DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnabel, Manuel; Tamboli, Adele C; Warren, Emily L
Despite steady advancements in the efficiency of crystalline Silicon (c-Si) photovoltaics (PV) within the last decades, the theoretical efficiency limit of 29.4 percent depicts an insurmountable barrier for silicon-based single-junction solar cells. Combining the Si cell with a second absorber material on top in a dual junction tandem or triple junction solar cell is an attractive option to surpass this limit significantly. We demonstrate a mechanically stacked GaInP/Si dual-junction cell with an in-house measured efficiency of 31.5 percent and a GaInP/GaAs/Si triple-junction cell with a certified efficiency of 35.4 percent.
Guo, Fei; Li, Ning; Fecher, Frank W.; Gasparini, Nicola; Quiroz, Cesar Omar Ramirez; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V.; Radmilović, Velimir R.; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J.
2015-01-01
The multi-junction concept is the most relevant approach to overcome the Shockley–Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies. PMID:26177808
Guo, Fei; Li, Ning; Fecher, Frank W; Gasparini, Nicola; Ramirez Quiroz, Cesar Omar; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V; Radmilović, Velimir R; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J
2015-07-16
The multi-junction concept is the most relevant approach to overcome the Shockley-Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Niu, Pingjuan; Li, Yuqiang; Song, Minghui; Zhang, Jianxin; Ning, Pingfan; Chen, Peizhuan
2017-12-01
Ga0.51In0.49P/In0.01Ga0.99As/Ge triple-junction solar cells for space applications were grown on 4 inch Ge substrates by metal organic chemical vapor deposition methods. The triple-junction solar cells were obtained by optimizing the subcell structure, showing a high open-circuit voltage of 2.77 V and a high conversion efficiency of 31% with 30.15 cm2 area under the AM0 spectrum at 25 °C. In addition, the In0.01Ga0.99As middle subcell structure was focused by optimizing in order to improve the anti radiation ability of triple-junction solar cells, and the remaining factor of conversion efficiency for middle subcell structure was enhanced from 84% to 92%. Finally, the remaining factor of external quantum efficiency for triple-junction solar cells was increased from 80% to 85.5%.
NASA Astrophysics Data System (ADS)
Sai, Hitoshi; Matsui, Takuya; Koida, Takashi; Matsubara, Koji; Kondo, Michio; Sugiyama, Shuichiro; Katayama, Hirotaka; Takeuchi, Yoshiaki; Yoshida, Isao
2015-05-01
We report a high-efficiency triple-junction thin-film silicon solar cell fabricated with the so-called substrate configuration. It was verified whether the design criteria for developing single-junction microcrystalline silicon (μc-Si:H) solar cells are applicable to multijunction solar cells. Furthermore, a notably high short-circuit current density of 32.9 mA/cm2 was achieved in a single-junction μc-Si:H cell fabricated on a periodically textured substrate with a high-mobility front transparent contacting layer. These technologies were also combined into a-Si:H/μc-Si:H/μc-Si:H triple-junction cells, and a world record stabilized efficiency of 13.6% was achieved.
Enhanced Conversion Efficiency of III–V Triple-junction Solar Cells with Graphene Quantum Dots
Lin, Tzu-Neng; Santiago, Svette Reina Merden S.; Zheng, Jie-An; Chao, Yu-Chiang; Yuan, Chi-Tsu; Shen, Ji-Lin; Wu, Chih-Hung; Lin, Cheng- An J.; Liu, Wei-Ren; Cheng, Ming-Chiang; Chou, Wu-Ching
2016-01-01
Graphene has been used to synthesize graphene quantum dots (GQDs) via pulsed laser ablation. By depositing the synthesized GQDs on the surface of InGaP/InGaAs/Ge triple-junction solar cells, the short-circuit current, fill factor, and conversion efficiency were enhanced remarkably. As the GQD concentration is increased, the conversion efficiency in the solar cell increases accordingly. A conversion efficiency of 33.2% for InGaP/InGaAs/Ge triple-junction solar cells has been achieved at the GQD concentration of 1.2 mg/ml, corresponding to a 35% enhancement compared to the cell without GQDs. On the basis of time-resolved photoluminescence, external quantum efficiency, and work-function measurements, we suggest that the efficiency enhancement in the InGaP/InGaAs/Ge triple-junction solar cells is primarily caused by the carrier injection from GQDs to the InGaP top subcell. PMID:27982073
10.4% Efficient triple organic solar cells containing near infrared absorbers
NASA Astrophysics Data System (ADS)
Meerheim, Rico; Körner, Christian; Oesen, Benjamin; Leo, Karl
2016-03-01
The efficiency of organic solar cells can be increased by serially stacked subcells with spectrally different absorber materials. For the triple junction devices presented here, we use the small molecule donor materials DCV5T-Me for the green region and Tol2-benz-bodipy or Ph2-benz-bodipy as near infrared absorbers. The broader spectral response allows an efficiency increase from a pure DCV5T-Me triple cell to a triple junction containing a Ph2-benz-bodipy subcell, reaching 10.4%. As often observed for organic photovoltaics, the efficiency is further increased at low light intensities to 11%, which allows improved energy harvesting under real outdoor conditions and better performance indoor.
The Performance of Advanced III-V Solar Cells
NASA Technical Reports Server (NTRS)
Mueller, Robert L.; Gaddy, Edward; Day, John H. (Technical Monitor)
2002-01-01
Test results show triple junction solar cells with efficiencies as high as 27% at 28C and 136.7 mw/sq cm. Triple junction cells also achieve up to 27.5% at -120 C and 5 mw/sq cm, conditions applicable to missions to Jupiter. Some triple junction cells show practically no degradation as a result of Low Intensity Low Temperature (LILT) effects, while others show some; this degradation can be overcome with minor changes to the cell design.
Photovoltaic Power for Future NASA Missions
NASA Technical Reports Server (NTRS)
Landis, Geoffrey; Bailey, Sheila G.; Lyons, Valerie J. (Technical Monitor)
2002-01-01
Recent advances in crystalline solar cell technology are reviewed. Dual-junction and triple-junction solar cells are presently available from several U. S. vendors. Commercially available triple-junction cells consisting of GaInP, GaAs, and Ge layers can produce up to 27% conversion efficiency in production lots. Technology status and performance figures of merit for currently available photovoltaic arrays are discussed. Three specific NASA mission applications are discussed in detail: Mars surface applications, high temperature solar cell applications, and integrated microelectronic power supplies for nanosatellites.
NASA Astrophysics Data System (ADS)
Yeh, Li-Ko; Tian, Wei-Cheng; Lai, Kun-Yu; He-Hau, Jr.
2016-12-01
GaInP/GaAs/Ge triple-junction concentrator solar cells with significant efficiency enhancement were demonstrated with antireflective ZnO nanoneedles. The novel nanostructure was attained with a Zn(NO3)2-based solution containing vitamin C. Under one sun AM 1.5G solar spectrum, conversion efficiency of the triple-junction device was improved by 23.7% via broadband improvement in short-circuit currents of 3 sub-cells after the coverage by the nanoneedles with a graded refractive index profile. The efficiency enhancement further went up to 45.8% at 100 suns. The performance boost through the nanoneedles also became increasingly pronounced in the conditions of high incident angles and the cloudy weather, e.g. 220.0% of efficiency enhancement was observed at the incident angle of 60°. These results were attributed to the exceptional broadband omnidirectionality of the antireflective nanoneedles.
NASA Technical Reports Server (NTRS)
Sinharoy, Samar; Patton, Martin O.; Valko, Thomas M., Sr.; Weizer, Victor G.
2002-01-01
Theoretical calculations have shown that highest efficiency III-V multi-junction solar cells require alloy structures that cannot be grown on a lattice-matched substrate. Ever since the first demonstration of high efficiency metamorphic single junction 1.1 eV and 1.2 eV InGaAs solar cells by Essential Research Incorporated (ERI), interest has grown in the development of multi-junction cells of this type using graded buffer layer technology. ERI is currently developing a dual-junction 1.6 eV InGaP/1.1 eV InGaAs tandem cell (projected practical air-mass zero (AM0), one-sun efficiency of 28%, and 100-sun efficiency of 37.5%) under a Ballistic Missile Defense Command (BMDO) SBIR Phase II program. A second ongoing research effort at ERI involves the development of a 2.1 eV AlGaInP/1.6 eV InGaAsP/1.2 eV InGaAs triple-junction concentrator tandem cell (projected practical AM0 efficiency of 36.5% under 100 suns) under a SBIR Phase II program funded by the Air Force. We are in the process of optimizing the dual-junction cell performance. In case of the triple-junction cell, we have developed the bottom and the middle cell, and are in the process of developing the layer structures needed for the top cell. A progress report is presented in this paper.
Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T
2015-11-10
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.
NASA Astrophysics Data System (ADS)
Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
2015-11-01
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.
Geodynamical simulation of the RRF triple junction
NASA Astrophysics Data System (ADS)
Wang, Z.; Wei, D.; Liu, M.; Shi, Y.; Wang, S.
2017-12-01
Triple junction is the point at which three plate boundaries meet. Three plates at the triple junction form a complex geological tectonics, which is a natural laboratory to study the interactions of plates. This work studies a special triple junction, the oceanic transform fault intersects the collinear ridges with different-spreading rates, which is free of influence of ridge-transform faults and nearby hotspots. First, we build 3-D numerical model of this triple junction used to calculate the stead-state velocity and temperature fields resulting from advective and conductive heat transfer. We discuss in detail the influence of the velocity and temperature fields of the triple junction from viscosity, spreading rate of the ridge. The two sides of the oceanic transform fault are different sensitivities to the two factors. And, the influence of the velocity mainly occurs within 200km of the triple junction. Then, we modify the model by adding a ridge-transform fault to above model and directly use the velocity structure of the Macquarie triple junction. The simulation results show that the temperature at both sides of the oceanic transform fault decreases gradually from the triple junction, but the temperature difference between the two sides is a constant about 200°. And, there is little effect of upwelling velocity away from the triple junction 100km. The model results are compared with observational data. The heat flux and thermal topography along the oceanic transform fault of this model are consistent with the observed data of the Macquarie triple junction. The earthquakes are strike slip distributed along the oceanic transform fault. Their depths are also consistent with the zone of maximum shear stress. This work can help us to understand the interactions of plates of triple junctions and help us with the foundation for the future study of triple junctions.
Space Solar Cell Research and Development Projects at Emcore Photovoltaics
NASA Technical Reports Server (NTRS)
Sharps, Paul; Aiken,Dan; Stan, Mark; Cornfeld, Art; Newman, Fred; Endicter, Scott; Girard, Gerald; Doman, John; Turner, Michele; Sandoval, Annette;
2007-01-01
The GaInP2/InGaAs/Ge triple junction device lattice matched to germanium has achieved the highest power conversion efficiency and the most commercial success for space applications [1]. What are the practical performance limits of this technology? In this paper we will describe what we consider to be the practical performance limits of the lattice matched GaInP2/InGaAs/Ge triple junction cell. In addition, we discuss the options for next generation space cell performance.
Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
2015-01-01
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215
Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
2015-10-26
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO 2 reduction on silver and coppermore » cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H 2 and CO) and Hythane (H 2 and CH 4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. Finally, we show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C 2H 4 have high profitability indices.« less
NASA Astrophysics Data System (ADS)
Cronin, V. S.
2012-12-01
First generation ideas of the kinematic stability of triple junctions lead to the common belief that the geometry of ridge-ridge-ridge (RRR) triple junctions remains constant over time under conditions of symmetric spreading. Given constant relative motion between each plate pair -- that is, the pole of plate relative motion is fixed to both plates in each pair during finite motion, as assumed in many accounts of plate kinematics -- there would be no boundary mismatch at the triple junction and no apparent kinematic reason why a microplate might develop there. But if, in a given RRR triple junction, the finite motion of one plate as observed from the other plate is not circular (as is generally the case, given the three-plate problem of plate kinematics), the geometry of the ridges and the triple junction will vary with time (Cronin, 1992, Tectonophys 207, 287-301). To explore the possible consequences of non-circular finite motion between plates at an RRR triple junction, a simple model was coded based on the cycloid finite-motion model (e.g., Cronin, 1987, Geology 15, 1006-1009) using NNR-MORVEL56 velocities for individual plates (Argus et al., 2011, G3 12, doi: 10.1029/2011GC003751). Initial assumptions include a spherical Earth, symmetric spreading, and constant angular velocities during the modeled finite time interval. The assumed-constant angular velocity vectors constitute a reference frame for observing finite plate motion. Typical results are [1] that the triple junction migrates relative to a coordinate system fixed to the angular-velocity vectors, [2] ridge axes rotates relative to each other, and [3] a boundary mismatch develops at the synthetic triple junction that might result in microplate nucleation. In a model simulating the Galapagos triple junction between the Cocos, Nazca and Pacific plates whose initial state did not include the Galapagos microplate, the mismatch gap was as much as ~3.4 km during 3 Myr of model displacement (see figure). The centroid of the synthetic triple junction translates ~81 km toward azimuth ~352° in 3 Myr. Of course, the details will vary as different angular velocity vectors are used; however, modeling indicates that non-circular finite relative motion between adjacent plates generally results in boundary mismatches and rotation of ridge segments relative to each other at RRR triple junctions. Left: synthetic Galapagos triple junction at initial model time, without a microplate. Right: synthetic triple junction after 3 Myr displacement, illustrating the resulting boundary mismatch (gap) and rotated ridge axes.
Performance of High-Efficiency Advanced Triple-Junction Solar Panels for the LILT Mission Dawn
NASA Technical Reports Server (NTRS)
Fatemi, Navid S.; Sharma, Surya; Buitrago, Oscar; Sharps, Paul R.; Blok, Ron; Kroon, Martin; Jalink, Cees; Harris, Robin; Stella, Paul; Distefano, Sal
2005-01-01
NASA's Discovery Mission Dawn is designed to (LILT) conditions. operate within the solar system's Asteroid belt, where the large distance from the sun creates a low-intensity, low-temperature (LILT) condition. To meet the mission power requirements under LlLT conditions, very high-efficiency multi-junction solar cells were selected to power the spacecraft to be built by Orbital Sciences Corporation (OSC) under contract with JPL. Emcore's InGaP/InGaAs/Ge advanced triple-junction (ATJ) solar cells, exhibiting an average air mass zero (AMO) efficiency of greater than 27.6% (one-sun, 28 C), were used to populate the solar panels [1]. The two solar array wings, to be built by Dutch Space, with 5 large- area panels each (total area of 36.4 sq. meters) are projected to produce between 10.3 kWe and 1.3 kWe of end-of life (EOL) power in the 1.0 to 3.0 AU range, respectively. The details of the solar panel design, testing and power analysis are presented.
The Evolution of the Indian Ocean Triple Junction and the Finite Rotation Problem.
1980-09-01
AD-AG&9 103 ~S HOLE OCEANOGRAPHIC INSTITUTION MASS F/6 6/7 THE EVOLUTION OF THE INDIAN OCEAN TRIPLE JUNCTION AND THE FINIT-ETC(U1 SEP 80 C R TAPSCOTT...1111flfl 1.4 111116 MICROCOPY RESOLUTION TEST CHART WHOI-80-37 THE EVOLUTION OF THE INDIAN OCEAN TRIPLE JUNCTION AND THE FINITE ROTATION PROBLEM by...purpose of the United States Government. This thesis should be cited as: Christopher R. Tapscott, 1979. The Evolution of the Indian Ocean Triple Junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Wenhong; School of Mechanical Engineering, Shandong University of Technology, Zibo 255049; Wang, Weiguo, E-mail: wang_weiguo@vip.163.com
Grain orientations and grain boundary migrations near triple junctions in a high purity aluminum were analyzed by electron back scattered diffraction. The results indicate that there are good correlations between the Schmid factors or Taylor factors and the misorientation values of point to original point in grains near the triple junctions in a slightly deformed sample. Grains with higher Schmid factors or lower Taylor factors typically correspond to higher misorientation values near the triple junctions. In a subsequent annealing at 400 °C, both grain boundaries and triple junctions migrate, but the former leave ghost lines. During such migration, a grainmore » boundary grows from the grain with lower Schmid factor (higher Taylor factor) into the grain with higher Schmid factor (lower Taylor factor). Usually, the amount of migration of a grain boundary is considerably greater than that of a triple junction, and the grain boundary becomes more curved after migration. These observations indicate that the triple junctions have drag effects on grain boundary migration. - Highlights: • Polycrystalline aluminum with fine grains about 30 μm were used. • Off-line in situ EBSD was used to identify TJs before and after annealing. • Grains with higher SFs have higher misorientation values near TJs after deformation. • Grain boundaries grow from hard grains into soft grains during annealing. • Triple junctions have drag effects on grain boundaries migration.« less
Tectonic Evolution of the Jurassic Pacific Plate
NASA Astrophysics Data System (ADS)
Nakanishi, M.; Ishihara, T.
2015-12-01
We present the tectonic evolution of the Jurassic Pacific plate based on magnetic anomly lineations and abyssal hills. The Pacific plate is the largest oceanic plate on Earth. It was born as a microplate aroud the Izanagi-Farallon-Phoenix triple junction about 192 Ma, Early Jurassic [Nakanishi et al., 1992]. The size of the Pacific plate at 190 Ma was nearly half that of the present Easter or Juan Fernandez microplates in the East Pacific Rise [Martinez et at, 1991; Larson et al., 1992]. The plate boundary surrounding the Pacific plate from Early Jurassic to Early Cretaceous involved the four triple junctions among Pacific, Izanagi, Farallon, and Phoenix plates. The major tectonic events as the formation of oceanic plateaus and microplates during the period occurred in the vicinity of the triple junctions [e.g., Nakanishi and Winterer, 1998; Nakanishi et al., 1999], implying that the study of the triple junctions is indispensable for understanding the tectonic evolution of the Pacific plate. Previous studies indicate instability of the configuration of the triple junctions from Late Jurassic to Early Cretaceous (155-125 Ma). On the other hand, the age of the birth of the Pacific plate was determined assuming that all triple junctions had kept their configurations for about 30 m.y. [Nakanishi et al., 1992] because of insufficient information of the tectonic history of the Pacific plate before Late Jurassic.Increase in the bathymetric and geomagnetic data over the past two decades enables us to reveal the tectonic evolution of the Pacific-Izanagi-Farallon triple junction before Late Jurassic. Our detailed identication of magnetic anomaly lineations exposes magnetic bights before anomaly M25. We found the curved abyssal hills originated near the triple junction, which trend is parallel to magnetic anomaly lineations. These results imply that the configuration of the Pacific-Izanagi-Farallon triple junction had been RRR before Late Jurassic.
Transition from slab to slabless: Results from the 1993 Mendocino triple junction seismic experiment
Beaudoin, B.C.; Godfrey, N.J.; Klemperer, S.L.; Lendl, C.; Trehu, A.M.; Henstock, T.J.; Levander, A.; Holl, J.E.; Meltzer, A.S.; Luetgert, J.H.; Mooney, W.D.
1996-01-01
Three seismic refraction-reflection profiles, part of the Mendocino triple junction seismic experiment, allow us to compare and contrast crust and upper mantle of the North American margin before and after it is modified by passage of the Mendocino triple junction. Upper crustal velocity models reveal an asymmetric Great Valley basin overlying Sierran or ophiolitic rocks at the latitude of Fort Bragg, California, and overlying Sierran or Klamath rocks near Redding, California. In addition, the upper crustal velocity structure indicates that Franciscan rocks underlie the Klamath terrane east of Eureka, California. The Franciscan complex is, on average, laterally homogeneous and is thickest in the triple junction region. North of the triple junction, the Gorda slab can be traced 150 km inboard from the Cascadia subduction zone. South of the triple junction, strong precritical reflections indicate partial melt and/or metamorphic fluids at the base of the crust or in the upper mantle. Breaks in these reflections are correlated with the Maacama and Bartlett Springs faults, suggesting that these faults extend at least to the mantle. We interpret our data to indicate tectonic thickening of the Franciscan complex in response to passage of the Mendocino triple junction and an associated thinning of these rocks south of the triple junction due to assimilation into melt triggered by upwelling asthenosphere. The region of thickened Franciscan complex overlies a zone of increased scattering, intrinsic attenuation, or both, resulting from mechanical mixing of lithologies and/or partial melt beneath the onshore projection of the Mendocino fracture zone. Our data reveal that we have crossed the southern edge of the Gorda slab and that this edge and/or the overlying North American crust may have fragmented because of the change in stress presented by the edge.
Reappraisal of the Arabia-India-Somalia triple junction kinematics
NASA Astrophysics Data System (ADS)
Fournier, Marc; Patriat, Philippe; Leroy, Sylvie
2001-07-01
We propose alternative kinematics for the Arabia-India-Somalia triple junction based on a re-interpretation of seismological and magnetic data. The new triple junction of the ridge-ridge-ridge type is located at the bend of the Sheba Ridge in the eastern gulf of Aden at 14.5°N and 56.4°E. The Owen fracture zone (Arabia-India boundary) is connected to the Sheba Ridge by an ultra-slow divergent boundary trending N80°E±10° marked by diffuse seismicity. The location of the Arabia-India rotation pole is constrained at 14.1°N and 71.2°E by fitting the active part of the Owen fracture zone with a small circle. The finite kinematics of the triple junction is inferred from the present-day kinematics. Since the inception of the accretion 15-18 Ma ago, the Sheba Ridge has probably receded ∼300 km at the expense of the Carlsberg Ridge which propagated northwestward in the gulf of Aden, while an ultra-slow divergent plate boundary developed between the Arabian and Indian plates. The overall geometry of the new triple junction is very similar to that of the Azores triple junction.
Ultrastable Nontoxic RNA Nanoparticles for Targeting Triple-Negative Breast Cancer Stem Cells
2016-04-01
delivery system to meet the urgent need of efficient strategies for the treatment of breast cancer. 15. SUBJECT TERMS RNA nanotechnology ; three-way...construct a new generation of drugs composed purely of RNA (Nature Nanotechnology , 2011, 6: 658; Nano Today, 2012, 7: 245). Our goal is to apply our...anti-proliferative, anti-invasive and anti- metastasis properties. 2. KEYWORDS: RNA nanotechnology ; three-way junction; RNA aptamer; miRNA; triple
NASA Astrophysics Data System (ADS)
Sugaya, Takeyoshi; Tayagaki, Takeshi; Aihara, Taketo; Makita, Kikuo; Oshima, Ryuji; Mizuno, Hidenori; Nagato, Yuki; Nakamoto, Takashi; Okano, Yoshinobu
2018-05-01
We report high-quality dual-junction GaAs solar cells grown using solid-source molecular beam epitaxy and their application to smart stacked III–V//Si quadruple-junction solar cells with a two-terminal configuration for the first time. A high open-circuit voltage of 2.94 eV was obtained in an InGaP/GaAs/GaAs triple-junction top cell that was stacked to a Si bottom cell. The short-circuit current density of a smart stacked InGaP/GaAs/GaAs//Si solar cell was in good agreement with that estimated from external quantum efficiency measurements. An efficiency of 18.5% with a high open-circuit voltage of 3.3 V was obtained in InGaP/GaAs/GaAs//Si two-terminal solar cells.
Kong, Lijing; Wu, Zhiming; Chen, Shanshan; Cao, Yiyan; Zhang, Yong; Li, Heng; Kang, Junyong
2015-01-01
An electroluminescence microscopy combined with a spectroscopy was developed to visually analyze multi-junction solar cells. Triple-junction solar cells with different conversion efficiencies were characterized by using this system. The results showed that the mechanical damages and material defects in solar cells can be clearly distinguished, indicating a high-resolution imaging. The external quantum efficiency (EQE) measurements demonstrated that different types of defects or damages impacted cell performance in various degrees and the electric leakage mostly degraded the EQE. Meanwhile, we analyzed the relationship between electroluminescence intensity and short-circuit current density J SC. The results indicated that the gray value of the electroluminescence image corresponding to the intensity was almost proportional to J SC. This technology provides a potential way to evaluate the current matching status of multi-junction solar cells.
Triple Junctions, Boninites, and a New Microplate in the Western Pacific
NASA Astrophysics Data System (ADS)
Flores, J. A.; Casey, J.
2017-12-01
A new microplate has been discovered while trying to correlate melting processes in subduction zones that are forming boninites along the southern Mariana Plate. The westward boundary between the Mariana plate and the Philippine Sea plate is along a well-defined back-arc spreading center. The southern extension of this spreading center to the intersection with the Mariana Trench does not have a recognized morphological boundary. Previous work has hypothesized that subduction beneath a spreading center provides conditions required for boninite petrogenesis. Therefore, the exact location of the trench-trench-ridge triple junction needs to be found and correlated with known boninite locations. The triple junction was found using fault plane solutions to constrain the southern boundary of the two plates as it transects across the forearc. Normal faults suggest the triple junction to be at approximately 11.9N 144.1W; slip direction of reverse faults associated with the subducting plate are dominantly north-south west of this junction and northwest-southeast on the east side. While locating the southern boundary, the nucleation of a new spreading center that creates a ridge-ridge-ridge triple junction was found. The main spreading center trends mostly north-south until about 12.5N 143W, where two other spreading centers meet. The western spreading zone trends mostly east-west and seems to be in its infancy whereas there is another spreading center trending northwest-southeast. It is this last spreading center that forms the trench-ridge-trench triple junction. Discovery of these triple junctions isolates a piece of lithosphere that we interpret to be a new microplate that we name the Challenger Microplate.
Dilute Nitrides For 4-And 6- Junction Space Solar Cells
NASA Astrophysics Data System (ADS)
Essig, S.; Stammler, E.; Ronsch, S.; Oliva, E.; Schachtner, M.; Siefer, G.; Bett, A. W.; Dimroth, F.
2011-10-01
According to simulations the efficiency of conventional, lattice-matched GaInP/GaInAs/Ge triple-junction space solar cells can be strongly increased by the incorporation of additional junctions. In this way the existing excess current of the Germanium bottom cell can be reduced and the voltage of the stack can be increased. In particular, the use of 1.0 eV materials like GaInNAs opens the door for solar cells with significantly improved conversion efficiency. We have investigated the material properties of GaInNAs grown by metal organic vapour phase epitaxy (MOVPE) and its impact on the quantum efficiency of solar cells. Furthermore we have developed a GaInNAs subcell with a bandgap energy of 1.0 eV and integrated it into a GaInP/GaInAs/GaInNAs/Ge 4-junction and a AlGaInP/GaInP/AlGaInAs/GaInAs/GaInNAs/Ge 6- junction space solar cell. The material quality of the dilute nitride junction limits the current density of these devices to 9.3 mA/cm2 (AM0). This is not sufficient for a 4-junction cell but may lead to current matched 6- junction devices in the future.
NASA Technical Reports Server (NTRS)
Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.
2008-01-01
The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell
Distributed deformation ahead of the Cocos-Nazca Rift at the Galapagos triple junction
NASA Astrophysics Data System (ADS)
Smith, Deborah K.; Schouten, Hans; Zhu, Wen-lu; Montési, Laurent G. J.; Cann, Johnson R.
2011-11-01
The Galapagos triple junction is not a simple ridge-ridge-ridge (RRR) triple junction. The Cocos-Nazca Rift (C-N Rift) tip does not meet the East Pacific Rise (EPR). Instead, two secondary rifts form the link: Incipient Rift at 2°40‧N and Dietz Deep volcanic ridge, the southern boundary of the Galapagos microplate (GMP), at 1°10‧N. Recently collected bathymetry data are used to investigate the regional tectonics prior to the establishment of the GMP (∼1.5 Ma). South of C-N Rift a band of northeast-trending cracks cuts EPR-generated abyssal hills. It is a mirror image of a band of cracks previously identified north of C-N Rift on the same age crust. In both areas, the western ends of the cracks terminate against intact abyssal hills suggesting that each crack initiated at the EPR spreading center and cut eastward into pre-existing topography. Each crack formed a short-lived triple junction until it was abandoned and a new crack and triple junction initiated nearby. Between 2.5 and 1.5 Ma, the pattern of cracking is remarkably symmetric about C-N Rift providing support for a crack interaction model in which crack initiation at the EPR axis is controlled by stresses associated with the tip of the westward-propagating C-N Rift. The model also shows that offsets of the EPR axis may explain times when cracking is not symmetric. South of C-N Rift, cracks are observed on seafloor as old as 10.5 Ma suggesting that this triple junction has not been a simple RRR triple junction during that time.
NASA Technical Reports Server (NTRS)
Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, RIchard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert
2007-01-01
The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five. This provides confidence in future longer-term solar powered missions on the surface of Mars. However, the solar cells used on the rovers are not optimized for the Mars surface solar spectrum, which is attenuated at shorter wavelengths due to scattering by the dusty atmosphere. The difference between the Mars surface spectrum and the AM0 spectrum increases with solar zenith angle and optical depth. The recent results of a program between JPL and Spectrolab to optimize GaInP/GaAs/Ge solar cells for Mars are presented. Initial characterization focuses on the solar spectrum at 60-degrees zenith angle at an optical depth of 0.5. The 60-degree spectrum is reduced to 1/6 of the AM0 intensity and is further reduced in the blue portion of the spectrum. JPL has modeled the Mars surface solar spectra, modified an X-25 solar simulator, and completed testing of Mars-optimized solar cells previously developed by Spectrolab with the modified X-25 solar simulator. Spectrolab has focused on the optimization of the higher efficiency Ultra Triple-Junction (UTJ) solar cell for Mars. The attenuated blue portion of the spectrum requires the modification of the top sub-cell in the GaInP/GaAs/Ge solar cell for improved current balancing in the triple-junction cell. Initial characterization confirms the predicted increase in power and current matched operation for the Mars surface 60-degree zenith angle solar spectrum.
Development, Qualification and Production of Space Solar Cells with 30% EOL Efficiency
NASA Astrophysics Data System (ADS)
Guter, Wolfgang; Ebel, Lars; Fuhrmann, Daniel; Kostler, Wolfgang; Meusel, Matthias
2014-08-01
AZUR SPACE's latest qualified solar cell product 3G30-advanced provides a high end-of-life (EOL) efficiency of 27.8% for 5E14 (1 MeV e-/cm2) at low production costs. In order to further reduce the mass, the 3G30-advanced was thinned down to as thin as 20 μm and tested in space. Next generation solar cells must exceed the EOL efficiency of the 3G30-advanced and therefore will utilize the excess current of the Ge subcell. This can be achieved by a metamorphic cell concept. While average beginning-of-life efficiencies above 31% have already been demonstrated with upright metamorphic triple-junction cells, AZUR's next generation product will comprise a metamorphic 4- junction device targeting 30% EOL.
Hüsler, P L; Klump, H H
1995-09-10
We have designed a Hoogsteen (HG) triple-helical three-way junction (ternary complex) constructed from three 33-mer oligonucleotides based on the same subset of sequences used for the Watson-Crick (WC) triple-helical three-way junction, characterized previously (P. L. Hüsler and H. H. Klump (1994) Arch. Biochem. Biophys., 313, 29-38). The junction differs primarily in the assembly of the branch point and the ends of the arms. The three oligonucleotides can each fold into a WC hairpin, linked by a four-member cytosine loop, each containing a homo-pyrimidine 10-mer single-strand extension. On lowering the pH (between 6 and 4), the extensions mutually associate to one of the other hairpins via Hoogsteen (HG) hydrogen bonding. Collectively, this process results in the formation of the branch point and the triple-helical arms. The HG triple-helical three-way junction is characterized by gel electrophoresis, circular dichroism, uv melting, and differential scanning calorimetry. The junction undergoes thermal unfolding in two distinct temperature regions. In the temperature range 15 to 50 degrees C loss of HG base pairing results in the dissociation of the three-way junction. Between 55 and 95 degrees C the resulting hairpins undergo further successive unfolding. The overall calorimetric unfolding enthalpy and entropy changes associated with the loss of HG base pairing are approximately equal to the sum of the enthalpy and entropy changes associated with the dissociation of the HG base pairing in the isolated arms (170.6 kcal.mol-1; 540.1 cal.mol-1.K-1). It is apparent from these results that in the proximity of the branch point the structure is not perturb or strain. This result is contrary to the results obtained for the WC triple-helical three-way and for three-way junctions constructed from canonical double-helical DNA. Complete folding of the junction requires either high Na+ (600 mM) ion concentrations or 40-60 mM Mg2+.
NASA Technical Reports Server (NTRS)
Lee, H. S.; Yamaguchi, M.; Elkins-Daukes, N. J.; Khan, A.; Takamoto, T.; Imaizumi, M.; Ohshima, T.; Itoh, H.
2007-01-01
A high efficient In0.48Ga0.52P/In0.01Ga0.99As/Ge triple junction solar cell has been developed for application in space and terrestrial concentrator PV system [1-3]. Recently, a high conversion efficiency of 31.5% (AM1.5G) has been obtained in InGaP/(In)GaAs/Ge triple junction solar cell, and as a new top cell material of triple junction cells, (Al)InGaP [1] has been proposed to improve the open-circuit voltage (Voc) because it shows a higher Voc of 1.5V while maintaining the same short-circuit current (ISC) as a conventional InGaP top cell under AM1.5G conditions as seen in figure 1 (a). Moreover, the spectral response of 1.96eV AlInGaP cell with a thickness of 2.5..m shows a higher response in the long wavelength region, compared with that of 1.87eV InGaP cell with 0.6..m thickness, as shown in figure 1 (b). Its development will realize next generation multijunction (MJ) solar cells such as a lattice mismatched AlInGaP/InGaAs/Ge 3-junction and lattice matched AlInGaP/GaAs/InGaAsN/Ge 4-junction solar cells. Figure 2 shows the super high-efficiency MJ solar cell structures and wide band spectral response by MJ solar cells under AM1.5G conditions. For realizing high efficient MJ space solar cells, the higher radiation-resistance under the electron or proton irradiation is required. The irradiation studies for a conventional top cell InGaP have been widely done [4-6], but little irradiation work has been performed on AlInGaP solar cells. Recently, we made the first reports of 1 MeV electron or 30 keV proton irradiation effects on AlInGaP solar cells, and evaluated the defects generated by the irradiation [7,8]. The present study describes the recovery of 1 MeV electron / 30 keV proton irradiation-induced defects in n+p- AlInGaP solar cells by minority-carrier injection enhanced annealing or isochronal annealing. The origins of irradiation-induced defects observed by deep level transient spectroscopy (DLTS) measurements are discussed.
NASA Astrophysics Data System (ADS)
Sogabe, Tomah; Ogura, Akio; Okada, Yoshitaka
2014-02-01
Spectral response measurement plays great role in characterizing solar cell device because it directly reflects the efficiency by which the device converts the sunlight into an electrical current. Based on the spectral response results, the short circuit current of each subcell can be quantitatively determined. Although spectral response dependence on wavelength, i.e., the well-known external quantum efficiency (EQE), has been widely used in characterizing multijunction solar cell and has been well interpreted, detailed analysis of spectral response dependence on bias voltage (SR -Vbias) has not been reported so far. In this work, we have performed experimental and numerical studies on the SR -Vbias for Ga0.51In0.49P/Ga0.99In0.01As/Ge triple junction solar cell. Phenomenological description was given to clarify the mechanism of operation matching point variation in SR -Vbias measurements. The profile of SR-Vbias curve was explained in detail by solving the coupled two-diode current-voltage characteristic transcend formula for each subcell.
High Radiation Resistance IMM Solar Cell
NASA Technical Reports Server (NTRS)
Pan, Noren
2015-01-01
Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.
Triple Junction Reorganizations: A Mechanism for the Initiation of the Great Pacific Fractures Zones
NASA Astrophysics Data System (ADS)
Pockalny, R. A.; Larson, R. L.; Grindlay, N. R.
2001-12-01
There are two general explanations for the initiation of oceanic transform faults that eventually evolve into fracture zones: transforms inherited from continental break-up and transforms acquired in response to a change in plate motions. These models are sufficient to explain the fracture zones in oceans formed by continental break-up. However, neither model accounts for the initiation of the large-offset, great Pacific fracture zones that characterized the Pacific-Farallon plate boundary prior to 25 Ma. Primarily, these models are unable to explain why the initial age of these fracture zones becomes progressively younger from the Mendocino fracture zone (\\~{ } 160 Ma) southward down to the Resolution FZ (\\~{ }84 Ma). We propose a new transform initiation mechanism for the great Pacific fracture zones, which is intimately tied to tectonic processes at triple junctions and directly related to the growth of the Pacific Plate. Recently acquired multibeam bathymetry and marine geophysics data collected along Pandora's Escarpment in the southwestern Pacific have identified the escarpment as the trace of the Pacific-Farallon-Phoenix triple junction on the Pacific Plate. Regional changes in the trend of the triple junction trace between 84-121 Ma roughly coincide with the initiation of the Marquesas, Austral and Resolution fracture zones. Bathymetry and backscatter data from the projected intersections of these fracture zones with the triple junction trace identify several anomalous structures that suggest tectonic reorganizations of the triple junction. We believe this reorganization created the initial transform fault(s) that ultimately became the large-offset, great Pacific fracture zones. Several possible mechanisms for initiating the transform faults are explored including microplate formation, ridge-tip propagation, and spontaneous transform fault formation.
III-V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration
NASA Astrophysics Data System (ADS)
Cariou, Romain; Benick, Jan; Feldmann, Frank; Höhn, Oliver; Hauser, Hubert; Beutel, Paul; Razek, Nasser; Wimplinger, Markus; Bläsi, Benedikt; Lackner, David; Hermle, Martin; Siefer, Gerald; Glunz, Stefan W.; Bett, Andreas W.; Dimroth, Frank
2018-04-01
Silicon dominates the photovoltaic industry but the conversion efficiency of silicon single-junction solar cells is intrinsically constrained to 29.4%, and practically limited to around 27%. It is possible to overcome this limit by combining silicon with high-bandgap materials, such as III-V semiconductors, in a multi-junction device. Significant challenges associated with this material combination have hindered the development of highly efficient III-V/Si solar cells. Here, we demonstrate a III-V/Si cell reaching similar performances to standard III-V/Ge triple-junction solar cells. This device is fabricated using wafer bonding to permanently join a GaInP/GaAs top cell with a silicon bottom cell. The key issues of III-V/Si interface recombination and silicon's weak absorption are addressed using poly-silicon/SiOx passivating contacts and a novel rear-side diffraction grating for the silicon bottom cell. With these combined features, we demonstrate a two-terminal GaInP/GaAs//Si solar cell reaching a 1-sun AM1.5G conversion efficiency of 33.3%.
NASA Astrophysics Data System (ADS)
Nelson, George T.; Juang, Bor-Chau; Slocum, Michael A.; Bittner, Zachary S.; Laghumavarapu, Ramesh B.; Huffaker, Diana L.; Hubbard, Seth M.
2017-12-01
Growth of GaSb with low threading dislocation density directly on GaAs may be possible with the strategic strain relaxation of interfacial misfit arrays. This creates an opportunity for a multi-junction solar cell with access to a wide range of well-developed direct bandgap materials. Multi-junction cells with a single layer of GaSb/GaAs interfacial misfit arrays could achieve higher efficiency than state-of-the-art inverted metamorphic multi-junction cells while forgoing the need for costly compositionally graded buffer layers. To develop this technology, GaSb single junction cells were grown via molecular beam epitaxy on both GaSb and GaAs substrates to compare homoepitaxial and heteroepitaxial GaSb device results. The GaSb-on-GaSb cell had an AM1.5g efficiency of 5.5% and a 44-sun AM1.5d efficiency of 8.9%. The GaSb-on-GaAs cell was 1.0% efficient under AM1.5g and 4.5% at 44 suns. The lower performance of the heteroepitaxial cell was due to low minority carrier Shockley-Read-Hall lifetimes and bulk shunting caused by defects related to the mismatched growth. A physics-based device simulator was used to create an inverted triple-junction GaInP/GaAs/GaSb model. The model predicted that, with current GaSb-on-GaAs material quality, the not-current-matched, proof-of-concept cell would provide 0.5% absolute efficiency gain over a tandem GaInP/GaAs cell at 1 sun and 2.5% gain at 44 suns, indicating that the effectiveness of the GaSb junction was a function of concentration.
Tex, David M; Nakamura, Tetsuya; Imaizumi, Mitsuru; Ohshima, Takeshi; Kanemitsu, Yoshihiko
2017-05-16
Tandem solar cells are suited for space applications due to their high performance, but also have to be designed in such a way to minimize influence of degradation by the high energy particle flux in space. The analysis of the subcell performance is crucial to understand the device physics and achieve optimized designs of tandem solar cells. Here, the radiation-induced damage of inverted grown InGaP/GaAs/InGaAs triple-junction solar cells for various electron fluences are characterized using conventional current-voltage (I-V) measurements and time-resolved photoluminescence (PL). The conversion efficiencies of the entire device before and after damage are measured with I-V curves and compared with the efficiencies predicted from the time-resolved method. Using the time-resolved data the change in the carrier dynamics in the subcells can be discussed. Our optical method allows to predict the absolute electrical conversion efficiency of the device with an accuracy of better than 5%. While both InGaP and GaAs subcells suffered from significant material degradation, the performance loss of the total device can be completely ascribed to the damage in the GaAs subcell. This points out the importance of high internal electric fields at the operating point.
NASA Technical Reports Server (NTRS)
Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, Richard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert
2005-01-01
The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five.
Surface Breakdown Characteristics of Silicone Oil for Electric Power Apparatus
NASA Astrophysics Data System (ADS)
Wada, Junichi; Nakajima, Akitoshi; Miyahara, Hideyuki; Takuma, Tadasu; Okabe, Shigemitu; Kohtoh, Masanori; Yanabu, Satoru
This paper describes the surface breakdown characteristics of the silicone oil which has the possibility of the application to innovative switchgear as an insulating medium. At the first step, we have experimentally studied on the impulse breakdown characteristics of the configuration with a triple-junction where a solid insulator is in contact with the electrode. The test configurations consist of solid material (Nomex and pressboard) and liquid insulation oil (silicone and mineral oil). We have discussed the experimental results based on the maximal electric field at a triple-junction. As the second step, we have studied the configuration which may improve the surface breakdown characteristics by lowering the electric field near the triple-junction.
Evolution of the northern Main Ethiopian rift: birth of a triple junction
NASA Astrophysics Data System (ADS)
Wolfenden, Ellen; Ebinger, Cynthia; Yirgu, Gezahegn; Deino, Alan; Ayalew, Dereje
2004-07-01
Models for the formation of the archetypal rift-rift-rift triple junction in the Afar depression have assumed the synchronous development of the Red Sea-Aden-East African rift systems soon after flood basaltic magmatism at 31 Ma, but the timing of intial rifting in the northern sector of the East African rift system had been poorly constrained. The aims of our field, geochronology, and remote sensing studies were to determine the timing and kinematics of rifting in the 3rd arm, the Main Ethiopian rift (MER), near its intersection with the southern Red Sea rift. New structural data and 10 new SCLF 40Ar/39Ar dates show that extension in the northern Main Ethiopian rift commenced after 11 Ma, more than 17 My after initial rifting in the southern Red Sea and Gulf of Aden. The triple junction, therefore, could have developed only during the past 11 My, or 20 My after the flood basaltic magmatism. Thus, the flood basaltic magmatism and separation of Arabia from Africa are widely separated in time from the opening of the Main Ethiopian rift, which marks the incipient Nubia-Somalia plate boundary; triple junction formation is not a primary feature of breakup above the Afar mantle plume. The East African rift system appears to have propagated northward from the Mesozoic Anza rift system into the Afar depression to cut across Oligo-Miocene rift structures of the Red Sea and Gulf of Aden, in response to global plate reorganisations. Structural patterns reveal a change from 130°E-directed extension to 105°E-directed extension sometime in the interval 6.6 to 3 Ma, consistent with predictions from global plate kinematic studies. The along-axis propagation of rifting in each of the three arms of the triple junction has led to a NE-migration of the triple junction since 11 Ma.
NASA Astrophysics Data System (ADS)
Pakhanov, N. A.; Andreev, V. M.; Shvarts, M. Z.; Pchelyakov, O. P.
2018-03-01
Multi-junction solar cells based on III-V compounds are the most efficient converters of solar energy to electricity and are widely used in space solar arrays and terrestrial photovoltaic modules with sunlight concentrators. All modern high-efficiency III-V solar cells are based on the long-developed triple-junction III-V GaInP/GaInAs/Ge heterostructure and have an almost limiting efficiency for a given architecture — 30 and 41.6% for space and terrestrial concentrated radiations, respectively. Currently, an increase in efficiency is achieved by converting from the 3-junction to the more efficient 4-, 5-, and even 6-junction III-V architectures: growth technologies and methods of post-growth treatment of structures have been developed, new materials with optimal bandgaps have been designed, and crystallographic parameters have been improved. In this review, we consider recent achievements and prospects for the main directions of research and improvement of architectures, technologies, and materials used in laboratories to develop solar cells with the best conversion efficiency: 35.8% for space, 38.8% for terrestrial, and 46.1% for concentrated sunlight. It is supposed that by 2020, the efficiency will approach 40% for direct space radiation and 50% for concentrated terrestrial solar radiation. This review considers the architecture and technologies of solar cells with record-breaking efficiency for terrestrial and space applications. It should be noted that in terrestrial power plants, the use of III-V SCs is economically advantageous in systems with sunlight concentrators.
InAlAs photovoltaic cell design for high device efficiency
Smith, Brittany L.; Bittner, Zachary S.; Hellstroem, Staffan D.; ...
2017-04-17
This study presents a new design for a single-junction InAlAs solar cell, which reduces parasitic absorption losses from the low band-gap contact layer while maintaining a functional window layer by integrating a selective etch stop. The etch stop is then removed prior to depositing an anti-reflective coating. The final cell had a 17.9% efficiency under 1-sun AM1.5 with an anti-reflective coating. Minority carrier diffusion lengths were extracted from external quantum efficiency data using physics-based device simulation software yielding 170 nm in the n-type emitter and 4.6 um in the p-type base, which is more than four times the diffusion lengthmore » previously reported for a p-type InAlAs base. In conclusion, this report represents significant progress towards a high-performance InAlAs top cell for a triple-junction design lattice-matched to InP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, G.S.
1993-07-13
A high-performance superconducting analog-to-digital converter is described, comprising: a bidirectional binary counter having n stages of triple-junction reversible flip-flops connected together in a cascade arrangement from the least significant bit (LSB) to the most significant bit (MSB) where n is the number of bits of the digital output, each triple-junction reversible flip-flop including first, second and third shunted Josephson tunnel junctions and a superconducting inductor connected in a bridge circuit, the Josephson junctions and the inductor forming upper and lower portions of the flip-flop, each reversible flip-flop being a bistable logic circuit in which the direction of the circulating currentmore » determines the state of the circuit; and means for applying an analog input current to the bidirectional counter; wherein the bidirectional counter algebraically counts incremental changes in the analog input current, increasing the binary count for positive incremental changes in the analog current and decreasing the binary count for negative incremental changes in the current, and wherein the counter does not require a gate bias, thus minimizing power dissipation.« less
Nelson, Scott D.
2016-05-10
A photoconductive switch having a wide bandgap semiconductor material substrate between opposing electrodes, with one of the electrodes having an aperture or apertures at an electrode-substrate interface for transversely directing radiation therethrough from a radiation source into a triple junction region of the substrate, so as to geometrically constrain the conductivity path to within the triple junction region.
Semiconductor switch geometry with electric field shaping
Booth, R.; Pocha, M.D.
1994-08-23
An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium. 10 figs.
Semiconductor switch geometry with electric field shaping
Booth, Rex; Pocha, Michael D.
1994-01-01
An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium.
The Cape Mendocino, California, earthquakes of April 1992: Subduction at the triple junction
Oppenheimer, D.; Beroza, G.; Carver, G.; Dengler, L.; Eaton, J.; Gee, L.; Gonzalez, F.; Jayko, A.; Li, W.H.; Lisowski, M.; Magee, M.; Marshall, G.; Murray, M.; McPherson, R.; Romanowicz, B.; Satake, K.; Simpson, R.; Somerville, P.; Stein, R.; Valentine, D.
1993-01-01
The 25 April 1992 magnitude 7.1 Cape Mendocino thrust earthquake demonstrated that the North America—Gorda plate boundary is seismogenic and illustrated hazards that could result from much larger earthquakes forecast for the Cascadia region. The shock occurred just north of the Mendocino Triple Junction and caused strong ground motion and moderate damage in the immediate area. Rupture initiated onshore at a depth of 10.5 kilometers and propagated up-dip and seaward. Slip on steep faults in the Gorda plate generated two magnitude 6.6 aftershocks on 26 April. The main shock did not produce surface rupture on land but caused coastal uplift and a tsunami. The emerging picture of seismicity and faulting at the triple junction suggests that the region is likely to continue experiencing significant seismicity.
Grain boundary and triple junction diffusion in nanocrystalline copper
NASA Astrophysics Data System (ADS)
Wegner, M.; Leuthold, J.; Peterlechner, M.; Song, X.; Divinski, S. V.; Wilde, G.
2014-09-01
Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes,
Study of p-type and intrinsic materials for amorphous silicon based solar cells
NASA Astrophysics Data System (ADS)
Du, Wenhui
This dissertation summarizes the research work on the investigation and optimization of high efficiency hydrogenated amorphous silicon (a-Si:H) based thin film n-i-p single-junction and multi-junction solar cells, deposited using radio frequency (RF) and very high frequency (VHF) plasma enhanced chemical vapor deposition (PECVD) techniques. The fabrication and characterization of high quality p-type and intrinsic materials for a-Si:H based solar cells have been systematically and intensively studied. Hydrogen dilution, substrate temperature, gas flow rate, RF- or VHF-power density, and films deposition time have been optimized to obtain "on-the-edge" materials. To understand the material structure of the silicon p-layer providing a high Voc a-Si:H solar cell, hydrogenated amorphous, protocrystalline, and nanocrystalline silicon p-layers have been prepared using RF-PECVD and characterized by Raman spectroscopy and high resolution transmission electronic microscopy (HRTEM). It was found that the optimum Si:H p-layer for n-i-p a-Si:H solar cells is composed of fine-grained nanocrystals with crystallite sizes in the range of 3-5 nm embedded in an amorphous network. Using the optimized p-layer, an a-Si:H single-junction solar cell with a very high Voc value of 1.042 V and a FF value of 0.74 has been obtained. a-Si:H, a-SiGe:H and nc-Si:H i-layers have been prepared using RF- and VHF-PECVD techniques and monitored by different optical and electrical characterizations. Single-junction a-Si:H, a-SiGe and nc-Si:H cells have been developed and optimized. Intermediate bandgap a-SiGe:H solar cells achieved efficiencies over 12.5%. On the basis of optimized component cells, we achieved a-Si:Hla-SiGe:H tandem solar cells with efficiencies of ˜12.9% and a-Si:H/a-SiGe:H/a-SiGe:H triple-junction cells with efficiencies of ˜12.03%. VHF-PECVD technique was used to increase the deposition rates of the narrow bandgap materials. The deposition rate for a-SiGe:H i-layer attained 9 A/sec and the solar cell had a V oc of 0.588 V, Jsc of 20.4 mA/cm2, FF of 0.63, and efficiency of 7.6%. Preliminary research on the preparation of a-Si:Hlnc-Si:H tandem solar cells and a-Si:Hla-SiGe:Hlnc-Si:H triple-junction cells has also been undertaken using VHF nc-Si:H bottom cells with deposition rates of 6 A/sec. All I-V measurements were carried out under AM1.5G (100 MW/cm2) and the cell area was 0.25 cm2.
Behrmann, J.H.; Lewis, S.D.; Cande, S.C.
1994-01-01
An active oceanic spreading ridge is being subducted beneath the South American continent at the Chile Triple Junction. This process has played a major part in the evolution of most of the continental margins that border the Pacific Ocean basin. A combination of high resolution swath bathymetric maps, seismic reflection profiles and drillhole and core data from five sites drilled during Ocean Drilling Program (ODP) Leg 141 provide important data that define the tectonic, structural and stratigraphic effects of this modern example of spreading ridge subduction. A change from subduction accretion to subduction erosion occurs along-strike of the South American forearc. This change is prominently expressed by normal faulting, forearc subsidence, oversteepening of topographic slopes and intensive sedimentary mass wasting, overprinted on older signatures of sediment accretion, overthrusting and uplift processes in the forearc. Data from drill sites north of the triple junction (Sites 859-861) show that after an important phase of forearc building in the early to late Pliocene, subduction accretion had ceased in the late Pliocene. Since that time sediment on the downgoing oceanic Nazca plate has been subducted. Site 863 was drilled into the forearc in the immediate vicinity of the triple junction above the subducted spreading ridge axis. Here, thick and intensely folded and faulted trench slope sediments of Pleistocene age are currently involved in the frontal deformation of the forearc. Early faults with thrust and reverse kinematics are overprinted by later normal faults. The Chile Triple Junction is also the site of apparent ophiolite emplacement into the South American forearc. Drilling at Site 862 on the Taitao Ridge revealed an offshore volcanic sequence of Plio-Pleistocene age associated with the Taitao Fracture Zone, adjacent to exposures of the Pliocene-aged Taitao ophiolite onshore. Despite the large-scale loss of material from the forearc at the triple junction, ophiolite emplacement produces a large topographic promontory in the forearc immediately after ridge subduction, and represents the first stage of forearc rebuilding. ?? 1994 Springer-Verlag.
A four-way junction with triple-helical arms: design, characterization, and stability.
Makube, N; Klump, H H
2000-05-01
The formation of the four-way junction containing four triple-helical arms has been demonstrated using chemical methods (polyacrylamide gel electrophoresis and chemical footprinting using OsO(4) as a probe) and physical methods (UV absorbance melting and DSC). The junction J(T1T3) was assembled from two 20-mer purine strands and two 44-mer pyrimidine strands. To determine the contribution of the different arms to the stability of the complete structure of J(T1T3), the junction was compared to two simplified substructures, J(T1) and J(T3), respectively. Common to these complexes is the underlying double-helical four-way junction Js. Addition of Na(+) had a profound effect on stabilizing and subsequently folding the junctions into the stacked X-structures. The following results support the structure present: (i) The native polyacrylamide electrophoresis exhibits only a single band(s) corresponding to one species present when all four single strands are mixed in equal amounts. (ii) OsO(4) modifications were investigated at pH 5.0 and in the presence of 10 mM Mg(2+) and 100 mM Na(+). There is no cleavage of thymine residues at the branch point and throughout the structure. (iii) The thermal unfolding of J(T1) and J(T3) illustrates that the triple-helical arms are more stable than the double-helical arms which are contained in these junctions and that J(T1T3) with four triple-helical arms is slightly more stable than J(T1) and J(T3). (iv) The calorimetric transition enthalpies determined for the arms of J(T1T3) are comparable to those associated with the unfolding of its corresponding arms in J(T1) and J(T3). The results also illustrate that the formation of the junctions is not restricted by the pH, [Na(+)], sequence composition of the arms, and/or the loop position. Copyright 2000 Academic Press.
NASA Astrophysics Data System (ADS)
Polun, S. G.; Hickcox, K.; Tesfaye, S.; Gomez, F. G.
2016-12-01
The central Afar rift in Ethiopia and Djibouti is a zone of accommodation between the onshore propagations of the Gulf of Aden and Red Sea oceanic spreading centers forming part of the Afar triple junction that divides the Arabia, Nubia, and Somalia plates. While extension in the onshore magmatic propagators is accommodated through magmatism and associated faulting, extension in the central Afar is accommodated solely by large and small faults. The contributions of these major faults to the overall strain budget can be well characterized, but smaller faults are more difficult to quantify. Sparse GPS data covering the region constrain the total extension budget across the diffuse triple junction zone. Late Quaternary slip rates for major faults in Hanle, Dobe, Guma, and Immino grabens were estimated using the quantitative analysis of faulted landforms. This forms a nearly complete transect from the onshore propagation of the Red Sea rift in Tendaho graben and the onshore propagation of the Gulf of Aden rift at Manda Inakir. Field surveying was accomplished using a combination of electronic distance measurer profiling and low altitude aerial surveying. Age constraints are provided from the Holocene lacustrine history or through terrestrial cosmogenic nuclide (TCN) dating of the faulted geomorphic surface. Along this transect, late Quaternary slip rates of major faults appear to accommodate 25% of the total horizontal stretching rate between the southern margin of Tendaho graben and the Red Sea coast, as determined from published GPS velocities. This constrains the proportion of total extension between Nubia and Arabia that is accommodated through major faulting in the central Afar, compared to the magmatism and associated faulting of the magmatic propagators elsewhere in the triple junction. Along the transect, individual fault slip rates decrease from the southeast to the northwest, suggesting a `Crank-Arm' model may be more applicable to explain the regional kinematics and the evolution of the triple junction.
Evans, J.R.; Foulger, G.R.; Julian, B.R.; Miller, A.D.
1996-01-01
The Hengill region in SW Iceland is an unstable ridge-ridge-transform triple junction between an active and a waning segment of the mid-Atlantic spreading center and a transform that is transgressing southward. The triple junction contains active and extinct spreading segments and a widespread geothermal area. We evaluated shear-wave birefringence for locally recorded upper-crustal earthquakes using an array of 30 three-component digital seismographs. Fast-polarization directions, ??, are mostly NE to NNE, subparallel to the spreading axis and probably caused by fissures and microcracks related to spreading. However, there is significant variability in ?? throughout the array. The lag from fast to slow S is not proportional to earthquake depth (ray length), being scattered at all depths. The average wave-speed difference between qS1 and qS2 in the upper 2-5 km of the crust is 2-5%. Our results suggest considerable heterogeneity or strong S scattering.
Strike-slip tectonics during rift linkage
NASA Astrophysics Data System (ADS)
Pagli, C.; Yun, S. H.; Ebinger, C.; Keir, D.; Wang, H.
2017-12-01
The kinematics of triple junction linkage and the initiation of transforms in magmatic rifts remain debated. Strain patterns from the Afar triple junction provide tests of current models of how rifts grow to link in area of incipient oceanic spreading. Here we present a combined analysis of seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary deformation in Afar is accommodated primarily by extensional tectonics in the Red Sea and Gulf of Aden rifts, and does not require large rotations about vertical axes (bookshelf faulting). Additionally, models of stress changes and seismicity induced by recent dykes in one sector of the Afar triple junction provide poor fit to the observed strike-slip earthquakes. Instead we explain these patterns as rift-perpendicular shearing at the tips of spreading rifts where extensional strains terminate against less stretched lithosphere. Our results demonstrate that rift-perpendicular strike-slip faulting between rift segments achieves plate boundary linkage during incipient seafloor spreading.
Multicolor (UV-IR) Photodetectors Based on Lattice-Matched 6.1 A II/VI and III/V Semiconductors
2015-08-27
photodiodes with different cutoff wavelengths connected in series with tunnel diodes between adjacent photodiodes. The LEDs optically bias the inactive...perfectly conductive n-CdTe/p-InSb tunnel junction. 15. SUBJECT TERMS optical biasing; multi-junction photodetectors; triple-junction solar cell...during this project, including initial demonstrations of optical addressing, tunnel junction studies and multicolor device characterization
Si-Ge-Sn alloys with 1.0 eV gap for CPV multijunction solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roucka, Radek, E-mail: radek@translucentinc.com; Clark, Andrew; Landini, Barbara
2015-09-28
Si-Ge-Sn ternary group IV alloys offer an alternative to currently used 1.0 eV gap materials utilized in multijunction solar cells. The advantage of Si-Ge-Sn is the ability to vary both the bandgap and lattice parameter independently. We present current development in fabrication of Si-Ge-Sn alloys with gaps in the 1.0 eV range. Produced material exhibits excellent structural properties, which allow for integration with existing III-V photovoltaic cell concepts. Time dependent room temperature photoluminescence data demonstrate that these materials have long carrier lifetimes. Absorption tunable by compositional changes is observed. As a prototype device set utilizing the 1 eV Si-Ge-Sn junction,more » single junction Si-Ge-Sn device and triple junction device with Si-Ge-Sn subcell have been fabricated. The resulting I-V and external quantum efficiency data show that the Si-Ge-Sn junction is fully functional and the performance is comparable to other 1.0 eV gap materials currently used.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guha, S
This is Phase II of a 3-phase, 3-year program. It is intended to expand, enhance, and accelerate knowledge and capabilities for developing high-performance, two-terminal multijunction amorphous Si alloy modules. We discuss investigations on back reflectors to improve cell performance and investigate uniformity in performance over a 1-sq.-ft. area. We present results on component cell performance, both in the initial and in the light-degraded states, deposited over a 1-sq.-ft. area. The uniformity in deposited is investigated by studying the performance of subcells deposited over the entire area. We also present results on the performance of triple- junction cells and modules. Themore » modules use grid-lines and encapsulants compatible with our production technology. We discuss the novel laser-processing technique that has bee developed at United Solar to improve energy-conversion efficiency and reduce manufacturing costs. We discuss in detail the optimization of the processing steps, and the performance of a laser-processed, triple- junction device of 12.6 cm{sup 2} area is presented. We also present experimental results on investigations of module reliability.« less
Marple, R.; Miller, R.
2006-01-01
Seismic-reflection data were integrated with other geophysical, geologic, and seismicity data to better determine the location and nature of buried faults in the Charleston, South Carolina, region. Our results indicate that the 1886 Charleston, South Carolina, earthquake and seismicity near Summerville are related to local stresses caused by a 12?? bend in the East Coast fault system (ECFS) and two triple-fault junctions. One triple junction is formed by the intersection of the northwest-trending Ashley River fault with the two segments of the ECFS north and south of the bend. The other triple junction is formed by the intersection of the northeast-trending Summerville fault and a newly discovered northwest-trending Berkeley fault with the ECFS about 10 km north of the bend. The Summerville fault is a northwest-dipping border fault of the Triassic-age Jedburg basin that is undergoing reverse-style reactivation. This reverse-style reactivation is unusual because the Summerville fault parallels the regional stress field axis, suggesting that the reactivation is from stresses applied by dextral motion on the ECFS. The southwest-dip and reverse-type motion of the Berkeley fault are interpreted from seismicity data and a seismic-reflection profile in the western part of the study area. Our results also indicate that the East Coast fault system is a Paleozoic basement fault and that its reactivation since early Mesozoic time has fractured through the overlying allochthonous terranes.
NASA Astrophysics Data System (ADS)
Schouten, H.; Smith, D. K.
2005-12-01
Magellan and Trinidad microplates developed at the Mesozoic triple junction between the Pacific, Phoenix and Farallon plates; the microplates were instrumental in the transition from a transform-ridge-transform to a ridge-ridge-ridge triple junction, which took several tens of millions of years. Contrasting qualitative models for the evolution of these microplates [e.g., Tamaki and Larson, 1988; Nakanishi et al., 1992] provide meager insight in the mechanics of microplate evolution and triple junction transformation. We propose a quantitative model for the evolution of Magellan and Trinidad microplates based on the edge-driven microplate kinematic principles [Schouten et al., 1993] that have provided successful quantitative solutions for the motions of Easter, Juan Fernandez, and Galapagos microplates. In these edge-driven solutions, two angular velocity vectors (describing motion between microplate and driving plates) are located on the microplate boundaries at the tip of rifts that propagate between microplate and driving plates. The rift propagation leaves pseudofaults on microplate and driving plates; the pseudofaults, which can be recognized in the seafloor topography, then become proxies for the trajectories of the angular velocity vectors from which a quantitative solution of microplate motion is derived. Using the estimated seafloor topography of the region and published marine magnetic anomaly lineations we propose the following scenario. The Magellan microplate rotated counterclockwise as evidenced by the fanning of magnetic lineations about the Magellan Trough and the rotation of the older Mid-Pac Mountains lineation set. The Trinidad microplate rotated clockwise relative to the Pacific plate to judge from the wedge-shaped region about the Trinidad trough that has its narrow tip on the Victoria fracture zone (recognized in the estimated seafloor topograpy). The clockwise motion of the Trinidad microplate was driven by Pacific-Phoenix motion; the counterclockwise motion of the Magellan microplate by Pacific-Farallon motion. Thus the Magellan trough opened between the counter-rotating Trinidad and Magellan microplates, similar to the opening of Hess Deep between two counter-rotating Galapagos microplates at the present Galapagos triple junction [Klein et al., 2005]. When the northeastward propagating rift between the Trindad microplate and the Phoenix plate and the southward propagating rift between the Magellan microplate and the Farallon plate broke through to the Phoenix-Farallon spreading center, a new ridge-ridge-ridge triple junction was established between the Pacific, Phoenix and Farallon plates and the Trinidad and Magellan microplates ceased rotating and were abandoned on the Pacific plate.
Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Liwei; Deng, Xunming; Abken, Anka
2014-10-29
The objective of this project is to develop critical technologies required for cost-effective production of hydrogen from sunlight and water using a-Si triple junction solar cell based photo-electrodes. In this project, Midwest Optoelectronics, LLC (MWOE) and its collaborating organizations utilize triple junction a-Si thin film solar cells as the core element to fabricate photoelectrochemical (PEC) cells. Triple junction a-Si/a-SiGe/a-SiGe solar cell is an ideal material for making cost-effective PEC system which uses sun light to split water and generate hydrogen. It has the following key features: 1) It has an open circuit voltage (Voc ) of ~ 2.3V and hasmore » an operating voltage around 1.6V. This is ideal for water splitting. There is no need to add a bias voltage or to inter-connect more than one solar cell. 2) It is made by depositing a-Si/a-SiGe/aSi-Ge thin films on a conducting stainless steel substrate which can serve as an electrode. When we immerse the triple junction solar cells in an electrolyte and illuminate it under sunlight, the voltage is large enough to split the water, generating oxygen at the Si solar cell side (for SS/n-i-p/sunlight structure) and hydrogen at the back, which is stainless steel side. There is no need to use a counter electrode or to make any wire connection. 3) It is being produced in large rolls of 3ft wide and up to 5000 ft long stainless steel web in a 25MW roll-to-roll production machine. Therefore it can be produced at a very low cost. After several years of research with many different kinds of material, we have developed promising transparent, conducting and corrosion resistant (TCCR) coating material; we carried out extensive research on oxygen and hydrogen generation catalysts, developed methods to make PEC electrode from production-grade a-Si solar cells; we have designed and tested various PEC module cases and carried out extensive outdoor testing; we were able to obtain a solar to hydrogen conversion efficiency (STH) about 5.7% and a running time about 480 hrs, which are very promising results; we have also completed a techno-economic analysis of our PEC system, which indicates that a projected hydrogen generation cost of $2/gge is achievable with a 50 Ton-per-day (TPD) scale under certain conditions.« less
Hydrothermal Exploration at the Chile Triple Junction - ABE's last adventure?
NASA Astrophysics Data System (ADS)
German, C. R.; Shank, T. M.; Lilley, M. D.; Lupton, J. E.; Blackman, D. K.; Brown, K. M.; Baumberger, T.; Früh-Green, G.; Greene, R.; Saito, M. A.; Sylva, S.; Nakamura, K.; Stanway, J.; Yoerger, D. R.; Levin, L. A.; Thurber, A. R.; Sellanes, J.; Mella, M.; Muñoz, J.; Diaz-Naveas, J. L.; Inspire Science Team
2010-12-01
In February and March 2010 we conducted preliminary exploration for hydrothermal plume signals along the East Chile Rise where it intersects the continental margin at the Chile Triple Junction (CTJ). This work was conducted as one component of our larger NOAA-OE funded INSPIRE project (Investigation of South Pacific Reducing Environments) aboard RV Melville cruise MV 1003 (PI: Andrew Thurber, Scripps) with all shiptime funded through an award of the State of California to Andrew Thurber and his co-PI's. Additional support came from the Census of Marine Life (ChEss and CoMarge projects). At sea, we conducted a series of CTD-rosette and ABE autonomous underwater vehicle operations to prospect for and determine the nature of any seafloor venting at, or adjacent to, the point where the the East Chile Rise subducts beneath the continental margin. Evidence from in situ sensing (optical backscatter, Eh) and water column analyses of dissolved CH4, δ3He and TDFe/TDMn concentrations document the presence of two discrete sites of venting, one right at the triple junction and the other a further 10km along axis, north of the Triple Junction, but still within the southernmost segment of the East Chile Rise. From an intercomparison of the abundance of different chemical signals we can intercompare likely characteristics of these differet source sites and also differentiate between them and the high methane concentrations released from cold seep sites further north along the Chile Margin, both with the CTJ region and also at the Concepcion Methane Seep Area (CMSA). This multi-disciplinary and international collaboration - involving scientists from Chile, the USA, Europe and Japan - can serve as an excellent and exciting launchpoint for wide-ranging future investigations of the Chile Triple Junction area - the only place on Earth where an oceanic spreading center is being actively subducted beneath a continent and also the only place on Earth where all known forms of deep-sea chemically-reducing ecosystem (hydrothermal vents, cold seeps, oxygen minimum zones and large organic falls) have the potential to co-exist.
Godfrey, N.J.; Meltzer, A.S.; Klemperer, S.L.; Trehu, A.M.; Leitner, B.; Clarke, S.H.; Ondrus, A.
1998-01-01
The Gorda Escarpment is a north facing scarp immediately south of the Mendocino transform fault (the Gorda/Juan de Fuca-Pacific plate boundary) between 126??W and the Mendocino triple junction. It elevates the seafloor at the northern edge of the Vizcaino block, part of the Pacific plate, ??? 1.5 km above the seafloor of the Gorda/Juan de Fuca plate to the north. Stratigraphy interpreted from multichannel seismic data across and close to the Gorda Escarpment suggests that the escarpment is a relatively recent pop-up feature caused by north-south compression across the plate boundary. Close to 126??W. the Vizcaino block acoustic basement shallows and is overlain by sediments that thin north toward the Gorda Escarpment. These sediments are tilted south and truncated at the seafloor. By contrast, in a localized region at the eastern end of the Gorda Escarpment, close to the Mendocino triple junction, the top of acoustic basement dips north and is overlain by a 2-km-thick wedge of pre-11 Ma sedimentary rocks that thickens north, toward the Gorda Escarpment. This wedge of sediments is restricted to the northeast corner of the Vizcaino block. Unless the wedge of sediments was a preexisting feature on the Vizcaino block before it was transferred from the North American to the Pacific plate, the strong spatial correlation between the sedimentary wedge and the triple junction suggests the entire Vizcaino block, with the San Andreas at its eastern boundary, has been part of the Pacific plate since significantly before 11 Ma.
Creep deformation and mechanisms in Haynes 230 at 800 °C and 900 °C
NASA Astrophysics Data System (ADS)
Pataky, Garrett J.; Sehitoglu, Huseyin; Maier, Hans J.
2013-11-01
Creep was studied in Haynes 230, a material candidate for the very high temperature reactor's intermediate heat exchanger, at 800 °C and 900 °C. This study focused on the differences between the behavior at the two elevated temperature, and using the microstructure, grain boundary serrations and triple junction strain concentrations were quantitatively identified. There was significant damage in the 900 °C samples and the creep was almost entirely tertiary. In contrast, the 800 °C sample exhibited secondary creep. Using an Arrhenius equation, the minimum creep rate exponents were found to be n ≈ 3 and n ≈ 5 for 900 °C and 800 °C, respectively. The creep mechanisms were identified as solute drag for n ≈ 3 and dislocation climb for n ≈ 5. Strain concentrations were identified at triple junctions and grain boundary serrations using high resolution digital image correlation overlaid on the microstructure. The grain boundary serrations restrict grain boundary sliding which may reduce the creep damage at triple junctions and extend the creep life of Haynes 230 at elevated temperatures.
Recent progress of Spectrolab high-efficiency space solar cells
NASA Astrophysics Data System (ADS)
Law, Daniel C.; Boisvert, J. C.; Rehder, E. M.; Chiu, P. T.; Mesropian, S.; Woo, R. L.; Liu, X. Q.; Hong, W. D.; Fetzer, C. M.; Singer, S. B.; Bhusari, D. M.; Edmondson, K. M.; Zakaria, A.; Jun, B.; Krut, D. D.; King, R. R.; Sharma, S. K.; Karam, N. H.
2013-09-01
Recent progress in III-V multijunction space solar cell has led to Spectrolab's GaInP/GaAs/Ge triple-junction, XTJ, cells with average 1-sun efficiency of 29% (AM0, 28°C) for cell size ranging from 59 to 72-cm2. High-efficiency inverted metamorphic (IMM) multijunction cells are developed as the next space solar cell architecture. Spectrolab's large-area IMM3J and IMM4J cells have achieved 33% and 34% 1-sun, AM0 efficiencies, respectively. The IMM3J and the IMM4J cells have both demonstrated normalized power retention of 0.86 at 5x1014 e-/cm2 fluence and 0.83 and 0.82 at 1x1015 e-/cm2 fluence post 1-MeV electron radiation, respectively. The IMM cells were further assembled into coverglass-interconnect-cell (CIC) strings and affixed to typical rigid aluminum honeycomb panels for thermal cycling characterization. Preliminary temperature cycling data of two coupons populated with IMM cell strings showed no performance degradation. Spectrolab has also developed semiconductor bonded technology (SBT) where highperformance component subcells were grown on GaAs and InP substrates separately then bonded directly to form the final multijunction cells. Large-area SBT 5-junction cells have achieved a 35.1% efficiency under 1-sun, AM0 condition.
NASA Technical Reports Server (NTRS)
Jenkins, Phillip; Scheiman, Chris; Goodbody, Chris; Baur, Carsten; Sharps, Paul; Imaizumi, Mitsuru; Yoo, Henry; Sahlstrom, Ted; Walters, Robert; Lorentzen, Justin;
2006-01-01
This paper reports the results of an international measurement round robin of monolithic, triple-junction, GaInP/GaAs/Ge space solar cells. Eight laboratories representing national labs, solar cell vendors and space solar cell consumers, measured cells using in-house reference cells and compared those results to measurements made where each lab used the same set of reference cells. The results show that most of the discrepancy between laboratories is likely due to the quality of the standard cells rather than the measurement system or solar simulator used.
Power System Mass Analysis for Hydrogen Reduction Oxygen Production on the Lunar Surface
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.
2009-01-01
The production of oxygen from the lunar regolith requires both thermal and electrical power in roughly similar proportions. This unique power requirement is unlike most applications on the lunar surface. To efficiently meet these requirements, both solar PV array and solar concentrator systems were evaluated. The mass of various types of photovoltaic and concentrator based systems were calculated to determine the type of power system that provided the highest specific power. These were compared over a range of oxygen production rates. Also a hybrid type power system was also considered. This system utilized a photovoltaic array to produce the electrical power and a concentrator to provide the thermal power. For a single source system the three systems with the highest specific power were a flexible concentrator/Stirling engine system, a rigid concentrator/Stirling engine system and a tracking triple junction solar array system. These systems had specific power values of 43, 34, and 33 W/kg, respectively. The hybrid power system provided much higher specific power values then the single source systems. The best hybrid combinations were the triple junction solar array with the flexible concentrator and the rigid concentrator. These systems had a specific power of 81 and 68 W/kg, respectively.
3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions
NASA Astrophysics Data System (ADS)
Meakin, J. P.; Speight, J. D.; Sheridan, R. S.; Bradshaw, A.; Harris, I. R.; Williams, A. J.; Walton, A.
2016-08-01
Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.- computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd2O3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10-13 cm2/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated temperatures in the literature. This indicates that the growth of the room temperature oxidation products are likely defect enhanced processes at the NdFeB triple junctions.
Southeast Pacific tectonic evolution from Early Oligocene to Present
NASA Astrophysics Data System (ADS)
Tebbens, S. F.; Cande, S. C.
1997-06-01
Plate tectonic reconstructions of the Nazca, Antarctic, and Pacific plates are presented from late Oligocene to Present. These reconstructions document major plate boundary reorganizations in the southeast Pacific at dirons 6C (24 Ma), 6(o) (20 Ma), and 5A (12 Ma) and a smaller reorganization at chron 3(o) (5 Ma). During the chron 6(o) reorganization it appears that a ridge propagated into crust north of the northernmost Pacific-Antarctic Ridge, between the Chiloe fracture zone (FZ) of the Chile ridge and Agassiz FZ of the Pacific-Nazca ridge, which resulted in a northward jump of the Pacific-Antarctic-Nazca (PAC-ANT-NAZ) mid-ocean triple junction. During the chron 5A reorganization the Chile ridge propagated northward from the Valdivia FZ system to the Challenger FZ, through lithosphere formed roughly 5 Myr earlier at the Pacific-Nazca ridge. During this reorganization a short-lived microplate (the Friday microplate) existed at the PAC-ANT-NAZ triple junction. The PAC-ANT-NAZ triple junction jumped northward 500 km as a result of this reorganization, from a location along the Valdivia FZ to a location along the Challenger FZ. The chron 5A reorganization also included a change in spreading direction of the Chile and Pacific-Antarctic ridges. The reorganization at chron 3(o) initiated the formation of the Juan Fernandez and Easter microplates along the East Pacific rise. The manner of plate boundary reorganization at chron 6(o) and chron 5A (and possibly today at the Juan Fernandez microplate) included a sequence of rift propagation, transfer of lithosphere from one plate to another, microplate formation, and microplate abandonment and resulted in northward migration of the PAC-ANT-NAZ triple junction. The associated microplate differs from previously studied microplates in that there is no failed ridge.
Tectonic fabric of northern North Fiji and Lau basins from GLORIA sidescan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiffin, D.L.; Clarke, J.E.H.; Johnson, D.
1990-06-01
GLORIA mosaics, Seabeam, and seismic data over parts of the backarc New Hebrides arc, northwest and central North Fiji basin, Fiji Fracture Zone north of Fiji, Peggy Ridge, northeast Lau basin, northern Tonga arc, northwestern Tonga Trench, and Western Samoa reveal a complex tectonic framework for the region. Two triple junctions and several rifts are clearly delineated by outcrops and ridges of neovolcanic rocks. Backarc troughs in the New Hebrides Arc are commonly floored by volcanic rocks with little sediment cover. The locus of major faults are well defined in places by volcanic ridges and scarps. On the Fiji Fracturemore » Zone north of Fiji, scarps indicate the trace, but west of Fiji it disappears for about 100 km, becoming well pronounced again near the central North Fiji basin triple junction. At Peggy Ridge a very extensive area of sheet-like volcanics indicates activity extends northeast from Peggy Ridge toward the western extension of the Tonga Trench passing west of Niuafo'ou Island, possibly marking a fault-to-trench transition. East of Niuafo'ou Island, backarc spreading close to the Tofua Arc is seen at a nascent triple junction, its northern arm approaching close to the western Tonga Trench. Long linear fault scarps in the trench result from bending of the crust. Only a few areas, including the seafloor north of Samoa, are mainly sediment covered. Two known hydrothermal deposits near the two triple junctions have been imaged, but other mapped areas of extensive neo-volcanics in the vicinity of propagators and pull-apart basins suggest sites for further investigation. The prevalence of ridge propagators and extensional basins suggests their significant role in the development of the region.« less
Gai, Boju; Sun, Yukun; Lim, Haneol; Chen, Huandong; Faucher, Joseph; Lee, Minjoo L; Yoon, Jongseung
2017-01-24
Large-scale deployment of GaAs solar cells in terrestrial photovoltaics demands significant cost reduction for preparing device-quality epitaxial materials. Although multilayer epitaxial growth in conjunction with printing-based materials assemblies has been proposed as a promising route to achieve this goal, their practical implementation remains challenging owing to the degradation of materials properties and resulting nonuniform device performance between solar cells grown in different sequences. Here we report an alternative approach to circumvent these limitations and enable multilayer-grown GaAs solar cells with uniform photovoltaic performance. Ultrathin single-junction GaAs solar cells having a 300-nm-thick absorber (i.e., emitter and base) are epitaxially grown in triple-stack releasable multilayer assemblies by molecular beam epitaxy using beryllium as a p-type impurity. Microscale (∼500 × 500 μm 2 ) GaAs solar cells fabricated from respective device layers exhibit excellent uniformity (<3% relative) of photovoltaic performance and contact properties owing to the suppressed diffusion of p-type dopant as well as substantially reduced time of epitaxial growth associated with ultrathin device configuration. Bifacial photon management employing hexagonally periodic TiO 2 nanoposts and a vertical p-type metal contact serving as a metallic back-surface reflector together with specialized epitaxial design to minimize parasitic optical losses for efficient light trapping synergistically enable significantly enhanced photovoltaic performance of such ultrathin absorbers, where ∼17.2% solar-to-electric power conversion efficiency under simulated AM1.5G illumination is demonstrated from 420-nm-thick single-junction GaAs solar cells grown in triple-stack epitaxial assemblies.
Hernández-Saz, J; Herrera, M; Delgado, F J; Duguay, S; Philippe, T; Gonzalez, M; Abell, J; Walters, R J; Molina, S I
2016-07-29
The analysis by atom probe tomography (APT) of InAlAsSb layers with applications in triple junction solar cells (TJSCs) has shown the existence of In- and Sb-rich regions in the material. The composition variation found is not evident from the direct observation of the 3D atomic distribution and because of this a statistical analysis has been required. From previous analysis of these samples, it is shown that the small compositional fluctuations determined have a strong effect on the optical properties of the material and ultimately on the performance of TJSCs.
McCrory, P.A.
2000-01-01
Geologic measurement of permanent contraction across the Cascadia subduction margin constrains one component of the tectonic deformation along the convergent plate boundary, the component critical for the seismic hazard assessment of crustal faults. A comprehensive survey of active faults in onshore subduction margin rocks at the southern end of the Cascadia subduction zone indicates that these thrust faults accommodate ??10 mm/yr of convergence oriented 020??-045??. Seismotectonic models of subduction zones typically assign this upper plate strain to the estimate of aseismic slip on the megathrust. Geodetic models include this permanent crustal strain within estimates of elastic strain accumulation on the megathrust. Both types of models underestimate the seismic hazard associated with crustal faults. Subtracting the observed contraction from the plate convergence rate (40-50 mm/yr; directed 040??-055??) leaves 30-40 mm/yr of convergence to be partitioned between slip on the megathrust, contraction within the southern Juan de Fuca plate, and crustal contraction outside the subduction complex rocks. This simple estimate of slip partitioning neglects the discrepancy between the plate convergence and contraction directions in the vicinity of the Mendocino triple junction. The San Andreas and Cascadia limbs of the Mendocino triple junction are not collinear. The eastern edge of the broad San Andreas boundary is ??85 km east of the Cascadia subduction boundary, and across this zone the Pacific plate converges directly with the North America plate. The skewed orientation of crustal structures just north of the leading edge of the Pacific plate suggests that they are deforming in a hybrid stress field resulting from both Juan de Fuca-North America motion and Pacific-North America motion. The composite convergence direction (50 mm/yr: directed 023??) is consistent with the compressive stress axis (020??) inferred from focal mechanisms of crustal earthquakes in the Humboldt region. Deformation in such a hybrid stress field implies that the crustal faults are being loaded from two major tectonic sources. The slip on crustal faults north of the Mendocino triple junction may consume 4-5 mm/yr of Pacific-Humboldt convergence. The remaining 17-18 mm/yr of convergence may be consumed as distributed shortening expressed in the high rates of uplift in the Cape Mendocino region or as northward translation of the continental margin, north of the triple junction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Netter, Judy
2015-07-28
Interest in High Concentration Photovoltaics (HCPV) for terrestrial applications has significantly grown in recent years. A major driver behind this growth trend is the availability of high efficiency multi-junction (MJ) cells that promise reliable operation under high concentrations (500 to 1000 suns). The primary impact of HCPV on the solar electricity cost is the dramatic reduction in cell cost. For terrestrial HCPV systems, operating at concentrations ≥ 500 suns, the expensive MJ cells are marginally affordable. Most recently, triple-junction test cells have achieved a conversion efficiency of over 40% under concentrated sunlight. Photovoltaic Cavity Converter (PVCC) is a multi-bandgap, highmore » concentration PV device developed by United Innovations, Inc., under subcontract to NREL. The lateral- (2- dimensional) structure of PVCC, as opposed to vertical multi-junction (MJ) structure, helps to circumvent most of the developmental challenges MJ technology has yet to overcome. This CRADA will allow the continued development of this technology by United Innovations. This project was funded by the California Energy Commission and is the second phase of a twopart demonstration program. The key advantage of the design was the use of a PVCC as the receiver. PVCCs efficiently process highly concentrated solar radiation into electricity by recycling photons that are reflected from the surface of the cells. Conventional flat, twodimensional receivers cannot recycle photons and the reflected photons are lost to the conversion process.« less
Lightweight IMM PV Flexible Blanket Assembly
NASA Technical Reports Server (NTRS)
Spence, Brian
2015-01-01
Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Compaan, A. D.; Deng, X.; Bohn, R. G.
2003-10-01
This is the final report covering about 42 months of this subcontract for research on high-efficiency CdTe-based thin-film solar cells and on high-efficiency a-Si-based thin-film solar cells. Phases I and II have been extensively covered in two Annual Reports. For this Final Report, highlights of the first two Phases will be provided and then detail will be given on the last year and a half of Phase III. The effort on CdTe-based materials is led by Prof. Compaan and emphasizes the use of sputter deposition of the semiconductor layers in the fabrication of CdS/CdTe cells. The effort on high-efficiency a-Simore » materials is led by Prof. Deng and emphasizes plasma-enhanced chemical vapor deposition for cell fabrication with major efforts on triple-junction devices.« less
Associations of Pd, U and Ag in the SiC layer of neutron-irradiated TRISO fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lillo, Thomas; Rooyen, Isabella Van
2015-05-01
Knowledge of the associations and composition of fission products in the neutron irradiated SiC layer of high-temperature gas reactor TRISO fuel is important to the understanding of various aspects of fuel performance that presently are not well understood. Recently, advanced characterization techniques have been used to examine fuel particles from the Idaho National Laboratory’s AGR-1 experiment. Nano-sized Ag and Pd precipitates were previously identified in grain boundaries and triple points in the SiC layer of irradiated TRISO nuclear fuel. Continuation of this initial research is reported in this paper and consists of the characterization of a relatively large number ofmore » nano-sized precipitates in three areas of the SiC layer of a single irradiated TRISO nuclear fuel particle using standardless EDS analysis on focused ion beam-prepared transmission electron microscopy samples. Composition and distribution analyses of these precipitates, which were located on grain boundaries, triple junctions and intragranular precipitates, revealed low levels, generally <10 atomic %, of palladium, silver and/or uranium with palladium being the most common element found. Palladium by itself, or associated with either silver or uranium, was found throughout the SiC layer. A small number of precipitates on grain boundaries and triple junctions were found to contain only silver or silver in association with palladium while uranium was always associated with palladium but never found by itself or in association with silver. Intergranular precipitates containing uranium were found to have migrated ~23 μm along a radial direction through the 35 μm thick SiC coating during the AGR-1 experiment while silver-containing intergranular precipitates were found at depths up to ~24 μm in the SiC layer. Also, Pd-rich, nano-precipitates (~10 nm in diameter), without evidence for the presence of either Ag or U, were revealed in intragranular regions throughout the SiC layer. Because not all grain boundaries and triple junctions contained precipitates with fission products and/or uranium, along with the differences in migration behavior between Pd, Ag and U, it was concluded that crystallographic grain boundary and triple junction parameters likely influence migration behavior.« less
Unfolding of a branched double-helical DNA three-way junction with triple-helical ends.
Hüsler, P L; Klump, H H
1994-08-15
We have designed three oligonucleotides (33 mers) which when mixed in a 1:1:1 ratio form double-helical DNA three-way junctions with triple helical ends in the pH interval pH 4 to 5.5. The triplex to coil transition is initiated by raising the temperature and was recorded by temperature gradient gel electrophoresis, uv melting, and differential scanning calorimetry. The transitions can be deconvoluted into three subtransitions representing the independent thermal denaturation of each of the arms. We have proposed a model for the unfolding pathway and give the thermodynamic parameters for each step as calculated using the formalism outlined in the appendix.
Laser induced non-monotonic degradation in short-circuit current of triple-junction solar cells
NASA Astrophysics Data System (ADS)
Dou, Peng-Cheng; Feng, Guo-Bin; Zhang, Jian-Min; Song, Ming-Ying; Zhang, Zhen; Li, Yun-Peng; Shi, Yu-Bin
2018-06-01
In order to study the continuous wave (CW) laser radiation effects and mechanism of GaInP/GaAs/Ge triple-junction solar cells (TJSCs), 1-on-1 mode irradiation experiments were carried out. It was found that the post-irradiation short circuit current (ISC) of the TJSCs initially decreased and then increased with increasing of irradiation laser power intensity. To explain this phenomenon, a theoretical model had been established and then verified by post-damage tests and equivalent circuit simulations. Conclusion was drawn that laser induced alterations in the surface reflection and shunt resistance were the main causes for the observed non-monotonic decrease in the ISC of the TJSCs.
NASA Astrophysics Data System (ADS)
Pérez, Omar J.; Wesnousky, Steven G.; De La Rosa, Roberto; Márquez, Julio; Uzcátegui, Redescal; Quintero, Christian; Liberal, Luis; Mora-Páez, Héctor; Szeliga, Walter
2018-06-01
We examine the hypocentral distribution of seismicity and a series of geodetic velocity vectors obtained from Global Positioning System (GPS) observations between 1994 and 2015 both off-shore and mainland northwestern South America [66° W - 77° W; 8° N - 14° N]. Our analysis, that includes a kinematic block modeling, shows that east of the Caribbean-South American-North Andes plates triple junction at ˜68° W; 10.7° N, right-lateral easterly oriented shear motion (˜19.6 ± 2.0 mm/yr) between the Caribbean and South-America plates is split along two easterly striking, right-lateral strike slip subparallel fault zones: the San Sebastián fault that runs offshore the Venezuelan coast and slips about 17.0 ± 0.5 mm/yr, and the La Victoria fault, located onshore to the south, which is accumulating strain equivalent to 2.6 ± 0.4 mm/yr. West of the triple junction, relative right-lateral motion between the Caribbean and South American plates is mostly divided between the Morrocoy and Boconó fault systems which strike northwest and southwest from the triple junction, respectively, and bound the intervening North Andes plate that shows an easterly oriented geodetic slip of 15.0 ± 1.0 mm/yr relative to the South American plate. Slip on the Morrocoy fault is right-lateral and transtensional. Motion across the Boconó fault is also right-lateral but instead transpressional, divided between ˜9 to 11 mm/yr of right-slip on the Boconó fault and 2 to 5 mm/yr of convergence across adjacent and subparallel thrust faults. Farther west of the triple junction, ˜800 km away in northern Colombia, the Caribbean plate subducts to the southeast beneath the North Andes plate at a geodetically estimated rate of ˜5-7 mm/yr.
NASA Astrophysics Data System (ADS)
Bauhuis, Gerard J.; Mulder, Peter; Haverkamp, Erik J.; Schermer, John J.; Nash, Lee J.; Fulgoni, Dominic J. F.; Ballard, Ian M.; Duggan, Geoffrey
2010-10-01
The epitaxial lift-off (ELO) technique has been combined with inverted III-V PV cell epitaxial growth with the aim of employing thin film PV cells in HCPV systems. In a stepwise approach to the realization of an inverted triple junction on a MELO platform we have first grown a GaAs single junction PV cell to establish the basic layer release process and cell processing steps followed by the growth, fabrication and test of an inverted InGaP/GaAs dual junction structure.
The Galapagos Microplate Revealed
NASA Astrophysics Data System (ADS)
Smith, D. K.; Schouten, H.; Cann, J. R.; Zhu, W.; Montesi, L. G.; Mitchell, G. A.
2009-12-01
We report a new bathymetry survey of the Galapagos microplate (GMP), which separates the Pacific, Nazca, and Cocos plates at the Galapagos Triple Junction. Prior to the formation of the microplate, 1.5-1.0 Ma, there was a succession of transient minor rifts forming triple junctions north and south of the propagating Cocos-Nazca rift (see Schouten et al. abstract). As proposed by Lonsdale (1988) the formation of a large near-axis seamount coincided with the initiation of the GMP and stabilized rifting on its southern boundary, now called Dietz Deep Rift. Lonsdale also proposed that the GMP was rotating clockwise at 6 degrees/my. Schouten et al. (1993) and Klein et al. (2005) applied an edge-driven microplate model to the GMP to understand its kinematics and predicted rotation rates of 30-40 degrees/my and 22 degrees/my, respectively. These interpretations and predictions were based on sparse bathymetry data. In early 2009 (AT 15-41), we mapped the Galapagos microplate in its entirety to understand more fully the conditions that led to the stabilization of the southern triple junction at Dietz Deep Rift and to constrain the rotation rate of the microplate. Our new data show the two highly contrasted sections of Dietz Deep Rift. The northeastern section contains Dietz Deep, a 2 km deep basin, within a fault-dominated rift valley about 20 km wide; subsidiary rifts occur to the south. Sidescan data indicate that extension in this broadly rifted area has been largely amagmatic. The southwestern section of Dietz Deep Rift is dominated by a variety of volcanic constructions in which faulting plays a minor part. The volcanism has resulted in two large seamounts and a number of volcanic ridges running parallel to the fault dominated rift valley. The largest volcanic ridge is steep-sided and straight, and extends to intersect the East Pacific Rise (EPR) at 1 10’N to form the triple junction. Other minor volcanic ridges occur in the SW section of the microplate fanning towards the EPR from the north side of the large, straight ridge. Most of the core of the microplate shows N-S abyssal hills produced at the EPR, and indicates that the microplate is not rotating and has not rotated for much of its history. A section of seafloor in the northeast part of the microplate, however, has been rotated and indicates that before about 1 Ma the kinematics of the region were different. We present scenarios for the evolution of the southern triple junction to explain the seafloor patterns.
NASA Astrophysics Data System (ADS)
Mintairov, M. A.; Evstropov, V. V.; Mintairov, S. A.; Shvarts, M. Z.; Kozhukhovskaia, S. A.; Kalyuzhnyy, N. A.
2017-11-01
The existence within monolithic double- and triple-junction solar cells of a photoelectric source, which counteracts the basic photovoltaic p-n junctions, is proved. The paper presents a detailed analysis of the shape of the light IV-characteristics, as well as the dependence Voc-Jsc (open circuit voltage - short-circuit current). It is established that the counteracting source is tunnel p+-n+ junction. The photoelectric characteristics of samples with different tunnel diode peak current values were investigated, including the case of a zero value. When the tunnel p+-n+ junction is photoactive, the Voc-Jsc dependence has a dropping part, including a sharp jump. This undesirable effect decreases with increasing peak current.
Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%
Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.
2016-01-01
Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage. PMID:27796309
Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30.
Jia, Jieyang; Seitz, Linsey C; Benck, Jesse D; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S; Jaramillo, Thomas F
2016-10-31
Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.
High-concentration planar microtracking photovoltaic system exceeding 30% efficiency
NASA Astrophysics Data System (ADS)
Price, Jared S.; Grede, Alex J.; Wang, Baomin; Lipski, Michael V.; Fisher, Brent; Lee, Kyu-Tae; He, Junwen; Brulo, Gregory S.; Ma, Xiaokun; Burroughs, Scott; Rahn, Christopher D.; Nuzzo, Ralph G.; Rogers, John A.; Giebink, Noel C.
2017-08-01
Prospects for concentrating photovoltaic (CPV) power are growing as the market increasingly values high power conversion efficiency to leverage now-dominant balance of system and soft costs. This trend is particularly acute for rooftop photovoltaic power, where delivering the high efficiency of traditional CPV in the form factor of a standard rooftop photovoltaic panel could be transformative. Here, we demonstrate a fully automated planar microtracking CPV system <2 cm thick that operates at fixed tilt with a microscale triple-junction solar cell at >660× concentration ratio over a 140∘ full field of view. In outdoor testing over the course of two sunny days, the system operates automatically from sunrise to sunset, outperforming a 17%-efficient commercial silicon solar cell by generating >50% more energy per unit area per day in a direct head-to-head competition. These results support the technical feasibility of planar microtracking CPV to deliver a step change in the efficiency of rooftop solar panels at a commercially relevant concentration ratio.
Realization of compact, passively-cooled, high-flux photovoltaic prototypes
NASA Astrophysics Data System (ADS)
Feuermann, Daniel; Gordon, Jeffrey M.; Horne, Steve; Conley, Gary; Winston, Roland
2005-08-01
The materialization of a recent conceptual advance in high-flux photovoltaic concentrators into first-generation prototypes is reported. Our design strategy includes a tailored imaging dual-mirror (aplanatic) system, with a tapered glass rod that enhances concentration and accommodates larger optical errors. Designs were severely constrained by the need for ultra-compact (minimal aspect ratio) modules, simple passive heat rejection, liberal optical tolerances, incorporating off-the-shelf commercial solar cells, and pragmatic considerations of affordable fabrication technologies. Each unit has a geometric concentration of 625 and irradiates a single square 100 mm2 triple-junction high-efficiency solar cell at a net flux concentration of 500.
Present Status and Future Prospects of Silicon Thin-Film Solar Cells
NASA Astrophysics Data System (ADS)
Konagai, Makoto
2011-03-01
In this report, an overview of the recent status of photovoltaic (PV) power generation is first presented from the viewpoint of reducing CO2 emission. Next, the Japanese roadmap for the research and development (R&D) of PV power generation and the progress in the development of various solar cells are explained. In addition, the present status and future prospects of amorphous silicon (a-Si) thin-film solar cells, which are expected to enter the stage of full-scale practical application in the near future, are described. For a-Si single-junction solar cells, the conversion efficiency of their large-area modules has now reached 6-8%, and their practical application to megawatt solar systems has started. Meanwhile, the focus of R&D has been shifting to a-Si and microcrystalline silicon (µc-Si) tandem solar cells. Thus far, a-Si/µc-Si tandem solar cell modules with conversion efficiency exceeding 13% have been reported. In addition, triple-junction solar cells, whose target year for practical application is 2025 or later, are introduced, as well as innovative thin-film full-spectrum solar cells, whose target year of realization is 2050.
Multijunction Solar Cell Development and Production at Spectrolab
NASA Technical Reports Server (NTRS)
Fetzer, Chris; King, R. R.; Law, D. C.; Edmondson, K. M.; Isshiki, T.; Haddad, M.; Zhang, X.; Boisvert, J. C.; Joslin, D. E.; Karam, N. H.
2007-01-01
Development of multijunction space solar cells is much like that for any high technology product. New products face two major pressures from the market: improving performance while maintaining heritage. This duality of purpose is not new and has been represented since ancient times by the Roman god Janus.[1] This deity was typically represented as two faces on a single head: one facing forward and the other to the rear. The image of Janus has been used as symbolism for many combined forces of dual purpose, such as the balance in life between beginnings and endings, or between art and science. For our purposes, Janus represents our design philosophy balance between looking to the future for improvement while simultaneously blending past heritage. In the space photovoltaics industry there are good reasons for both purposes. Looking to the past, a product must have a space flight heritage to gain widespread use. The main reason being that this is an unforgiving business. Spacecraft are expensive to build, launch and operate. Typically once a satellite is launched, in-field service for a power systems problem is near impossible.[2Balanced with this is looking forward. New missions typically require more power than previous programs or attempt new objectives such as a new orbit. And there is always the cost pressure for both the satellite itself as well as the launch costs. Both of which push solar technology to improve power density at a lower cost. The consequence of this balance in a high-risk environment is that space PV develops as a series of infrequent large technology steps or generational changes interspersed with more frequent small technology steps or evolutionary changes. Figure 1 gives a bit of clarification on this point. It depicts the historical progress in space solar cells tracked by efficiency against first launch date for most major products introduced by Spectrolab. The first generation is the Si-based technology reaching a peak values near 15% AM0 (herein denoted for max. power, AM0, 1.353 W/cm2, 28 C). The GaAs single junction device generation supplanted this technology with first flight of GaAs on GaAs substrate in 1982.[3] More recently this generation has been supplanted by the multijunction solar cell GaInP/GaAs/Ge generation. The first launch of a commercial satellite powered by multijunction technology was in 1997 (Hughes HS 601HP) using solar arrays based on Spectrolab s dual junction (DJ) cells. The cells at that time were an impressive 21.5% efficient at beginning-of-life (BOL).[4] Eight years later, the multijunction device has evolved through several versions. The incorporation of an active Ge subcell formed the Triple Junction (TJ) product line at 25.1% efficient, on orbit since November 2001. The evolution of the TJ into the Improved Triple Junction (ITJ) at 26.8% efficient has been on orbit since June of 2002.[5
On the enigmatic birth of the Pacific Plate within the Panthalassa Ocean
Boschman, Lydian M.; van Hinsbergen, Douwe J. J.
2016-01-01
The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea, and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. We show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests to a unique plate kinematic event that sparked the plate’s birth at virtually a point location, surrounded by the Izanagi, Farallon, and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization, which led to the birth of the Pacific Plate, and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable but migrating triple junction involving the gradual cessation of intraoceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of “Thalassa Incognita” that comprises the comprehensive Panthalassa Ocean surrounding Pangea. PMID:29713683
On the Enigmatic Birth of the Pacific Plate within the Panthalassa Ocean
NASA Astrophysics Data System (ADS)
Boschman, L.; Van Hinsbergen, D. J. J.
2016-12-01
The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. Here, we show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests of a unique plate kinematic event that sparked the plate's birth in virtually a point location, surrounded by the Izanagi, Farallon and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization leading to the birth of the Pacific Plate and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable, but migrating triple junction involving the gradual cessation of intra-oceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of `Thalassa Incognita' comprising the comprehensive Panthalassa Ocean surrounding Pangea.
On the enigmatic birth of the Pacific Plate within the Panthalassa Ocean.
Boschman, Lydian M; van Hinsbergen, Douwe J J
2016-07-01
The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea, and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. We show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests to a unique plate kinematic event that sparked the plate's birth at virtually a point location, surrounded by the Izanagi, Farallon, and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization, which led to the birth of the Pacific Plate, and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable but migrating triple junction involving the gradual cessation of intraoceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of "Thalassa Incognita" that comprises the comprehensive Panthalassa Ocean surrounding Pangea.
High Voltage Solar Concentrator Experiment with Implications for Future Space Missions
NASA Technical Reports Server (NTRS)
Mehdi, Ishaque S.; George, Patrick J.; O'Neill, Mark; Matson, Robert; Brockschmidt, Arthur
2004-01-01
This paper describes the design, development, fabrication, and test of a high performance, high voltage solar concentrator array. This assembly is believed to be the first ever terrestrial triple-junction-cell solar array rated at over 1 kW. The concentrator provides over 200 W/square meter power output at a nominal 600 Vdc while operating under terrestrial sunlight. Space-quality materials and fabrication techniques were used for the array, and the 3005 meter elevation installation below the Tropic of Cancer allowed testing as close as possible to space deployment without an actual launch. The array includes two concentrator modules, each with a 3 square meter aperture area. Each concentrator module uses a linear Fresnel lens to focus sunlight onto a photovoltaic receiver that uses 240 series-connected triple-junction solar cells. Operation of the two receivers in series can provide 1200 Vdc which would be adequate for the 'direct drive' of some ion engines or microwave transmitters in space. Lens aperture width is 84 cm and the cell active width is 3.2 cm, corresponding to a geometric concentration ratio of 26X. The evaluation includes the concentrator modules, the solar cells, and the materials and techniques used to attach the solar cells to the receiver heat sink. For terrestrial applications, a finned aluminum extrusion was used for the heat sink for the solar cells, maintaining a low cell temperature so that solar cell efficiency remains high.
NASA Technical Reports Server (NTRS)
Mueller, Robert L.; Anspaugh, Bruce E.
1993-01-01
A series of environmental tests were completed on one type of triple junction a-Si and two types of CuInSe2 thin film solar cells. The environmental tests include electron irradiation at energies of 0.7, 1.0, and 2.0 MeV, proton irradiation at energies of 0.115, 0.24, 0.3, 0.5, 1.0, and 3.0 MeV, post-irradiation annealing at temperatures between 20 C and 60 C, long term exposure to air mass zero (AM0) photons, measurement of the cells as a function of temperature and illumination intensity, and contact pull strength tests. As expected, the cells are very resistant to electron and proton irradiation. However, when a selected cell type is exposed to low energy protons designed to penetrate to the junction region, there is evidence of more significant damage. A significant amount of recovery was observed after annealing in several of the cells. However, it is not permanent and durable, but merely a temporary restoration, later nullified with additional irradiation. Contact pull strengths measured on the triple junction a-Si cells averaged 667 grams, and pull strengths measured on the Boeing CuInSe2 cells averaged 880 grams. Significant degradation of all cell types was observed after exposure to a 580 hour photon degradation test, regardless of whether the cells had been unirradiated or irradiated (electrons or protons). Although one cell from one manufacturer lost approximately 60 percent of its power after the photon test, several other cells from this manufacturer did not degrade at all.
EDITORIAL: Enhance your outlook with Compound Semiconductor
NASA Astrophysics Data System (ADS)
Bedrock, Claire
2007-12-01
An overwhelming proportion of the articles published in this journal come under the heading of applied research. In this field research findings impact tomorrow's products, and so it's important to keep tabs on these developments. Grant applications, for example, can carry extra weight when the potential benefits to industry are outlined alongside the gains to fundamental science. What's more, it's just plain interesting to track how key breakthroughs in understanding can drive improvements in commercial devices. Within our publication group we offer free resources that can help you keep pace with trends in part of this sector. Compound Semiconductor magazine and its associated website, compoundsemiconductor.net, cover III-V, III-N, SiC and SiGe research in academia and industry, alongside all the business news and key manufacturing technology. A high proportion of our authoritative and timely content is exclusive, and you can access it for free by completing a simple registration procedure at compoundsemiconductor.net. Three examples of feature articles published this year in Compound Semiconductor include: • Non-polar GaN reaches tipping point by Steven DenBaars, Shuji Nakamura and Jim Speck from the University of California, Santa Barbara. Although conventional GaN LEDs are a great commercial success, they suffer from an intrinsic weakness—internal electric fields that pull apart the electrons and holes and ultimately limit efficiency. However, this problem can be overcome by growing nitrides on alternate crystal planes. Although early attempts were unsuccessful, due to high defect densities in the epilayers, this is not the case with growth on the latest Mitsubishi substrates that can lead to external quantum efficiencies of 45%. In this article the authors describe the development of their non-polar material, and their promising results for LEDs and laser diodes. • Inverting the triple junction improves efficiency and flexibility by Paul Sharps and Arthur Cornfeld from solar cell producer Emcore and Mark Wanlass from the National Renewable Energy Laboratory. Conventional triple junction solar cells are already deployed for powering satellites and they are starting to win sales for terrestrial power generation. Further improvements to solar efficiency could drive further growth in both of these markets, and one of the most promising designs is the inverted triple junction. The authors describe the details of this approach, which involves growth of lattice-matched GaInP and GaAs, followed by an InGaAs cell. The germanium substrate is then removed to leave a lightweight device capable of delivering more than 30% efficiency in space and almost 40% under high concentration. • Light-emitting diodes hit the centenary milestone by Fred Schubert and Jong Kyu Kim from Rensselaer Polytechnic Institute. Accidents are not always a bad thing. They can also be the moment of discovery, as was the case for Henry Joseph Round who observed the first light emission from a semiconductor diode. Round reported this work in 1907, but it is unlikely that he could foresee the impact that the LED would have over the next century. In this article, the authors trace the evolution of the device, including the development of new materials for red, green, blue and ultimately white emission, and suggest where the next 10 years might take us. Visit compoundsemiconductor.net to read these articles and many others like them.
The Afar Depression: Was There a Triple Junction Above the Mantle Plume?
NASA Astrophysics Data System (ADS)
Ebinger, C.; Wolfenden, E.; Yirgu, G.; Ayalew, D.; Eagles, G.; Gloaguen, R.; Tiberi, C.; Rowland, J. R.; Deino, A.; Tesfaye, A.; Tesfaye, S.
2002-12-01
The Red Sea - Gulf of Aden- Main Ethiopian rift systems (Afar Depression) have served as the textbook example of a R-R-R triple junction zone which formed above a mantle plume (Ethiopia-Yemen flood basalt province, 31-28 Ma). Recent work has documented the onset and propagation of seafloor along the length of the Gulf of Aden and Red Sea arms, but the timing of continental rifting had been poorly constrained. Our aims were to constrain the timing of rift initiation in each arm of the rift near the proposed Oligocene triple junction and to re-assess models for break-up above a mantle plume. Although much of the early history of rifting is deeply buried by Pliocene-Recent lavas, erosional dissection of the rift margins provides windows into the early rift history. Along the southernmost Red Sea, faults commonly marked by eruptive centers initiated at about 26 Ma, coincident with rifting along the easternmost Gulf of Aden. New data from the rift immediately south of the southernmost Red Sea basin (ca.10N) constrain the earliest rift sequences in the northern Main Ethiopian rift (MER). Field and Ar-Ar data from sequences overlying the pre-rift flood basalts show that extension in the northern MER commenced at 12-10 Ma when the two rift systems were finally linked. The active zone of extension and magmatism in the southern Red Sea and eastern Gulf of Aden, however, had migrated east and north, respectively. Summarising, rifting in southern Ethiopia had commenced by 16-18 Ma, and had propagated northward to cut across Oligo-Miocene rift structures of the Red Sea and Gulf of Aden by 10 Ma, consistent with plate kinematic data. A triple junction could have developed only during the past 10 My, long after flood basaltic magmatism. Inverse models of gravity data predict a significant step (2-4 km) in the Moho where the youthful, less extended MER breaks into the Afar Depression. Project EAGLE (UK-US-Ethiopia) is now acquiring seismic data across and along this zone to evaluate mechanisms for rift segmentation and propagation prior to breakup.
NASA Astrophysics Data System (ADS)
Sametoglu, Ferhat; Celikel, Oguz; Witt, Florian
2017-10-01
A differential spectral responsivity (DSR) measurement system has been designed and constructed at National Metrology Institute of Turkey (TUBITAK UME) to determine the spectral responsivity (SR) of a single- or a multi-junction photovoltaic device (solar cell). The DSR setup contains a broad band light bias source composed of a constructed Solar Simulator based on a 1000 W Xe-arc lamp owning a AM-1.5 filter and 250 W quartz-tungsten-halogen lamp, a designed and constructed LED-based Bias Light Sources, a DC voltage bias circuit, and a probe beam optical power tracking and correction circuit controlled with an ADuC847 microcontroller card together with an embedded C based software, designed and constructed in TUBITAK UME under this project. By using the constructed DSR measurement system, the SR calibration of solar cells, the monolitic triple-junction solar cell GaInP/GaInAs/Ge and its corresponding component cells have been performed within the EURAMET Joint Research Project SolCell.
Development of metal matrix composite gridlines for space photovoltaics
NASA Astrophysics Data System (ADS)
Abudayyeh, Omar Kamal
Space vehicles today are primarily powered by multi-junction photovoltaic cells due to their high efficiency and high radiation hardness in the space environment. While multi-junction solar cells provide high efficiency, microcracks develop in the crystalline semiconductor due to a variety of reasons, including: growth defects, film stress due to lattice constant mismatch, and external mechanical stresses introduced during shipping, installation, and operation. These microcracks have the tendency to propagate through the different layers of the semiconductor reaching the metal gridlines of the cell, resulting in electrically isolated areas from the busbar region, ultimately lowering the power output of the cell and potentially reducing the lifetime of the space mission. Pre-launch inspection are often expensive and difficult to perform, in which individual cells and entire modules must be replaced. In many cases, such microcracks are difficult to examine even with a thorough inspection. While repairs are possible pre-launch of the space vehicle, and even to some extent in low-to-earth missions, they are virtually impossible for deep space missions, therefore, efforts to mitigate the effects of these microcracks have substantial impact on the cell performance and overall success of the space mission. In this effort, we have investigated the use of multi-walled carbon nanotubes as mechanical reinforcement to the metal gridlines capable of bridging gaps generated in the underlying semiconductor while providing a redundant electrical conduction pathway. The carbon nanotubes are embedded in a silver matrix to create a metal matrix composite, which are later integrated onto commercial triple-junction solar cells.
NASA Technical Reports Server (NTRS)
Anderson-Fontana, S.; Larson, R. L.; Engein, J. F.; Lundgren, P.; Stein, S.
1986-01-01
Magnetic and bathymetric profiles derived from the R/V Endeavor survey and focal mechanism studies for earthquakes on two of the Juan Fernandez microplate boundaries are analyzed. It is observed that the Nazca-Juan Fernandez pole is in the northern end of the microplate since the magnetic lineation along the East Ridge of the microplate fans to the south. The calculation of the relative motion of the Juan Fernandez-Pacific-Nazca-Antarctic four-plate system using the algorithm of Minster et al. (1974) is described. The development of tectonic and evolutionary models of the region is examined. The tectonic model reveals that the northern boundary of the Juan Fernandez microplate is a zone of compression and that the West Ridge and southwestern boundary are spreading obliquely; the evolutionary model relates the formation of the Juan Fernandez microplate to differential spreading rates at the triple junction.
Counter-rotating microplates at the Galapagos triple junction.
Klein, Emily M; Smith, Deborah K; Williams, Clare M; Schouten, Hans
2005-02-24
An 'incipient' spreading centre east of (and orthogonal to) the East Pacific Rise at 2 degrees 40' N has been identified as forming a portion of the northern boundary of the Galapagos microplate. This spreading centre was described as a slowly diverging, westward propagating rift, tapering towards the East Pacific Rise. Here we present evidence that the 'incipient rift' has also rifted towards the east and opens anticlockwise about a pivot at its eastern end. The 'incipient rift' then bounds a second microplate, north of the clockwise-rotating Galapagos microplate. The Galapagos triple junction region, in the eastern equatorial Pacific Ocean, thus consists of two counter-rotating microplates partly separated by the Hess Deep rift. Our kinematic solution for microplate motion relative to the major plates indicates that the two counter-rotating microplates may be treated as rigid blocks driven by drag on the microplates' edges3.
Griscom, A.; Jachens, R.C.
1989-01-01
Geologic and geophysical data for the San Andreas fault system north of San Francisco suggest that the eastern boundary of the Pacific plate migrated eastward from its presumed original position at the base of the continental slope to its present position along the San Andreas transform fault by means of a series of eastward jumps of the Mendocino triple junction. These eastward jumps total a distance of about 150 km since 29 Ma. Correlation of right-laterally displaced gravity and magnetic anomalies that now have components at San Francisco and on the shelf north of Point Arena indicates that the presently active strand of the San Andreas fault north of the San Francisco peninsula formed recently at about 5 Ma when the triple junction jumped eastward a minimum of 100 km to its present location at the north end of the San Andreas fault. -from Authors
Durvalumab and Tremelimumab in Combination With First-Line Chemotherapy in Advanced Solid Tumors
2018-05-16
Small Cell Lung Carcinoma; Carcinoma, Squamous Cell of Head and Neck; Stomach Neoplasms; Triple Negative Breast Neoplasms; Ovarian Neoplasms; Fallopian Tube Neoplasms; Peritoneal Neoplasms; Esophagogastric Junction Neoplasms; Carcinoma, Pancreatic Ductal; Esophageal Squamous Cell Carcinoma
1984-09-21
Identify by block number) - FIELD GROUP SUB-GROUP Double layer pillbox antennas Triple layer pillbox antenna The possibility of designing very broadband... Design .................... 1 Broadband Feed De gn ........................................... 2 Ex mental Simulation of Double Layer Pillbox...5 REFERENCES ................................................... 6 APPENDIX - COAXIAL TO WAVEGUIDE JUNCTION DESIGN
Transient cracks and triple junctions induced by Cocos-Nazca propagating rift
NASA Astrophysics Data System (ADS)
Schouten, H.; Smith, D. K.; Zhu, W.; Montesi, L. G.; Mitchell, G. A.; Cann, J. R.
2009-12-01
The Galapagos triple junction is a ridge-ridge-ridge triple junction where the Cocos, Nazca, and Pacific plates meet around the Galapagos microplate (GMP). On the Cocos plate, north of the large gore that marks the propagating Cocos-Nazca (C-N) Rift, a 250-km-long and 50-km-wide band of NW-SE-trending cracks crosscuts the N-S-trending abyssal hills of the East Pacific Rise (EPR). These appear as a succession of minor rifts, accommodating some NE-SW extension of EPR-generated seafloor. The rifts successively intersected the EPR in triple junctions at distances of 50-100 km north of the tip of the C-N Rift. We proposed a simple crack interaction model to explain the location of the transient rifts and their junction with the EPR. The model predicts that crack locations are controlled by the stress perturbation along the EPR, induced by the dominant C-N Rift, and scaled by the distance of its tip to the EPR (Schouten et al., 2008). The model also predicts that tensile stresses are symmetric about the C-N Rift and thus, similar cracks should have occurred south of the C-N Rift prior to formation of the GMP about 1 Ma. There were no data at the time to test this prediction. In early 2009 (AT 15-41), we mapped an area on the Nazca plate south of the C-N rift out to 4 Ma. The new bathymetric data confirm the existence of a distinctive pattern of cracks south of the southern C-N gore that mirrors the pattern on the Cocos plate until about 1 Ma, and lends support to the crack interaction model. The envelope of the symmetric cracking pattern indicates that the distance between the C-N Rift tip and the EPR varied between 40 and 65 km during this time (1-4 Ma). The breakdown of the symmetry at 1 Ma accurately dates the onset of a southern plate boundary of the GMP, now Dietz Deep Rift. At present, the southern rift boundary of the GMP joins the EPR with a steep-sided, 80 km long ridge. This ridge releases the stress perturbation otherwise induced along the EPR by elastic interaction with the C-N Rift and prevents the formation of minor rifts of the type in the North of the C-N Rift. However, the seafloor displays traces of rifts formed as the Dietz Deep Rift was approaching the EPR. In fact, the present day ridge appears to have originated as one of these minor rifts, probably stabilized by enhanced magma supply from a nearby volcano at the southwestern end of Dietz Deep.
Development of a High Efficiency UVR/IRR Coverglass for Triple Junction Solar Cells
NASA Technical Reports Server (NTRS)
Russell, John; Jones, Glenn; Hall, James
2007-01-01
Cover glasses have been a necessary and integral part of space solar arrays since their inception. The main function of the cover glass is to protect the underlying solar cell from the harsh radiation environment of space. They are formed either from fused silica or specially formulated ceria doped glass types that are resistant to radiation damage, for example Pilkington's CMX, CMG, CMO. Solar cells have steadily increased in performance over the past years, from Silicon cells through textured Silicon cells to GaAs cells and the multijunction cells of today. The optimum coverglass solution for each of these cells has been different. The glass itself has also evolved. In some cases it has had its expansion coefficient matched to the cell substrate material, and in addition, added value has been derived from the application of thin film optical coatings to the coverglass. In the majority of cases this has taken the form of a single layer of MgF2 which acts as an antireflection coating. There are also conductive coatings to address electrostatic discharge issues (ESD) and Ultra Violet Reflective (UVR) and Infrared Reflective (IRR) coatings designed for thermal enhancement. Each type of coating can be applied singly or in combination. This paper describes a new type of UVR/IRR (or blue red reflector BRR) specifically designed for triple junction solar cells. For space applications, where radiation is the principal mechanism for removing heat from the satellite, it is the emittance and solar absorptance that primarily determine the temperature of the array. It is therefore essential that any coatings designed to have an effect on the temperature by reducing the solar absorption have a minimal effect on the overall emittance.
Inverse models of gravity data from the Red Sea-Aden-East African rifts triple junction zone
NASA Astrophysics Data System (ADS)
Tiberi, Christel; Ebinger, Cynthia; Ballu, Valérie; Stuart, Graham; Oluma, Befekadu
2005-11-01
The combined effects of stretching and magmatism permanently modify crustal structure in continental rifts and volcanic passive margins. The Red Sea-Gulf of Aden-Ethiopian rift triple junction zone provides a unique opportunity to examine incipient volcanic margin formation above or near an asthenospheric upwelling. We use gravity inversions and forward modelling to examine lateral variations in crust and upper mantle structure across the Oligocene flood basalt province, which has subsequently been extended to form the Red Sea, Gulf of Aden and Main Ethiopian rifts. We constrain and test the obtained models with new and existing seismic estimates of crustal thickness. In particular, we predict crustal thickness across the uplifted plateaux and rift valleys, and calibrate our results with recent receiver function analyses. We discuss the results together with a 3-D distribution of density contrasts in terms of magmatic margin structure. The main conclusions are: (1) a denser (+240 kg m-3) and/or a thinner crust (23 km) in the triple junction zone of the Afar depression; (2) a shallower Moho is found along the Main Ethiopian rift axis, with crustal thickness values decreasing from 32-33 km in the south to 24 km beneath the southern Afar depression; (3) thicker crust (~40 km) is present beneath the broad uplifted Oligocene flood basalt province, suggesting that crustal underplating compensates most of the plateau uplift and (4) possible magmatic underplating or a segmentation in the rift structure is observed at ~8°N, 39°W beneath several collapsed caldera complexes. These results indicate that magmatism has profoundly changed crustal structure throughout the flood basalt province.
Initiation and Along-Axis Segmentation of Seaward-Dipping Volcanic Sequences Captured in Afar
NASA Astrophysics Data System (ADS)
Ebinger, C.; Wolfenden, E.; Yirgu, G.; Keir, D.
2003-12-01
The Afar triple junction zone provides a unique opportunity to examine the early development of magmatic margins, as respective limbs of the triple junction capture different stages of the breakup process. Initial rifting in the southernmost Red Sea occurred concurrent with, or soon after flood basaltic magmatism at ~31 Ma in the Ethiopia-Yemen plume province, whereas the northern part of the Main Ethiopian rift initiated after 12 Ma. Both rift systems initiated with the development of high-angle border fault systems bounding broad basins, but 8-10 My after rifting we see riftward migration of strain from the western border fault to narrow zones of increasingly more basaltic magmatism. These localised zones of faulting and volcanism (magmatic segments) show a segmentation independent of the border fault segmentation. The much older, more evolved magmatic segments in the southern Red Sea, where not onlapped by Pliocene-Recent sedimentary strata, dip steeply riftward and define a regional eastward flexure into transitional oceanic crust, as indicated by gravity models constrained by seismic refraction and receiver function data. The southern Red Sea magmatic segments have been abandoned in Pliocene-Recent triple junction reorganisations, whereas the process of seaward-dipping volcanic sequence emplacement is ongoing in the seismically and volcanically active Main Ethiopian rift. Field, remote sensing, gravity, and seismicity data from the Main Ethiopian and southern Red Sea rifts indicate that seaward-dipping volcanic sequences initiate in moderately stretched continental crust above a narrow zone of dike-intrusion. Our comparison of active and ancient magmatic segments show that they are the precursors to seaward-dipping volcanic sequences analogous to those seen on passive continental margins, and provides insights into the initiation of along-axis segmentation of seafloor-spreading centers.
NASA Astrophysics Data System (ADS)
Polun, S. G.; Stockman, M. B.; Hickcox, K.; Horrell, D.; Tesfaye, S.; Gomez, F. G.
2015-12-01
As the only subaerial exposure of a ridge - ridge - ridge triple junction, the Afar region of Ethiopia and Djibouti offers a rare opportunity to assess strain partitioning within this type of triple junction. Here, the plate boundaries do not link discretely, but rather the East African rift meets the Red Sea and Gulf of Aden rifts in a zone of diffuse normal faulting characterized by a lack of magmatic activity, referred to as the central Afar. An initial assessment of Late Quaternary strain partitioning is based on faulted landforms in the Dobe - Hanle graben system in Ethiopia and Djibouti. These two extensional basins are connected by an imbricated accommodation zone. Several fault scarps occur within terraces formed during the last highstand of Lake Dobe, around 5 ka - they provide a means of calibrating a numerical model of fault scarp degradation. Additional timing constraints will be provided by pending exposure ages. The spreading rates of both grabens are equivalent, however in Dobe graben, extension is partitioned 2:1 between northern, south dipping faults and the southern, north dipping fault. Extension in Hanle graben is primarily focused on the north dipping Hanle fault. On the north margin of Dobe graben, the boundary fault bifurcates, where the basin-bordering fault displays a significantly higher modeled uplift rate than the more distal fault, suggesting a basinward propagation of faulting. On the southern Dobe fault, surveyed fault scarps have ages ranging from 30 - 5 ka with uplift rates of 0.71, 0.47, and 0.68 mm/yr, suggesting no secular variation in slip rates from the late Plestocene through the Holocene. These rates are converted into horizontal stretching estimates, which are compared with regional strain estimated from velocities of relatively sparse GPS data.
Thomsen, Louiza Bohn; Burkhart, Annette; Moos, Torben
2015-01-01
In vitro blood-brain barrier (BBB) models based on primary brain endothelial cells (BECs) cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER) and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs) in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP) and breast cancer related protein (BCRP), and the transferrin receptor).
Edwards, Joel H.; Kluesner, Jared W.; Silver, Eli A.; Bangs, Nathan L.
2018-01-01
Understanding the links between subducting slabs and upper-plate deformation is a longstanding goal in the field of tectonics. New 3D seismic sequence stratigraphy, mapped within the Costa Rica Seismogenesis Project (CRISP) seismic-reflection volume offshore southern Costa Rica, spatiotemporally constrains several Pleistocene outer forearc processes and provides clearer connections to subducting plate dynamics. Three significant shelf and/or slope erosional events at ca. 2.5–2.3 Ma, 1.95–1.78 Ma, and 1.78–1.19 Ma, each with notable differences in spatial extent, volume removed, and subsequent margin response, caused abrupt shifts in sedimentation patterns and rates. These shifts, coupled with observed deformation, suggest three primary mechanisms for Pleistocene shelf and slope vertical motions: (1) regional subaerial erosion and rapid subsidence linked to the southeastward Panama Fracture Zone triple-junction migration, with associated abrupt bathymetric variations and plate kinematic changes; (2) transient, kilometer-scale uplift and subsidence due to inferred subducting plate topography; and (3) progressive outer wedge shortening accommodated by landward- and seaward-dipping thrust faults and fold development due to the impinging Cocos Ridge. Furthermore, we find that the present-day wedge geometry (to within ∼3 km along strike) has been maintained through the Pleistocene, in contrast to modeled landward margin retreat. We also observe that deformation, i.e., extension and shortening, is decoupled from net margin subsidence. Our findings do not require basal erosion, and they suggest that the vertical motions of the Costa Rican outer forearc are not the result of a particular continuous process, but rather are a summation of plate to plate changes (e.g., passage of a fracture zone triple junction) and episodic events (e.g., subducting plate topography).
High-efficiency solar cell and method for fabrication
Hou, Hong Q.; Reinhardt, Kitt C.
1999-01-01
A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).
High-efficiency solar cell and method for fabrication
Hou, H.Q.; Reinhardt, K.C.
1999-08-31
A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.
The Voronoi Implicit Interface Method for computing multiphase physics
Saye, Robert I.; Sethian, James A.
2011-01-01
We introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarily high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. We test the method’s accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann’s law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces. PMID:22106269
The Voronoi Implicit Interface Method for computing multiphase physics.
Saye, Robert I; Sethian, James A
2011-12-06
We introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarily high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. We test the method's accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann's law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces.
The Voronoi Implicit Interface Method for computing multiphase physics
Saye, Robert I.; Sethian, James A.
2011-11-21
In this paper, we introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarilymore » high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. Finally, we test the method’s accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann’s law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces.« less
Oceanographic Telecommuting: Going to Sea Virtually
NASA Astrophysics Data System (ADS)
Smith, Deborah K.; Lemmond, Peter
2005-09-01
Oceanography in the 21st century is on the verge of changing the way it does business. Telecommuting from office to sea is about to make the same impact as telecommuting between home and the office did 20 years ago. A recent geophysical survey highlighted the role that telecommuting will soon play in ocean research. In June 2005, R/V Knorr was in the middle of the Atlantic Ocean conducting a geophysical survey of a region centered at 13°N along the Mid-Atlantic Ridge in the general area of the diffuse triple junction between the North America (NA),Africa (AF), and South America (SA) plates. This region is particularly notable because of a unique zone of seismicity that occurs ~70 km west of the ridge axis between 14°20'N and 12°50'N.The survey conducted on this cruise (KN182-3) was a first step toward understanding how slow spreading lithosphere is deforming in the NA-SA-AF triple junction region.
NASA Technical Reports Server (NTRS)
Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.
1993-01-01
The effect of 1.00 MeV proton irradiation on hydrogenated amorphous silicon alloy triple-junction solar cells is reported for the first time. The cells were designed for radiation resistance studies and included 0.35 cm(sup 2) active areas on 1.0 by 2.0 cm(sup 2) glass superstrates. Three cells were irradiated through the bottom contact at each of six fluences between 5.10E12 and 1.46E15 cm(sup -2). The effect of the irradiations was determined with light current-voltage measurements. Proton irradiation degraded the cell power densities from 8.0 to 98 percent for the fluences investigated. Annealing irradiated cells at 200 C for two hours restored the power densities to better than 90 percent. The cells exhibited radiation resistances which are superior to cells reported in the literature for fluences less than 1E14 cm(sup -2).
NASA Astrophysics Data System (ADS)
Materna, Kathryn; Taira, Taka'aki; Bürgmann, Roland
2018-01-01
The Mendocino Triple Junction (MTJ), at the northern terminus of the San Andreas Fault system, is an actively deforming plate boundary region with poorly constrained estimates of seismic coupling on most offshore fault surfaces. Characteristically repeating earthquakes provide spatial and temporal descriptions of aseismic creep at the MTJ, including on the oceanic transform Mendocino Fault Zone (MFZ) as it subducts beneath North America. Using a dataset of earthquakes from 2008 to 2017, we find that the easternmost segment of the MFZ displays creep during this period at about 65% of the long-term slip rate. We also find creep at slower rates on the shallower strike-slip interface between the Pacific plate and the North American accretionary wedge, as well as on a fault that accommodates Gorda subplate internal deformation. After a nearby
Grain Refinement Kinetics in a Low Alloyed Cu–Cr–Zr Alloy Subjected to Large Strain Deformation
Morozova, Anna; Borodin, Elijah; Bratov, Vladimir; Zherebtsov, Sergey; Kaibyshev, Rustam
2017-01-01
This paper investigates the microstructural evolution and grain refinement kinetics of a solution-treated Cu–0.1Cr–0.06Zr alloy during equal channel angular pressing (ECAP) at a temperature of 673 K via route BC. The microstructural change during plastic deformation was accompanied by the formation of the microband and an increase in the misorientations of strain-induced subboundaries. We argue that continuous dynamic recrystallization refined the initially coarse grains, and discuss the dynamic recrystallization kinetics in terms of grain/subgrain boundary triple junction evolution. A modified Johnson–Mehl–Avrami–Kolmogorov relationship with a strain exponent of about 1.49 is used to express the strain dependence of the triple junctions of high-angle boundaries. Severe plastic deformation by ECAP led to substantial strengthening of the Cu–0.1Cr–0.06Zr alloy. The yield strength increased from 60 MPa in the initial state to 445 MPa after a total strain level of 12. PMID:29210990
NASA Astrophysics Data System (ADS)
Essig, Stephanie; Allebé, Christophe; Remo, Timothy; Geisz, John F.; Steiner, Myles A.; Horowitz, Kelsey; Barraud, Loris; Ward, J. Scott; Schnabel, Manuel; Descoeudres, Antoine; Young, David L.; Woodhouse, Michael; Despeisse, Matthieu; Ballif, Christophe; Tamboli, Adele
2017-09-01
Today's dominant photovoltaic technologies rely on single-junction devices, which are approaching their practical efficiency limit of 25-27%. Therefore, researchers are increasingly turning to multi-junction devices, which consist of two or more stacked subcells, each absorbing a different part of the solar spectrum. Here, we show that dual-junction III-V//Sidevices with mechanically stacked, independently operated III-V and Si cells reach cumulative one-sun efficiencies up to 32.8%. Efficiencies up to 35.9% were achieved when combining a GaInP/GaAs dual-junction cell with a Si single-junction cell. These efficiencies exceed both the theoretical 29.4% efficiency limit of conventional Si technology and the efficiency of the record III-V dual-junction device (32.6%), highlighting the potential of Si-based multi-junction solar cells. However, techno-economic analysis reveals an order-of-magnitude disparity between the costs for III-V//Si tandem cells and conventional Si solar cells, which can be reduced if research advances in low-cost III-V growth techniques and new substrate materials are successful.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essig, Stephanie; Allebé, Christophe; Remo, Timothy
Today's dominant photovoltaic technologies rely on single-junction devices, which are approaching their practical efficiency limit of 25-27%. Therefore, researchers are increasingly turning to multi-junction devices, which consist of two or more stacked subcells, each absorbing a different part of the solar spectrum. Here, we show that dual-junction III-V//Sidevices with mechanically stacked, independently operated III-V and Si cells reach cumulative one-sun efficiencies up to 32.8%. Efficiencies up to 35.9% were achieved when combining a GaInP/GaAs dual-junction cell with a Si single-junction cell. These efficiencies exceed both the theoretical 29.4% efficiency limit of conventional Si technology and the efficiency of the recordmore » III-V dual-junction device (32.6%), highlighting the potential of Si-based multi-junction solar cells. However, techno-economic analysis reveals an order-of-magnitude disparity between the costs for III-V//Si tandem cells and conventional Si solar cells, which can be reduced if research advances in low-cost III-V growth techniques and new substrate materials are successful.« less
Modeling the Blood-Brain Barrier in a 3D triple co-culture microfluidic system.
Adriani, G; Ma, D; Pavesi, A; Goh, E L K; Kamm, R D
2015-01-01
The need for a blood-brain barrier (BBB) model that accurately mimics the physiological characteristics of the in-vivo situation is well-recognized by researchers in academia and industry. However, there is currently no in-vitro model allowing studies of neuronal growth and/or function influenced by factors from the blood that cross through the BBB. Therefore, we established a 3D triple co-culture microfluidic system using human umbilical vein endothelial cells (HUVEC) together with primary rat astrocytes and neurons. Immunostaining confirmed the successful triple co-culture system consisting of an intact BBB with tight intercellular junctions in the endothelial monolayer. The BBB selective permeability was determined by a fluorescent-based assay using dextrans of different molecular weights. Finally, neuron functionality was demonstrated by calcium imaging.
NASA Technical Reports Server (NTRS)
Beernink, Kevin; Guha, Subhendu; Yang, Jeff; Banerjee, Arindam; Lord, Ken; DeMaggio, Greg; Liu, Frank; Pietka, Ginger; Johnson, Todd; Reinhout, Melanie;
2007-01-01
The availability of low-cost, lightweight and reliable photovoltaic (PV) modules is an important component in reducing the cost of satellites and spacecraft. In addition, future high-power spacecraft will require lightweight PV arrays with reduced stowage volume. In terms of the requirements for low mass, reduced stowage volume, and the harsh space environment, thin film amorphous silicon (a-Si) alloy cells have several advantages over other material technologies (1). The deposition process is relatively simple, inexpensive, and applicable to large area, lightweight, flexible substrates. The temperature coefficient has been found to be between -0.2 and -0.3 %/degC for high-efficiency triple-junction a-Si alloy cells, which is superior for high temperature operation compared to crystalline Si and triple-junction GaAs/InGaP/Ge devices at 0.53 %/degC and 0.45 %/degC, respectively (2). As a result, the reduction in efficiency at high temperature typical in space conditions is less for a-Si alloy cells than for their crystalline counterparts. Additionally, the a-Si alloy cells are relatively insensitive to electron and proton bombardment. We have shown that defects that are created by electrons with energies between 0.2 to 2 MeV with fluence up to 1x10(exp 15) e/sq cm and by protons with energy in the range 0.3 MeV to 5 MeV with fluence up to 1x10(exp 13) p/sq cm can be annealed out at 70 C in less than 50 hours (1). Further, modules incorporating United Solar s a-Si alloy cells have been tested on the MIR space station for 19 months with only minimal degradation (3). For stratospheric applications, such as the high altitude airship, the required PV arrays are typically of considerably higher power than current space arrays. Airships typically have a large area available for the PV, but weight is of critical importance. As a result, low cost and high specific power (W/kg) are key factors for airship PV arrays. Again, thin-film a-Si alloy solar cell technology is well suited to such applications.
[Activities of Dept. of Geological Sciences, Colorado University
NASA Technical Reports Server (NTRS)
Bilham, Roger
1997-01-01
Using remotely sensed data and GPS observations we completed a study of neotectonic processes responsible for landscape changes in an area of active extensional deformation and volcanism. The findings from this study describe the extensional processes operating in the region of the Afar triple junction and the northern Ethiopian rift.
Triple junction orogeny: tectonic evolution of the Pan-African Northern Damara Belt, Namibia
NASA Astrophysics Data System (ADS)
Lehmann, Jérémie; Saalmann, Kerstin; Naydenov, Kalin V.; Milani, Lorenzo; Charlesworth, Eugene G.; Kinnaird, Judith A.; Frei, Dirk; Kramers, Jan D.; Zwingmann, Horst
2014-05-01
Trench-trench-trench triple junctions are generally geometrically and kinematically unstable and therefore can result at the latest stages in complicated collisional orogenic belts. In such geodynamic sites, mechanism and timescale of deformations that accommodate convergence and final assembly of the three colliding continental plates are poorly studied. In western Namibia, Pan-African convergence of three cratonic blocks led to pene-contemporaneous closure of two highly oblique oceanic domains and formation of the triple junction Damara Orogen where the NE-striking Damara Belt abuts to the west against the NNW-striking Kaoko-Gariep Belt. Detailed description of structures and microstructures associated with remote sensing analysis, and dating of individual deformation events by means of K-Ar, Ar-Ar (micas) and U-Pb (zircon) isotopic studies from the Northern Damara Belt provide robust constraints on the tectonic evolution of this palaeo-triple junction orogeny. There, passive margin sequences of the Neoproterozoic ocean were polydeformed and polymetamorphosed to the biotite zone of the greenschist facies to up to granulite facies and anatexis towards the southern migmatitic core of the Central Damara Belt. Subtle relict structures and fold pattern analyses reveal the existence of an early D1 N-S shortening event, tentatively dated between ~635 Ma and ~580 Ma using published data. D1 structures were almost obliterated by pervasive and major D2 E-W coaxial shortening, related to the closure of the Kaoko-Gariep oceanic domain and subsequent formation of the NNW-striking Kaoko-Gariep Belt to the west of the study area. Early, km-scale D1 E-W trending steep folds were refolded during this D2 event, producing either Type I or Type II fold interference patterns visible from space. The D2 E-W convergence could have lasted until ~533 Ma based on published and new U-Pb ages. The final D3 NW-SE convergence in the northernmost Damara Belt produced a NE-striking deformation front in weak metasedimentary rocks during SE-directed indentation of a rigid Paleoproterozoic basement. In the central and southern parts of the Northern Damara Belt, D3 is mostly expressed by km-scale local Type I fold interference patterns formed by the refolding of D2 upright synclines as well as bending around a steep axis of the D2 refolded folds and steep S2 multilayer. In the western part however, where the two orthogonal trends of the Damara and Kaoko-Gariep Belts meet, D3 is described in literature as sinistral shearing along reactivated steep S2 planes that is associated with steep-hinge folds with steep NE-striking axial planes. Our new ages indicate that D3 lasted from ~513 Ma to ~460 Ma throughout the entire Northern Damara Belt. These results document for the first time a regional-scale early Pan-African N-S shortening event of uncertain geotectonic significance. They furthermore indicate that two competing orthogonal collisional systems have contributed in resolving instabilities at the triple orogenic junction over a period in the order of ~100 m.y. and could therefore account for the assembly of the three cratons. The E-W convergence was preponderant in strength and pre-dates the NW-SE one, the latter being associated with localized sinistral shearing along the Kaoko Belt interface in the westernmost Northern Damara Belt.
Shear zone junctions: Of zippers and freeways
NASA Astrophysics Data System (ADS)
Passchier, Cees W.; Platt, John P.
2017-02-01
Ductile shear zones are commonly treated as straight high-strain domains with uniform shear sense and characteristic curved foliation trails, bounded by non-deforming wall rock. Many shear zones, however, are branched, and if movement on such branches is contemporaneous, the resulting shape can be complicated and lead to unusual shear sense arrangement and foliation geometries in the wall rock. For Y-shaped shear zone triple junctions with three joining branches and transport direction at a high angle to the branchline, only eight basic types of junction are thought to be stable and to produce significant displacement. The simplest type, called freeway junctions, have similar shear sense in all three branches. The other types show joining or separating behaviour of shear zone branches similar to the action of a zipper. Such junctions may have shear zone branches that join to form a single branch (closing zipper junction), or a single shear zone that splits to form two branches, (opening zipper junction). All categories of shear zone junctions show characteristic foliation patterns and deflection of markers in the wall rock. Closing zipper junctions are unusual, since they form a non-active zone with opposite deflection of foliations in the wall rock known as an extraction fault or wake. Shear zipper junctions can form domains of overprinting shear sense along their flanks. A small and large field example are given from NE Spain and Eastern Anatolia. The geometry of more complex, 3D shear zone junctions with slip parallel and oblique to the branchline is briefly discussed.
A directional nucleation-zipping mechanism for triple helix formation
Alberti, Patrizia; Arimondo, Paola B.; Mergny, Jean-Louis; Garestier, Thérèse; Hélène, Claude; Sun, Jian-Sheng
2002-01-01
A detailed kinetic study of triple helix formation was performed by surface plasmon resonance. Three systems were investigated involving 15mer pyrimidine oligonucleotides as third strands. Rate constants and activation energies were validated by comparison with thermodynamic values calculated from UV-melting analysis. Replacement of a T·A base pair by a C·G pair at either the 5′ or the 3′ end of the target sequence allowed us to assess mismatch effects and to delineate the mechanism of triple helix formation. Our data show that the association rate constant is governed by the sequence of base triplets on the 5′ side of the triplex (referred to as the 5′ side of the target oligopurine strand) and provides evidence that the reaction pathway for triple helix formation in the pyrimidine motif proceeds from the 5′ end to the 3′ end of the triplex according to the nucleation-zipping model. It seems that this is a general feature for all triple helices formation, probably due to the right-handedness of the DNA double helix that provides a stronger base stacking at the 5′ than at the 3′ duplex–triplex junction. Understanding the mechanism of triple helix formation is not only of fundamental interest, but may also help in designing better triple helix-forming oligonucleotides for gene targeting and control of gene expression. PMID:12490709
Amorphous silicon research. Final technical progress report, 1 August 1994--28 February 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guha, S
1998-05-01
This report describes the status and accomplishments of work performed under this subcontract by United Solar Systems. United Solar researchers explored several new deposition regimes/conditions to investigate their effect on material/device performance. To facilitate optimum ion bombardment during growth, a large parameter space involving chamber pressure, rf power, and hydrogen dilution were investigated. United Solar carried out a series of experiments using discharge modulation at various pulsed-plasma intervals to study the effect of Si-particle incorporation on solar cell performance. Hydrogen dilution during deposition is found to improve both the initial and stable performance of a-Si and a-SiGe alloy cells. Researchersmore » conducted a series of temperature-ramping experiments on samples prepared with high and low hydrogen dilutions to study the effect of hydrogen effusion on solar cell performance. Using an internal photoemission method, the electrical bandgap of a microcrystalline p layer used in high-efficiency solar cells was measured to be 1.6 eV. New measurement techniques were developed to evaluate the interface and bulk contributions of losses to solar cell performance. Researchers replaced hydrogen with deuterium and found deuterated amorphous silicon alloy solar cells exhibit reduced light-induced degradation. The incorporation of a microcrystalline n layer in a multijunction cell is seen to improve cell performance. United Solar achieved a world-record single-junction a-Si alloy stable cell efficiency of 9.2% with an active area of 0.25 cm{sup 2} grown with high hydrogen dilution. They also achieved a world-record triple-junction, stable, active-area cell efficiency of 13.0% with an active area of 0.25 cm{sup 2}.« less
2016-02-18
Dose Escalation; Safety; Preliminary Efficacy; Advanced Solid Tumors; Metastatic Breast Cancer; Advanced Pancreatic Adenocarcinoma; Metastatic Colorectal Cancer; Recurrent Glioblastoma Multiforme; Gastric Cancer; Gastroesophageal Junction Cancer; Triple Negative Metastatic Breast Cancer; Hormone Receptor Positive (ER+/PR+, and Her2-) Metastatic Breast Cancer
NASA Astrophysics Data System (ADS)
Sahu, Sandeep; Yadav, Prabhat Chand; Shekhar, Shashank
2018-02-01
In this investigation, Inconel 600 alloy was thermomechanically processed to different strains via hot rolling followed by a short-time annealing treatment to determine an appropriate thermomechanical process to achieve a high fraction of low-Σ CSL boundaries. Experimental results demonstrate that a certain level of deformation is necessary to obtain effective "grain boundary engineering"; i.e., the deformation must be sufficiently high to provide the required driving force for postdeformation static recrystallization, yet it should be low enough to retain a large fraction of original twin boundaries. Samples processed in such a fashion exhibited 77 pct length fraction of low-Σ CSL boundaries, a dominant fraction of which was from Σ3 ( 64 pct), the latter with very low deviation from its theoretical misorientation. The application of hot rolling also resulted in a very low fraction of Σ1 ( 1 pct) boundaries, as desired. The process also leads to so-called "triple junction engineering" with the generation of special triple junctions, which are very effective in disrupting the connectivity of the random grain boundary network.
Tension, cell shape and triple-junction angle anisotropy in the Drosophila germband
NASA Astrophysics Data System (ADS)
Lacy, Monica; Hutson, M. Shane; Meyer, Christian; McDonald, Xena
In the field of tissue mechanics, the embryonic development of Drosophila melanogaster offers many opportunities for study. One of Drosophila's most crucial morphogenetic stages is the retraction of an epithelial tissue called the germband. During retraction, the segments of the retracting germband, as well as the individual germband cells, elongate in response to forces from a connected tissue, the amnioserosa. Modeling of this elongation, based on tissue responses to laser wounding, has plotted the internal germband tension against the external amnioserosa stress, creating a phase space to determine points and regions corresponding to stable elongation. Although the resulting fits indicate a necessary opposition of internal and external forces, they are inconclusive regarding the exact balance. We will present results testing the model predictions by measuring cell shapes and the correlations between cell-edge directions and triple-junction angles. These measures resolve the ambiguity in pinpointing the internal-external force balance for each germband segment. Research was supported by NIH Grant Numbers 1R01GM099107 and 1R21AR068933.
Metallic Junction Thermoelectric Device Simulations
NASA Technical Reports Server (NTRS)
Duzik, Adam J.; Choi, Sang H.
2017-01-01
Thermoelectric junctions made of semiconductors have existed in radioisotope thermoelectric generators (RTG) for deep space missions, but are currently being adapted for terrestrial energy harvesting. Unfortunately, these devices are inefficient, operating at only 7% efficiency. This low efficiency has driven efforts to make high-figure-of-merit thermoelectric devices, which require a high electrical conductivity but a low thermal conductivity, a combination that is difficult to achieve. Lowered thermal conductivity has increased efficiency, but at the cost of power output. An alternative setup is to use metallic junctions rather than semiconductors as thermoelectric devices. Metals have orders of magnitude more electrons and electronic conductivities higher than semiconductors, but thermal conductivity is higher as well. To evaluate the viability of metallic junction thermoelectrics, a two dimensional heat transfer MATLAB simulation was constructed to calculate efficiency and power output. High Seebeck coefficient alloys, Chromel (90%Ni-10%Cr) and Constantan (55%Cu-45%Ni), produced efficiencies of around 20-30%. Parameters such as the number of layers of junctions, lateral junction density, and junction sizes for both series- and parallel-connected junctions were explored.
NASA Astrophysics Data System (ADS)
Bourgois, Jacques; Lagabrielle, Yves; Martin, Hervé; Dyment, Jérôme; Frutos, Jose; Cisternas, Maria Eugenia
2016-10-01
This paper aggregates the main basic data acquired along the Chile Triple Junction (CTJ) area (45°-48°S), where an active spreading center is presently subducting beneath the Andean continental margin. Updated sea-floor kinematics associated with a comprehensive review of geologic, geochemical, and geophysical data provide new constraints on the geodynamics of this puzzling area. We discuss: (1) the emplacement mode for the Pleistocene Taitao Ridge and the Pliocene Taitao Peninsula ophiolite bodies. (2) The occurrence of these ophiolitic complexes in association with five adakite-like plutonic and volcanic centers of similar ages at the same restricted locations. (3) The inferences from the co-occurrence of these sub-coeval rocks originating from the same subducting oceanic lithosphere evolving through drastically different temperature-pressure ( P- T) path: low-grade greenschist facies overprint and amphibolite-eclogite transition, respectively. (4) The evidences that document ridge-jump events and associated microplate individualization during subduction of the SCR1 and SCR-1 segments: the Chonos and Cabo Elena microplates, respectively. The ridge-jump process associated with the occurrence of several closely spaced transform faults entering subduction is controlling slab fragmentation, ophiolite emplacement, and adakite-like production and location in the CTJ area. Kinematic inconsistencies in the development of the Patagonia slab window document an 11- km westward jump for the SCR-1 spreading segment at ~6.5-to-6.8 Ma. The SCR-1 spreading center is relocated beneath the North Patagonia Icefield (NPI). We argue that the deep-seated difference in the dynamically sustained origin of the high reliefs of the North and South Patagonia Icefield (NPI and SPI) is asthenospheric convection and slab melting, respectively. The Chile Triple Junction area provides the basic constraints to define the basic signatures for spreading-ridge subduction beneath an Andean-type margin.
A model for Iapetan rifting of Laurentia based on Neoproterozoic dikes and related rocks
Burton, William C.; Southworth, Scott
2010-01-01
Geologic evidence of the Neoproterozoic rifting of Laurentia during breakup of Rodinia is recorded in basement massifs of the cratonic margin by dike swarms, volcanic and plutonic rocks, and rift-related clastic sedimentary sequences. The spatial and temporal distribution of these geologic features varies both within and between the massifs but preserves evidence concerning the timing and nature of rifting. The most salient features include: (1) a rift-related magmatic event recorded in the French Broad massif and the southern and central Shenandoah massif that is distinctly older than that recorded in the northern Shenandoah massif and northward; (2) felsic volcanic centers at the north ends of both French Broad and Shenandoah massifs accompanied by dike swarms; (3) differences in volume between massifs of cover-sequence volcanic rocks and rift-related clastic rocks; and (4) WNW orientation of the Grenville dike swarm in contrast to the predominately NE orientation of other Neoproterozoic dikes. Previously proposed rifting mechanisms to explain these features include rift-transform and plume–triple-junction systems. The rift-transform system best explains features 1, 2, and 3, listed here, and we propose that it represents the dominant rifting mechanism for most of the Laurentian margin. To explain feature 4, as well as magmatic ages and geochemical trends in the Northern Appalachians, we propose that a plume–triple-junction system evolved into the rift-transform system. A ca. 600 Ma mantle plume centered east of the Sutton Mountains generated the radial dike swarm of the Adirondack massif and the Grenville dike swarm, and a collocated triple junction generated the northern part of the rift-transform system. An eastern branch of this system produced the Long Range dike swarm in Newfoundland, and a subsequent western branch produced the ca. 554 Ma Tibbit Hill volcanics and the ca. 550 Ma rift-related magmatism of Newfoundland.
NASA Astrophysics Data System (ADS)
Materna, K.; Taira, T.; Burgmann, R.
2016-12-01
The Mendocino Triple Junction (MTJ), at the transition point between the San Andreas fault system, the Mendocino Transform Fault, and the Cascadia Subduction Zone, undergoes rapid tectonic deformation and produces more large (M>6.0) earthquakes than any region in California. Most of the active faults of the triple junction are located offshore, making it difficult to characterize both seismic slip and aseismic creep. In this work, we study aseismic creep rates near the MTJ using characteristically repeating earthquakes (CREs) as indicators of creep rate. CREs are generally interpreted as repeated failures of the same seismic patch within an otherwise creeping fault zone; as a consequence, the magnitude and recurrence time of the CREs can be used to determine a fault's creep rate through empirically calibrated scaling relations. Using seismic data from 2010-2016, we identify CREs as recorded by an array of eight 100-Hz PBO borehole seismometers deployed in the Cape Mendocino area. For each event pair with epicenters less than 30 km apart, we compute the cross-spectral coherence of 20 seconds of data starting one second before the P-wave arrival. We then select pairs with high coherence in an appropriate frequency band, which is determined uniquely for each event pair based on event magnitude, station distance, and signal-to-noise ratio. The most similar events (with median coherence above 0.95 at two or more stations) are selected as CREs and then grouped into CRE families, and each family is used to infer a local creep rate. On the Mendocino Transform Fault, we find relatively high creep rates of >5 cm/year that increase closer to the Gorda Ridge. Closer to shore and to the MTJ itself, we find many families of repeaters on and off the transform fault with highly variable creep rates, indicative of the complex deformation that takes place there.
Combined heat and power generation with a HCPV system at 2000 suns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paredes, Filippo; Montagnino, Fabio M.; Milone, Sergio
2015-09-28
This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connectedmore » to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%.« less
Combined heat and power generation with a HCPV system at 2000 suns
NASA Astrophysics Data System (ADS)
Paredes, Filippo; Montagnino, Fabio M.; Salinari, Piero; Bonsignore, Gaetano; Milone, Sergio; Agnello, Simonpietro; Barbera, Marco; Gelardi, Franco M.; Sciortino, Luisa; Collura, Alfonso; Lo Cicero, Ugo; Cannas, Marco
2015-09-01
This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connected to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%.
Haeussler, P.J.; Bradley, D.C.; Wells, R.E.; Miller, M.L.
2003-01-01
Onshore evidence suggests that a plate is missing from published reconstructions of the northeastern Pacific Ooean in Paleocene- Eocene time. The Resurrection plate, named for the Resurrection Peninsula ophiolite near Seward, Alaska, was located east of the Kula plate and north of the Farallon plate. We interpret coeval near-trench magmatism in southern Alaska and the Cascadia margin as evidence for two slab windows associated with trench-ridge-trench (TRT) triple junctions, which formed the western and southern boundaries of the Resurrection plate. In Alaska, the Sanak-Baranof belt of near-trench intrusions records a west-to-east migration, from 61 to 50 Ma, of the northern TRT triple junction along a 2100-km-long section of coastline. In Oregon, Washington, and southern Vancouver Island, voluminous basaltic volcanism of the Siletz River Volcanics, Crescent Formation, and Metchosin Volcanics occurred between ca. 66 and 48 Ma. Lack of a clear age progression of magmatism along the Cascadia margin suggests that this southern triple junction did not migrate significantly. Synchronous near-trench magmatism from southeastern Alaska to Puget Sound at ca. 50 Ma documents the middle Eocene subduction of a spreading center, the crest of which was subparallel to the margin. We interpret this ca. 50 Ma event as recording the subduction-zone consumption of the last of the Resurrection plate. The existence and subsequent subduction of the Resurrection plate explains (1) northward terrane transport along the southeastern Alaska-British Columbia margin between 70 and 50 Ma, synchronous with an eastward-migrating triple junction in southern Alaska; (2) rapid uplift and voluminous magmatism in the Coast Mountains of British Columbia prior to 50 Ma related to subduction of buoyant, young oceanic crust of the Resurrection plate; (3) cessation of Coast Mountains magmatism at ca. 50 Ma due to cessation of subduction, (4) primitive mafic magmatism in the Coast Mountains and Cascade Range just after 50 Ma, related to slab-window magmatism, (5) birth of the Queen Charlotte transform margin at ca. 50 Ma, (6) extensional exhumation of high-grade metamorphic terranes and development of core complexes in British Columbia, Idaho, and Washington, and extensional collapse of the Cordilleran foreland fold-and-thrust belt in Alberta, Montana, and Idaho after 50 Ma related to initiation of the transform margin, (7) enigmatic 53-45 Ma magmatism associated with extension from Montana to the Yukon Territory as related to slab breakup and the formation of a slab window, (8) right-lateral margin-parallel strike-slip faulting in southern and western Alaska during Late Cretaceous and Paleocene time, which cannot be explained by Farallon convergence vectors, and (9) simultaneous changes in Pacific-Farallon and Pacific-Kula plate motions concurrent with demise of the Kula-Resurrection Ridge.
Mimila-Arroyo, J
2017-06-01
In this paper, it is demonstrated that the free electron gas primary thermometer based on a bipolar junction transistor is able to provide the temperature with an accuracy of a few parts per million. Its simple functioning principle exploits the behavior of the collector current when properly biased to extract the temperature. Using general purpose silicon transistors at the water triple point (273.16 K) and gallium melting point (302.9146), an accuracy of a few parts per million has been reached, constituting the simplest and the easiest to operate primary thermometer, that might be considered even for the redefinition of Kelvin.
NASA Astrophysics Data System (ADS)
Mimila-Arroyo, J.
2017-06-01
In this paper, it is demonstrated that the free electron gas primary thermometer based on a bipolar junction transistor is able to provide the temperature with an accuracy of a few parts per million. Its simple functioning principle exploits the behavior of the collector current when properly biased to extract the temperature. Using general purpose silicon transistors at the water triple point (273.16 K) and gallium melting point (302.9146), an accuracy of a few parts per million has been reached, constituting the simplest and the easiest to operate primary thermometer, that might be considered even for the redefinition of Kelvin.
Schoeman, Rogier M; Kemna, Evelien W M; Wolbers, Floor; van den Berg, Albert
2014-02-01
In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped curved microchannel using a double T-junction, with a frequency over 2000 Hz, followed by controlled droplet pairing with a 100% success rate. Subsequently, droplet fusion is realized using electrical actuation resulting in electro-coalescence of two droplets, each containing a single HL60 cell, with 95% efficiency. Finally, volume reduction of the fused droplet up to 75% is achieved by a triple pitchfork structure. This droplet volume reduction is necessary to obtain close cell-cell membrane contact necessary for final cell electrofusion, leading to hybridoma formation, which is the ultimate aim of this research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ulrich, Steve; Veilleux, Jean-François; Landry Corbin, François
2009-01-01
The European Student Moon Orbiter (ESMO) spacecraft is a student-built mini satellite being designed for a mission to the Moon. Designing and launching mini satellites are becoming a current trend in the space sector since they provide an economic way to perform innovative scientific experiments and in-flight demonstration of novel space technologies. The generation, storage, control, and distribution of the electrical power in a mini satellite represents unique challenges to the power engineer since the mass and volume restrictions are very stringent. Regardless of these problems, every subsystem and payload equipment must be operated within their specified voltage band whenever they required to be turned on. This paper presents the preliminary design of a lightweight, compact, and reliable power system for ESMO that can generate 720 W. Some of the key components of the EPS include ultra triple-junction (UTJ) GaAs solar cells controlled by maximum power point trackers, and high efficiency Li-ion secondary batteries recharged in parallel.
Lightweight Solar Paddle with High Specific Power of 150 W/Kg
NASA Astrophysics Data System (ADS)
Shimazaki, Kazunori; Takahashi, Masato; Imaizumi, Mitsuru; Takamoto, Tatsuya; Ito, Takehiko; Nozaki, Yukishige; Kusawake, Hiroaki
2014-08-01
A lightweight solar paddle using space solar sheet (SSS) is currently being developed, which uses glass-type SSS (G-SSS) comprising InGaP/GaAs/InGaAs triple- junction high-efficiency thin-film solar cells. To avoid damage to the G-SSS due to vibration during launch, we adopted a new architecture on a panel. This panel employed a curved frame-type structure, on which the G-SSS is mounted and test models were manufactured to evaluate the vibration tolerance. The dimensions of the 1.0-cm-thick unit panel were about 1.0 × 1.0 m. Acoustic and sine vibration tests were performed on the model and the results demonstrated the high durability of the curved panel in an acoustic and vibration environments. The specific power of the solar paddle using the curved panel is estimated at approximately 150 W/kg at an array power of about 10 kW.
Cornish, Peter V; Hennig, Mirko; Giedroc, David P
2005-09-06
The molecular determinants of stimulation of -1 programmed ribosomal frameshifting (-1 PRF) by RNA pseudoknots are poorly understood. Sugarcane yellow leaf virus (ScYLV) encodes a 28-nt mRNA pseudoknot that promotes -1 PRF between the P1 (protease) and P2 (polymerase) genes in plant luteoviruses. The solution structure of the ScYLV pseudoknot reveals a well ordered loop 2 (L2) that exhibits continuous stacking of A20 through C27 in the minor groove of the upper stem 1 (S1), with C25 flipped out of the triple-stranded stack. Five consecutive triple base pairs flank the helical junction where the 3' nucleotide of L2, C27, adopts a cytidine 27 N3-cytidine 14 2'-OH hydrogen bonding interaction with the C14-G7 base pair. This interaction is isosteric with the adenosine N1-2'-OH interaction in the related mRNA from beet western yellows virus (BWYV); however, the ScYLV and BWYV mRNA structures differ in their detailed L2-S1 hydrogen bonding and L2 stacking interactions. Functional analyses of ScYLV/BWYV chimeric pseudoknots reveal that the ScYLV RNA stimulates a higher level of -1 PRF (15 +/- 2%) relative to the BWYV pseudoknot (6 +/- 1%), a difference traced largely to the identity of the 3' nucleotide of L2 (C27 vs. A25 in BWYV). Strikingly, C27A ScYLV RNA is a poor frameshift stimulator (2.0%) and is destabilized by approximately 1.5 kcal x mol(-1) (pH 7.0, 37 degrees C) with respect to the wild-type pseudoknot. These studies establish that the precise network of weak interactions nearest the helical junction in structurally similar pseudoknots make an important contribution to setting the frameshift efficiency in mRNAs.
Cornish, Peter V.; Hennig, Mirko; Giedroc, David P.
2005-01-01
The molecular determinants of stimulation of –1 programmed ribosomal frameshifting (–1 PRF) by RNA pseudoknots are poorly understood. Sugarcane yellow leaf virus (ScYLV) encodes a 28-nt mRNA pseudoknot that promotes –1 PRF between the P1 (protease) and P2 (polymerase) genes in plant luteoviruses. The solution structure of the ScYLV pseudoknot reveals a well ordered loop 2 (L2) that exhibits continuous stacking of A20 through C27 in the minor groove of the upper stem 1 (S1), with C25 flipped out of the triple-stranded stack. Five consecutive triple base pairs flank the helical junction where the 3′ nucleotide of L2, C27, adopts a cytidine 27 N3-cytidine 14 2′-OH hydrogen bonding interaction with the C14-G7 base pair. This interaction is isosteric with the adenosine N1–2′-OH interaction in the related mRNA from beet western yellows virus (BWYV); however, the ScYLV and BWYV mRNA structures differ in their detailed L2–S1 hydrogen bonding and L2 stacking interactions. Functional analyses of ScYLV/BWYV chimeric pseudoknots reveal that the ScYLV RNA stimulates a higher level of –1 PRF (15 ± 2%) relative to the BWYV pseudoknot (6 ± 1%), a difference traced largely to the identity of the 3′ nucleotide of L2 (C27 vs. A25 in BWYV). Strikingly, C27A ScYLV RNA is a poor frameshift stimulator (2.0%) and is destabilized by ≈1.5 kcal·mol–1 (pH 7.0, 37°C) with respect to the wild-type pseudoknot. These studies establish that the precise network of weak interactions nearest the helical junction in structurally similar pseudoknots make an important contribution to setting the frameshift efficiency in mRNAs. PMID:16123125
New high-efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Daud, T.; Crotty, G. T.
1985-01-01
A design for silicon solar cells was investigated as an approach to increasing the cell open-circuit voltage and efficiency for flat-plate terrestrial photovoltaic applications. This deviates from past designs, where either the entire front surface of the cell is covered by a planar junction or the surface is textured before junction formation, which results in an even greater (up to 70%) junction area. The heavily doped front region and the junction space charge region are potential areas of high recombination for generated and injected minority carriers. The design presented reduces junction area by spreading equidiameter dot junctions across the surface of the cell, spaced about a diffusion length or less from each other. Various dot diameters and spacings allowed variations in total junction area. A simplified analysis was done to obtain a first-order design optimization. Efficiencies of up to 19% can be obtained. Cell fabrication involved extra masking steps for selective junction diffusion, and made surface passivation a key element in obtaining good collection. It also involved photolithography, with line widths down to microns. A method is demonstrated for achieving potentially high open-circuit voltages and solar-cell efficiencies.
NASA Technical Reports Server (NTRS)
Woodyard, James R.
1995-01-01
Multi-junction solar cells are attractive for space applications because they can be designed to convert a larger fraction of AMO into electrical power at a lower cost than single-junction cells. The performance of multi-junction cells is much more sensitive to the spectral irradiance of the illuminating source than single-junction cells. The design of high efficiency multi-junction cells for space applications requires matching the optoelectronic properties of the junctions to AMO spectral irradiance. Unlike single-junction cells, it is not possible to carry out quantum efficiency measurements using only a monochromatic probe beam and determining the cell short-circuit current assuming linearity of the quantum efficiency. Additionally, current-voltage characteristics can not be calculated from measurements under non-AMO light sources using spectral-correction methods. There are reports in the literature on characterizing the performance of multi junction cells by measuring and convoluting the quantum efficiency of each junction with the spectral irradiance; the technique is of limited value for the characterization of cell performance under AMO power-generating conditions. We report the results of research to develop instrumentation and techniques for characterizing multi junction solar cells for space . An integrated system is described which consists of a standard lamp, spectral radiometer, dual-source solar simulator, and personal computer based current-voltage and quantum efficiency equipment. The spectral radiometer is calibrated regularly using the tungsten-halogen standard lamp which has a calibration based on NIST scales. The solar simulator produces the light bias beam for current-voltage and cell quantum efficiency measurements. The calibrated spectral radiometer is used to 'fit' the spectral irradiance of the dual-source solar simulator to WRL AMO data. The quantum efficiency apparatus includes a monochromatic probe beam for measuring the absolute cell quantum efficiency at various voltage biases, including the voltage bias corresponding to the maximum-power point under AMO light bias. The details of the procedures to 'fit' the spectral irradiance to AMO will be discussed. An assessment of the role of the accuracy of the 'fit' of the spectral irradiance and probe beam intensity on measured cell characteristics will be presented. quantum efficiencies were measured with both spectral light bias and AMO light bias; the measurements show striking differences. Spectral irradiances were convoluted with cell quantum efficiencies to calculate cell currents as function of voltage. The calculated currents compare with measured currents at the 1% level. Measurements on a variety of multi-junction cells will be presented. The dependence of defects in junctions on cell quantum efficiencies measured under light and voltage bias conditions will be presented. Comments will be made on issues related to standards for calibration, and limitations of the instrumentation and techniques. Expeditious development of multi-junction solar cell technology for space presents challenges for cell characterization in the laboratory.
Hsu, Shao-Hui; Miao, Jianwei; Zhang, Liping; Gao, Jiajian; Wang, Hongming; Tao, Huabing; Hung, Sung-Fu; Vasileff, Anthony; Qiao, Shi Zhang; Liu, Bin
2018-05-01
The implementation of water splitting systems, powered by sustainable energy resources, appears to be an attractive strategy for producing high-purity H 2 in the absence of the release of carbon dioxide (CO 2 ). However, the high cost, impractical operating conditions, and unsatisfactory efficiency and stability of conventional methods restrain their large-scale development. Seawater covers 70% of the Earth's surface and is one of the most abundant natural resources on the planet. New research is looking into the possibility of using seawater to produce hydrogen through electrolysis and will provide remarkable insight into sustainable H 2 production, if successful. Here, guided by density functional theory (DFT) calculations to predict the selectivity of gas-evolving catalysts, a seawater-splitting device equipped with affordable state-of-the-art electrocatalysts composed of earth-abundant elements (Fe, Co, Ni, and Mo) is demonstrated. This device shows excellent durability and specific selectivity toward the oxygen evolution reaction in seawater with near 100% Faradaic efficiency for the production of H 2 and O 2 . Powered by a single commercial III-V triple-junction photovoltaic cell, the integrated system achieves spontaneous and efficient generation of high-purity H 2 and O 2 from seawater at neutral pH with a remarkable 17.9% solar-to-hydrogen efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ueno, Y; Mikawa, M; Hoshika, S; Takeba, M; Kitade, Y; Matsuda, A
2001-01-01
3'-3'-Linked oligodeoxynucleotides (ODNs) with the anthraquinonyl group at the junction point were synthesized on a DNA synthesizer using a controlled pore glass (CPG), which has pentaerythritol carrying the intercalator at one of the four hydroxymethyl groups. Stability of the triplexes with the target duplexes was studied by thermal denaturation. The 3'-3'-linked ODNs with the anthraquinonyl group enhanced the thermal stability of the triplexes when compared with those without the intercalator and the unmodified nonamer. The inhibitory activity of the 3'-3'-linked ODNs against the cleavage of the target DNA by the restriction enzyme Hind III was tested. It was found that the 3'-3'-linked ODN with the anthraquinonyl group at the junction point inhibited the cleavage by the enzyme more effectively than the nonamer and the 3'-3'-linked ODN without the intercalator.
The chemical deposition of semiconductor thin-films for photovoltaic devices
NASA Astrophysics Data System (ADS)
Breen, Marc Louis
Initially, possible precursors to metal sulfide films formed by metal-organic chemical vapor deposition (MOCVD), the standard commercial technique for manufacturing photovoltaic semiconductors, were synthesized. Triple-junction GaInP 2/GaAs/Ge solar cells, prepared by this method, were studied to understand how chemical properties and material defects can effect the performance of photovoltaic devices. Finally, novel methods for the low-temperature, solution growth of CdS, CdSe, and CuInSe2 photovoltaic materials were targeted which will reduce manufacturing costs and increase the economic feasibility of solar energy conversion. A series of dialkyldithiocarbamate copper, gallium and indium compounds were studied as possible metal sulfide MOCVD precursors. Metal powders were oxidized by dialkylthiurams in 3- or 4-methylpyridine using standard techniques for handling air and moisture-sensitive compounds. Metal chlorides reacted directly with the sodium dialkyldithiocarbamate salts. In these complexes, the metal was found in a roughly octahedral orientation, surrounded by dithiocarbamate ligands and/or solvent molecules. Triple-junction GaInP2/GaAs/Ge cells were composed of thin-films of GaInP2 and GaAs grown monolithically on top of a germanium substrate. Each layer of semiconductor material had a different bandgap and absorbed a different portion of the solar spectrum, thus improving the overall efficiency of the cell. Work focused on dark current-voltage behavior which is known to limit solar cell open-circuit voltage, fill factor, and conversion efficiency. Cells were studied using microscopic and spectroscopic techniques to correlate the effect of physical defects in the materials with poor performance of the devices as evaluated through current vs. voltage measurements. Films of US and CdSe were readily prepared in solution through an "ion-by-ion" deposition of Cd2+ and S2- (or Se 2-) generated from the slow hydrolysis of thiourea (or dimethylthiourea). The bath chemistry was carefully controlled by the adjustment of pH to slow hydrolysis and with chelating agents to sequester the cadmium ions. Triethanolamine and ethylenediamine were both effective chelators with the latter producing thicker, clearer films. Finally, US films were grown over electrodeposited CuInSe2 to form working photovoltaic devices. In summary, contributions were made which (a) advance current methods for manufacturing photovoltaic semiconductors and (b) offer an alternative route to producing new forms of thin-film solar cell devices.
NASA Astrophysics Data System (ADS)
Adlakha, I.; Solanki, K. N.
2015-03-01
We present a systematic study to elucidate the role of triple junctions (TJs) and their constituent grain boundaries on the structural stability of nanocrystalline materials. Using atomistic simulations along with the nudge elastic band calculations, we explored the atomic structural and thermodynamic properties of TJs in three different fcc materials. We found that the magnitude of excess energy at a TJ was directly related to the atomic density of the metal. Further, the vacancy binding and migration energetics in the vicinity of the TJ were examined as they play a crucial role in the structural stability of NC materials. The resolved line tension which takes into account the stress buildup at the TJ was found to be a good measure in predicting the vacancy binding tendency near the TJ. The activation energy for vacancy migration along the TJ was directly correlated with the measured excess energy. Finally, we show that the resistance for vacancy diffusion increased for TJs with larger excess stored energy and the defect mobility at some TJs is slower than their constituent GBs. Hence, our results have general implications on the diffusional process in NC materials and provide new insight into stabilizing NC materials with tailored TJs.
Model for threading dislocations in metamorphic tandem solar cells on GaAs (001) substrates
NASA Astrophysics Data System (ADS)
Song, Yifei; Kujofsa, Tedi; Ayers, John E.
2018-02-01
We present an approximate model for the threading dislocations in III-V heterostructures and have applied this model to study the defect behavior in metamorphic triple-junction solar cells. This model represents a new approach in which the coefficient for second-order threading dislocation annihilation and coalescence reactions is considered to be determined by the length of misfit dislocations, LMD, in the structure, and we therefore refer to it as the LMD model. On the basis of this model we have compared the average threading dislocation densities in the active layers of triple junction solar cells using linearly-graded buffers of varying thicknesses as well as S-graded (complementary error function) buffers with varying thicknesses and standard deviation parameters. We have shown that the threading dislocation densities in the active regions of metamorphic tandem solar cells depend not only on the thicknesses of the buffer layers but on their compositional grading profiles. The use of S-graded buffer layers instead of linear buffers resulted in lower threading dislocation densities. Moreover, the threading dislocation densities depended strongly on the standard deviation parameters used in the S-graded buffers, with smaller values providing lower threading dislocation densities.
Progress towards a 30% efficient GaInP/Si tandem solar cells
Essig, Stephanie; Ward, Scott; Steiner, Myles A.; ...
2015-08-28
The performance of dual-junction solar cells with a Si bottom cell has been investigated both theoretically and experimentally. Simulations show that adding a top junction with an energy bandgap of 1.6 -1.9 eV to a standard silicon solar cell enables efficiencies over 38%. Currently, top junctions of GaInP (1.8 eV) are the most promising as they can achieve 1-sun efficiencies of 20.8% [1]. We fabricated mechanically stacked, four terminal GaInP/Si tandem solar cells using a transparent adhesive between the subcells. These tandem devices achieved an efficiency of 27% under AM1.5 g spectral conditions. Furthermore, higher efficiencies can be achieved bymore » using an improved Si-bottom cell and by optimizing the dual-junction device for long-wavelength light and luminescent coupling between the two junctions.« less
Tunnel Junction Development Using Hydride Vapor Phase Epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ptak, Aaron J.; Simon, John D.; Schulte, Kevin L.
We demonstrate for the first time III-V tunnel junctions grown using hydride vapor phase epitaxy (HVPE) with peak tunneling currents >8 A/cm 2, sufficient for operation of a multijunction device to several hundred suns of concentration. Multijunction solar cells rely on tunneling interconnects between subcells to enable series connection with minimal voltage loss, but tunnel junctions have never been shown using the HVPE growth method. HVPE has recently reemerged as a low-cost growth method for high-quality III-V materials and devices, including the growth of high-efficiency III-V solar cells. We previously showed single-junction GaAs solar cells with conversion efficiencies of ~24%more » with a path forward to equal or exceed the practical efficiency limits of crystalline Si. Moving to a multijunction device structure will allow for even higher efficiencies with minimal impact on cost, necessitating the development of tunnel interconnects. Here in this paper, we demonstrate the performance of both isolated HVPE-grown tunnel junctions, as well as single-junction GaAs solar cell structures with a tunnel junction incorporated into the contact region. We observe no degradation in device performance compared to a structure without the added junction.« less
Tunnel Junction Development Using Hydride Vapor Phase Epitaxy
Ptak, Aaron J.; Simon, John D.; Schulte, Kevin L.; ...
2017-10-18
We demonstrate for the first time III-V tunnel junctions grown using hydride vapor phase epitaxy (HVPE) with peak tunneling currents >8 A/cm 2, sufficient for operation of a multijunction device to several hundred suns of concentration. Multijunction solar cells rely on tunneling interconnects between subcells to enable series connection with minimal voltage loss, but tunnel junctions have never been shown using the HVPE growth method. HVPE has recently reemerged as a low-cost growth method for high-quality III-V materials and devices, including the growth of high-efficiency III-V solar cells. We previously showed single-junction GaAs solar cells with conversion efficiencies of ~24%more » with a path forward to equal or exceed the practical efficiency limits of crystalline Si. Moving to a multijunction device structure will allow for even higher efficiencies with minimal impact on cost, necessitating the development of tunnel interconnects. Here in this paper, we demonstrate the performance of both isolated HVPE-grown tunnel junctions, as well as single-junction GaAs solar cell structures with a tunnel junction incorporated into the contact region. We observe no degradation in device performance compared to a structure without the added junction.« less
GaAs nanowire array solar cells with axial p-i-n junctions.
Yao, Maoqing; Huang, Ningfeng; Cong, Sen; Chi, Chun-Yung; Seyedi, M Ashkan; Lin, Yen-Ting; Cao, Yu; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu
2014-06-11
Because of unique structural, optical, and electrical properties, solar cells based on semiconductor nanowires are a rapidly evolving scientific enterprise. Various approaches employing III-V nanowires have emerged, among which GaAs, especially, is under intense research and development. Most reported GaAs nanowire solar cells form p-n junctions in the radial direction; however, nanowires using axial junction may enable the attainment of high open circuit voltage (Voc) and integration into multijunction solar cells. Here, we report GaAs nanowire solar cells with axial p-i-n junctions that achieve 7.58% efficiency. Simulations show that axial junctions are more tolerant to doping variation than radial junctions and lead to higher Voc under certain conditions. We further study the effect of wire diameter and junction depth using electrical characterization and cathodoluminescence. The results show that large diameter and shallow junctions are essential for a high extraction efficiency. Our approach opens up great opportunity for future low-cost, high-efficiency photovoltaics.
Three-dimensional models of conventional and vertical junction laser-photovoltaic energy converters
NASA Technical Reports Server (NTRS)
Heinbockel, John H.; Walker, Gilbert H.
1988-01-01
Three-dimensional models of both conventional planar junction and vertical junction photovoltaic energy converters have been constructed. The models are a set of linear partial differential equations and take into account many photoconverter design parameters. The model is applied to Si photoconverters; however, the model may be used with other semiconductors. When used with a Nd laser, the conversion efficiency of the Si vertical junction photoconverter is 47 percent, whereas the efficiency for the conventional planar Si photoconverter is only 17 percent. A parametric study of the Si vertical junction photoconverter is then done in order to describe the optimum converter for use with the 1.06-micron Nd laser. The efficiency of this optimized vertical junction converter is 44 percent at 1 kW/sq cm.
Bypass Diode Temperature Tests of a Solar Array Coupon Under Space Thermal Environment Conditions
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon
2016-01-01
Tests were performed on a 56-cell Advanced Triple Junction solar array coupon whose purpose was to determine margin available for bypass diodes integrated with new, large multi-junction solar cells that are manufactured from a 4-inch wafer. The tests were performed under high vacuum with coupon back side thermal conditions of both cold and ambient. The bypass diodes were subjected to a sequence of increasing discrete current steps from 0 Amp to 2.0 Amp in steps of 0.25 Amp. At each current step, a temperature measurement was obtained via remote viewing by an infrared camera. This paper discusses the experimental methodology, experiment results, and the thermal model.
By-Pass Diode Temperature Tests of a Solar Array Coupon Under Space Thermal Environment Conditions
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie
2016-01-01
Tests were performed on a 56-cell Advanced Triple Junction solar array coupon whose purpose was to determine margin available for bypass diodes integrated with new, large multi-junction solar cells that are manufactured from a 4-inch wafer. The tests were performed under high vacuum with cold and ambient coupon back-side. The bypass diodes were subjected to a sequence of increasing discrete current steps from 0 Amp to 2.0 Amp in steps of 0.25 Amp. At each current step, a temperature measurement was obtained via remote viewing by an infrared camera. This paper discusses the experimental methodology, including the calibration of the thermal imaging system, and the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, S. A.; Lee, H. J.; Oh, Y. J., E-mail: yjoh@hanbat.ac.kr
We analyzed the effect of crystallographic anisotropy on the morphological evolution of a 12-nm-thick gold film during solid-state dewetting at high temperatures using automated indexing tool in a transmission electron microscopy. Dewetting initiated at grain-boundary triple junctions adjacent to large grains resulting from abnormal grain growth driven by (111) texture development. Voids at the junctions developed shapes with faceted edges bounded by low-index crystal planes. The kinetic mobility of the edges varied with the crystal orientation normal to the edges, with a predominance of specific edges with the slowest retraction rates as the annealing time was increased.
NASA Astrophysics Data System (ADS)
Koptev, Alexander; Burov, Evgueni; Calais, Eric; Leroy, Sylvie; Gerya, Taras; Cloetingh, Sierd; Guillou-Frottier, Laurent
2017-04-01
We use numerical thermo-mechanical experiments in order to analyze the role of active mantle plume, far-field tectonic stresses and pre-existing lithospheric heterogeneities in structural development of the East African Rift system (EARS). It is commonly assumed that the Cenozoic rifts have avoided the cratons and follow the mobile belts which serve as the weakest pathways within the non-uniform material structured during pre-rift stages. Structural control of the pre-existing heterogeneities within the Proterozoic belts at the scale of individual faults or rifts has been demonstrated as well. However, the results of our numerical experiments show that the formation of two rift zones on opposite sides of a thick lithosphere segment can be explained without appealing to pre-imposed heterogeneities at the crustal level. These models have provided a unified physical framework to understand the development of the Eastern branch, the Western branch and its southern prolongation by the Malawi rift around thicker lithosphere of the Tanzanian and Bangweulu cratons as a result of the interaction between pre-stressed continental lithosphere and single mantle plume anomaly corresponding to the Kenyan plume. The second series of experiments has been designed in order to investigate northern segment of the EARS where Afro-Arabian plate separation is supposed to be related with the impact of Afar mantle plume. We demonstrate that whereas relatively simple linear rift structures are preferred in case of uni-directional extension, more complex rifting patterns combining one or several ridge-ridge-ridge triple junctions can form in response to bi-directional extensional far-field stresses. In particular, our models suggest that Afar triple junction represents an end-member mode of plume-induced bi-directional rifting combining asymmetrical northward traction and symmetrical EW extension of similar magnitudes. The presence of pre-existing linear weak zones appears to be not mandatory for deformation localization ultimately leading to present configuration of the Afar triple junction. Finally, for laterally extended experiments we have used parameters of the best-fit models for the southern and northern segments of the EARS in order to define the position of Kenyan plume and the velocity boundary conditions. These models cover all rifting and spreading structures associated with both Afar and Kenyan plumes: Red Sea Rift and the Aden Ridge to the north of the Afar Triple Junction; Main Ethiopian Rift running to the south that continues as the Kenyan Rift; Western Rift and its southern prolongation corresponding to Malawi rift. We argue that all these basic features associated with Cenozoic rifting in the EARS can be reproduced in a relatively simple context of the interaction between two mantle anomalies corresponding to Afar and Kenyan plumes and pre-stressed rheologically stratified continental lithosphere containing only first-order structural heterogeneities (such as Tanzanian and Bangweulu cratons).
Design and Performance of a Triple Source Air Mass Zero Solar Simulator
NASA Technical Reports Server (NTRS)
Jenkins, Phillip; Scheiman, David; Snyder, David
2005-01-01
Simulating the sun in a laboratory for the purpose of measuring solar cells has long been a challenge for engineers and scientists. Multi-junction cells demand higher fidelity of a solar simulator than do single junction cells, due to a need for close spectral matching as well as AM0 intensity. A GaInP/GaAs/Ge solar cell for example, requires spectral matching in three distinct spectral bands (figure 1). A commercial single source high-pressure xenon arc solar simulator such as the Spectrolab X-25 at NASA Glenn Research Center, can match the top two junctions of a GaInP/GaAs/Ge cell to within 1.3% mismatch, with the GaAs cell receiving slightly more current than required. The Ge bottom cell however, is mismatched +8.8%. Multi source simulators are designed to match the current for all junctions but typically have small illuminated areas, less uniformity and less beam collimation compared to an X-25 simulator. It was our intent when designing a multi source simulator to preserve as many aspects of the X-25 while adding multi-source capability.
Lin, Li; Xu, Xiang; Yin, Jianbo; Sun, Jingyu; Tan, Zhenjun; Koh, Ai Leen; Wang, Huan; Peng, Hailin; Chen, Yulin; Liu, Zhongfan
2016-07-13
Being atomically thin, graphene-based p-n junctions hold great promise for applications in ultrasmall high-efficiency photodetectors. It is well-known that the efficiency of such photodetectors can be improved by optimizing the chemical potential difference of the graphene p-n junction. However, to date, such tuning has been limited to a few hundred millielectronvolts. To improve this critical parameter, here we report that using a temperature-controlled chemical vapor deposition process, we successfully achieved modulation-doped growth of an alternately nitrogen- and boron-doped graphene p-n junction with a tunable chemical potential difference up to 1 eV. Furthermore, such p-n junction structure can be prepared on a large scale with stable, uniform, and substitutional doping and exhibits a single-crystalline nature. This work provides a feasible method for synthesizing low-cost, large-scale, high efficiency graphene p-n junctions, thus facilitating their applications in optoelectronic and energy conversion devices.
NASA Astrophysics Data System (ADS)
Lagabrielle, Yves; Guivel, Christèle; Maury, René C.; Bourgois, Jacques; Fourcade, Serge; Martin, Hervé
2000-11-01
High thermal gradients are expected to be found at sites of subduction of very young oceanic lithosphere and more particularly at ridge-trench-trench (RTT) triple junctions, where active oceanic spreading ridges enter a subduction zone. Active tectonics, associated with the emplacement of two main types of volcanic products, (1) MORB-type magmas, and (2) calc-alkaline acidic magmas in the forearc, also characterize these plate junction domains. In this context, MORB-type magmas are generally thought to derive from the buried active spreading center subducted at shallow depths, whereas the origin of calc-alkaline acidic magmas is more problematic. One of the best constrained examples of ridge-trench interaction is the Chile Triple Junction (CTJ) located southwest of the South American plate at 46°12'S, where the active Chile spreading center enters the subduction zone. In this area, there is a clear correlation between the emplacement of magmatic products and the migration of the triple junction along the active margin. The CTJ lava population is bimodal, with mafic to intermediate lavas (48-56% SiO 2) and acidic lavas ranging from dacites to rhyolites (66-73% SiO 2). Previous models have shown that partial melting of oceanic crust plus 10-20% of sediments, leaving an amphibole- and plagioclase-rich residue, is the only process that may account for the genesis of acidic magmas. Due to special plate geometry in the CTJ area, a given section of the margin may be successively affected by the passage of several ridge segments. We emphasize that repeated passages will lead to the development of very high thermal gradients allowing melting of rocks of oceanic origin at temperatures of 800-900°C and low pressures, corresponding to depths of 10-20 km depth only. In addition, the structure of the CTJ forearc domain is dominated by horizontal displacements and tilting of crustal blocks along a network of strike-slip faults. The occurrence of such a deformed domain implies that an important tectonic coupling may exist between the upper and the lower plates leading to the partitioning of the continental lithosphere and to the tectonic underplating of very young oceanic lithosphere below the continental wedge. We assume that in the case of the CTJ, the uncommon situation of three successive ridge segments entering the trench at 2-3 Ma intervals only resulted in a strong and finally long-lived thermal anomaly. This anomaly caused remelting of underplated portions of very young, still hot oceanic lithosphere. Only particular geometrical RTT configurations are able to produce such features. These include linear continental margin, short ridge segments slightly oblique to the trench and short transform faults. Finally, the CTJ example shows that a possible scenario for the origin of calc-alkaline acidic rocks in the near-trench region involves coeval tectonic coupling and repeated passage of thermal anomalies due to successive subduction of short ridge segments. Therefore, the local abundance of calc-alkaline acidic rocks, associated with MORB-type lavas in ancient series, could be the tracer of plate tectonic configurations involving the subduction of short ridge segments in a relatively short duration.
Walczak, Karl A.; Segev, Gideon; Larson, David M.; ...
2017-02-17
Safe and practical solar-driven hydrogen generators must be capable of efficient and stable operation under diurnal cycling with full separation of gaseous H 2 and O 2 products. In this paper, a novel architecture that fulfills all of these requirements is presented. The approach is inherently scalable and provides versatility for operation under diverse electrolyte and lighting conditions. The concept is validated using a 1 cm 2 triple-junction photovoltaic cell with its illuminated photocathode protected by a composite coating comprising an organic encapsulant with an embedded catalytic support. The device is compatible with operation under conditions ranging from 1 Mmore » H 2SO 4 to 1 M KOH, enabling flexibility in selection of semiconductor, electrolyte, membrane, and catalyst. Stable operation at a solar-to-hydrogen conversion efficiency of >10% is demonstrated under continuous operation, as well as under diurnal light cycling for at least 4 d, with simulated sunlight. Operational characteristics are validated by extended time outdoor testing. A membrane ensures products are separated, with nonexplosive gas streams generated for both alkaline and acidic systems. Finally, analysis of operational characteristics under different lighting conditions is enabled by comparison of a device model to experimental data.« less
NASA Astrophysics Data System (ADS)
Ritou, Arnaud; Voarino, Philippe; Goubault, Baptiste; David, Nadine; Bernardis, Sarah; Raccurt, Olivier; Baudrit, Mathieu
2017-09-01
Existing CPV technology markets are not compliant with a standard configuration. Concentrations vary from several suns to more than 1000 suns and the optical technology used could be very different. Nowadays, the market trends are moving toward more and more compact optical systems in order to exploit the Light Emitting Diode (LED) like approach. The aim is to increase the optical efficiency by using an ultra-short focal distance and to improve thermal management. Moreover the efficiency to weight ratio is increasing and the solar cell size becomes sub-millimetric. With these conditions, more stringent mechanical tolerances are essential to ensure an optimum optical alignment between cells and optics. A new process of micro-concentrator manufacturing is developed in this work. This process enables manufacturing and auto-alignment of Primary Optical Elements (POE) with Secondary Optical Elements (SOE) and solar cells with respect to certain mechanical tolerances. A 1000X micro-concentrator is manufactured with 0.6 x 0.6 mm² triple-junction cells and molded silicone optics. Mechanical alignment defects are studied by ray-tracing simulations and a prototype is characterized with respect to its mechanical behavior. An efficiency of 33.4% is measured with a Cell-to-Module ratio of 77.8%.
NASA Astrophysics Data System (ADS)
Sogabe, Tomah; Ogura, Akio; Hung, Chao-Yu; Evstropov, Valery; Mintairov, Mikhail; Shvarts, Maxim; Okada, Yoshitaka
2013-12-01
In this paper, we focused on developing an accurate model to describe the luminescent coupling (L-C) effect in multijunction solar cells (MJSC) under light concentration. We present here a transcend current-voltage (I-V) formula combined with a self-consistent simulation algorithm to derive the coupling yield γ dependence on light intensity by including the electrical parameters such as shunt resistance (Rsh) and series resistance (Rs), which were ignored in previous simulation models. The effects of both Rsh and Rs on γ were revealed, and the dependence of γ on the external voltage bias Vbias was investigated. Meanwhile, we have performed experiments to determine coupling yield γ by measuring the I-V curves of individual subcell of InGaP/GaAs/Ge triple junction solar cell under varied light intensity. We found that the measured results are only in good agreement with the simulated data obtained from the model where the resistance parameters were included. Based on these results, we calculated the conversion efficiency of MJSC and found that the efficiency increase due to L-C effect is 0.31% under 1 sun and 1.07% under 1000 suns. Thus the L-C analysis results presented here will work as an additional device optimization criteria for MJSC toward higher efficiency.
Component Cell-Based Restriction of Spectral Conditions and the Impact on CPV Module Power Rating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, Matthew T; Steiner, Marc; Siefer, Gerald
One approach to consider the prevailing spectral conditions when performing CPV module power ratings according to the standard IEC 62670-3 is based on spectral matching ratios (SMRs) determined by the means of component cell sensors. In this work, an uncertainty analysis of the SMR approach is performed based on a dataset of spectral irradiances created with SMARTS2. Using these illumination spectra, the respective efficiencies of multijunction solar cells with different cell architectures are calculated. These efficiencies were used to analyze the influence of different component cell sensors and SMR filtering methods. The 3 main findings of this work are asmore » follows. First, component cells based on the lattice-matched triple-junction (LM3J) cell are suitable for restricting spectral conditions and are qualified for the standardized power rating of CPV modules - even if the CPV module is using multijunction cells other than LM3J. Second, a filtering of all 3 SMRs with +/-3.0% of unity results in the worst case scenario in an underestimation of -1.7% and overestimation of +2.4% compared to AM1.5d efficiency. Third, there is no benefit in matching the component cells to the module cell in respect to the measurement uncertainty.« less
2006-05-01
Loreto Pazos Bazán13, Sheila Bailey14 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING...Toporow12, Trinidad Gómez13, Loreto Pazos Bazán13 Sheila Bailey14 1Ohio Aerospace Institute, 2QinetiQ, Cody Technology Park, 3Fraunhofer Institute
Design High-Efficiency III-V Nanowire/Si Two-Junction Solar Cell.
Wang, Y; Zhang, Y; Zhang, D; He, S; Li, X
2015-12-01
In this paper, we report the electrical simulation results of a proposed GaInP nanowire (NW)/Si two-junction solar cell. The NW physical dimensions are determined for optimized solar energy absorption and current matching between each subcell. Two key factors (minority carrier lifetime, surface recombination velocity) affecting power conversion efficiency (PCE) of the solar cell are highlighted, and a practical guideline to design high-efficiency two-junction solar cell is thus provided. Considering the practical surface and bulk defects in GaInP semiconductor, a promising PCE of 27.5 % can be obtained. The results depict the usefulness of integrating NWs to construct high-efficiency multi-junction III-V solar cells.
Xu, Liming; Dan, Mo; Shao, Anliang; Cheng, Xiang; Zhang, Cuiping; Yokel, Robert A; Takemura, Taro; Hanagata, Nobutaka; Niwa, Masami; Watanabe, Daisuke
2015-01-01
Silver nanoparticles (Ag-NPs) can enter the brain and induce neurotoxicity. However, the toxicity of Ag-NPs on the blood-brain barrier (BBB) and the underlying mechanism(s) of action on the BBB and the brain are not well understood. To investigate Ag-NP suspension (Ag-NPS)-induced toxicity, a triple coculture BBB model of rat brain microvascular endothelial cells, pericytes, and astrocytes was established. The BBB permeability and tight junction protein expression in response to Ag-NPS, NP-released Ag ions, and polystyrene-NP exposure were investigated. Ultrastructural changes of the microvascular endothelial cells, pericytes, and astrocytes were observed using transmission electron microscopy (TEM). Global gene expression of astrocytes was measured using a DNA microarray. A triple coculture BBB model of primary rat brain microvascular endothelial cells, pericytes, and astrocytes was established, with the transendothelial electrical resistance values >200 Ω·cm(2). After Ag-NPS exposure for 24 hours, the BBB permeability was significantly increased and expression of the tight junction (TJ) protein ZO-1 was decreased. Discontinuous TJs were also observed between microvascular endothelial cells. After Ag-NPS exposure, severe mitochondrial shrinkage, vacuolations, endoplasmic reticulum expansion, and Ag-NPs were observed in astrocytes by TEM. Global gene expression analysis showed that three genes were upregulated and 20 genes were downregulated in astrocytes treated with Ag-NPS. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the 23 genes were associated with metabolic processes, biosynthetic processes, response to stimuli, cell death, the MAPK pathway, and so on. No GO term and KEGG pathways were changed in the released-ion or polystyrene-NP groups. Ag-NPS inhibited the antioxidant defense of the astrocytes by increasing thioredoxin interacting protein, which inhibits the Trx system, and decreasing Nr4a1 and Dusp1. Meanwhile, Ag-NPS induced inflammation and apoptosis through modulation of the MAPK pathway or B-cell lymphoma-2 expression or mTOR activity in astrocytes. These results draw our attention to the importance of Ag-NP-induced toxicity on the neurovascular unit and provide a better understanding of its toxicological mechanisms on astrocytes.
Geochemistry of the mantle beneath the Rodriguez Triple Junction and the South-East Indian Ridge
NASA Astrophysics Data System (ADS)
Michard, A.; Montigny, R.; Schlich, R.
1986-05-01
Rare earth element abundances and Sr, Nd. Pb isotope compositions have been measured on zero-age dredge samples from the Rodriguez Triple Junction (RTJ) and the South-East Indian Ridge (SEIR), Along the SEIR. the geochemical "halo" of the St. Paul hot spot has a half-width of about 400 km and the data may be fairly well accounted for by a binary mixing between an Indian MORB-type component ( 87Sr/ 86Sr = 0.7028. 143Nd/ 144Nd = 0.51304. 206Pb/ 204Pb = 17.8) and the plume-type St. Paul component (0.7036, 0.5129, and 18.7 respectively). The alignment of the lead isotope data is particularly good with an apparent age of 1.95 ± 0.13 Ga and Th/U source value of 3.94. One sample dredged on the ridge 60 km southeast of St. Paul bears a definite Kerguelen isotopic signature. The RTJ has distinctive geochemical properties which contrast with those of the adjacent ridge segments. Low 206Pb/ 204Pb ratios which plots to the left of the geochron, rather high 208Pb/ 204Pb and 87Sr/ 87Sr ratios (17.4. 37.4, and 0.7031 respectively), a striking isotopic homogeneity, and variable LREE/HREE fractionation with (La/Sm) N, = 0.3-0.8 make this triple junction an anomalous site. The geochemical properties of the Indian Ocean basats have been examined using a three-component mantle model involving (a) a normal MORB-type source though to represent the depleted upper mantle matrix, (b) an OIB-type source of uncertain parentage (recycled oceanic crust?), and (c) a component with low μ. low Sm/Nd. high Rb/Sr (time-averaged value) which is tentatively assigned to ancient hydrothermal and abyssal sediments recycled in the mantle. The high 208Pb/ 204Pb and 87Sr/ 86Sr ratios typical of the Dupal anomaly are likely due to the widespread distribution of this latter component in the basalt source from this area. including that for MORBs.
NASA Astrophysics Data System (ADS)
Chee, Kuan W. A.; Hu, Yuning
2018-07-01
There has always been an inexorable interest in the solar industry in boosting the photovoltaic conversion efficiency. This paper presents a theoretical and numerical simulation study of the effects of key design parameters on the photoelectric performance of single junction (InGaP- or GaAs-based) and dual junction (InGaP/GaAs) inorganic solar cells. The influence of base layer thickness, base doping concentration, junction temperature, back surface field layer composition and thickness, and tunnel junction material, were correlated with open circuit voltage, short-circuit current, fill factor and power conversion efficiency performance. The InGaP/GaAs dual junction solar cell was optimized with the tunnel junction and back surface field designs, yielding a short-circuit current density of 20.71 mAcm-2 , open-circuit voltage of 2.44 V and fill factor of 88.6%, and guaranteeing an optimal power conversion efficiency of at least 32.4% under 1 sun AM0 illumination even without an anti-reflective coating.
Building a Six-Junction Inverted Metamorphic Concentrator Solar Cell
Geisz, John F.; Steiner, Myles A.; Jain, Nikhil; ...
2017-12-20
We propose practical six-junction (6J) inverted metamorphic multijunction (IMM) concentrator solar cell designs with the potential to exceed 50% efficiency using moderately high quality junction materials. We demonstrate the top three junctions and their monolithic integration lattice matched to GaAs using 2.1-eV AlGaInP, 1.7-eV AlGaAs or GaInAsP, and 1.4-eV GaAs with external radiative efficiencies >0.1%. We demonstrate tunnel junctions with peak tunneling current >400 A/cm 2 that are transparent to <2.1-eV light. We compare the bottom three GaInAs(p) junctions with bandgaps of 1.2, 1.0, and 0.7 eV grown on InP and transparent metamorphic grades with low dislocation densities. The solutionmore » to an integration challenge resulting from Zn diffusion in the GaAs junction is illustrated in a five-junction IMM. Excellent 1-sun performance is demonstrated in a complete 6J IMM device with VOC = 5.15 V, and a promising pathway toward >50% efficiency at high concentrations is presented.« less
Building a Six-Junction Inverted Metamorphic Concentrator Solar Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geisz, John F.; Steiner, Myles A.; Jain, Nikhil
We propose practical six-junction (6J) inverted metamorphic multijunction (IMM) concentrator solar cell designs with the potential to exceed 50% efficiency using moderately high quality junction materials. We demonstrate the top three junctions and their monolithic integration lattice matched to GaAs using 2.1-eV AlGaInP, 1.7-eV AlGaAs or GaInAsP, and 1.4-eV GaAs with external radiative efficiencies >0.1%. We demonstrate tunnel junctions with peak tunneling current >400 A/cm 2 that are transparent to <2.1-eV light. We compare the bottom three GaInAs(p) junctions with bandgaps of 1.2, 1.0, and 0.7 eV grown on InP and transparent metamorphic grades with low dislocation densities. The solutionmore » to an integration challenge resulting from Zn diffusion in the GaAs junction is illustrated in a five-junction IMM. Excellent 1-sun performance is demonstrated in a complete 6J IMM device with VOC = 5.15 V, and a promising pathway toward >50% efficiency at high concentrations is presented.« less
Dilute group III-V nitride intermediate band solar cells with contact blocking layers
Walukiewicz, Wladyslaw; Yu, Kin Man
2015-02-24
An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.
Dilute Group III-V nitride intermediate band solar cells with contact blocking layers
Walukiewicz, Wladyslaw [Kensington, CA; Yu, Kin Man [Lafayette, CA
2012-07-31
An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.
Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih
Ultra violet light emitting diodes (UV LEDs) face critical limitations in both the injection efficiency and the light extraction efficiency due to the resistive and absorbing p-type contact layers. In this work, we investigate the design and application of polarization engineered tunnel junctions for ultra-wide bandgap AlGaN (Al mole fraction >50%) materials towards highly efficient UV LEDs. We demonstrate that polarization-induced three dimensional charge is beneficial in reducing tunneling barriers especially for high composition AlGaN tunnel junctions. In addition, the design of graded tunnel junction structures could lead to low tunneling resistance below 10 –3 Ω cm 2 and lowmore » voltage consumption below 1 V (at 1 kA/cm 2) for high composition AlGaN tunnel junctions. Experimental demonstration of 292 nm emission was achieved through non-equilibrium hole injection into wide bandgap materials with bandgap energy larger than 4.7 eV, and detailed modeling of tunnel junctions shows that they can be engineered to have low resistance and can enable efficient emitters in the UV-C wavelength range.« less
Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions
Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; ...
2016-09-19
Ultra violet light emitting diodes (UV LEDs) face critical limitations in both the injection efficiency and the light extraction efficiency due to the resistive and absorbing p-type contact layers. In this work, we investigate the design and application of polarization engineered tunnel junctions for ultra-wide bandgap AlGaN (Al mole fraction >50%) materials towards highly efficient UV LEDs. We demonstrate that polarization-induced three dimensional charge is beneficial in reducing tunneling barriers especially for high composition AlGaN tunnel junctions. In addition, the design of graded tunnel junction structures could lead to low tunneling resistance below 10 –3 Ω cm 2 and lowmore » voltage consumption below 1 V (at 1 kA/cm 2) for high composition AlGaN tunnel junctions. Experimental demonstration of 292 nm emission was achieved through non-equilibrium hole injection into wide bandgap materials with bandgap energy larger than 4.7 eV, and detailed modeling of tunnel junctions shows that they can be engineered to have low resistance and can enable efficient emitters in the UV-C wavelength range.« less
NASA Astrophysics Data System (ADS)
Conde, João; Oliva, Nuria; Atilano, Mariana; Song, Hyun Seok; Artzi, Natalie
2016-03-01
The therapeutic potential of miRNA (miR) in cancer is limited by the lack of efficient delivery vehicles. Here, we show that a self-assembled dual-colour RNA-triple-helix structure comprising two miRNAs--a miR mimic (tumour suppressor miRNA) and an antagomiR (oncomiR inhibitor)--provides outstanding capability to synergistically abrogate tumours. Conjugation of RNA triple helices to dendrimers allows the formation of stable triplex nanoparticles, which form an RNA-triple-helix adhesive scaffold upon interaction with dextran aldehyde, the latter able to chemically interact and adhere to natural tissue amines in the tumour. We also show that the self-assembled RNA-triple-helix conjugates remain functional in vitro and in vivo, and that they lead to nearly 90% levels of tumour shrinkage two weeks post-gel implantation in a triple-negative breast cancer mouse model. Our findings suggest that the RNA-triple-helix hydrogels can be used as an efficient anticancer platform to locally modulate the expression of endogenous miRs in cancer.
Grain boundary, triple junction and quadruple point mobility controlled normal grain growth
NASA Astrophysics Data System (ADS)
Rios, P. R.; Glicksman, M. E.
2015-07-01
Reduction in stored free energy provides the thermodynamic driving force for grain and bubble growth in polycrystals and foams. Evolution of polycrystalline networks exhibit the additional complication that grain growth may be controlled by several kinetic mechanisms through which the decrease in network energy occurs. Polyhedral boundaries, triple junctions (TJs), and quadruple points (QPs) are the geometrically distinct elements of three dimensional networks that follow Plateau's rules, provided that grain growth is limited by diffusion through, and motion of, cell boundaries. Shvindlerman and co-workers have long recognized the kinetic influences on polycrystalline grain growth of network TJs and QPs. Moreover, the emergence of interesting polycrystalline nanomaterials underscored that TJs can indeed influence grain growth kinetics. Currently there exist few detailed studies concerned either with network distributions of grain size, number of faces per grain, or with 'grain trajectories', when grain growth is limited by the motion of its TJs or QPs. By contrast there exist abundant studies of classical grain growth limited by boundary mobility. This study is focused on a topological/geometrical representation of polycrystals to obtain statistical predictions of the grain size and face number distributions, as well as growth 'trajectories' during steady-state grain growth. Three limits to grain growth are considered, with grain growth kinetics controlled by boundary, TJ, and QP mobilities.
Evidence for triple-junction rifting focussed on local magmatic centres along Parga Chasma, Venus
NASA Astrophysics Data System (ADS)
Graff, J. R.; Ernst, R. E.; Samson, C.
2018-05-01
Parga Chasma is a discontinuous rift system marking the southern boundary of the Beta-Atla-Themis (BAT) region on Venus. Along a 1500 km section of Parga Chasma, detailed mapping of Magellan Synthetic Aperture Radar images has revealed 5 coronae, 11 local rift zones distinct from a regional extension pattern, and 47 graben-fissure systems with radiating (28), linear (12) and circumferential (7) geometries. The magmatic centres of these graben-fissure systems typically coincide with coronae or large volcanoes, although a few lack any central magmatic or tectonic feature (i.e. are cryptic). Some of the magmatic centres are interpreted as the foci of triple-junction rifting that form the 11 local rift zones. Cross-cutting relationships between graben-fissure systems and local rift faults reveal synchronous formation, implying a genetic association. Additionally, cross-cutting relationships show that local rifting events postdate the regional extension along Parga Chasma, further indicating multiple stages of rifting. Evidence for multiple centres of younger magmatism and local rifting against a background of regional extension provides an explanation for the discontinuous morphology of Parga Chasma. Examination of the Atlantic Rift System (prior to ocean opening) on Earth provides an analogue to the rift morphologies observed on Venus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oswald, R.; Morris, J.
1994-11-01
The objective of this subcontract over its three-year duration is to advance Solarex`s photovoltaic manufacturing technologies, reduce its a-Si:H module production costs, increase module performance and expand the Solarex commercial production capacity. Solarex shall meet these objectives by improving the deposition and quality of the transparent front contact, by optimizing the laser patterning process, scaling-up the semiconductor deposition process, improving the back contact deposition, scaling-up and improving the encapsulation and testing of its a-Si:H modules. In the Phase 2 portion of this subcontract, Solarex focused on improving deposition of the front contact, investigating alternate feed stocks for the front contact,more » maximizing throughput and area utilization for all laser scribes, optimizing a-Si:H deposition equipment to achieve uniform deposition over large-areas, optimizing the triple-junction module fabrication process, evaluating the materials to deposit the rear contact, and optimizing the combination of isolation scribe and encapsulant to pass the wet high potential test. Progress is reported on the following: Front contact development; Laser scribe process development; Amorphous silicon based semiconductor deposition; Rear contact deposition process; Frit/bus/wire/frame; Materials handling; and Environmental test, yield and performance analysis.« less
High Current ESD Test of Advanced Triple Junction Solar Array Coupon
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie
2014-01-01
Testing was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by Space Systems Loral, LLC (SSL). The ATJ coupon was a small, 4-cell, two-string configuration of flight-type design that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge (ESD) testing at two string voltages (100 V, 150 V) and four string currents (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micro-seconds to 2.75 milli-seconds. All TSAs occurred at a string voltage of 150 V. Post-ESD functional testing showed that no degradation occurred due to the TSA events. These test results point to a robust design for application to a high-current, high-power mission.
NASA Astrophysics Data System (ADS)
Royer, Jean-Yves; Schlich, Roland
1988-11-01
The Southeast Indian Ridge has the fastest spreading rates of the three mid-oceanic ridge systems of the Indian Ocean and has recorded the movements of Antarctica relative to Australia and India since the Late Cretaceous. New bathymetric and magnetic data have been collected by the R/V Marion Dufresne (1983) and the R/V Jean Charcot (1984), on the western part of this ridge, between the Rodriguez Triple Junction (25.5°S, 70.0°E) and the Amsterdam and Saint-Paul islands (38°S, 78°E). These data bring additional information on the seafloor magnetic pattern produced by the Southeast Indian Ridge during the past 20 m.y. A new tectonic chart is proposed for the area around the Amsterdam and Saint-Paul islands. We have mapped 17 isochrons ranging from anomalies 6 to 1 (20.5-0.7 Ma) based on the compilation of all the data available in this area (25 cruises). Their distribution clearly shows asymmetric features. Reconstructions at short time intervals show that stage poles of rotation describe oscillatory movements along a direction parallel to the Southeast Indian Ridge axis. Observed changes in spreading rates and the stability of the spreading directions since the Miocene support this result.
The Stretched Lens Array (SLA): An Ultra-Light Photovoltaic Concentrator
NASA Technical Reports Server (NTRS)
ONeill, Mark J.; Pisczor, Michael F.; Eskenazi, Michael I.; McDanal, A. J.; George, Patrick J.; Botke, Matthew M.; Brandhorst, Henry W.; Edwards, David L.; Jaster, Paul A.
2002-01-01
A high-performance, ultralight, photovoltaic concentrator array is being developed for space power. The stretched lens array (SLA) uses stretched-membrane, silicone Fresnel lenses to concentrate sunlight onto triple-junction photovoltaic cells. The cells are mounted to a composite radiator structure. The entire solar array wing, including lenses, photovoltaic cell flex circuits, composite panels, hinges, yoke, wiring harness, and deployment mechanisms, has a mass density of 1.6 kg/sq.m. NASA Glenn has measured 27.4% net SLA panel efficiency, or 375 W/sq.m. power density, at room temperature. At GEO operating cell temperature (80 C), this power density will be 300 W/sq.m., resulting in more than 180 W/kg specific power at the full wing level. SLA is a direct ultralight descendent of the successful SCARLET array on NASA's Deep Space 1 spacecraft. This paper describes the evolution from SCARLET to SLA, summarizes the SLA's key features, and provides performance and mass data for this new concentrator array.
Song, Young Min; Jeong, Yonkil; Yeo, Chan Il; Lee, Yong Tak
2012-11-05
We present the effect of broadband antireflective coverglasses (BARCs) with moth eye structures on the power generation capability of a sub-receiver module for concentrated photovoltaics. The period and height of the moth eye structures were designed by a rigorous coupled-wave analysis method in order to cover the full solar spectral ranges without transmission band shrinkage. The BARCs with moth eye structures were prepared by the dry etching of silver (Ag) nanomasks, and the fabricated moth eye structures on coverglass showed strongly enhanced transmittance compared to the bare glass with a flat surface, at wavelengths of 300 - 1800 nm. The BARCs were mounted on InGaP/GaAs/Ge triple-junction solar cells and the power conversion efficiency of this sub-receiver module reached 42.16% for 196 suns, which is a 7.41% boosted value compared to that of a module with bare coverglass, without any detrimental changes of the open circuit voltages (Voc) and fill factor (FF).
Song, Young Min; Jeong, Yonkil; Yeo, Chan Il; Lee, Yong Tak
2012-11-05
We present the effect of broadband antireflective coverglasses (BARCs) with moth eye structures on the power generation capability of a sub-receiver module for concentrated photovoltaics. The period and height of the moth eye structures were designed by a rigorous coupled-wave analysis method in order to cover the full solar spectral ranges without transmission band shrinkage. The BARCs with moth eye structures were prepared by the dry etching of silver (Ag) nanomasks, and the fabricated moth eye structures on coverglass showed strongly enhanced transmittance compared to the bare glass with a flat surface, at wavelengths of 300 - 1800 nm. The BARCs were mounted on InGaP/GaAs/Ge triple-junction solar cells and the power conversion efficiency of this sub-receiver module reached 42.16% for 196 suns, which is a 7.41% boosted value compared to that of a module with bare coverglass, without any detrimental changes of the open circuit voltages (V(oc)) and fill factor (FF).
Wang, Min; Ma, Pengsha; Yin, Min; Lu, Linfeng; Lin, Yinyue; Chen, Xiaoyuan; Jia, Wei; Cao, Xinmin; Chang, Paichun; Li, Dongdong
2017-09-01
Antireflection (AR) at the interface between the air and incident window material is paramount to boost the performance of photovoltaic devices. 3D nanostructures have attracted tremendous interest to reduce reflection, while the structure is vulnerable to the harsh outdoor environment. Thus the AR film with improved mechanical property is desirable in an industrial application. Herein, a scalable production of flexible AR films is proposed with microsized structures by roll-to-roll imprinting process, which possesses hydrophobic property and much improved robustness. The AR films can be potentially used for a wide range of photovoltaic devices whether based on rigid or flexible substrates. As a demonstration, the AR films are integrated with commercial Si-based triple-junction thin film solar cells. The AR film works as an effective tool to control the light travel path and utilize the light inward more efficiently by exciting hybrid optical modes, which results in a broadband and omnidirectional enhanced performance.
Electrical-optical characterization of multijunction solar cells under 2000X concentration
NASA Astrophysics Data System (ADS)
Bonsignore, Gaetano; Gallitto, Aurelio Agliolo; Agnello, Simonpietro; Barbera, Marco; Candia, Roberto; Cannas, Marco; Collura, Alfonso; Dentici, Ignazio; Gelardi, Franco Mario; Cicero, Ugo Lo; Montagnino, Fabio Maria; Paredes, Filippo; Sciortino, Luisa
2014-09-01
In the framework of the FAE "Fotovoltaico ad Alta Efficienza" ("High Efficiency Photovoltaic") Research Project (PO FESR Sicilia 2007/2013 4.1.1.1), we have performed electrical and optical characterizations of commercial InGaP/InGaAs/Ge triple-junction solar cells (1 cm2) mounted on a prototype HCPV module, installed in Palermo (Italy). This system uses a reflective optics based on rectangular off-axis parabolic mirror with aperture 45×45 cm2 leading to a geometrical concentration ratio of 2025. In this study, we report the I-V curve measured under incident power of about 700 W/m2 resulting in an electrical power at maximum point (PMP) of 41.4 W. We also investigated the optical properties by the electroluminescence (EL) spectra of the top (InGaP) and middle (InGaAs) subcells. From the analysis of the experimental data we extracted the bandgap energies of these III-V semiconductors in the range 305÷385 K.
The Space Technology 5 Power System Design
NASA Technical Reports Server (NTRS)
Stewart, Karen D.; Hernandez-Pellerano, Amri I.
2005-01-01
The Space Technology 5 (ST5) mission is a NASA New Millennium Program (NMP) project that was developed to validate new technologies for future missions and to demonstrate the feasibility of building and launching multiple, miniature spacecraft that can operate as science probes, collecting research quality measurements. The three satellites in the ST5 constellation will be launched into a sun synchronous LEO (Low Earth Orbit) in early 2006. ST5 fits in the 25 kilogram and 24 Watt class of miniature but fully capable spacecraft. The power system design features the use of new technology components and a low voltage power bus. In order to hold the mass and volume low and to qualify new technologies for future use in space, high efficiency triple junction solar cells and a lithium ion battery were baselined into the design. The Power System Electronics (PSE) was designed for a high radiation environment and uses hybrid microcircuits for power switching and over current protection. The ST5 power system architecture and technologies will be presented.
NASA Technical Reports Server (NTRS)
Abdulaziz, Salman; Payson, J. S.; Li, Yang; Woodyard, James R.
1990-01-01
A comparative study of the radiation resistance of a-Si:H and a-SiGe:H single-junction and a-Si:H dual-junction solar cells was conducted. The cells were irradiated with 1.00-MeV protons with fluences of 1.0 x 10 to the 14th, 5.0 x 10 to the 14th and 1.0 x 10 to the 15th/sq cm and characterized using I-V and quantum efficiency measurements. The radiation resistance of single-junction cells cannot be used to explain the behavior of dual-junction cells at a fluence of 1.0 x 10 to the 15th/sq cm. The a-Si H single-junction cells degraded the least of the three cells; a-SiGe:H single-junction cells showed the largest reduction in short-circuit current, while a-Si:H dual-junction cells exhibited the largest degradation in the open-circuit voltage. The quantum efficiency of the cells degraded more in the red part of the spectrum; the bottom junction degrades first in dual-junction cells.
Chen, Shaoqiang; Zhu, Lin; Yoshita, Masahiro; Mochizuki, Toshimitsu; Kim, Changsu; Akiyama, Hidefumi; Imaizumi, Mitsuru; Kanemitsu, Yoshihiko
2015-01-01
World-wide studies on multi-junction (tandem) solar cells have led to record-breaking improvements in conversion efficiencies year after year. To obtain detailed and proper feedback for solar-cell design and fabrication, it is necessary to establish standard methods for diagnosing subcells in fabricated tandem devices. Here, we propose a potential standard method to quantify the detailed subcell properties of multi-junction solar cells based on absolute measurements of electroluminescence (EL) external quantum efficiency in addition to the conventional solar-cell external-quantum-efficiency measurements. We demonstrate that the absolute-EL-quantum-efficiency measurements provide I–V relations of individual subcells without the need for referencing measured I–V data, which is in stark contrast to previous works. Moreover, our measurements quantify the absolute rates of junction loss, non-radiative loss, radiative loss, and luminescence coupling in the subcells, which constitute the “balance sheets” of tandem solar cells. PMID:25592484
Martí, A; Luque, A
2015-04-22
Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base-emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions.
Martí, A.; Luque, A.
2015-01-01
Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base–emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions. PMID:25902374
Young, James L.; Steiner, Myles A.; Döscher, Henning; ...
2017-03-13
Solar water splitting via multi-junction semiconductor photoelectrochemical cells provides direct conversion of solar energy to stored chemical energy as hydrogen bonds. Economical hydrogen production demands high conversion efficiency to reduce balance-of-systems costs. For sufficient photovoltage, water-splitting efficiency is proportional to the device photocurrent, which can be tuned by judicious selection and integration of optimal semiconductor bandgaps. Here, we demonstrate highly efficient, immersed water-splitting electrodes enabled by inverted metamorphic epitaxy and a transparent graded buffer that allows the bandgap of each junction to be independently varied. Voltage losses at the electrolyte interface are reduced by 0.55 V over traditional, uniformly p-dopedmore » photocathodes by using a buried p-n junction. Lastly, advanced on-sun benchmarking, spectrally corrected and validated with incident photon-to-current efficiency, yields over 16% solar-to-hydrogen efficiency with GaInP/GaInAs tandem absorbers, representing a 60% improvement over the classical, high-efficiency tandem III-V device.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, James L.; Steiner, Myles A.; Döscher, Henning
Solar water splitting via multi-junction semiconductor photoelectrochemical cells provides direct conversion of solar energy to stored chemical energy as hydrogen bonds. Economical hydrogen production demands high conversion efficiency to reduce balance-of-systems costs. For sufficient photovoltage, water-splitting efficiency is proportional to the device photocurrent, which can be tuned by judicious selection and integration of optimal semiconductor bandgaps. Here, we demonstrate highly efficient, immersed water-splitting electrodes enabled by inverted metamorphic epitaxy and a transparent graded buffer that allows the bandgap of each junction to be independently varied. Voltage losses at the electrolyte interface are reduced by 0.55 V over traditional, uniformly p-dopedmore » photocathodes by using a buried p-n junction. Lastly, advanced on-sun benchmarking, spectrally corrected and validated with incident photon-to-current efficiency, yields over 16% solar-to-hydrogen efficiency with GaInP/GaInAs tandem absorbers, representing a 60% improvement over the classical, high-efficiency tandem III-V device.« less
NASA Technical Reports Server (NTRS)
Partain, L. D.; Chung, B.-C.; Virshup, G. F.; Schultz, J. C.; Macmillan, H. F.; Ristow, M. Ladle; Kuryla, M. S.; Bertness, K. A.
1991-01-01
Component efficiencies of 0.2/sq cm cells at approximately 100x AMO light concentration and 80 C temperatures are not at 15.3 percent for a 1.9 eV AlGaAs top cell, 9.9 percent for a 1.4 eV GaAs middle cell under a 1.9 eV AlGaAs filter, and 2.4 percent for a bottom 1.0 eV InGaAs cell under a GaAs substrate. The goal is to continue improvement in these performance levels and to sequentially grow these devices on a single substrate to give 30 percent efficient, monolithic, two-terminal, three-junction space concentrator cells. The broad objective is a 30 percent efficient monolithic two-terminal cell that can operate under 25 to 100x AMO light concentrations and at 75 to 100 C cell temperatures. Detailed modeling predicts that this requires three junctions. Two options are being pursued, and both use a 1.9 eV AlGaAs top junction and a 1.4 eV GaAs middle junction grown by a 1 atm OMVPE on a lattice matched substrate. Option 1 uses a low-doped GaAs substrate with a lattice mismatched 1.0 eV InGaAs cell formed on the back of the substrate. Option 2 uses a Ge substrate to which the AlGaAs and GaAs top junctions are lattice matched, with a bottom 0.7 eV Ge junction formed near the substrate interface with the GaAs growth. The projected efficiency contributions are near 16, 11, and 3 percent, respectively, from the top, middle, and bottom junctions.
NASA Technical Reports Server (NTRS)
Arvidson, R. E.
1981-01-01
Topography and gravity anomaly images for the continental United States were constructed. Evidence was found based on gravity, remote sensing data, the presence, trend, and character of fractures, and on rock type data, for a Precambrian rift through Missouri. The feature is probably the failed arm of a triple junction that existed prior to formation of the granite-rhyolite terrain of southern Missouri.
A Safety and Tolerability Study of INCAGN02385 in Select Advanced Malignancies
2018-05-15
Cervical Cancer; Microsatellite Instability (MSI)-High Endometrial Cancer; Gastric Cancer (Including Stomach and Gastroesophageal Junction [GEJ]); Esophageal Cancer; Hepatocellular Carcinoma; Melanoma (Uveal Melanoma Excluded); Merkel Cell Carcinoma; Mesothelioma; MSI-high Colorectal Cancer; Non-small Cell Lung Cancer (NSCLC); Ovarian Cancer; Squamous Cell Carcinoma of the Head and Neck (SCCHN); Small Cell Lung Cancer (SCLC); Renal Cell Carcinoma (RCC); Triple-negative Breast Cancer; Urothelial Carcinoma; Diffuse Large B-cell Lymphoma
The Strength of Binary Junctions in Hexagonal Close-Packed Crystals
2014-03-01
equilib- rium, on either slip plane, the dislocation on that plane intersects both triple points at the same angle with the junc- tion line, regardless...electronic properties of threading dislocations in wide band-gap gallium nitride (a wurtzite crystal structure consisting of two interpenetrating hcp...yield surface was composed of individual points , it pro- vided insight on the resistance of the lock to breaking as a result of the applied stresses. Via
Tunnel junction enhanced nanowire ultraviolet light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarwar, A. T. M. Golam; May, Brelon J.; Deitz, Julia I.
Polarization engineered interband tunnel junctions (TJs) are integrated in nanowire ultraviolet (UV) light emitting diodes (LEDs). A ∼6 V reduction in turn-on voltage is achieved by the integration of tunnel junction at the base of polarization doped nanowire UV LEDs. Moreover, efficient hole injection into the nanowire LEDs leads to suppressed efficiency droop in TJ integrated nanowire LEDs. The combination of both reduced bias voltage and increased hole injection increases the wall plug efficiency in these devices. More than 100 μW of UV emission at ∼310 nm is measured with external quantum efficiency in the range of 4–6 m%. The realization of tunnel junctionmore » within the nanowire LEDs opens a pathway towards the monolithic integration of cascaded multi-junction nanowire LEDs on silicon.« less
On-Orbit Demonstration of a Lithium-Ion Capacitor and Thin-Film Multijunction Solar Cells
NASA Astrophysics Data System (ADS)
Kukita, Akio; Takahashi, Masato; Shimazaki, Kazunori; Kobayashi, Yuki; Sakai, Tomohiko; Toyota, Hiroyuki; Takahashi, Yu; Murashima, Mio; Uno, Masatoshi; Imaizumi, Mitsuru
2014-08-01
This paper describes an on-orbit demonstration of the Next-generation Small Satellite Instrument for Electric power systems (NESSIE) on which an aluminum- laminated lithium-ion capacitor (LIC) and a lightweight solar panel called KKM-PNL, which has space solar sheets using thin-film multijunction solar cells, were installed. The flight data examined in this paper covers a period of 143 days from launch. We verified the integrity of an LIC constructed using a simple and lightweight mounting method: no significant capacitance reduction was observed. We also confirmed that inverted metamorphic multijunction triple-junction thin-film solar cells used for evaluation were healthy at 143 days after launch, because their degradation almost matched the degradation predictions for dual-junction thin-film solar cells.
Influence of voids distribution on the deformation behavior of nanocrystalline palladium
NASA Astrophysics Data System (ADS)
Bachurin, D. V.
2018-07-01
Uniaxial deformation of three-dimensional nanocrystalline palladium containing porosity in the form of voids was investigated by means of molecular dynamics method. Simulations were performed at temperature of 300 K and at a constant strain rate of 108s-1. Two cases of voids distribution were considered: random and at triple or quadrupole junctions. It has been revealed that both the voids distribution and subsequent annealing at elevated temperature influence the deformation behavior of nanocrystalline palladium. In particular, the presence of voids at grain junctions results in a reduction of the Young's modulus and more pronounced softening effect during plastic deformation. The subsequent annealing evokes shrinkage of voids and strengthening effect. Contribution of grain boundary accommodation processes into both elastic and plastic deformation of nanocrystalline materials is discussed.
NASA Astrophysics Data System (ADS)
Casey, J.; Dewey, J. F.
2013-12-01
The principal enigma of large obducted ophiolite slabs is that they clearly must have been generated by some form of organized sea-floor spreading/plate-accretion, such as may be envisioned for the oceanic ridges, yet the volcanics commonly have arc affinity (Miyashiro) with boninites (high-temperature/low-pressure, high Mg and Si andesites), which are suggestive of a forearc origin. PT conditions under which boninites and metamorphic soles form and observations of modern forearc systems lead us to the conclusion that ophiolite formation is associated with overriding plate spreading centers that intersect the trench to form ridge-trench-trench of ridge-trench-tranform triple junctions. The spreading centers extend and lengthen the forearc parallel to the trench and by definition are in supra-subduction zone (SSZ) settings. Many ophiolites likewise have complexly-deformed associated mafic-ultramafic assemblages that suggest fracture zone/transform along their frontal edges, which in turn has led to models involving the nucleation of subduction zones on fracture zones or transpressional transforms. Hitherto, arc-related sea-floor-spreading has been considered to be either pre-arc (fore-arc boninites) or post-arc (classic Karig-style back arc basins that trench-parallel split arcs). Syn-arc boninites and forearc oceanic spreading centers that involve a stable ridge/trench/trench triple or a ridge-trench-transform triple junction, the ridge being between the two upper plates, are consistent with large slab ophiolite formation in an obduction-ready settting. The direction of subduction must be oblique with a different sense in the two subduction zones and the oblique subduction cannot be partitioned into trench orthogonal and parallel strike-slip components. As the ridge spreads, new oceanic lithosphere is created within the forearc, the arc and fore-arc lengthen significantly, and a syn-arc ophiolite forearc complex is generated by this mechanism. The ophiolite ages along arc-strike; a distinctive diachronous MORB-like to boninitic to arc volcanic stratigraphy develops vertically in the forearc and eruption centers progressively migrate from the forearc back to the main arc massif with time. Dikes in the ophiolite are commonly highly oblique to the trench (as are back-arc magnetic anomalies in modern environments). Boninites and high-mg andesites are generated in the fore-arc under the aqueous, low pressure/high temperature, regime at the ridge above the instantaneously developed subducting and dehydrating slab. We review both modern subduction environments and ancient obducted ophiolite analogues that illustrate this tectonic model for subduction initiation and the creation and rapid divergent-convergent plate tectonic transitions to ophiolitic forearcs.
Progress toward the development of dual junction GaAs/Ge solar cells
NASA Technical Reports Server (NTRS)
Lillington, D. R.; Krut, D. D.; Cavicchi, B. T.; Ralph, E.; Chung, M.
1991-01-01
Large area GaAs/Ge cells offer substantial promise for increasing the power output from existing silicon solar array designs and for providing an enabled technology for missions hitherto impossible using silicon. Single junction GaAs/Ge cells offer substantial advantages in both size, weight, and cost compared to GaAs cells but the efficiency is limited to approximately 19.2 to 20 percent AMO. The thermal absorptance of GaAs/Ge cells is also worse than GaAs/GaAs cells (0.88 vs 0.81 typ.) due to the absorption in the Ge substrate. On the other hand dual junction GaAs/Ge cells offer efficiencies up to ultimately 24 percent AMO in sizes up to 8 x 8 cm but there are still technological issues remaining to achieve current matching in the GaAs and Ge cells. This can be achieved through tuned antireflection (AR) coatings, improved quality of the GaAs growth, improved quality Ge wafers and the use of a Back Surface Field (BSF)/Back Surface Reflector (BSR) in the Ge cell. Although the temperature coefficients of efficiency and voltage are higher for dual junction GaAs/Ge cells, it has been shown elsewhere that for typical 28 C cell efficiencies of 22 percent (dual junction) vs 18.5 percent (single junction) there is a positive power tradeoff up to temperatures as high as 120 C. Due to the potential ease of fabrication of GaAs/Ge dual junction cells there is likely to be only a small cost differential compared to single junction cells.
NASA Astrophysics Data System (ADS)
Arboleda Zapata, M. D. J., Sr.; Arzate-Flores, J.; Guevara Betancourt, R. E., Sr.
2017-12-01
The Jalisco Block is a continental microplate produced by the extension along three large structures: the Tepic-Zacoalco rift (TZR), the Colima rift (CR) and the Chapala rift that converge in a triple junction 50 km southwest of Guadalajara, Mexico, with orientation NW-SE, N-S, and E-W respectively. The present study focuses on investigating the deep structure of the north Colima and eastern Zacoalco grabens close to the Guadalajara triple junction (GTJ). This is a first study of its type that provide insight on the grabens structures and crustal characteristics underneath. We measured along two magnetotellurics (MT) profiles that cut perpendicularly the TZR (profile ZAC), and the northern CR (profile SAY) comprising a total of 24 broad band MT soundings. The ZAC profile has 11 stations and has a NE orientation, and the SAY profile has 14 station aligned E-W. Standard processing and editing procedures were completed, and distortion analysis was applied to the data set in order to define the dimensionality and electric strike of the separated profiles. Static shift was corrected using geology information to distinguish the different types of soundings and later averaging for those soundings located over the same lithology. The Bahr dimensionality parameters showed that the medium is mainly 3D for the SAY profile and 2D for the ZAC profile; furthermore, the regional geoelectric strike azimuth calculated with Bahr methodology were -4° and -48° respectively, with good concordance with the main surface structures. The tipper analysis permitted validated these results, as the real induction vectors were nearly perpendicular to main fault structures. All soundings were rotated to the respective regional strike and a 2D simultaneous inversion of the transverse electric (TE) mode, the transvers magnetic (TM) mode and the Tipper was completed. The RMS fitting error yield 3.2% for ZAC profile and 3.7% for SAY profile. Both profiles show a shallow conductive zone at north of the Colima Rift and the south of the Zacoalco rift, which are interpreted as lacustrine and fluvial sediments having maximum thickness of 1.5 and 1.0 km respectively. The profiles show a faulted resistive upper crust, 35 to 40 km thick, that is reliably correlated with mapped surface structures and consistent with two types of extensional processes.
Xu, Liming; Dan, Mo; Shao, Anliang; Cheng, Xiang; Zhang, Cuiping; Yokel, Robert A; Takemura, Taro; Hanagata, Nobutaka; Niwa, Masami; Watanabe, Daisuke
2015-01-01
Background Silver nanoparticles (Ag-NPs) can enter the brain and induce neurotoxicity. However, the toxicity of Ag-NPs on the blood–brain barrier (BBB) and the underlying mechanism(s) of action on the BBB and the brain are not well understood. Method To investigate Ag-NP suspension (Ag-NPS)-induced toxicity, a triple coculture BBB model of rat brain microvascular endothelial cells, pericytes, and astrocytes was established. The BBB permeability and tight junction protein expression in response to Ag-NPS, NP-released Ag ions, and polystyrene-NP exposure were investigated. Ultrastructural changes of the microvascular endothelial cells, pericytes, and astrocytes were observed using transmission electron microscopy (TEM). Global gene expression of astrocytes was measured using a DNA microarray. Results A triple coculture BBB model of primary rat brain microvascular endothelial cells, pericytes, and astrocytes was established, with the transendothelial electrical resistance values >200 Ω·cm2. After Ag-NPS exposure for 24 hours, the BBB permeability was significantly increased and expression of the tight junction (TJ) protein ZO-1 was decreased. Discontinuous TJs were also observed between microvascular endothelial cells. After Ag-NPS exposure, severe mitochondrial shrinkage, vacuolations, endoplasmic reticulum expansion, and Ag-NPs were observed in astrocytes by TEM. Global gene expression analysis showed that three genes were upregulated and 20 genes were downregulated in astrocytes treated with Ag-NPS. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the 23 genes were associated with metabolic processes, biosynthetic processes, response to stimuli, cell death, the MAPK pathway, and so on. No GO term and KEGG pathways were changed in the released-ion or polystyrene-NP groups. Ag-NPS inhibited the antioxidant defense of the astrocytes by increasing thioredoxin interacting protein, which inhibits the Trx system, and decreasing Nr4a1 and Dusp1. Meanwhile, Ag-NPS induced inflammation and apoptosis through modulation of the MAPK pathway or B-cell lymphoma-2 expression or mTOR activity in astrocytes. Conclusion These results draw our attention to the importance of Ag-NP-induced toxicity on the neurovascular unit and provide a better understanding of its toxicological mechanisms on astrocytes. PMID:26491287
Simultaneous triple 914 nm, 1084 nm, and 1086 nm operation of a diode-pumped Nd:YVO4 laser
NASA Astrophysics Data System (ADS)
Lü, Yanfei; Xia, Jing; Liu, Huilong; Pu, Xiaoyun
2014-10-01
We report a diode-pumped continuous-wave (cw) triple-wavelength Nd:YVO4 laser operating at 914, 1084, and 1086 nm. A theoretical analysis has been introduced to determine the threshold conditions for simultaneous triple-wavelength laser. Using a T-shaped cavity, we realized an efficient triple-wavelength operation at 4F3/2→4I9/2 and 4F3/2→4I11/2 transitions for Nd:YVO4 crystal, simultaneously. At an absorbed pump power of 16 W (or 25 W of incident pump power), the maximum output power was 2.3 W, which included 914 nm, 1084 nm, and 1086 nm three wavelengths, and the optical conversion efficiency with respect to the absorbed pump power was 14.4%.
Surendranath, Yogesh; Bediako, D. Kwabena; Nocera, Daniel G.
2012-01-01
An artificial leaf can perform direct solar-to-fuels conversion. The construction of an efficient artificial leaf or other photovoltaic (PV)-photoelectrochemical device requires that the power curve of the PV material and load curve of water splitting, composed of the catalyst Tafel behavior and cell resistances, be well-matched near the thermodynamic potential for water splitting. For such a condition, we show here that the current density-voltage characteristic of the catalyst is a key determinant of the solar-to-fuels efficiency (SFE). Oxidic Co and Ni borate (Co-Bi and Ni-Bi) thin films electrodeposited from solution yield oxygen-evolving catalysts with Tafel slopes of 52 mV/decade and 30 mV/decade, respectively. The consequence of the disparate Tafel behavior on the SFE is modeled using the idealized behavior of a triple-junction Si PV cell. For PV cells exhibiting similar solar power-conversion efficiencies, those displaying low open circuit voltages are better matched to catalysts with low Tafel slopes and high exchange current densities. In contrast, PV cells possessing high open circuit voltages are largely insensitive to the catalyst’s current density-voltage characteristics but sacrifice overall SFE because of less efficient utilization of the solar spectrum. The analysis presented herein highlights the importance of matching the electrochemical load of water-splitting to the onset of maximum current of the PV component, drawing a clear link between the kinetic profile of the water-splitting catalyst and the SFE efficiency of devices such as the artificial leaf. PMID:22689962
NASA Astrophysics Data System (ADS)
Sibrant, A.; Davaille, A.; Marques, F. O.; Hildenbrand, A.
2014-12-01
Born 200 Ma ago, the central Atlantic presents nowadays a large low seismic velocity anomaly in the lower mantle, a cluster of "hot" spots (Azores, Cape Verde, Madeira, Canary, Great Meteor), a mid-ocean ridge, and a triple junction located in the Azores. We carried out laboratory experiments to examine the possible links between mantle instabilities, plate boundary migration, and the development of the volcanism on various spatial and temporal scales. Coupled with the current knowledge of these volcanic areas (tomography, tectonics and K/Ar dating), our fluid mechanics experiments suggest that: (1) The Azores, as Canary, Cape Verde, Madeira Islands and Great Meteor seamounts might be the surface expression of a cluster of mantle instabilities rising from the top of a large thermochemical dome located in the lower mantle. However, such secondary plumes present a strong time-dependence 5-40 Myr time scale. (2) These secondary instabilities could be sufficiently weak to adapt their motions to the pre-existing force balance, and morphology and mechanical properties of the lithosphere. Based on current knowledge and modelling, we present a scenario of the Central Atlantic area evolution in the last 100 Ma combining a triple junction and decompression melting-generated buoyant material (i.e. such in volatiles and/or temperature) under a cooling and thickening lithosphere.
The Role of Water Vapor and Dissociative Recombination Processes in Solar Array Arc Initiation
NASA Technical Reports Server (NTRS)
Galofar, J.; Vayner, B.; Degroot, W.; Ferguson, D.
2002-01-01
Experimental plasma arc investigations involving the onset of arc initiation for a negatively biased solar array immersed in low-density plasma have been performed. Previous studies into the arc initiation process have shown that the most probable arcing sites tend to occur at the triple junction involving the conductor, dielectric and plasma. More recently our own experiments have led us to believe that water vapor is the main causal factor behind the arc initiation process. Assuming the main component of the expelled plasma cloud by weight is water, the fastest process available is dissociative recombination (H2O(+) + e(-) (goes to) H* + OH*). A model that agrees with the observed dependency of arc current pulse width on the square root of capacitance is presented. A 400 MHz digital storage scope and current probe was used to detect arcs at the triple junction of a solar array. Simultaneous measurements of the arc trigger pulse, the gate pulse, the arc current and the arc voltage were then obtained. Finally, a large number of measurements of individual arc spectra were obtained in very short time intervals, ranging from 10 to 30 microseconds, using a 1/4 a spectrometer coupled with a gated intensified CCD. The spectrometer was systematically tuned to obtain optical arc spectra over the entire wavelength range of 260 to 680 nanometers. All relevant atomic lines and molecular bands were then identified.
A Magnetic Survey Of The MTJ(Mangatolu Triple Junction) Caldera On Lau Basin
NASA Astrophysics Data System (ADS)
Kwak, J.; Won, J.; Park, C.; Ko, Y.; Kim, C.; Jeong, E.; Yu, S.
2006-12-01
We have performed a magnetic survey to understand magnetic distribution and characteristics of the MTJ(Mangatolu Triple Junction) caldera. MTJ caldera(15°25'S, 174°00'W) is located between MTJ northeast extending branch which connects to the northeast Tonga trench[Wright et al, 2000] and the main line of Tofua volcanic arc. The caldera results from coupling between the crust of the Tonga microplate and the subducting Pacific plate[Macleod, 1996]. The MTJ is characterized severe deformation and neovolcanism[Parson and Tiffin, 1993], and has been reoriented during the Brunhes Chron[Zellmer et al, 2001]. Generally, low magnetization at crust is highly correlated with active hydrothermal vent field. The acidic and corrosive fluids that constitute marine hydrothermal vent systems can quickly alter or replace the iron-rich magnetic minerals, which reduce the magnetic remanence of the crustal rocks, in some cases to zero. Magnetic field data were observed by using high sensitivity proton magnetometer which is towed 300m behind the ship(R/V Onnuri). The data were first merged with the ship navigation. Then magnetic field was inverted for crustal magnetization using Parker[1974] inversion approach, which takes bathymetry into account assuming a constant layer thickness and then sufficient annihilator is added to magnetization solution to balance the positive and reverse polarity amplitudes. In this study, all inversions are calculated assuming a 500m source thickness.
Pathway to 50% efficient inverted metamorphic concentrator solar cells
NASA Astrophysics Data System (ADS)
Geisz, John F.; Steiner, Myles A.; Jain, Nikhil; Schulte, Kevin L.; France, Ryan M.; McMahon, William E.; Perl, Emmett E.; Horowitz, Kelsey A. W.; Friedman, Daniel J.
2017-09-01
Series-connected five (5J) and six junction (6J) concentrator solar cell strategies have the realistic potential to exceed 50% efficiency to enable low-cost CPV systems. We propose three strategies for developing a practical 6J device. We have overcome many of the challenges required to build such concentrator solar cell devices: We have developed 2.1 eV AlGaInP, 1.7 eV AlGaAs, and 1.7 eV GaInAsP junctions with external radiative efficiency greater than 0.1%. We have developed a transparent tunnel junction that absorbs minimal light intended for the second junction yet resists degradation under thermal load. We have developed metamorphic grades from the GaAs to the InP lattice constant that are transparent to sub-GaAs bandgap light. We have grown and compared low bandgap junctions (0.7eV - 1.2 eV) using metamorphic GaInAs, metamorphic GaInAsP, and GaInAsP lattice-matched to InP. And finally, we have demonstrated excellent performance in a high voltage, low current 4 junction inverted metamorphic device using 2.1, 1.7, 1.4, and 1.1 eV junctions with over 8.7 mA/cm2 one-sun current density that operates up to 1000 suns without tunnel junction failure.
Pathway to 50% Efficient Inverted Metamorphic Concentrator Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geisz, John F; Steiner, Myles A; Jain, Nikhil
Series-connected five (5J) and six junction (6J) concentrator solar cell strategies have the realistic potential to exceed 50% efficiency to enable low-cost CPV systems. We propose three strategies for developing a practical 6J device. We have overcome many of the challenges required to build such concentrator solar cell devices: We have developed 2.1 eV AlGaInP, 1.7 eV AlGaAs, and 1.7 eV GaInAsP junctions with external radiative efficiency greater than 0.1%. We have developed a transparent tunnel junction that absorbs minimal light intended for the second junction yet resists degradation under thermal load. We have developed metamorphic grades from the GaAsmore » to the InP lattice constant that are transparent to sub-GaAs bandgap light. We have grown and compared low bandgap junctions (0.7eV - 1.2 eV) using metamorphic GaInAs, metamorphic GaInAsP, and GaInAsP lattice-matched to InP. And finally, we have demonstrated excellent performance in a high voltage, low current 4 junction inverted metamorphic device using 2.1, 1.7, 1.4, and 1.1 eV junctions with over 8.7 mA/cm2 one-sun current density that operates up to 1000 suns without tunnel junction failure.« less
TRPV2 expression in rat oral mucosa.
Shimohira, Daiji; Kido, Mizuho A; Danjo, Atsushi; Takao, Tomoka; Wang, Bing; Zhang, Jing-Qi; Yamaza, Takayoshi; Masuko, Sadahiko; Goto, Masaaki; Tanaka, Teruo
2009-10-01
The oral mucosa is a highly specialised, stratified epithelium that confers protection from infection and physical, chemical and thermal stimuli. The non-keratinised junctional epithelium surrounds each tooth like a collar and is easily attacked by foreign substances from the oral sulcus. We found that TRPV2, a temperature-gated channel, is highly expressed in junctional epithelial cells, but not in oral sulcular epithelial cells or oral epithelial cells. Dual or triple immunolabelling with immunocompetent cell markers also revealed TRPV2 expression in Langerhans cells and in dendritic cells and macrophages. Electron microscopy disclosed TRPV2 immunoreactivity in the unmyelinated and thinly myelinated axons within the connective tissue underlying the epithelium. TRPV2 labelling was also observed in venule endothelial cells. The electron-dense immunoreaction in junctional epithelial cells, macrophages and neural axons occurred on the plasma membrane, on invaginations of the plasma membrane and in vesicular structures. Because TRPV2 has been shown to respond to temperature, hypotonicity and mechanical stimuli, gingival cells expressing TRPV2 may act as sensor cells, detecting changes in the physical and chemical environment, and may play a role in subsequent defence mechanisms.
Design and Development of the Space Technology 5 (ST5) Solar Arrays
NASA Technical Reports Server (NTRS)
Lyons, John; Fatemi, Navid; Gamica, Robert; Sharma, Surya; Senft, Donna; Maybery, Clay
2005-01-01
The National Aeronautics and Space Administration's (NASA's) Space Technology 5 (ST5) is designed to flight-test the concept of miniaturized 'small size" satellites and innovative technologies in Earth's magnetosphere. Three satellites will map the intensity and direction of the magnetic fields within the inner magnetosphere. Due to the small area available for the solar arrays, and to meet the mission power requirements, very high-efficiency multijunction solar cells were selected to power the spacecraft built by NASA Goddard Space Flight Center (GSFC). This was done in partnership with the Air Force Research Lab (AFRL) through the Dual-Use Science and Technology (DUS&T) program. Emcore's InGaP/lnGaAs/Ge Advanced triple-junction (ATJ) solar cells, exhibiting an average air mass zero (AMO) efficiency of 28.0% (one-sun, 28 C), were used to populate the arrays. Each spacecraft employs 8 identical solar panels (total area of about 0.3 square meters), with 15 large-area solar cells per panel. The requirement for power is to support on-orbit average load of 13.5 W at 8.4 V, with plus or minus 5% off pointing. The details of the solar array design, development and qualification considerations, as well as ground electrical performance & shadowing analysis results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geisz, John F.; France, Ryan M.; Steiner, Myles A.
Quantitative electroluminescence (EL) and luminescent coupling (LC) analysis, along with more conventional characterization techniques, are combined to completely characterize the subcell JV curves within a fourjunction (4J) inverted metamorphic solar cell (IMM). The 4J performance under arbitrary spectral conditions can be predicted from these subcell JV curves. The internal radiative efficiency (IRE) of each junction has been determined as a function of current density from the external radiative efficiency using optical modeling, but this required the accurate determination of the individual junction current densities during the EL measurement as affected by LC. These measurement and analysis techniques can be appliedmore » to any multijunction solar cell. The 4J IMM solar cell used to illustrate these techniques showed excellent junction quality as exhibited by high IRE and a one-sun AM1.5D efficiency of 36.3%. This device operates up to 1000 suns without limitations due to any of the three tunnel junctions.« less
NASA Astrophysics Data System (ADS)
Browne, S. E.; Fairhead, J. D.
1983-05-01
A regional compilation of published and unpublished gravity data for Central Africa is presented and reveals the presence of a major rift system, called here, the Central African Rift System. It is proposed that the junction area between the Ngaoundere and Abu Gabra rift arms in Western Sudan forms an incipient intraplate, triple-junction with the as yet unfractured, but domally uplifted and volcanically active, Darfur swell. It is only the Darfur swell that shows any similarities to the uplift and rift history of East Africa. The other two rifts arms are considered to be structurally similar to the early stages of passive margin development and thus reflect more closely the initial processes of continental fragmentation than the structures associated with rifting in East Africa.
Fujii, T; Taguchi, Y; Saiki, T; Nagasaka, Y
2012-12-01
A novel local temperature measurement method using fluorescence near-field optics thermal nanoscopy (Fluor-NOTN) has been developed. Fluor-NOTN enables nanoscale temperature measurement in situ by detecting the temperature-dependent fluorescence lifetime of CdSe quantum dots (QDs). In this paper, we report a novel triple-tapered near-field optical fiber probe that can increase the temperature measurement sensitivity of Fluor-NOTN. The performance of the proposed probe was numerically evaluated by the finite difference time domain method. Due to improvements in both the throughput and collection efficiency of near-field light, the sensitivity of the proposed probe was 1.9 times greater than that of typical double-tapered probe. The proposed shape of the triple-tapered core was successfully fabricated utilizing a geometrical model. The detected signal intensity of dried layers of QDs was greater by more than two orders than that of auto-fluorescence from the fiber core. In addition, the near-field fluorescence lifetime of the QDs and its temperature dependence were successfully measured by the fabricated triple-tapered near-field optical fiber probe. These measurement results verified the capability of the proposed triple-tapered near-field optical fiber probe to improve the collection efficiency of near-field fluorescence.
Efficient encoding of motion is mediated by gap junctions in the fly visual system.
Wang, Siwei; Borst, Alexander; Zaslavsky, Noga; Tishby, Naftali; Segev, Idan
2017-12-01
Understanding the computational implications of specific synaptic connectivity patterns is a fundamental goal in neuroscience. In particular, the computational role of ubiquitous electrical synapses operating via gap junctions remains elusive. In the fly visual system, the cells in the vertical-system network, which play a key role in visual processing, primarily connect to each other via axonal gap junctions. This network therefore provides a unique opportunity to explore the functional role of gap junctions in sensory information processing. Our information theoretical analysis of a realistic VS network model shows that within 10 ms following the onset of the visual input, the presence of axonal gap junctions enables the VS system to efficiently encode the axis of rotation, θ, of the fly's ego motion. This encoding efficiency, measured in bits, is near-optimal with respect to the physical limits of performance determined by the statistical structure of the visual input itself. The VS network is known to be connected to downstream pathways via a subset of triplets of the vertical system cells; we found that because of the axonal gap junctions, the efficiency of this subpopulation in encoding θ is superior to that of the whole vertical system network and is robust to a wide range of signal to noise ratios. We further demonstrate that this efficient encoding of motion by this subpopulation is necessary for the fly's visually guided behavior, such as banked turns in evasive maneuvers. Because gap junctions are formed among the axons of the vertical system cells, they only impact the system's readout, while maintaining the dendritic input intact, suggesting that the computational principles implemented by neural circuitries may be much richer than previously appreciated based on point neuron models. Our study provides new insights as to how specific network connectivity leads to efficient encoding of sensory stimuli.
III-V/Active-Silicon Integration for Low-Cost High-Performance Concentrator Photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ringel, Steven
This FPACE project was motivated by the need to establish the foundational pathway to achieve concentrator solar cell efficiencies greater than 50%. At such an efficiency, DOE modeling projected that a III-V CPV module cost of $0.50/W or better could be achieved. Therefore, the goal of this project was to investigate, develop and advance a III-V/Si mulitjunction (MJ) CPV technology that can simultaneously address the primary cost barrier for III-V MJ solar cells while enabling nearly ideal MJ bandgap profiles that can yield efficiencies in excess of 50% under concentrated sunlight. The proposed methodology was based on use of ourmore » recently developed GaAsP metamorphic graded buffer as a pathway to integrate unique GaAsP and Ga-rich GaInP middle and top junctions having bandgaps that are adjustable between 1.45 – 1.65 eV and 1.9 – 2.1 eV, respectively, with an underlying, 1.1 eV active Si subcell/substrate. With this design, the Si can be an active component sub-cell due to the semi-transparent nature of the GaAsP buffer with respect to Si as well as a low-cost alternative substrate that is amenable to scaling with existing Si foundry infrastructure, providing a reduction in materials cost and a low cost path to manufacturing at scale. By backside bonding of a SiGe, a path to exceed 50% efficiency is possible. Throughout the course of this effort, an expansive range of new understanding was achieved that has stimulated worldwide efforts in III-V/Si PV R&D that spanned materials development, metamorphic device optimization, and complete III-V/Si monolithic integration. Highlights include the demonstration of the first ideal GaP/Si interfaces grown by industry-standard MOCVD processes, the first high performance metamorphic tunnel junctions designed for III-V/Si integration, record performance of specific metamorphic sub-cell designs, the first fully integrated GaInP/GaAsP/Si double (1.7 eV/1.1 eV) and triple (1.95 eV/1.5 eV/1.1 eV) junction solar cells, the first high performance GaAsP/Si double junction cell, the demonstration of a new method that allow for rapid, quantitative and non-destructive characterization of dislocations (ECCI-electron channeling contrast imaging), the first observation, explanation and solution of the now commonly reported lifetime degradation and recovery phenomena in III-V/Si MOCVD growth, the first demonstration of a high performance SiGe cell with a bandgap of 0.9 eV, amongst other highlights. The impact of the program on the international community has been significant. At the start of our FPACE1 project and for the immediate prior years, 1-2 conference papers/annually were presented at IEEE PVSC. Once FPACE1 commenced in 2011, related efforts sprouted across the US, Europe and Asia and by 2015 there were 26 papers presented on III-V/Si multijunctions in the 2015 PVSC, demonstrating the excitement that was stimulated by the results of this FPACE1 effort.« less
NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction Solar
converting non-concentrated (1-sun) sunlight into electricity using a dual-junction III-V/Si solar cell. The 29.8 percent one-sun efficiency," which details the steps taken to break the previous record. His
Lee, Jang-Woo; Yoo, Young-Tai; Lee, Jae Yeol
2014-01-22
Ionic polymer-metal composite (IPMC) actuators based on two types of triple-layered Nafion composite membranes were prepared via consecutive solution recasting and electroless plating methods. The triple-layered membranes are composed of a Nafion layer containing an amphiphilic organic molecule (10-camphorsulfonic acid; CSA) in the middle section (for fast and large ion conduction) and two Nafion/modified inorganic composite layers in the outer sections (for large accumulation/retention of mobile ions). For construction of the two types of IPMCs, sulfonated montmorillonite (MMT) and polypyrrole (PPy)-coated alumina fillers were incorporated into the outer layers. Both the triple-layered IPMCs exhibited 42% higher tip displacements at the maximum deflections with a negligible back-relaxation, 50-74% higher blocking forces, and more rapid responses under 3 V dc, compared with conventional single-layered Nafion-IPMCs. Improvements in cyclic displacement under a rectangular voltage input of 3 V at 1 Hz were also made in the triple-layered configurations. Compared with single-layered IPMCs consisting of the identical compositions with the respective outer composite layers, the bending rates and energy efficiencies of both the triple-layered IPMCs were significantly higher, although the blocking forces were a bit lower. These remarkable improvements were attributed to higher capacitances and Young's moduli as well as a more efficient transport of mobile ions and water through the middle layer (Nafion/CSA) and a larger accumulation/retention of the mobile species in the outer functionalized inorganic composite layers. Especially, the triple-layered IPMC with the PPy-modified alumina registered the best actuation performance among all the samples, including a viable actuation even at a low voltage of 1.5 V due to involving efficient redox reactions of PPy with the aid of hygroscopic alumina.
Solar energy converters based on multi-junction photoemission solar cells.
Tereshchenko, O E; Golyashov, V A; Rodionov, A A; Chistokhin, I B; Kislykh, N V; Mironov, A V; Aksenov, V V
2017-11-23
Multi-junction solar cells with multiple p-n junctions made of different semiconductor materials have multiple bandgaps that allow reducing the relaxation energy loss and substantially increase the power-conversion efficiency. The choice of materials for each sub-cell is very limited due to the difficulties in extracting the current between the layers caused by the requirements for lattice- and current-matching. We propose a new vacuum multi-junction solar cell with multiple p-n junctions separated by vacuum gaps that allow using different semiconductor materials as cathode and anode, both activated to the state of effective negative electron affinity (NEA). In this work, the compact proximity focused vacuum tube with the GaAs(Cs,O) photocathode and AlGaAs/GaAs-(Cs,O) anode with GaAs quantum wells (QWs) is used as a prototype of a vacuum single-junction solar cell. The photodiode with the p-AlGaAs/GaAs anode showed the spectral power-conversion efficiency of about 1% at V bias = 0 in transmission and reflection modes, while, at V bias = 0.5 V, the efficiency increased up to 10%. In terms of energy conservation, we found the condition at which the energy cathode-to-anode transition was close to 1. Considering only the energy conservation part, the NEA-cell power-conversion efficiency can rich a quantum yield value which is measured up to more than 50%.
Xu, Kaikai
2013-09-20
In this paper, the emission of visible light by a monolithically integrated silicon p-n junction under reverse-bias is discussed. The modulation of light intensity is achieved using an insulated-gate terminal on the surface of the p-n junction. By varying the gate voltage, the breakdown voltage of the p-n junction will be adjustable so that the reverse current I(sub) flowing through the p-n junction at a fixed reverse-bias voltage is changed. It is observed that the light, which is emitted from the defects located at the p-n junction, depends closely on the reverse current I(sub). In regard to the phenomenon of electroluminescence, the relationship between the optical emission power and the reverse current I(sub) is linear. On the other hand, it is observed that both the quantum efficiency and the power conversion efficiency are able to have obvious enhancement, although the reverse-bias of the p-n junction is reduced and the corresponding reverse-current is much lower. Moreover, the successful fabrication on monolithic silicon light source on the bulk silicon by means of standard silicon complementary metal-oxide-semiconductor process technology is presented.
Pulling the rug out from under California: Seismic images of the Mendocino Triple Junction region
Tréhu, Anne M.
1995-01-01
In 1993 and 1994 a network of large-aperture seismic profiles was collected to image the crustal and upper-mantle structure beneath northern California and the adjacent continental margin. The data include approximately 650 km of onshore seismic refraction/reflection data, 2000 km of off-shore multichannel seismic (MCS) reflection data, and simultaneous onshore and offshore recording of the MCS airgun source to yield large-aperture data. Scientists from more than 12 institutions were involved in data acquisition.
NASA Astrophysics Data System (ADS)
Oproglidis, T. A.; Karatsori, T. A.; Barraud, S.; Ghibaudo, G.; Dimitriadis, C. A.
2018-04-01
In this work, we extend our analytical compact model for nanoscale junctionless triple-gate (JL TG) MOSFETs, capturing carrier transport from drift-diffusion to quasi-ballistic regime. This is based on a simple formulation of the low-field mobility extracted from experimental data using the Y-function method, taking into account the ballistic carrier motion and an increased carrier scattering in process-induced defects near the source/drain regions. The case of a Schottky junction in non-ideal ohmic contact at the drain side was also taken into account by modifying the threshold voltage and ideality factor of the JL transistor. The model is validated with experimental data for n-channel JL TG MOSFETs with channel length varying from 95 down to 25 nm. It can be easily implemented as a compact model for use in Spice circuit simulators.
NASA Astrophysics Data System (ADS)
Mao, Kun; Qiao, Ming; Zhang, WenTong; Zhang, Bo; Li, Zhaoji
2014-11-01
This paper proposes a 700 V narrow channel region triple-RESURF (reduced surface field) n-type junction field-effect transistor (NCT-nJFET). Compared to traditional structures, low pinch-off voltage (VP) with unobvious drain-induced barrier lowering (DIBL) effect and large saturated current (IDsat) are achieved. This is because p-type buried layer (Pbury) and PWELL are introduced to shape narrow n-type channel in JFET channel region. DIBL sensitivity (SDIBL) is firstly introduced in this paper to analyze the DIBL effect of high-voltage long-channel JFET. Ultra-high breakdown voltage is obtained by triple RESURF technology. Experimental results show that proposed NCT-nJFET achieves 24-V VP, 3.5% SDIBL, 2.3-mA IDsat, 800-V OFF-state breakdown voltage (OFF-BV) and 650-V ON-state breakdown voltage when VGS equals 0 V (ON-BV).
Diffused junction p(+)-n solar cells in bulk GaAs. II - Device characterization and modelling
NASA Technical Reports Server (NTRS)
Keeney, R.; Sundaram, L. M. G.; Rode, H.; Bhat, I.; Ghandhi, S. K.; Borrego, J. M.
1984-01-01
The photovoltaic characteristics of p(+)-n junction solar cells fabricated on bulk GaAs by an open tube diffusion technique are presented in detail. Quantum efficiency measurements were analyzed and compared to computer simulations of the cell structure in order to determine material parameters such as diffusion length, surface recombination velocity and junction depth. From the results obtained it is projected that proper optimization of the cell parameters can increase the efficiency of the cells to close to 20 percent.
The Global Precipitation Measurement (GPM) Spacecraft Power System Design and Orbital Performance
NASA Technical Reports Server (NTRS)
Dakermanji, George; Burns, Michael; Lee, Leonine; Lyons, John; Kim, David; Spitzer, Thomas; Kercheval, Bradford
2016-01-01
The Global Precipitation Measurement (GPM) spacecraft was jointly developed by National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA). It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The spacecraft is in a circular 400 Km altitude, 65 degrees inclination nadir pointing orbit with a three year basic mission life. The solar array consists of two sun tracking wings with cable wraps. The panels are populated with triple junction cells of nominal 29.5% efficiency. One axis is canted by 52 degrees to provide power to the spacecraft at high beta angles. The power system is a Direct Energy Transfer (DET) system designed to support 1950 Watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s x 84p batteries operated in parallel as a single battery. The paper describes the power system design details, its performance to date and the lithium ion battery model that was developed for use in the energy balance analysis and is being used to predict the on-orbit health of the battery.
Comparative study of MYSat attitude stability effect on power generation and lifetime
NASA Astrophysics Data System (ADS)
Amilia Ismail, Norilmi; Thaheer, Ahmad Shaqeer Mohamed; Izmir Yamin, Mohd.
2018-05-01
Universiti Sains Malaysia Space System Lab (USSL) is currently developing a 1U cubesat named MYSat. The satellite mission is to measure electron-density in the Ionosphere E-Layer. Power generation from a solar panel is limited due to a small area of the satellite. Apart from that, the satellite is expecting to continuously spinning and tumbling throughout the mission lifetime as the satellite will be launched without an attitude control system. This paper compares the effect on power generation and the lifetime of MYSat of two conditions; first is with attitude controll where satellite pointing to nadir and later is uncontrol attitude of the satellite. The analysis has been conducted using Analytical Graphics, Inc. (AGI) Systems Tool Kit (STK) software. This study assumed the satellite used a hexagonal solar cell with a theoretical efficiency of 29% identical to an Ultra Triple-Junction (UTJ) solar cell. The simulation is done in one year duration on different attitude configuration. The worst-case condition, where the Earth is positioned at apogee, has been chosen for the comparative study and the lifetime of the satellite is also simulated and compared.
A Comment on the Dependence of LED's Efficiency on the Junction Ideality Factor
ERIC Educational Resources Information Center
Sethi, Anubhav; Gupta, Yashika; Arun, P.
2018-01-01
P-n junctions form the basic building blocks for any semiconductor device. Therefore, the complete understanding of the junction characteristics is very important. Although being a widely discussed topic in electronics, there are still some gaps such as finding the value and significance of the junction ideality factor, that needs to be addressed.…
Large thermoelectric efficiency of doped polythiophene junction: A density functional study
NASA Astrophysics Data System (ADS)
Golsanamlou, Zahra; Bagheri Tagani, Meysam; Rahimpour Soleimani, Hamid
2018-06-01
The thermoelectric properties of polythiophene (PT) coupled to the Au (111) electrodes are studied based on density functional theory with nonequilibrium Green function formalism. Specially, the effect of Li and Cl adsorbents on the thermoelectric efficiency of the PT junction is investigated in different concentrations of the dopants for two lengths of the PT. Results show that the presence of dopants can bring the structural changes in the oligomer and modify the arrangement of the molecular levels leading to the dramatic changes in the transmission spectra of the junction. Therefore, the large enhancement in thermopower and consequently figure of merit is obtained by dopants which makes the doped PT junction as a beneficial thermoelectric device.
Cell chip temperature measurements in different operation regimes of HCPV modules
NASA Astrophysics Data System (ADS)
Rumyantsev, V. D.; Chekalin, A. V.; Davidyuk, N. Yu.; Malevskiy, D. A.; Pokrovskiy, P. V.; Sadchikov, N. A.; Pan'chak, A. N.
2013-09-01
A new method has been developed for accurate measurements of the solar cell temperature in maximum power point (MPP) operation regime in comparison with that in open circuit (OC) regime (TMPP and TOC). For this, an electronic circuit has been elaborated for fast variation of the cell load conditions and for voltage measurements, so that VOC values could serve as an indicator of TMPP at the first moment after the load disconnection. The method was verified in indoor investigations of the single-junction AlGaAs/GaAs cells under CW laser irradiation, where different modifications of the heat spreaders were involved. PV modules of the "SMALFOC" design (Small-size concentrators; Multijunction cells; "All-glass" structure; Lamination technology; Fresnel Optics for Concentration) with triple-junction InGaP/GaAs/Ge cells were examined outdoors to evaluate temperature regimes of their operation.
High-efficiency inverted metamorphic 1.7/1.1 eV GaInAsP/GaInAs dual-junction solar cells
NASA Astrophysics Data System (ADS)
Jain, Nikhil; Schulte, Kevin L.; Geisz, John F.; Friedman, Daniel J.; France, Ryan M.; Perl, Emmett E.; Norman, Andrew G.; Guthrey, Harvey L.; Steiner, Myles A.
2018-01-01
Photovoltaic conversion efficiencies of 32.6 ± 1.4% under the AM1.5 G173 global spectrum, and 35.5% ± 1.2% at 38-suns concentration under the direct spectrum, are demonstrated for a monolithic, dual-junction 1.7/1.1 eV solar cell. The tandem cell consists of a 1.7 eV GaInAsP top-junction grown lattice-matched to a GaAs substrate, followed by a metamorphic 1.1 eV GaInAs junction grown on a transparent, compositionally graded metamorphic AlGaInAs buffer. This bandgap combination is much closer to the dual-junction optimum and offers headroom for absolute 3% improvement in efficiency, in comparison to the incumbent lattice-matched GaInP/GaAs (˜1.86/1.41 eV) solar cells. The challenge of growing a high-quality 1.7 eV GaInAsP solar cell is the propensity for phase separation in the GaInAsP alloy. The challenge of lattice-mismatched GaInAs solar cell growth is that it requires minimizing the residual dislocation density during the growth of a transparent compositionally graded buffer to enable efficient metamorphic tandem cell integration. Transmission electron microscopy reveals relatively weak composition fluctuation present in the 1.7 eV GaInAsP alloy, attained through growth control. The threading dislocation density of the GaInAs junction is ˜1 × 106 cm-2, as determined from cathodoluminescence measurements, highlighting the quality of the graded buffer. These material advances have enabled the performance of both junctions to reach over 80% of their Shockley-Queisser limiting efficiencies, with both the subcells demonstrating a bandgap-voltage offset, WOC (=Eg/q-VOC), of ˜0.39 V.
High-efficiency inverted metamorphic 1.7/1.1 eV GaInAsP/GaInAs dual-junction solar cells
Jain, Nikhil; Schulte, Kevin L.; Geisz, John F.; ...
2018-01-29
Photovoltaic conversion efficiencies of 32.6 +/- 1.4% under the AM1.5 G173 global spectrum, and 35.5 +/- 1.2% at 38-suns concentration under the direct spectrum, are demonstrated for a monolithic, dual-junction 1.7/1.1 eV solar cell. The tandem cell consists of a 1.7 eV GaInAsP top-junction grown lattice-matched to a GaAs substrate, followed by a metamorphic 1.1 eV GaInAs junction grown on a transparent, compositionally graded metamorphic AlGaInAs buffer. This bandgap combination is much closer to the dual-junction optimum and offers headroom for absolute 3% improvement in efficiency, in comparison to the incumbent lattice-matched GaInP/GaAs (~1.86/1.41 eV) solar cells. The challenge ofmore » growing a high-quality 1.7 eV GaInAsP solar cell is the propensity for phase separation in the GaInAsP alloy. The challenge of lattice-mismatched GaInAs solar cell growth is that it requires minimizing the residual dislocation density during the growth of a transparent compositionally graded buffer to enable efficient metamorphic tandem cell integration. Transmission electron microscopy reveals relatively weak composition fluctuation present in the 1.7 eV GaInAsP alloy, attained through growth control. The threading dislocation density of the GaInAs junction is ~1 x 10^6 cm-2, as determined from cathodoluminescence measurements, highlighting the quality of the graded buffer. These material advances have enabled the performance of both junctions to reach over 80% of their Shockley-Queisser limiting efficiencies, with both the subcells demonstrating a bandgap-voltage offset, WOC (=Eg/q-VOC), of ~0.39 V.« less
High-efficiency inverted metamorphic 1.7/1.1 eV GaInAsP/GaInAs dual-junction solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Nikhil; Schulte, Kevin L.; Geisz, John F.
Photovoltaic conversion efficiencies of 32.6 +/- 1.4% under the AM1.5 G173 global spectrum, and 35.5 +/- 1.2% at 38-suns concentration under the direct spectrum, are demonstrated for a monolithic, dual-junction 1.7/1.1 eV solar cell. The tandem cell consists of a 1.7 eV GaInAsP top-junction grown lattice-matched to a GaAs substrate, followed by a metamorphic 1.1 eV GaInAs junction grown on a transparent, compositionally graded metamorphic AlGaInAs buffer. This bandgap combination is much closer to the dual-junction optimum and offers headroom for absolute 3% improvement in efficiency, in comparison to the incumbent lattice-matched GaInP/GaAs (~1.86/1.41 eV) solar cells. The challenge ofmore » growing a high-quality 1.7 eV GaInAsP solar cell is the propensity for phase separation in the GaInAsP alloy. The challenge of lattice-mismatched GaInAs solar cell growth is that it requires minimizing the residual dislocation density during the growth of a transparent compositionally graded buffer to enable efficient metamorphic tandem cell integration. Transmission electron microscopy reveals relatively weak composition fluctuation present in the 1.7 eV GaInAsP alloy, attained through growth control. The threading dislocation density of the GaInAs junction is ~1 x 10^6 cm-2, as determined from cathodoluminescence measurements, highlighting the quality of the graded buffer. These material advances have enabled the performance of both junctions to reach over 80% of their Shockley-Queisser limiting efficiencies, with both the subcells demonstrating a bandgap-voltage offset, WOC (=Eg/q-VOC), of ~0.39 V.« less
NASA Astrophysics Data System (ADS)
Silva, Pedro F.; Henry, Bernard; Marques, Fernando O.; Hildenbrand, Anthony; Lopes, Ana; Madureira, Pedro; Madeira, José; Nunes, João C.; Roxerová, Zuzana
2018-02-01
The morphology of volcanic oceanic islands results from the interplay between constructive and destructive processes, and tectonics. In this study, the analysis of the paleomagnetic directions obtained on well-dated volcanic rocks is used as a tool to assess tilting related to tectonics and large-scale volcano instability along the Pico-Faial linear volcanic ridge (Azores Triple Junction, Central-North Atlantic). For this purpose, 530 specimens from 46 lava flows and one dyke from Pico and Faial islands were submitted to thermal and alternating magnetic fields demagnetizations. Detailed rock magnetic analyses, including thermomagnetic analyses and classical high magnetic field experiments revealed titanomagnetites with different Ti-content as the primary magnetic carrier, capable of recording stable remanent magnetizations. In both islands, the paleomagnetic analysis yields a Characteristic Remanent Magnetization, which presents island mean direction with normal and reversed polarities in agreement with the islands location and the age of the studied lava flows, indicating a primary thermo-remanent magnetization. Field observations and paleomagnetic data show that lava flows were emplaced on pre-existing slopes and were later affected by significant tilting. In Faial Island, magmatic inflation and normal faults making up an island-scale graben, can be responsible for the tilting. In Pico Island, inflation related to magma intrusion during flow emplacement can be at the origin of the inferred tilting, whereas gradual downward movement of the SE flank by slumping processes appears mostly translational.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trull, T.W.; Kurz, M.D.; Perfit, M.R.
In order to assess the nature and spatial extent of subduction contributions to arc volcanism, Sr and He isotopic compositions are measured for dredged volcanic rocks from the Woodlark Basin in the western Pacific. {sup 87}Sr/{sup 86}Sr ratios increase geographically, from ocean ridge values (.7025-.7029) at the Woodlark Spreading Center to island arc ratios (.7035-.7039) in the Solomon Islands forearc, with intermediate values near the triple junction where the Woodlark Spreading Center subducts beneath the Solomon Islands. {sup 3}He/{sup 4}He ratios are also more radiogenic in the forearc (6.9 {plus minus} .2 R{sub a} at active Kavachi volcano) than alongmore » the spreading center, where values typical of major ocean ridges were found (8.2 - 9.3 R{sub a}). Very low {sup 3}He/{sup 4}He ratios occur in many triple junction rocks (.1 to 5 R{sub a}), but consideration of He isotopic differences between crushing and melting analyses suggests that the low ratios were caused by atmospheric (1 R{sub a}) and radiogenic ({approx} 0.2 R{sub a}) helium addition after eruption. Variations in unaltered, magnetic {sup 3}He/{sup 4}He, and {sup 87}Sr/{sup 86}Sr ratios are best explained by subduction-related fluid or silicate melt contributions to the magma source region, perhaps from ancient Pacific lithosphere. However, mantle volatiles dominate the generation of Woodlark Basin rocks despite extensive subduction in the region.« less
Ridge-trench collision in Archean and Post-Archean crustal growth: Evidence from southern Chile
NASA Technical Reports Server (NTRS)
Nelson, E. P.; Forsythe, R. D.
1988-01-01
The growth of continental crust at convergent plate margins involves both continuous and episodic processes. Ridge-trench collision is one episodic process that can cause significant magmatic and tectonic effects on convergent plate margins. Because the sites of ridge collision (ridge-trench triple junctions) generally migrate along convergent plate boundaries, the effects of ridge collision will be highly diachronous in Andean-type orogenic belts and may not be adequately recognized in the geologic record. The Chile margin triple junction (CMTJ, 46 deg S), where the actively spreading Chile rise is colliding with the sediment-filled Peru-Chile trench, is geometrically and kinematically the simplest modern example of ridge collision. The south Chile margin illustrates the importance of the ridge-collision tectonic setting in crustal evolution at convergent margins. Similarities between ridge-collision features in southern Chile and features of Archean greenstone belts raise the question of the importance of ridge collision in Archean crustal growth. Archean plate tectonic processes were probably different than today; these differences may have affected the nature and importance of ridge collision during Archean crustal growth. In conclusion, it is suggested that smaller plates, greater ridge length, and/or faster spreading all point to the likelihood that ridge collision played a greater role in crustal growth and development of the greenstone-granite terranes during the Archean. However, the effects of modern ridge collision, and the processes involved, are not well enough known to develop specific models for the Archean ridge collison.
High efficiency solar cells for concentrator systems: silicon or multi-junction?
NASA Astrophysics Data System (ADS)
Slade, Alexander; Stone, Kenneth W.; Gordon, Robert; Garboushian, Vahan
2005-08-01
Amonix has become the first company to begin production of high concentration silicon solar cells where volumes are over 10 MW/year. Higher volumes are available due to the method of manufacture; Amonix solely uses semiconductor foundries for solar cell production. In the previous years of system and cell field testing, this method of manufacturing enabled Amonix to maintain a very low overhead while incurring a high cost for the solar cell. However, recent simplifications to the solar cell processing sequence resulted in cost reduction and increased yield. This new process has been tested by producing small qualities in very short time periods, enabling a simulation of high volume production. Results have included over 90% wafer yield, up to 100% die yield and world record performance (η =27.3%). This reduction in silicon solar cell cost has increased the required efficiency for multi-junction concentrator solar cells to be competitive / advantageous. Concentrator systems are emerging as a low-cost, high volume option for solar-generated electricity due to the very high utilization of the solar cell, leading to a much lower $/Watt cost of a photovoltaic system. Parallel to this is the onset of alternative solar cell technologies, such as the very high efficiency multi-junction solar cells developed at NREL over the last two decades. The relatively high cost of these type of solar cells has relegated their use to non-terrestrial applications. However, recent advancements in both multi-junction concentrator cell efficiency and their stability under high flux densities has made their large-scale terrestrial deployment significantly more viable. This paper presents Amonix's experience and testing results of both high-efficiency silicon rear-junction solar cells and multi-junction solar cells made for concentrated light operation.
Sadaf, S M; Zhao, S; Wu, Y; Ra, Y-H; Liu, X; Vanka, S; Mi, Z
2017-02-08
To date, semiconductor light emitting diodes (LEDs) operating in the deep ultraviolet (UV) spectral range exhibit very low efficiency due to the presence of large densities of defects and extremely inefficient p-type conduction of conventional AlGaN quantum well heterostructures. We have demonstrated that such critical issues can be potentially addressed by using nearly defect-free AlGaN tunnel junction core-shell nanowire heterostructures. The core-shell nanowire arrays exhibit high photoluminescence efficiency (∼80%) in the UV-C band at room temperature. With the incorporation of an epitaxial Al tunnel junction, the p-(Al)GaN contact-free nanowire deep UV LEDs showed nearly one order of magnitude reduction in the device resistance, compared to the conventional nanowire p-i-n device. The unpackaged Al tunnel junction deep UV LEDs exhibit an output power >8 mW and a peak external quantum efficiency ∼0.4%, which are nearly one to two orders of magnitude higher than previously reported AlGaN nanowire devices. Detailed studies further suggest that the maximum achievable efficiency is limited by electron overflow and poor light extraction efficiency due to the TM polarized emission.
NASA Astrophysics Data System (ADS)
Natali, Claudio; Beccaluva, Luigi; Bianchini, Gianluca; Siena, Franca
2010-05-01
The Oligocene Continental Flood Basalts (CFB) of the Northern Ethiopia and the conjugate Yemen province testifies a huge volcanic event related to the "Afar plume" occurred at ca. 30 Ma (in 1 Ma or less; Hofmann et al., 1997) prior to the continental rifting stage. The zonal arrangement of CFB lavas with Low-Ti tholeiites (LT) in the west, High-Ti tholeiites (HT1) to the east and very High-Ti transitional basalts and picrites (HT2, TiO2 4-6 wt%) closer to the Afar triple junction has been considered a record of magmas generated from the flanks to the centre of a plume head, currently corresponding to the Afar hotspot (Beccaluva et al., 2009). In the central-eastern part of the plateau (Lalibela area), neighbouring the Afar escarpment, abundant rhyolites characterize the upper part of the volcanic sequence and have been interpreted as the differentiated products of CFB magmas (Ayalew et al., 2006). The unusual association of picrite and rhyolite magmas erupted in an elongated area, parallel to the Afar escarpment, appears to be related to peculiar tectonomagmatic events developed in the apical zone of a stretched lithosphere impinged by a mantle plume. As previously suggested, the HT basaltic and picritic magmas could have been generated in the innermost part (core) of the plume head from the hottest, deepest and most metasomatised mantle domains, enriched by "plume components" (Beccaluva et al., 2009). The late stages of these magmatic events were accompanied by the onset of continental rifting, with faulting and block tilting, leading to favourable conditions for magma differentiation in shallow (crustal) chambers located N-S along the future Afar Escarpment. Quantitative petrological modelling shows that efficient fractional crystallization processes of HT transitional basaltic magmas could result in highly differentiated peralkaline rhyolitic products, generally localized at the top (lower density) of the magma reservoirs. From these latter, abundant rhyolitic magma were erupted (sometimes alternating to HT basalts and picrites) during the paroxystic extensional phases which ultimately led to continental break-up and the formation of the Red Sea-Gulf of Aden-East African rift system centred in the Afar "triple junction". References: Ayalew et al. (2006). Geol. Soc. London Sp. Pub. 259, 121-130. Beccaluva et al. (2009). J. Petrol. 50, 1377-1403. Hofmann et al. (1997). Nature 389, 838-841.
NASA Astrophysics Data System (ADS)
Horner-Johnson, Benjamin C.; Gordon, Richard G.; Cowles, Sara M.; Argus, Donald F.
2005-07-01
A new analysis of geologically current plate motion across the Southwest Indian ridge (SWIR) and of the current location of the Nubia-Antarctica-Somalia triple junction is presented. Spreading rates averaged over the past 3.2 Myr are estimated from 103 well-distributed, nearly ridge-perpendicular profiles that cross the SWIR. All available bathymetric data are evaluated to estimate the azimuths and uncertainties of transform faults; six are estimated from multibeam data and 12 from precision depth recorder (PDR) data. If both the Nubian and Somalian component plates are internally rigid near the SWIR and if the Nubia-Somalia boundary is narrow where it intersects the SWIR, that intersection lies between ~26°E and ~32°E. Thus, the boundary is either along the spreading ridge segment just west of the Andrew Bain transform fault complex (ABTFC) or along some of the transform fault complex itself. These limits are narrower than and contained within limits of ~24°E to ~33°E previously found by Lemaux et al. from an analysis of the locations of magnetic anomaly 5. The data are consistent with a narrow boundary, but also consistent with a diffuse boundary as wide as ~700 km. The new Nubia-Somalia pole of rotation lies ~10° north of the Bouvet triple junction, which places it far to the southwest of southern Africa. The new angular velocity determined only from data along the SWIR indicates displacement rates of Somalia relative to Nubia of 3.6 +/- 0.5 mm yr-1 (95 per cent confidence limits) towards 176° (S04° E) between Somalia and Nubia near the SWIR, and of 8.3 +/- 1.9 mm yr-1 (95 per cent confidence limits) towards 121° (S59° E) near Afar. The new Nubia-Somalia angular velocity differs significantly from the Nubia-Somalia angular velocity estimated from Gulf of Aden and Red sea data. This significant difference has three main alternative explanations: (i) that the plate motion data have substantial unmodelled systematic errors, (ii) that the Nubian component plate is not a single rigid plate, or (iii) that the Somalian component plate is not a single rigid plate. We tentatively prefer the third explanation given the geographical distribution of earthquakes within the African composite plate relative to the inferred location of the Nubia-Somalia boundary along the SWIR.
Formation of p-n-p junction with ionic liquid gate in graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Xin; Tang, Ning, E-mail: ntang@pku.edu.cn, E-mail: geweikun@mail.tsinghua.edu.cn, E-mail: bshen@pku.edu.cn; Duan, Junxi
2014-04-07
Ionic liquid gating is a technique which is much more efficient than solid gating to tune carrier density. To observe the electronic properties of such a highly doped graphene device, a top gate made of ionic liquid has been used. By sweeping both the top and back gate voltage, a p-n-p junction has been created. The mechanism of forming the p-n-p junction has been discussed. Tuning the carrier density by ionic liquid gate can be an efficient method to be used in flexible electronics.
Triple-channel microreactor for biphasic gas-liquid reactions: Photosensitized oxygenations.
Maurya, Ram Awatar; Park, Chan Pil; Kim, Dong-Pyo
2011-01-01
A triple-channel microreactor fabricated by means of a soft-lithography technique was devised for efficient biphasic gas-liquid reactions. The excellent performance of the microreactor was demonstrated by carrying out photosensitized oxygenations of α-terpinene, citronellol, and allyl alcohols.
Yang, Liyou; Chen, Liangfan
1998-03-24
Attractive multi-junction solar cells and single junction solar cells with excellent conversion efficiency can be produced with a microcrystalline tunnel junction, microcrystalline recombination junction or one or more microcrystalline doped layers by special plasma deposition processes which includes plasma etching with only hydrogen or other specified etchants to enhance microcrystalline growth followed by microcrystalline. nucleation with a doped hydrogen-diluted feedstock.
2010-01-21
substituted by Hf in the TaSi2 phase, indicating that this silicide has a great solubility for the group IV metals . At the triple point junctions Ta5Si3...Mathis Müller for his precious help in TEM specimens’ preparations . FA8655-09-M-4002 40 References 1. L. E. Toth: Transition Metal Carbides and...Transition Metal Disilicides,’ Acta Mater., 44, 3035 (1996). 21. H. Pastor and R. Meyer: An Investigation of the Effect of Additions of Metal Silicides
Biosensing using long-range surface plasmon waveguides
NASA Astrophysics Data System (ADS)
Krupin, Oleksiy; Khodami, Maryam; Fan, Hui; Wong, Wei Ru; Mahamd Adikan, Faisal Rafiq; Berini, Pierre
2017-05-01
Long-range surface plasmon waveguides, and their application to various transducer architectures for amplitude- or phase-sensitive biosensing, are discussed. Straight and Y-junction waveguides are used for direct intensity-based detection, whereas Bragg gratings and single-, dual- and triple-output Mach Zehnder interferometers are used for phasebased detection. In either case, multiple-output biosensors which provide means for referencing are very useful to eliminate common perturbations and drift. Application of the biosensors to disease detection in complex fluids is discussed. Application to biomolecular interaction analysis and kinetics extraction is also discussed.
Modeling Radiation Effects on a Triple Junction Solar Cell using Silvaco ATLAS
2012-06-01
circuit voltage can then be calculated from ln 1 Loc t S IV V I (4.3) where IS is the reverse saturation current, and Vt is the...orbiting electronic equipment. The first orbit of interest is the low Earth orbit ( LEO ). LEO encompasses any orbit within 650 kilometers of the...Light Beams #Solving #Meshing mesh width=200000 #X-Mesh: Surface=500 um2 = 1/200000 cm2 x.mesh loc =-250 spac=50 x.mesh loc =0 spac=10
Preliminary low temperature electron irradiation of triple junction solar cells
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.
2005-01-01
JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature.
Triple-channel microreactor for biphasic gas–liquid reactions: Photosensitized oxygenations
Maurya, Ram Awatar; Park, Chan Pil
2011-01-01
Summary A triple-channel microreactor fabricated by means of a soft-lithography technique was devised for efficient biphasic gas–liquid reactions. The excellent performance of the microreactor was demonstrated by carrying out photosensitized oxygenations of α-terpinene, citronellol, and allyl alcohols. PMID:21915221
Perl, Emmett E.; Simon, John; Friedman, Daniel J.; ...
2018-01-12
We demonstrate dual-junction (Al)GaInP/GaAs solar cells designed for operation at 400 degrees C and 1000x concentration. For the top junction, we compare (Al)GaInP solar cells with room-temperature bandgaps ranging from 1.9 to 2.0 eV. At 400 degrees C, we find that ~1.9 eV GaInP solar cells have a higher open-circuit voltage and a lower sheet resistance than higher bandgap (Al)GaInP solar cells, giving them a clear advantage in a tandem configuration. Dual-junction GaInP/GaAs solar cells are fabricated, and we show temperature-dependent external quantum efficiency, illuminated current-voltage, and concentrator measurements from 25 degrees C to 400 degrees C. We measure amore » power conversion efficiency of 16.4% +/- 1% at 400 degrees C and 345 suns for the best dual-junction cell, and discuss multiple pathways to improve the performance further. After undergoing a 200 h soak at 400 degrees C, the dual-junction device shows a relative loss in efficiency of only ~1%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, Emmett E.; Simon, John; Friedman, Daniel J.
We demonstrate dual-junction (Al)GaInP/GaAs solar cells designed for operation at 400 degrees C and 1000x concentration. For the top junction, we compare (Al)GaInP solar cells with room-temperature bandgaps ranging from 1.9 to 2.0 eV. At 400 degrees C, we find that ~1.9 eV GaInP solar cells have a higher open-circuit voltage and a lower sheet resistance than higher bandgap (Al)GaInP solar cells, giving them a clear advantage in a tandem configuration. Dual-junction GaInP/GaAs solar cells are fabricated, and we show temperature-dependent external quantum efficiency, illuminated current-voltage, and concentrator measurements from 25 degrees C to 400 degrees C. We measure amore » power conversion efficiency of 16.4% +/- 1% at 400 degrees C and 345 suns for the best dual-junction cell, and discuss multiple pathways to improve the performance further. After undergoing a 200 h soak at 400 degrees C, the dual-junction device shows a relative loss in efficiency of only ~1%.« less
Optoelectronic response of a WS2 tubular p-n junction
NASA Astrophysics Data System (ADS)
Zhang, Y. J.; Onga, M.; Qin, F.; Shi, W.; Zak, A.; Tenne, R.; Smet, J.; Iwasa, Y.
2018-07-01
Due to their favourable and rich electronic and optical properties, group-VI-B transition-metal dichalcogenides (TMDs) have attracted considerable interest. They have earned their position in the materials portfolio of the spintronics and valleytronics communities. The electrical performance of TMDs is enhanced by rolling up the two-dimensional (2D) sheets to form quasi-one-dimensional (1D) tubular structures. The fabrication of p-n junctions out of these tubular TMDs would boost their potential for optoelectronic devices as such junctions represent a fundamental building block. Here, we report the realization of a p-n junction out of a single, isolated WS2-nanotube (WS2-NT). Light-emitting diode operation and photovoltaic behaviour were observed based on such p-n junctions. The emitted light as well as the photovoltaic effect exhibit strong linear polarization characteristics due to the quasi-1D nature. The external quantum efficiency for the photovoltaic effect reaches a value as high as 4.8%, exceeding by far that of 2D TMDs and even approaching the internal quantum efficiency of the 2D TMDs. This efficiency improvement indicates that TMD nanotubes are superior candidates over 2D TMDs for optoelectronic applications.
NASA Astrophysics Data System (ADS)
Ellis, Matthew O. A.; Stamenova, Maria; Sanvito, Stefano
2017-12-01
There exists a significant challenge in developing efficient magnetic tunnel junctions with low write currents for nonvolatile memory devices. With the aim of analyzing potential materials for efficient current-operated magnetic junctions, we have developed a multi-scale methodology combining ab initio calculations of spin-transfer torque with large-scale time-dependent simulations using atomistic spin dynamics. In this work we introduce our multiscale approach, including a discussion on a number of possible schemes for mapping the ab initio spin torques into the spin dynamics. We demonstrate this methodology on a prototype Co/MgO/Co/Cu tunnel junction showing that the spin torques are primarily acting at the interface between the Co free layer and MgO. Using spin dynamics we then calculate the reversal switching times for the free layer and the critical voltages and currents required for such switching. Our work provides an efficient, accurate, and versatile framework for designing novel current-operated magnetic devices, where all the materials details are taken into account.
Single P-N junction tandem photovoltaic device
Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA
2012-03-06
A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.
Single P-N junction tandem photovoltaic device
Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA
2011-10-18
A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.
Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency.
Liu, Yongsheng; Chen, Chun-Chao; Hong, Ziruo; Gao, Jing; Yang, Yang Michael; Zhou, Huanping; Dou, Letian; Li, Gang; Yang, Yang
2013-11-28
A two-dimensional conjugated small molecule (SMPV1) was designed and synthesized for high performance solution-processed organic solar cells. This study explores the photovoltaic properties of this molecule as a donor, with a fullerene derivative as an acceptor, using solution processing in single junction and double junction tandem solar cells. The single junction solar cells based on SMPV1 exhibited a certified power conversion efficiency of 8.02% under AM 1.5 G irradiation (100 mW cm(-2)). A homo-tandem solar cell based on SMPV1 was constructed with a novel interlayer (or tunnel junction) consisting of bilayer conjugated polyelectrolyte, demonstrating an unprecedented PCE of 10.1%. These results strongly suggest solution-processed small molecular materials are excellent candidates for organic solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Y.; Li, X.; Xu, P.
2015-02-02
We report a high efficiency single Ag nanowire (NW)/p-GaN substrate Schottky junction-based ultraviolet light emitting diode (UV-LED). The device demonstrates deep UV free exciton electroluminescence at 362.5 nm. The dominant emission, detectable at ultralow (<1 μA) forward current, does not exhibit any shifts when the forward current is increased. External quantum efficiency (EQE) as high as 0.9% is achieved at 25 μA current at room temperature. Experiments and simulation analysis show that devices fabricated with thinner Ag NWs have higher EQE. However, for very thin Ag NWs (diameter < 250 nm), this trend breaks down due to heat accumulation in the NWs. Our simple device architecturemore » offers a potentially cost-effective scheme to fabricate high efficiency Schottky junction-based UV-LEDs.« less
NASA Astrophysics Data System (ADS)
Ueno, Hideki; Kawahara, Shintaro; Nakayama, Hiroshi
Relationship between barrier discharge characteristics and ozone generation under ac voltage application on triple needles-plane configuration has been investigated for various distances among triple needle-tips (d=0 ∼ 7.0mm) at constant distance between needle tip and plane (g=3.0mm) in dry air. Characteristics of barrier discharge and ozone generation depend on the needle-tips distance. It is considered that the influence is caused by space charge and accumulated charge suggested from discharge image by still camera and CCD camera. And ozone generation efficiency is also estimated by power consumption and ozone concentration. As a result, when the distance among triple needle-tips is narrow, the above-mentioned influence is strengthened. And in this case, ozone generation efficiency is improved.
NREL's III-V Team Demonstrates Record Efficiency Dual-Junction Solar Cell |
-junction solar cell, surpassing the previous mark by a full percentage. Under one sun of illumination, the . Department of Energy's National Renewable Energy Laboratory (NREL) have set a record efficiency for a dual lattice-mismatched, 1.1-eV GaInAs bottom cell, grown monolithically by atmospheric pressure metal-organic
owlcpp: a C++ library for working with OWL ontologies.
Levin, Mikhail K; Cowell, Lindsay G
2015-01-01
The increasing use of ontologies highlights the need for a library for working with ontologies that is efficient, accessible from various programming languages, and compatible with common computational platforms. We developed owlcpp, a library for storing and searching RDF triples, parsing RDF/XML documents, converting triples into OWL axioms, and reasoning. The library is written in ISO-compliant C++ to facilitate efficiency, portability, and accessibility from other programming languages. Internally, owlcpp uses the Raptor RDF Syntax library for parsing RDF/XML and the FaCT++ library for reasoning. The current version of owlcpp is supported under Linux, OSX, and Windows platforms and provides an API for Python. The results of our evaluation show that, compared to other commonly used libraries, owlcpp is significantly more efficient in terms of memory usage and searching RDF triple stores. owlcpp performs strict parsing and detects errors ignored by other libraries, thus reducing the possibility of incorrect semantic interpretation of ontologies. owlcpp is available at http://owl-cpp.sf.net/ under the Boost Software License, Version 1.0.
Project Triple E Update: A Multi-Institution Implementation of a Faculty Support System.
ERIC Educational Resources Information Center
Robinson Group, Ltd., Tempe, AZ.
Project "Triple E" is cooperative endeavor initiated by The Robinson Group and International Business Machines, involving six community colleges in efforts to "empower" faculty by increasing access to information about, and communication with, students; to increase faculty "efficiency" by automating record keeping; and to enhance faculty…
A solar photovoltaic system with ideal efficiency close to the theoretical limit.
Zhao, Yuan; Sheng, Ming-Yu; Zhou, Wei-Xi; Shen, Yan; Hu, Er-Tao; Chen, Jian-Bo; Xu, Min; Zheng, Yu-Xiang; Lee, Young-Pak; Lynch, David W; Chen, Liang-Yao
2012-01-02
In order to overcome some physical limits, a solar system consisting of five single-junction photocells with four optical filters is studied. The four filters divide the solar spectrum into five spectral regions. Each single-junction photocell with the highest photovoltaic efficiency in a narrower spectral region is chosen to optimally fit into the bandwidth of that spectral region. Under the condition of solar radiation ranging from 2.4 SUN to 3.8 SUN (AM1.5G), the measured peak efficiency under 2.8 SUN radiation reaches about 35.6%, corresponding to an ideal efficiency of about 42.7%, achieved for the photocell system with a perfect diode structure. Based on the detailed-balance model, the calculated theoretical efficiency limit for the system consisting of 5 single-junction photocells can be about 52.9% under 2.8 SUN (AM1.5G) radiation, implying that the ratio of the highest photovoltaic conversion efficiency for the ideal photodiode structure to the theoretical efficiency limit can reach about 80.7%. The results of this work will provide a way to further enhance the photovoltaic conversion efficiency for solar cell systems in future applications.
Triple-effect absorption refrigeration system with double-condenser coupling
DeVault, R.C.; Biermann, W.J.
1993-04-27
A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.
Triple-effect absorption refrigeration system with double-condenser coupling
DeVault, Robert C.; Biermann, Wendell J.
1993-01-01
A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.
Arc/Forearc Lengthening at Plate Triple Junctions and the Formation of Ophiolitic Soles
NASA Astrophysics Data System (ADS)
Casey, John; Dewey, John
2013-04-01
The principal enigma of large obducted ophiolite slabs is that they clearly must have been generated by some form of organized sea-floor spreading/plate-accretion, such as may be envisioned for the oceanic ridges, yet the volcanics commonly have arc affinity (Miyashiro) with boninites (high-temperature/low-pressure, high Mg and Si andesites), which are suggestive of a forearc origin. PT conditions under which boninites and metamorphic soles form and observations of modern forearc systems lead us to the conclusion that ophiolite formation is associated with overidding plate spreading centers that intersect the trench to form ridge-trench-trench of ridge-trench-tranform triple junctions. The spreading centers extend and lengthen the forearc parallel to the trench and by definition are in supra-subduction zone (SSZ) settings. Many ophiolites likewise have complexly-deformed associated mafic-ultramafic assemblages that suggest fracture zone/transform t along their frontal edges, which in turn has led to models involving the nucleation of subduction zones on fracture zones or transpressional transforms. Hitherto, arc-related sea-floor-spreading has been considered to be either pre-arc (fore-arc boninites) or post-arc (classic Karig-style back arc basins that trench-parallell split arcs). Syn-arc boninites and forearc oceanic spreading centers that involve a stable ridge/trench/trench triple or a ridge-trench-transform triple junction, the ridge being between the two upper plates, are consistent with large slab ophiolite formation in a readied obduction settting. The direction of subduction must be oblique with a different sense in the two subduction zones and the oblique subduction cannot be partitioned into trench orthogonal and parallel strike-slip components. As the ridge spreads, new oceanic lithosphere is created within the forearc, the arc and fore-arc lengthen significantly, and a syn-arc ophiolite forearc complex is generated by this mechanism. The ophiolite ages along arc-strike; a distinctive diachronous MORB-like to boninitic to arc volcanic stratigraphy develops vertically in the forearc and eruption centers progressively migrate from the forearc back to the main arc massif with time. Dikes in the ophiolite are highly oblique to the trench (as are back-arc magnetic anomalies. Boninites and high-mg andesites are generated in the fore-arc under the aqueous, low pressure/high temperature, regime at the ridge above the instantaneously developed subducting and dehydrating slab. Subducted slab refrigeration of the hanging wall ensues and accretion of MORB metabasites to the hanging wall of the subduction channel initiates. Mafic protolith garnet/two pyroxene granulites to greenschists accrete and form the inverted P and T metamorphic sole prior to obduction. Sole accretion of lithosphere begins at about 1000°C and the full retrogressive sole may be fully formed within ten to fifteen million years of accretion, at which time low grade subduction melanges accrete. Obduction of the SSZ forearc ophiolite with its subjacent metamorphic sole occurs whenever the oceanic arc attempts subduction of a stable buoyant continental or back arc margin.
Optimized efficiency in InP nanowire solar cells with accurate 1D analysis
NASA Astrophysics Data System (ADS)
Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas
2018-01-01
Semiconductor nanowire arrays are a promising candidate for next generation solar cells due to enhanced absorption and reduced material consumption. However, to optimize their performance, time consuming three-dimensional (3D) opto-electronics modeling is usually performed. Here, we develop an accurate one-dimensional (1D) modeling method for the analysis. The 1D modeling is about 400 times faster than 3D modeling and allows direct application of concepts from planar pn-junctions on the analysis of nanowire solar cells. We show that the superposition principle can break down in InP nanowires due to strong surface recombination in the depletion region, giving rise to an IV-behavior similar to that with low shunt resistance. Importantly, we find that the open-circuit voltage of nanowire solar cells is typically limited by contact leakage. Therefore, to increase the efficiency, we have investigated the effect of high-bandgap GaP carrier-selective contact segments at the top and bottom of the InP nanowire and we find that GaP contact segments improve the solar cell efficiency. Next, we discuss the merit of p-i-n and p-n junction concepts in nanowire solar cells. With GaP carrier selective top and bottom contact segments in the InP nanowire array, we find that a p-n junction design is superior to a p-i-n junction design. We predict a best efficiency of 25% for a surface recombination velocity of 4500 cm s-1, corresponding to a non-radiative lifetime of 1 ns in p-n junction cells. The developed 1D model can be used for general modeling of axial p-n and p-i-n junctions in semiconductor nanowires. This includes also LED applications and we expect faster progress in device modeling using our method.
Inverted Three-Junction Tandem Thermophotovoltaic Modules
NASA Technical Reports Server (NTRS)
Wojtczuk, Steven
2012-01-01
An InGaAs-based three-junction (3J) tandem thermophotovoltaic (TPV) cell has been investigated to utilize more of the blackbody spectrum (from a 1,100 C general purpose heat source GPHS) efficiently. The tandem consists of three vertically stacked subcells, a 0.74-eV InGaAs cell, a 0.6- eV InGaAs cell, and a 0.55-eV InGaAs cell, as well as two interconnecting tunnel junctions. A greater than 20% TPV system efficiency was achieved by another group with a 1,040 C blackbody using a single-bandgap 0.6- eV InGaAs cell MIM (monolithic interconnected module) (30 lateral junctions) that delivered about 12 V/30 or 0.4 V/junction. It is expected that a three-bandgap tandem MIM will eventually have about 3 this voltage (1.15 V) and about half the current. A 4 A/cm2 would be generated by a single-bandgap 0.6-V InGaAs MIM, as opposed to the 2 A/cm2 available from the same spectrum when split among the three series-connected junctions in the tandem stack. This would then be about a 50% increase (3xVoc, 0.5xIsc) in output power if the proposed tandem replaced the single- bandgap MIM. The advantage of the innovation, if successful, would be a 50% increase in power conversion efficiency from radioisotope heat sources using existing thermophotovoltaics. Up to 50% more power would be generated for radioisotope GPHS deep space missions. This type of InGaAs multijunction stack could be used with terrestrial concentrator solar cells to increase efficiency from 41 to 45% or more.
Optimized efficiency in InP nanowire solar cells with accurate 1D analysis.
Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas
2018-01-26
Semiconductor nanowire arrays are a promising candidate for next generation solar cells due to enhanced absorption and reduced material consumption. However, to optimize their performance, time consuming three-dimensional (3D) opto-electronics modeling is usually performed. Here, we develop an accurate one-dimensional (1D) modeling method for the analysis. The 1D modeling is about 400 times faster than 3D modeling and allows direct application of concepts from planar pn-junctions on the analysis of nanowire solar cells. We show that the superposition principle can break down in InP nanowires due to strong surface recombination in the depletion region, giving rise to an IV-behavior similar to that with low shunt resistance. Importantly, we find that the open-circuit voltage of nanowire solar cells is typically limited by contact leakage. Therefore, to increase the efficiency, we have investigated the effect of high-bandgap GaP carrier-selective contact segments at the top and bottom of the InP nanowire and we find that GaP contact segments improve the solar cell efficiency. Next, we discuss the merit of p-i-n and p-n junction concepts in nanowire solar cells. With GaP carrier selective top and bottom contact segments in the InP nanowire array, we find that a p-n junction design is superior to a p-i-n junction design. We predict a best efficiency of 25% for a surface recombination velocity of 4500 cm s -1 , corresponding to a non-radiative lifetime of 1 ns in p-n junction cells. The developed 1D model can be used for general modeling of axial p-n and p-i-n junctions in semiconductor nanowires. This includes also LED applications and we expect faster progress in device modeling using our method.
Kinematics of the southern Red Sea-Afar Triple Junction and implications for plate dynamics
NASA Astrophysics Data System (ADS)
McClusky, Simon; Reilinger, Robert; Ogubazghi, Ghebrebrhan; Amleson, Aman; Healeb, Biniam; Vernant, Philippe; Sholan, Jamal; Fisseha, Shimelles; Asfaw, Laike; Bendick, Rebecca; Kogan, Lewis
2010-03-01
GPS measurements adjacent to the southern Red Sea and Afar Triple Junction, indicate that the Red Sea Rift bifurcates south of 17° N latitude with one branch following a continuation of the main Red Sea Rift (˜150° Az.) and the other oriented more N-S, traversing the Danakil Depression. These two rift branches account for the full Arabia-Nubia relative motion. The partitioning of extension between rift branches varies approximately linearly along strike; north of ˜16°N latitude, extension (˜15 mm/yr) is all on the main Red Sea Rift while at ˜13°N, extension (˜20 mm/yr) has transferred completely to the Danakil Depression. The Danakil Block separates the two rifts and rotates in a counterclockwise sense with respect to Nubia at a present-day rate of 1.9 ± 0.1°/Myr around a pole located at 17.0 ± 0.2°N, 39.7 ± 0.2°E, accommodating extension along the rifts and developing the roughly triangular geometry of the Danakil Depression. Rotating the Danakil Block back in time to close the Danakil Depression, and assuming that the rotation rate with respect to Nubia has been roughly constant, the present width of the Danakil Depression is consistent with initiation of block rotation at 9.3 ± 4 Ma, approximately coincident with the initiation of ocean spreading in the Gulf of Aden, and a concomitant ˜70% increase in the rate of Nubia-Arabia relative motion.
High Current ESD Test of Advanced Triple Junction Solar Array Coupon
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie
2015-01-01
A test was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by SSL. The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge testing at two string voltages (100 V, 150 V) and four array current (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micros to 2.9 ms. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission application.
High Current ESD Test of Advanced Triple Junction Solar Array Coupon
NASA Technical Reports Server (NTRS)
Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Hoang, B.; Wong, F.
2014-01-01
A test was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by SSL. The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge testing at two string voltages (100 V, 150 V) and four array current (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 µs to 2.9 ms. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission application.
High Current ESD Test of Advanced Triple Junction Solar Array Coupon
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie
2014-01-01
Testing was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by Space Systems/Loral, LLC (SSL). The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge (ESD) testing at two string voltages (100 V, 150 V) and four array currents (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micro-seconds to 2.75 milli-seconds. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission.
Plate deformation at depth under northern California: Slab gap or stretched slab?
ten Brink, Uri S.; Shimizu, N.; Molzer, P.C.
1999-01-01
Plate kinematic interpretations for northern California predict a gap in the underlying subducted slab caused by the northward migration of the Pacific-North America-Juan de Fuca triple junction. However, large-scale decompression melting and asthenospheric upwelling to the base of the overlying plate within the postulated gap are not supported by geophysical and geochemical observations. We suggest a model for the interaction between the three plates which is compatible with the observations. In this 'slab stretch' model the Juan de Fuca plate under coastal northern California deforms by stretching and thinning to fill the geometrical gap formed in the wake of the northward migrating Mendocino triple junction. The stretching is in response to boundary forces acting on the plate. The thinning results in an elevated geothermal gradient, which may be roughly equivalent to a 4 Ma oceanic lithosphere, still much cooler than that inferred by the slab gap model. We show that reequilibration of this geothermal gradient under 20-30 km thick overlying plate can explain the minor Neogene volcanic activity, its chemical composition, and the heat flow. In contrast to northern California, geochemical and geophysical consequences of a 'true' slab gap can be observed in the California Inner Continental Borderland offshore Los Angeles, where local asthenospheric upwelling probably took place during the Miocene as a result of horizontal extension and rotation of the overlying plate. The elevated heat flow in central California can be explained by thermal reequilibration of the stalled Monterey microplate under the Coast Ranges, rather than by a slab gap or viscous shear heating in the mantle.
A graphene/single GaAs nanowire Schottky junction photovoltaic device.
Luo, Yanbin; Yan, Xin; Zhang, Jinnan; Li, Bang; Wu, Yao; Lu, Qichao; Jin, Chenxiaoshuai; Zhang, Xia; Ren, Xiaomin
2018-05-17
A graphene/nanowire Schottky junction is a promising structure for low-cost high-performance optoelectronic devices. Here we demonstrate a graphene/single GaAs nanowire Schottky junction photovoltaic device. The Schottky junction is fabricated by covering a single layer graphene onto an n-doped GaAs nanowire. Under 532 nm laser excitation, the device exhibits a high responsivity of 231 mA W-1 and a short response/recover time of 85/118 μs at zero bias. Under AM 1.5 G solar illumination, the device has an open-circuit voltage of 75.0 mV and a short-circuit current density of 425 mA cm-2, yielding a remarkable conversion efficiency of 8.8%. The excellent photovoltaic performance of the device is attributed to the strong built-in electric field in the Schottky junction as well as the transparent property of graphene. The device is promising for self-powered high-speed photodetectors and low-cost high-efficiency solar cells.
Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H
2012-09-12
Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO(2)); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics.
Direct Free Carrier Photogeneration in Single Layer and Stacked Organic Photovoltaic Devices.
Chandran, Hrisheekesh Thachoth; Ng, Tsz-Wai; Foo, Yishu; Li, Ho-Wa; Qing, Jian; Liu, Xiao-Ke; Chan, Chiu-Yee; Wong, Fu-Lung; Zapien, Juan Antonio; Tsang, Sai-Wing; Lo, Ming-Fai; Lee, Chun-Sing
2017-06-01
High performance organic photovoltaic devices typically rely on type-II P/N junctions for assisting exciton dissociation. Heremans and co-workers recently reported a high efficiency device with a third organic layer which is spatially separated from the active P/N junction; but still contributes to the carrier generation by passing its energy to the P/N junction via a long-range exciton energy transfer mechanism. In this study the authors show that there is an additional mechanism contributing to the high efficiency. Some bipolar materials (e.g., subnaphthalocyanine chloride (SubNc) and subphthalocyanine chloride (SubPc)) are observed to generate free carriers much more effectively than typical organic semiconductors upon photoexcitation. Single-layer devices with SubNc or SubPc sandwiched between two electrodes can give power conversion efficiencies 30 times higher than those of reported single-layer devices. In addition, internal quantum efficiencies (IQEs) of bilayer devices with opposite stacking sequences (i.e., SubNc/SubPc vs SubPc/SubNc) are found to be the sum of IQEs of single layer devices. These results confirm that SubNc and SubPc can directly generate free carriers upon photoexcitation without assistance from a P/N junction. These allow them to be stacked onto each other with reversible sequence or simply stacking onto another P/N junction and contribute to the photocarrier generation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Prediction of 4H-SiC betavoltaic microbattery characteristics based on practical Ni-63 sources.
Gui, Gui; Zhang, Kan; Blanchard, James P; Ma, Zhenqiang
2016-01-01
We have investigated the performance of 4H-SiC betavoltaic microbatteries under exposure to the practical Ni-63 sources using the Monte Carlo method and Synopsys® Medici device simulator. A typical planar p-n junction betavoltaic device with the Ni-63 source of 20% purity on top is modeled in the simulation. The p-n junction structure includes a p+ layer, a p- layer, an n+ layer, and an n- layer. In order to obtain an accurate and valid predication, our simulations consider several practical factors, including isotope impurities, self-absorption, and full beta energy spectra. By simulating the effects of both the p-n junction configuration and the isotope source thickness on the battery output performance, we have achieved the optimal design of the device and maximum energy conversion efficiency. Our simulation results show that the energy conversion efficiency increases as the doping concentration and thickness of the p- layer increase, whereas it is independent of the total depth of the p-n junction. Furthermore, the energy conversion efficiency decreases as the thickness of the practical Ni-63 source increases, because of self-absorption in the isotope source. Therefore, we propose that a p-n junction betavoltaic cell with a thicker and heavily doped p- layer under exposure to a practical Ni-63 source with an appreciable thickness could produce the optimal energy conversion efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge
Olson, Jerry M.; Kurtz, Sarah R.; Friedman, Daniel J.
2001-01-01
A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.
Results of the Air Force high efficiency cascaded multiple bandgap solar cell programs
NASA Technical Reports Server (NTRS)
Rahilly, W. P.
1980-01-01
The III-V semiconductor materials system that was selected for continued cascade cell development was the AlGaAs cell on GaAs cell structure. The tunnel junction used as transparent ohmic contact between the top cell and the bottom cell continued to be the central difficulty in achieving the program objective of 25 percent AMO efficiency at 25 C. During the tunnel junction and top cell developments it became apparent that the AlGaAs cell has potential for independent development as a single junction converter and is a logical extension of the present GaAs heteroface technology.
Efficiency analysis of betavoltaic elements
NASA Astrophysics Data System (ADS)
Sachenko, A. V.; Shkrebtii, A. I.; Korkishko, R. M.; Kostylyov, V. P.; Kulish, M. R.; Sokolovskyi, I. O.
2015-09-01
The conversion of energy of electrons produced by a radioactive β-source into electricity in a Si and SiC p- n junctions is modeled. The features of the generation function that describes the electron-hole pair production by an electron flux and the emergence of a "dead layer" are discussed. The collection efficiency Q that describes the rate of electron-hole pair production by incident beta particles, is calculated taking into account the presence of the dead layer. It is shown that in the case of high-grade Si p- n junctions, the collection efficiency of electron-hole pairs created by a high-energy electrons flux (such as, e.g., Pm-147 beta flux) is close or equal to unity in a wide range of electron energies. For SiC p-n junctions, Q is near unity only for electrons with relatively low energies of about 5 keV (produced, e.g., by a tritium source) and decreases rapidly with further increase of electron energy. The conditions, under which the influence of the dead layer on the collection efficiency is negligible, are determined. The open-circuit voltage is calculated for realistic values of the minority carriers' diffusion coefficients and lifetimes in Si and SiC p- n junctions, irradiated by a high-energy electrons flux. Our calculations allow to estimate the attainable efficiency of betavoltaic elements.
Energy-efficient membrane separations in the sweetener industry. Final report for Phase I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babcock, W.C.
1984-02-14
The objective of the program is to investigate the use of membrane processes as energy-efficient alternatives to conventional separation processes in current use in the corn sweetener industry. Two applications of membranes were studied during the program: (1) the concentration of corn steep water by reverse osmosis; and (2) the concentration of dilute wastes called sweetwater with a combination of reverse osmosis and a process known as countercurrent reverse osmosis. Laboratory experiments were conducted for both applications, and the results were used to conduct technical and economic analyses of the process. It was determined that the concentration of steep watermore » by reverse osmosis plus triple-effect evaporation offers savings of a factor of 2.5 in capital costs and a factor of 4.5 in operating costs over currently used triple-effect evaporation. In the concentration of sweetwater by reverse osmosis and countercurrent reverse osmosis, capital costs would be about the same as those for triple-effect evaporation, but operating costs would be only about one-half those of triple-effect evaporation.« less
Yan, Kai; Wu, Di; Peng, Hailin; Jin, Li; Fu, Qiang; Bao, Xinhe; Liu, Zhongfan
2012-01-01
Device applications of graphene such as ultrafast transistors and photodetectors benefit from the combination of both high-quality p- and n-doped components prepared in a large-scale manner with spatial control and seamless connection. Here we develop a well-controlled chemical vapour deposition process for direct growth of mosaic graphene. Mosaic graphene is produced in large-area monolayers with spatially modulated, stable and uniform doping, and shows considerably high room temperature carrier mobility of ~5,000 cm2 V−1 s−1 in intrinsic portion and ~2,500 cm2 V−1 s−1 in nitrogen-doped portion. The unchanged crystalline registry during modulation doping indicates the single-crystalline nature of p–n junctions. Efficient hot carrier-assisted photocurrent was generated by laser excitation at the junction under ambient conditions. This study provides a facile avenue for large-scale synthesis of single-crystalline graphene p–n junctions, allowing for batch fabrication and integration of high-efficiency optoelectronic and electronic devices within the atomically thin film. PMID:23232410
Studies of silicon p-n junction solar cells. [open circuit photovoltage
NASA Technical Reports Server (NTRS)
Lindholm, F. A.
1976-01-01
Single crystal silicon p-n junction solar cells made with low resistivity substrates show poorer solar energy conversion efficiency than traditional theory predicts. The physical mechanisms responsible for this discrepancy are identified and characterized. The open circuit voltage in shallow junction cells of about 0.1 ohm/cm substrate resistivity is investigated under AMO (one sun) conditions.
Further developments of series-connected superconducting tunnel junction to radiation detection
NASA Astrophysics Data System (ADS)
Kurakado, Masahiko; Ohsawa, Daisuke; Katano, Rintaro; Ito, Shin; Isozumi, Yasuhito
1997-10-01
One of the promising radiation detection devices for various practical applications is the series-connected superconducting tunnel junction (STJ) detector. In this article, interesting topics of the detectors are described since our previous work: e.g., more than two order higher detection efficiency compared with single STJ detectors, high count rate detection, and position resolution. Detectors were cooled to 0.35-0.4 K by means of a convenient 3He cryostat. The 5.9 and 6.5 keV x rays from 55Fe are separated by a detector specially designed for x-ray detection. The possible count rate of the series-junction detector estimated from the shaping-time constant applied in the measurements is high, e.g., over 104 counts per second. A series-junction detector equipped with a position sensing mechanism has shown a position resolution of about 35 μm in a sensing area with a radius of 1.1 mm. The position resolution of series junctions improves the energy resolution. A new type series-connected STJ detector is also proposed, i.e., the dispersed multitrap series-junction detector, for further improvement of detection efficiency and energy resolution.
NASA Astrophysics Data System (ADS)
Devès, Maud H.; Tait, Stephen R.; King, Geoffrey C. P.; Grandin, Raphaël
2014-05-01
Since the late 1970s, most earth scientists have discounted the plausibility of melting by shear-strain heating because temperature-dependent creep rheology leads to negative feedback and self-regulation. This paper presents a new model of distributed shear-strain heating that can account for the genesis of large volumes of magmas in both the crust and the mantle of the lithosphere. The kinematic (geometry and rates) frustration associated with incompatible fault junctions (e.g. triple-junction) prevents localisation of all strain on the major faults. Instead, deformation distributes off the main faults forming a large process zone that deforms still at high rates under both brittle and ductile conditions. The increased size of the shear-heated region minimises conductive heat loss, compared with that commonly associated with narrow shear zones, thus promoting strong heating and melting under reasonable rheological assumptions. Given the large volume of the heated zone, large volumes of melt can be generated even at small melt fractions.
Viscoplastic fracture transition of a biopolymer gel.
Frieberg, Bradley R; Garatsa, Ray-Shimry; Jones, Ronald L; Bachert, John O; Crawshaw, Benjamin; Liu, X Michael; Chan, Edwin P
2018-06-13
Physical gels are swollen polymer networks consisting of transient crosslink junctions associated with hydrogen or ionic bonds. Unlike covalently crosslinked gels, these physical crosslinks are reversible thus enabling these materials to display highly tunable and dynamic mechanical properties. In this work, we study the polymer composition effects on the fracture behavior of a gelatin gel, which is a thermoreversible biopolymer gel consisting of denatured collagen chains bridging physical network junctions formed from triple helices. Below the critical volume fraction for chain entanglement, which we confirm via neutron scattering measurements, we find that the fracture behavior is consistent with a viscoplastic type process characterized by hydrodynamic friction of individual polymer chains through the polymer mesh to show that the enhancement in fracture scales inversely with the squared of the mesh size of the gelatin gel network. Above this critical volume fraction, the fracture process can be described by the Lake-Thomas theory that considers fracture as a chain scission process due to chain entanglements.
Active zones of mammalian neuromuscular junctions: formation, density, and aging.
Nishimune, Hiroshi
2012-12-01
Presynaptic active zones are synaptic vesicle release sites that play essential roles in the function and pathology of mammalian neuromuscular junctions (NMJs). The molecular mechanisms of active zone organization use presynaptic voltage-dependent calcium channels (VDCCs) in NMJs as scaffolding proteins. VDCCs interact extracellularly with the muscle-derived synapse organizer, laminin β2 and interact intracellularly with active zone-specific proteins, such as Bassoon, CAST/Erc2/ELKS2alpha, ELKS, Piccolo, and RIMs. These molecular mechanisms are supported by studies in P/Q- and N-type VDCCs double-knockout mice, and they are consistent with the pathological conditions of Lambert-Eaton myasthenic syndrome and Pierson syndrome, which are caused by autoantibodies against VDCCs or by a laminin β2 mutation. During normal postnatal maturation, NMJs maintain the density of active zones, while NMJs triple their size. However, active zones become impaired during aging. Propitiously, muscle exercise ameliorates the active zone impairment in aged NMJs, which suggests the potential for therapeutic strategies. © 2012 New York Academy of Sciences.
The Status and Outlook for the Photovoltaics Industry
NASA Astrophysics Data System (ADS)
Carlson, David
2006-03-01
The first silicon solar cell was made at Bell Labs in 1954, and over the following decades, shipments of photovoltaic (PV) modules increased at a rate of about 18% annually. In the last several years, the annual growth rate has increased to ˜ 35% due largely to government-supported programs in Japan and Germany. Silicon technology has dominated the PV industry since its inception, and in 2005 about 65% of all solar cells were made from polycrystalline (or multicrystalline) silicon, 24% from monocrystalline silicon and ˜ 4% from ribbon silicon. While conversion efficiencies as high as 24.7% have been obtained in the laboratory for silicon solar cells, the best efficiencies for commercial PV modules are in the range of 17 18% (the efficiency limit for a silicon solar cell is ˜ 29%). A number of companies are commercializing solar cells based on other materials such as amorphous silicon, microcrystalline silicon, cadmium telluride, copper-indium-gallium-diselenide (CIGS), gallium arsenide (and related compounds) and dye- sensitized titanium oxide. Thin film CIGS solar cells have been fabricated with conversion efficiencies as high as 19.5% while efficiencies as high as 39% have been demonstrated for a GaInP/Ga(In)As/Ge triple-junction cell operating at a concentration of 236 suns. Thin film solar cells are being used in consumer products and in some building-integrated applications, while PV concentrator systems are being tested in grid-connected arrays located in high solar insolation areas. Nonetheless, crystalline silicon PV technology is likely to dominate the terrestrial market for at least the next decade with module efficiencies > 20% and module prices of < 1/Wp expected by 2020, which in turn should allow significant penetration of the utility grid market. However, crystalline silicon solar cells may be challenged in the next decade or two by new low-cost, high performance devices based on organic materials and nanotechnology.
NASA Astrophysics Data System (ADS)
Doubre, C.; Deprez, A.; Masson, F.; Socquet, A.; Lewi, E.; Grandin, R.; Calais, E.; Wright, T. J.; Bendick, R. O.; Pagli, C.; Peltzer, G.; de Chabalier, J. B.; Ibrahim Ahmed, S.
2014-12-01
The Afar Depression is an extraordinary submerged laboratory where the crustal mechanisms involved in the active rifting process can be studied. But the crustal movements at the regional scale are complicated by being the locus of the meeting of three divergent plate boundaries: the oceanic spreading ridges of the Red Sea and the Aden Ridge and the intra-continental East-African Rift (EAR). We present here the first GPS measurements conducted in a new network in Central Afar, complementing existing networks in Eritrea, around the Manda-Harraro 2005-2010 active segment, in the Northern part of the EAR and in Djibouti. Even if InSAR data were appropriate for mapping the deformation field, the results are difficult to interpret for analyzing the regional kinematics because of the atmospheric conditions, the lack of complete data catalogue, the acquisition configuration and the small velocity variations. Therefore, our measurements in the new sites are crucial to obtain an accurate velocity field over the whole depression, and focus specifically on the spatial organization of the deformation to characterize the tripe junction. These first results show that a small part of the motion of the Somalia plate with respect to the Nubia plate or the Arabia plate (2-3 mm/yr) occurs south of the Tadjura Gulf and East of the Adda-do segment in Southern Afar. The complex kinematic pattern involves a clockwise rotation of this Southeastern part of the Afar rift and can be related to the significant seismic activity regularly recorded in the region of Jigjiga (northern Somalia-Ethiopia border). The western continuation of the Aden Ridge into Afar extends West of the Asal rift segment and does not reach the young active segment of Manda-Inakir (MI). A slow gradient of velocity is observed across the Dobi Graben and across the large systems of faults between Lake Abhe and the MI rift segment. A striking change of the velocity direction occurs in the region of Assaïta, west of Lake Abhe, suggesting that this area represents the most probable location for the triple junction.
Results from a 14-month hydroacoustic monitoring of the three mid-oceanic ridges in the Indian Ocean
NASA Astrophysics Data System (ADS)
Royer, J.-Y.; Dziak, R. P.; Delatre, M.; Chateau, R.; Brachet, C.; Haxel, J. H.; Matsumoto, H.; Goslin, J.; Brandon, V.; Bohnenstielh, D. R.
2009-04-01
From October 2006 to January 2008, an hydroacoustic experiment in the Indian Ocean was carried out by the CNRS/University of Brest and NOAA/Oregon State University to monitor the low-level seismic activity associated with the three contrasting spreading ridges and deforming zones in the Indian Ocean. Three autonomous hydrophones were moored in the SOFAR channel by R/V Marion Dufresne for 14 months in the Madagascar Basin, and northeast and southwest of Amsterdam Island, complementing the two permanent hydroacoustic stations of the Comprehensive nuclear-Test-Ban Treaty Organization (CTBTO) located near Diego Garcia Island and off Cape Leeuwin. The three instruments successfully collected 14 month of continuous acoustic records. Combined with the records from the permanent stations, the array detected 1780 acoustic events consisting mostly of earthquake generated T-waves, but also of iceberg tremors from Wilkes Land, Antarctica. Within the triangle defined by the temporary array, the three ridges exhibit contrasting seismicity patterns. Along the Southeast Indian ridge (SEIR), the 272 acoustic events (vs 24 events in the NEIC catalog) occur predominantly along the transform faults ; only one ridge segment (76˚E) displays a continuous activity for 10 months. Along the Central Indian Ridge (CIR), seismicity is distributed along fracture zones and ridge segments (269 events vs 45 NEIC events), with two clusters of events near the triple junction (24-25S) and south of Marie-Celeste FZ (18.5S). Along the Southwest Indian Ridge (SWIR), the 222 events (vs 31 NEIC events) are distributed along the ridge segments with a larger number of events west of Melville FZ and a cluster at 58E. The immediate vicinity of the Rodrigues triple junction shows periods of quiescence and of intense activity. Some large earthquakes (Mb>5) near the triple junction (SEIR and CIR) seem to be preceded by several acoustic events that may be precursors. Finally, off-ridge seismicity is mostly detected in the southern part of the Central Indian Basin as a result of the intraplate deformation between the Capricorn and Australian plates. Other signals of interest are identified such as a 6-week long series of broadband (1-125 Hz) explosive signals detected only by the instrument located between Kerguelen and Amsterdam islands, many cryogenic tremors easily recognizable from their varying tones and harmonics, some of which can be precisely located off the Antarctic shelf, and finally whale calls attributed to four different whale species. This vocal activity is found to be highly seasonal, occurring mainly from April to October with subspecies variations. Detailed analyses of this unique data set are still underway.
The Radar Effects of Perchlorate-Doped Ice in the Martian Polar Layered Deposits
NASA Astrophysics Data System (ADS)
Stillman, D.; Winebrenner, D. P.; Grimm, R. E.; Pathare, A.
2010-12-01
The presence of perchlorate in soil at near-polar latitudes on Mars suggests that dust in the ice of the North Polar Layered Deposits (NPLD) may introduce perchlorate impurities to that ice. Because eutectic temperatures of perchlorate salts range as low as 206 K (for magnesium perchlorate), perchlorate doping of NPLD ice may result in grain-scale liquid veins and softening of ice rheology at temperatures comparable to those computed for the base of the NPLD in the present climate. Any such softening would be important for understanding how processes including ice flow have shaped the NPLD. Observable consequences of such softening, or of the combination of perchlorate doping and temperatures that could cause softening, are thus similarly important. In particular, the dielectric properties of perchlorate-laden ice in a temperature gradient will change relatively rapidly at the point in the gradient near the eutectic temperature. Here we investigate the radar reflectivity of such a eutectic transition in ice with a model in which perchlorate concentration is constant and temperature varies linearly with depth in the ice. We have conducted measurements of the complex permittivity of Mg and Na perchlorate-doped ice over a range of temperatures (183 - 273 K) and concentrations. Below the eutectic temperature, the perchlorate-doped ice has electrical properties similar to that of choride-doped ice. However, above the eutectic temperature, some of the ice melts forming liquid at triple junctions. At concentrations above 3 mM, the liquid at triple junctions become connected forming brine channels, which greatly increase the dc conductivity and radar attenuation. At concentrations below 3 mM, the liquid at triple junctions are not connected and do not affect the dc conductivity. However, the liquid H2O molecules are able to rotate their permanent dipole at radar frequencies, thus causing an increase in radar attenuation. The MARSIS and SHARAD attenuation rates increase with temperature as the strength of the loss increases with a greater amount of liquid water even though the relaxation frequency (maximum loss) shifts to higher frequencies. We combine our electrical property measurements with a model for radar reflection from a continuously-varying dielectric profile. Because the change in permittivity occurs over a range of depths depending on the value of the temperature gradient, radar detectability of the eutectic transition depends on the radar frequency as well as gradient and concentration values. We compute expected radar echo strengths for MARSIS and SHARAD and depths relative to the bed at which transitions may be expected, to address whether information of direct rheological relevance may be available from those instruments.
Hidden Earthquake Potential in Plate Boundary Transition Zones
NASA Astrophysics Data System (ADS)
Furlong, Kevin P.; Herman, Matthew; Govers, Rob
2017-04-01
Plate boundaries can exhibit spatially abrupt changes in their long-term tectonic deformation (and associated kinematics) at triple junctions and other sites of changes in plate boundary structure. How earthquake behavior responds to these abrupt tectonic changes is unclear. The situation may be additionally obscured by the effects of superimposed deformational signals - juxtaposed short-term (earthquake cycle) kinematics may combine to produce a net deformational signal that does not reflect intuition about the actual strain accumulation in the region. Two examples of this effect are in the vicinity of the Mendocino triple junction (MTJ) along the west coast of North America, and at the southern end of the Hikurangi subduction zone, New Zealand. In the region immediately north of the MTJ, GPS-based observed crustal displacements (relative to North America (NAm)) are intermediate between Pacific and Juan de Fuca (JdF) motions. With distance north, these displacements rotate to become more aligned with JdF - NAm displacements, i.e. to motions expected along a coupled subduction interface. The deviation of GPS motions from the coupled subduction interface signal near the MTJ has been previously interpreted to reflect clock-wise rotation of a coastal, crustal block and/or reduced coupling at the southern Cascadia margin. The geologic record of crustal deformation near the MTJ reflects the combined effects of northward crustal shortening (on geologic time scales) associated with the MTJ Crustal Conveyor (Furlong and Govers, 1999) overprinted onto the subduction earthquake cycle signal. With this interpretation, the Cascadia subduction margin appears to be well-coupled along its entire length, consistent with paleo-seismic records of large earthquake ruptures extending to its southern limit. At the Hikurangi to Alpine Fault transition in New Zealand, plate interactions switch from subduction to oblique translation as a consequence of changes in lithospheric structure of the Pacific plate (without a triple junction). Here, the short-term, earthquake-cycle signal recorded by GPS shows a reduction in plate motion-directed displacements, which has been interpreted to reflect reduced coupling along the southernmost segment. However, this signal records both the subduction interface coupling effects related to the megathrust earthquake cycle and the shear deformation produced by the extensive right-lateral shear of the Marlborough Fault system (MFS). This superposition of deformation signals combine to mask a strongly coupled interface. The relevance of this effect is seen in the recent (November 2016) Kaikoura earthquake ,which appears to have both ruptured the megathrust interface and produced strike slip displacements on upper-plate crustal faults. These effects seen at these locations and elsewhere may cause misinterpretations of short-term deformation signals in terms of the longer term tectonic behavior of the plate boundary, missing a significant component of the earthquake potential.
Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency
Essig, Stephanie; Steiner, Myles A.; Allebe, Christophe; ...
2016-04-27
Combining a Si solar cell with a high-bandgap top cell reduces the thermalization losses in the short wavelength and enables theoretical 1-sun efficiencies far over 30%. We have investigated the fabrication and optimization of Si-based tandem solar cells with 1.8-eV rear-heterojunction GaInP top cells. The III-V and Si heterojunction subcells were fabricated separately and joined by mechanical stacking using electrically insulating optically transparent interlayers. Our GaInP/Si dual-junction solar cells have achieved a certified cumulative 1-sun efficiency of 29.8% ± 0.6% (AM1.5g) in four-terminal operation conditions, which exceeds the record 1-sun efficiencies achieved with both III-V and Si single-junction solar cells.more » Furthermore, the effect of luminescent coupling between the subcells has been investigated, and optical losses in the solar cell structure have been addressed.« less
Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essig, Stephanie; Steiner, Myles A.; Allebe, Christophe
Combining a Si solar cell with a high-bandgap top cell reduces the thermalization losses in the short wavelength and enables theoretical 1-sun efficiencies far over 30%. We have investigated the fabrication and optimization of Si-based tandem solar cells with 1.8-eV rear-heterojunction GaInP top cells. The III-V and Si heterojunction subcells were fabricated separately and joined by mechanical stacking using electrically insulating optically transparent interlayers. Our GaInP/Si dual-junction solar cells have achieved a certified cumulative 1-sun efficiency of 29.8% ± 0.6% (AM1.5g) in four-terminal operation conditions, which exceeds the record 1-sun efficiencies achieved with both III-V and Si single-junction solar cells.more » Furthermore, the effect of luminescent coupling between the subcells has been investigated, and optical losses in the solar cell structure have been addressed.« less
Rear surface effects in high efficiency silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenham, S.R.; Robinson, S.J.; Dai, X.
1994-12-31
Rear surface effects in PERL solar cells can lead not only to degradation in the short circuit current and open circuit voltage, but also fill factor. Three mechanisms capable of changing the effective rear surface recombination velocity with injection level are identified, two associated with oxidized p-type surfaces, and the third with two dimensional effects associated with a rear floating junction. Each of these will degrade the fill factor if the range of junction biases corresponding to the rear surface transition, coincides with the maximum power point. Despite the identified non idealities, PERL cells with rear floating junctions (PERF cells)more » have achieved record open circuit voltages for silicon solar cells, while simultaneously achieving fill factor improvements relative to standard PERL solar cells. Without optimization, a record efficiency of 22% has been demonstrated for a cell with a rear floating junction. The results of both theoretical and experimental studies are provided.« less
A high efficiency dual-junction solar cell implemented as a nanowire array.
Yu, Shuqing; Witzigmann, Bernd
2013-01-14
In this work, we present an innovative design of a dual-junction nanowire array solar cell. Using a dual-diameter nanowire structure, the solar spectrum is separated and absorbed in the core wire and the shell wire with respect to the wavelength. This solar cell provides high optical absorptivity over the entire spectrum due to an electromagnetic concentration effect. Microscopic simulations were performed in a three-dimensional setup, and the optical properties of the structure were evaluated by solving Maxwell's equations. The Shockley-Queisser method was employed to calculate the current-voltage relationship of the dual-junction structure. Proper design of the geometrical and material parameters leads to an efficiency of 39.1%.
Device Modeling and Characterization for CIGS Solar Cells
NASA Astrophysics Data System (ADS)
Song, Sang Ho
We studied the way to achieve high efficiency and low cost of CuIn1-xGaxSe2 (CIGS) solar cells. The Fowler-Nordheim (F-N) tunneling currents at low bias decreased the shunt resistances and degraded the fill factor and efficiency. The activation energies of majority traps were directly related with F-N tunneling currents by the energy barriers. Air anneals decreased the efficiency from 7.74% to 5.18% after a 150 °C, 1000 hour anneal. The decrease of shunt resistance due to F-N tunneling and the increase of series resistance degrade the efficiencies of solar cells. Air anneal reduces the free carrier densities by the newly generated Cu interstitial defects (Cui). Mobile Cui defects induce the metastability in CIGS solar cell. Since oxygen atoms are preferred to passivate the Se vacancies thus Cu interstitial defects explains well metastability of CIGS solar cells. Lattice mismatch and misfit stress between layers in CIGS solar cells can explain the particular effects of CIGS solar cells. The misfits of 35.08° rotated (220/204) CIGS to r-plane (102) MoSe2 layers are 1% ˜ -4% lower than other orientation and the lattice constants of two layers in short direction are matched at Ga composition x=0.35. This explains well the preferred orientation and the maximum efficiency of Ga composition effects. Misfit between CIGS and CdS generated the dislocations in CdS layer as the interface traps. Thermionic emission currents due to interface traps limit the open circuit voltage at high Ga composition. The trap densities were calculated by critical thickness and dislocation spacing and the numerical device simulation results were well matched with the experimental results. A metal oxide broken-gap p-n heterojunction is suggested for tunnel junction for multi-junction polycrystalline solar cells and we examined the characteristics of broken-gap tunnel junction by numerical simulation. Ballistic transport mechanism explains well I-V characteristics of broken-gap junction. P-type Cu2O and n-type In2O3 broken-gap heterojunction is effective with the CIGS tandem solar cells. The junction has linear I-V characteristics with moderate carrier concentration (2x1017 cm-3) and the resistance is lower than GaAs tunnel junction. The efficiency of a CGS/CIS tandem solar cells was 24.1% with buffer layers. And no significant degradations are expected due to broken gap junction.
Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics.
Choi, Min Sup; Qu, Deshun; Lee, Daeyeong; Liu, Xiaochi; Watanabe, Kenji; Taniguchi, Takashi; Yoo, Won Jong
2014-09-23
This paper demonstrates a technique to form a lateral homogeneous 2D MoS2 p-n junction by partially stacking 2D h-BN as a mask to p-dope MoS2. The fabricated lateral MoS2 p-n junction with asymmetric electrodes of Pd and Cr/Au displayed a highly efficient photoresponse (maximum external quantum efficiency of ∼7000%, specific detectivity of ∼5 × 10(10) Jones, and light switching ratio of ∼10(3)) and ideal rectifying behavior. The enhanced photoresponse and generation of open-circuit voltage (VOC) and short-circuit current (ISC) were understood to originate from the formation of a p-n junction after chemical doping. Due to the high photoresponse at low VD and VG attributed to its built-in potential, our MoS2 p-n diode made progress toward the realization of low-power operating photodevices. Thus, this study suggests an effective way to form a lateral p-n junction by the h-BN hard masking technique and to improve the photoresponse of MoS2 by the chemical doping process.
NASA Astrophysics Data System (ADS)
Sun, J. Z.; Trouilloud, P. L.; Gajek, M. J.; Nowak, J.; Robertazzi, R. P.; Hu, G.; Abraham, D. W.; Gaidis, M. C.; Brown, S. L.; O'Sullivan, E. J.; Gallagher, W. J.; Worledge, D. C.
2012-04-01
CoFeB-based magnetic tunnel junctions with perpendicular magnetic anisotropy are used as a model system for studies of size dependence in spin-torque-induced magnetic switching. For integrated solid-state memory applications, it is important to understand the magnetic and electrical characteristics of these magnetic tunnel junctions as they scale with tunnel junction size. Size-dependent magnetic anisotropy energy, switching voltage, apparent damping, and anisotropy field are systematically compared for devices with different materials and fabrication treatments. Results reveal the presence of sub-volume thermal fluctuation and reversal, with a characteristic length-scale of the order of approximately 40 nm, depending on the strength of the perpendicular magnetic anisotropy and exchange stiffness. To have the best spin-torque switching efficiency and best stability against thermal activation, it is desirable to optimize the perpendicular anisotropy strength with the junction size for intended use. It also is important to ensure strong exchange-stiffness across the magnetic thin film. These combine to give an exchange length that is comparable or larger than the lateral device size for efficient spin-torque switching.
A comment on the dependence of LED’s efficiency on the junction ideality factor
NASA Astrophysics Data System (ADS)
Sethi, Anubhav; Gupta, Yashika; Arun, P.
2018-05-01
P–n junctions form the basic building blocks for any semiconductor device. Therefore, the complete understanding of the junction characteristics is very important. Although being a widely discussed topic in electronics, there are still some gaps such as finding the value and significance of the junction ideality factor, that needs to be addressed. In this article we have discussed the problems faced while extracting the ideality factor from the I–V characteristics of a p–n LED and its significance in device performance.
NASA Technical Reports Server (NTRS)
Chi, J. Y.; Gatos, H. C.; Mao, B. Y.
1980-01-01
Multiple p-n junctions have been prepared in as-grown Czochralski p-type silicon through overcompensation near the oxygen periodic concentration maxima by oxygen thermal donors generated during heat treatment at 450 C. Application of the multiple p-n-junction configuration to photovoltaic energy conversion has been investigated. A new solar-cell structure based on multiple p-n-junctions was developed. Theoretical analysis showed that a significant increase in collection efficiency over the conventional solar cells can be achieved.
NASA Astrophysics Data System (ADS)
Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.
2010-02-01
Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.
NASA Astrophysics Data System (ADS)
Perl, Emmett Edward
Solar cells based on III-V compound semiconductors are ideally suited to convert solar energy into electricity. The highest efficiency single-junction solar cells are made of gallium arsenide, and have attained an efficiency of 28.8%. Multiple III-V materials can be combined to construct multijunction solar cells, which have reached record efficiencies greater than 45% under concentration. III-V solar cells are also well suited to operate efficiently at elevated temperatures, due in large part to their high material quality. These properties make III-V solar cells an excellent choice for use in concentrator systems. Concentrator photovoltaic systems have attained module efficiencies that exceed 40%, and have the potential to reach the lowest levelized cost of electricity in sunny places like the desert southwest. Hybrid photovoltaic-thermal solar energy systems can utilize high-temperature III-V solar cells to simultaneously achieve dispatchability and a high sunlight-to-electricity efficiency. This dissertation explores material science to advance the state of III-V multijunction solar cells for use in concentrator photovoltaic and hybrid photovoltaic-thermal solar energy systems. The first half of this dissertation describes work on advanced optical designs to improve the efficiency of multijunction solar cells. As multijunction solar cells move to configurations with four or more subcells, they utilize a larger portion of the solar spectrum. Broadband antireflection coatings are essential to realizing efficiency gains for these state-of-the-art cells. A hybrid design consisting of antireflective nanostructures placed on top of multilayer interference-based optical coatings is developed. Antireflection coatings that utilize this hybrid approach yield unparalleled performance, minimizing reflection losses to just 0.2% on sapphire and 0.6% on gallium nitride for 300-1800nm light. Dichroic mirrors are developed for bonded 5-junction solar cells that utilize InGaN as a top junction. These designs maximize reflection of high-energy light for an InGaN top junction while minimizing reflection of low-energy light that would be absorbed by the lower four junctions. Increasing the reflectivity of high-energy photons enables a second pass of light through the InGaN cell, leading to increased absorption and a higher photocurrent. These optical designs enhanced the efficiency of a 2.65eV InGaN solar cell to a value of 3.3% under the AM0 spectrum, the highest reported efficiency for a standalone InGaN solar cell. The second half of the dissertation describes the development of III-V solar cells for high-temperature applications. As the operating temperature of a solar cell is increased, the ideal bandgap of the top junction increases. AlGaInP solar cells with bandgaps ranging from 1.9eV to 2.2eV are developed. A 2.03eV AlGaInP solar cell is demonstrated with a bandgap-voltage offset of 440mV, the lowest of any AlGaInP solar cell reported to date. Single-junction AlGaInP, GaInP, and GaAs solar cells designed for high-temperature operation are characterized up to a temperature of 400°C. The cell properties are compared to an analytical drift-diffusion model, and we find that a fundamental increase in the intrinsic carrier concentration, ni, dominates the temperature dependence of the dark currents, open-circuit voltage, and cell efficiency. These findings provide a valuable guide to the design of any system that requires high-temperature solar cell operation.
NASA Astrophysics Data System (ADS)
Mercier, F.; Samaniego, B.; Soriano, T.; Beaufils, G.; Fernandez Lisbona, E.; Dettlaff, K.; Jensen, H.
2014-08-01
The thermal / electrical imbalance phenomenon on the satellite solar arrays is a common issue inherent to the negative thermal voltage coefficient of the triple junction cells, which is usually already taken into account with basic precautions on the solar panel layout.In the frame of the ESA TRP study "Investigation on Solar Array thermal and electrical imbalance phenomenon on power systems equipped with Maximum Power Point Tracker (MPPT)" performed by Airbus Defence & Space (former Astrium Toulouse and Ottobrunn) and TERMA, in-depth analyses were conducted for the first time to better understand and characterize the secondary maximum power point phenomenon for various representative mission cases, whether in Earth vicinity or not. With the help of a newly developed detailed thermo-electrical coupled solver and a wide range of solar cell characterizations in flux and temperature, multiple sets of simulations were run to simulate realistic solar panel characteristics.The study showed that no secondary false maximum power point can be created on the solar panel characteristic IV curve for missions around Earth vicinity, at the sole exception of critical shadowing cases. Furthermore, the same conclusions apply for missions up to Mars orbit. The only potential threats come from the missions further than Mars (typically Jupiter missions) where various very high heterogeneities could lead to multiple maxima. This is deeply linked to the LILT (low illumination low temperature) conditions applied to the current solar cell triple junction characteristics and shape. Moreover, thermo-electrical imbalances that do not create secondary power point can still seriously grieve the solar array power output performances. This power loss can however be accurately assessed by the newly developed solver in support of in-development missions like Juice.
NASA Astrophysics Data System (ADS)
Horner-Johnson, B. C.; Gordon, R. G.; Cowles, S. M.; Argus, D. F.
2003-12-01
A new analysis of geologically current plate motion across the Southwest Indian Ridge and of the current location of the Nubia-Antarctica-Somalia triple junction is presented. We estimate spreading rates averaged over the past 3.2 Myr from 103 well-distributed, nearly ridge-perpendicular profiles crossing the Southwest Indian Ridge. We evaluate all available bathymetric data to estimate the azimuths and uncertainties of transform faults; six are estimated from multi-beam data and twelve from precision depth recorder data. If the Nubia-Somalia boundary is narrow where it intersects the Southwest Indian Ridge, that intersection lies between about 26° E and 32° E. This places it either along the spreading ridge segment just west of the Andrew Bain transform fault complex or along the transform fault complex itself. These limits are narrower than, and contained within, limits of about 24° E to 33° E previously found by Lemaux et al. (2002) from an analysis of the locations of magnetic anomaly 5. The data are consistent with a narrow boundary, but also consistent with a diffuse boundary as wide as about 700 km. The new Nubia-Somalia pole of rotation lies southwest of southern Africa and differs significantly from previously estimated poles, including that from data in the Red Sea and Gulf of Aden. The new pole indicates displacement rates of Somalia relative to Nubia of 3.4 +/- 1.3\\ mm yr-1 (95% confidence limits) towards 176.8° between Somalia and Nubia near the Southwest Indian Ridge, and of 8.4 +/- 1.3\\ mm yr-1 (95% confidence limits) towards 118.5° near Afar.
NASA Astrophysics Data System (ADS)
Cabello, O. A.; Meltzer, A.; Sandvol, E. A.; Yepes, H.; Ruiz, M. C.; Barrientos, S. E.; Willemann, R. J.
2011-12-01
During July 2011, a Pan-American Advanced Studies Institute, "New Frontiers in Seismological Research: Sustainable Networks, Earthquake Source Parameters, and Earth Structure" was conducted in Quito Ecuador with participants from the US, Central, and South America, and the Caribbean at early stages in their scientific careers. This advanced studies institute was imparted by fifteen volunteer senior faculty and investigators from the U.S. and the Americas. The curriculum addressed the importance of developing and maintaining modern seismological observatories, reviewed the principles of sustainable network operations, and explored recent advances in the analysis of seismological data in support of basic research, education, and hazard mitigation. An additional goal was to develop future international research collaborations. The Institute engaged graduate students, post-doctoral students, and new faculty from across the Americas in an interactive collaborative learning environment including modules on double-difference earthquake location and tomography, regional centroid-moment tensors, and event-based and ambient noise surface wave dispersion and tomography. Under the faculty guidance, participants started promising research projects about surface wave tomography in southeastern Brazil, near the Chilean triple junction, in central Chilean Andes, at the Peru-Chile border, within Peru, at a volcano in Ecuador, in the Caribbean Sea region, and near the Mendocino triple junction. Other participants started projects about moment tensors of earthquakes in or near Brazil, Chile and Argentina, Costa Rica, Ecuador, Puerto Rico, western Mexico, and northern Mexico. In order to track the progress of the participants and measure the overall effectiveness of the Institute a reunion is planned where the PASI alumni will present the result of their research that was initiated in Quito
NASA Astrophysics Data System (ADS)
Lupton, J. E.; Price, A. A.; Jackson, M. G.; Arculus, R. J.; Nebel, O.
2016-12-01
The submarine volcanic rocks of the northern Lau Basin exhibit a complex pattern in helium and radiogenic isotope ratios attributed to the interplay of depleted upper mantle, arc, and hotspot components. The seafloor lavas of the NW Lau Spreading Center (NWLSC) and Rochambeau Rifts have elevated 3He/4He ratios (12 - 28 Ra) indicating that a mantle plume component, possibly from Samoa, has influenced this extensional zone (Lupton et al., 2009). However, this hotspot helium is absent in the NE Lau Basin, which has MOR-type helium ( 8 Ra). We have analyzed helium isotope ratios in 40 additional submarine samples collected on the 2012 cruise of the R/V Southern Surveyor which extend the geographic coverage farther west into the Fiji Basin. To the west of the NWLSC, several samples from the Futuna Volcanic Zone and the Futuna Spreading Center have elevated 3He/4He in the range of 12 - 20.9 Ra, presumably related to the same OIB influence detected along the nearby NW Lau backarc spreading system. Surprisingly, the NE Fiji Triple Junction 1000 km to the west of the NWLSC, also has elevated 3He/4He up to 14.4 Ra. When radiogenic isotopes (Sr, Nd, Hf) are added to the picture, samples from the Futuna Volcanic Zone and from the NE Fiji Triple Junction fall on a mixing trend between depleted MORB mantle and FOZO, as do samples from the Rochambeau Rifts and NWLSC. However, this trend is distinct from that of Samoa proper, suggesting that only a restricted (FOZO) portion of the Samoan plume is responsible for the elevated 3He/4He in the northern Lau and Fiji basins.
NASA Astrophysics Data System (ADS)
Byrnes, J. S.; Bezada, M.
2017-12-01
Melt can be retained in the mantle at triple junctions between grain boundaries, be spread in thin films along two-grain boundaries, or be organized by shear into elongate melt-rich bands. Which of these geometries is most prevalent is unknown. This ambiguity makes the interpretation of anomalous seismic velocities and quality factors difficult, since different geometries would result in different mechanical effects. Here, we compare observations of seismic attenuation beneath the Salton Trough and the Snake River Plain; two regions where the presence of melt has been inferred. The results suggest that seismic attenuation is diagnostic of melt geometry. We measure the relative attenuation of P waves from deep focus earthquakes using a time-domain method. Even though the two regions are underlain by comparably strong low-velocity anomalies, their attenuation signature is very different. The upper mantle beneath the Salton Trough is sufficiently attenuating that the presence of melt must lower Qp, while attenuation beneath the Snake River Plain is not anomalous with respect to surrounding regions. These seemingly contradictory results can be reconciled if different melt geometries characterize each region. SKS splitting from the Salton Trough suggests that melt is organized into melt-rich bands, while this is not the case for the Snake River Plain. We infer that beneath the Snake River Plain melt is retained at triple junctions between grain boundaries, a geometry that is not predicted to cause seismic attenuation. More elongate geometries beneath the Salton Trough may cause seismic attenuation via the melt-squirt mechanism. In light of these results, we conclude that prior observations of low seismic velocities with somewhat high quality factors beneath the East Pacific Rise and Southern California suggest that melt does not organize into elongate bands across much of the asthenosphere.
Gulick, S.P.S.; Meltzer, A.M.; Clarke, S.H.
1998-01-01
Four multichannel-seismic reflection profiles, collected as part of the Mendocino triple junction seismic experiment, image the toe of the southern Cascadia accretionary prism. Today, 250-600 m of sediment is subducting with the Gorda plate, and 1500-3200 m is accreting to the northern California margin. Faults imaged west and east of the deformation front show mixed structural vergence. A north-south trending, 20 km long portion of the central margin is landward vergent for the outer 6-8 km of the toe of the prism. This region of landward vergence exhibits no frontal thrust, is unusually steep and narrow, and is likely caused by a seaward-dipping backstop close to the deformation front. The lack of margin-wide preferred seaward vergence and wedge-taper analysis suggests the prism has low basal shear stress. The three southern lines image wedge-shaped fragments of oceanic crust 1.1-7.3 km in width and 250-700 m thick near the deformation front. These wedges suggest shortening and thickening of the upper oceanic crust. Discontinuities in the seafloor west of the prism provide evidence for mass wasting in the form of slump blocks and debris fans. The southernmost profile extends 75 km west of the prism imaging numerous faults that offset both the Gorda basin oceanic crust and overlying sediments. These high-angle faults, bounding basement highs, are interpreted as strike-slip faults reactivating structures originally formed at the spreading ridge. Northeast or northwest trending strike-slip faults within the basin are consistent with published focal mechanism solutions and are likely caused by north-south Gorda-Pacific plate convergence. Copyright 1998 by the American Geophysical Union.
Improved High/Low Junction Silicon Solar Cell
NASA Technical Reports Server (NTRS)
Neugroschel, A.; Pao, S. C.; Lindholm, F. A.; Fossum, J. G.
1986-01-01
Method developed to raise value of open-circuit voltage in silicon solar cells by incorporating high/low junction in cell emitter. Power-conversion efficiency of low-resistivity silicon solar cell considerably less than maximum theoretical value mainly because open-circuit voltage is smaller than simple p/n junction theory predicts. With this method, air-mass-zero opencircuit voltage increased from 600 mV level to approximately 650 mV.
NASA Astrophysics Data System (ADS)
Dong, Gangqiang; Liu, Fengzhen; Liu, Jing; Zhang, Hailong; Zhu, Meifang
2013-12-01
A radial p-n junction solar cell based on vertically free-standing silicon nanowire (SiNW) array is realized using a novel low-temperature and shallow phosphorus doping technique. The SiNW arrays with excellent light trapping property were fabricated by metal-assisted chemical etching technique. The shallow phosphorus doping process was carried out in a hot wire chemical vapor disposition chamber with a low substrate temperature of 250°C and H2-diluted PH3 as the doping gas. Auger electron spectroscopy and Hall effect measurements prove the formation of a shallow p-n junction with P atom surface concentration of above 1020 cm-3 and a junction depth of less than 10 nm. A short circuit current density of 37.13 mA/cm2 is achieved for the radial p-n junction SiNW solar cell, which is enhanced by 7.75% compared with the axial p-n junction SiNW solar cell. The quantum efficiency spectra show that radial transport based on the shallow phosphorus doping of SiNW array improves the carrier collection property and then enhances the blue wavelength region response. The novel shallow doping technique provides great potential in the fabrication of high-efficiency SiNW solar cells.
Fabrication of photovoltaic laser energy converterby MBE
NASA Technical Reports Server (NTRS)
Lu, Hamilton; Wang, Scott; Chan, W. S.
1993-01-01
A laser-energy converter, fabricated by molecular beam epitaxy (MBE), was developed. This converter is a stack of vertical p-n junctions connected in series by low-resistivity, lattice matched CoSi2 layers to achieve a high conversion efficiency. Special high-temperature electron-beam (e-beam) sources were developed especially for the MBE growth of the junctions and CoSi2 layers. Making use of the small (greater than 1.2 percent) lattice mismatch between CoSi2 and Si layers, high-quality and pinhole-free epilayers were achieved, providing a capability of fabricating all the junctions and connecting layers as a single growth process with one pumpdown. Well-defined multiple p-n junctions connected by CoSi2 layers were accomplished by employing a low growth temperature (greater than 700 C) and a low growth rate (less than 0.5 microns/hour). Producing negligible interdiffusion, the low growth temperature and rate also produced negligible pinholes in the CoSi2 layers. For the first time, a stack of three p-n junctions connected by two 10(exp -5) Ohm-cm CoSi2 layers was achieved, meeting the high conversion efficiency requirement. This process can now be optimized for high growth rate to form a practical converter with 10 p-n junctions in the stack.
Nürnberg, Dennis J.; Mariscal, Vicente; Bornikoel, Jan; Nieves-Morión, Mercedes; Krauß, Norbert; Herrero, Antonia
2015-01-01
ABSTRACT Many filamentous cyanobacteria produce specialized nitrogen-fixing cells called heterocysts, which are located at semiregular intervals along the filament with about 10 to 20 photosynthetic vegetative cells in between. Nitrogen fixation in these complex multicellular bacteria depends on metabolite exchange between the two cell types, with the heterocysts supplying combined-nitrogen compounds but dependent on the vegetative cells for photosynthetically produced carbon compounds. Here, we used a fluorescent tracer to probe intercellular metabolite exchange in the filamentous heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. We show that esculin, a fluorescent sucrose analog, is incorporated by a sucrose import system into the cytoplasm of Anabaena cells. The cytoplasmic esculin is rapidly and reversibly exchanged across vegetative-vegetative and vegetative-heterocyst cell junctions. Our measurements reveal the kinetics of esculin exchange and also show that intercellular metabolic communication is lost in a significant fraction of older heterocysts. SepJ, FraC, and FraD are proteins located at the intercellular septa and are suggested to form structures analogous to gap junctions. We show that a ΔsepJ ΔfraC ΔfraD triple mutant shows an altered septum structure with thinner septa but a denser peptidoglycan layer. Intercellular diffusion of esculin and fluorescein derivatives is impaired in this mutant, which also shows a greatly reduced frequency of nanopores in the intercellular septal cross walls. These findings suggest that FraC, FraD, and SepJ are important for the formation of junctional structures that constitute the major pathway for feeding heterocysts with sucrose. PMID:25784700
Semiconductor cooling by thin-film thermocouples
NASA Technical Reports Server (NTRS)
Tick, P. A.; Vilcans, J.
1970-01-01
Thin-film, metal alloy thermocouple junctions do not rectify, change circuit impedance only slightly, and require very little increase in space. Although they are less efficient cooling devices than semiconductor junctions, they may be applied to assist conventional cooling techniques for electronic devices.
Experimental results of use of triple-energy X-ray beam with K-edge filter in multi-energy imaging
NASA Astrophysics Data System (ADS)
Kim, D.; Lee, S.; Jeon, P.-H.
2016-04-01
Multi-energy imaging is useful for contrast enhancement of lesions, quantitative analysis of specific materials and material separation in the human body. Generally, dual-energy methods are applied to discriminating two materials, but this method cannot discriminate more than two materials. Photon-counting detectors provide spectral information from polyenergetic X-rays using multiple energy bins. In this work, we developed triple-energy X-ray beams using a filter with K-edge energy and applied them experimentally. The energy spectra of triple-energy X-ray beams were assessed by using a spectrometer. The designed triple-energy X-ray beams were validated by measuring quantitative evaluations with mean energy ratio (MER), contrast variation ratio (CVR) and exposure efficiency (EE). Then, triple-energy X-ray beams were used to extract density map of three materials, iodine (I), aluminum (Al) and polymethyl methacrylate (PMMA). The results of the thickness density maps obtained with the developed triple-energy X-ray beams were compared to those acquired using the photon-counting method. As a result, it was found experimentally that the proposed triple-energy X-ray beam technique can separate the three materials as well as the photon-counting method.
ERIC Educational Resources Information Center
Yuwawutto, Sauwapa; Smitinont, Thitapha; Charoenanong, Numtip; Yokakul, Nattaka; Chatratana, Sonchai; Zawdie, Girma
2010-01-01
This paper examines the university-industry-government relationship as a mechanism for enhancing the efficiency and competitiveness of small and medium-sized enterprises (SMEs). The case of a community enterprise producing dried banana products in the north of Thailand is used to demonstrate the significance of the Triple Helix model for business…
High-efficiency thermal switch based on topological Josephson junctions
NASA Astrophysics Data System (ADS)
Sothmann, Björn; Giazotto, Francesco; Hankiewicz, Ewelina M.
2017-02-01
We propose theoretically a thermal switch operating by the magnetic-flux controlled diffraction of phase-coherent heat currents in a thermally biased Josephson junction based on a two-dimensional topological insulator. For short junctions, the system shows a sharp switching behavior while for long junctions the switching is smooth. Physically, the switching arises from the Doppler shift of the superconducting condensate due to screening currents induced by a magnetic flux. We suggest a possible experimental realization that exhibits a relative temperature change of 40% between the on and off state for realistic parameters. This is a factor of two larger than in recently realized thermal modulators based on conventional superconducting tunnel junctions.
Grand Junction, Colorado: how a community drew on its values to shape a superior health system.
Thorson, Marsha; Brock, Jane; Mitchell, Jason; Lynn, Joanne
2010-09-01
For the past decade, the high-quality, relatively low-cost health care delivered in Grand Junction, Colorado, has led that community to outperform most others in the United States. Medicare patients in Grand Junction have fewer hospitalizations, shorter hospitalizations, and lower mortality rates after hospitalization than do Medicare patients in comparison hospitals. Effective, efficient care is delivered in Grand Junction through separate, self-governing organizations that perceive health care as a community resource. This article describes how the various stakeholders in Grand Junction have addressed problems and set standards for the system. The lessons could apply to broader health reform efforts in communities around the country.
Highly-Sensitive Thin Film THz Detector Based on Edge Metal-Semiconductor-Metal Junction.
Jeon, Youngeun; Jung, Sungchul; Jin, Hanbyul; Mo, Kyuhyung; Kim, Kyung Rok; Park, Wook-Ki; Han, Seong-Tae; Park, Kibog
2017-12-04
Terahertz (THz) detectors have been extensively studied for various applications such as security, wireless communication, and medical imaging. In case of metal-insulator-metal (MIM) tunnel junction THz detector, a small junction area is desirable because the detector response time can be shortened by reducing it. An edge metal-semiconductor-metal (EMSM) junction has been developed with a small junction area controlled precisely by the thicknesses of metal and semiconductor films. The voltage response of the EMSM THz detector shows the clear dependence on the polarization angle of incident THz wave and the responsivity is found to be very high (~2,169 V/W) at 0.4 THz without any antenna and signal amplifier. The EMSM junction structure can be a new and efficient way of fabricating the nonlinear device THz detector with high cut-off frequency relying on extremely small junction area.
Highly efficient single-junction GaAs thin-film solar cell on flexible substrate.
Moon, Sunghyun; Kim, Kangho; Kim, Youngjo; Heo, Junseok; Lee, Jaejin
2016-07-20
There has been much interest in developing a thin-film solar cell because it is lightweight and flexible. The GaAs thin-film solar cell is a top contender in the thin-film solar cell market in that it has a high power conversion efficiency (PCE) compared to that of other thin-film solar cells. There are two common structures for the GaAs solar cell: n (emitter)-on-p (base) and p-on-n. The former performs better due to its high collection efficiency because the electron diffusion length of the p-type base region is much longer than the hole diffusion length of the n-type base region. However, it has been limited to fabricate highly efficient n-on-p single-junction GaAs thin film solar cell on a flexible substrate due to technical obstacles. We investigated a simple and fast epitaxial lift-off (ELO) method that uses a stress originating from a Cr/Au bilayer on a 125-μm-thick flexible substrate. A metal combination of AuBe/Pt/Au is employed as a new p-type ohmic contact with which an n-on-p single-junction GaAs thin-film solar cell on flexible substrate was successfully fabricated. The PCE of the fabricated single-junction GaAs thin-film solar cells reached 22.08% under air mass 1.5 global illumination.
NASA Astrophysics Data System (ADS)
Routray, S. R.; Lenka, T. R.
2017-11-01
Now-a-days III-Nitride nanowires with axial (nanodisk) and radial (core/shell/shell-nanowire) junctions are two unique and potential methods for solar energy harvesting adopted by worldwide researchers. In this paper, polarization behavior of GaN/InGaN/GaN junction and its effect on carrier dynamics of nanodisk and CSS-nanowire type solar cells are intensively studied and compared with its planar counterpart by numerical simulations using commercially available Victory TCAD. It is observed that CSS-NW with hexagonal geometrical shapes are robust to detrimental impact of polarization charges and could be good enough to accelerate carrier collection efficiency as compared to nanodisk and planar solar cells. This numerical study provides an innovative aspect of fundamental device physics with respect to polarization charges in CSS-NW and nanodisk type junction towards photovoltaic applications. The internal quantum efficiencies (IQE) are also discussed to evaluate carrier collection mechanisms and recombination losses in each type of junctions of solar cell. Finally, it is interesting to observe a maximum conversion efficiency of 6.46% with 91.6% fill factor from n-GaN/i-In0.1Ga0.9N/p-GaN CSS-nanowire solar cell with an optimized thickness of 180 nm InGaN layer under one Sun AM1.5 illumination.
Computer analysis of microcrystalline silicon hetero-junction solar cell with lumerical FDTD/DEVICE
NASA Astrophysics Data System (ADS)
Riaz, Muhammad; Earles, S. K.; Kadhim, Ahmed; Azzahrani, Ahmad
The computer analysis of tandem solar cell, c-Si/a-Si:H/μc-SiGe, is studied within Lumerical FDTD/Device 4.6. The optical characterization is performed in FDTD and then total generation rate is transported into DEVICE for electrical characterization. The electrical characterization of the solar cell is carried out in DEVICE. The design is implemented by staking three sub cells with band gap of 1.12eV, 1.50eV and 1.70eV, respectively. First, single junction solar cell with both a-Si and μc-SiGe absorbing layers are designed and compared. The thickness for both layers are kept the same. In a single junction, solar cell with a-Si absorbing layer, the fill factor and the efficiency are noticed as FF = 78.98%, and η = 6.03%. For μc-SiGe absorbing layer, the efficiency and fill factor are increased as η = 7.06% and FF = 84.27%, respectively. Second, for tandem thin film solar cell c-Si/a-Si:H/μc-SiGe, the fill factor FF = 81.91% and efficiency η = 9.84% have been noticed. The maximum efficiency for both single junction thin film solar cell c-Si/μc-SiGe and tandem solar cell c-Si/a-Si:H/μc-SiGe are improved with check board surface design for light trapping.
Demonstration of an ac Josephson junction laser
NASA Astrophysics Data System (ADS)
Cassidy, M. C.; Bruno, A.; Rubbert, S.; Irfan, M.; Kammhuber, J.; Schouten, R. N.; Akhmerov, A. R.; Kouwenhoven, L. P.
2017-03-01
Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit’s nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.
Direct analysis of Holliday junction resolving enzyme in a DNA origami nanostructure.
Suzuki, Yuki; Endo, Masayuki; Cañas, Cristina; Ayora, Silvia; Alonso, Juan C; Sugiyama, Hiroshi; Takeyasu, Kunio
2014-06-01
Holliday junction (HJ) resolution is a fundamental step for completion of homologous recombination. HJ resolving enzymes (resolvases) distort the junction structure upon binding and prior cleavage, raising the possibility that the reactivity of the enzyme can be affected by a particular geometry and topology at the junction. Here, we employed a DNA origami nano-scaffold in which each arm of a HJ was tethered through the base-pair hybridization, allowing us to make the junction core either flexible or inflexible by adjusting the length of the DNA arms. Both flexible and inflexible junctions bound to Bacillus subtilis RecU HJ resolvase, while only the flexible junction was efficiently resolved into two duplexes by this enzyme. This result indicates the importance of the structural malleability of the junction core for the reaction to proceed. Moreover, cleavage preferences of RecU-mediated reaction were addressed by analyzing morphology of the reaction products. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Avraham, Hava Karsenty; Jiang, Shuxian; Fu, Yigong; Nakshatri, Harikrishna; Ovadia, Haim; Avraham, Shalom
2014-02-01
Although the incidence of breast cancer metastasis (BCM) in brain has increased significantly in triple-negative breast cancer (TNBC), the mechanisms remain elusive. Using in vivo mouse models for BCM in brain, we observed that TNBC cells crossed the blood-brain barrier (BBB), lodged in the brain microvasculature and remained adjacent to brain microvascular endothelial cells (BMECs). Breaching of the BBB in vivo by TNBCs resulted in increased BBB permeability and changes in ZO-1 and claudin-5 tight junction (TJ) protein structures. Angiopoietin-2 expression was elevated in BMECs and was correlated with BBB disruption. Secreted Ang-2 impaired TJ structures and increased BBB permeability. Treatment of mice with the neutralizing Ang-2 peptibody trebananib prevented changes in the BBB integrity and BMEC destabilization, resulting in inhibition of TNBC colonization in brain. Thus, Ang-2 is involved in initial steps of brain metastasis cascade, and inhibitors for Ang-2 may serve as potential therapeutics for brain metastasis. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Tanaka, Makoto; Taguchi, Mikio; Matsuyama, Takao; Sawada, Toru; Tsuda, Shinya; Nakano, Shoichi; Hanafusa, Hiroshi; Kuwano, Yukinori
1992-11-01
A new type of a-Si/c-Si heterojunction solar cell, called the HIT (Heterojunction with Intrinsic Thin-layer) solar cell, has been developed based on ACJ (Artificially Constructed Junction) technology. A conversion efficiency of more than 18% has been achieved, which is the highest ever value for solar cells in which the junction was fabricated at a low temperature (<200°C).
High band gap 2-6 and 3-5 tunneling junctions for silicon multijunction solar cells
NASA Technical Reports Server (NTRS)
Daud, Taher (Inventor); Kachare, Akaram H. (Inventor)
1986-01-01
A multijunction silicon solar cell of high efficiency is provided by providing a tunnel junction between the solar cell junctions to connect them in series. The tunnel junction is comprised of p+ and n+ layers of high band gap 3-5 or 2-6 semiconductor materials that match the lattice structure of silicon, such as GaP (band gap 2.24 eV) or ZnS (band gap 3.6 eV). Each of which has a perfect lattice match with silicon to avoid defects normally associated with lattice mismatch.
Single-graded CIGS with narrow bandgap for tandem solar cells.
Feurer, Thomas; Bissig, Benjamin; Weiss, Thomas P; Carron, Romain; Avancini, Enrico; Löckinger, Johannes; Buecheler, Stephan; Tiwari, Ayodhya N
2018-01-01
Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se 2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe 2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells.
Single-graded CIGS with narrow bandgap for tandem solar cells
Avancini, Enrico; Buecheler, Stephan; Tiwari, Ayodhya N.
2018-01-01
Abstract Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells. PMID:29707066
Enhanced blue responses in nanostructured Si solar cells by shallow doping
NASA Astrophysics Data System (ADS)
Cheon, Sieun; Jeong, Doo Seok; Park, Jong-Keuk; Kim, Won Mok; Lee, Taek Sung; Lee, Heon; Kim, Inho
2018-03-01
Optimally designed Si nanostructures are very effective for light trapping in crystalline silicon (c-Si) solar cells. However, when the lateral feature size of Si nanostructures is comparable to the junction depth of the emitter, dopant diffusion in the lateral direction leads to excessive doping in the nanostructured emitter whereby poor blue responses arise in the external quantum efficiency (EQE). The primary goal of this study is to find the correlation of emitter junction depth and carrier collection efficiency in nanostructured c-Si solar cells in order to enhance the blue responses. We prepared Si nanostructures of nanocone shape by colloidal lithography, with silica beads of 520 nm in diameter, followed by a reactive ion etching process. c-Si solar cells with a standard cell architecture of an Al back surface field were fabricated varying the emitter junction depth. We varied the emitter junction depth by adjusting the doping level from heavy doping to moderate doping to light doping and achieved greatly enhanced blue responses in EQE from 47%-92% at a wavelength of 400 nm. The junction depth analysis by secondary ion mass-spectroscopy profiling and the scanning electron microscopy measurements provided us with the design guide of the doping level depending on the nanostructure feature size for high efficiency nanostructured c-Si solar cells. Optical simulations showed us that Si nanostructures can serve as an optical resonator to amplify the incident light field, which needs to be considered in the design of nanostructured c-Si solar cells.
Dye-sensitized photoelectrochemical water oxidation through a buried junction.
Xu, Pengtao; Huang, Tian; Huang, Jianbin; Yan, Yun; Mallouk, Thomas E
2018-06-18
Water oxidation has long been a challenge in artificial photosynthetic devices that convert solar energy into fuels. Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) provide a modular approach for integrating light-harvesting molecules with water-oxidation catalysts on metal-oxide electrodes. Despite recent progress in improving the efficiency of these devices by introducing good molecular water-oxidation catalysts, WS-DSPECs have poor stability, owing to the oxidation of molecular components at very positive electrode potentials. Here we demonstrate that a solid-state dye-sensitized solar cell (ss-DSSC) can be used as a buried junction for stable photoelectrochemical water splitting. A thin protecting layer of TiO 2 grown by atomic layer deposition (ALD) stabilizes the operation of the photoanode in aqueous solution, although as a solar cell there is a performance loss due to increased series resistance after the coating. With an electrodeposited iridium oxide layer, a photocurrent density of 1.43 mA cm -2 was observed in 0.1 M pH 6.7 phosphate solution at 1.23 V versus reversible hydrogen electrode, with good stability over 1 h. We measured an incident photon-to-current efficiency of 22% at 540 nm and a Faradaic efficiency of 43% for oxygen evolution. While the potential profile of the catalyst layer suggested otherwise, we confirmed the formation of a buried junction in the as-prepared photoelectrode. The buried junction design of ss-DSSs adds to our understanding of semiconductor-electrocatalyst junction behaviors in the presence of a poor semiconducting material.
AlInAsSb for GaSb-based multi-junction solar cells
NASA Astrophysics Data System (ADS)
Tournet, J.; Rouillard, Y.; Tournié, E.
2018-02-01
Bandgap engineering, by means of alloying or inserting nanostructures, is the bedrock of high efficiency photovoltaics. III-V quaternary alloys in particular enable bandgap tailoring of a multi-junction subcell while conserving a single lattice parameter. Among the possible candidates, AlInAsSb could in theory reach the widest range of bandgap energies while being lattice-matched to InP or GaSb. Although these material systems are still emerging photovoltaic segments, they do offer advantages for multi-junction design. GaSbbased structures in particular can make use of highly efficient GaSb/InAs tunnel junctions to connect the subcells. There has been only little information concerning GaSb-lattice matched AlInAsSb in the literature. The alloy's miscibility gap can be circumvented by the use of non-equilibrium techniques. Nevertheless, appropriate growth conditions remain to be found in order to produce a stable alloy. Furthermore, the abnormally low bandgap energies reported for the material need to be confirmed and interpreted with a multi-junction perspective. In this work, we propose a tandem structure made of an AlInAsSb top cell and a GaSb bottom cell. An epitaxy study of the AlInAsSb alloy lattice-matched to GaSb was first performed. The subcells were then grown and processed. The GaSb subcell yielded an efficiency of 5.9% under 1 sun and the tandem cell is under optimization. Preliminary results are presented in this document.
Sweetkind, Donald S.; Rytuba, James J.; Langenheim, V.E.; Fleck, Robert J.
2011-01-01
The volcanic fields in the California Coast Ranges north of San Francisco Bay are temporally and spatially associated with the northward migration of the Mendocino triple junction and the transition from subduction and associated arc volcanism to a slab window tectonic environment. Our geochemical analyses from the Sonoma volcanic field highlight the geochemical diversity of these volcanic rocks, allowing us to clearly distinguish these volcanic rocks from those of the roughly coeval ancestral Cascades magmatic arc to the west, and also to compare rocks of the Sonoma volcanic field to rocks from other slab window settings.
Electron microscopy of a Gd-Ba-Cu-O superconductor
NASA Technical Reports Server (NTRS)
Ramesh, R.; Thomas, G.; Meng, R. L.; Hor, P. H.; Chu, C. W.
1989-01-01
An electron microscopy study has been carried out to characterize the microstructure of a sintered Gd-Ba-Cu-O superconductor alloy. The GdBa2Cu3O(7-x) phase in the oxygen annealed sample is orthorhombic, while in the vacuum annealed sample it is tetragonal. It is shown that the details of the fine structure in the 001-line zone axis convergent beam patterns can be used to distinguish between the orthorhombic form and the tetragonal form. In addition to this matrix phase, an amorphous phase is frequently observed at the triple grain junctions. Gd-rich inclusions have been observed inside the matrix phase.
By-Pass Diode Temperature Tests of a Solar Array Coupon under Space Thermal Environment Conditions
NASA Technical Reports Server (NTRS)
Wright, Kenneth H.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon
2016-01-01
By-Pass diodes are a key design feature of solar arrays and system design must be robust against local heating, especially with implementation of larger solar cells. By-Pass diode testing was performed to aid thermal model development for use in future array designs that utilize larger cell sizes that result in higher string currents. Testing was performed on a 56-cell Advanced Triple Junction solar array coupon provided by SSL. Test conditions were vacuum with cold array backside using discrete by-pass diode current steps of 0.25 A ranging from 0 A to 2.0 A.
Analysis of the attainable efficiency of a direct-bandgap betavoltaic element
NASA Astrophysics Data System (ADS)
Sachenko, A. V.; Shkrebtii, A. I.; Korkishko, R. M.; Kostylyov, V. P.; Kulish, M. R.; Sokolovskyi, I. O.; Evstigneev, M.
2015-11-01
Conversion of energy of beta-particles into electric energy in a p-n junction based on direct-bandgap semiconductors, such as GaAs, is analyzed considering realistic semiconductor system parameters. An expression for the collection coefficient, Q, of the electron-hole pairs generated by beta-electrons is derived taking into account the existence of the dead layer. We show that the collection coefficient of beta-electrons emitted by a 3H-source to a GaAs p-n junction is close to 1 in a broad range of electron lifetimes in the junction, ranging from 10-9to 10-7 s. For the combination 147Pm/GaAs, Q is relatively large (≥slant 0.4) only for quite long lifetimes (about 10-7 s) and large thicknesses (about 100 μm) of GaAs p-n junctions. For realistic lifetimes of minority carriers and their diffusion coefficients, the open-circuit voltage realized due to the irradiation of a GaAs p-n junction by beta-particles is obtained. The attainable beta-conversion efficiency η in the case of a 3H/GaAs combination is found to exceed that of the 147Pm/GaAs combination.
Li, Tiantian; Zhang, Qixing; Ni, Jian; Huang, Qian; Zhang, Dekun; Li, Baozhang; Wei, Changchun; Yan, Baojie; Zhao, Ying; Zhang, Xiaodan
2017-03-29
We used silver nanoparticles (Ag-NPs) embedded in the p-type semiconductor layer of hydrogenated amorphous silicon (a-Si:H) solar cells in the Schottky barrier contact design to modify the interface between aluminum-doped ZnO (ZnO:Al, AZO) and p-type hydrogenated amorphous silicon carbide (p-a-SiC:H) without plasmonic absorption. The high work function of the Ag-NPs provided a good channel for the transport of photogenerated holes. A p-type nanocrystalline SiC:H layer was used to compensate for the real surface defects and voids on the surface of Ag-NPs to reduce recombination at the AZO/p-type layer interface, which then enhanced the photovoltage of single-junction a-Si:H solar cells to values as high as 1.01 V. The Ag-NPs were around 10 nm in diameter and thermally stable in the p-type a-SiC:H film at the solar-cell process temperature. We will also show that a wide range of photovoltages between 1.01 and 2.89 V could be obtained with single-, double-, and triple-junction solar cells based on the single-junction a-Si:H solar cells with tunable high photovoltage. These solar cells are suitable photocathodes for solar water-splitting applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scientists set a new world record for converting non-concentrated sunlight into electricity using a dual-junction III-V/Si solar cell. National Renewable Energy Laboratory (NREL) and Swiss Center for Electronics and Microtechnology (CSEM) scientists have collaborated to create a novel tandem solar cell that operates at 29.8% conversion efficiency under non-concentrator (1-sun) conditions. In comparison, the 1-sun efficiency of a silicon (Si) single-junction solar cell is probably still a few years away from converging on its practical limit of about 26%.
NASA Astrophysics Data System (ADS)
Gordon, Robert; Kinsey, Geoff; Nayaak, Adi; Garboushian, Vahan
2010-10-01
Concentrating Photovoltaics has held out the promise of low cost solar electricity for now several decades. Steady progress towards this goal in the 80's and 90's gradually produced more efficient and reliable systems. System efficiency is regarded as the largest factor in lowering the electricity cost and the relatively recent advent of the terrestrial multi-junction solar cell has pressed this race forward dramatically. CPV systems are now exhibiting impressive AC field efficiencies of 25% and more, approximately twice that of the best flat plate systems available today. Amonix inc. has just tested their latest generation multi-junction module design, achieving over 31% DC efficiency at near PVUSA test conditions. Inculcating this design into their next MegaModule is forthcoming, but the expected AC system field efficiency should be significantly higher than current 25% levels.
Microrefrigeration by a pair of normal metal/insulator/superconductor junctions
NASA Technical Reports Server (NTRS)
Leivo, M. M.; Pekola, J. P.; Averin, D. V.
1995-01-01
We suggest and demonstrate experimentally that two normal metal/insulator/superconductor (NIS) tunnel junctions combined in series to form a symmetric SINIS structure can operate as an efficient Peltier refrigerator. Specifically, it is shown that the SINIS structure with normal-state junction resistences of 1.0 and 1.1 kOmega is capable of reaching a temperature of about 100 mK starting from 300 mK. We estimate the corresponding cooling power to be 1.5 pW per total junction area of 0.8 micrometers(exp 2) at T = 300 mK. This cooling power density implies that scaling of junction area up to about 1 mm(exp 2) should bring the cooling power into the microW range.
Studies of silicon p-n junction solar cells
NASA Technical Reports Server (NTRS)
Neugroschel, A.; Lindholm, F. A.
1979-01-01
To provide theoretical support for investigating different ways to obtain high open-circuit voltages in p-n junction silicon solar cells, an analytical treatment of heavily doped transparent-emitter devices is presented that includes the effects of bandgap narrowing, Fermi-Dirac statistics, a doping concentration gradient, and a finite surface recombination velocity at the emitter surface. Topics covered include: (1) experimental determination of bandgap narrowing in the emitter of silicon p-n junction devices; (2) heavily doped transparent regions in junction solar cells, diodes, and transistors; (3) high-low-emitter solar cell; (4) determination of lifetimes and recombination currents in p-n junction solar cells; (5) MOS and oxide-charged-induced BSF solar cells; and (6) design of high efficiency solar cells for space and terrestrial applications.
An, Changlong; Beard, William A; Chen, Desheng; Wilson, Samuel H; Makridakis, Nick M
2013-10-01
Human DNA polymerase (pol) β is essential for base excision repair. We previously reported a triple somatic mutant of pol β (p.P261L/T292A/I298T) found in an early onset prostate tumor. This mutation abolishes polymerase activity, and the wild-type allele was not present in the tumor, indicating a complete deficiency in pol β function. The effect on polymerase activity is unexpected because the point mutations that comprise the triple mutant are not part of the active site. Herein, we demonstrate the mechanism of this loss-of-function. In order to understand the effect of the individual point mutations we biochemically analyzed all single and double mutants that comprise the triple mutant. We found that the p.I298T mutation is responsible for a marked instability of the triple mutant protein at 37˚C. At room temperature the triple mutant's low efficiency is also due to a decrease in the apparent binding affinity for the dNTP substrate, which is due to the p.T292A mutation. Furthermore, the triple mutant displays lower fidelity for transversions in vitro, due to the p.T292A mutation. We conclude that distinct mutations of the triple pol β mutant are responsible for the loss of activity, lower fidelity, and instability observed in vitro.
Tunable φ Josephson junction ratchet.
Menditto, R; Sickinger, H; Weides, M; Kohlstedt, H; Koelle, D; Kleiner, R; Goldobin, E
2016-10-01
We demonstrate experimentally the operation of a deterministic Josephson ratchet with tunable asymmetry. The ratchet is based on a φ Josephson junction with a ferromagnetic barrier operating in the underdamped regime. The system is probed also under the action of an additional dc current, which acts as a counterforce trying to stop the ratchet. Under these conditions the ratchet works against the counterforce, thus producing a nonzero output power. Finally, we estimate the efficiency of the φ Josephson junction ratchet.
A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction
Mailoa, Jonathan P.; Bailie, Colin D.; Johlin, Eric C.; ...
2015-03-24
With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm 2 2-terminal monolithic perovskite/silicon multijunction solar cell with a V OC as high as 1.65 V. As a result, we achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.
NASA Astrophysics Data System (ADS)
Imai, Shigeru; Ito, Masato
2018-06-01
In this paper, anomalous single-electron transfer in common-gate quadruple-dot turnstile devices with asymmetric junction capacitances is revealed. That is, the islands have the same total number of excess electrons at high and low gate voltages of the swing that transfers a single electron. In another situation, two electrons enter the islands from the source and two electrons leave the islands for the source and drain during a gate voltage swing cycle. First, stability diagrams of the turnstile devices are presented. Then, sequences of single-electron tunneling events by gate voltage swings are investigated, which demonstrate the above-mentioned anomalous single-electron transfer between the source and the drain. The anomalous single-electron transfer can be understood by regarding the four islands as “three virtual islands and a virtual source or drain electrode of a virtual triple-dot device”. The anomalous behaviors of the four islands are explained by the normal behavior of the virtual islands transferring a single electron and the behavior of the virtual electrode.
Thermoelectric ZT enhanced by asymmetric configuration in single-molecule-magnet junctions
NASA Astrophysics Data System (ADS)
Niu, Pengbin; Shi, Yunlong; Sun, Zhu; Nie, Yi-Hang; Luo, Hong-Gang
2016-02-01
In mesoscopic devices, many factors like the Coulomb and spin interactions can enhance the thermoelectric figure of merit ZT. Here we use a system consisting of a single-molecule magnet (SMM) connected to two ferromagnetic electrodes to consider the possible enhancement effects of thermoelectric efficiency. By introducing an asymmetric configuration to the transport junction, we find that this configuration can significantly enhance the thermoelectric ZT. The optimized asymmetric thermoelectric ZT is five times that of the ZT with a symmetric configuration or non-magnetic case. Due to this asymmetry, a non-zero charge thermopower at the electron-hole symmetry point is also found. These results demonstrate that the asymmetry of the transport junction helps to enhance thermoelectric efficiency and is useful for fabricating SMM-based thermoelectric devices.
Gunasekara, Chathura; Zhang, Kui; Deng, Wenping; Brown, Laura
2018-01-01
Abstract Despite their important roles, the regulators for most metabolic pathways and biological processes remain elusive. Presently, the methods for identifying metabolic pathway and biological process regulators are intensively sought after. We developed a novel algorithm called triple-gene mutual interaction (TGMI) for identifying these regulators using high-throughput gene expression data. It first calculated the regulatory interactions among triple gene blocks (two pathway genes and one transcription factor (TF)), using conditional mutual information, and then identifies significantly interacted triple genes using a newly identified novel mutual interaction measure (MIM), which was substantiated to reflect strengths of regulatory interactions within each triple gene block. The TGMI calculated the MIM for each triple gene block and then examined its statistical significance using bootstrap. Finally, the frequencies of all TFs present in all significantly interacted triple gene blocks were calculated and ranked. We showed that the TFs with higher frequencies were usually genuine pathway regulators upon evaluating multiple pathways in plants, animals and yeast. Comparison of TGMI with several other algorithms demonstrated its higher accuracy. Therefore, TGMI will be a valuable tool that can help biologists to identify regulators of metabolic pathways and biological processes from the exploded high-throughput gene expression data in public repositories. PMID:29579312
Underwood, M.B.; Shelton, K.L.; McLaughlin, R.J.; Laughland, M.M.; Solomon, R.M.
1999-01-01
This study documents three localities in the Franciscan accretionary complex of northern California, now adjacent to the San Andreas fault, that were overprinted thermally between 13.9 and 12.2 Ma: Point Delgada-Shelter Cove (King Range terrane); Bolinas Ridge (San Bruno Mountain terrane); and Mount San Bruno (San Bruno Mountain terrane). Vein assemblages of quartz, carbonate, sulfide minerals, and adularia were precipitated locally in highly fractured wall rock. Vitrinite reflectance (Rm) values and illite crystallinity decrease away from the zones of metalliferous veins, where peak wall-rock temperatures, as determined from Rm, were as high as 315??C. The ??18O values of quartz and calcite indicate that two separate types of fluid contributed to vein precipitation. Higher ??18O fluids produced widespread quartz and calcite veins that are typical of the regional paleothermal regime. The widespread veins are by-products of heat conduction and diffuse fluid flow during zeolite and prehnite-pumpellyite-grade metamorphism, and we interpret their paleofluids to have evolved through dehydration reactions and/or extensive isotopic exchange with accreted Franciscan rocks. Lower ??18O fluids, in contrast, evolved from relatively high temperature exchange between seawater (or meteoric water) and basaltic and/or sedimentary host rocks; focused flow of those fluids resulted in local deposition of the metalliferous veins. Heat sources for the three paleothermal anomalies remain uncertain and may have been unrelated to one another. Higher temperature metalliferous fluids in the King Range terrane could have advected either from a site of ridge-trench interaction north of the Mendocino fracture zone or from a "slabless window" in the wake of the northward migrating Mendocino triple junction. A separate paradox involves the amount of Quaternary offset of Franciscan basement rocks near Shelter Cove by on-land faults that some regard as the main active trace of the San Andreas plate boundary. Contouring of vitrinite reflectance values to the north of an area affected by A.D. 1906 surface rupture indicates that the maximum dextral offset within the interior of the King Range terrane is only 2.5 km. If this fault extends inland, and if it has been accommodating most of the strike-slip component of San Andreas offset at a rate of 3-4 cm/yr, then its activity began only 83-62 ka. This interpretation would also mean that a longer term trace of the San Andreas fault must be nearby, either offshore or along the northeast boundary of the King Range terrane. An offshore fault trace would be consistent with peak heating of King Range strata north of the Mendocino triple junction. Conversely, shifting the fault to the east would be compatible with a slabless window heat source and long-distance northward translation of the King Range terrane after peak heating.
NASA Astrophysics Data System (ADS)
Jiang, Tao; Wang, Yanyan; Li, Yingsong
2017-07-01
In this paper, a triple stop-band filter with a ratioed periodical defected microstrip structure is proposed for wireless communication applications. The proposed ratioed periodical defected microstrip structures are spiral slots, which are embedded into a 50 Ω microstrip line to obtain multiple stop-bands. The performance of the proposed triple stop-band filter is investigated numerically and experimentally. Moreover, the equivalent circuit model of the proposed filter is also established and discussed. The results are given to verify that the proposed triple stop-band filter has three stop bands at 3.3 GHz, 5.2 GHz, 6.8 GHz to reject the unwanted signals, which is promising for integrating into UWB communication systems to efficiently prevent the potential interferences from unexpected narrowband signals such as WiMAX, WLAN and RFID communication systems.
Applications of AMPS-1D for solar cell simulation
NASA Astrophysics Data System (ADS)
Zhu, Hong; Kalkan, Ali Kaan; Hou, Jingya; Fonash, Stephen J.
1999-03-01
The AMPS-1D PC computer program is now used by over 70 groups world-wide for detector and solar cell analysis. It has proved to be a very powerful tool in understanding device operation and physics for single crystal, poly-crystalline and amorphous structures. For example, AMPS-1D has been successful in explaining the "red kink" [1] and the "transient effect" in CdS/CIGS poly-crystalline solar cells. It has been used to show that thin film poly-Si structures, with reasonable light trapping, are capable of competitive solar cell conversion efficiencies. In the case of a-Si:H structures, it has been used, for example, to settle the discrepancies in bandgap measurement, to predict the effective QE>1 phenomenon later seen in these materials [2], to determine the relative roles of interface and bulk properties, and to point the direction toward 16% triple junction structures. In general AMPS-1D is used for cell and detector design, material parameter sensitivity studies, and parameter extraction. Recently we have shown that it can be used to determine optimum structure and light and voltage biasing conditions in the material parameter extraction function. Information on AMPS can be found at www.psu.edu/dept/AMPS/amps_web/AMPS.html and at other web sites set up by user groups.
Stanger, Dylan E; Abdulla, Alym H; Wong, Frank T; Alipour, Sina; Bressler, Brian L; Wood, David A; Webb, John G
2017-08-01
The aim of this study was to identify the incidence of upper gastrointestinal bleeding (UGIB) in the postprocedural period following transcatheter aortic valve replacement (TAVR). As TAVR moves into intermediate- and low-risk patients, it has become increasingly important to understand its extracardiac complications. The patient population undergoing TAVR have clinical and demographic characteristics that place them at significant risk of UGIB. Practical aspects of TAVR, including use of antithrombotic therapy, further increase risk of UGIB. A retrospective single-center evaluation of 841 patients who underwent TAVR between January 2005 and August 2014 was performed in conjunction with analysis of referral patterns to the gastroenterology service for UGIB at the same site. The overall risk of UGIB following TAVR was found to be 2.0% (n = 17/841). Additionally, the risk of UGIB in patients receiving triple antithrombotic therapy was found to be 10-fold greater than patients not receiving triple antithrombotic therapy (11.8% vs 1.0%). Endoscopy findings demonstrated five high-risk esophageal lesions including erosive esophageal ulcers, visible vessels at the GE junction, erosions at distal esophagus, and an actively bleeding esophageal ring that had been intubated through by the transesophageal echocardiography (TEE) probe. This large cohort study demonstrates that TAVR is associated with a moderate risk of severe UGIB. The results of this study suggest that patients on triple antithrombotic therapy are at highest risk for severe UGIB. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
"V-junction": a novel structure for high-speed generation of bespoke droplet flows.
Ding, Yun; Casadevall i Solvas, Xavier; deMello, Andrew
2015-01-21
We present the use of microfluidic "V-junctions" as a droplet generation strategy that incorporates enhanced performance characteristics when compared to more traditional "T-junction" formats. This includes the ability to generate target-sized droplets from the very first one, efficient switching between multiple input samples, the production of a wide range of droplet sizes (and size gradients) and the facile generation of droplets with residence time gradients. Additionally, the use of V-junction droplet generators enables the suspension and subsequent resumption of droplet flows at times defined by the user. The high degree of operational flexibility allows a wide range of droplet sizes, payloads, spacings and generation frequencies to be obtained, which in turn provides for an enhanced design space for droplet-based experimentation. We show that the V-junction retains the simplicity of operation associated with T-junction formats, whilst offering functionalities normally associated with droplet-on-demand technologies.
Gas-liquid flow splitting in T-junction with inclined lateral arm
NASA Astrophysics Data System (ADS)
Yang, Le-le; Liu, Shuo; Li, Hua; Zhang, Jian; Wu, Ying-xiang; Xu, Jing-yu
2018-02-01
This paper studies the gas-liquid flow splitting in T-junction with inclined lateral arm. The separation mechanism of the T-junction is related to the pressure distribution in the T-junction. It is shown that the separation efficiency strongly depends on the inclination angle, when the angle ranges from 0° to 30°, while not so strongly for angles in the range from 30° to 90° Increasing the number of connecting tubes is helpful for the gas-liquid separation, and under the present test conditions, with four connecting tubes, a good separation performance can be achieved. Accordingly, a multi-tube Y-junction separator with four connecting tubes is designed for the experimental investigation. A good agreement between the simulated and measured data shows that there is an optimal split ratio to achieve the best performance for the multi-tube Y-junction separator.
Toward an understanding of disequilibrium dihedral angles in mafic rocks
Holness, Marian B.; Humphreys, Madeleine C.S.; Sides, Rachel; Helz, Rosalind T.; Tegner, Christian
2012-01-01
The median dihedral angle at clinopyroxene-plagioclase-plagioclase junctions in mafic rocks, Θcpp, is generally lower than equilibrium (109˚ {plus minus} 2˚). Observation of a wide range of mafic bodies demonstrates that previous work on systematic variations of Θcpp is incorrect in several important respects. Firstly, the spatial distribution of plagioclase compositional zoning demonstrates that the final geometry of three-grain junctions, and hence Θcpp, is formed during solidification (the igneous process): sub-solidus textural modification in most dolerites and gabbros, previously thought to be the dominant control on Θcpp, is insignificant. Θcpp is governed by mass transport constraints, the inhibiting effects of small pore size on crystallization, and variation in relative growth rates of pyroxene and plagioclase. During rapid cooling, pyroxene preferentially fills wider pores while the narrower pores remain melt-filled, resulting in an initial value of Θcpp of 78˚, rather than 60˚ which would be expected if all melt-filled pores were filled with pyroxene. Lower cooling rates create a higher initial Θcpp due to changes in relative growth rates of the two minerals at the nascent three-grain junction. Low Θcpp (associated with cuspate clinopyroxene grains at triple junctions) can also be diagnostic of infiltration of previously melt-free rocks by late-stage evolved liquids (the metasomatic process). Modification of Θcpp by sub-solidus textural equilibration (the metamorphic process) is only important for fine-grained mafic rocks such as chilled margins and intra-plutonic chill zones. In coarse-grained gabbros from shallow crustal intrusions the metamorphic process occurs only in the centres of oikocrysts, associated with rounding of chadacrysts.
Yan Hong; Yong Wang; Wang Ling Goh; Yuan Gao; Lei Yao
2015-08-01
This paper presents a mathematic method and a cost-efficient circuit to measure the value of each component of the bio-impedance model at electrode-electrolyte interface. The proposed current excited triple-time-voltage oversampling (TTVO) method deduces the component values by solving triple simultaneous electric equation (TSEE) at different time nodes during a current excitation, which are the voltage functions of time. The proposed triple simultaneous electric equations (TSEEs) allows random selections of the time nodes, hence numerous solutions can be obtained during a single current excitation. Following that, the oversampling approach is engaged by averaging all solutions of multiple TSEEs acquired after a single current excitation, which increases the practical measurement accuracy through the improvement of the signal-to-noise ratio (SNR). In addition, a print circuit board (PCB) that consists a switched current exciter and an analog-to-digital converter (ADC) is designed for signal acquisition. This presents a great cost reduction when compared against other instrument-based measurement data reported [1]. Through testing, the measured values of this work is proven to be in superb agreements on the true component values of the electrode-electrolyte interface model. This work is most suited and also useful for biological and biomedical applications, to perform tasks such as stimulations, recordings, impedance characterizations, etc.
Valley dependent transport in graphene L junction
NASA Astrophysics Data System (ADS)
Chan, K. S.
2018-05-01
We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.
Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
Wanlass, M.W.
1994-12-27
A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.
Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
Wanlass, Mark W.
1994-01-01
A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.
Radiation hardness of Ga0.5In0.5 P/GaAs tandem solar cells
NASA Technical Reports Server (NTRS)
Kurtz, Sarah R.; Olson, J. M.; Bertness, K. A.; Friedman, D. J.; Kibbler, A.; Cavicchi, B. T.; Krut, D. D.
1991-01-01
The radiation hardness of a two-junction monolithic Ga sub 0.5 In sub 0.5 P/GaAs cell with tunnel junction interconnect was investigated. Related single junction cells were also studied to identify the origins of the radiation losses. The optimal design of the cell is discussed. The air mass efficiency of an optimized tandem cell after irradiation with 10(exp 15) cm (-2) 1 MeV electrons is estimated to be 20 percent using currently available technology.
Photocatalytic overall water splitting promoted by an α-β phase junction on Ga2O3.
Wang, Xiang; Xu, Qian; Li, Mingrun; Shen, Shuai; Wang, Xiuli; Wang, Yaochuan; Feng, Zhaochi; Shi, Jingying; Han, Hongxian; Li, Can
2012-12-21
When Alpha met Beta: a tuneable α-β surface phase junction on Ga(2)O(3) can significantly improve photocatalytic overall water splitting into H(2) and O(2) over individual α-Ga(2)O(3) or β-Ga(2)O(3) surface phases. This enhanced photocatalytic performance is mainly attributed to the efficient charge separation and transfer across the α-β phase junction. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photovoltaic conversion of laser power to electrical power
NASA Technical Reports Server (NTRS)
Walker, G. H.; Heinbockel, J. H.
1986-01-01
Photovoltaic laser to electric converters are attractive for use with a space-based laser power station. This paper presents the results of modeling studies for a silicon vertical junction converter used with a Nd laser. A computer code was developed for the model and this code was used to conduct a parametric study for a Si vertical junction converter consisting of one p-n junction irradiated with a Nd laser. These calculations predict an efficiency over 50 percent for an optimized converter.
Developments toward an 18% efficient silicon solar cell
NASA Technical Reports Server (NTRS)
Meulenberg, A., Jr.
1983-01-01
Limitations to increased open-circuit voltage were identified and experimentally verified for 0.1 ohm-cm solar cells with heavily doped emitters. After major reduction in the dark current contribution from the metal-silicon interface of the grid contacts, the surface recombination velocity of the oxide-silicon interface of shallow junction solar cells is the limiting factor. In deep junction solar cells, where the junction field does not aid surface collection, the emitter bulk is the limiting factor. Singly-diffused, shallow junction cells have been fabricated with open circuit voltages in excess of 645 mV. Double-diffusion shallow and deep junctions cells have displayed voltages above 650 mV. MIS solar cells formed on 0.1 ohm-cm substrates have exibited the lowest dark currents produced in the course of the contract work.
He, Jian; Gao, Pingqi; Ling, Zhaoheng; Ding, Li; Yang, Zhenhai; Ye, Jichun; Cui, Yi
2016-12-27
Silicon/organic heterojunction solar cells (HSCs) based on conjugated polymers, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and n-type silicon (n-Si) have attracted wide attention due to their potential advantages of high efficiency and low cost. However, the state-of-the-art efficiencies are still far from satisfactory due to the inferior junction quality. Here, facile treatments were applied by pretreating the n-Si wafer in tetramethylammonium hydroxide (TMAH) solution and using a capping copper iodide (CuI) layer on the PEDOT:PSS layer to achieve a high-quality Schottky junction. Detailed photoelectric characteristics indicated that the surface recombination was greatly suppressed after TMAH pretreatment, which increased the thickness of the interfacial oxide layer. Furthermore, the CuI capping layer induced a strong inversion layer near the n-Si surface, resulting in an excellent field effect passivation. With the collaborative improvements in the interface chemical and electrical passivation, a competitive open-circuit voltage of 0.656 V and a high fill factor of 78.1% were achieved, leading to a stable efficiency of over 14.3% for the planar n-Si/PEDOT:PSS HSCs. Our findings suggest promising strategies to further exploit the full voltage as well as efficiency potentials for Si/organic solar cells.
NASA Astrophysics Data System (ADS)
Doubre, Cécile; Déprez, Aline; Masson, Frédéric; Socquet, Anne; Lewi, Elias; Grandin, Raphaël; Nercessian, Alexandre; Ulrich, Patrice; De Chabalier, Jean-Bernard; Saad, Ibrahim; Abayazid, Ahmadine; Peltzer, Gilles; Delorme, Arthur; Calais, Eric; Wright, Tim
2017-02-01
Kinematics of divergent boundaries and Rift-Rift-Rift junctions are classically studied using long-term geodetic observations. Since significant magma-related displacements are expected, short-term deformation provides important constraints on the crustal mechanisms involved both in active rifting and in transfer of extensional deformation between spreading axes. Using InSAR and GPS data, we analyse the surface deformation in the whole Central Afar region in detail, focusing on both the extensional deformation across the Quaternary magmato-tectonic rift segments, and on the zones of deformation transfer between active segments and spreading axes. The largest deformation occurs across the two recently activated Asal-Ghoubbet (AG) and Manda Hararo-Dabbahu (MH-D) magmato-tectonic segments with very high strain rates, whereas the other Quaternary active segments do not concentrate any large strain, suggesting that these rifts are either sealed during interdyking periods or not mature enough to remain a plate boundary. Outside of these segments, the GPS horizontal velocity field shows a regular gradient following a clockwise rotation of the displacements from the Southeast to the East of Afar, with respect to Nubia. Very few shallow creeping structures can be identified as well in the InSAR data. However, using these data together with the strain rate tensor and the rotations rates deduced from GPS baselines, the present-day strain field over Central Afar is consistent with the main tectonic structures, and therefore with the long-term deformation. We investigate the current kinematics of the triple junction included in our GPS data set by building simple block models. The deformation in Central Afar can be described by adding a central microblock evolving separately from the three surrounding plates. In this model, the northern block boundary corresponds to a deep EW-trending trans-tensional dislocation, locked from the surface to 10-13 km and joining at depth the active spreading axes of the Red Sea and the Aden Ridge, from AG to MH-D rift segments. Over the long-term, this plate configuration could explain the presence of the en-échelon magmatic basins and subrifts. However, the transient behaviour of the spreading axes implies that the deformation in Central Afar evolves depending on the availability of magma supply within the well-established segments.
Forward Technology Solar Cell Experiment First On-Orbit Data
NASA Technical Reports Server (NTRS)
Walters, R. J.; Garner, J. C.; Lam, S. N.; Vazquez, J. A.; Braun, W. R.; Ruth, R. E.; Warner, J. H.; Lorentzen, J. R.; Messenger, S. R.; Bruninga, R.;
2007-01-01
This paper presents first on orbit measured data from the Forward Technology Solar Cell Experiment (FTSCE). FTSCE is a space experiment housed within the 5th Materials on the International Space Station Experiment (MISSE-5). MISSE-5 was launched aboard the Shuttle return to flight mission (STS-114) on July 26, 2005 and deployed on the exterior of the International Space Station (ISS). The experiment will remain in orbit for nominally one year, after which it will be returned to Earth for post-flight testing and analysis. While on orbit, the experiment is designed to measure a 36 point current vs. voltage (IV) curve on each of the experimental solar cells, and the data is continuously telemetered to Earth. The experiment also measures the solar cell temperature and the orientation of the solar cells to the sun. A range of solar cell technologies are included in the experiment including state-of-the-art triple junction InGaP/GaAs/Ge solar cells from several vendors, thin film amorphous Si and CuIn(Ga)Se2 cells, and next-generation technologies like single-junction GaAs cells grown on Si wafers and metamorphic InGaP/InGaAs/Ge triple-junction cells. In addition to FTSCE, MISSE-5 also contains a Thin-Film Materials experiment. This is a passive experiment that will provide data on the effect of the space environment on more than 200 different materials. FTSCE was initially conceived in response to various on-orbit and ground test anomalies associated with space power systems. The Department of Defense (DoD) required a method of rapidly obtaining on orbit validation data for new space solar cell technologies, and NRL was tasked to devise an experiment to meet this requirement. Rapid access to space was provided by the MISSE Program which is a NASA Langley Research Center program. MISSE-5 is a completely self-contained experiment system with its own power generation and storage system and communications system. The communications system, referred to as PCSat, transmits and receives in the Amateur Radio band providing a node on the Amateur Radio Satellite Service. This paper presents an overview of the various aspects of MISSE-5 and a sample of the first measured on orbit data.
Strain-balanced type-II superlattices for efficient multi-junction solar cells.
Gonzalo, A; Utrilla, A D; Reyes, D F; Braza, V; Llorens, J M; Fuertes Marrón, D; Alén, B; Ben, T; González, D; Guzman, A; Hierro, A; Ulloa, J M
2017-06-21
Multi-junction solar cells made by assembling semiconductor materials with different bandgap energies have hold the record conversion efficiencies for many years and are currently approaching 50%. Theoretical efficiency limits make use of optimum designs with the right lattice constant-bandgap energy combination, which requires a 1.0-1.15 eV material lattice-matched to GaAs/Ge. Nevertheless, the lack of suitable semiconductor materials is hindering the achievement of the predicted efficiencies, since the only candidates were up to now complex quaternary and quinary alloys with inherent epitaxial growth problems that degrade carrier dynamics. Here we show how the use of strain-balanced GaAsSb/GaAsN superlattices might solve this problem. We demonstrate that the spatial separation of Sb and N atoms avoids the ubiquitous growth problems and improves crystal quality. Moreover, these new structures allow for additional control of the effective bandgap through the period thickness and provide a type-II band alignment with long carrier lifetimes. All this leads to a strong enhancement of the external quantum efficiency under photovoltaic conditions with respect to bulk layers of equivalent thickness. Our results show that GaAsSb/GaAsN superlattices with short periods are the ideal (pseudo)material to be integrated in new GaAs/Ge-based multi-junction solar cells that could approach the theoretical efficiency limit.
High-efficiency, deep-junction, epitaxial InP solar cells on (100) and (111)B InP substrates
NASA Technical Reports Server (NTRS)
Venkatasubramanian, R.; Timmons, M. L.; Hutchby, J. A.; Walters, Robert J.; Summers, Geoffrey P.
1994-01-01
We report on the development and performance of deep-junction (approximately 0.25 micron), graded-emitter-doped, n(sup +)-p InP solar cells grown by metallorganic chemical vapor deposition (MOCVD). A novel, diffusion-transport process for obtaining lightly-doped p-type base regions of the solar cell is described. The I-V data and external quantum-efficiency response of these cells are presented. The best active-area AMO efficiency for these deep-junction cells on (100)-oriented InP substrates is 16.8 percent, with a J(sub SC) of 31.8 mA/sq cm, a V(sub OC) of 0.843 V, and a fill-factor of 0.85. By comparison, the best cell efficiency on the (111)B-oriented InP substrates was 15.0 percent. These efficiency values for deep-junction cells are encouraging and compare favorably with performance of thin-emitter (0.03 micron) epitaxial cells as well as that of deep-emitter diffused cells. The cell performance and breakdown voltage characteristics of a batch of 20 cells on each of the orientations are presented, indicating the superior breakdown voltage properties and other characteristics of InP cells on the (111)B orientation. Spectral response, dark I-V data, and photoluminescence (PL) measurements on the InP cells are presented with an analysis on the variation in J(sub SC) and V(sub OC) of the cells. It is observed, under open-circuit conditions, that lower-V(sub OC) cells exhibit higher band-edge PL intensity for both the (100) and (111)B orientations. This anomalous behavior suggests that radiative recombination in the heavily-doped n(sup +)-InP emitter may be detrimental to achieving higher V(sub OC) in n(sup +)-p InP solar cells.
Unexpected substrate specificity of T4 DNA ligase revealed by in vitro selection
NASA Technical Reports Server (NTRS)
Harada, Kazuo; Orgel, Leslie E.
1993-01-01
We have used in vitro selection techniques to characterize DNA sequences that are ligated efficiently by T4 DNA ligase. We find that the ensemble of selected sequences ligates about 50 times as efficiently as the random mixture of sequences used as the input for selection. Surprisingly many of the selected sequences failed to produce a match at or close to the ligation junction. None of the 20 selected oligomers that we sequenced produced a match two bases upstream from the ligation junction.
NASA Astrophysics Data System (ADS)
Zhao, Jing; Ma, Fa-Jun; Ding, Ke; Zhang, Hao; Jie, Jiansheng; Ho-Baillie, Anita; Bremner, Stephen P.
2018-03-01
In graphene/silicon solar cells, it is crucial to understand the transport mechanism of the graphene/silicon interface to further improve power conversion efficiency. Until now, the transport mechanism has been predominantly simplified as an ideal Schottky junction. However, such an ideal Schottky contact is never realised experimentally. According to literature, doped graphene shows the properties of a semiconductor, therefore, it is physically more accurate to model graphene/silicon junction as a Heterojunction. In this work, HNO3-doped graphene/silicon solar cells were fabricated with the power conversion efficiency of 9.45%. Extensive characterization and first-principles calculations were carried out to establish an advanced technology computer-aided design (TCAD) model, where p-doped graphene forms a straddling heterojunction with the n-type silicon. In comparison with the simple Schottky junction models, our TCAD model paves the way for thorough investigation on the sensitivity of solar cell performance to graphene properties like electron affinity. According to the TCAD heterojunction model, the cell performance can be improved up to 22.5% after optimizations of the antireflection coatings and the rear structure, highlighting the great potentials for fabricating high efficiency graphene/silicon solar cells and other optoelectronic devices.
NASA Astrophysics Data System (ADS)
Vodenicarevic, D.; Locatelli, N.; Mizrahi, A.; Friedman, J. S.; Vincent, A. F.; Romera, M.; Fukushima, A.; Yakushiji, K.; Kubota, H.; Yuasa, S.; Tiwari, S.; Grollier, J.; Querlioz, D.
2017-11-01
Low-energy random number generation is critical for many emerging computing schemes proposed to complement or replace von Neumann architectures. However, current random number generators are always associated with an energy cost that is prohibitive for these computing schemes. We introduce random number bit generation based on specific nanodevices: superparamagnetic tunnel junctions. We experimentally demonstrate high-quality random bit generation that represents an orders-of-magnitude improvement in energy efficiency over current solutions. We show that the random generation speed improves with nanodevice scaling, and we investigate the impact of temperature, magnetic field, and cross talk. Finally, we show how alternative computing schemes can be implemented using superparamagentic tunnel junctions as random number generators. These results open the way for fabricating efficient hardware computing devices leveraging stochasticity, and they highlight an alternative use for emerging nanodevices.
Reduced-droop green III-nitride light-emitting diodes utilizing GaN tunnel junction
NASA Astrophysics Data System (ADS)
Alhassan, Abdullah I.; Young, Erin C.; Alyamani, Ahmed Y.; Albadri, Abdulrahman; Nakamura, Shuji; DenBaars, Steven P.; Speck, James S.
2018-04-01
We report the fabrication of low-droop high-efficiency green c-plane light-emitting diodes (LEDs) utilizing GaN tunnel junction (TJ) contacts. The LED epitaxial layers with a top p-GaN layer were grown by metal organic chemical vapor deposition and an n++-GaN layer was deposited by molecular beam epitaxy to form a TJ. The TJ LEDs were then compared with equivalent LEDs having a tin-doped indium oxide (ITO) contact. The TJ LEDs exhibited a higher performance and a lower efficiency droop than did the ITO LEDs. At 35 A/cm2, the external quantum efficiencies for the TJ and ITO LEDs were 31.2 and 27%, respectively.
USDA-ARS?s Scientific Manuscript database
Selective permeability of the intestinal epithelium and efficient nutrient absorption are important functions for proper growth and development of calves. Damage to the intestinal mucosa can give rise to harmful long-term health effects and reduce productivity of the mature animal. Tight junction pr...
McMahon, William E.; Friedman, Daniel J.; Geisz, John F.
2017-05-23
This paper re-examines the impact of atmospheric absorption bands on series-connected multijunction cell design, motivated by the numerous local efficiency maxima that appear as the number of junctions is increased. Some of the local maxima are related to the bottom subcell bandgap and are already well understood: As the bottom subcell bandgap is varied, a local efficiency maximum is produced wherever the bottom cell bandgap crosses an atmospheric absorption band. The optimal cell designs at these local maxima are generally current matched, such that all subcells have nearly the same short-circuit current. We systematically describe additional local maxima that occurmore » wherever an upper subcell bandgap encounters an atmospheric absorption band. Moreover, these local maxima are not current matched and become more prevalent as the number of junctions increases, complicating the solution space for five-junction and six-junction designs. A systematic framework for describing this complexity is developed, and implications for numerical convergence are discussed.« less
A semiconductor nanowire Josephson junction microwave laser
NASA Astrophysics Data System (ADS)
Cassidy, Maja; Uilhoorn, Willemijn; Kroll, James; de Jong, Damaz; van Woerkom, David; Nygard, Jesper; Krogstrup, Peter; Kouwenhoven, Leo
We present measurements of microwave lasing from a single Al/InAs/Al nanowire Josephson junction strongly coupled to a high quality factor superconducting cavity. Application of a DC bias voltage to the Josephson junction results in photon emission into the cavity when the bias voltage is equal to a multiple of the cavity frequency. At large voltage biases, the strong non-linearity of the circuit allows for efficient down conversion of high frequency microwave photons down to multiple photons at the fundamental frequency of the cavity. In this regime, the emission linewidth narrows significantly below the bare cavity linewidth to < 10 kHz and real time analysis of the emission statistics shows above threshold lasing with a power conversion efficiency > 50%. The junction-cavity coupling and laser emission can be tuned rapidly via an external gate, making it suitable to be integrated into a scalable qubit architecture as a versatile source of coherent microwave radiation. This work has been supported by the Netherlands Organisation for Scientific Research (NWO/OCW), Foundation for Fundamental Research on Matter (FOM), European Research Council (ERC), and Microsoft Corporation Station Q.
Enhancing light absorption within the carrier transport length in quantum junction solar cells.
Fu, Yulan; Hara, Yukihiro; Miller, Christopher W; Lopez, Rene
2015-09-10
Colloidal quantum dot (CQD) solar cells have attracted tremendous attention because of their tunable absorption spectrum window and potentially low processing cost. Recently reported quantum junction solar cells represent a promising approach to building a rectifying photovoltaic device that employs CQD layers on each side of the p-n junction. However, the ultimate efficiency of CQD solar cells is still highly limited by their high trap state density in both p- and n-type CQDs. By modeling photonic structures to enhance the light absorption within the carrier transport length and by ensuring that the carrier generation and collection efficiencies were both augmented, our work shows that overall device current density could be improved. We utilized a two-dimensional numerical model to calculate the characteristics of patterned CQD solar cells based on a simple grating structure. Our calculation predicts a short circuit current density as high as 31 mA/cm2, a value nearly 1.5 times larger than that of the conventional flat design, showing the great potential value of patterned quantum junction solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, William E.; Friedman, Daniel J.; Geisz, John F.
This paper re-examines the impact of atmospheric absorption bands on series-connected multijunction cell design, motivated by the numerous local efficiency maxima that appear as the number of junctions is increased. Some of the local maxima are related to the bottom subcell bandgap and are already well understood: As the bottom subcell bandgap is varied, a local efficiency maximum is produced wherever the bottom cell bandgap crosses an atmospheric absorption band. The optimal cell designs at these local maxima are generally current matched, such that all subcells have nearly the same short-circuit current. We systematically describe additional local maxima that occurmore » wherever an upper subcell bandgap encounters an atmospheric absorption band. Moreover, these local maxima are not current matched and become more prevalent as the number of junctions increases, complicating the solution space for five-junction and six-junction designs. A systematic framework for describing this complexity is developed, and implications for numerical convergence are discussed.« less
Photoinduced currents in metal-barrier-metal junctions
NASA Technical Reports Server (NTRS)
Guedes, M. P.; Gustafson, T. K.; Heiblum, M.; Siu, D. P.; Slayman, C. W.; Whinnery, J. R.; Yasuoka, Y.
1978-01-01
The fabrication and application of metal-barrier-metal tunneling junctions for radiative interactions are discussed. Particular attention is given to the photolithographic fabrication of small area devices and the coupling to such devices via surface plasmon waves which play an important role at infrared and optical frequencies. It has been shown that the junction electron tunneling currents can be strongly coupled to surface plasmon junction modes, and spontaneous and stimulated emission of the latter are possible as well as nonlinear interactions. Finally, results demonstrating the photo-excitation of electrons with subsequent tunneling induced by ultraviolet radiation are presented. It is estimated that quantum efficiencies of the order of 5% and higher are possible in the ultraviolet region.
Phase transition in one Josephson junction with a side-coupled magnetic impurity
NASA Astrophysics Data System (ADS)
Zhi, Li-Ming; Wang, Xiao-Qi; Jiang, Cui; Yi, Guang-Yu; Gong, Wei-Jiang
2018-04-01
This work focuses on one Josephson junction with a side-coupled magnetic impurity. And then, the Josephson phase transition is theoretically investigated, with the help of the exact diagonalization approach. It is found that even in the absence of intradot Coulomb interaction, the magnetic impurity can efficiently induce the phenomenon of Josephson phase transition, which is tightly related to the spin correlation manners (i.e., ferromagnetic or antiferromagnetic) between the impurity and the junction. Moreover, the impurity plays different roles when it couples to the dot and superconductor, respectively. This work can be helpful in describing the influence of one magnetic impurity on the supercurrent through the Josephson junction.
Network of Porosity Formed in Ultrafine-Grained Copper Produced by Equal Channel Angular Pressing
NASA Astrophysics Data System (ADS)
Ribbe, Jens; Baither, Dietmar; Schmitz, Guido; Divinski, Sergiy V.
2009-04-01
Radiotracer experiments on diffusion of Ni63 and Rb86 in severely deformed commercially pure copper (8 passes of equal channel angular pressing) reveal unambiguously the existence of ultrafast transport paths. A fraction of these paths remains in the material even after complete recrystallization. Scanning electron microscopy and focused ion beam techniques are applied. Deep grooves are found which are related to original high-energy interfaces. In-depth sectioning near corresponding triple junctions reveals clearly multiple microvoids or microcracks caused by the severe deformation. Long-range tracer penetration over tens of micrometers proves that these submicrometer-large defects are connected by highly diffusive paths and that they appear with significant frequency.
High efficiency silicon solar cell based on asymmetric nanowire.
Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M; Baek, Chang-Ki
2015-07-08
Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm(2) and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells.
Low-Cost CdTe/Silicon Tandem Solar Cells
Tamboli, Adele C.; Bobela, David C.; Kanevce, Ana; ...
2017-09-06
Achieving higher photovoltaic efficiency in single-junction devices is becoming increasingly difficult, but tandem modules offer the possibility of significant efficiency improvements. By device modeling we show that four-terminal CdTe/Si tandem solar modules offer the prospect of 25%-30% module efficiency, and technoeconomic analysis predicts that these efficiency gains can be realized at costs per Watt that are competitive with CdTe and Si single junction alternatives. The cost per Watt of the modeled tandems is lower than crystalline silicon, but slightly higher than CdTe alone. But, these higher power modules reduce area-related balance of system costs, providing increased value especially in area-constrainedmore » applications. This avenue for high-efficiency photovoltaics enables improved performance on a near-term timeframe, as well as a path to further reduced levelized cost of electricity as module and cell processes continue to advance.« less
Low-Cost CdTe/Silicon Tandem Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamboli, Adele C.; Bobela, David C.; Kanevce, Ana
Achieving higher photovoltaic efficiency in single-junction devices is becoming increasingly difficult, but tandem modules offer the possibility of significant efficiency improvements. By device modeling we show that four-terminal CdTe/Si tandem solar modules offer the prospect of 25%-30% module efficiency, and technoeconomic analysis predicts that these efficiency gains can be realized at costs per Watt that are competitive with CdTe and Si single junction alternatives. The cost per Watt of the modeled tandems is lower than crystalline silicon, but slightly higher than CdTe alone. But, these higher power modules reduce area-related balance of system costs, providing increased value especially in area-constrainedmore » applications. This avenue for high-efficiency photovoltaics enables improved performance on a near-term timeframe, as well as a path to further reduced levelized cost of electricity as module and cell processes continue to advance.« less
A new template matching method based on contour information
NASA Astrophysics Data System (ADS)
Cai, Huiying; Zhu, Feng; Wu, Qingxiao; Li, Sicong
2014-11-01
Template matching is a significant approach in machine vision due to its effectiveness and robustness. However, most of the template matching methods are so time consuming that they can't be used to many real time applications. The closed contour matching method is a popular kind of template matching methods. This paper presents a new closed contour template matching method which is suitable for two dimensional objects. Coarse-to-fine searching strategy is used to improve the matching efficiency and a partial computation elimination scheme is proposed to further speed up the searching process. The method consists of offline model construction and online matching. In the process of model construction, triples and distance image are obtained from the template image. A certain number of triples which are composed by three points are created from the contour information that is extracted from the template image. The rule to select the three points is that the template contour is divided equally into three parts by these points. The distance image is obtained here by distance transform. Each point on the distance image represents the nearest distance between current point and the points on the template contour. During the process of matching, triples of the searching image are created with the same rule as the triples of the model. Through the similarity that is invariant to rotation, translation and scaling between triangles, the triples corresponding to the triples of the model are found. Then we can obtain the initial RST (rotation, translation and scaling) parameters mapping the searching contour to the template contour. In order to speed up the searching process, the points on the searching contour are sampled to reduce the number of the triples. To verify the RST parameters, the searching contour is projected into the distance image, and the mean distance can be computed rapidly by simple operations of addition and multiplication. In the fine searching process, the initial RST parameters are discrete to obtain the final accurate pose of the object. Experimental results show that the proposed method is reasonable and efficient, and can be used in many real time applications.
Towards improved photovoltaic conversion using dilute magnetic semiconductors (abstract only)
NASA Astrophysics Data System (ADS)
Olsson, Pär; Guillemoles, J.-F.; Domain, C.
2008-02-01
Present photovoltaic devices, based on p/n junctions, are limited from first principles to maximal efficiencies of 31% (40% under full solar concentration; Shockley and Queisser 1961 J. Appl. Phys. 32 510). However, more innovative schemes may overcome the Shockley-Queisser limit since the theoretical maximal efficiency of solar energy conversion is higher than 85% (Harder and Würfel 2003 Semicond. Sci. Technol. 18 S151). To date, the only practical realization of such an innovative scheme has been multi-junction devices, which at present hold the world record for efficiency at nearly 41% at significant solar concentration (US DOE news site: http://www.energy.gov/news/4503.htm). It has been proposed that one could make use of the solar spectrum in much the same way as the multi-junction devices do but in a single cell, using impurity induced intermediate levels to create gaps of different sizes. This intermediate level semiconductor (ILSC) concept (Green and Wenham 1994 Appl. Phys. Lett. 65 2907; Luque and Martí1997 Phys. Rev. Lett. 78 5014) has a maximal efficiency similar to that of multi-junction devices but suffers from prohibitively large non-radiative recombination rates. We here propose to use a ferromagnetic impurity scheme in order to reduce the non-radiative recombination rates while maintaining the high theoretical maximum efficiency of the ILSC scheme, that is about 46%. Using density functional theory calculations, the electronic and energetic properties of transition metal impurities for a wide range of semiconductors have been analysed. Of the several hundred compounds studied, only a few fulfil the design criteria that we present here. As an example, wide gap AlP is one of the most promising compounds. It was found that inclusion of significant amounts of Mn in AlP induces band structures providing conversion efficiencies potentially close to the theoretical maximum, with an estimated Curie temperature reaching above 100 K.
A transistor based on 2D material and silicon junction
NASA Astrophysics Data System (ADS)
Kim, Sanghoek; Lee, Seunghyun
2017-07-01
A new type of graphene-silicon junction transistor based on bipolar charge-carrier injection was designed and investigated. In contrast to many recent studies on graphene field-effect transistor (FET), this device is a new type of bipolar junction transistor (BJT). The transistor fully utilizes the Fermi level tunability of graphene under bias to increase the minority-carrier injection efficiency of the base-emitter junction in the BJT. Single-layer graphene was used to form the emitter and the collector, and a p-type silicon was used as the base. The output of this transistor was compared with a metal-silicon junction transistor ( i.e. surface-barrier transistor) to understand the difference between a graphene-silicon junction and metal-silicon Schottky junction. A significantly higher current gain was observed in the graphene-silicon junction transistor as the base current was increased. The graphene-semiconductor heterojunction transistor offers several unique advantages, such as an extremely thin device profile, a low-temperature (< 110 °C) fabrication process, low cost (no furnace process), and high-temperature tolerance due to graphene's stability. A transistor current gain ( β) of 33.7 and a common-emitter amplifier voltage gain of 24.9 were achieved.
Generation of sub-femtoliter droplet by T-junction splitting on microfluidic chips
NASA Astrophysics Data System (ADS)
Yang, Yu-Jun; Feng, Xuan; Xu, Na; Pang, Dai-Wen; Zhang, Zhi-Ling
2013-03-01
In the paper, sub-femtoliter droplets were easily produced by droplet splitting at a simple T-junction with orifice, which did not need expensive equipments, complex photolithography skill, or high energy input. The volume of the daughter droplet was not limited by channel size but controlled by channel geometry and fluidic characteristic. Moreover, single bead sampling and bead quantification in different orders of magnitude of droplet volumes were investigated. The droplets split at our T-junction chip had small volume and monodispersed size and could be produced efficiently, orderly, and controllably.
Density matrix renormalization group study of Y-junction spin systems
NASA Astrophysics Data System (ADS)
Guo, Haihui
Junction systems are important to understand both from the fundamental and the practical point of view, as they are essential components in existing and future electronic and spintronic devices. With the continuous advance of technology, device size will eventual reach the atomic scale. Some of the most interesting and useful junction systems will be strongly correlated. We chose the Density Matrix Renormalization Group method to study two types of Y-junction systems, the Y and YDelta junctions, on strongly correlated spin chains. With new ideas coming from the quantum information field, we have made a very efficient. Y-junction DMRG algorithm, which improves the overall CUB cost from O(m6) to O(m4), where m is the number of states kept per block. We studied the ground state properties, the correlation length, and investigated the degeneracy problem on the Y and YDelta junctions. For the excited states, we researched the existence of magnon bound states for various conditions, and have shown that the bound state exists when the central coupling constant is small.
Don’t Like RDF Reification? Making Statements about Statements Using Singleton Property
Nguyen, Vinh; Bodenreider, Olivier; Sheth, Amit
2015-01-01
Statements about RDF statements, or meta triples, provide additional information about individual triples, such as the source, the occurring time or place, or the certainty. Integrating such meta triples into semantic knowledge bases would enable the querying and reasoning mechanisms to be aware of provenance, time, location, or certainty of triples. However, an efficient RDF representation for such meta knowledge of triples remains challenging. The existing standard reification approach allows such meta knowledge of RDF triples to be expressed using RDF by two steps. The first step is representing the triple by a Statement instance which has subject, predicate, and object indicated separately in three different triples. The second step is creating assertions about that instance as if it is a statement. While reification is simple and intuitive, this approach does not have formal semantics and is not commonly used in practice as described in the RDF Primer. In this paper, we propose a novel approach called Singleton Property for representing statements about statements and provide a formal semantics for it. We explain how this singleton property approach fits well with the existing syntax and formal semantics of RDF, and the syntax of SPARQL query language. We also demonstrate the use of singleton property in the representation and querying of meta knowledge in two examples of Semantic Web knowledge bases: YAGO2 and BKR. Our experiments on the BKR show that the singleton property approach gives a decent performance in terms of number of triples, query length and query execution time compared to existing approaches. This approach, which is also simple and intuitive, can be easily adopted for representing and querying statements about statements in other knowledge bases. PMID:25750938
Jiao, Tianpeng; Liu, Jian; Wei, Dapeng; Feng, Yanhui; Song, Xuefen; Shi, Haofei; Jia, Shuming; Sun, Wentao; Du, Chunlei
2015-09-16
The conventional graphene-silicon Schottky junction solar cell inevitably involves the graphene growth and transfer process, which results in complicated technology, loss of quality of the graphene, extra cost, and environmental unfriendliness. Moreover, the conventional transfer method is not well suited to conformationally coat graphene on a three-dimensional (3D) silicon surface. Thus, worse interfacial conditions are inevitable. In this work, we directly grow graphene nanowalls (GNWs) onto the micropyramidal silicon (MP) by the plasma-enhanced chemical vapor deposition method. By controlling growth time, the cell exhibits optimal pristine photovoltaic performance of 3.8%. Furthermore, we improve the conductivity of the GNW electrode by introducing the silver nanowire (AgNW) network, which could achieve lower sheet resistance. An efficiency of 6.6% has been obtained for the AgNWs-GNWs-MP solar cell without any chemical doping. Meanwhile, the cell exhibits excellent stability exposed to air. Our studies show a promising way to develop simple-technology, low-cost, high-efficiency, and stable Schottky junction solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Yinkai; Cheng, Tian -Le; Wen, You -Hai
Microstructure evolution plays an important role in the performance degradation of SOFC electrodes. In this work, we propose a much improved phase field model to simulate the microstructure evolution in the electrodes of solid oxide fuel cell. We demonstrate that the tunability of the interfacial energy in this model has been significantly enhanced. Parameters are set to fit for the interfacial energies of a typical Ni-YSZ anode, an LSM-YSZ cathode and an artificial reference electrode, respectively. The contact angles at various triple junctions and the microstructure evolutions in two dimensions are calibrated to verify the model. As a demonstration ofmore » the capabilities of the model, three dimensional microstructure evolutions are simulated applying the model to the three different electrodes. The time evolutions of grain size and triple phase boundary density are analyzed. In addition, a recently proposed bound charge successive approximation algorithm is employed to calculate the effective conductivity of the electrodes during microstructure evolution. Furthermore, the effective conductivity of all electrodes are found to decrease during the microstructure evolution, which is attributed to the increased tortuosity and the loss of percolated volume fraction of the electrode phase.« less
Lei, Yinkai; Cheng, Tian -Le; Wen, You -Hai
2017-02-13
Microstructure evolution plays an important role in the performance degradation of SOFC electrodes. In this work, we propose a much improved phase field model to simulate the microstructure evolution in the electrodes of solid oxide fuel cell. We demonstrate that the tunability of the interfacial energy in this model has been significantly enhanced. Parameters are set to fit for the interfacial energies of a typical Ni-YSZ anode, an LSM-YSZ cathode and an artificial reference electrode, respectively. The contact angles at various triple junctions and the microstructure evolutions in two dimensions are calibrated to verify the model. As a demonstration ofmore » the capabilities of the model, three dimensional microstructure evolutions are simulated applying the model to the three different electrodes. The time evolutions of grain size and triple phase boundary density are analyzed. In addition, a recently proposed bound charge successive approximation algorithm is employed to calculate the effective conductivity of the electrodes during microstructure evolution. Furthermore, the effective conductivity of all electrodes are found to decrease during the microstructure evolution, which is attributed to the increased tortuosity and the loss of percolated volume fraction of the electrode phase.« less
PLEKHA7 Recruits PDZD11 to Adherens Junctions to Stabilize Nectins.
Guerrera, Diego; Shah, Jimit; Vasileva, Ekaterina; Sluysmans, Sophie; Méan, Isabelle; Jond, Lionel; Poser, Ina; Mann, Matthias; Hyman, Anthony A; Citi, Sandra
2016-05-20
PLEKHA7 is a junctional protein implicated in stabilization of the cadherin protein complex, hypertension, cardiac contractility, glaucoma, microRNA processing, and susceptibility to bacterial toxins. To gain insight into the molecular basis for the functions of PLEKHA7, we looked for new PLEKHA7 interactors. Here, we report the identification of PDZ domain-containing protein 11 (PDZD11) as a new interactor of PLEKHA7 by yeast two-hybrid screening and by mass spectrometry analysis of PLEKHA7 immunoprecipitates. We show that PDZD11 (17 kDa) is expressed in epithelial and endothelial cells, where it forms a complex with PLEKHA7, as determined by co-immunoprecipitation analysis. The N-terminal Trp-Trp (WW) domain of PLEKHA7 interacts directly with the N-terminal 44 amino acids of PDZD11, as shown by GST-pulldown assays. Immunofluorescence analysis shows that PDZD11 is localized at adherens junctions in a PLEKHA7-dependent manner, because its junctional localization is abolished by knock-out of PLEKHA7, and is rescued by re-expression of exogenous PLEKHA7. The junctional recruitment of nectin-1 and nectin-3 and their protein levels are decreased via proteasome-mediated degradation in epithelial cells where either PDZD11 or PLEKHA7 have been knocked-out. PDZD11 forms a complex with nectin-1 and nectin-3, and its PDZ domain interacts directly with the PDZ-binding motif of nectin-1. PDZD11 is required for the efficient assembly of apical junctions of epithelial cells at early time points in the calcium-switch model. These results show that the PLEKHA7-PDZD11 complex stabilizes nectins to promote efficient early junction assembly and uncover a new molecular mechanism through which PLEKHA7 recruits PDZ-binding membrane proteins to epithelial adherens junctions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Royse, Daniel J
2010-01-01
Double-cropping offers growers an opportunity to increase production efficiency while reducing costs. We evaluated degree of fragmentation, supplementation, and addition of phase II compost (PIIC) to 2nd break compost (2BkC) on mushroom yield and biological efficiency (BE%). One crop was extended as a triple crop in which we evaluated effect of compost type, and addition of phase II compost and supplement. All crops involved removing the casing layer after 2nd break and then using 2BkC for the various treatments. Simple fragmentation of the compost increased mushroom yield by 30% compared to non-fragmented compost. Addition of a commercial supplement to fragmented compost increased mushroom yield by 53-56% over non-supplemented, fragmented 2BkC. Fragmented, supplemented 2BkC resulted in a 99% and 108% yield increase over the non-fragmented control depending on degree of fragmentation (3x, 1x, respectively). A 3rd crop of mushrooms was produced from 2BkC, but yields were about one-half that of the 1st and 2nd crops. Double-cropping (and even triple-cropping) offers growers an opportunity to increase bio-efficiency, reduce production costs, and increase profitability. The cost of producing Agaricus bisporus continues to rise due to increasing expenses including materials, energy, and labor. Optimizing production practices, through double- or triple-cropping, could help growers become more efficient and competitive, and ensure the availability of mushrooms for consumers.
Two-dimensional non-volatile programmable p-n junctions
NASA Astrophysics Data System (ADS)
Li, Dong; Chen, Mingyuan; Sun, Zhengzong; Yu, Peng; Liu, Zheng; Ajayan, Pulickel M.; Zhang, Zengxing
2017-09-01
Semiconductor p-n junctions are the elementary building blocks of most electronic and optoelectronic devices. The need for their miniaturization has fuelled the rapid growth of interest in two-dimensional (2D) materials. However, the performance of a p-n junction considerably degrades as its thickness approaches a few nanometres and traditional technologies, such as doping and implantation, become invalid at the nanoscale. Here we report stable non-volatile programmable p-n junctions fabricated from the vertically stacked all-2D semiconductor/insulator/metal layers (WSe2/hexagonal boron nitride/graphene) in a semifloating gate field-effect transistor configuration. The junction exhibits a good rectifying behaviour with a rectification ratio of 104 and photovoltaic properties with a power conversion efficiency up to 4.1% under a 6.8 nW light. Based on the non-volatile programmable properties controlled by gate voltages, the 2D p-n junctions have been exploited for various electronic and optoelectronic applications, such as memories, photovoltaics, logic rectifiers and logic optoelectronic circuits.
Two-dimensional non-volatile programmable p-n junctions.
Li, Dong; Chen, Mingyuan; Sun, Zhengzong; Yu, Peng; Liu, Zheng; Ajayan, Pulickel M; Zhang, Zengxing
2017-09-01
Semiconductor p-n junctions are the elementary building blocks of most electronic and optoelectronic devices. The need for their miniaturization has fuelled the rapid growth of interest in two-dimensional (2D) materials. However, the performance of a p-n junction considerably degrades as its thickness approaches a few nanometres and traditional technologies, such as doping and implantation, become invalid at the nanoscale. Here we report stable non-volatile programmable p-n junctions fabricated from the vertically stacked all-2D semiconductor/insulator/metal layers (WSe 2 /hexagonal boron nitride/graphene) in a semifloating gate field-effect transistor configuration. The junction exhibits a good rectifying behaviour with a rectification ratio of 10 4 and photovoltaic properties with a power conversion efficiency up to 4.1% under a 6.8 nW light. Based on the non-volatile programmable properties controlled by gate voltages, the 2D p-n junctions have been exploited for various electronic and optoelectronic applications, such as memories, photovoltaics, logic rectifiers and logic optoelectronic circuits.
Qiu, Xi-Zhen; Zhang, Fang-Hui
2013-01-01
The high-power white LED was prepared based on the high thermal conductivity aluminum, blue chips and YAG phosphor. By studying the spectral of different junction temperature, we found that the radiation spectrum of white LED has a minimum at 485 nm. The radiation intensity at this wavelength and the junction temperature show a good linear relationship. The LED junction temperature was measured based on the formula of relative spectral intensity and junction temperature. The result measured by radiation intensity method was compared with the forward voltage method and spectral method. The experiment results reveal that the junction temperature measured by this method was no more than 2 degrees C compared with the forward voltage method. It maintains the accuracy of the forward voltage method and overcomes the small spectral shift of spectral method, which brings the shortcoming on the results. It also had the advantages of practical, efficient and intuitive, noncontact measurement, and non-destruction to the lamp structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torregrosa, Frank; Etienne, Hasnaa; Sempere, Guillaume
In order to achieve the requirements for P+/N junctions for <45 nm ITRS nodes, ultra low energy and high dose implantations are needed. Classical beamline implantation is now limited in low energies, compared to Plasma Immersion Ion Implantation (PIII) which efficiency is no more to prove for the realization of Ultra-Shallow Junctions (USJ) in semiconductor applications : this technique allows to get ultimate shallow profiles (as implanted) due to no lower limitation of energy and high dose rate. Electrical activation is also a big issue since it has to afford high electrical activation rate with very low diffusion. Laser annealingmore » is one of the candidates for the 45 nm node. This paper presents electrical and physico-chemical characterizations of junctions realized with BF3 PIII followed by laser thermal processing with aim to obtain ultra-shallow junctions. Different implantation conditions (acceleration voltage/dose) and laser conditions (laser types, fluence/number of shots) are used for this study. Pre-amorphization is also used to confine the junction depth, and is shown to have a positive effect on junction depth but leads in higher junction leakage due to the remaining of EOR defects. The characterization is done using Optical characterization tool (SEMILAB) for sheet resistance and junction leakage measurements. SIMS is used for Boron profile and junction depth.« less
Synergistic effect of amino acids modified on dendrimer surface in gene delivery.
Wang, Fei; Wang, Yitong; Wang, Hui; Shao, Naimin; Chen, Yuanyuan; Cheng, Yiyun
2014-11-01
Design of an efficient gene vector based on dendrimer remains a great challenge due to the presence of multiple barriers in gene delivery. Single-functionalization on dendrimer cannot overcome all the barriers. In this study, we synthesized a list of single-, dual- and triple-functionalized dendrimers with arginine, phenylalanine and histidine for gene delivery using a one-pot approach. The three amino acids play different roles in gene delivery: arginine is essential in formation of stable complexes, phenylalanine improves cellular uptake efficacy, and histidine increases pH-buffering capacity and minimizes cytotoxicity of the cationic dendrimer. A combination of these amino acids on dendrimer generates a synergistic effect in gene delivery. The dual- and triple-functionalized dendrimers show minimal cytotoxicity on the transfected NIH 3T3 cells. Using this combination strategy, we can obtain triple-functionalized dendrimers with comparable transfection efficacy to several commercial transfection reagents. Such a combination strategy should be applicable to the design of efficient and biocompatible gene vectors for gene delivery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Non-equilibrium tunneling in zigzag graphene nanoribbon break-junction results in spin filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Liming; Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville 3010; National ICT Australia, The University of Melbourne, Parkville 3010
Spintronic devices promise new faster and lower energy-consumption electronic systems. Graphene, a versatile material and candidate for next generation electronics, is known to possess interesting spintronic properties. In this paper, by utilizing density functional theory and non-equilibrium green function formalism, we show that Fano resonance can be generated by introducing a break junction in a zigzag graphene nanoribbon (ZGNR). Using this effect, we propose a new spin filtering device that can be used for spin injection. Our theoretical results indicate that the proposed device could achieve high spin filtering efficiency (over 90%) at practical fabrication geometries. Furthermore, our results indicatemore » that the ZGNR break junction lattice configuration can dramatically affect spin filtering efficiency and thus needs to be considered when fabricating real devices. Our device can be fabricated on top of spin transport channel and provides good integration between spin injection and spin transport.« less
Veerbeek, Janneke; Firet, Nienke J; Vijselaar, Wouter; Elbersen, Rick; Gardeniers, Han; Huskens, Jurriaan
2017-01-11
Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based solar cells. Organic monolayers were coupled to silicon surfaces by hydrosilylation in order to avoid an insulating silicon oxide layer at the surface. Monolayers of 1-tetradecyne were shown to passivate silicon micropillar-based solar cells with radial junctions, by which the efficiency increased from 8.7% to 9.9% for n + /p junctions and from 7.8% to 8.8% for p + /n junctions. This electrical passivation of the surface, most likely by removal of dangling bonds, is reflected in a higher shunt resistance in the J-V measurements. Monolayers of 1,8-nonadiyne were still reactive for click chemistry with a model catalyst, thus enabling simultaneous passivation and future catalyst coupling.
Solution-Processable Transparent Conductive Hole Injection Electrode for OLED SSL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pschenitzka, Florian; Mathai, Mathew; Torke, Terri
2012-07-15
An interconnected network of silver nanowires has been used as transparent anode in OLED devices. This layer was deposited by spin-coating and slot-die coating from an aqueous nanowire suspension. The sheet resistance of the film was 10ohms/sq with a transmission (including the glass substrate) of higher than 85%. The first phase of the project focused on the implementation of this nanowire layer with a hole-injection-layer (HIL) which has been developed at Plextronics and has been shown to provide good stability and efficiency in conventional OLED devices. We modified the HIL solution such that it coated reasonably well with suitable surfacemore » morphology so that actual devices can be manufactured. During the second phase we investigated the hole-injection and stability of hole-onlydevices. We determined that the use of the nanowire network as anode does not introduce an additional degradation mechanism since the observed device characteristics did not differ from those made with ITO anode. We then proceeded to make actual OLED devices with this nanowire / HIL stack and achieved device characteristics similar state-of-the-art OLED devices with a single junction. In order to gain traction with potential OLED manufacturers, we decided to contract Novaled to prepare large-area demonstrators for us. For these devices, we used an allevaporated stack, i.e. we did use Novaled's HIL material instead of Plextronics. We successfully fabricated demonstrators with an area of 25cm2 with a double or triple junction stack. Minor stack optimizations were necessary to achieve efficacies and lifetime equivalent with ITO devices made with the same devices stack. Due to the reduced microcavity effect, the color of the emitted light is significantly more stable with respect to the viewing angle compared to ITO devices. This fact in conjunction with the promise of lower production cost due to the elimination of the ITO sputtering process and the direct patterning of the anode layer are the obvious advantages of this technology. The project has shown that this nanowire technology is a viable option to achieve OLED devices with good lifetime and efficiency and we are currently working with manufacturers to utilize this technology in a production setting.« less
Barber, F Alan
2016-05-01
To compare the structural healing and clinical outcomes of triple-loaded single-row with suture-bridging double-row repairs of full-thickness rotator cuff tendons when both repair constructs are augmented with platelet-rich plasma fibrin membrane. A prospective, randomized, consecutive series of patients diagnosed with full-thickness rotator cuff tears no greater than 3 cm in anteroposterior length were treated with a triple-loaded single-row (20) or suture-bridging double-row (20) repair augmented with platelet-rich plasma fibrin membrane. The primary outcome measure was cuff integrity by magnetic resonance imaging (MRI) at 12 months postoperatively. Secondary clinical outcome measures were American Shoulder and Elbow Surgeons, Rowe, Simple Shoulder Test, Constant, and Single Assessment Numeric Evaluation scores. The mean MRI interval was 12.6 months (range, 12-17 months). A total of 3 of 20 single-row repairs and 3 of 20 double-row repairs (15%) had tears at follow-up MRI. The single-row group had re-tears in 1 single tendon repair and 2 double tendon repairs. All 3 tears failed at the original attachment site (Cho type 1). In the double-row group, re-tears were found in 3 double tendon repairs. All 3 tears failed medial to the medial row near the musculotendinous junction (Cho type 2). All clinical outcome measures were significantly improved from the preoperative level (P < .0001), but there was no statistical difference between groups postoperatively. There is no MRI difference in rotator cuff tendon re-tear rate at 12 months postsurgery between a triple-loaded single-row repair or a suture-bridging double-row repair when both are augmented with platelet-rich plasma fibrin membrane. No difference could be demonstrated between these repairs on clinical outcome scores. I, Prospective randomized study. Copyright © 2016 Arthroscopy Association of North America. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.; Institute of Nanomaterial and Nanostructure, Changsha University of Science and Technology, Changsha 410114; Hu, J.
2015-07-20
Using the density functional and non-equilibrium Green's function approaches, we studied the magnetic anisotropy and spin-filtering properties of various transition metal-Phthalocyanine molecular junctions across two Au electrodes. Our important finding is that the Au-RePc-Au junction has both large spin filtering efficiency (>80%) and large magnetic anisotropy energy, which makes it suitable for device applications. To provide insights for the further experimental work, we discussed the correlation between the transport property, magnetic anisotropy, and wave function features of the RePc molecule, and we also illustrated the possibility of controlling its magnetic state.
Development of reverse biased p-n junction electron emission
NASA Technical Reports Server (NTRS)
Fowler, P.; Muly, E. C.
1971-01-01
A cold cathode emitter of hot electrons for use as a source of electrons in vacuum gauges and mass spectrometers was developed using standard Norton electroluminescent silicon carbide p-n diodes operated under reverse bias conditions. Continued development including variations in the geometry of these emitters was carried out such that emitters with an emission efficiency (emitted current/junction current) as high as 3 x 10-0.00001 were obtained. Pulse measurements of the diode characteristics were made and showed that higher efficiency can be attained under pulse conditions probably due to the resulting lower temperatures resulting from such operation.
The effect of dephasing on the thermoelectric efficiency of molecular junctions.
Zimbovskaya, Natalya A
2014-07-09
In this work we report the results of theoretical analysis of the effect of the thermal environment on the thermoelectric efficiency of molecular junctions. The environment is represented by two thermal phonon baths associated with the electrodes, which are kept at different temperatures. The analysis is carried out using the Buttiker model within the scattering matrix formalism to compute electron transmission through the system. This approach is further developed so that the dephasing parameters are expressed in terms of relevant energies, including the thermal energy, strengths of coupling between the molecular bridge and the electrodes and characteristic energies of electron-phonon interactions. It is shown that the latter significantly affect thermoelectric efficiency by destroying the coherency of electron transport through the considered system.
Recovery and normalization of triple coincidences in PET.
Lage, Eduardo; Parot, Vicente; Moore, Stephen C; Sitek, Arkadiusz; Udías, Jose M; Dave, Shivang R; Park, Mi-Ae; Vaquero, Juan J; Herraiz, Joaquin L
2015-03-01
Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors. In this work, the authors propose a simple and general solution for recovering triple coincidences, which does not require specialized detectors or additional energy resolution requirements. To recover triple coincidences, the authors' method distributes such events among their possible LORs using the relative proportions of double coincidences in these LORs. The authors show analytically that this assignment scheme represents the maximum-likelihood solution for the triple-coincidence distribution problem. The PET component of a preclinical PET/CT scanner was adapted to enable the acquisition and processing of triple coincidences. Since the efficiencies for detecting double and triple events were found to be different throughout the scanner field-of-view, a normalization procedure specific for triple coincidences was also developed. The effect of including triple coincidences using their method was compared against the cases of equally weighting the triples among their possible LORs and discarding all the triple events. The authors used as figures of merit for this comparison sensitivity, noise-equivalent count (NEC) rates and image quality calculated as described in the NEMA NU-4 protocol for the assessment of preclinical PET scanners. The addition of triple-coincidence events with the authors' method increased peak NEC rates of the scanner by 26.6% and 32% for mouse- and rat-sized objects, respectively. This increase in NEC-rate performance was also reflected in the image-quality metrics. Images reconstructed using double and triple coincidences recovered using their method had better signal-to-noise ratio than those obtained using only double coincidences, while preserving spatial resolution and contrast. Distribution of triple coincidences using an equal-weighting scheme increased apparent system sensitivity but degraded image quality. The performance boost provided by the inclusion of triple coincidences using their method allowed to reduce the acquisition time of standard imaging procedures by up to ∼25%. Recovering triple coincidences with the proposed method can effectively increase the sensitivity of current clinical and preclinical PET systems without compromising other parameters like spatial resolution or contrast.
Zhu, Lin; Mochizuki, Toshimitsu; Yoshita, Masahiro; Chen, Shaoqiang; Kim, Changsu; Akiyama, Hidefumi; Kanemitsu, Yoshihiko
2016-05-16
We calculated the conversion-efficiency limit ηsc and the optimized subcell bandgap energies of 1 to 5 junction solar cells without and with intermediate reflectors under 1-sun AM1.5G and 1000-sun AM1.5D irradiations, particularly including the impact of internal radiative efficiency (ηint) below unity for realistic subcell materials on the basis of an extended detailed-balance theory. We found that the conversion-efficiency limit ηsc significantly drops when the geometric mean ηint* of all subcell ηint in the stack reduces from 1 to 0.1, and that ηsc degrades linearly to logηint* for ηint* below 0.1. For ηint*<0.1 differences in ηsc due to additional intermediate reflectors became very small if all subcells are optically thick for sun light. We obtained characteristic optimized bandgap energies, which reflect both ηint* decrease and AM1.5 spectral gaps. These results provide realistic efficiency targets and design principles.
Elbersen, Rick; Vijselaar, Wouter; Tiggelaar, Roald M; Gardeniers, Han; Huskens, Jurriaan
2015-11-18
Silicon is one of the main components of commercial solar cells and is used in many other solar-light-harvesting devices. The overall efficiency of these devices can be increased by the use of structured surfaces that contain nanometer- to micrometer-sized pillars with radial p/n junctions. High densities of such structures greatly enhance the light-absorbing properties of the device, whereas the 3D p/n junction geometry shortens the diffusion length of minority carriers and diminishes recombination. Due to the vast silicon nano- and microfabrication toolbox that exists nowadays, many versatile methods for the preparation of such highly structured samples are available. Furthermore, the formation of p/n junctions on structured surfaces is possible by a variety of doping techniques, in large part transferred from microelectronic circuit technology. The right choice of doping method, to achieve good control of junction depth and doping level, can contribute to an improvement of the overall efficiency that can be obtained in devices for energy applications. A review of the state-of-the-art of the fabrication and doping of silicon micro and nanopillars is presented here, as well as of the analysis of the properties and geometry of thus-formed 3D-structured p/n junctions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Die attach dimension and material on thermal conductivity study for high power COB LED
NASA Astrophysics Data System (ADS)
Sarukunaselan, K.; Ong, N. R.; Sauli, Z.; Mahmed, N.; Kirtsaeng, S.; Sakuntasathien, S.; Suppiah, S.; Alcain, J. B.; Retnasamy, V.
2017-09-01
High power LED began to gain popularity in the semiconductor market due to its efficiency and luminance. Nonetheless, along with the increased in efficiency, there was an increased in the junction temperature too. The alleviating junction temperature is undesirable since the performances and lifetime will be degraded over time. Therefore, it is crucial to solve this thermal problem by maximizing the heat dissipation to the ambience. Improvising the die attach (DA) layer would be the best option because this layer is sandwiched between the chip (heat source) and the substrate (channel to the ambient). In this paper, the impact of thickness and thermal conductivity onto the junction temperature and Von Mises stress is analyzed. Results obtained showed that the junction temperature is directly proportional to the thickness but the stress was inversely proportional to the thickness of the DA. The thermal conductivity of the materials did affect the junction temperature as there was not much changes once the thermal conductivity reached 20W/mK. However, no significant changes were observed on the Von Mises stress caused by the thermal conductivity. Material with the second highest thermal conductivity had the lowest stress, whereas the highest conductivity material had the highest stress value at 20 µm. Overall, silver sinter provided the best thermal dissipation compared to the other materials.
NASA Astrophysics Data System (ADS)
Leybourne, Bruce; Smoot, Christian; Longhinos, Biju
2014-05-01
Interplanetary Magnetic Field (IMF) coupling to south polar magnetic ring currents transfers induction energy to the Southern Geostream ringing Antarctica and underlying its encircling mid-ocean ridge structure. Magnetic reconnection between the southward interplanetary magnetic field and the magnetic field of the earth is the primary energy transfer mechanism between the solar wind and the magnetosphere. Induced telluric currents focused within joule spikes along Geostreams heat the southern Pacific. Alignment of the Australian Antarctic Discordance to other tectonic vortexes along the Western Pacific Rim, provide electrical connections to Earths core that modulate global telluric currents. The Banda Sea Triple Junction, a mantle vortex north of Australia, and the Lake Baikal Continental Rift vortex in the northern hemisphere modulate atmospheric Jetstream patterns gravitationally linked to internal density oscillations induced by these telluric currents. These telluric currents are driven by solar magnetic power, rotation and orbital dynamics. A solar rotation 40 day power spectrum in polarity controls north-south migration of earthquakes along the Western Pacific Rim and manifest as the Madden Julian Oscillation a well-documented climate cycle. Solar plasma turbulence cycles related to Hale flares trigger El Nino Southern Oscillations (ENSO's), while solar magnetic field strength frequencies dominate global warming and cooling trends indexed to the Pacific Decadal Oscillation. These Pacific climate anomalies are solar-electro-tectonically modulated via coupling to tropical geostream vortex streets. Particularly the section along the Central Pacific Megatrend connecting the Banda Sea Triple Junction (up welling mantle vortex) north of Australia with the Easter Island & Juan Fernandez twin rotating micro-plates (twin down welling mantle vortexes) along the East Pacific Rise modulating ENSO. Solar eruptions also enhance the equatorial ring current located approximately at the boundary of the plasmasphere and the outer magnetosphere. Induction power of geo-magnetic storms, are linked to ring current strength, and depend on the speed of solar eruptions, along with the dynamic pressure, strength and orientation of the IMF.
NASA Astrophysics Data System (ADS)
Clifton, Amy E.; Sigmundsson, Freysteinn; Feigl, Kurt L.; Guðmundsson, Gunnar; Árnadóttir, Thóra
2002-06-01
The Hengill triple junction, SW Iceland, is subjected to both tectonic extension and shear, causing seismicity related to strike-slip and normal faulting. Between 1994 and 1998, the area experienced episodic swarms of enhanced seismicity culminating in a ML=5.1 earthquake on June 4, 1998 and a ML=5 earthquake on November 13, 1998. Geodetic measurements, using Global Positioning System (GPS), leveling and Synthetic Aperture Radar Interferometry (InSAR) detected maximum uplift of 2 cm/yr and expansion between the Hrómundartindur and Grensdalur volcanic systems. A number of faults in the area generated meter-scale surface breaks. Geographic Information System (GIS) software has been used to integrate structural, field and geophysical data to determine how the crust failed, and to evaluate how much of the recent activity focused on zones of pre-existing weaknesses in the crust. Field data show that most surface effects can be attributed to the June 4, 1998 earthquake and have occurred along or adjacent to old faults. Surface effects consist of open gashes in soil, shattering of lava flows, rockfall along scarps and within old fractures, loosened push-up structures and landslides. Seismicity in 1994-1998 was distributed asymmetrically about the center of uplift, with larger events migrating toward the main fault of the June 4, 1998 earthquake. Surface effects are most extensive in the area of greatest structural complexity, where N- and E-trending structures related to the transform boundary intersect NE-trending structures related to the rift zone. InSAR, GPS, and field observations have been used in an attempt to constrain slip along the trace of the fault that failed on June 4, 1998. Geophysical and field data are consistent with an interpretation of distributed slip along a segmented right-lateral strike-slip fault, with slip decreasing southward along the fault plane. We suggest a right step or right bend between fault segments to explain local deformation near the fault.
DOE Office of Scientific and Technical Information (OSTI.GOV)
I. J. van Rooyen; E. Olivier; J. H Neethlin
Electron microscopy examinations of selected coated particles from the first advanced gas reactor experiment (AGR-1) at Idaho National Laboratory (INL) provided important information on fission product distribution and chemical composition. Furthermore, recent research using STEM analysis led to the discovery of Ag at SiC grain boundaries and triple junctions. As these Ag precipitates were nano-sized, high resolution transmission electron microscopy (HRTEM) examination was used to provide more information at the atomic level. This paper describes some of the first HRTEM results obtained by examining a particle from Compact 4-1-1, which was irradiated to an average burnup of 19.26% fissions permore » initial metal atom (FIMA), a time average, volume-averaged temperature of 1072°C; a time average, peak temperature of 1182°C and an average fast fluence of 4.13 x 1021 n/cm2. Based on gamma analysis, it is estimated that this particle may have released as much as 10% of its available Ag-110m inventory during irradiation. The HRTEM investigation focused on Ag, Pd, Cd and U due to the interest in Ag transport mechanisms and possible correlation with Pd, Ag and U previously found. Additionally, Compact 4-1-1 contains fuel particles fabricated with a different fuel carrier gas composition and lower deposition temperatures for the SiC layer relative to the Baseline fabrication conditions, which are expected to reduce the concentration of SiC defects resulting from uranium dispersion. Pd, Ag, and Cd were found to co-exist in some of the SiC grain boundaries and triple junctions whilst U was found to be present in the micron-sized precipitates as well as separately in selected areas at grain boundaries. This study confirmed the presence of Pd both at inter- and intragranular positions; in the latter case specifically at stacking faults. Small Pd nodules were observed at a distance of about 6.5 micron from the inner PyC/SiC interface.« less
Haeussler, Peter J.; Bradley, Dwight C.; Goldfarb, Richard J.
2003-01-01
A spreading center was subducted diachronously along a 2200 km segment of what is now the Gulf of Alaska margin between 61 and 50 Ma, and left in its wake near-trench intrusions and high-T, low-P metamorphic rocks. Gold-quartz veins and dikes, linked to ridge subduction by geochronological and relative timing evidence, provide a record of brittle deformation during and after passage of the ridge. The gold-quartz veins are typically hosted by faults, and their regional extent indicates there was widespread deformation of the forearc above the slab window at the time of ridge subduction. Considerable variability in the strain pattern was associated with the slab window and the trailing plate. A diffuse network of dextral, sinistral, and normal faults hosted small lode-gold deposits (<50,000 oz) in south-central Alaska, whereas crustal-scale dextral faults in southeastern Alaska are spatially associated with large gold deposits (up to 800,000 oz).We interpret the gold-quartz veins as having formed above an eastward-migrating slab window, where the forearc crust responded to the diminishing influence of the forward subducting plate, the increasing influence of the trailing plate, and the thermal pulse and decreased basal friction from the slab window. In addition, extensional deformation of the forearc resulted from the diverging motions of the two oceanic plates at the margins of the slab window. Factors that complicate interpretations of fault kinematics and near-trench dike orientations include a change in plate motions at ca. 52 Ma, northward translation of the accretionary complex, oroclinal bending of the south-central Alaska margin, and subduction of transform segments. We find the pattern of syn-ridge subduction faulting in southern Alaska is remarkably similar to brittle faults near the Chile triple junction and to earthquake focal mechanisms in the Woodlark basin - the two modern sites of ridge subduction. Therefore, extensional and strike-slip deformation above slab windows may be a common occurrence.
NASA Astrophysics Data System (ADS)
Gong, Jianhua; McGuire, Jeffrey J.
2018-01-01
The interactions between the North American, Pacific, and Gorda plates at the Mendocino Triple Junction (MTJ) create one of the most seismically active regions in North America. The earthquakes rupture all three plate boundaries but also include considerable intraplate seismicity reflecting the strong internal deformation of the Gorda plate. Understanding the stress levels that drive these ruptures and estimating the locking state of the subduction interface are especially important topics for regional earthquake hazard assessment. However owing to the lack of offshore seismic and geodetic instruments, the rupture process of only a few large earthquakes near the MTJ have been studied in detail and the locking state of the subduction interface is not well constrained. In this paper, first, we use the second moments inversion method to study the rupture process of the January 28, 2015 Mw 5.7 earthquake on the Mendocino transform fault that was unusually well recorded by both onshore and offshore strong motion instruments. We estimate the rupture dimension to be approximately 6 km by 3 km corresponding to a stress drop of ∼4 MPa for a crack model. Next we investigate the frictional state of the subduction interface by simulating the afterslip that would be expected there as a result of the stress changes from the 2015 earthquake and a 2010 Mw 6.5 intraplate earthquake within the subducted Gorda plate. We simulate afterslip scenarios for a range of depths of the downdip end of the locked zone defined as the transition to velocity strengthening friction and calculate the corresponding surface deformation expected at onshore GPS monuments. We can rule out a very shallow downdip limit owing to the lack of a detectable signal at onshore GPS stations following the 2010 earthquake. Our simulations indicate that the locking depth on the slab surface is at least 14 km, which suggests that the next M8 earthquake rupture will likely reach the coastline and strong shaking should be expected there.
Geodetic constraints on continental rifting along the Red Sea
NASA Astrophysics Data System (ADS)
Reilinger, R.; McClusky, S.; Arrajehi, A.; Mahmoud, S.; Rayan, A.; Ghebreab, W.; Ogubazghi, G.; Al-Aydrus, A.
2006-12-01
We are using the Global Positioning System (GPS) to monitor and quantify patterns and rates of tectonic and magmatic deformation associated with active rifting of the continental lithosphere and the transition to sea floor spreading in the Red Sea. Broad-scale motions of the Nubian and Arabian plates indicate coherent plate motion with internal deformation below the current resolution of our measurements (~ 1-2 mm/yr). The GPS-determined Euler vector for Arabia-Nubia is indistinguishable from the geologic Euler vector determined from marine magnetic anomalies, and Arabia-Eurasia relative motion from GPS is equal within uncertainties to relative motion determined from plate reconstructions, suggesting that Arabia plate motion has remained constant (±10%) during at least the past ~10 Ma. The approximate agreement between broad-scale GPS rates of extension (i.e., determined from relative plate motions) and those determined from magnetic anomalies along the Red Sea rift implies that spreading in the central Red Sea is primarily confined to the central rift (±10-20%). Extension appears to be more broadly distributed in the N Red Sea and Gulf of Suez where comparisons with geologic data also indicate a relatively recent (between 500 and 125 kyr BP) change in the motion of the Sinai block that is distinct from both Nubia and Arabia. In the southern Red Sea, GPS results are beginning to define the motion of the "Danakil micro-plate". We investigate and report on a model involving CCW rotation of the Danakil micro-plate relative to Nubia and magmatic inflation below the Afar Triple Junction that is consistent with available geodetic constraints. Running the model back in time suggests that the Danakil micro-plate has been an integral part of rifting/triple junction processes throughout the history of separation of the Arabian and Nubian plates. On the scale of Nubia-Arabia-Eurasia plate interactions, we show that new area formed at spreading centers roughly equals that consumed at trenches, implying a dynamic connection between extension and subduction.
NASA Astrophysics Data System (ADS)
Chadwick, J.; Turner, A.; Collins, E.
2015-12-01
The Woodlark Spreading Center (WSC) to the east of Papua New Guinea separates the Indo-Australian plate and Solomon Sea microplate. At its eastern terminus, the WSC is being subducted at the New Britain trench, forming a triple junction near the New Georgia Group arc in the Solomon Islands. Previous studies have shown that lavas recovered from greater than 100 km from the trench on the WSC are N-MORB, but closer to the trench they have arc-like Sr-Nd-Pb isotopic ratios, enrichments in LILE, and depletions in HFSE. In the complex triple junction area of the WSC on the Simbo and Ghizo Ridges, island arc tholeiites to medium-K calc-alkaline andesites and dacites have been recovered, many with trace element and isotopic characteristics that are similar to the true arc lavas in the New Georgia Group on the other side of the trench. We suggest that subduction-modified arc mantle migrates through slab windows created by the subduction of the WSC as the plates continue to diverge after subduction. This transfer of mantle across the plate boundary leads to variable mixing between arc and N-MORB end-members, forming the hybrid to arc-like lavas recovered on the WSC. To test this hypothesis and to characterize the end-member compositions, we have analyzed melt inclusions in olivine, pyroxene, and plagioclase phenocrysts in Simbo and Ghizo Ridge lava samples. Major elements were analyzed using the electron microprobe facility at Fayetteville State University and volatiles were analyzed on the ion probe facility at Woods Hole Oceanographic Institution. The melt inclusions show a wide diversity of magmas from basalts to dacites, and mixing modeling shows that most Woodlark Spreading Center lava compositions are explained by mixing between the most extreme mafic (MORB) and felsic (arc) inclusion compositions.
NASA Astrophysics Data System (ADS)
Olierook, Hugo K. H.; Merle, Renaud E.; Jourdan, Fred
2017-06-01
The link between the Kerguelen large igneous province and several moderately-voluminous magmatic domains emplaced on continental crust near the relict triple junction of eastern Gondwana remains tentative. In particular, linking Sr-Nd-Pb isotopic ratios of the 90,000 km2 submerged Naturaliste Plateau at the relict triple junction of eastern Gondwana to the Kerguelen LIP were difficult due to previous age estimates of ca. 100 Ma. Sericite hydrothermal plateau ages as old as 127.6 ± 0.6 Ma indicate that the volcanism on the plateau began at or prior to ca. 128 Ma, which is > 25 m.y. older than previous estimations. These ages are closely matched by the then-nearby ca. 140-130 Ma Comei, 137-130 Ma Bunbury, 124 Ma Wallaby Plateau and 118-117 Ma Rajmahal-Bengal-Sylhet magmatic provinces. The Sr-Nd-Pb isotopic characteristics of the majority of these ca. 140-117 Ma circum-eastern Gondwana magmatic provinces display only source contributions from the depleted asthenosphere and lithosphere with negligible contribution from the Kerguelen mantle plume. The Comei Province shows a direct plume-related melt signature, probably because it sits directly in the center of the modeled plume head position at 140-130 Ma. We suggest that the Kerguelen mantle plume provided the additional heat necessary to melt the asthenosphere and lithosphere of the circum-eastern Gondwanan magmatic provinces. Only after the motion of the Kerguelen plume head into the nascent Indian Ocean at ca. 100-95 Ma does a significant melt contribution from the Kerguelen mantle plume become evident in the isotopic signature, a signal that persists until the present-day. Despite differences in source contributions over time, it is clear that the Kerguelen mantle plume is necessary for the production of all the circum-eastern Gondwana magmatic domains, which we propose should be referred to as the Greater Kerguelen Large Igneous Province.
NASA Astrophysics Data System (ADS)
Rogowitz, Anna; Grasemann, Bernhard
2014-05-01
Grain boundary sliding (GBS) is an important grain size sensitive deformation mechanism that is often associated with extreme strain localization and superplasticity. Another mechanism has to operate simultaneously to GBS in order to prevent overlaps and voids between sliding grains. One of the most common accommodating mechanisms is diffusional creep but, recently, dislocation creep has been reported to operate simultaneous to GBS. Due to the formation of a flanking structure in nearly pure calcite marble on Syros (Cyclades, Greece) at lower greenschist facies conditions, an extremely fine grained ultramylonite developed. The microstructure of the layer is characterized by (1) calcite grains with an average grain size of 3.6 µm (developed by low temperature/high strain rate grain boundary migration recrystallization, BLG), (2) grain boundary triple junctions with nearly 120° angles and (3) small cavities preferentially located at triple junctions and at grain boundaries in extension. These features suggest that the dominant deformation mechanism was GBS. In order to get more information on the accommodation mechanism detailed microstructural and textural analyses have been performed on a FEI Quanta 3D FEG instrument equipped with an EDAX Digiview IV EBSD camera. The misorientation distribution curves for correlated and uncorrelated grains follow almost perfect the calculated theoretical curve for a random distribution, which is typical for polycrystalline material deformed by GBS. However, the crystallographic preferred orientation indicates that dislocation creep might have operated simultaneously. We also report Zener-Stroh cracks resulting from dislocation pile up, indicating that dislocation movement was active. We, therefore, conclude that the dominant deformation mechanism was dislocation creep accommodated grain boundary sliding. This is consistent with the observed grain size range that plots at the field boundary between grain size insensitive and grain size sensitive creep, in a deformation mechanism map for calcite.
NASA Astrophysics Data System (ADS)
Koptev, A.; Leroy, S. D.; Calais, E.; Gerya, T.
2016-12-01
We present numerical experiments that target to reveal the role of active mantle plume, far-field tectonic forces and pre-existing lithospheric heterogeneities in structural development of the East African Rift system (EARS). Starting with models capturing the essential geophysical features of the central and southern parts of the EARS (two «cratonic» bodies (Tanzanian craton and Bangweulu block) embedded into a «normal» surrounding lithosphere) we show that development of the magmatic Eastern branch, the amagmatic Western branch and its southern prolongation (Malawi rift) can be the result of non-uniform splitting of some hot plume material that has been initially seeded underneath the southern part of Tanzanian craton. The second series of experiments has been designed in order to investigate northern segment of the EARS where Afro-Arabian plate separation is supposed to be related with the impact of Afar mantle plume. These models permit us to reproduce observed orientation and relative position of two spreading axes (Red Sea, Gulf of Aden) and rifting (Main Ethiopian rift) one. All are joining at Afar triple junction. Finally, for laterally extended experiment we have used parameters of the best-fit models for the southern and northern segments of the EARS in order to define the position of Kenyan plume and the velocity boundary conditions. This model cover all rifting and spreading structure associated with both Afar and Kenyan plumes: Red Sea Rift and the Aden Ridge to the north of the Afar Triple Junction; Main Ethiopian Rift running to the south that continues as the Kenyan Rift; Western Rift and its southern prolongation corresponding to Malawi rift.We argue that main features of the EARS can be reproduced in a relatively simple context of the interaction between two mantle anomalies corresponding to Afar and Kenyan plumes and pre-stressed rheologically stratified continental lithosphere containing only first-order structural heterogeneities (such as Tanzanian and Bangweulu cratons).
NASA Astrophysics Data System (ADS)
Melo, Elis Almeida; Magnabosco, Rodrigo
2017-11-01
The aim of this work is to study the influence of the heterogeneous nucleation site quantity, observed in different ferrite and austenite grain size samples, on the phase transformations that result in intermetallic phases in a UNS S31803 duplex stainless steel (DSS). Solution treatment was conducted for 1, 24, 96, or 192 hours at 1373 K (1100 °C) to obtain different ferrite and austenite grain sizes. After solution treatment, isothermal aging treatments for 5, 8, 10, 20, 30, or 60 minutes at 1123 K (850 °C) were performed to verify the influence of different amounts of heterogeneous nucleation sites in the kinetics of intermetallic phase formation. The sample solution treated for 1 hour, with the highest surface area between matrix phases, was the one that presented, after 60 minutes at 1123 K (850 °C), the smaller volume fraction of ferrite (indicative of greater intermetallic phase formation), higher volume of sigma (that was present in coral-like and compact morphologies), and chi phase. It was not possible to identify which was the first nucleated phase, sigma or chi. It was also observed that the phase formation kinetics is higher for the sample solution treated for 1 hour. It was evidenced that, from a certain moment on, the chi phase begins to be consumed due to the sigma phase formation, and the austenite/ferrite interface presents higher S V for all solution treatment times. It was also observed that intermetallic phases form preferably in austenite-ferrite interfaces, although the higher occupation rate occurs at triple junction ferrite-ferrite-ferrite. It was verified that there was no saturation of nucleation sites in any interface type nor triple junction, and the equilibrium after 1 hour of aging at 1123 K (850 °C) was not achieved. It was then concluded that sigma phase formation is possibly controlled by diffusional processes, without saturation of nucleation sites.
Source Parameters and Rupture Directivities of Earthquakes Within the Mendocino Triple Junction
NASA Astrophysics Data System (ADS)
Allen, A. A.; Chen, X.
2017-12-01
The Mendocino Triple Junction (MTJ), a region in the Cascadia subduction zone, produces a sizable amount of earthquakes each year. Direct observations of the rupture properties are difficult to achieve due to the small magnitudes of most of these earthquakes and lack of offshore observations. The Cascadia Initiative (CI) project provides opportunities to look at the earthquakes in detail. Here we look at the transform plate boundary fault located in the MTJ, and measure source parameters of Mw≥4 earthquakes from both time-domain deconvolution and spectral analysis using empirical Green's function (EGF) method. The second-moment method is used to infer rupture length, width, and rupture velocity from apparent source duration measured at different stations. Brune's source model is used to infer corner frequency and spectral complexity for stacked spectral ratio. EGFs are selected based on their location relative to the mainshock, as well as the magnitude difference compared to the mainshock. For the transform fault, we first look at the largest earthquake recorded during the Year 4 CI array, a Mw5.72 event that occurred in January of 2015, and select two EGFs, a Mw1.75 and a Mw1.73 located within 5 km of the mainshock. This earthquake is characterized with at least two sub-events, with total duration of about 0.3 second and rupture length of about 2.78 km. The earthquake is rupturing towards west along the transform fault, and both source durations and corner frequencies show strong azimuthal variations, with anti-correlation between duration and corner frequency. The stacked spectral ratio from multiple stations with the Mw1.73 EGF event shows deviation from pure Brune's source model following the definition from Uchide and Imanishi [2016], likely due to near-field recordings with rupture complexity. We will further analyze this earthquake using more EGF events to test the reliability and stability of the results, and further analyze three other Mw≥4 earthquakes within the array.
Strong Ground Motion Analysis and Afterslip Modeling of Earthquakes near Mendocino Triple Junction
NASA Astrophysics Data System (ADS)
Gong, J.; McGuire, J. J.
2017-12-01
The Mendocino Triple Junction (MTJ) is one of the most seismically active regions in North America in response to the ongoing motions between North America, Pacific and Gorda plates. Earthquakes near the MTJ come from multiple types of faults due to the interaction boundaries between the three plates and the strong internal deformation within them. Understanding the stress levels that drive the earthquake rupture on the various types of faults and estimating the locking state of the subduction interface are especially important for earthquake hazard assessment. However due to lack of direct offshore seismic and geodetic records, only a few earthquakes' rupture processes have been well studied and the locking state of the subducted slab is not well constrained. In this study we first use the second moment inversion method to study the rupture process of the January 28, 2015 Mw 5.7 strike slip earthquake on Mendocino transform fault using strong ground motion records from Cascadia Initiative community experiment as well as onshore seismic networks. We estimate the rupture dimension to be of 6 km by 3 km and a stress drop of 7 MPa on the transform fault. Next we investigate the frictional locking state on the subduction interface through afterslip simulation based on coseismic rupture models of this 2015 earthquake and a Mw 6.5 intraplate eathquake inside Gorda plate whose slip distribution is inverted using onshore geodetic network in previous study. Different depths for velocity strengthening frictional properties to start at the downdip of the locked zone are used to simulate afterslip scenarios and predict the corresponding surface deformation (GPS) movements onshore. Our simulations indicate that locking depth on the slab surface is at least 14 km, which confirms that the next M8 earthquake rupture will likely reach the coastline and strong shaking should be expected near the coast.
Fabrication of a Tantalum-Based Josephson Junction for an X-Ray Detector
NASA Astrophysics Data System (ADS)
Morohashi, Shin'ichi; Gotoh, Kohtaroh; Yokoyama, Naoki
2000-06-01
We have fabricated a tantalum-based Josephson junction for an X-ray detector. The tantalum layer was selected for the junction electrode because of its long quasiparticle lifetime, large X-ray absorption efficiency and stability against thermal cycling. We have developed a buffer layer to fabricate the tantalum layer with a body-centered cubic structure. Based on careful consideration of their superconductivity, we have selected a niobium thin layer as the buffer layer for fabricating the tantalum base electrode, and a tungsten thin layer for the tantalum counter electrode. Fabricated Nb/AlOx-Al/Ta/Nb and Nb/Ta/W/AlOx-Al/Ta/Nb Josephson junctions exhibited current-voltage characteristics with a low subgap leakage current.
Gas bubble formation and its pressure signature in T-junction of a microreactor
NASA Astrophysics Data System (ADS)
Pouya, Shahram; Koochesfahani, Manoochehr
2013-11-01
The segmented gas-liquid flow is of particular interest in microreactors used for high throughput material synthesis with enhanced mixing and more efficient reaction. A typical geometry to introduce gas plugs into the reactor is a T-junction where the dispersed liquid is squeezed and pinched by the continuous fluid in the main branch of the junction. We present experimental data of time resolved pressure along with synchronous imaging of the drop formation at the junction to show the transient behavior of the process. The stability of the slug regime and the regularity of the slug/plug pattern are investigated in this study. This work was supported by the CRC Program of the National Science Foundation, Grant Number CHE-0714028.
Design and Photovoltaic Properties of Graphene/Silicon Solar Cell
NASA Astrophysics Data System (ADS)
Xu, Dikai; Yu, Xuegong; Yang, Lifei; Yang, Deren
2018-04-01
Graphene/silicon (Gr/Si) Schottky junction solar cells have attracted widespread attention for the fabrication of high-efficiency and low-cost solar cells. However, their performance is still limited by the working principles of Schottky junctions. Modulating the working mechanism of the solar cells into a quasi p-n junction has advantages, including higher open-circuit voltage (V OC) and less carrier recombination. In this study, Gr/Si quasi p-n junction solar cells were formed by inserting a tunneling Al2O3 interlayer in-between graphene and silicon, which led to obtain the PCE up to 8.48% without antireflection or chemical doping techniques. Our findings could pave a new way for the development of Gr/Si solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Qiang; Zhou, Liping, E-mail: zhoulp@suda.edu.cn; Cheng, Jue-Fei
Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz){sub 2} using density functional theory combined with non-equilibrium Green’s function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant rolesmore » in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics.« less
NASA Astrophysics Data System (ADS)
Reis-Silva, J. C.; Ferreira, D. F. S.; Leal, J. F. P.; Pinheiro, F. A.; Del Nero, J.
2017-02-01
We investigate, by means of ab initio calculations based on non-equilibrium Green's function method coupled to density function theory, electronic transport in molecular junctions composed of biphenyl (BP) and biphenyl within (-2H+) defect (BP2D) molecules attached to metallic (9,0) carbon nanotubes. We demonstrate that the BP2D junction exhibits unprecedented electronic transport properties, and that its conductance can be up to three orders of magnitude higher than biphenyl single-molecule junctions. These findings are explained in terms of the non-planar molecular conformation of BP2D, and of the stronger electronic coupling between the BP2D molecule and the organic electrodes, which confers high stability to the junction. Our results suggest that BP2D attached to carbon nanotubes can be explored as an efficient and highly stable platform in single-molecule electronics with extraordinary transport properties.
Fabrication and characterization of high current-density, submicron, NbN/MgO/NbN tunnel junctions
NASA Technical Reports Server (NTRS)
Stern, J. A.; Leduc, Henry G.; Judas, A. J.
1992-01-01
At near-millimeter wavelengths, heterodyne receivers based on SIS tunnel junctions are the most sensitive available. However, in order to scale these results to submillimeter wavelengths, certain device properties should be scaled. The tunnel-junction's current density should be increased to reduce the RC product. The device's area should be reduced to efficiently couple power from the antenna to the mixer. Finally, the superconductor used should have a large energy gap to minimize RF losses. Most SIS mixers use Nb or Pb-alloy tunnel junctions; the gap frequency for these materials is approximately 725 GHz. Above the gap frequency, these materials exhibit losses similar to those in a normal metal. The gap frequency in NbN films is as-large-as 1440 GHz. Therefore, we have developed a process to fabricate small area (down to 0.13 sq microns), high current density, NbN/MgO/NbN tunnel junctions.
Monolithic stacked blue light-emitting diodes with polarization-enhanced tunnel junctions.
Kuo, Yen-Kuang; Shih, Ya-Hsuan; Chang, Jih-Yuan; Lai, Wei-Chih; Liu, Heng; Chen, Fang-Ming; Lee, Ming-Lun; Sheu, Jinn-Kong
2017-08-07
Monolithic stacked InGaN light-emitting diode (LED) connected by a polarization-enhanced GaN/AlN-based tunnel junction is demonstrated experimentally in this study. The typical stacked LEDs exhibit 80% enhancement in output power compared with conventional single LEDs because of the repeated use of electrons and holes for photon generation. The typical operation voltage of stacked LEDs is higher than twice the operation voltage of single LEDs. This high operation voltage can be attributed to the non-optimal tunneling junction in stacked LEDs. In addition to the analyses of experimental results, theoretical analysis of different schemes of tunnel junctions, including diagrams of energy bands, diagrams of electric fields, and current-voltage relation curves, are investigated using numerical simulation. The results shown in this paper demonstrate the feasibility in developing cost-effective and highly efficient tunnel-junction LEDs.
Excimer laser annealing: A gold process for CZ silicon junction formation
NASA Technical Reports Server (NTRS)
Wong, David C.; Bottenberg, William R.; Byron, Stanley; Alexander, Paul
1987-01-01
A cold process using an excimer laser for junction formation in silicon has been evaluated as a way to avoid problems associated with thermal diffusion. Conventional thermal diffusion can cause bulk precipitation of SiOx and SiC or fail to completely activate the dopant, leaving a degenerate layer at the surface. Experiments were conducted to determine the feasibility of fabricating high quality p-n junctions using a pulsed excimer laser for junction formation at remelt temperature with ion-implanted surfaces. Solar-cell efficiency exceeding 16 percent was obtained using Czochralski single-crystal silicon without benefit of back surface field or surface passivation. Characterization shows that the formation of uniform, shallow junctions (approximately 0.25 micron) by excimer laser scanning preserves the minority carrier lifetime that leads to high current collection. However, the process is sensitive to initial surface conditions and handling parameters that drive the cost up.
Recek, Cestmir
2015-01-01
Saphenous reflux interferes with the physiological decrease in pressure and induces ambulatory venous hypertension. Elimination of reflux is achieved by flush ligation at the incompetent saphenofemoral junction and stripping of the great saphenous vein, which is the basis of the conventional surgical therapy. Endovenous ablative methods substitute stripping by thermal of chemical destruction of the saphenous trunk; they usually refrain from saphenofemoral junction ligation. Short-term and medium-term results up to 5 years, achieved after endovenous ablation without high ligation, are comparable with those after conventional surgery, which questioned the necessity to ligate the incompetent saphenofemoral junction. Nevertheless, clinical symptoms caused by recurrent reflux occur as a rule not earlier than 8 to 10 years after efficient abolition of reflux. Consequently, randomized studies with long-term follow-ups exceeding 10 years are necessary for trustworthy assessment whether it is justified to abstain from saphenofemoral junction ligation. PMID:26648666
The chemical end-ligation of homopyrimidine oligodeoxyribonucleotides within a DNA triple helix.
Li, T; Weinstein, D S; Nicolaou, K
1997-03-01
Triple-helical nucleic acids, first reported in the late 1950s, are receiving attention for their possible involvement in controlling gene expression. Certain sequences of DNA are believed to form local triple-helical structures (H-form DNA), although this has not been directly observed in vivo. Studies carried out in our laboratories have suggested that self-replicating oligonucleotides could have been involved in chemical evolution via triple-helical intermediates. In addition to self-replication mechanisms, elucidating processes for the nonenzymatic elongation of biologically relevant polymers remains an important challenge in understanding the origin of life. To this end, we have studied a novel ligation of oligodeoxyribonucleotides that lie within a triple helix. The chemical end-ligation of homopyrimidine oligodeoxyribonucleotides on a triple helix is reported. This selective process, induced by cyanoimidazole, is facilitated by a template effect of the DNA aggregate and occurs between the 3' end (hydroxyl) of the third minor-groove-bound strand and the 5' end (phosphate) of the antiparallel oligopyrimidine strand. Double-helical homopurine/homopyrimidine DNA can serve as a template for the elongation of oligonucleotides in a manner that has not been described previously. The end-ligation of homopyrimidine oligomers, a nonenzymatic process, proceeds via a requisite triple-helical intermediate and constitutes an efficient and selective method for the template-directed elongation of nucleic acids. Such a process could conceivably have been involved in the elongation of primordial information-bearing biopolymers.
Özdem, Ceylan; Brass, Marcel; Van der Cruyssen, Laurens; Van Overwalle, Frank
2017-04-01
Neuroimaging research has demonstrated that the temporo-parietal junction (TPJ) is activated when unexpected stimuli appear in spatial reorientation tasks as well as during thinking about the beliefs of other people triggered by verbal scenarios. While the role of potential common component processes subserved by the TPJ has been extensively studied to explain this common activation, the potential confounding role of input modality (spatial vs. verbal) has been largely ignored. To investigate the role of input modality apart from task processes, we developed a novel spatial false belief task based on moving shapes. We explored the overlap in TPJ activation across this novel task and traditional tasks of spatial reorientation (Posner) and verbal belief (False Belief vs. Photo stories). The results show substantial overlap across the same spatial input modality (both reorientation and false belief) as well as across the common task process (verbal and spatial belief), but no triple overlap. This suggests the potential for an overarching function of the TPJ, with some degree of specialization in different subregions due to modality, function and connectivity. The results are discussed with respect to recent theoretical models of the TPJ.
Wang, Liancheng; Cheng, Yan; Liu, Zhiqiang; Yi, Xiaoyan; Zhu, Hongwei; Wang, Guohong
2016-01-20
Graphene transparent conductive electrode (TCE) applications in nitride light emitting diodes (LEDs) are still limited by the large contact resistance and interface barrier between graphene and p-GaN. We propose a hybrid tunnel junction (TJ)-graphene TCE approach for nitride lateral LEDs theoretically and experimentally. Through simulation using commercial advanced physical models of semiconductor devices (APSYS), we found that low tunnel resistance can be achieved in the n(+)-GaN/u-InGaN/p(+)-GaN TJ, which has a lower tunneling barrier and an enhanced electric field due to the polarization effect. Graphene TCEs and hybrid graphene-TJ TCEs are then modeled. The designed hybrid TJ-graphene TCEs show sufficient current diffusion length (Ls), low introduced series resistance, and high transmittance. The assembled TJ LED with the triple-layer graphene (TLG) TCEs show comparable optoelectrical performance (3.99 V@20 mA, LOP = 10.8 mW) with the reference LED with ITO TCEs (3.36 V@20 mA, LOP = 12.6 mW). The experimental results further prove that the TJ-graphene structure can be successfully incorporated as TCEs for lateral nitride LEDs.
Insights into Seismic and Volcanic Processes around the Arabian Plate from InSAR Observations
NASA Astrophysics Data System (ADS)
Jónsson, Sigurjón; Wang, Teng; Akoglu, Ahmet; Feng, Guangcai; Xu, Wenbin; Harrington, Jonathan; Cavalié, Olivier
2014-05-01
We use InSAR observations to study a variety of seismic and volcanic processes at the plate boundary surrounding the Arabian plate. The plate-boundary motion ranges from extension in the Red Sea and Gulf of Aden to the south, to compression in Turkey and Iran to the north, with transform motion to the west and to the east. Many large earthquakes have occurred during the past two decades in the region, some of which we are studying, including the 1995 magnitude 7.2 earthquake in the Gulf of Aqaba, the 2011 magnitude 7.1 Van earthquake in eastern Turkey, the 2012 Ahar earthquake duplet in northwestern Iran, as well as the 2013 magnitude 7.7 Baluchistan (Pakistan) earthquake. These earthquakes took place in tectonic settings ranging from a transtension in the Gulf of Aqaba, to transpression in Baluchistan, to almost pure compression in eastern Turkey. For the Aqaba earthquake we add previously unused InSAR data and use modern data processing methods to improve earlier fault-model estimations. In the case of the Baluchistan earthquake we find surprisingly uniform and simple fault slip along the over 200 km long rupture, with maximum slip of almost 10 m near the surface. In addition, for the Van earthquake we use SAR-image offset tracking in the near-field, as some of the interferograms are almost completely incoherent. By identifying point-like targets within the images, we are able to derive better pixel offsets between SAR sub-images than with standard offset-tracking methods. We use the azimuth- and range offsets to derive the 3D coseismic displacements, which help constraining the geometry and slip of the causative northward-dipping thrust fault. Further west, in the region near the triple junction between the Arabian, Eurasian, and Anatolian plates, we use large-scale InSAR data processing to map the interseismic deformation near the triple junction and find very shallow locking depth of the eastern part of the East Anatolian Fault, indicating limited strain accumulation and less-than-expected earthquake potential. In addition to the seismic processes, we are studying three volcanic eruptions that took place in the southern Red Sea during the past several years, on Jebel at Tair Island (2007-8) and within the Zubair archipelago (2011-12 and 2013). We use InSAR and optical data to study these eruptions and to constrain the feeder-dike geometry and the associated stress directions. On Jebel at Tair we find evidence for a temporarily varying stress field that is isolated from the regional Red Sea stress regime. The two eruptions in the Zubair archipelago were surtseyan and produced two small islands. The islands were formed entirely from explosive phreatomagmatic activity, as the eruptions did not last long enough to progress to an effusive eruption. The reawakened volcanic activity in the southern Red Sea comes after more than century-long quiescence and seems to be a part the recent increase in activity in the region near the Afar triple junction, following the onset of the Dabbahu (Afar) rifting episode in 2005.
GaAs Photovoltaics on Polycrystalline Ge Substrates
NASA Technical Reports Server (NTRS)
Wilt, David M.; Pal, AnnaMaria T.; McNatt, Jeremiah S.; Wolford, David S.; Landis, Geoffrey A.; Smith, Mark A.; Scheiman, David; Jenkins, Phillip P.; McElroy Bruce
2007-01-01
High efficiency III-V multijunction solar cells deposited on metal foil or even polymer substrates can provide tremendous advantages in mass and stowage, particularly for planetary missions. As a first step towards that goal, poly-crystalline p/i/n GaAs solar cells are under development on polycrystalline Ge substrates. Organo Metallic Vapor Phase Epitaxy (OMVPE) parameters for pre-growth bake, nucleation and deposition have been examined. Single junction p/i/n GaAs photovoltaic devices, incorporating InGaP front and back window layers, have been grown and processed. Device performance has shown a dependence upon the thickness of a GaAs buffer layer deposited between the Ge substrate and the active device structure. A thick (2 m) GaAs buffer provides for both increased average device performance as well as reduced sensitivity to variations in grain size and orientation. Illumination under IR light (lambda > 1 micron), the cells showed a Voc, demonstrating the presence of an unintended photoactive junction at the GaAs/Ge interface. The presence of this junction limited the efficiency to approx.13% (estimated with an anti-refection coating) due to the current mismatch and lack of tunnel junction interconnect.
Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions
NASA Astrophysics Data System (ADS)
Wu, Yao; Yan, Xin; Wei, Wei; Zhang, Jinnan; Zhang, Xia; Ren, Xiaomin
2018-04-01
We optimized the performance of GaAs nanowire pin junction array solar cells by introducing AlGaAs/GaAs heterejunctions. AlGaAs is used for the p type top segment for axial junctions and the p type outer shell for radial junctions. The AlGaAs not only serves as passivation layers for GaAs nanowires but also confines the optical generation in the active regions, reducing the recombination loss in heavily doped regions and the minority carrier recombination at the top contact. The results show that the conversion efficiency of GaAs nanowires can be greatly enhanced by using AlGaAs for the p segment instead of GaAs. A maximum efficiency enhancement of 8.42% has been achieved in this study. And for axial nanowire, by using AlGaAs for the top p segment, a relatively long top segment can be employed without degenerating device performance, which could facilitate the fabrication and contacting of nanowire array solar cells. While for radial nanowires, AlGaAs/GaAs nanowires show better tolerance to p-shell thickness and surface condition.
Fully porous GaN p-n junction diodes fabricated by chemical vapor deposition.
Bilousov, Oleksandr V; Carvajal, Joan J; Geaney, Hugh; Zubialevich, Vitaly Z; Parbrook, Peter J; Martínez, Oscar; Jiménez, Juan; Díaz, Francesc; Aguiló, Magdalena; O'Dwyer, Colm
2014-10-22
Porous GaN based LEDs produced by corrosion etching techniques demonstrated enhanced light extraction efficiency in the past. However, these fabrication techniques require further postgrown processing steps, which increases the price of the final system. Also, the penetration depth of these etching techniques is limited, and affects not only the semiconductor but also the other elements constituting the LED when applied to the final device. In this paper, we present the fabrication of fully porous GaN p-n junctions directly during growth, using a sequential chemical vapor deposition (CVD) process to produce the different layers that form the p-n junction. We characterized their diode behavior from room temperature to 673 K and demonstrated their ability as current rectifiers, thus proving the potential of these fully porous p-n junctions for diode and LEDs applications. The electrical and luminescence characterization confirm that high electronic quality porous structures can be obtained by this method, and we believe this investigation can be extended to other III-N materials for the development of white light LEDs, or to reduce reflection losses and narrowing the output light cone for improved LED external quantum efficiencies.
Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions.
Wu, Yao; Yan, Xin; Wei, Wei; Zhang, Jinnan; Zhang, Xia; Ren, Xiaomin
2018-04-25
We optimized the performance of GaAs nanowire pin junction array solar cells by introducing AlGaAs/GaAs heterejunctions. AlGaAs is used for the p type top segment for axial junctions and the p type outer shell for radial junctions. The AlGaAs not only serves as passivation layers for GaAs nanowires but also confines the optical generation in the active regions, reducing the recombination loss in heavily doped regions and the minority carrier recombination at the top contact. The results show that the conversion efficiency of GaAs nanowires can be greatly enhanced by using AlGaAs for the p segment instead of GaAs. A maximum efficiency enhancement of 8.42% has been achieved in this study. And for axial nanowire, by using AlGaAs for the top p segment, a relatively long top segment can be employed without degenerating device performance, which could facilitate the fabrication and contacting of nanowire array solar cells. While for radial nanowires, AlGaAs/GaAs nanowires show better tolerance to p-shell thickness and surface condition.
Microfabrication of microsystem-enabled photovoltaic (MEPV) cells
NASA Astrophysics Data System (ADS)
Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose L.; Resnick, Paul J.; Wanlass, Mark W.; Clews, Peggy J.; Pluym, Tammy C.; Sanchez, Carlos A.; Gupta, Vipin P.
2011-02-01
Microsystem-Enabled Photovoltaic (MEPV) cells allow solar PV systems to take advantage of scaling benefits that occur as solar cells are reduced in size. We have developed MEPV cells that are 5 to 20 microns thick and down to 250 microns across. We have developed and demonstrated crystalline silicon (c-Si) cells with solar conversion efficiencies of 14.9%, and gallium arsenide (GaAs) cells with a conversion efficiency of 11.36%. In pursuing this work, we have identified over twenty scaling benefits that reduce PV system cost, improve performance, or allow new functionality. To create these cells, we have combined microfabrication techniques from various microsystem technologies. We have focused our development efforts on creating a process flow that uses standard equipment and standard wafer thicknesses, allows all high-temperature processing to be performed prior to release, and allows the remaining post-release wafer to be reprocessed and reused. The c-Si cell junctions are created using a backside point-contact PV cell process. The GaAs cells have an epitaxially grown junction. Despite the horizontal junction, these cells also are backside contacted. We provide recent developments and details for all steps of the process including junction creation, surface passivation, metallization, and release.
Spin-transfer torque switched magnetic tunnel junctions in magnetic random access memory
NASA Astrophysics Data System (ADS)
Sun, Jonathan Z.
2016-10-01
Spin-transfer torque (or spin-torque, or STT) based magnetic tunnel junction (MTJ) is at the heart of a new generation of magnetism-based solid-state memory, the so-called spin-transfer-torque magnetic random access memory, or STT-MRAM. Over the past decades, STT-based switchable magnetic tunnel junction has seen progress on many fronts, including the discovery of (001) MgO as the most favored tunnel barrier, which together with (bcc) Fe or FeCo alloy are yielding best demonstrated tunnel magneto-resistance (TMR); the development of perpendicularly magnetized ultrathin CoFeB-type of thin films sufficient to support high density memories with junction sizes demonstrated down to 11nm in diameter; and record-low spin-torque switching threshold current, giving best reported switching efficiency over 5 kBT/μA. Here we review the basic device properties focusing on the perpendicularly magnetized MTJs, both in terms of switching efficiency as measured by sub-threshold, quasi-static methods, and of switching speed at super-threshold, forced switching. We focus on device behaviors important for memory applications that are rooted in fundamental device physics, which highlights the trade-off of device parameters for best suitable system integration.
NASA Technical Reports Server (NTRS)
Weinberg, I.; Rybicki, G. C.; Vargas-Aburto, C.; Jain, R. K.; Scheiman, D.
1994-01-01
The highest AMO efficiency (19.1 percent) InP solar cell consisted of an n+pp+ structure epitaxially grown on a p+ InP substrate. However, the high cost and relative fragility of InP served as motivation for research efforts directed at heteroepitaxial growth of InP on more viable substrates. The highest AMO efficiency (13.7 percent) for this type of cell was achieved using a GaAs substrate. Considering only cost and fracture toughness, Si would be the preferred substrate. The fact that Si is a donor in InP introduces complexities which are necessary in order to avoid the formation of an efficiency limiting counterdiode. One method used to overcome this problem lies in employing an n+p+ tunnel junction in contact with the cell's p region. A simpler method consists of using an n+ substrate and processing the cell in the p+ nn+ configuration. This eliminates the need for a tunnel junction. Unfortunately, the p/n configuration has received relatively little attention the best cell with this geometry having achieved an efficiency of 17 percent. Irradiation of these homoepitaxial cells, with 1 Mev electrons, showed that they were slightly more radiation resistant than diffused junction n/p cells. Additional p/n InP cells have been processed by some activity aimed at diffusion. Currently, there has been some activity aimed at producing heteroepitaxial p+nn+ InP cells using n+ Ge substrates. Since, like Si, Ge is an n-dopant in InP, use of this configuration obviates the need for a tunnel junction. Obviously, before attempting to process heteroepitaxial cells, one must produce a reasonably good homoepitaxial cell. In the present case we focus our attention on homoepitaxially on an n+ Ge substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulte, Kevin L.; France, Ryan M.; Geisz, John F.
The development of compositionally graded buffer layers (CGBs) with enhanced transparency would enable novel five and six junction solar cells, with efficiencies approaching 50% under high concentration. Here, we demonstrate highly transparent grades between the GaAs and InP lattice constants on both A- and B-miscut GaAs substrates, employing Al xGayIn 1-x-yAs and highly Se-doped Burstein-Moss (BM) shifted Ga xIn 1-xP. Transparency to >810 and >890 nm wavelengths is demonstrated with BM-shifted Ga xIn 1-xP on B-miscut substrates and Al xGayIn 1-x-yAs/Ga xIn 1-xP(Se) combined grades on A-miscut substrates, respectively. 0.74 eV GaInAs solar cells grown on these transparent CGBs exhibitmore » Woc = 0.41 V at mA/ cm 2, performance comparable with the state-of-the-art Ga xIn 1-xP grade employed in the four-junction-inverted metamorphic multijunction (IMM) cell. A GaAs/0.74cV GaInAs tandem cell was grown with a transparent BM-shifted Ga xIn 1-xP CGB to verify the CGB performance in a multijunction device structure. Quantum efficiency measurements indicate that the CGB is completely transparent to photons below the GaAs bandedge, validating its use in 4-6 junction IMM devices with a single-graded buffer. Furthermore, this tandem represents a highly efficient two-junction band gap combination, achieving 29.6% ± 1.2% efficiency under the AM1.5 global spectrum, demonstrating how the additional transparency enables new device structures.« less
Schulte, Kevin L.; France, Ryan M.; Geisz, John F.
2016-11-11
The development of compositionally graded buffer layers (CGBs) with enhanced transparency would enable novel five and six junction solar cells, with efficiencies approaching 50% under high concentration. Here, we demonstrate highly transparent grades between the GaAs and InP lattice constants on both A- and B-miscut GaAs substrates, employing Al xGayIn 1-x-yAs and highly Se-doped Burstein-Moss (BM) shifted Ga xIn 1-xP. Transparency to >810 and >890 nm wavelengths is demonstrated with BM-shifted Ga xIn 1-xP on B-miscut substrates and Al xGayIn 1-x-yAs/Ga xIn 1-xP(Se) combined grades on A-miscut substrates, respectively. 0.74 eV GaInAs solar cells grown on these transparent CGBs exhibitmore » Woc = 0.41 V at mA/ cm 2, performance comparable with the state-of-the-art Ga xIn 1-xP grade employed in the four-junction-inverted metamorphic multijunction (IMM) cell. A GaAs/0.74cV GaInAs tandem cell was grown with a transparent BM-shifted Ga xIn 1-xP CGB to verify the CGB performance in a multijunction device structure. Quantum efficiency measurements indicate that the CGB is completely transparent to photons below the GaAs bandedge, validating its use in 4-6 junction IMM devices with a single-graded buffer. Furthermore, this tandem represents a highly efficient two-junction band gap combination, achieving 29.6% ± 1.2% efficiency under the AM1.5 global spectrum, demonstrating how the additional transparency enables new device structures.« less
NASA Astrophysics Data System (ADS)
Fulmek, P. L.; Haumer, P.; Wenzl, F. P.; Nemitz, W.; Nicolics, J.
2017-03-01
Estimating the junction temperature and its dynamic behavior in dependence of various operating conditions is an important issue, since these properties influence the optical characteristics as well as the aging processes of a light-emitting diode (LED). Particularly for high-power LEDs and pulsed operation, the dynamic behavior and the resulting thermal cycles are of interest. The forward voltage method relies on the existence of a time-independent unique triple of forward-voltage, forward-current, and junction temperature. These three figures should as well uniquely define the optical output power and spectrum, as well as the loss power of the LED, which is responsible for an increase of the junction temperature. From transient FEM-simulations one may expect an increase of the temperature of the active semiconductor layer of some 1/10 K within the first 10 μs. Most of the well-established techniques for junction temperature measurement via forward voltage method evaluate the measurement data several dozens of microseconds after switching on or switching off and estimate the junction temperature by extrapolation towards the time of switching. In contrast, the authors developed a measurement procedure with the focus on the first microseconds after switching. Besides a fast data acquisition system, a precise control of the switching process is required, i.e. a precisely defined current pulse amplitude with fast rise-time and negligible transient by-effects. We start with a short description of the measurement setup and the newly developed control algorithm for the generation of short current pulses. The thermal characterization of the LED chip during the measurement procedures is accomplished by an IR thermography system and transient finite element simulations. The same experimental setup is used to investigate the optical properties of the LED in an Ulbricht-sphere. Our experiments are performed on InGaN LED chips mounted on an Al based insulated metal substrate (IMS), giving a comprehensive picture of the transient behavior of the forward voltage of this type of high power LED.
Analysis of the heat transfer in double and triple concentric tube heat exchangers
NASA Astrophysics Data System (ADS)
Rădulescu, S.; Negoiţă, L. I.; Onuţu, I.
2016-08-01
The tubular heat exchangers (shell and tube heat exchangers and concentric tube heat exchangers) represent an important category of equipment in the petroleum refineries and are used for heating, pre-heating, cooling, condensation and evaporation purposes. The paper presents results of analysis of the heat transfer to cool a petroleum product in two types of concentric tube heat exchangers: double and triple concentric tube heat exchangers. The cooling agent is water. The triple concentric tube heat exchanger is a modified constructive version of double concentric tube heat exchanger by adding an intermediate tube. This intermediate tube improves the heat transfer by increasing the heat area per unit length. The analysis of the heat transfer is made using experimental data obtained during the tests in a double and triple concentric tube heat exchanger. The flow rates of fluids, inlet and outlet temperatures of water and petroleum product are used in determining the performance of both heat exchangers. Principally, for both apparatus are calculated the overall heat transfer coefficients and the heat exchange surfaces. The presented results shows that triple concentric tube heat exchangers provide better heat transfer efficiencies compared to the double concentric tube heat exchangers.
Wang, Xingfu; Peng, Wenbo; Yu, Ruomeng; Zou, Haiyang; Dai, Yejing; Zi, Yunlong; Wu, Changsheng; Li, Shuti; Wang, Zhong Lin
2017-06-14
Achievement of p-n homojuncted GaN enables the birth of III-nitride light emitters. Owing to the wurtzite-structure of GaN, piezoelectric polarization charges present at the interface can effectively control/tune the optoelectric behaviors of local charge-carriers (i.e., the piezo-phototronic effect). Here, we demonstrate the significantly enhanced light-output efficiency and suppressed efficiency droop in GaN microwire (MW)-based p-n junction ultraviolet light-emitting diode (UV LED) by the piezo-phototronic effect. By applying a -0.12% static compressive strain perpendicular to the p-n junction interface, the relative external quantum efficiency of the LED is enhanced by over 600%. Furthermore, efficiency droop is markedly reduced from 46.6% to 7.5% and corresponding droop onset current density shifts from 10 to 26.7 A cm -2 . Enhanced electrons confinement and improved holes injection efficiency by the piezo-phototronic effect are revealed and theoretically confirmed as the physical mechanisms. This study offers an unconventional path to develop high efficiency, strong brightness and high power III-nitride light sources.
Peltier cooling in molecular junctions
NASA Astrophysics Data System (ADS)
Cui, Longji; Miao, Ruijiao; Wang, Kun; Thompson, Dakotah; Zotti, Linda Angela; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod
2018-02-01
The study of thermoelectricity in molecular junctions is of fundamental interest for the development of various technologies including cooling (refrigeration) and heat-to-electricity conversion1-4. Recent experimental progress in probing the thermopower (Seebeck effect) of molecular junctions5-9 has enabled studies of the relationship between thermoelectricity and molecular structure10,11. However, observations of Peltier cooling in molecular junctions—a critical step for establishing molecular-based refrigeration—have remained inaccessible. Here, we report direct experimental observations of Peltier cooling in molecular junctions. By integrating conducting-probe atomic force microscopy12,13 with custom-fabricated picowatt-resolution calorimetric microdevices, we created an experimental platform that enables the unified characterization of electrical, thermoelectric and energy dissipation characteristics of molecular junctions. Using this platform, we studied gold junctions with prototypical molecules (Au-biphenyl-4,4'-dithiol-Au, Au-terphenyl-4,4''-dithiol-Au and Au-4,4'-bipyridine-Au) and revealed the relationship between heating or cooling and charge transmission characteristics. Our experimental conclusions are supported by self-energy-corrected density functional theory calculations. We expect these advances to stimulate studies of both thermal and thermoelectric transport in molecular junctions where the possibility of extraordinarily efficient energy conversion has been theoretically predicted2-4,14.
Fu, Changlin; Donovan, William P; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H
2014-01-01
Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17-30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50 °C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90-95%.
Fu, Changlin; Donovan, William P.; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H.
2014-01-01
Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17–30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50°C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90–95%. PMID:25551825
Highly efficient blue- and white-organic light emitting diodes base on triple-emitting layer.
Shin, Hyun Su; Lee, Seok Jae; Lee, Ho Won; Lee, Dong Hyung; Kim, Woo Young; Yoon, Seung Soo; Kim, Young Kwan
2013-12-01
We have demonstrated highly efficient blue phosphorescent organic light-emitting diodes (PHOLEDs) using iridium (III) bis[(4,6-di-fluoropheny)-pyridinato-N,C2] picolinate (Flrpic) doped in three kinds of host materials, such as 9-(4-(triphenylsilyl)phenyl)-9H-carbazole (SPC), N,N'-dicarbazolyl-3,5-benzene (mCP), and 2,2',2"-(1,3,5-benzenetriyl)tris-[1-phenyl-1H-benzimidazole] (TPBi) as triple-emitting layer (T-EML). The properties of device with T-EML using the stepwise structure was found to be superior to the other blue PHOLEDs and exhibited a maximum luminous efficiency of 23.02 cd/A, a maximum external quantum efficiency of 11.09%, and a maximum power efficiency of 14.89 lm/W, respectively. An optimal blue device has improving charge balance and triplet excitons confinement within emitting layers (EMLs) each. Additionally, we also fabricated white PHOLED using a phosphorescent red dopant, bis(2-phenylquinolinato)-acetylacetonate iridium III (Ir(pq)2acac) doped in mCP and TPBi between blue EMLs. The properties of white PHOLED showed a maximum luminous efficiency and a maximum external quantum efficiency of 33.03 cd/A and 16.95%, respectively. It also showed the white emission with CIEx,y coordinates of (x = 0.36, y = 0.39) at 10 V.
Collagenolytic Matrix Metalloproteinase Activities toward Peptomeric Triple-Helical Substrates.
Stawikowski, Maciej J; Stawikowska, Roma; Fields, Gregg B
2015-05-19
Although collagenolytic matrix metalloproteinases (MMPs) possess common domain organizations, there are subtle differences in their processing of collagenous triple-helical substrates. In this study, we have incorporated peptoid residues into collagen model triple-helical peptides and examined MMP activities toward these peptomeric chimeras. Several different peptoid residues were incorporated into triple-helical substrates at subsites P3, P1, P1', and P10' individually or in combination, and the effects of the peptoid residues were evaluated on the activities of full-length MMP-1, MMP-8, MMP-13, and MMP-14/MT1-MMP. Most peptomers showed little discrimination between MMPs. However, a peptomer containing N-methyl Gly (sarcosine) in the P1' subsite and N-isobutyl Gly (NLeu) in the P10' subsite was hydrolyzed efficiently only by MMP-13 [nomenclature relative to the α1(I)772-786 sequence]. Cleavage site analysis showed hydrolysis at the Gly-Gln bond, indicating a shifted binding of the triple helix compared to the parent sequence. Favorable hydrolysis by MMP-13 was not due to sequence specificity or instability of the substrate triple helix but rather was based on the specific interactions of the P7' peptoid residue with the MMP-13 hemopexin-like domain. A fluorescence resonance energy transfer triple-helical peptomer was constructed and found to be readily processed by MMP-13, not cleaved by MMP-1 and MMP-8, and weakly hydrolyzed by MT1-MMP. The influence of the triple-helical structure containing peptoid residues on the interaction between MMP subsites and individual substrate residues may provide additional information about the mechanism of collagenolysis, the understanding of collagen specificity, and the design of selective MMP probes.
Recent Progress on the Stretched Lens Array (SLA)
NASA Technical Reports Server (NTRS)
O'Neill, Markl; McDanal, A. J.; Piszczor, Michael; George, Patrick; Eskenazi, Michael; Botke, Matthew; Edwards, David; Hoppe, David; Brandhorst, Henry
2005-01-01
At the last Space Photovoltaic Research and Technology Conference, SPRAT XVII, held during the fateful week of 9/11/01, our team presented a paper on the early developments related to the new Stretched Lens Array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Within the past two years, the SLA team has made significant progress in the SLA technology, including the successful fabrication and testing of a complete four-panel prototype solar array wing (Fig. 1). The prototype wing verified the mechanical and structural design of the rigid-panel SLA approach, including multiple successful demonstrations of automatic wing deployment. One panel in the prototype wing included four fully functional photovoltaic receivers, employing triple-junction solar cells.
Distribution of Pd, Ag & U in the SiC Layer of an Irradiated TRISO Fuel Particle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas M. Lillo; Isabella J. van Rooyen
2014-08-01
The distribution of silver, uranium and palladium in the silicon carbide (SiC) layer of an irradiated TRISO fuel particle was studied using samples extracted from the SiC layer using focused ion beam (FIB) techniques. Transmission electron microscopy in conjunction with energy dispersive x-ray spectroscopy was used to identify the presence of the specific elements of interest at grain boundaries, triple junctions and precipitates in the interior of SiC grains. Details on sample fabrication, errors associated with measurements of elemental migration distances and the distances migrated by silver, palladium and uranium in the SiC layer of an irradiated TRISO particle frommore » the AGR-1 program are reported.« less
Li-ion rechargeable batteries on Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar; Smart, M.; Whitacanack, L.; Ewell, R.; Surampudi, S.
2006-01-01
Lithium-ion batteries have contributed significantly to the success of NASA's Mars Rovers, Spirit and Opportunity that have been exploring the surface of Mars for the last two years and performing astounding geological studies to answer the ever-puzzling questions of life beyond Earth and the origin of our planets. Combined with the triple-junction solar cells, the lithium-ion batteries have been powering the robotic rovers, and assist in keeping the rover electronics warm, and in supporting nighttime experimentation and communications. The use of Li-ion batteries has resulted in significant benefits in several categories, such as mass, volume, energy efficiency, self discharge, and above all low temperature performance. Designed initially for the primary mission needs of 300 cycles over 90 days of surface operation, the batteries have been performing admirably, over the last two years. After about 670 days of exploration and at least as many cycles, there is little change in the end-of discharge (EOD) voltages or capacities of these batteries, as estimated from the in-flight data and corroborated by ground testing. Aided by such impressive durability from the Li-ion batteries, both from cycling and calendar life stand point, these rovers are poised to extend their exploration well beyond two years. In this paper, we will describe the performance characteristics of these batteries during launch, cruise phase and on the surface of Mars thus far.
Switching and Rectification in Carbon-Nanotube Junctions
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Andriotis, Antonis N.; Menon, Madhu; Chernozatonskii, Leonid
2003-01-01
Multi-terminal carbon-nanotube junctions are under investigation as candidate components of nanoscale electronic devices and circuits. Three-terminal "Y" junctions of carbon nanotubes (see Figure 1) have proven to be especially interesting because (1) it is now possible to synthesize them in high yield in a controlled manner and (2) results of preliminary experimental and theoretical studies suggest that such junctions could exhibit switching and rectification properties. Following the preliminary studies, current-versus-voltage characteristics of a number of different "Y" junctions of single-wall carbon nanotubes connected to metal wires were computed. Both semiconducting and metallic nanotubes of various chiralities were considered. Most of the junctions considered were symmetric. These computations involved modeling of the quantum electrical conductivity of the carbon nanotubes and junctions, taking account of such complicating factors as the topological defects (pentagons, heptagons, and octagons) present in the hexagonal molecular structures at the junctions, and the effects of the nanotube/wire interfaces. A major component of the computational approach was the use of an efficient Green s function embedding scheme. The results of these computations showed that symmetric junctions could be expected to support both rectification and switching. The results also showed that rectification and switching properties of a junction could be expected to depend strongly on its symmetry and, to a lesser degree, on the chirality of the nanotubes. In particular, it was found that a zigzag nanotube branching at a symmetric "Y" junction could exhibit either perfect rectification or partial rectification (asymmetric current-versus-voltage characteristic, as in the example of Figure 2). It was also found that an asymmetric "Y" junction would not exhibit rectification.
Cao, F; Ramaseshan, R; Corns, R; Harrop, S; Nuraney, N; Steiner, P; Aldridge, S; Liu, M; Carolan, H; Agranovich, A; Karva, A
2012-07-01
Craniospinal irradiation were traditionally treated the central nervous system using two or three adjacent field sets. A intensity-modulated radiotherapy (IMRT) plan (Jagged-Junction IMRT) which overcomes problems associated with field junctions and beam edge matching, improves planning and treatment setup efficiencies with homogenous target dose distribution was developed. Jagged-Junction IMRT was retrospectively planned on three patients with prescription of 36 Gy in 20 fractions and compared to conventional treatment plans. Planning target volume (PTV) included the whole brain and spinal canal to the S3 vertebral level. The plan employed three field sets, each with a unique isocentre. One field set with seven fields treated the cranium. Two field sets treated the spine, each set using three fields. Fields from adjacent sets were overlapped and the optimization process smoothly integrated the dose inside the overlapped junction. For the Jagged-Junction IMRT plans vs conventional technique, average homogeneity index equaled 0.08±0.01 vs 0.12±0.02, and conformity number equaled 0.79±0.01 vs 0.47±0.12. The 95% isodose surface covered (99.5±0.3)% of the PTV vs (98.1±2.0)%. Both Jagged-Junction IMRT plans and the conventional plans had good sparing of the organs at risk. Jagged-Junction IMRT planning provided good dose homogeneity and conformity to the target while maintaining a low dose to the organs at risk. Jagged-Junction IMRT optimization smoothly distributed dose in the junction between field sets. Since there was no beam matching, this treatment technique is less likely to produce hot or cold spots at the junction in contrast to conventional techniques. © 2012 American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Stella, P. M.
1984-01-01
The availability of data regarding the radiation behavior of GaAs and silicon solar cells is discussed as well as efforts to provide sufficient information. Other materials are considered too immature for reasonable radiation evaluation. The lack of concern over the possible catastrophic radiation degradation in cascade cells is a potentially serious problem. Lithium counterdoping shows potential for removing damage in irradiated P-type material, although initial efficiencies are not comparable to current state of the art. The possibility of refining the lithium doping method to maintain high initial efficiencies and combining it with radiation tolerant structures such as thin BSF cells or vertical junction cells could provide a substantial improvement in EOL efficiencies. Laser annealing of junctions, either those formed ion implantation or diffusion, may not only improve initial cell performance but might also reduce the radiation degradation rate.
Veenstra, Richard D
2016-01-01
The development of the patch clamp technique has enabled investigators to directly measure gap junction conductance between isolated pairs of small cells with resolution to the single channel level. The dual patch clamp recording technique requires specialized equipment and the acquired skill to reliably establish gigaohm seals and the whole cell recording configuration with high efficiency. This chapter describes the equipment needed and methods required to achieve accurate measurement of macroscopic and single gap junction channel conductances. Inherent limitations with the dual whole cell recording technique and methods to correct for series access resistance errors are defined as well as basic procedures to determine the essential electrical parameters necessary to evaluate the accuracy of gap junction conductance measurements using this approach.
Ridgeway, William K; Millar, David P; Williamson, James R
2013-01-01
Fluorescence Correlation Spectroscopy (FCS) is widely used to quantitate reaction rates and concentrations of molecules in vitro and in vivo. We recently reported Fluorescence Triple Correlation Spectroscopy (F3CS), which correlates three signals together instead of two. F3CS can analyze the stoichiometries of complex mixtures and detect irreversible processes by identifying time-reversal asymmetries. Here we report the computational developments that were required for the realization of F3CS and present the results as the Triple Correlation Toolbox suite of programs. Triple Correlation Toolbox is a complete data analysis pipeline capable of acquiring, correlating and fitting large data sets. Each segment of the pipeline handles error estimates for accurate error-weighted global fitting. Data acquisition was accelerated with a combination of off-the-shelf counter-timer chips and vectorized operations on 128-bit registers. This allows desktop computers with inexpensive data acquisition cards to acquire hours of multiple-channel data with sub-microsecond time resolution. Off-line correlation integrals were implemented as a two delay time multiple-tau scheme that scales efficiently with multiple processors and provides an unprecedented view of linked dynamics. Global fitting routines are provided to fit FCS and F3CS data to models containing up to ten species. Triple Correlation Toolbox is a complete package that enables F3CS to be performed on existing microscopes. PMID:23525193
Overview of processing activities aimed at higher efficiencies and economical production
NASA Technical Reports Server (NTRS)
Bickler, D. B.
1985-01-01
An overview of processing activities aimed at higher efficiencies and economical production were presented. Present focus is on low-cost process technology for higher-efficiency cells of up to 18% or higher. Process development concerns center on the use of less than optimum silicon sheet, the control of production yields, and making uniformly efficient large-area cells. High-efficiency cell factors that require process development are bulk material perfection, very shallow junction formation, front-surface passivation, and finely detailed metallization. Better bulk properties of the silicon sheet and the keeping of those qualities throughout large areas during cell processing are required so that minority carrier lifetimes are maintained and cell performance is not degraded by high doping levels. When very shallow junctions are formed, the process must be sensitive to metallizatin punch-through, series resisitance in the cell, and control of dopant leaching during surface passivation. There is a need to determine the sensitivity to processing by mathematical modeling and experimental activities.
Enhanced conversion efficiency in wide-bandgap GaNP solar cells
Sukrittanon, Supanee; Liu, Ren; Ro, Yun Goo; ...
2015-10-12
In this study, we demonstrate –2.05 eV dilute nitride GaNP solar cells on GaP substrates for potential use as the top junction in dual-junction integrated cells on Si. By adding a small amount of N into indirect-bandgap GaP, GaNP has several extremely important attributes: a direct-bandgap that is also tunable, and easily attained lattice-match with Si. Our best GaNP solar cell ([N] –1.8%, E g –2.05 eV) achieves an efficiency of 7.9%, even in the absence of a window layer. This GaNP solar cell's efficiency is 3× higher than the most efficient GaP solar cell to date and higher thanmore » other solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance are demonstrated.« less
NASA Astrophysics Data System (ADS)
Meyer, Toni; Körner, Christian; Vandewal, Koen; Leo, Karl
2018-04-01
In two terminal tandem solar cells, the current density - voltage (jV) characteristic of the individual subcells is typically not directly measurable, but often required for a rigorous device characterization. In this work, we reconstruct the jV-characteristic of organic solar cells from measurements of the external quantum efficiency under applied bias voltages and illumination. We show that it is necessary to perform a bias irradiance variation at each voltage and subsequently conduct a mathematical correction of the differential to the absolute external quantum efficiency to obtain an accurate jV-characteristic. Furthermore, we show that measuring the external quantum efficiency as a function of voltage for a single bias irradiance of 0.36 AM1.5g equivalent sun provides a good approximation of the photocurrent density over voltage curve. The method is tested on a selection of efficient, common single-junctions. The obtained conclusions can easily be transferred to multi-junction devices with serially connected subcells.
A simple theory of back surface field /BSF/ solar cells
NASA Technical Reports Server (NTRS)
Von Roos, O.
1978-01-01
A theory of an n-p-p/+/ junction is developed, entirely based on Shockley's depletion layer approximation. Under the further assumption of uniform doping the electrical characteristics of solar cells as a function of all relevant parameters (cell thickness, diffusion lengths, etc.) can quickly be ascertained with a minimum of computer time. Two effects contribute to the superior performance of a BSF cell (n-p-p/+/ junction) as compared to an ordinary solar cell (n-p junction). The sharing of the applied voltage among the two junctions (the n-p and the p-p/+/ junction) decreases the dark current and the reflection of minority carriers by the builtin electron field of the p-p/+/ junction increases the short-circuit current. The theory predicts an increase in the open-circuit voltage (Voc) with a decrease in cell thickness. Although the short-circuit current decreases at the same time, the efficiency of the cell is virtually unaltered in going from a thickness of 200 microns to a thickness of 50 microns. The importance of this fact for space missions where large power-to-weight ratios are required is obvious.
NASA Astrophysics Data System (ADS)
Deniset-Besseau, A.; Strupler, M.; Duboisset, J.; De Sa Peixoto, P.; Benichou, E.; Fligny, C.; Tharaux, P.-L.; Mosser, G.; Brevet, P.-F.; Schanne-Klein, M.-C.
2009-09-01
Collagen is a major protein of the extracellular matrix that is characterized by triple helical domains. It plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) so that SHG microscopy proved to be a sensitive tool to probe the three-dimensional architecture of fibrillar collagen and to assess the progression of fibrotic pathologies. We obtained sensitive and reproducible measurements of the fibrosis extent, but we needed quantitative data at the molecular level to further process SHG images. We therefore performed Hyper- Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its aminoacid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro- Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagenous biomimetic matrices.
Recovery and normalization of triple coincidences in PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lage, Eduardo, E-mail: elage@mit.edu; Parot, Vicente; Dave, Shivang R.
2015-03-15
Purpose: Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors. In this work, the authors propose amore » simple and general solution for recovering triple coincidences, which does not require specialized detectors or additional energy resolution requirements. Methods: To recover triple coincidences, the authors’ method distributes such events among their possible LORs using the relative proportions of double coincidences in these LORs. The authors show analytically that this assignment scheme represents the maximum-likelihood solution for the triple-coincidence distribution problem. The PET component of a preclinical PET/CT scanner was adapted to enable the acquisition and processing of triple coincidences. Since the efficiencies for detecting double and triple events were found to be different throughout the scanner field-of-view, a normalization procedure specific for triple coincidences was also developed. The effect of including triple coincidences using their method was compared against the cases of equally weighting the triples among their possible LORs and discarding all the triple events. The authors used as figures of merit for this comparison sensitivity, noise-equivalent count (NEC) rates and image quality calculated as described in the NEMA NU-4 protocol for the assessment of preclinical PET scanners. Results: The addition of triple-coincidence events with the authors’ method increased peak NEC rates of the scanner by 26.6% and 32% for mouse- and rat-sized objects, respectively. This increase in NEC-rate performance was also reflected in the image-quality metrics. Images reconstructed using double and triple coincidences recovered using their method had better signal-to-noise ratio than those obtained using only double coincidences, while preserving spatial resolution and contrast. Distribution of triple coincidences using an equal-weighting scheme increased apparent system sensitivity but degraded image quality. The performance boost provided by the inclusion of triple coincidences using their method allowed to reduce the acquisition time of standard imaging procedures by up to ∼25%. Conclusions: Recovering triple coincidences with the proposed method can effectively increase the sensitivity of current clinical and preclinical PET systems without compromising other parameters like spatial resolution or contrast.« less
Influence of design variables on radiation hardness of silicon MINP solar cells
NASA Technical Reports Server (NTRS)
Anderson, W. A.; Solaun, S.; Rao, B. B.; Banerjee, S.
1985-01-01
Metal-insulator-N/P silicon (MINP) solar cells were fabricated using different substrate resistivity values, different N-layer designs, and different I-layer designs. A shallow junction into an 0.3 ohm-cm substrate gave best efficiency whereas a deeper junction into a 1 to 4 ohm-cm substrate gave improved radiation hardness. I-layer design variation did little to influence radiation hardness.
Solution-Processed hybrid Sb2 S3 planar heterojunction solar cell
NASA Astrophysics Data System (ADS)
Huang, Wenxiao; Borazan, Ismail; Carroll, David
Thin-film solar cells based on inorganic absorbers permit a high efficiency and stability. Among or those absorber candidates, recently Sb2S3 has attracted extensive attention because of its suitable band gap (1.5eV ~1.7 eV) , strong optical absorption, low-cost and earth-abundant constituents. Currently high-efficiency Sb2S3 solar cells have absorber layer deposited on nanostructured TiO2 electrodes in combination with organic hole transport material (HTM) on top. However it's challenging to fill the nanostructured TiO2 layer with Sb2S3 and subsequently by HTM, this leads to uncovered surface permits charge recombination. And the existing of Sb2S3/TiO2/HTM triple interface will enhance the recombination due to the surface trap state. Therefore, a planar junction cell would not only have simpler structure with less steps to fabricate but also ideally also have a higher open circuit voltage because of less interface carrier recombination. By far there is limited research focusing on planar Sb2S3 solar cell, so the feasibility is still unclear. Here, we developed a low-toxic solution method to fabricate Sb2S3 thin film solar cell, then we studied the morphology of the Sb2S3 layer and its impact to the device performance. The best device with a structure of FTO/TiO2/Sb2S3/P3HT/Ag has PCE over 5% which is similar or higher than yet the best nanostructure devices with the same HTM. Furthermore, based on solution engineering and surface modification, we improved the Sb2S3 film quality and achieved a record PCE. .
GaSb and Ga1-xInxSb Thermophotovoltaic Cells using Diffused Junction Technology in Bulk Substrates
NASA Astrophysics Data System (ADS)
Dutta, P. S.; Borrego, J. M.; Ehsani, H.; Rajagopalan, G.; Bhat, I. B.; Gutmann, R. J.; Nichols, G.; Baldasaro, P. F.
2003-01-01
This paper presents results of experimental and theoretical research on antimonide- based thermophotovoltaic (TPV) materials and cells. The topics discussed include: growth of large diameter ternary GaInSb bulk crystals, substrate preparation, diffused junction processes, cell fabrication and characterization, and, cell modeling. Ternary GaInSb boules up to 2 inches in diameter have been grown using the vertical Bridgman technique with a novel self solute feeding technique. A single step diffusion process followed by precise etching of the diffused layer has been developed to obtain a diffusion profile appropriate for high efficiency, p-n junction GaSb and GaInSb thermophotovoltaic cells. The optimum junction depth to obtain the highest quantum efficiency and open circuit voltage has been identified based on diffusion lengths (or minority carrier lifetimes), carrier mobility and experimental diffused impurity profiles. Theoretical assessment of the performance of ternary (GaInSb) and binary (GaSb) cells fabricated by Zn diffusion in bulk substrates has been performed using PC-1D one-dimensional computer simulations. Several factors affecting the cell performances such as the effects of emitter doping profile, emitter thickness and recombination mechanisms (Auger, radiative and Shockley-Read-Hall), the advantages of surface passivation and the impact of dark current due to the metallic grid will be discussed. The conditions needed for diffused junction cells on ternary and binary substrates to achieve similar performance to the epitaxially grown lattice- matched quaternary cells are identified.
Low-Cost High-Efficiency Solar Cells with Wafer Bonding and Plasmonic Technologies
NASA Astrophysics Data System (ADS)
Tanake, Katsuaki
We fabricated a direct-bond interconnected multijunction solar cell, a two-terminal monolithic GaAs/InGaAs dual-junction cell, to demonstrate a proof-of-principle for the viability of direct wafer bonding for solar cell applications. The bonded interface is a metal-free n+GaAs/n +InP tunnel junction with highly conductive Ohmic contact suitable for solar cell applications overcoming the 4% lattice mismatch. The quantum efficiency spectrum for the bonded cell was quite similar to that for each of unbonded GaAs and InGaAs subcells. The bonded dual-junction cell open-circuit voltage was equal to the sum of the unbonded subcell open-circuit voltages, which indicates that the bonding process does not degrade the cell material quality since any generated crystal defects that act as recombination centers would reduce the open-circuit voltage. Also, the bonded interface has no significant carrier recombination rate to reduce the open circuit voltage. Engineered substrates consisting of thin films of InP on Si handle substrates (InP/Si substrates or epitaxial templates) have the potential to significantly reduce the cost and weight of compound semiconductor solar cells relative to those fabricated on bulk InP substrates. InGaAs solar cells on InP have superior performance to Ge cells at photon energies greater than 0.7 eV and the current record efficiency cell for 1 sun illumination was achieved using an InGaP/GaAs/InGaAs triple junction cell design with an InGaAs bottom cell. Thermophotovoltaic (TPV) cells from the InGaAsP-family of III-V materials grown epitaxially on InP substrates would also benefit from such an InP/Si substrate. Additionally, a proposed four-junction solar cell fabricated by joining subcells of InGaAs and InGaAsP grown on InP with subcells of GaAs and AlInGaP grown on GaAs through a wafer-bonded interconnect would enable the independent selection of the subcell band gaps from well developed materials grown on lattice matched substrates. Substitution of InP/Si substrates for bulk InP in the fabrication of such a four-junction solar cell could significantly reduce the substrate cost since the current prices for commercial InP substrates are much higher than those for Si substrates by two orders of magnitude. Direct heteroepitaxial growth of InP thin films on Si substrates has not produced the low dislocation-density high quality layers required for active InGaAs/InP in optoelectronic devices due to the ˜8% lattice mismatch between InP and Si. We successfully fabricated InP/Si substrates by He implantation of InP prior to bonding to a thermally oxidized Si substrate and annealing to exfoliate an InP thin film. The thickness of the exfoliated InP films was only 900 nm, which means hundreds of the InP/Si substrates could be prepared from a single InP wafer in principle. The photovoltaic current-voltage characteristics of the In0.53Ga0.47As cells fabricated on the wafer-bonded InP/Si substrates were comparable to those synthesized on commercially available epi-ready InP substrates, and had a ˜20% higher short-circuit current which we attribute to the high reflectivity of the InP/SiO2/Si bonding interface. This work provides an initial demonstration of wafer-bonded InP/Si substrates as an alternative to bulk InP substrates for solar cell applications. We have observed photocurrent enhancements up to 260% at 900 nm for a GaAs cell with a dense array of Ag nanoparticles with 150 nm diameter and 20 nm height deposited through porous alumina membranes by thermal evaporation on top of the cell, relative to reference GaAs cells with no metal nanoparticle array. This dramatic photocurrent enhancement is attributed to the effect of metal nanoparticles to scatter the incident light into photovoltaic layers with a wide range of angles to increase the optical path length in the absorber layer. GaAs solar cells with metallic structures at the bottom of the photovoltaic active layers, not only at the top, using semiconductor-metal direct bonding have been fabricated. These metallic back structures could incouple the incident light into surface plasmon mode propagating at the semiconductor/metal interface to increase the optical path, as well as simply act as back reflector, and we have observed significantly increased short-circuit current relative to reference cells without these metal components. (Abstract shortened by UMI.)
A Newton-Raphson Method Approach to Adjusting Multi-Source Solar Simulators
NASA Technical Reports Server (NTRS)
Snyder, David B.; Wolford, David S.
2012-01-01
NASA Glenn Research Center has been using an in house designed X25 based multi-source solar simulator since 2003. The simulator is set up for triple junction solar cells prior to measurements b y adjusting the three sources to produce the correct short circuit current, lsc, in each of three AM0 calibrated sub-cells. The past practice has been to adjust one source on one sub-cell at a time, iterating until all the sub-cells have the calibrated Isc. The new approach is to create a matrix of measured lsc for small source changes on each sub-cell. A matrix, A, is produced. This is normalized to unit changes in the sources so that Ax(delta)s = (delta)isc. This matrix can now be inverted and used with the known Isc differences from the AM0 calibrated values to indicate changes in the source settings, (delta)s = A ·'x.(delta)isc This approach is still an iterative one, but all sources are changed during each iteration step. It typically takes four to six steps to converge on the calibrated lsc values. Even though the source lamps may degrade over time, the initial matrix evaluation i s not performed each time, since measurement matrix needs to be only approximate. Because an iterative approach is used the method will still continue to be valid. This method may become more important as state-of-the-art solar cell junction responses overlap the sources of the simulator. Also, as the number of cell junctions and sources increase, this method should remain applicable.
Bishnoi, Sandra; Urban, Alexander; Charron, Heather; Mitchell, Tamika; Shea, Martin; Nanda, Sarmistha; Schiff, Rachel; Halas, Naomi; Joshi, Amit
2014-01-01
There is an unmet need for efficient near-infrared photothermal transducers for the treatment of highly aggressive cancers and large tumors where the penetration of light can be substantially reduced, and the intra-tumoral nanoparticle transport is restricted due to the presence of hypoxic or nectrotic regions. We report the performance advantages obtained by sub 100 nm gold nanomatryushkas, comprising of concentric gold-silica-gold layers compared to conventional ~150 nm silica core gold nanoshells for photothermal therapy of triple negative breast cancer. We demonstrate that a 33% reduction in silica-core-gold-shell nanoparticle size, while retaining near-infrared plasmon resonance, and keeping the nanoparticle surface charge constant, results in a four to five fold tumor accumulation of nanoparticles following equal dose of injected gold for both sizes. The survival time of mice bearing large (>1000 mm3) and highly aggressive triple negative breast tumors is doubled for the nanomatryushka treatment group under identical photo-thermal therapy conditions. The higher absorption cross-section of a nanomatryoshka results in a higher efficiency of photonic to thermal energy conversion and coupled with 4-5X accumulation within large tumors results in superior therapy efficacy. PMID:25051221
Holographic spectrum-splitting optical systems for solar photovoltaics
NASA Astrophysics Data System (ADS)
Zhang, Deming
Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle-wavelength selective filters that can function as ultra-light-trapping filters. Results from an experimental reflection hologram are used to model the absorption enhancement factor for a silicon solar cell and light-trapping filter. The result shows a significant improvement in current generation for thin-film silicon solar cells under typical operating conditions.
Excimer laser annealing to fabricate low cost solar cells
NASA Technical Reports Server (NTRS)
1984-01-01
The objective is to show whether or not pulsed excimer laser annealing (PELA) of ion-implanted junctions is a cost effective replacement for diffused junctions in fabricating crystalline silicon solar cells. The preliminary economic analysis completed shows that the use of PELA to fabricate both the front junction and back surface field (BSF) would cost approximately 35 cents per peak watt (Wp), compared to a cost of 15 cents/Wp for diffusion, aluminum BSF and an extra cleaning step in the baseline process. The cost advantage of the PELA process depends on improving the average cell efficiency from 14% to 16%, which would lower the overall cost of the module by about 15 cents/Wp. An optimized PELA process compatible with commercial production is to be developed, and increased cell efficiency with sufficient product for adequate statistical analysis demonstrated. An excimer laser annealing station was set-up and made operational. The first experiment used 248 nm radiation to anneal phosphorus implants in polished and texture-etched silicon.
Pronounced Photovoltaic Response from Multilayered Transition-Metal Dichalcogenides PN-Junctions.
Memaran, Shahriar; Pradhan, Nihar R; Lu, Zhengguang; Rhodes, Daniel; Ludwig, Jonathan; Zhou, Qiong; Ogunsolu, Omotola; Ajayan, Pulickel M; Smirnov, Dmitry; Fernández-Domínguez, Antonio I; García-Vidal, Francisco J; Balicas, Luis
2015-11-11
Transition metal dichalcogenides (TMDs) are layered semiconductors with indirect band gaps comparable to Si. These compounds can be grown in large area, while their gap(s) can be tuned by changing their chemical composition or by applying a gate voltage. The experimental evidence collected so far points toward a strong interaction with light, which contrasts with the small photovoltaic efficiencies η ≤ 1% extracted from bulk crystals or exfoliated monolayers. Here, we evaluate the potential of these compounds by studying the photovoltaic response of electrostatically generated PN-junctions composed of approximately 10 atomic layers of MoSe2 stacked onto the dielectric h-BN. In addition to ideal diode-like response, we find that these junctions can yield, under AM-1.5 illumination, photovoltaic efficiencies η exceeding 14%, with fill factors of ~70%. Given the available strategies for increasing η such as gap tuning, improving the quality of the electrical contacts, or the fabrication of tandem cells, our study suggests a remarkable potential for photovoltaic applications based on TMDs.
NASA Astrophysics Data System (ADS)
Bano, Zahira; Muhmood, Tahir; Xia, Mingzhu; Lei, Wu; Wang, Fengyun
2018-05-01
The flower like microrods (MR) of α-Bi2O3 defined as (MR-Bi2O3) and ultrathin g-C3N4(UT-C3N4) p-n junction was successfully prepared by loading different concentrations of UT-C3N4 over MR-Bi2O3. Their morphology and structure were thoroughly studied by XRD, SEM, XPS, TEM, UV–vis diffuse reflectance spectra, FT-IR and PL spectra. The results showed that the UT-C3N4 has been wrapped in the flower like MR-Bi2O3. The designing of the p-n junction of UT- C3N4 and MR-Bi2O3 can enhance the separation efficiency of the electron-hole pairs. The photocatalytic degradation of RhB was drastically increased by designing of the p-n junction that is due to the photogenerated electron–hole pair’s separation efficiency.
Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions.
Parzefall, M; Bharadwaj, P; Jain, A; Taniguchi, T; Watanabe, K; Novotny, L
2015-12-01
The ultrafast conversion of electrical signals to optical signals at the nanoscale is of fundamental interest for data processing, telecommunication and optical interconnects. However, the modulation bandwidths of semiconductor light-emitting diodes are limited by the spontaneous recombination rate of electron-hole pairs, and the footprint of electrically driven ultrafast lasers is too large for practical on-chip integration. A metal-insulator-metal tunnel junction approaches the ultimate size limit of electronic devices and its operating speed is fundamentally limited only by the tunnelling time. Here, we study the conversion of electrons (localized in vertical gold-hexagonal boron nitride-gold tunnel junctions) to free-space photons, mediated by resonant slot antennas. Optical antennas efficiently bridge the size mismatch between nanoscale volumes and far-field radiation and strongly enhance the electron-photon conversion efficiency. We achieve polarized, directional and resonantly enhanced light emission from inelastic electron tunnelling and establish a novel platform for studying the interaction of electrons with strongly localized electromagnetic fields.
Four-state non-volatile memory in a multiferroic spin filter tunnel junction
NASA Astrophysics Data System (ADS)
Ruan, Jieji; Li, Chen; Yuan, Zhoushen; Wang, Peng; Li, Aidong; Wu, Di
2016-12-01
We report a spin filter type multiferroic tunnel junction with a ferromagnetic/ferroelectric bilayer barrier. Memory functions of a spin filter magnetic tunnel junction and a ferroelectric tunnel junction are combined in this single device, producing four non-volatile resistive states that can be read out in a non-destructive manner. This concept is demonstrated in a LaNiO3/Pr0.8Ca0.2MnO3/BaTiO3/La0.7Sr0.3MnO3 all-oxide tunnel junction. The ferromagnetic insulator Pr0.8Ca0.2MnO3 serves as the spin filter and the ferromagnetic metal La0.7Sr0.3MnO3 is the spin analyzer. The ferroelectric polarization reversal in the BaTiO3 barrier switches the tunneling barrier height to produce a tunneling electroresistance. The ferroelectric switching also modulates the spin polarization and the spin filtering efficiency in Pr0.8Ca0.2MnO3.
Tuning the thermal conductance of molecular junctions with interference effects
NASA Astrophysics Data System (ADS)
Klöckner, J. C.; Cuevas, J. C.; Pauly, F.
2017-12-01
We present an ab initio study of the role of interference effects in the thermal conductance of single-molecule junctions. To be precise, using a first-principles transport method based on density functional theory, we analyze the coherent phonon transport in single-molecule junctions made of several benzene and oligo(phenylene ethynylene) derivatives. We show that the thermal conductance of these junctions can be tuned via the inclusion of substituents, which induces destructive interference effects and results in a decrease of the thermal conductance with respect to the unmodified molecules. In particular, we demonstrate that these interference effects manifest as antiresonances in the phonon transmission, whose energy positions can be tuned by varying the mass of the substituents. Our work provides clear strategies for the heat management in molecular junctions and, more generally, in nanostructured metal-organic hybrid systems, which are important to determine how these systems can function as efficient energy-conversion devices such as thermoelectric generators and refrigerators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torregrosa, Frank; Etienne, Hasnaa; Mathieu, Gilles
Classical beam line implantation is limited in low energies and cannot achieve P+/N junctions requirements for <45nm node. Compared to conventional beam line ion implantation, limited to a minimum of about 200 eV, the efficiency of Plasma Immersion Ion Implantation (PIII) is no more to prove for the realization of Ultra Shallow Junctions (USJ) in semiconductor applications: this technique allows to get ultimate shallow profiles (as implanted) thanks to no lower limitation of energy and offers high dose rate. In the field of the European consortium NANOCMOS, Ultra Shallow Junctions implanted on a semi-industrial PIII prototype (PULSION registered ) designedmore » by the French company IBS, have been studied. Ultra shallow junctions implanted with BF3 at acceleration voltages down to 20V were realized. Contamination level, homogeneity and depth profile are studied. The SIMS profiles obtained show the capability to make ultra shallow profiles (as implanted) down to 2nm.« less
Murray, Christopher S.; Wilt, David M.
2000-01-01
An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMS), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.
Process research of non-Cz material
NASA Astrophysics Data System (ADS)
Campbell, R. B.
1985-06-01
Efforts were aimed at achieving a simultaneous front and back junction. Lasers and other heat sources were tried. Successful results were gained by two different methods: laser and flash lamp. Polymer dopants were applied to both sides of dendritic web cells. Rapid heating and cooling avoided any cross contamination between two junctions after removal of the dendrites. Both methods required subsequent thermal annealing in an oven to produce maximum efficiency cells.
Simon-Lukasik, Kristine V.; Persikov, Anton V.; Brodsky, Barbara; Ramshaw, John A. M.; Laws, William R.; Alexander Ross, J. B.; Ludescher, Richard D.
2003-01-01
We report tryptophan fluorescence measurements of emission intensity, iodide quenching, and anisotropy that describe the environment and dynamics at X and Y sites in stable collagen-like peptides of sequence (Gly-X-Y)n. About 90% of tryptophans at both sites have similar solvent exposed fluorescence properties and a lifetime of 8.5–9 ns. Analysis of anisotropy decays using an associative model indicates that these long lifetime populations undergo rapid depolarizing motion with a 0.5 ns correlation time; however, the extent of fast motion at the Y site is considerably less than the essentially unrestricted motion at the X site. About 10% of tryptophans at both sites have a shorter (∼3 ns) lifetime indicating proximity to a protein quenching group; these minor populations are immobile on the peptide surface, depolarizing only by overall trimer rotation. Iodide quenching indicates that tryptophans at the X site are more accessible to solvent. Side chains at X sites are more solvent accessible and considerably more mobile than residues at Y sites and can more readily fluctuate among alternate intermolecular interactions in collagen fibrils. This fluorescence analysis of collagen-like peptides lays a foundation for studies on the structure, dynamics, and function of collagen and of triple-helical junctions in gelatin gels. PMID:12524302
Li, Bin; Wu, Yingya; Liu, Xijuan; Tan, Yuhui; Du, Biaoyan
2017-01-01
Suicide gene therapy is a promising strategy against melanoma. However, the low efficiency of the gene transfer technique can limit its application. Our preliminary data showed that dioscin, a glucoside saponin, could upregulate the expression of connexins Cx26 and Cx43, major components of gap junctions, in melanoma cells. We hypothesized that dioscin may increase the bystander effect of herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV) through increasing the formation of gap junctions. Further analysis showed that dioscin indeed could increase the gap junctional intercellular communication in B16 melanoma cells, resulting in more efficient GCV-induced bystander killing in B16tk cells. By contrast, overexpression of dominant negative Cx43 impaired the cell-cell communication of B16 cells and subsequently weakened the bystander effect of HSV-tk/GCV gene therapy. In vivo, combination treatment with dioscin and GCV of tumor-bearing mice with 30% positive B16tk cells and 70% wild-type B16 cells caused a significant reduction in tumor volume and weight compared to treatment with GCV or dioscin alone. Taken together, these results demonstrated that dioscin could augment the bystander effect of the HSV-tk/GCV system through increasing connexin-mediated gap junction coupling. PMID:27903977
Device properties of nanopore PN junction Si for photovoltaic application
NASA Astrophysics Data System (ADS)
Jin, Hyunjong; Chang, Te Wei; Liu, Logan Gang
2011-09-01
Improvement of energy conversion efficiency of solar cells has led to innovative approaches, in particular the introduction of nanopillar photovoltaics [1]. Previous work on nanopillar Si photovoltaic has shown broadband reduction in optical reflection and enhancement of absorption [2]. Radial or axial PN junctions [3, 4] have been of high interest for improved photovoltaic devices. However, with the PN junction incorporated as part of the pillar, the discreteness of individual pillar requires additional conductive layer that would electrically short the top of each pillar for efficient carrier extraction. The fragile structure of the surface pillars would also require a protection layer for possible mechanical scratch to prevent pillars from breaking. Any additional layer that is applied, either for electrical contact or for mechanical properties may introduce additional recombination sites and also reduce the actual light absorption by the photovoltaic material. In this paper, nanopore Si photovoltaics that not only provides the advantages but also addresses the challenges of nanopillers is demonstrated. PN junction substrate of 250 nm thick N-type polycrystalline Si on P-type Si wafer is prepared. The nanopore structure is formed by using anodized aluminum oxide (AAO) as an etching mask against deep reactive ionic etching (DRIE). The device consists of semi-ordered pores of ~70 nm diameter.
Yang, Li; Li, Shanshan; Liu, Jixiao; Cheng, Jingmeng
2018-02-01
To explore and utilize the advantages of droplet-based microfluidics, hydrodynamics, and mixing process within droplets traveling though the T junction channel and convergent-divergent sinusoidal microchannels are studied by numerical simulations and experiments, respectively. In the T junction channel, the mixing efficiency is significantly influenced by the twirling effect, which controls the initial distributions of the mixture during the droplet formation stage. Therefore, the internal recirculating flow can create a convection mechanism, thus improving mixing. The twirling effect is noticeably influenced by the velocity of the continuous phase; in the sinusoidal channel, the Dean vortices and droplet deformation are induced by centrifugal force and alternative velocity gradient, thus enhancing the mixing efficiency. The best mixing occurred when the droplet size is comparable with the channel width. Finally, we propose a unique optimized structure, which includes a T junction inlet joined to a sinusoidal channel. In this structure, the mixing of fluids in the droplets follows two routes: One is the twirling effect and symmetric recirculation flow in the straight channel. The other is the asymmetric recirculation and droplet deformation in the winding and variable cross-section. Among the three structures, the optimized structure has the best mixing efficiency at the shortest mixing time (0.25 ms). The combination of the twirling effect, variable cross-section effect, and Dean vortices greatly intensifies the chaotic flow. This study provides the insight of the mixing process and may benefit the design and operations of droplet-based microfluidics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
BioBenchmark Toyama 2012: an evaluation of the performance of triple stores on biological data
2014-01-01
Background Biological databases vary enormously in size and data complexity, from small databases that contain a few million Resource Description Framework (RDF) triples to large databases that contain billions of triples. In this paper, we evaluate whether RDF native stores can be used to meet the needs of a biological database provider. Prior evaluations have used synthetic data with a limited database size. For example, the largest BSBM benchmark uses 1 billion synthetic e-commerce knowledge RDF triples on a single node. However, real world biological data differs from the simple synthetic data much. It is difficult to determine whether the synthetic e-commerce data is efficient enough to represent biological databases. Therefore, for this evaluation, we used five real data sets from biological databases. Results We evaluated five triple stores, 4store, Bigdata, Mulgara, Virtuoso, and OWLIM-SE, with five biological data sets, Cell Cycle Ontology, Allie, PDBj, UniProt, and DDBJ, ranging in size from approximately 10 million to 8 billion triples. For each database, we loaded all the data into our single node and prepared the database for use in a classical data warehouse scenario. Then, we ran a series of SPARQL queries against each endpoint and recorded the execution time and the accuracy of the query response. Conclusions Our paper shows that with appropriate configuration Virtuoso and OWLIM-SE can satisfy the basic requirements to load and query biological data less than 8 billion or so on a single node, for the simultaneous access of 64 clients. OWLIM-SE performs best for databases with approximately 11 million triples; For data sets that contain 94 million and 590 million triples, OWLIM-SE and Virtuoso perform best. They do not show overwhelming advantage over each other; For data over 4 billion Virtuoso works best. 4store performs well on small data sets with limited features when the number of triples is less than 100 million, and our test shows its scalability is poor; Bigdata demonstrates average performance and is a good open source triple store for middle-sized (500 million or so) data set; Mulgara shows a little of fragility. PMID:25089180
BioBenchmark Toyama 2012: an evaluation of the performance of triple stores on biological data.
Wu, Hongyan; Fujiwara, Toyofumi; Yamamoto, Yasunori; Bolleman, Jerven; Yamaguchi, Atsuko
2014-01-01
Biological databases vary enormously in size and data complexity, from small databases that contain a few million Resource Description Framework (RDF) triples to large databases that contain billions of triples. In this paper, we evaluate whether RDF native stores can be used to meet the needs of a biological database provider. Prior evaluations have used synthetic data with a limited database size. For example, the largest BSBM benchmark uses 1 billion synthetic e-commerce knowledge RDF triples on a single node. However, real world biological data differs from the simple synthetic data much. It is difficult to determine whether the synthetic e-commerce data is efficient enough to represent biological databases. Therefore, for this evaluation, we used five real data sets from biological databases. We evaluated five triple stores, 4store, Bigdata, Mulgara, Virtuoso, and OWLIM-SE, with five biological data sets, Cell Cycle Ontology, Allie, PDBj, UniProt, and DDBJ, ranging in size from approximately 10 million to 8 billion triples. For each database, we loaded all the data into our single node and prepared the database for use in a classical data warehouse scenario. Then, we ran a series of SPARQL queries against each endpoint and recorded the execution time and the accuracy of the query response. Our paper shows that with appropriate configuration Virtuoso and OWLIM-SE can satisfy the basic requirements to load and query biological data less than 8 billion or so on a single node, for the simultaneous access of 64 clients. OWLIM-SE performs best for databases with approximately 11 million triples; For data sets that contain 94 million and 590 million triples, OWLIM-SE and Virtuoso perform best. They do not show overwhelming advantage over each other; For data over 4 billion Virtuoso works best. 4store performs well on small data sets with limited features when the number of triples is less than 100 million, and our test shows its scalability is poor; Bigdata demonstrates average performance and is a good open source triple store for middle-sized (500 million or so) data set; Mulgara shows a little of fragility.
Development and fabrication of a solar cell junction processing system
NASA Technical Reports Server (NTRS)
1984-01-01
A processing system capable of producing solar cell junctions by ion implantation followed by pulsed electron beam annealing was developed and constructed. The machine was to be capable of processing 4-inch diameter single-crystal wafers at a rate of 10(7) wafers per year. A microcomputer-controlled pulsed electron beam annealer with a vacuum interlocked wafer transport system was designed, built and demonstrated to produce solar cell junctions on 4-inch wafers with an AMI efficiency of 12%. Experiments showed that a non-mass-analyzed (NMA) ion beam could implant 10 keV phosphorous dopant to form solar cell junctions which were equivalent to mass-analyzed implants. A NMA ion implanter, compatible with the pulsed electron beam annealer and wafer transport system was designed in detail but was not built because of program termination.
Pre-crash scenarios at road junctions: A clustering method for car crash data.
Nitsche, Philippe; Thomas, Pete; Stuetz, Rainer; Welsh, Ruth
2017-10-01
Given the recent advancements in autonomous driving functions, one of the main challenges is safe and efficient operation in complex traffic situations such as road junctions. There is a need for comprehensive testing, either in virtual simulation environments or on real-world test tracks. This paper presents a novel data analysis method including the preparation, analysis and visualization of car crash data, to identify the critical pre-crash scenarios at T- and four-legged junctions as a basis for testing the safety of automated driving systems. The presented method employs k-medoids to cluster historical junction crash data into distinct partitions and then applies the association rules algorithm to each cluster to specify the driving scenarios in more detail. The dataset used consists of 1056 junction crashes in the UK, which were exported from the in-depth "On-the-Spot" database. The study resulted in thirteen crash clusters for T-junctions, and six crash clusters for crossroads. Association rules revealed common crash characteristics, which were the basis for the scenario descriptions. The results support existing findings on road junction accidents and provide benchmark situations for safety performance tests in order to reduce the possible number parameter combinations. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pao, W.; Hon, L.; Saieed, A.; Ban, S.
2017-10-01
A smaller diameter conduit pointing at 12 o’clock position is typically hot-tapped to a horizontal laying production header in offshore platform to tap produced gas for downstream process train. This geometric feature is commonly known as T-junction. The nature of multiphase fluid splitting at the T-junction is a major operational challenge due to unpredictable production environment. Often, excessive liquid carryover occurs in the T-junction, leading to complete platform trip and halt production. This is because the downstream process train is not designed to handle excessive liquid. The objective of this research is to quantify the effect of different diameter ratio on phase separation efficiency in T-junction. The liquid carryover is modelled as two-phase air-water flow using Eulerian Mixture Model coupled with Volume of Fluid Method to mimic the slug flow in the main pipe. The focus in this paper is 0.0254 m (1 inch) diameter horizontal main arm and vertical branch arm with diameter ratio of 1.0, 0.5 and 0.3. The present research narrowed the investigation to only slug flow regime using Baker’s map as reference. The investigation found that, contrary to common believe, smaller diameter ratio T-junction perform worse than larger diameter ratio T-junction.
NASA Astrophysics Data System (ADS)
Budiman, M. A.; Zamzami, E. M.; Rachmawati, D.
2017-03-01
Dual-pivot quicksort, which was proposed by Yaroslavsky, has been experimentally proven to be more efficient than the classical single-pivot quicksort under the Java Virtual Machine [6]. Moreover, Kushagara, López-Ortiz, and Munro [4] has shown that triple-pivot quicksort runs 7-8% faster than dual-pivot quicksort in C, mutatis mutandis. In this research, we implement and experiment with single, dual, triple, quad, and penta-pivot quicksort algorithms in Python. Our experimental results are as follows. Firstly, the quicksort with single pivot is the slowest among the five variants. Secondly, at least until five (penta) pivots are being used, it is proven that the more pivots are used in a quicksort algorithm, the faster its performance becomes. Thirdly, the increase of speed resulted by adding more pivots tends to decrease gradually.
Triple dividends of water consumption charges in South Africa
NASA Astrophysics Data System (ADS)
Letsoalo, Anthony; Blignaut, James; de Wet, Theuns; de Wit, Martin; Hess, Sebastiaan; Tol, Richard S. J.; van Heerden, Jan
2007-05-01
The South African government is exploring ways to address water scarcity problems by introducing a water resource management charge on the quantity of water used in sectors such as irrigated agriculture, mining, and forestry. It is expected that a more efficient water allocation, lower use, and a positive impact on poverty can be achieved. This paper reports on the validity of these claims by applying a computable general equilibrium model to analyze the triple dividend of water consumption charges in South Africa: reduced water use, more rapid economic growth, and a more equal income distribution. It is shown that an appropriate budget-neutral combination of water charges, particularly on irrigated agriculture and coal mining, and reduced indirect taxes, particularly on food, would yield triple dividends, that is, less water use, more growth, and less poverty.