Bao, Xu; Li, Haijian; Xu, Dongwei; Jia, Limin; Ran, Bin; Rong, Jian
2016-11-06
The jam flow condition is one of the main traffic states in traffic flow theory and the most difficult state for sectional traffic information acquisition. Since traffic information acquisition is the basis for the application of an intelligent transportation system, research on traffic vehicle counting methods for the jam flow conditions has been worthwhile. A low-cost and energy-efficient type of multi-function wireless traffic magnetic sensor was designed and developed. Several advantages of the traffic magnetic sensor are that it is suitable for large-scale deployment and time-sustainable detection for traffic information acquisition. Based on the traffic magnetic sensor, a basic vehicle detection algorithm (DWVDA) with less computational complexity was introduced for vehicle counting in low traffic volume conditions. To improve the detection performance in jam flow conditions with a "tailgating effect" between front vehicles and rear vehicles, an improved vehicle detection algorithm (SA-DWVDA) was proposed and applied in field traffic environments. By deploying traffic magnetic sensor nodes in field traffic scenarios, two field experiments were conducted to test and verify the DWVDA and the SA-DWVDA algorithms. The experimental results have shown that both DWVDA and the SA-DWVDA algorithms yield a satisfactory performance in low traffic volume conditions (scenario I) and both of their mean absolute percent errors are less than 1% in this scenario. However, for jam flow conditions with heavy traffic volumes (scenario II), the SA-DWVDA was proven to achieve better results, and the mean absolute percent error of the SA-DWVDA is 2.54% with corresponding results of the DWVDA 7.07%. The results conclude that the proposed SA-DWVDA can implement efficient and accurate vehicle detection in jam flow conditions and can be employed in field traffic environments.
Bao, Xu; Li, Haijian; Xu, Dongwei; Jia, Limin; Ran, Bin; Rong, Jian
2016-01-01
The jam flow condition is one of the main traffic states in traffic flow theory and the most difficult state for sectional traffic information acquisition. Since traffic information acquisition is the basis for the application of an intelligent transportation system, research on traffic vehicle counting methods for the jam flow conditions has been worthwhile. A low-cost and energy-efficient type of multi-function wireless traffic magnetic sensor was designed and developed. Several advantages of the traffic magnetic sensor are that it is suitable for large-scale deployment and time-sustainable detection for traffic information acquisition. Based on the traffic magnetic sensor, a basic vehicle detection algorithm (DWVDA) with less computational complexity was introduced for vehicle counting in low traffic volume conditions. To improve the detection performance in jam flow conditions with a “tailgating effect” between front vehicles and rear vehicles, an improved vehicle detection algorithm (SA-DWVDA) was proposed and applied in field traffic environments. By deploying traffic magnetic sensor nodes in field traffic scenarios, two field experiments were conducted to test and verify the DWVDA and the SA-DWVDA algorithms. The experimental results have shown that both DWVDA and the SA-DWVDA algorithms yield a satisfactory performance in low traffic volume conditions (scenario I) and both of their mean absolute percent errors are less than 1% in this scenario. However, for jam flow conditions with heavy traffic volumes (scenario II), the SA-DWVDA was proven to achieve better results, and the mean absolute percent error of the SA-DWVDA is 2.54% with corresponding results of the DWVDA 7.07%. The results conclude that the proposed SA-DWVDA can implement efficient and accurate vehicle detection in jam flow conditions and can be employed in field traffic environments. PMID:27827974
Three state-of-the-art individual electric and hybrid vehicle test reports, volume 2
NASA Technical Reports Server (NTRS)
1978-01-01
Procedures used in determining the energy efficiency and economy of a gasoline-electric hybrid taxi, an electric passenger car, and an electric van are described. Tabular and graphic data show results of driving cycle and constant speed tests, energy distribution to various components, efficiency of the components, and, for the hybrid vehicle, the emissions.
Isolated step-down DC -DC converter for electric vehicles
NASA Astrophysics Data System (ADS)
Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.
2018-02-01
Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.
National energy efficient driving system (NEEDS). Volume 3, Home vehicle use study
DOT National Transportation Integrated Search
1981-12-15
Eight vehicles were instrumented to permit travel distance and fuel consumption to be measured. Following the collection of baseline measures, three different systems were provided to feed back distance and fuel information to drivers: manual, a week...
National energy efficient driving system (NEEDS). Volume 1, Survey of requirements
DOT National Transportation Integrated Search
1981-12-15
This report provides a state-of-the-art summary of the means by which individual drivers can achieve more fuel-efficient vehicle operation. It identifies fuel-efficient driving behaviors, the means of influencing behavior, appropriate audiences for a...
In-Vehicle Safety Advisory And Warning System (Ivsaws), Volume Iv, Appendices I Through K
DOT National Transportation Integrated Search
2001-01-01
The importance of timely corrective action for rutted pavements, coupled with the need for safe and efficient data collection, has led many state highway agencies to use automated survey vehicles to collect the data needed to assess and monitor the e...
Logistics Reduction Technologies for Exploration Missions
NASA Technical Reports Server (NTRS)
Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.
2014-01-01
Human exploration missions under study are limited by the launch mass capacity of existing and planned launch vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Although mass is typically the focus of exploration missions, due to its strong impact on launch vehicle and habitable volume for the crew, logistics volume also needs to be considered. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing six logistics technologies guided by a systems engineering cradle-to-grave approach to enable after-use crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. Reduction of mass has a corresponding and significant impact to logistical volume. The reduction of logistical volume can reduce the overall pressurized vehicle mass directly, or indirectly benefit the mission by allowing for an increase in habitable volume during the mission. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as mission durations increase. Early studies have shown that the use of advanced logistics technologies can save approximately 20 m(sup 3) of volume during transit alone for a six-person Mars conjunction class mission.
Design improvement of permanent magnet flux switching motor with dual rotor structure
NASA Astrophysics Data System (ADS)
Soomro, H. A.; Sulaiman, E.; Kumar, R.; Rahim, N. S.
2017-08-01
This paper presents design enhancement to reduce permanent magnet (PM) volume for 7S-6P-7S dual rotor permanent magnet flux-switching machines (DRPMFSM) for electric vehicle application. In recent years, Permanent magnet flux switching (PMFS) motor and a new member of brushless permanent magnet machine are prominently used for the electric vehicle. Though, more volume of Rare-Earth Permanent Magnet (REPM) is used to increase the cost and weight of these motors. Thus, to overcome the issue, new configuration of 7S-6P- 7S dual rotor permanent magnet flux-switching machine (DRPMFSM) has been proposed and investigated in this paper. Initially proposed 7S-6P-7S DRPMFSM has been optimized using “deterministic optimization” to reduce the volume of PM and to attain optimum performances. In addition, the performances of initial and optimized DRPMFSM have been compared such that back-emf, cogging torque, average torque, torque and power vs speed performances, losses and efficiency have been analysed by 2D-finite element analysis (FEA) using the JMAG- Designer software ver. 14.1. Consequently, the final design 7S-6P-7S DRPMFSM has achieved the efficiency of 83.91% at reduced PM volume than initial design to confirm the better efficient motor for HEVs applications.
NASA Technical Reports Server (NTRS)
Harmon, Timothy J.
1992-01-01
This document is the final report for the Space Transfer Propulsion Operational Efficiency Study Task of the Operationally Efficient Propulsion System Study (OEPSS) conducted by the Rocketdyne Division of Rockwell International. This Study task studied, evaluated and identified design concepts and technologies which minimized launch and in-space operations and optimized in-space vehicle propulsion system operability.
DOT National Transportation Integrated Search
1994-04-01
The Advantage I-75 project was established as an international public/private partnership to provide a testbed for deploying advanced IVHS technologies designed to increase transport efficiency, improve safety, and enhance mobility along the 2,200-mi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, T. Jr; Cunningham, A.R.; Iannelli, D.A.
Volume II is part of a four volume set documenting areas of research resulting from the development of the Automotive Manufacturing Assessment System (AMAS) for the DOT/Transportation Systems Center. AMAS was designed to assist in the evaluation of industry's capability to produce fuel efficient vehicles. Engine/driveline changes are the second most important contribution to fuel economy (weight reduction being the first) and are of major importance towards meeting emission standards. Through extensive synthesis of vehicle specifications and other data, chronological presentations were developed to illustrate engines and transmissions in production, engine/transmission and model/engine combinations, and automatic vs. manual transmission availability.more » Also shown are the progression of engine/driveline changes from 1975 through 1978; the correlation of these changes with new vehicle introductions; the restrictions on available drive-train options due to emission requirements; and technological improvements including dieselization, fuel metering, lock-up torque converters, and front-wheel-drive.« less
Impacts of signal system timings on rain related congestion.
DOT National Transportation Integrated Search
2010-06-01
It is known that inclement weather can affect traffic volumes, vehicle speeds, speed variance, saturation flow rates, and sometimes : discharge rates from traffic signals. These parameters in turn can have a significant impact on the efficiency of tr...
Mara, Leo M.
1999-01-01
Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.
Yan, Xiaoyu; Inderwildi, Oliver R; King, David A; Boies, Adam M
2013-06-04
Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or minimize the risks of adverse impacts of ethanol.
Sletten, David M; Kimpinski, Kurt; Weigand, Stephen D; Low, Phillip A
2009-10-05
This study describes a novel gel based vehicle for the delivery of acetylcholine (ACh) during quantitative sudomotor axon reflex testing (QSART). A dose and current response study were undertaken on 20 healthy control participants to characterize the efficiency of a gel based vehicle for the delivery of ACh. Values obtained for total sweat volume and latency to sweat onset with gel iontophoresis of ACh during QSART were comparable to previously published normative data using solution based vehicles. Patient discomfort, utilizing the gel based vehicle during the QSART procedure, was minimal. Improvement in iontophoresis using the gel formulation as a vehicle for ACh delivery has the potential to lower the voltage required to overcome skin resistance during QSART and may result in improved patient comfort during the procedure.
Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter
2010-01-01
Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.
Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter
2008-01-01
Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.
Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter
2008-01-01
Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero- Propulso-Servo-Elastic model and for propulsion efficiency studies.
Distribution Route Planning of Clean Coal Based on Nearest Insertion Method
NASA Astrophysics Data System (ADS)
Wang, Yunrui
2018-01-01
Clean coal technology has made some achievements for several ten years, but the research in its distribution field is very small, the distribution efficiency would directly affect the comprehensive development of clean coal technology, it is the key to improve the efficiency of distribution by planning distribution route rationally. The object of this paper was a clean coal distribution system which be built in a county. Through the surveying of the customer demand and distribution route, distribution vehicle in previous years, it was found that the vehicle deployment was only distributed by experiences, and the number of vehicles which used each day changed, this resulted a waste of transport process and an increase in energy consumption. Thus, the mathematical model was established here in order to aim at shortest path as objective function, and the distribution route was re-planned by using nearest-insertion method which been improved. The results showed that the transportation distance saved 37 km and the number of vehicles used had also been decreased from the past average of 5 to fixed 4 every day, as well the real loading of vehicles increased by 16.25% while the current distribution volume staying same. It realized the efficient distribution of clean coal, achieved the purpose of saving energy and reducing consumption.
NASA Astrophysics Data System (ADS)
Bulan, Orhan; Bernal, Edgar A.; Loce, Robert P.; Wu, Wencheng
2013-03-01
Video cameras are widely deployed along city streets, interstate highways, traffic lights, stop signs and toll booths by entities that perform traffic monitoring and law enforcement. The videos captured by these cameras are typically compressed and stored in large databases. Performing a rapid search for a specific vehicle within a large database of compressed videos is often required and can be a time-critical life or death situation. In this paper, we propose video compression and decompression algorithms that enable fast and efficient vehicle or, more generally, event searches in large video databases. The proposed algorithm selects reference frames (i.e., I-frames) based on a vehicle having been detected at a specified position within the scene being monitored while compressing a video sequence. A search for a specific vehicle in the compressed video stream is performed across the reference frames only, which does not require decompression of the full video sequence as in traditional search algorithms. Our experimental results on videos captured in a local road show that the proposed algorithm significantly reduces the search space (thus reducing time and computational resources) in vehicle search tasks within compressed video streams, particularly those captured in light traffic volume conditions.
NASA Technical Reports Server (NTRS)
Farhangi, Shahram; Trent, Donnie (Editor)
1992-01-01
A study was directed towards assessing viability and effectiveness of an air augmented ejector/rocket. Successful thrust augmentation could potentially reduce a multi-stage vehicle to a single stage-to-orbit vehicle (SSTO) and, thereby, eliminate the associated ground support facility infrastructure and ground processing required by the eliminated stage. The results of this preliminary study indicate that an air augmented ejector/rocket propulsion system is viable. However, uncertainties resulting from simplified approach and assumptions must be resolved by further investigations.
NASA Technical Reports Server (NTRS)
Waldrop, Glen S.
1990-01-01
Operations problems and cost drivers were identified for current propulsion systems and design and technology approaches were identified to increase the operational efficiency and to reduce operations costs for future propulsion systems. To provide readily usable data for the ALS program, the results of the OEPSS study were organized into a series of OEPSS Data Books. This volume presents a detailed description of 25 major problems encountered during launch processing of current expendable and reusable launch vehicles. A concise description of each problem and its operational impact on launch processing is presented, along with potential solutions and technology recommendation.
NASA Technical Reports Server (NTRS)
Piccolo, R.
1979-01-01
The design, development, efficiency, manufacturability, production costs, life cycle cost, and safety of sodium-sulfur, nickel-zinc, and lead-acid batteries for electric hybrid vehicles are discussed. Models are given for simulating the vehicle handling quality, and for finding the value of: (1) the various magnetic quantities in the different sections in which the magnetic circuit of the DC electric machine is divided; (2) flux distribution in the air gap and the magnetization curve under load conditions; and (3) the mechanical power curves versus motor speed at different values of armature current.
Controller Requirements for Uncoupled Aircraft Motion. Volume 2.
1984-09-01
allow efficient irplementation of the 6-DOF control capability. Thr effort was divided Into two phases. Phase I consisted of def~nInR exi.ting data on...implementation of the 6-DOF control capability. The effort was divided into two phases. Phase I consisted of defining existing data on the design of cockpit...Vehicles. The propose-] criteria are described in Volume I of this report. S The effort was divided into two phases. Phase I consisted of defining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ausherman, V.K.; Khadikar, A.V.; Syson, S.R.
1981-09-01
The objective of the RSV Program was to provide research and test data applicable to the automobile safety performance requirements for the mid-1980s, and to evaluate the compatibility of these requirements with environmental policies, efficient energy utilization, and consumer economic considerations.
Tosi, Francesca; Belli, Alessandro; Rinaldi, Alessandra; Tucci, Grazia
2012-01-01
The paper presents the early results of the UE-FP7 project "The Intermodal Bike". The research aim is to provide a super-compactable, super-lightweight folding bicycle as a realistic solution to graft the cycling mode onto the root of the public or private transportation systems. The folding bikes now on the international market reach weighs between 12-15 kg, with a variable footprint but occupying -when compacted- an average volume of about 100 liters. To encourage the use of this vehicle and to extend it to a larger number of users with different characteristics, the research project has set its goal in increasing as possible compactness and light weight, creating a bicycle with a volume when compacted of 20 liters (reduction factor =5), with a shape of 48 × 36 × 12 cm and a weight of 5 kg. max., ensuring stability and improving vehicle usability and efficiency, during the ride and in the phase of bike folding. To achieve this goal ergonomic and usability tests have been carried out. The tests allowed to find a posture that would ensure efficiency and comfort in the ride to as many users as possible. Parallel tests were made on the vehicle usability in the urban transport system and intermodal. The need for light weight has required special studies on the optimization of the vehicle's architecture and research on super-lightweight materials.
NASA Technical Reports Server (NTRS)
Waszak, M. R.; Schmidt, D. S.
1985-01-01
As aircraft become larger and lighter due to design requirements for increased payload and improved fuel efficiency, they will also become more flexible. For highly flexible vehicles, the handling qualities may not be accurately predicted by conventional methods. This study applies two analysis methods to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop model analysis technique. This method considers the effects of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Volume 1 consists of the development and application of the two analysis methods described above.
Paratransit Vehicle Test and Evaluation : Volume 5. Noise Tests.
DOT National Transportation Integrated Search
1978-06-01
A series of tests and evaluations of two prototype paratransit vehicles were conducted. This volume (Volume V) presents the test procedures and results of the noise tests conducted on the two paratransit vehicles and the baseline test vehicle. The te...
CARBON FIBER COMPOSITES IN HIGH VOLUME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Charles David; Das, Sujit; Jeon, Dr. Saeil
2014-01-01
Vehicle lightweighting represents one of several design approaches that automotive and heavy truck manufacturers are currently evaluating to improve fuel economy, lower emissions, and improve freight efficiency (tons-miles per gallon of fuel). With changes in fuel efficiency and environmental regulations in the area of transportation, the next decade will likely see considerable vehicle lightweighting throughout the ground transportation industry. Greater use of carbon fiber composites and light metals is a key component of that strategy. This paper examines the competition between candidate materials for lightweighting of heavy vehicles and passenger cars. A 53-component, 25 % mass reduction, body-in-white cost analysismore » is presented for each material class, highlighting the potential cost penalty for each kilogram of mass reduction and then comparing the various material options. Lastly, as the cost of carbon fiber is a major component of the elevated cost of carbon fiber composites, a brief look at the factors that influence that cost is presented.« less
Vehicle routing for the eco-efficient collection of household plastic waste.
Bing, Xiaoyun; de Keizer, Marlies; Bloemhof-Ruwaard, Jacqueline M; van der Vorst, Jack G A J
2014-04-01
Plastic waste is a special category of municipal solid waste. Plastic waste collection is featured with various alternatives of collection methods (curbside/drop-off) and separation methods (source-/post-separation). In the Netherlands, the collection routes of plastic waste are the same as those of other waste, although plastic is different than other waste in terms of volume to weight ratio. This paper aims for redesigning the collection routes and compares the collection options of plastic waste using eco-efficiency as performance indicator. Eco-efficiency concerns the trade-off between environmental impacts, social issues and costs. The collection problem is modeled as a vehicle routing problem. A tabu search heuristic is used to improve the routes. Collection alternatives are compared by a scenario study approach. Real distances between locations are calculated with MapPoint. The scenario study is conducted based on real case data of the Dutch municipality Wageningen. Scenarios are designed according to the collection alternatives with different assumptions in collection method, vehicle type, collection frequency and collection points, etc. Results show that the current collection routes can be improved in terms of eco-efficiency performance by using our method. The source-separation drop-off collection scenario has the best performance for plastic collection assuming householders take the waste to the drop-off points in a sustainable manner. The model also shows to be an efficient decision support tool to investigate the impacts of future changes such as alternative vehicle type and different response rates. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
McPherson, Kenard; And Others
Instructional modules for driver education programs were prepared to improve safe driving knowledge, attitudes, and performances of 16- to 18-year-old drivers. These modules were designed to provide supplementary instruction in five content areas critical to the safe and efficient operation of motor vehicles by young drivers--speed management,…
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1980-01-01
Engine control techniques were established and new technology requirements were identified. The designs of the components and engine were prepared in sufficient depth to calculate engine and component weights and envelopes, turbopump efficiencies and recirculation leakage rates, and engine performance. Engine design assumptions are presented along with the structural design criteria.
Modeling an impact of road geometric design on vehicle energy consumption
NASA Astrophysics Data System (ADS)
Luin, Blaž; Petelin, Stojan; Al-Mansour, Fouad
2017-11-01
Some roads connect traffic origins and destinations directly, some use winding, indirect routes. Indirect connections result in longer distances driven and increased fuel consumption. A similar effect is observed on congested roads and mountain roads with many changes in altitude. Therefore a framework to assess road networks based on energy consumption is proposed. It has been shown that road geometry has significant impact on overall traffic energy consumption and emissions. The methodology presented in the paper analyzes impact of traffic volume, shares of vehicle classes, road network configuration on the energy used by the vehicles. It can be used to optimize energy consumption with efficient traffic management and to choose optimum new road in the design phase. This is especially important as the energy consumed by the vehicles shortly after construction supersedes the energy spent for the road construction.
Development of a High Reliability Compact Air Independent PEMFC Power System
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Wynne, Bob
2013-01-01
Autonomous Underwater Vehicles (AUV's) have received increasing attention in recent years as military and commercial users look for means to maintain a mobile and persistent presence in the undersea world. Compact, neutrally buoyant power systems are needed for both small and large vehicles. Historically, batteries have been employed in these applications, but the energy density and therefore mission duration are limited with current battery technologies. Vehicles with stored energy requirements greater than approximately 10 kWh have an alternate means to get long duration power. High efficiency Proton Exchange Membrane (PEM) fuel cell systems utilizing pure hydrogen and oxygen reactants show the potential for an order of magnitude energy density improvement over batteries as long as the subsystems are compact. One key aspect to achieving a compact and energy dense system is the design of the fuel cell balance of plant (BOP). Recent fuel cell work, initially focused on NASA applications requiring high reliability, has developed systems that can meet target power and energy densities. Passive flow through systems using ejector driven reactant (EDR) circulation have been developed to provide high reactant flow and water management within the stack, with minimal parasitic losses compared to blowers. The ejectors and recirculation loops, along with valves and other BOP instrumentation, have been incorporated within the stack end plate. In addition, components for water management and reactant conditioning have been incorporated within the stack to further minimize the BOP. These BOP systems are thermally and functionally integrated into the stack hardware and fit into the small volumes required for AUV and future NASA applications to maximize the volume available for reactants. These integrated systems provide a compact solution for the fuel cell BOP and maximize the efficiency and reliability of the system. Designs have been developed for multiple applications ranging from less than 1 kWe to 70 kWe. These systems occupy a very small portion of the overall energy system, allowing most of the system volume to be used for reactants. The fuel cell systems have been optimized to use reactants efficiently with high stack efficiency and low parasitic losses. The resulting compact, highly efficient fuel cell system provides exceptional reactant utilization and energy density. Key design variables and supporting test data are presented. Future development activities are described.
Highway Safety Program Manual: Volume 2: Motor Vehicle Registration.
ERIC Educational Resources Information Center
National Highway Traffic Safety Administration (DOT), Washington, DC.
Volume 2 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) describes the purposes and specific objectives of motor vehicle registration. Federal authority for vehicle registration and general policies regarding vehicle registration systems are outlined.…
Shuttle Ground Operations Efficiencies/Technologies (SGOE/T) study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Scholz, A. L.; Hart, M. T.; Lowry, D. J.
1987-01-01
Methods and technolgoy were defined to reduce the overall operations cost of a major space program. Space Shuttle processing at Kennedy Space Center (KSC) was designed as the working model that would be the source of the operational information. Methods of improving efficiency of ground operations were assessed and technology elements that could reduce cost identified. Emphasis is on: (1) specific technology items and (2) management approaches required to develop and support efficient ground operations. Prime study results are to be recommendations on how to achieve more efficient operations and identification of existing or new technology that would make vehicle processing in both the current program and future programs more efficient and, therefore, less costly.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for a motor vehicle diesel fuel volume baseline for the purpose of extending their gasoline sulfur... a small or GPA refiner apply for a motor vehicle diesel fuel volume baseline for the purpose of... duration of the GPA standards under § 80.540 must apply for a motor vehicle diesel fuel volume baseline by...
Solar power satellite system definition study. Part 1 and part 2, volume 2: Technical summary
NASA Technical Reports Server (NTRS)
1977-01-01
Practical designs for power transmission were developed to meet requirements and constraints. Microwave link error was analyzed to confirm attainability of acceptable link efficiency. Silicon photovoltaic was determined to be the best overall choice for energy conversion, with a potassium Rankine cycle as the backup choice. Space transportation operations provide low cost because of traffic level, and the payload volume is the launch vehicle design driver. The power cost is 4 to 5 /kwh, which will be competitive with fossil fuel sources by the year 2000.
Storage of H.sub.2 by absorption and/or mixture within a fluid medium
Berry, Gene David; Aceves, Salvador Martin
2007-03-20
For the first time, a hydrogen storage method, apparatus and system having a fluid mixture is provided. At predetermined pressures and/or temperatures within a contained substantially fixed volume, the fluid mixture can store a high density of hydrogen molecules, wherein a predetermined phase of the fluid mixture is capable of being withdrawn from the substantially fixed volume for use as a vehicle fuel or energy storage having reduced and/or eliminated evaporative losses, especially where storage weight, vessel cost, vessel shape, safety, and energy efficiency are beneficial.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-06-01
This report documents the second phase of the Remote Operated Vehicle with CO{sub 2} Blasting (ROVCO{sub 2}) Program. The ROVCO{sub 2} Program`s goal is to develop and demonstrate a tool to improve the productivity of concrete floor decontamination. The second phase integrated non-developmental subsystems on to the ROVCO{sub 2} system and performed quantitative decontamination effectiveness, productivity, and reliability testings. The report documents these development activities and the analysis of cost and performance. The results show that the ROVCO{sub 2} system is an efficient decontamination tool.
NASA Technical Reports Server (NTRS)
McCurry, J.
1995-01-01
The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 1, provides a summary description of the technical activities that were performed over the entire contract duration, covering three distinct launch vehicle definition activities: heavy-lift (300,000 pounds injected mass to low Earth orbit) launch vehicles for the First Lunar Outpost (FLO), medium-lift (50,000-80,000 pounds injected mass to low Earth orbit) launch vehicles, and single-stage-to-orbit (SSTO) launch vehicles (25,000 pounds injected mass to a Space Station orbit).
Winged cargo return vehicle. Volume 1: Conceptual design
NASA Technical Reports Server (NTRS)
1990-01-01
The Advanced Design Project (ADP) allows an opportunity for students to work in conjunction with NASA and other aerospace companies on NASA Advanced Design Projects. The following volumes represent the design report: Volume 1 Conceptual Design; Volume 2 Wind Tunnel Tests; Volume 3 Structural Analysis; and Volume 4 Water Tunnel Tests. The project chosen by the University of Minnesota in conjunction with NASA Marshall Space Flight Center for this year is a Cargo Return Vehicle (CRV) to support the Space Station Freedom. The vehicle is the third generation of vehicles to be built by NASA, the first two being the Apollo program, and the Space Shuttle program. The CRV is to work in conjunction with a personnel launch system (PLS) to further subdivide and specialize the vehicles that NASA will operate in the year 2000. The cargo return vehicle will carry payload to and from the Space Station Freedom (SSF).
NASA Astrophysics Data System (ADS)
Kamal, M. A.; Youlla, D.
2018-03-01
Municipal solid waste (MSW) transportation in Pontianak City becomes an issue that need to be tackled by the relevant agencies. The MSW transportation service in Pontianak City currently requires very high resources especially in vehicle usage. Increasing the number of fleets has not been able to increase service levels while garbage volume is growing every year along with population growth. In this research, vehicle routing optimization approach was used to find optimal and efficient routes of vehicle cost in transporting garbage from several Temporary Garbage Dump (TGD) to Final Garbage Dump (FGD). One of the problems of MSW transportation is that there is a TGD which exceed the the vehicle capacity and must be visited more than once. The optimal computation results suggest that the municipal authorities only use 3 vehicles from 5 vehicles provided with the total minimum cost of IDR. 778,870. The computation time to search optimal route and minimal cost is very time consuming. This problem is influenced by the number of constraints and decision variables that have are integer value.
An SCR inverter with an integral battery charger for electric vehicles
NASA Technical Reports Server (NTRS)
Thimmeach, D.
1983-01-01
The feasibility of incorporating an onboard battery charger into the inverter previously developed under a NASA contract is successfully demonstrated. The rated output power of the resulting isolated battery charger is 3.6 kW at 220 Vac with an 86 percent efficiency and a 95 percent power factor. Also achieved are improved inverter efficiency (from 90 to 93 percent at 15 kW motor shaft power), inverter peak power capability (from 26 to 34 kW), and reduced weight and volume of the combined inverter/charger package (47 kg, 49 x 44 x 24 cm). Some major conclusions are that using the inverter commutation circuitry to perform the battery charging function is advantageous, and that the input-commutated thyristor inverter has the potential to be an excellent inverter and battery charger for use in electric vehicle applications.
Non-Microgravity Provocations to Crew - Food
NASA Technical Reports Server (NTRS)
Perchonok, Michele H.
2010-01-01
This slide presentation reviews the importance of food for long term space exploration missions. The Goals and objectives of the NASA food system is to develop a food system that is safe, nutritious, acceptable and efficiently balances appropriate vehicle resources: volume, mass, waste, water, power, cooling, air, and crew time. The importance of not only the nutrition, but the socialization of meals is also discussed.
Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.
2017-01-01
To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.
Lunar surface base propulsion system study, volume 1
NASA Technical Reports Server (NTRS)
1987-01-01
The efficiency, capability, and evolution of a lunar base will be largely dependent on the transportation system that supports it. Beyond Space Station in low Earth orbit (LEO), a Lunar-derived propellant supply could provide the most important resource for the transportation infrastructure. The key to an efficient Lunar base propulsion system is the degree of Lunar self-sufficiency (from Earth supply) and reasonable propulsion system performance. Lunar surface propellant production requirements must be accounted in the measurement of efficiency of the entire space transportation system. Of all chemical propellant/propulsion systems considered, hydrogen/oxygen (H/O) OTVs appear most desirable, while both H/O and aluminum/oxygen propulsion systems may be considered for the lander. Aluminized-hydrogen/oxygen and Silane/oxygen propulsion systems are also promising candidates. Lunar propellant availability and processing techniques, chemical propulsion/vehicle design characteristics, and the associated performance of the total transportation infrastructure are reviewed, conceptual propulsion system designs and vehicle/basing concepts, and technology requirements are assessed in context of a Lunar Base mission scenario.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob
This study provides a comprehensive lifecycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehiclesmore » (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob
This study provides a comprehensive life-cycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehiclesmore » (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.« less
Paratransit Vehicle Test and Evaluation : Volume 4. Fuel Economy Tests.
DOT National Transportation Integrated Search
1978-06-01
A series of tests and evaluations of two prototype vehicles for paratransit were conducted. This volume (Volume IV) presents the test procedures and results of the fuel economy tests. The test series determined the fuel economy of the vehicles as the...
Hermes, Wendy A; Alvarez, Jessica A; Lee, Moon J; Chesdachai, Supavit; Lodin, Daud; Horst, Ron; Tangpricha, Vin
2017-08-01
There is little consensus on the most efficacious vehicle substance for vitamin D supplements. Fat malabsorption may impede the ability of patients with cystic fibrosis (CF) to absorb vitamin D in an oil vehicle. We hypothesized that vitamin D contained in a powder vehicle would be absorbed more efficiently than vitamin D contained in an oil vehicle in patients with CF. In this double-blind, randomized controlled trial, hospitalized adults with CF were given a one-time bolus dose of 100,000 IU of cholecalciferol (D 3 ) in a powder-based or oil-based vehicle. Serum D 3 , 25-hydroxyvitamin D, and parathyroid hormone concentrations were analyzed at 0, 12, 24, and 48 hours posttreatment. The area under the curve for serum D 3 and the 12-hour time point were also assessed as indicators of D 3 absorption. This trial was completed by 15 patients with CF. The median (interquartile range) age, body mass index, and forced expiratory volume in 1 second were 23.7 (19.9-33.2) years, 19.9 (18.6-22.6) kg/m 2 , and 63% (37%-80%), respectively. The increase in serum D 3 and the area under the curve was greater in the powder group ( P = .002 and P = .036, respectively). Serum D 3 was higher at 12 hours in the powder group compared with the oil group ( P = .002), although levels were similar between groups by 48 hours. In adults with CF, cholecalciferol is more efficiently absorbed in a powder compared with an oil vehicle. Physicians should consider prescribing vitamin D in a powder vehicle in patients with CF to improve the absorption of vitamin D from supplements.
Heat transfer and thermal management of electric vehicle batteries with phase change materials
NASA Astrophysics Data System (ADS)
Ramandi, M. Y.; Dincer, I.; Naterer, G. F.
2011-07-01
This paper examines a passive thermal management system for electric vehicle batteries, consisting of encapsulated phase change material (PCM) which melts during a process to absorb the heat generated by a battery. A new configuration for the thermal management system, using double series PCM shells, is analyzed with finite volume simulations. A combination of computational fluid dynamics (CFD) and second law analysis is used to evaluate and compare the new system against the single PCM shells. Using a finite volume method, heat transfer in the battery pack is examined and the results are used to analyse the exergy losses. The simulations provide design guidelines for the thermal management system to minimize the size and cost of the system. The thermal conductivity and melting temperature are studied as two important parameters in the configuration of the shells. Heat transfer from the surroundings to the PCM shell in a non-insulated case is found to be infeasible. For a single PCM system, the exergy efficiency is below 50%. For the second case for other combinations, the exergy efficiencies ranged from 30-40%. The second shell content did not have significant influence on the exergy efficiencies. The double PCM shell system showed higher exergy efficiencies than the single PCM shell system (except a case for type PCM-1). With respect to the reference environment, it is found that in all cases the exergy efficiencies decreased, when the dead-state temperatures rises, and the destroyed exergy content increases gradually. For the double shell systems for all dead-state temperatures, the efficiencies were very similar. Except for a dead-state temperature of 302 K, with the other temperatures, the exergy efficiencies for different combinations are well over 50%. The range of exergy efficiencies vary widely between 15 and 85% for a single shell system, and between 30-80% for double shell systems.
Advanced vehicle systems assessment. Volume 4: Supporting analyses
NASA Technical Reports Server (NTRS)
Hardy, K.
1985-01-01
Volume 4 (Supporting Analyses) is part of a five-volume report, Advanced Vehicle Systems Assessment. Thirty-nine individuals, knowledgeable in advanced technology, were interviewed to obtain their preferences. Rankings were calculated for the eight groups they represented, using multiplicative and additive utility models. The four topics for consideration were: (1) preferred range for various battery technologies; (2) preferred battery technology for each of a variety of travel ranges; (3) most promising battery technology, vehicle range combination; and (4) comparison of the most preferred electric vehicle with the methanol-fuled, spark-ignition engine vehicle and with the most preferred of the hybrid vehicles.
Advanced vehicle systems assessment. Volume 2: Subsystems assessment
NASA Technical Reports Server (NTRS)
Hardy, K.
1985-01-01
Volume 2 (Subsystems Assessment) is part of a five-volume report entitled Advanced Vehicle Systems Assessment. Volume 2 presents the projected performance capabilities and cost characteristics of applicable subsystems, considering an additional decade of development. Subsystems of interest include energy storage and conversion devices as well as the necessary powertrain components and vehicle subsystems. Volume 2 also includes updated battery information based on the assessment of an independent battery review board (with the aid of subcontractor reports on advanced battery characteristics).
Evaluation of Intersection Traffic Control Measures through Simulation
NASA Astrophysics Data System (ADS)
Asaithambi, Gowri; Sivanandan, R.
2015-12-01
Modeling traffic flow is stochastic in nature due to randomness in variables such as vehicle arrivals and speeds. Due to this and due to complex vehicular interactions and their manoeuvres, it is extremely difficult to model the traffic flow through analytical methods. To study this type of complex traffic system and vehicle interactions, simulation is considered as an effective tool. Application of homogeneous traffic models to heterogeneous traffic may not be able to capture the complex manoeuvres and interactions in such flows. Hence, a microscopic simulation model for heterogeneous traffic is developed using object oriented concepts. This simulation model acts as a tool for evaluating various control measures at signalized intersections. The present study focuses on the evaluation of Right Turn Lane (RTL) and Channelised Left Turn Lane (CLTL). A sensitivity analysis was performed to evaluate RTL and CLTL by varying the approach volumes, turn proportions and turn lane lengths. RTL is found to be advantageous only up to certain approach volumes and right-turn proportions, beyond which it is counter-productive. CLTL is found to be advantageous for lower approach volumes for all turn proportions, signifying the benefits of CLTL. It is counter-productive for higher approach volume and lower turn proportions. This study pinpoints the break-even points for various scenarios. The developed simulation model can be used as an appropriate intersection lane control tool for enhancing the efficiency of flow at intersections. This model can also be employed for scenario analysis and can be valuable to field traffic engineers in implementing vehicle-type based and lane-based traffic control measures.
Train-to-train rear end impact tests - volume I - pre-impact determination of vehicle properties
DOT National Transportation Integrated Search
1999-03-31
This final report documents these nine tests. Volume I, Pre-Impact Determination of Vehicle Properties, summarizes the vehicle properties obtained prior to the impact tests. These vehicle properties were used in computer simulation of the impact test...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooker, A.; Gonder, J.; Lopp, S.
The Automotive Deployment Option Projection Tool (ADOPT) is a light-duty vehicle consumer choice and stock model supported by the U.S. Department of Energy’s Vehicle Technologies Office. It estimates technology improvement impacts on U.S. light-duty vehicles sales, petroleum use, and greenhouse gas emissions. ADOPT uses techniques from the multinomial logit method and the mixed logit method estimate sales. Specifically, it estimates sales based on the weighted value of key attributes including vehicle price, fuel cost, acceleration, range and usable volume. The average importance of several attributes changes nonlinearly across its range and changes with income. For several attributes, a distribution ofmore » importance around the average value is used to represent consumer heterogeneity. The majority of existing vehicle makes, models, and trims are included to fully represent the market. The Corporate Average Fuel Economy regulations are enforced. The sales feed into the ADOPT stock model. It captures key aspects for summing petroleum use and greenhouse gas emissions This includes capturing the change in vehicle miles traveled by vehicle age, the creation of new model options based on the success of existing vehicles, new vehicle option introduction rate limits, and survival rates by vehicle age. ADOPT has been extensively validated with historical sales data. It matches in key dimensions including sales by fuel economy, acceleration, price, vehicle size class, and powertrain across multiple years. A graphical user interface provides easy and efficient use. It manages the inputs, simulation, and results.« less
NASA Astrophysics Data System (ADS)
Bell, L.
2002-01-01
The Sasakawa International Center for Space Architecture (SICSA) has a long history of projects that involve design of space structures, including habitats for low-Earth orbit (LEO) and planetary applications. Most of these facilities and component systems are planned to comply with size, geometry and mass restrictions imposed by the Space Shuttle Orbiter's payload and lift/landing abort restrictions. These constraints limit launch elements to approximately 15 ft. diameter, 40 ft. long cylindrical dimensions weighing no more than approximately 25 metric tons. It is clear that future success of commercial space programs such as tourism will hinge upon the availability of bigger and more efficient Earth to LEO launch vehicles which can greatly reduce transportation and operational costs. This will enable development and utilization of larger habitat modules and other infrastructure elements which can be deployed with fewer launches and on-orbit assembly procedures. The sizing of these new heavy lift launchers should be scaled to optimize habitat functionality and efficiency, just as the habitat designs must consider optimization of launch vehicle economy. SICSA's planning studies address these vehicle and habitat optimization priorities as parallel and interdependent considerations. The allowable diameter of habitat modules established by launch vehicle capacity dictates functionally acceptable internal configuration options. Analyses of these options relative to practical dimensions for Earth-to-orbit launch vehicle scaling were conducted for two general schemes. The "bologna slice" configuration stacks the floors within a predominately cylindrical or spherical envelope, producing circular areas. The "banana split" approach divides a cylindrical module longitudinally, creating floors that are generally rectangular in shape. The assessments established minimum sizes for reasonable utility and efficiency. The bologna slice option. This configuration is only acceptable for modules with diameters of approximately 45 ft. or more. Smaller dimensions will severely limit maximum sight lines, creating claustrophobic conditions. Equipment racks and other elements typically located around internal parameters will further reduce open areas, and vertical circulation access ways between floor levels will diminish usable space even more. However this scheme can work very well for larger diameter habitats, particularly for surface applications where a relatively wide-based/low height module is to be landed vertically. The banana split option. A longitudinal floor orientation can serve very satisfactorily for modules with diameters of 15 ft. or more. Unlike the bologna slice's circular floors, the rectangular spaces offer considerable versatility to accommodate diverse equipment and functional arrangements. Modules smaller than 15 ft. in diameter (the International Space Station standard) will be incompatible with efficient equipment rack design and layouts due to tight-radius wall curvatures. Beyond the 15 ft. diameters, it is logical to scale the modules at dimensional increments based upon the number of desired floors, allowing approximately 8-9 ft. of height/level. Current SICSA Mars mission planning advocates development of new launchers with payload accommodations for 45 ft. diameter, 200 metric ton cargo elements. This large booster will offer launch economies along with habitat scaling advantages. Launch system design efficiencies are influenced by the amount of functional drag that results as the vehicle passes through the Earth's atmosphere. These drag losses are subject to a "cubed-squared law". As the launchcraft's external dimensions increase, its surface area increases with the square of the dimension, while the volume increases with the cube. Since drag is a function of surface, not volume, increasing the vehicle size will reduce proportional drag losses. For this reason, the huge Saturn V Moon rocket experienced relatively low drag. Module pressure envelope geometries also influence internal layout versatility and functionality. SICSA examined cylindrical and spherical envelope approaches for habitat module application, exploring special advantages and disadvantages each presented. The 45 ft. diameter sphere constrained functional volumes and layouts around the upper level perimeter. A modified scheme was selected which reshaped and expanded the height of that area. SICSA's final plan proposes 45 ft. diameter modules of modified spherical form.
Grid Generation Techniques Utilizing the Volume Grid Manipulator
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1998-01-01
This paper presents grid generation techniques available in the Volume Grid Manipulation (VGM) code. The VGM code is designed to manipulate existing line, surface and volume grids to improve the quality of the data. It embodies an easy to read rich language of commands that enables such alterations as topology changes, grid adaption and smoothing. Additionally, the VGM code can be used to construct simplified straight lines, splines, and conic sections which are common curves used in the generation and manipulation of points, lines, surfaces and volumes (i.e., grid data). These simple geometric curves are essential in the construction of domain discretizations for computational fluid dynamic simulations. By comparison to previously established methods of generating these curves interactively, the VGM code provides control of slope continuity and grid point-to-point stretchings as well as quick changes in the controlling parameters. The VGM code offers the capability to couple the generation of these geometries with an extensive manipulation methodology in a scripting language. The scripting language allows parametric studies of a vehicle geometry to be efficiently performed to evaluate favorable trends in the design process. As examples of the powerful capabilities of the VGM code, a wake flow field domain will be appended to an existing X33 Venturestar volume grid; negative volumes resulting from grid expansions to enable flow field capture on a simple geometry, will be corrected; and geometrical changes to a vehicle component of the X33 Venturestar will be shown.
2010-07-01
imagery, persistent sensor array I. Introduction New device fabrication technologies and heterogeneous embedded processors have led to the emergence of a...geometric occlusions between target and sensor , motion blur, urban scene complexity, and high data volumes. In practical terms the targets are small...distributed airborne narrow-field-of-view video sensor networks. Airborne camera arrays combined with com- putational photography techniques enable the
Measuring pedestrian volumes and conflicts. Volume 2, Accident prediction model
DOT National Transportation Integrated Search
1987-12-01
This final report presents the findings, conclusions, and recommendations of the study conducted to model pedestrian/vehicle accidents. A group-type analysis approach for the prediction of pedestrian/vehicle accidents using pedestrian/vehicle conflic...
40 CFR 86.1829-01 - Durability and emission testing requirements; waivers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... under the provisions of § 86.1828-10(c) and (g). (4) Electric vehicles and fuel cell vehicles. For electric vehicles and fuel cell vehicles, manufacturers may provide a statement in the application for..., including, but not limited to, canister type, canister volume, canister working capacity, fuel tank volume...
Low-cost conformable storage to maximize vehicle range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, R.P.
Liquefied petroleum gas (LPG) and compressed natural gas (CNG) are currently the leading fuel contenders for converting vehicles from gasoline and diesel to alternative fuels. Two factors that inhibit conversion are additional vehicle costs and reduced range compared to gasoline. In overcoming these barriers, a key element of the alternative fuel system becomes the storage tank for these pressurized fuels. Using cylindrical pressure vessels is the conventional approach, but they do not package well in the available vehicle volume. Thiokol Corporation has developed and is now producing a conformable (non-cylindrical) aluminum storage system for LPG vans. This system increases fuelmore » storage in a given rectangular envelope. The goal of this project was to develop the technology for a lower cost conformable tank made of injection-molded plastic. Much of the cost of the aluminum conformable tank is in the fabrication because several weld seams are required. The injection-molding process has the potential to greatly reduce the fabrication costs. The requirements of a pressurized fuel tank on a vehicle necessitate the proper combination of material properties. Material selection and tank design must be optimized for maximum internal volume and minimum material use to be competitive with other technologies. The material and the design must also facilitate the injection-molding process. Prototype tanks must be fabricated to reveal molding problems, prove solutions, and measure results. In production, efficient fabrication will be key to making these tanks cost competitive. The work accomplished during this project has demonstrated that conformable LPG tanks can be molded with thermoplastics. However, to achieve a competitive tank, improvements are needed in the effective material strength. If these improvements can be made, molded plastics should produce a lower cost tank that can store more LPG on a vehicle than conventional cylinders.« less
Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 4: Transportation analysis
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1979-01-01
Volume 4 of a seven volume Satellite Power Systems (SPS) is presented. This volume is divided into the following sections: (1) transportation systems elements; (2) transportation systems requirements; (3) heavy lift launch vehicles (HLLV); (4) LEO-GEO transportation; (5) on-orbit mobility systems; (6) personnel transfer systems; and (7) cost and programmatics. Three appendixes are also provided and they include: horizontal takeoff (single stage to orbit technical summary); HLLV reference vehicle trajectory and trade study data; and electric orbital transfer vehicle sizing.
Advanced vehicle systems assessment. Volume 3: Systems assessment
NASA Technical Reports Server (NTRS)
Hardy, K.
1985-01-01
The systems analyses integrate the advanced component and vehicle characteristics into conceptual vehicles with identical performance (for a given application) and evaluates the vehicles in typical use patterns. Initial and life-cycle costs are estimated and compared to conventional reference vehicles with comparable technological advances, assuming the vehicles will be in competition in the early 1990s. Electric vans, commuter vehicles, and full-size vehicles, in addition to electric/heat-engine hybrid and fuel-cell powered vehicles, are addressed in terms of performance and economics. System and subsystem recommendations for vans and two-passenger commuter vehicles are based on the economic analyses in this volume.
Assured crew return vehicle man-systems integration standards
NASA Technical Reports Server (NTRS)
1991-01-01
This is Volume 6 of the Man-Systems Integration Standards (MSIS) family of documents, which is contained in several volumes and a relational database. Each volume has a specific purpose, and each has been assembled from the data contained in the relational database. Volume 6 serves as the Assured Crew Return Vehicle project man-systems integration design requirements. The data in this document is a subset of the data found in Volume 1 and defines the requirements which are pertinent to the Assured Crew Return Vehicle as defined in the SPRD. Additional data and guidelines are provided to assist in the design.
Train-to-train rear end impact tests - volume II - impact test summaries
DOT National Transportation Integrated Search
1977-03-31
This final report documents these nine tests. Volume I, Pre-Impact Determination of Vehicle Properties, summarizes the vehicle properties obtained prior to the impact tests. These vehicle properties were used in computer simulation of the impact test...
NASA Technical Reports Server (NTRS)
McCurry, J. B.
1995-01-01
The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. The basic period of performance of the TA-2 contract was from May 1992 through May 1993. No-cost extensions were exercised on the contract from June 1993 through July 1995. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 3, provides a work breakdown structure dictionary, user's guide for the parametric life cycle cost estimation tool, and final report developed by ECON, Inc., under subcontract to Lockheed Martin on TA-2 for the analysis of heavy lift launch vehicle concepts.
Space transfer vehicle concepts and requirements study. Volume 2, book 3: STV system interfaces
NASA Technical Reports Server (NTRS)
Weber, Gary A.
1991-01-01
This report presents the results of systems analyses and conceptual design of space transfer vehicles (STV). The missions examined included piloted and unpiloted lunar outpost support and spacecraft servicing, and unpiloted payload delivery to various earth and solar orbits. The study goal was to examine the mission requirements and provide a decision data base for future programmatic development plans. The final lunar transfer vehicles provided a wide range of capabilities and interface requirements while maintaining a constant payload mission model. Launch vehicle and space station sensitivity was examined, with the final vehicles as point design covering the range of possible options. Development programs were defined and technology readiness levels for different options were determined. Volume 1 presents the executive summary, volume 2 provides the study results, and volume 3 the cost and WBS data.
Ground Vehicle System Integration (GVSI) and Design Optimization Model.
1996-07-30
number of stowed kills Same basic load lasts longer range Gun/ammo parameters impact system weight, under - armor volume requirements Round volume...internal volume is reduced, the model assumes that the crew’s ability to operate while under armor will be impaired. If the size of a vehicle crew is...changing swept volume will alter under armor volume requirements for the total system; if system volume is fixed, changing swept volume will
Paratransit Vehicle Test and Evaluation : Volume 3. Handling Tests.
DOT National Transportation Integrated Search
1978-06-01
A series of tests and evaluations of two prototype vehicles for paratransit were conducted. This volume (Volume III) presents the test procedures and results of the handling test series. The test determined the steering and handling characteristics o...
NASA Astrophysics Data System (ADS)
Klaiber, Thomas
The paper discusses the technical requirements and the customer demands for vehicles that have an on-board methanol reformer and fuel cells. The research concentrates on the technical developmental risks which include minimizing volume, reducing weight and, at the same time, improving efficiency and system dynamics. Fuel cell powered vehicles with methanol reformers are not only suitable for a niche market but also these vehicles will compete with conventional vehicles. The greatest hindrance will be the price of the fuel cell. A possible progressive development of the number of fuel cell powered vehicles in conjunction with a reduction in costs will be discussed in the paper. When fuel cell vehicles come to the market it is necessary that an infrastructure for the fuel methanol or hydrogen is installed. Therefore, it will only be possible to introduce fuel cell vehicles into special markets, e.g. California. Such a process will need to be subsidized by additional incentives like tax concessions. Today there are many technical risks and unsolved problems relating to production technologies, infrastructure, and costs. Nevertheless, among the alternative power units, the fuel cell seems to be the only one that might be competitive to the conventional power unit, especially relating to emissions.
Paratransit Vehicle Test and Evaluation : Volume 2. Acceleration and Interior Measurement Tests.
DOT National Transportation Integrated Search
1978-06-01
A series of tests and evaluations of two prototype vehicles for paratransit were conducted. This volume (Volume II) presents the test procedure and results of the acceleration and interior measurement test series. The tests determined the acceleratio...
NASA Astrophysics Data System (ADS)
Vacanas, Yiannis; Themistocleous, Kyriacos; Agapiou, Athos; Hadjimitsis, Diofantos
2016-08-01
Building Information Modelling (BIM) technology is already part of the construction industry and is considered by professionals as a very useful tool for all phases of a construction project. BIM technology, with the particularly useful 3D illustrations which it provides, can be used to illustrate and monitor the progress of works effectively through the entire lifetime of the project. Unmanned Aerial Vehicles (UAVs) have undergone significant advances in equipment capabilities and now have the capacity to acquire high resolution imagery from different angles in a cost effective and efficient manner. By using photogrammetry, characteristics such as distances, areas, volumes, elevations, object sizes, and object shape can be determined within overlapping areas. This paper explores the combined use of BIM and UAV technologies in order to achieve efficient and accurate as-built data collection and 3D illustrations of the works progress during an infrastructure construction project.
Comparison between Hydrogen, Methane and Ethylene Fuels in a 3-D Scramjet at Mach 8
2016-06-24
characteristics in air. The disadvantage of hydrogen is its low density, which is a particular problem for small vehicles with significant internal...characteristics in air. The disadvantage of hydrogen is its low density, which is a particular problem for small vehicles with significant internal volume...The low energy per unit volume of gaseous hydrogen, however, is a significant problem for small vehicles with internal volume constraints, in addition
Definition of avionics concepts for a heavy lift cargo vehicle, volume 2
NASA Technical Reports Server (NTRS)
1989-01-01
A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is defined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility although the lab is not limited in use to support of HLCVs. Volume 2 is the technical volume and provides the results of the vehicle avionics trade studies, the avionics lab objectives, the lab's functional requirements and design, physical facility considerations, and a summary cost estimate.
NASA Technical Reports Server (NTRS)
DeYoung, Russell J.; Goldschmidt, Soenke
1999-01-01
Measurements of global atmosphere ozone concentrations call for flexible lidar systems that can be operated from an unpiloted atmospheric vehicle (UAV) to reduce the cost of measurement missions. A lidar receiver system consisting of a fiber-optic-coupled telescope has been designed and tested for this purpose. The system weight is 13 kg and its volume of 0.06 m 3 would fit into the payload compartment of a Perseus B UAV. The optical efficiency of the telescope is 37 percent at 288 nm and 64 percent at 300 nm. Atmospheric measurements with a DIAL laser system have been performed, and the measured ozone density has matched the data from ozonesondes to an altitude of 7 km.
1984-08-01
is to " Nowo _ - . . .. ..... . , , . , . i’*.t’ "’" 36 determine the motion resistance, drawbar pull, torque, efficiency, and side force for a...Elastic-plastic soil deformation and normal load for hard soil 20 4 6-0 0Sikan I i I I I" 347 Literature (1) Wong, J.Y.:"An improved method for predicting
DOT National Transportation Integrated Search
1977-03-01
This final report documents these tests. Volume I, Pre-Impact Determination of Vehicle Properties, summarizes the vehicle properities obtained prior to the impact tests. These vehicle properties were used in computer simulation of the impact tests an...
40 CFR 86.094-14 - Small-volume manufacturers certification procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light...-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.094-14 Small-volume...
DOT National Transportation Integrated Search
2015-08-01
This document is the third of a seven volume report that describe the Performance Requirements for the connected vehicle vehicle-to-infrastructure (V2I) safety applications developed for the U.S. Department of Transportation (U.S. DOT). This volume d...
DOT National Transportation Integrated Search
2015-08-01
This document is the seventh of a seven volume report that describe the Performance Requirements for the connected vehicle vehicle-to-infrastructure (V2I) safety applications developed for the U.S. Department of Transportation (U.S. DOT). This volume...
DOT National Transportation Integrated Search
2015-08-01
This document is the second of a seven volume report that describe the Performance Requirements for the connected vehicle vehicle-to-infrastructure (V2I) safety applications developed for the U.S. Department of Transportation (U.S. DOT). This volume ...
41 CFR 102-34.40 - Who must comply with motor vehicle fuel efficiency requirements?
Code of Federal Regulations, 2011 CFR
2011-01-01
... motor vehicle fuel efficiency requirements? 102-34.40 Section 102-34.40 Public Contracts and Property... with motor vehicle fuel efficiency requirements? (a) Executive agencies operating domestic fleets must comply with motor vehicle fuel efficiency requirements for such fleets. (b) This subpart does not apply...
DOT National Transportation Integrated Search
1975-12-01
Frequency domain computer programs developed or acquired by TSC for the analysis of rail vehicle dynamics are described in two volumes. Volume 2 contains program listings including subroutines for the four TSC frequency domain programs described in V...
DOT National Transportation Integrated Search
1975-12-01
Frequency domain computer programs developed or acquired by TSC for the analysis of rail vehicle dynamics are described in two volumes. Volume I defines the general analytical capabilities required for computer programs applicable to single rail vehi...
Inflatable habitation for the lunar base
NASA Technical Reports Server (NTRS)
Roberts, M.
1992-01-01
Inflatable structures have a number of advantages over rigid modules in providing habitation at a lunar base. Some of these advantages are packaging efficiency, convenience of expansion, flexibility, and psychological benefit to the inhabitants. The relatively small, rigid cylinders fitted to the payload compartment of a launch vehicle are not as efficient volumetrically as a collapsible structure that fits into the same space when packaged, but when deployed is much larger. Pressurized volume is a valuable resource. By providing that resource efficiently, in large units, labor intensive external expansion (such as adding additional modules to the existing base) can be minimized. The expansive interior in an inflatable would facilitate rearrangement of the interior to suite the evolving needs of the base. This large, continuous volume would also relieve claustrophobia, enhancing habitability and improving morale. The purpose of this paper is to explore some of the aspects of inflatable habitat design, including structural, architectural, and environmental considerations. As a specific case, the conceptual design of an inflatable lunar habitat, developed for the Lunar Base Systems Study at the Johnson Space Center, is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitaker, B; Barkley, A; Cole, Z
2014-05-01
This paper presents an isolated on-board vehicular battery charger that utilizes silicon carbide (SiC) power devices to achieve high density and high efficiency for application in electric vehicles (EVs) and plug-in hybrid EVs (PHEVs). The proposed level 2 charger has a two-stage architecture where the first stage is a bridgeless boost ac-dc converter and the second stage is a phase-shifted full-bridge isolated dc-dc converter. The operation of both topologies is presented and the specific advantages gained through the use of SiC power devices are discussed. The design of power stage components, the packaging of the multichip power module, and themore » system-level packaging is presented with a primary focus on system density and a secondary focus on system efficiency. In this work, a hardware prototype is developed and a peak system efficiency of 95% is measured while operating both power stages with a switching frequency of 200 kHz. A maximum output power of 6.1 kW results in a volumetric power density of 5.0 kW/L and a gravimetric power density of 3.8 kW/kg when considering the volume and mass of the system including a case.« less
Chapter 11. Fuel Economy: The Case for Market Failure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, David L; German, John; Delucchi, Mark A
2009-01-01
The efficiency of energy using durable goods, from automobiles to home air conditioners, is not only a key determinant of economy-wide energy use but also of greenhouse gas (GHG) emissions, climate change and energy insecurity. Energy analysts have long noted that consumers appear to have high implicit discount rates for future fuel savings when choosing among energy using durable goods (Howarth and Sanstad, 1995). In modeling consumers choices of appliances, the Energy Information Administration (EIA) has used discount rates of 30 percent for heating systems, 69 percent for choice of refrigerator and up to 111 percent for choice of watermore » heater (U.S. DOE/EIA, 1996). Several explanations have been offered for this widespread phenomenon, including asymmetric information, bounded rationality and transaction costs. This chapter argues that uncertainty combined with loss aversion by consumers is sufficient to explain the failure to adopt cost effective energy efficiency improvements in the market for automotive fuel economy, although other market failures appear to be present as well. Understanding how markets for energy efficiency function is crucial to formulating effective energy policies (see Pizer, 2006). Fischer et al., (2004), for example, demonstrated that if consumers fully value the discounted present value of future fuel savings, fuel economy standards are largely redundant and produce small welfare losses. However, if consumers value only the first three years of fuel savings, then fuel economy standards can significantly increase consumer welfare. The nature of any market failure that might be present in the market for energy efficiency would also affect the relative efficacy of energy taxes versus regulatory standards (CBO, 2003). If markets function efficiently, energy taxes would generally be more efficient than regulatory standards in increasing energy efficiency and reducing energy use. If markets are decidedly inefficient, standards would likely be more effective. The chapter explores the roles of uncertainty and loss-aversion in the market for automotive fuel economy. The focus is on the determination of the technical efficiency of the vehicle rather than consumers choices among vehicles. Over the past three decades, changes in the mix of vehicles sold has played little if any role in raising the average fuel economy of new light-duty vehicles from 13 miles per gallon (mpg) in 1975 to 21 mpg today (Heavenrich, 2006). Over that same time period, average vehicle weight is up 2 percent, horsepower is up 60 percent, passenger car interior volume increased by 2 percent and the market share of light trucks grew by 31 percentage points. Historically, at least, increasing light-duty vehicle fuel economy in the United States has been a matter of manufacturers decisions to apply technology to increase the technical efficiency of cars and light trucks. Understanding how efficiently the market determines the technical fuel economy of new vehicles would seem to be critical to formulating effective policies to encourage future fuel economy improvement. The central issue is whether or not the market for fuel economy is economically efficient. Rubenstein (1998) lists the key assumptions of the rational economic decision model. The decision maker must have a clear picture of the choice problem he or she faces. He should be fully aware of the set of alternatives from which to choose and have the skill necessary to make complicated calculations needed to discover the optimal course of action. Finally, the decision maker should have the unlimited ability to calculate and be indifferent to alternatives and choice sets.« less
2004 NASA Seal/Secondary Air System Workshop, Volume 1
NASA Technical Reports Server (NTRS)
2005-01-01
The 2004 NASA Seal/Secondary Air System workshop covered the following topics: (1) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (2) Overview of the NASA-sponsored Ultra-Efficient Engine Technology (UEET) program; (3) Overview of NASA Glenn s seal program aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (4) Reviews of NASA prime contractor and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (5) Reviews of material development programs relevant to advanced seals development. The NASA UEET overview illustrated for the reader the importance of advanced technologies, including seals, in meeting future turbine engine system efficiency and emission goals. For example, the NASA UEET program goals include an 8- to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle, as part of NASA s new Exploration Initiative. Plans to develop the necessary mechanism and androgynous seal technologies were reviewed. Seal challenges posed by reusable re-entry space vehicles include high-temperature operation, resiliency at temperature to accommodate gap changes during operation, and durability to meet mission requirements.
40 CFR 86.1838-01 - Small-volume manufacturer certification procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1838-01 Small-volume manufacturer...
DOT National Transportation Integrated Search
2015-08-01
This document is the fifth of a seven volume report that describe the Performance Requirements for the connected vehicle vehicle-to-infrastructure (V2I) safety applications developed for the U.S. Department of Transportation (U.S. DOT). This volume d...
DOT National Transportation Integrated Search
2015-08-01
This document is the sixth of a seven volume report that describe the Performance Requirements for the connected vehicle vehicle-to-infrastructure (V2I) safety applications developed for the U.S. Department of Transportation (U.S. DOT). This volume d...
DOT National Transportation Integrated Search
2015-08-01
This document is the fourth of a seven volume report that describe the Performance Requirements for the connected vehicle vehicle-to-infrastructure (V2I) safety applications developed for the U.S. Department of Transportation (U.S. DOT). This volume ...
This research outlines a proposed Heavy-Duty Diesel Vehicle Modal Emission Modeling Framework (HDDV-MEMF) for heavy-duty diesel-powered trucks and buses. The heavy-duty vehicle modal modules being developed under this research effort, although different, should be compatible wi...
Explosives screening on a vehicle surface
Parmeter, John E.; Brusseau, Charles A.; Davis, Jerry D.; Linker, Kevin L.; Hannum, David W.
2005-02-01
A system for detecting particles on the outer surface of a vehicle has a housing capable of being placed in a test position adjacent to, but not in contact with, a portion of the outer surface of the vehicle. An elongate sealing member is fastened to the housing along a perimeter surrounding the wall, and the elongate sealing member has a contact surface facing away from the wall to contact the outer surface of the vehicle to define a test volume when the wall is in the test position. A gas flow system has at least one gas inlet extending through the wall for providing a gas stream against the surface of the vehicle within the test volume. This gas stream, which preferably is air, dislodges particles from the surface of the vehicle covered by the housing. The gas stream exits the test volume through a gas outlet and particles in the stream are detected.
NASA Technical Reports Server (NTRS)
Woolford, Barbara J.; Mount, Frances
2005-01-01
After forty years of experience with human space flight (Table 1), the current emphasis is on the design of space vehicles, habitats, and missions to ensure mission success. What lessons have we learned that will affect the design of spacecraft for future space exploration, leading up to exploring Mars? This chapter addresses this issue in four sections: Anthropometry and Biomechanics; Environmental Factors; Habitability and Architecture; and Crew Personal Sustenance. This introductory section introduces factors unique to space flight. A unique consideration for design of a habitable volume in a space vehicle is the lack of gravity during a space flight, referred to as microgravity. This affects all aspects of life, and drives special features in the habitat, equipment, tools, and procedures. The difference in gravity during a space mission requires designing for posture and motion differences. In Earth s gravity, or even with partial gravity, orientation is not a variable because the direction in which gravity acts defines up and down. In a microgravity environment the working position is arbitrary; there is no gravity cue. Orientation is defined primarily through visual cues. The orientation within a particular crew station or work area is referred to as local vertical, and should be consistent within a module to increase crew productivity. Equipment was intentionally arranged in various orientations in one module on Skylab to assess the efficiency in use of space versus the effects of inconsistent layout. The effects of that arrangement were confusion on entering the module, time spent in re-orientation, and conflicts in crew space requirements when multiple crew members were in the module. Design of a space vehicle is constrained by the three major mission drivers: mass, volume and power. Each of these factors drives the cost of a mission. Mass and volume determine the size of the launch vehicle directly; they can limit consumables such as air, water, and propellant; and they impact crew size and the types of activities the crew performs. Power is a limiting factor for a space vehicle. All environmental features (e.g., atmosphere, temperature, lighting) require power to maintain them. Power can be generated from batteries, from fuel cells, or from solar panels. Each of these sources requires lifting mass and volume from Earth, driving mission cost. All engineering decisions directly impact the design for habitation design and usage. For instance, if fuel cells are used they produce water, which is used for drinking and food preparation. If a different power source is used water has to be carried and stored on the vehicle which then directly impacts the food system choice as well as the launch weight of the vehicle.
Parametric Study of Biconic Re-Entry Vehicles
NASA Technical Reports Server (NTRS)
Steele, Bryan; Banks, Daniel W.; Whitmore, Stephen A.
2007-01-01
An optimization based on hypersonic aerodynamic performance and volumetric efficiency was accomplished for a range of biconic configurations. Both axisymmetric and quasi-axisymmetric geometries (bent and flattened) were analyzed. The aerodynamic optimization wag based on hypersonic simple Incidence angle analysis tools. The range of configurations included those suitable for r lunar return trajectory with a lifting aerocapture at Earth and an overall volume that could support a nominal crew. The results yielded five configurations that had acceptable aerodynamic performance and met overall geometry and size limitations
Status and Trend of Automotive Power Packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Zhenxian
2012-01-01
Comprehensive requirements in aspects of cost, reliability, efficiency, form factor, weight, and volume for power electronics modules in modern electric drive vehicles have driven the development of automotive power packaging technology intensively. Innovation in materials, interconnections, and processing techniques is leading to enormous improvements in power modules. In this paper, the technical development of and trends in power module packaging are evaluated by examining technical details with examples of industrial products. The issues and development directions for future automotive power module packaging are also discussed.
Lightsats and their attraction to budget oriented Federal agencies
NASA Technical Reports Server (NTRS)
Bonsall, Charles A.
1988-01-01
The term Lightsats refers to low volume, low mass, low Earth orbit, satellites suitable for launch from Get Away Special canisters, or as secondary payloads on expendable launch vehicles. New or existing technology that offers potential to improve the safety, capacity and efficiency of the National Airspace System is discussed. The discussion is presented from the point of view of an individual within a government agency who wants to see a new technology to enhance the mission of that agency.
40 CFR 80.596 - How is a refinery motor vehicle diesel fuel volume baseline calculated?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How is a refinery motor vehicle diesel... Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and Reporting Requirements § 80.596 How is a refinery motor vehicle diesel fuel volume baseline calculated? (a) For purposes...
40 CFR 80.596 - How is a refinery motor vehicle diesel fuel volume baseline calculated?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How is a refinery motor vehicle diesel... Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and Reporting Requirements § 80.596 How is a refinery motor vehicle diesel fuel volume baseline calculated? (a) For purposes...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M.
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors, and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making HEVs practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies.« less
Practical application of power conditioning to electric propulsion for passenger vehicles
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Lee, F. C.; Nehl, T. W.; Overton, B. P.
1980-01-01
A functional model 15 HP, 120 volt, 4-pole, 7600 r.p.m. samarium-cobalt permanent magnet type brushless dc motor-transistorized power conditioner unit was designed, fabricated and tested for specific use in propulsion of electric passenger vehicles. This new brushless motor system, including its power conditioner package, has a number of important advantages over existing systems such as reduced weight and volume, higher reliability, and potential for improvements in efficiencies. These advantages are discussed in this paper in light of the substantial test data collected during experimentation with the newly developed conditioner motor propulsion system. Details of the power conditioner design philosophy and particulars are given in the paper. Also, described here are the low level electronic design and operation in relation to the remainder of the system.
Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 4: OEPSS design concepts
NASA Technical Reports Server (NTRS)
Wong, George S.; Ziese, James M.; Farhangi, Shahram
1990-01-01
This study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the OEPSS study have been organized into a series of OEPSS Data Books. This volume describes three propulsion concepts that will simplify the propulsion system design and significantly reduce operational requirements. The concepts include: (1) a fully integrated, booster propulsion module concept for the ALS that avoids the complex system created by using autonomous engines with numerous artificial interfaces; (2) an LOX tank aft concept which avoids potentially dangerous geysering in long LOX propellant lines; and (3) an air augmented, rocket engine nozzle afterburning propulsion concept that will significantly reduce LOX propellant requirements, reduce vehicle size and simplify ground operations and ground support equipment and facilities.
Evaluating the Operational Features of an Unconventional Dual-Bay U-Turn Design for Intersections
Xiang, Yun; Li, Zhibin; Wang, Wei; Chen, Jingxu; Wang, Hao; Li, Ye
2016-01-01
Median U-turn intersection treatment (MUTIT) has been considered an alternative measure to reduce congestion and traffic conflict at intersection areas. The MUTIT is sometimes difficult to implement in the field because it requires wide median on arterials for U-turn vehicles. The objective of this study is to introduce an unconventional U-turn treatment (UUT) for intersections which requires less median space but is also effective. The UUT has a dual-bay design with different turning radiuses for small and large vehicles. The VISSIM simulation model was developed to evaluate the operational features of the UUT. The model was calibrated using data collected from intersections in China. The capacity, delay and number of stops were evaluated and compared with the direct-left-turn (DLT) for the same intersections. The results showed that the UUT significantly improved the operations at intersection areas, especially when volume/capacity ratio is small, and ratio of left-turn to through traffic is small. With the UUT, the capacity is increased by 9.81% to 10.38%, vehicle delay is decreased by 18.5% to 40.1%, and number of stops is decreased by 23.19% to 36.62%, when volume/capacity ratio is less than 0.50. The study also found that traffic efficiency could be further improved when the UUT is designed in conjunction with signal control. In the case, the UUT plus signalized control increases the capacity by 25% to 26.02%, decreases vehicle delay by 50.5% to 55.8%, and reduces number of stops by 69.5%, compared with the traditional DLT. PMID:27467127
Evaluating the Operational Features of an Unconventional Dual-Bay U-Turn Design for Intersections.
Xiang, Yun; Li, Zhibin; Wang, Wei; Chen, Jingxu; Wang, Hao; Li, Ye
2016-01-01
Median U-turn intersection treatment (MUTIT) has been considered an alternative measure to reduce congestion and traffic conflict at intersection areas. The MUTIT is sometimes difficult to implement in the field because it requires wide median on arterials for U-turn vehicles. The objective of this study is to introduce an unconventional U-turn treatment (UUT) for intersections which requires less median space but is also effective. The UUT has a dual-bay design with different turning radiuses for small and large vehicles. The VISSIM simulation model was developed to evaluate the operational features of the UUT. The model was calibrated using data collected from intersections in China. The capacity, delay and number of stops were evaluated and compared with the direct-left-turn (DLT) for the same intersections. The results showed that the UUT significantly improved the operations at intersection areas, especially when volume/capacity ratio is small, and ratio of left-turn to through traffic is small. With the UUT, the capacity is increased by 9.81% to 10.38%, vehicle delay is decreased by 18.5% to 40.1%, and number of stops is decreased by 23.19% to 36.62%, when volume/capacity ratio is less than 0.50. The study also found that traffic efficiency could be further improved when the UUT is designed in conjunction with signal control. In the case, the UUT plus signalized control increases the capacity by 25% to 26.02%, decreases vehicle delay by 50.5% to 55.8%, and reduces number of stops by 69.5%, compared with the traditional DLT.
2016-05-01
UNCLASSIFIED LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL... HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL REPORT TFLRF No. 477 by Adam C...August 2014 – March 2016 4. TITLE AND SUBTITLE LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FEUL EFFICIENT GEAR OILS
Space transfer vehicle concepts and requirements. Volume 3: Program cost estimates
NASA Technical Reports Server (NTRS)
1991-01-01
The Space Transfer Vehicle (STV) Concepts and Requirements Study has been an eighteen-month study effort to develop and analyze concepts for a family of vehicles to evolve from an initial STV system into a Lunar Transportation System (LTS) for use with the Heavy Lift Launch Vehicle (HLLV). The study defined vehicle configurations, facility concepts, and ground and flight operations concepts. This volume reports the program cost estimates results for this portion of the study. The STV Reference Concept described within this document provides a complete LTS system that performs both cargo and piloted Lunar missions.
Conformal Cryogenic Tank Trade Study for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin
1999-01-01
Future reusable launch vehicles may be lifting bodies with non-circular cross section like the proposed Lockheed-Martin VentureStar(tm). Current designs for the cryogenic tanks of these vehicles are dual-lobed and quad-lobed tanks which are packaged more efficiently than circular tanks, but still have low packaging efficiencies with large gaps existing between the vehicle outer mold line and the outer surfaces of the tanks. In this study, tanks that conform to the outer mold line of a non-circular vehicle were investigated. Four structural concepts for conformal cryogenic tanks and a quad-lobed tank concept were optimized for minimum weight designs. The conformal tank concepts included a sandwich tank stiffened with axial tension webs, a sandwich tank stiffened with transverse tension webs, a sandwich tank stiffened with rings and tension ties, and a sandwich tank stiffened with orthogrid stiffeners and tension ties. For each concept, geometric parameters (such as ring frame spacing, the number and spacing of tension ties or webs, and tank corner radius) and internal pressure loads were varied and the structure was optimized using a finite-element-based optimization procedure. Theoretical volumetric weights were calculated by dividing the weight of the barrel section of the tank concept and its associated frames, webs and tension ties by the volume it circumscribes. This paper describes the four conformal tank concepts and the design assumptions utilized in their optimization. The conformal tank optimization results included theoretical weights, trends and comparisons between the concepts, are also presented, along with results from the optimization of a quad-lobed tank. Also, the effects of minimum gauge values and non-optimum weights on the weight of the optimized structure are described in this paper.
48 CFR 908.1170 - Leasing of fuel-efficient vehicles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Leasing of fuel-efficient vehicles. 908.1170 Section 908.1170 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Leasing of Motor Vehicles 908.1170 Leasing of fuel-efficient vehicles. (a) All...
A study of emissions from passenger cars in six cities. Volume B. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
This is the second of two volumes presenting results from a series of exhaust emission and fuel economy tests performed on a representative sample of vehicles in six U.S. cities. Data presented in the following sections are generated in appendix form as part of a contract with the EPA to perform work for the FY 77 Passenger Car Emission Factor Program. Volume B includes the balance of individual vehicle data derived from the Two Speed Idle and Federal Three Mode tests. It also includes the results of Vehicle Driveability Evaluations, Maladjustment and Disablement Inspections, tire inspections and a listing ofmore » comparative mileage data. Information presented in Volume B should not be interpreted without the benefit of additional descriptive data presented in Volume A as both volumes comprise the results of a single work effort and are not intended to be considered separately.« less
Contactless electric igniter for vehicle to lower exhaust emission and fuel consumption.
Shen, Chih-Lung; Su, Jye-Chau
2014-01-01
An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well.
Temperature and heat flux measurements: Challenges for high temperature aerospace application
NASA Technical Reports Server (NTRS)
Neumann, Richard D.
1992-01-01
The measurement of high temperatures and the influence of heat transfer data is not strictly a problem of either the high temperatures involved or the level of the heating rates to be measured at those high temperatures. It is a problem of duration during which measurements are made and the nature of the materials in which the measurements are made. Thermal measurement techniques for each application must respect and work with the unique features of that application. Six challenges in the development of measurement technology are discussed: (1) to capture the character and localized peak values within highly nonuniform heating regions; (2) to manage large volumes of thermal instrumentation in order to efficiently derive critical information; (3) to accommodate thermal sensors into practical flight structures; (4) to broaden the capabilities of thermal survey techniques to replace discrete gages in flight and on the ground; (5) to provide supporting instrumentation conduits which connect the measurement points to the thermally controlled data acquisition system; and (6) to develop a class of 'vehicle tending' thermal sensors to assure the integrity of flight vehicles in an efficient manner.
Contactless Electric Igniter for Vehicle to Lower Exhaust Emission and Fuel Consumption
Su, Jye-Chau
2014-01-01
An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well. PMID:24672372
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, John F; West, Brian H; Huff, Shean P
The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There aremore » over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance improvement was measured for this vehicle, which achieved near volumetric fuel economy parity on the aggressive US06 drive cycle, demonstrating the potential for improved fuel economy in forthcoming downsized, downsped engines with high-octane fuels.« less
NASA-STD-3001, Space Flight Human-System Standard and the Human Integration Design Handbook
NASA Technical Reports Server (NTRS)
Whitmore, Mihriban; Boyer, Jennifer; Holubec, Keith
2012-01-01
NASA-STD-3001 Space Flight Human-System Standard Volume 1, Crew Health, Volume 2, Human Factors, Habitability and Environmental Health, and the Human Integration Design Handbook (HIDH) have replaced the Man-Systems Integration Standards (MSIS), NASA-STD-3000. For decades, NASA-STD-3000 was a significant contribution to human spaceflight programs and to human-systems integration. However, with research program and project results being realized, advances in technology, and the availability of new information in a variety of topic areas, the time had arrived to update this extensive suite of standards and design information. NASA-STD-3001, Volume 2 contains the Agency level standards from the human and environmental factors disciplines that ensure human spaceflight operations are performed safely, efficiently, and effectively. The HIDH is organized in the same sequence and serves as the companion document to NASA-STD-3001, Volume 2, providing a compendium of human spaceflight history and knowledge. The HIDH is intended to aid interpretation of NASA-STD-3001, Volume 2 standards and to provide guidance for requirement writers and vehicle and habitat designers. Keywords Human Factors, Standards, Environmental Factors, NASA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran frommore » 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. DOE's continuing R&D into advanced vehicle technologies for transportation offers the possibility of reducing the nation's dependence on foreign oil and the negative economic impacts of crude oil price fluctuations. It also supports the Administration's goal of deploying 1 million PHEVs by 2015.« less
Research safety vehicle, Phase II. Volume I. Executive summary. Final report jul 75-dec 76
DOE Office of Scientific and Technical Information (OSTI.GOV)
Struble, D.
1976-12-01
Volume I summarizes the results of the Minicars Research Safety Vehicle Phase II program, as detailed in Volumes II and III. Phase I identified trends leading to the desired national social goals of the mid-1980's in vehicle crashworthiness, crash avoidance, damageability, pedestrian safety, fuel economy, emissions and cost, and characterized an RSV to satisfy them. In Phase II an RSV prototype was designed, developed and tested to demonstrate the feasibility of meeting these goals simultaneously. Although further refinement is necessary to assure operational validity, in all categories the results meet or exceed the most advanced performance specified by The Presidentialmore » Task Force on Motor Vehicle Goals beyond 1980.« less
NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance (Text
Version) | News | NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance (Text Version) NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance (Text Version) NREL's combustion to the evolution of how fuels interact with engine and vehicle design. This is a text version of
Liquid volume monitoring based on ultrasonic sensor and Arduino microcontroller
NASA Astrophysics Data System (ADS)
Husni, M.; Siahaan, D. O.; Ciptaningtyas, H. T.; Studiawan, H.; Aliarham, Y. P.
2016-04-01
Incident of oil leakage and theft in oil tank often happens. To prevent it, the liquid volume insides the tank needs to be monitored continuously. Aim of the study is to calculate the liquid volume inside oil tank on any road condition and send the volume data and location data to the user. This research use some ultrasonic sensors (to monitor the fluid height), Bluetooth modules (to sent data from the sensors to the Arduino microcontroller), Arduino Microcontroller (to calculate the liquid volume), and also GPS/GPRS/GSM Shield module (to get location of vehicle and sent the data to the Server). The experimental results show that the accuracy rate of monitoring liquid volume inside tanker while the vehicle is in the flat road is 99.33% and the one while the vehicle is in the road with elevation angle is 84%. Thus, this system can be used to monitor the tanker position and the liquid volume in any road position continuously via web application to prevent illegal theft.
Study of vesicle size distribution dependence on pH value based on nanopore resistive pulse method
NASA Astrophysics Data System (ADS)
Lin, Yuqing; Rudzevich, Yauheni; Wearne, Adam; Lumpkin, Daniel; Morales, Joselyn; Nemec, Kathleen; Tatulian, Suren; Lupan, Oleg; Chow, Lee
2013-03-01
Vesicles are low-micron to sub-micron spheres formed by a lipid bilayer shell and serve as potential vehicles for drug delivery. The size of vesicle is proposed to be one of the instrumental variables affecting delivery efficiency since the size is correlated to factors like circulation and residence time in blood, the rate for cell endocytosis, and efficiency in cell targeting. In this work, we demonstrate accessible and reliable detection and size distribution measurement employing a glass nanopore device based on the resistive pulse method. This novel method enables us to investigate the size distribution dependence of pH difference across the membrane of vesicles with very small sample volume and rapid speed. This provides useful information for optimizing the efficiency of drug delivery in a pH sensitive environment.
Scanning laser beam displays based on a 2D MEMS
NASA Astrophysics Data System (ADS)
Niesten, Maarten; Masood, Taha; Miller, Josh; Tauscher, Jason
2010-05-01
The combination of laser light sources and MEMS technology enables a range of display systems such as ultra small projectors for mobile devices, head-up displays for vehicles, wearable near-eye displays and projection systems for 3D imaging. Images are created by scanning red, green and blue lasers horizontally and vertically with a single two-dimensional MEMS. Due to the excellent beam quality of laser beams, the optical designs are efficient and compact. In addition, the laser illumination enables saturated display colors that are desirable for augmented reality applications where a virtual image is used. With this technology, the smallest projector engine for high volume manufacturing to date has been developed. This projector module has a height of 7 mm and a volume of 5 cc. The resolution of this projector is WVGA. No additional projection optics is required, resulting in an infinite focus depth. Unlike with micro-display projection displays, an increase in resolution will not lead to an increase in size or a decrease in efficiency. Therefore future projectors can be developed that combine a higher resolution in an even smaller and thinner form factor with increased efficiencies that will lead to lower power consumption.
NASA Astrophysics Data System (ADS)
1981-01-01
Test vehicles were instrumented with accelerometers to measure vehicle accelerator resultants. The vehicles were also identified for residual crush and collision deformation classification (CDC) measurements.
NHTSA data reference guide version 4. Volume 1, vehicle tests
DOT National Transportation Integrated Search
1997-04-01
This guide documents the format of magnetic media (3.5 inch high density diskettes) to be submitted : to the National Highway Traffic Safety Administration (NHTSA) for vehicle crash tests. This guide is : designated Volume I. NHTSA Data Reference Gui...
Hybrid Vehicle Technology Constraints and Application Assessment Study : Volume 1. Summary.
DOT National Transportation Integrated Search
1977-11-01
This four-volume report presents analyses and assessments of both heat engine/battery- and heat engine/flywheel-powered hybrid vehicles to determine if they could contribute to near-term (1980-1990) reductions in transportation energy consumption und...
Food Mass Reduction Trade Study
NASA Technical Reports Server (NTRS)
Perchonok, Michele H.; Stoklosa, Adam M.
2009-01-01
Future long duration manned space flights beyond low earth orbit will require the food system to remain safe, acceptable, and nutritious while efficiently balancing appropriate vehicle resources such as mass, volume, power, water, and crewtime. Often, this presents a challenge since maintaining the quality of the food system can result in a higher mass and volume. The Orion vehicle is significantly smaller than the Shuttle vehicle and the International Space Station and the mass and volume available for food is limited. Therefore, the food team has been challenged to reduce the mass of the packaged food from 1.82 kg per person per day to 1.14 kg per person per day. Past work has concentrated on how to reduce the mass of the packaging which contributes to about 15% of the total mass of the packaged food system. Designers have also focused on integrating and optimizing the Orion galley equipment as a system to reduce mass. To date, there has not been a significant effort to determine how to reduce the food itself. The objective of this project is to determine how the mass and volume of the packaged food can be reduced while maintaining caloric and hydration requirements. The following tasks are the key elements to this project: (1) Conduct further analysis of the ISS Standard Menu to determine moisture, protein, carbohydrate, and fat levels. (2) Conduct trade studies to determine how to bring the mass of the food system down. Trade studies may include removing the water of the total food system and/or increasing the fat content. (3) Determine the preferred method for delivery of the new food (e.g. bars, or beverages) and the degree of replacement. (4) Determine whether there are commercially available products that meet the requirements. By the end of this study, an estimate of the mass and volume savings will be provided to the Constellation Program. In addition, if new technologies need to be developed to achieve the mass savings, the technologies, timeline, and budget will be identified at the end of the project.
NASA Puffin Electric Tailsitter VTOL Concept
NASA Technical Reports Server (NTRS)
Moore, Mark D.
2010-01-01
Electric propulsion offers dramatic new vehicle mission capabilities, not possible with turbine or reciprocating engines; including high reliability and efficiency, low engine weight and maintenance, low cooling drag and volume required, very low noise and vibration, and zero emissions. The only penalizing characteristic of electric propulsion is the current energy storage technology level, which is set to triple over the next 5-10 years through huge new investments in this field. Most importantly, electric propulsion offers incredible new degrees of freedom in aircraft system integration to achieve unprecedented levels of aerodynamic, propulsive, control, and structural synergistic coupling. A unique characteristic of electric propulsion is that the technology is nearly scale-free, permitting small motors to be parallelized for fail-safe redundancy, or distributed across the airframe for tightly coupled interdisciplinary functionality without significant impacts in motor-controller efficiency or specific weight. Maximizing the potential benefit of electric propulsion is dependent on applying this technology to synergistic mission concepts. The vehicle missions with the most benefit include those which constrain environmental impact (or limit noise, exhaust, or emission signatures) are short range, or where large differences exist in the propulsion system sizing between takeoff and cruise conditions. Electric propulsion offers the following unique capabilities that other propulsion systems can t provide for short range Vertical Takeoff and Landing (VTOL) aircraft; elimination of engine noise and emissions, drastic reduction in engine cooling and radiated heat, drastic reduction in vehicle vibration levels, drastic improvement in reliability and operating costs, variable speed output at full power, for improved cruise efficiency at low tip-speed, elimination of high/hot sizing penalty, and reduction of engine-out penalties.
Design of a lunar transportation system, volume 2
NASA Technical Reports Server (NTRS)
1990-01-01
The Spring 1990 Introduction to Design class was asked to conceptually design second generation lunar vehicles and equipment as a semester design project. A brief summary of four of the final projects, is presented. The designs were to facilitate the transportation of personnel and materials. The eight topics to choose from included flying vehicles, ground based vehicles, robotic arms, and life support systems. A lunar flying vehicle that uses clean propellants for propulsion is examined. A design that will not contribute to the considerable amount of caustic pollution already present in the sparse lunar atmosphere is addressed by way of ballistic flight techniques. A second generation redesign of the current Extra Vehicular Activity (EVA) suit to increase operating time, safety, and efficiency is also addressed. A separate life support system is also designed to be permanently attached to the lunar rover. The two systems would interact through the use of an umbilical cord connection. A ground based vehicle which will travel for greater distances than a 37.5 kilometer radius from a base on the lunar surface was designed. The vehicle is pressurized due to the fact that existing lunar rovers are limited by the EVA suits currently in use. A robotic arm for use at lunar bases or on roving vehicles on the lunar surface was designed. The arm was originally designed as a specimen gathering device, but it can be used for a wide range of tasks through the use of various attachments.
ETX-I: First-generation single-shaft electric propulsion system program. Volume 2: Battery
NASA Astrophysics Data System (ADS)
1988-06-01
The overall objective of this research and development program was to advance ac powertrain technology for electric vehicles (EV). The program focused on the design, build, test, and refinement of an experimental advanced electric vehicle powertrain suitable for packaging in a Ford Escort or equivalent-size vehicle. A Mercury LN7 was subsequently selected for the test bed vehicle. Although not part of the initial contract, the scope of the ETX-I Program was expanded in 1983 to encompass the development of advanced electric vehicle batteries compatible with the ETX-I powertrain and vehicle test bed. The intent of the battery portion of the ETX-I Program was to apply the best available battery technology based on existing battery developments. The battery effort was expected to result in a practical scale-up of base battery technologies to the vehicle battery subsystem level. With the addition of the battery activity, the ETX-I Program became a complete proof-of-concept ac propulsion system technology development program. In this context, the term propulsion system is defined as all components and subsystems (from the driver input to the vehicle wheels) that are required to store energy on board the vehicle and, using that energy, to provide controlled motive power to the vehicle. This report, Volume 2, describes the battery portion of the ETX-I Program. The powertrain effort is reported in Volume 1.
Definition of avionics concepts for a heavy lift cargo vehicle. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1989-01-01
A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is examined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility, although the lab is not limited in use to support of HLCVs. Volume 1 provides a summary of the vehicle avionics trade studies, the avionics lab objectives, a summary of the lab's functional requirements and design, physical facility considerations, and cost estimates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.
NASA Technical Reports Server (NTRS)
Dickman, Glen J.; Keeley, J. T.
1985-01-01
This portion of the Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Study, Volume 2, Book 2, summarizes the flight vehicle concept selection process and results. It presents an overview of OTV mission and system design requirements and describes the family of OTV recommended, the reasons for this recommendation, and the associated Phase C/D Program.
Efficiency analysis of a multiple axle vehicle with hydrostatic transmission overcoming obstacles
NASA Astrophysics Data System (ADS)
Comellas, M.; Pijuan, J.; Nogués, M.; Roca, J.
2018-01-01
Transmission configurations in off-road vehicles with multiple driven axles can be a determining factor in the obstacle surmounting capacity and also in the vehicle efficiency. An off-road articulated vehicle with four driven axles, four bogies and two modules has been considered for the global hydrostatic transmission efficiency analysis and for the vehicle functional efficiency analysis. The power flow through the transmission system has been quantified from the combustion engine shaft to each axle of the wheels. It has been done for different the operating conditions and taking into account the wheel-terrain interaction and the transmission configuration, that could lead to a forced slippage of some of the wheels. Results show the influence of the different wheels' requirements, the transmission configuration limitations and the considered control strategy on the global transmission and vehicle functional efficiencies.
Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Terrance
This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, andmore » to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as 'FreedomCAR' (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR and Vehicle Technologies Program. A key element in making hybrid electric vehicles (HEVs) practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2007 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
DOT National Transportation Integrated Search
1982-08-01
A detailed re-analysis of previously collected bicycle/motor-vehicle accident data (Cross and Fisher, 1977) was undertaken to define potential countermeasures. Countermeasure development was then undertaken in the areas of Training (see Volume I), Pu...
DOT National Transportation Integrated Search
1977-11-01
This four-volume report presents analyses and assessments of both heat engine/battery- and heat engine/flywheel-powered hybrid vehicles to determine if they could contribute to near-term (1980-1990) reductions in transportation energy consumption und...
DOT National Transportation Integrated Search
1977-01-01
This four-volume report presents analyses and assessments of both heat engine/battery- and heat engine/flywheel-powered hybrid vehicles to determine if they could contribute to near-term (1980-1990) reductions in transportation energy consumption und...
NASA Technical Reports Server (NTRS)
Fanale, F. P.; Kaula, W. M.; Mccord, T. B.; Trombka, J. L.
1977-01-01
Topics discussed include the need for: the conception and development of a wide spectrum of experiments, instruments, and vehicles in order to derive the proper return from an exploration program; the effective use of alternative methods of data acquisition involving ground-based, airborne and near Earth orbital techniques to supplement spacraft mission; and continued reduction and analysis of existing data including laboratory and theoretical studies in order to benefit fully from experiments and to build on the past programs toward a logical and efficient exploration of the solar system.
Feasibility study of modern airships, phase 1. Volume 3: Historical overview (task 1)
NASA Technical Reports Server (NTRS)
Faurote, G. L.
1975-01-01
The history of lighter-than-air vehicles is reviewed in terms of providing a background for the mission analysis and parametric analysis tasks. Data from past airships and airship operations are presented in the following areas: (1) parameterization of design characteristics; (2) markets, missions, costs, and operating procedures, (3) indices of efficiency for comparison; (4) identification of critical design and operational characteristics; and (5) definition of the 1930 state-of-the-art and the 1974 state-of-the-art from a technical and economic standpoint.
Advanced Microsystems for Automotive Applications 2005
NASA Astrophysics Data System (ADS)
Valldorf, Jürgen; Gessner, Wolfgang
Since 1995 the annual international forum on Advanced Microsystems for Automotive Applications (AMAA) has been held in Berlin. The event offers a unique opportunity for microsystems component developers, system suppliers and car manufacturers to show and to discuss competing technological approaches of microsystems based solutions in vehicles. The book accompanying the event has demonstrated to be an efficient instrument for the diffusion of new concepts and technology results. The present volume including the papers of the AMAA 2005 gives an overview on the state-of-the-art and outlines imminent and mid-term R&D perspectives.
NASA Technical Reports Server (NTRS)
Scholz, A. L.; Hart, M. T.; Lowry, D. J.
1987-01-01
The Technology Information Sheet was assembled in database format during Phase I. This document was designed to provide a repository for information pertaining to 144 Operations and Maintenance Instructions (OMI) controlled operations in the Orbiter Processing Facility (OPF), Vehicle Assembly Building (VAB), and PAD. It provides a way to accumulate information about required crew sizes, operations task time duration (serial and/or parallel), special Ground Support Equipment (GSE). required, and identification of a potential application of existing technology or the need for the development of a new technolgoy item.
A survey of electric and hybrid vehicles simulation programs. Volume 2: Questionnaire responses
NASA Technical Reports Server (NTRS)
Bevan, J.; Heimburger, D. A.; Metcalfe, M. A.
1978-01-01
The data received in a survey conducted within the United States to determine the extent of development and capabilities of automotive performance simulation programs suitable for electric and hybrid vehicle studies are presented. The survey was conducted for the Department of Energy by NASA's Jet Propulsion Laboratory. Volume 1 of this report summarizes and discusses the results contained in Volume 2.
The challenges of integrating instrumentation with inflatable aerodynamic decelerators
NASA Astrophysics Data System (ADS)
Swanson, Gregory T.; Cassell, Alan M.; Hughes, Stephen J.; Johnson, R. Keith; Calomino, Anthony M.
New Entry, Decent, and Landing (EDL) technologies are being explored to facilitate the landing of high mass vehicles. Current EDL technologies are limited due to mass and volume constraints dictated by launch vehicle fairings. Therefore, past and present technologies are now being considered to provide a mass and volume efficient solution, including Inflatable Aerodynamic Decelerators (IADs). To better define the instrumentation challenges posed by IAD technology development, a survey was conducted to identify valuable measurements for ground and flight testing of the flexible materials and structures used in their design. From this survey many sensing technologies and systems were explored specific to the stacked torus IAD, resulting in a down-selection to the most viable prospects. The majority of these systems, including wireless data acquisition, were then rapid prototyped and evaluated during component level testing to determine the best integration techniques specific to a 3m and 6m diameter stacked toroid IAD. Each sensing system was then integrated in support of the Hypersonic Inflatable Aerodynamic Decelerator ground test campaign. In this paper these IAD instrumentation systems are described along with their challenges in comparison to traditional rigid aeroshell systems. Requirements resulting from the survey are listed and instrumentation integration techniques and data acquisition are discussed.
DOT National Transportation Integrated Search
1982-08-01
A detailed re-analysis of previously collected bicycle/motor-vehicle accident data (Cross and Fisher, 1977) was conducted to define potential countermeasures. Countermeasure development was then undertaken in the areas of Public Education (this Volum...
DOT National Transportation Integrated Search
1977-01-01
This four-volume report presents analyses and assessments of both heat engine/battery- and heat engine/flywheel-powered hybrid vehicles to determine if they could contribute to near-term (1980-1990) reductions in transportation energy consumption und...
Collaborative Multidisciplinary Sciences for Analysis and Design of Aerospace Vehicles. Volume 1
2017-05-01
AEROSPACE VEHICLES Volume 1 5a. CONTRACT NUMBER FA8650-09-2-3938 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62201F 6. AUTHOR(S) Raymond M...S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBERDesign and Analysis Branch (AFRL/RQVC) Aerospace Vehicles Division Air Force Research...Laboratory, Aerospace Systems Directorate Wright-Patterson Air Force Base, OH 45433-7542 Air Force Materiel Command, United States Air Force Virginia
Aeroacoustics of Flight Vehicles: Theory and Practice. Volume 2: Noise Control
NASA Technical Reports Server (NTRS)
Hubbard, Harvey H. (Editor)
1991-01-01
Flight vehicles and the underlying concepts of noise generation, noise propagation, noise prediction, and noise control are studied. This volume includes those chapters that relate to flight vehicle noise control and operations: human response to aircraft noise; atmospheric propagation; theoretical models for duct acoustic propagation and radiation; design and performance of duct acoustic treatment; jet noise suppression; interior noise; flyover noise measurement and prediction; and quiet aircraft design and operational characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraft, E.H.
2002-07-22
The purpose of this study was to determine which components of heavy-duty highway vehicles are candidates for the substitution of titanium materials for current materials if the cost of those Ti components is very significantly reduced from current levels. The processes which could be used to produce those low cost components were also investigated. Heavy-duty highway vehicles are defined as all trucks and busses included in Classes 2C through 8. These include heavy pickups and vans above 8,500 lbs. GVWR, through highway tractor trailers. Class 8 is characterized as being a very cyclic market, with ''normal'' year volume, such asmore » in 2000, of approximately 240,000 new vehicles. Classes 3-7 are less cyclic, with ''normal'' i.e., year 2000, volume totaling approximately 325,000 new vehicles. Classes 3-8 are powered about 88.5% by diesel engines, and Class 2C at very roughly 83% diesel. The engine portion of the study therefore focused on diesels. Vehicle production volumes were used in estimates of the market size for candidate components.« less
DOT National Transportation Integrated Search
2012-10-01
The United States and European Union (EU) share many of the same transportation research issues, challenges, and goals. They also share a belief that cooperative vehicle (also termed connected vehicle) systems, based on vehicle-to-vehicle and vehicle...
DOT National Transportation Integrated Search
1980-12-01
This source document on motor vehicle market analysis and consumer impacts consists of three parts. Part III consists of studies and reviews on: consumer awareness of fuel efficiency issues; consumer acceptance of fuel efficient vehicles; car size ch...
NASA Astrophysics Data System (ADS)
Hand, D. H.
1981-01-01
The test vehicles were impacted tested for compliance with FMVSS 212/219/301-75. As a parallel nonconflicting effort, the test vehicles were instrumented with accelerometers to measure vehicle accelerator resultants.
Lin, Cherng-Yuan; Chen, Lih-Wei; Wang, Li-Ting
2006-05-01
Diesel vehicles are one of the major forms of transportation, especially in metropolitan regions. However, air pollution released from diesel vehicles causes serious damage to both human health and the environment, and as a result is of great public concern. Nitrogen oxides and black smoke are two significant emissions from diesel engines. Understanding the correlation between these two emissions is an important step toward developing the technology for an appropriate strategy to control or eliminate them. This study field-tested 185 diesel vehicles at an engine dynamometer station for their black smoke reflectivity and nitrogen oxides concentration to explore the correlation between these two pollutants. The test results revealed that most of the tested diesel vehicles emitted black smoke with low reflectivity and produced low nitrogen oxides concentration. The age of the tested vehicles has a significant influence on the NOx emission. The older the tested vehicles, the higher the NOx concentrations emitted, however, there was no obvious correlation between the age of the tested diesel vehicles and the black smoke reflectivity. In addition, if the make and engine displacement volume of the tested diesel vehicles are not taken into consideration, then the correlation between the black smoke reflectivity and nitrogen oxides emission weakens. However, when the tested vehicles were classified into various groups based on their makes and engine displacement volumes, then the make of a tested vehicle became a dominant factor for both the quantity and the trend of the black smoke reflectivity, as well as the NOx emission. Higher emission indices of black smoke reflectivity and nitrogen oxides were observed if the diesel vehicles were operated at low engine speed and full engine load conditions. Moreover, the larger the displacement volume of the engine of the tested vehicle, the lower the emission indices of both black smoke reflectivity and nitrogen oxides emitted. The emission indices of black smokes reflectivity and nitrogen oxides emission of the tested diesel vehicles were also influenced by the make of the vehicle. It was observed that the emission indices of black smoke reflectivity decreased nearly linearly with the increase of the emission indices of NOx for the tested vehicles belonging to the same group of make and engine displacement volume.
A polynomial chaos approach to the analysis of vehicle dynamics under uncertainty
NASA Astrophysics Data System (ADS)
Kewlani, Gaurav; Crawford, Justin; Iagnemma, Karl
2012-05-01
The ability of ground vehicles to quickly and accurately analyse their dynamic response to a given input is critical to their safety and efficient autonomous operation. In field conditions, significant uncertainty is associated with terrain and/or vehicle parameter estimates, and this uncertainty must be considered in the analysis of vehicle motion dynamics. Here, polynomial chaos approaches that explicitly consider parametric uncertainty during modelling of vehicle dynamics are presented. They are shown to be computationally more efficient than the standard Monte Carlo scheme, and experimental results compared with the simulation results performed on ANVEL (a vehicle simulator) indicate that the method can be utilised for efficient and accurate prediction of vehicle motion in realistic scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, R.A.; Downing, B.R.; Pearce, T.C.
The consumption of primary energy by diesel, petrol and electric versions of a light van was compared under high-density urban traffic conditions. The vehicles were driven repeatedly round a 10km route in Central London and measurements of fuel consumption, distance travelled and time were made for each route section. Multiple regression analysis established vehicle sensitivities to variations in average speed, payload, road type, regenerated energy (electric vehicle), kinetic energy, weather and driver. The diesel vehicle used primary energy more efficiently than either the petrol or the electric vehicle over the entire speed range observed, the ratio of energy consumption (diesel:petrol:electric)more » being 100:185:198 at the average speed during the experiment (17.58km/h). The petrol vehicle was more efficient than the electric over most of the speed range, but was less efficient at speeds below about 14km/h. It is concluded that the diesel vehicle is the most efficient for urban delivery duties.« less
None
2018-03-02
This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/
Recovery Act--Class 8 Truck Freight Efficiency Improvement Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trucks, Daimler
2015-07-26
Daimler Trucks North America completed a five year, $79.6M project to develop and demonstrate a concept vehicle with at least 50% freight efficiency improvement over a weighted average of several drive cycles relative to a 2009 best-in-class baseline vehicle. DTNA chose a very fuel efficient baseline vehicle, the 2009 Freightliner Cascadia with a DD15 engine, yet successfully demonstrated a 115% freight efficiency improvement. DTNA learned a great deal about the various technologies that were incorporated into Super Truck and those that, through down-selection, were discarded. Some of the technologies competed with each other for efficiency, and notably some of themore » technologies complemented each other. For example, we found that Super Truck’s improved aerodynamic drag resulted in improved fuel savings from eCoast, relative to a similar vehicle with worse aerodynamic drag. However, some technologies were in direct competition with each other, namely the predictive technologies which use GPS and 3D digital maps to efficiently manage the vehicles kinetic energy through controls and software, versus hybrid which is a much costlier technology that essentially targets the same inefficiency. Furthermore, the benefits of a comprehensive, integrated powertrain/vehicle approach was proven, in which vast improvements in vehicle efficiency (e.g. lower aero drag and driveline losses) enabled engine strategies such as downrating and downspeeding. The joint engine and vehicle developments proved to be a multiplier-effect which resulted in large freight efficiency improvements. Although a large number of technologies made the selection process and were used on the Super Truck demonstrator vehicle, some of the technologies proved not feasible for series production.« less
DOT National Transportation Integrated Search
1997-01-01
Current trends in transport activity volume and growth pose severe challenges for societies aiming to move towards sustainable development. In light of current growth trends in vehicle numbers and travel volume which serve to offset gains in vehicle ...
DOT National Transportation Integrated Search
1980-03-01
This volume is the technical manual for the general simulation. Mathematical modelling of the vehicle and of the human driver is presented in detail, as are differences between the APL simulation and the current one. Information on model validation a...
Intracerebral Cell Implantation: Preparation and Characterization of Cell Suspensions.
Rossetti, Tiziana; Nicholls, Francesca; Modo, Michel
2016-01-01
Intracerebral cell transplantation is increasingly finding a clinical translation. However, the number of cells surviving after implantation is low (5-10%) compared to the number of cells injected. Although significant efforts have been made with regard to the investigation of apoptosis of cells after implantation, very little optimization of cell preparation and administration has been undertaken. Moreover, there is a general neglect of the biophysical aspects of cell injection. Cell transplantation can only be an efficient therapeutic approach if an optimal transfer of cells from the dish to the brain can be ensured. We therefore focused on the in vitro aspects of cell preparation of a clinical-grade human neural stem cell (NSC) line for intracerebral cell implantation. NSCs were suspended in five different vehicles: phosphate-buffered saline (PBS), Dulbecco's modified Eagle medium (DMEM), artificial cerebral spinal fluid (aCSF), HypoThermosol, and Pluronic. Suspension accuracy, consistency, and cell settling were determined for different cell volume fractions in addition to cell viability, cell membrane damage, and clumping. Maintenance of cells in suspension was evaluated while being stored for 8 h on ice, at room temperature, or physiological normothermia. Significant differences between suspension vehicles and cellular volume fractions were evident. HypoThermosol and Pluronic performed best, with PBS, aCSF, and DMEM exhibiting less consistency, especially in maintaining a suspension and preserving viability under different storage conditions. These results provide the basis to further investigate these preparation parameters during the intracerebral delivery of NSCs to provide an optimized delivery process that can ensure an efficient clinical translation.
Upgraded automotive gas turbine engine design and development program, volume 2
NASA Technical Reports Server (NTRS)
Wagner, C. E. (Editor); Pampreen, R. C. (Editor)
1979-01-01
Results are presented for the design and development of an upgraded engine. The design incorporated technology advancements which resulted from development testing on the Baseline Engine. The final engine performance with all retro-fitted components from the development program showed a value of 91 HP at design speed in contrast to the design value of 104 HP. The design speed SFC was 0.53 versus the goal value of 0.44. The miss in power was primarily due to missing the efficiency targets of small size turbomachinery. Most of the SFC deficit was attributed to missed goals in the heat recovery system relative to regenerator effectiveness and expected values of heat loss. Vehicular fuel consumption, as measured on a chassis dynamometer, for a vehicle inertia weight of 3500 lbs., was 15 MPG for combined urban and highway driving cycles. The baseline engine achieved 8 MPG with a 4500 lb. vehicle. Even though the goal of 18.3 MPG was not achieved with the upgraded engine, there was an improvement in fuel economy of 46% over the baseline engine, for comparable vehicle inertia weight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), all electric vehicles, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher-temperature environments while achieving high reliability; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control and packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2009 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
2001 NASA Seal/secondary Air System Workshop, Volume 1. Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)
2002-01-01
The 2001 NASA Seal/Secondary Air System Workshop covered the following topics: (i) overview of NASA's Vision for 21st Century Aircraft; (ii) overview of NASA-sponsored Ultra-Efficient Engine Technology (UEET); (iii) reviews of sealing concepts, test results, experimental facilities, and numerical predictions; and (iv) reviews of material development programs relevant to advanced seals development. The NASA UEET overview illustrates for the reader the importance of advanced technologies, including seals, in meeting future turbine engine system efficiency and emission goals. The NASA UEET program goals include an 8-to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs NASA is funding to investigate advanced reusable space vehicle technologies (X-38) and advanced space ram/scramjet propulsion systems. Seal challenges posed by these advanced systems include high-temperature operation, resiliency at the operating temperature to accommodate sidewall flexing, and durability to last many missions.
1999 NASA Seal/secondary Air System Workshop. Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)
2000-01-01
NASA Glenn hosted the Seals/Secondary Air System Workshop on October 28-29, 1999. Each year NASA and our industry and university partners share their respective seal technology development. We use these workshops as a technical forum to exchange recent advancements and "lessons-leamed" in advancing seal technology and solving problems of common interest. As in the past we are publishing two volumes. Volume 1 will be publicly available and volume 2 will be restricted under International Traffic and Arms Regulations (I.T.A.R.). The 1999 NASA Seal/Secondary Air System Workshop was divided into four areas; (i) overviews of the government-sponsored gas turbine programs (NASA Ultra Efficient Engine Technology program and DOE Advanced Turbine System program) and the general aviation program (GAP) with emphasis on program goals and seal needs; (ii) turbine engine seal issues from the perspective of an airline customer (i.e., United Airlines), (iii) sealing concepts, methods and results including experimental facilities and numerical predictions; and (iv) reviews of seal requirements for next generation aerospace vehicles (Trailblazer, Bantam and X-38).
Batterman, Stuart
2015-01-01
Patterns of traffic activity, including changes in the volume and speed of vehicles, vary over time and across urban areas and can substantially affect vehicle emissions of air pollutants. Time-resolved activity at the street scale typically is derived using temporal allocation factors (TAFs) that allow the development of emissions inventories needed to predict concentrations of traffic-related air pollutants. This study examines the spatial and temporal variation of TAFs, and characterizes prediction errors resulting from their use. Methods are presented to estimate TAFs and their spatial and temporal variability and used to analyze total, commercial and non-commercial traffic in the Detroit, Michigan, U.S. metropolitan area. The variability of total volume estimates, quantified by the coefficient of variation (COV) representing the percentage departure from expected hourly volume, was 21, 33, 24 and 33% for weekdays, Saturdays, Sundays and holidays, respectively. Prediction errors mostly resulted from hour-to-hour variability on weekdays and Saturdays, and from day-to-day variability on Sundays and holidays. Spatial variability was limited across the study roads, most of which were large freeways. Commercial traffic had different temporal patterns and greater variability than noncommercial vehicle traffic, e.g., the weekday variability of hourly commercial volume was 28%. The results indicate that TAFs for a metropolitan region can provide reasonably accurate estimates of hourly vehicle volume on major roads. While vehicle volume is only one of many factors that govern on-road emission rates, air quality analyses would be strengthened by incorporating information regarding the uncertainty and variability of traffic activity. PMID:26688671
Jung, Sungwoon; Kim, Jounghwa; Kim, Jeongsoo; Hong, Dahee; Park, Dongjoo
2017-04-01
The objective of this study is to estimate the vehicle kilometer traveled (VKT) and on-road emissions using the traffic volume in urban. We estimated two VKT; one is based on registered vehicles and the other is based on traffic volumes. VKT for registered vehicles was 2.11 times greater than that of the applied traffic volumes because each VKT estimation method is different. Therefore, we had to define the inner VKT is moved VKT inner in urban to compare two values. Also, we focused on freight modes because these are discharged much air pollutant emissions. From analysis results, we found middle and large trucks registered in other regions traveled to target city in order to carry freight, target city has included many industrial and logistics areas. Freight is transferred through the harbors, large logistics centers, or via locations before being moved to the final destination. During this process, most freight is moved by middle and large trucks, and trailers rather than small trucks for freight import and export. Therefore, these trucks from other areas are inflow more than registered vehicles. Most emissions from diesel trucks had been overestimated in comparison to VKT from applied traffic volumes in target city. From these findings, VKT is essential based on traffic volume and travel speed on road links in order to estimate accurately the emissions of diesel trucks in target city. Our findings support the estimation of the effect of on-road emissions on urban air quality in Korea. Copyright © 2016. Published by Elsevier B.V.
Advanced vehicle systems assessment. Volume 5: Appendices
NASA Technical Reports Server (NTRS)
Hardy, K.
1985-01-01
An appendix to the systems assessment for the electric hybrid vehicle project is presented. Included are battery design, battery cost, aluminum vehicle construction, IBM PC computer programs and battery discharge models.
Alternative Fuels Data Center: Ten Ways You Can Implement Alternative Fuels
and Energy-Efficient Vehicle Technologies Ten Ways You Can Implement Alternative Fuels and Energy-Efficient Vehicle Technologies to someone by E-mail Share Alternative Fuels Data Center: Ten Ways You Can Implement Alternative Fuels and Energy-Efficient Vehicle Technologies on Facebook Tweet about
Theoretical Comparison of Motional and Transformer EMF Device Damping Efficiency
NASA Astrophysics Data System (ADS)
GRAVES, K. E.; TONCICH, D.; IOVENITTI, P. G.
2000-06-01
In this paper, theoretical comparison between electromagnetic dampers based on a “motional emf” and “transformer emf” design is presented. Transformer emf devices are based on the generation of emf in a stationary circuit, in which the emf is generated by a time-varying magnetic field linking the circuit. Motional emf devices are based on the generation of emf due to a moving conductor within a stationary magnetic field. Both of these designs can be used as damping elements for applications such as semi-active and regenerative vehicle suspension systems. The findings herein are provided so as to evaluate the most efficient device for such applications. The analysis consists of comparing the damping coefficient of the electromagnetic devices for a given magnetic field and given volume of conducting material. It has been found that for a limited range of dimensions, the transformer emf devices can be more then 1·2 times as efficient as the motional emf devices. However, for most realistic situations, motional emf devices will have the highest efficiency.
Self-assembling toxin-based nanoparticles as self-delivered antitumoral drugs.
Sánchez-García, Laura; Serna, Naroa; Álamo, Patricia; Sala, Rita; Céspedes, María Virtudes; Roldan, Mònica; Sánchez-Chardi, Alejandro; Unzueta, Ugutz; Casanova, Isolda; Mangues, Ramón; Vázquez, Esther; Villaverde, Antonio
2018-03-28
Loading capacity and drug leakage from vehicles during circulation in blood is a major concern when developing nanoparticle-based cell-targeted cytotoxics. To circumvent this potential issue it would be convenient the engineering of drugs as self-delivered nanoscale entities, devoid of any heterologous carriers. In this context, we have here engineered potent protein toxins, namely segments of the diphtheria toxin and the Pseudomonas aeruginosa exotoxin as self-assembling, self-delivered therapeutic materials targeted to CXCR4 + cancer stem cells. The systemic administration of both nanostructured drugs in a colorectal cancer xenograft mouse model promotes efficient and specific local destruction of target tumor tissues and a significant reduction of the tumor volume. This observation strongly supports the concept of intrinsically functional protein nanoparticles, which having a dual role as drug and carrier, are designed to be administered without the assistance of heterologous vehicles. Copyright © 2018 Elsevier B.V. All rights reserved.
Full Body Loading for Small Exercise Devices Project
NASA Technical Reports Server (NTRS)
Downs, Meghan; Hanson, Andrea; Newby, Nathaniel
2015-01-01
Protecting astronauts' spine, hip, and lower body musculoskeletal strength will be critical to safely and efficiently perform physically demanding vehicle egress, exploration, and habitat building activities necessary to expand human presence in the solar system. Functionally limiting decrements in musculoskeletal health are likely during Mars proving-ground and Earth-independent missions given extended transit times and the vehicle limitations for exercise devices (low-mass, small volume). Most small exercise device concepts are designed with single-cable loading, which inhibits the ability to perform full body exercises requiring two-point loading at the shoulders. Shoulder loading is critical to protect spine, hip, and lower body musculoskeletal strength. We propose a novel low-mass, low-maintenance, and rapid deploy pulley-based system that can attach to a single-cable small exercise device to enable two-point loading at the shoulders. This attachment could protect astronauts' health and save cost, space, and energy during all phases of the Journey to Mars.
Laser, Mark; Lynd, Lee R.
2014-01-01
This study addresses the question, “When using cellulosic biomass for vehicular transportation, which field-to-wheels pathway is more efficient: that using biofuels or that using bioelectricity?” In considering the question, the level of assumed technological maturity significantly affects the comparison, as does the intended transportation application. Results from the analysis indicate that for light-duty vehicles, over ranges typical in the United States today (e.g., 560–820 miles), field-to-wheels performance is similar, with some scenarios showing biofuel to be more efficient, and others indicating the two pathways to be essentially the same. Over the current range of heavy-duty vehicles, the field-to-wheels efficiency is higher for biofuels than for electrically powered vehicles. Accounting for technological advances and range, there is little basis to expect mature bioelectricity-powered vehicles to have greater field-to-wheels efficiency (e.g., kilometers per gigajoule biomass or per hectare) compared with mature biofuel-powered vehicles. PMID:24550477
Drive Cycle Powertrain Efficiencies and Trends Derived from EPA Vehicle Dynamometer Results
Thomas, John
2014-10-13
Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine asmore » a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.« less
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF TRANSPORTATION FEDERAL MOTOR VEHICLE THEFT PREVENTION STANDARD PHASE-IN AND SMALL-VOLUME LINE REPORTING REQUIREMENTS § 545.1 Scope. This part establishes requirements for manufacturers of motor vehicles..., concerning the number of vehicles that meet the requirements of 49 CFR part 541, and the number of vehicles...
27 CFR 555.218 - Table of distances for storage of explosive materials.
Code of Federal Regulations, 2011 CFR
2011-04-01
... purposes, detonating cord of 50 or 60 grains per foot should be calculated as equivalent to 9 lbs. of high... traffic volume of 3000 or fewer vehicles/day Barricaded Unbarricaded Passenger railways—public highways with traffic volume of more than 3,000 vehicles/day Barricaded Unbarricaded Separation of magazines...
Rainwater harvesting systems for low demanding applications.
Sanches Fernandes, Luís F; Terêncio, Daniela P S; Pacheco, Fernando A L
2015-10-01
A rainwater harvesting system (RHS) was designed for a waste treatment facility located near the town of Mirandela (northern Portugal), to be used in the washing of vehicles and other equipment, the cleaning of outside concrete or asphalt floors, and the watering of green areas. Water tank volumes representing 100% efficiency (Vr) were calculated by the Ripple method with different results depending on two consumption scenarios adopted for irrigation. The RHS design was based on a precipitation record spanning a rather long period (3 decades). The calculated storage capacities fulfilled the water demand even when prolonged droughts occurred during that timeframe. However, because the drought events have been rather scarce the Vr values were considered oversized and replaced by optimal volumes. Notwithstanding the new volumes were solely half of the original Vr values, the projected RHS efficiency remained very high (around 90%) while the probability of system failure (efficiency<100%) stayed very low (in the order of 5%). In both scenarios, the economic savings related to the optimization of Vr were noteworthy, while the investment's return periods decreased substantially from the original to the optimized solutions. A high efficiency with a low storage capacity is typical of low demanding applications of rainwater harvesting, where water availability (Vw) largely exceeds water demand (Cw), that is to say where demand fractions (Cw/Vw) are very low. Based on the results of a literature review covering an ample geographic distribution and describing a very large number of demand fraction scenarios, a Cw/Vw=0.8 was defined as the threshold to generally distinguish the low from the high demanding RHS applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Alternative Fuels Data Center: College Students Engineer Efficient Vehicles
in EcoCAR 2 CompetitionA> College Students Engineer Efficient Vehicles in EcoCAR 2 Competition to someone by E-mail Share Alternative Fuels Data Center: College Students Engineer Efficient Vehicles in EcoCAR 2 Competition on Facebook Tweet about Alternative Fuels Data Center: College Students Engineer
Applying a Crew Accommodations Resource Model to Future Space Vehicle Research
NASA Technical Reports Server (NTRS)
Blume, Jennifer Linda
2003-01-01
The success of research and development for human space flight depends heavily on modeling. In addition, the use of such models is especially critical at the earliest phase of research and development of any manned vehicle or habitat. NASA is currently studying various innovative and futuristic propulsion technologies to enable further exploration of space by untended as well as tended vehicles. Details such as vehicle mass, volume, shape and configuration are required variables to evaluate the success of the propulsion concepts. For tended vehicles, the impact of the crew's requirements on those parameters must be included. This is especially important on long duration missions where the crew requirements become more complex. To address these issues, a crew accommodations resource model, developed as a mission planning tool for human spaceflight (Stillwell, Boutros, & Connolly), was applied to a reference mission in order to estimate the volume and mass required to sustain a crew for a variety of long duration missions. The model, which compiled information from numerous different sources and contains various attributes which can be modified to enable comparisons across different dimensions, was instrumental in deriving volume and mass required for a tended long duration space flight. With the inclusion of some additional variables, a set of volume and mass requirements were provided to the project. If due consideration to crew requirements for volume and mass had not been entertained, the assumptions behind validation of the propulsion technology could have been found to be incorrect, possibly far into development of the technology or even into the design and build of test vehicles. The availability and use of such a model contributes significantly by increasing the accuracy of human space flight research and development activities and acts as a cost saving measure by preventing inaccurate assumptions from driving design decisions.
Quantifying a cellular automata simulation of electric vehicles
NASA Astrophysics Data System (ADS)
Hill, Graeme; Bell, Margaret; Blythe, Phil
2014-12-01
Within this work the Nagel-Schreckenberg (NS) cellular automata is used to simulate a basic cyclic road network. Results from SwitchEV, a real world Electric Vehicle trial which has collected more than two years of detailed electric vehicle data, are used to quantify the results of the NS automata, demonstrating similar power consumption behavior to that observed in the experimental results. In particular the efficiency of the electric vehicles reduces as the vehicle density increases, due in part to the reduced efficiency of EVs at low speeds, but also due to the energy consumption inherent in changing speeds. Further work shows the results from introducing spatially restricted speed restriction. In general it can be seen that induced congestion from spatially transient events propagates back through the road network and alters the energy and efficiency profile of the simulated vehicles, both before and after the speed restriction. Vehicles upstream from the restriction show a reduced energy usage and an increased efficiency, and vehicles downstream show an initial large increase in energy usage as they accelerate away from the speed restriction.
40 CFR 1037.150 - Interim provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... earlier model years for electric vehicles) to the greenhouse gas standards of this part. (1) This... for any vehicles other than electric vehicles, you must certify your entire U.S.-directed production... electric vehicles, you must certify your entire U.S.-directed production volume within the regulatory sub...
40 CFR 1037.150 - Interim provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... earlier model years for electric vehicles) to the greenhouse gas standards of this part. (1) This... for any vehicles other than electric vehicles, you must certify your entire U.S.-directed production... electric vehicles, you must certify your entire U.S.-directed production volume within the regulatory sub...
Vehicle impact simulation for curb and barrier design : volume 1, impact simulation procedures.
DOT National Transportation Integrated Search
1998-10-01
The objectives of this study were to perform computer simulations of vehicle-curb and vehicle-berm impacts, to characterize : the behavior of a wide range of vehicle types after such impacts, and to produce design and evaluation trajectory data for u...
Peer Review of March 2013 LDV Rebound Report By Small ...
The regulatory option of encouraging the adoption of advanced technologies for improving vehicle efficiency can result in significant fuel savings and GHG emissions benefits. At the same time, it is possible that some of these benefits might be offset by additional driving that is encouraged by the reduced costs of operating more efficient vehicles. This so called “rebound effect”, the increased driving that results from an improvement in the energy efficiency of a vehicle, must be determined in order to reliably estimate the overall benefits of GHG regulations for light-duty vehicles. Dr. Ken Small, an Economist at the Department of Economics, University of California at Irvine, with contributions by Dr. Kent Hymel, Department of Economics, California State University at Northridge, have developed a methodology to estimate the rebound effect for light-duty vehicles in the U.S. Specifically, rebound is estimated as the change in vehicle miles traveled (VMT) with respect to the change in per mile fuel costs that can occur, for example, when vehicle operating efficiency is improved. The model analyzes aggregate personal motor-vehicle travel within a simultaneous model of aggregate VMT, fleet size, fuel efficiency, and congestion formation. To use the peer review process to help assure that the methodologies considered by the U.S. EPA for estimating VMT rebound have been thoroughly examined.
Vehicle/Track Interaction Assessment Techniques. Volume 1, Part 1.
DOT National Transportation Integrated Search
1984-03-01
This report describes Vehicle/Track Interaction Assessment Techniques (IAT) which are developed to provide standardized procedures and tools in order to: Investigate the dynamic performance of railroad vehicles, and systematically identify and cure d...
Vehicle/Track Interaction Assessment Techniques. Volume 2, Part 2.
DOT National Transportation Integrated Search
1984-03-01
This report describes Vehicle/Track Interaction Assessment Techniques (IAT) which are developed to provide standardized procedures and tools in order to: Investigate the dynamic performance of railroad vehicles, and systematically identify and cure d...
Vehicle/Track Interaction Assessment Techniques. Volume 3, Part 2.
DOT National Transportation Integrated Search
1984-03-01
This report describes Vehicle/Track Interaction Assessment Techniques (IAT) which are developed to provide standardized procedures and tools in order to: Investigate the dynamic performance of railroad vehicles, and systematically identify and cure d...
Advances in fuel cell vehicle design
NASA Astrophysics Data System (ADS)
Bauman, Jennifer
Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied to any system utilizing the novel battery-ultracapacitor energy storage system and is not limited in application to only fuel cell vehicles. With regards to DC/DC converters, it is important to design efficient and light-weight converters for use in fuel cell and other electric vehicles to improve overall vehicle fuel economy. Thus, this research presents a novel soft-switching method, the capacitor-switched regenerative snubber, for the high-power DC/DC boost converters commonly used in fuel cell vehicles. This circuit is shown to increase the efficiency and reduce the overall mass of the DC/DC boost converter.
Daily Planet Redesign: eZ Publish Web Content Management Implementation
NASA Technical Reports Server (NTRS)
Dutra, Jayne E.
2006-01-01
This viewgraph presentation reviews the process of the redesign of the Daily . Planet news letter as a content management implementation project. This is a site that is an internal news site that acts as a communication vehicle for a large volume of content. The Objectives for the site redesign was: (1) Clean visual design, (2) Facilitation of publication processes, (3) More efficient maintenance mode, (4) Automated publishing to internal portal, (5) Better navigation through improved site IA, (6) Archiving and retrieval functionality, (7) Back to basics on fundamental business goals. The CM is a process not a software package
ACEEE's green book: The environmental guide to cars and trucks, Model year 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeCicco, J.; Kliesch, J.; Thomas, M.
2000-07-01
This pathbreaking guide ranks cars and trucks according to environmental friendliness. Buyers can compare cars, vans, pickups, and sport utility vehicles by their environmental impacts, including air pollution, global warming, and fuel efficiency. Inside the guide: how to buy the cleanest and most efficient vehicle that meets your needs; Green Scores for all 2000 makes and models, listed by class--compact, mid-size, and large cars, vans, pickups, and sport utilities; Best of 2000 section featuring the greenest models in each class; Green by Design chapter highlighting advanced technologies and what makes some vehicles greener than others; listings for electric and othermore » alternative fuel vehicles in addition to gasoline and diesel vehicles; tips on keeping your vehicle running cleanly and efficiently; and the environmental impacts of vehicles, including global warming and the health effects of vehicle pollution.« less
New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiss, T.; Chaney, L.; Meyer, J.
Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic systemmore » simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.« less
Development of a PEMFC Power System with Integrated Balance of Plant
NASA Technical Reports Server (NTRS)
Wynne, B.; Diffenderfer, C.; Ferguson, S.; Keyser, J.; Miller, M.; Sievers, B.; Ryan, A.; Vasquez, A.
2012-01-01
Autonomous Underwater Vehicles (AUV s) have received increasing attention in recent years as military and commercial users look for means to maintain a mobile and persistent presence in the undersea world. Compact, neutrally buoyant power systems are needed for both small and large vehicles. Batteries are usually employed in these applications, but the energy density and therefore the mission duration are limited with current battery technology. At a certain energy or mission duration requirement, other means to get long duration power become feasible. For example, above 10 kW-hrs liquid oxygen and hydrogen have better specific energy than batteries and are preferable for energy storage as long as a compact system of about 100 W/liter is achievable to convert the chemical energy in these reactants into power. Other reactant forms are possible, such as high pressure gas, chemical hydrides or oxygen carriers, but it is essential that the power system be small and light weight. Recent fuel cell work, primarily focused on NASA applications, has developed power systems that can meet this target power density. Passive flow-through systems, using ejector driven reactant (EDR) flow, integrated into a compact balance of plant have been developed. These systems are thermally and functionally integrated in much the same way as are automotive, air breathing fuel cell systems. These systems fit into the small volumes required for AUV and future NASA applications. Designs have been developed for both a 21" diameter and a larger diameter (LD) AUV. These fuel cell systems occupy a very small portion of the overall energy system, allowing most of the system volume to be used for the reactants. The fuel cell systems have been optimized to use reactants efficiently with high stack efficiency and low parasitic losses. The resulting compact, highly efficient fuel cell system provides exceptional reactant utilization and energy density. Key design variables and supporting test data are presented. Future development activities are described.
Infrastructure-Based Sensors Augmenting Efficient Autonomous Vehicle Operations: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun, Myungsoo; Markel, Anthony J
Autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehicles is seen as a potential barrier to broad adoption and achieving system energy efficiency gains. Since traffic in autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehiclesmore » is seen as a potential barrier to broad adoption and achieving system energy efficiency gains.« less
DOT National Transportation Integrated Search
1981-09-01
This report presents a description of a vehicle simulation program, which can determine the fuel economy and performance of a specified motor vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated by HEVSIM i...
DOT National Transportation Integrated Search
1981-09-01
This report presents a description of a vehicle simulation program, which can determine the fuel economy and performance of a specified motor vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated by HEVSIM i...
DOT National Transportation Integrated Search
1981-01-01
This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...
DOT National Transportation Integrated Search
1981-01-01
This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...
DOT National Transportation Integrated Search
1981-01-01
This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...
DOT National Transportation Integrated Search
1981-09-01
This report presents a description of a vehicle simulation program, which can determine the fuel economy and performance of a specified motor vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated by HEVSIM i...
Hybrid cars now, fuel cell cars later.
Demirdöven, Nurettin; Deutch, John
2004-08-13
We compare the energy efficiency of hybrid and fuel cell vehicles as well as conventional internal combustion engines. Our analysis indicates that fuel cell vehicles using hydrogen from fossil fuels offer no significant energy efficiency advantage over hybrid vehicles operating in an urban drive cycle. We conclude that priority should be placed on hybrid vehicles by industry and government.
Hybrid Cars Now, Fuel Cell Cars Later
NASA Astrophysics Data System (ADS)
Demirdöven, Nurettin; Deutch, John
2004-08-01
We compare the energy efficiency of hybrid and fuel cell vehicles as well as conventional internal combustion engines. Our analysis indicates that fuel cell vehicles using hydrogen from fossil fuels offer no significant energy efficiency advantage over hybrid vehicles operating in an urban drive cycle. We conclude that priority should be placed on hybrid vehicles by industry and government.
Multispan Elevated Guideway Design for Passenger Transport Vehicles : Volume 2. Appendixes.
DOT National Transportation Integrated Search
1975-04-01
Contents: Appendix A - derivation of vehicle-guideway interaction equations; Appendix B - evaluation of pier support dynamics; Appendix C - computer simulation program of two-dimensional vehicle over a multi-span guideway; Appendix D - computer progr...
Driver-vehicle effectiveness model : volume II : appendices
DOT National Transportation Integrated Search
1978-12-01
The Driver-Vehicle Effectiveness Model (DRIVEM) is a Monte Carlo simulation model intended for use by NHTSA to evaluate alternative vehicle subsystems or effects of legislative actions proposed to reduce the probability and severity of highway traffi...
NASA Astrophysics Data System (ADS)
Kobayashi, Takao; Katsuyama, Etsuo; Sugiura, Hideki; Ono, Eiichi; Yamamoto, Masaki
2018-05-01
This paper proposes an efficient direct yaw moment control (DYC) capable of minimising tyre slip power loss on contact patches for a four-independent wheel drive vehicle. Simulations identified a significant power loss reduction with a direct yaw moment due to a change in steer characteristics during acceleration or deceleration while turning. Simultaneously, the vehicle motion can be stabilised. As a result, the proposed control method can ensure compatibility between vehicle dynamics performance and energy efficiency. This paper also describes the results of a full-vehicle simulation that was conducted to examine the effectiveness of the proposed DYC.
Seagrave, JeanClare; Gigliotti, Andrew; McDonald, Jacob D; Seilkop, Steven K; Whitney, Kevin A; Zielinska, Barbara; Mauderly, Joe L
2005-09-01
Particulate matter (PM) and vapor-phase semivolatile organic compounds (SVOC) were collected from three buses fueled by compressed natural gas. The bus engines included a well-functioning, conventional engine; a "high emitter" engine; and a new technology engine with an oxidation catalyst. Chemical analysis of the emissions showed differences among these samples, with the high emitter sample containing markers of engine oil constituents. PM + SVOC samples were also collected for mutagenicity and toxicity testing. Extraction efficiencies from the collection media were lower than for similarly collected samples from gasoline or diesel vehicles. Responses to the recovered samples were compared on the basis of exhaust volume, to incorporate the emission rates into the potency factors. Mutagenicity was assessed by Salmonella reverse mutation assay. Mutagenicity was greatest for the high emitter sample and lowest for the new technology sample. Metabolic activation reduced mutagenicity in strain TA100, but not TA98. Toxicity, including inflammation, cytotoxicity, and parenchymal changes, was assessed 24 h after intratracheal instillation into rat lungs. Lung responses were generally mild, with little difference between the responses to equivalent volumes of emissions from the normal emitter and the new technology, but greater responses for the high emitter. These emission sample potencies are further compared on the basis of recovered mass with previously reported samples from normal and high-emitter gasoline and diesel vehicles. While mutagenic potencies for the CNG emission samples were similar to the range observed in the gasoline and diesel emission samples, lung toxicity potency factors were generally lower than those for the gasoline and diesel samples.
Early Impacts of a Human-in-the-Loop Evaluation in a Space Vehicle Mock-up Facility
NASA Technical Reports Server (NTRS)
Byrne, Vicky; Vos, Gordon; Whitmore, Mihriban
2008-01-01
The development of a new space vehicle, the Orion Crew Exploration Vehicle (CEV), provides Human Factors engineers an excellent opportunity to have an impact early in the design process. This case study highlights a Human-in-the-Loop (HITL) evaluation conducted in a Space Vehicle Mock-Up Facility and will describe the human-centered approach and how the findings are impacting design and operational concepts early in space vehicle design. The focus of this HITL evaluation centered on the activities that astronaut crewmembers would be expected to perform within the functional internal volume of the Crew Module (CM) of the space vehicle. The primary objective was to determine if there are aspects of a baseline vehicle configuration that would limit or prevent the performance of dynamically volume-driving activities (e.g. six crewmembers donning their suits in an evacuation scenario). A second objective was to step through concepts of operations for known systems and evaluate them in integrated scenarios. The functional volume for crewmember activities is closely tied to every aspect of system design (e.g. avionics, safety, stowage, seats, suits, and structural support placement). As this evaluation took place before the Preliminary Design Review of the space vehicle with some designs very early in the development, it was not meant to determine definitely that the crewmembers could complete every activity, but rather to provide inputs that could improve developing designs and concepts of operations definition refinement.
Evaluation of on-board hydrogen storage methods f or high-speed aircraft
NASA Technical Reports Server (NTRS)
Akyurtlu, Ates; Akyurtlu, Jale F.
1991-01-01
Hydrogen is the fuel of choice for hypersonic vehicles. Its main disadvantage is its low liquid and solid density. This increases the vehicle volume and hence the drag losses during atmospheric flight. In addition, the dry mass of the vehicle is larger due to larger vehicle structure and fuel tankage. Therefore it is very desirable to find a fuel system with smaller fuel storage requirements without deteriorating the vehicle performance substantially. To evaluate various candidate fuel systems, they were first screened thermodynamically with respect to their energy content and cooling capacities. To evaluate the vehicle performance with different fuel systems, a simple computer model is developed to compute the vehicle parameters such as the vehicle volume, dry mass, effective specific impulse, and payload capacity. The results indicate that if the payload capacity (or the gross lift-off mass) is the most important criterion, only slush hydrogen and liquid hydrogen - liquid methane gel shows better performance than the liquid hydrogen vehicle. If all the advantages of a smaller vehicle are considered and a more accurate mass analysis can be performed, other systems using endothermic fuels such as cyclohexane, and some boranes may prove to be worthy of further consideration.
Paratransit Vehicle Test and Evaluation : Volume 1. Ride Comfort and Quality Tests.
DOT National Transportation Integrated Search
1978-06-01
The vehicles presently available for paratransit service do not cover the full spectrum of required characteristics necessary for public transportation. Therefore, specifications were developed by the U.S. Government for a vehicle specifically for us...
DOT National Transportation Integrated Search
1995-08-01
KEYWORDS : RESEARCH AND DEVELOPMENT OR R&D, CRASH REDUCTION, FATALITIES REDUCTION, LATERAL GUIDANCE, LONGITUDINAL GUIDANCE, ADVANCED VEHICLE CONTROL & SAFETY SYSTEMS OR AVCSS, ADVANCED VEHICLE CONTROL SYSTEM OR AVCS, INTELLIGENT VEHICLE INITIATIV...
DOT National Transportation Integrated Search
1981-09-01
Volume III is the third and last volume of a three volume document describing the computer program HEVSIM. This volume includes appendices which list the HEVSIM program, sample part data, some typical outputs and updated nomenclature.
Selecting exposure measures in crash rate prediction for two-lane highway segments.
Qin, Xiao; Ivan, John N; Ravishanker, Nalini
2004-03-01
A critical part of any risk assessment is identifying how to represent exposure to the risk involved. Recent research shows that the relationship between crash count and traffic volume is non-linear; consequently, a simple crash rate computed as the ratio of crash count to volume is not proper for comparing the safety of sites with different traffic volumes. To solve this problem, we describe a new approach for relating traffic volume and crash incidence. Specifically, we disaggregate crashes into four types: (1) single-vehicle, (2) multi-vehicle same direction, (3) multi-vehicle opposite direction, and (4) multi-vehicle intersecting, and define candidate exposure measures for each that we hypothesize will be linear with respect to each crash type. This paper describes initial investigation using crash and physical characteristics data for highway segments in Michigan from the Highway Safety Information System (HSIS). We use zero-inflated-Poisson (ZIP) modeling to estimate models for predicting counts for each of the above crash types as a function of the daily volume, segment length, speed limit and roadway width. We found that the relationship between crashes and the daily volume (AADT) is non-linear and varies by crash type, and is significantly different from the relationship between crashes and segment length for all crash types. Our research will provide information to improve accuracy of crash predictions and, thus, facilitate more meaningful comparison of the safety record of seemingly similar highway locations.
Hybrid vehicle potential assessment. Volume 7: Hybrid vehicle review
NASA Technical Reports Server (NTRS)
Leschly, K. O.
1979-01-01
Review of hybrid vehicles built during the past ten years or planned to be built in the near future is presented. An attempt is made to classify and analyze these vehicles to get an overall picture of their key characteristics. The review includes onroad hybrid passenger cars, trucks, vans, and buses.
Light-Duty Diesel Vehicles: Efficiency and Emissions Attributes and Market Issues
2009-01-01
This report responds to a request from Senator Jeff Sessions for an analysis of the environmental and energy efficiency attributes of light-duty diesel vehicles. Specifically, the inquiry asked for a comparison of the characteristics of diesel-fueled vehicles with those of similar gasoline-fueled, E85-fueled, and hybrid vehicles, as well as a discussion of any technical, economic, regulatory, or other obstacles to increasing the use of diesel-fueled vehicles in the United States
Tong, Fan; Jaramillo, Paulina; Azevedo, Inês M L
2015-06-16
The low-cost and abundant supply of shale gas in the United States has increased the interest in using natural gas for transportation. We compare the life cycle greenhouse gas (GHG) emissions from different natural gas pathways for medium and heavy-duty vehicles (MHDVs). For Class 8 tractor-trailers and refuse trucks, none of the natural gas pathways provide emissions reductions per unit of freight-distance moved compared to diesel trucks. When compared to the petroleum-based fuels currently used in these vehicles, CNG and centrally produced LNG increase emissions by 0-3% and 2-13%, respectively, for Class 8 trucks. Battery electric vehicles (BEVs) powered with natural gas-produced electricity are the only fuel-technology combination that achieves emission reductions for Class 8 transit buses (31% reduction compared to the petroleum-fueled vehicles). For non-Class 8 trucks (pick-up trucks, parcel delivery trucks, and box trucks), BEVs reduce emissions significantly (31-40%) compared to their diesel or gasoline counterparts. CNG and propane achieve relatively smaller emissions reductions (0-6% and 19%, respectively, compared to the petroleum-based fuels), while other natural gas pathways increase emissions for non-Class 8 MHDVs. While using natural gas to fuel electric vehicles could achieve large emission reductions for medium-duty trucks, the results suggest there are no great opportunities to achieve large emission reductions for Class 8 trucks through natural gas pathways with current technologies. There are strategies to reduce the carbon footprint of using natural gas for MHDVs, ranging from increasing vehicle fuel efficiency, reducing life cycle methane leakage rate, to achieving the same payloads and cargo volumes as conventional diesel trucks.
A behavior-based framework for assessing barrier effects to wildlife from vehicle traffic volume
Sandra L. Jacobson; Leslie L. Bliss-Ketchum; Catherine E. de Rivera; Winston P. Smith; D. P. C. Peters
2016-01-01
Roads, while central to the function of human society, create barriers to animal movement through collisions and habitat fragmentation. Barriers to animal movement affect the evolution and trajectory of populations. Investigators have attempted to use traffic volume, the number of vehicles passing a point on a road segment, to predict effects to wildlife populations...
NASA Technical Reports Server (NTRS)
Sanchez, Merri J.
2000-01-01
This project aimed to develop a methodology for evaluating performance and acceptability characteristics of the pressurized crew module volume suitability for zero-gravity (g) ingress of a spacecraft and to evaluate the operational acceptability of the NASA crew return vehicle (CRV) for zero-g ingress of astronaut crew, volume for crew tasks, and general crew module and seat layout. No standard or methodology has been established for evaluating volume acceptability in human spaceflight vehicles. Volume affects astronauts'ability to ingress and egress the vehicle, and to maneuver in and perform critical operational tasks inside the vehicle. Much research has been conducted on aircraft ingress, egress, and rescue in order to establish military and civil aircraft standards. However, due to the extremely limited number of human-rated spacecraft, this topic has been un-addressed. The NASA CRV was used for this study. The prototype vehicle can return a 7-member crew from the International Space Station in an emergency. The vehicle's internal arrangement must be designed to facilitate rapid zero-g ingress, zero-g maneuverability, ease of one-g egress and rescue, and ease of operational tasks in multiple acceleration environments. A full-scale crew module mockup was built and outfitted with representative adjustable seats, crew equipment, and a volumetrically equivalent hatch. Human factors testing was conducted in three acceleration environments using ground-based facilities and the KC-135 aircraft. Performance and acceptability measurements were collected. Data analysis was conducted using analysis of variance and nonparametric techniques.
2005 NDIA Combat Vehicles Conference. Volume 2- Thursday Presentations and Videos
2005-09-22
Mounted Combat System MULE: (Countermine) MULE: (Transport) Class II Class III Class IV Armed Robotic Vehicle ARV RSTA ARV Assault FCS Recovery and...Vehicles – Infantry Carrier Vehicle (ICV) – Armed Robotic Vehicle - Assault (ARV (A)) – Recon & Surveillance Vehicle (RSV) Training Ammo for AP & AB...Holtz and Mr. Dick Williams, Boeing Mr. Dean Vanderstelt, General Dynamics Land Systems ( GDLS ) Mr. Mike Zoltoski, TARDEC Mr. Peter DeMasi, Program
NASA Technical Reports Server (NTRS)
1991-01-01
This document presents trade studies and reference concept designs accomplished during a study of Space Transfer Concepts and Analyses for Exploration Missions (STCAEM). This volume contains the major top level trades, level 2 trades conducted in support of NASA's Lunar/Mars Exploration Program Office, and a synopsis of the vehicles for different propulsion systems under trade consideration. The vehicles are presented in more detail in other volumes of this report. Book 1 of Volume 1 covers the following analyses: lunar/Mars commonality trades, lunar/Mars mission operations, and Mars transfer systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public-private partnerships to fund high risk, high payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ranmore » from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the PE and electrical machines subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machines Research Program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2010 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, and they are indicated at the end of each section for readers interested in pursuing details of the work.« less
Modeling of Thermoelectric Generator Power Characteristics for Motorcycle-Type Engines
NASA Astrophysics Data System (ADS)
Osipkov, Alexey; Poshekhonov, Roman; Arutyunyan, Georgy; Basov, Andrey; Safonov, Roman
2017-10-01
Thermoelectric generation in vehicles such as motorcycles, all-terrain vehicles, and snowmobiles opens the possibility of additional electrical energy generation by means of exhaust heat utilization. This is beneficial because replacing the mechanical generator used in such vehicles with a more powerful one in cases of electrical power deficiency is impossible. This paper proposes a calculation model for the thermoelectric generator (TEG) operational characteristics of the low-capacity internal combustion engines used in these vehicles. Two TEG structures are considered: (1) TEG with air cooling and (2) TEG with water cooling. Modeling consists of two calculation stages. In the first stage, the heat exchange coefficients of the hot and cold exchangers are determined using computational fluid dynamics. In the second stage, the TEG operational characteristics are modeled based on the nonlinear equations of the heat transfer and power balance. On the basis of the modeling results, the dependence of the TEG's major operating characteristics (such as the electrical power generated by the TEG and its efficiency and mass) on operating conditions or design parameters is determined. For example, the electrical power generated by a TEG for a Yamaha WR450F motorcycle engine with a volume of 0.449 × 10-3 m3 was calculated to be as much as 100 W. Use of the TEG arrangements proposed is justified by the additional electrical power generation for small capacity vehicles, without the need for internal combustion engine redesign.
Reducing supply chain energy use in next-generation vehicle lightweighting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanes, Rebecca J.; Das, Sujit; Carpenter, Alberta
Vehicle lightweighting reduces the amount of fuel consumed in a vehicle's use phase, but depending on what lightweight materials replace the conventional materials, and in what amounts, the manufacturing energy may increase or decrease. For carbon fiber reinforced polymer (CFRP), a next-generation lightweighting material, the increase in vehicle manufacturing energy is greater than the fuel savings, resulting in a net increase in energy consumption over a vehicle's manufacturing and use relative to a standard non-lightweighted car. [1] This work explores ways to reduce the supply chain energy of CFRP lightweighted vehicles through alternative production technologies and energy efficiency improvements. Themore » objective is to determine if CFRP can offer energy savings comparable to or greater than aluminum, a conventional lightweighting material. Results of this analysis can be used to inform additional research and development efforts in CFRP production and future directions in lightweight vehicle production. The CFRP supply chain is modeled using the Material Flows through Industry (MFI) scenario modeling tool, which calculates 'mine to materials' energy consumption, material inventories and greenhouse gas emissions for industrial supply chains. In this analysis, the MFI tool is used to model the supply chains of two lightweighted vehicles, an aluminum intensive vehicle (AIV) and a carbon fiber intensive vehicle (CFV), under several manufacturing scenarios. Vehicle specifications are given in [1]. Scenarios investigated cover alternative carbon fiber (CF) feedstocks and energy efficiency improvements at various points in the vehicle supply chains. The alternative CF feedstocks are polyacrylonitrile, lignin and petroleum-derived mesophase pitch. Scenarios in which the energy efficiency of CF and CFRP production increases are explored using sector efficiency potential values, which quantify the reduction in energy consumption achievable when process equipment is upgraded to the most efficient available. Preliminary analyses indicate that producing CF from lignin instead of polyacrylonitrile, the most commonly used feedstock, reduces energy consumption in the CFRP supply chain by 7.5%, and that implementing energy efficient process equipment produces an additional 8% reduction. Final results will show if these potential reductions are sufficient to make the CFV energy savings comparable with AIV energy savings. [1] Das, S., Graziano, D., Upadhyayula, V. K., Masanet, E., Riddle, M., & Cresko, J. (2016). Vehicle lightweighting energy use impacts in US light-duty vehicle fleet. Sustainable Materials and Technologies, 8, 5-13.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, T. Jr
Volume IV represents the results of one of four major study areas under the Automotive Manufacturing Assessment System (AMAS) sponsored by the DOT/Transportation Systems Center. AMAS was designed to assist in the evaluation of industry's capability to produce fuel efficient vehicles. An analysis of automotive engine manufacturing was conducted in order to determine the impact of regulatory changes on tooling costs and the production process. The 351W CID V-8 engine at Ford's Windsor No. 1 Plant was the subject of the analysis. A review of plant history and its product is presented along with an analysis of manufacturing operations, includingmore » material and production flow, plant layout, machining and assembly processes, tooling, supporting facilities, inspection, service and repair. Four levels of product change intensity showing the impact on manufacturing methods and cost is also presented.« less
Video Vehicle Detector Verification System (V2DVS) operators manual and project final report.
DOT National Transportation Integrated Search
2012-03-01
The accurate detection of the presence, speed and/or length of vehicles on roadways is recognized as critical for : effective roadway congestion management and safety. Vehicle presence sensors are commonly used for traffic : volume measurement and co...
Natural gas as a future fuel for heavy-duty vehicles
DOT National Transportation Integrated Search
2001-06-21
In addition to their significant environmental impacts, medium-duty and heavy-duty (HD) vehicles are high volume fuel users. Development of such vehicles, which include transit buses, refuse trucks, and HD Class 6-8 trucks, that are fueled with natur...
NASA Astrophysics Data System (ADS)
Xie, Lingwang; Zhang, Xingwei; Luo, Pan; Huang, Panpan
2017-10-01
The optimization designs and dynamic analysis on the driving mechanism of flapping-wing air vehicles on base of flapping trajectory patterns is carried out in this study. Three different driving mechanisms which are spatial double crank-rocker, plane five-bar and gear-double slider, are systematically optimized and analysed by using the Mat lab and Adams software. After a series debugging on the parameter, the comparatively ideal flapping trajectories are obtained by the simulation of Adams. Present results indicate that different drive mechanisms output different flapping trajectories and have their unique characteristic. The spatial double crank-rocker mechanism can only output the arc flapping trajectory and it has the advantages of small volume, high flexibility and efficient space utilization. Both planar five-bar mechanism and gear-double slider mechanism can output the oval, figure of eight and double eight flapping trajectories. Nevertheless, the gear-double slider mechanism has the advantage of convenient parameter setting and better performance in output double eight flapping trajectory. This study can provide theoretical basis and helpful reference for the design of the drive mechanisms of flapping-wing air vehicles with different output flapping trajectories.
NASA Astrophysics Data System (ADS)
Meng, ZhuXuan; Fan, Hu; Peng, Ke; Zhang, WeiHua; Yang, HuiXin
2016-12-01
This article presents a rapid and accurate aeroheating calculation method for hypersonic vehicles. The main innovation is combining accurate of numerical method with efficient of engineering method, which makes aeroheating simulation more precise and faster. Based on the Prandtl boundary layer theory, the entire flow field is divided into inviscid and viscid flow at the outer edge of the boundary layer. The parameters at the outer edge of the boundary layer are numerically calculated from assuming inviscid flow. The thermodynamic parameters of constant-volume specific heat, constant-pressure specific heat and the specific heat ratio are calculated, the streamlines on the vehicle surface are derived and the heat flux is then obtained. The results of the double cone show that at the 0° and 10° angle of attack, the method of aeroheating calculation based on inviscid outer edge of boundary layer parameters reproduces the experimental data better than the engineering method. Also the proposed simulation results of the flight vehicle reproduce the viscid numerical results well. Hence, this method provides a promising way to overcome the high cost of numerical calculation and improves the precision.
Finger materials for air cushion vehicles. Volume 1: Flexible coatings for finger materials
NASA Astrophysics Data System (ADS)
Conn, P. K.; Snell, I. C.; Klemens, W.
1984-12-01
Twenty polymer formulations from ten selected gum rubber polymers or polymer blends and fourteen formulations of castable liquid polyurethane polymers were characterized as coatings for the coated fabric that is the type material used to make flexible fingers for air cushion vehicles. The formulations were screened for crack growth and flexural fatigue resistance; the results were compared to results from a natural rubber/cisabutadiene blend control coating. In addition, selected polymers were evaluated with primary and secondary characterization tests and the results compared to results from the control formulation. One polymer also was used to evaluate the use of a reticulated carbon black to improve thermal conductivity. Several polymers had better crack growth resistance and a number had better flexural fatique resistance than the control polymer. A clorinated polyethylene polymer coated on nylon fabric had properties equivalent to the control polymer coated on nylon fabric. Hysteresis tests at different rates of deformation yielded results which suggested that the standard tests may not identify polymers with improved performance on air cushion vehicles. Woven fabric, knit, and mat structures were evaluated as reinforcements for polymer coatings; the knit and mat structures were not as efficient on a strength-to-weight basis as woven fabrics.
DOT National Transportation Integrated Search
1981-09-01
Volume III is the third and last volume of a three volume document describing the computer program HEVSIM. This volume includes appendices which list the HEVSIM program, sample part data, some typical outputs and updated nomenclature.
NASA Technical Reports Server (NTRS)
1979-01-01
A description and listing is presented of two computer programs: Hybrid Vehicle Design Program (HYVELD) and Hybrid Vehicle Simulation Program (HYVEC). Both of the programs are modifications and extensions of similar programs developed as part of the Electric and Hybrid Vehicle System Research and Development Project.
49 CFR 545.7 - Reporting requirements for vehicles listed in § 541.3(b)(2).
Code of Federal Regulations, 2010 CFR
2010-10-01
... VEHICLE THEFT PREVENTION STANDARD PHASE-IN AND SMALL-VOLUME LINE REPORTING REQUIREMENTS § 545.7 Reporting requirements for vehicles listed in § 541.3(b)(2). (a) General reporting requirements. Within 60 days after the... 49 Transportation 6 2010-10-01 2010-10-01 false Reporting requirements for vehicles listed in Â...
49 CFR 545.6 - Reporting requirements for vehicles listed in § 541.3(a)(1).
Code of Federal Regulations, 2010 CFR
2010-10-01
... VEHICLE THEFT PREVENTION STANDARD PHASE-IN AND SMALL-VOLUME LINE REPORTING REQUIREMENTS § 545.6 Reporting requirements for vehicles listed in § 541.3(a)(1). (a) General reporting requirements. Within 60 days after the... 49 Transportation 6 2010-10-01 2010-10-01 false Reporting requirements for vehicles listed in Â...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel and the 21st Century Truck Partnerships through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2004 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M.
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel Partnership and the 21st Century Truck Partnership through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2006 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work. Summaries of major accomplishments for each technical project are give.« less
Evaluation of high-energy-efficiency powertrain approaches: the 1996 futurecar challenge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sluder, S.; Duoba, M.; Larsen, R.
Twelve colleges and universities were selected to design, build, and develop a mid-size vehicle that could achieve high energy economy while maintaining the performance characteristics of today`s mid-size vehicle. Many of the teams were able to increase the fuel economy of their vehicles, but most of these increases came at the expense of decreased performance or worsened emissions. This paper evaluates and summarizes the high-energy-efficiency powertrain technology approaches that were utilized in the 1996 FutureCar Challenge, which was the first evaluation of these vehicles in a two-year program. Of the 11 vehicles evaluated in the competition, nine utilized hybrid electricmore » vehicle approaches. This paper discusses the design trade- offs made by the teams to achieve high efficiency while trying to maintain stock performance.« less
Wei, P; Grimm, P R; Settles, D C; Balwanz, C R; Padanilam, B J; Sansom, S C
2009-01-01
Statins may confer renal protection in a variety of glomerular diseases, including diabetic nephropathy (DN). However, various glomerular lesions have different etiologies and may have different responses to statins. This study was performed to determine the differential effects of simvastatin (SMV) on glomerular pathology including mesangial expansion and podocyte injury in a mouse model of early stage type 2 diabetes mellitus (DM). Type 2 DM was induced in male C57BL/6 mice by feeding a high fat diet (HF; 45 kcal% fat). After 22 weeks, one group of HF mice was treated with SMV (HF-SMV; 7 mug/day/g BW) and another group was treated with vehicle (HF-vehicle) for 4 weeks via osmotic mini-pump. A third group served as age-matched normal diet vehicle controls (ND-vehicle; 10 kcal% fat). At the end of treatment, glomerular morphology was evaluated in a blind manner to determine the progression of DN. Body weight, blood glucose, insulin, HDL-cholesterol and triglycerides, but not LDL-cholesterol, were increased in HF mice. Over the course of treatment, the 24-hour urinary albumin excretion (UAE) was unchanged in ND-vehicle. HF mice exhibited elevated UAE, which decreased with SMV, but was unchanged with vehicle. The absolute mesangial volume and the relative mesangial volume per glomerular volume increased in HF-vehicle and remained elevated with SMV treatment. The immuno-staining of nephrin, a protein marker of the integrity of podocyte slit diaphragms, was decreased in HF-vehicle; however, the nephrin quantity of the HF-SMV group was not different from ND-vehicle. It is concluded that SMV reverses podocyte damage, but does not affect mesangial expansion in the kidneys of early stage proteinuria of type 2 DM.
Optimization of a Hot Structure Aeroshell and Nose Cap for Mars Atmospheric Entry
NASA Technical Reports Server (NTRS)
Langston, Sarah L.; Lang, Christapher G.; Samareh, Jamshid A.; Daryabeigi, Kamran
2016-01-01
The National Aeronautics and Space Administration (NASA) is preparing to send humans beyond Low Earth Orbit and eventually to the surface of Mars. As part of the Evolvable Mars Campaign, different vehicle configurations are being designed and considered for delivering large payloads to the surface of Mars. Weight and packing volume are driving factors in the vehicle design, and the thermal protection system (TPS) for planetary entry is a technology area which can offer potential weight and volume savings. The feasibility and potential benefits of a ceramic matrix composite hot structure concept for different vehicle configurations are explored in this paper, including the nose cap for a Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and an aeroshell for a mid lift-to-drag (Mid L/D) concept. The TPS of a planetary entry vehicle is a critical component required to survive the severe aerodynamic heating environment during atmospheric en- try. The current state-of-the-art is an ablative material to protect the vehicle from the heat load. The ablator is bonded to an underlying structure, which carries the mechanical loads associated with entry. The alternative hot structure design utilizes an advanced carbon-carbon material system on the outer surface of the vehicle, which is exposed to the severe heating and acts as a load carrying structure. The preliminary design using the hot structure concept and the ablative concept is determined for the spherical nose cap of the HIAD entry vehicle and the aeroshell of the Mid L/D entry vehicle. The results of the study indicate that the use of hot structures for both vehicle concepts leads to a feasible design with potential weight and volume savings benefits over current state-of-the-art TPS technology that could enable future missions.
An Efficient Model-Based Image Understanding Method for an Autonomous Vehicle.
1997-09-01
The problem discussed in this dissertation is the development of an efficient method for visual navigation of autonomous vehicles . The approach is to... autonomous vehicles . Thus the new method is implemented as a component of the image-understanding system in the autonomous mobile robot Yamabico-11 at
NASA Technical Reports Server (NTRS)
1973-01-01
The launch operations test and checkout plan is a planning document that establishes all launch site checkout activity, including the individual tests and sequence of testing required to fulfill the development center and KSC test and checkout requirements. This volume contains the launch vehicle test and checkout plan encompassing S-1B, S-4B, IU stage, and ground support equipment tests. The plan is based upon AS-208 flow utilizing a manned spacecraft, LUT 1, and launch pad 39B facilities.
Impact of high efficiency vehicles on future fuel tax revenues in Utah.
DOT National Transportation Integrated Search
2015-05-01
The Utah Department of Transportation Research Division has analyzed the potential impact of : high-efficiency motor vehicles on future State of Utah motor fuel tax revenues used to construct and maintain the : highway network. High-efficiency motor ...
CFD flowfield simulation of Delta Launch Vehicles in a power-on configuration
NASA Technical Reports Server (NTRS)
Pavish, D. L.; Gielda, T. P.; Soni, B. K.; Deese, J. E.; Agarwal, R. K.
1993-01-01
This paper summarizes recent work at McDonnell Douglas Aerospace (MDA) to develop and validate computational fluid dynamic (CFD) simulations of under expanded rocket plume external flowfields for multibody expendable launch vehicles (ELVs). Multi engine reacting gas flowfield predictions of ELV base pressures are needed to define vehicle base drag and base heating rates for sizing external nozzle and base region insulation thicknesses. Previous ELV design programs used expensive multibody power-on wind tunnel tests that employed chamber/nozzle injected high pressure cold or hot-air. Base heating and pressure measurements were belatedly made during the first flights of past ELV's to correct estimates from semi-empirical engineering models or scale model tests. Presently, CFD methods for use in ELV design are being jointly developed at the Space Transportation Division (MDA-STD) and New Aircraft Missiles Division (MDA-NAMD). An explicit three dimensional, zonal, finite-volume, full Navier-Stokes (FNS) solver with finite rate hydrocarbon/air and aluminum combustion kinetics was developed to accurately compute ELV power-on flowfields. Mississippi State University's GENIE++ general purpose interactive grid generation code was chosen to create zonal, finite volume viscous grids. Axisymmetric, time dependent, turbulent CFD simulations of a Delta DSV-2A vehicle with a MB-3 liquid main engine burning RJ-1/LOX were first completed. Hydrocarbon chemical kinetics and a k-epsilon turbulence model were employed and predictions were validated with flight measurements of base pressure and temperature. Zonal internal/external grids were created for a Delta DSV-2C vehicle with a MB-3 and three Castor-1 solid motors burning and a Delta-2 with an RS-27 main engine (LOX/RP-1) and 9 GEM's attached/6 burning. Cold air, time dependent FNS calculations were performed for DSV-2C during 1992. Single phase simulations that employ finite rate hydrocarbon and aluminum (solid fuel) combustion chemistry are currently in progress. Reliable and efficient Eulerian algorithms are needed to model two phase (solid-gas) momentum and energy transfer mechanisms for solid motor fuel combustion products.
CFD flowfield simulation of Delta Launch Vehicles in a power-on configuration
NASA Astrophysics Data System (ADS)
Pavish, D. L.; Gielda, T. P.; Soni, B. K.; Deese, J. E.; Agarwal, R. K.
1993-07-01
This paper summarizes recent work at McDonnell Douglas Aerospace (MDA) to develop and validate computational fluid dynamic (CFD) simulations of under expanded rocket plume external flowfields for multibody expendable launch vehicles (ELVs). Multi engine reacting gas flowfield predictions of ELV base pressures are needed to define vehicle base drag and base heating rates for sizing external nozzle and base region insulation thicknesses. Previous ELV design programs used expensive multibody power-on wind tunnel tests that employed chamber/nozzle injected high pressure cold or hot-air. Base heating and pressure measurements were belatedly made during the first flights of past ELV's to correct estimates from semi-empirical engineering models or scale model tests. Presently, CFD methods for use in ELV design are being jointly developed at the Space Transportation Division (MDA-STD) and New Aircraft Missiles Division (MDA-NAMD). An explicit three dimensional, zonal, finite-volume, full Navier-Stokes (FNS) solver with finite rate hydrocarbon/air and aluminum combustion kinetics was developed to accurately compute ELV power-on flowfields. Mississippi State University's GENIE++ general purpose interactive grid generation code was chosen to create zonal, finite volume viscous grids. Axisymmetric, time dependent, turbulent CFD simulations of a Delta DSV-2A vehicle with a MB-3 liquid main engine burning RJ-1/LOX were first completed. Hydrocarbon chemical kinetics and a k-epsilon turbulence model were employed and predictions were validated with flight measurements of base pressure and temperature. Zonal internal/external grids were created for a Delta DSV-2C vehicle with a MB-3 and three Castor-1 solid motors burning and a Delta-2 with an RS-27 main engine (LOX/RP-1) and 9 GEM's attached/6 burning. Cold air, time dependent FNS calculations were performed for DSV-2C during 1992. Single phase simulations that employ finite rate hydrocarbon and aluminum (solid fuel) combustion chemistry are currently in progress. Reliable and efficient Eulerian algorithms are needed to model two phase (solid-gas) momentum and energy transfer mechanisms for solid motor fuel combustion products.
Quantitative analysis of pedestrian safety at uncontrolled multi-lane mid-block crosswalks in China.
Zhang, Cunbao; Zhou, Bin; Chen, Guojun; Chen, Feng
2017-11-01
A lot of pedestrian-vehicle crashes at mid-block crosswalks severely threaten pedestrian's safety around the world. The situations are even worse in China due to low yielding rate of vehicles at crosswalks. In order to quantitatively analyze pedestrian's safety at multi-lane mid-block crosswalks, the number of pedestrian-vehicle conflicts was utilized to evaluate pedestrian's accident risk. Five mid-block crosswalks (Wuhan, China) were videoed to collect data of traffic situation and pedestrian-vehicle conflicts, and the quantity and spatial distribution of pedestrian-vehicle conflicts at multi-lane mid-block crosswalk were analyzed according to lane-based post-encroachment time(LPET). Statistical results indicate that conflicts are mainly concentrated in lane3 and lane6. Percentage of conflict of each lane numbered from 1 to 6 respectively are 4.1%, 13.1%, 19.8%, 8.4%, 19.0%, 28.1%. Conflict rate under different crossing strategies are also counted. Moreover, an order probit (OP) model of pedestrian-vehicle conflict analysis (PVCA) was built to find out the contributions corresponding to those factors (such as traffic volume, vehicle speed, pedestrian crossing behavior, pedestrian refuge, etc.) to pedestrian-vehicle conflicts. The results show that: pedestrian refuge have positive effects on pedestrian safety; on the other hand, high vehicle speed, high traffic volume, rolling gap crossing pattern, and larger pedestrian platoon have negative effects on pedestrian safety. Based on our field observation and PVCA model, the number of conflicts will rise by 2% while the traffic volume increases 200 pcu/h; similarly, if the vehicle speed increases 5km/h, the number of conflicts will rise by 12% accordingly. The research results could be used to evaluate pedestrian safety at multi-lane mid-block crosswalks, and useful to improve pedestrian safety by means of pedestrian safety education, pedestrian refuge setting, vehicle speed limiting, and so on. Copyright © 2017 Elsevier Ltd. All rights reserved.
75 FR 29605 - Clean Alternative Fuel Vehicle and Engine Conversions
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-26
... Small Volume Manufacturers and Small Volume Test Groups 1. Definition of Small Volume Manufacturers, Small Volume Test Groups, and Small Volume Engine Families a. Light-Duty and Heavy-Duty Complete... and Engines 2. Test Groups, Engine Families, and Evaporative Families a. Test Groups for Light-Duty...
DOT National Transportation Integrated Search
1975-11-01
The crashworthiness of existing urban rail vehicles (passenger cars) and the feasibility of improvements in this area were investigated. Both rail-car structural configurations and impact absorption devices were studied. Recommendations for engineeri...
Thermoelectrics as elements of hybrid-electric vehicle thermal energy systems
NASA Astrophysics Data System (ADS)
Headings, Leon; Washington, Gregory; Jaworski, Christopher M.
2008-03-01
Despite vast technological improvements, the traditional internal combustion powered vehicle still achieves only 25- 30% efficiency, with the remainder lost primarily as heat. While the load leveling offered by hybrid-electric vehicle technology helps to improve this overall efficiency, part of the efficiency gains are achieved by making new systems such as regenerative braking viable. In a similar fashion, thermoelectric (TE) energy recovery has long been considered for traditional vehicles with mixed results, but little has been done to consider thermoelectrics in the framework of the unique energy systems of hybrid vehicles. Systems that may not have been viable or even possible with traditional vehicles may offer improvements to system efficiency as well as emissions, vehicle durability, passenger comfort, and cost. This research describes a simulation developed for evaluating and optimizing thermoelectric energy recovery systems and results for four different system configurations. Two novel system configurations are presented which offer the potential for additional benefits such as emissions reduction that will soon be quantified. In addition, a test setup is presented which was constructed for the testing and validation of various thermoelectric recovery systems. Actual test performance was near the expected theoretical performance and supported the conclusions reached from the computer simulations.
Solar Power Satellite Development: Advances in Modularity and Mechanical Systems
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.
2010-01-01
Space solar power satellites require innovative concepts in order to achieve economically and technically feasible designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment will be enabling design attributes. This paper reviews the current challenges of launching and building very large space systems. A building block approach is proposed in order to achieve near-term solar power satellite risk reduction while promoting the necessary long-term technology advances. Promising mechanical systems technologies anticipated in the coming decades including modularity, material systems, structural concepts, and in-space operations are described
NASA Technical Reports Server (NTRS)
Malone, T. B.
1972-01-01
Requirements were determined analytically for the man machine interface for a teleoperator system performing on-orbit satellite retrieval and servicing. Requirements are basically of two types; mission/system requirements, and design requirements or design criteria. Two types of teleoperator systems were considered: a free flying vehicle, and a shuttle attached manipulator. No attempt was made to evaluate the relative effectiveness or efficiency of the two system concepts. The methodology used entailed an application of the Essex Man-Systems analysis technique as well as a complete familiarization with relevant work being performed at government agencies and by private industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Septon, Kendall K
Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).
Chai, C; Wong, Y D
2014-02-01
At intersection, vehicles coming from different directions conflict with each other. Improper geometric design and signal settings at signalized intersection will increase occurrence of conflicts between road users and results in a reduction of the safety level. This study established a cellular automata (CA) model to simulate vehicular interactions involving right-turn vehicles (as similar to left-turn vehicles in US). Through various simulation scenarios for four case cross-intersections, the relationships between conflict occurrences involving right-turn vehicles with traffic volume and right-turn movement control strategies are analyzed. Impacts of traffic volume, permissive right-turn compared to red-amber-green (RAG) arrow, shared straight-through and right-turn lane as well as signal setting are estimated from simulation results. The simulation model is found to be able to provide reasonable assessment of conflicts through comparison of existed simulation approach and observed accidents. Through the proposed approach, prediction models for occurrences and severity of vehicle conflicts can be developed for various geometric layouts and traffic control strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1995-01-01
The purpose of the Advanced Transportation System Studies (ATSS) Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is Volume 2 of the final report for the contract. It provides documentation of selected technical results from various TA-2 analysis activities, including a detailed narrative description of the SSTO concept assessment results, a user's guide for the associated SSTO sizing tools, an SSTO turnaround assessment report, an executive summary of the ground operations assessments performed during the first year of the contract, a configuration-independent vehicle health management system requirements report, a copy of all major TA-2 contract presentations, a copy of the FLO launch vehicle final report, and references to Pratt & Whitney's TA-2 sponsored final reports regarding the identification of Russian main propulsion technologies.
2002 NASA Seal/Secondary Air System Workshop. Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)
2003-01-01
The 2002 NASA Seal/Secondary Air System Workshop covered the following topics: (i) Overview of NASA s perspective of aeronautics and space technology for the 21st century; (ii) Overview of the NASA-sponsored Ultra-Efficient Engine Technology (UEET), Turbine-Based Combined-Cycle (TBCC), and Revolutionary Turbine Accelator (RTA) programs; (iii) Overview of NASA Glenn's seal program aimed at developing advanced seals for NASA's turbomachinery, space propulsion, and reentry vehicle needs; (iv) Reviews of sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. The NASA UEET and TBCC/RTA program overviews illustrated for the reader the importance of advanced technologies, including seals, in meeting future turbine engine system efficiency and emission goals. For example, the NASA UEET program goals include an 8- to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs NASA is funding to investigate advanced reusable space vehicle technologies (X-38) and advanced space ram/scramjet propulsion systems. Seal challenges posed by these advanced systems include high-temperature operation, resiliency at the operating temperature to accommodate sidewall flexing, and durability to last many missions.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE THEFT PREVENTION STANDARD PHASE-IN AND SMALL-VOLUME LINE REPORTING REQUIREMENTS § 545.3 Applicability. This subpart applies to manufacturers of motor vehicles. ...
A PSFI-based analysis on the energy efficiency potential of China’s domestic passenger vehicles
NASA Astrophysics Data System (ADS)
Chen, Chuan; Ren, Huanhuan; Zhao, Dongchang
2017-01-01
In this article, China’s domestic passenger vehicles (excluding new energy vehicles) are categorized into two groups: local brand vehicles and vehicles manufactured by joint ventures. Performance-Size-Fuel economy Index (PSFI) will be applied to analyse the speed of technical progress and the future trends of these vehicles. In addition, a forecast on energy efficiency potential of domestic passenger vehicles from 2016 to 2020 will be made based on different Emphasis on Reducing Fuel Consumption (ERFC) scenarios. According to the study, if the process of technical progress continues at its current speed, domestic ICE passenger vehicles will hardly meet Phase IV requirements by 2020 even though companies contribute as much technical progress to fuel consumption reduction as possible.
41 CFR 102-34.40 - Who must comply with motor vehicle fuel efficiency requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Who must comply with... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.40 Who must comply...
Feasibility study of modern airships, phase 2. Volume 2: Airport feeder vehicle
NASA Technical Reports Server (NTRS)
1976-01-01
The Airport Feeder vehicle is a VTOL, semi-buoyant ellipsoidal airship capable of transporting passengers or cargo to major CTOL hub terminals from suburban and downtown depots. Six tasks were reviewed: (1) vehicle design definition, (2) operational procedures analysis, (3) cost analysis, (4) comparison with alternate transportation modes, (5) mission/vehicle feasibility assessment, and (6) technology assessment.
Space transfer vehicle concepts and requirements. Volume 2, book 2: Appendix
NASA Technical Reports Server (NTRS)
1991-01-01
This appendix describes the work that was performed to define the Lunar transfer vehicle and Lunar excursion vehicle which were part of the 'Report of the 90-Day Study on Human Exploration of the Moon and Mars.' A detailed concept definition of both vehicles including overall dimensions, mass properties, subsystem definition, and operational flight sequences is included.
NASA Technical Reports Server (NTRS)
Traversi, M.; Piccolo, R.
1980-01-01
Tradeoff study activities and the analysis process used are described with emphasis on (1) review of the alternatives; (2) vehicle architecture; and (3) evaluation of the propulsion system alternatives; interim results are presented for the basic hybrid vehicle characterization; vehicle scheme development; propulsion system power and transmission ratios; vehicle weight; energy consumption and emissions; performance; production costs; reliability, availability and maintainability; life cycle costs, and operational quality. The final vehicle conceptual design is examined.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF TRANSPORTATION FEDERAL MOTOR VEHICLE THEFT PREVENTION STANDARD PHASE-IN AND SMALL-VOLUME LINE REPORTING REQUIREMENTS § 545.8 Records. Each manufacturer shall maintain records of the Vehicle Identification Number for each vehicle for which information is reported under §§ 545.6(b)(2) and 545.7(b)(2...
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF TRANSPORTATION FEDERAL MOTOR VEHICLE THEFT PREVENTION STANDARD PHASE-IN AND SMALL-VOLUME LINE REPORTING REQUIREMENTS § 545.8 Records. Each manufacturer shall maintain records of the Vehicle Identification Number for each vehicle for which information is reported under §§ 545.6(b)(2) and 545.7(b)(2...
DOT National Transportation Integrated Search
1998-04-23
This paper addresses three related subject areas. The first is the total volume of personal motor vehicle travel, its recent growth, and the sources of its growth. The second subject concerns vehicle ownership, specifically, the number, types, and ag...
Propulsion System Technology for Military Land Vehicles
1981-08-01
torques) to decrease specific weight and volume; and (3) hybrid transmissions using low-torque devices (electrical converters or traction drives) with a... VEICLE SPEC POMWE, bWtu FIGURE 1. Impact of vehicle specific power on weight and manufacturing cost of armored vehicles. 15 [ !00, LCV .30 *1
DOT National Transportation Integrated Search
2015-08-01
This document is the first of a seven volume report that describes performance requirements for connected vehicle vehicle-to-infrastructure (V2I) Safety Applications developed for the U.S. Department of Transportation (U.S. DOT). The applications add...
Vehicle trajectory linearisation to enable efficient optimisation of the constant speed racing line
NASA Astrophysics Data System (ADS)
Timings, Julian P.; Cole, David J.
2012-06-01
A driver model is presented capable of optimising the trajectory of a simple dynamic nonlinear vehicle, at constant forward speed, so that progression along a predefined track is maximised as a function of time. In doing so, the model is able to continually operate a vehicle at its lateral-handling limit, maximising vehicle performance. The technique used forms a part of the solution to the motor racing objective of minimising lap time. A new approach of formulating the minimum lap time problem is motivated by the need for a more computationally efficient and robust tool-set for understanding on-the-limit driving behaviour. This has been achieved through set point-dependent linearisation of the vehicle model and coupling the vehicle-track system using an intrinsic coordinate description. Through this, the geometric vehicle trajectory had been linearised relative to the track reference, leading to new path optimisation algorithm which can be formed as a computationally efficient convex quadratic programming problem.
FASTSim: A Model to Estimate Vehicle Efficiency, Cost and Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooker, A.; Gonder, J.; Wang, L.
2015-05-04
The Future Automotive Systems Technology Simulator (FASTSim) is a high-level advanced vehicle powertrain systems analysis tool supported by the U.S. Department of Energy’s Vehicle Technologies Office. FASTSim provides a quick and simple approach to compare powertrains and estimate the impact of technology improvements on light- and heavy-duty vehicle efficiency, performance, cost, and battery batches of real-world drive cycles. FASTSim’s calculation framework and balance among detail, accuracy, and speed enable it to simulate thousands of driven miles in minutes. The key components and vehicle outputs have been validated by comparing the model outputs to test data for many different vehicles tomore » provide confidence in the results. A graphical user interface makes FASTSim easy and efficient to use. FASTSim is freely available for download from the National Renewable Energy Laboratory’s website (see www.nrel.gov/fastsim).« less
Overview of Energy Storage Technologies for Space Applications
NASA Technical Reports Server (NTRS)
Surampudi, Subbarao
2006-01-01
This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.
Sloped terrain segmentation for autonomous drive using sparse 3D point cloud.
Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Jeong, Young-Sik; Um, Kyhyun; Sim, Sungdae
2014-01-01
A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame.
Space Launch System Trans Lunar Payload Delivery Capability
NASA Technical Reports Server (NTRS)
Jackman, A. L.; Smith, D. A.
2016-01-01
NASA Marshall Space Flight Center (MSFC) has successfully completed the Critical Design Review (CDR) of the heavy lift Space Launch System (SLS) and is working towards first flight of the vehicle in 2018. SLS will begin flying crewed missions with an Orion to a lunar vicinity every year after the first 2 flights starting in the early 2020's. So as early as 2021 these Orion flights will deliver ancillary payload, termed "Co-Manifested Payload", with a mass of at least 5.5 metric tons and volume up to 280 cubic meters to a cis-lunar destination. Later SLS flights have a goal of delivering as much as 10 metric tons to a cis-lunar destination. This presentation will describe the ground and flight accommodations, interfaces, and resources planned to be made available to Co-Manifested Payload providers as part of the SLS system. An additional intention is to promote a two-way dialogue between vehicle developers and potential payload users in order to most efficiently evolve required SLS capabilities to meet diverse payload requirements.
2003 NASA Seal/Secondary Air System Workshop. Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)
2004-01-01
The following reports were included in the 2003 NASA Seal/Secondary Air System Workshop:Low Emissions Alternative Power (LEAP); Overview of NASA Glenn Seal Developments; NASA Ultra Efficient Engine Technology Project Overview; Development of Higher Temperature Abradable Seals for Industrial Gas Turbines; High Misalignment Carbon Seals for the Fan Drive Gear System Technologies; Compliant Foil Seal Investigations; Test Rig for Evaluating Active Turbine Blade Tip Clearance Control Concepts; Controls Considerations for Turbine Active Clearance Control; Non-Contacting Finger Seal Developments and Design Considerations; Effect of Flow-Induced Radial Load on Brush Seal/Rotor Contact Mechanics; Seal Developments at Flowserve Corporation; Investigations of High Pressure Acoustic Waves in Resonators With Seal-Like Features; Numerical Investigations of High Pressure Acoustic Waves in Resonators; Feltmetal Seal Material Through-Flow; "Bimodal" Nuclear Thermal Rocket (BNTR) Propulsion for Future Human Mars Exploration Missions; High Temperature Propulsion System Structural Seals for Future Space Launch Vehicles; Advanced Control Surface Seal Development for Future Space Vehicles; High Temperature Metallic Seal Development for Aero Propulsion and Gas Turbine Applications; and BrazeFoil Honeycomb.
Utilization of methanol for polymer electrolyte fuel cells in mobile systems
NASA Astrophysics Data System (ADS)
Schmidt, V. M.; Brockerhoff, P.; Hohlein, B.; Menzer, R.; Stimming, U.
1994-04-01
The constantly growing volume of road traffic requires the introduction of new vehicle propulsion systems with higher efficiency and drastically reduced emission rates. As part of the fuel cell programme of the Research Centre Julich a vehicle propulsion system with methanol as secondary energy carrier and a polymer electrolyte membrane fuel cell (PEMFC) as the main component for energy conversion is developed. The fuel gas is produced by a heterogeneously catalyzed steam reforming reaction in which methanol is converted to H2, CO and CO2. The required energy is provided by the catalytic conversion of methanol for both heating up the system and reforming methanol. The high CO content of the fuel gas requires further processing of the gas or the development of new electrocatalysts for the anode. Various Pt-Ru alloys show promising behaviour as CO-tolerant anodes. The entire fuel cell system is discussed in terms of energy and emission balances. The development of important components is described and experimental results are discussed.
Pictorial communication in virtual and real environments
NASA Technical Reports Server (NTRS)
Ellis, Stephen R. (Editor)
1991-01-01
Papers about the communication between human users and machines in real and synthetic environments are presented. Individual topics addressed include: pictorial communication, distortions in memory for visual displays, cartography and map displays, efficiency of graphical perception, volumetric visualization of 3D data, spatial displays to increase pilot situational awareness, teleoperation of land vehicles, computer graphics system for visualizing spacecraft in orbit, visual display aid for orbital maneuvering, multiaxis control in telemanipulation and vehicle guidance, visual enhancements in pick-and-place tasks, target axis effects under transformed visual-motor mappings, adapting to variable prismatic displacement. Also discussed are: spatial vision within egocentric and exocentric frames of reference, sensory conflict in motion sickness, interactions of form and orientation, perception of geometrical structure from congruence, prediction of three-dimensionality across continuous surfaces, effects of viewpoint in the virtual space of pictures, visual slant underestimation, spatial constraints of stereopsis in video displays, stereoscopic stance perception, paradoxical monocular stereopsis and perspective vergence. (No individual items are abstracted in this volume)
Convergence of Vehicle and Infrastructure Data for Traffic and Demand Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Stanley E.
The increasing availability of highly granular, vehicle trajectory data combined with ever increasing stores of roadway sensor data has provided unparalleled observability into the operation of our urban roadway networks. These data sources are quickly moving from research and prototype environments into full-scale commercial deployment and data offerings. The observability gained allows for increased control opportunities to enhance transportation mobility, safety and energy efficiency. The National Renewable Energy Laboratory (NREL) is involved in three initiatives to leverage these data for positive outcomes: 1) In 2015 NREL, in cooperation with industry and university partners, was awarded an ARPA-E research grant tomore » research a control architecture to incentivize individual travelers toward more sustainable travel behavior. Based on real-time data on the traveler's destination and state of the system, the traveler is presented with route and/or mode choices and offered incentives to accept sustainable alternatives over less-sustainable ones. The project tests the extent to which small incentives can influence, or tip the balance toward more sustainable travel behavior. 2) Although commercial sources of travel time and speed have emerged in recent years based on vehicle probe data, volume estimates continue to rely primarily on historical count data factored for the time of day, day of week, and season of year. Real-time volume flows would enable better tools, simulation in the loop, and ultimately more effective control outcomes. NREL in cooperation with the University of Maryland and industry traffic data providers (INRIX, HERE and TomTom), are attempting to accelerate the timeframe to a viable real-time vehicle volume data feed based on probe data. 3) Signal control on urban arterials for years has had to rely on models rather than measured data to assess performance. High-resolution controller data and low-cost re-identification data now allows for direct measurement of the quality of progression along a corridor. Though still requiring an investment in equipment and communications, these data sources are transforming traffic signal management to a data driven, performance management basis. Ever increasing availability of granular GPS trace data from automobiles may allow for assessment of traffic signal performance, allowing for signal optimization while minimizing the investment in additional sensors and communication infrastructure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).
Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Wishart; Matthew Shirk
2012-12-01
Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models.more » As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real-world driving. The program test results provide information on the veracity of these claims.« less
FY 2007 Progress Report for Advanced Combustion Engine Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2007-12-01
Advanced combustion engines have great potential for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid- electric powertrain configurations. Light-duty vehicles with advanced combustion engines can compete directly with gasoline engine hybrid vehicles in terms of fuel economy and consumer-friendly driving characteristics; also, they are projected to have energy efficiencies that are competitive with hydrogen fuel cell vehicles when used in hybrid applications.Advanced engine technologies being researched and developed by the Advanced Combustion Engine R&D Sub-Program will also allow the use of hydrogen as a fuel in ICEs and will providemore » an energy-efficient interim hydrogen-based powertrain technology during the transition to hydrogen/fuelcell-powered transportation vehicles.« less
DOT National Transportation Integrated Search
1981-09-01
Volume II is the second volume of a three volume document describing the computer program HEVSIM for use with buses and heavy duty trucks. This volume is a user's manual describing how to prepare data input and execute the program. A strong effort ha...
Torrao, G; Fontes, T; Coelho, M; Rouphail, N
2016-07-01
In general, car manufacturers face trade-offs between safety, efficiency and environmental performance when choosing between mass, length, engine power, and fuel efficiency. Moreover, the information available to the consumers makes difficult to assess all these components at once, especially when aiming to compare vehicles across different categories and/or to compare vehicles in the same category but across different model years. The main objective of this research was to develop an integrated tool able to assess vehicle's performance simultaneously for safety and environmental domains, leading to the research output of a Safety, Fuel Efficiency and Green Emissions (SEG) indicator able to evaluate and rank vehicle's performance across those three domains. For this purpose, crash data was gathered in Porto (Portugal) for the period 2006-2010 (N=1374). The crash database was analyzed and crash severity prediction models were developed using advanced logistic regression models. Following, the methodology for the SEG indicator was established combining the vehicle's safety and the environmental evaluation into an integrated analysis. The obtained results for the SEG indicator do not show any trade-off between vehicle's safety, fuel consumption and emissions. The best performance was achieved for newer gasoline passenger vehicles (<5year) with a smaller engine size (<1400cm(3)). According to the SEG indicator, a vehicle with these characteristics can be recommended for a safety-conscious profile user, as well as for a user more interested in fuel economy and/or in green performance. On the other hand, for larger engine size vehicles (>2000cm(3)) the combined score for safety user profile was in average more satisfactory than for vehicles in the smaller engine size group (<1400cm(3)), which suggests that in general, larger vehicles may offer extra protection. The achieved results demonstrate that the developed SEG integrated methodology can be a helpful tool for consumers to evaluate their vehicle selection through different domains (safety, fuel efficiency and green emissions). Furthermore, SEG indicator allows the comparison of vehicles across different categories and vehicle model years. Hence, this research is intended to support the decision-making process for transportation policy, safety and sustainable mobility, providing insights not only to policy makers, but also for general public guidance. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Joost, William J.
2012-09-01
Transportation accounts for approximately 28% of U.S. energy consumption with the majority of transportation energy derived from petroleum sources. Many technologies such as vehicle electrification, advanced combustion, and advanced fuels can reduce transportation energy consumption by improving the efficiency of cars and trucks. Lightweight materials are another important technology that can improve passenger vehicle fuel efficiency by 6-8% for each 10% reduction in weight while also making electric and alternative vehicles more competitive. Despite the opportunities for improved efficiency, widespread deployment of lightweight materials for automotive structures is hampered by technology gaps most often associated with performance, manufacturability, and cost. In this report, the impact of reduced vehicle weight on energy efficiency is discussed with a particular emphasis on quantitative relationships determined by several researchers. The most promising lightweight materials systems are described along with a brief review of the most significant technical barriers to their implementation. For each material system, the development of accurate material models is critical to support simulation-intensive processing and structural design for vehicles; improved models also contribute to an integrated computational materials engineering (ICME) approach for addressing technical barriers and accelerating deployment. The value of computational techniques is described by considering recent ICME and computational materials science success stories with an emphasis on applying problem-specific methods.
NASA Astrophysics Data System (ADS)
1995-03-01
This volume is the third of a 3 volume set that addresses the structural trade study plan that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The most suitable Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Tank System (GCPS) composite materials for intertank, wing and thrust structures are identified. Vehicle resizing charts, selection criteria and back-up charts, parametric costing approach and the finite element method analysis are discussed.
NASA Technical Reports Server (NTRS)
1995-01-01
This volume is the third of a 3 volume set that addresses the structural trade study plan that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The most suitable Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Tank System (GCPS) composite materials for intertank, wing and thrust structures are identified. Vehicle resizing charts, selection criteria and back-up charts, parametric costing approach and the finite element method analysis are discussed.
Optimal trajectories for hypersonic launch vehicles
NASA Technical Reports Server (NTRS)
Ardema, Mark D.; Bowles, Jeffrey V.; Whittaker, Thomas
1994-01-01
In this paper, we derive a near-optimal guidance law for the ascent trajectory from earth surface to earth orbit of a hypersonic, dual-mode propulsion, lifting vehicle. Of interest are both the optical flight path and the optimal operation of the propulsion system. The guidance law is developed from the energy-state approximation of the equations of motion. Because liquid hydrogen fueled hypersonic aircraft are volume sensitive, as well as weight sensitive, the cost functional is a weighted sum of fuel mass and volume; the weighting factor is chosen to minimize gross take-off weight for a given payload mass and volume in orbit.
40 CFR 63.3110 - What notifications must I submit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... elect to include the surface coating of new other motor vehicle bodies, body parts for new other motor vehicles, parts for new other motor vehicles, or aftermarket repair or replacement parts for other motor... volume of applied coating solids from: (i) The combined primer-surfacer, topcoat, final repair, glass...
The Importance of Powertrain Downsizing in a Benefit-Cost Analysis of Vehicle Lightweighting
NASA Astrophysics Data System (ADS)
Ward, J.; Gohlke, D.; Nealer, R.
2017-04-01
Reducing vehicle weight is an important avenue to improve energy efficiency and decrease greenhouse gas emissions from our cars and trucks. Conventionally, models have estimated acceptable increased manufacturing cost as proportional to the lifetime fuel savings associated with reduced vehicle weight. Vehicle lightweighting also enables a decrease in powertrain size and significant reductions in powertrain cost. Accordingly, we propose and apply a method for calculating the maximum net benefits and breakeven cost of vehicle lightweighting that considers both efficiency and powertrain downsizing for a conventional internal combustion engine vehicle, a battery electric vehicle with a range of 300 miles (BEV300), and a fuel cell electric vehicle (FCEV). We find that excluding powertrain downsizing cost savings undervalues the potential total net benefits of vehicle lightweighting, especially for the BEV300 and FCEV.
Sánchez-Hermosilla, Julián; Rincón, Víctor J; Páez, Francisco; Agüera, Francisco; Carvajal, Fernando
2011-08-01
In the greenhouses of south-eastern Spain, plant protection products are applied using mainly sprayers at high pressures and high volumes. This results in major losses on the ground and less than uniform spray deposition on the canopy. Recently, self-propelled vehicles equipped with vertical spray booms have appeared on the market. In this study, deposition on the canopy and the losses to the ground at different spray volumes have been compared, using a self-propelled vehicle with vertical spray booms versus a gun sprayer. Three different spray volumes have been tested with a boom sprayer, and two with a spray gun. The vehicle with the vertical spray boom gave similar depositions to those made with the gun, but at lower application volumes. Also, the distribution of the vertical spray boom was more uniform, with lower losses to the ground. The vertical spray booms used in tomato crops improve the application of plant protection products with respect to the spray gun, reducing the application volumes and the environmental risks of soil pollution. Copyright © 2011 Society of Chemical Industry.
A CFD Analysis of Hydrogen Leakage During On-Pad Purge in the ORION/ARES I Shared Volume
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Edwards, Daryl A.
2011-01-01
A common open volume is created by the stacking of the Orion vehicle onto the Ares I Upper Stage. Called the Shared Volume, both vehicles contribute to its gas, fluid, and thermal environment. One of these environments is related to hazardous hydrogen gas. While both vehicles use inert purge gas to mitigate any hazardous gas buildup, there are concerns that hydrogen gas may still accumulate and that the Ares I Hazardous Gas Detection System will not be sufficient for monitoring the integrated volume. This Computational Fluid Dynamics (CFD) analysis has been performed to examine these topics. Results of the analysis conclude that the Ares I Hazardous Gas Detection System will be able to sample the vent effluent containing the highest hydrogen concentrations. A second conclusion is that hydrogen does not accumulate under the Orion Service Module (SM) avionics ring as diffusion and purge flow mixing sufficiently dilute the hydrogen to safe concentrations. Finally the hydrogen concentrations within the Orion SM engine nozzle may slightly exceed the 1 percent volume fraction when the entire worse case maximum full leak is directed vertically into the engine nozzle.
NASA Technical Reports Server (NTRS)
Quade, D. A.
1978-01-01
The pylon loading at the drop test vehicle and wing interface attack points is presented. The loads shown are determined using a stiffness method, which assumes the side stiffness of the forward hook guide and the fore and aft stiffness of each drag pin to be equal. The net effect of this assumption is that the forward hook guide reacts approximately 96% of the drop test vehicle yawing moment. For a comparison of these loads to previous X-15 analysis design loadings, see Volume 1 of this document.
Eco Assist Techniques through Real-time Monitoring of BEV Energy Usage Efficiency
Kim, Younsun; Lee, Ingeol; Kang, Sungho
2015-01-01
Energy efficiency enhancement has become an increasingly important issue for battery electric vehicles. Even if it can be improved in many ways, the driver’s driving pattern strongly influences the battery energy consumption of a vehicle. In this paper, eco assist techniques to simply implement an energy-efficient driving assistant system are introduced, including eco guide, eco control and eco monitoring methods. The eco guide is provided to control the vehicle speed and accelerator pedal stroke, and eco control is suggested to limit the output power of the battery. For eco monitoring, the eco indicator and eco report are suggested to teach eco-friendly driving habits. The vehicle test, which is done in four ways, consists of federal test procedure (FTP)-75, new european driving cycle (NEDC), city and highway cycles, and visual feedback with audible warnings is provided to attract the driver’s voluntary participation. The vehicle test result shows that the energy usage efficiency can be increased up to 19.41%. PMID:26121611
Construction of road network vulnerability evaluation index based on general travel cost
NASA Astrophysics Data System (ADS)
Leng, Jun-qiang; Zhai, Jing; Li, Qian-wen; Zhao, Lin
2018-03-01
With the development of China's economy and the continuous improvement of her urban road network, the vulnerability of the urban road network has attracted increasing attention. Based on general travel cost, this work constructs the vulnerability evaluation index for the urban road network, and evaluates the vulnerability of the urban road network from the perspective of user generalised travel cost. Firstly, the generalised travel cost model is constructed based on vehicle cost, travel time, and traveller comfort. Then, the network efficiency index is selected as an evaluation index of vulnerability: the network efficiency index is composed of the traffic volume and the generalised travel cost, which are obtained from the equilibrium state of the network. In addition, the research analyses the influence of traffic capacity decrease, road section attribute value, and location of road section, on vulnerability. Finally, the vulnerability index is used to analyse the local area network of Harbin and verify its applicability.
NASA Astrophysics Data System (ADS)
Davies, Rebecca; Speldewinde, Peter C.; Stewart, Barbara A.
2016-04-01
Off-road vehicle use is arguably one of the most environmentally damaging human activities undertaken on sandy beaches worldwide. Existing studies focused on areas of high traffic volumes have demonstrated significantly lower abundance, diversity and species richness of fauna in zones where traffic is concentrated. The impact of lower traffic volumes is unknown. This study aimed to investigate the impacts of relatively low-level vehicle traffic on sandy beach fauna by sampling invertebrate communities at eight beaches located in south-western Australia. We found that even low-level vehicle traffic negatively impacts the physical beach environment, and consequently, the ability of many species to survive in this habitat in the face of this disturbance. Compaction, rutting and displacement of the sand matrix were observed over a large area, resulting in significant decreases in species diversity and density, and measurable shifts in community structure on beaches that experienced off-road vehicle traffic. Communities at impact sites did not display seasonal recovery as traffic was not significantly different between seasons. Given a choice between either reducing traffic volumes, or excluding ORV traffic from beaches, our results suggest that the latter would be more appropriate when the retention of ecological integrity is the objective.
FASTSim: Future Automotive Systems Technology Simulator | Transportation
on light-, medium-, and heavy-duty vehicle efficiency, performance, cost, and battery life. This < 10 seconds to estimate vehicle efficiency, fuel economy, acceleration, battery life, and cost < ; 5 minutes to perform powertrain comparisons of efficiency and cost. FASTSim models a wide variety of
Energy 101: Heavy Duty Vehicle Efficiency
None
2018-06-06
Although Class 8 Trucks only make up 4% of the vehicles on the road, they use about 20% of the nation's transportation fuel. In this video, learn how new fuel-efficient technologies are making our country's big rigs quieter, less polluting, more energy-efficient, and less expensive to operate over time.
Development of an Unstructured Mesh Code for Flows About Complete Vehicles
NASA Technical Reports Server (NTRS)
Peraire, Jaime; Gupta, K. K. (Technical Monitor)
2001-01-01
This report describes the research work undertaken at the Massachusetts Institute of Technology, under NASA Research Grant NAG4-157. The aim of this research is to identify effective algorithms and methodologies for the efficient and routine solution of flow simulations about complete vehicle configurations. For over ten years we have received support from NASA to develop unstructured mesh methods for Computational Fluid Dynamics. As a result of this effort a methodology based on the use of unstructured adapted meshes of tetrahedra and finite volume flow solvers has been developed. A number of gridding algorithms, flow solvers, and adaptive strategies have been proposed. The most successful algorithms developed from the basis of the unstructured mesh system FELISA. The FELISA system has been extensively for the analysis of transonic and hypersonic flows about complete vehicle configurations. The system is highly automatic and allows for the routine aerodynamic analysis of complex configurations starting from CAD data. The code has been parallelized and utilizes efficient solution algorithms. For hypersonic flows, a version of the code which incorporates real gas effects, has been produced. The FELISA system is also a component of the STARS aeroservoelastic system developed at NASA Dryden. One of the latest developments before the start of this grant was to extend the system to include viscous effects. This required the development of viscous generators, capable of generating the anisotropic grids required to represent boundary layers, and viscous flow solvers. We show some sample hypersonic viscous computations using the developed viscous generators and solvers. Although this initial results were encouraging it became apparent that in order to develop a fully functional capability for viscous flows, several advances in solution accuracy, robustness and efficiency were required. In this grant we set out to investigate some novel methodologies that could lead to the required improvements. In particular we focused on two fronts: (1) finite element methods and (2) iterative algebraic multigrid solution techniques.
IMP: Interactive mass properties program. Volume 1: Program description
NASA Technical Reports Server (NTRS)
Stewart, W. A.
1976-01-01
A method of computing a weights and center of gravity analysis of a flight vehicle using interactive graphical capabilities of the Adage 340 computer is described. The equations used to calculate area, volume, and mass properties are based on elemental surface characteristics. The input/output methods employ the graphic support of the Adage computer. Several interactive program options are available for analyzing the mass properties of a vehicle. These options are explained.
Near-Optimal Operation of Dual-Fuel Launch Vehicles
NASA Technical Reports Server (NTRS)
Ardema, M. D.; Chou, H. C.; Bowles, J. V.
1996-01-01
A near-optimal guidance law for the ascent trajectory from earth surface to earth orbit of a fully reusable single-stage-to-orbit pure rocket launch vehicle is derived. Of interest are both the optimal operation of the propulsion system and the optimal flight path. A methodology is developed to investigate the optimal throttle switching of dual-fuel engines. The method is based on selecting propulsion system modes and parameters that maximize a certain performance function. This function is derived from consideration of the energy-state model of the aircraft equations of motion. Because the density of liquid hydrogen is relatively low, the sensitivity of perturbations in volume need to be taken into consideration as well as weight sensitivity. The cost functional is a weighted sum of fuel mass and volume; the weighting factor is chosen to minimize vehicle empty weight for a given payload mass and volume in orbit.
DOT National Transportation Integrated Search
1999-01-01
This brochure discusses how electronic screening of commercial vehicles can aid both state agencies and motor carriers. Benefits include: enhancing enforcement, increasing operations efficiency reducing pollution levels, promotes economic viability a...
DOT National Transportation Integrated Search
1999-01-01
This brochure discusses how electronic screening of commercial vehicles can aid both state agencies and motor carriers. Benefits include: enhancing enforcement, increasing operations efficiency reducing pollution levels, promoting economic viability ...
Benefits of high aerodynamic efficiency to orbital transfer vehicles
NASA Technical Reports Server (NTRS)
Andrews, D. G.; Norris, R. B.; Paris, S. W.
1984-01-01
The benefits and costs of high aerodynamic efficiency on aeroassisted orbital transfer vehicles (AOTV) are analyzed. Results show that a high lift to drag (L/D) AOTV can achieve significant velocity savings relative to low L/D aerobraked OTV's when traveling round trip between low Earth orbits (LEO) and alternate orbits as high as geosynchronous Earth orbit (GEO). Trajectory analysis is used to show the impact of thermal protection system technology and the importance of lift loading coefficient on vehicle performance. The possible improvements in AOTV subsystem technologies are assessed and their impact on vehicle inert weight and performance noted. Finally, the performance of high L/D AOTV concepts is compared with the performances of low L/D aeroassisted and all propulsive OTV concepts to assess the benefits of aerodynamic efficiency on this class of vehicle.
Active Structural Control for Aircraft Efficiency with the X-56A Aircraft
NASA Technical Reports Server (NTRS)
Ouellette, Jeffrey
2015-01-01
The X-56A Multi-Utility Technology Testbed is an experimental aircraft designed to study active control of flexible structures. The vehicle is easily reconfigured to allow for testing of different configurations. The vehicle is being used to study new sensor, actuator, modeling and controls technologies. These new technologies will allow for lighter vehicles and new configurations that exceed the efficiency currently achievable. A description of the vehicle and the current research efforts that it enables are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details ofmore » the methodology.« less
Huang, Wei-Dong; Zhang, Y-H Percival
2011-01-01
Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.
Huang, Wei-Dong; Zhang, Y-H Percival
2011-01-01
Background Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). Methodology/Principal Findings We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements -- biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case – corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. Significance In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens. PMID:21765941
Nichols, J Tyler; Krueger, Paul S
2012-09-01
Recent results have demonstrated that pulsed-jet propulsion can achieve propulsive efficiency greater than that for steady jets when short, high frequency pulses are used, and the pulsed-jet advantage increases as Reynolds number decreases into the intermediate range (∼50). An important aspect of propulsive performance, however, is the vehicle configuration. The nozzle configuration influences the jet speed and, in the case of pulsed-jets, the formation of the vortex rings with each jet pulse, which have important effects on thrust. Likewise, the hull configuration influences the vehicle speed through its effect on drag. To investigate these effects, several flow inlet, nozzle, and hull tail configurations were tested on a submersible, self-propelled pulsed-jet vehicle ('Robosquid' for short) for jet pulse length-to-diameter ratios (L/D) in the range 0.5-6 and pulsing duty cycles (St(L)) of 0.2 and 0.5. For the configurations tested, the vehicle Reynolds number (Re(υ)) ranged from 25 to 110. In terms of propulsive efficiency, changing between forward and aft-facing inlets had little effect for the conditions considered, but changing from a smoothly tapered aft hull section to a blunt tail increased propulsive efficiency slightly due to reduced drag for the blunt tail at intermediate Re(υ). Sharp edged orifices also showed increased vehicle velocity and propulsive efficiency in comparison to smooth nozzles, which was associated with stronger vortex rings being produced by the flow contraction through the orifice. Larger diameter orifices showed additional gains in propulsive efficiency over smaller orifices if the rate of mass flow was matched with the smaller diameter cases, but using the same maximum jet velocity with the larger diameter decreased the propulsive efficiency relative to the smaller diameter cases.
DEVELOPMENT OF AN ARMY STATIONARY AXLE TEST STAND FOR LUBRICANT EFFICIENCY EVALUATION-PART II
2017-01-13
value was estimated based on the engines maximum peak torque output, multiplied by the transmissions 1st gear ratio, high range transfer case ratio...efficiency test stand to allow for laboratory based investigation of Fuel Efficient Gear Oils (FEGO) and their impact on vehicle efficiency. Development...their impact on vehicle efficiency. The test stand was designed and developed with the following goals: • Provide a lower cost alternative for
Gauvin, Lise; Plante, Céline; Fournier, Michel; Morency, Catherine
2012-01-01
Objectives. We examined the extent to which differential traffic volume and road geometry can explain social inequalities in pedestrian, cyclist, and motor vehicle occupant injuries across wealthy and poor urban areas. Methods. We performed a multilevel observational study of all road users injured over 5 years (n = 19 568) at intersections (n = 17 498) in a large urban area (Island of Montreal, Canada). We considered intersection-level (traffic estimates, major roads, number of legs) and area-level (population density, commuting travel modes, household income) characteristics in multilevel Poisson regressions that nested intersections in 506 census tracts. Results. There were significantly more injured pedestrians, cyclists, and motor vehicle occupants at intersections in the poorest than in the richest areas. Controlling for traffic volume, intersection geometry, and pedestrian and cyclist volumes greatly attenuated the event rate ratios between intersections in the poorest and richest areas for injured pedestrians (−70%), cyclists (−44%), and motor vehicle occupants (−44%). Conclusions. Roadway environment can explain a substantial portion of the excess rate of road traffic injuries in the poorest urban areas. PMID:22515869
77 FR 10960 - Drawbridge Operation Regulation; Snake Creek, Islamorada, FL
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-24
... to the high volume of vehicle traffic anticipated during the Annual Nautical Flea Market, which will... vehicle traffic. Opening this bridge on demand in past years during the event has resulted in significant vehicle congestion. By opening the bridge only on the top of the hour vehicular congestion will be reduced...
Orbital operation study. Volume 3: Basic vehicle summaries
NASA Technical Reports Server (NTRS)
Anderson, N. R.; Gianformaggio, A.
1972-01-01
The vehicle related data developed during the orbital operations study are described. The interfacing activity findings have been realigned into the four basic vehicle systems as follows: (1) earth orbital shuttle (EOS), (2) research and applications module (RAM), (3) space based, ground based, manned and unmanned tugs, and (4) modular space station (MSS).
A cost engineered launch vehicle for space tourism
NASA Astrophysics Data System (ADS)
Koelle, -Ing. Dietrich E., , Dr.
1999-09-01
The paper starts with a set of major requirements for a space tourism vehicle and discusses major vehicle options proposed for this purpose. It seems that the requirements can be met best with a Ballistic SSTO Vehicle which has the additional advantage of lowest development cost compared to other launch vehicle options — important for a commercial development venture. The BETA Ballistic Reusable Vehicle Concept is characterized by the plug nozzle cluster engine configuration where the plug nozzle serves also as base plate and re-entry heat shield. In this case no athmospheric turn maneuver is required (as in case-of the front-entry Delta-Clipper DC-Y concept). In our specific case for space tourism this mode has the avantage that the forces at launch and reentry are in exactly the same direction, easing passenger seating arrangements. The second basic advantage is the large available volume on top of the vehicle providing ample space for passenger accomodation, visibility and volume for zero-g experience (free floating), one of the major passenger mission requirements. An adequate passenger cabin design for 100 passengers is presented, as well as the modern BETA-STV Concept with its mass allocations.
Connected vehicles and cybersecurity.
DOT National Transportation Integrated Search
2016-01-01
Connected vehicles are a next-generation technology in vehicles and in infrastructure that will make travel safer, cleaner, and more efficient. The advanced wireless technology enables vehicles to share and communicate information with each other and...
Using GPS telemetry to determine roadways most susceptible to deer-vehicle collisions
Kramer, David W.; Prebyl, Thomas J.; Stickles, James H.; Osborn, David A.; Irwin, Brian J.; Nibbelink, Nathan P.; Warren, Robert J.; Miller, Karl V.
2016-01-01
More than 1 million wildlife-vehicle collisions occur annually in the United States. The majority of these accidents involve white-tailed deer (Odocoileus virginianus) and result in >US $4.6 billion in damage and >200 human fatalities. Prior research has used collision locations to assess sitespecific as well as landscape features that contribute to risk of deer-vehicle collisions. As an alternative approach, we calculated road-crossing locations from 25 GPS-instrumented white-tailed deer near Madison, Georgia (n=154,131 hourly locations). We identified crossing locations by creating movement paths between subsequent GPS points and then intersecting the paths with road locations. Using AIC model selection, we determined whether 10 local and landscape variables were successful at identifying areas where higher frequencies of deer crossings were likely to occur. Our findings indicate that traffic volume, distance to riparian areas, and the amount of forested area influenced the frequency of road crossings. Roadways that were predominately located in wooded landscapes and 200–300 m from riparian areas were crossed frequently. Additionally, we found that areas of low traffic volume (e.g., county roads) had the highest frequencies of deer crossings. Analyses utilizing only records of deer-vehicle collision locations cannot separate the relative contribution of deer crossing rates and traffic volume. Increased frequency of road crossings by deer in low-traffic, forested areas may lead to a greater risk of deer-vehicle collision than suggested by evaluations of deer-vehicle collision frequency alone.
Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle
NASA Astrophysics Data System (ADS)
Jeong, Kwi Seong; Oh, Byeong Soo
The most promising vehicle engine that can overcome the problem of present internal combustion is the hydrogen fuel cell. Fuel cells are devices that change chemical energy directly into electrical energy without combustion. Pure fuel cell vehicles and fuel cell hybrid vehicles (i.e. a combination of fuel cell and battery) as energy sources are studied. Considerations of efficiency, fuel economy, and the characteristics of power output in hybridization of fuel cell vehicle are necessary. In the case of Federal Urban Driving Schedule (FUDS) cycle simulation, hybridization is more efficient than a pure fuel cell vehicle. The reason is that it is possible to capture regenerative braking energy and to operate the fuel cell system within a more efficient range by using battery. Life-cycle cost is largely affected by the fuel cell size, fuel cell cost, and hydrogen cost. When the cost of fuel cell is high, hybridization is profitable, but when the cost of fuel cell is less than 400 US$/kW, a pure fuel cell vehicle is more profitable.
Essays in energy, environment and technological change
NASA Astrophysics Data System (ADS)
Zhou, Yichen Christy
This dissertation studies technological change in the context of energy and environmental economics. Technology plays a key role in reducing greenhouse gas emissions from the transportation sector. Chapter 1 estimates a structural model of the car industry that allows for endogenous product characteristics to investigate how gasoline taxes, R&D subsidies and competition affect fuel efficiency and vehicle prices in the medium-run, both through car-makers' decisions to adopt technologies and through their investments in knowledge capital. I use technology adoption and automotive patents data for 1986-2006 to estimate this model. I show that 92% of fuel efficiency improvements between 1986 and 2006 were driven by technology adoption, while the role of knowledge capital is largely to reduce the marginal production costs of fuel-efficient cars. A counterfactual predicts that an additional 1/gallon gasoline tax in 2006 would have increased the technology adoption rate, and raised average fuel efficiency by 0.47 miles/gallon, twice the annual fuel efficiency improvement in 2003-2006. An R&D subsidy that would reduce the marginal cost of knowledge capital by 25% in 2006 would have raised investment in knowledge capital. This subsidy would have raised fuel efficiency only by 0.06 miles/gallon in 2006, but would have increased variable profits by 2.3 billion over all firms that year. Passenger vehicle fuel economy standards in the United States will require substantial improvements in new vehicle fuel economy over the next decade. Economic theory suggests that vehicle manufacturers adopt greater fuel-saving technologies for vehicles with larger market size. Chapter 2 documents a strong connection between market size, measured by sales, and technology adoption. Using variation consumer demographics and purchasing pattern to account for the endogeneity of market size, we find that a 10 percent increase in market size raises vehicle fuel efficiency by 0.3 percent, as compared to a mean improvement of 1.4 percent per year over 1997-2013. Historically, fuel price and demographic-driven market size changes have had large effects on technology adoption. Furthermore, fuel taxes would induce firms to adopt fuel-saving technologies on their most efficient cars, thereby polarizing the fuel efficiency distribution of the new vehicle fleet.
Hybrid and Plug-in Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-05-20
Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.
Armored Family of Vehicles (AFV). Phase 1 Report. Book 7. Volume 11
1987-08-31
Armored Family of Vehicles. Specific requirements and products are described which initiate the training development process and a training management ...approach for the TRADOC and proponent schools to plan, develop, manage and integrate the training subsystem(s) for the Armored Family of Vehicles...Procedures. q. Charter, Armored Family of Vehicles. r. Operational and Organizational (O&W) Plan for AFV. s. System MANPRINT Management Plan for AFV
Near hybrid passenger vehicle development program, phase 1. Appendices C and D, Volume 2
NASA Technical Reports Server (NTRS)
1979-01-01
Results of tradeoff studies are presented in summary form. Various aspects of the overall vehicle design discussed include selection of the base vehicle, the battery pack configuration, structural modifications, occupant protection, vehicle dynamics, and aerodynamics. The drivetrain design and integration, power conditioning unit, battery subsystem, control system, environmental system are described. Specifications, weight breakdown, and energy consumption measures, and advanced technology components are included.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-14
...- and Heavy-Duty Fuel Efficiency Improvement Program AGENCY: National Highway Traffic Safety... efficiency improvement program for commercial medium- and heavy-duty on-highway vehicles and work trucks... efficiency standards starting with model year (MY) 2016 commercial medium- and heavy-duty on-highway vehicles...
At A Glance: Electric-Drive Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-07-01
Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).
1988-12-01
members of our committee for their contributions to our work : Major Lanson Hudson, Lieutenant Colonel Paul King, and Dr. Curtis Spenny provided many... Effectiveness MSL Mean Sea Level MURV Modular Unmanned Research Vehicle n.p. neutral point NASA National Aeronautics and Space Administration PAM Pulse Amplitude...subsystem objectives and measures of effectiveness , see Volume One, Figure 2.2 The systems approach was then applied to generate and select the best
49 CFR 565.10 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE IDENTIFICATION NUMBER (VIN) REQUIREMENTS VIN Requirements... vehicle identification number (VIN) system and its installation to simplify vehicle identification information retrieval and to increase the accuracy and efficiency of vehicle recall campaigns. ...
49 CFR 565.10 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE IDENTIFICATION NUMBER (VIN) REQUIREMENTS VIN Requirements... vehicle identification number (VIN) system and its installation to simplify vehicle identification information retrieval and to increase the accuracy and efficiency of vehicle recall campaigns. ...
49 CFR 565.10 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE IDENTIFICATION NUMBER (VIN) REQUIREMENTS VIN Requirements... vehicle identification number (VIN) system and its installation to simplify vehicle identification information retrieval and to increase the accuracy and efficiency of vehicle recall campaigns. ...
49 CFR 565.10 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE IDENTIFICATION NUMBER (VIN) REQUIREMENTS VIN Requirements... vehicle identification number (VIN) system and its installation to simplify vehicle identification information retrieval and to increase the accuracy and efficiency of vehicle recall campaigns. ...
49 CFR 565.10 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE IDENTIFICATION NUMBER (VIN) REQUIREMENTS VIN Requirements... vehicle identification number (VIN) system and its installation to simplify vehicle identification information retrieval and to increase the accuracy and efficiency of vehicle recall campaigns. ...
Position verification systems for an automated highway system.
DOT National Transportation Integrated Search
2015-03-01
Automated vehicles promote road safety, fuel efficiency, and reduced travel time by decreasing traffic : congestion and driver workload. In a vehicle platoon (grouping vehicles to increase road capacity by : managing distance between vehicles using e...
Strain Monitoring of Flexible Structures
NASA Technical Reports Server (NTRS)
Litteken, Douglas A.
2017-01-01
One of the biggest challenges facing NASA's deep space exploration goals is structural mass. A long duration transit vehicle on a journey to Mars, for example, requires a large internal volume for cargo, supplies and crew support. As with all space structures, a large pressure vessel is not enough. The vehicle also requires thermal, micro-meteoroid, and radiation protection, a navigation and control system, a propulsion system, and a power system, etc. As vehicles get larger, their associated systems also get larger and more complex. These vehicles require larger lift capacities and force the mission to become extremely costly. In order to build large volume habitable vehicles, with only minimal increases in launch volume and mass, NASA is developing lightweight structures. Lightweight structures are made from non-metallic materials including graphite composites and high strength fabrics and could provide similar or better structural capability than metals, but with significant launch volume and mass savings. Fabric structures specifically, have been worked by NASA off and on since its inception, but most notably in the 1990's with the TransHAB program. These TransHAB developed structures use a layered material approach to form a pressure vessel with integrated thermal and micro-meteoroid and orbital debris (MMOD) protection. The flexible fabrics allow the vessel to be packed in a small volume during launch and expand into a much larger volume once in orbit. NASA and Bigelow Aerospace recently installed the first human-rated inflatable module on the International Space Station (ISS), known as the Bigelow Expandable Activity Module (BEAM) in May of 2016. The module provides a similar internal volume to that of an Orbital ATK Cygnus cargo vehicle, but with a 77% launch volume savings. As lightweight structures are developed, testing methods are vital to understanding their behavior and validating analytical models. Common techniques can be applied to fabric materials, such as tensile testing, fatigue testing, and shear testing, but common measurement techniques cannot be used on fabric. Measuring strain in a material and during a test is a critical parameter for an engineer to monitor the structure during the test and correlate to an analytical model. The ability to measure strain in fabric structures is a challenge for NASA. Foil strain gauges, for example, are commonplace on metallic structures testing, but are extremely difficult to interface with a fabric substrate. New strain measuring techniques need to be developed for use with fabric structures. This paper investigates options for measuring strain in fabric structures for both ground testing and in-space structural health monitoring. It evaluates current commercially available options and outlines development work underway to build custom measurement solutions for NASA's fabric structures.
NASA Technical Reports Server (NTRS)
Quade, D. A.
1978-01-01
The airplane flutter and maneuver-gust load analysis results obtained during B-52B drop test vehicle configuration (with fins) evaluation are presented. These data are presented as supplementary data to that given in Volume 1 of this document. A brief mathematical description of airspeed notation and gust load factor criteria are provided as a help to the user. References are defined which provide mathematical description of the airplane flutter and load analysis techniques. Air-speed-load factor diagrams are provided for the airplane weight configurations reanalyzed for finned drop test vehicle configuration.
NASA Technical Reports Server (NTRS)
Quade, D. A.
1978-01-01
The pylon loading at the drop test vehicle and wing interface attach points is presented. The loads shown are determined using a stiffness method, which assumes the side stiffness of the foreward hook guide to be one-fourth of the fore and aft stiffness of each drag pin. The net effect of this assumption is that the forward hook guide reacts approximately 85% of the drop test vehicle yawing moment. For a comparison of these loads to previous X-15 analysis design loadings, see Volume 1 of this document.
Hu, Miao; Zhong, Zhangdui; Ni, Minming; Baiocchi, Andrea
2016-11-01
Large volume content dissemination is pursued by the growing number of high quality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors' best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well.
Hu, Miao; Zhong, Zhangdui; Ni, Minming; Baiocchi, Andrea
2016-01-01
Large volume content dissemination is pursued by the growing number of high quality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well. PMID:27809285
A Traction Control Strategy with an Efficiency Model in a Distributed Driving Electric Vehicle
Lin, Cheng
2014-01-01
Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the two-dimensional design space composed of the acceleration pedal signal and the vehicle speed. The sliding mode control strategy for the joint roads and the efficiency model for the typical drive cycles were simulated. Simulation results show that the proposed driving control approach has the potential to apply to different road surfaces. It keeps the wheels' slip ratios within the stable zone and improves the fuel economy on the premise of tracking the driver's intention. PMID:25197697
A traction control strategy with an efficiency model in a distributed driving electric vehicle.
Lin, Cheng; Cheng, Xingqun
2014-01-01
Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the two-dimensional design space composed of the acceleration pedal signal and the vehicle speed. The sliding mode control strategy for the joint roads and the efficiency model for the typical drive cycles were simulated. Simulation results show that the proposed driving control approach has the potential to apply to different road surfaces. It keeps the wheels' slip ratios within the stable zone and improves the fuel economy on the premise of tracking the driver's intention.
NASA Astrophysics Data System (ADS)
Wang, Rongrong; Chen, Yan; Feng, Daiwei; Huang, Xiaoyu; Wang, Junmin
This paper presents the development and experimental characterizations of a prototyping pure electric ground vehicle, which is equipped with four independently actuated in-wheel motors (FIAIWM) and is powered by a 72 V 200 Ah LiFeYPO 4 battery pack. Such an electric ground vehicle (EGV) employs four in-wheel (or hub) motors to independently drive/brake the four wheels and is one of the promising vehicle architectures primarily due to its actuation flexibility, energy efficiency, and performance potentials. Experimental data obtained from the EGV chassis dynamometer tests were employed to generate the in-wheel motor torque response and power efficiency maps in both driving and regenerative braking modes. A torque distribution method is proposed to show the potentials of optimizing the FIAIWM EGV operational energy efficiency by utilizing the actuation flexibility and the characterized in-wheel motor efficiency and torque response.
NASA Technical Reports Server (NTRS)
Weber, Gary A.
1991-01-01
The topics covered include the following: mission analysis; initial and evolutionary space transfer vehicle (STV) concept definition; configuration and subsystem trade studies; and operations and logistics.
CleanFleet final report. Volume 7, vehicle emissions
DOT National Transportation Integrated Search
1995-12-01
CleanFleet, formally known as the South Coast Alternative Fuels Demonstration, : was a comprehensive demonstration of alternative fuel vehicles (AFVs) in daily : commercial service. Measurements of exhaust and evaporative emissions from CleanFleet va...
A Data Cleaning Method for Big Trace Data Using Movement Consistency
Tang, Luliang; Zhang, Xia; Li, Qingquan
2018-01-01
Given the popularization of GPS technologies, the massive amount of spatiotemporal GPS traces collected by vehicles are becoming a new kind of big data source for urban geographic information extraction. The growing volume of the dataset, however, creates processing and management difficulties, while the low quality generates uncertainties when investigating human activities. Based on the conception of the error distribution law and position accuracy of the GPS data, we propose in this paper a data cleaning method for this kind of spatial big data using movement consistency. First, a trajectory is partitioned into a set of sub-trajectories using the movement characteristic points. In this process, GPS points indicate that the motion status of the vehicle has transformed from one state into another, and are regarded as the movement characteristic points. Then, GPS data are cleaned based on the similarities of GPS points and the movement consistency model of the sub-trajectory. The movement consistency model is built using the random sample consensus algorithm based on the high spatial consistency of high-quality GPS data. The proposed method is evaluated based on extensive experiments, using GPS trajectories generated by a sample of vehicles over a 7-day period in Wuhan city, China. The results show the effectiveness and efficiency of the proposed method. PMID:29522456
NASA Technical Reports Server (NTRS)
DiBlasi, Angelo G.
1992-01-01
A preliminary development plan for an integrated propulsion module (IPM) is described. The IPM, similar to the Space Transportation Main engine (STME) engine, is applicable to the Advanced Launch System (ALS) baseline vehicle. The same STME development program ground rules and time schedule were assumed for the IPM. However, the unique advantages of testing an integrated engine element, in terms of reduced number of hardware and number of system and reliability tests, compared to single standalone engine and MPTA, are highlighted. The potential ability of the IPM to meet the ALS program goals for robustness, operability and reliability is emphasized.
Motivations for Speeding, Volume I : Summary Report
DOT National Transportation Integrated Search
2012-08-01
This is Volume I of a three-volume report. It contains the results of a study that examined the speeding behavior of drivers in their own vehicles over the course of three to four weeks of naturalistic driving in : urban (Seattle, Washington) and rur...
Motivations for speeding : Volume III : appendices.
DOT National Transportation Integrated Search
2013-09-01
This is Volume III of a three-volume report. The report contains the results of a study that examined the speeding behavior of drivers in their own vehicles over the course of three to four weeks of naturalistic driving in urban (Seattle, WA) and rur...
NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
NREL bridges fuels and engines R&D to maximize vehicle efficiency and performance. The lab’s fuels and engines research covers the full spectrum of innovation—from fuel chemistry, conversion, and combustion to the evaluation of how fuels interact with engine and vehicle design. This innovative approach has the potential to positively impact our economy, national energy security, and air quality.
the desired vehicle technology. PHEV-x means a plug-in hybrid electric vehicle with x miles of all hybrids, or more efficient conventional vehicles. To explore the effect of adding vehicles to your fleet , change the current number of vehicles to zero and enter a number of new vehicles. Petroleum and
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).
NASA Technical Reports Server (NTRS)
Elliott, D. W.
1976-01-01
The conversion of two T-39 aircraft into lift cruise fan research and technology vehicles is discussed. The concept is based upon modifying the T-39A (NA265-40) Sabreliner airframe into a V/STOL configuration by incorporating two LCF-459 lift cruise fans and three YJ-97 gas generators. The propulsion concept provides the thrust for horizontal flight or lift for vertical flight by deflection of bifurcated nozzles while maintaining engine out safety throughout the flight envelope. The configuration meets all the study requirements specified for the design with control powers in VTOL and conversion in excess of the requirement making it an excellent vehicle for research and development. The study report consists of two volumes; Volume 1 (Reference a) contains background data detailed description and technical substantiation of the aircraft. Volume 2 includes cost data, scheduling and program planning not addressed in Volume 1.
49 CFR 565.1 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE IDENTIFICATION NUMBER (VIN) REQUIREMENTS General... requirements for a vehicle identification number (VIN) system and its installation to simplify vehicle identification information retrieval and to increase the accuracy and efficiency of vehicle recall campaigns. ...
49 CFR 565.1 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE IDENTIFICATION NUMBER (VIN) REQUIREMENTS General... requirements for a vehicle identification number (VIN) system and its installation to simplify vehicle identification information retrieval and to increase the accuracy and efficiency of vehicle recall campaigns. ...
49 CFR 565.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE IDENTIFICATION NUMBER (VIN) REQUIREMENTS General... requirements for a vehicle identification number (VIN) system and its installation to simplify vehicle identification information retrieval and to increase the accuracy and efficiency of vehicle recall campaigns. ...
49 CFR 565.1 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE IDENTIFICATION NUMBER (VIN) REQUIREMENTS General... requirements for a vehicle identification number (VIN) system and its installation to simplify vehicle identification information retrieval and to increase the accuracy and efficiency of vehicle recall campaigns. ...
49 CFR 565.1 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE IDENTIFICATION NUMBER (VIN) REQUIREMENTS General... requirements for a vehicle identification number (VIN) system and its installation to simplify vehicle identification information retrieval and to increase the accuracy and efficiency of vehicle recall campaigns. ...
Connected Vehicle Technologies for Efficient Urban Transportation
DOT National Transportation Integrated Search
2016-10-24
Connected vehicle technology is employed to optimize the vehicle's control system in real-time to reduce congestion, improve fuel economy, and reduce emissions. This project's goal was to develop a two-way communication system to upload vehicle data ...
Vehicle-to-vehicle communications in mixed passenger-freight convoys : [final report].
DOT National Transportation Integrated Search
2016-09-01
Vehicle convoys (platoons) hold a promise for significant efficiency improvements of freight and : passenger transportation through better system integration. Through the use of advanced driver : assistance, vehicles in a convoy can keep shorter dist...
NASA Technical Reports Server (NTRS)
1971-01-01
The baseline preliminary design developed for the Bioexplorer spacecraft under a previous contract was used, and further study effort devoted in areas of thermal control, attitude control, and power subsystem design. The use of the space shuttle vehicle as a potential launch and recovery vehicle for the Bioresearch module was also evaluated.
Manned Orbital Transfer Vehicle (MOTV). Volume 3: Program requirements documents
NASA Technical Reports Server (NTRS)
Boyland, R. E.; Sherman, S. W.; Morfin, H. W.
1979-01-01
The requirements for geosynchronous orbit capability using the manned orbit transfer vehicle (MOTV) are defined. The program requirements, the mission requirements, and the system and subsystem requirements for the MOTV are discussed. The mission requirements include a geosynchronous Earth orbit vehicle for the construction, servicing, repair and operation of communications, solar power, and Earth observation satellites.
40 CFR 86.153-98 - Vehicle and canister preconditioning; refueling test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... controlled to 50±25 grains of water vapor per pound of dry air) maintained at a nominal flow rate of 0.8 cfm... preconditioning; refueling test. (a) Vehicle and canister preconditioning. Vehicles and vapor storage canisters... at least 1200 canister bed volumes of ambient air (with humidity controlled to 50±25 grains of water...
40 CFR 86.153-98 - Vehicle and canister preconditioning; refueling test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... controlled to 50±25 grains of water vapor per pound of dry air) maintained at a nominal flow rate of 0.8 cfm... preconditioning; refueling test. (a) Vehicle and canister preconditioning. Vehicles and vapor storage canisters... at least 1200 canister bed volumes of ambient air (with humidity controlled to 50±25 grains of water...
40 CFR 86.153-98 - Vehicle and canister preconditioning; refueling test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... controlled to 50±25 grains of water vapor per pound of dry air) maintained at a nominal flow rate of 0.8 cfm... preconditioning; refueling test. (a) Vehicle and canister preconditioning. Vehicles and vapor storage canisters... at least 1200 canister bed volumes of ambient air (with humidity controlled to 50±25 grains of water...
40 CFR 86.153-98 - Vehicle and canister preconditioning; refueling test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... controlled to 50±25 grains of water vapor per pound of dry air) maintained at a nominal flow rate of 0.8 cfm... preconditioning; refueling test. (a) Vehicle and canister preconditioning. Vehicles and vapor storage canisters... at least 1200 canister bed volumes of ambient air (with humidity controlled to 50±25 grains of water...
40 CFR 86.153-98 - Vehicle and canister preconditioning; refueling test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... controlled to 50±25 grains of water vapor per pound of dry air) maintained at a nominal flow rate of 0.8 cfm... preconditioning; refueling test. (a) Vehicle and canister preconditioning. Vehicles and vapor storage canisters... at least 1200 canister bed volumes of ambient air (with humidity controlled to 50±25 grains of water...
Research on the impacts of large-scale electric vehicles integration into power grid
NASA Astrophysics Data System (ADS)
Su, Chuankun; Zhang, Jian
2018-06-01
Because of its special energy driving mode, electric vehicles can improve the efficiency of energy utilization and reduce the pollution to the environment, which is being paid more and more attention. But the charging behavior of electric vehicles is random and intermittent. If the electric vehicle is disordered charging in a large scale, it causes great pressure on the structure and operation of the power grid and affects the safety and economic operation of the power grid. With the development of V2G technology in electric vehicle, the study of the charging and discharging characteristics of electric vehicles is of great significance for improving the safe operation of the power grid and the efficiency of energy utilization.
Sakai, Hiroyuki; Takahara, Miwa; Honjo, Naomi F; Doi, Shun'ichi; Sadato, Norihiro; Uchiyama, Yuji
2012-01-01
Although low executive functioning is a risk factor for vehicle crashes among elderly drivers, the neural basis of individual differences in this cognitive ability remains largely unknown. Here we aimed to examine regional frontal gray matter volume associated with executive functioning in normal aging individuals, using voxel-based morphometry (VBM). To this end, 39 community-dwelling elderly volunteers who drove a car on a daily basis participated in structural magnetic resonance imaging, and completed two questionnaires concerning executive functioning and risky driving tendencies in daily living. Consequently, we found that participants with low executive function capacity were prone to risky driving. Furthermore, VBM analysis revealed that lower executive function capacity was associated with smaller gray matter volume in the supplementary motor area (SMA). Thus, the current data suggest that SMA volume is a reliable predictor of individual differences in executive function capacity as a risk factor for vehicle crashes among elderly persons. The implication of our results is that regional frontal gray matter volume might underlie the variation in driving tendencies among elderly drivers. Therefore, detailed driving behavior assessments might be able to detect early neurodegenerative changes in the frontal lobe in normal aging adults.
NASA Technical Reports Server (NTRS)
Simon, Matthew A.; Toups, Larry
2014-01-01
Increased public awareness of carbon footprints, crowding in urban areas, and rising housing costs have spawned a 'small house movement' in the housing industry. Members of this movement desire small, yet highly functional residences which are both affordable and sensitive to consumer comfort standards. In order to create comfortable, minimum-volume interiors, recent advances have been made in furniture design and approaches to interior layout that improve both space utilization and encourage multi-functional design for small homes, apartments, naval, and recreational vehicles. Design efforts in this evolving niche of terrestrial architecture can provide useful insights leading to innovation and efficiency in the design of space habitats for future human space exploration missions. This paper highlights many of the cross-cutting architectural solutions used in small space design which are applicable to the spacecraft interior design problem. Specific solutions discussed include reconfigurable, multi-purpose spaces; collapsible or transformable furniture; multi-purpose accommodations; efficient, space saving appliances; stowable and mobile workstations; and the miniaturization of electronics and computing hardware. For each of these design features, descriptions of how they save interior volume or mitigate other small space issues such as confinement stress or crowding are discussed. Finally, recommendations are provided to provide guidance for future designs and identify potential collaborations with the small spaces design community.
High Efficiency, Clean Combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donald Stanton
2010-03-31
Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast,more » the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B20 (biodiesel). (5) To further improve the brake thermal efficiency of the engine as integrated into the vehicle. To demonstrate robustness and commercial viability of the HECC engine technology as integrated into the vehicles. The Cummins HECC program supported the Advanced Combustion Engine R&D and Fuels Technology initiatives of the DoE Vehicle Technologies Multi-Year Program Plan (MYPP). In particular, the HECC project goals enabled the DoE Vehicle Technologies Program (VTP) to meet energy-efficiency improvement targets for advanced combustion engines suitable for passenger and commercial vehicles, as well as addressing technology barriers and R&D needs that are common between passenger and commercial vehicle applications of advanced combustion engines.« less
NASA Technical Reports Server (NTRS)
Gunasekara, Onalli; Wong, Uland Y.; Furlong, Michael P.; Dille, Michael
2017-01-01
Current technologies of exploring habitable areas of icy moons are limited to flybys of space probes. This research project addresses long-term navigation of icy moons by developing a MATLAB adjustable trajectory based on the volume of plume material observed. Plumes expose materials from the sub-surface without accessing the subsurface. Aerial vehicles capable of scouting vapor plumes and detecting maximum plume material volumes, which are considered potentially habitable in inhospitable environments, would enable future deep-space missions to search for extraterrestrial organisms on the surface of icy moons. Although this platform is still a prototype, it demonstrates the potential aerial vehicles can have in improving the capabilities of long-term space navigation and enabling technology for detecting life in extreme environments. Additionally, this work is developing the capabilities that could be utilized as a platform for space biology research. For example, aerial vehicles that are sent to map extreme environments of icy moons or the planet Mars, could also carry small payloads with automated cell-biology experiments, designed to probe the biological response of low-gravity and high-radiation planetary environments, serving as a pathfinder for future human missions.
NASA Technical Reports Server (NTRS)
Traversi, M.; Barbarek, L. A. C.
1979-01-01
Applicable data was categorized and processed according to vehicle usage and trip parameters with consideration of payload (cargo, people, size) and driving cycles. A mission that maximizes the fuel potential savings for the total 1985 vehicle fleet was selected. Mission requirements that have a bearing on conventional and hybrid vehicle performance and characteristics were identified and formulated and a reference ICE vehicle was selected that meets or exceeds all requirements while maintaining within applicable constraints. Specifications for vehicle performance were established based on mission requirements, mission related vehicle characteristics, and fuel consumption.
Complementary effect of patient volume and quality of care on hospital cost efficiency.
Choi, Jeong Hoon; Park, Imsu; Jung, Ilyoung; Dey, Asoke
2017-06-01
This study explores the direct effect of an increase in patient volume in a hospital and the complementary effect of quality of care on the cost efficiency of U.S. hospitals in terms of patient volume. The simultaneous equation model with three-stage least squares is used to measure the direct effect of patient volume and the complementary effect of quality of care and volume. Cost efficiency is measured with a data envelopment analysis method. Patient volume has a U-shaped relationship with hospital cost efficiency and an inverted U-shaped relationship with quality of care. Quality of care functions as a moderator for the relationship between patient volume and efficiency. This paper addresses the economically important question of the relationship of volume with quality of care and hospital cost efficiency. The three-stage least square simultaneous equation model captures the simultaneous effects of patient volume on hospital quality of care and cost efficiency.
Motivations for speeding : Volume II : findings report.
DOT National Transportation Integrated Search
2013-09-01
This is Volume II of a three-volume report. It contains the results of a study that examined the speeding behavior of drivers in their own vehicles over the course of three to four weeks of naturalistic driving in urban (Seattle, WA) and rural (Colle...
Multispan Elevated Guideway Design for Passenger Transport Vehicles : Volume 1. Text.
DOT National Transportation Integrated Search
1975-04-01
Analysis techniques, a design procedure and design data are described for passenger vehicle, simply supported, single span and multiple span elevated guideway structures. Analyses and computer programs are developed to determine guideway deflections,...
Synthesis of Animal-Vehicle Collision Mitigation Measures.
DOT National Transportation Integrated Search
2007-08-01
In all western states, domestic animal and wildlife populations are increasing as well as the : vehicular traffic volumes. Consequently, increases in animal-vehicle collisions have been : reported by many states. The purpose of this report is to prov...
Drag reductions obtained by modifying a box-shaped ground vehicle
NASA Technical Reports Server (NTRS)
Saltzman, E. J.; Meyer, R. R., Jr.; Lux, D. P.
1974-01-01
A box-shaped ground vehicle was used to simulate the aerodynamic drag of high volume transports, that is, delivery vans, trucks, or motor homes. The coast-down technique was used to define the drag of the original vehicle, having all square corners, and several modifications of the vehicle. Test velocities ranged up to 65 miles per hour, which provided maximum Reynolds numbers of 1 times 10 to the 7th power based on vehicle length. One combination of modifications produced a reduction in aerodynamic drag of 61 percent as compared with the original square-cornered vehicle.
NASA Astrophysics Data System (ADS)
Wei, Xin; Sun, Bing
2011-10-01
The fluid-structure interaction may occur in space launch vehicles, which would lead to bad performance of vehicles, damage equipments on vehicles, or even affect astronauts' health. In this paper, analysis on dynamic behavior of liquid oxygen (LOX) feeding pipe system in a large scale launch vehicle is performed, with the effect of fluid-structure interaction (FSI) taken into consideration. The pipe system is simplified as a planar FSI model with Poisson coupling and junction coupling. Numerical tests on pipes between the tank and the pump are solved by the finite volume method. Results show that restrictions weaken the interaction between axial and lateral vibrations. The reasonable results regarding frequencies and modes indicate that the FSI affects substantially the dynamic analysis, and thus highlight the usefulness of the proposed model. This study would provide a reference to the pipe test, as well as facilitate further studies on oscillation suppression.
SVANET: A smart vehicular ad hoc network for efficient data transmission with wireless sensors.
Sahoo, Prasan Kumar; Chiang, Ming-Jer; Wu, Shih-Lin
2014-11-25
Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET) architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency.
Fuzzy control based engine sizing optimization for a fuel cell/battery hybrid mini-bus
NASA Astrophysics Data System (ADS)
Kim, Minjin; Sohn, Young-Jun; Lee, Won-Yong; Kim, Chang-Soo
The fuel cell/battery hybrid vehicle has been focused for the alternative engine of the existing internal-combustion engine due to the following advantages of the fuel cell and the battery. Firstly, the fuel cell is highly efficient and eco-friendly. Secondly, the battery has the fast response for the changeable power demand. However, the competitive efficiency of the hybrid fuel cell vehicle is necessary to successfully alternate the conventional vehicles with the fuel cell hybrid vehicle. The most relevant factor which affects the overall efficiency of the hybrid fuel cell vehicle is the relative engine sizing between the fuel cell and the battery. Therefore the design method to optimize the engine sizing of the fuel cell hybrid vehicle has been proposed. The target system is the fuel cell/battery hybrid mini-bus and its power distribution is controlled based on the fuzzy logic. The optimal engine sizes are determined based on the simulator developed in this paper. The simulator includes the several models for the fuel cell, the battery, and the major balance of plants. After the engine sizing, the system efficiency and the stability of the power distribution are verified based on the well-known driving schedule. Consequently, the optimally designed mini-bus shows good performance.
SVANET: A Smart Vehicular Ad Hoc Network for Efficient Data Transmission with Wireless Sensors
Sahoo, Prasan Kumar; Chiang, Ming-Jer; Wu, Shih-Lin
2014-01-01
Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET) architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency. PMID:25429409
NASA Astrophysics Data System (ADS)
Won, Hoyun; Hong, Yang-Ki; Lee, Woncheol; Choi, Minyeong
2018-05-01
We used four rotor topologies of an interior permanent magnet synchronous motor (IPMSM) to investigate the effects of remanent flux density (Br) and coercivity (Hc) of permanent magnet on motor performance. Commercial strontium hexaferrite (SrFe12O19: energy product, (BH)max, of 4.62 MGOe) and Nd-Fe-B ((BH)max of 38.2 MGOe) magnets were used for the rotor designs. The same machine specifications and magnet volume keep constant, while the Hc and Br vary to calculate torque and energy efficiency with the finite-element analysis. A combination of high Hc and low Br more effectively increased maximum torque of IPMSM when the hexaferrite magnet was used. For Nd-Fe-B magnet, the same combination did not affect maximum torque, but increased energy efficiency at high speed. Therefore, the Hc value of a permanent magnet is more effective than the Br in producing high maximum torque for SrM-magnet based IPMSM and high energy efficiency at high speed for Nd-Fe-B magnet based IPMSM.
The economic efficiency of allowing longer combination vehicles in Texas.
DOT National Transportation Integrated Search
2011-08-01
This paper shows the economic efficiency of allowing longer combination vehicles in Texas. First, an : overview of the truck size and weight policies is explained, with an emphasis on those that affect : Texas. Next, LCV operations in other countries...
40 CFR 80.1129 - Requirements for separating RINs from volumes of renewable fuel.
Code of Federal Regulations, 2011 CFR
2011-07-01
... motor vehicle fuel. (5) RINs assigned to a volume of biodiesel (mono-alkyl ester) can only be separated from that volume pursuant to paragraph (b)(2) of this section if such biodiesel is blended into diesel fuel at a concentration of 80 volume percent biodiesel (mono-alkyl ester) or less. (i) This paragraph...
40 CFR 80.1129 - Requirements for separating RINs from volumes of renewable fuel.
Code of Federal Regulations, 2010 CFR
2010-07-01
... motor vehicle fuel. (5) RINs assigned to a volume of biodiesel (mono-alkyl ester) can only be separated from that volume pursuant to paragraph (b)(2) of this section if such biodiesel is blended into diesel fuel at a concentration of 80 volume percent biodiesel (mono-alkyl ester) or less. (i) This paragraph...
40 CFR 80.1129 - Requirements for separating RINs from volumes of renewable fuel.
Code of Federal Regulations, 2013 CFR
2013-07-01
... motor vehicle fuel. (5) RINs assigned to a volume of biodiesel (mono-alkyl ester) can only be separated from that volume pursuant to paragraph (b)(2) of this section if such biodiesel is blended into diesel fuel at a concentration of 80 volume percent biodiesel (mono-alkyl ester) or less. (i) This paragraph...
40 CFR 80.1129 - Requirements for separating RINs from volumes of renewable fuel.
Code of Federal Regulations, 2012 CFR
2012-07-01
... motor vehicle fuel. (5) RINs assigned to a volume of biodiesel (mono-alkyl ester) can only be separated from that volume pursuant to paragraph (b)(2) of this section if such biodiesel is blended into diesel fuel at a concentration of 80 volume percent biodiesel (mono-alkyl ester) or less. (i) This paragraph...
40 CFR 80.1129 - Requirements for separating RINs from volumes of renewable fuel.
Code of Federal Regulations, 2014 CFR
2014-07-01
... motor vehicle fuel. (5) RINs assigned to a volume of biodiesel (mono-alkyl ester) can only be separated from that volume pursuant to paragraph (b)(2) of this section if such biodiesel is blended into diesel fuel at a concentration of 80 volume percent biodiesel (mono-alkyl ester) or less. (i) This paragraph...
40 CFR 80.599 - How do I calculate volume balances for designation purposes?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How do I calculate volume balances for... § 80.599 How do I calculate volume balances for designation purposes? (a) Quarterly compliance periods... June 30, 2013. July 1, 2013 May 31, 2014. (2) [Reserved] (b) Volume balance for motor vehicle diesel...
40 CFR 80.599 - How do I calculate volume balances for designation purposes?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How do I calculate volume balances for... § 80.599 How do I calculate volume balances for designation purposes? (a) Quarterly compliance periods... June 30, 2013. July 1, 2013 May 31, 2014. (2) [Reserved] (b) Volume balance for motor vehicle diesel...
Kim, Kyoung-Tae; Kim, Myoung-Jin; Cho, Dae-Chul; Park, Seong-Hyun; Hwang, Jeong-Hyun; Sung, Joo-Kyung; Cho, Hee-Jung; Jeon, Younghoon
2014-01-01
The purpose of this study was investigating the effects of curcumin on the histological changes and functional recovery following spinal cord injury (SCI) in a rat model. Following either sham operation or SCI, 36 male Sprague-Dawley rats were distributed into three groups: sham group, curcumin-treated group, and vehicle-injected group. Locomotor function was assessed according to the Basso, Beattie, and Bresnahan (BBB) scale in rats who had received daily intraperitoneal injections of 200 mg/kg curcumin or an equivalent volume of vehicle for 7 days following SCI. The injured spinal cord was then examined histologically, including quantification of cavitation. BBB scores were significantly higher in rats receiving curcumin than receiving vehicle (P < 0.05). The cavity volume was significantly reduced in the curcumin group as compared to the control group (P = 0.039). Superoxide dismutase (SOD) activity was significantly elevated in the curcumin group as compared to the vehicle group but was not significantly different from the sham group (P < 0.05, P > 0.05, respectively) at one and two weeks after SCI. Malondialdehyde (MDA) levels were significantly elevated in the vehicle group as compared to the sham group (P < 0.05 at 1 and 2 weeks). MDA activity was significantly reduced in the curcumin group at 2 weeks after SCI when compared to the vehicle group (P = 0.004). The numbers of macrophage were significantly decreased in the curcumin group (P = 0.001). This study demonstrated that curcumin enhances early functional recovery after SCI by diminishing cavitation volume, anti-inflammatory reactions, and antioxidant activity.
Vehicle occupant exposure to carbon monoxide.
Koushki, P A; al-Dhowalia, K H; Niaizi, S A
1992-12-01
This paper focuses on the auto commuting micro-environment and presents typical carbon monoxide (CO) concentrations to which auto commuters in central Riyadh, Saudi Arabia were exposed. Two test vehicles traveling over four main arterial roadways were monitored for inside and outside CO levels during eighty peak and off-peak hours extending over an eight-month period. The relative importance of several variables which explained the variability in CO concentrations inside autos was also assessed. It was found that during peak hours auto commuters were exposed to mean CO levels that ranged from 30 to 40 ppm over trips that typically took between 25 to 40 minutes. The mean ratio of inside to outside CO levels was 0.84. Results of variance component analyses indicated that the most important variables affecting CO concentrations inside autos were, in addition to the smoking of vehicle occupants, traffic volume, vehicle speed, period of day and wind velocity. An increase in traffic volume from 1,000 to 5,000 vehicles per hour (vph) increased mean CO level exposure by 71 percent. An increase in vehicle speed from 14 to 55 km/h reduced mean CO exposure by 36 percent. The number of traffic interruptions had a moderate effect on mean concentrations of CO inside vehicles.
1999 NASA Seal/Secondary Air System Workshop
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Hendricks, Robert C.
2000-01-01
NASA Glenn hosted the Seals/Secondary Air System Workshop on October 2829, 1999. Each year NASA and our industry and university partners share their respective seal technology development. We use these workshops as a technical forum to exchange recent advancements and "lessons-learned" in advancing seal technology and solving problems of common interest. As in the past we are publishing two volumes. Volume 1 will be publicly available and will be made available on-line through the web page address listed at the end of this chapter. Volume 2 will be restricted under International Traffic and Arms Regulations (I.T.A.R.) In this conference participants gained an appreciation of NASA's new Ultra Efficient Engine Technology (UEET) program and how this program will be partnering with ongoing DOE -industrial power production and DOD- military aircraft engine programs. In addition to gaining a deeper understanding into sealing advancements and challenges that lie ahead, participants gained new working and personal relationships with the attendees. When the seals and secondary fluid management program was initiated, the emphasis was on rocket engines with spinoffs to gas turbines. Today, the opposite is true and we are, again building our involvement in the rocket engine and space vehicle demonstration programs.
Defense Acquisition Research Journal. Volume 23, Number 1, Issue 76, January 2016
2016-04-21
January 2016 Vol. 23 No. 1 | ISSUE 76 The Method MATTERS Article List ARJ Extra Survey of Modular Military Vehicles: Benefits and Burdens Jean M...15 years. p. 2 Survey of Modular Military Vehicles: Benefits and Burdens Jean M. Dasch and David J. Gorsich Military vehicles can be designed from a... modular standpoint to maximize cost savings and/or adapt- ability. This article surveys vehicle modularity from a historical viewpoint and considers
2007 motor vehicle occupant safety survey. Volume 3, air bags report
DOT National Transportation Integrated Search
2008-11-01
The 2007 Motor Vehicle Occupant Safety Survey was the sixth in a series of periodic national telephone surveys on occupant : protection issues conducted for the National Highway Traffic Safety Administration (NHTSA). Data collection was conducted : b...
1996 motor vehicle occupant safety survey. Volume 5, Car seats
DOT National Transportation Integrated Search
1997-12-22
The National Highway Traffic Safety Administration (NHTSA) commissioned the research firm of Schulman, Ronca and Bucavalas, Inc. (SRBI) to conduct the 1996 Motor Vehicle Occupant Safety Survey. Between November 4, 1996 and January 5, 1997 SRBI conduc...
2007 motor vehicle occupant safety survey. Volume 1, Methodology report
DOT National Transportation Integrated Search
2008-07-01
The 2007 Motor Vehicle Occupant Safety Survey was the sixth in a series of periodic national telephone surveys on occupant protection issues conducted for the National Highway Traffic Safety Administration (NHTSA). Data collection was conducted by Sc...
DOT National Transportation Integrated Search
2012-10-01
Microwave-based vehicle detection products from two manufacturers were selected for field testing and : evaluation: Wavetronix and Intersector. The two systems were installed by the manufacturer/distributor at a : signalized intersection. Initial eva...
2003 motor vehicle occupant safety survey. Volume 1, Methodology report
DOT National Transportation Integrated Search
2003-09-01
The 2003 Motor Vehicle Occupant Safety Survey was the fifth in a series of biennial national telephone surveys on occupant protection issues conducted for the National Highway Traffic Safety Administration. The survey used two questionnaires, each ad...
Passenger rail vehicle safety assessment methodology. Volume I, Summary of safe performance limits.
DOT National Transportation Integrated Search
2000-04-01
This report presents a methodology based on computer simulation that asseses the safe dyamic performance limits of commuter passenger vehicles. The methodology consists of determining the critical design parameters and characteristic properties of bo...
Commercial Vehicle Architecture Systems Study, Volume II: Task Reports
DOT National Transportation Integrated Search
1993-10-01
WEIGH-IN-MOTION OR WIM, DRIVER PERFORMANCE MONITORING, ELECTRONIC DATA INTERCHANGE OR EDI, COMMERCIAL VEHICLE OPERATIONS OR CVO : THIS REPORT DETAILS PROGRESS TO DATE ON A SET OF TASKS BEING PERFORMED BY SANDIA NATIONAL LABORATORIES (SNL) FOR THE ...
1996 motor vehicle occupant safety survey. Volume 3, Seat belts
DOT National Transportation Integrated Search
1997-08-14
The National Highway Traffic Safety Administration (NHTSA) commissioned the research firm of Schulman, Ronca & Bucuvalas, Inc. (SRBI) to conduct the 1996 Motor Vehicle Occupant Safety Survey. Between November 4, 1996 and January 5, 1997 SRBI conducte...
Thermal Protection Materials and Systems: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.
2013-01-01
Thermal protection materials and systems (TPS) protect vehicles from the heat generated when entering a planetary atmosphere. NASA has developed many TPS systems over the years for vehicle ranging from planetary probes to crewed vehicles. The goal for all TPS is efficient and reliable performance. Efficient means using the right material for the environment and minimizing the mass of the heat shield without compromising safety. Efficiency is critical if the payload such as science experiments is to be maximized on a particular vehicle. Reliable means that we understand and can predict performance of the material. Although much characterization and testing of materials is performed to qualify and certify them for flight, it is not possible to completely recreate the reentry conditions in test facilities, and flight-testing
NASA Technical Reports Server (NTRS)
Sargent, N. B.
1980-01-01
The steady state test results on a breadboard version of the General Electric Near Term Electric Vehicle (ETV-1) are discussed. The breadboard was built using exact duplicate vehicle propulsion system components with few exceptions. Full instrumentation was provided to measure individual component efficiencies. Tests were conducted on a 50 hp dynamometer in a road load simulator facility. Characterization of the propulsion system over the lower half of the speed-torque operating range has shown the system efficiency to be composed of a predominant motor loss plus a speed dependent transaxle loss. At the lower speeds with normal road loads the armature chopper loss is also a significant factor. At the conditions corresponding to a cycle for which the vehicle system was specifically designed, the efficiencies are near optimum.
NASA Technical Reports Server (NTRS)
1974-01-01
The relative penalties associated with various techniques for providing an onboard cold environment for storage of perishable food items, and for the development of packaging and vehicle stowage parameters were investigated in terms of the overall food system design analysis of space shuttle. The degrees of capability for maintaining both a 40 F to 45 F refrigerated temperature and a 0 F and 20 F frozen environment were assessed for the following cooling techniques: (1) phase change (heat sink) concept; (2) thermoelectric concept; (3) vapor cycle concept; and (4) expendable ammonia concept. The parameters considered in the analysis were weight, volume, and spacecraft power restrictions. Data were also produced for packaging and vehicle stowage parameters which are compatible with vehicle weight and volume specifications. Certain assumptions were made for food packaging sizes based on previously generated space shuttle menus. The results of the study are shown, along with the range of meal choices considered.
Vehicle Assembly Building (VAB)
2017-09-27
NASA's Vehicle Assembly Building at Kennedy Space Center in Florida was used to assemble and house American-crewed launch vehicles from 1968 to 2011. AT 3,684,883 cubic meters, it is one of the largest buildings in the world by volume. Inside the facility, High Bay 3 is being upgraded and modified to support processing of the agency's Space Launch System rocket and Orion spacecraft.
NASA Technical Reports Server (NTRS)
1991-01-01
Topics addressed are: (1) an artificial gravity assessment study; (2) Mars mission transport vehicle (MTV)/Mars excursion vehicle (MEV) mission scenarios; (3) aerobrake issues; (4) equipment life and self-check; (5) earth-to-orbit (ETO) heavy lift launch vehicle (HLLV) definition trades; and (6) risk analysis.
Hybrid and conventional hydrogen engine vehicles that meet EZEV emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aceves, S.M.; Smith, J.R.
In this paper, a time-dependent engine model is used for predicting hydrogen engine efficiency and emissions. The model uses basic thermodynamic equations for the compression and expansion processes, along with an empirical correlation for heat transfer, to predict engine indicated efficiency. A friction correlation and a supercharger/turbocharger model are then used to calculate brake thermal efficiency. The model is validated with many experimental points obtained in a recent evaluation of a hydrogen research engine. A The validated engine model is then used to calculate fuel economy and emissions for three hydrogen-fueled vehicles: a conventional, a parallel hybrid, and a seriesmore » hybrid. All vehicles use liquid hydrogen as a fuel. The hybrid vehicles use a flywheel for energy storage. Comparable ultra capacitor or battery energy storage performance would give similar results. This paper analyzes the engine and flywheel sizing requirements for obtaining a desired level of performance. The results indicate that hydrogen lean-burn spark-ignited engines can provide a high fuel economy and Equivalent Zero Emission Vehicle (EZEV) levels in the three vehicle configurations being analyzed.« less
Automated and Cooperative Vehicle Merging at Highway On-Ramps
Rios-Torres, Jackeline; Malikopoulos, Andreas A.
2016-08-05
Recognition of necessities of connected and automated vehicles (CAVs) is gaining momentum. CAVs can improve both transportation network efficiency and safety through control algorithms that can harmonically use all existing information to coordinate the vehicles. This paper addresses the problem of optimally coordinating CAVs at merging roadways to achieve smooth traffic flow without stop-and-go driving. Here we present an optimization framework and an analytical closed-form solution that allows online coordination of vehicles at merging zones. The effectiveness of the efficiency of the proposed solution is validated through a simulation, and it is shown that coordination of vehicles can significantly reducemore » both fuel consumption and travel time.« less
Practical Efficiency of Photovoltaic Panel Used for Solar Vehicles
NASA Astrophysics Data System (ADS)
Koyuncu, T.
2017-08-01
In this experimental investigation, practical efficiency of semi-flexible monocrystalline silicon solar panel used for a solar powered car called “Firat Force” and a solar powered minibus called “Commagene” was determined. Firat Force has 6 solar PV modules, a maintenance free long life gel battery pack, a regenerative brushless DC electric motor and Commagene has 12 solar PV modules, a maintenance free long life gel battery pack, a regenerative brushless DC electric motor. In addition, both solar vehicles have MPPT (Maximum power point tracker), ECU (Electronic control unit), differential, instrument panel, steering system, brake system, brake and gas pedals, mechanical equipments, chassis and frame. These two solar vehicles were used for people transportation in Adiyaman city, Turkey, during one year (June 2010-May 2011) of test. As a result, the practical efficiency of semi-flexible monocrystalline silicon solar panel used for Firat Force and Commagene was determined as 13 % in despite of efficiency value of 18% (at 1000 W/m2 and 25 °C ) given by the producer company. Besides, the total efficiency (from PV panels to vehicle wheel) of the system was also defined as 9%.
Blake, R W; Ng, H; Chan, K H S; Li, J
2008-09-01
Recent developments in the design and propulsion of biomimetic autonomous underwater vehicles (AUVs) have focused on boxfish as models (e.g. Deng and Avadhanula 2005 Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelona, Spain) pp 3312-7). Whilst such vehicles have many potential advantages in operating in complex environments (e.g. high manoeuvrability and stability), limited battery life and payload capacity are likely functional disadvantages. Boxfish employ undulatory median and paired fins during routine swimming which are characterized by high hydromechanical Froude efficiencies (approximately 0.9) at low forward speeds. Current boxfish-inspired vehicles are propelled by a low aspect ratio, 'plate-like' caudal fin (ostraciiform tail) which can be shown to operate at a relatively low maximum Froude efficiency (approximately 0.5) and is mainly employed as a rudder for steering and in rapid swimming bouts (e.g. escape responses). Given this and the fact that bioinspired engineering designs are not obligated to wholly duplicate a biological model, computer chips were developed using a multilayer perception neural network model of undulatory fin propulsion in the knifefish Xenomystus nigri that would potentially allow an AUV to achieve high optimum values of propulsive efficiency at any given forward velocity, giving a minimum energy drain on the battery. We envisage that externally monitored information on flow velocity (sensory system) would be conveyed to the chips residing in the vehicle's control unit, which in turn would signal the locomotor unit to adopt kinematics (e.g. fin frequency, amplitude) associated with optimal propulsion efficiency. Power savings could protract vehicle operational life and/or provide more power to other functions (e.g. communications).
Phase 2 fuel efficiency standards for medium- and heavy-duty engines and vehicles : draft EIS.
DOT National Transportation Integrated Search
2015-06-01
This Draft Environmental Impact Statement (Draft EIS) analyzes the environmental impacts of fuel : efficiency standards and reasonable alternative standards for model years 2018 and beyond for medium- : and heavy- duty engines and vehicles that NHTSA...
Index of the Relative Importance of Fuel Efficiency (IFE) in the Motor Vehicle Market
DOT National Transportation Integrated Search
1981-10-01
The need for the National Highway Traffic Safety Administration to understand the importance of vehicle fuel economy in the marketplace has created the requirement for a quantitative measure of consumer attitudes toward fuel efficiency. This paper su...
Quantifying autonomous vehicles national fuel consumption impacts: A data-rich approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yuche; Gonder, Jeffrey; Young, Stanley
Autonomous vehicles are drawing significant attention from governments, manufacturers and consumers. Experts predict them to be the primary means of transportation by the middle of this century. Recent literature shows that vehicle automation has the potential to alter traffic patterns, vehicle ownership, and land use, which may affect fuel consumption from the transportation sector. In this paper, we developed a data-rich analytical framework to quantify system-wide fuel impacts of automation in the United States by integrating (1) a dynamic vehicle sales, stock, and usage model, (2) an historical transportation network-level vehicle miles traveled (VMT)/vehicle activity database, and (3) estimates ofmore » automation's impacts on fuel efficiency and travel demand. The vehicle model considers dynamics in vehicle fleet turnover and fuel efficiency improvements of conventional and advanced vehicle fleet. The network activity database contains VMT, free-flow speeds, and historical speeds of road links that can help us accurately identify fuel-savings opportunities of automation. Based on the model setup and assumptions, we found that the impacts of automation on fuel consumption are quite wide-ranging - with the potential to reduce fuel consumption by 45% in our 'Optimistic' case or increase it by 30% in our 'Pessimistic' case. Second, implementing automation on urban roads could potentially result in larger fuel savings compared with highway automation because of the driving features of urban roads. Lastly, through scenario analysis, we showed that the proposed framework can be used for refined assessments as better data on vehicle-level fuel efficiency and travel demand impacts of automation become available.« less
Quantifying autonomous vehicles national fuel consumption impacts: A data-rich approach
Chen, Yuche; Gonder, Jeffrey; Young, Stanley; ...
2017-11-06
Autonomous vehicles are drawing significant attention from governments, manufacturers and consumers. Experts predict them to be the primary means of transportation by the middle of this century. Recent literature shows that vehicle automation has the potential to alter traffic patterns, vehicle ownership, and land use, which may affect fuel consumption from the transportation sector. In this paper, we developed a data-rich analytical framework to quantify system-wide fuel impacts of automation in the United States by integrating (1) a dynamic vehicle sales, stock, and usage model, (2) an historical transportation network-level vehicle miles traveled (VMT)/vehicle activity database, and (3) estimates ofmore » automation's impacts on fuel efficiency and travel demand. The vehicle model considers dynamics in vehicle fleet turnover and fuel efficiency improvements of conventional and advanced vehicle fleet. The network activity database contains VMT, free-flow speeds, and historical speeds of road links that can help us accurately identify fuel-savings opportunities of automation. Based on the model setup and assumptions, we found that the impacts of automation on fuel consumption are quite wide-ranging - with the potential to reduce fuel consumption by 45% in our 'Optimistic' case or increase it by 30% in our 'Pessimistic' case. Second, implementing automation on urban roads could potentially result in larger fuel savings compared with highway automation because of the driving features of urban roads. Lastly, through scenario analysis, we showed that the proposed framework can be used for refined assessments as better data on vehicle-level fuel efficiency and travel demand impacts of automation become available.« less
Fuel Cell Electric Vehicle Evaluations | Hydrogen and Fuel Cells | NREL
Electric Vehicle Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the seven-year FCEV Learning Demonstration and focus on fuel cell stack durability and efficiency, vehicle
41 CFR 109-38.105 - Agency purchase and lease of motor vehicles.
Code of Federal Regulations, 2011 CFR
2011-01-01
... lease of motor vehicles. 109-38.105 Section 109-38.105 Public Contracts and Property Management Federal... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.1-Fuel Efficient Motor Vehicles § 109-38.105 Agency purchase and lease of motor vehicles. (a) DOE activities shall submit a copy...
41 CFR 102-34.50 - What size motor vehicles may we obtain?
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What size motor vehicles... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.50 What size motor vehicles may we obtain? (a...
41 CFR 102-34.70 - What do we do with completed calculations of our fleet vehicle acquisitions?
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.70... average fuel economy data for each year's vehicle acquisitions on file at your agency headquarters in... and Aircraft Maintenance and Operations Records, Item 4, Motor Vehicle Report Files. Exemption...
41 CFR 102-34.70 - What do we do with completed calculations of our fleet vehicle acquisitions?
Code of Federal Regulations, 2010 CFR
2010-07-01
... REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.70... average fuel economy data for each year's vehicle acquisitions on file at your agency headquarters in... and Aircraft Maintenance and Operations Records, Item 4, Motor Vehicle Report Files. Exemption...
Coburn-Litvak, P S; Tata, D A; Gorby, H E; McCloskey, D P; Richardson, G; Anderson, B J
2004-01-01
Corticosterone (CORT), the predominant glucocorticoid in rodents, is known to damage hippocampal area CA3. Here we investigate how that damage is represented at the cellular and ultrastructural level of analyses. Rats were injected with CORT (26.8 mg/kg, s.c.) or vehicle for 56 days. Cell counts were estimated with the physical disector method. Glial and mitochondrial volume fractions were obtained from electron micrographs. The effectiveness of the CORT dose used was demonstrated in two ways. First, CORT significantly inhibited body weight gain relative to vehicles. Second, CORT significantly reduced adrenal gland, heart and gastrocnemius muscle weight. Both the adrenal and gastrocnemius muscle weight to body weight ratios were also significantly reduced. Although absolute brain weight was reduced, the brain to body weight ratio was higher in the CORT group relative to vehicles, suggesting that the brain is more resistant to the effects of CORT than many peripheral organs and muscles. Consistent with that interpretation, CORT did not alter CA3 cell density, cell layer volume, or apical dendritic neuropil volume. Likewise, CORT did not significantly alter glial volume fraction, but did reduce mitochondrial volume fraction. These findings highlight the need for ultrastructural analyses in addition to cellular level analyses before conclusions can be drawn about the damaging effects of prolonged CORT elevations. The relative reduction in mitochondria may indicate a reduction in bioenergetic capacity that, in turn, could render CA3 vulnerable to metabolic challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, T. S.; Gonder, Jeff; Chen, Yuche
This report details a study of the potential effects of connected and automated vehicle (CAV) technologies on vehicle miles traveled (VMT), vehicle fuel efficiency, and consumer costs. Related analyses focused on a range of light-duty CAV technologies in conventional powertrain vehicles -- from partial automation to full automation, with and without ridesharing -- compared to today's base-case scenario. Analysis results revealed widely disparate upper- and lower-bound estimates for fuel use and VMT, ranging from a tripling of fuel use to decreasing light-duty fuel use to below 40% of today's level. This wide range reflects uncertainties in the ways that CAVmore » technologies can influence vehicle efficiency and use through changes in vehicle designs, driving habits, and travel behavior. The report further identifies the most significant potential impacting factors, the largest areas of uncertainty, and where further research is particularly needed.« less
NASA Technical Reports Server (NTRS)
Barber, T. A.
1980-01-01
Efforts to achieve a 100 mile urban range, to reduce petroleum usage 40% to 70%, and to commercialize battery technology are discussed with emphasis on an all plastic body, four passenger car that is flywheel assisted and battery powered, and on an all metal body, four passenger car with front wheel drive and front motor. For the near term case, a parallel hybrid in which the electric motor and the internal combustion engine may directly power the drive wheels, is preferred to a series design. A five passenger car in which the electric motor and the gasoline engine both feed into the same transmission is discussed. Upgraded demonstration vehicles were tested using advanced lead acid, nickel zinc, nickel iron, and zinc chloride batteries to determine maximum acceleration, constant speed, and battery behavior. The near term batteries demonstrated significant improvement relative to current lead acid batteries. The increase in range was due to improved energy density, and ampere hour capacity, with relatively 1 small weight and volume differences.
Sloped Terrain Segmentation for Autonomous Drive Using Sparse 3D Point Cloud
Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Sim, Sungdae
2014-01-01
A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame. PMID:25093204
Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saulsbury, Bo; Hopson, Dr Janet L; Greene, David
2015-04-01
Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.
California methanol assessment. Volume 2: Technical report
NASA Technical Reports Server (NTRS)
Otoole, R.; Dutzi, E.; Gershman, R.; Heft, R.; Kalema, W.; Maynard, D.
1983-01-01
Energy feedstock sources for methanol; methanol and other synfuels; transport, storage, and distribution; air quality impact of methanol use in vehicles, chemical methanol production and use; methanol utilization in vehicles; methanol utilization in stationary applications; and environmental and regulatory constraints are discussed.
Loran Automatic Vehicle Monitoring System, Phase I : Volume 2. Appendices.
DOT National Transportation Integrated Search
1977-08-01
Presents results of the evaluation phase of a two phase program to develop an Automatic Vehicle Monitoring (AVM) system for the Southern California Rapid Transit District in Los Angeles, California. Tests were previously conducted on a Loran based lo...
Variable Dynamic Testbed Vehicle Study, Final Report, Volume II: Technical Results
DOT National Transportation Integrated Search
1994-08-30
THE NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION (NHTSA) COMMISSIONED THE JET PROPULSION LABORATORY (JPL) TO CONDUCT A STUDY OF AN INSTRUMENTED TEST VEHICLE THAT MAY SATISFY A NUMBER OF REQUIREMENTS FOR NHTSA AS WELL AS OTHERS DOING WORK ASSOCIATED...
The ADVANCE project : formal evaluation of the targeted deployment. Volume 2
DOT National Transportation Integrated Search
1997-01-01
This document reports on the formal evaluation of the targeted (limited but highly focused) deployment of the Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE), an in-vehicle advanced traveler information system designed to provide sh...
The ADVANCE project : formal evaluation of the targeted deployment. Volume 1
DOT National Transportation Integrated Search
1997-01-01
The Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE) was an in-vehicle advanced traveler information system (ATIS) that operated in the northwest suburbs of Chicago, Illinois. It was designed to provide origin-destination shortest-ti...
2007 motor vehicle occupant safety survey. Volume 2, Seat belt report
DOT National Transportation Integrated Search
2008-07-01
The 2007 Motor Vehicle Occupant Safety Survey was the sixth in a series of periodic national telephone surveys on occupant protection issues conducted for the National Highway Traffic Safety Administration (NHTSA). Data collection was conducted by Sc...
Statistical analyses of commercial vehicle accident factors. Volume 1 Part 1
DOT National Transportation Integrated Search
1978-02-01
Procedures for conducting statistical analyses of commercial vehicle accidents have been established and initially applied. A file of some 3,000 California Highway Patrol accident reports from two areas of California during a period of about one year...
2007 motor vehicle occupant safety survey. Volume 5, Child safety seat report
DOT National Transportation Integrated Search
2009-04-01
The 2007 Motor Vehicle Occupant Safety Survey (MVOSS) was the sixth in a series of periodic national telephone surveys on occupant protection issues conducted for the National Highway Traffic Safety Administration (NHTSA). Data collection was conduct...
Passenger Car Spark Ignition Data Base : Volume 1. Executive Summary.
DOT National Transportation Integrated Search
1979-12-01
Test data was obtained from spark ignition production and preproduction engines at the engine and vehicle level. The engines were applicable for vehicles 2000 to 3000 pounds in weight. The data obtained provided trade-offs between fuel economy, power...
2000 motor vehicle occupant safety survey. Volume 2, Seat belt report
DOT National Transportation Integrated Search
2001-11-01
The 2000 Motor Vehicle Occupant Safety Survey was the fourth in a series of biennial national telephone surveys on occupant protection issues conducted for the National Highway Traffic Safety Administration (NHTSA). Data collection was conducted by t...
DOT National Transportation Integrated Search
2000-04-01
This report presents detailed analytic tools and results on dynamic response which are used to develop the safe dynamic performance limits of commuter passenger vehicles. The methodology consists of determining the critical parameters and characteris...
2000 motor vehicle occupant safety survey. Volume 5, Child safety seat report
DOT National Transportation Integrated Search
2002-06-01
The 2000 Motor Vehicle Occupant Safety Survey was the fourth in a series of biennial national telephone surveys on occupant protection issues conducted for the National Highway Traffic Safety Administration (NHTSA). Data collection was conducted by S...
2000 motor vehicle occupant safety survey. Volume 3, Air bags report
DOT National Transportation Integrated Search
2001-09-01
The 2000 Motor Vehicle Occupant Safety Survey was the fourth in a series of biennial national telephone surveys on occupant protection issues conducted for the National Highway Traffic Safety Administration (NHTSA). Data collection was conducted by S...
2003 motor vehicle occupant safety survey. Volume 2, Safety belt report
DOT National Transportation Integrated Search
2003-09-01
The 2003 Motor Vehicle Occupant Safety Survey was the fifth in a series of biennial national telephone surveys on occupant protection issues conducted for the National Highway Traffic Safety Administration (NHTSA). Data collection was conducted by Sc...
1998 Motor Vehicle Occupant Safety Survey. Volume 3, Child safety seat report
DOT National Transportation Integrated Search
2000-07-01
The 1998 Motor Vehicle Occupant Safety Survey was the third in a series of biennial national telephone surveys on occupant protection issues conducted for the National Highway Traffic Safety Administration (NHTSA). Data collection was conducted by th...
Reduced Registration Fee for Fuel-Efficient Vehicles A new motor vehicle with a U.S. Environmental . For more information, see the District of Columbia Department of Motor Vehicles website. (Reference
Improving Energy Efficiency for the Vehicle Assembly Industry: A Discrete Event Simulation Approach
NASA Astrophysics Data System (ADS)
Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer
2016-11-01
This paper presented a Discrete Event Simulation (DES) model for investigating and improving energy efficiency in vehicle assembly line. The car manufacturing industry is one of the highest energy consuming industries. Using Rockwell Arena DES package; a detailed model was constructed for an actual vehicle assembly plant. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. Sound energy efficiency model within this industry has two-fold advantage: reducing CO2 emission and cost reduction associated with fuel and electricity consumption. The paper starts with an overview of challenges in energy consumption within the facilities of automotive assembly line and highlights the parameters for energy efficiency. The results of the simulation model indicated improvements for energy saving objectives and reduced costs.
Evaluation strategy of regenerative braking energy for supercapacitor vehicle.
Zou, Zhongyue; Cao, Junyi; Cao, Binggang; Chen, Wen
2015-03-01
In order to improve the efficiency of energy conversion and increase the driving range of electric vehicles, the regenerative energy captured during braking process is stored in the energy storage devices and then will be re-used. Due to the high power density of supercapacitors, they are employed to withstand high current in the short time and essentially capture more regenerative energy. The measuring methods for regenerative energy should be investigated to estimate the energy conversion efficiency and performance of electric vehicles. Based on the analysis of the regenerative braking energy system of a supercapacitor vehicle, an evaluation system for energy recovery in the braking process is established using USB portable data-acquisition devices. Experiments under various braking conditions are carried out. The results verify the higher efficiency of energy regeneration system using supercapacitors and the effectiveness of the proposed measurement method. It is also demonstrated that the maximum regenerative energy conversion efficiency can reach to 88%. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, J.; Earleywine, M.; Sparks, W.
2012-06-01
Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behaviormore » influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.« less
NASA Technical Reports Server (NTRS)
Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.
1995-01-01
In this volume, volume 4 (of five volumes), the discussion is focussed on the system models and related data references and has the following subsections: space shuttle main engine, integrated solid rocket booster, orbiter auxiliary power units/hydraulics, and electrical power system.
Estimating Highway Volumes Using Vehicle Probe Data - Proof of Concept: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Yi; Young, Stanley E; Sadabadi, Kaveh
This paper examines the feasibility of using sampled commercial probe data in combination with validated continuous counter data to accurately estimate vehicle volume across the entire roadway network, for any hour during the year. Currently either real time or archived volume data for roadways at specific times are extremely sparse. Most volume data are average annual daily traffic (AADT) measures derived from the Highway Performance Monitoring System (HPMS). Although methods to factor the AADT to hourly averages for typical day of week exist, actual volume data is limited to a sparse collection of locations in which volumes are continuously recorded.more » This paper explores the use of commercial probe data to generate accurate volume measures that span the highway network providing ubiquitous coverage in space, and specific point-in-time measures for a specific date and time. The paper examines the need for the data, fundamental accuracy limitations based on a basic statistical model that take into account the sampling nature of probe data, and early results from a proof of concept exercise revealing the potential of probe type data calibrated with public continuous count data to meet end user expectations in terms of accuracy of volume estimates.« less
Impact of Non-Gaussian Error Volumes on Conjunction Assessment Risk Analysis
NASA Technical Reports Server (NTRS)
Ghrist, Richard W.; Plakalovic, Dragan
2012-01-01
An understanding of how an initially Gaussian error volume becomes non-Gaussian over time is an important consideration for space-vehicle conjunction assessment. Traditional assumptions applied to the error volume artificially suppress the true non-Gaussian nature of the space-vehicle position uncertainties. For typical conjunction assessment objects, representation of the error volume by a state error covariance matrix in a Cartesian reference frame is a more significant limitation than is the assumption of linearized dynamics for propagating the error volume. In this study, the impact of each assumption is examined and isolated for each point in the volume. Limitations arising from representing the error volume in a Cartesian reference frame is corrected by employing a Monte Carlo approach to probability of collision (Pc), using equinoctial samples from the Cartesian position covariance at the time of closest approach (TCA) between the pair of space objects. A set of actual, higher risk (Pc >= 10 (exp -4)+) conjunction events in various low-Earth orbits using Monte Carlo methods are analyzed. The impact of non-Gaussian error volumes on Pc for these cases is minimal, even when the deviation from a Gaussian distribution is significant.
Armored Family of Vehicles (AFV). Phase 1 Report. Book 3. Volumes 5 thru 8
1987-08-31
tactical mobility /agility, tactical and strategic deployability, rapid repair/replacement of damaged or destroyed equipment, lethality, reduced...Mover (CEM). (15) Combat Mobility Vehicle (CMV). (16) Combat Gap Crosser (CGC). (17) Combat Excavator (CEX). (18) Mine Dispensing Vehicle (MDV). (19...economic decision analysis (IAW AR 700-XX, AR 700-127 and AR 700-17) and consideration of mobilization requirements. 7. Transportability
Rail Safety/Equipment Crashworthiness : Volume 2. Design Guide.
DOT National Transportation Integrated Search
1978-07-01
The second of four volumes, has been prepared to assist design engineers in understanding the basic problems associated with the development of crashworthy interiors of locomotives, cabooses and passenger railcars. Rail vehicle accident conditions ar...
Luk, Jason M; Kim, Hyung Chul; De Kleine, Robert; Wallington, Timothy J; MacLean, Heather L
2017-08-01
The literature analyzing the fuel saving, life cycle greenhouse gas (GHG) emission, and ownership cost impacts of lightweighting vehicles with different powertrains is reviewed. Vehicles with lower powertrain efficiencies have higher fuel consumption. Thus, fuel savings from lightweighting internal combustion engine vehicles can be higher than those of hybrid electric and battery electric vehicles. However, the impact of fuel savings on life cycle costs and GHG emissions depends on fuel prices, fuel carbon intensities and fuel storage requirements. Battery electric vehicle fuel savings enable reduction of battery size without sacrificing driving range. This reduces the battery production cost and mass, the latter results in further fuel savings. The carbon intensity of electricity varies widely and is a major source of uncertainty when evaluating the benefits of fuel savings. Hybrid electric vehicles use gasoline more efficiently than internal combustion engine vehicles and do not require large plug-in batteries. Therefore, the benefits of lightweighting depend on the vehicle powertrain. We discuss the value proposition of the use of lightweight materials and alternative powertrains. Future assessments of the benefits of vehicle lightweighting should capture the unique characteristics of emerging vehicle powertrains.
FCA Group LLC request to the EPA regarding greenhouse gas, off-cycle CO2 credits for High Efficiency Alternators used on 2009 and subsequent model year vehicles and off-cycle fuel consumption credits for 2017 and subsequent model year vehicles.
Rule to finalize standards for medium- and heavy-duty vehicles that would improve fuel efficiency and cut carbon pollution to reduce the impacts of climate change, while bolstering energy security and spurring manufacturing innovation.
Privacy Implications Arising From Intelligent Vehicle-Highway Systems
DOT National Transportation Integrated Search
1993-12-08
INTELLIGENT VEHICLE-HIGHWAY SYSTEMS, ("IVHS") INVOLVE ELECTRONIC MONITORING AND SOMETIMES IDENTIFICATION OF AND COMMUNICATION WITH MOTOR VEHICLES OPERATING ON PUBLIC HIGHWAYS FOR THE PURPOSE OF IMPROVING TRAFFIC SAFETY, EFFICIENCY AND CONVENIENCE. IV...
Successes and Challenges in the Resale of Alternative Fuel Vehicles: July 2001 - March 2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2002-05-01
This report provides the outcome of Dorfman & O'Neal's effort to examine the resale market for automobiles as it relates to the resale of late-model, original equipment manufacture (OEM), alternative fuel vehicles. Auctions provide an exceptionally rapid, effective, and efficient market for the transfer of property between buyers and sellers at reasonable prices. The first automobile auction in the United States was successful because used cars were in reasonably constant supply, were uniformly packaged, and were easily graded for quality. Also, the auction had sufficient volume to significantly lower the handling and transaction costs for wholesalers and dealers. To thismore » day, the automobile auction industry conducts business primarily with registered wholesalers and dealers. Except for the U.S. General Services Administration (GSA) auctions and some consignment auctions, nearly all automobile auctions are closed to the public. The auction system represents a near-perfect market, validated by the lack of statistical price differences in value of specific model cars between various regions of the country. However, specialty cars may be subject to arbitrage. The buyer purchases the vehicle believing that it can be sold immediately at a profit in another region. A variety of vehicle pricing services are available to serve the consumer and the wholesale automobile industry. Each has a different philosophy for collecting, analyzing, and reporting data. ''The Automobile Lease Guide'' (ALG) is clearly the authority on vehicle residual values. Auction companies continue to apply automated technologies to lower transaction costs. Automated technologies are the only way to track the increasing number of transactions in the growing industry. Nevertheless, people-to-people relationships remain critical to the success of all auction companies. Our assessment is that everyone in the secondary automobile market is aware of alternative fuel vehicles (AFVs) and is interested to watch how the wholesale market for these vehicles may develop. However, none of the industry representatives we interviewed appears to be willing to take a leadership role in this market. Exact figures are not publicly available, but the GSA is probably the largest reseller of bifuel and dedicated compressed natural gas vehicles. These vehicles number in the hundreds; the total number of vehicles disposed by GSA each year is more than 20,000. GSA representatives have stated that bi-fuel vehicles are selling at approximately 80% of Black Book'' national average and dedicated vehicles are selling at 60% of ''Black Book national average compared to gasoline-only vehicles.« less
FY2015 Vehicle Systems Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles.
Modeling of hybrid vehicle fuel economy and fuel engine efficiency
NASA Astrophysics Data System (ADS)
Wu, Wei
"Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.
Experimental investigation of a quad-rotor biplane micro air vehicle
NASA Astrophysics Data System (ADS)
Bogdanowicz, Christopher Michael
Micro air vehicles are expected to perform demanding missions requiring efficient operation in both hover and forward flight. This thesis discusses the development of a hybrid air vehicle which seamlessly combines both flight capabilities: hover and high-speed forward flight. It is the quad-rotor biplane, which weighs 240 grams and consists of four propellers with wings arranged in a biplane configuration. The performance of the vehicle system was investigated in conditions representative of flight through a series of wind tunnel experiments. These studies provided an understanding of propeller-wing interaction effects and system trim analysis. This showed that the maximum speed of 11 m/s and a cruise speed of 4 m/s were achievable and that the cruise power is approximately one-third of the hover power. Free flight testing of the vehicle successfully highlighted its ability to achieve equilibrium transition flight. Key design parameters were experimentally investigated to understand their effect on overall performance. It was found that a trade-off between efficiency and compactness affects the final choice of the design. Design improvements have allowed for decreases in vehicle weight and ground footprint, while increasing structural soundness. Numerous vehicle designs, models, and flight tests have proven system scalability as well as versatility, including an upscaled model to be utilized in an extensive commercial package delivery system. Overall, the quad-rotor biplane is proven to be an efficient and effective multi-role vehicle.
Optimal trajectories for hypersonic launch vehicles
NASA Technical Reports Server (NTRS)
Ardema, Mark D.; Bowles, Jeffrey V.; Whittaker, Thomas
1992-01-01
In this paper, we derive a near-optimal guidance law for the ascent trajectory from Earth surface to Earth orbit of a hypersonic, dual-mode propulsion, lifting vehicle. Of interest are both the optimal flight path and the optimal operation of the propulsion system. The guidance law is developed from the energy-state approximation of the equations of motion. The performance objective is a weighted sum of fuel mass and volume, with the weighting factor selected to give minimum gross take-off weight for a specific payload mass and volume.
Electrical Insulation Fire Characteristics : Volume 1. Flammability Tests.
DOT National Transportation Integrated Search
1978-12-01
In the crowded, confined environment of a rapid transit vehicle, it is essential that smoke emission from all sources be minimized. The adoption of test standards and guidelines for wire and cable used in these vehicles must be undertaken in an organ...
Loran Automatic Vehicle Monitoring System, Phase I : Volume 1. Test Results.
DOT National Transportation Integrated Search
1977-08-01
Presents results of the evaluation phase of a two phase program to develop an Automatic Vehicle Monitoring (AVM) system for the Southern California Rapid Transit District in Los Angeles, California. Tests were previously conducted on a Loran based lo...
Micro and macro level safety analysis at railroad grade crossings.
DOT National Transportation Integrated Search
2016-03-01
Railroad grade crossings are potential conflict points between train and highway vehicles, and train and pedestrians. Grade crossings pose a risk to all the travelers and the degree of risk depends on factors such as train and vehicle volumes, presen...
Engineering data characterizing the fleet of U.S. railway rolling stock. Volume 1 : user's guide
DOT National Transportation Integrated Search
1981-01-01
This report contains engineering parameter descriptions of major and distinctive freight vehicle configurations covering approximately 96% of the U.S. freight vehicle fleet. This data has been developed primarily for use in analytical simulation mode...
DOT National Transportation Integrated Search
1981-11-01
This report contains engineering parameter descriptions of major and distinctive freight vehicle configurations covering approximately 96% of the U.S. freight vehicle fleet. This data has been developed primarily for use in analytical simulation mode...
DOT National Transportation Integrated Search
1975-11-01
The crashworthiness of existing urban rail vehicles (passenger cars) and the feasibility of improvements in this area were investigated. Both rail-car structural configurations and impact absorption devices were studied. This final report issued unde...
DOT National Transportation Integrated Search
1997-11-01
Author's abstract: The National Highway Traffic Safety Administration (NHTSA) commissioned the research firm of Schulman, Ronca & Bucuvalas, Inc. (SRBI) to conduct the 1996 Motor Vehicle Occupant Safety Survey. Between November 4, 1996 and January 5,...
Passenger Car Spark Ignition Data Base : Volume 2. Discussion and Results.
DOT National Transportation Integrated Search
1979-12-01
Test data was obtained from spark ignition production and preproduction engines at the engine and vehicle level. The engines were applicable for vehicles 2000 to 3000 pounds in weight. The data obtained provided trade-offs between fuel economy, power...
DOT National Transportation Integrated Search
2002-03-01
The Commercial Vehicle Information Systems and Networks Model Deployment Initiative (CVISN MDI) is funded by the Intelligent Transportation Systems Joint Program Office (ITS JPO) and managed by the Federal Motor Carrier Safety Administration (FMCSA),...
DOT National Transportation Integrated Search
2008-09-01
Because of the substantial number of driving while intoxicated (DWI) offenders driving illegally with suspended : licenses and the limited enforcement resources available to dealwith the problem, many States and the Federal government : have begun to...
Passenger Car Spark Ignition Data Base : Volume 3. Miscellaneous Data. Part 1.
DOT National Transportation Integrated Search
1979-12-01
Test data was obtained from spark ignition production and preproduction engines at the engine and vehicle level. The engines were applicable for vehicles 2000 to 3000 pounds in weight. The data obtained provided trade-offs between fuel economy, power...
Passenger Car Spark Ignition Data Base : Volume 3. Miscellaneous Data. Part 2.
DOT National Transportation Integrated Search
1979-12-01
Test data was obtained from spark ignition production and preproduction engines at the engine and vehicle level. The engines were applicable for vehicles 2000 to 3000 pounds in weight. The data obtained provided trade-offs between fuel economy, power...
1998 motor vehicle occupant safety survey. Volume 1, methodology report
DOT National Transportation Integrated Search
2000-03-01
This is the Methodology Report for the 1998 Motor Vehicle Occupant Safety Survey. The survey is conducted on a biennial basis (initiated in 1994), and is administered by telephone to a randomly selected national sample. Two questionnaires are used, e...
DOT National Transportation Integrated Search
1980-04-01
This report contains engineering parameter descriptions of major and distinctive freight vehicle configurations covering approximately 96% of the U.S. freight vehicle fleet. This data has been developed primarily for use in analytical simulation mode...
DOT National Transportation Integrated Search
2002-03-01
The Commercial Vehicle Information Systems and Networks Model Deployment Initiative (CVISN MDI) is funded by the Intelligent Transportation Systems Joint Program Office (ITS JPO) and managed by the Federal Motor Carrier Safety Administration (FMCSA),...
NASA Astrophysics Data System (ADS)
Prahara, E.; Prasetya, R. A.
2018-01-01
In many developing countries, transportation modes are more varied than the other country. For example, in Jakarta, Indonesia, in some roadway, motorcycle is the most dominant vehicle, with total volume is four times higher than a passenger car. Thus, the traffic characteristic in motorcycle-dominated traffic differs from a common traffic situation. The purpose of this study is to apply the concept and theory developed to analyze motorcycle behaviour under motorcycle-dominated traffic condition. The survey is applied by recording the traffic flow movement of research location at specified time period. The macroscopic characteristic analyzed in this research is a speed-flow relationship based on motorcycle equivalent unit (MCU). Furthermore, a detail microscopic characteristic analyzed that is motorcycle time headway regarding traffic flow. MCU values computed were consists of motorcycle (MC), light vehicle (LV) and heavy vehicle (HV). Those values were calculated 1.00, 6.13 and 10.71 respectively. The speed and volume relationship result is showing a linear regression model with R2 value is 0.58, it can be explained that the correlation between two variables is intermediate. The headway distribution of motorcycle is compatible with the negative exponential distribution which fitted with the proposed theory for a small vehicle such as a motorcycle.
A study on optimization of hybrid drive train using Advanced Vehicle Simulator (ADVISOR)
NASA Astrophysics Data System (ADS)
Same, Adam; Stipe, Alex; Grossman, David; Park, Jae Wan
This study investigates the advantages and disadvantages of three hybrid drive train configurations: series, parallel, and "through-the-ground" parallel. Power flow simulations are conducted with the MATLAB/Simulink-based software ADVISOR. These simulations are then applied in an application for the UC Davis SAE Formula Hybrid vehicle. ADVISOR performs simulation calculations for vehicle position using a combined backward/forward method. These simulations are used to study how efficiency and agility are affected by the motor, fuel converter, and hybrid configuration. Three different vehicle models are developed to optimize the drive train of a vehicle for three stages of the SAE Formula Hybrid competition: autocross, endurance, and acceleration. Input cycles are created based on rough estimates of track geometry. The output from these ADVISOR simulations is a series of plots of velocity profile and energy storage State of Charge that provide a good estimate of how the Formula Hybrid vehicle will perform on the given course. The most noticeable discrepancy between the input cycle and the actual velocity profile of the vehicle occurs during deceleration. A weighted ranking system is developed to organize the simulation results and to determine the best drive train configuration for the Formula Hybrid vehicle. Results show that the through-the-ground parallel configuration with front-mounted motors achieves an optimal balance of efficiency, simplicity, and cost. ADVISOR is proven to be a useful tool for vehicle power train design for the SAE Formula Hybrid competition. This vehicle model based on ADVISOR simulation is applicable to various studies concerning performance and efficiency of hybrid drive trains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzales, John
2015-04-02
Presentation by Senior Engineer John Gonzales on Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet using the Vehicle Infrastructure Cash-flow Estimation (VICE) 2.0 model.
NASA Technical Reports Server (NTRS)
1977-01-01
Recoverable launch vehicle concepts for the Solar Power Satellite program were identified. These large launch vehicles are powered by proposed engines in the F-1 thrust level class. A description of the candidate launch vehicles and their operating mode was provided. Predictions of the sonic over pressures during ascent and entry for both types of vehicles, and prediction of launch noise levels in the vicinity of the launch site were included. An overall assessment and criteria for sonic overpressure and noise levels was examined.
Aerospace Vehicle Design, Spacecraft Section. Volume 1: Project Groups 3-5
NASA Technical Reports Server (NTRS)
1989-01-01
Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedom and provide an emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are analyzed. These subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing.
Study 2.5 final report. DORCA computer program. Volume 5: Analysis report
NASA Technical Reports Server (NTRS)
Campbell, N.
1972-01-01
A modification of the Dynamic Operational Requirements and Cost Analysis Program to perform traffic analyses of the automated satellite program is described. Inherent in the analyses of the automated satellite program was the assumption that a number of vehicles were available to perform any or all of the missions within the satellite program. The objective of the modification was to select a vehicle or group of vehicles for performing all of the missions at the lowest possible cost. A vehicle selection routine and the capability to simulate ground based vehicle operational modes were incorporated into the program.
Modelling cephalopod-inspired pulsed-jet locomotion for underwater soft robots.
Renda, F; Giorgio-Serchi, F; Boyer, F; Laschi, C
2015-09-28
Cephalopods (i.e., octopuses and squids) are being looked upon as a source of inspiration for the development of unmanned underwater vehicles. One kind of cephalopod-inspired soft-bodied vehicle developed by the authors entails a hollow, elastic shell capable of performing a routine of recursive ingestion and expulsion of discrete slugs of fluids which enable the vehicle to propel itself in water. The vehicle performances were found to depend largely on the elastic response of the shell to the actuation cycle, thus motivating the development of a coupled propulsion-elastodynamics model of such vehicles. The model is developed and validated against a set of experimental results performed with the existing cephalopod-inspired prototypes. A metric of the efficiency of the propulsion routine which accounts for the elastic energy contribution during the ingestion/expulsion phases of the actuation is formulated. Demonstration on the use of this model to estimate the efficiency of the propulsion routine for various pulsation frequencies and for different morphologies of the vehicles are provided. This metric of efficiency, employed in association with the present elastodynamics model, provides a useful tool for performing a priori energetic analysis which encompass both the design specifications and the actuation pattern of this new kind of underwater vehicle.
Cooperative and Integrated Vehicle and Intersection Control for Energy Efficiency (CIVIC-E²)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Yunfei; Seliman, Salaheldeen M. S.; Wang, Enshu
Recent advances in connected vehicle technologies enable vehicles and signal controllers to cooperate and improve the traffic management at intersections. This paper explores the opportunity for cooperative and integrated vehicle and intersection control for energy efficiency (CIVIC-E 2) to contribute to a more sustainable transportation system. We propose a two-level approach that jointly optimizes the traffic signal timing and vehicles' approach speed, with the objective being to minimize total energy consumption for all vehicles passing through an isolated intersection. More specifically, at the intersection level, a dynamic programming algorithm is designed to find the optimal signal timing by explicitly consideringmore » the arrival time and energy profile of each vehicle. At the vehicle level, a model predictive control strategy is adopted to ensure that vehicles pass through the intersection in a timely fashion. Our simulation study has shown that the proposed CIVIC-E 2 system can significantly improve intersection performance under various traffic conditions. Compared with conventional fixed-time and actuated signal control strategies, the proposed algorithm can reduce energy consumption and queue length by up to 31% and 95%, respectively.« less
Cooperative and Integrated Vehicle and Intersection Control for Energy Efficiency (CIVIC-E²)
Hou, Yunfei; Seliman, Salaheldeen M. S.; Wang, Enshu; ...
2018-02-15
Recent advances in connected vehicle technologies enable vehicles and signal controllers to cooperate and improve the traffic management at intersections. This paper explores the opportunity for cooperative and integrated vehicle and intersection control for energy efficiency (CIVIC-E 2) to contribute to a more sustainable transportation system. We propose a two-level approach that jointly optimizes the traffic signal timing and vehicles' approach speed, with the objective being to minimize total energy consumption for all vehicles passing through an isolated intersection. More specifically, at the intersection level, a dynamic programming algorithm is designed to find the optimal signal timing by explicitly consideringmore » the arrival time and energy profile of each vehicle. At the vehicle level, a model predictive control strategy is adopted to ensure that vehicles pass through the intersection in a timely fashion. Our simulation study has shown that the proposed CIVIC-E 2 system can significantly improve intersection performance under various traffic conditions. Compared with conventional fixed-time and actuated signal control strategies, the proposed algorithm can reduce energy consumption and queue length by up to 31% and 95%, respectively.« less
Lightweighting Impacts on Fuel Economy, Cost, and Component Losses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooker, A. D.; Ward, J.; Wang, L.
2013-01-01
The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted themore » conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.« less
NASA Technical Reports Server (NTRS)
Marconi, F.; Salas, M.; Yaeger, L.
1976-01-01
A numerical procedure has been developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second order accurate finite difference scheme is used to integrate the three dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine Hugoniot jump conditions. Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts. Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool.
NASA Technical Reports Server (NTRS)
Marconi, F.; Yaeger, L.
1976-01-01
A numerical procedure was developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second-order accurate finite difference scheme is used to integrate the three-dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine-Hugoniot jump conditions. Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts. Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool.
NASA Technical Reports Server (NTRS)
Caraccio, Anne J.; Layne, Andrew; Hummerick, Mary
2013-01-01
Topics covered: 1. Project Structure 2. "Trash to Gas" 3. "Smashing Trash! The Heat Melt Compactor" 4. "Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste" Thermal degradation of trash reduces volume while creating water, carbon dioxide and ash. CO2 can be fed to Sabatier reactor for CH4 production to fuel LOX/LCH4 ascent vehicle. Optimal performance: HFWS, full temperature ramp to 500-600 C. Tar challenges exist. Catalysis: Dolomag did eliminate allene byproducts from the product stream. 2nd Gen Reactor Studies. Targeting power, mass, time efficiency. Gas separation, Catalysis to reduce tar formation. Microgravity effects. Downselect in August will determine where we should spend time optimizing the technology.
Development and Design of Zero-g Liquid Quantity Gauge for Solar Thermal Vehicle
NASA Technical Reports Server (NTRS)
Dodge, Franklin T.; Green, Steven T.; Petullo, Steven P.; VanDresar, Neil T.
2002-01-01
The development and design of a cryogenic liquid quantity gauge for zero-gravity (zero-g) applications are described. The gauge, named the compression mass gauge (CMG), operates on the principle of slightly changing the volume of the tank by an oscillating bellows. The resulting pressure change is measured and used to predict the volume of vapor in the tank, from which the volume of liquid is computed. For each gauging instance, pressures are measured for several different bellows frequencies to enable minor real-gas effects to be quantified and thereby to obtain a gauging accuracy of 11 percent of tank volume. The CMG has been selected by NASA's Future-X program for a flight demonstration on the United States Air Force-Boeing Solar Orbit Transfer Vehicle Space Experiment (SOTVSE). This report reviews the design trade studies needed for the CMG to satisfy the SOTVSE limitations on its power, volume, and mass and also describes the mechanical design of the CMG.
Three essays in transportation energy and environmental policy
NASA Astrophysics Data System (ADS)
Hajiamiri, Sara
Concerns about climate change, dependence on oil, and unstable gasoline prices have led to significant efforts by policymakers to cut greenhouse gas (GHG) emissions and oil consumption. The transportation sector is one of the principle emitters of CO2 in the US. It accounts for two-thirds of total U.S. oil consumption and is almost entirely dependent on oil. Within the transportation sector, the light-duty vehicle (LDV) fleet is the main culprit. It is responsible for more than 65 percent of the oil used and for more than 60 percent of total GHG emissions. If a significant fraction of the LDV fleet is gradually replaced by more fuel-efficient technologies, meaningful reductions in GHG emissions and oil consumption will be achieved. This dissertation investigates the potential benefits and impacts of deploying more fuel-efficient vehicles in the LDV fleet. Findings can inform decisions surrounding the development and deployment of the next generation of LDVs. The first essay uses data on 2003 and 2006 model gasoline-powered passenger cars, light trucks and sport utility vehicles to investigate the implicit private cost of improving vehicle fuel efficiencies through reducing other desired attributes such as weight (that is valued for its perceived effect on personal safety) and horsepower. Breakeven gasoline prices that would justify the estimated implicit costs were also calculated. It is found that to justify higher fuel efficiency standards from a consumer perspective, either the external benefits need to be very large or technological advances will need to greatly reduce fuel efficiency costs. The second essay estimates the private benefits and societal impacts of electric vehicles. The findings from the analysis contribute to policy deliberations on how to incentivize the purchase and production of these vehicles. A spreadsheet model was developed to estimate the private benefits and societal impacts of purchasing and utilizing three electric vehicle technologies instead of a similar-sized conventional gasoline-powered vehicle (CV). The electric vehicle technologies considered are gasoline-powered hybrid and plug-in hybrid electric vehicles and battery electric vehicles. It is found that the private benefits are positive, but smaller than the expected short-term cost premiums on these technologies, which suggest the need for government support if a large-scale adoption of electric vehicles is desired. Also, it is found that the net present values of the societal benefits that are not internalized by the vehicle purchaser are not likely to exceed $1,700. This estimate accounts for changes in GHG emissions, criteria air pollutants, gasoline consumption and the driver's contribution to congestion. The third essay explores the implications of a large-scale adoption of electric vehicles on transportation finance. While fuel efficiency improvements are desirable with respect to goals for achieving energy security and environmental improvement, it has adverse implications for the current system of transportation finance. Reductions in gasoline consumption relative to the amount of driving that takes place would result in a decline in fuel tax revenues that are needed to fund planning, construction, maintenance, and operation of highways and public transit systems. In this paper the forgone fuel tax revenue that results when an electric vehicle replaces a similar-sized CV is estimated. It is found that under several vehicle electrification scenarios, the combined federal and state trust funds could decline by as much as 5 percent by 2020 and as much as 12.5 percent by 2030. Alternative fee systems that tie more directly to transportation system use rather then to fuel consumption could reconcile energy security, environmental, and transportation finance goals.
EPA and NHTSA, on behalf of the Department of Transportation, each proposed rules to establish a comprehensive Heavy-Duty National Program to reduce greenhouse gas emissions and increase fuel efficiency for onroad heavy-duty vehicles.
DOT National Transportation Integrated Search
2011-12-01
Longer Combination Vehicles (LCVs) are able to carry more freight than conventional single trailer trucks. As a result, these trucks can increase efficiencies and benefits for freight movements as less fuel and less labor is used per ton of cargo. Ho...
Dan Says - Continuum Magazine | NREL
transportation system-from developing more efficient electric and hydrogen fuel-cell vehicles to inventing infrastructure are more daunting than those we are overcoming in developing and integrating renewable electricity more efficient, and developing the technology needed to put more electric and biofuel vehicles on the
DOT National Transportation Integrated Search
1974-10-01
The basic manual, published as the first volume of this report, is intended for use as a tool in predicting noise levels which will be generated by freely-flowing vehicle traffic along a highway of known characteristics. The first volume explains the...
40 CFR 86.1838-01 - Small volume manufacturer certification procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... paragraph (c)(2). (i) Small volume in-use verification test vehicles may be procured from customers or may... miles, a manufacturer may demonstrate to the satisfaction of the Agency that, based on owner survey data...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, G.
This presentation discusses the differences between the original Vehicle and Infrastructure Cash-Flow Evaluation (VICE) Model and the revamped version, VICE 2.0. The enhanced tool can now help assess projects to acquire vehicles and infrastructure, or to acquire vehicles only.
48 CFR 970.5223-5 - DOE motor vehicle fleet fuel efficiency.
Code of Federal Regulations, 2010 CFR
2010-10-01
... and Contract Clauses for Management and Operating Contracts 970.5223-5 DOE motor vehicle fleet fuel..., insert the following clause in contracts providing for Contractor management of the motor vehicle fleet... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false DOE motor vehicle fleet...
Developing particulate thin filter using coconut fiber for motor vehicle emission
NASA Astrophysics Data System (ADS)
Wardoyo, A. Y. P.; Juswono, U. P.; Riyanto, S.
2016-03-01
Amounts of motor vehicles in Indonesia have been recognized a sharply increase from year to year with the increment reaching to 22 % per annum. Meanwhile motor vehicles produce particulate emissions in different sizes with high concentrations depending on type of vehicles, fuels, and engine capacity. Motor Particle emissions are not only to significantly contribute the atmosphric particles but also adverse to human health. In order to reduce the particle emission, it is needed a filter. This study was aimed to develop a thin filter using coconut fiber to reduce particulate emissions for motor vehicles. The filter was made of coconut fibers that were grinded into power and mixed with glues. The filter was tested by the measurements of particle concentrations coming out from the vehicle exhaust directly and the particle concentrations after passing through the filter. The efficiency of the filter was calculated by ratio of the particle concentrations before comming in the filter to the particle conentrations after passing through the filter. The results showed that the efficiency of the filter obtained more than 30 %. The efficiency increases sharply when a number of the filters are arranged paralelly.
NASA Technical Reports Server (NTRS)
Tenney, Darrel R.
2004-01-01
Six long-term technology focus areas are: 1. Environmentally Friendly, Clean Burning Engines. Focus: Develop innovative technologies to enable intelligent turbine engines that significantly reduce harmful emissions while maintaining high performance and increasing reliability. 2. New Aircraft Energy Sources and Management. Focus: Discover new energy sources and intelligent management techniques directed towards zero emissions and enable new vehicle concepts for public mobility and new science missions. 3. Quiet Aircraft for Community Friendly Service. Focus: Develop and integrate noise reduction technology to enable unrestricted air transportation service to all communities. 4. Aerodynamic Performance for Fuel Efficiency. Focus: Improve aerodynamic efficiency,structures and materials technologies, and design tools and methodologies to reduce fuel burn and minimize environmental impact and enable new vehicle concepts and capabilities for public mobility and new science missions. 5. Aircraft Weight Reduction and Community Access. Focus: Develop ultralight smart materials and structures, aerodynamic concepts, and lightweight subsystems to increase vehicle efficiency, leading to high altitude long endurance vehicles, planetary aircraft, advanced vertical and short takeoff and landing vehicles and beyond. 6. Smart Aircraft and Autonomous Control. Focus: Enable aircraft to fly with reduced or no human intervention, to optimize flight over multiple regimes, and to provide maintenance on demand towards the goal of a feeling, seeing, sensing, sentient air vehicle.
Hybrid Power Management-Based Vehicle Architecture
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2011-01-01
Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be replaced and disposed of. The environmentally safe ultracapacitor components reduce disposal concerns, and their recyclable nature reduces the environmental impact. High ultracapacitor power density provides high power during surges, and the ability to absorb high power during recharging. Ultracapacitors are extremely efficient in capturing recharging energy, are rugged, reliable, maintenance-free, have excellent lowtemperature characteristic, provide consistent performance over time, and promote safety as they can be left indefinitely in a safe, discharged state whereas batteries cannot.
DOT National Transportation Integrated Search
2008-12-01
The 2007 Motor Vehicle Occupant Safety Survey was the sixth in a series of periodic national telephone surveys on occupant protection issues conducted for the National Highway Traffic Safety Administration (NHTSA). Data collection was conducted by Sc...
DOT National Transportation Integrated Search
2001-11-01
The 2000 Motor Vehicle Occupant Safety Survey was the fourth in a series of biennial national telephone surveys on occupant protection issues conducted for the National Highway Traffic Safety Administration (NHTSA). Data collection was conducted by S...
DOT National Transportation Integrated Search
1995-08-01
INTELLIGENT VEHICLE INITIATIVE OR IVI : THE RUN-OFF-ROAD COLLISION AVOIDANCE USING IVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES. :...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannone, Greg; Thomas, John F; Reale, Michael
The three foundational elements that determine mobile source energy use and tailpipe carbon dioxide (CO2) emissions are the tractive energy requirements of the vehicle, the on-cycle energy conversion efficiency of the propulsion system, and the energy source. The tractive energy requirements are determined by the vehicle's mass, aerodynamic drag, tire rolling resistance, and parasitic drag. Oncycle energy conversion of the propulsion system is dictated by the tractive efficiency, non-tractive energy use, kinetic energy recovery, and parasitic losses. The energy source determines the mobile source CO2 emissions. For current vehicles, tractive energy requirements and overall energy conversion efficiency are readily availablemore » from the decomposition of test data. For future applications, plausible levels of mass reduction, aerodynamic drag improvements, and tire rolling resistance can be transposed into the tractive energy domain. Similarly, by combining thermodynamic, mechanical efficiency, and kinetic energy recovery fundamentals with logical proxies, achievable levels of energy conversion efficiency can be established to allow for the evaluation of future powertrain requirements. Combining the plausible levels of tractive energy and on-cycle efficiency provides a means to compute sustainable vehicle and propulsion system scenarios that can achieve future regulations. Using these principles, the regulations established in the United States (U.S.) for fuel consumption and CO2 emissions are evaluated. Fleet-level scenarios are generated and compared to the technology deployment assumptions made during rule-making. When compared to the rule-making assumptions, the results indicate that a greater level of advanced vehicle and propulsion system technology deployment will be required to achieve the model year 2025 U.S. standards for fuel economy and CO2 emissions.« less
Tueller, Daniel J; Harley, Jackson S; Hancock, Chad R
2017-10-21
Curcumin may improve blood glucose management, but the mechanism is not fully established. We demonstrated that curcumin (40 μM) reduced the mitochondrial coupling efficiency (percentage of oxygen consumption coupled to ATP synthesis) of intact skeletal muscle cells. A 30-minute pretreatment with curcumin reduced mitochondrial coupling efficiency by 17.0 ± 0.4% relative to vehicle (p < 0.008). Curcumin pretreatment also decreased the rate of hydrogen peroxide emission by 43 ± 13% compared to vehicle (p < 0.05). Analysis of cell respiration in the presence of curcumin revealed a 40 ± 4% increase in the rate of oxygen consumption upon curcumin administration (p < 0.05 compared to vehicle). No difference in mitochondrial coupling efficiency was observed between vehicle- and curcumin-pretreated cells after permeabilization of cell membranes (p > 0.7). The interaction between curcumin and ursolic acid, another natural compound that may improve blood glucose management, was also examined. Pretreatment with ursolic acid (0.12 μM) increased the mitochondrial coupling efficiency of intact cells by 4.1 ± 1.1% relative to vehicle (p < 0.008) and attenuated the effect of curcumin when the two compounds were used in combination. The observed changes to mitochondrial coupling efficiency and hydrogen peroxide emission were consistent with the established effects of curcumin on blood glucose control. Our findings also show that changes to mitochondrial coupling efficiency after curcumin pretreatment may go undetected unless cells are assessed in the intact condition. Copyright © 2017 Elsevier Inc. All rights reserved.
Preliminary Subsystem Designs for the Assured Crew Return Vehicle (ACRV), volumes 1-3
NASA Technical Reports Server (NTRS)
1990-01-01
A long term manned facility in space must include provisions for the safety of the crew. The resolution of this need was the design of an Assured Crew Return Vehicle (ACRV). The main focus is on the braking and landing system of the ACRV. This subsystem of the ACRV was divided into three phases. The Phase 1 analysis showed that the use of a tether to aid in the reentry of the ACRV was infeasible due to cost and efficiency. Therefore, a standard rocket would be used for reentry. It was also found that the continental United States was an achievable landing site for the ACRV. The Phase 2 analysis determined the L/D of the vehicle to be 1.8, thus requiring the use of a lifting body for reentry. It was also determined that shuttle tiles would be used for the thermal protection system. In addition, a parachute sequence for further deceleration was included, namely a ringslot drogue chute, a pilot chute, and finally a ringsail main parachute. This sequence was found to be capable of slowing the vehicle to a descent velocity of 9 to 10 m/s, which is the required velocity for aerial recovery. The Phase 3 analysis proved that a Sikorsky CH-53E helicopter is capable of retrieving the ACRV at 5.5 km altitude with minimal g-forces induced on the ACRV and minimal induced moments on the helicopter upon hookup. The helicopter would be modified such that it could stabilize the ACRV close to the bottom of helicopter and carry it to the nearest designated trauma center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Steve
Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing andmore » material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.« less
HTS machines as enabling technology for all-electric airborne vehicles
NASA Astrophysics Data System (ADS)
Masson, P. J.; Brown, G. V.; Soban, D. S.; Luongo, C. A.
2007-08-01
Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.
SLS Payload Transportation Beyond LEO
NASA Technical Reports Server (NTRS)
Creech, S. D.; Baker, J. D.; Jackman, A. L.; Vane, G.
2017-01-01
NASA has successfully completed the Critical Design Review (CDR) of the heavy lift Space Launch System (SLS) and is working towards the first flight of the vehicle in 2018. SLS will begin flying crewed missions with an Orion capsule to the lunar vicinity every year after the first 2 flights starting in the early 2020's. As early as 2021, in addition to delivering an Orion capsule to a cislunar destination, SLS will also deliver ancillary payload, termed "Co-manifested Payload (CPL)", with a mass of at least 5.5 mT and volume up to 280 m3 simultaneously to that same destination. Later SLS flights have a goal of delivering as much as 10 mT of CPL to cislunar destinations. In addition to cislunar destinations, SLS flights may deliver non-crewed, science-driven missions with Primary Payload (PPL) to more distant destinations. SLS PPL missions will utilize a unique payload fairing offering payload volume (ranging from 320 m3 to 540 m3) that greatly exceeds the largest existing Expendable Launch Vehicle (ELV) fairing available. The Characteristic Energy (C3) offered by the SLS system will generate opportunities to deliver up to 40 mT to cislunar space, and deliver double PPL mass or de-crease flight time by half for some outer planet destinations when compared to existing capabilities. For example, SLS flights may deliver the Europa Clipper to a Jovian destination in under 3 years by the mid 2020's, compared to the 7+ years cruise time required for current launch capabilities. This presentation will describe ground and flight accommodations, interfaces, resources, and performance planned to be made available to potential CPL and PPL science users of SLS. In addition, this presentation should promote a dialogue between vehicle developers, potential payload users, and funding sources in order to most efficiently evolve required SLS capabilities to meet diverse payload needs as they are identified over the next 35 years and beyond.
Defense Acquisition Research Journal. Volume 20, Number 3, Issue 67, October 2013
2013-10-01
Contracting Operations (PZCO) FIGURE 4. CONTRACTING PHASE ZERO: PLAN, EXERCISE, REHEARSE, AND SYNCHRONIZE Note. BPA = Blanket Purchase Agreement; COCO...Construction Supplies; Oce Equipment; Quality of Life; and Morale, Welfare, and Recreation PO/TO/DO/ BPA Small Purchase Standard Vehicles PO/TO/DO/ BPA Small...Purchase Standard Vehicles PO/TO/DO/ BPA Small Purchase Standard Vehicles PO/TO/DO/ BPA Small Purchase Food, Water, Billeting, Hygiene; Transportation
NASA Technical Reports Server (NTRS)
Adams, A.
1973-01-01
The Interface Control Document contains engine information necessary for installation of the baseline RL10 Derivative engines in the Space Tug vehicle. The ICD presents a description of the baseline engines and their operating characteristics, mass and load characteristics, and environmental criteria. The document defines the engine/vehicle mechanical, electrical, fluid and pneumatic interface requirements.
NASA Technical Reports Server (NTRS)
Traversi, M.; Piccolo, R.
1979-01-01
The SPEC '78 computer program which consists of mathematical simulations of any vehicle component and external environment is described as are configuration alternatives for the propulsion system. Preliminary assessments of the fundamental characteristics of the lead-acid and sodium-sulfur batteries are included and procedures are given for estimating the cost of a new vehicle in mass production.
AGT 1500 Powerpack Improvement Project (M1 TMEPS). Volume 1
1991-03-01
culminated in a one week evalUation of the ATR. This was due to funding and schedule constraints. Testing was concentrated on vehicle mobility performance...June 1990 with a one week vehicle demonstration at Milford Proving Grounds. The vehicle performed well but the mobility characteristics, most...all of the nonrecurring, recurring, engineering, data, system test and evaluation, and initial spares costs aplicable to each alternative. TMEPS as a