao, Vittal S.; Pottinger, Hardy J.
1997-06-01
Implementation issues represent an unfamiliar challenge to most control engineers, and many techniques for controller design ignore these issues outright. Consequently, the design of controllers for smart structural systems usually proceeds without regard for their eventual implementation, thus resulting either in serious performance degradation or in hardware requirements that squander power, complicate integration, and drive up cost. The level of integration assumed by the Smart Patch further exacerbates these difficulties, and any design inefficiency may render the realization of a single-package sensor-controller-actuator system infeasible. The goal of this research is to automate the controller implementation process and to relieve the design engineer of implementation concerns like quantization, computational efficiency, and device selection. We specifically target Field Programmable Gate Arrays (FPGAs) as our hardware platform because these devices are highly flexible, power efficient, and reprogrammable. The current study develops an automated implementation sequence that minimizes hardware requirements while maintaining controller performance. Beginning with a state space representation of the controller, the sequence automatically generates a configuration bitstream for a suitable FPGA implementation. MATLAB functions optimize and simulate the control algorithm before translating it into the VHSIC hardware description language. These functions improve power efficiency and simplify integration in the final implementation by performing a linear transformation that renders the controller computationally friendly. The transformation favors sparse matrices in order to reduce multiply operations and the hardware necessary to support them; simultaneously, the remaining matrix elements take on values that minimize limit cycles and parameter sensitivity. The proposed controller design methodology is implemented on a simple cantilever beam test structure using FPGA hardware. The experimental closed loop response is compared with that of an automated FPGA controller implementation. Finally, we explore the integration of FPGA based controllers into a multi-chip module, which we believe represents the next step towards the realization of the Smart Patch.
Jabbari, Batoul; Mirghafourvand, Mojgan; Sehhatie, Fahimeh; Mohammad-Alizadeh-Charandabi, Sakineh
2017-05-30
This study aimed to investigate the effect of Holy Quran on stress, anxiety and depression in Iranian pregnant women. A total of 168 participants were allocated randomly into three groups. Group I received broadcast of the Holy Quran with translation, group II received broadcast of the Holy Quran without translation, and group III was the control group. After intervention, scores of perceived stress, state anxiety, trait anxiety and depression in group I and group II were significantly lower compared with the control group. The Holly Quran with translation and without it, both are the effective for reducing stress, anxiety and depression during pregnancy.
ERIC Educational Resources Information Center
Sakuma, Kari-Lyn K.; Riggs, Nathaniel R.; Pentz, Mary Ann
2012-01-01
Effective school-based obesity prevention programs are needed to prevent and reduce the growing obesity risk among youth. Utilizing the evidence-rich areas of violence and substance use prevention, translation science may provide an efficient means for developing curricula across multiple health behaviors. This paper introduces Pathways to Health,…
A quick transcribing technique for oral data
Schleicher, David
1972-01-01
Stenographic techniques offer a means for transcribing oral data accurately and efficiently. In one such application, during five Appolo lunar missions, a rough but helpful transcript was produced within minutes. Similarly, lectures, conferences, and audio tapes can be accurately transcribed as promptly as necessary. Computer programs for translating shorthand notes are being developed; they will increase both speed and accuracy of translation.
Mechanisms of protein balance in skeletal muscle.
Anthony, T G
2016-07-01
Increased global demand for adequate protein nutrition against a backdrop of climate change and concern for animal agriculture sustainability necessitates new and more efficient approaches to livestock growth and production. Anabolic growth is achieved when rates of new synthesis exceed turnover, producing a positive net protein balance. Conversely, deterioration or atrophy of lean mass is a consequence of a net negative protein balance. During early life and periods of growth, muscle mass is driven by increases in protein synthesis at the level of mRNA translation. Throughout life, muscle mass is further influenced by degradative processes such as autophagy and the ubiquitin proteasome pathway. Multiple signal transduction networks guide and coordinate these processes alongside quality control mechanisms to maintain protein homeostasis (proteostasis). Genetics, hormones, and environmental stimuli each influence proteostasis control, altering capacity and/or efficiency of muscle growth. An overview of recent findings and current methods to assess muscle protein balance and proteostasis is presented. Current efforts to identify novel control points have the potential through selective breeding design or development of hormetic strategies to better promote growth and health span during environmental stress. Copyright © 2016 Elsevier Inc. All rights reserved.
Clinical translation of controlled protein delivery systems for tissue engineering.
Spiller, Kara L; Vunjak-Novakovic, Gordana
2015-04-01
Strategies that utilize controlled release of drugs and proteins for tissue engineering have enormous potential to regenerate damaged organs and tissues. The multiple advantages of controlled release strategies merit overcoming the significant challenges to translation, including high costs and long, difficult regulatory pathways. This review highlights the potential of controlled release of proteins for tissue engineering and regenerative medicine. We specifically discuss treatment modalities that have reached preclinical and clinical trials, with emphasis on controlled release systems for bone tissue engineering, the most advanced application with several products already in clinic. Possible strategies to address translational and regulatory concerns are also discussed.
Clinical translation of controlled protein delivery systems for tissue engineering
Spiller, Kara L.; Vunjak-Novakovic, Gordana
2013-01-01
Strategies that utilize controlled release of drugs and proteins for tissue engineering have enormous potential to regenerate damaged organs and tissues. The multiple advantages of controlled release strategies merit overcoming the significant challenges to translation, including high costs and long, difficult regulatory pathways. This review highlights the potential of controlled release of proteins for tissue engineering and regenerative medicine. We specifically discuss treatment modalities that have reached preclinical and clinical trials, with emphasis on controlled release systems for bone tissue engineering, the most advanced application with several products already in clinic. Possible strategies to address translational and regulatory concerns are also discussed. PMID:25787736
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnamurthy, Malathy; Hennelly, Scott Patrick; Dale, Taraka T.
The most straightforward approach to altering the flux through a particular metabolic step is to increase or decrease the concentration of the enzyme catalyst. Until recently engineering strategies for altering gene expression have focused on transcription control using strong inducible promoters or by using one of several strategies to knock down or knock out a wasteful gene. Recently, synthetic riboregulators have been developed for translational regulation of gene expression. We report a new modular synthetic riboregulator class that has the potential to finely tune protein expression and independently control the concentration of each enzyme in an engineered metabolic pathway. Ourmore » design includes a cis-repressor at the 5’ end of the mRNA that forms a stem-loop helix occluding the ribosome binding site and blocking translation. An activating-RNA, expressed in trans, frees the RBS turning on translation. The overall architecture of the riboregulators is designed using Watson-Crick base-pairing stability followed by directed evolution on a portion of each trans-activator to fine tune translation. We report a cis-repressor that can completely shut off translation of antibiotic resistance reporters and a trans-activator that restores translation. We have shown it is possible to use riboregulators to achieve translational control of gene expression over a wide dynamic range. Using a bioluminescent reporter system, we demonstrated an ON/OFF ratio >300. We have demonstrated that a targeting sequence can be changed to develop riboregulators that can independently regulate translation of many genes with minimal cross-talk. In a SELEX experiment, we demonstrated that by subtly altering the sequence of the trans-activator, it is possible to alter the equilibrium between repressed and activated states and achieve intermediate translational control.« less
Cis-regulatory RNA elements that regulate specialized ribosome activity.
Xue, Shifeng; Barna, Maria
2015-01-01
Recent evidence has shown that the ribosome itself can play a highly regulatory role in the specialized translation of specific subpools of mRNAs, in particular at the level of ribosomal proteins (RP). However, the mechanism(s) by which this selection takes place has remained poorly understood. In our recent study, we discovered a combination of unique RNA elements in the 5'UTRs of mRNAs that allows for such control by the ribosome. These mRNAs contain a Translation Inhibitory Element (TIE) that inhibits general cap-dependent translation, and an Internal Ribosome Entry Site (IRES) that relies on a specific RP for activation. The unique combination of an inhibitor of general translation and an activator of specialized translation is key to ribosome-mediated control of gene expression. Here we discuss how these RNA regulatory elements provide a new level of control to protein expression and their implications for gene expression, organismal development and evolution.
Hydrogen as the solar energy translator. [in photochemical and photovoltaic processes
NASA Technical Reports Server (NTRS)
Kelley, J. H.
1979-01-01
Many concepts are being investigated to convert sunlight to workable energy forms with emphasis on electricity and thermal energy. The electrical alternatives include direct conversion of photons to electricity via photovoltaic solar cells and solar/thermal production of electricity via heat-energy cycles. Solar cells, when commercialized, are expected to have efficiencies of about 12 to 14 percent. The cells would be active about eight hours per day. However, solar-operated water-splitting process research, initiated through JPL, shows promise for direct production of hydrogen from sunlight with efficiencies of up to 35 to 40 percent. The hydrogen, a valuable commodity in itself, can also serve as a storable energy form, easily and efficiently converted to electricity by fuel cells and other advanced-technology devices on a 24-hour basis or on demand with an overall efficiency of 25 to 30 percent. Thus, hydrogen serves as the fundamental translator of energy from its solar form to electrical form more effectively, and possibly more efficiently, than direct conversion. Hydrogen also can produce other chemical energy forms using solar energy.
In, Sungjun; Park, Namkyoo
2016-02-23
We propose a metallic-particle-based two-dimensional quasi-grating structure for application to an organic solar cell. With the use of oblate spheroidal nanoparticles in contact with an anode of inverted, ultrathin organic solar cells (OSCs), the quasi-grating structure offers strong hybridization between localized surface plasmons and plasmonic gap modes leading to broadband (300~800 nm) and uniform (average ~90%) optical absorption spectra. Both strong optical enhancement in extreme confinement within the active layer (90 nm) and improved hole collection are thus realized. A coupled optical-electrical multi-physics optimization shows a large (~33%) enhancement in the optical absorption (corresponding to an absorption efficiency of ~47%, AM1.5G weighted, visible) when compared to a control OSC without the quasi-grating structure. That translates into a significant electrical performance gain of ~22% in short circuit current and ~15% in the power conversion efficiency (PCE), leading to an energy conversion efficiency (~6%) which is comparable to that of optically-thick inverted OSCs (3-7%). Detailed analysis on the influences of mode hybridization to optical field distributions, exciton generation rate, charge carrier collection efficiency and electrical conversion efficiency is provided, to offer an integrated understanding on the coupled optical-electrical optimization of ultrathin OSCs.
Palese, Alvisa; Coletti, Sonia; Dante, Angelo
2013-04-01
Knowledge translation is attracting different professional, educational and institutional strategies mainly focused on how new knowledge should be tailored and transferred at bedside. Less attention is dedicated to the antecedent of knowledge translation, which is the availability of the knowledge itself. Knowledge diffusion is a process by which an innovation is communicated through certain channels among members of a social system over time. Publishing in peer review journals is recognised as the main method for knowledge diffusion: nevertheless publication efficiency has received little attention to date. Describing publication efficiency via nursing journals as the time occurring between data collection and manuscript publication was the main aim of the study. The secondary aim was to discover the differences, if any, in publication efficiency within manuscripts reporting results from different study designs. A retrospective study design was adopted in 2010. The 2009 Impact Factor List of Nursing Journals published by the ISI web of Knowledge in 2010 was obtained. The first top ten IF Nursing Journals available as a full text and for which the overall ISI 5-Year Impact Factor was also available, was eligible. The articles published on paper by the selected journals, from 1st January to 31st December 2009, were then included. Commentaries, editorials and book reviews were excluded. For each article included, the following were evaluated: (a) the time occurring between each step of publication, from data collection to article submission, acceptance and publication online and on paper; and (b) the differences in the publication efficiency within articles reporting different study designs. 1152 articles were included. From the end of data collection to manuscript publication online/on paper it takes an average of 981 days [CI95% 929-1032] (2.5-3 years). Meta-analysis and systematic reviews have demonstrated the fastest process, requiring an average 1.3 years and 1.9 years respectively. Case-control, cohort and quasi-experimental studies have required more time to enjoy publication in nursing journals, 4 years, 3.5 years and 3.2 years respectively. The production time of an article from its data collection involves significant processes and skills. However, the time may also be lengthened by factors not related to the processes of research, such as the time available to researchers. The scientific world needs to reflect on publication efficiency because lateness can potentially have a negative impact on patients and on further research. In the future, the same emphasis given to the evaluation of knowledge translation effectiveness should be given also to the complex process of knowledge diffusion, discovering facilitators and barriers. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Ercoskun, Muhammet Hanifi
2016-01-01
The aim of this study is to adapt self-control and self-management scale (SCMS) developed by Mezo into Turkish and to test it considering gender and academic achievement variables. The scale was translated from English to Turkish for linguistic validity and then this scale was translated into English using back translation. The original and…
Cell-Free Translation of Integral Membrane Proteins into Unilamelar Liposomes
Goren, Michael A.; Nozawa, Akira; Makino, Shin-ichi; Wrobel, Russell L.; Fox, Brian G.
2018-01-01
Wheat germ cell-free translation is shown to be an effective method to produce integral membrane proteins in the presence of unilamelar liposomes. In this chapter, we describe the expression vectors, preparation of mRNA, two types of cell-free translation reactions performed in the presence of liposomes, a simple and highly efficient purification of intact proteoliposomes using density gradient ultracentrifugation, and some of the types of characterization studies that are facilitated by this facile preparative approach. The in vitro transfer of newly translated, membrane proteins into liposomes compatible with direct measurements of their catalytic function is contrasted with existing approaches to extract membrane proteins from biological membranes using detergents and subsequently transfer them back to liposomes for functional studies. PMID:19892197
The Culture of Translational Science Research: Participants' Stories.
Kotarba, Joseph A; Wooten, Kevin; Freeman, Jean; Brasier, Allan R
2013-01-01
We apply a symbolic interactionist framework and a qualitative methodology to the examination of the everyday reality of translational science research (TSR). This is a growing scientific movement that aims to facilitate the efficient application of basic research to clinical service design and delivery. We describe the emerging culture of translational research at a mid-size medical center that received a Clinical and Translational Science Award from the National Institutes of Health. The stories related by scientists, clinicians, and students in interviews indicate that they make sense of the emerging inter- and cross-disciplinary, team-oriented culture of TSR through the refinement and redefinition of the significant symbols that inform their work while they attempt to master translational research by addressing the dilemmas it produces for them and their work. We see the strength, currency, adaptability, and energy of the core self-definition of "scientist" to be significant in shaping the emerging culture of translational research. We conclude by celebrating the value of interpretive ethnography for evaluation research.
Sen, Neelam Dabas; Zhou, Fujun; Harris, Michael S.; Ingolia, Nicholas T.
2016-01-01
DEAD-box RNA helicases eukaryotic translation initiation factor 4A (eIF4A) and Ded1 promote translation by resolving mRNA secondary structures that impede preinitiation complex (PIC) attachment to mRNA or scanning. Eukaryotic translation initiation factor 4B (eIF4B) is a cofactor for eIF4A but also might function independently of eIF4A. Ribosome profiling of mutants lacking eIF4B or with impaired eIF4A or Ded1 activity revealed that eliminating eIF4B reduces the relative translational efficiencies of many more genes than does inactivation of eIF4A, despite comparable reductions in bulk translation, and few genes display unusually strong requirements for both factors. However, either eliminating eIF4B or inactivating eIF4A preferentially impacts mRNAs with longer, more structured 5′ untranslated regions (UTRs). These findings reveal an eIF4A-independent role for eIF4B in addition to its function as eIF4A cofactor in promoting PIC attachment or scanning on structured mRNAs. eIF4B, eIF4A, and Ded1 mutations also preferentially impair translation of longer mRNAs in a fashion mitigated by the ability to form closed-loop messenger ribonucleoprotein particles (mRNPs) via eIF4F–poly(A)-binding protein 1 (Pab1) association, suggesting cooperation between closed-loop assembly and eIF4B/helicase functions. Remarkably, depleting eukaryotic translation initiation factor 4G (eIF4G), the scaffold subunit of eukaryotic translation initiation factor 4F (eIF4F), preferentially impacts short mRNAs with strong closed-loop potential and unstructured 5′ UTRs, exactly the opposite features associated with hyperdependence on the eIF4B/helicases. We propose that short, highly efficient mRNAs preferentially depend on the stimulatory effects of eIF4G-dependent closed-loop assembly. PMID:27601676
Towards Symbolic Model Checking for Multi-Agent Systems via OBDDs
NASA Technical Reports Server (NTRS)
Raimondi, Franco; Lomunscio, Alessio
2004-01-01
We present an algorithm for model checking temporal-epistemic properties of multi-agent systems, expressed in the formalism of interpreted systems. We first introduce a technique for the translation of interpreted systems into boolean formulae, and then present a model-checking algorithm based on this translation. The algorithm is based on OBDD's, as they offer a compact and efficient representation for boolean formulae.
Cheng, Adam; Nadkarni, Vinay M; Mancini, Mary Beth; Hunt, Elizabeth A; Sinz, Elizabeth H; Merchant, Raina M; Donoghue, Aaron; Duff, Jonathan P; Eppich, Walter; Auerbach, Marc; Bigham, Blair L; Blewer, Audrey L; Chan, Paul S; Bhanji, Farhan
2018-06-21
The formula for survival in resuscitation describes educational efficiency and local implementation as key determinants in survival after cardiac arrest. Current educational offerings in the form of standardized online and face-to-face courses are falling short, with providers demonstrating a decay of skills over time. This translates to suboptimal clinical care and poor survival outcomes from cardiac arrest. In many institutions, guidelines taught in courses are not thoughtfully implemented in the clinical environment. A current synthesis of the evidence supporting best educational and knowledge translation strategies in resuscitation is lacking. In this American Heart Association scientific statement, we provide a review of the literature describing key elements of educational efficiency and local implementation, including mastery learning and deliberate practice, spaced practice, contextual learning, feedback and debriefing, assessment, innovative educational strategies, faculty development, and knowledge translation and implementation. For each topic, we provide suggestions for improving provider performance that may ultimately optimize patient outcomes from cardiac arrest. © 2018 American Heart Association, Inc.
Bencun, Maja; Klinke, Olaf; Hotz-Wagenblatt, Agnes; Klaus, Severina; Tsai, Ming-Han; Poirey, Remy; Delecluse, Henri-Jacques
2018-04-06
The Epstein-Barr virus (EBV) genome encodes several hundred transcripts. We have used ribosome profiling to characterize viral translation in infected cells and map new translation initiation sites. We show here that EBV transcripts are translated with highly variable efficiency, owing to variable transcription and translation rates, variable ribosome recruitment to the leader region and coverage by monosomes versus polysomes. Some transcripts were hardly translated, others mainly carried monosomes, showed ribosome accumulation in leader regions and most likely represent non-coding RNAs. A similar process was visible for a subset of lytic genes including the key transactivators BZLF1 and BRLF1 in cells infected with weakly replicating EBV strains. This suggests that ribosome trapping, particularly in the leader region, represents a new checkpoint for the repression of lytic replication. We could identify 25 upstream open reading frames (uORFs) located upstream of coding transcripts that displayed 5' leader ribosome trapping, six of which were located in the leader region shared by many latent transcripts. These uORFs repressed viral translation and are likely to play an important role in the regulation of EBV translation.
Eukaryotic Initiation Factor 4H Is under Transcriptional Control of p65/NF-κB
Fiume, Giuseppe; Rossi, Annalisa; de Laurentiis, Annamaria; Falcone, Cristina; Pisano, Antonio; Vecchio, Eleonora; Pontoriero, Marilena; Scala, Iris; Scialdone, Annarita; Masci, Francesca Fasanella; Mimmi, Selena; Palmieri, Camillo; Scala, Giuseppe; Quinto, Ileana
2013-01-01
Protein synthesis is mainly regulated at the initiation step, allowing the fast, reversible and spatial control of gene expression. Initiation of protein synthesis requires at least 13 translation initiation factors to assemble the 80S ribosomal initiation complex. Loss of translation control may result in cell malignant transformation. Here, we asked whether translational initiation factors could be regulated by NF-κB transcription factor, a major regulator of genes involved in cell proliferation, survival, and inflammatory response. We show that the p65 subunit of NF-κB activates the transcription of eIF4H gene, which is the regulatory subunit of eIF4A, the most relevant RNA helicase in translation initiation. The p65-dependent transcriptional activation of eIF4H increased the eIF4H protein content augmenting the rate of global protein synthesis. In this context, our results provide novel insights into protein synthesis regulation in response to NF-κB activation signalling, suggesting a transcription-translation coupled mechanism of control. PMID:23776612
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-18
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): Translating Research Into Action... of the Director, Extramural Research Program Office, 4770 Buford Highway, NE., Mailstop K-92, Atlanta...
Huang, Wei; Placzek, Andon N; Viana Di Prisco, Gonzalo; Khatiwada, Sanjeev; Sidrauski, Carmela; Krnjević, Krešimir; Walter, Peter; Dani, John A; Costa-Mattioli, Mauro
2016-01-01
Adolescents are especially prone to drug addiction, but the underlying biological basis of their increased vulnerability remains unknown. We reveal that translational control by phosphorylation of the translation initiation factor eIF2α (p-eIF2α) accounts for adolescent hypersensitivity to cocaine. In adolescent (but not adult) mice, a low dose of cocaine reduced p-eIF2α in the ventral tegmental area (VTA), potentiated synaptic inputs to VTA dopaminergic neurons, and induced drug-reinforced behavior. Like adolescents, adult mice with reduced p-eIF2α-mediated translational control were more susceptible to cocaine-induced synaptic potentiation and behavior. Conversely, like adults, adolescent mice with increased p-eIF2α became more resistant to cocaine's effects. Accordingly, metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD)—whose disruption is postulated to increase vulnerability to drug addiction—was impaired in both adolescent mice and adult mice with reduced p-eIF2α mediated translation. Thus, during addiction, cocaine hijacks translational control by p-eIF2α, initiating synaptic potentiation and addiction-related behaviors. These insights may hold promise for new treatments for addiction. DOI: http://dx.doi.org/10.7554/eLife.12052.001 PMID:26928234
Oculomotor control of primary eye position discriminates between translation and tilt
NASA Technical Reports Server (NTRS)
Hess, B. J.; Angelaki, D. E.
1999-01-01
We have previously shown that fast phase axis orientation and primary eye position in rhesus monkeys are dynamically controlled by otolith signals during head rotations that involve a reorientation of the head relative to gravity. Because of the inherent ambiguity associated with primary otolith afferent coding of linear accelerations during head translation and tilts, a similar organization might also underlie the vestibulo-ocular reflex (VOR) during translation. The ability of the oculomotor system to correctly distinguish translational accelerations from gravity in the dynamic control of primary eye position has been investigated here by comparing the eye movements elicited by sinusoidal lateral and fore-aft oscillations (0.5 Hz +/- 40 cm, equivalent to +/- 0.4 g) with those during yaw rotations (180 degrees/s) about a vertically tilted axis (23.6 degrees). We found a significant modulation of primary eye position as a function of linear acceleration (gravity) during rotation but not during lateral and fore-aft translation. This modulation was enhanced during the initial phase of rotation when there was concomitant semicircular canal input. These findings suggest that control of primary eye position and fast phase axis orientation in the VOR are based on central vestibular mechanisms that discriminate between gravity and translational head acceleration.
Liu, Naiyou; Fair, Jeffrey Haskell; Shiue, Lily; Katzman, Sol; Donohue, John Paul
2017-01-01
Quaking protein isoforms arise from a single Quaking gene and bind the same RNA motif to regulate splicing, translation, decay, and localization of a large set of RNAs. However, the mechanisms by which Quaking expression is controlled to ensure that appropriate amounts of each isoform are available for such disparate gene expression processes are unknown. Here we explore how levels of two isoforms, nuclear Quaking-5 (Qk5) and cytoplasmic Qk6, are regulated in mouse myoblasts. We found that Qk5 and Qk6 proteins have distinct functions in splicing and translation, respectively, enforced through differential subcellular localization. We show that Qk5 and Qk6 regulate distinct target mRNAs in the cell and act in distinct ways on their own and each other's transcripts to create a network of autoregulatory and cross-regulatory feedback controls. Morpholino-mediated inhibition of Qk translation confirms that Qk5 controls Qk RNA levels by promoting accumulation and alternative splicing of Qk RNA, whereas Qk6 promotes its own translation while repressing Qk5. This Qk isoform cross-regulatory network responds to additional cell type and developmental controls to generate a spectrum of Qk5/Qk6 ratios, where they likely contribute to the wide range of functions of Quaking in development and cancer. PMID:29021242
Garcés, M; Ulloa, M; Miranda, A; Bravo, L A
2018-03-01
The filmy fern Hymenophyllum caudiculatum can lose 60% of its relative water content, remain dry for some time and recover 88% of photochemical efficiency after 30 min of rehydration. Little is known about the protective strategies and regulation of the cellular rehydration process in this filmy fern species. The aim of this study was to characterise the filmy fern ultrastructure during a desiccation-rehydration cycle, and measure the physiological effects of transcription/translation inhibitors and ABA during desiccation recovery. Confocal and transmission electron microscopy were used to compare changes in structure during fast or slow desiccation. Transcription (actinomycin D) and translation (cycloheximide) inhibitors and ABA were used to compare photochemical efficiency during desiccation recovery. Cell structure was conserved during slow desiccation and rehydration, constitutive properties of the cell wall, allowing invagination and folding of the membranes and an important change in chloroplast size. The use of a translational inhibitor impeded recovery of photochemical efficiency during the first 80 min of rehydration, but the transcriptional inhibitor had no effect. Exogenous ABA delayed photochemical inactivation, and endogenous ABA levels decreased during desiccation and rehydration. Frond curling and chloroplast movements are possible strategies to avoid photodamage. Constitutive membrane plasticity and rapid cellular repair can be adaptations evolved to tolerate a rapid recovery during rehydration. Further research is required to explore the importance of existing mRNAs during the first minutes of recovery, and ABA function during desiccation of H. caudiculatum. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Hofmann, Sarah; Elman, Tamar; Shenoy, Anjana; Geiger, Tamar; Elkon, Ran; Ehrlich, Marcelo
2017-01-01
Abstract Precise regulation of mRNA translation is critical for proper cell division, but little is known about the factors that mediate it. To identify mRNA-binding proteins that regulate translation during mitosis, we analyzed the composition of polysomes from interphase and mitotic cells using unbiased quantitative mass-spectrometry (LC–MS/MS). We found that mitotic polysomes are enriched with a subset of proteins involved in RNA processing, including alternative splicing and RNA export. To demonstrate that these may indeed be regulators of translation, we focused on heterogeneous nuclear ribonucleoprotein C (hnRNP C) as a test case and confirmed that it is recruited to elongating ribosomes during mitosis. Then, using a combination of pulsed SILAC, metabolic labeling and ribosome profiling, we showed that knockdown of hnRNP C affects both global and transcript-specific translation rates and found that hnRNP C is specifically important for translation of mRNAs that encode ribosomal proteins and translation factors. Taken together, our results demonstrate how proteomic analysis of polysomes can provide insight into translation regulation under various cellular conditions of interest and suggest that hnRNP C facilitates production of translation machinery components during mitosis to provide daughter cells with the ability to efficiently synthesize proteins as they enter G1 phase. PMID:28460002
Assessing Aptitude and Attitude Development in a Translation Skills Course
ERIC Educational Resources Information Center
Mekheimer, Mohamed Amin A.
2012-01-01
This study investigates the effects on EFL students of using Blackboard technology and online dictionaries in developing translating skills and building positive attitudes towards translation in male Saudi college students. The study compares two groups of students in a translation course; one in a traditional, face-to-face setting (control) and…
Wallis, Peter; Richards, Todd; Boord, Peter; Abbott, Robert; Berninger, Virginia
2018-01-01
Students with transcription disabilities (dysgraphia/impaired handwriting, n = 13 or dyslexia/impaired word spelling, n = 16) or without transcription disabilities (controls) completed transcription and translation (idea generating, planning, and creating) writing tasks during fMRI connectivity scanning and compositions after scanning, which were coded for transcription and translation variables. Compositions in both groups showed diversity in genre beyond usual narrative-expository distinction; groups differed in coded transcription but not translation variables. For the control group specific transcription or translation tasks during scanning correlated with corresponding coded transcription or translation skills in composition, but connectivity during scanning was not correlated with coded handwriting during composing in dysgraphia group and connectivity during translating was not correlated with any coded variable during composing in dyslexia group. Results are discussed in reference to the trend in neuroscience to use connectivity from relevant seed points while performing tasks and trends in education to recognize the generativity (creativity) of composing at both the genre and syntax levels. PMID:29600113
Zhang, Xu; Chen, Xiaoli; Liu, Qiuying; Zhang, Shaojie; Hu, Wenqian
2017-01-01
Gene expression is precisely regulated during the inflammatory response to control infection and limit the detrimental effects of inflammation. Here, we profiled global mRNA translation dynamics in the mouse primary macrophage-mediated inflammatory response and identified hundreds of differentially translated mRNAs. These mRNAs’ 3’UTRs have enriched binding motifs for several RNA-binding proteins, which implies extensive translational regulatory networks. We characterized one such protein, Zfp36, as a translation repressor. Using primary macrophages from a Zfp36-V5 epitope tagged knock-in mouse generated by CRISPR/Cas9-mediated genome editing, we found that the endogenous Zfp36 directly interacts with the cytoplasmic poly(A)-binding protein. Importantly, this interaction is required for the translational repression of Zfp36’s target mRNAs in resolving inflammation. Altogether, these results uncovered critical roles of translational regulations in controlling appropriate gene expression during the inflammatory response and revealed a new biologically relevant molecular mechanism of translational repression via modulating the cytoplasmic poly(A)-binding protein. DOI: http://dx.doi.org/10.7554/eLife.27786.001 PMID:28635594
Network influences on dissemination of evidence-based guidelines in state tobacco control programs.
Luke, Douglas A; Wald, Lana M; Carothers, Bobbi J; Bach, Laura E; Harris, Jenine K
2013-10-01
Little is known regarding the social network relationships that influence dissemination of evidence-based public health practices and policies. In public health, it is critical that evidence-based guidelines, such as the Centers for Disease Control and Prevention's Best Practices for Comprehensive Tobacco Control Programs, are effectively and efficiently disseminated to intended stakeholders. To determine the organizational and network predictors of dissemination among state tobacco control programs, interviews with members of tobacco control networks across eight states were conducted between August 2009 and September 2010. Measures included partner attributes (e.g., agency type) and relationships among network members (frequency of contact, extent of collaboration, and dissemination of Best Practices). Exponential random graph modeling was used to examine attribute and structural predictors of collaboration and dissemination among partners in each network. Although density and centralization of dissemination ties varied across states, network analyses revealed a consistent prediction pattern across all eight states. State tobacco control dissemination networks were less dense but more centralized compared with organizational contact and collaboration networks. Tobacco control partners in each state were more likely to disseminate the Best Practices guidelines if they also had existing contact and collaboration relationships with one another. Evidence-based guidelines in public health need to be efficiently and broadly disseminated if we hope to translate science into practice. This study suggests that funders, advocacy groups, and public health agencies can take advantage of existing public health organizational relationships to support the communication and dissemination of evidence-based practices and policies.
NASA Astrophysics Data System (ADS)
Haldar, Arabinda; Kumar, Dheeraj; Adeyeye, Adekunle Olusola
2016-05-01
Spin-wave-based devices promise to usher in an era of low-power computing where information is carried by the precession of the electrons' spin instead of dissipative translation of their charge. This potential is, however, undermined by the need for a bias magnetic field, which must remain powered on to maintain an anisotropic device characteristic. Here, we propose a reconfigurable waveguide design that can transmit and locally manipulate spin waves without the need for any external bias field once initialized. We experimentally demonstrate the transmission of spin waves in straight as well as curved waveguides without a bias field, which has been elusive so far. Furthermore, we experimentally show a binary gating of the spin-wave signal by controlled switching of the magnetization, locally, in the waveguide. The results have potential implications in high-density integration and energy-efficient operation of nanomagnetic devices at room temperature.
The Perception of Auditory Motion
Leung, Johahn
2016-01-01
The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029
NASA Astrophysics Data System (ADS)
Hong, Seok Hoon; Kwon, Yong-Chan; Jewett, Michael
2014-06-01
Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical properties, new structures, and new functions. In recent years, improvements in cell-free protein synthesis (CFPS) systems have opened the way to accurate and efficient incorporation of NSAAs into proteins. The driving force behind this development has been three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting (>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the efficiency of orthogonal translation systems has improved. Third, the open nature of the CFPS platform has brought about an unprecedented level of control and freedom of design. Here, we review recent developments in CFPS platforms designed to precisely incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact efforts to elucidate structure/function relationships of proteins and to make biomaterials and sequence-defined biopolymers for medical and industrial applications.
Suppression of nonsense mutations as a therapeutic approach to treat genetic diseases.
Keeling, Kim M; Bedwell, David M
2011-01-01
Suppression therapy is a treatment strategy for genetic diseases caused by nonsense mutations. This therapeutic approach utilizes pharmacological agents that suppress translation termination at in-frame premature termination codons (PTCs) to restore translation of a full-length, functional polypeptide. The efficiency of various classes of compounds to suppress PTCs in mammalian cells is discussed along with the current limitations of this therapy. We also elaborate on approaches to improve the efficiency of suppression that include methods to enhance the effectiveness of current suppression drugs and the design or discovery of new, more effective suppression agents. Finally, we discuss the role of nonsense-mediated mRNA decay (NMD) in limiting the effectiveness of suppression therapy, and describe tactics that may allow the efficiency of NMD to be modulated in order to enhance suppression therapy. Copyright © 2011 John Wiley & Sons, Ltd.
Lee, Du-Hwa; Park, Seung Jun; Ahn, Chang Sook
2017-01-01
Dynamic control of protein translation in response to the environment is essential for the survival of plant cells. Target of rapamycin (TOR) coordinates protein synthesis with cellular energy/nutrient availability through transcriptional modulation and phosphorylation of the translation machinery. However, mechanisms of TOR-mediated translation control are poorly understood in plants. Here, we report that Arabidopsis thaliana MRF (MA3 DOMAIN-CONTAINING TRANSLATION REGULATORY FACTOR) family genes encode translation regulatory factors under TOR control, and their functions are particularly important in energy-deficient conditions. Four MRF family genes (MRF1-MRF4) are transcriptionally induced by dark and starvation (DS). Silencing of multiple MRFs increases susceptibility to DS and treatment with a TOR inhibitor, while MRF1 overexpression decreases susceptibility. MRF proteins interact with eIF4A and cofractionate with ribosomes. MRF silencing decreases translation activity, while MRF1 overexpression increases it, accompanied by altered ribosome patterns, particularly in DS. Furthermore, MRF deficiency in DS causes altered distribution of mRNAs in sucrose gradient fractions and accelerates rRNA degradation. MRF1 is phosphorylated in vivo and phosphorylated by S6 kinases in vitro. MRF expression and MRF1 ribosome association and phosphorylation are modulated by cellular energy status and TOR activity. We discuss possible mechanisms of the function of MRF family proteins under normal and energy-deficient conditions and their functional link with the TOR pathway. PMID:29084871
Gupta, Aayush; Sharma, Yugal K; Dash, K; Verma, Sampurna
2015-01-01
Acne vulgaris is known to impair many aspects of the quality of life (QoL) of its patients. To translate the Cardiff Acne Disability Index (CADI) from English into Hindi and to assess its validity and reliability in Hindi speaking patients with acne from India. Hindi version of CADI, translated and linguistically validated as per published international guidelines, along with a previously translated Hindi version of dermatology life quality index (DLQI) and a demographic questionnaire were administered to acne patients. The internal consistency reliability of the Hindi version of CADI and its concurrent validity were assessed by Cronbach's alpha co-efficient and Spearman's correlation co-efficient respectively. Construct validity was examined by factor analysis. Statistical analysis was carried out using the Statistical Package for the Social Sciences (SPSS) version 20 (SPSS Inc., Chicago, IL, USA) for Windows. One hundred Hindi speaking patients with various grades of acne participated in the study. Hindi version of CADI showed high internal consistency reliability (Cronbach's alpha co-efficient = 0.722). Mean item-to-total correlation co-efficient ranged from 0.502 to 0.760. Concurrent validity of the scale was supported by a significant correlation with the Hindi DLQI. Factor analysis revealed the presence of two dimensions underlying the factor structure of the scale. Hindi CADI is equivalent to the original English version and constitutes a reliable and valid tool for clinical assessment of the impact of acne on QoL.
Al-Hadid, Qais; White, Jonelle; Clarke, Steven
2016-02-12
A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation. Copyright © 2016 Elsevier Inc. All rights reserved.
Soto Rifo, Ricardo; Ricci, Emiliano P; Décimo, Didier; Moncorgé, Olivier; Ohlmann, Théophile
2007-01-01
Translation of most eukaryotic mRNAs involves the synergistic action between the 5' cap structure and the 3' poly(A) tail at the initiation step. The poly(A) tail has also been shown to stimulate translation of picornavirus internal ribosome entry sites (IRES)-directed translation. These effects have been attributed principally to interactions between eIF4G and poly(A)-binding protein (PABP) but also to the participation of PABP in other steps during translation initiation. As the rabbit reticulocyte lysate (RRL) does not recapitulate this cap/poly(A) synergy, several systems based on cellular cell-free extracts have been developed to study the effects of poly(A) tail in vitro but they generally exhibit low translational efficiency. Here, we describe that the non-nuclease-treated RRL (untreated RRL) is able to recapitulate the effects of poly(A) tail on translation in vitro. In this system, translation of a capped/polyadenylated RNA was specifically inhibited by either Paip2 or poly(rA), whereas translation directed by HCV IRES remained unaffected. Moreover, cleavage of eIF4G by FMDV L protease strongly stimulated translation directed by the EMCV IRES, thus recapitulating the competitive advantage that the proteolytic processing of eIF4G confers to IRES-driven RNAs.
Modification of tRNALys UUU by Elongator Is Essential for Efficient Translation of Stress mRNAs
Sansó, Miriam; Buhne, Karin; Carmona, Mercè; Paulo, Esther; Hermand, Damien; Rodríguez-Gabriel, Miguel; Ayté, José; Leidel, Sebastian; Hidalgo, Elena
2013-01-01
The Elongator complex, including the histone acetyl transferase Sin3/Elp3, was isolated as an RNA polymerase II-interacting complex, and cells deficient in Elongator subunits display transcriptional defects. However, it has also been shown that Elongator mediates the modification of some tRNAs, modulating translation efficiency. We show here that the fission yeast Sin3/Elp3 is important for oxidative stress survival. The stress transcriptional program, governed by the Sty1-Atf1-Pcr1 pathway, is affected in mutant cells, but not severely. On the contrary, cells lacking Sin3/Elp3 cannot modify the uridine wobble nucleoside of certain tRNAs, and other tRNA modifying activities such as Ctu1-Ctu2 are also essential for normal tolerance to H2O2. In particular, a plasmid over-expressing the tRNALys UUU complements the stress-related phenotypes of Sin3/Elp3 mutant cells. We have determined that the main H2O2-dependent genes, including those coding for the transcription factors Atf1 and Pcr1, are highly expressed mRNAs containing a biased number of lysine-coding codons AAA versus AAG. Thus, their mRNAs are poorly translated after stress in cells lacking Sin3/Elp3 or Ctu2, whereas a mutated atf1 transcript with AAA-to-AAG lysine codons is efficiently translated in all strain backgrounds. Our study demonstrates that the lack of a functional Elongator complex results in stress phenotypes due to its contribution to tRNA modification and subsequent translation inefficiency of certain stress-induced, highly expressed mRNAs. These results suggest that the transcriptional defects of these strain backgrounds may be a secondary consequence of the deficient expression of a transcription factor, Atf1-Pcr1, and other components of the transcriptional machinery. PMID:23874237
Modification of tRNA(Lys) UUU by elongator is essential for efficient translation of stress mRNAs.
Fernández-Vázquez, Jorge; Vargas-Pérez, Itzel; Sansó, Miriam; Buhne, Karin; Carmona, Mercè; Paulo, Esther; Hermand, Damien; Rodríguez-Gabriel, Miguel; Ayté, José; Leidel, Sebastian; Hidalgo, Elena
2013-01-01
The Elongator complex, including the histone acetyl transferase Sin3/Elp3, was isolated as an RNA polymerase II-interacting complex, and cells deficient in Elongator subunits display transcriptional defects. However, it has also been shown that Elongator mediates the modification of some tRNAs, modulating translation efficiency. We show here that the fission yeast Sin3/Elp3 is important for oxidative stress survival. The stress transcriptional program, governed by the Sty1-Atf1-Pcr1 pathway, is affected in mutant cells, but not severely. On the contrary, cells lacking Sin3/Elp3 cannot modify the uridine wobble nucleoside of certain tRNAs, and other tRNA modifying activities such as Ctu1-Ctu2 are also essential for normal tolerance to H2O2. In particular, a plasmid over-expressing the tRNA(Lys) UUU complements the stress-related phenotypes of Sin3/Elp3 mutant cells. We have determined that the main H2O2-dependent genes, including those coding for the transcription factors Atf1 and Pcr1, are highly expressed mRNAs containing a biased number of lysine-coding codons AAA versus AAG. Thus, their mRNAs are poorly translated after stress in cells lacking Sin3/Elp3 or Ctu2, whereas a mutated atf1 transcript with AAA-to-AAG lysine codons is efficiently translated in all strain backgrounds. Our study demonstrates that the lack of a functional Elongator complex results in stress phenotypes due to its contribution to tRNA modification and subsequent translation inefficiency of certain stress-induced, highly expressed mRNAs. These results suggest that the transcriptional defects of these strain backgrounds may be a secondary consequence of the deficient expression of a transcription factor, Atf1-Pcr1, and other components of the transcriptional machinery.
Programming distributed memory architectures using Kali
NASA Technical Reports Server (NTRS)
Mehrotra, Piyush; Vanrosendale, John
1990-01-01
Programming nonshared memory systems is more difficult than programming shared memory systems, in part because of the relatively low level of current programming environments for such machines. A new programming environment is presented, Kali, which provides a global name space and allows direct access to remote data values. In order to retain efficiency, Kali provides a system on annotations, allowing the user to control those aspects of the program critical to performance, such as data distribution and load balancing. The primitives and constructs provided by the language is described, and some of the issues raised in translating a Kali program for execution on distributed memory systems are also discussed.
Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 translation.
Chennupati, Vijaykumar; Veiga, Diogo Ft; Maslowski, Kendle M; Andina, Nicola; Tardivel, Aubry; Yu, Eric Chi-Wang; Stilinovic, Martina; Simillion, Cedric; Duchosal, Michel A; Quadroni, Manfredo; Roberts, Irene; Sankaran, Vijay G; MacDonald, H Robson; Fasel, Nicolas; Angelillo-Scherrer, Anne; Schneider, Pascal; Hoang, Trang; Allam, Ramanjaneyulu
2018-04-02
Ribosomal proteins (RP) regulate specific gene expression by selectively translating subsets of mRNAs. Indeed, in Diamond-Blackfan anemia and 5q- syndrome, mutations in RP genes lead to a specific defect in erythroid gene translation and cause anemia. Little is known about the molecular mechanisms of selective mRNA translation and involvement of ribosomal-associated factors in this process. Ribonuclease inhibitor 1 (RNH1) is a ubiquitously expressed protein that binds to and inhibits pancreatic-type ribonucleases. Here, we report that RNH1 binds to ribosomes and regulates erythropoiesis by controlling translation of the erythroid transcription factor GATA1. Rnh1-deficient mice die between embryonic days E8.5 and E10 due to impaired production of mature erythroid cells from progenitor cells. In Rnh1-deficient embryos, mRNA levels of Gata1 are normal, but GATA1 protein levels are decreased. At the molecular level, we found that RNH1 binds to the 40S subunit of ribosomes and facilitates polysome formation on Gata1 mRNA to confer transcript-specific translation. Further, RNH1 knockdown in human CD34+ progenitor cells decreased erythroid differentiation without affecting myelopoiesis. Our results reveal an unsuspected role for RNH1 in the control of GATA1 mRNA translation and erythropoiesis.
The significance of translation regulation in the stress response
2013-01-01
Background The stress response in bacteria involves the multistage control of gene expression but is not entirely understood. To identify the translational response of bacteria in stress conditions and assess its contribution to the regulation of gene expression, the translational states of all mRNAs were compared under optimal growth condition and during nutrient (isoleucine) starvation. Results A genome-scale study of the translational response to nutritional limitation was performed in the model bacterium Lactococcus lactis. Two measures were used to assess the translational status of each individual mRNA: the fraction engaged in translation (ribosome occupancy) and ribosome density (number of ribosomes per 100 nucleotides). Under isoleucine starvation, half of the mRNAs considered were translationally down-regulated mainly due to decreased ribosome density. This pattern concerned genes involved in growth-related functions such as translation, transcription, and the metabolism of fatty acids, phospholipids and bases, contributing to the slowdown of growth. Only 4% of the mRNAs were translationally up-regulated, mostly related to prophagic expression in response to stress. The remaining genes exhibited antagonistic regulations of the two markers of translation. Ribosome occupancy increased significantly for all the genes involved in the biosynthesis of isoleucine, although their ribosome density had decreased. The results revealed complex translational regulation of this pathway, essential to cope with isoleucine starvation. To elucidate the regulation of global gene expression more generally, translational regulation was compared to transcriptional regulation under isoleucine starvation and to other post-transcriptional regulations related to mRNA degradation and mRNA dilution by growth. Translational regulation appeared to accentuate the effects of transcriptional changes for down-regulated growth-related functions under isoleucine starvation although mRNA stabilization and lower dilution by growth counterbalanced this effect. Conclusions We show that the contribution of translational regulation to the control of gene expression is significant in the stress response. Post-transcriptional regulation is complex and not systematically co-directional with transcription regulation. Post-transcriptional regulation is important to the understanding of gene expression control. PMID:23985063
Pooggin, Mikhail M.; Rajeswaran, Rajendran; Schepetilnikov, Mikhail V.; Ryabova, Lyubov A.
2012-01-01
Rice tungro disease is caused by synergistic interaction of an RNA picorna-like virus Rice tungro spherical virus (RTSV) and a DNA pararetrovirus Rice tungro bacilliform virus (RTBV). It is spread by insects owing to an RTSV-encoded transmission factor. RTBV has evolved a ribosome shunt mechanism to initiate translation of its pregenomic RNA having a long and highly structured leader. We found that a long leader of RTSV genomic RNA remarkably resembles the RTBV leader: both contain several short ORFs (sORFs) and potentially fold into a large stem-loop structure with the first sORF terminating in front of the stem basal helix. Using translation assays in rice protoplasts and wheat germ extracts, we show that, like in RTBV, both initiation and proper termination of the first sORF translation in front of the stem are required for shunt-mediated translation of a reporter ORF placed downstream of the RTSV leader. The base pairing that forms the basal helix is required for shunting, but its sequence can be varied. Shunt efficiency in RTSV is lower than in RTBV. But in addition to shunting the RTSV leader sequence allows relatively efficient linear ribosome migration, which also contributes to translation initiation downstream of the leader. We conclude that RTSV and RTBV have developed a similar, sORF-dependent shunt mechanism possibly to adapt to the host translation system and/or coordinate their life cycles. Given that sORF-dependent shunting also operates in a pararetrovirus Cauliflower mosaic virus and likely in other pararetroviruses that possess a conserved shunt configuration in their leaders it is tempting to propose that RTSV may have acquired shunt cis-elements from RTBV during their co-existence. PMID:22396650
Knowledge translation interventions for critically ill patients: a systematic review*.
Sinuff, Tasnim; Muscedere, John; Adhikari, Neill K J; Stelfox, Henry T; Dodek, Peter; Heyland, Daren K; Rubenfeld, Gordon D; Cook, Deborah J; Pinto, Ruxandra; Manoharan, Venika; Currie, Jan; Cahill, Naomi; Friedrich, Jan O; Amaral, Andre; Piquette, Dominique; Scales, Damon C; Dhanani, Sonny; Garland, Allan
2013-11-01
We systematically reviewed ICU-based knowledge translation studies to assess the impact of knowledge translation interventions on processes and outcomes of care. We searched electronic databases (to July, 2010) without language restrictions and hand-searched reference lists of relevant studies and reviews. Two reviewers independently identified randomized controlled trials and observational studies comparing any ICU-based knowledge translation intervention (e.g., protocols, guidelines, and audit and feedback) to management without a knowledge translation intervention. We focused on clinical topics that were addressed in greater than or equal to five studies. Pairs of reviewers abstracted data on the clinical topic, knowledge translation intervention(s), process of care measures, and patient outcomes. For each individual or combination of knowledge translation intervention(s) addressed in greater than or equal to three studies, we summarized each study using median risk ratio for dichotomous and standardized mean difference for continuous process measures. We used random-effects models. Anticipating a small number of randomized controlled trials, our primary meta-analyses included randomized controlled trials and observational studies. In separate sensitivity analyses, we excluded randomized controlled trials and collapsed protocols, guidelines, and bundles into one category of intervention. We conducted meta-analyses for clinical outcomes (ICU and hospital mortality, ventilator-associated pneumonia, duration of mechanical ventilation, and ICU length of stay) related to interventions that were associated with improvements in processes of care. From 11,742 publications, we included 119 investigations (seven randomized controlled trials, 112 observational studies) on nine clinical topics. Interventions that included protocols with or without education improved continuous process measures (seven observational studies and one randomized controlled trial; standardized mean difference [95% CI]: 0.26 [0.1, 0.42]; p = 0.001 and four observational studies and one randomized controlled trial; 0.83 [0.37, 1.29]; p = 0.0004, respectively). Heterogeneity among studies within topics ranged from low to extreme. The exclusion of randomized controlled trials did not change our results. Single-intervention and lower-quality studies had higher standardized mean differences compared to multiple-intervention and higher-quality studies (p = 0.013 and 0.016, respectively). There were no associated improvements in clinical outcomes. Knowledge translation interventions in the ICU that include protocols with or without education are associated with the greatest improvements in processes of critical care.
Allavena, Giulia; Cuomo, Francesca; Baumgartner, Georg; Bele, Tadeja; Sellgren, Alexander Yarar; Oo, Kyaw Soe; Johnson, Kaylee; Gogvadze, Vladimir; Zhivotovsky, Boris; Kaminskyy, Vitaliy O
2018-01-01
Macroautophagy/autophagy inhibition under stress conditions is often associated with increased cell death. We found that under nutrient limitation, activation of CASP8/caspase-8 was significantly increased in autophagy-deficient lung cancer cells, which precedes mitochondria outer membrane permeabilization (MOMP), CYCS/cytochrome c release, and activation of CASP9/caspase-9, indicating that under such conditions the activation of CASP8 is a primary event in the initiation of apoptosis as well as essential to reduce clonogenic survival of autophagy-deficient cells. Starvation leads to suppression of CFLAR proteosynthesis and accumulation of CASP8 in SQSTM1 puncta. Overexpression of CFLARs reduces CASP8 activation and apoptosis during starvation, while its silencing promotes efficient activation of CASP8 and apoptosis in autophagy-deficient U1810 lung cancer cells even under nutrient-rich conditions. Similar to starvation, inhibition of protein translation leads to efficient activation of CASP8 and cell death in autophagy-deficient lung cancer cells. Thus, here for the first time we report that suppressed translation leads to activation of CASP8-dependent apoptosis in autophagy-deficient NSCLC cells under conditions of nutrient limitation. Our data suggest that targeting translational machinery can be beneficial for elimination of autophagy-deficient cells via the CASP8-dependent apoptotic pathway.
Kawakami, Takashi; Ogawa, Koji; Hatta, Tomohisa; Goshima, Naoki; Natsume, Tohru
2016-06-17
N-alkyl amino acids are useful building blocks for the in vitro display evolution of ribosomally synthesized peptides because they can increase the proteolytic stability and cell permeability of these peptides. However, the translation initiation substrate specificity of nonproteinogenic N-alkyl amino acids has not been investigated. In this study, we screened various N-alkyl amino acids and nonamino carboxylic acids for translation initiation with an Escherichia coli reconstituted cell-free translation system (PURE system) and identified those that efficiently initiated translation. Using seven of these efficiently initiating acids, we next performed in vitro display evolution of cyclized peptidomimetics against an arbitrarily chosen model human protein (β-catenin) cell-free expressed from its cloned cDNA (HUPEX) and identified a novel β-catenin-binding cyclized peptoid-peptide chimera. Furthermore, by a proteomic approach using direct nanoflow liquid chromatography-tandem mass spectrometry (DNLC-MS/MS), we successfully identified which protein-β-catenin interaction is inhibited by the chimera. The combination of in vitro display evolution of cyclized N-alkyl peptidomimetics and in vitro expression of human proteins would be a powerful approach for the high-speed discovery of diverse human protein-targeted cyclized N-alkyl peptidomimetics.
Strategies for Derisking Translational Processes for Biomedical Technologies.
Abou-El-Enein, Mohamed; Duda, Georg N; Gruskin, Elliott A; Grainger, David W
2017-02-01
Inefficient translational processes for technology-oriented biomedical research have led to some prominent and frequent failures in the development of many leading drug candidates, several designated investigational drugs, and some medical devices, as well as documented patient harm and postmarket product withdrawals. Derisking this process, particularly in the early stages, should increase translational efficiency and streamline resource utilization, especially in an academic setting. In this opinion article, we identify a 12-step guideline for reducing risks typically associated with translating medical technologies as they move toward prototypes, preclinical proof of concept, and possible clinical testing. Integrating the described 12-step process should prove valuable for improving how early-stage academic biomedical concepts are cultivated, culled, and manicured toward intended clinical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Allen, David; Ripley, Elizabeth; Coe, Antoinette; Clore, John
2013-12-01
In 2010, Virginia Commonwealth University (VCU) was granted a Clinical and Translational Science Award which prompted reorganization and expansion of their clinical research infrastructure. A case study approach is used to describe the implementation of a business and cost recovery model for clinical and translational research and the transformation of VCU's General Clinical Research Center and Clinical Trials Office to a combined Clinical Research Services entity. We outline the use of a Plan, Do, Study, Act cycle that facilitated a thoughtful transition process, which included the identification of required changes and cost recovery processes for implementation. Through this process, the VCU Center for Clinical and Translational Research improved efficiency, increased revenue recovered, reduced costs, and brought a high level of fiscal responsibility through financial reporting.
Weather Impact on Airport Arrival Meter Fix Throughput
NASA Technical Reports Server (NTRS)
Wang, Yao
2017-01-01
Time-based flow management provides arrival aircraft schedules based on arrival airport conditions, airport capacity, required spacing, and weather conditions. In order to meet a scheduled time at which arrival aircraft can cross an airport arrival meter fix prior to entering the airport terminal airspace, air traffic controllers make regulations on air traffic. Severe weather may create an airport arrival bottleneck if one or more of airport arrival meter fixes are partially or completely blocked by the weather and the arrival demand has not been reduced accordingly. Under these conditions, aircraft are frequently being put in holding patterns until they can be rerouted. A model that predicts the weather impacted meter fix throughput may help air traffic controllers direct arrival flows into the airport more efficiently, minimizing arrival meter fix congestion. This paper presents an analysis of air traffic flows across arrival meter fixes at the Newark Liberty International Airport (EWR). Several scenarios of weather impacted EWR arrival fix flows are described. Furthermore, multiple linear regression and regression tree ensemble learning approaches for translating multiple sector Weather Impacted Traffic Indexes (WITI) to EWR arrival meter fix throughputs are examined. These weather translation models are developed and validated using the EWR arrival flight and weather data for the period of April-September in 2014. This study also compares the performance of the regression tree ensemble with traditional multiple linear regression models for estimating the weather impacted throughputs at each of the EWR arrival meter fixes. For all meter fixes investigated, the results from the regression tree ensemble weather translation models show a stronger correlation between model outputs and observed meter fix throughputs than that produced from multiple linear regression method.
The brain cytoplasmic RNA BC1 regulates dopamine D2 receptor-mediated transmission in the striatum.
Centonze, Diego; Rossi, Silvia; Napoli, Ilaria; Mercaldo, Valentina; Lacoux, Caroline; Ferrari, Francesca; Ciotti, Maria Teresa; De Chiara, Valentina; Prosperetti, Chiara; Maccarrone, Mauro; Fezza, Filomena; Calabresi, Paolo; Bernardi, Giorgio; Bagni, Claudia
2007-08-15
Dopamine D(2) receptor (D(2)DR)-mediated transmission in the striatum is remarkably flexible, and changes in its efficacy have been heavily implicated in a variety of physiological and pathological conditions. Although receptor-associated proteins are clearly involved in specific forms of synaptic plasticity, the molecular mechanisms regulating the sensitivity of D(2) receptors in this brain area are essentially obscure. We have studied the physiological responses of the D(2)DR stimulations in mice lacking the brain cytoplasmic RNA BC1, a small noncoding dendritically localized RNA that is supposed to play a role in mRNA translation. We show that the efficiency of D(2)-mediated transmission regulating striatal GABA synapses is under the control of BC1 RNA, through a negative influence on D(2) receptor protein level affecting the functional pool of receptors. Ablation of the BC1 gene did not result in widespread dysregulation of synaptic transmission, because the sensitivity of cannabinoid CB(1) receptors was intact in the striatum of BC1 knock-out (KO) mice despite D(2) and CB(1) receptors mediated similar electrophysiological actions. Interestingly, the fragile X mental retardation protein FMRP, one of the multiple BC1 partners, is not involved in the BC1 effects on the D(2)-mediated transmission. Because D(2)DR mRNA is apparently equally translated in the BC1-KO and wild-type mice, whereas the protein level is higher in BC1-KO mice, we suggest that BC1 RNA controls D(2)DR indirectly, probably regulating translation of molecules involved in D(2)DR turnover and/or stability.
Are larger dental practices more efficient? An analysis of dental services production.
Lipscomb, J; Douglass, C W
1986-01-01
Whether cost-efficiency in dental services production increases with firm size is investigated through application of an activity analysis production function methodology to data from a national survey of dental practices. Under this approach, service delivery in a dental practice is modeled as a linear programming problem that acknowledges distinct input-output relationships for each service. These service-specific relationships are then combined to yield projections of overall dental practice productivity, subject to technical and organizational constraints. The activity analysis reported here represents arguably the most detailed evaluation yet of the relationship between dental practice size and cost-efficiency, controlling for such confounding factors as fee and service-mix differences across firms. We conclude that cost-efficiency does increase with practice size, over the range from solo to four-dentist practices. Largely because of data limitations, we were unable to test satisfactorily for scale economies in practices with five or more dentists. Within their limits, our findings are generally consistent with results from the neoclassical production function literature. From the standpoint of consumer welfare, the critical question raised (but not resolved) here is whether these apparent production efficiencies of group practice are ultimately translated by the market into lower fees, shorter queues, or other nonprice benefits. PMID:3102404
Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states.
Komar, Anton A; Hatzoglou, Maria
2011-01-15
Translation of cellular mRNAs via initiation at Internal Ribosome Entry Sites (IRESs) has received increased attention during recent years due to its emerging significance for many physiological and pathological stress conditions in eukaryotic cells. Expression of genes bearing IRES elements in their mRNAs is controlled by multiple molecular mechanisms, with IRES-mediated translation favored under conditions when cap-dependent translation is compromised. In this review, we discuss recent advances in the field and future directions that may bring us closer to understanding the complex mechanisms that guide cellular IRES-mediated expression. We present examples in which the competitive action of IRES-transacting factors (ITAFs) plays a pivotal role in IRES-mediated translation and thereby controls cell-fate decisions leading to either pro-survival stress adaptation or cell death.
Developing strategies to enhance loading efficiency of erythrosensors
NASA Astrophysics Data System (ADS)
Bustamante Lopez, Sandra C.; Ritter, Sarah C.; Meissner, Kenith E.
2014-02-01
For diabetics, continuous glucose monitoring and the resulting tighter control of glucose levels ameliorate serious complications from hypoglycemia and hyperglycemia. Diabetics measure their blood glucose levels multiple times a day by finger pricks, or use implantable monitoring devices. Still, glucose and other analytes in the blood fluctuate throughout the day and the current monitoring methods are invasive, immunogenic, and/or present biodegradation problems. Using carrier erythrocytes loaded with a fluorescent sensor, we seek to develop a biodegradable, efficient, and potentially cost effective method to continuously sense blood analytes. We aim to reintroduce sensor-loaded erythrocytes to the bloodstream and conserve the erythrocytes lifetime of 120 days in the circulatory system. Here, we compare the efficiency of two loading techniques: hypotonic dilution and electroporation. Hypotonic dilution employs hypotonic buffer to create transient pores in the erythrocyte membrane, allowing dye entrance and a hypertonic buffer to restore tonicity. Electroporation relies on controlled electrical pulses that results in reversible pores formation to allow cargo entrance, follow by incubation at 37°C to reseal. As part of the cellular characterization of loaded erythrocytes, we focus on cell size, shape, and hemoglobin content. Cell recovery, loading efficiency and cargo release measurements render optimal loading conditions. The detected fluorescent signal from sensor-loaded erythrocytes can be translated into a direct measurement of analyte levels in the blood stream. The development of a suitable protocol to engineer carrier erythrocytes has profound and lasting implications in the erythrosensor's lifespan and sensing capabilities.
Gibbs, John P; Menon, Rajeev; Kasichayanula, Sreeneeranj
2018-02-01
With so much emphasis on reducing attrition and becoming more efficient in the delivery of healthcare, there are many opportunities to leverage existing clinical data in drug development and to foster the practice of reverse translation. The application of quantitative approaches to convert clinical trial and real-world data to knowledge will continue to drive innovation. Herein we discuss recent examples of reverse translation and consider future opportunities to capture critical clinical knowledge to inform decision-making in drug development. © 2017 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
Fagg, W Samuel; Liu, Naiyou; Fair, Jeffrey Haskell; Shiue, Lily; Katzman, Sol; Donohue, John Paul; Ares, Manuel
2017-09-15
Quaking protein isoforms arise from a single Quaking gene and bind the same RNA motif to regulate splicing, translation, decay, and localization of a large set of RNAs. However, the mechanisms by which Quaking expression is controlled to ensure that appropriate amounts of each isoform are available for such disparate gene expression processes are unknown. Here we explore how levels of two isoforms, nuclear Quaking-5 (Qk5) and cytoplasmic Qk6, are regulated in mouse myoblasts. We found that Qk5 and Qk6 proteins have distinct functions in splicing and translation, respectively, enforced through differential subcellular localization. We show that Qk5 and Qk6 regulate distinct target mRNAs in the cell and act in distinct ways on their own and each other's transcripts to create a network of autoregulatory and cross-regulatory feedback controls. Morpholino-mediated inhibition of Qk translation confirms that Qk5 controls Qk RNA levels by promoting accumulation and alternative splicing of Qk RNA, whereas Qk6 promotes its own translation while repressing Qk5. This Qk isoform cross-regulatory network responds to additional cell type and developmental controls to generate a spectrum of Qk5/Qk6 ratios, where they likely contribute to the wide range of functions of Quaking in development and cancer. © 2017 Fagg et al.; Published by Cold Spring Harbor Laboratory Press.
Upf1 senses 3′UTR length to potentiate mRNA decay
Hogg, J. Robert; Goff, Stephen P.
2010-01-01
Summary The selective degradation of mRNAs by the nonsense-mediated decay pathway is a quality control process with important consequences for human disease. From initial studies using RNA hairpin-tagged mRNAs for purification of messenger ribonucleoproteins assembled on transcripts with HIV-1 3′ untranslated region (3′UTR) sequences, we uncover a two-step mechanism for Upf1-dependent degradation of mRNAs with long 3′UTRs. We demonstrate that Upf1 associates with mRNAs in a 3′UTR length-dependent manner and is highly enriched on transcripts containing 3′UTRs known to elicit NMD. Surprisingly, Upf1 recruitment and subsequent RNA decay can be antagonized by retroviral RNA elements that promote translational readthrough. By modulating the efficiency of translation termination, recognition of long 3′UTRs by Upf1 is uncoupled from the initiation of decay. We propose a model for 3′UTR length surveillance in which equilibrium binding of Upf1 to mRNAs precedes a kinetically distinct commitment to RNA decay. PMID:21029861
A Transparent Translation from Legacy System Model into Common Information Model: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Simpson, Jeffrey; Zhang, Yingchen
Advance in smart grid is forcing utilities towards better monitoring, control and analysis of distribution systems, and requires extensive cyber-based intelligent systems and applications to realize various functionalities. The ability of systems, or components within systems, to interact and exchange services or information with each other is the key to the success of smart grid technologies, and it requires efficient information exchanging and data sharing infrastructure. The Common Information Model (CIM) is a standard that allows different applications to exchange information about an electrical system, and it has become a widely accepted solution for information exchange among different platforms andmore » applications. However, most existing legacy systems are not developed using CIM, but using their own languages. Integrating such legacy systems is a challenge for utilities, and the appropriate utilization of the integrated legacy systems is even more intricate. Thus, this paper has developed an approach and open-source tool in order to translate legacy system models into CIM format. The developed tool is tested for a commercial distribution management system and simulation results have proved its effectiveness.« less
A quantitative study of the benefits of co-regulation using the spoIIA operon as an example
Iber, Dagmar
2006-01-01
The distribution of most genes is not random, and functionally linked genes are often found in clusters. Several theories have been put forward to explain the emergence and persistence of operons in bacteria. Careful analysis of genomic data favours the co-regulation model, where gene organization into operons is driven by the benefits of coordinated gene expression and regulation. Direct evidence that coexpression increases the individual's fitness enough to ensure operon formation and maintenance is, however, still lacking. Here, a previously described quantitative model of the network that controls the transcription factor σF during sporulation in Bacillus subtilis is employed to quantify the benefits arising from both organization of the sporulation genes into the spoIIA operon and from translational coupling. The analysis shows that operon organization, together with translational coupling, is important because of the inherent stochastic nature of gene expression, which skews the ratios between protein concentrations in the absence of co-regulation. The predicted impact of different forms of gene regulation on fitness and survival agrees quantitatively with published sporulation efficiencies. PMID:16924264
A quantitative study of the benefits of co-regulation using the spoIIA operon as an example.
Iber, Dagmar
2006-01-01
The distribution of most genes is not random, and functionally linked genes are often found in clusters. Several theories have been put forward to explain the emergence and persistence of operons in bacteria. Careful analysis of genomic data favours the co-regulation model, where gene organization into operons is driven by the benefits of coordinated gene expression and regulation. Direct evidence that coexpression increases the individual's fitness enough to ensure operon formation and maintenance is, however, still lacking. Here, a previously described quantitative model of the network that controls the transcription factor sigma(F) during sporulation in Bacillus subtilis is employed to quantify the benefits arising from both organization of the sporulation genes into the spoIIA operon and from translational coupling. The analysis shows that operon organization, together with translational coupling, is important because of the inherent stochastic nature of gene expression, which skews the ratios between protein concentrations in the absence of co-regulation. The predicted impact of different forms of gene regulation on fitness and survival agrees quantitatively with published sporulation efficiencies.
Translational metagenomics and the human resistome: confronting the menace of the new millennium.
Willmann, Matthias; Peter, Silke
2017-01-01
The increasing threat of antimicrobial resistance poses one of the greatest challenges to modern medicine. The collection of all antimicrobial resistance genes carried by various microorganisms in the human body is called the human resistome and represents the source of resistance in pathogens that can eventually cause life-threatening and untreatable infections. A deep understanding of the human resistome and its multilateral interaction with various environments is necessary for developing proper measures that can efficiently reduce the spread of resistance. However, the human resistome and its evolution still remain, for the most part, a mystery to researchers. Metagenomics, particularly in combination with next-generation-sequencing technology, provides a powerful methodological approach for studying the human microbiome as well as the pathogenome, the virolume and especially the resistome. We summarize below current knowledge on how the human resistome is shaped and discuss how metagenomics can be employed to improve our understanding of these complex processes, particularly as regards a rapid translation of new findings into clinical diagnostics, infection control and public health.
Synaptic control of local translation: the plot thickens with new characters.
Thomas, María Gabriela; Pascual, Malena Lucía; Maschi, Darío; Luchelli, Luciana; Boccaccio, Graciela Lidia
2014-06-01
The production of proteins from mRNAs localized at the synapse ultimately controls the strength of synaptic transmission, thereby affecting behavior and cognitive functions. The regulated transcription, processing, and transport of mRNAs provide dynamic control of the dendritic transcriptome, which includes thousands of messengers encoding multiple cellular functions. Translation is locally modulated by synaptic activity through a complex network of RNA-binding proteins (RBPs) and various types of non-coding RNAs (ncRNAs) including BC-RNAs, microRNAs, piwi-interacting RNAs, and small interference RNAs. The RBPs FMRP and CPEB play a well-established role in synaptic translation, and additional regulatory factors are emerging. The mRNA repressors Smaug, Nanos, and Pumilio define a novel pathway for local translational control that affects dendritic branching and spines in both flies and mammals. Recent findings support a role for processing bodies and related synaptic mRNA-silencing foci (SyAS-foci) in the modulation of synaptic plasticity and memory formation. The SyAS-foci respond to different stimuli with changes in their integrity thus enabling regulated mRNA release followed by translation. CPEB, Pumilio, TDP-43, and FUS/TLS form multimers through low-complexity regions related to prion domains or polyQ expansions. The oligomerization of these repressor RBPs is mechanistically linked to the aggregation of abnormal proteins commonly associated with neurodegeneration. Here, we summarize the current knowledge on how specificity in mRNA translation is achieved through the concerted action of multiple pathways that involve regulatory ncRNAs and RBPs, the modification of translation factors, and mRNA-silencing foci dynamics.
Francisco-Velilla, Rosario; Fernandez-Chamorro, Javier; Dotu, Ivan; Martinez-Salas, Encarnación
2018-05-16
Gemin5 is a predominantly cytoplasmic protein that downregulates translation, beyond controlling snRNPs assembly. The C-terminal region harbors a non-canonical RNA-binding site consisting of two domains, RBS1 and RBS2, which differ in RNA-binding capacity and the ability to modulate translation. Here, we show that these domains recognize distinct RNA targets in living cells. Interestingly, the most abundant and exclusive RNA target of the RBS1 domain was Gemin5 mRNA. Biochemical and functional characterization of this target demonstrated that RBS1 polypeptide physically interacts with a predicted thermodynamically stable stem-loop upregulating mRNA translation, thereby counteracting the negative effect of Gemin5 protein on global protein synthesis. In support of this result, destabilization of the stem-loop impairs the stimulatory effect on translation. Moreover, RBS1 stimulates translation of the endogenous Gemin5 mRNA. Hence, although the RBS1 domain downregulates global translation, it positively enhances translation of RNA targets carrying thermodynamically stable secondary structure motifs. This mechanism allows fine-tuning the availability of Gemin5 to play its multiple roles in gene expression control.
STS-33 MS Carter operates translation hand control (THC) on aft flight deck
NASA Technical Reports Server (NTRS)
1989-01-01
STS-33 Mission Specialist (MS) Manley L. Carter, Jr operates translation hand control (THC) at the aft flight deck onorbit station while peering out overhead window W7. Carter's communications kit assembly headset microphone extends across his face.
Phase structure rewrite systems in information retrieval
NASA Technical Reports Server (NTRS)
Klingbiel, P. H.
1985-01-01
Operational level automatic indexing requires an efficient means of normalizing natural language phrases. Subject switching requires an efficient means of translating one set of authorized terms to another. A phrase structure rewrite system called a Lexical Dictionary is explained that performs these functions. Background, operational use, other applications and ongoing research are explained.
Aviner, Ranen; Hofmann, Sarah; Elman, Tamar; Shenoy, Anjana; Geiger, Tamar; Elkon, Ran; Ehrlich, Marcelo; Elroy-Stein, Orna
2017-06-02
Precise regulation of mRNA translation is critical for proper cell division, but little is known about the factors that mediate it. To identify mRNA-binding proteins that regulate translation during mitosis, we analyzed the composition of polysomes from interphase and mitotic cells using unbiased quantitative mass-spectrometry (LC-MS/MS). We found that mitotic polysomes are enriched with a subset of proteins involved in RNA processing, including alternative splicing and RNA export. To demonstrate that these may indeed be regulators of translation, we focused on heterogeneous nuclear ribonucleoprotein C (hnRNP C) as a test case and confirmed that it is recruited to elongating ribosomes during mitosis. Then, using a combination of pulsed SILAC, metabolic labeling and ribosome profiling, we showed that knockdown of hnRNP C affects both global and transcript-specific translation rates and found that hnRNP C is specifically important for translation of mRNAs that encode ribosomal proteins and translation factors. Taken together, our results demonstrate how proteomic analysis of polysomes can provide insight into translation regulation under various cellular conditions of interest and suggest that hnRNP C facilitates production of translation machinery components during mitosis to provide daughter cells with the ability to efficiently synthesize proteins as they enter G1 phase. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
2013-01-01
Background Segment 6 of the ISA virus codes for hemoagglutinin-esterase (HE). This segment is highly variable, with more than 26 variants identified. The major variation is observed in what is called the high polymorphism region (HPR). The role of the different HPR zones in the viral cycle or evolution remains unknown. However viruses that present the HPR0 are avirulent, while viruses with important deletions in this region have been responsible for outbreaks with high mortality rates. In this work, using bioinformatic tools, we examined the influence of different HPRs on the adaptation of HE genes to the host translational machinery and the relationship to observed virulence. Methods Translational efficiency of HE genes and their HPR were estimated analyzing codon-pair bias (CPB), adaptation to host codon use (codon adaptation index - CAI) and the adaptation to available tRNAs (tAI). These values were correlated with reported mortality for the respective ISA virus and the ΔG of RNA folding. tRNA abundance was inferred from tRNA gene numbers identified in the Salmo salar genome using tRNAScan-SE. Statistical correlation between data was performed using a non-parametric test. Results We found that HPR0 contains zones with codon pairs of low frequency and low availability of tRNA with respect to salmon codon-pair usage, suggesting that HPR modifies HE translational efficiency. Although calculating tAI was impossible because one third of tRNAs (~60.000) were tRNA-ala, translational efficiency measured by CPB shows that as HPR size increases, the CPB value of the HE gene decreases (P = 2x10-7, ρ = −0.675, n = 63) and that these values correlate positively with the mortality rates caused by the virus (ρ = 0.829, P = 2x10-7, n = 11). The mortality associated with different virus isolates or their corresponding HPR sizes were not related with the ΔG of HPR RNA folding, suggesting that the secondary structure of HPR RNA does not modify virulence. Conclusions Our results suggest that HPR size affects the efficiency of gene translation, which modulates the virulence of the virus by a mechanism similar to that observed in production of live attenuated vaccines through deoptimization of codon-pair usage. PMID:23742749
Donovan, Jesse; Rath, Sneha; Kolet-Mandrikov, David; Korennykh, Alexei
2017-11-01
Mammalian cells respond to double-stranded RNA (dsRNA) by activating a translation-inhibiting endoribonuclease, RNase L. Consensus in the field indicates that RNase L arrests protein synthesis by degrading ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs). However, here we provide evidence for a different and far more efficient mechanism. By sequencing abundant RNA fragments generated by RNase L in human cells, we identify site-specific cleavage of two groups of noncoding RNAs: Y-RNAs, whose function is poorly understood, and cytosolic tRNAs, which are essential for translation. Quantitative analysis of human RNA cleavage versus nascent protein synthesis in lung carcinoma cells shows that RNase L stops global translation when tRNAs, as well as rRNAs and mRNAs, are still intact. Therefore, RNase L does not have to degrade the translation machinery to stop protein synthesis. Our data point to a rapid mechanism that transforms a subtle RNA cleavage into a cell-wide translation arrest. © 2017 Donovan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Advances in the mechanism and understanding of site-selective noncanonical amino acid incorporation.
Antonczak, Alicja K; Morris, Josephine; Tippmann, Eric M
2011-08-01
There are many approaches to introduce non-native functionality into proteins either translationally or post-translationally. When a noncanonical amino acid (NAA) is incorporated translationally, the host organism's existing translational machinery is relied upon to insert the amino acid by the same well-established mechanisms used by the host to achieve high fidelity insertion of its canonical amino acids. Research into the in vivo incorporation of NAAs has typically concentrated on evolving or engineering aminoacyl tRNA synthetases (aaRSs); however, new studies have increasingly focused on other members of the translational apparatus, for example entire ribosomes, in attempts to increase the fidelity and efficiency of incorporation of ever more structurally diverse NAAs. As the biochemical methods of NAA systems increase in complexity, it is informative to ask whether the 'rules' for canonical translation (i.e. aaRSs, tRNA, ribosomes, elongation factors, amino acid uptake, and metabolism) hold for NAA systems, or whether new rules are warranted. Here, recent advances in introducing novel chemical functionality into proteins are highlighted. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hyman, J., Jr.
1974-01-01
A structural integrated ion thruster with 8-cm beam diameter (SIT-8) was developed for attitude control and stationkeeping of synchronous satellites. As optimized, the system demonstrates a thrust T=1.14 mlb (not corrected for beam V sub B = 1200 V (I sub sp = 2200 sec) total propellant utilization efficiency nu sub u = 59.8% (is approximately 72% without auxiliary pulse-igniter electrode), and electrical efficiency n sub E 61.9%. The thruster incorporates a wire-mesh anode and tantalum cover surfaces to control discharge chamber flake formation and employs an auxiliary pulse-igniter electrode for hollow-cathode ignition. When the SIT-8 is integrated with the compatible SIT-5 propellant tankage, the system envelope is 35 cm long by 13 cm flange bolt circle with a mass of 9.8 kg including 6.8 kg of mercury propellant. Two thrust vectoring systems which generate beam deflections in two orthogonal directions were also developed under the program and tested with the 8-cm thruster. One system vectors the beam over + or - 10 degrees by gimbaling of the entire thruster (not including tankage), while the other system vectors the beam over + or - 7 degrees by translating the accel electrode relative to the screen electrode.
Stress-mediated translational control in cancer cells.
Leprivier, Gabriel; Rotblat, Barak; Khan, Debjit; Jan, Eric; Sorensen, Poul H
2015-07-01
Tumor cells are continually subjected to diverse stress conditions of the tumor microenvironment, including hypoxia, nutrient deprivation, and oxidative or genotoxic stress. Tumor cells must evolve adaptive mechanisms to survive these conditions to ultimately drive tumor progression. Tight control of mRNA translation is critical for this response and the adaptation of tumor cells to such stress forms. This proceeds though a translational reprogramming process which restrains overall translation activity to preserve energy and nutrients, but which also stimulates the selective synthesis of major stress adaptor proteins. Here we present the different regulatory signaling pathways which coordinate mRNA translation in the response to different stress forms, including those regulating eIF2α, mTORC1 and eEF2K, and we explain how tumor cells hijack these pathways for survival under stress. Finally, mechanisms for selective mRNA translation under stress, including the utilization of upstream open reading frames (uORFs) and internal ribosome entry sites (IRESes) are discussed in the context of cell stress. This article is part of a Special Issue entitled: Translation and Cancer. Copyright © 2014 Elsevier B.V. All rights reserved.
The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading[OPEN
Missra, Anamika; Ernest, Ben; Jia, Qidong; Ke, Kenneth
2015-01-01
Circadian control of gene expression is well characterized at the transcriptional level, but little is known about diel or circadian control of translation. Genome-wide translation state profiling of mRNAs in Arabidopsis thaliana seedlings grown in long day was performed to estimate ribosome loading per mRNA. The experiments revealed extensive translational regulation of key biological processes. Notably, translation of mRNAs for ribosomal proteins and mitochondrial respiration peaked at night. Central clock mRNAs are among those subject to fluctuations in ribosome loading. There was no consistent phase relationship between peak translation states and peak transcript levels. The overlay of distinct transcriptional and translational cycles can be expected to alter the waveform of the protein synthesis rate. Plants that constitutively overexpress the clock gene CCA1 showed phase shifts in peak translation, with a 6-h delay from midnight to dawn or from noon to evening being particularly common. Moreover, cycles of ribosome loading that were detected under continuous light in the wild type collapsed in the CCA1 overexpressor. Finally, at the transcript level, the CCA1-ox strain adopted a global pattern of transcript abundance that was broadly correlated with the light-dark environment. Altogether, these data demonstrate that gene-specific diel cycles of ribosome loading are controlled in part by the circadian clock. PMID:26392078
Siddiqui, Nadeem; Sonenberg, Nahum
2015-01-01
Translational control plays a critical role in the regulation of gene expression in eukaryotes and affects many essential cellular processes, including proliferation, apoptosis and differentiation. Under most circumstances, translational control occurs at the initiation step at which the ribosome is recruited to the mRNA. The eukaryotic translation initiation factor 4E (eIF4E), as part of the eIF4F complex, interacts first with the mRNA and facilitates the recruitment of the 40S ribosomal subunit. The activity of eIF4E is regulated at many levels, most profoundly by two major signalling pathways: PI3K (phosphoinositide 3-kinase)/Akt (also known and Protein Kinase B, PKB)/mTOR (mechanistic/mammalian target of rapamycin) and Ras (rat sarcoma)/MAPK (mitogen-activated protein kinase)/Mnk (MAPK-interacting kinases). mTOR directly phosphorylates the 4E-BPs (eIF4E-binding proteins), which are inhibitors of eIF4E, to relieve translational suppression, whereas Mnk phosphorylates eIF4E to stimulate translation. Hyperactivation of these pathways occurs in the majority of cancers, which results in increased eIF4E activity. Thus, translational control via eIF4E acts as a convergence point for hyperactive signalling pathways to promote tumorigenesis. Consequently, recent works have aimed to target these pathways and ultimately the translational machinery for cancer therapy. PMID:26517881
Wang, Guirong; Guo, Xiaoxuan; Silveyra, Patricia; Kimball, Scot R.; Floros, Joanna
2009-01-01
Human surfactant protein A (hSP-A), a molecule of innate immunity and surfactant-related functions, consists of two functional genes, SP-A1 and SP-A2. SP-A expression is regulated by several factors including environmental stressors. SP-A1 and SP-A2 5′-untranslated region (5′-UTR) splice variants have a differential impact on translation efficiency and mRNA stability. To study whether these variants mediate internal ribosome entry site (IRES) activity (i.e., cap-independent translation), we performed transient transfection experiments in H441 cells with constructs containing one SP-A1 (A′D′, AB′D′, or A′CD′) or SP-A2 (ABD) 5′-UTR splice variant between the Renilla and firefly luciferase genes of a bicistronic reporter vector. We found that 1) variants A′D′, ABD, and AB′D′ exhibit significantly higher IRES activities than negative control (no SP-A 5′-UTR) and A′CD′ has no activity; the order of highest IRES activity was ABD > A′D′ > AB′D; 2) IRES activity of ABD significantly increased in response to diesel particulate matter (20 μg/ml) but not in response to ozone (1 ppm for 1 h); 3) deletion mutants of ABD revealed regulatory elements associated with IRES activity; one at the end of exon A attenuated activity, whereas a region containing a short adenosine-rich motif in the second half of exon B and the start of exon D enhanced activity; 4) elimination of a predicted double-loop structure or increase in free energy significantly reduced IRES activity; 5) elimination of one or both double-loop structures in A′D′ did not affect cap-dependent translation activity. Thus several factors, including cis-elements and secondary structure type and stability, are required for hSP-A 5′-UTR variant-mediated cap-independent translation. PMID:19181744
Web-based interactive drone control using hand gesture
NASA Astrophysics Data System (ADS)
Zhao, Zhenfei; Luo, Hao; Song, Guang-Hua; Chen, Zhou; Lu, Zhe-Ming; Wu, Xiaofeng
2018-01-01
This paper develops a drone control prototype based on web technology with the aid of hand gesture. The uplink control command and downlink data (e.g., video) are transmitted by WiFi communication, and all the information exchange is realized on web. The control command is translated from various predetermined hand gestures. Specifically, the hardware of this friendly interactive control system is composed by a quadrotor drone, a computer vision-based hand gesture sensor, and a cost-effective computer. The software is simplified as a web-based user interface program. Aided by natural hand gestures, this system significantly reduces the complexity of traditional human-computer interaction, making remote drone operation more intuitive. Meanwhile, a web-based automatic control mode is provided in addition to the hand gesture control mode. For both operation modes, no extra application program is needed to be installed on the computer. Experimental results demonstrate the effectiveness and efficiency of the proposed system, including control accuracy, operation latency, etc. This system can be used in many applications such as controlling a drone in global positioning system denied environment or by handlers without professional drone control knowledge since it is easy to get started.
Web-based interactive drone control using hand gesture.
Zhao, Zhenfei; Luo, Hao; Song, Guang-Hua; Chen, Zhou; Lu, Zhe-Ming; Wu, Xiaofeng
2018-01-01
This paper develops a drone control prototype based on web technology with the aid of hand gesture. The uplink control command and downlink data (e.g., video) are transmitted by WiFi communication, and all the information exchange is realized on web. The control command is translated from various predetermined hand gestures. Specifically, the hardware of this friendly interactive control system is composed by a quadrotor drone, a computer vision-based hand gesture sensor, and a cost-effective computer. The software is simplified as a web-based user interface program. Aided by natural hand gestures, this system significantly reduces the complexity of traditional human-computer interaction, making remote drone operation more intuitive. Meanwhile, a web-based automatic control mode is provided in addition to the hand gesture control mode. For both operation modes, no extra application program is needed to be installed on the computer. Experimental results demonstrate the effectiveness and efficiency of the proposed system, including control accuracy, operation latency, etc. This system can be used in many applications such as controlling a drone in global positioning system denied environment or by handlers without professional drone control knowledge since it is easy to get started.
Ma, Xing; Zhu, Xiujuan; Han, Yingying; Story, Benjamin; Do, Trieu; Song, Xiaoqing; Wang, Su; Zhang, Ying; Blanchette, Marco; Gogol, Madelaine; Hall, Kate; Peak, Allison; Anoja, Perera; Xie, Ting
2017-04-24
Piwi family protein Aubergine (Aub) maintains genome integrity in late germ cells of the Drosophila ovary through Piwi-associated RNA-mediated repression of transposon activities. Although it is highly expressed in germline stem cells (GSCs) and early progeny, it remains unclear whether it plays any roles in early GSC lineage development. Here we report that Aub promotes GSC self-renewal and GSC progeny differentiation. RNA-iCLIP results show that Aub binds the mRNAs encoding self-renewal and differentiation factors in cultured GSCs. Aub controls GSC self-renewal by preventing DNA-damage-induced Chk2 activation and by translationally controlling the expression of self-renewal factors. It promotes GSC progeny differentiation by translationally controlling the expression of differentiation factors, including Bam. Therefore, this study reveals a function of Aub in GSCs and their progeny, which promotes translation of self-renewal and differentiation factors by directly binding to its target mRNAs and interacting with translational initiation factors. Copyright © 2017 Elsevier Inc. All rights reserved.
Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma.
Ambrosio, Maria R; Rocca, Bruno J; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T; Tripodi, Sergio A; Tosi, Piero
2015-01-01
Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis.
Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma
Ambrosio, Maria R.; Rocca, Bruno J.; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T.; Tripodi, Sergio A.; Tosi, Piero
2015-01-01
Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis. PMID:26425551
Pöyry, Tuija A.A.; Kaminski, Ann; Jackson, Richard J.
2004-01-01
If the 5′-proximal AUG triplet in a mammalian mRNA is followed by a short open reading frame (sORF), a significant fraction of ribosomes resume scanning after termination of sORF translation, and reinitiate at a downstream AUG. To examine the underlying mechanism, we examined reinitiation in vitro using a series of mRNAs that differed only in the 5′-untranslated region (UTR). Efficient reinitiation was found to occur only if the eIF4F complex, or at a minimum the central one-third fragment of eIF4G, participated in the primary initiation event at the sORF initiation codon. It did not occur, however, when sORF translation was driven by the classical swine fever virus or cricket paralysis virus internal ribosome entry sites (IRESs), which do not use eIF4A, 4B, 4E, or 4G. A critical test was provided by an mRNA with an unstructured 5′-UTR, which is translated by scanning but does not absolutely need eIF4G and eIF4A: There was efficient reinitiation in a standard reticulocyte lysate, when initiation would be largely driven by eIF4F, but no reinitiation in an eIF4G-depleted lysate. These results suggest that resumption of scanning may depend on the interaction between eIF4F (or the eIF4G central domain) and the ribosome being maintained while the ribosome translates the sORF. PMID:14701882
47 CFR 74.635 - Unattended operation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Stations § 74.635 Unattended operation. (a) TV relay stations, TV translator relay stations, TV STL... persons; (3) TV relay stations, TV STL stations, TV translator relay stations, and TV microwave booster... control point. Additionally, a TV translator relay station (and any associated TV microwave booster...
Nonlinear rescaling of control values simplifies fuzzy control
NASA Technical Reports Server (NTRS)
Vanlangingham, H.; Tsoukkas, A.; Kreinovich, V.; Quintana, C.
1993-01-01
Traditional control theory is well-developed mainly for linear control situations. In non-linear cases there is no general method of generating a good control, so we have to rely on the ability of the experts (operators) to control them. If we want to automate their control, we must acquire their knowledge and translate it into a precise control strategy. The experts' knowledge is usually represented in non-numeric terms, namely, in terms of uncertain statements of the type 'if the obstacle is straight ahead, the distance to it is small, and the velocity of the car is medium, press the brakes hard'. Fuzzy control is a methodology that translates such statements into precise formulas for control. The necessary first step of this strategy consists of assigning membership functions to all the terms that the expert uses in his rules (in our sample phrase these words are 'small', 'medium', and 'hard'). The appropriate choice of a membership function can drastically improve the quality of a fuzzy control. In the simplest cases, we can take the functions whose domains have equally spaced endpoints. Because of that, many software packages for fuzzy control are based on this choice of membership functions. This choice is not very efficient in more complicated cases. Therefore, methods have been developed that use neural networks or generic algorithms to 'tune' membership functions. But this tuning takes lots of time (for example, several thousands iterations are typical for neural networks). In some cases there are evident physical reasons why equally space domains do not work: e.g., if the control variable u is always positive (i.e., if we control temperature in a reactor), then negative values (that are generated by equal spacing) simply make no sense. In this case it sounds reasonable to choose another scale u' = f(u) to represent u, so that equal spacing will work fine for u'. In the present paper we formulate the problem of finding the best rescaling function, solve this problem, and show (on a real-life example) that after an optimal rescaling, the un-tuned fuzzy control can be as good as the best state-of-art traditional non-linear controls.
O'keefe, Matthew; Parr, Terence; Edgar, B. Kevin; ...
1995-01-01
Massively parallel processors (MPPs) hold the promise of extremely high performance that, if realized, could be used to study problems of unprecedented size and complexity. One of the primary stumbling blocks to this promise has been the lack of tools to translate application codes to MPP form. In this article we show how applications codes written in a subset of Fortran 77, called Fortran-P, can be translated to achieve good performance on several massively parallel machines. This subset can express codes that are self-similar, where the algorithm applied to the global data domain is also applied to each subdomain. Wemore » have found many codes that match the Fortran-P programming style and have converted them using our tools. We believe a self-similar coding style will accomplish what a vectorizable style has accomplished for vector machines by allowing the construction of robust, user-friendly, automatic translation systems that increase programmer productivity and generate fast, efficient code for MPPs.« less
2010-01-01
Background Cancer is a rapidly increasing problem in developing countries. Access, quality and efficiency of cancer services in developing countries must be understood to advance effective cancer control programs. Health services research can provide insights into these areas. Discussion This article provides an overview of oncology health services in developing countries. We use selected examples from peer-reviewed literature in health services research and relevant publicly available documents. In spite of significant limitations in the available data, it is clear there are substantial barriers to access to cancer control in developing countries. This includes prevention, early detection, diagnosis/treatment and palliation. There are also substantial limitations in the quality of cancer control and a great need to improve economic efficiency. We describe how the application of health data may assist in optimizing (1) Structure: strengthening planning, collaboration, transparency, research development, education and capacity building. (2) Process: enabling follow-up, knowledge translation, patient safety and quality assurance. (3) Outcome: facilitating evaluation, monitoring and improvement of national cancer control efforts. There is currently limited data and capacity to use this data in developing countries for these purposes. Summary There is an urgent need to improve health services for cancer control in developing countries. Current resources and much-needed investments must be optimally managed. To achieve this, we would recommend investment in four key priorities: (1) Capacity building in oncology health services research, policy and planning relevant to developing countries. (2) Development of high-quality health data sources. (3) More oncology-related economic evaluations in developing countries. (4) Exploration of high-quality models of cancer control in developing countries. Meeting these needs will require national, regional and international collaboration as well as political leadership. Horizontal integration with programs for other diseases will be important. PMID:20942937
Evidence of translation efficiency adaptation of the coding regions of the bacteriophage lambda.
Goz, Eli; Mioduser, Oriah; Diament, Alon; Tuller, Tamir
2017-08-01
Deciphering the way gene expression regulatory aspects are encoded in viral genomes is a challenging mission with ramifications related to all biomedical disciplines. Here, we aimed to understand how the evolution shapes the bacteriophage lambda genes by performing a high resolution analysis of ribosomal profiling data and gene expression related synonymous/silent information encoded in bacteriophage coding regions.We demonstrated evidence of selection for distinct compositions of synonymous codons in early and late viral genes related to the adaptation of translation efficiency to different bacteriophage developmental stages. Specifically, we showed that evolution of viral coding regions is driven, among others, by selection for codons with higher decoding rates; during the initial/progressive stages of infection the decoding rates in early/late genes were found to be superior to those in late/early genes, respectively. Moreover, we argued that selection for translation efficiency could be partially explained by adaptation to Escherichia coli tRNA pool and the fact that it can change during the bacteriophage life cycle.An analysis of additional aspects related to the expression of viral genes, such as mRNA folding and more complex/longer regulatory signals in the coding regions, is also reported. The reported conclusions are likely to be relevant also to additional viruses. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffery, Anthony J., E-mail: A.J.McCaffery@sussex.ac.uk
Little is known of the mechanism by which H and H{sub 2}, the principal constituents of the post-re-combination early Universe, cooled sufficiently to permit cluster formation, nucleosynthesis, and, eventually, the formation of structured objects. Radiative decay primarily cools the internal modes of H{sub 2}, as Δj = − 2 jumps accompany quadrupolar emission. This, however, would be a self-limiting mechanism. In this work, a translational energy cooling mechanism based on collision-induced, translation-to-internal mode conversion, is extended, following an earlier study [A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 139, 234310 (2013)] of ensembles comprising H{sub 2} in amore » H atom bath gas. Here, the possible influence of minor species, such as HD, on this cooling mechanism is investigated. Results suggest that the influence of HD is small but not insignificant. Conversion is very rapid and an overall translation-to-internal energy conversion efficiency of some 5% could be expected. This finding may be of use in the further development of models of this complex phase of early Universe evolution. An unexpected finding in this study was that H{sub 2} + HD ensembles are capable of very rapid translation-to-internal conversion with efficiencies of >40% and relaxation rates that appear to be relatively slow. This may have potential as an energy storage mechanism.« less
Ray, Swagat; Anderson, Emma C
2016-03-03
The RNA binding protein Unr, which contains five cold shock domains, has several specific roles in post-transcriptional control of gene expression. It can act as an activator or inhibitor of translation initiation, promote mRNA turnover, or stabilise mRNA. Its role depends on the mRNA and other proteins to which it binds, which includes cytoplasmic poly(A) binding protein 1 (PABP1). Since PABP1 binds to all polyadenylated mRNAs, and is involved in translation initiation by interaction with eukaryotic translation initiation factor 4G (eIF4G), we investigated whether Unr has a general role in translational control. We found that Unr strongly stimulates translation in vitro, and mutation of cold shock domains 2 or 4 inhibited its translation activity. The ability of Unr and its mutants to stimulate translation correlated with its ability to bind RNA, and to interact with PABP1. We found that Unr stimulated the binding of PABP1 to mRNA, and that Unr was required for the stable interaction of PABP1 and eIF4G in cells. siRNA-mediated knockdown of Unr reduced the overall level of cellular translation in cells, as well as that of cap-dependent and IRES-dependent reporters. These data describe a novel role for Unr in regulating cellular gene expression.
NAT1/DAP5/p97 and Atypical Translational Control in the Drosophila Circadian Oscillator
Bradley, Sean; Narayanan, Siddhartha; Rosbash, Michael
2012-01-01
Circadian rhythms are driven by gene expression feedback loops in metazoans. Based on the success of genetic screens for circadian mutants in Drosophila melanogaster, we undertook a targeted RNAi screen to study the impact of translation control genes on circadian locomotor activity rhythms in flies. Knockdown of vital translation factors in timeless protein-positive circadian neurons caused a range of effects including lethality. Knockdown of the atypical translation factor NAT1 had the strongest effect and lengthened circadian period. It also dramatically reduced PER protein levels in pigment dispersing factor (PDF) neurons. BELLE (BEL) protein was also reduced by the NAT1 knockdown, presumably reflecting a role of NAT1 in belle mRNA translation. belle and NAT1 are also targets of the key circadian transcription factor Clock (CLK). Further evidence for a role of NAT1 is that inhibition of the target of rapamycin (TOR) kinase increased oscillator activity in cultured wings, which is absent under conditions of NAT1 knockdown. Moreover, the per 5′- and 3′-UTRs may function together to facilitate cap-independent translation under conditions of TOR inhibition. We suggest that NAT1 and cap-independent translation are important for per mRNA translation, which is also important for the circadian oscillator. A circadian translation program may be especially important in fly pacemaker cells. PMID:22904033
Li, Rui; Zhang, Qing; Li, Junbai; Shi, Hualin
2016-01-01
An experimental system was designed to measure in vivo termination efficiency (TE) of the Rho-independent terminator and position–function relations were quantified for the terminator tR2 in Escherichia coli. The terminator function was almost completely repressed when tR2 was located several base pairs downstream from the gene, and TE gradually increased to maximum values with the increasing distance between the gene and terminator. This TE–distance relation reflected a stochastic coupling of the ribosome and RNA polymerase (RNAP). Terminators located in the first 100 bp of the coding region can function efficiently. However, functional repression was observed when the terminator was located in the latter part of the coding region, and the degree of repression was determined by transcriptional and translational dynamics. These results may help to elucidate mechanisms of Rho-independent termination and reveal genomic locations of terminators and functions of the sequence that precedes terminators. These observations may have important applications in synthetic biology. PMID:26602687
NASA Astrophysics Data System (ADS)
Palanisamy, Duraivelan; den Otter, Wouter K.
2018-05-01
We present an efficient general method to simulate in the Stokesian limit the coupled translational and rotational dynamics of arbitrarily shaped colloids subject to external potential forces and torques, linear flow fields, and Brownian motion. The colloid's surface is represented by a collection of spherical primary particles. The hydrodynamic interactions between these particles, here approximated at the Rotne-Prager-Yamakawa level, are evaluated only once to generate the body's (11 × 11) grand mobility matrix. The constancy of this matrix in the body frame, combined with the convenient properties of quaternions in rotational Brownian Dynamics, enables an efficient simulation of the body's motion. Simulations in quiescent fluids yield correct translational and rotational diffusion behaviour and sample Boltzmann's equilibrium distribution. Simulations of ellipsoids and spherical caps under shear, in the absence of thermal fluctuations, yield periodic orbits in excellent agreement with the theories by Jeffery and Dorrepaal. The time-varying stress tensors provide the Einstein coefficient and viscosity of dilute suspensions of these bodies.
Regulation of mRNA translation during mitosis.
Tanenbaum, Marvin E; Stern-Ginossar, Noam; Weissman, Jonathan S; Vale, Ronald D
2015-08-25
Passage through mitosis is driven by precisely-timed changes in transcriptional regulation and protein degradation. However, the importance of translational regulation during mitosis remains poorly understood. Here, using ribosome profiling, we find both a global translational repression and identified ~200 mRNAs that undergo specific translational regulation at mitotic entry. In contrast, few changes in mRNA abundance are observed, indicating that regulation of translation is the primary mechanism of modulating protein expression during mitosis. Interestingly, 91% of the mRNAs that undergo gene-specific regulation in mitosis are translationally repressed, rather than activated. One of the most pronounced translationally-repressed genes is Emi1, an inhibitor of the anaphase promoting complex (APC) which is degraded during mitosis. We show that full APC activation requires translational repression of Emi1 in addition to its degradation. These results identify gene-specific translational repression as a means of controlling the mitotic proteome, which may complement post-translational mechanisms for inactivating protein function.
STS-33 MS Carter operates translation hand control (THC) on aft flight deck
1989-11-27
STS033-93-011 (27 Nov 1989) --- Astronaut Manley L. Carter, Jr., STS-33 mission specialist, operates translation hand control (THC) at the aft flight deck on orbit station while peering out overhead window W7. Carter's communications kit assembly headset microphone extends across his face.
Regulatory BC1 RNA in Cognitive Control
ERIC Educational Resources Information Center
Iacoangeli, Anna; Dosunmu, Aderemi; Eom, Taesun; Stefanov, Dimitre G.; Tiedge, Henri
2017-01-01
Dendritic regulatory BC1 RNA is a non-protein-coding (npc) RNA that operates in the translational control of gene expression. The absence of BC1 RNA in BC1 knockout (KO) animals causes translational dysregulation that entails neuronal phenotypic alterations including prolonged epileptiform discharges, audiogenic seizure activity in vivo, and…
Ma, X X; Feng, Y P; Gu, Y X; Zhou, J H; Ma, Z R
2016-06-01
As for the alternative AUGs in foot-and-mouth disease virus (FMDV), nucleotide bias of the context flanking the AUG(2nd) could be used as a strong signal to initiate translation. To determine the role of the specific nucleotide context, dicistronic reporter constructs were engineered to contain different versions of nucleotide context linking between internal ribosome entry site (IRES) and downstream gene. The results indicate that under FMDV IRES-dependent mechanism, the nucleotide contexts flanking start codon can influence the translation initiation efficiencies. The most optimal sequences for both start codons have proved to be UUU AUG(1st) AAC and AAG AUG(2nd) GAA.
Hashimoto, Masayoshi; Neriya, Yutaro; Yamaji, Yasuyuki; Namba, Shigetou
2016-01-01
The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species. PMID:27833593
Translational regulation of sigma 32 synthesis: requirement for an internal control element.
Kamath-Loeb, A S; Gross, C A
1991-01-01
We have investigated the sequence requirements for the translational regulation of sigma 32 by examining the behavior of a new rpoH-lacZ protein fusion containing a short N-terminal fragment of sigma 32 fused to beta-galactosidase. Although the fusion retains rpoH translational initiation signals, it lacks translational regulation, implicating coding sequences within rpoH in this regulatory process. Images PMID:2050641
Axelsen, Lene N.; Calloe, Kirstine; Holstein-Rathlou, Niels-Henrik; Nielsen, Morten S.
2013-01-01
Gap junctions are comprised of connexins that form cell-to-cell channels which couple neighboring cells to accommodate the exchange of information. The need for communication does, however, change over time and therefore must be tightly controlled. Although the regulation of connexin protein expression by transcription and translation is of great importance, the trafficking, channel activity and degradation are also under tight control. The function of connexins can be regulated by several post translational modifications, which affect numerous parameters; including number of channels, open probability, single channel conductance or selectivity. The most extensively investigated post translational modifications are phosphorylations, which have been documented in all mammalian connexins. Besides phosphorylations, some connexins are known to be ubiquitinated, SUMOylated, nitrosylated, hydroxylated, acetylated, methylated, and γ-carboxyglutamated. The aim of the present review is to summarize our current knowledge of post translational regulation of the connexin family of proteins. PMID:24155720
Role of eIF2α Kinases in Translational Control and Adaptation to Cellular Stress.
Wek, Ronald C
2018-02-12
A central mechanism regulating translation initiation in response to environmental stress involves phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). Phosphorylation of eIF2α causes inhibition of global translation, which conserves energy and facilitates reprogramming of gene expression and signaling pathways that help to restore protein homeostasis. Coincident with repression of protein synthesis, many gene transcripts involved in the stress response are not affected or are even preferentially translated in response to increased eIF2α phosphorylation by mechanisms involving upstream open reading frames (uORFs). This review highlights the mechanisms regulating eIF2α kinases, the role that uORFs play in translational control, and the impact that alteration of eIF2α phosphorylation by gene mutations or small molecule inhibitors can have on health and disease. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
A New Approach to Attitude Stability and Control for Low Airspeed Vehicles
NASA Technical Reports Server (NTRS)
Lim, K. B.; Shin, Y-Y.; Moerder, D. D.; Cooper, E. G.
2004-01-01
This paper describes an approach for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The large thrust vector that characterizes such vehicles can be modulated to provide control forces and moments to the airframe, but such modulation is accompanied by significant unsteady flow effects. These effects are difficult to model, and can compromise the practical value of thrust vectoring in closed-loop attitude stability, even if the thrust vectoring machinery has sufficient bandwidth for stabilization. The stabilization approach described in this paper is based on using internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other "outer loop" control functions. The three main components of this approach are: (1) a z-body axis angular momentum bias enhances static attitude stability, reducing the amount of control activity needed for stabilization, (2) optionally, gimbaled reaction wheels provide high-bandwidth control torques for additional stabilization, or agility, and (3) the resulting strongly coupled system dynamics are controlled by a multivariable controller. A flight test vehicle is described, and nonlinear simulation results are provided that demonstrate the efficiency of the approach.
Abstract and proportional myoelectric control for multi-fingered hand prostheses.
Pistohl, Tobias; Cipriani, Christian; Jackson, Andrew; Nazarpour, Kianoush
2013-12-01
Powered hand prostheses with many degrees of freedom are moving from research into the market for prosthetics. In order to make use of the prostheses' full functionality, it is essential to study efficient ways of high dimensional myoelectric control. Human subjects can rapidly learn to employ electromyographic (EMG) activity of several hand and arm muscles to control the position of a cursor on a computer screen, even if the muscle-cursor map contradicts directions in which the muscles would act naturally. But can a similar control scheme be translated into real-time operation of a dexterous robotic hand? We found that despite different degrees of freedom in the effector output, the learning process for controlling a robotic hand was surprisingly similar to that for a virtual two-dimensional cursor. Control signals were derived from the EMG in two different ways, with a linear and a Bayesian filter, to test how stable user intentions could be conveyed through them. Our analysis indicates that without visual feedback, control accuracy benefits from filters that reject high EMG amplitudes. In summary, we conclude that findings on myoelectric control principles, studied in abstract, virtual tasks can be transferred to real-life prosthetic applications.
Mirghafourvand, Mojgan; Sehhati Shafaie, Fahimeh; Mohammad-Alizadeh-Charandabi, Sakineh; Jabbari, Batoul
2016-09-01
During recent decades, research in Iran in the area of the Quran and medical science has been seriously engaged in. With respect to the tendency toward spirituality and alternative medicine, we tried to find other aspects of the influence of the Quran. This study aimed to determine the effect of vocalizations of the Holy Quran with and without translation on the consequences of pregnancy (the prevalence of preterm delivery, caesarean delivery, and neonatal anthropometric indices) in women admitted to health care centers in Urmia, Iran. This was a three-armed parallel-group randomized clinical trial in which 168 pregnant women (25-28 weeks) in their first and second pregnancies were divided into three groups of 56 (Holy Quran with translation, Holy Quran without translation, and control group) by randomized blocking. The intervention was implemented once a week for three weeks in the health center, and on other days of the week, the participants listened at home to a CD they were given. The intervention and the control groups all received routine pregnancy care once a week. These mothers were tracked during their labor. Outcomes including gestational age at delivery, delivery type, and neonatal anthropometric indices were recorded based on the mother's records. There was no statistically significant difference between the groups in terms of demographic and obstetric characteristics before the intervention. In comparison with the control group, the probability of preterm delivery was lower in the Holy Quran with translation group (odds ratio: 0.3, CI 95%: 0.1-1.2) and in the Holy Quran without translation group (0.6, 0.2-1.9) as compared to the control group. However, this difference was not statistically significant. Similarly, the probability of caesarean delivery was lower in the Holy Quran with translation group (0.6, 0.3-1.4) and the Holy Quran without translation group (0.5, 0.2-1.2) as compared to the control group. Based on one-way ANOVA, there was no statistically significant difference between the study groups regarding the infants' anthropometric indices. Based on the results of this study, despite the lower prevalence of preterm labor and caesarean section in the intervention groups as compared to the control group, no statistically significant effect was seen. This was apparently due to the small sample size.
2010-01-01
Background Worksites are important locations for interventions to promote health. However, occupational programs with documented efficacy often are not used, and those being implemented have not been studied. The research in this report was funded through the American Reinvestment and Recovery Act Challenge Topic 'Pathways for Translational Research,' to define and prioritize determinants that enable and hinder translation of evidenced-based health interventions in well-defined settings. Methods The IGNITE (investigation to guide new insights for translational effectiveness) trial is a prospective cohort study of a worksite wellness and injury reduction program from adoption to final outcomes among 12 fire departments. It will employ a mixed methods strategy to define a translational model. We will assess decision to adopt, installation, use, and outcomes (reach, individual outcomes, and economic effects) using onsite measurements, surveys, focus groups, and key informant interviews. Quantitative data will be used to define the model and conduct mediation analysis of each translational phase. Qualitative data will expand on, challenge, and confirm survey findings and allow a more thorough understanding and convergent validity by overcoming biases in qualitative and quantitative methods used alone. Discussion Findings will inform worksite wellness in fire departments. The resultant prioritized influences and model of effective translation can be validated and manipulated in these and other settings to more efficiently move science to service. PMID:20932290
Sampled-data controller implementation
NASA Astrophysics Data System (ADS)
Wang, Yu; Leduc, Ryan J.
2012-09-01
The setting of this article is the implementation of timed discrete-event systems (TDES) as sampled-data (SD) controllers. An SD controller is driven by a periodic clock and sees the system as a series of inputs and outputs. On each clock edge (tick event), it samples its inputs, changes states and updates its outputs. In this article, we establish a formal representation of an SD controller as a Moore synchronous finite state machine (FSM). We describe how to translate a TDES supervisor to an FSM, as well as necessary properties to be able to do so. We discuss how to construct a single centralised controller as well as a set of modular controllers, and show that they will produce equivalent output. We briefly discuss how the recently introduced SD controllability definition relates to our translation method. SD controllability is an extension of TDES controllability which captures several new properties that are useful in dealing with concurrency issues, as well as make it easier to translate a TDES supervisor into an SD controller. We next discuss the application of SD controllability to a small flexible manufacturing system (FMS) from the literature. The example demonstrates the successful application of the new SD properties. We describe the design of the system in detail to illustrate the new conditions and to provide designers with guidance on how to apply the properties. We also present some FSM translation issues encountered, as well as the FSM version of the system's supervisors.
Donzé, O; Spahr, P F
1992-01-01
The Rous sarcoma virus (RSV) RNA leader sequence carries three open reading frames (uORFs) upstream of the AUG initiator of the gag gene. We studied, in vivo, the role of these uORFs by changing two or three nucleotides of the three AUGs or by deleting the first uORF. Our results show that (i) unlike most previously characterized uORFs, which decrease translation, the first uORF (AUG1) of RSV acts as an enhancer of translation, since absence of the first AUG decreased translation; AUG3 also modulates translation, probably by interfering with scanning ribosomes as described for other upstream ORFs, and mutation of AUG2 had no effect on translation. (ii) Mutation of each of the upstream AUGs lowered the infectivity of progeny virions. (iii) Unexpectedly, mutation of AUG1 and/or AUG3 dramatically reduced RNA packaging by 50-to 100-fold, unlike mutation of AUG2 which did not alter RNA packaging efficiency. Additional mutants in the vicinity of uORF1 and uORF3 were constructed in order to elucidate the mechanism by which uORFs affect RNA packaging: a translation model requiring uORFs 1 and 3, and involving ribosome pausing at AUG 3 is discussed. Images PMID:1327749
Poly(ADP-Ribosyl)ation of hnRNP A1 Protein Controls Translational Repression in Drosophila
Ji, Yingbiao
2016-01-01
Poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins (hnRNPs) regulates the posttranscriptional fate of RNA during development. Drosophila hnRNP A1, Hrp38, is required for germ line stem cell maintenance and oocyte localization. The mRNA targets regulated by Hrp38 are mostly unknown. We identified 428 Hrp38-associated gene transcripts in the fly ovary, including mRNA of the translational repressor Nanos. We found that Hrp38 binds to the 3′ untranslated region (UTR) of Nanos mRNA, which contains a translation control element. We have demonstrated that translation of the luciferase reporter bearing the Nanos 3′ UTR is enhanced by dsRNA-mediated Hrp38 knockdown as well as by mutating potential Hrp38-binding sites. Our data show that poly(ADP-ribosyl)ation inhibits Hrp38 binding to the Nanos 3′ UTR, increasing the translation in vivo and in vitro. hrp38 and Parg null mutants showed an increased ectopic Nanos translation early in the embryo. We conclude that Hrp38 represses Nanos translation, whereas its poly(ADP-ribosyl)ation relieves the repression effect, allowing restricted Nanos expression in the posterior germ plasm during oogenesis and early embryogenesis. PMID:27402862
A linear circuit analysis program with stiff systems capability
NASA Technical Reports Server (NTRS)
Cook, C. H.; Bavuso, S. J.
1973-01-01
Several existing network analysis programs have been modified and combined to employ a variable topological approach to circuit translation. Efficient numerical integration techniques are used for transient analysis.
Sakuma, Kari-Lyn K; Riggs, Nathaniel R; Pentz, Mary Ann
2012-04-01
Effective school-based obesity prevention programs are needed to prevent and reduce the growing obesity risk among youth. Utilizing the evidence-rich areas of violence and substance use prevention, translation science may provide an efficient means for developing curricula across multiple health behaviors. This paper introduces Pathways to Health, a school-based obesity prevention program that was developed by translating from evidence-based violence and drug use prevention programs, Promoting Alternative THinking Strategies and the Midwestern Prevention Project STAR (STAR). We illustrate how a hypothesized underlying behavior change mechanism in two domains of risk behavior, violence and substance use, can be applied to obesity prevention. A 4-step translational process is provided and may be relevant for use in developing other curricula to address multiple health risk behaviors. Practical application and decision points are also provided.
Singh, Vijay Pal; Pratap, Kunal; Sinha, Juhi; Desiraju, Koundinya; Bahal, Devika; Kukreti, Ritushree
2016-12-01
Animal experiments that are conducted worldwide contribute to significant findings and breakthroughs in the understanding of the underlying mechanisms of various diseases, bringing up appropriate clinical interventions. However, their predictive value is often low, leading to translational failure. Problems like translational failure of animal studies and poorly designed animal experiments lead to loss of animal lives and less translatable data which affect research outcomes ethically and economically. Due to increasing complexities in animal usage with changes in public perception and stringent guidelines, it is becoming difficult to use animals for conducting studies. This review deals with challenges like poor experimental design and ethical concerns and discusses key concepts like sample size, statistics in experimental design, humane endpoints, economic assessment, species difference, housing conditions, and systematic reviews and meta-analyses that are often neglected. If practiced, these strategies can refine the procedures effectively and help translate the outcomes efficiently. © The Author(s) 2016.
Translational mini-screw implant research.
Rossouw, Emile
2014-09-01
It is important to thoroughly test new materials as well as techniques when these innovations are to be utilized in the human clinical situation. Translational research fills this important niche. The purpose of translational research is to establish the continuity of evidence from the laboratory to the clinic and in so-doing, provide evidence that the material is functioning appropriately and that the process in the human will be successful. This concept applies to the mini-screw implant; which, has been very successfully introduced into the orthodontic armamentarium over the last decade for application as a temporary anchorage device. The examples of translational research that will be illustrated in this paper have paved the way to ensure that clinicians have evidence to confidently utilize mini-screw implants in orthodontic practice. Needless to say, more studies are needed to ensure a safe, effective and efficient manner to practice orthodontics. © 2014 British Orthodontic Society.
Links, Amanda E.; Draper, David; Lee, Elizabeth; Guzman, Jessica; Valivullah, Zaheer; Maduro, Valerie; Lebedev, Vlad; Didenko, Maxim; Tomlin, Garrick; Brudno, Michael; Girdea, Marta; Dumitriu, Sergiu; Haendel, Melissa A.; Mungall, Christopher J.; Smedley, Damian; Hochheiser, Harry; Arnold, Andrew M.; Coessens, Bert; Verhoeven, Steven; Bone, William; Adams, David; Boerkoel, Cornelius F.; Gahl, William A.; Sincan, Murat
2016-01-01
The National Institutes of Health Undiagnosed Diseases Program (NIH UDP) applies translational research systematically to diagnose patients with undiagnosed diseases. The challenge is to implement an information system enabling scalable translational research. The authors hypothesized that similar complex problems are resolvable through process management and the distributed cognition of communities. The team, therefore, built the NIH UDP integrated collaboration system (UDPICS) to form virtual collaborative multidisciplinary research networks or communities. UDPICS supports these communities through integrated process management, ontology-based phenotyping, biospecimen management, cloud-based genomic analysis, and an electronic laboratory notebook. UDPICS provided a mechanism for efficient, transparent, and scalable translational research and thereby addressed many of the complex and diverse research and logistical problems of the NIH UDP. Full definition of the strengths and deficiencies of UDPICS will require formal qualitative and quantitative usability and process improvement measurement. PMID:27785453
Lohmer, S; Maddaloni, M; Motto, M; Salamini, F; Thompson, R D
1993-01-01
The protein encoded by the Opaque-2 (O2) gene is a transcription factor, translated from an mRNA that possesses an unusually long 5' leader sequence containing three upstream open reading frames (uORFs). The efficiency of translation of O2 mRNA has been tested in vivo by a transient assay in which the level of activation of the b32 promoter, a natural target of O2 protein, is measured. We show that uORF-less O2 alleles possess a higher transactivation value than the wild-type allele and that the reduction in transactivation due to the uORFs is a cis-dominant effect. The data presented indicate that both uORF1 and uORF2 are involved in the reducing effect and suggest that both are likely to be translated. PMID:8439744
Singh, Vijay Pal; Pratap, Kunal; Sinha, Juhi; Desiraju, Koundinya; Bahal, Devika; Kukreti, Ritushree
2016-01-01
Animal experiments that are conducted worldwide contribute to significant findings and breakthroughs in the understanding of the underlying mechanisms of various diseases, bringing up appropriate clinical interventions. However, their predictive value is often low, leading to translational failure. Problems like translational failure of animal studies and poorly designed animal experiments lead to loss of animal lives and less translatable data which affect research outcomes ethically and economically. Due to increasing complexities in animal usage with changes in public perception and stringent guidelines, it is becoming difficult to use animals for conducting studies. This review deals with challenges like poor experimental design and ethical concerns and discusses key concepts like sample size, statistics in experimental design, humane endpoints, economic assessment, species difference, housing conditions, and systematic reviews and meta-analyses that are often neglected. If practiced, these strategies can refine the procedures effectively and help translate the outcomes efficiently. PMID:27694614
Sakuma, Kari-Lyn K.; Riggs, Nathaniel R.; Pentz, Mary Ann
2012-01-01
Effective school-based obesity prevention programs are needed to prevent and reduce the growing obesity risk among youth. Utilizing the evidence-rich areas of violence and substance use prevention, translation science may provide an efficient means for developing curricula across multiple health behaviors. This paper introduces Pathways to Health, a school-based obesity prevention program that was developed by translating from evidence-based violence and drug use prevention programs, Promoting Alternative THinking Strategies and the Midwestern Prevention Project STAR (STAR). We illustrate how a hypothesized underlying behavior change mechanism in two domains of risk behavior, violence and substance use, can be applied to obesity prevention. A 4-step translational process is provided and may be relevant for use in developing other curricula to address multiple health risk behaviors. Practical application and decision points are also provided. PMID:21987475
Oesterle, Sabine; Gerngross, Daniel; Schmitt, Steven; Roberts, Tania Michelle; Panke, Sven
2017-09-26
Multiplexed gene expression optimization via modulation of gene translation efficiency through ribosome binding site (RBS) engineering is a valuable approach for optimizing artificial properties in bacteria, ranging from genetic circuits to production pathways. Established algorithms design smart RBS-libraries based on a single partially-degenerate sequence that efficiently samples the entire space of translation initiation rates. However, the sequence space that is accessible when integrating the library by CRISPR/Cas9-based genome editing is severely restricted by DNA mismatch repair (MMR) systems. MMR efficiency depends on the type and length of the mismatch and thus effectively removes potential library members from the pool. Rather than working in MMR-deficient strains, which accumulate off-target mutations, or depending on temporary MMR inactivation, which requires additional steps, we eliminate this limitation by developing a pre-selection rule of genome-library-optimized-sequences (GLOS) that enables introducing large functional diversity into MMR-proficient strains with sequences that are no longer subject to MMR-processing. We implement several GLOS-libraries in Escherichia coli and show that GLOS-libraries indeed retain diversity during genome editing and that such libraries can be used in complex genome editing operations such as concomitant deletions. We argue that this approach allows for stable and efficient fine tuning of chromosomal functions with minimal effort.
Changes in skeletal muscle gene expression consequent to altered weight bearing
NASA Technical Reports Server (NTRS)
Booth, F. W.; Kirby, C. R.
1992-01-01
Skeletal muscle is a dynamic organ that adapts to alterations in weight bearing. This brief review examines changes in muscle gene expression resulting from the removal of weight bearing by hindlimb suspension and from increased weight bearing due to eccentric exercise. Acute (less than or equal to 2 days) non-weight bearing of adult rat soleus muscle alters only the translational control of muscle gene expression, while chronic (greater than or equal to 7 days) removal of weight bearing appears to influence pretranslational, translational, and posttranslational mechanisms of control. Acute and chronic eccentric exercise are associated with alterations of translational and posttranslational control, while chronic eccentric training also alters the pretranslational control of muscle gene expression. Thus alterations in weight bearing influence multiple sites of gene regulation.
Final Technical Report: Commercial Advanced Lighting Control (ALC) Demonstration and Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Gabe
This three-year demonstration and deployment project sought to address market barriers to accelerating the adoption of Advanced Lighting Controls (ALCs), an underutilized technology with low market penetration. ALCs are defined as networked, addressable lighting control systems that utilize software or intelligent controllers to combine multiple energy-saving lighting control strategies in a single space (e.g., smart-time scheduling, daylight harvesting, task tuning, occupancy control, personal control, variable load-shedding, and plug-load control). The networked intelligent aspect of these systems allows applicable lighting control strategies to be combined in a single space, layered over one another, maximizing overall energy-savings. The project included five realmore » building demonstrations of ALCs across the Northeast US region. The demonstrations provided valuable data and experience to support deployment tasks that are necessary to overcome market barriers. These deployment tasks included development of training resources for building designers, installers, and trades, as well as development of new energy efficiency rebates for the technology from Efficiency Forward’s utility partners. Educating designers, installers, and trades on ALCs is a critical task for reducing the cost of the technology that is currently inflated due to perceived complexity and unfamiliarity with how to design and install the systems. Further, utility and non-utility energy efficiency programs continue to relegate the technology to custom or ill-suited prescriptive program designs that do not effectively deploy the technology at scale. This project developed new, scalable rebate approaches for the technology. Efficiency Forward utilized their DesignLights Consortium® (DLC) brand and network of 81 DLC member utilities to develop and deploy the results of the project. The outputs of the project have included five published case studies, a six-hour ALC technology training curriculum that has already been deployed in five US states, and new rebates offered for the technology that have been deployed by a dozen utilities across the US. Widespread adoption of ALC technology in commercial buildings would provide tremendous benefits. The current market penetration of ALC systems is estimated at <0.1% in commercial buildings. If ALC systems were installed in all commercial buildings, approximately 1,051 TBtu of energy could be saved. This would translate into customer cost savings of approximately $10.7 billion annually.« less
Safina, Alfiya; Garcia, Henry; Commane, Mairead; Guryanova, Olga; Degan, Seamus; Kolesnikova, Kateryna; Gurova, Katerina V
2013-08-01
Facilitates chromatin transcription (FACT) is a chromatin remodeling complex with two subunits: SSRP1 and SPT16. Mechanisms controlling FACT levels are of interest, since the complex is not expressed in most differentiated cells, but is frequently upregulated in cancer, particularly in poorly differentiated, aggressive tumors. Moreover, inhibition of FACT expression or function in tumor cells interferes with their survival. Here we demonstrate that SSRP1 and SPT16 protein levels decline upon induction of cellular differentiation or senescence in vitro and that similar declines in protein levels for both SSRP1 and SPT16 occur upon RNAi-mediated knockdown of either SSRP1 or SPT16. The interdependence of SSRP1 and SPT16 protein levels was found to be due to their association with SSRP1 and SPT16 mRNAs, which stabilizes the proteins. In particular, presence of SSRP1 mRNA is critical for SPT16 protein stability. In addition, binding of SSRP1 and SPT16 mRNAs to the FACT complex increases the stability and efficiency of translation of the mRNAs. These data support a model in which the FACT complex is stable when SSRP1 mRNA is present, but quickly degrades when SSRP1 mRNA levels drop. In the absence of FACT complex, SSRP1 and SPT16 mRNAs are unstable and inefficiently translated, making reactivation of FACT function unlikely in normal cells. Thus, we have described a complex and unusual mode of regulation controlling cellular FACT levels that results in amplified and stringent control of FACT activity. The FACT dependence of tumor cells suggests that mechanisms controlling FACT levels could be targeted for anticancer therapy.
Terwee, C B; Roorda, L D; de Vet, H C W; Dekker, J; Westhovens, R; van Leeuwen, J; Cella, D; Correia, H; Arnold, B; Perez, B; Boers, M
2014-08-01
The Patient-Reported Outcomes Measurement Information System (PROMIS(®)) is a new, state-of-the-art assessment system for measuring patient-reported health and well-being of adults and children that has the potential to be more valid, reliable and responsive than existing PROMs. The PROMIS items can be administered in short forms or, more efficiently, through computerized adaptive testing. This paper describes the translation of 563 items from 17 PROMIS item banks (domains) for adults from the English source into Dutch-Flemish. The translation was performed by FACITtrans using standardized methodology and approved by the PROMIS Statistical Center. The translation included four forward translations, two back-translations, three to five independent reviews (at least two Dutch, one Flemish) and pre-testing in 70 adults (age range 20-77) from the Netherlands and Flanders. A small number of items required separate translations for Dutch and Flemish: physical function (five items), pain behaviour (two items), pain interference (one item), social isolation (one item) and global health (one item). Challenges faced in the translation process included: scarcity or overabundance of possible translations, unclear item descriptions, constructs broader/smaller in the target language, difficulties in rank ordering items, differences in unit of measurement, irrelevant items or differences in performance of activities. By addressing these challenges, acceptable translations were obtained for all items. The methodology used and experience gained in this study can be used as an example for researchers in other countries interested in translating PROMIS. The Dutch-Flemish PROMIS items are linguistically equivalent. Short forms will soon be available for use and entire item banks are ready for cross-cultural validation in the Netherlands and Flanders.
Liu, Jianyu; Stevens, Payton D; Eshleman, Nichole E; Gao, Tianyan
2013-08-09
Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.
Evaluation Guidelines for the Clinical and Translational Science Awards (CTSAs)
Rubio, Doris M.; Thomas, Veronica G.
2013-01-01
Abstract The National Center for Advancing Translational Sciences (NCATS), a part of the National Institutes of Health, currently funds the Clinical and Translational Science Awards (CTSAs), a national consortium of 61 medical research institutions in 30 states and the District of Columbia. The program seeks to transform the way biomedical research is conducted, speed the translation of laboratory discoveries into treatments for patients, engage communities in clinical research efforts, and train a new generation of clinical and translational researchers. An endeavor as ambitious and complex as the CTSA program requires high‐quality evaluations in order to show that the program is well implemented, efficiently managed, and demonstrably effective. In this paper, the Evaluation Key Function Committee of the CTSA Consortium presents an overall framework for evaluating the CTSA program and offers policies to guide the evaluation work. The guidelines set forth are designed to serve as a tool for education within the CTSA community by illuminating key issues and practices that should be considered during evaluation planning, implementation, and utilization. Additionally, these guidelines can provide a basis for ongoing discussions about how the principles articulated in this paper can most effectively be translated into operational reality. PMID:23919366
Efficient Cleavage of Ribosome-Associated Poly(A)-Binding Protein by Enterovirus 3C Protease
Kuyumcu-Martinez, N. Muge; Joachims, Michelle; Lloyd, Richard E.
2002-01-01
Poliovirus (PV) causes a rapid and drastic inhibition of host cell cap-dependent protein synthesis during infection while preferentially allowing cap-independent translation of its own genomic RNA via an internal ribosome entry site element. Inhibition of cap-dependent translation is partly mediated by cleavage of an essential translation initiation factor, eIF4GI, during PV infection. In addition to cleavage of eIF4GI, cleavage of eIF4GII and poly(A)-binding protein (PABP) has been recently proposed to contribute to complete host translation shutoff; however, the relative importance of eIF4GII and PABP cleavage has not been determined. At times when cap-dependent translation is first blocked during infection, only 25 to 35% of the total cellular PABP is cleaved; therefore, we hypothesized that the pool of PABP associated with polysomes may be preferentially targeted by viral proteases. We have investigated what cleavage products of PABP are produced in vivo and the substrate determinants for cleavage of PABP by 2A protease (2Apro) or 3C protease (3Cpro). Our results show that PABP in ribosome-enriched fractions is preferentially cleaved in vitro and in vivo compared to PABP in other fractions. Furthermore, we have identified four N-terminal PABP cleavage products produced during PV infection and have shown that viral 3C protease generates three of the four cleavage products. Also, 3Cpro is more efficient in cleaving PABP in ribosome-enriched fractions than 2Apro in vitro. In addition, binding of PABP to poly(A) RNA stimulates 3Cpro-mediated cleavage and inhibits 2Apro-mediated cleavage. These results suggest that 3Cpro plays a major role in processing PABP during virus infection and that the interaction of PABP with translation initiation factors, ribosomes, or poly(A) RNA may promote its cleavage by viral 2A and 3C proteases. PMID:11836384
Sethi, Sachin
2017-01-01
Several techniques have been developed to manipulate gene expression temporally in intact neural circuits. However, the applicability of current tools developed for in vivo studies in Drosophila is limited by their incompatibility with existing GAL4 lines and side effects on physiology and behavior. To circumvent these limitations, we adopted a strategy to reversibly regulate protein degradation with a small molecule by using a destabilizing domain (DD). We show that this system is effective across different tissues and developmental stages. We further show that this system can be used to control in vivo gene expression levels with low background, large dynamic range, and in a reversible manner without detectable side effects on the lifespan or behavior of the animal. Additionally, we engineered tools for chemically controlling gene expression (GAL80-DD) and recombination (FLP-DD). We demonstrate the applicability of this technology in manipulating neuronal activity and for high-efficiency sparse labeling of neuronal populations. PMID:29140243
Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis
Chang, Chih-Hao; Curtis, Jonathan D.; Maggi, Leonard B.; Faubert, Brandon; Villarino, Alejandro V.; O’Sullivan, David; Huang, Stanley Ching-Cheng; van der Windt, Gerritje J.W.; Blagih, Julianna; Qiu, Jing; Weber, Jason D.; Pearce, Edward J.; Jones, Russell G.; Pearce, Erika L.
2013-01-01
SUMMARY A “switch” from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete environment, remains incompletely understood. We show here that aerobic glycolysis is specifically required for effector function in T cells but that this pathway is not necessary for proliferation or survival. When activated T cells are provided with costimulation and growth factors but are blocked from engaging glycolysis, their ability to produce IFN-γ is markedly compromised. This defect is translational and is regulated by the binding of the glycolysis enzyme GAPDH to AU-rich elements within the 3′ UTR of IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through fluctuations in its expression, controls effector cytokine production. Thus, aerobic glycolysis is a metabolically regulated signaling mechanism needed to control cellular function. PMID:23746840
Singlet oxygen-dependent translational control in the tigrina-d.12 mutant of barley.
Khandal, Dhriti; Samol, Iga; Buhr, Frank; Pollmann, Stephan; Schmidt, Holger; Clemens, Stephan; Reinbothe, Steffen; Reinbothe, Christiane
2009-08-04
The tigrina (tig)-d.12 mutant of barley is impaired in the negative control limiting excess protochlorophyllide (Pchlide) accumulation in the dark. Upon illumination, Pchlide operates as photosensitizer and triggers singlet oxygen production and cell death. Here, we show that both Pchlide and singlet oxygen operate as signals that control gene expression and metabolite accumulation in tig-d.12 plants. In vivo labeling, Northern blotting, polysome profiling, and protein gel blot analyses revealed a selective suppression of synthesis of the small and large subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (RBCSs and RBCLs), the major light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCB2), as well as other chlorophyll-binding proteins, in response to singlet oxygen. In part, these effects were caused by an arrest in translation initiation of photosynthetic transcripts at 80S cytoplasmic ribosomes. The observed changes in translation correlated with a decline in the phosphorylation level of ribosomal protein S6. At later stages, ribosome dissociation occurred. Together, our results identify translation as a major target of singlet oxygen-dependent growth control and cell death in higher plants.
Not lost in translation: how study of diseases in our pets can benefit them and us.
Henry, Carolyn J; Bryan, Jeffrey N
2013-01-01
Practice-changing medical discovery requires preclinical and clinical assessment be carried out using appropriate disease models. There is growing awareness of companion animals with naturally-occurring disease as such models. They offer significant advantages over more traditional in vivo models of induced disease. This review describes current efforts to promote translation of discoveries between human and veterinary medicine in order to more rapidly and efficiently make progress in improving the health of all human and animal patients.
Female Gynecologists and Their Birth Control Clinics: Eugenics in Practice in 1920s-1930s China.
David, Mirela
2018-01-01
Yang Chao Buwei, the first Chinese translator of Margaret Sanger's What Every Girl Should Know, was the first female gynecologist to open up a birth control clinic in China. By the 1930s, other female gynecologists, like Guo Taihua, had internalized and combined national and eugenic concerns of race regeneration to focus on the control of women's reproduction. This symbiosis between racial regeneration and birth control is best seen in Yang Chongrui's integration of birth control into her national hygiene program. This article traces the efforts of pioneer gynecologists in giving contraceptive advice at their birth control clinics, which they framed as a humanitarian effort to ease the reproductive burden of working-class women. It also examines their connections with Sanger's international birth control movement, and their advocacy of contraception as practitioners, translators, and educators. The author argues that these Chinese female gynecologists not only borrowed, but adapted, Western scientific knowledge to Chinese social conditions through their writings and translations and in their clinical work.
Control for small-speed lateral flight in a model insect.
Zhang, Yan Lai; Sun, Mao
2011-09-01
Controls required for small-speed lateral flight of a model insect were studied using techniques based on the linear theories of stability and control (the stability and control derivatives were computed by the method of computational fluid dynamics). The main results are as follows. (1) Two steady-state lateral motions can exist: one is a horizontal side translation with the body rolling to the same side of the translation by a small angle, and the other is a constant-rate yaw rotation (rotation about the vertical axis). (2) The side translation requires an anti-symmetrical change in the stroke amplitudes of the contralateral wings, and/or an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having equal change. The constant-rate yaw rotation requires an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having differential change. (3) For the control of the horizontal side translation, control input required for the steady-state motion has an opposite sign to that needed for initiating the motion. For example, to have a steady-state left side-translation, the insect needs to increase the stroke amplitude of the left wing and decrease that of the right wing to maintain the steady-state flight, but it needs an opposite change in stroke amplitude (decreasing the stroke amplitude of the left wing and increasing that of the right wing) to enter the flight.
McIlvane, William J; Kledaras, Joanne B; Gerard, Christophe J; Wilde, Lorin; Smelson, David
2018-07-01
A few noteworthy exceptions notwithstanding, quantitative analyses of relational learning are most often simple descriptive measures of study outcomes. For example, studies of stimulus equivalence have made much progress using measures such as percentage consistent with equivalence relations, discrimination ratio, and response latency. Although procedures may have ad hoc variations, they remain fairly similar across studies. Comparison studies of training variables that lead to different outcomes are few. Yet to be developed are tools designed specifically for dynamic and/or parametric analyses of relational learning processes. This paper will focus on recent studies to develop (1) quality computer-based programmed instruction for supporting relational learning in children with autism spectrum disorders and intellectual disabilities and (2) formal algorithms that permit ongoing, dynamic assessment of learner performance and procedure changes to optimize instructional efficacy and efficiency. Because these algorithms have a strong basis in evidence and in theories of stimulus control, they may have utility also for basic and translational research. We present an overview of the research program, details of algorithm features, and summary results that illustrate their possible benefits. It also presents arguments that such algorithm development may encourage parametric research, help in integrating new research findings, and support in-depth quantitative analyses of stimulus control processes in relational learning. Such algorithms may also serve to model control of basic behavioral processes that is important to the design of effective programmed instruction for human learners with and without functional disabilities. Copyright © 2018 Elsevier B.V. All rights reserved.
Chen, Zeming; Liu, Fuyao; Chen, Yanke; Liu, Jun; Wang, Xiaoying; Chen, Ann T; Deng, Gang; Zhang, Hongyi; Liu, Jie; Hong, Zhangyong; Zhou, Jiangbing
2017-12-08
Due to its simplicity, versatility, and high efficiency, the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology has emerged as one of the most promising approaches for treatment of a variety of genetic diseases, including human cancers. However, further translation of CRISPR/Cas9 for cancer gene therapy requires development of safe approaches for efficient, highly specific delivery of both Cas9 and single guide RNA to tumors. Here, novel core-shell nanostructure, liposome-templated hydrogel nanoparticles (LHNPs) that are optimized for efficient codelivery of Cas9 protein and nucleic acids is reported. It is demonstrated that, when coupled with the minicircle DNA technology, LHNPs deliver CRISPR/Cas9 with efficiency greater than commercial agent Lipofectamine 2000 in cell culture and can be engineered for targeted inhibition of genes in tumors, including tumors the brain. When CRISPR/Cas9 targeting a model therapeutic gene, polo-like kinase 1 (PLK1), is delivered, LHNPs effectively inhibit tumor growth and improve tumor-bearing mouse survival. The results suggest LHNPs as versatile CRISPR/Cas9-delivery tool that can be adapted for experimentally studying the biology of cancer as well as for clinically translating cancer gene therapy.
Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus
Howard-Varona, Cristina; Roux, Simon; Dore, Hugo; ...
2016-05-17
Microbes impact human health and disease, industrial processes and natural ecosystems, but do so under the influence of viruses. Problematically, knowledge of viral infection efficiencies and outcomes (e.g. lysis, lysogeny) derives from few model systems that over-represent efficient, lytic infections and under-represent virus-host natural diversity. Here we sought to understand how infection efficiency is regulated in an environmental Bacteroidetes virus that represents a globally abundant viral group and has drastically different infection efficiencies when infecting two nearly identical bacterial strains. To this end, we quantified bacterial virus (phage) and host DNA, transcripts and phage particles throughout the infection of bothmore » bacterial hosts. While the phage transcriptome was similar during both infections, host transcriptional differences appeared to have altered infection efficiency. Specifically, host transcriptomes suggested that the phage failed to repress early host expression in the inefficient nfection, thereby allowing the host to respond against infection by delaying phage DNA replication and protein translation. Further measurements showed that phage DNA and particle production were delayed (by >30 minutes) and reduced (by >50%) in the inefficient versus efficient infection as the host over-expressed DNA degradation genes and under-expressed translation genes, respectively. Together these results suggest that multiple levels of regulation can impact infection efficiencies as failure to repress host transcription allowed the host to defend against both phage DNA and protein production. Given that this phage type is ubiquitous and abundant in the global oceans and that variably efficient viral infections are likely common in any ecosystem with varying phage-host abundances and physiological states, these data provide a critically needed foundation for understanding and modeling viral infection efficiency in nature.« less
Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard-Varona, Cristina; Roux, Simon; Dore, Hugo
Microbes impact human health and disease, industrial processes and natural ecosystems, but do so under the influence of viruses. Problematically, knowledge of viral infection efficiencies and outcomes (e.g. lysis, lysogeny) derives from few model systems that over-represent efficient, lytic infections and under-represent virus-host natural diversity. Here we sought to understand how infection efficiency is regulated in an environmental Bacteroidetes virus that represents a globally abundant viral group and has drastically different infection efficiencies when infecting two nearly identical bacterial strains. To this end, we quantified bacterial virus (phage) and host DNA, transcripts and phage particles throughout the infection of bothmore » bacterial hosts. While the phage transcriptome was similar during both infections, host transcriptional differences appeared to have altered infection efficiency. Specifically, host transcriptomes suggested that the phage failed to repress early host expression in the inefficient nfection, thereby allowing the host to respond against infection by delaying phage DNA replication and protein translation. Further measurements showed that phage DNA and particle production were delayed (by >30 minutes) and reduced (by >50%) in the inefficient versus efficient infection as the host over-expressed DNA degradation genes and under-expressed translation genes, respectively. Together these results suggest that multiple levels of regulation can impact infection efficiencies as failure to repress host transcription allowed the host to defend against both phage DNA and protein production. Given that this phage type is ubiquitous and abundant in the global oceans and that variably efficient viral infections are likely common in any ecosystem with varying phage-host abundances and physiological states, these data provide a critically needed foundation for understanding and modeling viral infection efficiency in nature.« less
Delay-based virtual congestion control in multi-tenant datacenters
NASA Astrophysics Data System (ADS)
Liu, Yuxin; Zhu, Danhong; Zhang, Dong
2018-03-01
With the evolution of cloud computing and virtualization, the congestion control of virtual datacenters has become the basic issue for multi-tenant datacenters transmission. Regarding to the friendly conflict of heterogeneous congestion control among multi-tenant, this paper proposes a delay-based virtual congestion control, which translates the multi-tenant heterogeneous congestion control into delay-based feedback uniformly by setting the hypervisor translation layer, modifying three-way handshake of explicit feedback and packet loss feedback and throttling receive window. The simulation results show that the delay-based virtual congestion control can effectively solve the unfairness of heterogeneous feedback congestion control algorithms.
Russo, Laura; Berardi, Valerio; Tardani, Franco; La Mesa, Camillo; Risuleo, Gianfranco
2013-01-01
Catanionic vesicles are supramolecular aggregates spontaneously forming in water by electrostatic attraction between two surfactants mixed in nonstoichiometric ratios. The outer surface charges allow adsorption to the biomembrane by electrostatic interactions. The lipoplex thus obtained penetrates the cell by endocytosis or membrane fusion. We examined the possible cytotoxic effects and evaluated the transfection efficiency of one vesicle type as compared to known commercial carriers. We show that the individual components of two different vesicles types, CTAB (cetyltrimethylammonium bromide) and DDAB (didodecyldimethylammonium bromide) are detrimental for cell survival. We also assayed the cytotoxicity of SDS-DDAB vesicles and showed dose and time dependency, with the DDAB component being per se extremely cytotoxic. The transfection efficiency of exogenous RNA mediated by SDS-CTAB increases if vesicles assemble in the presence of the reporter RNA; finally, freezing abrogates the transfection ability. The results of our experimental strategy suggest that catanionic vesicles may be adopted in gene therapy and control of antiproliferative diseases.
Nogueira-Silva, Luís; Sá-Sousa, Ana; Lima, Maria João; Monteiro, Agostinho; Dennison-Himmelfarb, Cheryl; Fonseca, João A
2016-02-01
Hypertension is an extremely prevalent disease worldwide and hypertension control rates remain low. Lack of adherence contributes to poor control and to cardiovascular events. No questionnaire in Portuguese is readily available for the assessment of adherence to antihypertensive drugs. We aimed to perform a translation and cultural adaptation to Portuguese of the Hill-Bone Compliance to High Blood Pressure Therapy Scale, a validated instrument to measure adherence in hypertensive patients. A formal process was employed, consisting of a forward translation by two independent translators and a back translation by a third translator. Discrepancies were resolved after each step. Hypertensive patients were involved to identify and resolve phrasing and wording difficulties and misunderstandings. The forward and back translation did not produce significant discrepancies. However, important issues were identified when the questionnaire was presented to patients, which led to changes in the wording of the questions and in the format of the questionnaire. Questionnaires are important instruments to assess adherence to therapy, particularly in hypertension. A formal translation and cultural adaptation process ensures that the new version maintains the same concepts as the original. After translation, several changes were necessary to ensure that the questionnaire was understandable by elderly, low literacy patients, such as the majority of hypertensive patients. We propose a Portuguese version of the Hill-Bone Compliance Scale, which will require validation in further studies. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.
Rodríguez, Andrea E; López-Crisosto, Camila; Peña-Oyarzún, Daniel; Salas, Daniela; Parra, Valentina; Quiroga, Clara; Morawe, Tobias; Chiong, Mario; Behl, Christian; Lavandero, Sergio
2016-01-01
Autophagy is mainly regulated by post-translational and lipid modifications of ATG proteins. In some scenarios, the induction of autophagy is accompanied by increased levels of certain ATG mRNAs such as MAP1LC3B/LC3B, ATG5 or ATG12. However, little is known about the regulation of ATG protein synthesis at the translational level. The cochaperone of the HSP70 system BAG3 (BCL2-associated athanogene 3) has been associated to LC3B lipidation through an unknown mechanism. In the present work, we studied how BAG3 controls autophagy in HeLa and HEK293 cells. Our results showed that BAG3 regulates the basal amount of total cellular LC3B protein by controlling its mRNA translation. This effect was apparently specific to LC3B because other ATG protein levels were not affected. BAG3 knockdown did not affect LC3B lipidation induced by nutrient deprivation or proteasome inhibition. We concluded that BAG3 maintains the basal amount of LC3B protein by controlling the translation of its mRNA in HeLa and HEK293 cells.
Rodríguez, Andrea E.; López-Crisosto, Camila; Peña-Oyarzún, Daniel; Salas, Daniela; Parra, Valentina; Quiroga, Clara; Morawe, Tobias; Chiong, Mario; Behl, Christian; Lavandero, Sergio
2016-01-01
ABSTRACT Autophagy is mainly regulated by post-translational and lipid modifications of ATG proteins. In some scenarios, the induction of autophagy is accompanied by increased levels of certain ATG mRNAs such as MAP1LC3B/LC3B, ATG5 or ATG12. However, little is known about the regulation of ATG protein synthesis at the translational level. The cochaperone of the HSP70 system BAG3 (BCL2-associated athanogene 3) has been associated to LC3B lipidation through an unknown mechanism. In the present work, we studied how BAG3 controls autophagy in HeLa and HEK293 cells. Our results showed that BAG3 regulates the basal amount of total cellular LC3B protein by controlling its mRNA translation. This effect was apparently specific to LC3B because other ATG protein levels were not affected. BAG3 knockdown did not affect LC3B lipidation induced by nutrient deprivation or proteasome inhibition. We concluded that BAG3 maintains the basal amount of LC3B protein by controlling the translation of its mRNA in HeLa and HEK293 cells. PMID:26654586
Feeney, Morgan A.; Chandra, Govind; Findlay, Kim C.; Paget, Mark S. B.
2017-01-01
ABSTRACT The major oxidative stress response in Streptomyces is controlled by the sigma factor SigR and its cognate antisigma factor RsrA, and SigR activity is tightly controlled through multiple mechanisms at both the transcriptional and posttranslational levels. Here we show that sigR has a highly unusual GTC start codon and that this leads to another level of SigR regulation, in which SigR translation is repressed by translation initiation factor 3 (IF3). Changing the GTC to a canonical start codon causes SigR to be overproduced relative to RsrA, resulting in unregulated and constitutive expression of the SigR regulon. Similarly, introducing IF3* mutations that impair its ability to repress SigR translation has the same effect. Thus, the noncanonical GTC sigR start codon and its repression by IF3 are critical for the correct and proper functioning of the oxidative stress regulatory system. sigR and rsrA are cotranscribed and translationally coupled, and it had therefore been assumed that SigR and RsrA are produced in stoichiometric amounts. Here we show that RsrA can be transcribed and translated independently of SigR, present evidence that RsrA is normally produced in excess of SigR, and describe the factors that determine SigR-RsrA stoichiometry. PMID:28611250
Regulation of mRNA translation during mitosis
Tanenbaum, Marvin E; Stern-Ginossar, Noam; Weissman, Jonathan S; Vale, Ronald D
2015-01-01
Passage through mitosis is driven by precisely-timed changes in transcriptional regulation and protein degradation. However, the importance of translational regulation during mitosis remains poorly understood. Here, using ribosome profiling, we find both a global translational repression and identified ∼200 mRNAs that undergo specific translational regulation at mitotic entry. In contrast, few changes in mRNA abundance are observed, indicating that regulation of translation is the primary mechanism of modulating protein expression during mitosis. Interestingly, 91% of the mRNAs that undergo gene-specific regulation in mitosis are translationally repressed, rather than activated. One of the most pronounced translationally-repressed genes is Emi1, an inhibitor of the anaphase promoting complex (APC) which is degraded during mitosis. We show that full APC activation requires translational repression of Emi1 in addition to its degradation. These results identify gene-specific translational repression as a means of controlling the mitotic proteome, which may complement post-translational mechanisms for inactivating protein function. DOI: http://dx.doi.org/10.7554/eLife.07957.001 PMID:26305499
Krishnan, Anand; Yadav, Kapil; Kaur, Manmeet; Kumar, Rajesh
2010-01-01
Despite significant progress in medical research, cardiovascular diseases (CVDs) continue to be the largest contributors of morbidity and mortality both in developed and developing countries. The status of public health interventions related to CVDs prevention was reviewed to identify actions that are required to bridge the existing gap between the evidence and the policy. We used a framework comprising two steps - “bench to bedside” and from “bedside to community” to evaluate translational research. Available literature was reviewed to document the current status of CVD prevention and control at national level in India. Case studies of risk factor surveillance, tobacco control and blood pressure measurement were used to understand different aspects of translational research. National level initiatives in non-communicable diseases surveillance, prevention and control are a recent phenomena in India. The delay in translation of research to policy has occurred primarily at the second level, i.e., from ‘bedside to community’. The possible reasons for this were: inappropriate perception of the problem by policy makers and programme managers, lack of global public health guidelines and tools, and inadequate nationally relevant research related to operationalization and cost of public health interventions. Public health fraternity, both nationally and internationally, needs to establish institutional mechanisms to strengthen human resource capacity to initiate and monitor the process of translational research in India. Larger public interest demands that focus should shift to overcoming the barriers at community level translation. Only this will ensure that the extraordinary scientific advances of this century are rapidly translated for the benefit of more than one billion Indians. PMID:21150018
Wu, Xiaodan; Marincola, Francesco M; Liebman, Michael N; Wang, Xiangdong
2013-01-08
Translational science consists of research and development that integrates multiple resources to expedite the successful treatment of disease. The International Park of Translational BioMedicine (IPTBM) is currently being developed within the interface between Zhejiang Province and Shanghai Municipality. IPTBM has been designed to pioneer comprehensive biomedical research that spans the continuum from the education of young scientists to providing the infrastructure necessary for clinical testing and direct observation to better understand human biology while promoting viable commercial results within a vibrant biotechnology community. IPTBM's goal is to attract global partners organized around five fundamental pillars: 1) Institutional Development, 2) Project Implementation, 3) Development and Production, 4) Investment and 5) Regulatory Clusters to address the needs of an international platform of scientists, institutes, universities, commercial enterprises, investors, politicians, and other stakeholders. The IPTBM differs from existing models including CTSA's (US, NIH) technology because of its comprehensive approach to merge education, research, innovation, and development to translate clinical and public health needs into target-oriented and cost-efficient projects.
2013-01-01
Translational science consists of research and development that integrates multiple resources to expedite the successful treatment of disease. The International Park of Translational BioMedicine (IPTBM) is currently being developed within the interface between Zhejiang Province and Shanghai Municipality. IPTBM has been designed to pioneer comprehensive biomedical research that spans the continuum from the education of young scientists to providing the infrastructure necessary for clinical testing and direct observation to better understand human biology while promoting viable commercial results within a vibrant biotechnology community. IPTBM’s goal is to attract global partners organized around five fundamental pillars: 1) Institutional Development, 2) Project Implementation, 3) Development and Production, 4) Investment and 5) Regulatory Clusters to address the needs of an international platform of scientists, institutes, universities, commercial enterprises, investors, politicians, and other stakeholders. The IPTBM differs from existing models including CTSA’s (US, NIH) technology because of its comprehensive approach to merge education, research, innovation, and development to translate clinical and public health needs into target-oriented and cost-efficient projects. PMID:23298286
Zhang, Yin; Wang, Lei
2013-01-01
Abstract The Clinical and Translational Science Awards (CTSA) program is one of the most important initiatives in translational medical funding. The quantitative evaluation of the efficiency and performance of the CTSA program has a significant referential meaning for the decision making of global translational medical funding. Using science mapping and scientometric analytic tools, this study quantitatively analyzed the scientific articles funded by the CTSA program. The results of the study showed that the quantitative productivities of the CTSA program had a stable increase since 2008. In addition, the emerging trends of the research funded by the CTSA program covered clinical and basic medical research fields. The academic benefits from the CTSA program were assisting its members to build a robust academic home for the Clinical and Translational Science and to attract other financial support. This study provided a quantitative evaluation of the CTSA program based on science mapping and scientometric analysis. Further research is required to compare and optimize other quantitative methods and to integrate various research results. PMID:24330689
Zhang, Yin; Wang, Lei; Diao, Tianxi
2013-12-01
The Clinical and Translational Science Awards (CTSA) program is one of the most important initiatives in translational medical funding. The quantitative evaluation of the efficiency and performance of the CTSA program has a significant referential meaning for the decision making of global translational medical funding. Using science mapping and scientometric analytic tools, this study quantitatively analyzed the scientific articles funded by the CTSA program. The results of the study showed that the quantitative productivities of the CTSA program had a stable increase since 2008. In addition, the emerging trends of the research funded by the CTSA program covered clinical and basic medical research fields. The academic benefits from the CTSA program were assisting its members to build a robust academic home for the Clinical and Translational Science and to attract other financial support. This study provided a quantitative evaluation of the CTSA program based on science mapping and scientometric analysis. Further research is required to compare and optimize other quantitative methods and to integrate various research results. © 2013 Wiley Periodicals, Inc.
Mam33 promotes cytochrome c oxidase subunit I translation in Saccharomyces cerevisiae mitochondria.
Roloff, Gabrielle A; Henry, Michael F
2015-08-15
Three mitochondrial DNA-encoded proteins, Cox1, Cox2, and Cox3, comprise the core of the cytochrome c oxidase complex. Gene-specific translational activators ensure that these respiratory chain subunits are synthesized at the correct location and in stoichiometric ratios to prevent unassembled protein products from generating free oxygen radicals. In the yeast Saccharomyces cerevisiae, the nuclear-encoded proteins Mss51 and Pet309 specifically activate mitochondrial translation of the largest subunit, Cox1. Here we report that Mam33 is a third COX1 translational activator in yeast mitochondria. Mam33 is required for cells to adapt efficiently from fermentation to respiration. In the absence of Mam33, Cox1 translation is impaired, and cells poorly adapt to respiratory conditions because they lack basal fermentative levels of Cox1. © 2015 Roloff and Henry. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Experimental evaluation of a translating nozzle sidewall radial turbine
NASA Technical Reports Server (NTRS)
Roelke, Richard J.; Rogo, Casimir
1987-01-01
Studies have shown that reduced specific fuel consumption of rotorcraft engines can be achieved with a variable capacity engine. A key component in such an engine in a high-work, high-temperature variable geometry gas generator turbine. An optimization study indicated that a radial turbine with a translating nozzle sidewall could produce high efficiency over a wide range of engine flows but substantiating data were not available. An experimental program with Teledyne CAE, Toledo, Ohio was undertaken to evaluate the moving sidewall concept. A variety of translating nozzle sidewall turbine configurations were evaluated. The effects of nozzle leakage and coolant flows were also investigated. Testing was done in warm air (121 C). The results of the contractual program were summarized.
Translating an AI application from Lisp to Ada: A case study
NASA Technical Reports Server (NTRS)
Davis, Gloria J.
1991-01-01
A set of benchmarks was developed to test the performance of a newly designed computer executing both Lisp and Ada. Among these was AutoClassII -- a large Artificial Intelligence (AI) application written in Common Lisp. The extraction of a representative subset of this complex application was aided by a Lisp Code Analyzer (LCA). The LCA enabled rapid analysis of the code, putting it in a concise and functionally readable form. An equivalent benchmark was created in Ada through manual translation of the Lisp version. A comparison of the execution results of both programs across a variety of compiler-machine combinations indicate that line-by-line translation coupled with analysis of the initial code can produce relatively efficient and reusable target code.
The Circadian Clock Coordinates Ribosome Biogenesis
Symul, Laura; Martin, Eva; Atger, Florian; Naef, Felix; Gachon, Frédéric
2013-01-01
Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis. PMID:23300384
Ambiguous Tilt and Translation Motion Cues in Astronauts After Space Flight (ZAG)
NASA Astrophysics Data System (ADS)
Clement, Guilles; Harm, Deborah; Rupert, Angus; Beaton, Kara; Wood, Scott
2008-06-01
Adaptive changes during space flight in how the brain integrates vestibular cues with visual, proprioceptive, and somatosensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions following transitions between gravity levels. This joint ESA-NASA pre- and post-flight experiment is designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances in astronauts following short-duration space flights. Specifically, this study addresses three questions: (1) What adaptive changes occur in eye movements and motion perception in response to different combinations of tilt and translation motion? (2) Do adaptive changes in tilt-translation responses impair ability to manually control vehicle orientation? (3) Can sensory substitution aids (e.g., tactile) mitigate risks associated with manual control of vehicle orientation?
Fritzsche, Renate; Karra, Daniela; Bennett, Keiryn L; Ang, Foong Yee; Heraud-Farlow, Jacki E; Tolino, Marco; Doyle, Michael; Bauer, Karl E; Thomas, Sabine; Planyavsky, Melanie; Arn, Eric; Bakosova, Anetta; Jungwirth, Kerstin; Hörmann, Alexandra; Palfi, Zsofia; Sandholzer, Julia; Schwarz, Martina; Macchi, Paolo; Colinge, Jacques; Superti-Furga, Giulio; Kiebler, Michael A
2013-12-26
Transport of RNAs to dendrites occurs in neuronal RNA granules, which allows local synthesis of specific proteins at active synapses on demand, thereby contributing to learning and memory. To gain insight into the machinery controlling dendritic mRNA localization and translation, we established a stringent protocol to biochemically purify RNA granules from rat brain. Here, we identified a specific set of interactors for two RNA-binding proteins that are known components of neuronal RNA granules, Barentsz and Staufen2. First, neuronal RNA granules are much more heterogeneous than previously anticipated, sharing only a third of the identified proteins. Second, dendritically localized mRNAs, e.g., Arc and CaMKIIα, associate selectively with distinct RNA granules. Third, our work identifies a series of factors with known roles in RNA localization, translational control, and RNA quality control that are likely to keep localized transcripts in a translationally repressed state, often in distinct types of RNPs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
A new family of omnidirectional and holonomic wheeled platforms for mobile robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pin, F.G.; Killough, S.M.
1994-08-01
This paper presents the concepts for a new family of holonomic wheeled platforms that feature full omnidirectionality with simultaneous and independently controlled rotational and translational motion capabilities. The authors first present the orthogonal-wheels'' concept and the two major wheel assemblies on which these platforms are based. The authors then describe how a combination of these assemblies with appropriate control can be used to generate an omnidirectional capability for mobile robot platforms. Several alternative designs are considered, and their respective characteristics with respect to rotational and translational motion control are discussed. The design and control of a prototype platform developed tomore » test and demonstrate the proposed concepts is then described, and experimental results illustrating the full omnidirectionality of the platforms with decoupled rotational and translational degrees of freedom are presented.« less
Translational research and the evolving landscape for biomedical innovation.
Kaitin, Kenneth I
2012-10-01
This article addresses current challenges facing pharmaceutical and biopharmaceutical developers, including the expiration of patents on many high-revenue-generating products, increasing competition in the marketplace, low public support, high regulatory hurdles, and the increasing time, cost, and risk of new product development. To meet these challenges, drug developers are looking to new models of innovation to improve efficiency, lower risk, and increase output. These new models include codevelopment agreements with small companies, multicompany consortia, and strategic partnerships with academic research centers. In the United States and the European Union, the government is supporting these efforts by creating incentives for academic centers to foster translational research and become more "commercially minded". The goal for all stakeholders is to reduce the barriers to product development and bring new medicines to market in a timely and cost-efficient manner.
Genome editing systems in novel therapies.
Jang, Yoon-Young; Cai, Liuhong; Ye, Zhaohui
2016-01-01
Genome editing is the process in which DNA sequences at precise genomic locations are modified. In the past three decades, genome editing by homologous recombination has been successfully performed in mouse for generating genetic models. The low efficiency of this process in human cells, however, had prevented its clinical application until the recent advancements in designer endonuclease technologies. The significantly improved genome editing efficiencies aided by ZFN, TALEN, and CRISPR systems provide unprecedented opportunities not only for biomedical research, but also for developing novel therapies. Applications based on these genome editing tools to disrupt deleterious genes, correct genetic mutations, deliver functional transgenes more effectively or even modify the epigenetic landscape are being actively investigated for gene and cell therapy purposes. Encouraging results have been obtained in limited clinical trials in the past two years. While most of the applications are still in proof-of-principle or preclinical development stages, it is anticipated that the coming years will see increasing clinical success in novel therapies based on the modern genome editing technologies. It should be noted that critical issues still remain before the technologies can be translated into more reliable therapies. These key issues include off-target evaluation, establishing appropriate preclinical models and improving the currently low efficiency of homology-based precise gene replacement. In this review we discuss the preclinical and clinical studies aiming at translating the genome editing technologies as well as the issues that are important for more successful translation.
Bacillus anthracis genome organization in light of whole transcriptome sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Jeffrey; Zhu, Wenhan; Passalacqua, Karla D.
2010-03-22
Emerging knowledge of whole prokaryotic transcriptomes could validate a number of theoretical concepts introduced in the early days of genomics. What are the rules connecting gene expression levels with sequence determinants such as quantitative scores of promoters and terminators? Are translation efficiency measures, e.g. codon adaptation index and RBS score related to gene expression? We used the whole transcriptome shotgun sequencing of a bacterial pathogen Bacillus anthracis to assess correlation of gene expression level with promoter, terminator and RBS scores, codon adaptation index, as well as with a new measure of gene translational efficiency, average translation speed. We compared computationalmore » predictions of operon topologies with the transcript borders inferred from RNA-Seq reads. Transcriptome mapping may also improve existing gene annotation. Upon assessment of accuracy of current annotation of protein-coding genes in the B. anthracis genome we have shown that the transcriptome data indicate existence of more than a hundred genes missing in the annotation though predicted by an ab initio gene finder. Interestingly, we observed that many pseudogenes possess not only a sequence with detectable coding potential but also promoters that maintain transcriptional activity.« less
Kondylakis, Haridimos; Spanakis, Emmanouil G; Sfakianakis, Stelios; Sakkalis, Vangelis; Tsiknakis, Manolis; Marias, Kostas; Xia Zhao; Hong Qing Yu; Feng Dong
2015-08-01
The advancements in healthcare practice have brought to the fore the need for flexible access to health-related information and created an ever-growing demand for the design and the development of data management infrastructures for translational and personalized medicine. In this paper, we present the data management solution implemented for the MyHealthAvatar EU research project, a project that attempts to create a digital representation of a patient's health status. The platform is capable of aggregating several knowledge sources relevant for the provision of individualized personal services. To this end, state of the art technologies are exploited, such as ontologies to model all available information, semantic integration to enable data and query translation and a variety of linking services to allow connecting to external sources. All original information is stored in a NoSQL database for reasons of efficiency and fault tolerance. Then it is semantically uplifted through a semantic warehouse which enables efficient access to it. All different technologies are combined to create a novel web-based platform allowing seamless user interaction through APIs that support personalized, granular and secure access to the relevant information.
NASA Astrophysics Data System (ADS)
Teddy Badai Samodra, FX; Defiana, Ima; Setyawan, Wahyu
2018-03-01
Many previous types of research have discussed the permeability of site cluster. Because of interaction and interconnected attribute, it will be better that there is its translation into lower context such as building and interior scale. In this paper, the sustainability design performance of both similar designs of courtyard and atrium are investigated continuing the recommendation of site space permeability. By researching related literature review and study through Ecotect Analysis and Ansys Fluent simulations, the pattern transformation and optimum courtyard and atrium design could comply the requirement. The results highlighted that the air movement from the site could be translated at the minimum of 50% higher to the building and indoor environment. Thus, it has potency for energy efficiency when grid, loop, and cul-de-sac site clusters, with 25% of ground coverage, have connectivity with building courtyard compared to the atrium. Energy saving is higher when using low thermal transmittance of transparent material and its lower area percentages for the courtyard walls. In general, it was more energy efficient option as part of a low rise building, while the courtyard building performed better with increasing irregular building height more than 90% of the difference.
NASA Astrophysics Data System (ADS)
Li, Jun-jun; Yang, Xiao-jun; Xiao, Ying-jie; Xu, Bo-wei; Wu, Hua-feng
2018-03-01
Immersed tunnel is an important part of the Hong Kong-Zhuhai-Macao Bridge (HZMB) project. In immersed tunnel floating, translation which includes straight and transverse movements is the main working mode. To decide the magnitude and direction of the towing force for each tug, a particle swarm-based translation control method is presented for non-power immersed tunnel element. A sort of linear weighted logarithmic function is exploited to avoid weak subgoals. In simulation, the particle swarm-based control method is evaluated and compared with traditional empirical method in the case of the HZMB project. Simulation results show that the presented method delivers performance improvement in terms of the enhanced surplus towing force.
Lu, Yan; Lee, Jae Sung; Nemke, Brett; Graf, Ben K.; Royalty, Kevin; Illgen, Richard; Vanderby, Ray; Markel, Mark D.; Murphy, William L.
2012-01-01
Despite the potential for growth factor delivery strategies to promote orthopedic implant healing, there is a need for growth factor delivery methods that are controllable and amenable to clinical translation. We have developed a modular bone growth factor, herein termed “modular bone morphogenetic peptide (mBMP)”, which was designed to efficiently bind to the surface of orthopedic implants and also stimulate new bone formation. The purpose of this study was to coat a hydroxyapatite-titanium implant with mBMP and evaluate bone healing across a bone-implant gap in the sheep femoral condyle. The mBMP molecules efficiently bound to a hydroxyapatite-titanium implant and 64% of the initially bound mBMP molecules were released in a sustained manner over 28 days. The results demonstrated that the mBMP-coated implant group had significantly more mineralized bone filling in the implant-bone gap than the control group in C-arm computed tomography (DynaCT) scanning (25% more), histological (35% more) and microradiographic images (50% more). Push-out stiffness of the mBMP group was nearly 40% greater than that of control group whereas peak force did not show a significant difference. The results of this study demonstrated that mBMP coated on a hydroxyapatite-titanium implant stimulates new bone formation and may be useful to improve implant fixation in total joint arthroplasty applications. PMID:23185610
Genome engineering and gene expression control for bacterial strain development.
Song, Chan Woo; Lee, Joungmin; Lee, Sang Yup
2015-01-01
In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Wei; Lester, John M; Amorosa, Anthony E; Chance, Deborah L; Mossine, Valeri V; Mawhinney, Thomas P
2015-06-19
Synthetic glycopolymers are instrumental and versatile tools used in various biochemical and biomedical research fields. An example of a facile and efficient synthesis of well-controlled fluorescent statistical glycopolymers using reversible addition-fragmentation chain-transfer (RAFT)-based polymerization is demonstrated. The synthesis starts with the preparation of β-galactose-containing glycomonomer 2-lactobionamidoethyl methacrylamide obtained by reaction of lactobionolactone and N-(2-aminoethyl) methacrylamide (AEMA). 2-Gluconamidoethyl methacrylamide (GAEMA) is used as a structural analog lacking a terminal β-galactoside. The following RAFT-mediated copolymerization reaction involves three different monomers: N-(2-hydroxyethyl) acrylamide as spacer, AEMA as target for further fluorescence labeling, and the glycomonomers. Tolerant of aqueous systems, the RAFT agent used in the reaction is (4-cyanopentanoic acid)-4-dithiobenzoate. Low dispersities (≤1.32), predictable copolymer compositions, and high reproducibility of the polymerizations were observed among the products. Fluorescent polymers are obtained by modifying the glycopolymers with carboxyfluorescein succinimidyl ester targeting the primary amine functional groups on AEMA. Lectin-binding specificities of the resulting glycopolymers are verified by testing with corresponding agarose beads coated with specific glycoepitope recognizing lectins. Because of the ease of the synthesis, the tight control of the product compositions and the good reproducibility of the reaction, this protocol can be translated towards preparation of other RAFT-based glycopolymers with specific structures and compositions, as desired.
Kahvejian, Avak; Svitkin, Yuri V; Sukarieh, Rami; M'Boutchou, Marie-Noël; Sonenberg, Nahum
2005-01-01
Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5'-end of the mRNA to promote the recruitment of the ribosome. Although the 3' poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for the involvement of PABP in key steps of the translation initiation pathway. Using a new technique to deplete PABP from mammalian cell extracts, we show that extracts lacking PABP exhibit dramatically reduced rates of translation, reduced efficiency of 48S and 80S ribosome initiation complex formation, and impaired interaction of eIF4E with the mRNA cap structure. Supplementing PABP-depleted extracts with wild-type PABP completely rectified these deficiencies, whereas a mutant of PABP, M161A, which is incapable of interacting with eIF4G, failed to restore translation. In addition, a stronger inhibition (approximately twofold) of 80S as compared to 48S ribosome complex formation (approximately 65% vs. approximately 35%, respectively) by PABP depletion suggests that PABP plays a direct role in 60S subunit joining. PABP can thus be considered a canonical translation initiation factor, integral to initiation complex formation at the 5'-end of mRNA.
Kahvejian, Avak; Svitkin, Yuri V.; Sukarieh, Rami; M'Boutchou, Marie-Noël; Sonenberg, Nahum
2005-01-01
Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5′-end of the mRNA to promote the recruitment of the ribosome. Although the 3′ poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for the involvement of PABP in key steps of the translation initiation pathway. Using a new technique to deplete PABP from mammalian cell extracts, we show that extracts lacking PABP exhibit dramatically reduced rates of translation, reduced efficiency of 48S and 80S ribosome initiation complex formation, and impaired interaction of eIF4E with the mRNA cap structure. Supplementing PABP-depleted extracts with wild-type PABP completely rectified these deficiencies, whereas a mutant of PABP, M161A, which is incapable of interacting with eIF4G, failed to restore translation. In addition, a stronger inhibition (approximately twofold) of 80S as compared to 48S ribosome complex formation (∼65% vs. ∼35%, respectively) by PABP depletion suggests that PABP plays a direct role in 60S subunit joining. PABP can thus be considered a canonical translation initiation factor, integral to initiation complex formation at the 5′-end of mRNA. PMID:15630022
Poly(ADP-Ribosyl)ation of hnRNP A1 Protein Controls Translational Repression in Drosophila.
Ji, Yingbiao; Tulin, Alexei V
2016-10-01
Poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins (hnRNPs) regulates the posttranscriptional fate of RNA during development. Drosophila hnRNP A1, Hrp38, is required for germ line stem cell maintenance and oocyte localization. The mRNA targets regulated by Hrp38 are mostly unknown. We identified 428 Hrp38-associated gene transcripts in the fly ovary, including mRNA of the translational repressor Nanos. We found that Hrp38 binds to the 3' untranslated region (UTR) of Nanos mRNA, which contains a translation control element. We have demonstrated that translation of the luciferase reporter bearing the Nanos 3' UTR is enhanced by dsRNA-mediated Hrp38 knockdown as well as by mutating potential Hrp38-binding sites. Our data show that poly(ADP-ribosyl)ation inhibits Hrp38 binding to the Nanos 3' UTR, increasing the translation in vivo and in vitro hrp38 and Parg null mutants showed an increased ectopic Nanos translation early in the embryo. We conclude that Hrp38 represses Nanos translation, whereas its poly(ADP-ribosyl)ation relieves the repression effect, allowing restricted Nanos expression in the posterior germ plasm during oogenesis and early embryogenesis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
The Role of +4U as an Extended Translation Termination Signal in Bacteria
Wei, Yulong; Xia, Xuhua
2017-01-01
Termination efficiency of stop codons depends on the first 3′ flanking (+4) base in bacteria and eukaryotes. In both Escherichia coli and Saccharomyces cerevisiae, termination read-through is reduced in the presence of +4U; however, the molecular mechanism underlying +4U function is poorly understood. Here, we perform comparative genomics analysis on 25 bacterial species (covering Actinobacteria, Bacteriodetes, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Proteobacteria, and Spirochaetae) with bioinformatics approaches to examine the influence of +4U in bacterial translation termination by contrasting highly- and lowly-expressed genes (HEGs and LEGs, respectively). We estimated gene expression using the recently formulated Index of Translation Elongation, ITE, and identified stop codon near-cognate transfer RNAs (tRNAs) from well-annotated genomes. We show that +4U was consistently overrepresented in UAA-ending HEGs relative to LEGs. The result is consistent with the interpretation that +4U enhances termination mainly for UAA. Usage of +4U decreases in GC-rich species where most stop codons are UGA and UAG, with few UAA-ending genes, which is expected if UAA usage in HEGs drives up +4U usage. In HEGs, +4U usage increases significantly with abundance of UAA nc_tRNAs (near-cognate tRNAs that decode codons differing from UAA by a single nucleotide), particularly those with a mismatch at the first stop codon site. UAA is always the preferred stop codon in HEGs, and our results suggest that UAAU is the most efficient translation termination signal in bacteria. PMID:27903612
Hofhuis, Julia; Schueren, Fabian; Nötzel, Christopher; Lingner, Thomas; Gärtner, Jutta; Jahn, Olaf
2016-01-01
Translational readthrough gives rise to C-terminally extended proteins, thereby providing the cell with new protein isoforms. These may have different properties from the parental proteins if the extensions contain functional domains. While for most genes amino acid incorporation at the stop codon is far lower than 0.1%, about 4% of malate dehydrogenase (MDH1) is physiologically extended by translational readthrough and the actual ratio of MDH1x (extended protein) to ‘normal' MDH1 is dependent on the cell type. In human cells, arginine and tryptophan are co-encoded by the MDH1x UGA stop codon. Readthrough is controlled by the 7-nucleotide high-readthrough stop codon context without contribution of the subsequent 50 nucleotides encoding the extension. All vertebrate MDH1x is directed to peroxisomes via a hidden peroxisomal targeting signal (PTS) in the readthrough extension, which is more highly conserved than the extension of lactate dehydrogenase B. The hidden PTS of non-mammalian MDH1x evolved to be more efficient than the PTS of mammalian MDH1x. These results provide insight into the genetic and functional co-evolution of these dually localized dehydrogenases. PMID:27881739
Current knowledge of microRNA-mediated regulation of drug metabolism in humans.
Nakano, Masataka; Nakajima, Miki
2018-05-01
Understanding the factors causing inter- and intra-individual differences in drug metabolism potencies is required for the practice of personalized or precision medicine, as well as for the promotion of efficient drug development. The expression of drug-metabolizing enzymes is controlled by transcriptional regulation by nuclear receptors and transcriptional factors, epigenetic regulation, such as DNA methylation and histone acetylation, and post-translational modification. In addition to such regulation mechanisms, recent studies revealed that microRNAs (miRNAs), endogenous ~22-nucleotide non-coding RNAs that regulate gene expression through the translational repression and degradation of mRNAs, significantly contribute to post-transcriptional regulation of drug-metabolizing enzymes. Areas covered: This review summarizes the current knowledge regarding miRNAs-dependent regulation of drug-metabolizing enzymes and transcriptional factors and its physiological and clinical significance. We also describe recent advances in miRNA-dependent regulation research, showing that the presence of pseudogenes, single-nucleotide polymorphisms, and RNA editing affects miRNA targeting. Expert opinion: It is unwavering fact that miRNAs are critical factors causing inter- and intra-individual differences in the expression of drug-metabolizing enzymes. Consideration of miRNA-dependent regulation would be a helpful tool for optimizing personalized and precision medicine.
Legrain, Yona; Touat-Hamici, Zahia; Chavatte, Laurent
2014-01-01
Selenium is an essential trace element, which is incorporated as selenocysteine into at least 25 selenoproteins using a unique translational UGA-recoding mechanism. Selenoproteins are important enzymes involved in antioxidant defense, redox homeostasis, and redox signaling pathways. Selenium levels decline during aging, and its deficiency is associated with a marked increase in mortality for people over 60 years of age. Here, we investigate the relationship between selenium levels in the culture medium, selenoprotein expression, and replicative life span of human embryonic lung fibroblast WI-38 cells. Selenium levels regulate the entry into replicative senescence and modify the cellular markers characteristic for senescent cells. Whereas selenium supplementation extends the number of population doublings, its deficiency impairs the proliferative capacity of WI-38 cells. We observe that the expression of several selenoproteins involved in antioxidant defense is specifically affected in response to cellular senescence. Their expression is selectively controlled by the modulation of mRNA levels and translational recoding efficiencies. Our data provide novel mechanistic insights into how selenium impacts the replicative life span of mammalian cells by identifying several selenoproteins as new targets of senescence. PMID:24425862
Ju, Jinyong; Li, Wei; Wang, Yuqiao; Fan, Mengbao; Yang, Xuefeng
2016-01-01
Effective feedback control requires all state variable information of the system. However, in the translational flexible-link manipulator (TFM) system, it is unrealistic to measure the vibration signals and their time derivative of any points of the TFM by infinite sensors. With the rigid-flexible coupling between the global motion of the rigid base and the elastic vibration of the flexible-link manipulator considered, a two-time scale virtual sensor, which includes the speed observer and the vibration observer, is designed to achieve the estimation for the vibration signals and their time derivative of the TFM, as well as the speed observer and the vibration observer are separately designed for the slow and fast subsystems, which are decomposed from the dynamic model of the TFM by the singular perturbation. Additionally, based on the linear-quadratic differential games, the observer gains of the two-time scale virtual sensor are optimized, which aims to minimize the estimation error while keeping the observer stable. Finally, the numerical calculation and experiment verify the efficiency of the designed two-time scale virtual sensor. PMID:27801840
Mirghafourvand, Mojgan; Sehhati Shafaie, Fahimeh; Mohammad-Alizadeh-Charandabi, Sakineh; Jabbari, Batoul
2016-01-01
Background During recent decades, research in Iran in the area of the Quran and medical science has been seriously engaged in. With respect to the tendency toward spirituality and alternative medicine, we tried to find other aspects of the influence of the Quran. Objectives This study aimed to determine the effect of vocalizations of the Holy Quran with and without translation on the consequences of pregnancy (the prevalence of preterm delivery, caesarean delivery, and neonatal anthropometric indices) in women admitted to health care centers in Urmia, Iran. Materials and Methods This was a three-armed parallel-group randomized clinical trial in which 168 pregnant women (25-28 weeks) in their first and second pregnancies were divided into three groups of 56 (Holy Quran with translation, Holy Quran without translation, and control group) by randomized blocking. The intervention was implemented once a week for three weeks in the health center, and on other days of the week, the participants listened at home to a CD they were given. The intervention and the control groups all received routine pregnancy care once a week. These mothers were tracked during their labor. Outcomes including gestational age at delivery, delivery type, and neonatal anthropometric indices were recorded based on the mother’s records. Results There was no statistically significant difference between the groups in terms of demographic and obstetric characteristics before the intervention. In comparison with the control group, the probability of preterm delivery was lower in the Holy Quran with translation group (odds ratio: 0.3, CI 95%: 0.1-1.2) and in the Holy Quran without translation group (0.6, 0.2-1.9) as compared to the control group. However, this difference was not statistically significant. Similarly, the probability of caesarean delivery was lower in the Holy Quran with translation group (0.6, 0.3-1.4) and the Holy Quran without translation group (0.5, 0.2-1.2) as compared to the control group. Based on one-way ANOVA, there was no statistically significant difference between the study groups regarding the infants’ anthropometric indices. Conclusions Based on the results of this study, despite the lower prevalence of preterm labor and caesarean section in the intervention groups as compared to the control group, no statistically significant effect was seen. This was apparently due to the small sample size. PMID:28144462
Reid, David W; Nicchitta, Christopher V
2015-06-12
Jan et al. (Research Articles, 7 November 2014, p. 716) propose that ribosomes translating secretome messenger RNAs (mRNAs) traffic from the cytosol to the endoplasmic reticulum (ER) upon emergence of the signal peptide and return to the cytosol after termination. An accounting of controls demonstrates that mRNAs initiate translation on ER-bound ribosomes and that ribosomes are retained on the ER through many cycles of translation. Copyright © 2015, American Association for the Advancement of Science.
Genome-wide assessment of differential translations with ribosome profiling data.
Xiao, Zhengtao; Zou, Qin; Liu, Yu; Yang, Xuerui
2016-04-04
The closely regulated process of mRNA translation is crucial for precise control of protein abundance and quality. Ribosome profiling, a combination of ribosome foot-printing and RNA deep sequencing, has been used in a large variety of studies to quantify genome-wide mRNA translation. Here, we developed Xtail, an analysis pipeline tailored for ribosome profiling data that comprehensively and accurately identifies differentially translated genes in pairwise comparisons. Applied on simulated and real datasets, Xtail exhibits high sensitivity with minimal false-positive rates, outperforming existing methods in the accuracy of quantifying differential translations. With published ribosome profiling datasets, Xtail does not only reveal differentially translated genes that make biological sense, but also uncovers new events of differential translation in human cancer cells on mTOR signalling perturbation and in human primary macrophages on interferon gamma (IFN-γ) treatment. This demonstrates the value of Xtail in providing novel insights into the molecular mechanisms that involve translational dysregulations.
Reis, Steven E.; Berglund, Lars; Bernard, Gordon R.; Califf, Robert M.; FitzGerald, Garret A.; Johnson, Peter C.
2009-01-01
Advances in human health require the efficient and rapid translation of scientific discoveries into effective clinical treatments; this process in turn depends upon observational data gathered from patients, communities, and public-health research that can be used to guide basic scientific investigation. Such bidirectional translational science, however, faces unprecedented challenges due to the rapid pace of scientific and technological development, as well as the difficulties of negotiating increasingly complex regulatory and commercial environments that overlap the research domain. Further, numerous barriers to translational science have emerged among the nation’s academic research centers, including basic structural and cultural impediments to innovation and collaboration, shortages of trained investigators, and inadequate funding. To address these serious and systemic problems, in 2006, the National Institutes of Health created the Clinical and Translational Science Awards (CTSA) program, which aims to catalyze the transformation of biomedical research at a national level, speeding the discovery and development of therapies, fostering collaboration, engaging communities, and training succeeding generations of clinical and translational researchers. The authors report in detail on the planning process, begun in 2008, that was used to engage stakeholders and to identify, refine, and ultimately implement the CTSA program’s overarching strategic goals. They also discuss the implications and likely impact of this strategic planning process as it is applied among the nation’s academic health centers. PMID:20182119
Ribosome Profiling Reveals a Cell-Type-Specific Translational Landscape in Brain Tumors
Gonzalez, Christian; Sims, Jennifer S.; Hornstein, Nicholas; Mela, Angeliki; Garcia, Franklin; Lei, Liang; Gass, David A.; Amendolara, Benjamin; Bruce, Jeffrey N.
2014-01-01
Glioma growth is driven by signaling that ultimately regulates protein synthesis. Gliomas are also complex at the cellular level and involve multiple cell types, including transformed and reactive cells in the brain tumor microenvironment. The distinct functions of the various cell types likely lead to different requirements and regulatory paradigms for protein synthesis. Proneural gliomas can arise from transformation of glial progenitors that are driven to proliferate via mitogenic signaling that affects translation. To investigate translational regulation in this system, we developed a RiboTag glioma mouse model that enables cell-type-specific, genome-wide ribosome profiling of tumor tissue. Infecting glial progenitors with Cre-recombinant retrovirus simultaneously activates expression of tagged ribosomes and delivers a tumor-initiating mutation. Remarkably, we find that although genes specific to transformed cells are highly translated, their translation efficiencies are low compared with normal brain. Ribosome positioning reveals sequence-dependent regulation of ribosomal activity in 5′-leaders upstream of annotated start codons, leading to differential translation in glioma compared with normal brain. Additionally, although transformed cells express a proneural signature, untransformed tumor-associated cells, including reactive astrocytes and microglia, express a mesenchymal signature. Finally, we observe the same phenomena in human disease by combining ribosome profiling of human proneural tumor and non-neoplastic brain tissue with computational deconvolution to assess cell-type-specific translational regulation. PMID:25122893
McCullough, Kenneth C; Bassi, Isabelle; Milona, Panagiota; Suter, Rolf; Thomann-Harwood, Lisa; Englezou, Pavlos; Démoulins, Thomas; Ruggli, Nicolas
2014-01-01
Self-amplifying replicon RNA (RepRNA) possesses high potential for increasing antigen load within dendritic cells (DCs). The major aim of the present work was to define how RepRNA delivered by biodegradable, chitosan-based nanoparticulate delivery vehicles (nanogel-alginate (NGA)) interacts with DCs, and whether this could lead to translation of the RepRNA in the DCs. Although studies employed virus replicon particles (VRPs), there are no reports on biodegradable, nanoparticulate vehicle delivery of RepRNA. VRP studies employed cytopathogenic agents, contrary to DC requirements—slow processing and antigen retention. We employed noncytopathogenic RepRNA with NGA, demonstrating for the first time the efficiency of RepRNA association with nanoparticles, NGA delivery to DCs, and RepRNA internalization by DCs. RepRNA accumulated in vesicular structures, with patterns typifying cytosolic release. This promoted RepRNA translation, in vitro and in vivo. Delivery and translation were RepRNA concentration-dependent, occurring in a kinetic manner. Including cationic lipids with chitosan during nanoparticle formation enhanced delivery and translation kinetics, but was not required for translation of immunogenic levels in vivo. This work describes for the first time the characteristics associated with chitosan-nanoparticle delivery of self-amplifying RepRNA to DCs, leading to translation of encoded foreign genes, namely influenza virus hemagglutinin and nucleoprotein. PMID:25004099
Reis, Steven E; Berglund, Lars; Bernard, Gordon R; Califf, Robert M; Fitzgerald, Garret A; Johnson, Peter C
2010-03-01
Advances in human health require the efficient and rapid translation of scientific discoveries into effective clinical treatments; this process, in turn, depends on observational data gathered from patients, communities, and public health research that can be used to guide basic scientific investigation. Such bidirectional translational science, however, faces unprecedented challenges due to the rapid pace of scientific and technological development, as well as the difficulties of negotiating increasingly complex regulatory and commercial environments that overlap the research domain. Further, numerous barriers to translational science have emerged among the nation's academic research centers, including basic structural and cultural impediments to innovation and collaboration, shortages of trained investigators, and inadequate funding.To address these serious and systemic problems, in 2006 the National Institutes of Health created the Clinical and Translational Science Awards (CTSA) program, which aims to catalyze the transformation of biomedical research at a national level, speeding the discovery and development of therapies, fostering collaboration, engaging communities, and training succeeding generations of clinical and translational researchers. The authors report in detail on the planning process, begun in 2008, that was used to engage stakeholders and to identify, refine, and ultimately implement the CTSA program's overarching strategic goals. They also discuss the implications and likely impact of this strategic planning process as it is applied among the nation's academic health centers.
Translating research findings to clinical nursing practice.
Curtis, Kate; Fry, Margaret; Shaban, Ramon Z; Considine, Julie
2017-03-01
To describe the importance of, and methods for, successfully conducting and translating research into clinical practice. There is universal acknowledgement that the clinical care provided to individuals should be informed on the best available evidence. Knowledge and evidence derived from robust scholarly methods should drive our clinical practice, decisions and change to improve the way we deliver care. Translating research evidence to clinical practice is essential to safe, transparent, effective and efficient healthcare provision and meeting the expectations of patients, families and society. Despite its importance, translating research into clinical practice is challenging. There are more nurses in the frontline of health care than any other healthcare profession. As such, nurse-led research is increasingly recognised as a critical pathway to practical and effective ways of improving patient outcomes. However, there are well-established barriers to the conduct and translation of research evidence into practice. This clinical practice discussion paper interprets the knowledge translation literature for clinicians interested in translating research into practice. This paper is informed by the scientific literature around knowledge translation, implementation science and clinician behaviour change, and presented from the nurse clinician perspective. We provide practical, evidence-informed suggestions to overcome the barriers and facilitate enablers of knowledge translation. Examples of nurse-led research incorporating the principles of knowledge translation in their study design that have resulted in improvements in patient outcomes are presented in conjunction with supporting evidence. Translation should be considered in research design, including the end users and an evaluation of the research implementation. The success of research implementation in health care is dependent on clinician/consumer behaviour change and it is critical that implementation strategy includes this. Translating best research evidence can make for a more transparent and sustainable healthcare service, to which nurses are central. © 2016 The Authors. Journal of Clinical Nursing Published by John Wiley & Sons Ltd.
Hindi translation and validation of Cambridge-Hopkins Diagnostic Questionnaire for RLS (CHRLSq).
Gupta, Ravi; Allan, Richard P; Pundeer, Ashwini; Das, Sourav; Dhyani, Mohan; Goel, Deepak
2015-01-01
Restless legs syndrome also known as Willis-Ekbom's Disease (RLS/WED) is a common illness. Cambridge-Hopkins diagnostic questionnaire for RLS (CHRLSq) is a good diagnostic tool and can be used in the epidemiological studies. However, its Hindi version is not available. Thus, this study was conducted to translate and validate it in the Hindi speaking population. After obtaining the permission from the author of the CHRLSq, it was translated into Hindi language by two independent translators. After a series of forward and back translations, the finalized Hindi version was administered to two groups by one of the authors, who were blinded to the clinical diagnosis. First group consisted of RLS/WED patients, where diagnosis was made upon face to face interview and the other group - the control group included subjects with somatic symptoms disorders or exertional myalgia or chronic insomnia. Each group had 30 subjects. Diagnosis made on CHRLSq was compared with the clinical diagnosis. Analysis was done using Statistical Package for Social Sciences (SPSS) v 21.0. Descriptive statistics was calculated. Proportions were compared using chi-square test; whereas, categorical variables were compared using independent sample t-test. Sensitivity, specificity, and positive predictive value of the translated version of questionnaire were calculated. Average age was comparable between the cases and control group (RLS/WED = 39.1 ± 10.1 years vs 36.2 ± 11.4 years in controls; P = 0.29). Women outnumbered men in the RLS/WED group (87% in RLS/WED group vs 57% among controls; χ(2) = 6.64; P = 0.01). Both the sensitivity and specificity of the translated version was 83.3%. It had the positive predictive value of 86.6%. Hindi version of CHRLSq has positive predictive value of 87% and it can be used to diagnose RLS in Hindi speaking population.
The helicase Ded1p controls use of near-cognate translation initiation codons in 5' UTRs.
Guenther, Ulf-Peter; Weinberg, David E; Zubradt, Meghan M; Tedeschi, Frank A; Stawicki, Brittany N; Zagore, Leah L; Brar, Gloria A; Licatalosi, Donny D; Bartel, David P; Weissman, Jonathan S; Jankowsky, Eckhard
2018-06-27
The conserved and essential DEAD-box RNA helicase Ded1p from yeast and its mammalian orthologue DDX3 are critical for the initiation of translation 1 . Mutations in DDX3 are linked to tumorigenesis 2-4 and intellectual disability 5 , and the enzyme is targeted by a range of viruses 6 . How Ded1p and its orthologues engage RNAs during the initiation of translation is unknown. Here we show, by integrating transcriptome-wide analyses of translation, RNA structure and Ded1p-RNA binding, that the effects of Ded1p on the initiation of translation are connected to near-cognate initiation codons in 5' untranslated regions. Ded1p associates with the translation pre-initiation complex at the mRNA entry channel and repressing the activity of Ded1p leads to the accumulation of RNA structure in 5' untranslated regions, the initiation of translation from near-cognate start codons immediately upstream of these structures and decreased protein synthesis from the corresponding main open reading frames. The data reveal a program for the regulation of translation that links Ded1p, the activation of near-cognate start codons and mRNA structure. This program has a role in meiosis, in which a marked decrease in the levels of Ded1p is accompanied by the activation of the alternative translation initiation sites that are seen when the activity of Ded1p is repressed. Our observations indicate that Ded1p affects translation initiation by controlling the use of near-cognate initiation codons that are proximal to mRNA structure in 5' untranslated regions.
Quantum theory of terahertz conductivity of semiconductor nanostructures
NASA Astrophysics Data System (ADS)
Ostatnický, T.; Pushkarev, V.; Němec, H.; Kužel, P.
2018-02-01
Efficient and controlled charge carrier transport through nanoelements is currently a primordial question in the research of nanoelectronic materials and structures. We develop a quantum-mechanical theory of the conductivity spectra of confined charge carriers responding to an electric field from dc regime up to optical frequencies. The broken translation symmetry induces a broadband drift-diffusion current, which is not taken into account in the analysis based on Kubo formula and relaxation time approximation. We show that this current is required to ensure that the dc conductivity of isolated nanostructures correctly attains zero. It causes a significant reshaping of the conductivity spectra up to terahertz or multiterahertz spectral ranges, where the electron scattering rate is typically comparable to or larger than the probing frequency.
Zhang, Ning; Jiang, Jing; Yang, Yan-li; Wang, Zhi-he
2015-10-01
In this study, we produced tomato plants overexpressing an invertase inhibitor gene (Sly-INH) from tomato, using a simple and efficient transient transformation system. Compared with control plants, the expression of Sly-INH was highly upregulated in Sly-INH overexpressing plants, as indicated by real-time polymerase chain reaction (PCR). Physiological analysis revealed that Sly-INH inhibited the activity of cell wall invertase (CWIN), which increased sugar accumulation in tomato fruit. Furthermore, Sly-INH mediated sucrose metabolism by regulating CWIN activity. Our results suggest that invertase activity is potentially regulated by the Sly-INH inhibitor at the post-translational level, and they demonstrate that the transient transformation system is an effective method for determining the functions of genes in tomato.
Signaling complexes of voltage-gated calcium channels
Turner, Ray W; Anderson, Dustin
2011-01-01
Voltage-gated calcium channels are key mediators of depolarization induced calcium entry into electrically excitable cells. There is increasing evidence that voltage-gated calcium channels, like many other types of ionic channels, do not operate in isolation, but instead form complexes with signaling molecules, G protein coupled receptors, and other types of ion channels. Furthermore, there appears to be bidirectional signaling within these protein complexes, thus allowing not only for efficient translation of calcium signals into cellular responses, but also for tight control of calcium entry per se. In this review, we will focus predominantly on signaling complexes between G protein-coupled receptors and high voltage activated calcium channels, and on complexes of voltage-gated calcium channels and members of the potassium channel superfamily. PMID:21832880
Chinese Learners of English See Chinese Words When Reading English Words.
Ma, Fengyang; Ai, Haiyang
2018-06-01
The present study examines when second language (L2) learners read words in the L2, whether the orthography and/or phonology of the translation words in the first language (L1) is activated and whether the patterns would be modulated by the proficiency in the L2. In two experiments, two groups of Chinese learners of English immersed in the L1 environment, one less proficient and the other more proficient in English, performed a translation recognition task. In this task, participants judged whether pairs of words, with an L2 word preceding an L1 word, were translation words or not. The critical conditions compared the performance of learners to reject distractors that were related to the translation word (e.g., , pronounced as /bei 1/) of an L2 word (e.g., cup) in orthography (e.g., , bad in Chinese, pronounced as /huai 4/) or phonology (e.g., , sad in Chinese, pronounced as /bei 1/). Results of Experiment 1 showed less proficient learners were slower and less accurate to reject translation orthography distractors, as compared to unrelated controls, demonstrating a robust translation orthography interference effect. In contrast, their performance was not significantly different when rejecting translation phonology distractors, relative to unrelated controls, showing no translation phonology interference. The same patterns were observed in more proficient learners in Experiment 2. Together, these results suggest that when Chinese learners of English read English words, the orthographic information, but not the phonological information of the Chinese translation words is activated. In addition, this activation is not modulated by L2 proficiency.
Li, Rui; Zhang, Qing; Li, Junbai; Shi, Hualin
2016-04-07
An experimental system was designed to measure in vivo termination efficiency (TE) of the Rho-independent terminator and position-function relations were quantified for the terminator tR2 in Escherichia coli The terminator function was almost completely repressed when tR2 was located several base pairs downstream from the gene, and TE gradually increased to maximum values with the increasing distance between the gene and terminator. This TE-distance relation reflected a stochastic coupling of the ribosome and RNA polymerase (RNAP). Terminators located in the first 100 bp of the coding region can function efficiently. However, functional repression was observed when the terminator was located in the latter part of the coding region, and the degree of repression was determined by transcriptional and translational dynamics. These results may help to elucidate mechanisms of Rho-independent termination and reveal genomic locations of terminators and functions of the sequence that precedes terminators. These observations may have important applications in synthetic biology. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Rijcken, Cristianne J.; Kiessling, Fabian; Hennink, Wim E.; Lammers, Twan
2015-01-01
Polymeric micelles (PM) are extensively used to improve the delivery of hydrophobic drugs. Many different PM have been designed and evaluated over the years, and some of them have steadily progressed through clinical trials. Increasing evidence suggests, however, that for prolonged circulation times and for efficient EPR-mediated drug targeting to tumors and to sites of inflammation, PM need to be stabilized, to prevent premature disintegration. Core-crosslinking is among the most popular methods to improve the in vivo stability of PM, and a number of core-crosslinked polymeric micelles (CCPM) have demonstrated promising efficacy in animal models. The latter is particularly true for CCPM in which (pro−) drugs are covalently entrapped. This ensures proper drug retention in the micelles during systemic circulation, efficient drug delivery to pathological sites via EPR, and tailorable drug release kinetics at the target site. We here summarize recent advances in the CCPM field, addressing the chemistry involved in preparing them, their in vitro and in vivo performance, potential biomedical applications, and guidelines for efficient clinical translation. PMID:25893004
ERIC Educational Resources Information Center
Pounds, Gabrina
2011-01-01
Translating for children is increasingly being recognized as a challenge worthy of as much attention as translating for adults. One of the key issues debated in this domain is the choice between "foreignizing" and "domesticating" strategies in relation to the pedagogic or, more generally, ideology forming or ideology-reflecting potential of…
Singlet oxygen-dependent translational control in the tigrina-d.12 mutant of barley
Khandal, Dhriti; Samol, Iga; Buhr, Frank; Pollmann, Stephan; Schmidt, Holger; Clemens, Stephan; Reinbothe, Steffen; Reinbothe, Christiane
2009-01-01
The tigrina (tig)-d.12 mutant of barley is impaired in the negative control limiting excess protochlorophyllide (Pchlide) accumulation in the dark. Upon illumination, Pchlide operates as photosensitizer and triggers singlet oxygen production and cell death. Here, we show that both Pchlide and singlet oxygen operate as signals that control gene expression and metabolite accumulation in tig-d.12 plants. In vivo labeling, Northern blotting, polysome profiling, and protein gel blot analyses revealed a selective suppression of synthesis of the small and large subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (RBCSs and RBCLs), the major light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCB2), as well as other chlorophyll-binding proteins, in response to singlet oxygen. In part, these effects were caused by an arrest in translation initiation of photosynthetic transcripts at 80S cytoplasmic ribosomes. The observed changes in translation correlated with a decline in the phosphorylation level of ribosomal protein S6. At later stages, ribosome dissociation occurred. Together, our results identify translation as a major target of singlet oxygen-dependent growth control and cell death in higher plants. PMID:19620736
Muddashetty, Ravi S.; Nalavadi, Vijayalaxmi C.; Gross, Christina; Yao, Xiaodi; Xing, Lei; Laur, Oskar; Warren, Stephen T.; Bassell, Gary J.
2011-01-01
Summary The molecular mechanism how RISC and microRNAs selectively and reversibly regulate mRNA translation in response to receptor signaling is unknown but could provide a means for temporal and spatial control of translation. Here we show that miR-125a targeting PSD-95 mRNA allows reversible inhibition of translation and regulation by mGluR signaling. Inhibition of miR-125a increased PSD-95 levels in dendrites and altered dendritic spine morphology. Bidirectional control of PSD-95 expression depends on miR-125a and FMRP phosphorylation status. miR-125a levels at synapses and its association with AGO2 is reduced in Fmr1 KO. FMRP phosphorylation promotes the formation of an AGO2-miR-125a inhibitory complex on PSD-95 mRNA, whereas mGluR signaling of translation requires FMRP dephosphorylation and release of AGO2 from the mRNA. These findings reveal a novel mechanism whereby FMRP phosphorylation provides a reversible switch for AGO2 and microRNA to selectively regulate mRNA translation at synapses in response to receptor activation. PMID:21658607
Sterk, Maaike; Romilly, Cédric; Wagner, E Gerhart H
2018-01-01
Abstract Initiation is the rate-limiting step in translation. It is well-known that stable structure at a ribosome binding site (RBS) impedes initiation. The ribosome standby model of de Smit and van Duin, based on studies of the MS2 phage coat cistron, proposed how high translation rates can be reconciled with stable, inhibitory structures at an RBS. Here, we revisited the coat protein system and assessed the translation efficiency from its sequestered RBS by introducing standby mutations. Further experiments with gfp reporter constructs assessed the effects of 5′-tails—as standby sites—with respect to length and sequence contributions. In particular, combining in vivo and in vitro assays, we can show that tails of CA-dinucleotide repeats—and to a lesser extent, AU-repeats—dramatically increase translation rates. Tails of increasing length reach maximal rate-enhancing effects at 16–18 nucleotides. These standby tails are single-stranded and do not exert their effect by structure changes in the neighboring RBS stem–loop. In vitro translation and toeprinting assays furthermore demonstrate that standby effects are exerted at the level of translation initiation. Finally, as expected, destabilizing mutations within the coat RBS indicate an interplay with the effects of standby tails. PMID:29420821
Translating Regenerative Biomaterials Into Clinical Practice.
Stace, Edward T; Dakin, Stephanie G; Mouthuy, Pierre-Alexis; Carr, Andrew J
2016-01-01
Globally health care spending is increasing unsustainably. This is especially true of the treatment of musculoskeletal (MSK) disease where in the United States the MSK disease burden has doubled over the last 15 years. With an aging and increasingly obese population, the surge in MSK related spending is only set to worsen. Despite increased funding, research and attention to this pressing health need, little progress has been made toward novel therapies. Tissue engineering and regenerative medicine (TERM) strategies could provide the solutions required to mitigate this mounting burden. Biomaterial-based treatments in particular present a promising field of potentially cost-effective therapies. However, the translation of a scientific development to a successful treatment is fraught with difficulties. These barriers have so far limited translation of TERM science into clinical treatments. It is crucial for primary researchers to be aware of the barriers currently restricting the progression of science to treatments. Researchers need to act prospectively to ensure the clinical, financial, and regulatory hurdles which seem so far removed from laboratory science do not stall or prevent the subsequent translation of their idea into a treatment. The aim of this review is to explore the development and translation of new treatments. Increasing the understanding of these complexities and barriers among primary researchers could enhance the efficiency of biomaterial translation. © 2015 Wiley Periodicals, Inc.