Science.gov

Sample records for efficient visible light

  1. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light

    PubMed Central

    Qin, Fei; Ding, Lu; Zhang, Lei; Monticone, Francesco; Chum, Chan Choy; Deng, Jie; Mei, Shengtao; Li, Ying; Teng, Jinghua; Hong, Minghui; Zhang, Shuang; Alù, Andrea; Qiu, Cheng-Wei

    2016-01-01

    Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the radiation symmetry because of the finite, yet small, thickness of the proposed structure and benefitting from properly tailored intra- and interlayer couplings, such coupled bilayer metasurface experimentally yields a conversion efficiency of 17%, significantly larger than that of earlier single-layer designs, as well as an extinction ratio larger than 0 dB, meaning that anomalous refraction dominates the transmission response. Our finding shows that metallic metasurface can counterintuitively manipulate the visible light as efficiently as dielectric metasurface (~20% in conversion efficiency in Lin et al.’s study), although the metal’s ohmic loss is much higher than dielectrics. Our hybrid bilayer design, still being ultrathin (~λ/6), is found to obey generalized Snell’s law even in the presence of strong couplings. It is capable of efficiently manipulating visible light over a broad bandwidth and can be realized with a facile one-step nanofabrication process. PMID:26767195

  2. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  3. Efficient ZnO-based visible-light-driven photocatalyst for antibacterial applications.

    PubMed

    Kumar, Raju; Anandan, Srinivasan; Hembram, Kaliyan; Rao, Tata Narasinga

    2014-08-13

    Herein, we report the development of a ZnO-based visible-light-driven photocatalyst by interfacial charge transfer process for the inactivation of pathogens under visible-light illumination. Surface modification by a cocatalyst on ZnO, prepared by flame spray pyrolysis process is carried out to induce the visible-light absorption in ZnO. Optical studies showed that surface modification of Cu(2+) induces the visible-light absorption in ZnO by interfacial charge transfer between ZnO and surface Cu(2+) ions upon light irradiation. The photocatalytic efficiency of pure and modified ZnO is evaluated for the inactivation of pathogens and the decomposition of methylene blue under visible-light illumination. The antibacterial activity of Cu(2+)-ZnO is several orders higher than pure ZnO and commercial Degussa-P25 and comparable with Cu(2+)-TiO2. Cu(2+)-ZnO nanorods show better photocatalytic activity than Cu(2+)-ZnO nanosphere, which is attributed to high surface area to volume ratio of former than later. The holes generated in the valence band and the Cu(1+) species generated during the interfacial charge transfer process may attribute for the inactivation of bacteria, whereas the strong oxidation power of hole is responsible for the decomposition of methylene blue. Besides the advantage of Cu(2+)-modified ZnO for visible-light-assisted photocatalytic applications, the method (FSP) used for the synthesis of ZnO in the present study is attractive for commercial application because the process has potential for the production of large quantities (2-3 kg/h) of semiconductors.

  4. Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts

    NASA Astrophysics Data System (ADS)

    Altintas Yildirim, Ozlem; Arslan, Hanife; Sönmezoǧlu, Savaş

    2016-12-01

    Cobalt-doped zinc oxide (Co:ZnO) thin films with dopant contents ranging from 0 to 5 at.% were prepared using the sol-gel method, and their structural, morphological, optical, and photocatalytic properties were characterized. The effect of the dopant content on the photocatalytic properties of the films was investigated by examining the degradation behavior of methylene blue (MB) under visible light irradiation, and a detailed investigation of their photocatalytic activities was performed by determining the apparent quantum yields (AQYs). Co2+ ions were observed to be substitutionally incorporated into Zn2+ sites in the ZnO crystal, leading to lattice parameter constriction and band gap narrowing due to the photoinduced carriers produced under the visible light irradiation. Thus, the light absorption range of the Co:ZnO films was improved compared with that of the undoped ZnO film, and the Co:ZnO films exhibited highly efficient photocatalytic activity (∼92% decomposition of MB after 60-min visible light irradiation for the 3 at.% Co:ZnO film). The AQYs of the Co:ZnO films were greatly enhanced under visible light irradiation compared with that of the undoped ZnO thin film, demonstrating the effect of the Co doping level on the photocatalytic activity of the films.

  5. Efficient visible-light photocatalytic performance of cuprous oxide porous nanosheet arrays

    SciTech Connect

    Li, Xianghua; Wang, Jianqiang; Cao, Minhua

    2015-10-15

    Graphical Abstract: We demonstrated a facile and efficient process for fabricating Cu{sub 2}O porous nanosheet arrays on Cu mesh. Benefiting from the 1D array structure and porous structure, the as-prepared Cu{sub 2}O sample exhibited significantly improved photocatalytic activity for methyl orange degradation under visible light irradiation. - Highlights: • Cu{sub 2}O porous nanosheet arrays on Cu mesh were synthesized via the facile and efficient process. • The Cu{sub 2}O sample exhibited the 1D array structure and porous nanosheet morphology. • The as-prepared Cu{sub 2}O porous nanosheet arrays exhibited significantly improved photocatalytic activity. - Abstract: One-dimensional nanostructures are of great interest for a wide range of applications. In this work, we demonstrated the fabrication of visible-light-responsive Cu{sub 2}O porous nanosheet arrays. The synthesis involved the growth of Cu(OH){sub 2} nanosheet arrays on Cu mesh by solution-based corrosion and thermal transformation of Cu(OH){sub 2} nanosheet to Cu{sub 2}O porous nanosheets on Cu mesh. Benefiting from the one dimensional array structure and porous structure, the as-prepared Cu{sub 2}O porous nanosheet arrays exhibited significantly improved photocatalytic activity for methyl orange degradation under visible light irradiation.

  6. Highly efficient visible light plasmonic photocatalyst Ag@Ag(Br,I).

    PubMed

    Wang, Peng; Huang, Baibiao; Zhang, Qianqian; Zhang, Xiaoyang; Qin, Xiaoyan; Dai, Ying; Zhan, Jie; Yu, Jiaoxian; Liu, Haixia; Lou, Zaizhu

    2010-09-03

    The new plasmonic photocatalyst Ag@Ag(Br,I) was synthesized by the ion-exchange process between the silver bromide and potassium iodide, then by reducing some Ag(+) ions in the surface region of Ag(Br,I) particles to Ag(0) species. Ag nanoparticles are formed from Ag(Br,I) by the light-induced chemical reduction reaction. The Ag@Ag(Br,I) particles have irregular shapes with their sizes varying from 83 nm to 1 mum. The as-grown plasmonic photocatalyst shows strong absorption in the visible light region because of the plasmon resonance of Ag nanoparticles. The ability of this compound to reduce Cr(VI) under visible light was compared with those of other reference photocatalyst. The plasmonic photocatalyst is shown to be highly efficient under visible light. The stability of the photocatalyst was examined by X-ray diffraction and X-ray photoelectron spectroscopy. The XRD pattern and XPS spectra prove the stability of the plasmonic photocatalyst Ag@Ag(Br,I).

  7. Constraints on drivers for visible light communications emitters based on energy efficiency.

    PubMed

    Del Campo-Jimenez, Guillermo; Perez-Jimenez, Rafael; Lopez-Hernandez, Francisco Jose

    2016-05-02

    In this work we analyze the energy efficiency constraints on drivers for Visible light communication (VLC) emitters. This is the main reason why LED is becoming the main source of illumination. We study the effect of the waveform shape and the modulation techniques on the overall energy efficiency of an LED lamp. For a similar level of illumination, we calculate the emitter energy efficiency ratio η (PLED/PTOTAL) for different signals. We compare switched and sinusoidal signals and analyze the effect of both OOK and OFDM modulation techniques depending on the power supply adjustment, level of illumination and signal amplitude distortion. Switched and OOK signals present higher energy efficiency behaviors (0.86≤η≤0.95) than sinusoidal and OFDM signals (0.53≤η≤0.79).

  8. Deployment methods of visible light communication lights for energy efficient buildings

    NASA Astrophysics Data System (ADS)

    Niaz, Muhammad Tabish; Imdad, Fatima; Kim, Soomi; Kim, Hyung Seok

    2016-10-01

    Indoor visible light communication (VLC) uses light emitting diodes (LEDs) to provide both illumination and data communication. The deployment of LED plays an important role in maintaining a steady optical power distribution over the reference receiving plane. Typical ways of luminaire deployment in offices and homes are not optimized for VLC. This paper investigates various configurations of LEDs for deploying them on the ceilings of offices and homes. The existing square array deployment of LEDs does not provide a full coverage on the receiving plane leaving dead spaces, which in turn affects the performance of the whole system. An optimized circular deployment scheme is proposed that considers both the position of the LED transmitters on the ceiling and the first reflections at each wall to yield more accurate results. Rectangular deployment and circular deployment are analyzed through simulation of the received optical power distribution, average outage area rate, and energy consumption. An optimization technique is developed to analyze the LED deployment schemes. It is clear from the results that the circular LED deployment provides a better performance than the square array grid LED deployment.

  9. Ultra-Efficient Photocatalytic Properties in Porous Tungsten Oxide/Graphene Film under Visible Light Irradiation.

    PubMed

    Mei, Lin; Zhao, Haitao; Lu, Bingan

    2015-12-01

    Recently, a growing amount of effort has been devoted to solving the widespread problem of pollution. Photocatalysts have attracted increasing attention for their widespread environmental applications. Here, a classic and simple electrospun technique is used to directly fabricate a porous a tungsten oxide nanoframework with graphene film as a photocatalyst for degradation of pollutants. The as-synthesized film simultaneously possesses substantial adsorptivity of aromatic molecules, extensive light absorption range, significant light trapping, and efficient charge carrier separation properties, which remarkably enhance photocatalytic activity. In the photodegradation of Rhodamine B, a significant photocatalytic enhancement in the reaction rate is observed, which has superior photocatalytic activity compared to other bare WO3 and TiO2 nanomaterials under visible-light irradiation.

  10. Efficient visible-light photocatalytic degradation system assisted by conventional Pd catalysis

    PubMed Central

    Yu, Yanlong; He, Tao; Guo, Lingju; Yang, Yajun; Guo, Limei; Tang, Yue; Cao, Yaan

    2015-01-01

    Different approaches like doping and sensitization have been used to develop photocatalysts that can lead to high reactivity under visible-light illumination, which would allow efficient utilization of solar irradiation and even interior lighting. We demonstrated a conceptually different approach by changing reaction route via introducing the idea of conventional Pd catalysis used in cross-coupling reactions into photocatalysis. The –O–Pd–Cl surface species modified on Ni-doped TiO2 can play a role the same as that in chemical catalysis, resulting in remarkably enhanced photocatalytic activity under visible-light irradiation. For instance, Pd/Ni-TiO2 has much higher activity than N-TiO2 (about 3 ~ 9 times for all of the 4-XP systems) upon irradiation with wavelength of 420 nm. The catalytically active Pd(0) is achieved by reduction of photogenerated electrons from Ni-TiO2. Given high efficient, stable Pd catalysts or other suitable chemical catalysts, this concept may enable realization of the practical applications of photocatalysis. PMID:25825365

  11. Energy-efficient space-time modulation for indoor MISO visible light communications.

    PubMed

    Zhang, Yan-Yu; Yu, Hong-Yi; Zhang, Jian-Kang; Zhu, Yi-Jun; Wang, Tao

    2016-01-15

    We consider an indoor multi-input single-output (MISO) visible light communication (VLC) system without channel state information at the transmitter. For such a system, an energy-efficient time-collaborative modulation (TCM) constellation is first designed by minimizing a total optical power subject to a fixed minimum Euclidean distance. Then, a new space-time transmission scheme is proposed. Comprehensive computer simulations indicate that our proposed design always has better average error performance within illumination coverage area than the currently available schemes for this application.

  12. An efficient visible light photocatalyst poly(3-hexylthiophene)/CdS nanocomposite with enhanced antiphotocorrosion property

    NASA Astrophysics Data System (ADS)

    Duan, Yandong; Luo, Qingzhi; Wang, Desong; Li, Xueyan; An, Jing; Liu, Qing

    2014-03-01

    A series of poly(3-hexylthiophene)/CdS (P3HT/CdS) nanocomposites with P3HT content range of 1-4 wt% were successfully synthesized by the chemisorption method. P3HT/CdS nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, Raman spectroscopy, Fourier-transform infrared spectroscopy, UV-vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic activities of P3HT/CdS nanocomposites were investigated by evaluating the degradation of methyl orange (MO) under visible light irradiation. The nanocomposites exhibited much higher visible light photocatalytic activity than pure CdS due to the higher efficiency of charge separation and transference in the nanocomposites. The optimum initial weight content of P3HT in the nanocomposites was found to be ca. 2.0 wt%. The recycling run experiments showed that P3HT/CdS possessed excellent photocatalytic stability. The atomic absorption spectrometric determination of Cd in the filtrate after the recycling runs indicated that the antiphotocorrosion property of CdS was efficiently improved by P3HT modification. A carriers trapping experiment indicated that both photogenerated holes and electrons were the main active species in the MO photodegradation process catalyzed by P3HT/CdS. The photocatalytic and antiphotocorrosion mechanism of the nanocomposites was discussed.

  13. Fe ion-implanted TiO2 thin film for efficient visible-light photocatalysis

    NASA Astrophysics Data System (ADS)

    Impellizzeri, G.; Scuderi, V.; Romano, L.; Sberna, P. M.; Arcadipane, E.; Sanz, R.; Scuderi, M.; Nicotra, G.; Bayle, M.; Carles, R.; Simone, F.; Privitera, V.

    2014-11-01

    This work shows the application of metal ion-implantation to realize an efficient second-generation TiO2 photocatalyst. High fluence Fe+ ions were implanted into thin TiO2 films and subsequently annealed up to 550 °C. The ion-implantation process modified the TiO2 pure film, locally lowering its band-gap energy from 3.2 eV to 1.6-1.9 eV, making the material sensitive to visible light. The measured optical band-gap of 1.6-1.9 eV was associated with the presence of effective energy levels in the energy band structure of the titanium dioxide, due to implantation-induced defects. An accurate structural characterization was performed by Rutherford backscattering spectrometry, transmission electron microscopy, Raman spectroscopy, X-ray diffraction, and UV/VIS spectroscopy. The synthesized materials revealed a remarkable photocatalytic efficiency in the degradation of organic compounds in water under visible light irradiation, without the help of any thermal treatments. The photocatalytic activity has been correlated with the amount of defects induced by the ion-implantation process, clarifying the operative physical mechanism. These results can be fruitfully applied for environmental applications of TiO2.

  14. Hot-electron-transfer enhancement for the efficient energy conversion of visible light.

    PubMed

    Yu, Sungju; Kim, Yong Hwa; Lee, Su Young; Song, Hyeon Don; Yi, Jongheop

    2014-10-13

    Great strides have been made in enhancing solar energy conversion by utilizing plasmonic nanostructures in semiconductors. However, current generation with plasmonic nanostructures is still somewhat inefficient owing to the ultrafast decay of plasmon-induced hot electrons. It is now shown that the ultrafast decay of hot electrons across Au nanoparticles can be significantly reduced by strong coupling with CdS quantum dots and by a Schottky junction with perovskite SrTiO3 nanoparticles. The designed plasmonic nanostructure with three distinct components enables a hot-electron-assisted energy cascade for electron transfer, CdS→Au→SrTiO3, as demonstrated by steady-state and time-resolved photoluminescence spectroscopy. Consequently, hot-electron transfer enabled the efficient production of H2 from water as well as significant electron harvesting under irradiation with visible light of various wavelengths. These findings provide a new approach for overcoming the low efficiency that is typically associated with plasmonic nanostructures.

  15. Microcrystalline sodium tungsten bronze nanowire bundles as efficient visible light-responsive photocatalysts.

    PubMed

    Wang, Lei; Zhan, Jinhua; Fan, Weiliu; Cui, Guanwei; Sun, Honggang; Zhuo, Linhai; Zhao, Xian; Tang, Bo

    2010-12-14

    Microcrystalline sodium tungsten bronze nanowire bundles were obtained via a facile hydrothermal synthesis, and were applied in water purification as visible-light-driven photocatalysts for the first time.

  16. Preparation of Au-BiVO4 heterogeneous nanostructures as highly efficient visible-light photocatalysts.

    PubMed

    Cao, Shao-Wen; Yin, Zhen; Barber, James; Boey, Freddy Y C; Loo, Say Chye Joachim; Xue, Can

    2012-01-01

    Au-BiVO(4) heterogeneous nanostructures have been successfully prepared through in situ growth of gold nanoparticles on BiVO(4) microtubes and nanosheets via a cysteine-linking strategy. The experimental results reveal that these Au-BiVO(4) heterogeneous nanostructures exhibit much higher visible-light photocatalytic activities than the individual BiVO(4) microtubes and nanosheets for both dye degradation and water oxidation. The enhanced photocatalytic efficiencies are attributed to the charge transfer from BiVO(4) to the attached gold nanoparticles as well as their surface plasmon resonance (SPR) absorption. These new heteronanostructures are expected to show considerable potential applications in solar-driven wastewater treatment and water splitting.

  17. Smart LED allocation scheme for efficient multiuser visible light communication networks.

    PubMed

    Sewaiwar, Atul; Tiwari, Samrat Vikramaditya; Chung, Yeon Ho

    2015-05-18

    In a multiuser bidirectional visible light communication (VLC), a large number of LEDs or an LED array needs to be allocated in an efficient manner to ensure sustainable data rate and link quality. Moreover, in order to support an increasing or decreasing number of users in the network, the LED allocation is required to be performed dynamically. In this paper, a novel smart LED allocation scheme for efficient multiuser VLC networks is presented. The proposed scheme allocates RGB LEDs to multiple users in a dynamic and efficient fashion, while satisfying illumination requirements in an indoor environment. The smart LED array comprised of RGB LEDs is divided into sectors according to the location of the users. The allocated sectors then provide optical power concentration toward the users for efficient and reliable data transmission. An algorithm for the dynamic allocation of the LEDs is also presented. To verify its effective resource allocation feature of the proposed scheme, simulations were performed. It is found that the proposed smart LED allocation scheme provides the effect of optical beamforming toward individual users, thereby increasing the collective power concentration of the optical signals on the desirable users and resulting in significantly increased data rate, while ensuring sufficient illumination in a multiuser VLC environment.

  18. Efficient Visible-Light Photocatalytic Properties in Low-Temperature Bi-Nb-O System Photocatalysts.

    PubMed

    Zhai, Haifa; Shang, Shuying; Zheng, Liuyang; Li, Panpan; Li, Haiqin; Luo, Hongying; Kong, Jizhou

    2016-12-01

    Low-temperature Bi-Nb-O system photocatalysts were prepared by a citrate method using homemade water-soluble niobium precursors. The structures, morphologies, and optical properties of Bi-Nb-O system photocatalysts with different compositions were investigated deeply. All the Bi-Nb-O powders exhibit appreciably much higher photocatalytic efficiency of photo-degradation of methyl violet (MV), especially for Bi-Nb-O photocatalysts sintered at 750 °C (BNO750), only 1.5 h to completely decompose MV, and the obtained first-order rate constant (k) is 1.94/h. A larger degradation rate of Bi-Nb-O photocatalysts sintered at 550 °C (BNO550) can be attributed to the synergistic effect between β-BiNbO4 and Bi5Nb3O15. Bi5Nb3O15 with small particle size on β-BiNbO4 surface can effectively short the diffuse length of electron. BNO750 exhibits the best photocatalytic properties under visible-light irradiation, which can be attributed to its better crystallinity and the synergistic effect between β-BiNbO4 and α-BiNbO4. The small amount of α-BiNbO4 loading on surface of β-BiNbO4 can effectively improve the electron and hole segregation and migration. Holes are the main active species of Bi-Nb-O system photocatalysts in aqueous solution under visible-light irradiation.

  19. An efficient visible-light photocatalyst prepared by modifying AgBr particles with a small amount of activated carbon

    SciTech Connect

    Wang, Desong Zhao, Mangmang; Luo, Qingzhi; Yin, Rong; An, Jing; Li, Xueyan

    2016-04-15

    Highlights: • An efficient visible-light photocatalyst was prepared by modifying AgBr particles. • A small amount of activated carbon was used to modify AgBr particles. • The modified AgBr exhibited improved visible-light photocatalytic performances. - Abstract: An efficient visible-light photocatalyst was successfully prepared by modifying AgBr particles with a small amount of activated carbon (AC) via a simple chemical precipitation approach. The AC/AgBr composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV–vis diffuse reflection spectroscopy, photoluminescence spectroscopy, electrochemical impedance spectroscopy. The photocatalytic performances of the AC/AgBr composite were investigated by evaluating photodegradation of methyl orange (MO) and phenol under visible light irradiation, and the effects of the AC content in the composite, concentrations of AC/AgBr composite and MO, carrier scavengers on MO photodegradation rate were systematically investigated. The results indicated that the modification of AC can hardly change the crystalline and crystal size of AgBr particles, while significantly improve their specific surface areas, visible-light absorption and separation efficiency of photogenerated electron–hole pairs. Compared with pure AgBr, the AC/AgBr composite exhibited drastically enhanced visible-light photocatalytic activity and stability. The photogenerated electrons and holes, hydroxyl radicals are responsible to the photodegradation of organic pollutants, and the photogenerated holes are the main active species. On the basis of the results and the properties of AC and AgBr, the visible-light photocatalytic mechanism of the AC/AgBr composite was discussed.

  20. A power-efficient ZF precoding scheme for multi-user indoor visible light communication systems

    NASA Astrophysics Data System (ADS)

    Zhao, Qiong; Fan, Yangyu; Deng, Lijun; Kang, Bochao

    2017-02-01

    In this study, we propose a power-efficient ZF precoding scheme for visible light communication (VLC) downlink multi-user multiple-input-single-output (MU-MISO) systems, which incorporates the zero-forcing (ZF) and the characteristics of VLC systems. The main idea of this scheme is that the channel matrix used to perform pseudoinverse comes from the set of optical Access Points (APs) shared by more than one user, instead of the set of all involved serving APs as the existing ZF precoding schemes often used. By doing this, the waste of power, which is caused by the transmission of one user's data in the un-serving APs, can be avoided. In addition, the size of the channel matrix needs to perform pseudoinverse becomes smaller, which helps to reduce the computation complexity. Simulation results in two scenarios show that the proposed ZF precoding scheme has higher power efficiency, better bit error rate (BER) performance and lower computation complexity compared with traditional ZF precoding schemes.

  1. An efficient bismuth tungstate visible-light-driven photocatalyst for breaking down nitric oxide.

    PubMed

    Li, Guisheng; Zhang, Dieqing; Yu, Jimmy C; Leung, Michael K H

    2010-06-01

    This paper reports a photocatalytic removal of 400 ppb level of NO in air under visible light irradiation by utilizing three-dimensional (3D) hierarchical bismuth tungstate (Bi(2)WO(6)) microspheres. A facile microwave-assisted hydrothermal method involving bismuth nitrate and sodium wolframate was developed to synthesize the photocatalyst. The Bi(2)WO(6) samples were characterized by using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), Raman and ultraviolet-visible reflectance (UV-vis) spectroscopy. The relationship between the physicochemical property and the photocatalytic performance of the as prepared samples is discussed. The present work demonstrates that the 3D hierarchical Bi(2)WO(6) microspheres are effective visible-light-driven photocatalytic functional materials for air purification.

  2. Highly efficient photocatalytic hydrogen evolution from nickel quinolinethiolate complexes under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Rao, Heng; Yu, Wen-Qian; Zheng, Hui-Qin; Bonin, Julien; Fan, Yao-Ting; Hou, Hong-Wei

    2016-08-01

    Earth-abundant metal complexes have emerged as promising surrogates of platinum for catalyzing the hydrogen evolution reaction (HER). In this study, we report the design and synthesis of two novel nickel quinolinethiolate complexes, namely [Ni(Hqt)2(4, 4‧-Z-2, 2‧-bpy)] (Hqt = 8-quinolinethiol, Z = sbnd H [1] or sbnd CH3 [2], bpy = bipyridine). An efficient three-component photocatalytic homogeneous system for hydrogen generation working under visible light irradiation was constructed by using the target complexes as catalysts, triethylamine (TEA) as sacrificial electron donor and xanthene dyes as photosensitizer. We obtain turnover numbers (TON, vs. catalyst) for H2 evolution of 5923/7634 under the optimal conditions with 5.0 × 10-6 M complex 1/2 respectively, 1.0 × 10-3 M fluorescein and 5% (v/v) TEA at pH 12.3 in EtOH/H2O (1:1, v/v) mixture after 8 h irradiation (λ > 420 nm). We discuss the mechanism of H2 evolution in the homogeneous photocatalytic system based on fluorescence spectrum and cyclic voltammetry data.

  3. Quantitative Investigation of Efficiency of Ultraviolet and Visible Light in Eradication of Candida albicans In Vitro

    PubMed Central

    Maver-Bišćanin, Mirela; Mravak-Stipetić, Marinka; Bukovski, Suzana; Bišćanin, Alen

    2014-01-01

    Abstract Objective: The aim of this study was to quantitatively investigate the efficiency of the ultraviolet (UV) and visible light in eradication of Candida albicans in vitro; in particular, to determine, for selected wavelengths, the specific eradication coefficients and thresholds in terms of energy density levels required to effect 3.0log10 and 4.0log10 reduction. Background data: Oral candidosis is the most common infection of the oral cavity and is caused by Candida species. The widespread use of topical and systemic antifungal agents as conventional treatment for oral candidosis has resulted in the development of resistance in C. albicans. Therefore, it has become necessary to develop alternative therapies for the treatment of oral candidosis. Methods: C. albicans ATCC® 90028™ was irradiated with 254 nm, 365 nm, 406 nm, 420 nm, and broadband Xe spectrum. For each wavelength, a fit of experimental data (survival fraction vs. applied energy density) with an exponential decay function enabled estimation of the specific eradication coefficients and thresholds. Results: Based on estimated specific efficiencies (Δ) and eradication thresholds (ET) of the investigated wavelengths, the ranking in eradication efficiency of C. albicans (most to least effective) is: 254 nm (Δ=6.1 mJ/cm−2, ET99.99=56 mJ/cm−2), broadband Xe spectrum (Δ=27.7 mJ/cm−2, ET99.99=255 mJ/cm−2), 365 nm (Δ=4.3 J/cm−2, ET99.99=39 J/cm−2), 420 nm (Δ=0.65 J/cm−2, ET99.99=6 J/cm−2), and 406 nm (Δ=11.4 J/cm−2, ET99.99=104 J/cm−2). Conclusions: The results provide insight into the wavelength-dependent dynamics of eradication of C. albicans. For each investigated wavelength, the eradication coefficient and corresponding eradication threshold were estimated. The observed different eradication efficiencies are consequence of different spectrally dependent inactivation mechanisms. The established methodology enables unambiguous quantitative

  4. Efficient chemical and visible-light-driven water oxidation using nickel complexes and salts as precatalysts.

    PubMed

    Chen, Gui; Chen, Lingjing; Ng, Siu-Mui; Lau, Tai-Chu

    2014-01-01

    Chemical and visible-light-driven water oxidation catalyzed by a number of Ni complexes and salts have been investigated at pH 7-9 in borate buffer. For chemical oxidation, [Ru(bpy)3](3+) (bpy = 2,2'-bipyridine) was used as the oxidant, with turnover numbers (TONs) >65 and a maximum turnover frequency (TOFmax) >0.9 s(-1). Notably, simple Ni salts such as Ni(NO3 )2 are more active than Ni complexes that bear multidentate N-donor ligands. The Ni complexes and salts are also active catalysts for visible-light-driven water oxidation that uses [Ru(bpy)3](2+) as the photosensitizer and S2 O8 (2-) as the sacrificial oxidant; a TON>1200 was obtained at pH 8.5 by using Ni(NO3)2 as the catalyst. Dynamic light scattering measurements revealed the formation of nanoparticles in chemical and visible-light-driven water oxidation by the Ni catalysts. These nanoparticles aggregated during water oxidation to form submicron particles that were isolated and shown to be partially reduced β-NiOOH by various techniques, which include SEM, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, XRD, and IR spectroscopy. These results suggest that the Ni complexes and salts act as precatalysts that decompose under oxidative conditions to form an active nickel oxide catalyst. The nature of this active oxide catalyst is discussed.

  5. Towards Visible Light Hydrogen Generation: Quantum Dot-Sensitization via Efficient Light Harvesting of Hybrid-TiO2

    NASA Astrophysics Data System (ADS)

    Kim, Kwanghyun; Kim, Myeong-Jong; Kim, Sun-I.; Jang, Ji-Hyun

    2013-11-01

    We report pronounced enhancement of photoelectrochemical hydrogen generation of a quantum dot-sensitized hybrid-TiO2 (QD/H-TiO2) electrode that is composed of a mesoporous TiO2 layer sandwiched by a double sided energy harvesting layer consisting of a surface-textured TiO2 inverse opals layer on the bottom and a patterned mesoporous TiO2 layer on the top. CdSe/H-TiO2 exhibits a maximum photocurrent density of ~16.2 mA/cm2, which is 35% higher than that of the optimized control sample (CdSe/P25), achieved by matching of the bandgap of quantum dot-sensitization with the wavelength where light harvesting of H-TiO2 is observed. Furthermore, CdSe/H-TiO2 under filtered exposure conditions recorded current density of ~14.2 mA/cm2, the greatest value in the visible range. The excellent performance of the quantum dot-sensitized H-TiO2 suggests that alteration of the photoelectrodes to suitable nanostructures with excellent light absorption may offer optimal strategies for attaining maximum efficiency in a variety of photoconversion systems.

  6. Towards Visible Light Hydrogen Generation: Quantum Dot-Sensitization via Efficient Light Harvesting of Hybrid-TiO2

    PubMed Central

    Kim, Kwanghyun; Kim, Myeong-Jong; Kim, Sun-I; Jang, Ji-Hyun

    2013-01-01

    We report pronounced enhancement of photoelectrochemical hydrogen generation of a quantum dot-sensitized hybrid-TiO2 (QD/H-TiO2) electrode that is composed of a mesoporous TiO2 layer sandwiched by a double sided energy harvesting layer consisting of a surface-textured TiO2 inverse opals layer on the bottom and a patterned mesoporous TiO2 layer on the top. CdSe/H-TiO2 exhibits a maximum photocurrent density of ~16.2 mA/cm2, which is 35% higher than that of the optimized control sample (CdSe/P25), achieved by matching of the bandgap of quantum dot-sensitization with the wavelength where light harvesting of H-TiO2 is observed. Furthermore, CdSe/H-TiO2 under filtered exposure conditions recorded current density of ~14.2 mA/cm2, the greatest value in the visible range. The excellent performance of the quantum dot-sensitized H-TiO2 suggests that alteration of the photoelectrodes to suitable nanostructures with excellent light absorption may offer optimal strategies for attaining maximum efficiency in a variety of photoconversion systems. PMID:24270426

  7. Low Efficiency Upconversion Nanoparticles for High-Resolution Coalignment of Near-Infrared and Visible Light Paths on a Light Microscope.

    PubMed

    Sundaramoorthy, Sriramkumar; Garcia Badaracco, Adrian; Hirsch, Sophia M; Park, Jun Hong; Davies, Tim; Dumont, Julien; Shirasu-Hiza, Mimi; Kummel, Andrew C; Canman, Julie C

    2017-03-08

    The combination of near-infrared (NIR) and visible wavelengths in light microscopy for biological studies is increasingly common. For example, many fields of biology are developing the use of NIR for optogenetics, in which an NIR laser induces a change in gene expression and/or protein function. One major technical barrier in working with both NIR and visible light on an optical microscope is obtaining their precise coalignment at the imaging plane position. Photon upconverting particles (UCPs) can bridge this gap as they are excited by NIR light but emit in the visible range via an anti-Stokes luminescence mechanism. Here, two different UCPs have been identified, high-efficiency micro(540)-UCPs and lower efficiency nano(545)-UCPs, that respond to NIR light and emit visible light with high photostability even at very high NIR power densities (>25 000 Suns). Both of these UCPs can be rapidly and reversibly excited by visible and NIR light and emit light at visible wavelengths detectable with standard emission settings used for Green Fluorescent Protein (GFP), a commonly used genetically encoded fluorophore. However, the high efficiency micro(540)-UCPs were suboptimal for NIR and visible light coalignment, due to their larger size and spatial broadening from particle-to-particle energy transfer consistent with a long-lived excited state and saturated power dependence. In contrast, the lower efficiency nano-UCPs were superior for precise coalignment of the NIR beam with the visible light path (∼2 μm versus ∼8 μm beam broadening, respectively) consistent with limited particle-to-particle energy transfer, superlinear power dependence for emission, and much smaller particle size. Furthermore, the nano-UCPs were superior to a traditional two-camera method for NIR and visible light path alignment in an in vivo Infrared-Laser-Evoked Gene Operator (IR-LEGO) optogenetics assay in the budding yeast Saccharomyces cerevisiae. In summary, nano-UCPs are powerful new tools

  8. Co3 O4 Hexagonal Platelets with Controllable Facets Enabling Highly Efficient Visible-Light Photocatalytic Reduction of CO2.

    PubMed

    Gao, Chao; Meng, Qiangqiang; Zhao, Kun; Yin, Huajie; Wang, Dawei; Guo, Jun; Zhao, Shenlong; Chang, Lin; He, Meng; Li, Qunxiang; Zhao, Huijun; Huang, Xingjiu; Gao, Yan; Tang, Zhiyong

    2016-08-01

    A heterogeneous catalyst made of well-defined Co3 O4 hexagonal platelets with varied exposed facets is coupled with [Ru(bpy)3 ]Cl2 photosensitizers to effectively and efficiently reduce CO2 under visible-light irradiation. Systematic investigation based on both experiment and theory discloses that the exposed {112} facets are crucial for activating CO2 molecules, giving rise to significant enhancement of photocatalytic CO2 reduction efficiency.

  9. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light.

    PubMed

    Yang, Shubin; Gong, Yongji; Zhang, Jinshui; Zhan, Liang; Ma, Lulu; Fang, Zheyu; Vajtai, Robert; Wang, Xinchen; Ajayan, Pulickel M

    2013-05-07

    Graphitic carbon nitride nanosheets are extracted, produced via simple liquid-phase exfoliation of a layered bulk material, g-C3N4. The resulting nanosheets, having ≈2 nm thickness and N/C atomic ratio of 1.31, show an optical bandgap of 2.65 eV. The carbon nitride nanosheets are demonstrated to exhibit excellent photocatalytic activity for hydrogen evolution under visible light.

  10. Photocatalytic Ohmic layered nanocomposite for efficient utilization of visible light photons

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Gyu; Jeong, Euh Duck; Borse, Pramod H.; Jeon, Seongho; Yong, Kijung; Lee, Jae Sung; Li, Wei; Oh, Se H.

    2006-08-01

    The WO3/W /PbBi2Nb1.9Ti0.1O9 photocatalyst was fabricated by depositing the tungsten clusters over the p-type perovskite base material with the chemical vapor deposition method, and later partly oxidizing the surfaces of these clusters to obtain n-type WO3 overlayers and W metal layer as an Ohmic junction. This NCPC showed unprecedented high activity for the photocatalytic oxidation of water, photocurrent generation, and acetaldehyde decomposition under visible light irradiation (λ ⩾420nm).

  11. Photocatalytic Ohmic layered nanocomposite for efficient utilization of visible light photons

    SciTech Connect

    Kim, Hyun Gyu; Jeong, Euh Duck; Borse, Pramod H.; Jeon, Seongho; Yong, Kijung; Lee, Jae Sung; Li Wei; Oh, Se H.

    2006-08-07

    The WO{sub 3}/W/PbBi{sub 2}Nb{sub 1.9}Ti{sub 0.1}O{sub 9} photocatalyst was fabricated by depositing the tungsten clusters over the p-type perovskite base material with the chemical vapor deposition method, and later partly oxidizing the surfaces of these clusters to obtain n-type WO{sub 3} overlayers and W metal layer as an Ohmic junction. This NCPC showed unprecedented high activity for the photocatalytic oxidation of water, photocurrent generation, and acetaldehyde decomposition under visible light irradiation ({lambda}{>=}420 nm)

  12. Highly efficient visible light mediated azo dye degradation through barium titanate decorated reduced graphene oxide sheets

    NASA Astrophysics Data System (ADS)

    Rastogi, Monisha; Kushwaha, H. S.; Vaish, Rahul

    2016-03-01

    This study investigates BaTiO3 decorated reduced graphene oxide sheets as a potential visible light active catalyst for dye degradation (Rhodamine B). The composites were prepared through conventional hydrothermal synthesis technique using hydrazine as a reducing agent. A number of techniques have been employed to affirm the morphology, composition and photocatalytic properties of the composites; these include UV-visible spectrophotoscopy that assisted in quantifying the concentration difference of Rhodamine B. The phase homogeneity of the composites was examined through x-ray powder diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) was employed to confirm the orientation of the BaTiO3 particles over the reduced graphene oxide sheets. Photoluminescence (PL) emission spectra assisted in determining the surface structure and excited state of the catalyst. Fourier transformed-infrared (FTIR) spectra investigated the vibrations and adsorption peak of the composites, thereby ascertaining the formation of reduced graphene oxide. In addition, diffuse reflectance spectroscopy (DRS) demonstrated an enhanced absorption in the visible region. The experimental investigations revealed that graphene oxide acted as charge collector and simultaneously facilitated surface adsorption and photo-sensitization. It could be deduced that BaTiO3-reduced graphene oxide composites are of significant interest the field of water purification through solar photocatalysis. [Figure not available: see fulltext.

  13. Solvothermal synthesis of designed nonstoichiometric strontium titanate for efficient visible-light photocatalysis

    SciTech Connect

    Sulaeman, Uyi; Yin, Shu; Sato, Tsugio

    2010-09-06

    SrTiO{sub 3} powders with various Sr/Ti atomic ratios were synthesized by microwave-assisted solvothermal reactions of SrCl{sub 2} and Ti(OC{sub 3}H{sub 7}){sub 4} in KOH aqueous solutions. The nanoparticles of perovskite type SrTiO{sub 3} structure with the particle size of 30-40 nm were synthesized. The photocatalytic activity was determined by deNO{sub x} ability using light emitting diode lamps of various wavelengths such as 627 nm (red), 530 nm (green), 445 nm (blue), and 390 nm (UV). The photocatalytic activity significantly changed depending on the Sr/Ti atomic ratio, i.e., the strontium rich sample (Sr/Ti atomic ratio>1) showed excellent visible light responsive photocatalytic activity for the oxidative destruction of NO.

  14. Solvothermal synthesis of designed nonstoichiometric strontium titanate for efficient visible-light photocatalysis

    NASA Astrophysics Data System (ADS)

    Sulaeman, Uyi; Yin, Shu; Sato, Tsugio

    2010-09-01

    SrTiO3 powders with various Sr/Ti atomic ratios were synthesized by microwave-assisted solvothermal reactions of SrCl2 and Ti(OC3H7)4 in KOH aqueous solutions. The nanoparticles of perovskite type SrTiO3 structure with the particle size of 30-40 nm were synthesized. The photocatalytic activity was determined by deNOx ability using light emitting diode lamps of various wavelengths such as 627 nm (red), 530 nm (green), 445 nm (blue), and 390 nm (UV). The photocatalytic activity significantly changed depending on the Sr/Ti atomic ratio, i.e., the strontium rich sample (Sr/Ti atomic ratio>1) showed excellent visible light responsive photocatalytic activity for the oxidative destruction of NO.

  15. Chlorine-functionalized carbon dots for highly efficient photodegradation of pollutants under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Hu, Shengliang; Ding, Yanli; Chang, Qing; Yang, Jinlong; Lin, Kui

    2015-11-01

    Chlorine-functionalized carbon dots (Cl-CDs) were prepared by the substitution reaction between Cl radicals into thionyl chloride molecules and carbon dots with containing OH/COOH groups at their surface (O-CDs). The obtained Cl-CDs with a size of 2-5 nm contain 2-3% Cl atoms and emit blue light. Compared with amine-functionalzed carbon dots (N-CDs) and O-CDs, Cl-CDs exhibit much higher photocatalytic activity under visible-light irradiation. The thermally and chemically stable phthalocyanine can be even degraded quickly through Cl-CDs. This work suggests that surface engineering of carbon dots with heteroatoms can be used to enhance their photochemical properties.

  16. Hydrothermal derived nitrogen doped SrTiO3 for efficient visible light driven photocatalytic reduction of chromium(VI).

    PubMed

    Xing, Guanjie; Zhao, Lanxiao; Sun, Tao; Su, Yiguo; Wang, Xiaojing

    2016-01-01

    In this work, we report on the synthesis of nitrogen doped SrTiO3 nanoparticles with efficient visible light driven photocatalytic activity toward Cr(VI) by the solvothermal method. The samples are carefully characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-Vis diffuse reflectance spectroscopy and photocatalytic test. It is found that nitrogen doping in SrTiO3 lattice led to an apparent lattice expansion, particle size reduction as well as subsequent increase of Brunner-Emmet-Teller surface area. The visible light absorption edge and intensity can be modulated by nitrogen doping content, which absorption edge extends to about 600 nm. Moreover, nitrogen doping can not only modulate the visible light absorption feature, but also have consequence on the enhancement of charge separation efficiency, which can promote the photocatalytic activity. With well controlled particle size, Brunner-Emmet-Teller surface area, and electronic structure via nitrogen doping, the photocatalytic performance toward Cr(VI) reduction of nitrogen doped SrTiO3 was optimized at initial hexamethylenetetramine content of 2.

  17. Peptide Self-Assembled Biofilm with Unique Electron Transfer Flexibility for Highly Efficient Visible-Light-Driven Photocatalysis.

    PubMed

    Pan, Yun-Xiang; Cong, Huai-Ping; Men, Yu-Long; Xin, Sen; Sun, Zheng-Qing; Liu, Chang-Jun; Yu, Shu-Hong

    2015-11-24

    Inspired by natural photosynthesis, biomaterial-based catalysts are being confirmed to be excellent for visible-light-driven photocatalysis, but are far less well explored. Herein, an ultrathin and uniform biofilm fabricated from cold-plasma-assisted peptide self-assembly was employed to support Eosin Y (EY) and Pt nanoparticles to form an EY/Pt/Film catalyst for photocatalytic water splitting to H2 and photocatalytic CO2 reduction with water to CO, under irradiation of visible light. The H2 evolution rate on EY/Pt/Film is 62.1 μmol h(-1), which is about 5 times higher than that on Pt/EY and 1.5 times higher than that on the EY/Pt/TiO2 catalyst. EY/Pt/Film exhibits an enhanced CO evolution rate (19.4 μmol h(-1)), as compared with Pt/EY (2.8 μmol h(-1)) and EY/Pt/TiO2 (6.1 μmol h(-1)). The outstanding activity of EY/Pt/Film results from the unique flexibility of the biofilm for an efficient transfer of the photoinduced electrons. The present work is helpful for designing efficient biomaterial-based catalysts for visible-light-driven photocatalysis and for imitating natural photosynthesis.

  18. Mercury oxide as an efficient photocatalyst for degradation of rhodamine B dye under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Li, Datang; Li, Jiayin; Tang, Jianting

    2016-11-01

    In this work, a new visible-light-responsive photocatalyst, mercury oxide (HgO) was successfully developed. Its activity is significantly higher than that of the highly efficient photocatalyst, Ag3PO4 in degradation of rhodamine B (RhB) dye under irradiation of visible light. The HgO photocatalyst can be reused for at least three cycles without obvious loss of its activity in the degradation experiments. It was found that the RhB degradation rate is significantly influenced by the dye solution pH. The ultrahigh photocatalytic activity of HgO is attributed to its strong oxidization-ablility of the photogenerated holes, and high separation-possibility of the photogenerated carriers.

  19. Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine.

    PubMed

    Shih, Han; Liu, Hung-Yi; Lin, Chien-Chi

    2017-02-28

    Hydrogels immobilized with biomimetic peptides have been used widely for tissue engineering and drug delivery applications. Photopolymerization has been among the most commonly used techniques to fabricate peptide-immobilized hydrogels as it offers rapid and robust peptide immobilization within a crosslinked hydrogel network. Both chain-growth and step-growth photopolymerizations can be used to immobilize peptides within covalently crosslinked hydrogels. A previously developed visible light mediated step-growth thiol-norbornene gelation scheme has demonstrated efficient crosslinking of hydrogels composed of an inert poly(ethylene glycol)-norbornene (PEGNB) macromer and a small molecular weight bis-thiol linker, such as dithiothreitol (DTT). Compared with conventional visible light mediated chain-polymerizations where multiple initiator components are required, step-growth photopolymerized thiol-norbornene hydrogels are more cytocompatible for the in situ encapsulation of radical sensitive cells (e.g., pancreatic β-cells). This contribution explored visible light based crosslinking of various bis-cysteine containing peptides with macromer 8-arm PEGNB to form biomimetic hydrogels suitable for in situ cell encapsulation. It was found that the addition of soluble tyrosine during polymerization not only significantly accelerated gelation, but also improved the crosslinking efficiency of PEG-peptide hydrogels as evidenced by a decreased gel point and enhanced gel modulus. In addition, soluble tyrosine drastically enhanced the cytocompatibility of the resulting PEG-peptide hydrogels, as demonstrated by in situ encapsulation and culture of pancreatic MIN6 β-cells. This visible light based thiol-norbornene crosslinking mechanism provides an attractive gelation method for preparing cytocompatible PEG-peptide hydrogels for tissue engineering applications.

  20. Ultra‐Efficient Photocatalytic Properties in Porous Tungsten Oxide/Graphene Film under Visible Light Irradiation

    PubMed Central

    Mei, Lin; Zhao, Haitao

    2015-01-01

    Recently, a growing amount of effort has been devoted to solving the widespread problem of pollution. Photocatalysts have attracted increasing attention for their widespread environmental applications. Here, a classic and simple electrospun technique is used to directly fabricate a porous a tungsten oxide nanoframework with graphene film as a photocatalyst for degradation of pollutants. The as‐synthesized film simultaneously possesses substantial adsorptivity of aromatic molecules, extensive light absorption range, significant light trapping, and efficient charge carrier separation properties, which remarkably enhance photocatalytic activity. In the photodegradation of Rhodamine B, a significant photocatalytic enhancement in the reaction rate is observed, which has superior photocatalytic activity compared to other bare WO3 and TiO2 nanomaterials under visible‐light irradiation. PMID:27980919

  1. Efficient visible-light photocatalytic degradation of sulfadiazine sodium with hierarchical Bi₇O₉I₃under solar irradiation.

    PubMed

    Xu, MengMeng; Zhao, YaLei; Yan, QiShe

    2015-01-01

    Bi₇O₉I₃, a kind of visible-light-responsive photocatalyst, with hierarchical micro/nano-architecture was successfully synthesized by oil-bath heating method, with ethylene glycol as solvent, and applied to degrade sulfonamide antibiotics. The as-prepared product was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflection spectra and scanning electron microscopy (SEM). XRD and XPS tests confirmed that the product was indeed Bi₇O₉I₃. The result of SEM observation shows that the as-synthesized Bi₇O₉I₃ consists of a large number of micro-sheets with parallel rectangle structure. The optical test exhibited strong photoabsorption in visible light irradiation, with 617 nm of absorption edges. Moreover, the difference in the photocatalytic efficiency of as-prepared Bi₇O₉I₃ at different seasons of a whole year was investigated in this study. The chemical oxygen demand removal efficiency and concentration of NO(3)(-) and SO(4)(2-) of solution after reaction were also researched to confirm whether degradation of the pollutant was complete; the results indicated a high mineralization capacity of Bi₇O₉I₃. The as-synthesized Bi₇O₉I₃exhibits an excellent oxidizing capacity of sulfadiazine sodium and favorable stability during the photocatalytic reaction.

  2. Efficient degradation of phenol using iron-montmorillonite as a Fenton catalyst: Importance of visible light irradiation and intermediates.

    PubMed

    Wei, Xipeng; Wu, Honghai; He, Guangping; Guan, Yufeng

    2017-01-05

    Iron-montmorillonite (Fe-Mt) with delaminated structures was synthesized via the introduction of iron oxides into Na-montmorillonite. Fe-Mt showed significant increases in the available iron content, surface area and pore volume, along with a slight increase in the basal spacing from d001=1.26 (Na-Mt) to 1.53nm (Fe-Mt). The Fenton process was efficient for phenol removal using Fe-Mt as a catalyst under visible light irradiation, and the process had two-stage pseudo-first order kinetics. The overall reaction had a higher degradation rate even when it was only irradiated with visible light for the first 40min period. Further investigation confirmed that the irradiation increased the presence of certain intermediates. Among them, 1,4-benzoquinone, hydroquinone, and catechol all enhanced the Fenton reaction rates. Either catechol or hydroquinone was added to the Fenton system with Fe-Mt/H2O2 with or without visible light irradiation, and they both accelerated phenol degradation because catechol and hydroquinone are capable of reductively and effectively transforming Fe(III) into Fe(II). The concentrations of dissolved total Fe increased with the increase in the oxalic acid concentration, which can strongly chelate Fe(III). Hence, iron was released from Fe-Mt, and reductive transformation played an important role in promoting the Fenton reaction process for phenol removal.

  3. Layered double hydroxides as efficient photocatalysts for visible-light degradation of Rhodamine B.

    PubMed

    Xia, Sheng-Jie; Liu, Feng-Xian; Ni, Zhe-Ming; Xue, Ji-Long; Qian, Ping-Ping

    2013-09-01

    A series of Zn/M-NO3-LDHs (M=Al, Fe, Ti, and Fe/Ti) have been synthesized by two different methods, and their activities for visible-light photocatalytic degradation on Rhodamine B (RB) were tested. Solids were analyzed by XRD, FT-IR, and ICP characterization, confirming the formation of pure LDH phase with good crystal structure. It was observed that the band gap of these nitrate LDH materials was following this order: Zn/Fe-NO3-LDHs (2.55 eV)>Zn/Fe/Ti-NO3-LDHs (2.88 eV)>Zn/Ti-NO3-LDHs (3.0 3eV)>Zn/Al-NO3-LDHs (3.23 eV); however, the degradation performance of RB by four materials followed the order: Zn/Ti-NO3-LDHs (98%)>Zn/Al-NO3-LDHs (96%)>Zn/Fe/Ti-NO3-LDHs (88%)>Zn/Fe-NO3-LDHs (72%). In addition, a possible mechanism for photocatalytic degradation on RB has also been presumed. Moreover, after three regeneration cycles, the percentage of RB degradation rate was still close to 90%.

  4. Energy-efficient constellations design and fast decoding for space-collaborative MIMO visible light communications

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Jun; Liang, Wang-Feng; Wang, Chao; Wang, Wen-Ya

    2017-01-01

    In this paper, space-collaborative constellations (SCCs) for indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems are considered. Compared with traditional VLC MIMO techniques, such as repetition coding (RC), spatial modulation (SM) and spatial multiplexing (SMP), SCC achieves the minimum average optical power for a fixed minimum Euclidean distance. We have presented a unified SCC structure for 2×2 MIMO VLC systems and extended it to larger MIMO VLC systems with more transceivers. Specifically for 2×2 MIMO VLC, a fast decoding algorithm is developed with decoding complexity almost linear in terms of the square root of the cardinality of SCC, and the expressions of symbol error rate of SCC are presented. In addition, bit mappings similar to Gray mapping are proposed for SCC. Computer simulations are performed to verify the fast decoding algorithm and the performance of SCC, and the results demonstrate that the performance of SCC is better than those of RC, SM and SMP for indoor channels in general.

  5. Efficient visible light-induced degradation of rhodamine B by W(NxS1−x)2 nanoflowers

    PubMed Central

    Liu, Peitao; Zhang, Jingyan; Gao, Daqiang; Ye, Weichun

    2017-01-01

    Here, W(NxS1−x)2 nanoflowers were fabricated by simple sintering process. Photocatalytic activity results indicated our fabricated N-doped WS2 nanoflowers shown outstanding photoactivity of degradating of rhodamine B with visible light. Which is attributed to the high separation efficiency of photoinduced electron–hole pairs, the broadening of the valence band (VB), and the narrowing of energy band gap. Meanwhile, our work provided a novel method to induce surface sulfur vacancies in crystals by introduing impurities atoms for enhancing their photodegradation. PMID:28106096

  6. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets.

    PubMed

    Li, Qin; Guo, Beidou; Yu, Jiaguo; Ran, Jingrun; Zhang, Baohong; Yan, Huijuan; Gong, Jian Ru

    2011-07-20

    The production of clean and renewable hydrogen through water splitting using photocatalysts has received much attention due to the increasing global energy crises. In this study, a high efficiency of the photocatalytic H(2) production was achieved using graphene nanosheets decorated with CdS clusters as visible-light-driven photocatalysts. The materials were prepared by a solvothermal method in which graphene oxide (GO) served as the support and cadmium acetate (Cd(Ac)(2)) as the CdS precursor. These nanosized composites reach a high H(2)-production rate of 1.12 mmol h(-1) (about 4.87 times higher than that of pure CdS nanoparticles) at graphene content of 1.0 wt % and Pt 0.5 wt % under visible-light irradiation and an apparent quantum efficiency (QE) of 22.5% at wavelength of 420 nm. This high photocatalytic H(2)-production activity is attributed predominantly to the presence of graphene, which serves as an electron collector and transporter to efficiently lengthen the lifetime of the photogenerated charge carriers from CdS nanoparticles. This work highlights the potential application of graphene-based materials in the field of energy conversion.

  7. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation.

    PubMed

    Zhu, Wenyu; Liu, Jincheng; Yu, Shuyan; Zhou, Yan; Yan, Xiaoli

    2016-11-15

    Sulfonamides (SAs) are extensively used antibiotics and their residues in the water bodies propose potential threat to the public. In this study, degradation efficiency of sulfanilamide (SAM), which is the precursor of SAs, using WO3 nanoplates and their Ag heterogeneous as photocatalysts was investigated. WO3 nanoplates with uniform size were synthesized by a facile one step hydrothermal method. Different amount of Ag nanoparticles (Ag NPs) were loaded onto WO3 nanoplates using a photo-reduction method to generate WO3/Ag composites. The physio-chemical properties of synthesized nanomaterials were systematically characterized. Photodegradation of SAM by WO3 and WO3/Ag composites was conducted under visible light irradiation. The results show that WO3/Ag composites performed much better than pure WO3 where the highest removal rate was 96.2% in 5h. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO3, and 100% removal efficiency against Escherichia Coli and Bacillus subtilis could be achieved in 2h under visible light irradiation for all three WO3/Ag composites synthesized. The improved performance in terms of SAM degradation and antibacterial activity of WO3/Ag can be attributed to the improved electron-hole pair separation rate where Ag NPs act as effective electron trapper during the photocatalytic process.

  8. Mussel-inspired green synthesis of polydopamine-Ag-AgCl composites with efficient visible-light-driven photocatalytic activity.

    PubMed

    Cai, Aijun; Wang, Xiuping; Guo, Aiying; Chang, Yongfang

    2016-09-01

    Polydopamine-Ag-AgCl composites (PDA-Ag-AgCl) were synthesized using a mussel-inspired method at room temperature, where PDA acts as a reducing agent to obtain the noble Ag nanoparticles from a precursor. The morphologies and structures of the as-prepared PDA-Ag-AgCl were characterized by several techniques including field emission scanning electron microscopy (FESEM), transmission electron microscopy (SEM), Raman spectra, and X-Ray photoelectron spectrum (XPS). The morphological observation depicts formation of nanoparticles with various micrometer size diameters and surface XPS analysis shows presence of various elements including Ag, N, Cl, and O. The enhanced absorbance of the PDA-Ag-AgCl particles in the visible light region is confirmed through UV-Vis diffuse reflectance spectra (DRS), and the charge transfer is demonstrated by photoluminescence (PL) and photocurrent response. The synthesized PDA-Ag-AgCl composites could be used as visible-light-driven photocatalysts for the degradation of Rhodamine B. The elevated photocatalytic activity is ascribed to the effective charge transfer from plasmon-excited Ag to AgCl that can improve the efficiency of the charge separation during the photocatalytic reaction. Furthermore, differences in the photocatalytic performance among the different PDA-Ag-AgCl composites are noticed that could be attributed to the Brunauer-Emmett-Teller (BET) specific surface area, which benefits to capture the visible light efficiently. The PDA-Ag-AgCl exhibits excellent stability without a significant loss in activity after 5cycles. The proposed method is low-cost and environmentally friendly, hence a promising new way to fabricate plasmon photocatalysts.

  9. Visible-light-active elemental photocatalysts.

    PubMed

    Liu, Gang; Niu, Ping; Cheng, Hui-Ming

    2013-04-02

    Seeking visible-light-active photocatalysts for efficient solar-energy conversion has become an intensifying endeavor worldwide. In this concept paper, general requirements for finding new visible-light-active photocatalysts are briefly introduced, and recent progress in exploring elemental photocatalysts for clean-energy generation and environmental remediation are reviewed. Finally, opportunities and challenges facing elemental photocatalysts are discussed.

  10. Efficiency droop effects of GaN-based light-emitting diodes on the performance of code division multiple access visible-light communication system

    NASA Astrophysics Data System (ADS)

    Lu, Huimin; Yan, Chaowen; Gao, Wei; Yu, Tongjun; Wang, Jianping

    2016-02-01

    The physical mechanism in efficiency droop of GaN-based light-emitting diodes (LEDs) was investigated using a modified rate equation model considering inhomogeneous carrier distribution and was compared with the measured result. On this basis, the efficiency droop effect on the performance of a code division multiple access (CDMA) visible-light communication (VLC) system using GaN-based LEDs was also analyzed. The results reveal that the obvious transmitted signal error under the effect of LED efficiency droop leads to performance deterioration of multiuser CDMA VLC systems. Also, the performance of CDMA VLC systems is reduced with the user number increase due to LED efficiency droop. The bit error rate of a CDMA VLC system was further calculated for different branch signal levels and bias currents. It is demonstrated that the efficiency droop effect on the performance of CDMA VLC systems can be alleviated by adjusting the branch signal level and the bias current.

  11. p-n junction CuO/BiVO₄ heterogeneous nanostructures: synthesis and highly efficient visible-light photocatalytic performance.

    PubMed

    Wang, Wenzhong; Wang, Jun; Wang, Zhizhen; Wei, Xuanzhen; Liu, Li; Ren, Qingshan; Gao, Wenliang; Liang, Yujie; Shi, Honglong

    2014-05-14

    A new strategy via coupling a polyol route with an oxidation process has been developed to successfully synthesize p-n junction CuO/BiVO4 heterogeneous nanostructures. The experimental results reveal that the as-prepared p-n junction CuO/BiVO4 heterogeneous nanostructures exhibit much higher visible-light-driven photocatalytic activity for the degradation of model dye rhodamine B (RhB) than the pure BiVO4 nanocrystals. The photocatalytic degradation rate (C/C0) of the RhB for p-n junction CuO/BiVO4 heterogeneous nanostructures is about two times higher than that of pure BiVO4 nanocrystals. The enhanced photocatalytic efficiency is attributed to a large number of p-n junctions in CuO/BiVO4 heterogeneous nanostructures, which effectively reduces the recombination of electrons and holes by charge transfer from n-type BiVO4 to the attached p-type CuO nanoparticles. This work not only provides an efficient route to enhance the visible-light-driven photocatalytic activity of BiVO4, but also offers a new strategy for fabricating p-n junction heterogeneous nanostructure photocatalysts, which are expected to show considerable potential application in solar-driven wastewater treatment and water splitting.

  12. Fe ion-implanted TiO{sub 2} thin film for efficient visible-light photocatalysis

    SciTech Connect

    Impellizzeri, G. Scuderi, V.; Sanz, R.; Privitera, V.; Romano, L.; Sberna, P. M.; Arcadipane, E.; Scuderi, M.; Nicotra, G.; Bayle, M.; Carles, R.; Simone, F.

    2014-11-07

    This work shows the application of metal ion-implantation to realize an efficient second-generation TiO{sub 2} photocatalyst. High fluence Fe{sup +} ions were implanted into thin TiO{sub 2} films and subsequently annealed up to 550 °C. The ion-implantation process modified the TiO{sub 2} pure film, locally lowering its band-gap energy from 3.2 eV to 1.6–1.9 eV, making the material sensitive to visible light. The measured optical band-gap of 1.6–1.9 eV was associated with the presence of effective energy levels in the energy band structure of the titanium dioxide, due to implantation-induced defects. An accurate structural characterization was performed by Rutherford backscattering spectrometry, transmission electron microscopy, Raman spectroscopy, X-ray diffraction, and UV/VIS spectroscopy. The synthesized materials revealed a remarkable photocatalytic efficiency in the degradation of organic compounds in water under visible light irradiation, without the help of any thermal treatments. The photocatalytic activity has been correlated with the amount of defects induced by the ion-implantation process, clarifying the operative physical mechanism. These results can be fruitfully applied for environmental applications of TiO{sub 2}.

  13. Controllable synthesis of α-sulfur spheres with hierarchical nanostructures for efficient visible-light-driven photocatalytic ability

    NASA Astrophysics Data System (ADS)

    Dang, Xueming; Zhang, Xiufang; Zhang, Weiqiang; Dong, Xiaoli; Wang, Guowen; Ma, Hongchao

    2015-08-01

    Visible-light-active α-sulfur spheres with hierarchical nanostructures were fabricated by simple solution-phase synthesis with PVP as the template for enhanced photocatalytic ability. The α-sulfur hierarchical spheres with an ultrahigh specific surface area can controllable synthesized by changing the addition quantity of PVP. The obtained products are systematically studied by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis absorption spectroscopy (DRS), Fluorescence (FL) and Brunauer-Emmett-Teller (BET). The photocatalytic activity of the as-prepared samples is evaluated by photocatalytic degradation of Rhodamine B (RhB) aqueous solution under visible light illumination. The results indicate that the morphology, specific surface area, photo absorbance ability, the separation efficiency of photogenerated carriers and the reactant adsorption performance can be controlled by varying the addition quantity of PVP. When 200 mg PVP is added, α-sulfur hierarchical spheres with uniform particle size about 1 μm and ultrahigh specific surface area of 67.1 m2/g is obtained, and its photocatalytic activity reaches a maximum value, which can be attributed to the combined effects of photo absorbance ability, the separation efficiency of photogenerated carriers and the reactant adsorption performance.

  14. Removing organic contaminants with bifunctional iron modified rectorite as efficient adsorbent and visible light photo-Fenton catalyst.

    PubMed

    Zhao, Xiaorong; Zhu, Lihua; Zhang, Yingying; Yan, Jingchun; Lu, Xiaohua; Huang, Yingping; Tang, Heqing

    2012-05-15

    Iron-modified rectorite (FeR) was prepared as both adsorbent and catalyst. The iron modification increased layer-to-layer spacing and surface area of rectorite, leading to much increased adsorption of Rhodamine B (RhB) on rectorite. The maximum adsorption capacity of RhB on FeR reached 101mgg(-1) at pH 4.5, being 11 folds of that on the unmodified one. The iron modification also enabled rectorite to have efficient visible light photocatalytic ability. The apparent rate constant for the degradation of RhB (80μM) at 298K and pH 4.5 in the presence of H(2)O(2) (6.0mM) and FeR (0.4gL(-1)) was evaluated to be 0.0413min(-1) under visible light and 0.122min(-1) under sunlight, respectively. The analysis with electron spin resonance spin-trapping technique supported that the iron modified rectorite effectively catalyzed the decomposition of H(2)O(2) into hydroxyl radicals. On the basis of the characterization and analysis, the new bifunctional material was well clarified as both adsorbent and photocatalyst in the removing of organic pollutants.

  15. Efficient adsorption and photocatalytic degradation of Rhodamine B under visible light irradiation over BiOBr/montmorillonite composites.

    PubMed

    Xu, Chengqun; Wu, Honghai; Gu, Feng Long

    2014-06-30

    BiOBr/Na-montmorillonite composites (BiOBr-Mt) were prepared under laboratory ambient conditions by using the surfactant cetyltrimethylammonium bromide (CTAB) as the Br source and template, and the as-synthesized samples were characterized by XRD, FT-IR, FESEM, TEM equipped with EDS, BET and UV-vis DRS techniques. Interestingly, the particle size of BiOBr can be controlled by CTAB modified Na-montmorillonite. The photocatalytic activity of the as-prepared was further evaluated by decomposition of Rhodamine B (RhB) under visible light irradiation; the obtained results revealed that the BiOBr-Mt sample had strong photoabsorption in the visible light region. It has higher photocatalytic activity than pure BiOBr alone. There exists an efficient adsorption for RhB onto BiOBr-Mt contrast to that onto the pure BiOBr. The adsorption processes can be well described by pseudo-second-order kinetic model; meanwhile, the adsorption behaviors can be described by both Freundlich and Langmuir equations but the former was better. Additionally, the relevant adsorption and degradation mechanisms were explored and the possible mechanisms were presented. The photocatalytic activity has high effect both in acidic and basic conditions on the degradation reaction but in acidic condition is more favorable. After three recycles, BiOBr-Mt did not exhibit any significant loss of photocatalytic activity, confirming the photocatalyst was essentially stable.

  16. Silica supported TiO{sub 2} nanostructures for highly efficient photocatalytic application under visible light irradiation

    SciTech Connect

    Pal, A.; Jana, T.K.; Chatterjee, K.

    2016-04-15

    Highlights: • Synthesis of silica–titania nanocomposite by simple and facile chemical route and characterization of the materials. • Excellent catalytic activity on organic pollutant methylene blue under the visible light irradiation. • Photocatalytic rate is much higher than commercial P25 TiO{sub 2} catalyst powder. • The higher activity is attributed to the special structure and synergistic effect of the materials which has immense application potential. - Abstract: Titanium dioxide decorated silica nanospheres have been synthesized by a simple wet chemical approach. X-ray diffraction, electron microscopy and energy dispersive X-ray analysis revealed that anatase phase of TiO{sub 2} nanostructures, with exposed {0 0 1} and {1 0 1} facets, are anchored onto the amorphous silica spheres of ∼60 nm diameter. The photocatalytic activity of the sample under visible light irradiation was examined. It is found that photocatalytic efficiency of the material is better than commercial P25 TiO{sub 2} photocatalyst and the result is attributed to the unique synergistic effect of SiO{sub 2}–TiO{sub 2} nanocomposite structure resulting enhanced charge separation and charge transfer.

  17. Sonochemical Synthesis of CdS/C3N4 Composites with Efficient Photocatalytic Performance Under Visible Light Irradiation.

    PubMed

    Chai, Bo; Wang, Xing

    2016-02-01

    The CdS/C3N4 composites with efficient photocatalytic performance under visible light irradiation were synthesized by a facile sonochemical route. The as-prepared CdS/C3N4 composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution trans- mission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance absorption spectra (DRS), fourier transform infrared spectroscopy (FTIR) and photoluminescence spectra (PL). The photocatalytic degradation of rhodamine B (RhB) by the CdS/C3N4 composites was explored and optimized, suggesting the optimal amount of CdS in the composites was 50 wt%. The significantly enhanced photocatalytic activity of CdS/C3N4 composites could be attributed to the effectively interfacial transfer of photogenerated charge carriers between CdS and C3N4, which restrained the recombination of electron-hole pairs.

  18. Efficient Gate-tunable light-emitting device made of defective boron nitride nanotubes: from ultraviolet to the visible

    PubMed Central

    Attaccalite, Claudio; Wirtz, Ludger; Marini, Andrea; Rubio, Angel

    2013-01-01

    Boron nitride is a promising material for nanotechnology applications due to its two-dimensional graphene-like, insulating, and highly-resistant structure. Recently it has received a lot of attention as a substrate to grow and isolate graphene as well as for its intrinsic UV lasing response. Similar to carbon, one-dimensional boron nitride nanotubes (BNNTs) have been theoretically predicted and later synthesised. Here we use first principles simulations to unambiguously demonstrate that i) BN nanotubes inherit the highly efficient UV luminescence of hexagonal BN; ii) the application of an external perpendicular field closes the electronic gap keeping the UV lasing with lower yield; iii) defects in BNNTS are responsible for tunable light emission from the UV to the visible controlled by a transverse electric field (TEF). Our present findings pave the road towards optoelectronic applications of BN-nanotube-based devices that are simple to implement because they do not require any special doping or complex growth. PMID:24060843

  19. Cobalt phosphide nanowires: efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light.

    PubMed

    Tian, Jingqi; Cheng, Ningyan; Liu, Qian; Xing, Wei; Sun, Xuping

    2015-04-27

    The detection of specific DNA sequences plays an important role in the identification of disease-causing pathogens and genetic diseases, and photochemical water splitting offers a promising avenue to sustainable, environmentally friendly hydrogen production. Cobalt-phosphorus nanowires (CoP NWs) show a high fluorescence quenching ability and different affinity toward single- versus double-stranded DNA. Based on this result, the utilization of CoP NWs as fluorescent DNA nanosensors with a detection limit of 100 pM and a selectivity down to single-base mismatch was demonstrated. The use of a thrombin-specific DNA aptamer also enabled the selective detection of thrombin. The photoinduced electron transfer from the excited dye that labels the oligonucleotide probe to the CoP semiconductor led to efficient fluorescence quenching, and largely enhanced the photocatalytic evolution of hydrogen from water under visible light.

  20. Hydrothermal synthesis and photoelectric properties of BiVO 4 with different morphologies: An efficient visible-light photocatalyst

    NASA Astrophysics Data System (ADS)

    Fan, Haimei; Wang, Dejun; Wang, Lingling; Li, Haiyan; Wang, Ping; Jiang, Tengfei; Xie, Tengfeng

    2011-06-01

    Different morphologies of monoclinic BiVO 4 with smaller size were hydrothermal synthesized by simply adjusting the amount of surfactant (polyvinyl pyrrolidone PVP K30) added. The detailed field emission scanning electron microscope (FESEM) analysis revealed that the amount of PVP added could significantly affect the morphology and size of BiVO 4. Their photocatalytic activities were evaluated by the decolorization of methylene blue (MB) aqueous solution under visible-light irradiation ( λ > 400 nm), and the as-prepared sample with well-assembled flower-like morphology showed a much higher photocatalytic activity due to larger specific surface area and higher separation efficiency of photo-induced carriers. The relationship between the behavior of photo-induced carriers and photocatalytic activity was studied using the surface photovoltage spectroscopy (SPS) and corresponding phase spectra.

  1. AgI/Ag{sub 3}PO{sub 4} hybrids with highly efficient visible-light driven photocatalytic activity

    SciTech Connect

    Katsumata, Hideyuki; Hayashi, Takahiro; Taniguchi, Masanao; Suzuki, Tohru; Kaneco, Satoshi

    2015-03-15

    Highlights: • AgI/Ag{sub 3}PO{sub 4} hybrid was prepared via an in situ anion-exchange method. • AgI/Ag{sub 3}PO{sub 4} displays the excellent photocatalytic activity under visible light. • AgI/Ag{sub 3}PO{sub 4} readily transforms to be Ag@AgI/Ag{sub 3}PO{sub 4} system. • h{sup +} and O{sub 2}{sup ·−} play the major role in the AO 7 decolorization over AgI/Ag{sub 3}PO{sub 4}. • The activity enhancement is ascribed to a Z-scheme system composed of Ag{sub 3}PO{sub 4}, Ag and AgI. - Abstract: Highly efficient visible-light-driven AgI/Ag{sub 3}PO{sub 4} hybrid photocatalysts with different mole ratios of AgI were prepared via an in situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) technique. Under visible light irradiation (>420 nm), the AgI/Ag{sub 3}PO{sub 4} photocatalysts displayed the higher photocatalytic activity than pure Ag{sub 3}PO{sub 4} and AgI for the decolorization of acid orange 7 (AO 7). Among the hybrid photocatalysts, AgI/Ag{sub 3}PO{sub 4} with 80% of AgI exhibited the highest photocatalytic activity for the decolorization of AO 7. X-ray photoelectron spectroscopy (XPS) results revealed that AgI/Ag{sub 3}PO{sub 4} readily transformed to be Ag@AgI/Ag{sub 3}PO{sub 4} system while the photocatalytic activity of AgI/Ag{sub 3}PO{sub 4} remained after 5 recycling runs. In addition, the quenching effects of different scavengers displayed that the reactive h{sup +} and O{sub 2}{sup ·−} play the major role in the AO 7 decolorization. The photocatalytic activity enhancement of AgI/Ag{sub 3}PO{sub 4} hybrids can be ascribed to the efficient separation of electron–hole pairs through a Z-scheme system composed of Ag{sub 3}PO{sub 4}, Ag and AgI, in which Ag nanoparticles act as the charge separation center.

  2. Fabrication of efficient visible light activated Cu-P25-graphene ternary composite for photocatalytic degradation of methyl blue

    NASA Astrophysics Data System (ADS)

    Jin, Zheng; Duan, Wubiao; Liu, Bo; Chen, Xidong; Yang, Feihua; Guo, Jianping

    2015-11-01

    Cu-P25-graphene nanocomposite was fabricated through hydrothermal method at relatively low temperature. The technique used is P25-graphene (PG) binary composite was firstly prepared by P25 and graphite oxide (GO), and then Cu2+ ions were impregnated into PG composite. The prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) spectrum respectively. As the results showed, the Cu-P25-graphene (CPG) nanocomposites possessed the extended light absorption in visible light and better charge separation capability as compared to the pure P25 and PG system. Moreover, CPG-4 (4 mM Cu(NO3)2) showed the highest degradation rate of methyl blue (MB) under the visible light, which the removal efficiency can reach 98% after 100 min. The corresponding hydrogen evolution rate of CPG-4 was 7.9 times than pure P25. It was concluded that the synergistic effects of Cu2+ ions and graphene narrowed the band gap of TiO2 and promoted charge separation, which played significant roles for the enhancement of photoactivity of CPG composite catalysts. In addition, it was observed that the photodegradation of MB followed the first order reaction kinetics. The effects of pH values of MB solution for photocatalysts had also been investigated. The result confirmed that the optimum values of pH were found to be 7. Finally, the stability test of photocatalysts was carried out and the photocatalytic mechanism was explained concretely.

  3. Silicon-Based Chemical Motors: An Efficient Pump for Triggering and Guiding Fluid Motion Using Visible Light

    PubMed Central

    2015-01-01

    We report a simple yet highly efficient chemical motor that can be controlled with visible light. The motor made from a noble metal and doped silicon acts as a pump, which is driven through a light-activated catalytic reaction process. We show that the actuation is based on electro-osmosis with the electric field generated by chemical reactions at the metal and silicon surfaces, whereas the contribution of diffusio-osmosis to the actuation is negligible. Surprisingly, the pump can be operated using water as fuel. This is possible because of the large ζ-potential of silicon, which makes the electro-osmotic fluid motion sizable even though the electric field generated by the reaction is weak. The electro-hydrodynamic process is greatly amplified with the addition of reactive species, such as hydrogen peroxide, which generates higher electric fields. Another remarkable finding is the tunability of silicon-based pumps. That is, it is possible to control the speed of the fluid with light. We take advantage of this property to manipulate the spatial distribution of colloidal microparticles in the liquid and to pattern colloidal microparticle structures at specific locations on a wafer surface. Silicon-based pumps hold great promise for controlled mass transport in fluids. PMID:26349036

  4. Silicon-Based Chemical Motors: An Efficient Pump for Triggering and Guiding Fluid Motion Using Visible Light.

    PubMed

    Esplandiu, Maria J; Farniya, Ali Afshar; Bachtold, Adrian

    2015-11-24

    We report a simple yet highly efficient chemical motor that can be controlled with visible light. The motor made from a noble metal and doped silicon acts as a pump, which is driven through a light-activated catalytic reaction process. We show that the actuation is based on electro-osmosis with the electric field generated by chemical reactions at the metal and silicon surfaces, whereas the contribution of diffusio-osmosis to the actuation is negligible. Surprisingly, the pump can be operated using water as fuel. This is possible because of the large ζ-potential of silicon, which makes the electro-osmotic fluid motion sizable even though the electric field generated by the reaction is weak. The electro-hydrodynamic process is greatly amplified with the addition of reactive species, such as hydrogen peroxide, which generates higher electric fields. Another remarkable finding is the tunability of silicon-based pumps. That is, it is possible to control the speed of the fluid with light. We take advantage of this property to manipulate the spatial distribution of colloidal microparticles in the liquid and to pattern colloidal microparticle structures at specific locations on a wafer surface. Silicon-based pumps hold great promise for controlled mass transport in fluids.

  5. The High-efficiency LED Driver for Visible Light Communication Applications

    NASA Astrophysics Data System (ADS)

    Gong, Cihun-Siyong Alex; Lee, Yu-Chen; Lai, Jyun-Liang; Yu, Chueh-Hao; Huang, Li Ren; Yang, Chia-Yen

    2016-08-01

    This paper presents a LED driver for VLC. The main purpose is to solve the low data rate problem used to be in switching type LED driver. The GaN power device is proposed to replace the traditional silicon power device of switching LED driver for the purpose of increasing switching frequency of converter, thereby increasing the bandwidth of data transmission. To achieve high efficiency, the diode-connected GaN power transistor is utilized to replace the traditional ultrafast recovery diode used to be in switching type LED driver. This work has been experimentally evaluated on 350-mA output current. The results demonstrate that it supports the data of PWM dimming level encoded in the PPM scheme for VLC application. The experimental results also show that system’s efficiency of 80.8% can be achieved at 1-Mb/s data rate.

  6. The High-efficiency LED Driver for Visible Light Communication Applications

    PubMed Central

    Gong, Cihun-Siyong Alex; Lee, Yu-Chen; Lai, Jyun-Liang; Yu, Chueh-Hao; Huang, Li Ren; Yang, Chia-Yen

    2016-01-01

    This paper presents a LED driver for VLC. The main purpose is to solve the low data rate problem used to be in switching type LED driver. The GaN power device is proposed to replace the traditional silicon power device of switching LED driver for the purpose of increasing switching frequency of converter, thereby increasing the bandwidth of data transmission. To achieve high efficiency, the diode-connected GaN power transistor is utilized to replace the traditional ultrafast recovery diode used to be in switching type LED driver. This work has been experimentally evaluated on 350-mA output current. The results demonstrate that it supports the data of PWM dimming level encoded in the PPM scheme for VLC application. The experimental results also show that system’s efficiency of 80.8% can be achieved at 1-Mb/s data rate. PMID:27498921

  7. The High-efficiency LED Driver for Visible Light Communication Applications.

    PubMed

    Gong, Cihun-Siyong Alex; Lee, Yu-Chen; Lai, Jyun-Liang; Yu, Chueh-Hao; Huang, Li Ren; Yang, Chia-Yen

    2016-08-08

    This paper presents a LED driver for VLC. The main purpose is to solve the low data rate problem used to be in switching type LED driver. The GaN power device is proposed to replace the traditional silicon power device of switching LED driver for the purpose of increasing switching frequency of converter, thereby increasing the bandwidth of data transmission. To achieve high efficiency, the diode-connected GaN power transistor is utilized to replace the traditional ultrafast recovery diode used to be in switching type LED driver. This work has been experimentally evaluated on 350-mA output current. The results demonstrate that it supports the data of PWM dimming level encoded in the PPM scheme for VLC application. The experimental results also show that system's efficiency of 80.8% can be achieved at 1-Mb/s data rate.

  8. Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation.

    PubMed

    Jia, Qingxin; Iwashina, Katsuya; Kudo, Akihiko

    2012-07-17

    An efficient BiVO(4) thin film electrode for overall water splitting was prepared by dipping an F-doped SnO(2) (FTO) substrate electrode in an aqueous nitric acid solution of Bi(NO(3))(3) and NH(4)VO(3), and subsequently calcining it. X-ray diffraction of the BiVO(4) thin film revealed that a photocatalytically active phase of scheelite-monoclinic BiVO(4) was obtained. Scanning electron microscopy images showed that the surface of an FTO substrate was uniformly coated with the BiVO(4) film with 300-400 nm of the thickness. The BiVO(4) thin film electrode gave an excellent anodic photocurrent with 73% of an IPCE at 420 nm at 1.0 V vs. Ag/AgCl. Modification with CoO on the BiVO(4) electrode improved the photoelectrochemical property. A photoelectrochemical cell consisting of the BiVO(4) thin film electrode with and without CoO, and a Pt counter electrode was constructed for water splitting under visible light irradiation and simulated sunlight irradiation. Photocurrent due to water splitting to form H(2) and O(2) was confirmed with applying an external bias smaller than 1.23 V that is a theoretical voltage for electrolysis of water. Water splitting without applying external bias under visible light irradiation was demonstrated using a SrTiO(3)Rh photocathode and the BiVO(4) photoanode.

  9. Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation

    PubMed Central

    Jia, Qingxin; Iwashina, Katsuya; Kudo, Akihiko

    2012-01-01

    An efficient BiVO4 thin film electrode for overall water splitting was prepared by dipping an F-doped SnO2 (FTO) substrate electrode in an aqueous nitric acid solution of Bi(NO3)3 and NH4VO3, and subsequently calcining it. X-ray diffraction of the BiVO4 thin film revealed that a photocatalytically active phase of scheelite-monoclinic BiVO4 was obtained. Scanning electron microscopy images showed that the surface of an FTO substrate was uniformly coated with the BiVO4 film with 300–400 nm of the thickness. The BiVO4 thin film electrode gave an excellent anodic photocurrent with 73% of an IPCE at 420 nm at 1.0 V vs. Ag/AgCl. Modification with CoO on the BiVO4 electrode improved the photoelectrochemical property. A photoelectrochemical cell consisting of the BiVO4 thin film electrode with and without CoO, and a Pt counter electrode was constructed for water splitting under visible light irradiation and simulated sunlight irradiation. Photocurrent due to water splitting to form H2 and O2 was confirmed with applying an external bias smaller than 1.23 V that is a theoretical voltage for electrolysis of water. Water splitting without applying external bias under visible light irradiation was demonstrated using a SrTiO3∶Rh photocathode and the BiVO4 photoanode. PMID:22699499

  10. Self-assembled cabbage-like NaInS{sub 2} microstructures with efficient visible light photocatalytic performance

    SciTech Connect

    Gao, Yuanhao Zhai, Xuezhen; Zhang, Yange; Xu, Zhihong; Li, Pinjiang; Zheng, Zhi

    2013-07-15

    Cabbage-like NaInS{sub 2} microstructures have been synthesized by reacting In(NO{sub 3}){sub 3} with the alkaline sulfur aqueous solution of NaOH in a simple hydrothermal process without any shape-directing surfactants. The cabbage-like NaInS{sub 2} architectures are monodispersed in large quantities. The cabbage-like morphologies depend strongly on the different ratios of S powder to NaOH, the reaction temperature and reaction time. The possible growth mechanism for the formation of cabbage-like NaInS{sub 2} architectures is discussed. The cabbage-like NaInS{sub 2} architectures exhibit the superiority of photocatalytic performance for the photodegradation of RhB irradiation under visible light irradiation. It is believed that the photocatalytic superiority of the cabbage-like NaInS{sub 2} architectures is mainly due to their special surface areas and inner interconnected structural features. - Graphical abstract: Cabbage-like NaInS{sub 2} microstructures were facilely synthesized via simple hydrothermal reaction. The cabbage-like NaInS{sub 2} architectures exhibit the superiority of photocatalytic performance for the photodegradation of RhB irradiation under visible light irradiation. - Highlights: • Cabbage-like NaInS{sub 2} microstructures were facilely synthesized via a hydrothermal reaction. • Influencing parameters on the NaInS{sub 2} morphologies have been discussed in detail. • The cabbage-like NaInS{sub 2} architectures hold efficient photocatalytic performance. • The photocatalytic superiority is mainly due to their special structural features.

  11. Synthesis of black ultrathin BiOCl nanosheets for efficient photocatalytic H2 production under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Ye, Liqun; Jin, Xiaoli; Leng, Yumin; Su, Yurong; Xie, Haiquan; Liu, Chao

    2015-10-01

    The thickness of 2D BiOCl nanosheets along [001] direction control the internal electric fields intensity. In order to enhance the photocatalytic properties of BiOCl, decreasing the thickness is the best choice. In this paper, black ultrathin BiOCl nanosheet (BU-BiOCl) with expanded spacing of the (001) crystal plane and oxygen vacancy was synthesized in high viscosity and alcohol group concentration glycerol system. It was characterized by X-ray diffraction patterns (XRD), X-ray photoelectron spectroscopy (XPS), X-ray photoelectron scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM), electron spin resonance (ESR), UV-vis diffuse reflectance spectra (DRS) and photoluminescence (PL) spectra. The experimental characterization and theoretical calculation results also indicated that expanded facets spacing and oxygen vacancy of as-synthesized BU-BiOCl enhanced separation efficiency of photoinduced carriers and photon absorption efficiency. Therefore, BU-BiOCl showed higher activity than bulk BiOCl for H2 production under visible light irradiation.

  12. Vertically aligned InGaN nanowires with engineered axial In composition for highly efficient visible light emission

    PubMed Central

    Ebaid, Mohamed; Kang, Jin-Ho; Yoo, Yang-Seok; Lim, Seung-Hyuk; Cho, Yong-Hoon; Ryu, Sang-Wan

    2015-01-01

    We report on the fabrication of novel InGaN nanowires (NWs) with improved crystalline quality and high radiative efficiency for applications as nanoscale visible light emitters. Pristine InGaN NWs grown under a uniform In/Ga molar flow ratio (UIF) exhibited multi-peak white-like emission and a high density of dislocation-like defects. A phase separation and broad emission with non-uniform luminescent clusters were also observed for a single UIF NW investigated by spatially resolved cathodoluminescence. Hence, we proposed a simple approach based on engineering the axial In content by increasing the In/Ga molar flow ratio at the end of NW growth. This new approach yielded samples with a high luminescence intensity, a narrow emission spectrum, and enhanced crystalline quality. Using time-resolved photoluminescence spectroscopy, the UIF NWs exhibited a long radiative recombination time (τr) and low internal quantum efficiency (IQE) due to strong exciton localization and carrier trapping in defect states. In contrast, NWs with engineered In content demonstrated three times higher IQE and a much shorter τr due to mitigated In fluctuation and improved crystal quality. PMID:26585509

  13. Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts.

    PubMed

    Liu, Min; Qiu, Xiaoqing; Miyauchi, Masahiro; Hashimoto, Kazuhito

    2013-07-10

    Photocatalytic reaction rate (R) is determined by the multiplication of light absorption capability (α) and quantum efficiency (QE); however, these two parameters generally have trade-off relations. Thus, increasing α without decreasing QE remains a challenging issue for developing efficient photocatalysts with high R. Herein, using Fe(III) ions grafted Fe(III) doped TiO2 as a model system, we present a novel method for developing visible-light photocatalysts with efficient R, utilizing the concept of energy level matching between surface-grafted Fe(III) ions as co-catalysts and bulk-doped Fe(III) ions as visible-light absorbers. Photogenerated electrons in the doped Fe(III) states under visible-light efficiently transfer to the surface grafted Fe(III) ions co-catalysts, as the doped Fe(III) ions in bulk produced energy levels below the conduction band of TiO2, which match well with the potential of Fe(3+)/Fe(2+) redox couple in the surface grafted Fe(III) ions. Electrons in the surface grafted Fe(III) ions efficiently cause multielectron reduction of adsorbed oxygen molecules to achieve high QE value. Consequently, the present Fe(III)-FexTi1-xO2 nanocomposites exhibited the highest visible-light R among the previously reported photocatalysts for decomposition of gaseous organic compounds. The high R can proceed even under commercial white-light emission diode irradiation and is very stable for long-term use, making it practically useful. Further, this efficient method could be applied in other wide-band gap semiconductors, including ZnO or SrTiO3, and may be potentially applicable for other photocatalysis systems, such as water splitting, CO2 reduction, NOx removal, and dye decomposition. Thus, this method represents a strategic approach to develop new visible-light active photocatalysts for practical uses.

  14. Chemical-Bond-Mediated p-n Heterojunction Photocatalyst Constructed from Coordination Polymer Nanoparticles and a Conducting Copolymer: Visible-Light Active and Highly Efficient.

    PubMed

    Xu, Xinxin; Lu, Tingting; Liu, Xiaoxia; Wang, Xiuli

    2015-11-23

    A visible-light-active p-n heterojunction photocatalyst has been synthesized by the enwrapping of poly[aniline-co-N-(4-sulfophenyl)aniline] (PAPSA) on a coordination polymer nanoparticle (NCP). Compared with the visible-light-inactive NCP, the new p-n heterojunction photocatalyst, PAPSA/NCP, exhibits a much higher efficiency in the reduction of Cr(VI) under visible light. PAPSA performs two functions in this p-n heterojunction photocatalyst. First, as a visible-light-active material, it extends the photoresponse region of the photocatalyst from the ultraviolet to the visible-light region. Secondly, as a p-type semiconductor possessing suitable energy levels with respect to NCP, PAPSA forms a p-n heterojunction with the n-type NCP; the inner electric field of the p-n heterojunction accelerates the separation of electrons and holes, which enhances the photocatalytic efficiency. Furthermore, the p-n heterojunction photocatalyst exhibits outstanding stability during the photocatalytic reduction of Cr(VI) .

  15. Highly efficient photocatalytic H₂ evolution from water using visible light and structure-controlled graphitic carbon nitride.

    PubMed

    Martin, David James; Qiu, Kaipei; Shevlin, Stephen Andrew; Handoko, Albertus Denny; Chen, Xiaowei; Guo, Zhengxiao; Tang, Junwang

    2014-08-25

    The major challenge of photocatalytic water splitting, the prototypical reaction for the direct production of hydrogen by using solar energy, is to develop low-cost yet highly efficient and stable semiconductor photocatalysts. Herein, an effective strategy for synthesizing extremely active graphitic carbon nitride (g-C3N4) from a low-cost precursor, urea, is reported. The g-C3N4 exhibits an extraordinary hydrogen-evolution rate (ca. 20,000 μmol h(-1) g(-1) under full arc), which leads to a high turnover number (TON) of over 641 after 6 h. The reaction proceeds for more than 30 h without activity loss and results in an internal quantum yield of 26.5% under visible light, which is nearly an order of magnitude higher than that observed for any other existing g-C3N4 photocatalysts. Furthermore, it was found by experimental analysis and DFT calculations that as the degree of polymerization increases and the proton concentration decreases, the hydrogen-evolution rate is significantly enhanced.

  16. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide.

    PubMed

    Shown, Indrajit; Hsu, Hsin-Cheng; Chang, Yu-Chung; Lin, Chang-Hui; Roy, Pradip Kumar; Ganguly, Abhijit; Wang, Chen-Hao; Chang, Jan-Kai; Wu, Chih-I; Chen, Li-Chyong; Chen, Kuei-Hsien

    2014-11-12

    The production of renewable solar fuel through CO2 photoreduction, namely artificial photosynthesis, has gained tremendous attention in recent times due to the limited availability of fossil-fuel resources and global climate change caused by rising anthropogenic CO2 in the atmosphere. In this study, graphene oxide (GO) decorated with copper nanoparticles (Cu-NPs), hereafter referred to as Cu/GO, has been used to enhance photocatalytic CO2 reduction under visible-light. A rapid one-pot microwave process was used to prepare the Cu/GO hybrids with various Cu contents. The attributes of metallic copper nanoparticles (∼4-5 nm in size) in the GO hybrid are shown to significantly enhance the photocatalytic activity of GO, primarily through the suppression of electron-hole pair recombination, further reduction of GO's bandgap, and modification of its work function. X-ray photoemission spectroscopy studies indicate a charge transfer from GO to Cu. A strong interaction is observed between the metal content of the Cu/GO hybrids and the rates of formation and selectivity of the products. A factor of greater than 60 times enhancement in CO2 to fuel catalytic efficiency has been demonstrated using Cu/GO-2 (10 wt % Cu) compared with that using pristine GO.

  17. Highly Efficient Photocatalytic H2 Evolution from Water using Visible Light and Structure-Controlled Graphitic Carbon Nitride**

    PubMed Central

    Martin, David James; Qiu, Kaipei; Shevlin, Stephen Andrew; Handoko, Albertus Denny; Chen, Xiaowei; Guo, Zhengxiao; Tang, Junwang

    2014-01-01

    The major challenge of photocatalytic water splitting, the prototypical reaction for the direct production of hydrogen by using solar energy, is to develop low-cost yet highly efficient and stable semiconductor photocatalysts. Herein, an effective strategy for synthesizing extremely active graphitic carbon nitride (g-C3N4) from a low-cost precursor, urea, is reported. The g-C3N4 exhibits an extraordinary hydrogen-evolution rate (ca. 20 000 μmol h−1 g−1 under full arc), which leads to a high turnover number (TON) of over 641 after 6 h. The reaction proceeds for more than 30 h without activity loss and results in an internal quantum yield of 26.5 % under visible light, which is nearly an order of magnitude higher than that observed for any other existing g-C3N4 photocatalysts. Furthermore, it was found by experimental analysis and DFT calculations that as the degree of polymerization increases and the proton concentration decreases, the hydrogen-evolution rate is significantly enhanced. PMID:25045013

  18. A new bismuth-based coordination polymer as an efficient visible light responding photocatalyst under white LED irradiation

    NASA Astrophysics Data System (ADS)

    Huang, Ya-Jing; Zheng, Yue-Qing; Wang, Jin-Jian; Zhou, Lin-Xia

    2017-02-01

    A new bismuth-based polymer, [Hbpe][Bi(Hpydc)2(pydc)]·H2O (H2pydc=pyridine-2,5-dicarboxylic acid, bpe=trans-bis(4-pyridyl) ethylene) has been hydrothermally synthesized. Transient photocurrent response and electrochemical impedance spectroscopy studies indicate that the synthesized polymer with efficient charge separation and transportation can be used as a potential photocatalyst. So we use it for the degradation of rhodamine B (RhB) dye wastewater under visible light. The comparative study on commercial Bi2O3 shows [Hbpe][Bi(Hpydc)2(pydc)]·H2O has the higher photocatalytic performance, with the degradation rate of 97% and 2% within 100 min for [Hbpe][Bi(Hpydc)2(pydc)]·H2O and commercial Bi2O3 respectively. Additionally, the five cycle reproducibility results of [Hbpe][Bi(Hpydc)2(pydc)]·H2O implies that it can be used as a stable photocatalyst.

  19. Development of high efficient visible light-driven N, S-codoped TiO2 nanowires photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Yanlin; Liu, Peihong; Wu, Honghai

    2015-02-01

    One-dimensional (1D) nanowire material (especially nonmetal doped 1D nanowires) synthesized by a facile way is of great significance and greatly desired as it has higher charge carrier mobility and lower carrier recombination rate. N, S-codoped TiO2 nanowires were synthesized using titanium sulfate as a precursor and isopropanol as a protective capping agent by a hydrothermal route. The obtained doped nanowires were characterized by XRD, SEM, HRTEM, SAED, XPS, BET and UV-vis absorption spectrum. The incorporation of N and S into TiO2 NWs can lead to the expansion of its lattice and remarkably lower its electron-transfer resistance. Photocatalytic activity measurement showed that the N, S-codoped TiO2 nanowires with high quantum efficiency revealed the best photocatalytic performance for atrazine degradation under visible light irradiation compared to N, S-codoped TiO2 nanoparticles and S-doped TiO2 nanowires, which was attributed to (i) the synergistic effect of N and S doping in narrowing the band gap, separating electron-hole pairs and increasing the photoinduced electrons, and (ii) extending the anatase-to-rutile transformation temperature above 600 °C.

  20. Synthesis of Mn-intercalated layered titanate by exfoliation-flocculation approach and its efficient photocatalytic activity under visible-light

    SciTech Connect

    Fu, Jie; Tian, Yanlong; Chang, Binbin; Li, Gengnan; Xi, Fengna; Dong, Xiaoping

    2012-12-15

    A novel Mn-intercalated layered titanate as highly active photocatalyst in visible-light region has been synthesized via a convenient and efficient exfoliation-flocculation approach with divalent Mn ions and monolayer titanate nanosheets. The 0.91 nm interlayer spacing of obtained photocatalyst is in accordance with the sum of the thickness of titanate nanosheet and the diameter of Mn ions. The yellow photocatalyst shows a spectral response in visible-light region and the calculated band gap is 2.59 eV. The photocatalytic performance of this material was evaluated by degradation and mineralization of an aqueous dye methylene blue under visible-light irradiation, and an enhanced photocatalytic activity in comparison with protonated titanate as well as the P25 TiO{sub 2} and N-doped TiO{sub 2} was obtained. Additionally, the layered structure is retained, no dye ions intercalating occurs during the photocatalysis process, and a {approx}90% photocatalytic activity can be remained after reusing 3 cycles. - Graphical abstract: Mn-intercalated layered titanate as a novel and efficient visible-light harvesting photocatalyst was synthesized via a convenient and efficient exfoliation-flocculation approach in a mild condition. Highlights: Black-Right-Pointing-Pointer Mn-intercalated titanate has been prepared by exfoliation-flocculation approach. Black-Right-Pointing-Pointer The as-prepared catalyst shows spectral response in the visible-light region. Black-Right-Pointing-Pointer Heat treatment at certain temperature enables formation of Mn-doped TiO{sub 2}. Black-Right-Pointing-Pointer Dye can be degradated effectively by the catalyst under visible light irradiation.

  1. Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluent.

    PubMed

    Santiago-Morales, Javier; Gómez, María José; Herrera-López, Sonia; Fernández-Alba, Amadeo R; García-Calvo, Eloy; Rosal, Roberto

    2013-10-01

    This study aims to assess the removal of a set of non-polar pollutants in biologically treated wastewater using ozonation, ultraviolet (UV 254 nm low pressure mercury lamp) and visible light (Xe-arc lamp) irradiation as well as visible light photocatalysis using Ce-doped TiO2. The compounds tracked include UV filters, synthetic musks, herbicides, insecticides, antiseptics and polyaromatic hydrocarbons. Raw wastewater and treated samples were analyzed using stir-bar sorptive extraction coupled with comprehensive two-dimensional gas chromatography (SBSE-CG × GC-TOF-MS). Ozone treatment could remove most pollutants with a global efficiency of over 95% for 209 μM ozone dosage. UV irradiation reduced the total concentration of the sixteen pollutants tested by an average of 63% with high removal of the sunscreen 2-ethylhexyl trans-4-methoxycinnamate (EHMC), the synthetic musk 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene (tonalide, AHTN) and several herbicides. Visible light Ce-TiO2 photocatalysis reached ~70% overall removal with particularly high efficiency for synthetic musks. In terms of power usage efficiency expressed as nmol kJ(-1), the results showed that ozonation was by far the most efficient process, ten-fold over Xe/Ce-TiO2 visible light photocatalysis, the latter being in turn considerably more efficient than UV irradiation. In all cases the efficiency decreased along the treatments due to the lower reaction rate at lower pollutant concentration. The use of photocatalysis greatly improved the efficiency of visible light irradiation. The collector area per order decreased from 9.14 ± 5.11 m(2) m(-3) order(-1) for visible light irradiation to 0.16 ± 0.03 m(2) m(-3) order(-1) for Ce-TiO2 photocatalysis. The toxicity of treated wastewater was assessed using the green alga Pseudokirchneriella subcapitata. Ozonation reduced the toxicity of treated wastewater, while UV irradiation and visible light photocatalysis limited by 20-25% the algal growth due to

  2. Graphitic C3 N4 -Sensitized TiO2 Nanotube Layers: A Visible-Light Activated Efficient Metal-Free Antimicrobial Platform.

    PubMed

    Xu, Jingwen; Li, Yan; Zhou, Xuemei; Li, Yuzhen; Gao, Zhi-Da; Song, Yan-Yan; Schmuki, Patrik

    2016-03-14

    Herein, we use a facile procedure to graft a thin graphitic C3N4 (g-C3N4) layer on aligned TiO2 nanotube arrays (TiNT) by a one-step chemical vapor deposition (CVD) approach. This provides a platform to enhance the visible-light response of TiO2 nanotubes for antimicrobial applications. The formed g-C3N4/TiNT binary nanocomposite exhibits excellent bactericidal efficiency against Escherichia coli (E. coli) as a visible-light activated antibacterial coating, without the use of additional bactericides.

  3. High efficiency incandescent lighting

    SciTech Connect

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  4. Template synthesis of Ag/AgCl microrods and their efficient visible light-driven photocatalytic performance

    SciTech Connect

    Chen, Hua; Xiao, Liang; Huang, Jianhua

    2014-09-15

    Highlights: • Preparation ofAg/AgCl microrods by reaction of Ag{sub 2}WO{sub 4} microrods with NaCl solution. • Generation of metallic Ag is induced by the ambient light in the synthesis process. • Ag/AgCl shows excellent visible light-driven photodegradation of organic dyes. - Abstract: Ag/AgCl microrods, aggregated by nanoparticles with a diameter ranging from 100 nm to 2 μm, were prepared by an ion-exchange reaction at 80 °C between Ag{sub 2}WO{sub 4} template and NaCl solution. The existence of metallic Ag species was confirmed by XRD, DRS and XPS measurements. Ag/AgCl microrods showed excellent photocatalytic activity for the degradation of rhodamine B and methylene blue under visible light irradiation. The degradation rate constants of rhodamine B and methylene blue are 0.176 and 0.114 min{sup −1}, respectively. The cycling photodegradation experiments suggest that Ag/AgCl microds could be employed as stable plasmonic photocatalysts for the degradation of organic dyes under visible light irradiation.

  5. Highly efficient visible light TiO2 photocatalyst prepared by sol-gel method at temperatures lower than 300°C.

    PubMed

    Wang, Desong; Xiao, Libin; Luo, Qingzhi; Li, Xueyan; An, Jing; Duan, Yandong

    2011-08-15

    Highly efficient visible light TiO(2) photocatalyst was prepared by the sol-gel method at lower temperature (≤ 300°C), and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and differential scanning calorimetry-thermogravimetric analysis (DSC-TGA). The effects of the heat treatment temperature and time of the as-prepared TiO(2) on its visible light photocatalytic activity were investigated by monitoring the degradation of methyl orange solution under visible light irradiation (wavelength ≥ 400 nm). Results show that the as-prepared TiO(2) nanoparticles possess an anatase phase and mesoporous structure with carbon self-doping and visible photosensitive organic groups. The visible light photocatalytic activity of the as-prepared TiO(2) is greatly higher than those of the commercial TiO(2) (P-25) and other visible photocatalysts reported in literature (such as PPy/TiO(2), P3HT/TiO(2), PANI/TiO(2), N-TiO(2) and Fe(3+)-TiO(2)) and its photocatalytic stability is excellent. The reasons for improving the visible light photocatalytic activity of the as-prepared TiO(2) can be explained by carbon self-doping and a large amount of visible photosensitive groups existing in the as-prepared TiO(2). The apparent optical thickness (τ(app)), local volumetric rate of photo absorption (LVRPA) and kinetic constant (k(T)) of the photodegradation system were calculated.

  6. One-step synthesis of highly efficient three-dimensional Cd1-xZnxS photocatalysts for visible light photocatalytic water splitting

    PubMed Central

    2013-01-01

    Visible light accounts for about 43% of the solar spectrum, and developing highly efficient visible-light-driven photocatalyst is of special significance. In this work, highly efficient three-dimensional (3D) Cd1−xZnxS photocatalysts for hydrogen generation under the irradiation of visible light were synthesized via one-step solvothermal pathway. Scanning electron microscope, X-ray diffractometer, Raman spectrometer, and X-ray photoelectron spectrometer were utilized to characterize the morphology, crystal structure, vibrational states, and surface composition of the obtained 3D Cd1−xZnxS. UV-Vis spectra indicated that the as-synthesized Cd1−xZnxS had appropriate bandgap and position of the conduction band that is beneficial for visible light absorption and photo-generated electron-hole pair separation. Moreover, the 3D structure offers a larger surface area thus supplying more surface reaction sites and better charge transport environment, and therefore, the efficiency of water splitting was improved further. PMID:23883429

  7. A compact and efficient hyper coherent light source of visible violet laser diode based on Pound-Drever-Hall technique

    NASA Astrophysics Data System (ADS)

    Sasaki, Wakao; Yashiro, Hideyuki; Miura, Yukio; Mizutani, Kouki; Nakajima, Jun

    2007-09-01

    In the present work, we have developed an efficient and well stablized hyper coherent diode laser light source as compact as even portable using commercially available visible 400 nm band laser diodes. The attained coherence of the present system can always be controlled at the best condition indifferent to changes in its settled environmental conditions by applying Pound-Drever-Hall technique in which the frequency of a 160mW type 405nm GaN violet laser diode is locked to a reference Fabry-Perot cavity by negative electrical feedback for the injection current of the laser diode based on FM sideband technique. In addition to this frequency stabilization system, we have also realized a stability evaluation system that can measure the Allan variance of the frequency fluctuations of our frequency stabilized laser source in real-time basis by using simple devices of a portable computer and a digital signal processing unit. As a result, we have accomplished a compact and efficient hyper coherent laser system which can always perform its optimum conditions even if the environmental conditions around the laser are to be dynamically changed when used in a field basis. The attained values of power spectral density (PSD) of FM noise calculated from the error signals of our system under controlled condition were better by about 1~2 orders than typical values of free-running conditions in the fourier frequency domain from 100Hz to 300kHz. The best achieved value of PSD was about 2.56×10 7 [Hz2/Hz] in the fourier frequency domain from 100Hz to 1kHz, while as for the Allan variance as another measure of frequency stability, the achieved value of the minimum square root of Allan variance was 3.46×10 -11 in a 400nm type violet laser diode at integration time of 10 ms, which has been well comparable to the hyper coherent condition for the laser diode light sources.

  8. Efficient degradation of benzene over LaVO4/TiO2 nanocrystalline heterojunction photocatalyst under visible light irradiation.

    PubMed

    Huang, Hanjie; Li, Danzhen; Lin, Qiang; Zhang, Wenjuan; Shao, Yu; Chen, Yibin; Sun, Meng; Fu, Xianzhi

    2009-06-01

    A nanocrystal heterojunction LaVO4TiO2 visible light photocatalyst has been successfully prepared by a simple coupled method. The catalyst was characterized by powder X-ray diffraction, nitrogen adsorption-desorption, transmission electron microscopy, UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectra, photoluminescence, and electrochemistry technology.The results showed that the prepared nanocomposite catalysts exhibited strong photocatalytic activity for decomposition of benzene under visible light irradiation with high photochemical stability. The enhanced photocatalytic performance of LaVO4/TiO2 may be attributed to not only the matched band potentials but also interconnected heterojunction of LaVO4 and TiO2 nanoparticles.

  9. Highly efficient visible-light photocatalytic performance based on novel AgI/g-C3N4 composite photocatalysts

    NASA Astrophysics Data System (ADS)

    Lei, Chunsheng; Pi, Meng; Zhu, Xiaofeng; Xia, Pengfei; Guo, Yingqing; Zhang, Fenge

    2016-11-01

    A novel AgI/g-C3N4 composite photocatalysts with enhanced visible-light photocatalytic pollutants degradation activity were synthesized by a facile ultrasonication-precipitation method. The composite photocatalysts were characterized by XRD, FESEM, FTIR, XPS, DRS and basic test. The results proved that the AgI/g-C3N4 composite photocatalysts exhibit excellent photocatalytic performance and favorable stability towards Methylene blue (MB) degradation in aqueous solution under visible light (λ > 420 nm). Approximately 97.5% of MB was degraded after 1 h of irradiation using the best catalyst. Superior stability was also achieved in the cyclic runs, indicating that the as-prepared composite photocatalyst has potential application for treatment of organic-dye-contaminated wastewaters.

  10. Double-doped TiO2 nanoparticles as an efficient visible-light-active photocatalyst and antibacterial agent under solar simulated light

    NASA Astrophysics Data System (ADS)

    Ashkarran, Ali Akbar; Hamidinezhad, Habib; Haddadi, Hedayat; Mahmoudi, Morteza

    2014-05-01

    Silver and nitrogen doped TiO2 nanoparticles (NPs) were synthesized via sol-gel method. The physicochemical properties of the achieved NPs were characterized by various methods including X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultra violet-visible absorption spectroscopy (UV-vis). Both visible-light photocatalytic activity and antimicrobial properties were successfully demonstrated for the degradation of Rhodamine B (Rh. B.), as a model dye, and inactivation of Escherichia coli (E. coli), as a representative of microorganisms. The concentration of the employed dopant was optimized and the results revealed that the silver and nitrogen doped TiO2 NPs extended the light absorption spectrum toward the visible region and significantly enhanced the photodegradation of model dye and inactivation of bacteria under visible-light irradiation while double-doped TiO2 NPs exhibited highest photocatalytic and antibacterial activity compared with single doping. The significant enhancement in the photocatalytic activity and antibacterial properties of the double doped TiO2 NPs, under visible-light irradiation, can be attributed to the generation of two different electronic states acting as electron traps in TiO2 and responsible for narrowing the band gap of TiO2 and shifting its optical response from UV to the visible-light region.

  11. Electrodeposition of hierarchical ZnO/Cu2O nanorod films for highly efficient visible-light-driven photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Ren, S. T.; Fan, G. H.; Liang, M. L.; Wang, Q.; Zhao, G. L.

    2014-02-01

    The development of high-performance visible-light-responsive photocatalytic materials has attracted widespread interest due to their potential applications in the environmental and energy industries. In this work, hierarchical ZnO nanorods films were successfully prepared on the stainless steel mesh substrates via a simple two-step seed-assisted electrodeposition route. Cu2O nanoparticles were then electrodeposited on the surface of ZnO nanorods to form the core-shell heterostructure. The synthesized ZnO/Cu2O nanocomposites were characterized by X-ray diffraction, field-emission scanning electron microscopy, and UV-visible spectrophotometer. Due to the branched hierarchical morphologies and core-shell structure, ZnO/Cu2O nanomaterials show a prominent visible-light-driven photocatalytic performance under the low-intensity light irradiation (40 mW/cm2). The influence of some experimental parameters, such as Cu2O loading amount, ZnO morphologies, the substrate type, and the PH of the Cu2O precursor solution on ZnO/Cu2O photocatalytic performance was evaluated.

  12. Highly efficient visible light-induced O₂ generation by self-assembled nanohybrids of inorganic nanosheets and polyoxometalate nanoclusters.

    PubMed

    Gunjakar, Jayavant L; Kim, Tae Woo; Kim, In Young; Lee, Jang Mee; Hwang, Seong-Ju

    2013-01-01

    Unusually high photocatalytic activity of visible light-induced O₂ generation can be achieved by electrostatically-derived self-assembly between exfoliated Zn-Cr-LDH 2D nanosheets and POM 0D nanoclusters (W₇O₂₄⁶⁻ and V₁₀O₂₈⁶⁻) acting as an electron acceptor. This self-assembly can provide a high flexibility in the control of the chemical composition and pore structure of the resulting LDH-based nanohybrids. The hybridization with POM nanoclusters remarkably enhances the photocatalytic activity of the pristine Zn-Cr-LDH, which is attributable to the formation of porous structure and depression of charge recombination. Of prime interest is that the excellent photocatalytic activity of the as-prepared Zn-Cr-LDH-POM nanohybrid for visible light-induced O₂ generation can be further enhanced by calcination at 200 °C, leading to the very high apparent quantum yield of ∼75.2% at 420 nm. The present findings clearly demonstrate that the self-assembly of LDH-POM is fairly powerful in synthesizing novel LDH-based porous nanohybrid photocatalyst for visible light-induced O₂ generation.

  13. Highly Efficient Visible Light-Induced O2 Generation by Self-Assembled Nanohybrids of Inorganic Nanosheets and Polyoxometalate Nanoclusters

    PubMed Central

    Gunjakar, Jayavant L.; Kim, Tae Woo; Kim, In Young; Lee, Jang Mee; Hwang, Seong-Ju

    2013-01-01

    Unusually high photocatalytic activity of visible light-induced O2 generation can be achieved by electrostatically-derived self-assembly between exfoliated Zn-Cr-LDH 2D nanosheets and POM 0D nanoclusters (W7O246− and V10O286−) acting as an electron acceptor. This self-assembly can provide a high flexibility in the control of the chemical composition and pore structure of the resulting LDH-based nanohybrids. The hybridization with POM nanoclusters remarkably enhances the photocatalytic activity of the pristine Zn-Cr-LDH, which is attributable to the formation of porous structure and depression of charge recombination. Of prime interest is that the excellent photocatalytic activity of the as-prepared Zn-Cr-LDH-POM nanohybrid for visible light-induced O2 generation can be further enhanced by calcination at 200 °C, leading to the very high apparent quantum yield of ∼75.2% at 420 nm. The present findings clearly demonstrate that the self-assembly of LDH–POM is fairly powerful in synthesizing novel LDH-based porous nanohybrid photocatalyst for visible light-induced O2 generation. PMID:23801108

  14. Thylakoid-Inspired Multishell g-C3N4 Nanocapsules with Enhanced Visible-Light Harvesting and Electron Transfer Properties for High-Efficiency Photocatalysis.

    PubMed

    Tong, Zhenwei; Yang, Dong; Li, Zhen; Nan, Yanhu; Ding, Fei; Shen, Yichun; Jiang, Zhongyi

    2017-01-24

    Inspired by the orderly stacked nanostructure and highly integrated function of thylakoids in a natural photosynthesis system, multishell g-C3N4 (MSCN) nanocapsule photocatalysts have been prepared by SiO2 hard template with different shell layers. The resultant triple-shell g-C3N4 (TSCN) nanocapsules display superior photocatalysis performance to single-shell and double-shell counterparts owing to excellent visible-light harvesting and electron transfer properties. Specially, with the increase of the shell layer number, light harvesting is greatly enhanced. There is an increase of the entire visible range absorption arising from the multiple scattering and reflection of the incident light within multishell nanoarchitectures as well as the light transmission within the porous thin shells, and an increase of absorption edge arising from the decreased quantum size effect. The electron transfer is greatly accelerated by the mesopores in the thin shells as nanoconduits and the high specific surface area of TSCN (310.7 m(2) g(-1)). With the tailored hierarchical nanostructure features, TSCN exhibits a superior visible-light H2-generation activity of 630 μmol h(-1) g(-1) (λ > 420 nm), which is among one of the most efficient metal-free g-C3N4 photocatalysts. This study demonstrates a bioinspired approach to the rational design of high-performance nanostructured visible-light photocatalysts.

  15. Copper(II) imidazolate frameworks as highly efficient photocatalysts for reduction of CO2 into methanol under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Li, Jingtian; Luo, Deliang; Yang, Chengju; He, Shiman; Chen, Shangchao; Lin, Jiawei; Zhu, Li; Li, Xin

    2013-07-01

    Three copper(II) imidazolate frameworks were synthesized by a hydrothermal (or precipitation) reaction. The catalysts were characterized by X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectra (FTIR), thermogravimetry (TG). Meanwhile, the photocatalytic activities of the samples for reduction of CO2 into methanol and degradation of methylene blue (MB) under visible light irradiation were also investigated. The results show that the as-prepared samples exhibit better photocatalytic activities for the reduction of carbon dioxide into methanol with water and degradation of MB under visible light irradiation. The orthorhombic copper(II) imidazolate frameworks with a band gap of 2.49 eV and green (G) color has the best photocatalytic activity for reduction of CO2 into methanol, 1712.7 μmol/g over 5 h, which is about three times as large as that of monoclinic copper(II) imidazolate frameworks with a band gap 2.70 eV and blue (J) color. The degradation kinetics of MB over three photocatalysts fitted well to the apparent first-order rate equation and the apparent rate constants for the degradation of MB over G, J and P (with pink color) are 0.0038, 0.0013 and 0.0016 min-1, respectively. The synergistic effects of smallest band gap and orthorhombic crystal phase structure are the critical factors for the better photocatalytic activities of G. Moreover, three frameworks can also be stable up to 250 °C. The investigation of Cu-based zeolitic imidazolate frameworks maybe provide a design strategy for a new class of photocatalysts applied in degradation of contaminations, reduction of CO2, and even water splitting into hydrogen and oxygen under visible light.

  16. Efficient visible-light-driven photocatalytic degradation of nitrophenol by using graphene-encapsulated TiO₂ nanowires.

    PubMed

    Lee, Hyun-Gyu; Sai-Anand, Gopalan; Komathi, Shanmugasundaram; Gopalan, Anantha-Iyengar; Kang, Shin-Won; Lee, Kwang-Pill

    2015-01-01

    In this work, a new hybrid nanocatalyst, namely titanium dioxide (TiO2) composite nanowires, encapsulated with graphene (G) and palladium nanoparticles (Pd NPs) (designated as G-Pd@TiO2-CNWs), was prepared. In preparing the nanowires, a combination of electrospinning and hydrothermal approaches was employed. The visible-light-driven photocatalytic performance of G-Pd@TiO2-CNWs was investigated using the reduction of 4-nitrophenol (4-NP) as a model reaction. The results showed that G-Pd@TiO2-CNWs converted nearly 100% of 4-NP under visible light irradiation. The reaction kinetics of the photocatalytic reduction of 4-NP was studied by UV-vis spectrophotometry and the apparent rate constant was determined and compared with those for other supported TiO2 catalysts. Furthermore, the spent G-Pd@TiO2-CNWs could be recovered by simple centrifugation and reused. The work is expected to shed new light on the development of G-incorporated hybrid nanostructures for harvesting light energy and on the development of new photocatalysts for the removal of environmental pollutants.

  17. Visible light-curing unit.

    PubMed

    2002-10-01

    Ortholux XT is a high-intensity light source emitting filtered visible blue light in the 400- to 500-nanometer range for polymerization of visible-light-cured resins. The Ortholux handpiece comes with a portable power supply, a light-intensity check in the power supply, a spare lamp, an eyeshield and a mounting kit. The handpiece consists of a pistol grip with a thermoplastic housing that contains the light source, cooling fan, light guide receptacle (8- or 13-millimeter-diameter fused quartz lightguide), optical filter, light switch and timer switch. The timer is operator-selectable with options of five, 10, 15 and 20 seconds and an XT option of up to 600 seconds. The push-button switch allows for timer disruption and reactivation. 3M Unitek reported (3M Unitek, unpublished data submitted to the ADA, date not known) that the cooling fan generates noise below 43 decibels when the internal handpiece temperature is below 100 C. At 120 C, the fan speed increases, generating 52 dBA. The U.S. Air Force Dental Investigative Service reported that the cooling fan is extremely quiet. The light shuts off when it reaches 140 C. The light source is a 75-watt tungsten/halogen lamp. The handpiece weighs less than one pound. The power supply contains the built-in intensity meter that illuminates a green light-emitting diode when the tested light exceeds 400 milliwatts per square centimeter. The power cord is six feet in length. A built-in voltage regulator ensures a steady voltage supply to the unit.

  18. Efficiently Visible-Light Driven Photoelectrocatalytic Oxidation of As(III) at Low Positive Biasing Using Pt/TiO2 Nanotube Electrode.

    PubMed

    Qin, Yanyan; Li, Yilian; Tian, Zhen; Wu, Yangling; Cui, Yanping

    2016-12-01

    A constant current deposition method was selected to load highly dispersed Pt nanoparticles on TiO2 nanotubes in this paper, to extend the excited spectrum range of TiO2-based photocatalysts to visible light. The morphology, elemental composition, and light absorption capability of as-obtained Pt/TiO2 nanotubes electrodes were characterized by FE-SEM, energy dispersive spectrometer (EDS), X-ray photoelectron spectrometer (XPS), and UV-vis spectrometer. The photocatalytic and photoelectrocatalytic oxidation of As(III) using a Pt/TiO2 nanotube arrays electrode under visible light (λ > 420 nm) irradiation were investigated in a divided anode/cathode electrolytic tank. Compared with pure TiO2 which had no As(III) oxidation capacity under visible light, Pt/TiO2 nanotubes exhibited excellent visible-light photocatalytic performance toward As(III), even at dark condition. In anodic cell, As(III) could be oxidized with high efficiency by photoelectrochemical process with only 1.2 V positive biasing. Experimental results showed that photoelectrocatalytic oxidation process of As(III) could be well described by pseudo-first-order kinetic model. Rate constants depended on initial concentration of As(III), applied bias potential and solution pH. At the same time, it was interesting to find that in cathode cell, As(III) was also continuously oxidized to As(V). Furthermore, high-arsenic groundwater sample (25 m underground) with 0.32 mg/L As(III) and 0.35 mg/L As(V), which was collected from Daying Village, Datong basin, Northern China, could totally transform to As(V) after 200 min under visible light in this system.

  19. Efficiently Visible-Light Driven Photoelectrocatalytic Oxidation of As(III) at Low Positive Biasing Using Pt/TiO2 Nanotube Electrode

    NASA Astrophysics Data System (ADS)

    Qin, Yanyan; Li, Yilian; Tian, Zhen; Wu, Yangling; Cui, Yanping

    2016-01-01

    A constant current deposition method was selected to load highly dispersed Pt nanoparticles on TiO2 nanotubes in this paper, to extend the excited spectrum range of TiO2-based photocatalysts to visible light. The morphology, elemental composition, and light absorption capability of as-obtained Pt/TiO2 nanotubes electrodes were characterized by FE-SEM, energy dispersive spectrometer (EDS), X-ray photoelectron spectrometer (XPS), and UV-vis spectrometer. The photocatalytic and photoelectrocatalytic oxidation of As(III) using a Pt/TiO2 nanotube arrays electrode under visible light ( λ > 420 nm) irradiation were investigated in a divided anode/cathode electrolytic tank. Compared with pure TiO2 which had no As(III) oxidation capacity under visible light, Pt/TiO2 nanotubes exhibited excellent visible-light photocatalytic performance toward As(III), even at dark condition. In anodic cell, As(III) could be oxidized with high efficiency by photoelectrochemical process with only 1.2 V positive biasing. Experimental results showed that photoelectrocatalytic oxidation process of As(III) could be well described by pseudo-first-order kinetic model. Rate constants depended on initial concentration of As(III), applied bias potential and solution pH. At the same time, it was interesting to find that in cathode cell, As(III) was also continuously oxidized to As(V). Furthermore, high-arsenic groundwater sample (25 m underground) with 0.32 mg/L As(III) and 0.35 mg/L As(V), which was collected from Daying Village, Datong basin, Northern China, could totally transform to As(V) after 200 min under visible light in this system.

  20. Montmorillonite-supported Ag/TiO(2) nanoparticles: an efficient visible-light bacteria photodegradation material.

    PubMed

    Wu, Tong-Shun; Wang, Kai-Xue; Li, Guo-Dong; Sun, Shi-Yang; Sun, Jian; Chen, Jie-Sheng

    2010-02-01

    Montmorillonite (MMT)-supported Ag/TiO(2) composite (Ag/TiO(2)/MMT) has been prepared through a one-step, low-temperature solvothermal technique. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) reveal that the Ag particles coated with TiO(2) nanoparticles are well-dispersed on the surface of MMT in the composite. As a support for the Ag/TiO(2) composite, the MMT prevents the loss of the catalyst during recycling test. This Ag/TiO(2)/MMT composite exhibits high photocatalytic activity and good recycling performance in the degradation of E. coli under visible light. The high visible-light photocatalytic activity of the Ag/TiO(2)/MMT composite is ascribed to the increase in surface active centers and the localized surface plasmon effect of the Ag nanoparticles. The Ag/TiO(2)/MMT materials with excellent stability, recyclability, and bactericidal activities are promising photocatalysts for application in decontamination.

  1. Carbon wrapped and doped TiO2 mesoporous nanostructure with efficient visible-light photocatalysis for NO removal

    NASA Astrophysics Data System (ADS)

    He, Di; Li, Yongli; Wang, inshu; Wu, Junshu; Yang, Yilong; An, Qier

    2017-01-01

    Carbon wrapped and doped mesoporous anatase TiO2 nanocrystals were prepared by a hydrothermal approach in acetic acid aqueous containing chitosan. A designed post-thermal treatment was employed to enhance the incorporation between carbon and TiO2. After hydrothermal process, mesoporous anatase TiO2 formed with wrapped by a few layers of carbon shell. Here chitosan was used as not only the template for the formation of mesopores, but also the carbon source toward the carbon layers coating. Furthermore, chitosan provided doping element into TiO2 lattice and induced to form Tisbnd C bond which caused Ti(III) with oxygen vacancies. The Ti(III)-oxygen vacancy are partly responsible for visible-light response and high photocatalytic activity, which can accelerate electron transfer thus inhibit photogenerated charge recombination. The photocatalytic activity was evaluated using photo-oxidation of gaseous NO under visible light irradiation as the probe reaction. In the optimum result, 71% of NO with starting concentration at ppb level was photo-degraded. Our results also showed that the photogenerated electrons played a key role in photodegradation of NO, as a result, the environmental humidity level had a negligible effect on the photocatalysis.

  2. Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst.

    PubMed

    Sajjad, Ahmed Khan Leghari; Shamaila, Sajjad; Tian, Baozhu; Chen, Feng; Zhang, Jinlong

    2010-05-15

    The multidimensional aspects of the photocatalytic activity were investigated in a systematic way by employing the dyes Acid Orange 7 (AO7) and Methyl Orange (MO) as substrates in terms of their degradation or conversion rates. 4.0% WO(x)/TiO(2) nanocomposite demonstrated the best reactivity under visible light, allowing more efficient usage of solar light. The reduced form of W decreased the band gap and inhibited electron hole recombination efficiently. This composite was characterized by X-ray diffraction spectroscopy (XRD), UV-vis diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). A series of experiments were conducted to investigate the operational parameters under visible light irradiation such as optimization of nanocomposites wt%, change of pH, reuse of catalyst and initial dye concentration. The kinetics of the dyes degradation was found to follow the Langmuir-Hinshelwood model. Decomposition or mineralization was investigated with the changes of absorption spectra, pH, degradation efficiency and TOC removal in visible irradiation systems. FT-IR spectroscopy of these adsorbed dyes on WO(x)/TiO(2) powder provided an insight to the mode of its adsorption on WO(x)/TiO(2). It was found that the dye adsorbed on WO(x)/TiO(2) underwent a series of oxidation steps which lead to decolorization and formation of a number of intermediates mainly aromatic and aliphatic acids. These intermediates were quantified by GC/GC-MS.

  3. Graphene oxide coated coordination polymer nanobelt composite material: a new type of visible light active and highly efficient photocatalyst for Cr(VI) reduction.

    PubMed

    Shi, Gui-Mei; Zhang, Bin; Xu, Xin-Xin; Fu, Yan-Hong

    2015-06-28

    A visible light active photocatalyst was synthesized successfully by coating graphene oxide (GO) on a coordination polymer nanobelt (CPNB) using a simple colloidal blending process. Compared with neat CPNB, the resulting graphene oxide coated coordination polymer nanobelt composite material (GO/CPNB) exhibits excellent photocatalytic efficiency in the reduction of K2Cr2O7 under visible light irradiation. In the composite material, GO performs two functions. Firstly, it cuts down the band gap (E(g)) of the photocatalyst and extends its photoresponse region from the ultraviolet to visible light region. Secondly, GO exhibits excellent electron transportation ability that impedes its recombination with holes, and this can enhance photocatalytic efficiency. For GO, on its surface, the number of functional groups has a great influence on the photocatalytic performance of the resulting GO/CPNB composite material and an ideal GO"coater" to obtain a highly efficient GO/CPNB photocatalyst has been obtained. As a photocatalyst that may be used in the treatment of Cr(VI) in wastewater, GO/CPNB exhibited outstanding stability during the reduction of this pollutant.

  4. Highly efficient photocatalysis of p-type Cu{sub 2}ZnSnS{sub 4} under visible-light illumination

    SciTech Connect

    Hou, Xian; Li, Yan Yan, Jian-Jun; Wang, Cheng-Wei

    2014-12-15

    Highlights: • Kesterite CZTS nanocrystal powder was synthesized by one-pot method. • First successful use CZTS nanocrystal powder as photocatalyst. • CZTS shows an efficient photocatalysis under visible light irradiation. • CZTS photocatalyst having excellent stability. - Abstract: Cu{sub 2}ZnSnS{sub 4}, as a very promising p-type semiconductor material, has been extensively used in the study of solar cells owing to its suitable band gap (1.1–1.5 eV), large absorption coefficient of 10{sup 4} cm{sup −1} in the visible spectrum, good photo stability, nontoxicity and relative abundance of the component elements. In this paper, we have successfully synthesized p-type kesterite Cu{sub 2}ZnSnS{sub 4} nanocrystal powder by facile one-pot method, and made our first successful attempt to use Cu{sub 2}ZnSnS{sub 4} nanocrystal powder as a photocatalyst to degradation methyl orange under visible-light irradiation. The exciting results show that in the visible light region, Cu{sub 2}ZnSnS{sub 4} nanocrystal powder possesses an excellent photocatalytic performance of K = 0.0317 min{sup −1}, nearly about 6 times of well known commercial P25 titania powder performance under the same conditions, which suggests that the p-type kesterite Cu{sub 2}ZnSnS{sub 4} nanocrystal would be a promising candidate of photocatalyst.

  5. Efficient Banknote Recognition Based on Selection of Discriminative Regions with One-Dimensional Visible-Light Line Sensor

    PubMed Central

    Pham, Tuyen Danh; Park, Young Ho; Kwon, Seung Yong; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo

    2016-01-01

    Banknote papers are automatically recognized and classified in various machines, such as vending machines, automatic teller machines (ATM), and banknote-counting machines. Previous studies on automatic classification of banknotes have been based on the optical characteristics of banknote papers. On each banknote image, there are regions more distinguishable than others in terms of banknote types, sides, and directions. However, there has been little previous research on banknote recognition that has addressed the selection of distinguishable areas. To overcome this problem, we propose a method for recognizing banknotes by selecting more discriminative regions based on similarity mapping, using images captured by a one-dimensional visible light line sensor. Experimental results with various types of banknote databases show that our proposed method outperforms previous methods. PMID:26959022

  6. Efficient Banknote Recognition Based on Selection of Discriminative Regions with One-Dimensional Visible-Light Line Sensor.

    PubMed

    Pham, Tuyen Danh; Park, Young Ho; Kwon, Seung Yong; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo

    2016-03-04

    Banknote papers are automatically recognized and classified in various machines, such as vending machines, automatic teller machines (ATM), and banknote-counting machines. Previous studies on automatic classification of banknotes have been based on the optical characteristics of banknote papers. On each banknote image, there are regions more distinguishable than others in terms of banknote types, sides, and directions. However, there has been little previous research on banknote recognition that has addressed the selection of distinguishable areas. To overcome this problem, we propose a method for recognizing banknotes by selecting more discriminative regions based on similarity mapping, using images captured by a one-dimensional visible light line sensor. Experimental results with various types of banknote databases show that our proposed method outperforms previous methods.

  7. Self-assembled cabbage-like NaInS2 microstructures with efficient visible light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Gao, Yuanhao; Zhai, Xuezhen; Zhang, Yange; Xu, Zhihong; Li, Pinjiang; Zheng, Zhi

    2013-07-01

    Cabbage-like NaInS2 microstructures have been synthesized by reacting In(NO3)3 with the alkaline sulfur aqueous solution of NaOH in a simple hydrothermal process without any shape-directing surfactants. The cabbage-like NaInS2 architectures are monodispersed in large quantities. The cabbage-like morphologies depend strongly on the different ratios of S powder to NaOH, the reaction temperature and reaction time. The possible growth mechanism for the formation of cabbage-like NaInS2 architectures is discussed. The cabbage-like NaInS2 architectures exhibit the superiority of photocatalytic performance for the photodegradation of RhB irradiation under visible light irradiation. It is believed that the photocatalytic superiority of the cabbage-like NaInS2 architectures is mainly due to their special surface areas and inner interconnected structural features.

  8. Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution.

    PubMed

    Lian, Zichao; Wang, Wenchao; Xiao, Shuning; Li, Xin; Cui, Yingying; Zhang, Dieqing; Li, Guisheng; Li, Hexing

    2015-06-12

    A plasmonic Ag/TiO2 photocatalytic composite was designed by selecting Ag quantum dots (Ag QDs) to act as a surface plasmon resonance (SPR) photosensitizer for driving the visible-light driven photoelectrocatalytic hydrogen evolution. Vertically oriented hierarchical TiO2 nanotube arrays (H-TiO2-NTAs) with macroporous structure were prepared through a two-step method based on electrochemical anodization. Subsequently, Ag QDs, with tunable size (1.3-21.0 nm), could be uniformly deposited on the H-TiO2 NTAs by current pulsing approach. The unique structure of the as-obtained photoelectrodes greatly improved the photoelectric conversion efficiency. The as-obtained Ag/H-TiO2-NTAs exhibited strong visible-light absorption capability, high photocurrent density, and enhanced photoelectrocatalytic (PEC) activity toward photoelectrocatalytic hydrogen evolution under visible-light irradiation (λ>420 nm). The enhancement in the photoelectric conversion efficiency and activity was ascribed to the synergistic effects of silver and the unique hierarchical structures of TiO2 nanotube arrays, strong SPR effect, and anti-shielding effect of ultrafine Ag QDs.

  9. Photocatalysis with Quantum Dots and Visible Light: Selective and Efficient Oxidation of Alcohols to Carbonyl Compounds through a Radical Relay Process in Water.

    PubMed

    Zhao, Lei-Min; Meng, Qing-Yuan; Fan, Xiang-Bing; Ye, Chen; Li, Xu-Bing; Chen, Bin; Ramamurthy, Vaidhyanathan; Tung, Chen-Ho; Wu, Li-Zhu

    2017-03-06

    Selective oxidation of alcohols to aldehydes/ketones has been achieved with the help of 3-mercaptopropionic acid (MPA)-capped CdSe quantum dot (MPA-CdSe QD) and visible light. Visible-light-prompted electron-transfer reaction initiates the oxidation. The thiyl radical generated from the thiolate anion adsorbed on a CdSe QD plays a key role by abstracting the hydrogen atom from the C-H bond of the alcohol (R(1) CH(OH)R(2) ). The reaction shows high efficiency, good functional group tolerance, and high site-selectivity in polyhydroxy compounds. The generality and selectivity reported here offer a new opportunity for further applications of QDs in organic transformations.

  10. Coupling of Nanocrystalline Anatase TiO2 to Porous Nanosized LaFeO3 for Efficient Visible-Light Photocatalytic Degradation of Pollutants

    PubMed Central

    Humayun, Muhammad; Li, Zhijun; Sun, Liqun; Zhang, Xuliang; Raziq, Fazal; Zada, Amir; Qu, Yang; Jing, Liqiang

    2016-01-01

    In this work we have successfully fabricated nanocrystalline anatase TiO2/perovskite-type porous nanosized LaFeO3 (T/P-LFO) nanocomposites using a simple wet chemical method. It is clearly demonstrated by means of atmosphere-controlled steady-state surface photovoltage spectroscopy (SPS) responses, photoluminescence spectra, and fluorescence spectra related to the formed OH− radical amount that the photogenerated charge carriers in the resultant T/P-LFO nanocomposites with a proper mole ratio percentage of TiO2 display much higher separation in comparison to the P-LFO alone. This is highly responsible for the improved visible-light activities of T/P-LFO nanocomposites for photocatalytic degradation of gas-phase acetaldehyde and liquid-phase phenol. This work will provide a feasible route to synthesize visible-light responsive nano-photocatalysts for efficient solar energy utilization.

  11. Preparation and efficient visible light-induced photocatalytic activity of m-BiVO4 with different morphologies

    NASA Astrophysics Data System (ADS)

    Lu, Yanjie; Shang, Huishan; Shi, Fengjuan; Chao, Cong; Zhang, Xiang; Zhang, Bing

    2015-10-01

    The monoclinic scheelite BiVO4 crystals with peanut-like, oval, twin-quadrangle and twin-four-pointed star morphologies were synthesized via a facile one step hydrothermal method by using sodium citrate as the chelating agent. The X-ray diffraction and scanning electron microscopy were employed to elucidate the structures and mophologies of the as-prepared BiVO4 samples. The results showed that the formation of m-BiVO4 with different morphologies relied on the pH value of the precursor solution. The band gaps values (Eg) of all the BiVO4 samples were around 2.37-2.45 eV according to the UV-vis diffuse reflectance spectrum, which indicated that samples could strongly absorb in the visible light region. The photocatalytic activities of BiVO4 crystals were evaluated by degradation of MB in aqueous solution under artificial solar-light. The BiVO4 samples obtained at different pH values showed different photocatalytic activities during the sunlight-driven photodegradation of methylene blue (MB). The sample with peanut-like-shape prepared at pH=1 exhibited the highest activity, and the photocatalytic conversion could reach above 90% after 3 h of irradiation. The result suggested that m-BiVO4 with peanut-like-shape could be used as an effective photocatalyst in practical application for organic pollutants degradation.

  12. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections

    NASA Astrophysics Data System (ADS)

    Leyland, Nigel S.; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J.; Quilty, Brid; Pillai, Suresh C.

    2016-04-01

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces.

  13. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections

    PubMed Central

    Leyland, Nigel S.; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J.; Quilty, Brid; Pillai, Suresh C.

    2016-01-01

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces. PMID:27098010

  14. Ultrasonic-assisted one-pot preparation of ZnO/Ag3VO4 nanocomposites for efficiently degradation of organic pollutants under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Kiantazh, Fariba; Habibi-Yangjeh, Aziz

    2015-11-01

    We report a facile ultrasonic-assisted one-pot method for preparation of ZnO/Ag3VO4 nanocomposites with different mole fractions of silver vanadate. The preparation method has considerable merits such as short preparation time, large-scale, and one-pot strategy. The resultant samples were fairly characterized by means of XRD, EDX, SEM, TEM, UV-vis DRS, FT-IR, and PL techniques. Visible-light activity of the resultant samples was investigated by degradation of rhodamine B (RhB), methylene blue (MB), and methyl orange (MO). Among the prepared nanocomposites, the ZnO/Ag3VO4 nanocomposite with 0.073 mole fraction of Ag3VO4 exhibited the best activity and excessive amount of Ag3VO4 resulted in decrease of the activity. Photocatalytic activity of this nanocomposite under visible-light irradiation is about 21, 56, and 2.8-fold higher than that of the ZnO sample in degradation of RhB, MB, and MO, respectively. The highly enhanced activity of the nanocomposite was attributed to greater generation of electron-hole pairs, due to photosensitizing role of Ag3VO4 under visible-light irradiation, and efficiently separation of the photogenerated electron-hole pairs, due to formation of n-n heterojunction between the counterparts. Furthermore, it was revealed that the photocatalytic activity largely depends on ultrasonic irradiation time, calcination temperature, and scavengers of the reactive species.

  15. Visible-Light-Induced Click Chemistry.

    PubMed

    Mueller, Jan O; Schmidt, Friedrich G; Blinco, James P; Barner-Kowollik, Christopher

    2015-08-24

    A rapid and catalyst-free cycloaddition system for visible-light-induced click chemistry is reported. A readily accessible photoreactive 2H-azirine moiety was designed to absorb light at wavelengths above 400 nm. Irradiation with low-energy light sources thus enables efficient small-molecule synthesis with a diverse range of multiple-bond-containing compounds. Moreover, in order to demonstrate the efficiency of the current approach, quantitative ligation of the photoactivatable chromophore with functional polymeric substrates was performed and full conversion with irradiation times of only 1 min at ambient conditions was achieved. The current report thus presents a highly efficient method for applications involving selective cycloaddition to electron-deficient multiple-bond-containing materials.

  16. Simultaneously promoting charge separation and photoabsorption of BiOX (X = Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar

    NASA Astrophysics Data System (ADS)

    Li, Min; Huang, Hongwei; Yu, Shixin; Tian, Na; Dong, Fan; Du, Xin; Zhang, Yihe

    2016-11-01

    Exploration of novel and efficient composite photocatalysts is of great significance for advancing the practical application of photocatalysis. BiOX (X = Cl, Br) is a kind of promising photocatalysts, but the charge separation efficiency and photoabsorption need to be ameliorated. In this work, we first employ a low-cost and easily accessable carbon material biochar to modify BiOX (X = Cl, Br) and develop biochar/BiOX (X = Cl, Br) composite photocatalysts via a facile in-situ deposition method. The as-prepared composites are detailedly characterized by SEM, SEM-mapping, TEM, XRD and XPS, and DRS result demonstrates that the visible-light absorption of BiOX (X = Cl, Br) catalysts can be exceedingly enhanced by biochar. The biochar/BiOX (X = Cl, Br) composites are found to unfold remarkably enhanced visible-light-driven photocatalytic activity toward degradation of MO and photocurrent generation. The strengthened photocatalytic performance mainly stems from the profoundly improved charge separation and delivery efficiency, as evidenced by the electrochemical impedance spectra (EIS), photoluminescence (PL), and time-resolved PL decay spectra. Additionally, the biochar exerts importance in enhancing the two different types of photochemical reactions of BiOBr and BiOCl, in which the photocatalytic mechanisms are found to be photocatalysis and photosensitization process, respectively. The present work may open up a new avenue for framing economic and efficient photocatalytic materials and new composite materials for photoelectric application.

  17. Removing lignin model pollutants with BiFeO3-g-C3N4 compound as an efficient visible-light-heterogeneous Fenton-like catalyst.

    PubMed

    An, Junjian; Zhang, Guangyan; Zheng, Rongfeng; Wang, Peng

    2016-10-01

    BiFeO3-g-C3N4 nanoscaled composite was prepared with a hydrothermal method and evaluated as a highly efficient photo-Fenton like catalyst under visible light irradiation. The BiFeO3-g-C3N4 composite exhibited much stronger adsorption ability to lignin model pollutant (guaiacol) than that of BiFeO3, which may be due to the higher specific surface area (BiFeO3-g-C3N4: 35.59m(2)/g>BiFeO3: 7.42m(2)/g) and the adsorption form of π-π stack between g-C3N4 and guaiacol. The composite exhibited excellent visible light-Fenton like catalysis activity, being influenced by the solution pH value and the proportions of BiFeO3 and g-C3N4 nanosheets. Under optimal conditions with visible light irradiation, the BiFeO3-g-C3N4 composite yielded fast degradation of guaiacol with an apparent rate constant of 0.0452min(-1), which were 5.21 and 6.80 folds of that achieved by using BiFeO3 and the mixture of BiFeO3 and g-C3N4 nanosheets, respectively. The significantly enhanced visible light-Fenton like catalytic properties of the BiFeO3-g-C3N4 composite in comparison with that of BiFeO3 was attributed to a large surface area, much increased adsorption capacity and the semiconductor coupling effect between BiFeO3 and g-C3N4 in the composite.

  18. TiO2 Fibers Supported β-FeOOH Nanostructures as Efficient Visible Light Photocatalyst and Room Temperature Sensor

    PubMed Central

    Zhu, Ting; Li Ong, Wei; Zhu, Liangliang; Wei Ho, Ghim

    2015-01-01

    Hierarchical heterostructures of beta-iron oxyhydroxide (β-FeOOH) nanostructures on electrospun TiO2 nanofibers were synthesized by a facile hydrothermal method. This synthesis method proves to be versatile to tailoring of β-FeOOH structural design that cuts across zero-dimensional particles (TF-P), one-dimensional needles (TF-N) to two-dimensional flakes (TF-F). In addition, synthesizing such oxyhyroxide nanostructures presents the advantage of exhibiting similar functional performances to its oxides counterpart however, without the need to undergo any annealing step which leads to undesirable structural collapse or sintering. The as-prepared hierarchical heterostructures possess high surface area for dye adsorptivity, efficient charge separation and visible photocatalytic activity. Also, for the first time, hydrogen gas sensing has been demonstrated on β-FeOOH nanostructures at room temperature. The reported hierarchical heterostructures of β-FeOOH on TiO2 nanofibers afford multiple functions of photocatalysis and sensing which are highly promising for environment monitoring and clean up applications. PMID:26030002

  19. TiO2 Fibers Supported β-FeOOH Nanostructures as Efficient Visible Light Photocatalyst and Room Temperature Sensor.

    PubMed

    Zhu, Ting; Li Ong, Wei; Zhu, Liangliang; Wei Ho, Ghim

    2015-06-01

    Hierarchical heterostructures of beta-iron oxyhydroxide (β-FeOOH) nanostructures on electrospun TiO2 nanofibers were synthesized by a facile hydrothermal method. This synthesis method proves to be versatile to tailoring of β-FeOOH structural design that cuts across zero-dimensional particles (TF-P), one-dimensional needles (TF-N) to two-dimensional flakes (TF-F). In addition, synthesizing such oxyhyroxide nanostructures presents the advantage of exhibiting similar functional performances to its oxides counterpart however, without the need to undergo any annealing step which leads to undesirable structural collapse or sintering. The as-prepared hierarchical heterostructures possess high surface area for dye adsorptivity, efficient charge separation and visible photocatalytic activity. Also, for the first time, hydrogen gas sensing has been demonstrated on β-FeOOH nanostructures at room temperature. The reported hierarchical heterostructures of β-FeOOH on TiO2 nanofibers afford multiple functions of photocatalysis and sensing which are highly promising for environment monitoring and clean up applications.

  20. Black TiO2 nanobelts/g-C3N4 nanosheets Laminated Heterojunctions with Efficient Visible-Light-Driven Photocatalytic Performance.

    PubMed

    Shen, Liyan; Xing, Zipeng; Zou, Jinlong; Li, Zhenzi; Wu, Xiaoyan; Zhang, Yuchi; Zhu, Qi; Yang, Shilin; Zhou, Wei

    2017-02-06

    Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions (b-TiO2/g-C3N4) as visible-light-driven photocatalysts are fabricated through a simple hydrothermal-calcination process and an in-situ solid-state chemical reduction approach, followed by the mild thermal treatment (350 °C) in argon atmosphere. The prepared samples are evidently investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption, and UV-visible diffuse reflectance spectroscopy, respectively. The results show that special laminated heterojunctions are formed between black TiO2 nanobelts and g-C3N4 nanosheets, which favor the separation of photogenerated electron-hole pairs. Furthermore, the presence of Ti(3+) and g-C3N4 greatly enhance the absorption of visible light. The resultant b-TiO2/g-C3N4 materials exhibit higher photocatalytic activity than that of g-C3N4, TiO2, b-TiO2 and TiO2/g-C3N4 for degradation of methyl orange (95%) and hydrogen evolution (555.8 μmol h(-1 )g(-1)) under visible light irradiation. The apparent reaction rate constant (k) of b-TiO2/g-C3N4 is ~9 times higher than that of pristine TiO2. Therefore, the high-efficient laminated heterojunction composites will have potential applications in fields of environment and energy.

  1. Black TiO2 nanobelts/g-C3N4 nanosheets Laminated Heterojunctions with Efficient Visible-Light-Driven Photocatalytic Performance

    PubMed Central

    Shen, Liyan; Xing, Zipeng; Zou, Jinlong; Li, Zhenzi; Wu, Xiaoyan; Zhang, Yuchi; Zhu, Qi; Yang, Shilin; Zhou, Wei

    2017-01-01

    Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions (b-TiO2/g-C3N4) as visible-light-driven photocatalysts are fabricated through a simple hydrothermal-calcination process and an in-situ solid-state chemical reduction approach, followed by the mild thermal treatment (350 °C) in argon atmosphere. The prepared samples are evidently investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption, and UV-visible diffuse reflectance spectroscopy, respectively. The results show that special laminated heterojunctions are formed between black TiO2 nanobelts and g-C3N4 nanosheets, which favor the separation of photogenerated electron-hole pairs. Furthermore, the presence of Ti3+ and g-C3N4 greatly enhance the absorption of visible light. The resultant b-TiO2/g-C3N4 materials exhibit higher photocatalytic activity than that of g-C3N4, TiO2, b-TiO2 and TiO2/g-C3N4 for degradation of methyl orange (95%) and hydrogen evolution (555.8 μmol h−1 g−1) under visible light irradiation. The apparent reaction rate constant (k) of b-TiO2/g-C3N4 is ~9 times higher than that of pristine TiO2. Therefore, the high-efficient laminated heterojunction composites will have potential applications in fields of environment and energy. PMID:28165021

  2. Black TiO2 nanobelts/g-C3N4 nanosheets Laminated Heterojunctions with Efficient Visible-Light-Driven Photocatalytic Performance

    NASA Astrophysics Data System (ADS)

    Shen, Liyan; Xing, Zipeng; Zou, Jinlong; Li, Zhenzi; Wu, Xiaoyan; Zhang, Yuchi; Zhu, Qi; Yang, Shilin; Zhou, Wei

    2017-02-01

    Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions (b-TiO2/g-C3N4) as visible-light-driven photocatalysts are fabricated through a simple hydrothermal-calcination process and an in-situ solid-state chemical reduction approach, followed by the mild thermal treatment (350 °C) in argon atmosphere. The prepared samples are evidently investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption, and UV-visible diffuse reflectance spectroscopy, respectively. The results show that special laminated heterojunctions are formed between black TiO2 nanobelts and g-C3N4 nanosheets, which favor the separation of photogenerated electron-hole pairs. Furthermore, the presence of Ti3+ and g-C3N4 greatly enhance the absorption of visible light. The resultant b-TiO2/g-C3N4 materials exhibit higher photocatalytic activity than that of g-C3N4, TiO2, b-TiO2 and TiO2/g-C3N4 for degradation of methyl orange (95%) and hydrogen evolution (555.8 μmol h‑1 g‑1) under visible light irradiation. The apparent reaction rate constant (k) of b-TiO2/g-C3N4 is ~9 times higher than that of pristine TiO2. Therefore, the high-efficient laminated heterojunction composites will have potential applications in fields of environment and energy.

  3. In situ formed Bi/BiOBrxI1-x heterojunction of hierarchical microspheres for efficient visible-light photocatalytic activity.

    PubMed

    Zheng, Chunrui; Cao, Chuanbao; Ali, Zulfiqar

    2015-05-28

    Bi nanoparticles deposited in situ in BiOBrxI1-x hierarchical microspheres (Bi/BiOBrxI1-x heterojunction) were synthesized by a facile one-step solvothermal method. The as-prepared samples were characterized via XRD, SEM, TEM, XPS, UV-vis absorption spectroscopy and N2 adsorption-desorption. The hierarchical microspheres were composed of numerous nanosheets aggregated together compactly to form a spherical geometry. Results indicated that Bi nanoparticles were generated on the surface of BiOBrxI1-x microspheres via the in situ reduction of Bi(3+) by ethylene glycol. BiOBrxI1-x microspheres with deposited Bi nanoparticles were employed for the degradation of RhB under visible-light irradiation and the samples exhibited exceptionally enhanced photocatalytic activity. This immense enhancement in photocatalytic activity was attributed to the contribution of Bi nanoparticles to the efficient separation of electron-hole pairs and prolongation of the lifetime of charge carriers. The behavior of Bi nanoparticles as a cocatalyst for enhancing photocatalytic activity is similar to that of noble metals in photocatalysis. The as-prepared Bi/BiOBr0.266I0.734 sample exhibited highest photocatalytic activity, which exceeded those of other types of visible-light photocatalysts such as N-TiO2, Eu(3+)-BiOI, BiOBr, BiOBr0.2I0.8/graphene and even Ag/AgBr/BiOBr. The Bi/BiOBr0.266I0.734 sample displayed high photochemical stability under repeated visible-light irradiation, which is especially important for its practical application. The active species produced from Bi/BiOBrxI1-x under visible light were hydroxyl radicals. Bi/BiOBrxI1-x could generate more hydroxyl radicals due to the Bi nanoparticles, contributing to the enhance oxidation ability. This study demonstrated the high feasibility of utilizing low-cost Bi nanoparticles as a substitute for noble metals to enhance visible-light photocatalysis.

  4. Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation.

    PubMed

    Hamzezadeh-Nakhjavani, Sahar; Tavakoli, Omid; Akhlaghi, Seyed Parham; Salehi, Zeinab; Esmailnejad-Ahranjani, Parvaneh; Arpanaei, Ayyoob

    2015-12-01

    Preparation of novel nanocomposite particles (NCPs) with high visible-light-driven photocatalytic activity and possessing recovery potential after advanced oxidation process (AOP) is much desired. In this study, pure anatase phase titania (TiO2) nanoparticles (NPs) as well as three types of NCPs including nitrogen-doped titania (TiO2-N), titania-coated magnetic silica (Fe3O4 cluster@SiO2@TiO2 (FST)), and a novel magnetically recoverable TiO2 nanocomposite photocatalyst containing nitrogen element (Fe3O4 cluster@SiO2@TiO2-N (FST-N)) were successfully synthesized via a sol-gel process. The photocatalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM) with an energy-dispersive X-ray (EDX) spectroscopy analysis, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM). The photocatalytic activity of as-prepared samples was further investigated and compared with each other by degradation of phenol, as a model for the organic pollutants, in deionized (DI) water under visible light irradiation. The TiO2-N (55 ± 1.5%) and FST-N (46 ± 1.5%) samples exhibited efficient photocatalytic activity in terms of phenol degradation under visible light irradiation, while undoped samples were almost inactive under same operating conditions. Moreover, the effects of key operational parameters, the optimum sample calcination temperature, and reusability of FST-N NCPs were evaluated. Under optimum conditions (calcination temperature of 400 °C and near-neutral reaction medium), the obtained results revealed efficient degradation of phenol for FST-N NCPs under visible light irradiation (46 ± 1.5%), high yield magnetic separation and efficient reusability of FST-N NCPs (88.88% of its initial value) over 10 times reuse.

  5. ZnWO4 nanorods decorated with Ag/AgBr nanoparticles as highly efficient visible-light-responsive photocatalyst for dye AR18 photodegradation

    NASA Astrophysics Data System (ADS)

    Li, Kebin; Xue, Jie; Zhang, Yanhui; Wei, Hong; Liu, Yalan; Dong, Chengxing

    2014-11-01

    A novel Ag-AgBr/ZnWO4 nanorod heterostructure composite was prepared via a facile deposition-precipitation method with ZnWO4 nanorods as the substrate, and characterized by XRD, SEM-EDX, TEM, XPS, and DRS to confirm its structure, morphology, composition, and optical property. The composite was used as a photocatalyst to destroy azo dye Acid Red 18 (AR18) under visible light irradiation. The effects of catalyst composition, solution pH, catalyst loading, and initial dye concentration on photocatalytic degradation rate and efficiency were examined. It was revealed that the photocatalytic activity of Ag-AgBr/ZnWO4 nanojunction system was higher than that of the single ZnWO4 or Ag-AgBr for AR18 degradation under visible light irradiation. The optimal content of Ag-AgBr in Ag-AgBr/ZnWO4 composite was 0.58:1 of Ag/W molar ratio using in the catalyst preparation. Acid pH and decreasing dye initial concentration were favorable to AR18 photodegradation, but the catalyst loading had an optimal value. The catalyst was stable and recyclable, after five successive cycles the photoactivity was fully maintained and the XRD patterns of AgBr displayed no evident change. Photoluminescence spectra revealed the enhanced photocatalytic activity and stability were closely related to the efficient separation of photogenerated carriers in Ag-AgBr/ZnWO4 nanojunction system. Superoxide radicals and holes were found to be main active species for AR18 photodegradation. Finally, the possible mechanism for AR18 degradation over Ag-AgBr/ZnWO4 nanorods under visible light irradiation was proposed as well.

  6. Sulfated Carbon Quantum Dots as Efficient Visible-Light Switchable Acid Catalysts for Room-Temperature Ring-Opening Reactions.

    PubMed

    Li, Haitao; Sun, Chenghua; Ali, Muataz; Zhou, Fengling; Zhang, Xinyi; MacFarlane, Douglas R

    2015-07-13

    Acid catalytic processes play a classic and important role in modern organic synthesis. How well the acid can be controlled often plays the key role in the controllable synthesis of the products with high conversion yield and selectivity. The preparation of a novel, photo-switchable solid-acid catalyst based on carbon quantum dots is described. The carbon quantum dots are decorated with small amounts of hydrogensulfate groups and thus exhibit a photogenerated acidity that produces a highly efficient acid catalysis of the ring opening of epoxides with methanol and other primary alcohols. This reversible, light-switchable acidity is shown to be due to photoexcitation and charge separation in the carbon quantum dots, which create an electron withdrawing effect from the acidic groups. The catalyst is easily separated by filtration, and we demonstrate multiple cycles of its recovery and reuse.

  7. New class of photocatalytic materials and a novel principle for efficient water splitting under infrared and visible light: MgB2 as unexpected example.

    PubMed

    Kravets, V G; Grigorenko, A N

    2015-11-30

    Water splitting is unanimously recognized as environment friendly, potentially low cost and renewable energy solution based on the future hydrogen economy. Especially appealing is photocatalytic water splitting whereby a suitably chosen catalyst dramatically improves efficiency of the hydrogen production driven by direct sunlight and allows it to happen even at zero driving potential. Here, we suggest a new class of stable photocatalysts and the corresponding principle for catalytic water splitting in which infrared and visible light play the main role in producing the photocurrent and hydrogen. The new class of catalysts - ionic or covalent binary metals with layered graphite-like structures - effectively absorb visible and infrared light facilitating the reaction of water splitting, suppress the inverse reaction of ion recombination by separating ions due to internal electric fields existing near alternating layers, provide the sites for ion trapping of both polarities, and finally deliver the electrons and holes required to generate hydrogen and oxygen gases. As an example, we demonstrate conversion efficiency of ~27% at bias voltage Vbias = 0.5V for magnesium diboride working as a catalyst for photoinduced water splitting. We discuss its advantages over some existing materials and propose the underlying mechanism of photocatalytic water splitting by binary layered metals.

  8. Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation.

    PubMed

    Lee, Eunwoo; Hong, Jin-Yong; Kang, Haeyoung; Jang, Jyongsik

    2012-06-15

    The titanium dioxide (TiO(2)) nanorod-decorated graphene sheets photocatalysts with different TiO(2) nanorods population have been synthesized by a simple non-hydrolytic sol-gel approach. Electron microscopy and X-ray diffraction analysis indicated that the TiO(2) nanorods are well-dispersed and successfully anchored on the graphene sheet surface through the formation of covalent bonds between Ti and C atoms. The photocatalytic activities are evaluated in terms of the efficiencies of photodecomposition and adsorption of methylene blue (MB) in aqueous solution under visible-light irradiation. The as-synthesized TiO(2) nanorod-decorated graphene sheets showed unprecedented photodecomposition efficiency compared to the pristine TiO(2) nanorods and the commercial TiO(2) (P-25, Degussa) under visible-light. It is believed that this predominant photocatalytic activity is due to the synergistic contribution of both a retarded charge recombination rate caused by a high electronic mobility of graphene and an increased surface area originated from nanometer-sized TiO(2) nanorods. Furthermore, photoelectrochemical study is performed to give deep insights into the primary roles of graphene that determines the photocatalytic activity.

  9. In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C₃N₄ porous nanosheets as plasmonic photocatalyst for highly efficient visible-light photocatalysis.

    PubMed

    Zhang, Shouwei; Li, Jiaxing; Wang, Xiangke; Huang, Yongshun; Zeng, Meiyi; Xu, Jinzhang

    2014-12-24

    A novel efficient Ag@AgCl/g-C3N4 plasmonic photocatalyst was synthesized by a rational in situ ion exchange approach between exfoliated g-C3N4 nanosheets with porous 2D morphology and AgNO3. The as-prepared Ag@AgCl-9/g-C3N4 plasmonic photocatalyst exhibited excellent photocatalytic performance under visible light irradiation for rhodamine B degradation with a rate constant of 0.1954 min(-1), which is ∼41.6 and ∼16.8 times higher than those of the g-C3N4 (∼0.0047 min(-1)) and Ag/AgCl (∼0.0116 min(-1)), respectively. The degradation of methylene blue, methyl orange, and colorless phenol further confirmed the broad spectrum photocatalytic degradation abilities of Ag@AgCl-9/g-C3N4. These results suggested that an integration of the synergetic effect of suitable size plasmonic Ag@AgCl and strong coupling effect between the Ag@AgCl nanoparticles and the exfoliated porous g-C3N4 nanosheets was superior for visible-light-responsive and fast separation of photogenerated electron-hole pairs, thus significantly improving the photocatalytic efficiency. This work may provide a novel concept for the rational design of stable and high performance g-C3N4-based plasmonic photocatalysts for unique photochemical reaction.

  10. Bright visible light emission from graphene

    NASA Astrophysics Data System (ADS)

    Kim, Young Duck; Kim, Hakseong; Cho, Yujin; Ryoo, Ji Hoon; Park, Cheol-Hwan; Kim, Pilkwang; Kim, Yong Seung; Lee, Sunwoo; Li, Yilei; Park, Seung-Nam; Shim Yoo, Yong; Yoon, Duhee; Dorgan, Vincent E.; Pop, Eric; Heinz, Tony F.; Hone, James; Chun, Seung-Hyun; Cheong, Hyeonsik; Lee, Sang Wook; Bae, Myung-Ho; Park, Yun Daniel

    2015-08-01

    Graphene and related two-dimensional materials are promising candidates for atomically thin, flexible and transparent optoelectronics. In particular, the strong light-matter interaction in graphene has allowed for the development of state-of-the-art photodetectors, optical modulators and plasmonic devices. In addition, electrically biased graphene on SiO2 substrates can be used as a low-efficiency emitter in the mid-infrared range. However, emission in the visible range has remained elusive. Here, we report the observation of bright visible light emission from electrically biased suspended graphene devices. In these devices, heat transport is greatly reduced. Hot electrons (˜2,800 K) therefore become spatially localized at the centre of the graphene layer, resulting in a 1,000-fold enhancement in thermal radiation efficiency. Moreover, strong optical interference between the suspended graphene and substrate can be used to tune the emission spectrum. We also demonstrate the scalability of this technique by realizing arrays of chemical-vapour-deposited graphene light emitters. These results pave the way towards the realization of commercially viable large-scale, atomically thin, flexible and transparent light emitters and displays with low operation voltage and graphene-based on-chip ultrafast optical communications.

  11. Au/BiOCl heterojunction within mesoporous silica shell as stable plasmonic photocatalyst for efficient organic pollutants decomposition under visible light.

    PubMed

    Yan, Xiaoqing; Zhu, Xiaohui; Li, Renhong; Chen, Wenxing

    2016-02-13

    A new mesoporous silica protected plasmonic photocatalyst, Au/BiOCl@mSiO2, was prepared by a modified AcHE method and a subsequent UV light induced photodeposition process. The surfactant-free heterojunction allows the electrons spontaneously flow from Au to nearby BiOCl surface, leading to the accumulation of positive charges on Au surface, and negative charges on Bi species under visible light. Au/BiOCl@mSiO2 exhibits high visible light photocatalytic efficiency in complete oxidation of aqueous formaldehyde and Rhodamin B. We showed that a positive relationship exists between the LSPR effect and rate enhancements, and leads to a hypothesis that the metallic Au LSPR enhances the photocatalytic rates on nearby semiconductors by transferring energetic electrons to BiOCl and increasing the steady-state concentration of active OH species by a multi-electron reduction of molecular oxygen. The OH species is the main oxidant in photocatalytic transformations, whose intensity is greatly enhanced in the dye-involving systems due to the synergetic effect between LSPR and dye sensitization processes. In addition, the mesoporous SiO2 shell not only inhibits the over growth of BiOCl nanocrystals within the silica frameworks, but also protects the dissolution of chloride or Au species into aqueous solution, which ultimately makes the Au/BiOCl@mSiO2 catalysts rather stable during photocatalysis.

  12. Ag-bridged Ag2O nanowire network/TiO2 nanotube array p-n heterojunction as a highly efficient and stable visible light photocatalyst.

    PubMed

    Liu, Chengbin; Cao, Chenghao; Luo, Xubiao; Luo, Shenglian

    2015-03-21

    A unique Ag-bridged Ag2O nanowire network/TiO2 nanotube array p-n heterojunction (Ag-Ag2O/TiO2 NT) was fabricated by simple electrochemical method. Ag nanoparticles were firstly electrochemically deposited onto the surface of TiO2 NT and then were partly oxidized to Ag2O nanowires while the rest of Ag mother nanoparticles were located at the junctions of Ag2O nanowire network. The Ag-Ag2O/TiO2 NT heterostructure exhibited strong visible-light response, effective separation of photogenerated carriers, and high adsorption capacity. The integration of Ag-Ag2O self-stability structure and p-n heterojunction permitted high and stable photocatalytic activity of Ag-Ag2O/TiO2 NT heterostructure photocatalyst. Under 140-min visible light irradiation, the photocatalytic removal efficiency of both dye acid orange 7 (AO7) and industrial chemical p-nitrophenol (PNP) over Ag-Ag2O/TiO2 NT reached nearly 100% much higher than 17% for AO7 or 13% for PNP over bare TiO2 NT. After 5 successive cycles under 600-min simulated solar light irradiation, Ag-Ag2O/TiO2 NT remained highly stable photocatalytic activity.

  13. Improvement of III-nitride visible and ultraviolet light-emitting diode performance, including extraction efficiency, electrical efficiency, thermal management and efficiency maintenance at high current densities

    NASA Astrophysics Data System (ADS)

    Vampola, Kenneth

    In this work, highly efficient broad-area LEDs on bulk GaN substrates were developed and the fabrication process and device layout were optimized. This optimization relied in part on electrical, optical, thermal and recombination models. The peak external quantum efficiency of the 450 nm LEDs was over 68% when biased at 20 mA. The efficiency characteristic showed a typical droop curve, decreasing at high current densities. The cause of this droop is unknown. An exploratory experiment was conducted to characterize electron overflow and its role in efficiency droop. Novel device structures were developed, allowing direct measurement of overflow electrons in LED-like structures under electrical injection. In these test structures, electrons were observed in the p-type region of the LED only at current densities where efficiency droop was active. The onset of efficiency droop was preceded by the onset of electron overflow. However, the magnitude of the overflow current could not be measured and it is undetermined whether the dominant cause of efficiency droop is electron overflow or some other process such as Auger recombination. Calibration structures allowing measurement of the magnitude of the overflow are proposed. Work on deep-ultraviolet, 275 nm, LEDs is also presented. Demonstration of direct-wafer bonded LEDs to beta-Ga2O3 is presented. A SiC substrate removal process is discussed. LEDs fabricated by this flip-chip process exhibited up to 1.8 times greater power compared to LEDs fabricated by a standard process but suffered from increased forward voltage and premature failure. Further process development leading to electrically efficient operation is proposed.

  14. Effect of some operational parameters on the hydrogen generation efficiency of Ni-ZnO/PANI composite under visible-light irradiation

    SciTech Connect

    Nsib, Mohamed Faouzi; Naffati, Naima; Rayes, Ali; Moussa, Noomen; Houas, Ammar

    2015-10-15

    Graphical abstract: UV–vis spectra of PANI, ZnO, Ni{sub 0.01}Zn{sub 0.99}O, Ni{sub 0.01}Zn{sub 0.99}O/PANI3 and Ni{sub 0.1}Zn{sub 0.9}O/PANI{sub 10} nanocomposites. - Highlights: • Ni{sub x}Zn{sub 1−x}O/PANI{sub y} photocatalysts are synthesized by the impregnation method. • Ni{sup 2+} amount control the morphology of ZnO and enhances its photoactivity. • Both Ni{sup 2+} and PANI extend the light absorption of ZnO toward the visible region. • Both Ni{sup 2+} and PANI enhance the electron–hole separation. - Abstract: Ni{sub x}Zn{sub 1−x}O/Polyaniline hybrid photocatalysts are synthesized and used for the experiments of hydrogen production from water-splitting under visible irradiation. XRD, UV–vis DRS and SEM are used to characterize the prepared materials. It is shown that the Ni{sup 2+} amount doped into ZnO controls its morphology and enhances its photoactivity for H{sub 2} generation. Polyaniline (PANI) is shown to sensitize ZnO and to extend its light absorption toward the visible region. The hybrid photocatalyst with 10 mol% Ni{sup 2+} and 10 wt.% PANI shows the maximum photocatalytic H{sub 2} production for one hour of visible irradiation: ∼558 μmol while only ∼178 μmol in the presence of pure ZnO. Additives like sacrificial electron donors and carbonate salts are found to play a key role in the improvement of H{sub 2} evolution. Thus, the hydrogen photoproduction efficiency increases in the order: thiosulfate > sulfide > propanol and HCO{sub 3}{sup −} > CO{sub 3}{sup 2−}.

  15. Acheron Fossae in Visible Light

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This visible-light image, taken by the thermal emission imaging system's camera on NASA's 2001 Mars Odyssey spacecraft, shows the highly fractured, faulted and deformed Acheron Fossae region of Mars. The scarps visible in this image are approximately one kilometer (3,300 feet) high, based on topography derived from the laser altimeter instrument on Mars Global Surveyor.

    Dark streaks only 50 meters (164 feet) across can be seen on some of the cliff faces. These streaks may be formed when the pervasive dust mantle covering this region gives way on steep slopes to create dust avalanches.

    The image also shows impact craters as small as 500 meters (1,640 feet) in diameter, as well as smooth and textured plains.

    Acheron Fossae is located 1,050 kilometers (650 miles) north of the large shield volcano Olympus Mons. This image covers an area about 18 by 9 kilometers (11 by 6 miles) centered at 37 degrees north, 131 degrees west. North is to the top of this image, which was acquired on February 19,2002, at about 3:15 p.m. local Martian time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The thermal emission imaging system was provided by Arizona State University, Tempe. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Ag{sub 3}PO{sub 4}/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B

    SciTech Connect

    Liu, Wei; Wang, Mingliang; Xu, Chunxiang; Chen, Shifu; Fu, Xianliang

    2013-01-15

    Graphical abstract: The free OH radicals generated in the VB of ZnO play the primary role in the visible-light photocatalytic degradation of RhB in Ag{sub 3}PO{sub 4}/ZnO system. The accumulated electrons in the CB of Ag{sub 3}PO{sub 4} can be transferred to O{sub 2} adsorbed on the surface of the composite semiconductors and H{sub 2}O{sub 2} yields. H{sub 2}O{sub 2} reacts with electrons in succession to produce active ·OH to some extent. Display Omitted Highlights: ► Efficient visible-light-sensitized Ag{sub 3}PO{sub 4}/ZnO composites were successfully prepared. ► Effect of Ag{sub 3}PO{sub 4} content on the catalytic activity of Ag{sub 3}PO{sub 4}/ZnO is studied in detail. ► Rate constant of RhB degradation over Ag{sub 3}PO{sub 4}(3.0 wt.%)/ZnO is 3 times that of Ag{sub 3}PO{sub 4}. ► The active species in RhB degradation are examined by adding a series of scavengers. ► Visible light degradation mechanism of RhB over Ag{sub 3}PO{sub 4}/ZnO is systematically studied. -- Abstract: The efficient visible-light-sensitized Ag{sub 3}PO{sub 4}/ZnO composites with various weight percents of Ag{sub 3}PO{sub 4} were prepared by a facile ball milling method. The photocatalysts were characterized by XRD, DRS, SEM, EDS, XPS, and BET specific area. The ·OH radicals produced during the photocatalytic reaction was detected by the TA–PL technique. The photocatalytic property of Ag{sub 3}PO{sub 4}/ZnO was evaluated by photocatalytic degradation of Rhodamine B under visible light irradiation. Significantly, the results revealed that the photocatalytic activity of the composites was much higher than that of pure Ag{sub 3}PO{sub 4} and ZnO. The rate constant of RhB degradation over Ag{sub 3}PO{sub 4}(3.0 wt.%)/ZnO is 3 times that of single-phase Ag{sub 3}PO{sub 4}. The optimal percentage of Ag{sub 3}PO{sub 4} in the composite is 3.0 wt.%. It is proposed that the ·OH radicals produced in the valence band of ZnO play the leading role in the photocatalytic degradation of

  17. Photo and Chemical Reduction of Copper onto Anatase-Type TiO2 Nanoparticles with Enhanced Surface Hydroxyl Groups as Efficient Visible Light Photocatalysts.

    PubMed

    Eskandarloo, Hamed; Badiei, Alireza; Behnajady, Mohammad A; Mohammadi Ziarani, Ghodsi

    2015-01-01

    In this study, the photocatalytic efficiency of anatase-type TiO2 nanoparticles synthesized using the sol-gel low-temperature method, were enhanced by a combined process of copper reduction and surface hydroxyl groups enhancement. UV-light-assisted photo and NaBH4 -assisted chemical reduction methods were used for deposition of copper onto TiO2. The surface hydroxyl groups of TiO2 were enhanced with the assistance of NaOH modification. The prepared catalysts were immobilized on glass plates and used as the fixed-bed systems for the removal of phenazopyridine as a model drug contaminant under visible light irradiation. NaOH-modified Cu/TiO2 nanoparticles demonstrated higher photocatalytic efficiency than that of pure TiO2 due to the extending of the charge carriers lifetime and enhancement of the adsorption capacity of TiO2 toward phenazopyridine. The relationship of structure and performance of prepared nanoparticles has been established by using various techniques, such as XRD, XPS, TEM, EDX, XRF, TGA, DRS and PL. The effects of preparation variables, including copper content, reducing agents rate (NaBH4 concentration and UV light intensity) and NaOH concentration were investigated on the photocatalytic efficiency of NaOH-modified Cu/TiO2 nanoparticles.

  18. Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber.

    PubMed

    Nodop, D; Jauregui, C; Schimpf, D; Limpert, J; Tünnermann, A

    2009-11-15

    An efficient and simple approach for converting pulsed near-IR laser radiation into visible and mid-IR light by exploiting degenerate four-wave-mixing in an endlessly single-mode, large-mode-area photonic-crystal fiber is presented. Coupling a 1 MHz, 200 ps, 8 W average power pulsed source emitting at 1064 nm into this fiber results in average powers of 3 W at 673 nm signal wavelength and of 450 mW at 2539 nm idler wavelength, respectively. The excellent pulse energy conversion efficiencies of 35% for the signal and 6% for the idler wavelength are due to the unique combination of characteristics of this type of fiber.

  19. Fabrication of heterostructured Bi2O2CO3/Bi2O4 photocatalyst and efficient photodegradation of organic contaminants under visible-light.

    PubMed

    Sun, Meng; Li, Shuangli; Yan, Tao; Ji, Pengge; Zhao, Xia; Yuan, Kun; Wei, Dong; Du, Bin

    2017-03-14

    Heterostructured Bi2O2CO3/Bi2O4 photocatalysts were fabricated by a facile one-pot hydrothermal method, in which melem served as the sacrificial reagent to supply carbonate anions. The as-synthesized Bi2O2CO3/Bi2O4 heterojunction catalysts were characterized by X-ray diffraction, UV-vis diffuse reflectance spectra, X-ray photoelectron spectroscopy, scanning electron microscope, and transmission electron microscope. The XRD patterns of Bi2O2CO3/Bi2O4 catalysts showed the distinctive peaks of Bi2O2CO3 and Bi2O4. The SEM and TEM results showed that the pure Bi2O2CO3 possessed large plate morphology, while Bi2O4 were composed of various nanorods and particles. As for Bi2O2CO3/Bi2O4 heterojunction, it was obviously observed that Bi2O4 nanorods and particles were grown on the surfaces of Bi2O2CO3 plates. The visible light driven photocatalytic activity of Bi2O2CO3/Bi2O4 heterojunction photocatalyst was evaluated by decomposing dyes, phenol, and bisphenol A in water. Compared with Bi2O2CO3 and Bi2O4, the Bi2O2CO3/Bi2O4 photocatalysts have exhibited remarkable enhanced activity under visible light. The excellent activity can be mainly attributed to the enhanced separation efficiency of photo-generated carriers. Controlled experiments using different radical scavengers proved that O2(-) and h(+) played the main role in decomposing organic pollutants. The results of this work would provide a new sight for the construction of visible light-responsive photocatalysts with high performance.

  20. Integrated ternary nanocomposite of TiO2/NiO/reduced graphene oxide as a visible light photocatalyst for efficient degradation of o-chlorophenol.

    PubMed

    Sharma, Ajit; Lee, Byeong-Kyu

    2016-10-01

    This study investigated a novel approach for the synthesis of an integrated ternary nanocomposite which could act as a good photo-catalyst under visible light irradiation for the removal of organic pollutants from aqueous environments. The photo-catalyst included nickel oxide (NiO) as a dopant, and reduced graphene oxide (RGO) as a good carbon basal support for enhancement of the photo-catalytic activity of TiO2. Under irradiation with visible light, the ternary nanocomposite (TiO2/NiO-RGO) system generates e(-)/h(+) pairs, and then reacts with H2O and O2(-) molecules to produce oxy-radicals which can be used for the mineralization of o-chlorophenol from aqueous solution. The characteristic of all photo-catalysts were investigated by UV-Vis analysis, with surface area and pore size measurements by Brunauer-Emmett-Teller (BET), crystallinity by X-ray diffraction (XRD), elemental composition by X-ray photoelectron spectroscopy (XPS), and morphology by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). The functional groups were measured by Fourier transform infrared (FT-IR) spectroscopy before and after o-chlorophenol degradation. TiO2/NiO-RGO was capable of achieving 88.4% photo-degradation of 100 mg/L o-chlorophenol (100 mL) within 8 h with addition of 0.01% H2O2 under visible light irradiation at pH 6.5. The photo-degradation followed a pseudo-first-order reaction. The TiO2/NiO-RGO nanocomposite retained its high removal efficiency, even after four photo-catalytic cycles.

  1. VisibilityCluster: average directional visibility for many-light rendering.

    PubMed

    Wu, Yu-Ting; Chuang, Yung-Yu

    2013-09-01

    This paper proposes the VisibilityCluster algorithm for efficient visibility approximation and representation in many-light rendering. By carefully clustering lights and shading points, we can construct a visibility matrix that exhibits good local structures due to visibility coherence of nearby lights and shading points. Average visibility can be efficiently estimated by exploiting the sparse structure of the matrix and shooting only few shadow rays between clusters. Moreover, we can use the estimated average visibility as a quality measure for visibility estimation, enabling us to locally refine VisibilityClusters with large visibility variance for improving accuracy. We demonstrate that, with the proposed method, visibility can be incorporated into importance sampling at a reasonable cost for the many-light problem, significantly reducing variance in Monte Carlo rendering. In addition, the proposed method can be used to increase realism of local shading by adding directional occlusion effects. Experiments show that the proposed technique outperforms state-of-the-art importance sampling algorithms, and successfully enhances the preview quality for lighting design.

  2. Efficient photodegradation of dyes using light-induced self assembly TiO(2)/β-cyclodextrin hybrid nanoparticles under visible light irradiation.

    PubMed

    Zhang, Xu; Wu, Feng; Deng, Nansheng

    2011-01-15

    A novel β-cyclodextrin (β-CD) grafted titanium dioxide (TiO(2)/β-CD) was synthesized through photo-induced self assembly methods, and its structure was characterized. The TiO(2)/β-CD hybrid nanomaterial showed high photoactivity under visible light irradiation (λ ≥ 400 nm and/or λ ≥ 420 nm) and simulated solar irradiation (λ ≥ 365 nm). Photodegradation of Orange II followed the Langmuir-Hinshelwood kinetics model. The initial rate R(0) of Orange II degradation increased by 6.9, 2.6 and 1.9 times in the irradiation conditions of λ ≥ 420nm, λ ≥ 400nm and λ ≥ 365 nm, respectively. β-CD increased the lifetimes of the excited states of the unreactive guests and facilitated the electron transfer from the excited dye to the TiO(2) conduction band, which enhanced the dye pollutant degradation. Superoxide radicals were shown to be the main reactive species that caused the degradation of Orange II under visible irradiation.

  3. Design of a novel Cu₂O/TiO₂/carbon aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2,4,6-trichlorophenol.

    PubMed

    Wang, Yabo; Zhang, Ya-Nan; Zhao, Guohua; Tian, Hongyi; Shi, Huijie; Zhou, Tianchen

    2012-08-01

    Cu(2)O/TiO(2) heterojunction photocatalyst is built on carbon aerogel (CA) substrate with good adsorption properties by sol impregnation and seed-mediated synthesis approach. The Cu(2)O/TiO(2)/CA electrode has excellent electrosorptive and high efficient photocatalytic properties. Its morphology and surface chemical composition are characterized with SEM, TEM, X-ray diffraction (XRD) and Raman spectra. The UV-vis diffuse reflectance spectra show that the optical absorption edge for Cu(2)O/TiO(2)/CA appears at 636 nm. Under visible-light (λ > 420 nm) irradiation, the photocurrent density increment on Cu(2)O/TiO(2)/CA is 60 times of that on Cu(2)O/TiO(2)/FTO. The electrochemical characteristic is investigated with electrochemical impedance spectrum (EIS). The Cu(2)O/TiO(2)/CA electrode is further applied in the electrosorptive photodegradation of the 2,4,6-trichlorophenol (2,4,6-TCP) wastewater. The result shows that the removal ratio of 2,4,6-TCP in 5.5 h on Cu(2)O/TiO(2)/CA is 96.3% and the TOC removal is 91.3%. The intermediates generated in the degradation process are analyzed by GC-MS and HPLC. The possible mechanism of visible light photocatalytic degradation of 2,4,6-TCP on Cu(2)O/TiO(2)/CA is also studied.

  4. One-step synthesis of novel PANI-Fe3O4@ZnO core-shell microspheres: An efficient photocatalyst under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyuan; Wu, Jianning; Meng, Guihua; Guo, Xuhong; Liu, Chang; Liu, Zhiyong

    2016-03-01

    For the first time, novel multifunctional superparamagnetic PANI-Fe3O4@ZnO core-shell composite photocatalysts with different PANI: ZnO ratios were synthesized by Pickering emulsion route in one step in the presence of ZnO nanoparticles. PANI-Fe3O4@ZnO core-shell microspheres consist of PANI core which embedded with Fe3O4-OA (oleic acid modified Fe3O4) nanoparticles and tunable ZnO shell thickness. The resulting samples were thoroughly studied by using X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), transmission electron microscopy (TEM), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). The catalytic activity of the as-prepared PANI-Fe3O4@ZnO core-shell microspheres is investigated by the degradation of MB under visible light irradiation. As expected, the as prepared PANI-Fe3O4@ZnO photocatalysts exhibit highly enhanced photocatalytic activities in the degradation of MB under visible light irradiation owing to fast separation of photo-generated electron-hole pairs. Significantly, the PANI-Fe3O4@ZnO catalysts can be separated from the reaction media by applying an external magnet, and can be reused for seven cycles without change in stability and degradation efficiency.

  5. Direct synthesis of novel vanadium oxide embedded porous carbon nanofiber decorated with iron nanoparticles as a low-cost and highly efficient visible-light-driven photocatalyst.

    PubMed

    Taha, Ahmed Aboueloyoun; Hriez, Amir A; Wu, Yi-nan; Wang, Hongtao; Li, Fengting

    2014-03-01

    Template-free porous carbon nanofibers embedded by vanadium oxide and decorated with iron nanoparticles (Fe@V-CNF) were prepared in a time and cost-saving manner by combining electrospinning and heat treatment processes. Cost-saving ammonium metavanadate was used as a semiconductor precursor of vanadium oxide (VOx) as well as porogen. The generated pores in the carbon nanofiber (CNFs) matrix formed pathways between the embedded VOx and the surface of CNFs and Fe NPs, thus, facilitate photo-generated electron transfer. The characterization results revealed that Fe@V-CNF comprised graphitic fibers with well-dispersed distribution of nanosized Fe NPs (~7 nm) along the surface of CNF. Thereby, it enhanced the visible-light harvesting. The prepared Fe@V-CNF had remarkable light absorption in the visible region. It demonstrated much higher photocatalytic efficiency of photodegradation of organic dyes compared with the pure CNF and vanadium oxide embedded CNF (V-CNF). Notably, Fe@V-CNF achieved 99.9% dye degradation within 15-20 min. And, it could be conveniently recycled due to its one-dimensional nanostructural property.

  6. Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light

    NASA Astrophysics Data System (ADS)

    Yan, Zhiping; Sun, Zijun; Liu, Xiang; Jia, Hongxing; Du, Pingwu

    2016-02-01

    Photocatalytic hydrogen production from water in a noble-metal-free system has attracted much attention in recent years. Herein we report on the use of core/shell cadmium sulfide/graphitic carbon nitride (CdS/g-C3N4) heterojunction nanorods modified by nickel hydroxide (Ni(OH)2) as a highly efficient photocatalyst for visible light-driven hydrogen production from water. Due to efficient separation of the photoexcited charge carriers in the CdS/g-C3N4 core/shell nanorods and the synergistic effect of Ni(OH)2, the optimal hydrogen evolution rate over Ni(OH)2-CdS/g-C3N4 is 115.18 μmol h-1 mg-1 under visible light irradiation (λ > 420 nm), which is ~26 times higher than the CdS/g-C3N4 nanorod composite without Ni(OH)2 and ~7 times better than the 0.5 wt% Pt-CdS/g-C3N4 nanorod composite. The apparent quantum efficiency is ~16.7% at an excitation of 450 nm. During photocatalysis, no degradation of Ni(OH)2 was observed based on the XPS data, indicating that it is a robust cocatalyst. Moreover, the present photocatalyst showed excellent photocatalytic stability for hydrogen production and the turnover number (TON) reached ~24 600 over 90 hours.Photocatalytic hydrogen production from water in a noble-metal-free system has attracted much attention in recent years. Herein we report on the use of core/shell cadmium sulfide/graphitic carbon nitride (CdS/g-C3N4) heterojunction nanorods modified by nickel hydroxide (Ni(OH)2) as a highly efficient photocatalyst for visible light-driven hydrogen production from water. Due to efficient separation of the photoexcited charge carriers in the CdS/g-C3N4 core/shell nanorods and the synergistic effect of Ni(OH)2, the optimal hydrogen evolution rate over Ni(OH)2-CdS/g-C3N4 is 115.18 μmol h-1 mg-1 under visible light irradiation (λ > 420 nm), which is ~26 times higher than the CdS/g-C3N4 nanorod composite without Ni(OH)2 and ~7 times better than the 0.5 wt% Pt-CdS/g-C3N4 nanorod composite. The apparent quantum efficiency is ~16.7% at an

  7. Visible light communication applications in healthcare.

    PubMed

    Muhammad, Shoaib; Qasid, Syed Hussain Ahmed; Rehman, Shafia; Rai, Aitzaz Bin Sulltan

    2016-01-01

    With the development in science, methods of communication are also improved, replacing old ones with new advanced ways in an attempt to make data transfer more secure, safer for health, and time as well as cost efficient. One of such methods is Visible Light Communication, as the name implies data is transferred through a light equipment such as incandescent or florescent bulb having speed of 10 Kb/s or LEDs approaching speed of 500 Mb/s [1]. VLC uses visible light between 384 and 789 THz [2,3]. Though range is limitation of VLC, however data transfer up-to distance of 1 to 2 km although at lower transfer rate has been reached.The VLC system comprises of light source like LED and receiver equipment, however, with advancement, now LEDs are used for both sending and receiving data. LED remains on all the time, and there is no change in brightness level during the whole process, making it safe for eyes. Currently, VLC system is facing some serious technical challenges before it could be applied in daily life.

  8. White LED visible light communication technology research

    NASA Astrophysics Data System (ADS)

    Yang, Chao

    2017-03-01

    Visible light communication is a new type of wireless optical communication technology. White LED to the success of development, the LED lighting technology is facing a new revolution. Because the LED has high sensitivity, modulation, the advantages of good performance, large transmission power, can make it in light transmission light signal at the same time. Use white LED light-emitting characteristics, on the modulation signals to the visible light transmission, can constitute a LED visible light communication system. We built a small visible optical communication system. The system composition and structure has certain value in the field of practical application, and we also research the key technology of transmitters and receivers, the key problem has been resolved. By studying on the optical and LED the characteristics of a high speed modulation driving circuit and a high sensitive receiving circuit was designed. And information transmission through the single chip microcomputer test, a preliminary verification has realized the data transmission function.

  9. New Insights into the Mechanism of Visible Light Photocatalysis.

    PubMed

    Banerjee, Swagata; Pillai, Suresh C; Falaras, Polycarpos; O'Shea, Kevin E; Byrne, John A; Dionysiou, Dionysios D

    2014-08-07

    In recent years, the area of developing visible-light-active photocatalysts based on titanium dioxide has been enormously investigated due to its wide range of applications in energy and environment related fields. Various strategies have been designed to efficiently utilize the solar radiation and to enhance the efficiency of photocatalytic processes. Building on the fundamental strategies to improve the visible light activity of TiO2-based photocatalysts, this Perspective aims to give an insight into many contemporary developments in the field of visible-light-active photocatalysis. Various examples of advanced TiO2 composites have been discussed in relation to their visible light induced photoconversion efficiency, dynamics of electron-hole separation, and decomposition of organic and inorganic pollutants, which suggest the critical need for further development of these types of materials for energy conversion and environmental remediation purposes.

  10. Efficient activation of a visible light-activatable CA4 prodrug through intermolecular photo-unclick chemistry in mitochondria.

    PubMed

    Bio, Moses; Rajaputra, Pallavi; Lim, Irene; Thapa, Pritam; Tienabeso, Bomaonye; Hurst, Robert E; You, Youngjae

    2017-02-07

    Photo-unclick chemistry mediates visible and near IR-controlled drug release via a singlet oxygen (SO)-cleavable linker. Due to the limited diffusion distance of SO in biological systems, a photosensitizer and the SO-cleavable linker have been conjugated in one molecule or mixed in nano-drug delivery systems. In this communication, we demonstrate a new strategy to activate prodrugs with photo-unclick chemistry in an intermolecular fashion using an SO-cleavable CA4 prodrug and a mitochondria-specific photosensitizer, protoporphyrin IX, formed from prodrug hexyl-5-aminolevulinate.

  11. Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiO{sub x} nanoparticles for efficient visible-light-driven hydrogen generation

    SciTech Connect

    Liu, Xin-Ling; Wang, Rong; Yuan, Yu-Peng E-mail: cxue@ntu.edu.sg; Zhang, Ming-Yi; Xue, Can E-mail: cxue@ntu.edu.sg

    2015-10-01

    The Ni/NiO{sub x} particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H{sub 2} generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H{sub 2} production rate of 125 μmol h{sup −1} was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg) and 30 mg Erythrosin B dye. Moreover, the Ni/NiO{sub x} catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H{sub 2} generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiO{sub x} particles are durable and active catalysts for photocatalytic H{sub 2} generation.

  12. Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiOx nanoparticles for efficient visible-light-driven hydrogen generation

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Ling; Wang, Rong; Zhang, Ming-Yi; Yuan, Yu-Peng; Xue, Can

    2015-10-01

    The Ni/NiOx particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H2 generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H2 production rate of 125 μmol h-1 was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg) and 30 mg Erythrosin B dye. Moreover, the Ni/NiOx catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H2 generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiOx particles are durable and active catalysts for photocatalytic H2 generation.

  13. Visible Light Activation of Boronic Esters Enables Efficient Photoredox C(sp2)–C(sp3) Cross‐Couplings in Flow

    PubMed Central

    Lima, Fabio; Kabeshov, Mikhail A.; Tran, Duc N.; Battilocchio, Claudio; Sedelmeier, Joerg; Sedelmeier, Gottfried; Schenkel, Berthold

    2016-01-01

    Abstract We report herein a new method for the photoredox activation of boronic esters. Using these reagents, an efficient and high‐throughput continuous flow process was developed to perform a dual iridium‐ and nickel‐catalyzed C(sp2)–C(sp3) coupling by circumventing solubility issues associated with potassium trifluoroborate salts. Formation of an adduct with a pyridine‐derived Lewis base was found to be essential for the photoredox activation of the boronic esters. Based on these results we were able to develop a further simplified visible light mediated C(sp2)–C(sp3) coupling method using boronic esters and cyano heteroarenes under flow conditions. PMID:27709749

  14. Effects of visible light on the skin.

    PubMed

    Mahmoud, Bassel H; Hexsel, Camile L; Hamzavi, Iltefat H; Lim, Henry W

    2008-01-01

    Electromagnetic radiation has vast and diverse effects on human skin. Although photobiologic studies of sunlight date back to Sir Isaac Newton in 1671, most available studies focus on the UV radiation part of the spectrum. The effects of visible light and infrared radiation have not been, until recently, clearly elucidated. The goal of this review is to highlight the effects of visible light on the skin. As a result of advances in the understanding of skin optics, and comprehensive studies regarding the absorption spectrum of endogenous and exogenous skin chromophores, various biologic effects have been shown to be exerted by visible light radiation including erythema, pigmentation, thermal damage and free radical production. It has also been shown that visible light can induce indirect DNA damage through the generation of reactive oxygen species. Furthermore, a number of photodermatoses have an action spectrum in the visible light range, even though most of the currently available sunscreens offer, if any, weak protection against visible light. Conversely, because of its cutaneous biologic effects, visible light is used for the treatment of a variety of skin diseases and esthetic conditions in the form of lasers, intense pulsed light and photodynamic therapy.

  15. MoS2-coated microspheres of self-sensitized carbon nitride for efficient photocatalytic hydrogen generation under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Gu, Quan; Sun, Huaming; Xie, Zunyuan; Gao, Ziwei; Xue, Can

    2017-02-01

    We have successfully coated the self-sensitized carbon nitride (SSCN) microspheres with a layer of MoS2 through a facile one-pot hydrothermal method by using (NH4)2MoS4 as the precursor. The resulted MoS2-coated SSCN photocatalyst appears as a core-shell structure and exhibits enhanced visible-light activities for photocatalytic H2 generation as compared to the un-coated SSCN and the standard g-C3N4 reference with MoS2 coating. The photocatalytic test results suggest that the oligomeric s-triazine dyes on the SSCN surface can provide additional light-harvesting capability and photogenerated charge carriers, and the coated MoS2 layer can serve as active sites for proton reduction towards H2 evolution. This synergistic effect of surface triazine dyes and MoS2 coating greatly promotes the activity of carbon nitride microspheres for vishible-light-driven H2 generation. This work provides a new way of future development of low-cost noble-metal-free photocatalysts for efficient solar-driven hydrogen production.

  16. Hollow Au-Cu2O Core-Shell Nanoparticles with Geometry-Dependent Optical Properties as Efficient Plasmonic Photocatalysts under Visible Light.

    PubMed

    Lu, Biao; Liu, Aiping; Wu, Huaping; Shen, Qiuping; Zhao, Tingyu; Wang, Jianshan

    2016-03-29

    Hollow Au-Cu2O core-shell nanoparticles were synthesized by using hollow gold nanoparticles (HGNs) as the plasmon-tailorable cores to direct epitaxial growth of Cu2O nanoshells. The effective geometry control of hollow Au-Cu2O core-shell nanoparticles was achieved through adjusting the HGN core sizes, Cu2O shell thicknesses, and morphologies related to structure-directing agents. The morphology-dependent plasmonic band red-shifts across the visible and near-infrared spectral regions were observed from experimental extinction spectra and theoretical simulation based on the finite-difference time-domain method. Moreover, the hollow Au-Cu2O core-shell nanoparticles with synergistic optical properties exhibited higher photocatalytic performance in the photodegradation of methyl orange when compared to pristine Cu2O and solid Au-Cu2O core-shell nanoparticles under visible-light irradiation due to the efficient photoinduced charge separation, which could mainly be attributed to the Schottky barrier and plasmon-induced resonant energy transfer. Such optical tunability achieved through the hollow cores and structure-directed shells is of benefit to the performance optimization of metal-semiconductor nanoparticles for photonic, electronic, and photocatalytic applications.

  17. Self-assembly of ultrathin Cu2MoS4 nanobelts for highly efficient visible light-driven degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Chen, Wenxing; Lin, Yunxiang; Chen, Haiping; Haleem, Yasir A.; Wu, Chuanqiang; Ye, Fei; Wang, Tianxing; Song, Li

    2015-10-01

    We demonstrate ultrathin self-assembled Cu2MoS4 nanobelts synthesized by using Cu2O as the starting sacrificial template via a hydrothermal method. The nanobelts exhibit strong light absorption over a broad wavelength spectrum, suggesting their potential application as photocatalysts. The photocatalytic activity of nanobelts is evaluated by the degradation of Methyl Orange (MO) dye under visible light irradiation. Notably, the nanobelts can completely degrade 100 mL of 15 mg mL-1 MO in 20 minutes with excellent recycling and structural stability, suggesting their excellent photocatalytic performance. In comparison with a sheet-like sample, the high efficiency of the self-assembled Cu2MoS4 nanobelts is attributed to a high surface area and a unique band gap, agreeing with the nitrogen adsorption analysis and photoluminescence spectra. This study offers a self-assembled synthetic route to create new multifunctional nanoarchitectures composed of atomic layers, and thus may open a window for greatly extending potential applications in water pollution treatment, photocatalytic water-splitting, solar cells and other related fields.We demonstrate ultrathin self-assembled Cu2MoS4 nanobelts synthesized by using Cu2O as the starting sacrificial template via a hydrothermal method. The nanobelts exhibit strong light absorption over a broad wavelength spectrum, suggesting their potential application as photocatalysts. The photocatalytic activity of nanobelts is evaluated by the degradation of Methyl Orange (MO) dye under visible light irradiation. Notably, the nanobelts can completely degrade 100 mL of 15 mg mL-1 MO in 20 minutes with excellent recycling and structural stability, suggesting their excellent photocatalytic performance. In comparison with a sheet-like sample, the high efficiency of the self-assembled Cu2MoS4 nanobelts is attributed to a high surface area and a unique band gap, agreeing with the nitrogen adsorption analysis and photoluminescence spectra. This study

  18. Ag/AgBr/g-C{sub 3}N{sub 4}: A highly efficient and stable composite photocatalyst for degradation of organic contaminants under visible light

    SciTech Connect

    Cao, Jing; Zhao, Yijie; Lin, Haili; Xu, Benyan; Chen, Shifu

    2013-10-15

    Graphical abstract: Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalysts displayed excellent photocatalytic activities on the degradation of methyl orange (MO) under visible light. The improved photocatalytic performance and stability of Ag/AgBr/g-C{sub 3}N{sub 4} originated from the synergetic effects of AgBr/g-C{sub 3}N{sub 4} interface and metallic Ag nanoparticles. ·O{sub 2}−, one of the reactive species, was responsible for the photodegradation of MO compared to H+ and ·OH. - Highlights: • Novel Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalyst was reported. • Ag/AgBr/g-C{sub 3}N{sub 4} had novel energy band combination between AgBr and g-C{sub 3}N{sub 4}. • Synergetic effects of AgBr/g-C{sub 3}N{sub 4} interface and metallic Ag nanoparticles. • Electron trapping role of metallic Ag dominated the stability of Ag/AgBr/g-C{sub 3}N{sub 4}. - Abstract: Novel Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalysts were constructed via deposition–precipitation method and extensively characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and UV–vis diffuse reflectance spectroscopy (DRS). Under visible light (λ > 420 nm), Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalysts displayed much higher photocatalytic activities than those of Ag/AgBr and g-C{sub 3}N{sub 4} for degradation of methyl orange (MO). 50% Ag/AgBr/g-C{sub 3}N{sub 4} presented the best photocatalytic performance, which was mainly attributed to the synergistic effects of AgBr/g-C{sub 3}N{sub 4} interface and the in situ metallic Ag nanoparticles for efficiently separating electron–hole pairs. Furthermore, Ag/AgBr/g-C{sub 3}N{sub 4} remained good photocatalytic activity through 5 times of cycle experiments. Additionally, the radical scavengers experiment indicated that ·O{sub 2}{sup −} was the main reactive species for the MO degradation under visible light.

  19. Broadband Visible Light Induced NO Formation

    SciTech Connect

    Lubart, Rachel; Eichler, Maor; Friedmann, Harry; Ankri, Rinat; Savion, N.; Breitbart, Haim

    2009-06-19

    Nitric oxide formation is a potential mechanism for photobiomodulation because it is synthesized in cells by nitric oxide synthase (NOS), which contains both flavin and heme, and thus absorbs visible light. The purpose of this work was to study broadband visible light induced NO formation in various cells. Cardiac, endothelial, sperm cells and RAW 264.7 macrophages were illuminated with broadband visible light, 40-130 mW/cm2, 2.4-39 J/cm2, and nitric oxide production was quantified by using the Griess reagent. The results showed that visible light illumination increased NO concentration both in sperm and endothelial cells, but not in cardiac cells. Activation of RAW 264.7 macrophages was very small. It thus appears that NO is involved in photobiomodulation, though different light parameters and illumination protocols are needed to induce NO in various cells.

  20. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting.

    PubMed

    Zhang, Zhonghai; Zhang, Lianbin; Hedhili, Mohamed Nejib; Zhang, Hongnan; Wang, Peng

    2013-01-09

    A visible light responsive plasmonic photocatalytic composite material is designed by rationally selecting Au nanocrystals and assembling them with the TiO(2)-based photonic crystal substrate. The selection of the Au nanocrystals is so that their surface plasmonic resonance (SPR) wavelength matches the photonic band gap of the photonic crystal and thus that the SPR of the Au receives remarkable assistance from the photonic crystal substrate. The design of the composite material is expected to significantly increase the Au SPR intensity and consequently boost the hot electron injection from the Au nanocrystals into the conduction band of TiO(2), leading to a considerably enhanced water splitting performance of the material under visible light. A proof-of-concept example is provided by assembling 20 nm Au nanocrystals, with a SPR peak at 556 nm, onto the photonic crystal which is seamlessly connected on TiO(2) nanotube array. Under visible light illumination (>420 nm), the designed material produced a photocurrent density of ~150 μA cm(-2), which is the highest value ever reported in any plasmonic Au/TiO(2) system under visible light irradiation due to the photonic crystal-assisted SPR. This work contributes to the rational design of the visible light responsive plasmonic photocatalytic composite material based on wide band gap metal oxides for photoelectrochemical applications.

  1. ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light.

    PubMed

    Saravanan, R; Karthikeyan, N; Gupta, V K; Thirumal, E; Thangadurai, P; Narayanan, V; Stephen, A

    2013-05-01

    Degradation of model organic dye and industry effluent was studied using different weight percentages of Ag into ZnO as a catalyst. In this study, the catalysts were prepared by thermal decomposition method, which was employed for the first time in the preparation of ZnO/Ag nanocomposite catalysts. The physical and chemical properties of the prepared samples were studied using various techniques. The specific surface area, which plays an important role in the photocatalytic degradation, was studied using BET analysis and 10 wt.% Ag into ZnO showed the best degrading efficiency. The optical absorption (UV-vis) and emission (PL) properties of the samples were studied and results suggest better photocatalytic properties for 10 wt.% Ag sample compared to other samples.

  2. Solar synthesis: prospects in visible light photocatalysis.

    PubMed

    Schultz, Danielle M; Yoon, Tehshik P

    2014-02-28

    Chemists have long aspired to synthesize molecules the way that plants do-using sunlight to facilitate the construction of complex molecular architectures. Nevertheless, the use of visible light in photochemical synthesis is fundamentally challenging because organic molecules tend not to interact with the wavelengths of visible light that are most strongly emitted in the solar spectrum. Recent research has begun to leverage the ability of visible light-absorbing transition metal complexes to catalyze a broad range of synthetically valuable reactions. In this review, we highlight how an understanding of the mechanisms of photocatalytic activation available to these transition metal complexes, and of the general reactivity patterns of the intermediates accessible via visible light photocatalysis, has accelerated the development of this diverse suite of reactions.

  3. Solar Synthesis: Prospects in Visible Light Photocatalysis

    PubMed Central

    Schultz, Danielle M.; Yoon, Tehshik P.

    2015-01-01

    Chemists have long aspired to synthesize molecules the way that plants do — using sunlight to facilitate the construction of complex molecular architectures. Nevertheless, the use of visible light in photochemical synthesis is fundamentally challenging because organic molecules tend not to interact with the wavelengths of visible light that are most strongly emitted in the solar spectrum. Recent research has begun to leverage the ability of visible light absorbing transition metal complexes to catalyze a broad range of synthetically valuable reactions. In this review, we highlight how an understanding of the mechanisms of photocatalytic activation available to these transition metal complexes, and of the general reactivity patterns of the intermediates accessible via visible light photocatalysis, has accelerated the development of this diverse suite of reactions. PMID:24578578

  4. Efficient Photocatalytic Disinfection of Escherichia coli O157:H7 using C70-TiO2 Hybrid under Visible Light Irradiation

    NASA Astrophysics Data System (ADS)

    Ouyang, Kai; Dai, Ke; Walker, Sharon L.; Huang, Qiaoyun; Yin, Xixiang; Cai, Peng

    2016-05-01

    Efficient photocatalytic disinfection of Escherichia coli O157:H7 was achieved by using a C70 modified TiO2 (C70-TiO2) hybrid as a photocatalyst under visible light (λ > 420 nm) irradiation. Disinfection experiments showed that 73% of E. coli O157:H7 died within 2 h with a disinfection rate constant of k = 0.01 min‑1, which is three times that measured for TiO2. The mechanism of cell death was investigated by using several scavengers combined with a partition system. The results revealed that diffusing hydroxyl radicals play an important role in the photocatalytically initiated bacterial death, and direct contact between C70-TiO2 hybrid and bacteria is not indispensable in the photocatalytic disinfection process. Extracellular polymeric substances (EPS) of bacteria have little effect on the disinfection efficiency. Analyses of the inhibitory effect of C70-TiO2 thin films on E. coli O157:H7 showed a decrease of the bacterial concentration from 3 × 108 to 38 cfu mL‑1 in the solution with C70-TiO2 thin film in the first 2 h of irradiation and a complete inhibition of the growth of E. coli O157:H7 in the later 24 h irradiation.

  5. Ultrathin g-C3 N4 Nanosheets Coupled with AgIO3 as Highly Efficient Heterostructured Photocatalysts for Enhanced Visible-Light Photocatalytic Activity.

    PubMed

    Li, Yunfeng; Li, Kai; Yang, Yang; Li, Leijiao; Xing, Yan; Song, Shuyan; Jin, Rongchao; Li, Mei

    2015-12-01

    The photocatalytic activity of graphite-like carbon nitride (g-C3 N4 ) could be enhanced by heterojunction strategies through increasing the charge-separation efficiency. As a surface-based process, the heterogeneous photocatalytic process would become more efficient if a larger contact region existed in the heterojunction interface. In this work, ultrathin g-C3 N4 nanosheets (g-C3 N4 -NS) with much larger specific surface areas are employed instead of bulk g-C3 N4 (g-C3 N4 -B) to prepare AgIO3 /g-C3 N4 -NS nanocomposite photocatalysts. By taking advantage of this feature, the as-prepared composites exhibit remarkable performances for photocatalytic wastewater treatment under visible-light irradiation. Notably, the optimum photocatalytic activity of AgIO3 /g-C3 N4 -NS composites is almost 80.59 and 55.09 times higher than that of pure g-C3 N4 -B towards the degradation of rhodamine B and methyl orange pollutants, respectively. Finally, the stability and possible photocatalytic mechanism of the AgIO3 /g-C3 N4 -NS system are also investigated.

  6. Efficient Photocatalytic Disinfection of Escherichia coli O157:H7 using C70-TiO2 Hybrid under Visible Light Irradiation

    PubMed Central

    Ouyang, Kai; Dai, Ke; Walker, Sharon L.; Huang, Qiaoyun; Yin, Xixiang; Cai, Peng

    2016-01-01

    Efficient photocatalytic disinfection of Escherichia coli O157:H7 was achieved by using a C70 modified TiO2 (C70-TiO2) hybrid as a photocatalyst under visible light (λ > 420 nm) irradiation. Disinfection experiments showed that 73% of E. coli O157:H7 died within 2 h with a disinfection rate constant of k = 0.01 min−1, which is three times that measured for TiO2. The mechanism of cell death was investigated by using several scavengers combined with a partition system. The results revealed that diffusing hydroxyl radicals play an important role in the photocatalytically initiated bacterial death, and direct contact between C70-TiO2 hybrid and bacteria is not indispensable in the photocatalytic disinfection process. Extracellular polymeric substances (EPS) of bacteria have little effect on the disinfection efficiency. Analyses of the inhibitory effect of C70-TiO2 thin films on E. coli O157:H7 showed a decrease of the bacterial concentration from 3 × 108 to 38 cfu mL−1 in the solution with C70-TiO2 thin film in the first 2 h of irradiation and a complete inhibition of the growth of E. coli O157:H7 in the later 24 h irradiation. PMID:27161821

  7. A Prussian blue/carbon dot nanocomposite as an efficient visible light active photocatalyst for C-H activation of amines.

    PubMed

    Maaoui, Houcem; Kumar, Pawan; Kumar, Anurag; Pan, Guo-Hui; Chtourou, Radouane; Szunerits, Sabine; Boukherroub, Rabah; Jain, Suman L

    2016-10-05

    A Prussian blue/carbon dot (PB/CD) nanocomposite was synthesised and used as a visible-light active photocatalyst for the oxidative cyanation of tertiary amines to α-aminonitriles by using NaCN/acetic acid as a cyanide source and H2O2 as an oxidant. The developed photocatalyst afforded high yields of products after 8 h of visible light irradiation at room temperature. The catalyst was recycled and reused several times without any significant loss in its activity.

  8. Visible light metasurfaces based on gallium nitride high contrast gratings

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei

    2016-05-01

    We propose visible-light metasurfaces (VLMs) capable of serving as lens and beam deflecting element based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wavefront of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 86.3%, and a VLM with beam deflection angle of 6.09° and transmissivity as high as 91.4%. The proposed all-dielectric metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.

  9. Efficient visible-light photocatalytic activity by band alignment in mesoporous ternary polyoxometalate-Ag2S-CdS semiconductors

    NASA Astrophysics Data System (ADS)

    Kornarakis, I.; Lykakis, I. N.; Vordos, N.; Armatas, G. S.

    2014-07-01

    Porous multicomponent semiconductor materials show improved photocatalytic performance due to the large and accessible pore surface area and high charge separation efficiency. Here we report the synthesis of well-ordered porous polyoxometalate (POM)-Ag2S-CdS hybrid mesostructures featuring a controllable composition and high photocatalytic activity via a two-step hard-templating and topotactic ion-exchange chemical process. Ag2S compounds and polyoxometalate cluster anions with different reduction potentials, such as PW12O403-, SiW12O404- and PMo12O403-, were employed as electron acceptors in these ternary heterojunction photocatalysts. Characterization by small-angle X-ray scattering, X-ray diffraction, transmission electron microscopy and N2 physisorption measurements showed hexagonal arrays of POM-Ag2S-CdS hybrid nanorods with large internal BET surface areas and uniform mesopores. The Keggin structure of the incorporated POM clusters was also verified by elemental X-ray spectroscopy microanalysis, infrared and diffuse-reflectance ultraviolet-visible spectroscopy. These new porous materials were implemented as visible-light-driven photocatalysts, displaying exceptional high activity in aerobic oxidation of various para-substituted benzyl alcohols to the corresponding carbonyl compounds. Our experiments show that the spatial separation of photogenerated electrons and holes at CdS through the potential gradient along the CdS-Ag2S-POM interfaces is responsible for the increased photocatalytic activity.Porous multicomponent semiconductor materials show improved photocatalytic performance due to the large and accessible pore surface area and high charge separation efficiency. Here we report the synthesis of well-ordered porous polyoxometalate (POM)-Ag2S-CdS hybrid mesostructures featuring a controllable composition and high photocatalytic activity via a two-step hard-templating and topotactic ion-exchange chemical process. Ag2S compounds and polyoxometalate cluster

  10. [VISIBLE LIGHT AND HUMAN SKIN (REVIEW)].

    PubMed

    Tsibadze, A; Chikvaidze, E; Katsitadze, A; Kvachadze, I; Tskhvediani, N; Chikviladze, A

    2015-09-01

    Biological effect of a visible light depends on extend of its property to penetrate into the tissues: the greater is a wavelength the more is an effect of a radiation. An impact of a visible light on the skin is evident by wave and quantum effects. Quanta of a visible radiation carry more energy than infrared radiation, although an influence of such radiation on the skin is produced by the light spectrum on the boarder of the ultraviolet and the infrared rays and is manifested by thermal and chemical effects. It is determined that large doses of a visible light (405-436 nm) can cause skin erythema. At this time, the ratio of generation of free radicals in the skin during an exposure to the ultraviolet and the visible light range from 67-33% respectively. Visible rays of 400-500 nm length of wave cause an increase of the concentration of oxygen's active form and mutation of DNA and proteins in the skin. The urticaria in 4-18% of young people induced by photodermatosis is described. As a result of a direct exposure to sunlight photosensitive eczema is more common in elderly. Special place holds a hereditary disease - porphyria, caused by a visible light. In recent years, dermatologists widely use phototherapy. The method uses polychromatic, non-coherent (wavelength of 515-1200 nm) pulsating beam. During phototherapy/light treatment a patient is being exposed to sunlight or bright artificial light. Sources of visible light are lasers, LEDs and fluorescent lamps which have the full range of a visible light. Phototherapy is used in the treatment of acne vulgaris, seasonal affective disorders, depression, psoriasis, eczema and neurodermities. LED of the red and near infrared range also is characterized by the therapeutic effect. They have an ability to influence cromatophores and enhance ATP synthesis in mitochondria. To speed up the healing of wounds and stimulate hair growth light sources of a weak intensity are used. The light of blue-green spectrum is widely used for

  11. Solid-Phase Synthesis as a Platform for the Discovery of New Ruthenium Complexes for Efficient Release of Photocaged Ligands with Visible Light

    PubMed Central

    Sharma, Rajgopal; Knoll, Jessica D.; Ancona, Nicholas; Martin, Phillip D.; Turro, Claudia; Kodanko, Jeremy J.

    2015-01-01

    Ruthenium-based photocaging groups have important applications as biological tools and show great potential as therapeutics. A method was developed to rapidly synthesize, screen and identify ruthenium-based caging groups that release nitriles upon irradiation with visible light. A diverse library of tetra- and pentadentate ligands was synthesized on polystyrene resin. Ruthenium complexes of the general formula [Ru(L)(MeCN)n]m+ (n = 1–3, m = 1–2) were generated from these ligands on solid phase, then cleaved from resin for photochemical analysis. Data indicate a wide range of spectral tuning and reactivity with visible light. Three complexes that showed strong absorbance in the visible range were synthesized by solution phase for comparison. Photochemical behavior of solution- and solid-phase complexes was in good agreement, confirming that the library approach is useful in identifying candidates with desired photoreactivity in short order, avoiding time consuming chromatography and compound purification. PMID:25611351

  12. Visible light communication based motion detection.

    PubMed

    Sewaiwar, Atul; Tiwari, Samrat Vikramaditya; Chung, Yeon-Ho

    2015-07-13

    In this paper, a unique and novel visible light communication based motion detection is presented. The proposed motion detection is performed based on white light LEDs and an array of photodetectors from existing visible light communication (VLC) links, thus providing VLC with three functionalities of illumination, communication and motion detection. The motion is detected by observing the pattern created by intentional obstruction of the VLC link. Experimental and simulation results demonstrate the validity of the proposed VLC based motion detection technique. The VLC based motion detection can benefit smart devices control in VLC based smart home environments.

  13. TiO2/carboxylate-rich porous carbon: A highly efficient visible-light-driven photocatalyst based on the ligand-to-metal charge transfer (LMCT) process

    NASA Astrophysics Data System (ADS)

    Qu, Lingling; Huang, Dongliang; Shi, Hefei; Gu, Mengbin; Li, Jilei; Dong, Fei; Luo, Zhijun

    2015-10-01

    A novel visible-light-driven photocatalyst based on TiO2/carboxylate-rich porous carbon composite (TiO2/CRPC) was successfully synthesized by low temperature carbonization process in air. Sodium gluconate plays a crucial role in the formation of TiO2/CRPC. Different functional groups of sodium gluconate play synergetic roles in the formation of TiO2/CRPC. XRD and Raman spectra studies indicated that there are two different TiO2 crystalline phases existing in TiO2/CRPC, which are anatase and brookite, and the CRPC is amorphous. Via FT-IR and XPS spectra investigations, it was demonstrated that carboxylate group, the ligand-to-metal charge transfer (LMCT) forming functional group, was solidified into the CRPC and form the LMCT complex on TiO2 surface through the fabrication of TiO2/CRPC. Compared with the pure TiO2, TiO2/CRPC exhibit enhanced absorption in the UV and visible light region around 260-600 nm. The strong absorption in the visible light region gives TiO2/CRPC advantages over pure TiO2 for the degradation of organic pollutants. TiO2/CRPC can activate O2 in air under mild conditions and exhibit excellent visible-light-driven photocatalytic activities. However, TiO2/C composite obtained by using glucose instead of sodium gluconate exhibits poor photocatalytic activity, which demonstrated that carboxylate-TiO2 complexes are responsible for the prominent photocatalytic properties of TiO2/CRPC under visible light irradiation.

  14. N-Doped TiO2 Nanobelts with Coexposed (001) and (101) Facets and Their Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production.

    PubMed

    Sun, Shuchao; Gao, Peng; Yang, Yurong; Yang, Piaoping; Chen, Yujin; Wang, Yanbo

    2016-07-20

    To narrow the band gap (3.2 eV) of TiO2 and extend its practical applicability under sunlight, the doping with nonmetal elements has been used to tune TiO2 electronic structure. However, the doping also brings new recombination centers among the photoinduced charge carriers, which results in a quantum efficiency loss accordingly. It has been proved that the {101} facets of anatase TiO2 are beneficial to generating and transmitting more reductive electrons to promote the H2-evolution in the photoreduction reaction, and the {001} facets exhibit a higher photoreactivity to accelerate the reaction involved of photogenerated hole. Thus, it was considered by us that using the surface heterojunction composed of both {001} and {101} facets may depress the disadvantage of N doping. Fortunately, we successfully synthesized anatase N-doped TiO2 nanobelts with a surface heterojunction of coexposed (101) and (001) facets. As expected, it realized the charge pairs' spatial separation and showed higher photocatalytic activity under a visible-light ray: a hydrogen generation rate of 670 μmol h(-1) g(-1) (much higher than others reported previously in literature of N-doped TiO2 nanobelts).

  15. Damaging effects of visible light

    NASA Astrophysics Data System (ADS)

    Williams, T. P.; Baker, B. N.

    1982-02-01

    The right eyes of anesthetized, ten week old albino rats are exposed to constant photon fluxes at 6 wavelengths for 6 hours. The left eye of each animal is patched during the exposure and is used as control. Histologic examination of retinal sections disclosed a region in the superior retina which is more damaged than are other areas. Attempting to ascertain an action spectrum by measuring outer nuclear layer (ONL) lost in this sensitive region fails. However, it is shown that when ONL thickness is integrated over the entire retinal sections, a rhodopsin action-spectrum emerges. It is concluded that retinal light damage in the albina rat under these conditions is rhodopsin mediated; and assessment of the extent of damage is best made by some method which integrates over the entire retinal section. The latter methodology is not routinely incorporated into studies of retinal light-damage but probably should be.

  16. Relating productivity to visibility and lighting

    SciTech Connect

    Clear, R.; Berman, S.

    1982-01-01

    The problem of determining the appropriate light levels for visual tasks is a cost-benefit problem. Existing light level recommendations seriously underweight the importance of economic factors. Furthermore, the relative importance of the visibility factors in determining the optimal light levels appears inconsistent with the importance of these factors in determining visibility and visual performance. It is shown that calculations based on acuities give a lower limit of 100 to 200 lux for cost-effective light levels for office tasks. Upper limits are calculated from correlations of task performance to visibility levels. Visibility levels become progressively insensitive to luminance as luminance increases. Average power densities above 100 watts/m/sup 2/ are cost-effective only when visibility is very low. However, there is a 3-to-10 times larger increase in benefits from improving contrast or contrast sensitivity than from using more than 10 watts/m/sup 2/. Contrast or contrast sensitivity can be improved by using forms with larger print, using xerographic copy instead of carbon or mimeo, making sure office workers have the right eyeglasses, or even by transferring workers with visual problems to less visually demanding tasks. Once these changes are made it is no longer cost-effective to use more than 10 watts/m/sup 2/. This conclusion raises serious questions about recommendations that lead to greater than about 10 watts/m/sup 2/ of installed lighting for general office work.

  17. Experimental demonstration of light sensor-based visible light communications using time shift light intensity modulation

    NASA Astrophysics Data System (ADS)

    Kim, Yong-hyeon; Chung, Yeon-ho

    2016-09-01

    An experimental light sensor-based indoor visible light communication (VLC) is presented. Light-emitting diodes (LEDs) primarily used for illumination are employed to transmit wireless optical data over a short distance, while a smartphone's light sensor is used to receive the data. The light sensor in a smartphone is originally installed to function as a power saving method by adjusting the brightness of the smartphone screen. We propose an efficient and easy-to-use short range VLC based on this light sensor. To compensate for the inherent low sampling rate of the light sensor and also to avoid LED (transmitter) flickering, we propose time shift light intensity modulation. To verify the proposed light sensor VLC, experiments were conducted. The results demonstrate that the data can reliably be transmitted over the VLC link between the LEDs and the smartphone light sensor.

  18. Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Lai, Cui; Wang, Man-Man; Zeng, Guang-Ming; Liu, Yun-Guo; Huang, Dan-Lian; Zhang, Chen; Wang, Rong-Zhong; Xu, Piao; Cheng, Min; Huang, Chao; Wu, Hai-Peng; Qin, Lei

    2016-12-01

    The molecular imprinted TiO2/graphene photocatalyst (MIP-TiO2/GR) was successfully prepared with bisphenol A (BPA) as the template molecule (target pollutant) and o-phenylenediamine (OPDA) as functional monomers by the surface molecular imprinting method. The combination between BPA and OPDA led to the formation of the precursor, and the subsequent polymerization of OPDA initiated by ultraviolet radiation can ensure the realization of MIP-TiO2/GR. The samples were characterized by SEM, EDS, XRD, BET, UV-vis DRS and Zeta potential. In addition, adsorption capacities, adsorption selectivity and visible light photocatalytic performances of MIP-TiO2/GR and non-imprinted TiO2/graphene (NIP-TiO2/GR) were evaluated. Moreover, the effects of pH and initial BPA concentration on removal efficiency of BPA were also investigated. The results showed that MIP-TiO2/GR exhibited better adsorption capacity and adsorption selectivity towards the template molecule compared to NIP-TiO2/GR due to the imprinted cavities on the surface of MIP-TiO2/GR. Moreover, the photocatalytic activity of MIP-TiO2/GR toward the target molecules was stronger than that of NIP-TiO2/GR as a result of large adsorption capacity to target molecules and narrow band gap energy on MIP-TiO2/GR. Therefore, modifying the photocatalyst by the surface molecular imprinting is a promising method to improve the molecule recognition and photocatalytic efficiency of photocatalyst for target pollutant.

  19. Visible Light Wireless Communication for Audio Signals

    NASA Astrophysics Data System (ADS)

    Vibin, A. M.; Prince, Shanthi

    2011-10-01

    In the current century there is an increased demand for broad band wireless access for satisfying different customer needs. These applications requires large amount of frequency resources for its efficient implementation. Radio Frequency techniques, which dominate the current wireless technology, have the limitation of available frequency spectrum that can be used. Researchers identified Optical Wireless Communication as a potential candidate for solving this problem. Studies shows that white light can also be used as a carrier for wireless communication and this area is generally known as Visible Light Communication. The provision of voice data and visual communications to users by using optical wireless has become a key area of research and product development. This paper discusses a novel method for transmission of voice in real time so that the system can be used for both communication and illumination simultaneously. A prototype of the system is implemented successfully and performance analyses are carried out based on the experimental results. SNR and BER calculations for the designed system is done theoretically and simulated. The developed system is having the advantages of very high band width, no interference with adjacent rooms as walls are opaque, no license is required as it doesn't cause electromagnetic interference and communication simultaneously with illumination.

  20. Efficient degradation of Methylene Blue dye over highly reactive Cu doped strontium titanate (SrTiO3) nanoparticles photocatalyst under visible light.

    PubMed

    Rahman, Qazi Inamur; Ahmad, Musheer; Misra, Sunil Kumar; Lohani, Minaxi

    2012-09-01

    Visible light induced photocatalysts of Cu doped SrTiO3 (Cu/SrTiO3) nanoparticles with the size -60-75 nm were prepared via facile sol-gel method. The morphological, optical, crystalline properties and compositions of synthesized Cu/SrTiO3 nanoparticles were thoroughly characterized by field emission scanning electron microscopy (FE-SEM), powder X-ray diffraction (XRD), ultra violet-visible spectroscopy (UV-Vis) and energy dispersive X-ray (EDX). A significant red shift in the UV-diffused reflectance spectrum was observed and the absorption edge shifted to visible region by the Cu doping. Surprisingly, the band gap of SrTiO3 was changed from 3.2 eV drop to 2.96 eV. The photocatalytic activity of the synthesized Cu/SrTiO3 nanoparticles was demonstrated for the degradation of Methylene Blue dye under visible light irradiation. The formation of new acceptor region in Cu/SrTiO3 was responsible for high photocatalytic activity of Cu/SrTiO3 nanoparticles. The results showed that the Methylene Blue dye was degraded by -66% within time span of 2 h over the Cu/SrTiO3 nanoparticles. This dye degradation reaction followed the Langmuir-Hinshelwood kinetics and also exhibited first order reaction rate. The calculated rate constant for the degradation reaction following first order kinetics was k = 0.0016 min(-1).

  1. 1-Dodecane-sulfonic-acid-sodium-salt(LAS) assisted hydrothermal synthesis of CdxZn1-xS solid solution as efficient photocatalysts under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Jia, B.; Guo, L. J.

    2010-03-01

    With anionic surfactant LAS assisted, series of zinc cadmium sulfide semiconductor photocatalysts were synthesized by hydrothermal method. These products were characterized by X-ray diffraction (XRD), UV-Vis absorption spectra (UV-Vis) and scanning electron microscopy (FESEM). The photocatalytic activities of as-prepared samples were evaluated by photocatalytic hydrogen production from water under visible-light irradiation. The best synthesis parameters are: Composition 0.9:0.1 (Cd:Zn molar ratio), Temperature 160 °C, Hydrothermal Time 48 Hour, LAS Concentration 1.7 mmol/L, the maximum visible-light-catalytic hydrogen production rate is 161.25 μmol/h (λ>430 nm) which is higher than those of by coprecipitation method. The experiment results indicate that surfactant assisted hydrothermal method is an effective way to get highly active CdZnS solid solution photocatalyst.

  2. Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution.

    PubMed

    Yu, Huijun; Shi, Run; Zhao, Yunxuan; Bian, Tong; Zhao, Yufei; Zhou, Chao; Waterhouse, Geoffrey I N; Wu, Li-Zhu; Tung, Chen-Ho; Zhang, Tierui

    2017-02-10

    A facile synthetic strategy for nitrogen deficient graphitic carbon nitride (g-C3 Nx ) is established, involving a simple alkali-assisted thermal polymerization of urea, melamine, or thiourea. In situ introduced nitrogen vacancies significantly redshift the absorption edge of g-C3 Nx , with the defect concentration depending on the alkali to nitrogen precursor ratio. The g-C3 Nx products show superior visible-light photocatalytic performance compared to pristine g-C3 N4 .

  3. Efficient visible light photo-fenton-like degradation of organic pollutants using in situ surface-modified BiFeO3 as a catalyst.

    PubMed

    An, Junjian; Zhu, Lihua; Zhang, Yingying; Tang, Heqing

    2013-06-01

    The visible light photo-Fenton-like catalytic performance of BiFeO3 nanoparticles was investigated using Methyl Violet (MV), Rhodamine B (RhB) and phenol as probes. Under optimum conditions, the pseudo first-order rate constant (k) was determined to be 2.21 x 10(-2), 5.56 x 10(-2) and 2.01 x 10(-2) min(-1) for the degradation of MV (30 micromol/L), RhB (10 micromol/L) and phenol (3 mmol/L), respectively, in the BiFeO3-H2O2-visible light (Vis) system. The introduction of visible light irradiation increased the k values of MV, RhB and phenol degradation 3.47, 1.95 and 2.07 times in comparison with those in dark. Generally, the k values in the BiFeO3-H2O2-Vis system were accelerated by increasing BiFeO3 load and H2O2 concentration, but decreased with increasing initial pollutant concentration. To further enhance the degradation of pollutants at high concentrations, BiFeO3 was modified with the addition of surface modifiers. The addition of ethylenediamineteraacetic acid (EDTA, 0.4 mmol/L) increased the k value of MV degradation (60 micromol/L) from 1.01 x 10(-2) min(-1) in the BiFeO3-H2O2-Vis system to 1.30 min(-1) in the EDTA-BiFeO3-H2O2-Vis system by a factor of 128. This suggests that in situ surface modification can enable BiFeO3 nano-particles to be a promising visible light photo-Fenton-like catalyst for the degradation of organic pollutants.

  4. Down-conversion phosphors as noble-metal-free co-catalyst in ZnO for efficient visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Chu, Haipeng; Liu, Xinjuan; Liu, Jiaqing; Lei, Wenyan; Li, Jinliang; Wu, Tianyang; Li, Ping; Li, Huili; Pan, Likun

    2017-01-01

    Exploring novel visible light responsive photocatalysts is one of greatly significant issues from the viewpoint of using solar energy. Here we report the yellow-orange emitting α-Si3N4-doped Lu3Al5O12:Ce3+ (Lu3Al5-xSixO12-xNx:Ce3+) phosphors as a noble-metal-free co-catalyst for enhanced visible light photocatalytic activity of ZnO. The results show that ZnO-Lu3Al5-xSixO12-xNx:Ce3+ hybrid photocatalysts using a fast microwave-assisted approach exhibits a 91% methylene blue (MB) degradation under visible light irradiation at 240 min, which evidence the synergistic effect of ZnO and Lu3Al5-xSixO12-xNx:Ce3+ that suppress the rate of charge recombination and increase the self-sensitized degradation of MB. ZnO-down conversion phosphors can be envisaged as potential candidate in environmental engineering and solar energy applications.

  5. Electrodeposition of hierarchical ZnO/Cu{sub 2}O nanorod films for highly efficient visible-light-driven photocatalytic applications

    SciTech Connect

    Ren, S. T.; Fan, G. H.; Liang, M. L.; Wang, Q.; Zhao, G. L.

    2014-02-14

    The development of high-performance visible-light-responsive photocatalytic materials has attracted widespread interest due to their potential applications in the environmental and energy industries. In this work, hierarchical ZnO nanorods films were successfully prepared on the stainless steel mesh substrates via a simple two-step seed-assisted electrodeposition route. Cu{sub 2}O nanoparticles were then electrodeposited on the surface of ZnO nanorods to form the core-shell heterostructure. The synthesized ZnO/Cu{sub 2}O nanocomposites were characterized by X-ray diffraction, field-emission scanning electron microscopy, and UV-visible spectrophotometer. Due to the branched hierarchical morphologies and core-shell structure, ZnO/Cu{sub 2}O nanomaterials show a prominent visible-light-driven photocatalytic performance under the low-intensity light irradiation (40 mW/cm{sup 2}). The influence of some experimental parameters, such as Cu{sub 2}O loading amount, ZnO morphologies, the substrate type, and the PH of the Cu{sub 2}O precursor solution on ZnO/Cu{sub 2}O photocatalytic performance was evaluated.

  6. TiO2 nanotube arrays modified with Cr-doped SrTiO3 nanocubes for highly efficient hydrogen evolution under visible light.

    PubMed

    Jiao, Zhengbo; Zhang, Yan; Chen, Tao; Dong, Qingsong; Lu, Gongxuan; Bi, Yingpu

    2014-02-24

    In recent decades, solar-driven hydrogen production over semiconductors has attracted tremendous interest owing to the global energy and environmental crisis. Among various semiconductor materials, TiO2 exhibits outstanding photocatalytic properties and has been extensively applied in diverse photocatalytic and photoelectric systems. However, two major drawbacks limit practical applications, namely, high charge-recombination rate and poor visible-light utilization. In this work, heterostructured TiO2 nanotube arrays grafted with Cr-doped SrTiO3 nanocubes were fabricated by simply controlling the kinetics of hydrothermal reactions. It was found that coupling TiO2 nanotube arrays with regular SrTiO3 nanocubes can significantly improve the charge separation. Meanwhile, doping Cr cations into SrTiO3 nanocubes proved to be an effective and feasible approach to enhance remarkably the visible-light response, which was also confirmed by theoretical calculations. As a result, the rate of photoelectrochemical hydrogen evolution of these novel heteronanostructures is an order of magnitude larger than those of TiO2 nanotube arrays and other previously reported SrTiO3 /TiO2 nanocomposites under visible-light irradiation. Furthermore, the as-prepared Cr-doped SrTiO3 /TiO2 heterostructures exhibit excellent durability and stability, which are favorable for practical hydrogen production and photoelectric nanodevices.

  7. Highly efficient visible-light-induced photocatalytic activity of Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts

    SciTech Connect

    Chaiwichian, Saranyoo; Inceesungvorn, Burapat; Wetchakun, Khatcharin; Phanichphant, Sukon; Kangwansupamonkon, Wiyong; Wetchakun, Natda

    2014-06-01

    Highlights: • Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts were obtained using hydrothermal method. • Physicochemical properties played a significant role on photocatalytic efficiency. • Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterogeneous structures were greatly enhanced for degradation of MB. • A tentative mechanism of charge transfer process in MB degradation was proposed. - Abstract: The Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts were synthesized by hydrothermal method. Physical properties of the heterojunction photocatalyst samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The XRD results indicated that BiVO{sub 4} retain monoclinic and tetragonal structures, while Bi{sub 2}WO{sub 6} presented as orthorhombic structure. The Brunauer, Emmett and Teller (BET) adsorption–desorption of nitrogen gas for specific surface area determination at the temperature of liquid nitrogen was performed on all samples. UV–vis diffuse reflectance spectra (UV–vis DRS) were used to identify the absorption range and band gap energy of the heterojunction photocatalysts. The photocatalytic performance of Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts was studied via the photodegradation of methylene blue (MB) under visible light irradiation. The results indicated that the heterojunction photocatalyst at 0.5:0.5 mole ratio of Bi{sub 2}WO{sub 6}:BiVO{sub 4} shows the highest photocatalytic activity.

  8. Why can we see visible light?

    NASA Astrophysics Data System (ADS)

    Bochnícek, Zdenek

    2007-01-01

    Visible light constitutes only a very narrow part of the wide electromagnetic spectrum. This article outlines several reasons why the human eye can see only within this limited range. Solar emissions and low absorption in the atmosphere are determining causes, but not the only ones. The energy of chemical bonds, the optical properties of matter, black body emissions and the wave character of light cause further limitations, all of which have a remarkable congruence.

  9. High efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde by solvothermal-synthesized ZnIn{sub 2}S{sub 4} microspheres under visible light irradiation

    SciTech Connect

    Chen, Zhixin; Xu, Jingjing; Ren, Zhuyun; He, Yunhui; Xiao, Guangcan

    2013-09-15

    Hexagonal ZnIn{sub 2}S{sub 4} samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet–visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption–desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn{sub 2}S{sub 4} microspheres. The visible light photocatalytic activities of the ZnIn{sub 2}S{sub 4} have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn{sub 2}S{sub 4} prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn{sub 2}S{sub 4} prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn{sub 2}S{sub 4} is proposed and discussed. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. The high visible photocatalytic activities of ZnIn{sub 2}S{sub 4} were evaluated by selective oxidation of benzyl alcohol to benzaldehyde under mild conditions. Display Omitted - Highlights: • Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. • The solvents have a remarkably influence on the morphology and properties of samples. • It is the first time to apply ZnIn{sub 2}S{sub 4} for selective oxidation of benzyl alcohol. • ZnIn{sub 2}S{sub 4} shows high photocatalytic activity for selective oxidation of benzyl alcohol.

  10. Green synthetic approach for Ti3+ self-doped TiO2-x nanoparticles with efficient visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Gao, Shanmin; Xu, Hui; Lou, Zaizhu; Wang, Wenjun; Huang, Baibiao; Dai, Ying

    2013-02-01

    Rice-shaped Ti3+ self-doped TiO2-x nanoparticles were synthesized by mild hydrothermal treatment of TiH2 in H2O2 aqueous solution. The structure, crystallinity, morphology, and other properties of the as-prepared samples were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microcopy and X-ray photoelectron spectra. Electron paramagnetic resonance spectra confirm the presence of high concentration of paramagnetic Ti3+ in the bulk and surface of the as-prepared samples. The particles showed a strong absorption across the UV to the visible light region and retained their light-blue color upon storage in ambient atmosphere or water for one month at 40 °C. The formation mechanism of Ti3+ self-doped TiO2-x nanoparticles was discussed. Under visible light irradiation, the samples exhibit higher photocatalytic activity for hydrogen evolution and photooxidation of methylene blue than that of the commercial P25 TiO2 nanoparticles. The sample obtained at 160 °C for 27 h showed a 9-fold enhancement for the visible light decomposition of methylene blue and 12.5 times higher for H2 production in comparison to P25 TiO2. The samples also showed an excellent cycling stability of the photocatalytic activity.Rice-shaped Ti3+ self-doped TiO2-x nanoparticles were synthesized by mild hydrothermal treatment of TiH2 in H2O2 aqueous solution. The structure, crystallinity, morphology, and other properties of the as-prepared samples were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microcopy and X-ray photoelectron spectra. Electron paramagnetic resonance spectra confirm the presence of high concentration of paramagnetic Ti3+ in the bulk and surface of the as-prepared samples. The particles showed a strong absorption across the UV to the visible light region and retained their light-blue color upon storage in ambient atmosphere or water for one month at 40 °C. The

  11. Copper(II) imidazolate frameworks as highly efficient photocatalysts for reduction of CO{sub 2} into methanol under visible light irradiation

    SciTech Connect

    Li, Jingtian; Luo, Deliang; Yang, Chengju; He, Shiman; Chen, Shangchao; Lin, Jiawei; Zhu, Li; Li, Xin

    2013-07-15

    Three copper(II) imidazolate frameworks were synthesized by a hydrothermal (or precipitation) reaction. The catalysts were characterized by X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared spectra (FTIR), thermogravimetry (TG). Meanwhile, the photocatalytic activities of the samples for reduction of CO{sub 2} into methanol and degradation of methylene blue (MB) under visible light irradiation were also investigated. The results show that the as-prepared samples exhibit better photocatalytic activities for the reduction of carbon dioxide into methanol with water and degradation of MB under visible light irradiation. The orthorhombic copper(II) imidazolate frameworks with a band gap of 2.49 eV and green (G) color has the best photocatalytic activity for reduction of CO{sub 2} into methanol, 1712.7 μmol/g over 5 h, which is about three times as large as that of monoclinic copper(II) imidazolate frameworks with a band gap 2.70 eV and blue (J) color. The degradation kinetics of MB over three photocatalysts fitted well to the apparent first-order rate equation and the apparent rate constants for the degradation of MB over G, J and P (with pink color) are 0.0038, 0.0013 and 0.0016 min{sup −1}, respectively. The synergistic effects of smallest band gap and orthorhombic crystal phase structure are the critical factors for the better photocatalytic activities of G. Moreover, three frameworks can also be stable up to 250 °C. The investigation of Cu-based zeolitic imidazolate frameworks maybe provide a design strategy for a new class of photocatalysts applied in degradation of contaminations, reduction of CO{sub 2}, and even water splitting into hydrogen and oxygen under visible light. - Graphical abstract: Carbon dioxide was reduced into methanol with water over copper(II) imidazolate frameworks under visible light irradiation. - Highlights: • Three copper

  12. Synthesis and photocatalytic performance of an efficient Ag@AgBr/K{sub 2}Ti{sub 4}O{sub 9} composite photocatalyst under visible light

    SciTech Connect

    Liang, Yinghua; Lin, Shuanglong; Liu, Li; Hu, Jinshan; Cui, Wenquan

    2014-08-15

    Highlights: • The plasmatic Ag@AgBr sensitized K{sub 2}Ti{sub 4}O{sub 9} composite photocatalysts. • Ag@AgBr greatly increased visible light absorption for K{sub 2}Ti{sub 4}O{sub 9}. • The plamonic photocatalysts exhibited enhanced activity for the degradation of RhB. - Abstract: Ag@AgBr nanoparticle-sensitized K{sub 2}Ti{sub 4}O{sub 9} composite photocatalysts (Ag@AgBr/K{sub 2}Ti{sub 4}O{sub 9}) were prepared by a facile precipitation–photoreduction method. The photocatalytic activities of the Ag@AgBr/K{sub 2}Ti{sub 4}O{sub 9} nanocomposites were evaluated for photocatalytic degradation of (RhB) under visible light irradiation. The composites exhibited excellent visible light absorption, which was attributable to the surface plasmon effect of Ag nanoparticles. The Ag@AgBr was uniformly scattered on the surface of K{sub 2}Ti{sub 4}O{sub 9} and possessed sizes in the range of 20–50 nm. The loading amount of Ag@AgBr was also studied, and was found to influence the absorption spectra of the resulting composites. Approximately 95.9% of RhB was degraded by Ag@AgBr (20 wt.%)/K{sub 2}Ti{sub 4}O{sub 9} after irradiation for 1 h. The stability of the material was also investigated by performing consecutive runs. Additionally, studies performed using radical scavengers indicated that ·O{sub 2}{sup −} and Br{sup 0} acted as the main reactive species. Based on the experimental results, a photocatalytic mechanism for organics degradation over Ag@AgBr/K{sub 2}Ti{sub 4}O{sub 9} photocatalysts was proposed.

  13. Fabrication and efficient photocatalytic degradation of methylene blue over CuO/BiVO{sub 4} composite under visible-light irradiation

    SciTech Connect

    Jiang Haiqing Endo, Hiromitsu; Natori, Hirotaka; Nagai, Masayuki; Kobayashi, Koichi

    2009-03-05

    CuO/BiVO{sub 4} composite photocatalysts were prepared by solution combustion synthesis method and impregnation technique. X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scan electron microscopy and UV-vis diffusion reflectance spectra were used to identify the physical properties and photophysical properties of CuO/BiVO{sub 4} composite photocatalysts. The photocatalysts exhibit the enhanced photocatalytic properties for degradation of methylene blue under visible-light ({lambda} > 420 nm). The mechanism of improved photocatalytic activity is also discussed.

  14. Copper(I) cysteine complexes: efficient earth-abundant oxidation co-catalysts for visible light-driven photocatalytic H2 production.

    PubMed

    Peng, Yong; Shang, Lu; Cao, Yitao; Waterhouse, Geoffrey I N; Zhou, Chao; Bian, Tong; Wu, Li-Zhu; Tung, Chen-Ho; Zhang, Tierui

    2015-08-14

    A copper(i) cysteine complex generated by mixing Cu(ii) ions with cysteine in aqueous solution greatly enhanced the activity of CdSe photocatalysts for H2 production in aqueous solution under visible light excitation. The complex can enhance the H2 evolution rate by as much as 150 times, by acting as an oxidation co-catalyst and increasing charge carrier lifetimes. The copper(i) cysteine complex can also be applied to enhance the H2 production performance of other semiconductor photocatalyst systems, thereby affording a new research direction in the development of co-catalysts for solar hydrogen production.

  15. Visible light communications with compound spectra

    NASA Astrophysics Data System (ADS)

    Vitasek, Jan; Vasinek, Vladimir; Latal, Jan; Hajek, Lukas

    2016-03-01

    At present the Visible Light Communications (VLC) attract attention of academia and industry thanks to rapid progress in the development of white light emitting diodes (LED). This article deals with the VLC and proposes their new solution, which may help remove some lacks of the current VLC. The substance of the new VLC solution is purposeful suppression of a part of the spectrum by a notch filter and by subsequent reconstruction of the original spectrum. Thus, only a part of the visible spectrum will transmit the information data. This is the main difference in comparison with the current VLC. This might be the way how the crucial parameters of the VLC may be improved.

  16. Single Atom (Pd/Pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide.

    PubMed

    Gao, Guoping; Jiao, Yan; Waclawik, Eric R; Du, Aijun

    2016-05-18

    Reducing carbon dioxide to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single atoms of palladium and platinum supported on graphitic carbon nitride (g-C3N4), i.e., Pd/g-C3N4 and Pt/g-C3N4, respectively, acting as photocatalysts for CO2 reduction were investigated by density functional theory calculations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from the hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, deposition of atom catalysts on g-C3N4 significantly enhances the visible-light absorption, rendering them ideal for visible-light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply.

  17. Surface reconstruction of titania with g-C3N4 and Ag for promoting efficient electrons migration and enhanced visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Leong, Kah Hon; Liu, Sze Ling; Sim, Lan Ching; Saravanan, Pichiah; Jang, Min; Ibrahim, Shaliza

    2015-12-01

    The developments of heterogeneous photocatalysts are one among the competent reconstruction approach to enrich the visible light responsiveness of conventional TiO2. In the present work the TiO2 was reconstructed with graphitic carbon nitride (g-C3N4) and silver (Ag) to form a ternary (g-C3N4)-Ag/TiO2. The graphitic carbon nitride an intriguing material was prepared through a facile pyrolysis by using urea as a precursor. The silver (Ag) that plays a role as electron-conduction mobiliser in the ternary was synthesised through solar mediated photodeposition method. The synthesised ternary composite characteristics were thoroughly investigated through various physical and chemical analyses. The presence of g-C3N4 in the ternary photocatalysts promoted the formation of interface between the Ag/TiO2 and g-C3N4 and stimulated the electron transfer between them. These electrons migration acknowledged by the synergic effect prolonged the lifetime of charge carriers. The g-C3N4 also significantly tuned the energy band of conventional TiO2. The prepared ternary exhibited significantly high visible light photocatalytic performance by degrading Amoxicillin (AMX) a poor photosensitising pollutant at highest rate.

  18. Large-scale synthesis of ultrathin tungsten oxide nanowire networks: an efficient catalyst for aerobic oxidation of toluene to benzaldehyde under visible light

    NASA Astrophysics Data System (ADS)

    Bai, Hua; Yi, Wencai; Liu, Jingyao; Lv, Qing; Zhang, Qing; Ma, Qiang; Yang, Haifeng; Xi, Guangcheng

    2016-07-01

    As a very important chemical raw material, the selective formation of benzaldehyde from toluene at preparative or industrial levels requires the use of highly corrosive chlorine and high reaction temperatures, which severely corrodes equipment, pollutes the environment, and consumes a lot of energy. Herein, we report a robust and highly active catalyst for the benzaldehyde evolution reaction that is constructed by the surfactant-free growth of oxygen vacancy-rich W18O49 ultrathin nanowire networks. Under atmospheric pressure and visible-light irradiation, the new catalyst can selectively (92% selectivity) catalyze the aerobic oxidation of toluene to benzaldehyde with yields of above 95%.As a very important chemical raw material, the selective formation of benzaldehyde from toluene at preparative or industrial levels requires the use of highly corrosive chlorine and high reaction temperatures, which severely corrodes equipment, pollutes the environment, and consumes a lot of energy. Herein, we report a robust and highly active catalyst for the benzaldehyde evolution reaction that is constructed by the surfactant-free growth of oxygen vacancy-rich W18O49 ultrathin nanowire networks. Under atmospheric pressure and visible-light irradiation, the new catalyst can selectively (92% selectivity) catalyze the aerobic oxidation of toluene to benzaldehyde with yields of above 95%. Electronic supplementary information (ESI) available: Experimental procedure, XRD patterns, TEM and HRTEM images, energy-dispersive X-ray spectra, UV-vis spectra, X-ray photoelectron spectroscopy (XPS), and EDS. See DOI: 10.1039/c6nr02949c

  19. Highly efficient low-temperature plasma-assisted modification of TiO2 nanosheets with exposed {001} facets for enhanced visible-light photocatalytic activity.

    PubMed

    Li, Beibei; Zhao, Zongbin; Zhou, Quan; Meng, Bo; Meng, Xiangtong; Qiu, Jieshan

    2014-11-03

    Anatase TiO2 nanosheets with exposed {001} facets have been controllably modified under non-thermal dielectric barrier discharge (DBD) plasma with various working gas, including Ar, H2 , and NH3 . The obtained TiO2 nanosheets possess a unique crystalline core/amorphous shell structure (TiO2 @TiO2-x ), which exhibit the improved visible and near-infrared light absorption. The types of dopants (oxygen vacancy/surface Ti(3+) /substituted N) in oxygen-deficient TiO2 can be tuned by controlling the working gases during plasma discharge. Both surface Ti(3+) and substituted N were doped into the lattice of TiO2 through NH3 plasma discharge, whereas the oxygen vacancy or Ti(3+) (along with the oxygen vacancy) was obtained after Ar or H2 plasma treatment. The TiO2 @TiO2-x from NH3 plasma with a green color shows the highest photocatalytic activity under visible-light irradiation compared with the products from Ar plasma or H2 plasma due to the synergistic effect of reduction and simultaneous nitridation in the NH3 plasma.

  20. Porous FeOx/BiVO4-deltaS0.08: highly efficient photocatalysts for the degradation of methylene blue under visible-light illumination.

    PubMed

    Zhao, Zhenxuan; Dai, Hongxing; Deng, Jiguang; Liu, Yuxi; Wang, Yuan; Li, Xinwei; Bai, Guangmei; Gao, Baozu; Au, Chak Tong

    2013-10-01

    Porous S-doped bismuth vanadate with an olive-like morphology and its supported iron oxide (y wt.% FeOx/BiVO4-deltaS0.08, y = 0.06, 0.76, and 1.40) photocatalysts were fabricated using the dodecylamine-assisted alcohol-hydrothermal and incipient wetness impregnation methods, respectively. It is shown that the y wt.% FeOx/BiVO4-deltaS0.08 photocatalysts contained a monoclinic scheetlite BiVO4 phase with a porous olive-like morphology, a surface area of 8.8-9.2 m2/g, and a bandgap energy of 2.38-2.42 eV. There was co-presence of surface Bi5+, Bi3+, V5+, V3+, Fe3+, and Fe2+ species in y wt.% FeOx/BiVO4-deltaS0.08. The 1.40 wt.% FeOx/BiVO4-deltaS0.08 sample performed the best for Methylene Blue degradation under visible-light illumination. The photocatalytic mechanism was also discussed. We believe that the sulfur and FeOx co-doping, higher oxygen adspecies concentration, and lower bandgap energy were responsible for the excellent visible-light-driven catalytic activity of 1.40 wt.% FeOx/BiVO4-deltaS0.08.

  1. Ion-exchange synthesis of Ag/Ag2S/Ag3CuS2 ternary hollow microspheres with efficient visible-light photocatalytic activity.

    PubMed

    Xing, Chaosheng; Zhang, Yuan; Wu, Zhudong; Jiang, Deli; Chen, Min

    2014-02-21

    Ternary Ag/Ag2S/Ag3CuS2 hollow microspheres were synthesized via an in situ ion-exchange method using Cu7S4 hollow submicrospheres as the template. The as-obtained Ag/Ag2S/Ag3CuS2 composite exhibited a well-defined uniform hollow microsphere morphology with an average diameter of about 1.3 μm. The photocatalytic property of the as-prepared Ag/Ag2S/Ag3CuS2 hollow microsphere composite was investigated by the decomposition of methyl orange (MO) under visible light irradiation (λ > 420 nm). It was shown that the photocatalytic activity of the Ag/Ag2S/Ag3CuS2 hollow microsphere was higher than those of Ag/Ag2S, Cu2O, Cu7S4 and P25 for the photodegradation of MO under visible light irradiation. Radical scavenger experiments demonstrated that superoxide radicals and holes were the main reactive species for MO degradation.

  2. Hierarchical three-dimensional branched hematite nanorod arrays with enhanced mid-visible light absorption for high-efficiency photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Wang, Degao; Chang, Guoliang; Zhang, Yuying; Chao, Jie; Yang, Jianzhong; Su, Shao; Wang, Lihua; Fan, Chunhai; Wang, Lianhui

    2016-06-01

    Herein, we presented hierarchical three-dimensional (3D) branched hematite nanorod arrays (NAs) on transparent fluorine-doped tin oxide (FTO) conductive glass substrates, which exhibited high PEC water splitting performance due to the enhancement of mid-visible light harvesting as well as charge separation and transfer. The introduction of a TiO2 underlayer made the as-prepared 3D branched hematite NAs achieve a photocurrent density of 0.61 mA cm-2 at 1.23 V vs. reversible hydrogen electrode (RHE) without high-temperature activation.Herein, we presented hierarchical three-dimensional (3D) branched hematite nanorod arrays (NAs) on transparent fluorine-doped tin oxide (FTO) conductive glass substrates, which exhibited high PEC water splitting performance due to the enhancement of mid-visible light harvesting as well as charge separation and transfer. The introduction of a TiO2 underlayer made the as-prepared 3D branched hematite NAs achieve a photocurrent density of 0.61 mA cm-2 at 1.23 V vs. reversible hydrogen electrode (RHE) without high-temperature activation. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c6nr03855g

  3. Simple and large scale one-pot method for preparation of AgBr-ZnO nanocomposites as highly efficient visible light photocatalyst

    NASA Astrophysics Data System (ADS)

    Pirhashemi, Mahsa; Habibi-Yangjeh, Aziz

    2013-10-01

    Nanocomposites of AgBr-ZnO were successfully prepared in water by refluxing about at 90 °C for 3 h. In this method, zinc nitrate, silver nitrate, sodium bromide and sodium hydroxide were used as starting materials without using any additive and post preparation treatment. The nanocomposites were investigated by XRD, SEM, EDX, UV-vis DRS, and FT-IR techniques. In the nanocomposites, the ZnO has wurtzite hexagonal crystalline phase and loading of AgBr does not change its structure. The SEM images show that with increasing mole fraction of AgBr, surface morphology of the samples is changing to nanorods with smaller diameter. Photocatalytic activity of the nanocomposites was evaluated by degradation of methylene blue (MB) under visible light irradiation. The nanocomposites exhibit higher activity relative to the pure ZnO and AgBr. Among the prepared nanocomposites, the sample with 0.2372 mole fraction of AgBr exhibits highest photocatalytic activity. Moreover, influence of various operational parameters on the degradation reaction was studied and a possible degradation mechanism proposed. Chemical oxygen demand (COD) measurements were applied to check mineralization of MB on the nanocomposite under visible light irradiation.

  4. Co doped ZnO nanowires as visible light photocatalysts

    NASA Astrophysics Data System (ADS)

    Šutka, Andris; Käämbre, Tanel; Pärna, Rainer; Juhnevica, Inna; Maiorov, Mihael; Joost, Urmas; Kisand, Vambola

    2016-06-01

    High aspect ratio cobalt doped ZnO nanowires showing strong photocatalytic activity and moderate ferromagnetic behaviour were successfully synthesized using a solvothermal method and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), vibrating sample magnetometry (VSM) and UV-visible absorption spectroscopy. The photocatalytic activities evaluated for visible light driven degradation of an aqueous methylene orange (MO) solution were higher than for Co doped ZnO nanoparticles at the same doping level and synthesized by the same synthesis route. The rate constant for MO visible light photocatalytic degradation was 1.9·10-3 min-1 in case of nanoparticles and 4.2·10-3 min-1 in case of nanowires. We observe strongly enhanced visible light photocatalytic activity for moderate Co doping levels, with an optimum at a composition of Zn0.95Co0.05O. The enhanced photocatalytic activities of Co doped ZnO nanowires were attributed to the combined effects of enhanced visible light absorption at the Co sites in ZnO nanowires, and improved separation efficiency of photogenerated charge carriers at optimal Co doping.

  5. Fabrication of hierarchically structured novel redox-mediator-free ZnIn2S4 marigold flower/Bi2WO6 flower-like direct Z-scheme nanocomposite photocatalysts with superior visible light photocatalytic efficiency.

    PubMed

    Jo, Wan-Kuen; Lee, Joon Yeob; Natarajan, Thillai Sivakumar

    2016-01-14

    Novel, hierarchically nanostructured, redox-mediator-free, direct Z-scheme nanocomposite photocatalysts were synthesized via a facile hydrothermal method followed by wet-impregnation. The photocatalysts had a ZnIn2S4 marigold flower/Bi2WO6 flower-like (ZIS/BW) composition, which led to superior visible-light photocatalytic efficiency with excellent stability and reusability. The hierarchical marigold flower and flower-like morphologies of ZIS and BW were confirmed by FE-SEM and TEM analyses and further revealed that formation of the hierarchical marigold flower-like ZIS structure followed the formation of nanoparticles, growth of the ZIS petals, and self-assembly of these species. Powder X-ray diffraction and UV-visible diffuse reflectance spectroscopy analyses as well as the enhancement in the surface area and pore volume of the composite provide evidence of strong coupling between hierarchical BW and the ZIS nanostructures. The efficiency of the hierarchical direct Z-scheme photocatalysts for photocatalytic decomposition of metronidazole (MTZ) under visible-light irradiation was evaluated. The hierarchically nanostructured ZIS/BW nanocomposites with 50% loading of ZIS exhibited superior visible-light photocatalytic decomposition efficiency (PDE) compared to the composites with other percentages of ZIS and pristine BW. A probable mechanism for the enhanced photocatalytic efficiency of the ZIS/BW composite in MTZ degradation under visible irradiation was proposed. Radical quenching studies demonstrated that h(+), ˙OH, and O2˙(-) are the primary reactive radicals involved, which confirms that the Z-scheme mechanism of transfer of charge carriers accounts for the higher photocatalytic activity. Kinetic analysis revealed that MTZ degradation follows pseudo-first-order kinetics and the reusability of the composite catalyst for up to four cycles confirms the excellent stability of the hierarchical structure. It is concluded that the hierarchical structure of the ZIS

  6. Traffic light to vehicle visible light communication channel characterization.

    PubMed

    Cui, Kaiyun; Chen, Gang; Xu, Zhengyuan; Roberts, Richard D

    2012-09-20

    Outdoor visible light communication (VLC) between an LED traffic light and an automobile has been proposed for intelligent transportation system development. An unobstructed line-of-sight (LOS) channel has to be guaranteed for this communication system. In this paper, an analytical LOS path loss model is proposed and validated by the measurement results. Commercial-off-the-shelf (COTS) LED traffic lights are characterized for use as transmitters and possible interference sources are studied, such as background solar radiation and artificial lighting. Accordingly, the performance of an outdoor VLC system is evaluated using different modulation schemes.

  7. Pupillary efficient lighting system

    DOEpatents

    Berman, Samuel M.; Jewett, Don L.

    1991-01-01

    A lighting system having at least two independent lighting subsystems each with a different ratio of scotopic illumination to photopic illumination. The radiant energy in the visible region of the spectrum of the lighting subsystems can be adjusted relative to each other so that the total scotopic illumination of the combined system and the total photopic illumination of the combined system can be varied independently. The dilation or contraction of the pupil of an eye is controlled by the level of scotopic illumination and because the scotopic and photopic illumination can be separately controlled, the system allows the pupil size to be varied independently of the level of photopic illumination. Hence, the vision process can be improved for a given level of photopic illumination.

  8. Soft chemical synthesis of Ag{sub 3}SbS{sub 3} with efficient and recyclable visible light photocatalytic properties

    SciTech Connect

    Gusain, Meenakshi; Rawat, Pooja; Nagarajan, Rajamani

    2014-12-15

    Highlights: • Highly crystalline Ag{sub 3}SbS{sub 3} synthesized using soft chemical approach. • First time report of photocatalytic activity of Ag{sub 3}SbS{sub 3}. • Ag{sub 3}SbS{sub 3} degraded the harmful organic dyes rapidly under visible radiation. • Pseudo first order kinetics have been followed in these sets of reactions. • Up to 90% of Methylene Blue degraded even after 4th cycle of catalyst reuse. • Structure of catalyst is intact after reuse. • As the catalyst is heavy, its separation after use is quite simple. - Abstract: Application of Ag{sub 3}SbS{sub 3}, obtained by soft chemical approach involving rapid reaction of air stable metal–thiourea complexes in ethylene glycol medium, as visible light photocatalyst for the degradation of dye solutions was investigated. Ag{sub 3}SbS{sub 3} was confirmed by high resolution powder X-ray diffraction pattern and its no defined morphology was present in SEM images. From UV–vis spectroscopy measurements, optical band gap of 1.77 eV was deduced for Ag{sub 3}SbS{sub 3}. Rapid degradation kinetics and recyclability was exhibited by Ag{sub 3}SbS{sub 3} towards Methylene Blue, Methyl Orange, Malachite Green, and Rhodamine 6G dye solutions under visible radiation. All these processes followed pseudo first order kinetics. High surface area (6.39 m{sup 2}/g), with mesopores (3.81 nm), arising from solvent mediated synthesis of Ag{sub 3}SbS{sub 3} has been correlated to its catalytic activity.

  9. Cationic Polymerization of Vinyl Ethers Controlled by Visible Light.

    PubMed

    Kottisch, Veronika; Michaudel, Quentin; Fors, Brett P

    2016-12-07

    Photoinitiated cationic polymerizations are widely used in industrial processes; however, gaining photocontrol over chain growth would expand the utility of these methods and facilitate the design of novel complex architectures. We report herein a cationic polymerization regulated by visible light. This polymerization proceeds under mild conditions: a combination of a metal-free photocatalyst, a chain-transfer agent, and light irradiation enables the synthesis of various poly(vinyl ether)s with good control over molecular weight and dispersity as well as excellent chain-end fidelity. Significantly, photoreversible cation formation in this system enables efficient control over polymer chain growth with light.

  10. Synthesis of CdS hollow spheres coupled with g-C3N4 as efficient visible-light-driven photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Chunyan; Lu, Yongfeng; Jiang, Qingqing; Hu, Juncheng

    2016-09-01

    CdS hollow spheres (CdS HS) coupled with graphitic carbon nitride (g-C3N4) photocatalysts are synthesized and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflection spectroscopy (DRS), x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and photoluminescence spectroscopy (PL). The effect of CdS content on CdS HS/g-C3N4 activity is investigated by the degradation of Rhodamine B (RhB). The sample of 20 wt% CdS content shows the best photocatalytic performance under visible-light irradiation, with the corresponding RhB degradation rate reaching 97.3%. The excellent photoactivity of CdS HS/g-C3N4 is attributed to the synergistic effect of g-C3N4 and CdS HS. A possible photocatalytic mechanism of the CdS HS/g-C3N4 composite is proposed and corroborated by PL.

  11. Synthesis of CdS hollow spheres coupled with g-C3N4 as efficient visible-light-driven photocatalysts.

    PubMed

    Zhang, Chunyan; Lu, Yongfeng; Jiang, Qingqing; Hu, Juncheng

    2016-09-02

    CdS hollow spheres (CdS HS) coupled with graphitic carbon nitride (g-C3N4) photocatalysts are synthesized and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflection spectroscopy (DRS), x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and photoluminescence spectroscopy (PL). The effect of CdS content on CdS HS/g-C3N4 activity is investigated by  the degradation of Rhodamine B (RhB). The sample of 20 wt% CdS content shows the best photocatalytic performance under visible-light irradiation, with the corresponding RhB degradation rate reaching 97.3%. The excellent photoactivity of CdS HS/g-C3N4 is attributed to the synergistic effect of g-C3N4 and CdS HS. A possible photocatalytic mechanism of the CdS HS/g-C3N4 composite is proposed and corroborated by PL.

  12. Fabrication of cation-doped BaTaO2N photoanodes for efficient photoelectrochemical water splitting under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Higashi, Masanobu; Yamanaka, Yuta; Tomita, Osamu; Abe, Ryu

    2015-10-01

    A series of cation-doped BaTaO2N particle was synthesized to control the donor density in the bulk for improving the performance of photoelectrochemical water splitting on porous BaTaO2N photoanodes under visible light. Among the dopants (Mo6+, W6+, Zr4+, and Ti4+) examined, Mo6+ cations can be introduced into the Ta5+ site up to 5 mol. % without producing any impurity phases; the donor density of BaTaO2N was indeed increased significantly by introducing higher ratio of Mo6+ dopant. The porous photoanodes of Mo-doped BaTaO2N showed much higher photocurrent than others including undoped one and also exhibited much improved performance in photoelectrochemical water splitting into H2 and O2 after loaded with cobalt oxide cocatalyst and coupled with Pt counter electrode.

  13. High-efficient photo-electron transport channel in SiC constructed by depositing cocatalysts selectively on specific surface sites for visible-light H2 production

    NASA Astrophysics Data System (ADS)

    Wang, Da; Peng, Yuan; Wang, Qi; Pan, Nanyan; Guo, Zhongnan; Yuan, Wenxia

    2016-04-01

    Control cocatalyst location on a metal-free semiconductor to promote surface charge transfer for decreasing the electron-hole recombination is crucial for enhancing solar energy conversion. Based on the findings that some metals have an affinity for bonding with the specific atoms of polar semiconductors at a heterostructure interface, we herein control Pt deposition selectively on the Si sites of a micro-SiC photocatalyst surface via in-situ photo-depositing. The Pt-Si bond forming on the interface constructs an excellent channel, which is responsible for accelerating photo-electron transfer from SiC to Pt and then reducing water under visible-light. The hydrogen production is enhanced by two orders of magnitude higher than that of bare SiC, and 2.5 times higher than that of random-depositing nano-Pt with the same loading amount.

  14. An efficient p-n heterojunction photocatalyst constructed from a coordination polymer nanoplate and a partically reduced graphene oxide for visible-light hydrogen production.

    PubMed

    Xu, Xinxin; Lu, Tingting; Liu, Xiaoxia; Wang, Xiuli

    2015-10-05

    A new p-n heterojunction photocatalyst has been synthesized successfully through chemical-bond-mediated combination of coordination polymer nanoplates (CPNPs) and partially reduced graphene oxide (PRGO) with a simple colloidal blending process. Photocatalytic H2 production by the p-n heterojunction photocatalyst PRGO/CPNP was investigated under visible-light irradiation, which illustrates that PRGO/CPNP exhibits a much higher photocatalytic H2 production rate than neat the CPNPs. The improvement of this photocatalytic property can be attributed to the inner electrical field formed in the p-n heterojunction, which impedes recombination of photogenerated electrons and holes. In PRGO/CPNP, the existence of the p-n heterojunction has been confirmed by electrochemical methods clearly. For PRGO/CPNP, the reductive degree of the PRGO has a great influence on the H2 production rate and an ideal condition to get a PRGO/CPNP photocatalyst with higher performance has been obtained.

  15. Efficient Geometric Sound Propagation Using Visibility Culling

    NASA Astrophysics Data System (ADS)

    Chandak, Anish

    2011-07-01

    Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying

  16. Advances and prospects in visible light communications

    NASA Astrophysics Data System (ADS)

    Hongda, Chen; Chunhui, Wu; Honglei, Li; Xiongbin, Chen; Zongyu, Gao; Shigang, Cui; Qin, Wang

    2016-01-01

    Visible light communication (VLC) is an emerging technology in optical wireless communication (OWC) that has attracted worldwide research in recent years. VLC can combine communication and illumination together, which could be applied in many application scenarios such as visible light communication local area networks (VLANs), indoor localization, and intelligent lighting. In recent years, pioneering and significant work have been made in the field of VLC. In this paper, an overview of the recent progress in VLC is presented. We also demonstrate our recent experiment results including bidirectional 100 Mbit/s VLAN or Li-Fi system based on OOK modulation without blue filter. The VLC systems that we proposed are good solutions for high-speed VLC application systems with low-cost and low-complexity. VLC technology shows a bright future due to its inherent advantages, shortage of RF spectra and ever increasing popularity of white LEDs. Project supported by the National High Technology Research and Development Program of China (Nos. 2015AA033303, 2013AA013602, 2013AA013603, 2013AA03A104), the National Natural Science Foundation of China (Nos. 61178051, 61321063, 61335010, 61178048, 61275169), and the National Basic Research Program of China (Nos. 2013CB329205, 2011CBA00608).

  17. Two-dimensional TiO2-based nanosheets co-modified by surface-enriched carbon dots and Gd2O3 nanoparticles for efficient visible-light-driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Lu, Dingze; Fang, Pengfei; Ding, Junqian; Yang, Minchen; Cao, Yufei; Zhou, Yawei; Peng, Kui; Kondamareddy, Kiran Kumar; Liu, Min

    2017-02-01

    Two-dimensional TiO2-based nanosheets (TNSs) co-modified by surface-enriched carbon dots (CDs) and Gd2O3 nanoparticles: (Gd-C-TNSs), capable of exhibiting visible-light-driven photo catalysis were synthesized using a two-pot hydrothermal route. The samples had a sheet-like structure, thickness of approximately 3.6 nm, large specific surface area of 240-350 cm2/g. The CDs (2-3 nm) and Gd2O3 nanoparticles (1-2 nm) were highly dispersed over the surface of the nanosheets. The co-modification by Gd2O3 nanoparticles and CDs influenced the crystallinity, crystal structure, and surface area of the TNSs, and improved the visible-light absorption. Surface photocurrent and fluorescence spectral studies revealed that the photo-generated charge carrier separation efficiency could be improved by an appropriate amount of modification. A very high efficiency was obtained using 0.5 at% Gd/Ti and 3.0 g/L of CDs. The visible-light-induced photocatalytic activity is enhanced under the isolated Cr(VI) system, isolated Rhodamin B (RhB) system, and the synergism between RhB degradation and Cr(VI) reduction for the Gd-C-TNSs photocatalysts. Initially, the photocatalytic activity gradually increased with an increase in the amount of CDs, and then decreased after attaining a maximum, in the case where 0.5 at% Gd/Ti and 3.0 g/L of CDs were used. The enhancement in the photocatalytic activity was attributed to the synergetic effect of the Gd2O3 nanoparticles, TNSs, and CDs in the Gd-C-TNSs composites. The effect led to a fast separation and slow recombination of photo-induced electron-hole pairs. An alternate mechanism for enhanced visible-light photocatalytic activity was also considered.

  18. Adaptive filtering for white-light LED visible light communication

    NASA Astrophysics Data System (ADS)

    Hsu, Chin-Wei; Chen, Guan-Hong; Wei, Liang-Yu; Chow, Chi-Wai; Lu, I.-Cheng; Liu, Yen-Liang; Chen, Hsing-Yu; Yeh, Chien-Hung; Liu, Yang

    2017-01-01

    White-light phosphor-based light-emitting diode (LED) can be used to provide lighting and visible light communication (VLC) simultaneously. However, the long relaxation time of phosphor can reduce the modulation bandwidth and limit the VLC data rate. Recent VLC works focus on improving the LED modulation bandwidths. Here, we propose and demonstrate the use of adaptive Volterra filtering (AVF) to increase the data rate of a white-light LED VLC system. The detailed algorithm and implementation of the AVF for the VLC system have been discussed. Using our proposed electrical frontend circuit and the proposed AVF, a significant data rate enhancement to 700.68 Mbit/s is achieved after 1-m free-space transmission using a single white-light phosphor-based LED.

  19. Tubular nitrogen-doped TiO2 samples with efficient photocatalytic properties based on long-lived charge separation under visible-light irradiation: synthesis, characterization and reactivity.

    PubMed

    Hirose, Yoshikazu; Itadani, Atsushi; Ohkubo, Takahiro; Hashimoto, Hideki; Takada, Jun; Kittaka, Shigeharu; Kuroda, Yasushige

    2017-03-27

    A nitrogen-doped TiO2 sample was prepared at 413 K by direct hydrothermal treatment of titanium isopropoxide in an aqueous solution of NH3. This new material has a large specific surface area of ca. 220 m(2) g(-1) because of its tubular structure and it exhibits a prominent absorption feature in the region between 400 and 650 nm. It responds strongly to light in the visible region, which is key to its potential performance as a photocatalyst that may improve the efficiency for utilization of solar energy. Actually, this sample exhibits very efficient activity in the decomposition of CH3COOH under visible light among the samples prepared. This effective photocatalysis of the present sample was substantiated by characteristic spectroscopic features, such as: (1) an optical absorption band with λ > 400 nm because of the doped nitrogen species; (2) the formation of EPR-active, long-lived N˙ and O2(-) species, as well as N2(-) species, under visible-light irradiation in the O2 or N2 adsorption process at 300 K by way of the monovalent nitrogen ions in the bulk (both substitutional and interstitial); (3) the existence of IR-active O2 species adsorbed on the nitrogen-doped TiO2 sample even without light irradiation; and (4) an XPS N1s band around 399.6 eV that is assignable to the N(-) species. The amounts of N˙ and O2(-) species formed in the nitrogen-doped TiO2 sample under visible-light irradiation correlated well with the levels of reactivity observed in the decomposition of CH3COOH on the samples with varying amounts and types of doped nitrogen species. We conclude that the photoactive N˙ and O2(-) species created in the present sample are responsible for the decomposition of organic materials assisted by visible light irradiation. These features may be attributable to the interface between the sample's tubular structure and anatase with poor crystallinity, which probably causes the resistance to the recombination of electron-hole pairs formed by irradiation.

  20. Solvothermal syntheses of Bi and Zn co-doped TiO2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light.

    PubMed

    Li, Juan-Juan; Cai, Song-Cai; Xu, Zhen; Chen, Xi; Chen, Jin; Jia, Hong-Peng; Chen, Jing

    2017-03-05

    This study investigated the effects of Bi doped and Bi-Zn co-doped TiO2 on photodegradation of gaseous toluene. The doped TiO2 with various concentration of metal was prepared using the solvothermal route and characterized by SEM, XRD, Raman, BET, DRS, XPS, PL and EPR. Their photocatalytic activities under visible-light irradiation were drastically influenced by the dopant content. The results showed that moderate metal doping levels were obviously beneficial for the toluene degradation, while high doping levels suppressed the photocatalytic activity. The photocatalytic degradation of toluene over TiBi1.9%O2 and TiBi1.9%Zn1%O2 can reach to 51% and 93%, respectively, which are much higher than 25% of TiO2. Bi doping into TiO2 lattice generates new intermediate energy level of Bi below the CB edge of TiO2. The electron excitation from the VB to Bi orbitals results in the decreased band gap, extended absorption of visible-light and thus enhances its photocatalytic efficiency. Zn doping not only further enhances the absorption in this visible-light region, but also Zn dopant exists as the form of ZnO crystallites located on the interfaces of TiO2 agglomerates and acts as a mediator of interfacial charge transfer to suppress the electron-hole recombination. These synergistic effects are responsible for the enhanced photocatalytic performance.

  1. Lethal effects of short-wavelength visible light on insects.

    PubMed

    Hori, Masatoshi; Shibuya, Kazuki; Sato, Mitsunari; Saito, Yoshino

    2014-12-09

    We investigated the lethal effects of visible light on insects by using light-emitting diodes (LEDs). The toxic effects of ultraviolet (UV) light, particularly shortwave (i.e., UVB and UVC) light, on organisms are well known. However, the effects of irradiation with visible light remain unclear, although shorter wavelengths are known to be more lethal. Irradiation with visible light is not thought to cause mortality in complex animals including insects. Here, however, we found that irradiation with short-wavelength visible (blue) light killed eggs, larvae, pupae, and adults of Drosophila melanogaster. Blue light was also lethal to mosquitoes and flour beetles, but the effective wavelength at which mortality occurred differed among the insect species. Our findings suggest that highly toxic wavelengths of visible light are species-specific in insects, and that shorter wavelengths are not always more toxic. For some animals, such as insects, blue light is more harmful than UV light.

  2. Lethal effects of short-wavelength visible light on insects

    NASA Astrophysics Data System (ADS)

    Hori, Masatoshi; Shibuya, Kazuki; Sato, Mitsunari; Saito, Yoshino

    2014-12-01

    We investigated the lethal effects of visible light on insects by using light-emitting diodes (LEDs). The toxic effects of ultraviolet (UV) light, particularly shortwave (i.e., UVB and UVC) light, on organisms are well known. However, the effects of irradiation with visible light remain unclear, although shorter wavelengths are known to be more lethal. Irradiation with visible light is not thought to cause mortality in complex animals including insects. Here, however, we found that irradiation with short-wavelength visible (blue) light killed eggs, larvae, pupae, and adults of Drosophila melanogaster. Blue light was also lethal to mosquitoes and flour beetles, but the effective wavelength at which mortality occurred differed among the insect species. Our findings suggest that highly toxic wavelengths of visible light are species-specific in insects, and that shorter wavelengths are not always more toxic. For some animals, such as insects, blue light is more harmful than UV light.

  3. Improvement of external quantum efficiency depressed by visible light-absorbing hole transport material in solid-state semiconductor-sensitized heterojunction solar cells.

    PubMed

    Lim, Choong-Sun; Im, Sang Hyuk; Chang, Jeong Ah; Lee, Yong Hui; Kim, Hi-jung; Seok, Sang Il

    2012-01-21

    A mesoporous (mp)-TiO(2)/Sb(2)S(3)/P3HT [poly(3-hexylthiophene)] heterojunction solar cell displays reduced external quantum efficiency (EQE) at a wavelength of approximately 650 nm. This loss in EQE is due to incomplete charge carrier transport because the transportation of charge carriers generated in P3HT by the absorption of light into Sb(2)S(3) was inefficient, and consequently, the carriers recombined. The depression of the EQE was greatly relieved by introducing the porous structure formed by thermal decomposition of 2,2'-azobisisobutyronitrile (AIBN) into the P3HT layer.

  4. Energy-efficient photodegradation of azo dyes with TiO(2) nanoparticles based on photoisomerization and alternate UV-visible light.

    PubMed

    Zhang, Hao; Chen, Da; Lv, Xiaojun; Wang, Ying; Chang, Haixin; Li, Jinghong

    2010-02-01

    Herein, we demonstrated a UV-vis light alternate photocatalysis (UVLAP) strategy in the photodegradation of azo dyes. The UVLAP of azo dyes over TiO(2) catalysts exhibited significantly higher energy efficiency than the conventional UV process by 40%, which was attributed to the photoisomerization of azo dyes and the resulting diversity of dyes' cis and trans states in interfacial properties, including conductance and spatial effects. This UVLAP strategy could contribute to the energy-saving photodegradation of azo dyes and other pollutants with photoisomerization properties and facilitate the practical application of TiO(2) in the environmental remediation.

  5. Controlled synthesis of {001} facets-dominated dye-sensitized BiOCl with high photocatalytic efficiency under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Hongbin; Yu, Xiang; Zhu, Yi; Fu, Xionghui; Zhang, Yuanming

    2016-08-01

    High-quality BiOCl with {001} facets were successfully synthesized via a facile solvothermal method by controlling the volume ratio of ethanol (ET) and ethylene glycol (EG). The diameters of BiOCl nanosheets with {001} facets varied from 600 to 50 nm with the increase of EG content while the thickness nearly remained the same (˜20 nm). In the meantime, the morphologies of BiOCl turned into 3D hierarchical microspheres from 2D nanosheets. The 91.84 % {001} facets-exposed BiOCl nanosheets with diameter of 300-600 nm exhibited the best photocatalytic activity for the degradation of rhodamine B (RhB) under visible-light irradiation on account of the strong adsorption property of the effective electron injection as well as the sequent reactive radical formation. More importantly, the RhB-sensitized BiOCl nanosheets showed effective photocatalytic property for breaking down methylene blue (MB) and methyl orange (MO) while RhB keeping almost intact until MB and MO had been photodegraded. It was found that the sensitizer radical cation (·RhB+) could react with MB and MO and their suitable redox potential confirms that as well. These findings may provide a promising approach method for synthesizing other metal oxyhalide materials with controllable diameters of nanosheets and deepen our comprehending for the role of the semiconductor in the sensitization process.

  6. Fabrication of cation-doped BaTaO{sub 2}N photoanodes for efficient photoelectrochemical water splitting under visible light irradiation

    SciTech Connect

    Higashi, Masanobu; Yamanaka, Yuta; Tomita, Osamu; Abe, Ryu

    2015-10-01

    A series of cation-doped BaTaO{sub 2}N particle was synthesized to control the donor density in the bulk for improving the performance of photoelectrochemical water splitting on porous BaTaO{sub 2}N photoanodes under visible light. Among the dopants (Mo{sup 6+}, W{sup 6+}, Zr{sup 4+}, and Ti{sup 4+}) examined, Mo{sup 6+} cations can be introduced into the Ta{sup 5+} site up to 5 mol. % without producing any impurity phases; the donor density of BaTaO{sub 2}N was indeed increased significantly by introducing higher ratio of Mo{sup 6+} dopant. The porous photoanodes of Mo-doped BaTaO{sub 2}N showed much higher photocurrent than others including undoped one and also exhibited much improved performance in photoelectrochemical water splitting into H{sub 2} and O{sub 2} after loaded with cobalt oxide cocatalyst and coupled with Pt counter electrode.

  7. 33 CFR 83.22 - Visibility of lights (Rule 22).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Visibility of lights (Rule 22... INLAND NAVIGATION RULES RULES Lights and Shapes § 83.22 Visibility of lights (Rule 22). The lights prescribed in these Rules shall have an intensity as specified in Annex I to these Rules, so as to be...

  8. 33 CFR 83.22 - Visibility of lights (Rule 22).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Visibility of lights (Rule 22... INLAND NAVIGATION RULES RULES Lights and Shapes § 83.22 Visibility of lights (Rule 22). The lights prescribed in these Rules shall have an intensity as specified in Annex I to these Rules, so as to be...

  9. 33 CFR 83.22 - Visibility of lights (Rule 22).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Visibility of lights (Rule 22... INLAND NAVIGATION RULES RULES Lights and Shapes § 83.22 Visibility of lights (Rule 22). The lights prescribed in these Rules shall have an intensity as specified in Annex I to these Rules, so as to be...

  10. 33 CFR 83.22 - Visibility of lights (Rule 22).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Visibility of lights (Rule 22... INLAND NAVIGATION RULES RULES Lights and Shapes § 83.22 Visibility of lights (Rule 22). The lights prescribed in these Rules shall have an intensity as specified in Annex I to these Rules, so as to be...

  11. Transfer of ultraviolet photon energy into fluorescent light in the visible path represents a new and efficient protection mechanism of sunscreens

    NASA Astrophysics Data System (ADS)

    Vergou, Theognosia; Patzelt, Alexa; Richter, Heike; Schanzer, Sabine; Zastrow, Leonhard; Golz, Karin; Doucet, Olivier; Antoniou, Christina; Sterry, Wolfram; Lademann, Juergen

    2011-10-01

    The development of sunscreens with high sun protection factor (SPF) values but low filter concentrations is the ultimate goal. The purpose of the present study was to investigate why a sunscreen spray and cream with different concentrations of the same UV-filters provided the same SPF. Therefore, the homogeneity of the distribution of both sunscreens was investigated by laser scanning microscopy (LSM) and tape stripping (TS). Additionally, the energy transfer mechanisms of the sunscreens on the skin were analyzed. The TS and LSM showed a better homogeneity of the distribution of the spray. With Wood's light, a total absorption of the irradiation was detected in the spray area. In contrast, after cream treatment, an intensive fluorescent signal was observed. It was demonstrated that this fluorescent signal was caused by nonthermal energy transferred from the UV-filters to one compound of the cream releasing its excitation energy by fluorescence. This nonthermal energy transfer seemed to be the reason for the high efficiency of the cream, which is subjected to thermal relaxation. The transfer of UV photon energy into fluorescent light represents a new approach to increase the efficiency of sunscreens and could form the basis for a new generation of sunscreens.

  12. Transfer of ultraviolet photon energy into fluorescent light in the visible path represents a new and efficient protection mechanism of sunscreens.

    PubMed

    Vergou, Theognosia; Patzelt, Alexa; Richter, Heike; Schanzer, Sabine; Zastrow, Leonhard; Golz, Karin; Doucet, Olivier; Antoniou, Christina; Sterry, Wolfram; Lademann, Juergen

    2011-10-01

    The development of sunscreens with high sun protection factor (SPF) values but low filter concentrations is the ultimate goal. The purpose of the present study was to investigate why a sunscreen spray and cream with different concentrations of the same UV-filters provided the same SPF. Therefore, the homogeneity of the distribution of both sunscreens was investigated by laser scanning microscopy (LSM) and tape stripping (TS). Additionally, the energy transfer mechanisms of the sunscreens on the skin were analyzed. The TS and LSM showed a better homogeneity of the distribution of the spray. With Wood's light, a total absorption of the irradiation was detected in the spray area. In contrast, after cream treatment, an intensive fluorescent signal was observed. It was demonstrated that this fluorescent signal was caused by nonthermal energy transferred from the UV-filters to one compound of the cream releasing its excitation energy by fluorescence. This nonthermal energy transfer seemed to be the reason for the high efficiency of the cream, which is subjected to thermal relaxation. The transfer of UV photon energy into fluorescent light represents a new approach to increase the efficiency of sunscreens and could form the basis for a new generation of sunscreens.

  13. Macroscopic invisibility cloaking of visible light

    PubMed Central

    Chen, Xianzhong; Luo, Yu; Zhang, Jingjing; Jiang, Kyle; Pendry, John B.; Zhang, Shuang

    2011-01-01

    Invisibility cloaks, which used to be confined to the realm of fiction, have now been turned into a scientific reality thanks to the enabling theoretical tools of transformation optics and conformal mapping. Inspired by those theoretical works, the experimental realization of electromagnetic invisibility cloaks has been reported at various electromagnetic frequencies. All the invisibility cloaks demonstrated thus far, however, have relied on nano- or micro-fabricated artificial composite materials with spatially varying electromagnetic properties, which limit the size of the cloaked region to a few wavelengths. Here, we report the first realization of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding, for a specific light polarization, three-dimensional objects of the scale of centimetres and millimetres. Our work opens avenues for future applications with macroscopic cloaking devices. PMID:21285954

  14. PAPR analysis for OFDM visible light communication.

    PubMed

    Wang, Jiaheng; Xu, Yang; Ling, Xintong; Zhang, Rong; Ding, Zhi; Zhao, Chunming

    2016-11-28

    Orthogonal frequency-division multiplexing (OFDM) is a practical technology in visible light communication (VLC) for high-speed transmissions. However, one of its operational limitations is the peak-to-average power ratio (PAPR) of the transmitted signal. In this paper, we analyze the PAPR distributions of four VLC OFDM schemes, namely DC-biased optical OFDM (DCO-OFDM), asymmetrically clipped optical OFDM (ACO-OFDM), pulse amplitude modulated discrete multitone (PAM-DMT), and Flip-OFDM. Both lower and upper clippings are considered. We analytically derive the complementary cumulative distribution functions (CCDFs) of the PAPRs of the clipped VLC OFDM signals, and investigate the impact of lower and upper clippings on PAPR distributions. Our analytical results, as verified by numerical simulations, provide useful insights and guidelines for VLC OFDM system designs.

  15. Visible Light Responsive Catalyst for Air Water Purification Project

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2014-01-01

    Investigate and develop viable approaches to render the normally UV-activated TIO2 catalyst visible light responsive (VLR) and achieve high and sustaining catalytic activity under the visible region of the solar spectrum.

  16. Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination.

    PubMed

    Dong, Fan; Wang, Zhenyu; Li, Yuhan; Ho, Wing-Kei; Lee, S C

    2014-09-02

    The immobilization of a photocatalyst on a proper support is pivotal for practical environmental applications. In this work, graphitic carbon nitride (g-C3N4) as a rising visible light photocatalyst was first immobilized on structured Al2O3 ceramic foam by a novel in situ approach. Immobilized g-C3N4 was applied for photocatalytic removal of 600 ppb level NO in air under real indoor illumination of an energy-saving lamp. The photocatalytic activity of immobilized g-C3N4 was gradually improved as the pyrolysis temperature was increased from 450 to 600 °C. The optimized conditions for g-C3N4 immobilization on Al2O3 supports can be achieved at 600 °C for 2 h. The NO removal ratio could reach up to 77.1%, exceeding that of other types of well-known immobilized photocatalysts. Immobilized g-C3N4 was stable in activity and can be used repeatedly without deactivation. The immobilization of g-C3N4 on Al2O3 ceramic foam was found to be firm enough to overwhelm the continuous air flowing, which can be ascribed to the special chemical interaction between g-C3N4 and Al2O3. On the basis of the 5,5'-dimethyl-1-pirroline-N-oxide electron spin resonance (DMPO ESR) spin trapping and reaction intermediate monitoring, the active species produced from g-C3N4 under illumination were confirmed and the reaction mechanism of photocatalytic NO oxidation by g-C3N4 was revealed. The present work could provide new perspectives for promoting large-scale environmental applications of supported photocatalysts.

  17. Visible Light Mediated Photoredox Catalytic Arylation Reactions.

    PubMed

    Ghosh, Indrajit; Marzo, Leyre; Das, Amrita; Shaikh, Rizwan; König, Burkhard

    2016-08-16

    Introducing aryl- and heteroaryl moieties into molecular scaffolds are often key steps in the syntheses of natural products, drugs, or functional materials. A variety of cross-coupling methods have been well established, mainly using transition metal mediated reactions between prefunctionalized substrates and arenes or C-H arylations with functionalization in only one coupling partner. Although highly developed, one drawback of the established sp2-sp2 arylations is the required transition metal catalyst, often in combination with specific ligands and additives. Therefore, photoredox mediated arylation methods have been developed as alternative over the past decade. We begin our survey with visible light photo-Meerwein arylation reactions, which allow C-H arylation of heteroarenes, enones, alkenes, and alkynes with organic dyes, such as eosin Y, as the photocatalyst. A good number of examples from different groups illustrate the broad application of the reaction in synthetic transformations. While initially only photo-Meerwein arylation-elimination processes were reported, the reaction was later extended to photo-Meerwein arylation-addition reactions giving access to the photoinduced three component synthesis of amides and esters from alkenes, aryl diazonium salts, nitriles or formamides, respectively. Other substrates with redox-active leaving groups have been explored in photocatalyzed arylation reactions, such as diaryliodonium and triarylsulfonium salts, and arylsulfonyl chlorides. We discus some examples with their scope and limitations. The scope of arylation reagents for photoredox reactions was extended to aryl halides. The challenge here is the extremely negative reduction potential of aryl halides in the initial electron transfer step compared to, e.g., aryl diazonium or diaryliodonium salts. In order to reach reduction potentials over -2.0 V vs SCE two consecutive photoinduced electron transfer steps were used. The intermediary formed colored radical

  18. Catadioptric lenses in Visible Light Communications

    NASA Astrophysics Data System (ADS)

    Garcia-Marquez, J.; Valencia, J. C.; Perez, H.; Topsu, S.

    2015-04-01

    Since few years ago, visible light communications (VLC) have experience an accelerated interest from a research point of view. The beginning of this decade has seen many improvements in VLC at an electronic level. High rates of transmission at low bit error ratios (BER) have been reported. A few numbers of start-ups have initiated activities to offer a variety of applications ranging from indoor geo-localization to internet, but in spite of these advancements, some other problems arise. Long-range transmissions mean a high BER which reduce the number of applications. In this sense, new redesigned optical collectors or in some cases, optical reflectors must be considered to ensure a low BER at higher distance transmissions. Here we also expose a preliminary design of a catadioptric and monolithical lens for a LI-FI receiver with two rotationally symmetrical main piecewise surfaces za and zb. These surfaces are represented in a system of cylindrical coordinates with an anterior surface za with a central and refractive sector surrounded by a peripheral reflective sector and a back piecewise surface zb with a central refractive sector and a reflective sector, both characterized as ideal for capturing light within large acceptance angles.

  19. Hexaarylbiimidazoles as Visible Light Thiol–Ene Photoinitiators

    PubMed Central

    Clarkson, Brian H.; Scott, Timothy F.

    2015-01-01

    Objectives The aim of this study is to determine if hexaarylbiimidazoles (HABIs) are efficient, visible light-active photoinitiators for thiol–ene systems. We hypothesize that, owing to the reactivity of lophyl radicals with thiols and the necessarily high concentration of thiol in thiol–ene formulations, HABIs will effectively initiate thiol–ene polymerization upon visible light irradiation. Methods UV-vis absorption spectra of photoinitiator solutions were obtained using UV-vis spectroscopy, while EPR spectroscopy was used to confirm radical species generation upon HABI photolysis. Functional group conversions during photopolymerization were monitored using FTIR spectroscopy, and thermomechanical properties were determined using dynamic mechanical analysis. Results The HABI derivatives investigated exhibit less absorptivity than camphorquinone at 469 nm; however, they afford increased sensitivity at this wavelength when compared with bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide. Photolysis of the investigated HABIs affords lophyl radicals. Affixing hydroxyhexyl functional groups to the HABI core significantly improved solubility. Thiol–ene resins formulated with HABI photoinitiators polymerized rapidly upon irradiation with 469 nm. The glass transition temperatures of the thiol–ene resin formulated with a bis(hydroxyhexyl)-functionalized HABI and photopolymerized at room and body temperature were 49.5±0.5°C and 52.2±0.1°C, respectively. Significance Although thiol–enes show promise as continuous phases for composite dental restorative materials, they show poor reactivity with the conventional camphorquinone/tertiary amine photoinitiation system. Conversely, despite their relatively low visible light absorptivity, HABI photoinitiators afford rapid thiol–ene photopolymerization rates. Moreover, minor structural modifications suggest pathways for improved HABI solubility and visible light absorption. PMID:26119702

  20. Gigabit polarization division multiplexing in visible light communication.

    PubMed

    Wang, Yuanquan; Yang, Chao; Wang, Yiguang; Chi, Nan

    2014-04-01

    In this Letter, polarization division multiplexing is proposed and experimentally demonstrated for the first time that we know of, in visible light communication systems based on incoherent light emitting diodes and two orthogonal groups of linear polarizers. Spectrally efficient 16-ary quadrature amplitude modulation Nyquist single carrier frequency domain equalization is employed to obtain a maximum spectral efficiency. We achieve an aggregate data rate of 1  Gb/s, with bit error rate results for two polarization directions both below the 7% pre-forward-error-correction threshold of 3.8×10(-3) after 80 cm free-space transmission. Moreover, the cross talk between x and y polarization is also discussed and analyzed.

  1. TiO2-coated carbon nanotubes: A redshift enhanced photocatalysis at visible light

    NASA Astrophysics Data System (ADS)

    Lu, Sheng-Yi; Tang, Chiung-Wen; Lin, Yu-Hsien; Kuo, Hsin-Fu; Lai, Yao-Cheng; Tsai, Meng-Yen; Ouyang, Hao; Hsu, Wen-Kuang

    2010-06-01

    Annealing of carbon nanotubes coated with thin and uniform TiO2 results in carbon diffusion into oxygen lattices and doping induced redshift is evident by an efficient photocatalysis at visible light. The underlying mechanism is discussed.

  2. Turn on the lights: leveraging visible light for communications and positioning

    NASA Astrophysics Data System (ADS)

    Hranilovic, Steve

    2015-01-01

    The need for ubiquitous broadband connectivity is continually growing, however, radio spectrum is increasingly scarce and limited by interference. In addition, the energy efficiency of many radio transmitters is low and most input energy is converted to heat. A widely overlooked resource for positioning and broadband access is optical wireless communication reusing existing illumination installations. As many of the 14 billion incandescent bulbs in use worldwide are converted to energy efficient LED lighting, a unique opportunity exists to augment them with visible light communications (VLC) and visible light positioning (VLP). VLC- and VLP- enabled LED lighting is not only energy efficient but enables a host of new use cases such as location-aware ubiquitous high-speed wireless communication links. This talk presents the recent work of the Free-space Optical Communication Algorithms Laboratory (FOCAL) at McMaster University in Hamilton, Canada in developing novel signaling and indoor localization techniques using illumination devices. Developments in the signaling design for VLC systems will be presented along with several prototype VLC communication systems. Novel approaches to the integration of VLC networks with power line communications (PLC) are discussed. The role of visible light communications and ranging for automotive safety will also be highlighted. Several approaches to indoor positioning using illumination devices and simple smartphone-based receivers will be presented. Finally, a vision for VLC and VLP technologies will be presented along with our ongoing research directions.

  3. Novel channel models for visible light communications

    NASA Astrophysics Data System (ADS)

    Miramirkhani, Farshad; Uysal, Murat; Panayirci, Erdal

    2015-01-01

    In this paper, we investigate channel modeling for visible light communications (VLC) using non-sequential ray tracing simulation tools. We create three dimensional realistic simulation environments to depict indoor scenarios specifying the geometry of the environment, the objects inside, the reflection characteristics of the surface materials as well as the characteristics of the transmitter and receivers, i.e., LED sources and photodioes. Through ray tracing simulations, we compute the received optical power and the delay of direct/indirect rays which are then used to obtain the channel impulse response (CIR). Following this methodology, we present CIRs for a number of indoor environments including empty/furnished rectangular rooms with different sizes and wall/object materials (e.g., plaster, gloss paint, wood, aluminum metal, glass) assuming deployment of both single and multiple LED transmitters. We further quantify multipath channel parameters such as delay spread and channel DC gain for each configuration and provide insights into the effects of indoor environment parameters (e.g., size, wall/object materials, etc.), transmitter/receiver specifications (e.g., single vs. multiple transmitters, location, rotation etc.) on the channel.

  4. Chemically stable and reusable nano zero-valent iron/graphite-like carbon nitride nanohybrid for efficient photocatalytic treatment of Cr(VI) and rhodamine B under visible light

    NASA Astrophysics Data System (ADS)

    Liang, Zhiyu; Wen, Qingjuan; Wang, Xiu; Zhang, Fuwei; Yu, Yan

    2016-11-01

    Graphite-like carbon nitride (g-C3N4) displays strong potential applications in visible-light photocatalytic for water treatment, but its applications are greatly restricted by high recombination probability of photo-generated electron-hole pairs, as well as a weak reduction ability toward the heavy metals. In this work, we reported the synthesis of nZVI-g-C3N4 nano-hybrid with highly efficiency toward the photodegradation of RhB and Cr(VI) under the visible light irradiation. The nZVI nanoparticles can well be immobilized and dispersed on the surface of g-C3N4 nanosheets by a facile borohydride-reduction method. As-synthesized nZVI-g-C3N4 has an improved photocatalytic activity much better than that of the pure g-C3N4, wherein over 92.9% of Cr(VI) and 99.9% of RhB can be removed by using nZVI-g-C3N4. The nZVI particles not only contributes to the reduction and immobilization of Cr(VI), but also accelerates the photocatalytic degradation efficiency of RhB due to a lower recombination rate of photoexcited holes and electrons. Moreover, nZVI-g-C3N4 preserves superior photodegradation efficiency after five experimental cycles. It can be attributed that nZVI-g-C3N4 photocatalyst is chemically stable, and part of nZVI can be recovered by g-C3N4. We believe that, the composite of nZVI-g-C3N4 reported here could provide guidance for the design of efficient and reusable materials to remove both the organic compounds and heavy metal ions from waste waters.

  5. Asymmetric photoredox transition-metal catalysis activated by visible light

    NASA Astrophysics Data System (ADS)

    Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric

    2014-11-01

    Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the `green' synthesis of non-racemic chiral molecules.

  6. Enhancing the visibility of injuries with narrow-banded beams of light within the visible light spectrum.

    PubMed

    Limmen, Roxane M; Ceelen, Manon; Reijnders, Udo J L; Joris Stomp, S; de Keijzer, Koos C; Das, Kees

    2013-03-01

    The use of narrow-banded visible light sources in improving the visibility of injuries has been hardly investigated, and studies examining the extent of this improvement are lacking. In this study, narrow-banded beams of light within the visible light spectrum were used to explore their ability in improving the visibility of external injuries. The beams of light were induced by four crime-lites(®) providing narrow-banded beams of light between 400 and 550 nm. The visibility of the injuries was assessed through specific long-pass filters supplied with the set of crime-lites(®) . Forty-three percent of the examined injuries improved in visibility by using the narrow-banded visible light. In addition, injuries were visualized that were not visible or just barely visible to the naked eye. The improvements in visibility were particularly marked with the use of crime-lites(®) "violet" and "blue" covering the spectrum between 400-430 and 430-470 nm. The simple noninvasive method showed a great potential contribution in injury examination.

  7. The Development of Visible-Light Photoredox Catalysis in Flow

    PubMed Central

    Garlets, Zachary J.; Nguyen, John D.

    2014-01-01

    Visible-light photoredox catalysis has recently emerged as a viable alternative for radical reactions otherwise carried out with tin and boron reagents. It has been recognized that by merging photoredox catalysis with flow chemistry, slow reaction times, lower yields, and safety concerns may be obviated. While flow reactors have been successfully applied to reactions carried out with UV light, only recent developments have demonstrated the same potential of flow reactors for the improvement of visible-light-mediated reactions. This review examines the initial and continuing development of visible-light-mediated photoredox flow chemistry by exemplifying the benefits of flow chemistry compared with conventional batch techniques. PMID:25484447

  8. Integrating visible light 3D scanning into the everyday world

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    Visible light 3D scanning offers the potential to non-invasively and nearly non-perceptibly incorporate 3D imaging into the everyday world. This paper considers the various possible uses of visible light 3D scanning technology. It discusses multiple possible usage scenarios including in hospitals, security perimeter settings and retail environments. The paper presents a framework for assessing the efficacy of visible light 3D scanning for a given application (and compares this to other scanning approaches such as those using blue light or lasers). It also discusses ethical and legal considerations relevant to real-world use and concludes by presenting a decision making framework.

  9. Spatial dimming scheme for optical OFDM based visible light communication.

    PubMed

    Yang, Yang; Zeng, Zhimin; Cheng, Julian; Guo, Caili

    2016-12-26

    A new dimming control scheme termed spatial dimming orthogonal frequency division multiplexing (SD-OFDM) is proposed for multiple-input and multiple output OFDM based visible light communication. The basic idea of SD-OFDM is that the illumination can be represented by the number of glared light emitting diodes (LEDs) in an LED lamp. As the biasing level of LEDs does not adjust to represent the required illumination level, the proposed scheme can significantly mitigate the clipping noise compared to analogue dimming schemes. Furthermore, unlike digital dimming schemes that control illumination levels by setting different duty cycles of pulse width modulation, the proposed scheme is always in the "on-state" for varied illumination levels. Both analytical and simulation results indicate that the proposed scheme is an efficient and feasible dimmable scheme.

  10. Novel mesoporous P-doped graphitic carbon nitride nanosheets coupled with ZnIn2S4 nanosheets as efficient visible light driven heterostructures with remarkably enhanced photo-reduction activity

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Liu, Tian-Yu; Huang, Ting; Liu, Xiao-Heng; Yang, Xu-Jie

    2016-02-01

    In this report, we rationally designed and fabricated P-C3N4/ZnIn2S4 nanocomposites by in situ immobilizing ZnIn2S4 nanosheets onto the surface of mesoporous P-doped graphite carbon nitrogen (P-C3N4) nanosheets in a mixed solvothermal environment; their application to the photoreduction of 4-nitroaniline was used to estimate the photocatalytic performance. Different to the template route, here the mesoporous P-C3N4 nanosheets were prepared with a template-free strategy. The as-fabricated P-C3N4/ZnIn2S4 nanocomposites were systematically characterized by analyzing the phase structure, chemical components, electronic and optical properties and separation of charge carrier pairs. More importantly, these P-C3N4/ZnIn2S4 heterostructures have been proven to be highly efficient visible light responsive photocatalysts for photo-reduction, and meanwhile exhibit excellent photo-stability during recycling runs. The sufficient evidence reveals that the significantly improved photocatalytic performance is mainly attributed to the more efficient charge carrier separation based on the construction of a close heterogeneous interface. This work may provide new insights into the utilization of P-C3N4/ZnIn2S4 nanocomposites as visible light driven photocatalysts for comprehensive organic transformations in the field of fine chemical engineering.In this report, we rationally designed and fabricated P-C3N4/ZnIn2S4 nanocomposites by in situ immobilizing ZnIn2S4 nanosheets onto the surface of mesoporous P-doped graphite carbon nitrogen (P-C3N4) nanosheets in a mixed solvothermal environment; their application to the photoreduction of 4-nitroaniline was used to estimate the photocatalytic performance. Different to the template route, here the mesoporous P-C3N4 nanosheets were prepared with a template-free strategy. The as-fabricated P-C3N4/ZnIn2S4 nanocomposites were systematically characterized by analyzing the phase structure, chemical components, electronic and optical properties and

  11. Modulation selection for visible light communications using lighting LEDs

    NASA Astrophysics Data System (ADS)

    Siuzdak, Jerzy

    2015-09-01

    The paper analyzes suitability of various spectrally efficient modulations (PAM, CAP, OFDM/DMT) in a VLC system using lighting LEDs as a transmitter. Although under ideal conditions all modulation have similar efficiency i.e. they produce similar throughputs with a given BER, their practical performances are different. For example, the level of nonlinear distortions generated by each modulation is the least for PAM and by far the greatest for OFDM/DMT locating CAP in the middle. The suitability of various OFDM/DMT variants in a VLC LED link was also analyzed proving that the asymmetrically clipped (ACO) OFDM has a worse performance as compared with DC biased (DCO) OFDM.

  12. Luminescence- and nanoparticle-mediated increase of light absorption by photoreceptor cells: Converting UV light to visible light.

    PubMed

    Li, Lei; Sahi, Sunil K; Peng, Mingying; Lee, Eric B; Ma, Lun; Wojtowicz, Jennifer L; Malin, John H; Chen, Wei

    2016-02-10

    We developed new optic devices - singly-doped luminescence glasses and nanoparticle-coated lenses that convert UV light to visible light - for improvement of visual system functions. Tb(3+) or Eu(3+) singly-doped borate glasses or CdS-quantum dot (CdS-QD) coated lenses efficiently convert UV light to 542 nm or 613 nm wavelength narrow-band green or red light, or wide-spectrum white light, and thereby provide extra visible light to the eye. In zebrafish (wild-type larvae and adult control animals, retinal degeneration mutants, and light-induced photoreceptor cell degeneration models), the use of Tb(3+) or Eu(3+) doped luminescence glass or CdS-QD coated glass lenses provide additional visible light to the rod and cone photoreceptor cells, and thereby improve the visual system functions. The data provide proof-of-concept for the future development of optic devices for improvement of visual system functions in patients who suffer from photoreceptor cell degeneration or related retinal diseases.

  13. Luminescence- and nanoparticle-mediated increase of light absorption by photoreceptor cells: Converting UV light to visible light

    PubMed Central

    Li, Lei; Sahi, Sunil K.; Peng, Mingying; Lee, Eric B.; Ma, Lun; Wojtowicz, Jennifer L.; Malin, John H.; Chen, Wei

    2016-01-01

    We developed new optic devices – singly-doped luminescence glasses and nanoparticle-coated lenses that convert UV light to visible light – for improvement of visual system functions. Tb3+ or Eu3+ singly-doped borate glasses or CdS-quantum dot (CdS-QD) coated lenses efficiently convert UV light to 542 nm or 613 nm wavelength narrow-band green or red light, or wide-spectrum white light, and thereby provide extra visible light to the eye. In zebrafish (wild-type larvae and adult control animals, retinal degeneration mutants, and light-induced photoreceptor cell degeneration models), the use of Tb3+ or Eu3+ doped luminescence glass or CdS-QD coated glass lenses provide additional visible light to the rod and cone photoreceptor cells, and thereby improve the visual system functions. The data provide proof-of-concept for the future development of optic devices for improvement of visual system functions in patients who suffer from photoreceptor cell degeneration or related retinal diseases. PMID:26860393

  14. Visible light enhances the antimicrobial effect of some essential oils.

    PubMed

    Marqués-Calvo, María Soledad; Codony, Francesc; Agustí, Gemma; Lahera, Carlos

    2017-03-01

    The photodisinfection is a topical, broad spectrum antimicrobial technology, targeting bacteria, virus, fungi, and protozoa effective for single cells as for biofilms. Natural molecules have been studied less than synthetic agents in the process but they are currently receiving great interest. Therefore, the aim of this study is to evaluate for the first time if non-coherent blue and red light enhances the antimicrobial activity of some essential oils when standard strains for antibiotic or fungicide tests are enlightened in vitro. Staphylococcus epidermidis, Pseudomonas aeruginosa and Candida albicans collection strains were irradiated with monochromatic visible light from light emitting diodes in the presence of 5% and 0.5% eucalyptus (Eucalyptus globulus), clove (Eugenia caryophyllata), and thyme (Thymus vulgaris) essential oils. Microbial levels were measured by plate count on culture media. In this preliminary report, the results differ according to the kind and concentration of antimicrobial oils, the wavelength of light, and the prokaryotic or eukaryotic microorganism. The results support the idea that mainly blue light enhances the innate antimicrobial activity of the essential oils, especially phenols, and could offer a very efficient and natural way to combat microorganisms in several industries and medical applications (cutaneous and oral infections, medical textiles, foodstuffs and fruit surface, etc.).

  15. Modulation based cells distribution for visible light communication.

    PubMed

    Wu, Yongsheng; Yang, Aiying; Feng, Lihui; Zuo, Lin; Sun, Yu-Nan

    2012-10-22

    Cells distribution for visible light communication can enhance the capacity of the data transmission by the reuse of optical spectrum. In this paper, we adopt three modulation formats as OOK, PPM and PWM for neighboring cells A, B and C respectively. The prototype experiment results demonstrate the error free transmission of 1.0 Mbit/s and 6.25 Mbit/s visible light communication system with our scheme. With the available LED, we can expect that the data rate of a visible light communication system with seamless connectivity can be up to 71.4 Mbit/s.

  16. Efficiency of Cu2O/BiVO4 particles prepared with a new soft procedure on the degradation of dyes under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Aguilera-Ruiz, Eduardo; García-Pérez, Ulises M.; de la Garza-Galván, María; Zambrano-Robledo, Patricia; Bermúdez-Reyes, Bárbara; Peral, José

    2015-02-01

    Cu2O/BiVO4 composites with different concentrations of Cu2O were synthesized by a simple impregnation method at 200 °C under N2 atmosphere for 4 h. The as-synthesized samples were characterized by X-ray powder diffraction, scanning electron microscopy, UV-vis diffuse reflection absorption and vis photoluminescence. The morphology of the as-synthesized composites with different weight ratios of Cu2O is composed by quasi-spherical and dendrite-like particles. The photocatalytic performance of the Cu2O/BiVO4 composites was evaluated by degradation of methyl orange solutions under visible-LED irradiation. The results obtained show that the photocatalytic behavior of the p-n heterojunction Cu2O/BiVO4 composites was better than pure Cu2O and BiVO4. The variation of the reaction parameters, such as solution pH and presence of O2, improved the photocatalytic performance of Cu2O/BiVO4 composite. Meanwhile, a possible mechanism for methyl orange photocatalytic degradation over Cu2O/BiVO4 photocatalysts was proposed. The chemical stability and reusability of Cu2O/BiVO4 powders were also investigated.

  17. Surface nanostructures in photocatalysts for visible-light-driven water splitting.

    PubMed

    Maeda, Kazuhiko; Domen, Kazunari

    2011-01-01

    Overall water splitting to form hydrogen and oxygen over a heterogeneous (particulate) photocatalyst with solar energy is a promising process for clean and recyclable hydrogen production on a large-scale. In recent years, numerous attempts have been made for the development of photocatalysts that work under visible-light to utilize solar energy efficiently. This chapter describes recent research progress on heterogeneous photocatalysis for water splitting with visible light, particularly focusing on the development of nanostructured cocatalysts made by the authors' group.

  18. Aluminum plasmonics for enhanced visible light absorption and high efficiency water splitting in core-multishell nanowire photoelectrodes with ultrathin hematite shells.

    PubMed

    Ramadurgam, Sarath; Lin, Tzu-Ging; Yang, Chen

    2014-08-13

    The poor internal quantum efficiency (IQE) arising from high recombination and insufficient absorption is one of the critical challenges toward achieving high efficiency water splitting in hematite (α-Fe2O3) photoelectrodes. By combining the nanowire (NW) geometry with the localized surface plasmon resonance (LSPR) in semiconductor-metal-metal oxide core-multishell (CMS) NWs, we theoretically demonstrate an effective route to strongly improve absorption within ultrathin (sub-50 nm) hematite layers. We show that Si-Al-Fe2O3 CMS NWs exhibit photocurrent densities comparable to Si-Ag-Fe2O3 CMS and outperform Fe2O3, Si-Fe2O3 CS and Si-Au-Fe2O3 CMS NWs. Specifically; Si-Al-Fe2O3 CMS NWs reach photocurrent densities of ∼ 11.81 mA/cm(2) within a 40 nm thick hematite shell which corresponding to a solar to hydrogen (STH) efficiency of 14.5%. This corresponds to about 93% of the theoretical maximum for bulk hematite. Therefore, we establish Al as an excellent alternative plasmonic material compared to precious metals in CMS structures. Further, the absorbed photon flux is close to the NW surface in the CMS NWs, which ensures the charges generated can reach the reaction site with minimal recombining. Although the NW geometry is anisotropic, the CMS NWs exhibit polarization independent absorption over a large range of incidence angles. Finally, we show that Si-Al-Fe2O3 CMS NWs demonstrate photocurrent densities greater than ∼ 8.2 mA/cm(2) (STH efficiency of 10%) for incidence angles as large as 45°. These theoretical results strongly establish the effectiveness of the Al-based CMS NWs for achieving scalable and cost-effective photoelectrodes with improved IQE, enabling a novel route toward high efficiency water splitting.

  19. Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

    PubMed Central

    Chen, Hongjun

    2014-01-01

    Summary To better utilize the sunlight for efficient solar energy conversion, the research on visible-light active photocatalysts has recently attracted a lot of interest. The photosensitization of transition metal oxides is a promising approach for achieving effective visible-light photocatalysis. This review article primarily discusses the recent progress in the realm of a variety of nanostructured photosensitizers such as quantum dots, plasmonic metal nanostructures, and carbon nanostructures for coupling with wide-bandgap transition metal oxides to design better visible-light active photocatalysts. The underlying mechanisms of the composite photocatalysts, e.g., the light-induced charge separation and the subsequent visible-light photocatalytic reaction processes in environmental remediation and solar fuel generation fields, are also introduced. A brief outlook on the nanostructure photosensitization is also given. PMID:24991507

  20. Melanin Photosensitization and the Effect of Visible Light on Epithelial Cells

    PubMed Central

    Chiarelli-Neto, Orlando; Ferreira, Alan Silva; Martins, Waleska Kerllen; Pavani, Christiane; Severino, Divinomar; Faião-Flores, Fernanda; Maria-Engler, Silvya Stuchi; Aliprandini, Eduardo; Martinez, Glaucia R.; Di Mascio, Paolo; Medeiros, Marisa H. G.; Baptista, Maurício S.

    2014-01-01

    Protecting human skin from sun exposure is a complex issue that involves unclear aspects of the interaction between light and tissue. A persistent misconception is that visible light is safe for the skin, although several lines of evidence suggest otherwise. Here, we show that visible light can damage melanocytes through melanin photosensitization and singlet oxygen (1O2) generation, thus decreasing cell viability, increasing membrane permeability, and causing both DNA photo-oxidation and necro-apoptotic cell death. UVA (355 nm) and visible (532 nm) light photosensitize 1O2 with similar yields, and pheomelanin is more efficient than eumelanin at generating 1O2 and resisting photobleaching. Although melanin can protect against the cellular damage induced by UVB, exposure to visible light leads to pre-mutagenic DNA lesions (i.e., Fpg- and Endo III-sensitive modifications); these DNA lesions may be mutagenic and may cause photoaging, as well as other health problems, such as skin cancer. PMID:25405352

  1. Light pipe - design for efficiency

    SciTech Connect

    Hockey, S.N.

    1985-08-01

    The high cost and availability of materials which are clear enough to transmit light without absorption has limited the idea of piping large-scale quantities of light. The light pipe uses the principle of Total Internal Reflection, with the light guided by very accurate prisms. The transmission of light directed into the end of a Light Pipe at an angle of less than 27.6 degrees is theoretically 100% efficient. The author describes its uses and advantages for lighting offices, cold storage areas, difficult access and hazardous areas, and for solar lighting. Future directions will be to improve the economics and accuracy of the technology. 4 references, 2 figures.

  2. Highly efficient and selective photocatalytic reduction of nitroarenes using the Ni2P/CdS catalyst under visible-light irradiation.

    PubMed

    Gao, Wen-Zheng; Xu, Yong; Chen, Yong; Fu, Wen-Fu

    2015-08-28

    A highly efficient and selective heterogeneous photocatalytic system for nitro reduction to amino organics was established using CdS, Ni2P and Na2S/Na2SO3 as a photosensitizer, a cocatalyst and a sacrificial electron donor in aqueous solution, respectively. Two competing pathways for photocatalytic H2 production and nitro reduction were found. Also, the reduction of nitroarenes to aniline was confirmed to proceed through both the direct and condensation routes.

  3. Modeling of visible light channel based on matrix reconstruction

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Zhou, Xian; Huo, Jiahao; Yan, Kaili

    2016-10-01

    Visible light channel modeling is one of the key technologies in visible light communication researches. But traditional Modified Monte Carlo Algorithm and Photon Tracing Algorithm still exist the problem of nesting too many times for visible light channel modeling, which leads to large computational complexity, so the system will take up too much computing resources. To solve this problem, we present the visible light channel modeling based on matrix reconstruction, which can simulate multiple diffuse reflection channel response in the case of low complexity. The simulation results show that the matrix reconstruction method can significantly reduce computational complexity comparing with the traditional modeling methods when the number of diffuse reflection increases. Meanwhile, the high modeling accuracy is guaranteed when the simulation time is shortened.

  4. A review on visible light active perovskite-based photocatalysts.

    PubMed

    Kanhere, Pushkar; Chen, Zhong

    2014-12-01

    Perovskite-based photocatalysts are of significant interest in the field of photocatalysis. To date, several perovskite material systems have been developed and their applications in visible light photocatalysis studied. This article provides a review of the visible light (λ > 400 nm) active perovskite-based photocatalyst systems. The materials systems are classified by the B site cations and their crystal structure, optical properties, electronic structure, and photocatalytic performance are reviewed in detail. Titanates, tantalates, niobates, vanadates, and ferrites form important photocatalysts which show promise in visible light-driven photoreactions. Along with simple perovskite (ABO3) structures, development of double/complex perovskites that are active under visible light is also reviewed. Various strategies employed for enhancing the photocatalytic performance have been discussed, emphasizing the specific advantages and challenges offered by perovskite-based photocatalysts. This review provides a broad overview of the perovskite photocatalysts, summarizing the current state of the work and offering useful insights for their future development.

  5. Enhancement of Light via Surface Plasmon Coupling in the Visible

    NASA Astrophysics Data System (ADS)

    Ray, Emily A.

    The incidence of light with momentum components outside the light cone on the surface of a negative permittivity material results in the excitation of a surface plasmon polariton and the enhancement of the incident signal when there is momentum and energy conservation. This process has an impact across many fields including imaging, optical computing, signaling, and photovoltaic devices, among others. I examine the role and tunability of light-surface plasmon interactions in several applications. I demonstrate a tuned metamaterial grating system that allows the signal from evanescent waves to be detected in the far field in the visible regime. I fabricate a metamaterial that is tuned to support surface plasmons that couple to visible light across a wide range of wavelengths. I characterize the plasmonic response through a simple technique wherein a the reflection from a subwavelength grating on a metamaterial indicates surface plasmon coupling when its intensity dips. With this I demonstrate that the reflection trends match well with simulation, indicating that coupling of light to surface plasmons occurs at the expected crossing points. The strength of coupling (denoted by the drop in reflection) however, is less than expected. Transmission measurements reveal a depolarizing effect that accounts for the decrease in evanescent light enhancement by the surface plasmons and is due to the surface roughness at the interfaces between the metal and dielectric. I also use a tuned metamaterial perforated with a subwavelength array of circular apertures to exhibit extraordinary transmission in the visible. I compare the transmission of the metamaterial to that of a thin film of Ag with equivalent thickness that has fewer plasmon modes and a resonance position in the UV to find that for 400 nm, both thin films exhibit a transmission minimum at 650 nm. Both film spectra have plasmon-aided extraordinary transmission peaks where there is momentum and energy conservation between

  6. Polyhedral AgBr microcrystals with an increased percentage of exposed {111} facets as a highly efficient visible-light photocatalyst.

    PubMed

    Wang, Hua; Lang, Xiufeng; Gao, Jian; Liu, Wei; Wu, Di; Wu, Yongmin; Guo, Lin; Li, Jinghong

    2012-04-10

    Synthesis of inorganic single crystals with exposed high-reactivity facets is a desirable target in the catalytic chemistry field. Polyhedral AgBr microcrystals with an increased percentage of exposed high-reactivity {111} facets have been successfully prepared for the first time, and the photocatalytic performance of these microcrystals when used as an AgBr/Ag plasmonic photocatalyst was investigated. The results indicate that the as-prepared sample has high photocatalytic activity and, under the same measurement conditions, the photodegradation rate of methyl orange dye over these microcrystals is at least four times faster than with other shapes of AgBr/Ag microstructure, as well as 20 times faster than with the highly efficient Ag(3)PO(4) photocatalyst. DFT calculations suggest that the AgBr (111) surface is mainly composed of unsaturated Ag atoms and has a relatively high surface energy, both of which are favorable for enhancing the photocatalytic activity of the AgBr/Ag polyhedron photocatalyst. This work not only provides a highly efficient plasmonic photocatalyst of polyhedral AgBr/Ag microcrystals with an increased percentage of exposed high-reactivity AgBr {111} facets, but also demonstrates that the shape and crystalline quality of the exposed facets have an important influence on the photocatalytic activities.

  7. A titanium and visible light-polymerized resin obturator.

    PubMed

    Rilo, Benito; da Silva, José Luis; Martinez-Insua, Arturo; Santana, Urbano

    2002-04-01

    Obturator prostheses are typically large, and their weight and size are often important design factors. This article describes the fabrication of an obturator prosthesis with a titanium framework and visible light-polymerized denture base resin. It is speculated that these low-density materials may produce prostheses lighter than similar ones made with conventional materials. An added advantage is that visible light-polymerizing resins facilitate relining.

  8. Making Light Rays Visible in 3-D

    ERIC Educational Resources Information Center

    Logiurato, F.; Gratton, L. M.; Oss, S.

    2007-01-01

    Students become deeply involved in physics classes when spectacular demonstrations take over from abstract and formal presentations. In this paper we propose a simple experimental setup in which the wave behavior of light can be made spectacularly evident along the whole path of the light beam in a practically unlimited number of configurations.…

  9. Damaging effects of visible light. Progress report

    SciTech Connect

    Williams, T.P.

    1980-01-01

    Research progress in studies of photodynamic damage of visual photoreceptors is presented. It was found the retina is not homogeneous in its susceptibility to light damage. Steady state rhodopsin levels have been evaluated in albino rats and in pigmented rats at several light intensities. Studies have continued of the effects of peroxidative photodynamic damage on the properties of rod outer segments. (ACR)

  10. AgVO3 nanorods: Synthesis, characterization and visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sivakumar, V.; Suresh, R.; Giribabu, K.; Narayanan, V.

    2015-01-01

    Large scale and high purity silver vanadate (AgVO3) nanorods were synthesized by thermal decomposition method. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, Ultraviolet-Visible (DRS-UV-Visible) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the structure, light absorption capacity and morphology of the as-synthesized sample. The photocatalytic activity of AgVO3 nanorods was examined by degradation of methylene blue (MB) as a model organic pollutant. The degradation efficiency is 85.02% in the 120 min visible light illumination. Further, the AgVO3 nanorods were used as a photocatalyst for industrial effluent. 95.4% degradation efficiency was obtained within the visible light irradiation of 120 min. The possible photocatalytic mechanism has also been proposed.

  11. Unpredictable adsorption and visible light induced decolorization of nano rutile for the treatment of crystal violet

    NASA Astrophysics Data System (ADS)

    Dong, Yanling; Liu, Yang; Lu, Dingze; Zheng, Feng; Fang, Pengfei; Zhang, Haining

    2017-04-01

    Photocatalysts containing different ratios of anatase and rutile are prepared via heat treatment of Degussa P-25 titania. X-ray diffraction (XRD), Bruuauer-Emmett-Teller (BET), ultraviolet-visible light diffuse reflectance spectra (DRS), Raman spectra (Raman), positron annihilation lifetime spectra (PAL) and temperature-programmed desorption (TPD) are applied to investigate the phase composition of the synthesized catalysts. Using crystal violet (CV) as the target pollutant, the unexpected visible light decolorization of rutile is observed. Despite the decreased specific surface area, the as-synthesized rutile samples exhibit much higher adsorption capability of CV than P-25 does, which in turn leads to improved photoreaction efficiency. Since the rutile samples can't absorb the visible light, the degradation under visible light irradiation is attributed to self-sensitization of CV on the surface of rutile.

  12. Robotic visible-light laser adaptive optics

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Riddle, Reed; Law, Nicholas; Ramaprakash, A. N.; Tendulkar, Shriharsh; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2013-12-01

    Robo-AO is the first autonomous laser adaptive optics system and science instrument operating on sky. With minimal human oversight, the system robotically executes large scale surveys, monitors long-term astrophysical dynamics and characterizes newly discovered transients, all at the visible diffraction limit. The adaptive optics setup time, from the end of the telescope slew to the beginning of an observation, is a mere ~50-60 s, enabling over 200 observations per night. The first of many envisioned systems has finished 58 nights of science observing at the Palomar Observatory 60-inch (1.5 m) telescope, with over 6,400 robotic observations executed thus far. The system will be augmented in late 2013 with a low-noise wide field infrared camera, which doubles as a tip-tilt sensor, to widen the spectral bandwidth of observations and increase available sky coverage while also enabling deeper visible imaging using adaptive-optics sharpened infrared tip-tilt guide sources. Techniques applicable to larger telescope systems will also be tested: the infrared camera will be used to demonstrate advanced multiple region-of-interest tip-tilt guiding methods, and a visitor instrument port will be used for evaluation of other instrumentation, e.g. single-mode and photonic fibers to feed compact spectrographs.

  13. Visible light photon counters (VLPCs) for high rate tracking medical imaging and particle astrophysics

    SciTech Connect

    Atac, M.

    1998-02-01

    This paper is on the operation principles of the Visible Light Photon Counters (VLPCs), application to high luminosity-high multiplicity tracking for High Energy Charged Particle Physics, and application to Medical Imaging and Particle Astrophysics. The VLPCs as Solid State Photomultipliers (SSPMS) with high quantum efficiency can detect down to single photons very efficiently with excellent time resolution and high avalanche gains.

  14. Tailorable, Visible Light Emission From Silicon Nanocrystals

    SciTech Connect

    Samara, G.A.; Wilcoxon, J.P.

    1999-07-20

    J. P. Wilcoxon and G. A. Samara Crystalline, size-selected Si nanocrystals in the size range 1.8-10 nm grown in inverse micellar cages exhibit highly structured optical absorption and photoluminescence (PL) across the visible range of the spectrum. The most intense PL for the smallest nanocrystals produced This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. to induce a useful level of visible photoluminescence (PL) from silicon (Si). The approaches understood. Visible PL has been observed from Si nanocrystals, or quantum dots, produced by a variety of techniques including aerosols,2 colloids,3 and ion implantation.4 However, all of The optical absorption spectra of our nanocrystals are much richer in spectral features spectrum of bulk Si where the spectral features reflect the details of the band structure shown in nanocrystals estimated to have a Si core diameter of 1-2 nm. These measured quantum those in the spectrum of bulk Si in Fig. 1 are striking indicating that nanocrystals of this size 8-Room temperature PL results on an HPLC size-selected, purified 2 nm nanocrystals but blue shifted by -0.4 eV due to quantum confinement. Excitation at 245 nm yields

  15. Dual-functional surfactant-templated strategy for synthesis of an in-situ N2-intercalated mesoporous WO3 photoanode for efficient visible-light-driven water oxidation.

    PubMed

    Li, Dong; Chandra, Debraj; Takeuchi, Ryouchi; Togashi, Takanari; Kurihara, Masato; Saito, Kenji; Yui, Tatsuto; Yagi, Masayuki

    2017-03-01

    N2-intercalated crystalline mesoporous tungsten trioxide (WO3) was synthesized by a thermal decomposition technique using dodecylamine (DDA) as a surfactant template with a dual functional role of an N atom source for N2 intercalation, alongside its conventional structure directing role (by micelle formation) to induce a mesoporous structure. N2 physisorption analysis showed that the specific surface area (57.3 m2 g-1) of WO3 (WO3-DDA) templated with DDA is 2.3 times higher than that (24.5 m2 g-1) of WO3 (WO3-bulk) prepared without DDA due to the mesoporous structure of WO3-DDA. The Raman spectra and XPS spectrum of WO3-DDA indicated formation of N2 intercalated into the WO3 lattice above 450 ºC. The UV-visible diffuse reflectance spectra (DRS) exhibited the significant shift of the absorption edge from 459 nm (2.70 eV) to 487 nm (2.54 eV) by 28 nm due to N2-intercalation. This could be explained by the bandgap narrowing of WO3-DDA by formation of a new intermediate N 2p orbital between the conduction band and valance band of WO3. A WO3-DDA coated ITO electrode calcined at 450 ºC generated a photoanodic current under visible light irradiation below 490 nm due to the PEC water oxidation, compared with ITO/WO3-bulk doing so below 470 nm. The incident photon-to-current conversion efficiency (IPCE = 24.5%) at 420 nm and 0.5 V vs Ag/AgCl was higher than that (2.5%) for ITO/WO3-bulk by one order of magnitude due to the N2 intercalation and the mesoporous structure of WO3-DDA.

  16. Visible light surface emitting semiconductor laser

    DOEpatents

    Olbright, Gregory R.; Jewell, Jack L.

    1993-01-01

    A vertical-cavity surface-emitting laser is disclosed comprising a laser cavity sandwiched between two distributed Bragg reflectors. The laser cavity comprises a pair of spacer layers surrounding one or more active, optically emitting quantum-well layers having a bandgap in the visible which serve as the active optically emitting material of the device. The thickness of the laser cavity is m .lambda./2n.sub.eff where m is an integer, .lambda. is the free-space wavelength of the laser radiation and n.sub.eff is the effective index of refraction of the cavity. Electrical pumping of the laser is achieved by heavily doping the bottom mirror and substrate to one conductivity-type and heavily doping regions of the upper mirror with the opposite conductivity type to form a diode structure and applying a suitable voltage to the diode structure. Specific embodiments of the invention for generating red, green, and blue radiation are described.

  17. Intimate Coupling of Photocatalysis and Biodegradation for Degrading Phenol Using Different Light Types: Visible Light vs UV Light.

    PubMed

    Zhou, Dandan; Xu, Zhengxue; Dong, Shanshan; Huo, Mingxin; Dong, Shuangshi; Tian, Xiadi; Cui, Bin; Xiong, Houfeng; Li, Tingting; Ma, Dongmei

    2015-07-07

    Intimate coupling of photocatalysis and biodegradation (ICPB) technology is attractive for phenolic wastewater treatment, but has only been investigated using UV light (called UPCB). We examined the intimate coupling of visible-light-induced photocatalysis and biodegradation (VPCB) for the first time. Our catalyst was prepared doping both of Er(3+) and YAlO3 into TiO2 which were supported on macroporous carriers. The macroporous carriers was used to support for the biofilms as well. 99.8% removal efficiency of phenol was achieved in the VPCB, and this was 32.6% higher than that in the UPCB. Mineralization capability of UPCB was even worse, due to less adsorbable intermediates and cell lysis induced soluble microbial products release. The lower phenol degradation in the UPCB was due to the serious detachment of the biofilms, and then the microbes responsible for phenol degradation were insufficient due to disinfection by UV irradiation. In contrast, microbial communities in the carriers were well protected under visible light irradiation and extracellular polymeric substances secretion was enhanced. Thus, we found that the photocatalytic reaction and biodegradation were intimately coupled in the VPCB, resulting in 64.0% removal of dissolved organic carbon. Therefore, we found visible light has some advantages over UV light in the ICPB technology.

  18. Visible-Light-Triggered Activation of a Protein Kinase Inhibitor.

    PubMed

    Wilson, Danielle; Li, Jason W; Branda, Neil R

    2017-02-20

    A photoresponsive small molecule undergoes a ring-opening reaction when exposed to visible light and becomes an active inhibitor of the enzyme protein kinase C. This "turning on" of enzyme inhibition with light puts control into the hands of the user, creating the opportunity to regulate when and where enzyme catalysis takes place.

  19. A simple template-free synthesis of nanoporous ZnS-In2S3-Ag2S solid solutions for highly efficient photocatalytic H2 evolution under visible light.

    PubMed

    Li, Yingxuan; Chen, Gang; Zhou, Chao; Sun, Jingxue

    2009-04-21

    Nanoporous ZnS-In(2)S(3)-Ag(2)S solid solutions synthesized by a facile template-free method showed relatively high activities for photocatalytic H(2) evolution under visible-light irradiation (lambda >400 nm) even in the absence of co-catalysts.

  20. Visible Inelastic Light Scattering from Metals

    NASA Astrophysics Data System (ADS)

    Wilkinson, Roger Allen

    In this work we studied the spectral shape of the intense continuum of light scattered inelastically from "bare" metals used in Surface Enhanced Raman Scattering. We derived cross sections, presented their spectral properties, and experimentally sought to characterize the observable spectral shape. Three scattering cross sections are derived. The development includes exposure of assumptions and limitations in the derivation. Elucidated are: contributions due to the few angstrom drastic spatial and polarization variations of the applied electromagnetic field at jellium metal surfaces; fluctuation induced light scattering, such as, spin density, charge density (plasmon and single electron), and current density fluctuations; and the light coupling operators that arise from a choice of gauge used in photoemission rather than the customary Coulomb gauge. The result is a set of matrix elements that carry the important physics of light scattering by metallic electrons, and that is more complete than is found in the Surface Enhanced Raman literature. Using one of these matrix elements in the electric dipole approximation we have developed a quantum chemistry computer algorithm to evaluate the strength of light interaction with any metal surface which can be modeled as a cluster. The algorithm uses spd Slater-type bases and can study transition and noble metals. It was tested on some model systems. A formalism is presented for further developing the algorithm to calculate adsorbed molecular vibrational Raman cross sections in the limit of the long wavelength electric dipole approximation. We further present known continuum spectral shapes from familiar light coupling operators (a subset of those we derived) and associate them with our experimentally observed spectral shapes. In the experimental study of spectral shapes we found the mechanical disorder, due to cold working smooth metals during polishing, to correlate with the strength of the continuum. Using microscopic

  1. Damaging effects of visible light. Progress report

    SciTech Connect

    Williams, T.P.; Baker, B.N.

    1982-02-01

    The right eyes of anesthetized, ten week old albino rats are exposed to constant photon fluxes at 6 wavelengths for 6 hours. The left eye of each animal is patched during the exposure and is used as control. Histologic examination of retinal sections disclosed a region in the superior retina which is more damaged than are other areas. Attempting to ascertain an action spectrum by measuring ONL lost in this sensative region fails. However, it is shown that, when ONL thickness is integrated over the entire retinal sections, a rhodopsin action-spectrum emerges. It is concluded that (i) retinal light damage in the albino rat under these conditions is rhodopsin mediated; and (ii) assessment of the extent of damage is best made by some method which integrates over the entire retinal section. The latter methodology is not routinely incorporated into studies of retinal light-damage but probably should be.

  2. Visible light optical coherence correlation spectroscopy.

    PubMed

    Broillet, Stephane; Szlag, Daniel; Bouwens, Arno; Maurizi, Lionel; Hofmann, Heinrich; Lasser, Theo; Leutenegger, Marcel

    2014-09-08

    Optical coherence correlation spectroscopy (OCCS) allows studying kinetic processes at the single particle level using the backscattered light of nanoparticles. We extend the possibilities of this technique by increasing its signal-to-noise ratio by a factor of more than 25 and by generalizing the method to solutions containing multiple nanoparticle species. We applied these improvements by measuring protein adsorption and formation of a protein monolayer on superparamagnetic iron oxide nanoparticles under physiological conditions.

  3. What is light? The visible spectrum and beyond

    PubMed Central

    Sliney, D H

    2016-01-01

    In this International Year of Light, it is particularly appropriate to review the historical concept of what is light and the controversies surrounding the extent of the visible spectrum. Today we recognize that light possesses both a wave and particle nature. It is also clear that the limits of visibility really extend from about 310 nm in the ultraviolet (in youth) to about 1100 nm in the near-infrared, but depend very much on the radiance, that is, ‘brightness' of the light source. The spectral content of artificial lighting are undergoing very significant changes in our lifetime, and the full biological implications of the spectral content of newer lighting technologies remain to be fully explored. PMID:26768917

  4. What is light? The visible spectrum and beyond.

    PubMed

    Sliney, D H

    2016-02-01

    In this International Year of Light, it is particularly appropriate to review the historical concept of what is light and the controversies surrounding the extent of the visible spectrum. Today we recognize that light possesses both a wave and particle nature. It is also clear that the limits of visibility really extend from about 310 nm in the ultraviolet (in youth) to about 1100 nm in the near-infrared, but depend very much on the radiance, that is, 'brightness' of the light source. The spectral content of artificial lighting are undergoing very significant changes in our lifetime, and the full biological implications of the spectral content of newer lighting technologies remain to be fully explored.

  5. Improved spring model-based collaborative indoor visible light positioning

    NASA Astrophysics Data System (ADS)

    Luo, Zhijie; Zhang, WeiNan; Zhou, GuoFu

    2016-06-01

    Gaining accuracy with indoor positioning of individuals is important as many location-based services rely on the user's current position to provide them with useful services. Many researchers have studied indoor positioning techniques based on WiFi and Bluetooth. However, they have disadvantages such as low accuracy or high cost. In this paper, we propose an indoor positioning system in which visible light radiated from light-emitting diodes is used to locate the position of receivers. Compared with existing methods using light-emitting diode light, we present a high-precision and simple implementation collaborative indoor visible light positioning system based on an improved spring model. We first estimate coordinate position information using the visible light positioning system, and then use the spring model to correct positioning errors. The system can be employed easily because it does not require additional sensors and the occlusion problem of visible light would be alleviated. We also describe simulation experiments, which confirm the feasibility of our proposed method.

  6. Effect of light units on tooth bleaching with visible-light activating titanium dioxide photocatalyst.

    PubMed

    Kishi, Ayaka; Otsuki, Masayuki; Sadr, Alireza; Ikeda, Masaomi; Tagami, Junji

    2011-01-01

    This study evaluated the influence of different light sources on the efficiency of an office bleaching agent containing visible-light activating titanium dioxide photocatalyst (VL-TiO(2)) using an artificial discoloration tooth model. Extracted bovine teeth were stained by black tea. The CIE L*a*b* values were measured before and after nine consecutive treatments by the VL-TiO(2)-containing bleaching agent (TiON in Office, GC, Tokyo, Japan). A halogen light unit (CB; CoBee, GC) or an LED unit (G-light, GC) with two modes (blue and violet: GL-BV, blue: GL-B) were used to activate the bleaching agent in three groups (n=8). Brightness (ΔL) and color difference (ΔE) increased as bleaching repeated in all groups. Two-way ANOVA showed that both number of treatments and light sources significantly affected ΔE (p<0.05). GL-BV showed better bleaching effect than GL-B. In measurement of irradiation spectra, CB showed a wide spectrum (380-530 nm), GL-B had a sharp peak at 470 nm and GL-BV showed an additional peak at 405 nm. It was concluded that the light source influenced the efficiency of the tooth bleaching with VL-TiO(2).

  7. Non-Noble-Metal Nanoparticle Supported on Metal-Organic Framework as an Efficient and Durable Catalyst for Promoting H2 Production from Ammonia Borane under Visible Light Irradiation.

    PubMed

    Wen, Meicheng; Cui, Yiwen; Kuwahara, Yasutaka; Mori, Kohsuke; Yamashita, Hiromi

    2016-08-24

    In this work, we propose a straightforward method to enhance the catalytic activity of AB dehydrogenation by using non-noble-metal nanoparticle supported on chromium-based metal-organic framework (MIL-101). It was demonstrated to be effective for hydrogen generation from ammonia borane under assistance of visible light irradiation as a noble-metal-free catalyst. The catalytic activity of metal nanoparticles supported on MIL-101 under visible light irradiation is remarkably higher than that without light irradiation. The TOFs of Cu/MIL-101, Co/MIL-101, and Ni/MIL-101 are 1693, 1571, and 3238 h(-1), respectively. The enhanced activity of catalysts can be primarily attributed to the cooperative promoting effects from both non-noble-metal nanoparticles and photoactive metal-organic framework in activating the ammonia borane molecule and strong ability in the photocatalytic production of hydroxyl radicals, superoxide anions, and electron-rich non-noble-metal nanoparticle. This work sheds light on the exploration of active non-noble metals supported on photoactive porous materials for achieving high catalytic activity of various redox reactions under visible light irradiation.

  8. Is it effective to harvest visible light by decreasing the band gap of photocatalytic materials?

    NASA Astrophysics Data System (ADS)

    Fu, Ning; Tang, Xinhu; Li, Dongyang

    2012-02-01

    In situ variations in the electron work function and photo-current of TiO2 nanotubes demonstrate that long-wavelength illumination only has a minor effect on the excitation of electrons in the nanotubes after being exposed to short-wavelength light or when the short-wavelength light coexisted, indicating that the solar spectrum may not be utilized as efficiently as expected by extending the absorption spectrum of the photocatalytic material to visible light range with decreased band gaps.

  9. Towards a 100 Gb/s visible light wireless access network.

    PubMed

    Tsonev, Dobroslav; Videv, Stefan; Haas, Harald

    2015-01-26

    Potential visible light communication (VLC) data rates at over 10 Gb/s have been recently demonstrated using light emitting diodes (LEDs). The disadvantage is, LEDs have an inherent trade-off between optical efficiency and bandwidth. Consequently, laser diodes (LDs) can be considered as a very promising alternative for better utilization of the visible light spectrum for communication purposes. This work investigates the communication capabilities of off-the-shelf LDs in a number of scenarios with illumination constraints. The results indicate that optical wireless access data rates in the excess of 100 Gb/s are possible at standard indoor illumination levels.

  10. Visible Light Driven Photocatalytic Reactor Based on Micro-structured Polymer Optical Fiber Preform

    NASA Astrophysics Data System (ADS)

    Li, Dong-Dong; She, Jiang-Bo; Wang, Chang-Shun; Peng, Bo

    2014-05-01

    A novel visible light driven photocatalytic reactor with 547 pieces of Ag/AgBr-film-modified capillaries is reported and it is derived from a microstructured polymer optical fiber (MPOF) preform. The MPOF preform not only plays the role of a light-transmitting media, but it is also a Ag/AgBr supporting and waste-water pipe to supply the photocatalytic degradation of dyes solute. The photocatalytic reactor has such a large surface area for Ag/AgBr loading, which is a visible light driven photocatalyst that photodegradation efficiency is enhanced.

  11. A highly efficient visible-light-driven novel p-n junction Fe2O3/BiOI photocatalyst: Surface decoration of BiOI nanosheets with Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Mehraj, Owais; Pirzada, Bilal M.; Mir, Niyaz A.; Khan, Mohammad Zain; Sabir, Suhail

    2016-11-01

    Novel xFe2O3/yBiOI composites (x/y = 0.25, 0.35, 0.45 molar ratios) with a p-n heterojunction were prepared for the first time through an in situ hydrolysis method under solvothermal conditions. The phase structure, morphology and optical properties of the composites were studied using several characterization tools including X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), Fourier transform infrared (FTIR), N2 adsorption-desorption isotherms (BET) and UV-vis diffuse reflectance spectroscopy (UV-DRS). The characterization results suggest square shaped nanosheets of BiOI with Fe2O3 nanoparticles well distributed on the surface of BiOI nanosheets. The photodegradation performances of the xFe/yBi samples were investigated using aqueous solution of Rhodamine B (RhB) dye. The xFe/yBi composites displayed much higher photocatalytic efficiencies for RhB degradation than the single BiOI under visible light (λ > 400 nm). Specifically, the degradation rate of xFe/yBi samples at molar ratio of 0.35 is 4.24 times higher than single BiOI. The novel Fe2O3/BiOI heterojunction was found to be highly stable in cyclic experiments. Based on the results of BET, PL and DRS analysis, the enhanced photocatalytic efficiency can be mainly ascribed to the formation of stable p-n heterojunction between Fe2O3 and BiOI, which facilitates the transfer and separation of photogenerated electron-hole pairs.

  12. Water splitting on semiconductor catalysts under visible-light irradiation.

    PubMed

    Navarro Yerga, Rufino M; Alvarez Galván, M Consuelo; del Valle, F; Villoria de la Mano, José A; Fierro, José L G

    2009-01-01

    Sustainable hydrogen production is a key target for the development of alternative, future energy systems that will provide a clean and affordable energy supply. The Sun is a source of silent and precious energy that is distributed fairly all over the Earth daily. However, its tremendous potential as a clean, safe, and economical energy source cannot be exploited unless the energy is accumulated or converted into more useful forms. The conversion of solar energy into hydrogen via the water-splitting process, assisted by photo-semiconductor catalysts, is one of the most promising technologies for the future because large quantities of hydrogen can potentially be generated in a clean and sustainable manner. This Minireview provides an overview of the principles, approaches, and research progress on solar hydrogen production via the water-splitting reaction on photo-semiconductor catalysts. It presents a survey of the advances made over the last decades in the development of catalysts for photochemical water splitting under visible-light irradiation. The Minireview also analyzes the energy requirements and main factors that determine the activity of photocatalysts in the conversion of water into hydrogen and oxygen using sunlight. Remarkable progress has been made since the pioneering work by Fujishima and Honda in 1972, but he development of photocatalysts with improved efficiencies for hydrogen production from water using solar energy still faces major challenges. Research strategies and approaches adopted in the search for active and efficient photocatalysts, for example through new materials and synthesis methods, are presented and analyzed.

  13. Light Duty Efficient, Clean Combustion

    SciTech Connect

    Stanton, Donald W.

    2011-06-03

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of our objectives were met with fuel efficiency improvement targets exceeded.

  14. Development and Progress in Enabling the Photocatalyst Ti02 Visible-Light-Active

    NASA Technical Reports Server (NTRS)

    Levine, Lanfang H.; Coutts, Janelle L.; Clausen, Christian A.

    2011-01-01

    Photocatalytic oxidation (PCO) of organic contaminants is a promising air and water quality management approach which offers energy and cost savings compared to thermal catalytic oxidation (TCO). The most widely used photocatalyst, anatase TiO2, has a wide band gap (3.2 eV) and is activated by UV photons. Since solar radiation consists of less than 4% UV, but contains 45% visible light, catalysts capable of utilizing these visible photons need to be developed to make peo approaches more efficient, economical, and safe. Researchers have attempted various approaches to enable TiO2 to be visible-light-active with varied degrees of success'. Strategies attempted thus far fall into three categories based on their electrochemical' mechanisms: 1) narrowing the band gap of TiO2 by implantation of transition metal elements or nonmetal elements such as N, S, and C, 2) modifying electron-transfer processes during PCO by adsorbing sensitizing dyes, and 3) employing light-induced interfacial electron transfer in the heteronanojunction systems consisting of narrow band gap semiconductors represented by metal sulfides and TiO2. There are diverse technical approaches to implement each of these strategies. This paper presents a review of these approaches and results of the photocatalytic activity and photonic efficiency of the end .products under visible light. Although resulting visible-light-active (VLA) photocatalysts show promise, there is often no comparison with unmodified TiO2 under UV. In a limited number of studies where such comparison was provided, the UV-induced catalytic activity of bare TiO2 is much greater than the visible-light-induced catalytic activity of the VLA catalyst. Furthermore, VLA-catalysts have much lower quantum efficiency compared to the approx.50% quantum efficiency of UV-catalysts. This stresses the need for continuing research in this area.

  15. 1-Dodecane-sulfonic-acid-sodium-salt(LAS) assisted hydrothermal synthesis of Cd{sub x}Zn{sub 1-x}S solid solution as efficient photocatalysts under visible light irradiation

    SciTech Connect

    Jia, B.; Guo, L. J.

    2010-03-01

    With anionic surfactant LAS assisted, series of zinc cadmium sulfide semiconductor photocatalysts were synthesized by hydrothermal method. These products were characterized by X-ray diffraction (XRD), UV-Vis absorption spectra (UV-Vis) and scanning electron microscopy (FESEM). The photocatalytic activities of as-prepared samples were evaluated by photocatalytic hydrogen production from water under visible-light irradiation. The best synthesis parameters are: Composition 0.9:0.1 (Cd:Zn molar ratio), Temperature 160 deg. C, Hydrothermal Time 48 Hour, LAS Concentration 1.7 mmol/L, the maximum visible-light-catalytic hydrogen production rate is 161.25 {mu}mol/h (lambda>430 nm) which is higher than those of by coprecipitation method. The experiment results indicate that surfactant assisted hydrothermal method is an effective way to get highly active CdZnS solid solution photocatalyst.

  16. Penning plasma based simultaneous light emission source of visible and VUV lights

    NASA Astrophysics Data System (ADS)

    Vyas, G. L.; Prakash, R.; Pal, U. N.; Manchanda, R.; Halder, N.

    2016-06-01

    In this paper, a laboratory-based penning plasma discharge source is reported which has been developed in two anode configurations and is able to produce visible and VUV lights simultaneously. The developed source has simultaneous diagnostics facility using Langmuir probe and optical emission spectroscopy. The two anode configurations, namely, double ring and rectangular configurations, have been studied and compared for optimum use of the geometry for efficient light emissions and recording. The plasma is produced using helium gas and admixture of three noble gases including helium, neon, and argon. The source is capable to produce eight spectral lines for pure helium in the VUV range from 20 to 60 nm and total 24 spectral lines covering the wavelength range 20-106 nm for the admixture of gases. The large range of VUV lines is generated from gaseous admixture rather from the sputtered materials. The recorded spectrum shows that the plasma light radiations in both visible and VUV range are larger in double ring configuration than that of the rectangular configurations at the same discharge operating conditions. To clearly understand the difference, the imaging of the discharge using ICCD camera and particle-in-cell simulation using VORPAL have also been carried out. The effect of ion diffusion, metastable collision with the anode wall and the nonlinear effects are correlated to explain the results.

  17. Photocatalytic oxidation of volatile organic compounds using fluorescent visible light.

    PubMed

    Chapuis, Yannick; Klvana, Danilo; Guy, Christophe; Kirchnerova, Jitka

    2002-07-01

    Photocatalytic oxidation (PCO) of volatile organic compounds (VOCs) is a highly attractive alternative technology for purification and deodorization of indoor air. The main objectives of this study were to demonstrate that a common fluorescent visible light (FVL) lamp can be used to effectively remove by PCO low concentrations of VOCs from slightly contaminated air and to provide some fundamental and technical details on the process. The target VOC was n-butanol, which is a standard reference odorant. Its PCO was studied under a long residence time in a 3.7-L cylindrical reactor with commercial titanium dioxide (TiO2) as the reference photocatalyst and using mostly FVL for illumination. For comparison only, a UV (black) light lamp was used. The gas-phase products were detected and quantified online by gas chromatography (GC). The effects of reactor residence time, of inlet concentration, and of the relative light intensity on the efficiency of the process were also evaluated. At a high n-butanol concentration (0.1 vol %), butanal and propanal were identified as the intermediate products of the process; ethanal appeared when the initial concentration was < or = 850 ppm(v). This indicates that PCO leading to CO2 and H2O is relatively slow and proceeds in a stepwise manner. Although the efficiency of the process with an FVL lamp was significantly lower than when using a UV black light, complete PCO of low concentrations was achieved for 100 ppm(v). In a search for a material with photoactivation extended to higher wavelengths or increased photoactivity, several samples of transition metal- or silver ion-doped (2 atomic %) TiO2 as well as SrTi(1-x-)Fe(x)O3 (x = 0.1 and 0.15) perovskites were included in the study. None of these materials was more active than pure TiO2. The results of this study open new horizons in the area of in door air quality (IAQ) control.

  18. [Visible light reflectance spectrum for measurement of cancerous tissue].

    PubMed

    Wang, Cheng; Fan, Jin; Ren, Qiu-Shi

    2008-01-01

    A goal the authors always pursue is to realize diagnosis of precancer in vivo, real-time and non-invasive. In the present paper, results of diagnosis of certain cancer were obtained by pathological analysis of several samples, and then the visible light reflectance spectrum property of cancerous tissue was acquired by the comparison with the reflectance spectrum of normal tissue in the same organ. It was found that the main result of change in the reflectance spectrum was caused by the increases in hemoglobin and deoxygenated hemoglobin. The cancerous tissue has a lower reflectance in visible spectrum and has the strongest change in the absorption at 630 nm. Absorption peaks in the reflectance spectrum indicated that there are abundant of oxygenated hemoglobin and deoxygenated hemoglobin in the cancerous tissue. It is the same characteristics as in the cancerous tissue. It was fully indicated experimentally that visible light reflectance spectrum can distinguish normal and cancerous tissue.

  19. Superior preferential oxidation of carbon monoxide in hydrogen-rich stream under visible light irradiation over gold loaded hedgehog-shaped titanium dioxide nanospheres: Identification of copper oxide decoration as an efficient promoter

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Huang, Kun; Lin, Liuliu; Chen, Xun; Dai, Wenxin; Fu, Xianzhi

    2015-06-01

    Gold nanoparticles loaded on the special three-dimensional urchin-like micro/nano hierarchical TiO2 microspheres, with CuO layer modification, are performed for the CO preferential oxidation in H2-rich stream at room temperature under visible light irradiation or not. It is found that the suitable outer decoration of CuO in TiO2 microspheres can obviously improve the catalytic activity of Au/TiO2, and adding visible light can further promote the performance. Based on the characterizations of catalysts, it is proposed that the CuO layer distributed on the shell of TiO2 urchin-like microspheres can enhance the electron transfer among Au, TiO2 and CuO sites to drive the increase in surface electron densities of Au and support sites induced by both the localized surface plasmon resonance of Au nanoparticles and the photo-excitation of CuO under visible light irradiation, resulting in the adsorptions and activations of CO and O2. Therefore, as a synactic result of its unique band gap relation, its unique electron property and its morphologic effect, the novel CuO modified TiO2 support not only enhances the microstrain itself on the stabilization of the size of Au nanoparticles, but more importantly also reinforces the electron interaction between support and Au sites.

  20. Well-crystallized ZnCo2O4 nanosheets as a new-style support of Au catalyst for high efficient CO preferential oxidation in H2 stream under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Zhang, Yujuan; Meng, Chao; Cao, FangFang; Chen, Xun; Fu, Xianzhi; Dai, Wenxin; Yu, Changlin

    2017-01-01

    A kind of high dispersed gold catalyst supported on the spinel ZnCo2O4 nanosheets was readily fabricated by a facile template-free wet chemical method for CO oxidation in H2-rich streams at room temperature under visible light irradiation or not, which was found to be a high performance catalyst. As verified by X-ray powder diffractometry (XRD), Raman spectra, N2 adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscope (XPS), photoelectrochemical measurement and photoluminescence (PL) spectra results, the contribution of high crystallinity, the enhanced mass and charge transport, the longer lifetime of surface electrons as well as the optical absorbance properties on Au/ZnCo2O4 enabled the superior CO preferential oxidation. Notably, electron paramagnetic resonance (EPR) and CO chemisorption (TPD-MS) results indicate that visible light could promote the adsorption and activation of both CO and O2 at Au/ZnCo2O4 due to both the photo-response of Au nanoparticles and the photo-excitation of ZnCo2O4 band gap under visible light irradiation. This study indicates that Au/ZnCo2O4 may be highly desirable for a promising photo-assisted Au catalyst.

  1. Developing Tools for Undergraduate Spectroscopy: An Inexpensive Visible Light Spectrometer

    ERIC Educational Resources Information Center

    Vanderveen, Jesse R.; Martin, Brian; Ooms, Kristopher J.

    2013-01-01

    The design and implementation of an inexpensive, high-resolution Littrow-type visible light spectrometer is presented. The instrument is built from low-cost materials and interfaced with the program RSpec for real-time spectral analysis, making it useful for classroom and laboratory exercises. Using a diffraction grating ruled at 1200 lines/mm and…

  2. Seeing elements by visible-light digital camera

    PubMed Central

    Zhao, Wenyang; Sakurai, Kenji

    2017-01-01

    A visible-light digital camera is used for taking ordinary photos, but with new operational procedures it can measure the photon energy in the X-ray wavelength region and therefore see chemical elements. This report describes how one can observe X-rays by means of such an ordinary camera - The front cover of the camera is replaced by an opaque X-ray window to block visible light and to allow X-rays to pass; the camera takes many snap shots (called single-photon-counting mode) to record every photon event individually; an integrated-filtering method is newly proposed to correctly retrieve the energy of photons from raw camera images. Finally, the retrieved X-ray energy-dispersive spectra show fine energy resolution and great accuracy in energy calibration, and therefore the visible-light digital camera can be applied to routine X-ray fluorescence measurement to analyze the element composition in unknown samples. In addition, the visible-light digital camera is promising in that it could serve as a position sensitive X-ray energy detector. It may become able to measure the element map or chemical diffusion in a multi-element system if it is fabricated with external X-ray optic devices. Owing to the camera’s low expense and fine pixel size, the present method will be widely applied to the analysis of chemical elements as well as imaging. PMID:28361916

  3. Seeing elements by visible-light digital camera.

    PubMed

    Zhao, Wenyang; Sakurai, Kenji

    2017-03-31

    A visible-light digital camera is used for taking ordinary photos, but with new operational procedures it can measure the photon energy in the X-ray wavelength region and therefore see chemical elements. This report describes how one can observe X-rays by means of such an ordinary camera - The front cover of the camera is replaced by an opaque X-ray window to block visible light and to allow X-rays to pass; the camera takes many snap shots (called single-photon-counting mode) to record every photon event individually; an integrated-filtering method is newly proposed to correctly retrieve the energy of photons from raw camera images. Finally, the retrieved X-ray energy-dispersive spectra show fine energy resolution and great accuracy in energy calibration, and therefore the visible-light digital camera can be applied to routine X-ray fluorescence measurement to analyze the element composition in unknown samples. In addition, the visible-light digital camera is promising in that it could serve as a position sensitive X-ray energy detector. It may become able to measure the element map or chemical diffusion in a multi-element system if it is fabricated with external X-ray optic devices. Owing to the camera's low expense and fine pixel size, the present method will be widely applied to the analysis of chemical elements as well as imaging.

  4. A femtosecond visible/visible and visible/mid-infrared transient absorption study of the light harvesting complex II.

    PubMed

    Stahl, Andreas D; Di Donato, Mariangela; van Stokkum, Ivo; van Grondelle, Rienk; Groot, Marie Louise

    2009-12-16

    Light harvesting complex II (LHCII) is the most abundant protein in the thylakoid membrane of higher plants and green algae. LHCII acts to collect solar radiation, transferring this energy mainly toward photosystem II, with a smaller amount going to photosystem I; it is then converted into a chemical, storable form. We performed time-resolved femtosecond visible pump/mid-infrared probe and visible pump/visible probe absorption difference spectroscopy on purified LHCII to gain insight into the energy transfer in this complex occurring in the femto-picosecond time regime. We find that information derived from mid-infrared spectra, together with structural and modeling information, provides a unique visualization of the flow of energy via the bottleneck pigment chlorophyll a604.

  5. Visible light induced photobleaching of methylene blue over melamine-doped TiO2 nanocatalyst

    EPA Science Inventory

    TiO2 doping with N-rich melamine produced a stable, active and visible light sentisized nanocatalyst that showed a remarkable efficiency towards the photobleaching of a model compound – methylene blue (MB) in aqueous solution. The photobleaching followed a mixed reaction order ki...

  6. A Redox Shuttle Accelerates O2 Evolution of Photocatalysts Formed In Situ under Visible Light.

    PubMed

    Li, Jia-Xin; Ye, Chen; Li, Xu-Bing; Li, Zhi-Jun; Gao, Xue-Wang; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2017-02-20

    A redox shuttle strategy is demonstrated to be a promising approach to accelerate hole removal for efficient O2 production with mesoporous graphitic carbon nitride, WO3 , BiVO4 , NiTi-LDH, and Ag3 PO4 water-oxidation catalysts under visible-light irradiation.

  7. Energy efficient lighting and communications

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Kavehrad, M.; Deng, P.

    2012-01-01

    As Light-Emitting Diode (LED)'s increasingly displace incandescent lighting over the next few years, general applications of Visible Light Communication (VLC) technology are expected to include wireless internet access, vehicle-to-vehicle communications, broadcast from LED signage, and machine-to-machine communications. An objective in this paper is to reveal the influence of system parameters on the power distribution and communication quality, in a general plural sources VLC system. It is demonstrated that sources' Half-Power Angles (HPA), receivers' Field-Of Views (FOV), sources layout and the power distribution among sources are significant impact factors. Based on our findings, we developed a method to adaptively change working status of each LED respectively according to users' locations. The program minimizes total power emitted while simultaneously ensuring sufficient light intensity and communication quality for each user. The paper also compares Orthogonal Frequency-Division Multiplexing (OFDM) and On-Off Keying (OOK) signals performance in indoor optical wireless communications. The simulation is carried out for different locations where different impulse response distortions are experienced. OFDM seems a better choice than prevalent OOK for indoor VLC due to its high resistance to multi-path effect and delay spread. However, the peak-to-average power limitations of the method must be investigated for lighting LEDs.

  8. Fabrication and efficient visible light photocatalytic properties of novel zinc indium sulfide (ZnIn2S4) - graphitic carbon nitride (g-C3N4)/bismuth vanadate (BiVO4) nanorod-based ternary nanocomposites with enhanced charge separation via Z-scheme transfer.

    PubMed

    Jo, Wan-Kuen; Natarajan, Thillai Sivakumar

    2016-11-15

    Novel ZnIn2S4-g-C3N4/BiVO4 nanorod-based ternary nanocomposite photocatalysts with enhanced visible light absorption were synthesized and systematically characterized to confirm the formation of ZnIn2S4 marigold flowers, the layered structure of the g-C3N4, BiVO4 nanorods, and the formation of binary and ternary nanocomposites. The visible light absorption of BiVO4 was significantly improved after coupling with g-C3N4 and ZnIn2S4, which was confirmed by UV-visible diffuse reflectance spectroscopic analysis. Ternary ZnIn2S4-g-C3N4/BiVO4 nanocomposites exhibited excellent visible light photocatalytic decomposition efficiency (VL-PDE) when used for the degradation of congo red (CR) dye and metronidazole (MTZ) pharmaceutical, as well as excellent stability and reusability. The ternary 5%ZnIn2S4-50%-g-C3N4/BiVO4 nanocomposite showed higher VL-PDE for CR (81.5%) and MTZ (59%) degradation than the binary composites, g-C3N4 and BiVO4. Radical quenching experiments showed that h(+), OH, and O2(-) were the reactive radicals, validating that the Z-scheme charge carrier transfer mechanism was responsible for the enhanced VL-PDE of the ternary ZnIn2S4-g-C3N4/BiVO4 nanocomposites, which was further confirmed by photoluminescence analysis. Furthermore, kinetic studies showed that the degradation followed pseudo-first-order kinetics, and that the ternary photocatalysts could be reused up to three times with good stability. The enhanced visible light absorption, high surface area, high adsorption capacity, Z-scheme charge carrier transfer, and increased lifetime of photo-produced electron-hole pairs were responsible for the increased visible light photocatalytic decomposition efficiency.

  9. Visible light to electrical energy conversion using photoelectrochemical cells

    NASA Technical Reports Server (NTRS)

    Wrighton, Mark S. (Inventor); Ellis, Arthur B. (Inventor); Kaiser, Steven W. (Inventor)

    1983-01-01

    Sustained conversion of low energy visible or near i.r. light (>1.25 eV) to electrical energy has been obtained using wet photoelectrochemical cells where there are no net chemical changes in the system. Stabilization of n-type semi-conductor anodes of CdS, CdSe, CdTe, GaP, GaAs and InP to photoanodic dissolution is achieved by employing selected alkaline solutions of Na.sub.2 S, Na.sub.2 S/S, Na.sub.2 Se, Na.sub.2 Se/Se, Na.sub.2 Te and Na.sub.2 Te/Te as the electrolyte. The oxidation of (poly) sulfide, (poly)selenide or (poly)telluride species occurs at the irradiated anode, and reduction of polysulfide, polyselenide or polytelluride species occurs at the dark Pt cathode of the photoelectrochemical cell. Optical to electrical energy conversion efficiencies approaching 15% at selected frequencies have been observed in some cells. The wavelength for the onset of photocurrent corresponds to the band gap of the particular anode material used in the cell.

  10. Scheduling for indoor visible light communication based on graph theory.

    PubMed

    Tao, Yuyang; Liang, Xiao; Wang, Jiaheng; Zhao, Chunming

    2015-02-09

    Visible light communication (VLC) has drawn much attention in the field of high-rate indoor wireless communication. While most existing works focused on point-to-point VLC technologies, few studies have concerned multiuser VLC, where multiple optical access points (APs) transmit data to multiple user receivers. In such scenarios, inter-user interference constitutes the major factor limiting the system performance. Therefore, a proper scheduling scheme has to be proposed to coordinate the interference and optimize the whole system performance. In this work, we aim to maximize the sum rate of the system while taking into account user fairness by appropriately assigning LED lamps to multiple users. The formulated scheduling problem turns out to be a maximum weighted independent set problem. We then propose a novel and efficient resource allocation method based on graph theory to achieve high sum rates. Moreover, we also introduce proportional fairness into our scheduling scheme to ensure the user fairness. Our proposed scheduling scheme can, with low complexity, achieve more multiplexing gains, higher sum rate, and better fairness than the existing works.

  11. Unequal error control scheme for dimmable visible light communication systems

    NASA Astrophysics Data System (ADS)

    Deng, Keyan; Yuan, Lei; Wan, Yi; Li, Huaan

    2017-01-01

    Visible light communication (VLC), which has the advantages of a very large bandwidth, high security, and freedom from license-related restrictions and electromagnetic-interference, has attracted much interest. Because a VLC system simultaneously performs illumination and communication functions, dimming control, efficiency, and reliable transmission are significant and challenging issues of such systems. In this paper, we propose a novel unequal error control (UEC) scheme in which expanding window fountain (EWF) codes in an on-off keying (OOK)-based VLC system are used to support different dimming target values. To evaluate the performance of the scheme for various dimming target values, we apply it to H.264 scalable video coding bitstreams in a VLC system. The results of the simulations that are performed using additive white Gaussian noises (AWGNs) with different signal-to-noise ratios (SNRs) are used to compare the performance of the proposed scheme for various dimming target values. It is found that the proposed UEC scheme enables earlier base layer recovery compared to the use of the equal error control (EEC) scheme for different dimming target values and therefore afford robust transmission for scalable video multicast over optical wireless channels. This is because of the unequal error protection (UEP) and unequal recovery time (URT) of the EWF code in the proposed scheme.

  12. A study on computation optimization method for three-dimension scene light field radiation simulation in visible light band

    NASA Astrophysics Data System (ADS)

    Li, Ligang; Ni, Wei; Ma, Xiaoshan; Yang, Zhen; Meng, Xin; Shen, Feifei

    2016-10-01

    The simulation of high accuracy three-dimension (3D) scene optical field radiation distribution can provide the input for camera design, optimization of key parameters and testing of various imaging models. It can benefit for reducing the strong coupling between the imaging models and scene simulation. However, the simulation computation is extremely large and the non-optimization computing method can't performed efficiently. Therefore, a study was carried out from the algorithm optimization and using high-performance platform to accelerate the operation speed. On the one hand, the visibility of scene was pre-computed which include the visibility from the light source to each facet in scene and the visibility between facets. The bounding box accelerate algorithm was adopted which can avoid a lot of time-consuming computation of occlusion in the light field radiation simulation process. On the other hand, since the 3D scene light field radiation simulation was obtained by a large number of light approximation, the algorithms can be divided blocks and processed parallelly. The GPU parallel framework was adopted to realize the simulation model of light field radiation in visible band. Finally, experiments were performed. The result shown the proposed method was more efficient and effective compared with the non-optimization method.

  13. Controlled Fluoroalkylation Reactions by Visible-Light Photoredox Catalysis.

    PubMed

    Chatterjee, Tanmay; Iqbal, Naeem; You, Youngmin; Cho, Eun Jin

    2016-10-18

    Owing to their unique biological, physical, and chemical properties, fluoroalkylated organic substances have attracted significant attention from researchers in a variety of disciplines. Fluoroalkylated compounds are considered particularly important in pharmaceutical chemistry because of their superior lipophilicity, binding selectivity, metabolic stability, and bioavailability to those of their nonfluoroalkylated analogues. We have developed various methods for the synthesis of fluoroalkylated substances that rely on the use of visible-light photoredox catalysis, a powerful preparative tool owing to its environmental benignity and mechanistic versatility in promoting a large number of synthetically important reactions with high levels of selectivity. In this Account, we describe the results of our efforts, which have led to the development of visible-light photocatalytic methods for the introduction of a variety of fluoroalkyl groups (such as, -CF3, -CF2R, -CH2CF3, -C3F7, and -C4F9) and arylthiofluoroalkyl groups (such as, -CF2SPh, -C2F4SAr, and -C4F8SAr) to organic substances. In these studies, electron-deficient carbon-centered fluoroalkyl radicals were successfully generated by the appropriate choice of fluoroalkyl source, photocatalyst, additives, and solvent. The redox potentials of the photocatalysts and the fluoroalkyl sources and the choice of sacrificial electron donor or acceptor as the additive affected the photocatalytic pathway, determining whether an oxidative or reductive quenching pathway was operative for the generation of key fluoroalkyl radicals. Notably, we have observed that additives significantly affect the efficiencies and selectivities of these reactions and can even change the outcome of the reaction by playing additional roles during its course. For instance, a tertiary amine as an additive in the reaction medium can act not only as a sacrificial electron donor in photoredox catalysis but also as a hydrogen atom source, an elimination

  14. Iron(III)-oxo centers on TiO{sub 2} for visible light photocatalysis.

    SciTech Connect

    Libera, J. A.; Elam, J. W.; Sather, N. F.; Rajh, T.; Dimitrijevic, N. M.

    2009-01-01

    Isolated iron(III)-oxo clusters were synthesized onto TiO{sub 2} using atomic layer deposition. The Fe{sub x}O{sub y}/TiO{sub 2} nanocomposites have unique properties that enable not only absorption of visible light, but efficient photocatalysis as demonstrated by methylene blue degradation. The localization of photogenerated electrons in core TiO{sub 2} nanocrystallites upon visible light excitation demonstrates coupling of conduction bands of mixed oxides. The redox properties of photogenerated charges in nanocomposites were studied using in situ electron paramagnetic resonance spectroscopy.

  15. An Au/AgBr-Ag heterostructure plasmonic photocatalyst with enhanced catalytic activity under visible light.

    PubMed

    Purbia, Rahul; Paria, Santanu

    2017-01-17

    This study reports an easy synthesis protocol of a novel bimetallic silver halide (Au/AgBr-Ag) plasmonic heterostructure as a visible light induced photocatalyst. In this process, first CTAB capped Au NPs were coated with AgBr, and then Ag nanoparticles were formed on the surface of AgBr by photoreduction, while exposing to daylight at room temperature. The presence of Au and Ag improves the visible absorption ability of NPs and avoids charge recombination of the semiconductor AgBr during photoexcitation, which in turn enhances 16 and 8.9 fold the photocatalytic efficiency of Rhodamine B dye degradation under visible light irradiation compared to that of pure AgBr and AgBr/Ag, respectively. The recycling tests of the photocatalyst show only ∼8.7% decrease in efficiency after the 5(th) cycle of reuse without changing the morphology. During the photocatalytic process, active superoxide radicals (O2˙(-)) play a major role, proved through scavenger trapping and photoluminescence experiments. The presence of two plasmonic metals (Au and Ag) in the heterostructure helps to improve visible light absorption as well as avoid charge recombination of the semiconductor AgBr to act as a better photocatalyst. Since this heteronanostructure can be easily synthesized by a one-step method, this study could provide a new approach for the development of efficient bimetallic/semiconductor halide plasmonic photocatalysts with enhanced visible absorption and better charge separation.

  16. A possible mechanism for visible-light-induced skin rejuvenation

    NASA Astrophysics Data System (ADS)

    Longo, Leonardo; Lubart, Rachel; Friedman, Harry; Lavie, R.

    2004-09-01

    In recent years there has been intensive research in the field of non-ablative skin rejuvenation. This comes as a response to the desire for a simple method of treating rhytids caused by aging, UV exposure and acne scars. In numerous studies intense visible light pulsed systems (20-30J/cm2) are used. The mechanism of action was supposed to be a selective heat induced denaturalization of dermal collagen that leads to subsequent reactive synthesis. In this study we suggest a different mechanism for photorejuvenation based on light induced Reactive Oxygen Species (ROS) formation. We irradiated collagen in-vitro with a broad band of visible light, 400-800 nm, 12-22J/cm2, and used the spin trapping coupled with electron paramagnetic resonance (EPR) spectroscopy to detect ROS. In vivo, we used dose 30 J in average (35 for acnis scars, 25 for wrinkles and redness). Irradiated collagen results in hydroxyl and methyl radicals formation. We propose, as a new concept, that visible light at the intensity used for skin rejuvenation, 20-30J/cm2, produces high amounts of ROS which destroy old collagen fibers encouraging the formation of new ones. On the other hand at inner depths of the skin, where the light intensity is much weaker, low amounts of ROS are formed which are well known to stimulate fibroblast proliferation.

  17. Conducting polymer nanostructures for photocatalysis under visible light

    NASA Astrophysics Data System (ADS)

    Ghosh, Srabanti; Kouamé, Natalie A.; Ramos, Laurence; Remita, Samy; Dazzi, Alexandre; Deniset-Besseau, Ariane; Beaunier, Patricia; Goubard, Fabrice; Aubert, Pierre-Henri; Remita, Hynd

    2015-05-01

    Visible-light-responsive photocatalysts can directly harvest energy from solar light, offering a desirable way to solve energy and environment issues. Here, we show that one-dimensional poly(diphenylbutadiyne) nanostructures synthesized by photopolymerization using a soft templating approach have high photocatalytic activity under visible light without the assistance of sacrificial reagents or precious metal co-catalysts. These polymer nanostructures are very stable even after repeated cycling. Transmission electron microscopy and nanoscale infrared characterizations reveal that the morphology and structure of the polymer nanostructures remain unchanged after many photocatalytic cycles. These stable and cheap polymer nanofibres are easy to process and can be reused without appreciable loss of activity. Our findings may help the development of semiconducting-based polymers for applications in self-cleaning surfaces, hydrogen generation and photovoltaics.

  18. Visible Light Photocatalysis: The Development of Photocatalytic Radical Ion Cycloadditions

    PubMed Central

    Yoon, Tehshik P.

    2013-01-01

    Photochemistry has the potential to significantly impact multiple aspects of chemical synthesis, in part because photoinduced reactions can be used to construct molecular architectures that would otherwise be difficult to produce. Nevertheless, organic chemists have been slow to embrace photochemical synthesis because of technical complications associated with the use of ultraviolet light. Our laboratory has been part of an effort to design synthetically useful reactions that utilize visible light. This strategy enables the synthesis of a diverse range of organic structures by generation of a variety of reactive intermediates under exceptionally mild conditions. This Perspective article describes the reasoning that led to the conception of our first experiments in this area, the features of our reaction design that have been most powerful in the discovery of new processes, and a few of the possible future areas in which visible light photocatalysis might have a large impact. PMID:23691491

  19. Visible light water splitting using dye-sensitized oxide semiconductors.

    PubMed

    Youngblood, W Justin; Lee, Seung-Hyun Anna; Maeda, Kazuhiko; Mallouk, Thomas E

    2009-12-21

    Researchers are intensively investigating photochemical water splitting as a means of converting solar to chemical energy in the form of fuels. Hydrogen is a key solar fuel because it can be used directly in combustion engines or fuel cells, or combined catalytically with CO(2) to make carbon containing fuels. Different approaches to solar water splitting include semiconductor particles as photocatalysts and photoelectrodes, molecular donor-acceptor systems linked to catalysts for hydrogen and oxygen evolution, and photovoltaic cells coupled directly or indirectly to electrocatalysts. Despite several decades of research, solar hydrogen generation is efficient only in systems that use expensive photovoltaic cells to power water electrolysis. Direct photocatalytic water splitting is a challenging problem because the reaction is thermodynamically uphill. Light absorption results in the formation of energetic charge-separated states in both molecular donor-acceptor systems and semiconductor particles. Unfortunately, energetically favorable charge recombination reactions tend to be much faster than the slow multielectron processes of water oxidation and reduction. Consequently, visible light water splitting has only recently been achieved in semiconductor-based photocatalytic systems and remains an inefficient process. This Account describes our approach to two problems in solar water splitting: the organization of molecules into assemblies that promote long-lived charge separation, and catalysis of the electrolysis reactions, in particular the four-electron oxidation of water. The building blocks of our artificial photosynthetic systems are wide band gap semiconductor particles, photosensitizer and electron relay molecules, and nanoparticle catalysts. We intercalate layered metal oxide semiconductors with metal nanoparticles. These intercalation compounds, when sensitized with [Ru(bpy)(3)](2+) derivatives, catalyze the photoproduction of hydrogen from sacrificial

  20. Visible light assisted photocatalytic degradation of methyl orange using Ag/N-TiO₂ photocatalysts.

    PubMed

    Wu, Deyong; Long, Mingce

    2012-01-01

    For the sake of efficient utilization of sunlight, Ag nanoparticles loaded N-doped TiO₂ photocatalysts (Ag/N-TiO₂) were successfully fabricated via a two-step method to make the best use of the respective advantages of noble metal loading and nonmetal doping. Ag/N-TiO₂ was characterized using XRD, XPS and UV-Vis DRS. Compared to TiO₂, the dramatic enhancement of the visible-light-induced photocatalytic degradation efficiency of Ag/N-TiO₂ obtained for the degradation of methyl orange should be attributed to the synergistic effect of N-doping and Ag-loading, including the good visible light absorption and the effective electron-hole separations. This demonstrates Ag/N-TiO₂ is a promising photocatalytic material for organic pollutant degradation under visible light irradiation.

  1. Visible-Light-Responsive Catalyst Development for Volatile Organic Carbon Remediation Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Hintze, Paul E.; Coutts, Janelle

    2015-01-01

    Photocatalysis is a process in which light energy is used to 'activate' oxidation/reduction reactions. Unmodified titanium dioxide (TiO2), a common photocatalyst, requires high-energy UV light for activation due to its large band gap (3.2 eV). Modification of TiO2 can reduce this band gap, leading to visible-light-responsive (VLR) photocatalysts. These catalysts can utilize solar and/or visible wavelength LED lamps as an activation source, replacing mercury-containing UV lamps, to create a "greener," more energy-efficient means for air and water revitalization. Recently, KSC developed several VLR catalysts that, on preliminary evaluation, possessed high catalytic activity within the visible spectrum; these samples out-performed existing commercial VLR catalysts.

  2. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    PubMed Central

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-01-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet–visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films. PMID:26156001

  3. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    NASA Astrophysics Data System (ADS)

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-07-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet-visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.

  4. Visible-Light-Initiated Thiol-Michael Addition Polymerizations with Coumarin-Based Photobase Generators: Another Photoclick Reaction Strategy.

    PubMed

    Zhang, Xinpeng; Xi, Weixian; Wang, Chen; Podgórski, Maciej; Bowman, Christopher N

    2016-02-16

    An efficient visible-light-sensitive photobase generator for thiol-Michael addition reactions was synthesized and evaluated. This highly reactive catalyst was designed by protecting a strong base (tetramethyl guanidine, TMG) with a visible-light-responsive group which was a coumarin derivative. The coumarin-coupled TMG was shown to exhibit extraordinary catalytic activity toward initiation of the thiol-Michael reaction, including thiol-Michael addition-based polymerization, upon visible-light irradiation, leading to a stoichiometric reaction of both thiol and vinyl functional groups. Owing to its features, this visible-light photobase generator enables homogeneous network formation in thiol-Michael polymerizations and also has the potential to be exploited in other visible-light-induced, base-catalyzed thiol-click processes such as thiol-isocynate and thiol-epoxy network-forming reactions.

  5. Bright, Light and Energy Efficient.

    ERIC Educational Resources Information Center

    American School and University, 1981

    1981-01-01

    The new Sharon Elementary School in Newburgh (Indiana) has a three-fuel plan that will allow selection of the most economical energy source for each heating season with an energy-efficient lighting system that includes skylights. (Author/MLF)

  6. Visible-Light-Sensitive Photocatalysts: Nanocluster-Grafted Titanium Dioxide for Indoor Environmental Remediation.

    PubMed

    Miyauchi, Masahiro; Irie, Hiroshi; Liu, Min; Qiu, Xiaoqing; Yu, Huogen; Sunada, Kayano; Hashimoto, Kazuhito

    2016-01-07

    Photocatalytic degradation of organic compounds requires photoexcited holes with strong oxidative power in the valence band (VB) of semiconductors. Although numerous types of doped semiconductors, such as nitrogen-doped TiO2, have been studied as visible-light-sensitive photocatalysts, the quantum yields of these materials were very low because of the limited oxidation power of holes in the nitrogen level above the VB. Recently, we developed visible-light-sensitive Cu(II) and Fe(III) nanocluster-grafted TiO2 using a facile impregnation method and demonstrated that visible-light absorption occurs at the interface between the nanoclusters and TiO2, as electrons in the VB of TiO2 are excited to the nanoclusters under visible-light irradiation. In addition, photogenerated holes in the VB of TiO2 efficiently oxidize organic contaminants, and the excited electrons that accumulate in nanoclusters facilitate the multielectron reduction of oxygen. Notably, Cu(II) and Fe(III) nanocluster-grafted TiO2 photocatalyst has the highest quantum yield among reported photocatalysts and has antiviral, self-cleaning, and air purification properties under illumination by indoor light fixtures equipped with white fluorescent bulbs or white light-emitting diodes.

  7. Visible light laser voltage probing on thinned substrates

    DOEpatents

    Beutler, Joshua; Clement, John Joseph; Miller, Mary A.; Stevens, Jeffrey; Cole, Jr., Edward I.

    2017-03-21

    The various technologies presented herein relate to utilizing visible light in conjunction with a thinned structure to enable characterization of operation of one or more features included in an integrated circuit (IC). Short wavelength illumination (e.g., visible light) is applied to thinned samples (e.g., ultra-thinned samples) to achieve a spatial resolution for laser voltage probing (LVP) analysis to be performed on smaller technology node silicon-on-insulator (SOI) and bulk devices. Thinning of a semiconductor material included in the IC (e.g., backside material) can be controlled such that the thinned semiconductor material has sufficient thickness to enable operation of one or more features comprising the IC during LVP investigation.

  8. Heterogeneous visible light photocatalysis for selective organic transformations.

    PubMed

    Lang, Xianjun; Chen, Xiaodong; Zhao, Jincai

    2014-01-07

    The future development of chemistry entails environmentally friendly and energy sustainable alternatives for organic transformations. Visible light photocatalysis can address these challenges, as reflected by recent intensive scientific endeavours to this end. This review covers state-of-the-art accomplishments in visible-light-induced selective organic transformations by heterogeneous photocatalysis. The discussion comprises three sections based on the photocatalyst type: metal oxides such as TiO2, Nb2O5 and ZnO; plasmonic photocatalysts like nanostructured Au, Ag or Cu supported on metal oxides; and polymeric graphitic carbon nitride. Finally, recent strides in bridging the gap between photocatalysis and other areas of catalysis will be highlighted with the aim of overcoming the existing limitations of photocatalysis by developing more creative synthetic methodologies.

  9. Performance Analysis of Visible Light Communication Using CMOS Sensors.

    PubMed

    Do, Trong-Hop; Yoo, Myungsik

    2016-02-29

    This paper elucidates the fundamentals of visible light communication systems that use the rolling shutter mechanism of CMOS sensors. All related information involving different subjects, such as photometry, camera operation, photography and image processing, are studied in tandem to explain the system. Then, the system performance is analyzed with respect to signal quality and data rate. To this end, a measure of signal quality, the signal to interference plus noise ratio (SINR), is formulated. Finally, a simulation is conducted to verify the analysis.

  10. A review of astronomical science with visible light adaptive optics

    NASA Astrophysics Data System (ADS)

    Close, Laird M.

    2016-07-01

    We review astronomical results in the visible (λ<1μm) with adaptive optics. Other than a brief period in the early 1990s, there has been little (<1 paper/yr) night-time astronomical science published with AO in the visible from 2000-2013 (outside of the solar or Space Surveillance Astronomy communities where visible AO is the norm, but not the topic of this invited review). However, since mid-2013 there has been a rapid increase visible AO with over 50 refereed science papers published in just 2.5 years (visible AO is experiencing a rapid growth rate very similar to that of NIR AO science from 1997-2000 Close 2000). Currently the most productive small (D < 2 m) visible light AO telescope is the UV-LGS Robo-AO system (Baranec, et al. 2016) on the robotic Palomar D=1.5 m telescope (currently relocated to the Kitt Peak 1.8m; Salama et al. 2016). Robo-AO uniquely offers the ability to target >15 objects/hr, which has enabled large (>3000 discrete targets) companion star surveys and has resulted in 23 refereed science publications. The most productive large telescope visible AO system is the D=6.5m Magellan telescope AO system (MagAO). MagAO is an advanced Adaptive Secondary Mirror (ASM) AO system at the Magellan 6.5m in Chile (Morzinski et al. 2016). This ASM secondary has 585 actuators with < 1 msec response times (0.7 ms typically). MagAO utilizes a 1 kHz pyramid wavefront sensor. The relatively small actuator pitch ( 22 cm/subap) allows moderate Strehls to be obtained in the visible (0.63-1.05 microns). Long exposures (60s) achieve <30mas resolutions, 30% Strehls at 0.62 microns (r') with the VisAO camera in 0.5" seeing with bright R <= 9 mag stars. These capabilities have led to over 22 MagAO refereed science publications in the visible. The largest (D=8m) telescope to achieve regular visible AO science is SPHERE/ZIMPOL. ZIMPOL is a polarimeter fed by the 1.2 kHz SPHERE ExAO system (Fusco et al. 2016). ZIMPOL's ability to differentiate scattered polarized light

  11. Atomic-layer molybdenum sulfide optical modulator for visible coherent light

    PubMed Central

    Zhang, Yuxia; Wang, Shuxian; Yu, Haohai; Zhang, Huaijin; Chen, Yanxue; Mei, Liangmo; Di Lieto, Alberto; Tonelli, Mauro; Wang, Jiyang

    2015-01-01

    Coherent light sources in the visible range are playing important roles in our daily life and modern technology, since about 50% of the capability of the our human brains is devoted to processing visual information. Visible lasers can be achieved by nonlinear optical process of infrared lasers and direct lasing of gain materials, and the latter has advantages in the aspects of compactness, efficiency, simplicity, etc. However, due to lack of visible optical modulators, the directly generated visible lasers with only a gain material are constrained in continuous-wave operation. Here, we demonstrated the fabrication of a visible optical modulator and pulsed visible lasers based on atomic-layer molybdenum sulfide (MoS2), a ultrathin two-dimensional material with about 9–10 layers. By employing the nonlinear absorption of the modulator, the pulsed orange, red and deep red lasers were directly generated. Besides, the present atomic-layer MoS2 optical modulator has broadband modulating properties and advantages in the simple preparation process. The present results experimentally verify the theoretical prediction for the low-dimensional optoelectronic modulating devices in the visible wavelength region and may open an attractive avenue for removing a stumbling block for the further development of pulsed visible lasers. PMID:26067821

  12. Atomic-layer molybdenum sulfide optical modulator for visible coherent light

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxia; Wang, Shuxian; Yu, Haohai; Zhang, Huaijin; Chen, Yanxue; Mei, Liangmo; di Lieto, Alberto; Tonelli, Mauro; Wang, Jiyang

    2015-06-01

    Coherent light sources in the visible range are playing important roles in our daily life and modern technology, since about 50% of the capability of the our human brains is devoted to processing visual information. Visible lasers can be achieved by nonlinear optical process of infrared lasers and direct lasing of gain materials, and the latter has advantages in the aspects of compactness, efficiency, simplicity, etc. However, due to lack of visible optical modulators, the directly generated visible lasers with only a gain material are constrained in continuous-wave operation. Here, we demonstrated the fabrication of a visible optical modulator and pulsed visible lasers based on atomic-layer molybdenum sulfide (MoS2), a ultrathin two-dimensional material with about 9-10 layers. By employing the nonlinear absorption of the modulator, the pulsed orange, red and deep red lasers were directly generated. Besides, the present atomic-layer MoS2 optical modulator has broadband modulating properties and advantages in the simple preparation process. The present results experimentally verify the theoretical prediction for the low-dimensional optoelectronic modulating devices in the visible wavelength region and may open an attractive avenue for removing a stumbling block for the further development of pulsed visible lasers.

  13. [Development of low-concentration hydrogen peroxide whitening agent using visible light-responsive titania photocatalyst].

    PubMed

    Arai, Hiroshi

    2010-06-01

    Although highly concentrated hydrogen peroxide (HP) has been used to bleach vital discolored teeth during office whitening, low-concentration HP was recognized to have insufficient whitening ability. We demonstrated that using a visible light-responsive titania photocatalyst (VLRTP) and a vis-Nd : YAG laser, 3 wt% HP-bleached oxytetracycline (OTC)-stained teeth models were more efficient than 30 wt% HP. The stained samples were prepared by soaking synthetic hydroxyapatite ceramic disks in OTC aqueous solutions. Color images of the OTC-stained models before and after whitening were taken with a conventional flatbed scanner and calibrated using a photocell colorimeter. By VLRTP treatment with vis-Nd : YAG laser irradiation, the lightness value (L*) significantly increased and the yellowness index (b*) significantly approached zero. This suggests that a diluted HP agent with VLRTP can more efficiently decolorize stained teeth by visible light irradiation.

  14. Nanosecond high-power dense microplasma switch for visible light

    SciTech Connect

    Bataller, A. Koulakis, J.; Pree, S.; Putterman, S.

    2014-12-01

    Spark discharges in high-pressure gas are known to emit a broadband spectrum during the first 10 s of nanoseconds. We present calibrated spectra of high-pressure discharges in xenon and show that the resulting plasma is optically thick. Laser transmission data show that such a body is opaque to visible light, as expected from Kirchoff's law of thermal radiation. Nanosecond framing images of the spark absorbing high-power laser light are presented. The sparks are ideal candidates for nanosecond, high-power laser switches.

  15. Nitrogen-sensitized dual phase titanate/titania for visible-light driven phenol degradation

    SciTech Connect

    Cheng, Yu Hua; Subramaniam, Vishnu P.; Gong, Dangguo; Tang, Yuxin; Highfield, James; Pehkonen, Simo O.; Pichat, Pierre; Chen, Zhong

    2012-12-15

    A dual-phase material (DP-160) comprising hydrated titanate (H{sub 2}Ti{sub 3}O{sub 7}{center_dot}xH{sub 2}O) and anatase (TiO{sub 2}) was synthesized in a low-temperature one-pot process in the presence of triethylamine (TEA) as the N-source. The unique structure exhibits strong visible light absorption. The chromophore is linked to Ti-N bonds derived from both surface sensitization and sub-surface (bulk) doping. From transmission electron microscope (TEM) and textural studies by N{sub 2} physisorption, the composite exists as mesoporous particles with a grain size of {approx}20 nm and mean pore diameter of 3.5 nm, responsible for the high surface area ({approx}180 m{sup 2}/g). DP-160 demonstrated photocatalytic activity in the degradation of phenol under visible light ({lambda}>420 nm). The activity of the composite was further enhanced by a small addition (0.001 M) of H{sub 2}O{sub 2}, which also gave rise to some visible light activity in the control samples. This effect is believed to be associated with the surface peroxo-titanate complex. GC-MS analyses showed that the intermediate products of phenol degradation induced by visible light irradiation of DP-160 did not differ from those obtained by UV (band-gap) irradiation of TiO{sub 2}. The overall performance of the composite is attributed to efficient excitation via inter-band states (due to N-doping), surface sensitization, improved adsorptive properties of aromatic compounds due to the N-carbonaceous overlayer, and the presence of heterojunctions that are known to promote directional charge transfer in other mixed-phase titanias like Degussa P25. - graphical abstract: Nitrogen-sensitized dual phase titanate/titania photocatalyst showing extended visible light absorption and efficient photocatalytic degradation of phenol. Highlights: Black-Right-Pointing-Pointer Low temperature one-pot synthesis of visible light active dual phase photocatalyst. Black-Right-Pointing-Pointer The dual phase consists of

  16. TiO2 nanofibers coated with rGO and Ag2O for promoting visible light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Zhou, Yun; Wang, Yuan; OuYang, Xiaoping; Liu, Lixin; Zhu, Wenjun

    2017-03-01

    Due to the increase in environmental pollution, highly efficient photocatalysts with enhanced visible light photocatalytic activity have attracted considerable attention. In this work, TiO2/reduced graphene oxide (rGO)/Ag2O nanoheterostructures (NHs) based photocatalysts are successfully synthesized and a markedly higher visible light photocatalytic activity is achieved, of which at least 96% of Rhodamine B (RhB) molecules are decomposed by the TiO2/rGO/Ag2O NHs after 120 min visible light irradiation, but only 30% of RhB molecules are decomposed by pure TiO2 nanofibers (NFs). Furthermore, the influence of rGO volume ratio in TiO2/rGO/Ag2O NHs photocatalysts on visible light photocatalysis is studied, and the result shows that the sample with 5 vol% rGO exhibits the highest visible light photocatalytic activity. The much enhanced visible light photocatalytic performance of the ternary TiO2/rGO/Ag2O NHs can be ascribed to the intense visible light absorption of Ag2O, the excellent electron conductivity of 2D rGO and the matched energy level of TiO2, Ag2O, and rGO, for efficient boost of the photogenerated charge carriers transfer and separation at the interface of hierarchical TiO2/rGO/Ag2O NHs.

  17. Light Duty Efficient, Clean Combustion

    SciTech Connect

    Donald Stanton

    2010-12-31

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx

  18. Tuning laccase catalytic activity with phosphate functionalized carbon dots by visible light.

    PubMed

    Li, Hao; Guo, Sijie; Li, Chuanxi; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2015-05-13

    The phosphate functionalized carbon dots (PCDs) with high biocompatibility and low toxicity can be used as efficient additives for the construction of laccase/PCDs hybrids catalyst. A series of experiments indicated that the activity of laccase/PCDs was higher than that of free laccase (increased by 47.7%). When laccase/PCDs hybrids catalyst was irradiated with visible light (laccase/PCDs-Light), its activity was higher than that of laccase/PCDs hybrids without light irradiation (increased by 92.1%). In the present system, the T1 Cu in laccase was combined with the phosphate group on PCDs, which can increase binding capacity of laccase/PCDs hybrids and substrate. Further, the visible light irradiation increased the donating and accepting electronic capability of the laccase/PCDs hybrids, improving their catalytic activity.

  19. Visible light assisted degradation of organic dye using Ag3PO4

    NASA Astrophysics Data System (ADS)

    Dhanabal, R.; Velmathi, S.; Bose, A. Chandra

    2015-06-01

    The study of visible light photodegradation of organic dye Methylene Blue (MB) have been investigated using silver phosphate (Ag3PO4) as a photocatalyst which is good efficient material for photocatalytic reaction. The simple ion-exchange method is used to prepare Ag3PO4. The structure of the material have been confirmed using X-ray diffraction which shows cubic structure of Ag3PO4. The functional group of the Ag3PO4 has been verified by Fourier transform infrared spectroscopy. The bandgap of Ag3PO4 is calculated using kubelka-munk function from the ultra violet-visible diffuse reflectance spectroscopy, the absorption of Ag3PO4 starts from 470 nm. Under simulated visible light irradiation, Ag3PO4 catalyst exhibits good catalytic ability for degrading MB dye.

  20. Visible-light active conducting polymer nanostructures with superior photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ghosh, Srabanti; Kouame, Natalie Amoin; Remita, Samy; Ramos, Laurence; Goubard, Fabrice; Aubert, Pierre-Henri; Dazzi, Alexandre; Deniset-Besseau, Ariane; Remita, Hynd

    2015-12-01

    The development of visible-light responsive photocatalysts would permit more efficient use of solar energy, and thus would bring sustainable solutions to many environmental issues. Conductive polymers appear as a new class of very active photocatalysts under visible light. Among them poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most promising conjugated polymer with a wide range of applications. PEDOT nanostructures synthesized in soft templates via chemical oxidative polymerization demonstrate unprecedented photocatalytic activities for water treatment without the assistance of sacrificial reagents or noble metal co-catalysts and turn out to be better than TiO2 as benchmark catalyst. The PEDOT nanostructures exhibit a narrow band gap (E = 1.69 eV) and are characterized by excellent ability to absorb light in visible and near infrared region. The novel PEDOT-based photocatalysts are very stable with cycling and can be reused without appreciable loss of activity. Interestingly, hollow micrometric vesicular structures of PEDOT are not effective photocatalysts as compared to nanometric spindles suggesting size and shape dependent photocatalytic properties. The visible-light active photocatalytic properties of the polymer nanostructures present promising applications in solar light harvesting and broader fields.

  1. Visible-light active conducting polymer nanostructures with superior photocatalytic activity

    PubMed Central

    Ghosh, Srabanti; Kouame, Natalie Amoin; Remita, Samy; Ramos, Laurence; Goubard, Fabrice; Aubert, Pierre-Henri; Dazzi, Alexandre; Deniset-Besseau, Ariane; Remita, Hynd

    2015-01-01

    The development of visible-light responsive photocatalysts would permit more efficient use of solar energy, and thus would bring sustainable solutions to many environmental issues. Conductive polymers appear as a new class of very active photocatalysts under visible light. Among them poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most promising conjugated polymer with a wide range of applications. PEDOT nanostructures synthesized in soft templates via chemical oxidative polymerization demonstrate unprecedented photocatalytic activities for water treatment without the assistance of sacrificial reagents or noble metal co-catalysts and turn out to be better than TiO2 as benchmark catalyst. The PEDOT nanostructures exhibit a narrow band gap (E = 1.69 eV) and are characterized by excellent ability to absorb light in visible and near infrared region. The novel PEDOT-based photocatalysts are very stable with cycling and can be reused without appreciable loss of activity. Interestingly, hollow micrometric vesicular structures of PEDOT are not effective photocatalysts as compared to nanometric spindles suggesting size and shape dependent photocatalytic properties. The visible-light active photocatalytic properties of the polymer nanostructures present promising applications in solar light harvesting and broader fields. PMID:26657168

  2. Synthesis and characterization of Sn-doped hematite as visible light photocatalyst

    SciTech Connect

    Cao, Zhiqin; Qin, Mingli; Gu, Yueru; Jia, Baorui; Chen, Pengqi; Qu, Xuanhui

    2016-05-15

    Highlights: • Sn-doped hematite nanoparticles are prepared by SCS in one step. • The Sn doping have the ability to inhibit particle growth of hematite. • Sn can enhance visible light harvesting and e{sup −}/h{sup +} separation. • Sn-doped hematite degrades MB under visible light effectively. • The products with 5 mol% Sn have the highest photocatalytic activity. - Abstract: Sn-doped hematite nanoparticles are prepared by solution combustion synthesis. The products are characterized with various analytical and spectroscopic techniques to determine their structural, morphological, light absorption and photocatalytic properties. The results reveal that all the samples consist of nanocrystalline hematite with mesoporous structures, and Sn has the ability to inhibit the growth of hematite particle. Compared to pure hematite, the doped hematite samples with appropriate amount of Sn show better activities for degradation of methylene blue under visible light irradiation. The highest activity is observed for 5% Sn doped hematite and this product has long-term stability and no selectivity for dye degradation. The enhanced performance of 5% Sn doped hematite is ascribed to the smaller particle size, increased ability to absorb in visible light, efficient charge separation as well as improved e{sup −} transfer associated with the effects of appropriate amount of Sn doped sample.

  3. Visible light emission measurements from a dense electrothermal launcher plasma

    NASA Astrophysics Data System (ADS)

    Hankins, O. E.; Bourham, M. A.; Earnhart, J.; Gilligan, J. G.

    1993-01-01

    Measurements of the visible light emission from dense, weakly non-ideal plasmas have been performed on the experimental electrothermal launcher device 'SIRENS'. The plasma is created by the ablation or a Lexan insulator in the source, which then flows through a cylindrical barrel which serves as the material sample. Visible light emission spectra have been observed both in-bore and from the muzzle flash or the barrel, and from the flash or the source. Due to high plasma opacity (the plasma emits as a near blackbody) and absorption by the molecular components of the vapor shield, the hotter core or the arc has been difficult to observe. Recent measurements along the axis or the device indicate time-averaged plasma temperatures in the barrel or about 1 eV for lower energy shots, which agree with experimental measurements of the average heat flux and plasma conductivity along the barrel. Measurements or visible emission from the source indicate time averaged temperatures of 1 to 2 eV which agree with the theoretical estimates derived from ablated mass measurements and calculated estimates derived from plasma conductivity measurements.

  4. Broadband high-efficiency dielectric metasurfaces for the visible spectrum

    PubMed Central

    Devlin, Robert C.; Khorasaninejad, Mohammadreza; Chen, Wei Ting; Oh, Jaewon; Capasso, Federico

    2016-01-01

    Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to extend dielectric metasurfaces across the visible spectrum and to enable applications such as high numerical aperture lenses, color holograms, and wearable optics. Here, we demonstrate high performance dielectric metasurfaces in the form of holograms for red, green, and blue wavelengths with record absolute efficiency (>78%). We use atomic layer deposition of amorphous titanium dioxide with surface roughness less than 1 nm and negligible optical loss. We use a process for fabricating dielectric metasurfaces that allows us to produce anisotropic, subwavelength-spaced dielectric nanostructures with shape birefringence. This process is capable of realizing any high-efficiency metasurface optical element, e.g., metalenses and axicons. PMID:27601634

  5. Broadband high-efficiency dielectric metasurfaces for the visible spectrum.

    PubMed

    Devlin, Robert C; Khorasaninejad, Mohammadreza; Chen, Wei Ting; Oh, Jaewon; Capasso, Federico

    2016-09-20

    Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to extend dielectric metasurfaces across the visible spectrum and to enable applications such as high numerical aperture lenses, color holograms, and wearable optics. Here, we demonstrate high performance dielectric metasurfaces in the form of holograms for red, green, and blue wavelengths with record absolute efficiency (>78%). We use atomic layer deposition of amorphous titanium dioxide with surface roughness less than 1 nm and negligible optical loss. We use a process for fabricating dielectric metasurfaces that allows us to produce anisotropic, subwavelength-spaced dielectric nanostructures with shape birefringence. This process is capable of realizing any high-efficiency metasurface optical element, e.g., metalenses and axicons.

  6. Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications

    SciTech Connect

    Saoud, Khaled; Alsoubaihi, Rola; Bensalah, Nasr; Bora, Tanujjal; Bertino, Massimo; Dutta, Joydeep

    2015-03-15

    Highlights: • Synthesis of supported Ag NPs on ZnO nanorods using open vessel microwave reactor. • Use of the Ag/ZnO NPs as an efficient visible light photocatalyst. • Complete degradation of methylene blue in 1 h with 0.5 g/L Ag/ZnO NPs. - Abstract: We report the synthesis of silver (Ag) nano-spheres (NS) supported on zinc oxide (ZnO) nanorods through two step mechanism, using open vessel microwave reactor. Direct reduction of ZnO from zinc nitrates was followed by deposition precipitation of the silver on the ZnO nanorods. The supported Ag/ZnO nanoparticles were then characterized by electron microscopy, X-ray diffraction, FTIR, photoluminescence and UV–vis spectroscopy. The visible light photocatalytic activity of Ag/ZnO system was investigated using a test contaminant, methylene blue (MB). Almost complete removal of MB in about 60 min for doses higher than 0.5 g/L of the Ag/ZnO photocatalyst was achieved. This significant improvement in the photocatalytic efficiency of Ag/ZnO photocatalyst under visible light irradiation can be attributed to the presence of Ag nanoparticles on the ZnO nanoparticles which greatly enhances absorption in the visible range of solar spectrum enabled by surface plasmon resonance effect from Ag nanoparticles.

  7. Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation.

    PubMed

    Sun, Jianhui; Qiao, Liping; Sun, Shengpeng; Wang, Guoliang

    2008-06-30

    In this paper, the degradation of an azo dye Orange G (OG) on nitrogen-doped TiO2 photocatalysts has been investigated under visible light and sunlight irradiation. Under visible light irradiation, the doped TiO2 nanocatalysts demonstrated higher activity than the commercial Dugussa P25 TiO2, allowing more efficient utilization of solar light, while under sunlight, P25 showed higher photocatalytic activity. According to the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis spectra analyses, it was found that both the nanosized anatase structure and the appearance of new absorption band in the visible region caused by nitrogen doping were responsible for the significant enhancement of OG degradation under visible light. In addition, the photosensitized oxidation mechanism originated from OG itself was also considered contributing to the higher visible-light-induced degradation efficiency. The effect of the initial pH of the solution and the dosage of hydrogen peroxide under different light sources was also investigated. Under visible light and sunlight, the optimal solution pH was both 2.0, while the optimal dosage of H2O2 was 5.0 and 15.0 mmol/l, respectively.

  8. Synthesis of novel photocatalytic RGO-InVO{sub 4} nanocomposites with visible light photoactivity

    SciTech Connect

    Shen, Jianfeng; Li, Xianfu; Huang, Weishi; Li, Na; Ye, Mingxin

    2013-09-01

    Graphical abstract: A facile method for preparation of reduced graphene oxide (RGO) sheets supported indium vanadate (InVO{sub 4}) photocatalysts is reported. The visible light response and adsorption ability of RGO-InVO{sub 4} nanocomposites is greatly improved, which can effectively remove methyl orange and Cr (VI) from water. - Highlights: • Supramolecular photocatalyst of RGO-InVO{sub 4} was achieved. • Reduction of GO and preparation of RGO-InVO{sub 4} was simultaneous. • The prepared RGO-InVO{sub 4} shows high photocatalytic activity and adsorption capacity under visible light. • In situ growth of uniform InVO{sub 4} particles on RGO sheets is facile and efficient - Abstract: In this study, we report a facile method for preparation of reduced graphene oxide (RGO) sheets supported indium vanadate (InVO{sub 4}) photocatalysts. A wide range of characterization techniques, such as Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, Thermogravimetric analysis and Transmission electron microscopy were applied to characterize the obtained composites. The results indicated that the composites consist of uniformly dispersed InVO{sub 4} nanocrystals on RGO sheets. Visible light responses of RGO-InVO{sub 4} nanocomposites are greatly improved as compared with the bulk InVO{sub 4}. The as-prepared RGO-InVO{sub 4} nanocomposites can effectively remove methyl orange and Cr (VI) from water under visible light irradiation, which can be used as novel photocatalysts for environmental protection.

  9. Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays.

    PubMed

    Fan, Qingbin; Huo, Pengcheng; Wang, Daopeng; Liang, Yuzhang; Yan, Feng; Xu, Ting

    2017-03-23

    Conventional metasurface reflector-arrays based on metallic resonant nanoantenna to control the wavefront of light for focusing always suffer from strong ohmic loss at optical frequencies. Here, we overcome this challenge by constructing a non-resonant, hybrid dielectric-metal configuration consisting of TiO2 nanofins associated with an Ag reflector substrate that provides a broadband response and high polarization conversion efficiency in the visible range. A reflective flat lens based on this configuration shows an excellent focusing performance with the spot size close to the diffraction limit. Furthermore, by employing the superimposed phase distribution design to manipulate the wavefront of the reflected light, various functionalities, such as multifocal and achromatic focusing, are demonstrated for the flat lenses. Such a reflective flat lens will find various applications in visible light imaging and sensing systems.

  10. Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays

    PubMed Central

    Fan, Qingbin; Huo, Pengcheng; Wang, Daopeng; Liang, Yuzhang; Yan, Feng; Xu, Ting

    2017-01-01

    Conventional metasurface reflector-arrays based on metallic resonant nanoantenna to control the wavefront of light for focusing always suffer from strong ohmic loss at optical frequencies. Here, we overcome this challenge by constructing a non-resonant, hybrid dielectric-metal configuration consisting of TiO2 nanofins associated with an Ag reflector substrate that provides a broadband response and high polarization conversion efficiency in the visible range. A reflective flat lens based on this configuration shows an excellent focusing performance with the spot size close to the diffraction limit. Furthermore, by employing the superimposed phase distribution design to manipulate the wavefront of the reflected light, various functionalities, such as multifocal and achromatic focusing, are demonstrated for the flat lenses. Such a reflective flat lens will find various applications in visible light imaging and sensing systems. PMID:28332611

  11. Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays

    NASA Astrophysics Data System (ADS)

    Fan, Qingbin; Huo, Pengcheng; Wang, Daopeng; Liang, Yuzhang; Yan, Feng; Xu, Ting

    2017-03-01

    Conventional metasurface reflector-arrays based on metallic resonant nanoantenna to control the wavefront of light for focusing always suffer from strong ohmic loss at optical frequencies. Here, we overcome this challenge by constructing a non-resonant, hybrid dielectric-metal configuration consisting of TiO2 nanofins associated with an Ag reflector substrate that provides a broadband response and high polarization conversion efficiency in the visible range. A reflective flat lens based on this configuration shows an excellent focusing performance with the spot size close to the diffraction limit. Furthermore, by employing the superimposed phase distribution design to manipulate the wavefront of the reflected light, various functionalities, such as multifocal and achromatic focusing, are demonstrated for the flat lenses. Such a reflective flat lens will find various applications in visible light imaging and sensing systems.

  12. MIMO decorrelation for visible light communication based on angle optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyong; Zhu, Yijun

    2017-03-01

    Recently, many researchers have used the normal vector tilting to solve the problems about low rate of multiplexing and channel strong correlation in Visible Light Communication Multiple-Input Multiple-Output (VLC-MIMO) system, but they all lack of the theoretical support. In this paper, we establish a channel model about 2×2 VLC-MIMO, then translate the communication problem about vector tilting optimal angle in a certain range into a mathematical problem about seeking the minimum value of function. Finally, we deduced the mathematic expressions about the optimal tilting angles of corresponding LEDs and PDs, and these expressions will provide a theoretical basis for the further study.

  13. A Spinel Oxynitride with Visible-Light Photocatalytic Activity

    SciTech Connect

    Boppana, V.; Doren, D; Lobo, R

    2010-01-01

    Spinel zinc gallium oxynitride photocatalysts are prepared by the sol-gel method, at 550 C. In these materials, of base composition ZnGa{sub 2}O{sub 4} (octahedral Ga), reaction with ammonia leads to ZnGa{sub 2}O{sub x}N{sub y}, with a dramatic reduction of the bandgap to 2.7 eV, with just 1.3% N and no loss of Zn. At 850 C this phase is converted into wurzite (tetrahedral Ga). The novel oxynitrides also show visible-light photocatalytic activity towards the degradation of methylene blue.

  14. Visible light communication system using an organic bulk heterojunction photodetector.

    PubMed

    Arredondo, Belén; Romero, Beatriz; Pena, José Manuel Sánchez; Fernández-Pacheco, Agustín; Alonso, Eduardo; Vergaz, Ricardo; de Dios, Cristina

    2013-09-12

    A visible light communication (VLC) system using an organic bulk heterojunction photodetector (OPD) is presented. The system has been successfully proven indoors with an audio signal. The emitter consists of three commercial high-power white LEDs connected in parallel. The receiver is based on an organic photodetector having as active layer a blend of poly(3-hexylthiophene) (P3HT) and phenyl C61-butyric acid methyl ester (PCBM). The OPD is opto-electrically characterized, showing a responsivity of 0.18 A/W and a modulation response of 790 kHz at -6 V.

  15. Location-adaptive transmission for indoor visible light communication

    NASA Astrophysics Data System (ADS)

    Wang, Chun-yue; Wang, Lang; Chi, Xue-fen

    2016-01-01

    A location-adaptive transmission scheme for indoor visible light communication (VLC) system is proposed in this paper. In this scheme, the symbol error rate ( SER) of less than 10-3 should be guaranteed. And the scheme is realized by the variable multilevel pulse-position modulation (MPPM), where the transmitters adaptively adjust the number of time slots n in the MPPM symbol according to the position of the receiver. The purpose of our scheme is to achieve the best data rate in the indoor different locations. The results show that the location-adaptive transmission scheme based on the variable MPPM is superior in the indoor VLC system.

  16. Visible Light Communication System Using an Organic Bulk Heterojunction Photodetector

    PubMed Central

    Arredondo, Belén; Romero, Beatriz; Pena, José Manuel Sánchez; Fernández-Pacheco, Agustín; Alonso, Eduardo; Vergaz, Ricardo; de Dios, Cristina

    2013-01-01

    A visible light communication (VLC) system using an organic bulk heterojunction photodetector (OPD) is presented. The system has been successfully proven indoors with an audio signal. The emitter consists of three commercial high-power white LEDs connected in parallel. The receiver is based on an organic photodetector having as active layer a blend of poly(3-hexylthiophene) (P3HT) and phenyl C61-butyric acid methyl ester (PCBM). The OPD is opto-electrically characterized, showing a responsivity of 0.18 A/W and a modulation response of 790 kHz at −6 V. PMID:24036584

  17. Visible-light optical coherence tomography for retinal oximetry.

    PubMed

    Yi, Ji; Wei, Qing; Liu, Wenzhong; Backman, Vadim; Zhang, Hao F

    2013-06-01

    We applied a visible-light spectroscopic optical coherence tomography (vis-OCT) for in vivo retinal oximetry. To extract hemoglobin oxygen saturation (sO(2)) in individual retinal vessels, we established a comprehensive analytical model to describe optical absorption, optical scattering, and blood cell packing factor in the whole blood and fit the acquired vis-OCT signals from the bottom of each imaged vessel. We found that averaged sO(2) values in arterial and venous bloods were 95% and 72%, respectively.

  18. A polarized liquid-liquid interface meets visible light-driven catalytic water oxidation.

    PubMed

    Rastgar, Shokoufeh; Pilarski, Martin; Wittstock, Gunther

    2016-09-15

    Hyperbranched nanostructured bismuth vanadate at a chemically polarized water/organic interface is applied for efficient visible light-driven catalytic oxidation of water in the presence of [Co(bpy)3](PF6)3 as an organic soluble electron acceptor. The photocurrent response originating from the transfer of photo-excited electrons in BiVO4 to [Co(bpy)3](3+) is measured by scanning electrochemical microscopy.

  19. Experimental demonstration of block interleaved frequency division multiple access for bidirectional visible light communications

    NASA Astrophysics Data System (ADS)

    Lin, Bangjiang; Yang, Hui; Ye, Weiping; Tang, Xuan; Ghassemlooy, Zabih

    2017-01-01

    We propose a power efficient multiple access scheme for visible light communications (VLC) based on the block interleaved frequency division multiple access (B-IFDMA) which provides large frequency-diversity, flexible bandwidth allocation, low complexity of channel equalization, and user separation. Bidirectional B-IFDMA VLC transmission is experimentally demonstrated to verify its feasibility. The impact of the number of subcarriers per block on the transmission performance under wireless optical channel is investigated.

  20. OFDM-PWM scheme for visible light communications

    NASA Astrophysics Data System (ADS)

    Zhang, Tian; Ghassemlooy, Zabih; Rajbhandari, Sujan; Popoola, Wasiu O.; Guo, Shuxu

    2017-02-01

    In this paper, we propose an improved hybrid optical orthogonal frequency division multiplexing (O-OFDM) and pulse-width modulation (PWM) scheme for visible light communications. In this scheme, a bipolar O-OFDM signal is converted into a PWM format where the leading and trailing edges convey the frame synchronization and modulated information, respectively. The proposed scheme is insensitive to the non-linearity of the light emitting diode (LED) as LEDs are switched 'on' and 'off' between two points. Therefore, the tight requirement on the high peak-to-average-power-ratio (PAPR) in O-OFDM is no longer a major issue. The simulation and experimental results demonstrate that the proposed scheme offers an improved bit error rate performance compared to the traditional asymmetrically clipped O-OFDM (ACO-OFDM).

  1. A Reversible Photoacid Functioning in PBS Buffer under Visible Light.

    PubMed

    Abeyrathna, Nawodi; Liao, Yi

    2015-09-09

    A metastable-state photoacid that can reversibly release a proton in PBS buffer (pH = 7.4) under visible light is reported. The design is based on the dual acid-base property and tautomerization of indazole. The quantum yield was as high as 0.73, and moderate light intensity (10(2) μmol·m(2)·s(-1)) is sufficient for the photoreaction. Reversible pH change of 1.7 units was demonstrated using a 0.1 mM aqueous solution. This type of photoacid is promising for control of proton-transfer processes in physiological conditions and may find applications in biomedical areas.

  2. Dual-polarity plasmonic metalens for visible light

    PubMed Central

    Chen, Xianzhong; Huang, Lingling; Mühlenbernd, Holger; Li, Guixin; Bai, Benfeng; Tan, Qiaofeng; Jin, Guofan; Qiu, Cheng-Wei; Zhang, Shuang; Zentgraf, Thomas

    2012-01-01

    Surface topography and refractive index profile dictate the deterministic functionality of a lens. The polarity of most lenses reported so far, that is, either positive (convex) or negative (concave), depends on the curvatures of the interfaces. Here we experimentally demonstrate a counter-intuitive dual-polarity flat lens based on helicity-dependent phase discontinuities for circularly polarized light. Specifically, by controlling the helicity of the input light, the positive and negative polarity are interchangeable in one identical flat lens. Helicity-controllable real and virtual focal planes, as well as magnified and demagnified imaging, are observed on the same plasmonic lens at visible and near-infrared wavelengths. The plasmonic metalens with dual polarity may empower advanced research and applications in helicity-dependent focusing and imaging devices, angular-momentum-based quantum information processing and integrated nano-optoelectronics. PMID:23149743

  3. Visible light powered self-disinfecting coatings for influenza viruses

    NASA Astrophysics Data System (ADS)

    Weng, Ding; Qi, Hangfei; Wu, Ting-Ting; Yan, Ming; Sun, Ren; Lu, Yunfeng

    2012-04-01

    Influenza A viruses, the pathogens responsible for the recent swine flu outbreak and many historical pandemics, remain a threat to the public health. We report herein the fabrication of self-disinfecting surfaces from photoactive building nanocrystals, which can inactivate influenza viruses rapidly, spontaneously and continuously under visible light illumination.Influenza A viruses, the pathogens responsible for the recent swine flu outbreak and many historical pandemics, remain a threat to the public health. We report herein the fabrication of self-disinfecting surfaces from photoactive building nanocrystals, which can inactivate influenza viruses rapidly, spontaneously and continuously under visible light illumination. Electronic supplementary information (ESI) available: XRD, UV-Vis absorbance, TEM, AFM of as-prepared nanocrystals and as-fabricated self-disinfecting surfaces, disinfection of influenza A virus by TiO2 (P25) with UV irradiation as reference control, photoinactivation of influenza A virus envelope proteins and photoinactivation of trypsin. See DOI: 10.1039/c2nr30388d

  4. Amorphous indium-gallium-zinc-oxide visible-light phototransistor with a polymeric light absorption layer

    NASA Astrophysics Data System (ADS)

    Zan, Hsiao-Wen; Chen, Wei-Tsung; Hsueh, Hsiu-Wen; Kao, Shih-Chin; Ku, Ming-Che; Tsai, Chuang-Chuang; Meng, Hsin-Fei

    2010-11-01

    This work demonstrates a real-time visible-light phototransistor comprised of a wide-band-gap amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) and a narrow-band-gap polymeric capping layer. The capping layer and the IGZO layer form a p-n junction diode. The p-n junction absorbs visible light and consequently injects electrons into the IGZO layer, which in turn affects the body voltage as well as the threshold voltage of a-IGZO TFT. The hysteresis behavior due to the charges at IGZO back interface is also discussed.

  5. Plasmonic photoanodes for solar water splitting with visible light.

    PubMed

    Lee, Joun; Mubeen, Syed; Ji, Xiulei; Stucky, Galen D; Moskovits, Martin

    2012-09-12

    We report a plasmonic water splitting cell in which 95% of the effective charge carriers derive from surface plasmon decay to hot electrons, as evidenced by fuel production efficiencies up to 20-fold higher at visible, as compared to UV, wavelengths. The cell functions by illuminating a dense array of aligned gold nanorods capped with TiO(2), forming a Schottky metal/semiconductor interface which collects and conducts the hot electrons to an unilluminated platinum counter-electrode where hydrogen gas evolves. The resultant positive charges in the Au nanorods function as holes and are extracted by an oxidation catalyst which electrocatalytically oxidizes water to oxygen gas.

  6. Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO₂ Nanowire Arrays by Nitrogen Implantation.

    PubMed

    Wang, Gongming; Xiao, Xiangheng; Li, Wenqing; Lin, Zhaoyang; Zhao, Zipeng; Chen, Chi; Wang, Chen; Li, Yongjia; Huang, Xiaoqing; Miao, Ling; Jiang, Changzhong; Huang, Yu; Duan, Xiangfeng

    2015-07-08

    Titanium oxide (TiO2) represents one of most widely studied materials for photoelectrochemical (PEC) water splitting but is severely limited by its poor efficiency in the visible light range. Here, we report a significant enhancement of visible light photoactivity in nitrogen-implanted TiO2 (N-TiO2) nanowire arrays. Our systematic studies show that a post-implantation thermal annealing treatment can selectively enrich the substitutional nitrogen dopants, which is essential for activating the nitrogen implanted TiO2 to achieve greatly enhanced visible light photoactivity. An incident photon to electron conversion efficiency (IPCE) of ∼10% is achieved at 450 nm in N-TiO2 without any other cocatalyst, far exceeding that in pristine TiO2 nanowires (∼0.2%). The integration of oxygen evolution reaction (OER) cocatalyst with N-TiO2 can further increase the IPCE at 450 nm to ∼17% and deliver an unprecedented overall photocurrent density of 1.9 mA/cm(2), by integrating the IPCE spectrum with standard AM 1.5G solar spectrum. Systematic photoelectrochemical and electrochemical studies demonstrated that the enhanced PEC performance can be attributed to the significantly improved visible light absorption and more efficient charge separation. Our studies demonstrate the implantation approach can be used to reliably dope TiO2 to achieve the best performed N-TiO2 photoelectrodes to date and may be extended to fundamentally modify other semiconductor materials for PEC water splitting.

  7. Intensity estimation method of LED array for visible light communication

    NASA Astrophysics Data System (ADS)

    Ito, Takanori; Yendo, Tomohiro; Arai, Shintaro; Yamazato, Takaya; Okada, Hiraku; Fujii, Toshiaki

    2013-03-01

    This paper focuses on a road-to-vehicle visible light communication (VLC) system using LED traffic light as the transmitter and camera as the receiver. The traffic light is composed of a hundred of LEDs on two dimensional plain. In this system, data is sent as two dimensional brightness patterns by controlling each LED of the traffic light individually, and they are received as images by the camera. Here, there are problems that neighboring LEDs on the received image are merged due to less number of pixels in case that the receiver is distant from the transmitter, and/or due to blurring by defocus of the camera. Because of that, bit error rate (BER) increases due to recognition error of intensity of LEDs To solve the problem, we propose a method that estimates the intensity of LEDs by solving the inverse problem of communication channel characteristic from the transmitter to the receiver. The proposed method is evaluated by BER characteristics which are obtained by computer simulation and experiments. In the result, the proposed method can estimate with better accuracy than the conventional methods, especially in case that the received image is blurred a lot, and the number of pixels is small.

  8. Formation of visible single-mode light sources using quantum dots

    NASA Astrophysics Data System (ADS)

    Baig, Sarfaraz; Xu, Jianfeng; Wu, Pengfei; Chen, Bing; Wang, Michael

    2008-08-01

    The market demands for innovative, efficient, small package and single-mode light sources are always high because of their broad applications in scientific, medical, industrial, and commercial fields. The high photoluminescence quantum yield, photophysical and photochemical stability, and tunable emission wavelength make quantum dots ideal for a new generation of solid state light sources. We report on the realization of various single-mode light sources in the visible spectral band by using semiconductor quantum dots. The effective use of a waveguide structure can help achieve the divergence control of the output light beam. This technique may benefit the development for next generation light emitting diodes, optical communication, intelligent optical sensors, microprocessors, and nanoscale optical imaging systems.

  9. Enhanced visible light photocatalytic performance of polyaniline modified mesoporous single crystal TiO2 microsphere

    NASA Astrophysics Data System (ADS)

    Deng, Yaocheng; Tang, Lin; Zeng, Guangming; Dong, Haoran; Yan, Ming; Wang, Jingjing; Hu, Wei; Wang, Jiajia; Zhou, Yaoyu; Tang, Jing

    2016-11-01

    Polyaniline (PANI) modified mesoporous single crystal TiO2 microsphere (PANI/MS-TiO2) with excellent photocatalytic activity was successfully prepared by a simple method of solution evaporation and chemisorption. The X-ray diffraction characterization demonstrated that the whole MS-TiO2 kept the crystal type of anatase. The nitrogen adsorption-desorption characterization coupled with scanning electron microscopy indicated that the MS-TiO2 possessed a unique mesoporous structure with high specific surface area, which resulted in the increased load of PANI on the surface of MS-TiO2 and multiple light reflection in the photocatalyst. The UV-vis diffuse reflectance spectra confirmed that PANI/MS-TiO2 presented more absorption ability in the visible light range than that of the pristine MS-TiO2. The transient photocurrent responses and electrochemical impedance spectroscopy (EIS) indicated the high photo responses and fast photogenerated charge separation efficiency of PANI/MS-TiO2. The photocatalytic activity of the PANI/MS-TiO2 was evaluated by the photodegradation of RhB and MB under visible light irradiation. MS-TiO2 photocatalyst with different molar ration of PANI had been prepared, and the results showed that the optimal photocatalyst (PANI/MS-TiO2 (1:40)) exhibited the highest photocatalytic efficiency which is nearly three times as great as that of pristine MS-TiO2 for the degradation of the RhB and MB under visible light irradiation. The remarkable performance of the PANI/MS-TiO2 under visible light was attributed to its mesoporous single crystal structure with large surface, conductivity, as well as the synergistic effect between PANI and MS-TiO2.

  10. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light

    SciTech Connect

    Liu, Chong; Kong, Desheng; Hsu, Po -Chun; Yuan, Hongtao; Lee, Hyun -Wook; Liu, Yayuan; Wang, Haotian; Wang, Shuang; Yan, Kai; Lin, Dingchang; Maraccini, Peter A.; Parker, Kimberly M.; Boehm, Alexandria B.; Cui, Yi

    2016-08-15

    Here, solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water (SODIS) mostly relies on ultraviolet light, which represents only 4% of total solar energy, and this leads to slow treatment speed. The development of new materials that can harvest visible light for water disinfection, and speed up solar water purification, is therefore highly desirable. Here, we show that few-layered vertically aligned MoS2 (FLV-MoS2) films can be used to harvest the whole spectrum of visible light (~ 50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS2 was increased from 1.3 eV to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS2 to generate reactive oxygen species (ROS) for bacterial inactivation in water. The FLV-MoS2 showed ~15 times better log inactivation efficiency of indicator bacteria compared to bulk MoS2, and much faster inactivation of bacteria under both visible light and sunlight illumination compared to widely used TiO2. Moreover, by using a 5 nm copper film on top of the FLV-MoS2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was further increased 6 fold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 minutes with a small amount of material (1.6 mg/L) under simulated visible light.

  11. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light.

    PubMed

    Liu, Chong; Kong, Desheng; Hsu, Po-Chun; Yuan, Hongtao; Lee, Hyun-Wook; Liu, Yayuan; Wang, Haotian; Wang, Shuang; Yan, Kai; Lin, Dingchang; Maraccini, Peter A; Parker, Kimberly M; Boehm, Alexandria B; Cui, Yi

    2016-12-01

    Solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water mostly relies on ultraviolet light, which represents only 4% of the total solar energy, and this leads to a slow treatment speed. Therefore, the development of new materials that can harvest visible light for water disinfection, and so speed up solar water purification, is highly desirable. Here we show that few-layered vertically aligned MoS2 (FLV-MoS2) films can be used to harvest the whole spectrum of visible light (∼50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS2 was increased from 1.3 to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS2 to generate reactive oxygen species (ROS) for bacterial inactivation in the water. The FLV-MoS2 showed a ∼15 times better log inactivation efficiency of the indicator bacteria compared with that of bulk MoS2, and a much faster inactivation of bacteria under both visible light and sunlight illumination compared with the widely used TiO2. Moreover, by using a 5 nm copper film on top of the FLV-MoS2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was increased a further sixfold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 min with a small amount of material (1.6 mg l(-1)) under simulated visible light.

  12. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Kong, Desheng; Hsu, Po-Chun; Yuan, Hongtao; Lee, Hyun-Wook; Liu, Yayuan; Wang, Haotian; Wang, Shuang; Yan, Kai; Lin, Dingchang; Maraccini, Peter A.; Parker, Kimberly M.; Boehm, Alexandria B.; Cui, Yi

    2016-12-01

    Solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water mostly relies on ultraviolet light, which represents only 4% of the total solar energy, and this leads to a slow treatment speed. Therefore, the development of new materials that can harvest visible light for water disinfection, and so speed up solar water purification, is highly desirable. Here we show that few-layered vertically aligned MoS2 (FLV-MoS2) films can be used to harvest the whole spectrum of visible light (∼50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS2 was increased from 1.3 to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS2 to generate reactive oxygen species (ROS) for bacterial inactivation in the water. The FLV-MoS2 showed a ∼15 times better log inactivation efficiency of the indicator bacteria compared with that of bulk MoS2, and a much faster inactivation of bacteria under both visible light and sunlight illumination compared with the widely used TiO2. Moreover, by using a 5 nm copper film on top of the FLV-MoS2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was increased a further sixfold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 min with a small amount of material (1.6 mg l-1) under simulated visible light.

  13. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light

    SciTech Connect

    Liu, Chong; Kong, Desheng; Hsu, Po-Chun; Yuan, Hongtao; Lee, Hyun-Wook; Liu, Yayuan; Wang, Haotian; Wang, Shuang; Yan, Kai; Lin, Dingchang; Maraccini, Peter A.; Parker, Kimberly M.; Boehm, Alexandria B.; Cui, Yi

    2016-08-15

    In most climates, solar energy is readily available and can be used for water purification. But, solar disinfection of drinking water mostly relies on ultraviolet light, which represents only 4% of the total solar energy, and this leads to a slow treatment speed. Therefore, the development of new materials that can harvest visible light for water disinfection, and so speed up solar water purification, is highly desirable. Here we show that few-layered vertically aligned MoS2 (FLV-MoS2) films can be used to harvest the whole spectrum of visible light (~50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS2 was increased from 1.3 to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS2 to generate reactive oxygen species (ROS) for bacterial inactivation in the water. The FLV-MoS2 showed a ~15 times better log inactivation efficiency of the indicator bacteria compared with that of bulk MoS2, and a much faster inactivation of bacteria under both visible light and sunlight illumination compared with the widely used TiO2. Moreover, by using a 5 nm copper film on top of the FLV-MoS2 as a catalyst to facilitate electron–hole pair separation and promote the generation of ROS, the disinfection rate was increased a further sixfold. Here, we achieved water disinfection of >99.999% inactivation of bacteria in 20 min with a small amount of material (1.6 mg l–1) under simulated visible light.

  14. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light

    DOE PAGES

    Liu, Chong; Kong, Desheng; Hsu, Po-Chun; ...

    2016-08-15

    In most climates, solar energy is readily available and can be used for water purification. But, solar disinfection of drinking water mostly relies on ultraviolet light, which represents only 4% of the total solar energy, and this leads to a slow treatment speed. Therefore, the development of new materials that can harvest visible light for water disinfection, and so speed up solar water purification, is highly desirable. Here we show that few-layered vertically aligned MoS2 (FLV-MoS2) films can be used to harvest the whole spectrum of visible light (~50% of solar energy) and achieve highly efficient water disinfection. The bandgapmore » of MoS2 was increased from 1.3 to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS2 to generate reactive oxygen species (ROS) for bacterial inactivation in the water. The FLV-MoS2 showed a ~15 times better log inactivation efficiency of the indicator bacteria compared with that of bulk MoS2, and a much faster inactivation of bacteria under both visible light and sunlight illumination compared with the widely used TiO2. Moreover, by using a 5 nm copper film on top of the FLV-MoS2 as a catalyst to facilitate electron–hole pair separation and promote the generation of ROS, the disinfection rate was increased a further sixfold. Here, we achieved water disinfection of >99.999% inactivation of bacteria in 20 min with a small amount of material (1.6 mg l–1) under simulated visible light.« less

  15. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light

    DOE PAGES

    Liu, Chong; Kong, Desheng; Hsu, Po -Chun; ...

    2016-08-15

    Here, solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water (SODIS) mostly relies on ultraviolet light, which represents only 4% of total solar energy, and this leads to slow treatment speed. The development of new materials that can harvest visible light for water disinfection, and speed up solar water purification, is therefore highly desirable. Here, we show that few-layered vertically aligned MoS2 (FLV-MoS2) films can be used to harvest the whole spectrum of visible light (~ 50% of solar energy) and achieve highly efficient water disinfection. The bandgapmore » of MoS2 was increased from 1.3 eV to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS2 to generate reactive oxygen species (ROS) for bacterial inactivation in water. The FLV-MoS2 showed ~15 times better log inactivation efficiency of indicator bacteria compared to bulk MoS2, and much faster inactivation of bacteria under both visible light and sunlight illumination compared to widely used TiO2. Moreover, by using a 5 nm copper film on top of the FLV-MoS2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was further increased 6 fold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 minutes with a small amount of material (1.6 mg/L) under simulated visible light.« less

  16. Reduced graphene oxide-silver nanoparticle composite as visible light photocatalyst for degradation of colorless endocrine disruptors.

    PubMed

    Bhunia, Susanta Kumar; Jana, Nikhil R

    2014-11-26

    Sunlight-induced degradation of organic pollutants is an ideal approach for environmental pollution control and wastewater treatment. Although a variety of photocatalysts have been designed toward this goal, efficient degradation of colorless organic pollutants by visible light is a challenging issue. Here, we show that a reduced graphene oxide (rGO)-based composite with silver nanoparticle (rGO-Ag) can act as an efficient visible-light photocatalyst for the degradation of colorless organic pollutants. We have developed a simple, large-scale synthesis method for rGO-Ag and used it for the degradation of three well-known endocrine disruptors (phenol, bisphenol A, and atrazine) under UV and visible light. It is found that photocatalytic efficiency by rGO-Ag under visible light is significantly higher compared to that of rGO or silver nanoparticles. It is proposed that Ag nanoparticles offer visible-light-induced excitation of silver plasmons, and conductive rGO offers efficient charge separation and thus induces oxidative degradation of the organic pollutant. This approach can be extended for sunlight-induced degradation of different organic pollutants.

  17. Photocatalytic activities of various pentavalent bismuthates under visible light irradiation

    SciTech Connect

    Takei, Takahiro; Haramoto, Rie; Dong, Qiang; Kumada, Nobuhiro; Yonesaki, Yoshinori; Kinomura, Nobukazu; Mano, Takayuki; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Miyake, Michihiro

    2011-08-15

    LiBiO{sub 3}, NaBiO{sub 3}, MgBi{sub 2}O{sub 6}, KBiO{sub 3}, ZnBi{sub 2}O{sub 6}, SrBi{sub 2}O{sub 6}, AgBiO{sub 3}, BaBi{sub 2}O{sub 6} and PbBi{sub 2}O{sub 6} were synthesized by various processes such as hydrothermal treatment, heating and so on. These materials were examined for their photocatalytic activities in the decolorization of methylene blue and decomposition of phenol under visible light irradiation. For methylene blue decolorization, the presence of KBiO{sub 3} resulted in complete decoloration within 5 min. For phenol decomposition, NaBiO{sub 3} showed the highest activity, while LiBiO{sub 3}, SrBi{sub 2}O{sub 6} and BaBi{sub 2}O{sub 6} possessed almost comparable decomposition rates. Their decomposition rates were apparently higher than that by anatase (P25) under UV irradiation. - Graphical abstract: Nine pentavalent bismuthates were synthesized and were examined for their photocatalytic activities by decomposition of phenol under visible light irradiation. NaBiO{sub 3}, LiBiO{sub 3}, SrBi{sub 2}O{sub 6} and BaBi{sub 2}O{sub 6} indicated faster decomposition rate than that of anatase (P25) under UV-vis light irradiation. Highlights: > KBiO{sub 3} decolorize methylene blue aqueous solution immediately within 5 min. > NaBiO{sub 3}, LiBiO{sub 3}, SrBi{sub 2}O{sub 6} and BaBi{sub 2}O{sub 6} indicated high decomposition rate of phenol. > The d electron of Zn, Ag and Pb form broad conduction band. > The broad conduction band poses to diminish photocatalytic activity.

  18. Polarity separating optical orthogonal frequency division multiplexing for free-space visible light communications

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Huang, Zhitong; Li, Jianke; Liu, Xiaoshuang

    2017-02-01

    A modulation format, polarity separating optical orthogonal frequency division multiplexing (PSO-OFDM), is proposed to mitigate the light-emitting diode (LED) nonlinearity for visible light communication systems. A polarity separator is used to divide the OFDM signal in time domain x(t) into two parts: x+(t) and x-(t), which will be transmitted parallelly from the different LEDs and overlap linearly in free space to realize PSO-OFDM. The experimental results demonstrate that PSO-OFDM has high spectral efficiency and suffers less nonlinear distortions than other methods. Employing PSO-OFDM, the modulation index and bit error rate performance can be significantly enhanced.

  19. A visible light-sensitive tungsten carbide/tungsten trioxde composite photocatalyst

    SciTech Connect

    Kim, Young-ho; Irie, Hiroshi; Hashimoto, Kazuhito

    2008-05-05

    A photocatalyst composed of tungsten carbide (WC) and tungsten oxide (WO{sub 3}) has been prepared by the mechanical mixing of each powder. Its photocatalytic activity was evaluated by the gaseous isopropyl alcohol decomposition process. The photocatalyst showed high visible light photocatalytic activity with a quantum efficiency of 3.2% for 400-530 nm light. The photocatalytic mechanism was explained by means of enhanced oxygen reduction reaction due to WC, which may serve as a multielectron reduction catalyst, as well as the photogeneration of holes in the valence band of WO{sub 3}.

  20. Energy Efficiency Through Lighting Upgrades

    SciTech Connect

    Berst, Kara; Howeth, Maria

    2013-02-26

    Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year's average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center; both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.

  1. Microfluidic reactors for visible-light photocatalytic water purification assisted with thermolysis

    PubMed Central

    Wang, Ning; Tan, Furui; Wan, Li; Wu, Mengchun

    2014-01-01

    Photocatalytic water purification using visible light is under intense research in the hope to use sunlight efficiently, but the conventional bulk reactors are slow and complicated. This paper presents an integrated microfluidic planar reactor for visible-light photocatalysis with the merits of fine flow control, short reaction time, small sample volume, and long photocatalyst durability. One additional feature is that it enables one to use both the light and the heat energy of the light source simultaneously. The reactor consists of a BiVO4-coated glass as the substrate, a blank glass slide as the cover, and a UV-curable adhesive layer as the spacer and sealant. A blue light emitting diode panel (footprint 10 mm × 10 mm) is mounted on the microreactor to provide uniform irradiation over the whole reactor chamber, ensuring optimal utilization of the photons and easy adjustments of the light intensity and the reaction temperature. This microreactor may provide a versatile platform for studying the photocatalysis under combined conditions such as different temperatures, different light intensities, and different flow rates. Moreover, the microreactor demonstrates significant photodegradation with a reaction time of about 10 s, much shorter than typically a few hours using the bulk reactors, showing its potential as a rapid kit for characterization of photocatalyst performance. PMID:25584117

  2. Microfluidic reactors for visible-light photocatalytic water purification assisted with thermolysis.

    PubMed

    Wang, Ning; Tan, Furui; Wan, Li; Wu, Mengchun; Zhang, Xuming

    2014-09-01

    Photocatalytic water purification using visible light is under intense research in the hope to use sunlight efficiently, but the conventional bulk reactors are slow and complicated. This paper presents an integrated microfluidic planar reactor for visible-light photocatalysis with the merits of fine flow control, short reaction time, small sample volume, and long photocatalyst durability. One additional feature is that it enables one to use both the light and the heat energy of the light source simultaneously. The reactor consists of a BiVO4-coated glass as the substrate, a blank glass slide as the cover, and a UV-curable adhesive layer as the spacer and sealant. A blue light emitting diode panel (footprint 10 mm × 10 mm) is mounted on the microreactor to provide uniform irradiation over the whole reactor chamber, ensuring optimal utilization of the photons and easy adjustments of the light intensity and the reaction temperature. This microreactor may provide a versatile platform for studying the photocatalysis under combined conditions such as different temperatures, different light intensities, and different flow rates. Moreover, the microreactor demonstrates significant photodegradation with a reaction time of about 10 s, much shorter than typically a few hours using the bulk reactors, showing its potential as a rapid kit for characterization of photocatalyst performance.

  3. Cyclic performance and photo-induced crystalline growth of nanostructured AgI/TiO2 visible light photocatalyst.

    PubMed

    He, Ke Feng; Feng, Lu; Wang, Lin; Chen, Wan Ping

    2012-03-01

    Nanostructured AgI/TiO2 visible light photocatalyst was prepared with AgNO3, KI, and Ti(OBu)4 as precursors. The photocatalyst was used repeatedly to degrade methylene blue and methyl orange in water with visible light irradiation. Though a high photocatalytic efficiency was observed for the photocatalyst in the first cycle, the photocatalytic efficiency was found to decrease dramatically in subsequent cycles. X-ray diffraction and SEM analyses revealed an obvious crystalline growth of AgI in AgI/TiO2 nanocomposite after photocatalysis or visible light irradiation. It was proposed that photo-induced crystalline growth had occurred to AgI in the course of photocatalysis and resulted in dramatic decrease in the photocatalytic efficiency of the photocatalyst. Photo-induced crystalline growth may be a limiting factor for the lifetime of photocatalysts and should be examined as an important aspect of photostability when new photocatalysts are developed.

  4. PbO-modified TiO2 thin films: a route to visible light photocatalysts.

    PubMed

    Bhachu, Davinder S; Sathasivam, Sanjayan; Carmalt, Claire J; Parkin, Ivan P

    2014-01-21

    PbO clusters were deposited onto polycrystalline titanium dioxide (anatase) films on glass substrates by aerosol-assisted chemical vapor deposition (AACVD). The as-deposited PbO/TiO2 films were then tested for visible light photocatalysis. This was monitored by the photodegradation of stearic acid under visible light conditions. PbO/TiO2 composite films were able to degrade stearic acid at a rate of 2.28 × 10(15) molecules cm(-2) h(-1), which is 2 orders of magnitude greater than what has previously been reported. The PbO/TiO2 composite film demonstrated UVA degradation of resazurin redox dye, with the formal quantum yield (FQY) and formal quantum efficiency (FQE) exceeding that of a TiO2 film grown under the same conditions and Pilkington Activ, a commercially available self-cleaning glass. This work correlates with computational studies that predicted PbO nanoclusters on TiO2 form active visible light photocatalysts through new electronic states through PbO/TiO2 interfacial bonds resulting in new electronic states above the valence band maximum in TiO2, shifting the valence band upward as well as more efficient electron/hole separation with hole localization on PbO particles and electron on the TiO2 surface.

  5. Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Song, Peng; Zhang, Xiaoyan; Sun, Mingxuan; Cui, Xiaoli; Lin, Yuehe

    2012-02-01

    Novel nanocomposite films, based on graphene oxide (GO) and TiO2 nanotube arrays, were synthesized by assembling GO on the surface of self-organized TiO2 nanotube arrays through a simple impregnation method. The composite films were characterized with field emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy and UV-vis diffuse reflectance spectroscopy. The photoelectrochemical properties of the composite nanotube arrays were investigated under visible light illumination. Remarkably enhanced visible light photoelectrochemical response was observed for the GO decorated TiO2 nanotube composite electrode compared with pristine TiO2 nanotube arrays. The sensitizing effect of GO on the photoelectrochemical response of the TiO2 nanotube arrays was demonstrated and about 15 times enhanced maximum photoconversion efficiency was obtained with the presence of GO. An enhanced photocatalytic activity of the TiO2 nanotube arrays towards the degradation of methyl blue was also demonstrated after modification with GO. The results presented here demonstrate GO to be efficient for the improved utilization of visible light for TiO2 nanotube arrays.

  6. Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties.

    PubMed

    Song, Peng; Zhang, Xiaoyan; Sun, Mingxuan; Cui, Xiaoli; Lin, Yuehe

    2012-03-07

    Novel nanocomposite films, based on graphene oxide (GO) and TiO(2) nanotube arrays, were synthesized by assembling GO on the surface of self-organized TiO(2) nanotube arrays through a simple impregnation method. The composite films were characterized with field emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy and UV-vis diffuse reflectance spectroscopy. The photoelectrochemical properties of the composite nanotube arrays were investigated under visible light illumination. Remarkably enhanced visible light photoelectrochemical response was observed for the GO decorated TiO(2) nanotube composite electrode compared with pristine TiO(2) nanotube arrays. The sensitizing effect of GO on the photoelectrochemical response of the TiO(2) nanotube arrays was demonstrated and about 15 times enhanced maximum photoconversion efficiency was obtained with the presence of GO. An enhanced photocatalytic activity of the TiO(2) nanotube arrays towards the degradation of methyl blue was also demonstrated after modification with GO. The results presented here demonstrate GO to be efficient for the improved utilization of visible light for TiO(2) nanotube arrays.

  7. Silver bromide in montmorillonite as visible light-driven photocatalyst and the role of montmorillonite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.; Razavi, M.

    2016-09-01

    In this study, novel plasmonic photocatalyst, Ag/AgBr-montmorillonite (MMT) nanocomposite, was prepared by dispersion method and light irradiation. The structure, composition and optical properties of such material was investigated by transmission electron microscopy, UV-visible diffuse reflectance spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The powder X-ray diffraction showed intercalation of Ag/AgBr nanoparticles into the clay interlayer space. The results showed that the prepared sample has a similar phase composition. However, their photocatalytic activity varied significantly. The photocatalytic testing result showed that the Ag/AgBr-MMT nanocomposite was more efficient photocatalyst in the discoloration of methylene blue under visible light illumination. The Ag/AgBr-MMT nanocomposite in pH = 2 and under visible light degraded 92 % of dye at the irradiation time of 20 min. MMT as matrix showed excellent role in separation efficiency of electron-hole pairs. The mechanism of separation of the photogenerated electrons and holes at the Ag/AgBr-MMT nanocomposite was discussed.

  8. Highly efficient and stable Au/Bi2MoO6/Bi2WO6 heterostructure with enhanced photocatalytic activity for NO gas removal under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Jia, Jia; Du, Xiao; Liu, Enzhou; Wan, Jun; Pan, Chao; Ma, Yongning; Hu, Xiaoyun; Fan, Jun

    2017-04-01

    The ternary composite photocatalyst Au/Bi2MoO6/Bi2WO6 has been successfully synthesized by a facile hydrothermal process and microwave-assisted chemical reduction method for the first time. A series of characterization results reveal that Au nanoparticles are uniformly dispersed on the surface of Bi2MoO6/Bi2WO6 microspheres. The unique photocatalytic performance of the novel composite material is evaluated by the photocatalytic removal of NO gas at ppb levels under visible light irradiation. The photocatalytic removal rate of NO gas in the presence of Au/Bi2MoO6/Bi2WO6 sample is the highest, which directly attributes to the effective separation of photoinduced charge carriers through the formation of the heterojunction and the Schottky junction at the interface between Au nanoparticles and Bi2MoO6 or Bi2WO6. Additionally, it is indicated that the h + and \\centerdot \\text{O}2- play indispensable role in photocatalytic process by free radicals trapping experiments and the oxidation products of NO gas on the surface of the catalysts are nitrate by drawing the standard curve of total N content in nitrate. Meanwhile, a possible mechanism for the photocatalytic activity enhancement of the Au/Bi2MoO6/Bi2WO6 composites is proposed. These results demonstrate that the Au/Bi2MoO6/Bi2WO6 photocatalyst is a promising candidate for indoor air purification under solar light irradiation.

  9. In Vivo Visible Light-Triggered Drug Release From an Implanted Depot.

    PubMed

    Carling, Carl-Johan; Viger, Mathieu L; Huu, Viet Anh Nguyen; Garcia, Arnold V; Almutairi, Adah

    2015-01-01

    Controlling chemistry in space and time has offered scientists and engineers powerful tools for research and technology. For example, on-demand photo-triggered activation of neurotransmitters has revolutionized neuroscience. Non-invasive control of the availability of bioactive molecules in living organisms will undoubtedly lead to major advances; however, this requires the development of photosystems that efficiently respond to regions of the electromagnetic spectrum that innocuously penetrate tissue. To this end, we have developed a polymer that photochemically degrades upon absorption of one photon of visible light and demonstrated its potential for medical applications. Particles formulated from this polymer release molecular cargo in vitro and in vivo upon irradiation with blue visible light through a photoexpansile swelling mechanism.

  10. Bottom-up design of 2D organic photocatalysts for visible-light driven hydrogen evolution.

    PubMed

    Wang, Peng; Jiang, Xue; Zhao, Jijun

    2016-01-27

    To design two-dimensional (2D) organocatalysts, three series of covalent organic frameworks (COFs) are constructed using bottom-up strategies, i.e. molecular selection, tunable linkage, and functionalization. First-principles calculations are performed to confirm their photocatalytic activity under visible light. Two of our constructed 2D COF models (B1 and C3) are identified as a sufficiently efficient organocatalyst for visible light water splitting. The controllable construction of such COFs from suitable organic subunit, linkage, and functional groups paves the way for correlating band edge alignments and geometry parameters of 2D organic materials. Our theoretical prediction not only provides essential insights into designing 2D-COF photocatalysts for water splitting, but also sparks other technological applications for 2D organic materials.

  11. Facile synthesis and enhanced visible-light photocatalysis of graphitic carbon nitride composite semiconductors.

    PubMed

    Li, Huiquan; Liu, Yuxing; Gao, Xing; Fu, Cong; Wang, Xinchen

    2015-04-13

    The semiconductor heterojunction has been an effective architecture to enhance photocatalytic activity by promoting photogenerated charge separation. Here, graphitic carbon nitride (CN) and B-modified graphitic carbon nitride (CNB) composite semiconductors were fabricated by a facile calcination process using cheap, sustainable, and easily available sodium tetraphenylboron and urea as precursors. The synthetic CN-CNB-25 semiconductor with a suitable CNB content showed the highest visible-light activity. Its degradation ratio for methyl orange and phenol was more than twice that of CN and CNB and its H2 evolution rate was ∼3.4 and ∼1.8 times higher than that of CN and CNB, respectively. It also displayed excellent stability and reusability. The enhanced activity of CN-CNB-25 was attributed predominantly to the efficient separation of photoinduced electrons and holes. This paper describes a visible-light-responsive CN composite semiconductor with great potential in environmental and energy applications.

  12. Ti-O-O coordination bond caused visible light photocatalytic property of layered titanium oxide

    PubMed Central

    Kong, Xingang; Zeng, Chaobin; Wang, Xing; Huang, Jianfeng; Li, Cuiyan; Fei, Jie; Li, Jiayin; Feng, Qi

    2016-01-01

    The layered titanium oxide is a useful and unique precursor for the facile and rapid preparation of the peroxide layered titanium oxide H1.07Ti1.73O4·nH2O (HTO) crystal with enhanced visible light photoactivity. The H2O2 molecules as peroxide chemicals rapidly enter into the interlayers of HTO crystal, and coordinate with Ti within TiO6 octahedron to form a mass of Ti-O-O coordination bond in the interlayers. The introduction of these Ti-O-O coordination bonds result in lowering the band gap of HTO, and promoting the separation efficiency of the photo induced electron–hole pairs. Meanwhile, the photocatalytic investigation indicates that such peroxide HTO crystal has the enhanced photocatalytic performance for RhB degradation and water splitting to generate oxygen under visible light irradiating. PMID:27350285

  13. Bottom-up design of 2D organic photocatalysts for visible-light driven hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Jiang, Xue; Zhao, Jijun

    2016-01-01

    To design two-dimensional (2D) organocatalysts, three series of covalent organic frameworks (COFs) are constructed using bottom-up strategies, i.e. molecular selection, tunable linkage, and functionalization. First-principles calculations are performed to confirm their photocatalytic activity under visible light. Two of our constructed 2D COF models (B1 and C3) are identified as a sufficiently efficient organocatalyst for visible light water splitting. The controllable construction of such COFs from suitable organic subunit, linkage, and functional groups paves the way for correlating band edge alignments and geometry parameters of 2D organic materials. Our theoretical prediction not only provides essential insights into designing 2D-COF photocatalysts for water splitting, but also sparks other technological applications for 2D organic materials.

  14. Group III-nitride nanowire structures for photocatalytic hydrogen evolution under visible light irradiation

    SciTech Connect

    Chowdhury, Faqrul A.; Mi, Zetian Kibria, Md G.; Trudeau, Michel L.

    2015-10-01

    The performance of photochemical water splitting over the emerging nanostructured photocatalysts is often constrained by their surface electronic properties, which can lead to imbalance in redox reactions, reduced efficiency, and poor stability. We have investigated the impact of surface charge properties on the photocatalytic activity of InGaN nanowires. By optimizing the surface charge properties through controlled p-type dopant (Mg) incorporation, we have demonstrated an apparent quantum efficiency of ∼17.1% and ∼12.3% for InGaN nanowire arrays under visible light irradiation (400 nm–490 nm) in aqueous methanol and in the overall neutral-pH water splitting reaction, respectively.

  15. Mobile health-monitoring system through visible light communication.

    PubMed

    Tan, Yee-Yong; Chung, Wan-Young

    2014-01-01

    Promising development in the light emitting diode (LED) technology has spurred the interest to adapt LED for both illumination and data transmission. This has fostered the growth of interest in visible light communication (VLC), with on-going research to utilize VLC in various applications. This paper presents a mobile-health monitoring system, where healthcare information such as biomedical signals and patient information are transmitted via the LED lighting. A small and portable receiver module is designed and developed to be attached to the mobile device, providing a seamless monitoring environment. Three different healthcare information including ECG, PPG signals and HL7 text information is transmitted simultaneously, using a single channel VLC. This allows for a more precise and accurate monitoring and diagnosis. The data packet size is carefully designed, to transmit information in a minimal packet error rate. A comprehensive monitoring application is designed and developed through the use of a tablet computer in our study. Monitoring and evaluation such as heart rate and arterial blood pressure measurement can be performed concurrently. Real-time monitoring is demonstrated through experiment, where non-hazardous transmission method can be implemented alongside a portable device for better and safer healthcare service.

  16. Polymerization of a Photocleavable Monomer Using Visible Light.

    PubMed

    Bagheri, Ali; Yeow, Jonathan; Arandiyan, Hamidreza; Xu, Jiangtao; Boyer, Cyrille; Lim, May

    2016-06-01

    The polymerization of the photocleavable monomer, o-nitrobenzyl methacrylate (NBMA), is investigated using photoinduced electron/energy transfer reversible addition-fragmentation chain transfer polymerization. The polymerizations under visible red (λ max = 635 nm, 0.7 mW cm(-2) ) and yellow (λ max = 560 nm, 9.7 mW cm(-2) ) light are performed and demonstrate rational evidence of a controlled/living radical polymerization process. Well-defined poly(o-nitrobenzyl methacrylate) (PNBMA) homopolymers with good control over the molecular weight and polymer dispersity are successfully synthesized by varying the irradiation time and/or targeted degree of polymerization. Chain extension of a poly(oligo(ethylene glycol) methyl ether methacrylate) macro-chain transfer agent with NBMA is carried out to fabricate photocleavable amphiphilic block copolymers (BCP). Finally, these self-assembled BCP rapidly dissemble under UV light suggesting the photoresponsive character of NBMA is not altered during the polymerization under yellow or red light. Such photoresponsive polymers can be potentially used for the remote-controlled delivery of therapeutic compounds.

  17. Iron release analyses from ferritin by visible light irradiation.

    PubMed

    Ohishi, Kentaro; Zhang, Xiao Mei; Moriwaki, Shinichi; Hiramitsu, Tadahisa; Matsugo, Seiichi

    2005-08-01

    We investigated the iron release from ferritin by irradiation from a white fluorescent light in the absence or presence of ADP. Irradiation of a ferritin solution at 17,000 lx in the absence of ADP slightly induces iron release from ferritin but only at acidic pH conditions (pH 5.0 or pH 6.0). Irradiation in the presence of ADP markedly enhances iron release from ferritin under the same conditions. In the absence of irradiation, the iron release from ferritin was low even in the presence of ADP. The induction of the iron release by irradiation in the presence of ADP was also affected by various factors such as irradiation dose and acidity, but not temperature (4-47 degrees C), oxygen concentration, or free radical generations during the irradiation. The iron release during the irradiation ceased to increase by turning off the light and was found to increase again after additional irradiation. These results suggest that visible light directly induces iron release from ferritin via the photoreduction of iron stored inside ferritin.

  18. Surface Defects Enhanced Visible Light Photocatalytic H2 Production for Zn-Cd-S Solid Solution.

    PubMed

    Zhang, Xiaoyan; Zhao, Zhao; Zhang, Wanwan; Zhang, Guoqiang; Qu, Dan; Miao, Xiang; Sun, Shaorui; Sun, Zaicheng

    2016-02-10

    In order to investigate the defect effect on photocatalytic performance of the visible light photocatalyst, Zn-Cd-S solid solution with surface defects is prepared in the hydrazine hydrate. X-ray photoelectron spectra and photoluminescence results confirm the existence of defects, such as sulfur vacancies, interstitial metal, and Zn and Cd in the low valence state on the top surface of solid solutions. The surface defects can be effectively removed by treating with sulfur vapor. The solid solution with surface defect exhibits a narrower band gap, wider light absorption range, and better photocatalytic perfomance. The optimized solid solution with defects exhibits 571 μmol h(-1) for 50 mg photocatalyst without loading Pt as cocatalyst under visible light irradiation, which is fourfold better than that of sulfur vapor treated samples. The wavelength dependence of photocatalytic activity discloses that the enhancement happens at each wavelength within the whole absorption range. The theoretical calculation shows that the surface defects induce the conduction band minimum and valence band maximum shift downward and upward, respectively. This constructs a type I junction between bulk and surface of solid solution, which promotes the migration of photogenerated charges toward the surface of nanostructure and leads to enhanced photocatalytic activity. Thus a new method to construct highly efficient visible light photocatalysts is opened.

  19. Photodegradation of aniline by goethite doped with boron under ultraviolet and visible light irradiation

    SciTech Connect

    Liu, Guanglong; Liao, Shuijiao; Zhu, Duanwei; Liu, Linghua; Cheng, Dongsheng; Zhou, Huaidong

    2011-08-15

    Highlights: {yields} Goethite modified by boron was prepared by sol-gel method in presence of boron acid at the low temperature. {yields} B-goethite has slight red shift in the band gap transition beside their stronger light absorption compared with pristine goethite. {yields} The results showed that semiconductor photocatalytic reaction mechanism should exist in the process of aniline degradation with goethite and B-goethite as photocatalyst. -- Abstract: In the present study, goethite and goethite doped with boron (B-goethite) were employed to detect the presence or absence of semiconductor photocatalytic reaction mechanism in the reaction systems. B-goethite was prepared by sol-gel method in presence of boron acid in order to improve its photocatalystic efficiency under the ultraviolet and visible light irradiation. The optical properties of goethite and B-goethite were characterized by ultraviolet and visible absorption spectra and the result indicated that B-goethite has slight red shift in the band gap transition beside their stronger light absorption compared with pristine goethite. Degradation of aniline was investigated in presence of goethite and B-goethite in aqueous solution. It was found that the B-goethite photocatalyst exhibited enhanced ultraviolet and visible light photocatalytic activity in degradation of aniline compared with the pristine goethite. The photocatalytic degradation mechanism of B-goethite was discussed.

  20. A fast fusion scheme for infrared and visible light images in NSCT domain

    NASA Astrophysics Data System (ADS)

    Zhao, Chunhui; Guo, Yunting; Wang, Yulei

    2015-09-01

    Fusion of infrared and visible light images is an effective way to obtain a simultaneous visualization of details of background provided by visible light image and hiding target information provided by infrared image, which is more suitable for browsing and further processing. Two crucial components for infrared and visual light image fusion are improving its fusion performance as well as reducing its computational burden. In this paper, a novel fusion algorithm named pixel information estimation is proposed, which determines the weights by evaluating the information of pixel and is well applied in visible light and infrared image fusion with better fusion quality and lower time-consumption. Besides, a fast realization of non-subsampled contourlet transform is also proposed in this paper to improve the computational efficiency. To verify the advantage of the proposed method, this paper compares it with several popular ones in six evaluation metrics over four different image groups. Experimental results show that the proposed algorithm gets a more effective result with much less time consuming and performs well in both subjective evaluation and objective indicators.

  1. Fringe visibility of multimode laser light scattered through turbid water.

    PubMed

    Swanson, N L; Pham, C N; VanWinkle, D H

    1997-12-20

    Several years ago Swanson [Proc. SPIE 1750, 397 (1992)] performed a simple Michelson interferometric determination of the coherence length of a multimode argon-ion laser after the light passed through a tank of water. As colloidal particles were added to the water the observed coherence length (as measured by twice the distance the mirror moved for fringes to disappear) decreased. Subsequently, a series of careful experiments were performed with a single-mode laser to more accurately measure this change. In these experiments it was found that the 1.5-MHz width of the 514.5-nm line of a single-mode argon-ion laser broadened by as much as 1.3 +/- 0.2 MHz when small colloidal particles were added. At first glance such a broadening should not have resulted in any discernible change in the original Michelson experiment because the gain curve for the multimode laser is of the order of a few gigahertz. The zeros in the fringe visibility function depend on the spectral characteristics of the modes. Upon scattering, the spectral characteristics of the individual laser modes change from Voigt functions, containing both Lorentzian and Gaussian components, to primarily Gaussian. It is this change in the statistical properties of the modes, not the broadening, that accounts for the change in the fringe visibility for a multimode source.

  2. Inverse design of LED arrangement for visible light communication systems

    NASA Astrophysics Data System (ADS)

    Zheng, Huanhuan; Chen, Jian; Yu, Changyuan; Gurusamy, Mohan

    2017-01-01

    In this paper, an optimal LED arrangement for indoor visible light communications (VLC) is proposed and numerically investigated. By using the concept of inverse design, the LED distribution can be formulated as a convex optimization problem and resolved accordingly. We show that sufficient brightness and uniform signal to noise ratio (SNR) can be achieved within the indoor coverage by using the proposed optimal LED arrangement, thus enabling the terminal mobility for indoor VLC. In addition, the analysis of delay spread distribution over the receiving plane shows that the design exhibits enhanced tolerance of inter-symbol interference (ISI). With the consideration of cabling cost for practical implementation, the suboptimal LED arrangement design is also investigated. Numerical results indicate that the suboptimal design can reduce the power consumption of the system with acceptable performance degradation.

  3. 10m/500 Mbps WDM visible light communication systems.

    PubMed

    Lin, Wen-Yi; Chen, Chia-Yi; Lu, Hai-Han; Chang, Ching-Hung; Lin, Ying-Pyng; Lin, Huang-Chang; Wu, Hsiao-Wen

    2012-04-23

    A wavelength-division-multiplexing (WDM) visible light communiction (VLC) system employing red and green laser pointer lasers (LPLs) with directly modulating data signals is proposed and experimentally demonstrated. With the assistance of preamplifier and adaptive filter at the receiving sites, low bit error rate (BER) at 10 m/500 Mbps operation is obtained for each wavelength. The use of preamplifier and adaptive filter offer significant improvements for free-space transmission performance. Improved performance of BER of <10(-9), as well as better and clear eye diagram were achieved in our proposed WDM VLC systems. LPL features create a new category of good performance with high-speed data rate, long transmission length (>5m), as well as easy handling and installation. This proposed WDM VLC system reveals a prominent one to present its advancement in simplicity and convenience to be installed.

  4. Multiuser CSK scheme for indoor visible light communications.

    PubMed

    Luna-Rivera, J M; Perez-Jimenez, R; Rabadan-Borjes, J; Rufo-Torres, J; Guerra, V; Suarez-Rodriguez, C

    2014-10-06

    Color Shift Keying (CSK) is a new modulation scheme for visible light communication systems using RGB LEDs which has been standardized in the PHY III level of the IEEE 802.15.7. This paper proposes some modifications so as to include multiuser capabilities provided by a time-based multiplexing, with the modulation constellation symbols being adapted to encode data with the luminux powers of the red, green and blue color bands respectively. This is achieved by employing a simple and low-complexity time-based pulse signals structure to separate the users' data symbols, while a three-dimensional signal constellation design is merged to improve data throughput. Numerical simulations are carried out to assess the performance of this novel architecture. The statistical properties of the transmitted RGB signals ensure dimming capabilities and that the illumination function is unaffected by flickering.

  5. PAM sequence design for dimmable visible light communication

    NASA Astrophysics Data System (ADS)

    Nuo, Huang; Wang, Jun-Bo; Wang, Jin-Yuan; Guan, Rui; Chen, Ming

    2017-02-01

    In current visible light communication (VLC) systems employing intensity modulation and direct detection (IM/DD), the transmitted optical intensity signal must satisfy the nonnegativity, peak optical intensity and illumination constraints. By taking into account the three constraints, we first present the signal space for the pulse amplitude modulated (PAM) sequences in the maximum flickering time period (MFTP). Then, to minimize the error probability of the VLC systems, we seek to find the PAM sequences providing the largest minimum Euclidean distance. Since the objective function is nonconvex and nondifferentiable, it is difficult to solve the original optimization problem directly. Thus, two methods corresponding to the joint design and greedy algorithm, are proposed to design the PAM sequences in VLC. The two methods offer a tradeoff between the symbol error rate (SER) performance and design complexity.

  6. Visible light responsive systems based on metastable-state photoacids

    NASA Astrophysics Data System (ADS)

    Liao, Yi

    2015-09-01

    Proton transfer is one of the most fundamental processes in nature. Metastable-state photoacids can reversibly generate a large proton concentration under visible light with moderate intensity. which provides a general approach to control various proton transfer processes. Several applications of mPAHs have been demonstrated recently including control of acid-catalyzed reactions, volume-change of hydrogels, polymer conductivity, bacteria killing, odorant release, and color change of materials. They have also been utilized to control supramolecular assemblies, molecular switches, microbial fuel cells and cationic sensors. In this talk, the mechanism, structure design, and applications of metastable-state photoacids are introduced. Recent development of different types of metastable-state photoacids is presented. Challenges and future work are also discussed.

  7. An integrated PIN-array receiver for visible light communication

    NASA Astrophysics Data System (ADS)

    Li, Jie-Hui; Huang, Xing-Xing; Ji, Xin-Ming; Chi, Nan; Shi, Jian-Yang

    2015-10-01

    This paper first designs and demonstrates an integrated receiver for a visible light communication (VLC) system based on RGB LED and an array of silicon PIN diode detectors. The system uses a maximal ratio combining (MRC) algorithm to enhance system performance. The novel integrated PIN diode array design yields a high date rate of 1.2 Gbit s-1 by 16QAM-OFDM based on a commercially available RGB LED in a VLC system with bit error rate under a 7% pre-forward-error-correction (FEC) threshold of 3.8 × 10-3 after 30 cm free-space transmission. The results show that the use of integrated antennas in VLC systems will become a trend in the future.

  8. Photocatalytic activities of various pentavalent bismuthates under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Takei, Takahiro; Haramoto, Rie; Dong, Qiang; Kumada, Nobuhiro; Yonesaki, Yoshinori; Kinomura, Nobukazu; Mano, Takayuki; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Miyake, Michihiro

    2011-08-01

    LiBiO 3, NaBiO 3, MgBi 2O 6, KBiO 3, ZnBi 2O 6, SrBi 2O 6, AgBiO 3, BaBi 2O 6 and PbBi 2O 6 were synthesized by various processes such as hydrothermal treatment, heating and so on. These materials were examined for their photocatalytic activities in the decolorization of methylene blue and decomposition of phenol under visible light irradiation. For methylene blue decolorization, the presence of KBiO 3 resulted in complete decoloration within 5 min. For phenol decomposition, NaBiO 3 showed the highest activity, while LiBiO 3, SrBi 2O 6 and BaBi 2O 6 possessed almost comparable decomposition rates. Their decomposition rates were apparently higher than that by anatase (P25) under UV irradiation.

  9. Functional inactivation of lymphocytes by methylene blue with visible light.

    PubMed

    Zhang, Bo; Cheng, Zhenzhen; Mo, Qin; Wang, Li; Wang, Xun; Wu, Xiaofei; Jia, Yao; Huang, Yuwen

    2015-10-01

    Transfusion of allogeneic white blood cells (WBCs) may cause adverse reactions in immunocompromised recipients, including transfusion-associated graft-versus-host disease (TA-GVHD), which is often fatal and incurable. In this study, the in vitro effect of methylene blue with visible light (MB + L) treatment on lymphocyte proliferation and cytokine production was measured to investigate whether MB + L can be used to prevent immune reactions that result from transfused lymphocytes. WBCs and 3 μM of MB were mixed and transferred into medical PVC bags, which were then exposed to visible light. Gamma irradiation was conducted as a parallel positive control. The cells without treatment were used as untreated group. All the groups were tested for the ability of cell proliferation and cytokine production upon stimulation. After incubation with mitogen phytohemagglutinin (PHA) or plate-bound anti-CD3 plus anti-CD28, the proliferation of MB + L/gamma-irradiation treated lymphocytes was significantly inhibited (P < 0.01) as compared to the untreated ones; the proliferation inhibitive rate of the MB + L group was even higher than that of gamma-irradiated cells (73.77% ± 28.75% vs. 44.72% ± 38.20%). MB + L treated cells incubated up to 7 days with PHA also showed no significant proliferation. The levels of TNF-α, IFN-γ, IL-6, IL-8, IL-10 and IL-1β present in the supernatant of MB + L treated lymphocytes upon stimulation were significantly lower than those of untreated lymphocytes. These results demonstrated that MB + L treatment functionally and irreversibly inactivated lymphocytes by inhibiting lymphocyte proliferation and the production of cytokines. MB + L treatment might be a promising method for the prevention of adverse immune responses caused by WBCs.

  10. Increased visible-light photocatalytic activity of TiO2 via band gap manipulation

    NASA Astrophysics Data System (ADS)

    Pennington, Ashley Marie

    Hydrogen gas is a clean burning fuel that has potential applications in stationary and mobile power generation and energy storage, but is commercially produced from non-renewable fossil natural gas. Using renewable biomass as the hydrocarbon feed instead could provide sustainable and carbon-neutral hydrogen. We focus on photocatalytic oxidation and reforming of methanol over modified titanium dioxide (TiO2) nanoparticles to produce hydrogen gas. Methanol is used as a model for biomass sugars. By using a photocatalyst, we aim to circumvent the high energy cost of carrying out endothermic reactions at commercial scale. TiO2 is a semiconductor metal oxide of particular interest in photocatalysis due to its photoactivity under ultraviolet illumination and its stability under catalytic reaction conditions. However, TiO2 primarily absorbs ultraviolet light, with little absorption of visible light. While an effective band gap for absorbance of photons from visible light is 1.7 eV, TiO2 polymorphs rutile and anatase, have band gaps of 3.03 eV and 3.20 eV respectively, which indicate ultraviolet light. As most of incident solar radiation is visible light, we hypothesize that decreasing the band gap of TiO2 will increase the efficiency of TiO2 as a visible-light active photocatalyst. We propose to modify the band gap of TiO2 by manipulating the catalyst structure and composition via metal nanoparticle deposition and heteroatom doping in order to more efficiently utilize solar radiation. Of the metal-modified Degussa P25 TiO2 samples (P25), the copper and nickel modified samples, 1%Cu/P25 and 1%Ni/P25 yielded the lowest band gap of 3.05 eV each. A difference of 0.22 eV from the unmodified P25. Under visible light illumination 1%Ni/P25 and 1%Pt/P25 had the highest conversion of methanol of 9.9% and 9.6%, respectively.

  11. Reduced graphene oxide and Ag wrapped TiO{sub 2} photocatalyst for enhanced visible light photocatalysis

    SciTech Connect

    Leong, Kah Hon; Sim, Lan Ching; Jang, Min; Ibrahim, Shaliza; Bahnemann, Detlef; Saravanan, Pichiah

    2015-10-01

    A well-organised reduced graphene oxide (RGO) and silver (Ag) wrapped TiO{sub 2} nano-hybrid was successfully achieved through a facile and easy route. The inherent characteristics of the synthesized RGO-Ag/TiO{sub 2} were revealed through crystalline phase, morphology, chemical composition, Raman scattering, UV-visible absorption, and photoluminescence analyses. The adopted synthesis route significantly controlled the uniform formation of silver nanoparticles and contributed for the absorption of light in the visible spectrum through localized surface plasmon resonance effects. The wrapped RGO nanosheets triggered the electron mobility and promoted visible light shift towards red spectrum. The accomplishment of synergised effect of RGO and Ag well degraded Bisphenol A under visible light irradiation with a removal efficiency of 61.9%.

  12. A twice liquid arc discharge approach for synthesis of visible-light-active nanocrystalline Ag:ZnO photocatalyst

    NASA Astrophysics Data System (ADS)

    Ashkarran, Ali Akbar

    2012-05-01

    Ag:ZnO hybrid nanostructures were successfully prepared by a twice arc discharge method in liquid. The visible light photocatalytic activities were successfully demonstrated for the degradation of Rhodamine B (Rh. B), Methyl orange (MO), and Methylene blue (MB) as standard organic compounds under the irradiation of 90 W halogen light for 2 h. The Ag:ZnO nanostructures were characterized by X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible absorption spectroscopy (UV-Vis). The results revealed that the Ag:ZnO nanostructures extended the light absorption spectrum toward the visible region and significantly enhanced the Rh. B photodegradation under visible light irradiation. 3 mM Ag:ZnO nanostructures exhibited highest photocatalytic efficiency. It has been confirmed that the Ag:ZnO nanostructures could be excited by visible light ( E<3.3 eV). The significant enhancement in the Ag:ZnO nanostructures photocatalytic activity under visible light irradiation can be ascribed to the effect of physisorbed noble metal Ag by acting as electron traps in ZnO band gap. A mechanism for photocatalytic degradation of organic pollutant over Ag:ZnO photocatalyst was proposed based on our observations.

  13. A facile and high-yield formation of dipyrrin-boronic acid dyads and triads: a light-harvesting system in the visible region based on the efficient energy transfer.

    PubMed

    Yamamura, Masaki; Yazaki, Shinya; Seki, Motofumi; Matsui, Yasunori; Ikeda, Hiroshi; Nabeshima, Tatsuya

    2015-03-07

    Artificial light-harvesting systems, Ar,O-BODIPY dyads and triads conjugated with a light harvester, were synthesized in high yield by the reaction of an N2O2-type dipyrrin with boronic acids. Dyad 2 having a pyrene unit underwent quantitative Förster resonance energy transfer (FRET) from the antenna unit, pyrene, to the fluorophore unit, Ar,O-BODIPY. Triads 3·5 and 4·5 were quantitatively prepared by mixing pyridine-appended compounds 3 and 4 with saloph·Zn complex 5, respectively. Triad 4·5 underwent efficient FRET from the saloph·Zn complex unit to the fluorophore unit at the rate of 2.0 × 10(11) s(-1). Interestingly, the fluorescence quenching process in the excited state of the triad 3·5 took place following the energy transfer event. Thus, appropriate positioning of the energy donor and acceptor is necessary to construct a highly efficient FRET system.

  14. Conversion of visible light to electrical energy - Stable cadmium selenide photoelectrodes in aqueous electrolytes

    NASA Technical Reports Server (NTRS)

    Wrighton, M. S.; Ellis, A. B.; Kaiser, S. W.

    1977-01-01

    Stabilization of n-type CdSe to photoanodic dissolution is reported. The stabilization is accomplished by the competitive oxidation of S(--) or S(n)(--) at the CdSe photoanode in an electrochemical cell. Such stabilized cells are shown to sustain the conversion of low energy (not less than 1.7 eV) visible light to electricity with good efficiency and no deterioration of the CdSe photoelectrode or of the electrolyte. The electrolyte undergoes no net chemical change because the oxidation occurring at the photoelectrode is reversed at the cathode. Conversion of monochromatic light at 633 nm to electricity is shown to be up to approximately 9% efficient with output potentials of approximately 0.4 V. Conversion of solar energy to electricity is estimated to be approximately 2% efficient.

  15. A highly efficient g-C3N4/SiO2 heterojunction: the role of SiO2 in the enhancement of visible light photocatalytic activity.

    PubMed

    Hao, Qiang; Niu, Xiuxiu; Nie, Changshun; Hao, Simeng; Zou, Wei; Ge, Jiangman; Chen, Daimei; Yao, Wenqing

    2016-11-23

    SiO2, an insulator, hardly has any photocatalytic acitivity due to its intrinsic property, and it is generally used as a hard template to increase the surface area of catalysts. However, in this work, we found that the surface state of the insulator SiO2 can promote the migration of photogenerated charge carriers, leading to the enhancement of the photooxidation ability of graphitic carbon nitride (g-C3N4). A one-pot calcination method was employed to prepare g-C3N4/SiO2 composites using melamine and SiO2 as precursors. The composites present considerably high photocatalytic degradation activities for 2,4-dichlorophenol (2,4-DCP) and rhodamine B (RhB) under visible light (λ > 420 nm) irradiation, which are about 1.53 and 4.18 times as high as those of bulk g-C3N4, respectively. The enhancement of the photocatalytic activity is due to the fact that the introduction of the insulator SiO2 in g-C3N4/SiO2 composites can greatly improve the specific surface area of the composites; more importantly, the impurity energy level of SiO2 can help accelerate the separation and transfer of electron-hole pairs of g-C3N4. Electron paramagnetic resonance (EPR) spectroscopy and trapping experiments with different radical scavengers show that the main active species of g-C3N4 are superoxide radicals, while holes also play a role in photodegradation. For g-C3N4/SiO2-5, besides superoxide radicals and holes, the effect of hydroxyl radicals was greatly improved. Finally, a possible mechanism for the photogenerated charge carrier migration of the g-C3N4/SiO2 photocatalyst was proposed.

  16. Angle-tolerant hybrid plasmonic filters for visible light communications.

    PubMed

    Anous, Noha; Abdallah, Mohamed; Ramadan, Tarek; Qaraqe, Khalid; Khalil, Diaa

    2017-02-01

    This work presents what we believe is a novel design of a hybrid plasmonic-transmission blue filter for visible light communication systems that employ yellow phosphor-coated blue light-emitting diodes. The proposed filter balances the trade-off between transmission performance and tolerance to variation in angles of incidence (AOIs) while maintaining a low cost with limited complexity design. The designed filter operation is based upon quasi-plasmon mode excitation in a hybrid structure of alternating layers of silver and titanium dioxide over a silica substrate. A primary design approach for a hybrid plasmonic filter of five alternating layers is illustrated in detail. Needle optimization technique is further applied to achieve the required filter performance. The designed filter has an insertion loss of ∼1  dB over a spectral range of 400-485 nm and a minimal close to zero polarization-dependent loss for a wide range of AOI (slightly above 50°). The tolerance of the proposed design against fabrication errors is also tested. The performances of the proposed filters are tested for individual and simultaneous variations from the designed thicknesses, with a ±10% standard deviation from each layer's thickness.

  17. Distributed user-centric scheduling for visible light communication networks.

    PubMed

    Chen, Lingjiao; Wang, Jiaheng; Zhou, Jiantao; Ng, Derrick Wing Kwan; Schober, Robert; Zhao, Chunming

    2016-07-11

    Visible light communication (VLC) networks, consisting of multiple light-emitting diodes (LEDs) acting as optical access points (APs), can provide low-cost high-rate data transmission to multiple users simultaneously in indoor environments. However, the performance of VLC networks is severely limited by the interference between different users. In this paper, we establish a distributed user-centric scheduling framework based on stable marriage theory, and propose a novel decentralized scheduling method to manage interference by forming flexible amorphous cells for all users. The proposed scheduling method has provable low computational complexity and requires only the exchange of a few 1-bit messages between the APs and the users but not the feedback of the channel state information of the entire network. We further show that the proposed method can achieve both user-wise and system-wise optimality as well as a certain level of fairness. Simulation results indicate that our decentralized user-centric scheduling method outperforms existing centralized approaches in terms of throughput, fairness, and computational complexity.

  18. Performance of dimming control scheme in visible light communication system.

    PubMed

    Wang, Zixiong; Zhong, Wen-De; Yu, Changyuan; Chen, Jian; Francois, Chin Po Shin; Chen, Wei

    2012-08-13

    We investigate the performance of visible light communication (VLC) system with a pulse width modulation (PWM) dimming control scheme. Under this scheme, the communication quality in terms of number of transmitted bits and bit error rate (BER) of less than 10(-3) should be guaranteed. However, for on-off-keying (OOK) signal, the required data rate becomes 10 times as high as the original data rate when the duty cycle of dimming control signal is 0.1. To make the dimming control scheme easy to be implemented in VLC system, we propose the variable M-QAM OFDM VLC system, where M is adjusted according to the brightness of LED light in terms of duty cycle. The results show that with different duty cycles the required data rates are not higher than the original value and less LED lamp power is required to guarantee the communication quality, which makes the dimming control system that satisfies both communication and illumination requirements easy to be implemented and power-saving.

  19. Switchable polarization rotation of visible light using a plasmonic metasurface

    NASA Astrophysics Data System (ADS)

    Earl, Stuart K.; James, Timothy D.; Gómez, Daniel E.; Marvel, Robert E.; Haglund, Richard F.; Roberts, Ann

    2017-01-01

    A metasurface comprising an array of silver nanorods supported by a thin film of the phase change material vanadium dioxide is used to rotate the primary polarization axis of visible light at a pre-determined wavelength. The dimensions of the rods were selected such that, across the two phases of vanadium dioxide, the two lateral localized plasmon resonances (in the plane of the metasurface) occur at the same wavelength. Illumination with linearly polarized light at 45° to the principal axes of the rod metasurface enables excitation of both of these resonances. Modulating the phase of the underlying substrate, we show that it is possible to reversibly switch which axis of the metasurface is resonant at the operating wavelength. Analysis of the resulting Stokes parameters indicates that the orientation of the principal linear polarization axis of the reflected signal is rotated by 90° around these wavelengths. Dynamic metasurfaces such as these have the potential to form the basis of an ultra-compact, low-energy multiplexer or router for an optical signal.

  20. Bactericidal Performance of Visible-Light Responsive Titania Photocatalyst with Silver Nanostructures

    PubMed Central

    Chang, Hsin-Hou

    2010-01-01

    Background Titania dioxide (TiO2) photocatalyst is primarily induced by ultraviolet light irradiation. Visible-light responsive anion-doped TiO2 photocatalysts contain higher quantum efficiency under sunlight and can be used safely in indoor settings without exposing to biohazardous ultraviolet light. The antibacterial efficiency, however, remains to be further improved. Methodology/Principal Findings Using thermal reduction method, here we synthesized silver-nanostructures coated TiO2 thin films that contain a high visible-light responsive antibacterial property. Among our tested titania substrates including TiO2, carbon-doped TiO2 [TiO2 (C)] and nitrogen-doped TiO2 [TiO2 (N)], TiO2 (N) showed the best performance after silver coating. The synergistic antibacterial effect results approximately 5 log reductions of surviving bacteria of Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus and Acinetobacter baumannii. Scanning electron microscope analysis indicated that crystalline silver formed unique wire-like nanostructures on TiO2 (N) substrates, while formed relatively straight and thicker rod-shaped precipitates on the other two titania materials. Conclusion/Significance Our results suggested that proper forms of silver on various titania materials could further influence the bactericidal property. PMID:20454454

  1. Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication.

    PubMed

    Janjua, Bilal; Oubei, Hassan M; Durán Retamal, Jose R; Ng, Tien Khee; Tsai, Cheng-Ting; Wang, Huai-Yung; Chi, Yu-Chieh; Kuo, Hao-Chung; Lin, Gong-Ru; He, Jr-Hau; Ooi, Boon S

    2015-07-13

    With increasing interest in visible light communication, the laser diode (LD) provides an attractive alternative, with higher efficiency, shorter linewidth and larger bandwidth for high-speed visible light communication (VLC). Previously, more than 3 Gbps data rate was demonstrated using LED. By using LDs and spectral-efficient orthogonal frequency division multiplexing encoding scheme, significantly higher data rates has been achieved in this work. Using 16-QAM modulation scheme, in conjunction with red, blue and green LDs, data rates of 4.4 Gbps, 4 Gbps and 4 Gbps, with the corresponding BER/SNR/EVM of 3.3 × 10⁻³/15.3/17.9, 1.4 × 10⁻³/16.3/15.4 and 2.8 × 10⁻³/15.5/16.7were obtained over transmission distance of ~20 cm. We also simultaneously demonstrated white light emission using red, blue and green LDs, after passing through a commercially available diffuser element. Our work highlighted that a tradeoff exists in operating the blue LDs at optimum bias condition while maintaining good color temperature. The best results were obtained when encoding red LDs which gave both the strongest received signal amplitude and white light with CCT value of 5835K.

  2. Indium oxide thin film as potential photoanodes for corrosion protection of stainless steel under visible light

    SciTech Connect

    Zhang, Yan; Yu, Jianqiang; Sun, Kai; Zhu, Yukun; Bu, Yuyu; Chen, Zhuoyuan

    2014-05-01

    Graphical abstract: If the conduction band potential of In{sub 2}O{sub 3} is more negative than the corrosion potential of stainless steel, photo-induced electrons will be transferred from In{sub 2}O{sub 3} to the steel, thus shifting the potential of the steel into a corrosion immunity region and preventing the steel from the corrosion. - Highlights: • Indium oxide performed novel application under visible light. • Indium oxide by sol–gel method behaved better photoelectrochemical properties. • Electrons were transferred to stainless steel from indium oxide once light on. - Abstract: This paper reports the photoelectrochemical cathodic protection of 304 stainless steel by In{sub 2}O{sub 3} thin-film under visible-light. The films were fabricated with In{sub 2}O{sub 3} powders, synthesized by both sol–gel (In{sub 2}O{sub 3}-sg) and solid-state (In{sub 2}O{sub 3}-ss) processes. The photo-induced open circuit potential and the photo-to-current efficiency measurements suggested that In{sub 2}O{sub 3} could be a promising candidate material for photoelectrochemical cathodic protection of metallic alloys under visible light. Moreover, the polarization curve experimental results indicated that In{sub 2}O{sub 3}-sg thin-film can mitigate the corrosion potential of 304 stainless steel to much more negative values with a higher photocurrent density than the In{sub 2}O{sub 3}-ss film under visible-light illumination. All the results demonstrated that the In{sub 2}O{sub 3}-sg thin-film provides a better photoelectrochemical cathodic protection for 304 stainless steel than In{sub 2}O{sub 3}-ss thin-film under visible-light illumination. The higher photoelectrochemical efficiency is possibly due to the uniform thin films produced with the smaller particle size of In{sub 2}O{sub 3}-sg, which facilitates the transfer of the photo-induced electrons from bulk to the surface and suppresses the charge recombination of the electrons and holes.

  3. Layered Perovskite Oxychloride Bi4NbO8Cl: A Stable Visible Light Responsive Photocatalyst for Water Splitting.

    PubMed

    Fujito, Hironori; Kunioku, Hironobu; Kato, Daichi; Suzuki, Hajime; Higashi, Masanobu; Kageyama, Hiroshi; Abe, Ryu

    2016-02-24

    Mixed anion compounds are expected to be a photocatalyst for visible light-induced water splitting, but the available materials have been almost limited to oxynitrides. Here, we show that an oxychrolide Bi4NbO8Cl, a single layer Sillen-Aurivillius perovskite, is a stable and efficient O2-evolving photocatalyst under visible light, enabling a Z-scheme overall water splitting by coupling with a H2-evolving photocatalyst (Rh-doped SrTiO3). It is found that the valence band maximum of Bi4NbO8Cl is unusually high owing to highly dispersive O-2p orbitals (not Cl-3p orbitals), affording the narrow band gap and possibly the stability against water oxidation. This study suggests that a family of Sillen-Aurivillius perovskite oxyhalides is a promising system to allow a versatile band level tuning for establishing efficient and stable water-splitting under visible light.

  4. Plasmonic nanostructures to enhance catalytic performance of zeolites under visible light

    NASA Astrophysics Data System (ADS)

    Zhang, Xingguang; Ke, Xuebin; Du, Aijun; Zhu, Huaiyong

    2014-01-01

    Light absorption efficiency of heterogeneous catalysts has restricted their photocatalytic capability for commercially important organic synthesis. Here, we report a way of harvesting visible light efficiently to boost zeolite catalysis by means of plasmonic gold nanoparticles (Au-NPs) supported on zeolites. Zeolites possess strong Brønsted acids and polarized electric fields created by extra-framework cations. The polarized electric fields can be further intensified by the electric near-field enhancement of Au-NPs, which results from the localized surface plasmon resonance (LSPR) upon visible light irradiation. The acetalization reaction was selected as a showcase performed on MZSM-5 and Au/MZSM-5 (M = H+, Na+, Ca2+, or La3+). The density functional theory (DFT) calculations confirmed that the intensified polarized electric fields played a critical role in stretching the C = O bond of the reactants of benzaldehyde to enlarge their molecular polarities, thus allowing reactants to be activated more efficiently by catalytic centers so as to boost the reaction rates. This discovery should evoke intensive research interest on plasmonic metals and diverse zeolites with an aim to take advantage of sunlight for plasmonic devices, molecular electronics, energy storage, and catalysis.

  5. Visible Light Responsive Catalysts Using Quantum Dot-Modified Ti02 for Air and Water Purification

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.; Hintze, paul; Clausen, Christian

    2012-01-01

    The method of photocatalysis utilizing titanium dioxide, TiO2, as the catalyst has been widely studied for trace contaminant control for both air and water applications because of its low energy consumption and use of a regenerable catalyst. Titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors and are a setback for the technology for space application due to the possibility of Hg contamination. The development of a visible light responsive (VLR) TiO2-based catalyst could lead to the use of solar energy in the visible region (approx.45% of the solar spectrum lies in the visible region; > 400 nm) or highly efficient LEDs (with wavelengths > 400 nm) to make PCO approaches more efficient, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts; those that are available still have poor activity in the visible region compared to that in the UV region. Thus, this study was aimed at the further development of VLR catalysts by a new method - coupling of quantum dots (QD) of a narrow band gap semiconductor (e.g., CdS, CdSe, PbS, ZnSe, etc.) to the TiO2 by two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications, using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems serve as model contaminants for this research. Synthesized catalysts were compared in terms of preparation method, type of quantum dots, and dosage of quantum dots.

  6. An Efficient Composition for Bengal Lights.

    ERIC Educational Resources Information Center

    Comet, M.; Schreyeck, L.; Fuzellier, H.

    2002-01-01

    Reports the discovery of an efficient base composition for making bengal lights that is obtained with potassium chlorate and thiourea. Combining this mixture with appropriate flame coloring can produce several impressive bengal lights. (DDR)

  7. Preparation and enhanced visible-light photocatalytic activity of graphitic carbon nitride/bismuth niobate heterojunctions.

    PubMed

    Zhang, Shengqu; Yang, Yuxin; Guo, Yingna; Guo, Wan; Wang, Mei; Guo, Yihang; Huo, Mingxin

    2013-10-15

    A series of graphitic carbon nitride/bismuth niobate (g-C3N4/Bi5Nb3O15) heterojunctions with g-C3N4 doping level of 10-90 wt% were prepared by a facile milling-heat treatment method. The phase and chemical structures, surface compositions, electronic and optical properties as well as morphologies of the prepared g-C3N4/Bi5Nb3O15 were well-characterized. Subsequently, the photocatalytic activity and stability of g-C3N4/Bi5Nb3O15 were evaluated by the degradation of aqueous methyl orange (MO) and 4-chlorophenol (4-CP) under the visible-light irradiation. At suitable g-C3N4 doping levels, g-C3N4/Bi5Nb3O15 exhibited enhanced visible-light photocatalytic activity compared with pure g-C3N4 or Bi5Nb3O15. This excellent photocatalytic activity was revealed in terms of the extension of visible-light response and efficient separation and transportation of the photogenerated electrons and holes due to coupling of g-C3N4 and Bi5Nb3O15. Additionally, the active species yielded in the pure g-C3N4- and g-C3N4/Bi5Nb3O15-catalyzed 4-CP photodegradation systems were investigated by the free radical and hole scavenging experiments.

  8. A dye-sensitized visible light photocatalyst-Bi24O31Cl10

    PubMed Central

    Wang, Liang; Shang, Jun; Hao, Weichang; Jiang, Shiqi; Huang, Shiheng; Wang, Tianmin; Sun, Ziqi; Du, Yi; Dou, Shixue; Xie, Tengfeng; Wang, Dejun; Wang, Jiaou

    2014-01-01

    The p-block semiconductors are regarded as a new family of visible-light photocatalysts because of their dispersive and anisotropic band structures as well as high chemical stability. The bismuth oxide halides belong to this family and have band structures and dispersion relations that can be engineered by modulating the stoichiometry of the halogen elements. Herein, we have developed a new visible-light photocatalyst Bi24O31Cl10 by band engineering, which shows high dye-sensitized photocatalytic activity. Density functional theory calculations reveal that the p-block elements determine the nature of the dispersive electronic structures and narrow band gap in Bi24O31Cl10. Bi24O31Cl10 exhibits excellent visible-light photocatalytic activity towards the degradation of Rhodamine B, which is promoted by dye sensitization due to compatible energy levels and high electronic mobility. In addition, Bi24O31Cl10 is also a suitable photoanode material for dye-sensitized solar cells and shows power conversion efficiency of 1.5%. PMID:25488704

  9. Ta3N5 nanotube arrays for visible light water photoelectrolysis.

    PubMed

    Feng, Xinjian; Latempa, Thomas J; Basham, James I; Mor, Gopal K; Varghese, Oomman K; Grimes, Craig A

    2010-03-10

    Tantalum nitride (Ta3N5) has a band gap of approximately 2.07 eV, suitable for collecting more than 45% of the incident solar spectrum energy. We describe a simple method for scale fabrication of highly oriented Ta3N5 nanotube array films, by anodization of tantalum foil to achieve vertically oriented tantalum oxide nanotube arrays followed by a 700 degrees C ammonia anneal for sample crystallization and nitridation. The thin walled amorphous nanotube array structure enables transformation from tantalum oxide to Ta3N5 to occur at relatively low temperatures, while high-temperature annealing related structural aggregation that commonly occurs in particle films is avoided. In 1 M KOH solution, under AM 1.5 illumination with 0.5 V dc bias typical sample (nanotube length approximately 240 nm, wall thickness approximately 7 nm) visible light incident photon conversion efficiencies (IPCE) as high as 5.3% were obtained. The enhanced visible light activity in combination with the ordered one-dimensional nanoarchitecture makes Ta3N5 nanotube arrays films a promising candidate for visible light water photoelectrolysis.

  10. Person Recognition System Based on a Combination of Body Images from Visible Light and Thermal Cameras

    PubMed Central

    Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung

    2017-01-01

    The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body. PMID:28300783

  11. Visible light active photocatalytic degradation of bisphenol-A using nitrogen doped TiO2.

    PubMed

    Venkatachalam, N; Vinu, A; Anandan, S; Arabindoo, Banumathi; Murugesan, V

    2006-08-01

    Nitrogen doped titania was prepared by low temperature sol-gel method using titanium precursor and nitrogen containing bases like triethylamine and tetramethyl ammonium hydroxide compounds. The materials were characterized by XRD, BET, SEM, XPS, DRS-UV, and FT-IR techniques. DRS-UV study substantially indicates shift of the absorption edge of TiO2 to lower energy region. The phase composition, crystallinity, specific surface area, and visible light activity of nitrogen doped titania depend upon the preparation conditions. Photocatalytic degradation of bisphenol-A in aqueous medium was investigated by TiO2 and nitrogen doped TiO2 under visible light irradiation in a batch photocatalytic reactor. The results indicate higher visible light activity for nitrogen doped TiO2 than commercial TiO2 (Degussa P25) for bisphenol-A degradation. The influence of various parameters such as initial concentration of bisphenol-A, catalyst loading and pH was examined for maximum degradation efficiency.

  12. Visible-light-driven Bi 2 O 3 /WO 3 composites with enhanced photocatalytic activity

    DOE PAGES

    Adhikari, Shiba P.; Dean, Hunter; Hood, Zachary D.; ...

    2015-10-19

    Semiconductor heterojunctions (composites) have been shown to be effective photocatalytic materials to overcome the drawbacks of low photocatalytic efficiency that results from electron–hole recombination and narrow photo-response range. We prepared a novel visible-light-driven Bi2O3/WO3 composite photocatalyst by hydrothermal synthesis. The composite was characterized by scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area, Raman spectroscopy, photoluminescence spectroscopy (PL) and electrochemical impedance spectroscopy (EIS) to better understand the structures, compositions, morphologies and optical properties. Bi2O3/WO3 heterojunction was found to exhibit significantly higher photocatalytic activity towards the decomposition of Rhodaminemore » B (RhB) and 4-nitroaniline (4-NA) under visible light irradiation compared to that of Bi2O3 and WO3. A tentative mechanism for the enhanced photocatalytic activity of the heterostructured composite is discussed based on observed activity, band position calculations, photoluminescence, and electrochemical impedance data. Our study provides a new strategy for the design of composite materials with enhanced visible light photocatalytic performance.« less

  13. Person Recognition System Based on a Combination of Body Images from Visible Light and Thermal Cameras.

    PubMed

    Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung

    2017-03-16

    The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body.

  14. Structural Effects in Visible-Light-Responsive Metal-Organic Frameworks Incorporating ortho-Fluoroazobenzenes.

    PubMed

    Castellanos, Sonia; Goulet-Hanssens, Alexis; Zhao, Fangli; Dikhtiarenko, Alla; Pustovarenko, Alexey; Hecht, Stefan; Gascon, Jorge; Kapteijn, Freek; Bléger, David

    2016-01-11

    The ability to control the interplay of materials with low-energy photons is important as visible light offers several appealing features compared to ultraviolet radiation (less damaging, more selective, predominant in the solar spectrum, possibility to increase the penetration depth). Two different metal-organic frameworks (MOFs) were synthesized from the same linker bearing all-visible ortho-fluoroazobenzene photoswitches as pendant groups. The MOFs exhibit different architectures that strongly influence the ability of the azobenzenes to isomerize inside the voids. The framework built with Al-based nodes has congested 1D channels that preclude efficient isomerization. As a result, local light-heat conversion can be used to alter the CO2 adsorption capacity of the material on exposure to green light. The second framework, built with Zr nodes, provides enough room for the photoswitches to isomerize, which leads to a unique bistable photochromic MOF that readily responds to blue and green light. The superiority of green over UV irradiation was additionally demonstrated by reflectance spectroscopy and analysis of digested samples. This material offers promising perspectives for liquid-phase applications such as light-controlled catalysis and adsorptive separation.

  15. Spiky TiO2/Au nanorod plasmonic photocatalysts with enhanced visible-light photocatalytic activity.

    PubMed

    Sun, Hang; Zeng, Shan; He, Qinrong; She, Ping; Xu, Kongliang; Liu, Zhenning

    2017-03-21

    A facile approach for the preparation of spiky TiO2/Au nanorod (NR) plasmonic photocatalysts has been demonstrated, which is through in situ nucleation and growth of spiky TiO2 onto AuNRs. Different aspect ratios of AuNRs in 2.5, 2.7, 4.1 and 4.5 have been applied to prepare spiky TiO2/AuNR nanohybrids to achieve tunable and broad localized surface plasmon resonance (LSPR) bands. All spiky TiO2/AuNR nanohybrids exhibit enhanced light harvesting by extending visible light absorption range by both transverse and longitudinal LSPR bands and decreasing light reflectance by their unique spiky structures. Compared to the bare AuNRs, commercial TiO2 (P25) and spiky TiO2/Au nanosphere photocatalysts, the spiky TiO2/AuNR photocatalysts exhibit significantly enhanced visible light photocatalytic activity in Rhodamine B (RhB) degradation due to their simultaneous enhancement in the light harvesting, charge utilization efficiency, and substrate accessibility. In particular, the spiky TiO2/AuNR-685 photocatalysts show the best photocatalytic activity with ∼98.9% of the RhB degraded within 90 min under the irradiation of 420-780 nm, which could be ascribed to the most extended visible light absorption range and sufficient photon energy of TiO2/AuNR-685 photocatalysts within this irradiation region. The bio-inspired nanostructure, as well as the facile and scalable fabrication approach, will open a new avenue for the rational design and preparation of high-performance photocatalysts for pollutant removal and water splitting.

  16. Visible Light Induces Melanogenesis in Human Skin through a Photoadaptive Response

    PubMed Central

    Randhawa, Manpreet; Seo, InSeok; Liebel, Frank; Southall, Michael D.; Kollias, Nikiforos; Ruvolo, Eduardo

    2015-01-01

    Visible light (400–700 nm) lies outside of the spectral range of what photobiologists define as deleterious radiation and as a result few studies have studied the effects of visible light range of wavelengths on skin. This oversight is important considering that during outdoors activities skin is exposed to the full solar spectrum, including visible light, and to multiple exposures at different times and doses. Although the contribution of the UV component of sunlight to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology in terms of inflammation, and limited information is available regarding the role of visible light on pigmentation. The purpose of this study was to determine the effect of visible light on the pro-pigmentation pathways and melanin formation in skin. Exposure to visible light in ex-vivo and clinical studies demonstrated an induction of pigmentation in skin by visible light. Results showed that a single exposure to visible light induced very little pigmentation whereas multiple exposures with visible light resulted in darker and sustained pigmentation. These findings have potential implications on the management of photo-aggravated pigmentary disorders, the proper use of sunscreens, and the treatment of depigmented lesions. PMID:26121474

  17. Visible Light Induces Melanogenesis in Human Skin through a Photoadaptive Response.

    PubMed

    Randhawa, Manpreet; Seo, InSeok; Liebel, Frank; Southall, Michael D; Kollias, Nikiforos; Ruvolo, Eduardo

    2015-01-01

    Visible light (400-700 nm) lies outside of the spectral range of what photobiologists define as deleterious radiation and as a result few studies have studied the effects of visible light range of wavelengths on skin. This oversight is important considering that during outdoors activities skin is exposed to the full solar spectrum, including visible light, and to multiple exposures at different times and doses. Although the contribution of the UV component of sunlight to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology in terms of inflammation, and limited information is available regarding the role of visible light on pigmentation. The purpose of this study was to determine the effect of visible light on the pro-pigmentation pathways and melanin formation in skin. Exposure to visible light in ex-vivo and clinical studies demonstrated an induction of pigmentation in skin by visible light. Results showed that a single exposure to visible light induced very little pigmentation whereas multiple exposures with visible light resulted in darker and sustained pigmentation. These findings have potential implications on the management of photo-aggravated pigmentary disorders, the proper use of sunscreens, and the treatment of depigmented lesions.

  18. Efficient Stochastic Rendering of Static and Animated Volumes using Visibility Sweeps.

    PubMed

    von Radziewsky, Philipp; Kroes, Thomas; Eisemann, Martin; Eisemann, Elmar

    2016-09-07

    Stochastically solving the rendering integral (particularly visibility) is the de-facto standard for physically-based light transport but it is computationally expensive, especially when displaying heterogeneous volumetric data. In this work, we present efficient techniques to speed-up the rendering process via a novel visibility-estimation method in concert with an unbiased importance sampling (involving environmental lighting and visibility inside the volume), filtering, and update techniques for both static and animated scenes. Our major contributions include a progressive estimate of partial occlusions based on a fast sweeping-plane algorithm. These occlusions are stored in an octahedral representation, which can be conveniently transformed into a quadtree-based hierarchy suited for a joint importance sampling. Further, we propose sweep-space filtering, which suppresses the occurrence of fireflies and investigate different update schemes for animated scenes. Our technique is unbiased, requires little precomputation, is highly parallelizable, and is applicable to a various volume data sets, dynamic transfer functions, animated volumes and changing environmental lighting.

  19. Guide to Energy-Efficient Lighting

    SciTech Connect

    2010-10-01

    A fact sheet from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy: Lighting accounts for about 15% of an average home’s electricity use, so it pays to make energy-efficient choices.

  20. Recent progress in oxynitride photocatalysts for visible-light-driven water splitting

    PubMed Central

    Takata, Tsuyoshi; Pan, Chengsi; Domen, Kazunari

    2015-01-01

    Photocatalytic water splitting into hydrogen and oxygen is a method to directly convert light energy into storable chemical energy, and has received considerable attention for use in large-scale solar energy utilization. Particulate semiconductors are generally used as photocatalysts, and semiconductor properties such as bandgap, band positions, and photocarrier mobility can heavily impact photocatalytic performance. The design of active photocatalysts has been performed with the consideration of such semiconductor properties. Photocatalysts have a catalytic aspect in addition to a semiconductor one. The ability to control surface redox reactions in order to efficiently produce targeted reactants is also important for photocatalysts. Over the past few decades, various photocatalysts for water splitting have been developed, and a recent main concern has been the development of visible-light sensitive photocatalysts for water splitting. This review introduces the study of water-splitting photocatalysts, with a focus on recent progress in visible-light induced overall water splitting on oxynitride photocatalysts. Various strategies for designing efficient photocatalysts for water splitting are also discussed herein. PMID:27877787

  1. A fast ruthenium polypyridine cage complex photoreleases glutamate with visible or IR light in one and two photon regimes

    PubMed Central

    Salierno, Marcelo; Marceca, Ernesto; Peterka, Darcy S.; Yuste, Rafael; Etchenique, Roberto

    2010-01-01

    We introduce a new caged glutamate, based in a ruthenium bipyridyl core, that undergoes heterolytic cleavage after irradiation with visible light with wavelengths up to 532 nm, yielding free glutamate in less than 50 ns. Glutamate photorelease occurs also efficiently following two-photon (2P) excitation at 800 nm, and has a functional cross section of 0.14 GM. PMID:20060592

  2. Visible-light-promoted chloramination of olefins with N-chlorosulfonamide as both nitrogen and chlorine sources.

    PubMed

    Qin, Qixue; Ren, Daan; Yu, Shouyun

    2015-11-07

    A visible-light-promoted chloramination of olefins is reported. N-Chlorosulfonamides serve as both nitrogen and chlorine sources. These reactions provide a simple, efficient, regioselective, and atom-economical method for the preparation of vicinal haloamine derivatives under mild reaction conditions. A variety of olefins were tolerated, and chloramination products were obtained in good yields.

  3. Consecutive visible-light photoredox decarboxylative couplings of adipic acid active esters with alkynyl sulfones leading to cyclic compounds.

    PubMed

    Li, Jingjing; Tian, Hua; Jiang, Min; Yang, Haijun; Zhao, Yufen; Fu, Hua

    2016-07-07

    Novel and efficient consecutive photoredox decarboxylative couplings of adipic acid active esters (bis(1,3-dioxoisoindolin-2-yl)-substituted hexanedioates) with substituted 1-(2-arylethynylsulfonyl)benzenes have been developed under visible-light photocatalysis. The successive photoredox decarboxylative C-C bond formation at room temperature afforded the corresponding cyclic compounds in good yields with tolerance of some functional groups.

  4. Synthesis of N-doped TiO2 Using Guanidine Nitrate: An Excellent Visible Light Photocatalyst

    EPA Science Inventory

    An excellent visible light active nitrogen-rich TiO2 photocatalyst have been synthesized by using guanidine nitrate as the doping material. The catalytic efficiency of the catalyst has been demonstrated by the decomposition of the dye, methyl orange (MO), and the pollutant, 2,4 d...

  5. Visible spatial frequency domain imaging with a digital light microprojector

    PubMed Central

    Lin, Alexander J.; Ponticorvo, Adrien; Konecky, Soren D.; Cui, Haotian; Rice, Tyler B.; Choi, Bernard; Durkin, Anthony J.

    2013-01-01

    Abstract. There is a need for cost effective, quantitative tissue spectroscopy and imaging systems in clinical diagnostics and pre-clinical biomedical research. A platform that utilizes a commercially available light-emitting diode (LED) based projector, cameras, and scaled Monte Carlo model for calculating tissue optical properties is presented. These components are put together to perform spatial frequency domain imaging (SFDI), a model-based reflectance technique that measures and maps absorption coefficients (μa) and reduced scattering coefficients (μs′) in thick tissue such as skin or brain. We validate the performance of the flexible LED and modulation element (FLaME) system at 460, 530, and 632 nm across a range of physiologically relevant μa values (0.07 to 1.5  mm−1) in tissue-simulating intralipid phantoms, showing an overall accuracy within 11% of spectrophotometer values for μa and 3% for μs′. Comparison of oxy- and total hemoglobin fits between the FLaME system and a spectrophotometer (450 to 1000 nm) is differed by 3%. Finally, we acquire optical property maps of a mouse brain in vivo with and without an overlying saline well. These results demonstrate the potential of FLaME to perform tissue optical property mapping in visible spectral regions and highlight how the optical clearing effect of saline is correlated to a decrease in μs′ of the skull. PMID:24005154

  6. Continuous zoom antenna for mobile visible light communication.

    PubMed

    Zhang, Xuebin; Tang, Yi; Cui, Lu; Bai, Tingzhu

    2015-11-10

    In this paper, we design a continuous zoom antenna for mobile visible light communication (VLC). In the design, a right-angle reflecting prism was adopted to fold the space optical path, thus decreasing the antenna thickness. The surface of each lens in the antenna is spherical, and the system cost is relatively low. Simulation results indicated that the designed system achieved the following performance: zoom ratio of 2.44, field of view (FOV) range of 18°-48°, system gain of 16.8, and system size of 18 mm×6  mm. Finally, we established an indoor VLC system model in a room the size of 5  m ×5  m ×3  m and compared the detection results of the zoom antenna and fixed-focus antenna obtained in a multisource communication environment, a mobile VLC environment, and a multiple-input multiple-output communication environment. The simulation results indicated that the continuous zoom antenna could realize large FOV and high gain. Moreover, the system showed improved stability, mobility, and environmental applicability.

  7. Channel cooperation for anti-occlusion visible light communication systems

    NASA Astrophysics Data System (ADS)

    Liu, Yuxin; Huang, Zhitong; Li, Wei; Ji, Yuefeng

    2016-10-01

    The need to exchange data wirelessly has increased as the growth of the number of mobile devices. Visible light communication (VLC) is a promising technology to alleviate the growing traffic problem. However, the occlusion problem is a difficulty in VLC system. In order to solve the problem, an anti-occlusion VLC system has been proposed in this article. In this VLC system, we propose the channel cooperative selection mechanism, which is based on the best-response dynamics and best response strategies of the game theory. This mechanism uses bit error ratio (BER) as the utility function to optimize system performance. In addition, the system provides three candidate communication channels, including direct channel, indirect channel, and mixed channel, to active users who will select the optimal communication channel. Moreover, the anti-occlusion VLC system has many application scenarios, such as the office, which has practical significance. For verifying the validity of the proposed mechanism, we accomplish the simulation results in terms of BER and throughput in different communication cases. It is demonstrated that the proposed channel cooperative selection mechanism in VLC systems offers superior performance in environment of obstructions.

  8. Novel GQD-PVP-CdS composite with enhanced visible-light-driven photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Fan, Tao; Li, Yinle; Shen, Jianfeng; Ye, Mingxin

    2016-03-01

    A facile one-step hydrothermal method to synthesize graphene quantum dots (GQDs)-polyvinyl pyrrolidone (PVP)-CdS nanocomposite was reported. The nanocomposite was thoroughly characterized with X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and ultraviolet-visible spectroscopy. The results confirmed the formation of GQD-PVP-CdS composite with a uniform size (5-10 nm) and a relatively low band gap (Eg = 2.23 eV). Moreover, the as-prepared composite exhibited enhanced photocatalytic activity toward the degradation of organic contaminants, with 92.3% of methyl orange (10 mg/L) removed after 3 hours of visible light illumination. This enhancement in photocatalytic activity was postulated to be attributed to the upconversion property of GQDs and a more efficient charge distribution between GQDs and CdS particles.

  9. Visible light photoactivity of Polypropylene coated Nano-TiO2 for dyes degradation in water

    NASA Astrophysics Data System (ADS)

    Giovannetti, R.; Amato, C. A. D.'; Zannotti, M.; Rommozzi, E.; Gunnella, R.; Minicucci, M.; di Cicco, A.

    2015-12-01

    The use of Polypropylene as support material for nano-TiO2 photocatalyst in the photodegradation of Alizarin Red S in water solutions under the action of visible light was investigated. The optimization of TiO2 pastes preparation using two commercial TiO2, Aeroxide P-25 and Anatase, was performed and a green low-cost dip-coating procedure was developed. Scanning electron microscopy, Atomic Force Microscopy and X-Ray Diffraction analysis were used in order to obtain morphological and structural information of as-prepared TiO2 on support material. Equilibrium and kinetics aspects in the adsorption and successive photodegradation of Alizarin Red S, as reference dye, are described using polypropylene-TiO2 films in the Visible/TiO2/water reactor showing efficient dyes degradation.

  10. Visible light photoactivity of Polypropylene coated Nano-TiO2 for dyes degradation in water.

    PubMed

    Giovannetti, R; Amato, C A D'; Zannotti, M; Rommozzi, E; Gunnella, R; Minicucci, M; Di Cicco, A

    2015-12-02

    The use of Polypropylene as support material for nano-TiO2 photocatalyst in the photodegradation of Alizarin Red S in water solutions under the action of visible light was investigated. The optimization of TiO2 pastes preparation using two commercial TiO2, Aeroxide P-25 and Anatase, was performed and a green low-cost dip-coating procedure was developed. Scanning electron microscopy, Atomic Force Microscopy and X-Ray Diffraction analysis were used in order to obtain morphological and structural information of as-prepared TiO2 on support material. Equilibrium and kinetics aspects in the adsorption and successive photodegradation of Alizarin Red S, as reference dye, are described using polypropylene-TiO2 films in the Visible/TiO2/water reactor showing efficient dyes degradation.

  11. Visible light photoactivity of Polypropylene coated Nano-TiO2 for dyes degradation in water

    PubMed Central

    Giovannetti, R.; Amato, C. A. D’; Zannotti, M.; Rommozzi, E.; Gunnella, R.; Minicucci, M.; Di Cicco, A.

    2015-01-01

    The use of Polypropylene as support material for nano-TiO2 photocatalyst in the photodegradation of Alizarin Red S in water solutions under the action of visible light was investigated. The optimization of TiO2 pastes preparation using two commercial TiO2, Aeroxide P-25 and Anatase, was performed and a green low-cost dip-coating procedure was developed. Scanning electron microscopy, Atomic Force Microscopy and X-Ray Diffraction analysis were used in order to obtain morphological and structural information of as-prepared TiO2 on support material. Equilibrium and kinetics aspects in the adsorption and successive photodegradation of Alizarin Red S, as reference dye, are described using polypropylene-TiO2 films in the Visible/TiO2/water reactor showing efficient dyes degradation. PMID:26627118

  12. Aromatic Monochlorination Photosensitized by DDQ with Hydrogen Chloride under Visible-Light Irradiation.

    PubMed

    Ohkubo, Kei; Fujimoto, Atsushi; Fukuzumi, Shunichi

    2016-04-05

    Photochlorination of aromatic substrates by hydrogen chloride with 2,3-dichloro-5,6-cyano-p-benzoquinone (DDQ) occurs efficiently to produce the corresponding monochlorinated products selectively under visible-light irradiation. The yields for the chlorination of phenol were 70 % and 18 % for p- and o-chlorophenol, respectively, without formation of further chlorinated products. The photoinduced chlorination is initiated by electron transfer from Cl(-) to the triplet excited state of DDQ. The radical intermediates involved in the photochemical reaction have been detected by time-resolved transient absorption measurements.

  13. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation.

    PubMed

    Chen, Chuncheng; Ma, Wanhong; Zhao, Jincai

    2010-11-01

    The semiconductor and the surface-adsorbed antenna molecule (dyes or other color species) can constitute efficient photochemical systems for environmental remediation. The major advantage of these systems is that they are able to achieve the degradation of organic pollutants by using visible light from the sun as energy and O(2) in the air as the oxidant under ambient conditions. In this tutorial review, the unique mechanistic characteristics, the constitution of photodegradation systems and their performance are described. The involved radical reactions during the degradation are also discussed.

  14. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light.

    PubMed

    Wang, Xinchen; Maeda, Kazuhiko; Chen, Xiufang; Takanabe, Kazuhiro; Domen, Kazunari; Hou, Yidong; Fu, Xianzhi; Antonietti, Markus

    2009-02-11

    We investigated semiconductor characteristics for polymeric carbon nitride as a metal-free photocatalyst working with visible light and have shown that the efficiency of hydrogen production by photochemical water reduction can be improved by approximately 1 order of magnitude by introducing the right type of mesoporosity into polymeric C(3)N(4). We anticipate a wide rang of potential application of C(3)N(4) as energy transducers for artificial photosynthesis in general, especially with a 3D continuous nanoarchitecture. Moreover, the results of finding photoactivity for carbon nitride nanoparticles can enrich the discussion on prebiotic chemistry of the Earth, as HCN polymer clusters are unequivocal in the solar system.

  15. TiO{sub 2}/carbon nanotube hybrid nanostructures: Solvothermal synthesis and their visible light photocatalytic activity

    SciTech Connect

    Tian Lihong; Ye Liqun; Deng Kejian; Zan Ling

    2011-06-15

    MWCNT/TiO{sub 2} hybrid nanostructures were prepared via solvothermal synthesis and sol-gel method with benzyl alcohol as a surfactant. As-prepared hybrid materials were characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectra and X-ray photoelectron spectroscopy. The results showed that MWCNTs were uniformly decorated with anatase nanocrystals in solvothermal condition, but MWCNTs were embedded in a majority of TiO{sub 2} nanoparticles by sol-gel method. When the weight ratio of MWCNTs to TiO{sub 2} was 20%, MWCNT/TiO{sub 2} hybrid nanostructures prepared by solvothermal synthesis exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. Post-annealing of MWCNT/TiO{sub 2} nanostructures at 400 deg. C resulted in the formation of the carbonaceous Ti-C bonds on the interface between TiO{sub 2} and MWCNTs, which enhanced the photoabsorbance of the hybrid materials in the visible light region and improved the visible-light degradation efficiency of methylene blue. - Graphical abstract: MWCNT/TiO{sub 2} nanostructures have been prepared by solvothermal method, which exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. The carbonaceous Ti-C bonds on the interface between TiO{sub 2} and MWCNTs enhanced the photoabsorbance of the hybrid materials in the visible light region. Highlights: > Anatase TiO{sub 2} nanoparticles were anchored on CNTs surface uniformly via solvothermal method {yields} The morphology facilitated the electron transfer between CNTs and TiO{sub 2} {yields} Ti-C bonds extended the absorption of MWCNT/TiO{sub 2} to the whole visible light region. > The hybrid nanostructures showed enhanced visible-light induced photocatalytic activity.

  16. Synthesis, characterisation and application of copper modified brookite titania photocatalyst activated by visible light.

    PubMed

    Osei, Prince Bonsu; Lü, Xiaomeng; Xie, Jimin; Jiang, Deli; Chen, Min; Wei, Xiaojun

    2014-09-01

    Brookite titania nanomaterials modified with Copper Nanoparticles (NPs) Cu-TiO2 were prepared in this research. Hydrothermal method was used to prepare Brookite Titania whiles, copper NPs were loaded on its surface by consecutive ion adsorption and photoreduction. The photocatalyst was characterised by Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance Spectrum (UV-vis DRS) and Inductively Coupled Plasma-Atomic Emission spectroscopy (ICP-AES). The photocatalytic activity of the prepared composite was also determined by photodecolorisation of organic pollutants under visible light. Crystal Violet dye (CV) was used as a model organic pollutant. The optimum loading ratio of Cu/Ti which resulted in the best photodecolorisation efficiency was also determined. The results revealed that the sample Cu-TiO2 (Cu/Ti = 2% molar ratio) with copper particle size of 3 nm had the best photocatalytic decolorisation efficiency of 98% after 50 min of irradiation under visible light. The decolorisation efficiency of the sample Cu-TiO2 (2%) was also higher than that of commercial P25 (38%).

  17. Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption.

    PubMed

    Hägglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Thomann, Isabell; Lee, Han-Bo-Ram; Brongersma, Mark L; Bent, Stacey F

    2013-07-10

    Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity, where benefits in conversion efficiency and economy can be obtained. On a fundamental level, it is of great interest to explore whether the ultimate limits in light absorption per unit volume can be achieved by capitalizing on the advances in metamaterial science and nanosynthesis. Here, we combine block copolymer lithography and atomic layer deposition to tune the effective optical properties of a plasmonic array at the atomic scale. Critical coupling to the resulting nanocomposite layer is accomplished through guidance by a simple analytical model and measurements by spectroscopic ellipsometry. Thereby, a maximized absorption of light exceeding 99% is accomplished, of which up to about 93% occurs in a volume-equivalent thickness of gold of only 1.6 nm. This corresponds to a record effective absorption coefficient of 1.7 × 10(7) cm(-1) in the visible region, far exceeding those of solid metals, graphene, dye monolayers, and thin film solar cell materials. It is more than a factor of 2 higher than that previously obtained using a critically coupled dye J-aggregate, with a peak width exceeding the latter by 1 order of magnitude. These results thereby substantially push the limits for light harvesting in ultrathin, nanoengineered systems.

  18. Graphene oxide quantum dot-sensitized porous titanium dioxide microsphere: Visible-light-driven photocatalyst based on energy band engineering.

    PubMed

    Zhang, Yu; Qi, Fuyuan; Li, Ying; Zhou, Xin; Sun, Hongfeng; Zhang, Wei; Liu, Daliang; Song, Xi-Ming

    2017-03-11

    We report a novel graphene oxide quantum dot (GOQD)-sensitized porous TiO2 microsphere for efficient photoelectric conversion. Electro-chemical analysis along with the Mott-Schottky equation reveals conductivity type and energy band structure of the two semiconductors. Based on their energy band structures, visible light-induced electrons can transfer from the p-type GOQD to the n-type TiO2. Enhanced photocurrent and photocatalytic activity in visible light further confirm the enhanced separation of electrons and holes in the nanocomposite.

  19. Chlorophyll-Catalyzed Visible-Light-Mediated Synthesis of Tetrahydroquinolines from N,N-Dimethylanilines and Maleimides.

    PubMed

    Guo, Jun-Tao; Yang, Da-Cheng; Guan, Zhi; He, Yan-Hong

    2017-02-17

    Natural pigment chlorophyll was used as a green photosensitizer for the first time in a visible-light photoredox catalysis for the efficient synthesis of tetrahydroquinolines from N,N-dimethylanilines and maleimides in an air atmosphere. The reaction involves direct cyclization via an sp(3) C-H bond functionalization process to afford products in moderate to high yields (61-98%) from a wide range of substrates with a low loading of chlorophyll under mild conditions. This work demonstrates the potential benefits of chlorophyll as photosensitizer in visible light catalysis.

  20. A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots.

    PubMed

    Chan, Donald K L; Cheung, Po Ling; Yu, Jimmy C

    2014-01-01

    TiO2 nanotube arrays are well-known efficient UV-driven photocatalysts. The incorporation of graphene quantum dots could extend the photo-response of the nanotubes to the visible-light range. Graphene quantum dot-sensitized TiO2 nanotube arrays were synthesized by covalently coupling these two materials. The product was characterized by Fourier-transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and UV-vis absorption spectroscopy. The product exhibited high photocatalytic performance in the photodegradation of methylene blue and enhanced photocurrent under visible light irradiation.

  1. Unprecedented photocatalytic activity of carbon coated/MoO3 core-shell nanoheterostructurs under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Ghaffar, Iqra; Warsi, Muhammad Farooq; Shahid, Muhammad; Shakir, Imran

    2016-05-01

    We reveal that nano-scale carbon layer deposited by hydrothermal process on molybdenum oxide (MoO3) nanowires surface significantly improve the light absorption range. Furthermore, the graphene-carbon coated MoO3 nanocopmosite (rGO/C-MoO3 nanocomposite) exhibits excellent chemical stability and enhanced photocatalytic activity for methylene blue in aqueous solution under visible light irradiation compared to the bare MoO3 nanowires and carbon coated MoO3 nanowires (C-MoO3 nanowires). The enhanced photocatalytic activity of rGO/C-MoO3 nanocomposite could be attributed to the extended light absorption range, better adsorptivity of dye molecules and efficient separation of photogenerated electrons and holes. Overall, this work provides new insights that the as synthesized rGO/C-MoO3 nanocomposite can be efficiently used as high performance photocatalysts to improve the environmental protection issues under visible light irradiation.

  2. Facile fabrication of visible light induced Bi2O3 nanorod using conventional heat treatment method

    NASA Astrophysics Data System (ADS)

    Raza, Waseem; Khan, Azam; Alam, Umair; Muneer, M.; Bahnemann, D.

    2016-03-01

    In this paper, a new Bi2O3 based photocatalyst doped with varying concentration of Nb and Mn metal ion was fabricated by conventional heat treatment method and their photocatalytic activity was investigated. The prepared material was characterized by X-ray diffraction (XRD), UV-Visible Spectroscopy, Fourier transform infrared (FTIR) and Scanning Electron Microscopic (SEM) techniques. The XRD analysis of synthesized photocatalyst was found to exhibit characteristic peaks of well crystallized monoclinic α-Bi2O3. The XRD pattern of pure and metal doped Bi2O3 were found to more or less similar. The crystallite size of doped materials were smaller than pure Bi2O3 and size decreases with increasing dopant concentration from 0.5 to 2.0% for Nb & 1.0-3.0% for Mn and remains almost constant at higher dopant concentration. The SEM analysis clearly indicate the formation of nanorod like morphologies. The UV-Vis absorption spectra of synthesized nanorods revealed that the absorption edge shift towards longer wavelength on doping with Nb and Mn metal ions which is beneficial for absorbing more visible light in the solar spectrum. The prepared doped Bi2O3 nanorod showed the excellent photocatalytic activity for degradation of selected organic pollutants, such as Methylene Blue (MB) and Rodaamime B (RhB) under visible light source. The higher activity of doped Bi2O3 nanorod may be attributed to absorption of more visible light leading to generation of higher photogenerated electron hole pairs and efficient separation of photoinduced charge carrier to inhibit the recombination rate.

  3. Theoretically Manipulating Quantum Dots on Two-Dimensional TiO2 Monolayer for Effective Visible Light Absorption.

    PubMed

    Liao, Ting; Sun, Ziqi; Dou, Shi Xue

    2017-03-08

    Low solar energy harvesting and conversion efficiency has become a major problem in solar energy science and engineering owing to the difficulty in capturing solar energy across the wide solar spectrum, especially in the visible light range. Inspired by the extraordinary properties of materials arising from decreased dimensions, in this study, we explore a nanocontact system formed by a two-dimensional (2D) TiO2 monolayer and II-VI semiconductor (CdX)13 (X = S, Se, and Te) nanocages for engineering the visible light absorption. The nanocontact system, via either Ti-X or Cd-O bond coupling mechanism, forms an ideal type II band alignment, where the stronger donor-acceptor coupling in the Ti-X contact system more efficiently relaxes the coupled geometry and helps it to couple to more electrons, therefore leading to an enhancement of the absorption peaks in the visible frequency range. On changing the element X in (CdX)13 from S to Se then Te, a red shift of the visible light absorption peaks accompanied by stimulating optical response of the whole nanocontact system was observed. Nanocontacting semiconductors comprising low-dimensional (CdX)13 nanocage@TiO2 monolayer systems, which promote charge separation and optical absorption in the visible range that arise from the effects of adsorbent nature, decreasing size, and efficient interfacial coupling mechanism, are therefore promising photovoltaic and photocatalytic materials.

  4. Microwave-assisted synthesis of bismuth oxybromochloride nanoflakes for visible light photodegradation of pollutants

    NASA Astrophysics Data System (ADS)

    Bijanzad, Keyvan; Tadjarodi, Azadeh; Moghaddasi Khiavi, Mohammad; Akhavan, Omid

    2015-10-01

    BiOBrxCl1-x (0visible diffuse reflectance and photoluminescence (PL) spectroscopies revealed the indirect band gap of ~2.82 eV for the bismuth oxybromochloride nanoflakes. Visible light-assisted photocatalytic studies showed that the degradation efficiency of the as-prepared BiOBrxCl1-x for (100 mL of 10 mg L-1) Rhodamine B (RhB), Natural Red 4 (N-Red) dye solutions was 98.14% and for the colorless organic pentachlorophenol (PCP) solution was 91.09% over 150 min. The possible mechanisms involved in the visible light photodegradation of the pollutants by BiOBrxCl1-x photocatalyst were also discussed.

  5. Visible light assisted degradation of organic dye using Ag{sub 3}PO{sub 4}

    SciTech Connect

    Dhanabal, R.; Bose, A. Chandra; Velmathi, S.

    2015-06-24

    The study of visible light photodegradation of organic dye Methylene Blue (MB) have been investigated using silver phosphate (Ag{sub 3}PO{sub 4}) as a photocatalyst which is good efficient material for photocatalytic reaction. The simple ion-exchange method is used to prepare Ag{sub 3}PO{sub 4}. The structure of the material have been confirmed using X-ray diffraction which shows cubic structure of Ag{sub 3}PO{sub 4}. The functional group of the Ag{sub 3}PO{sub 4} has been verified by Fourier transform infrared spectroscopy. The bandgap of Ag{sub 3}PO{sub 4} is calculated using kubelka-munk function from the ultra violet-visible diffuse reflectance spectroscopy, the absorption of Ag{sub 3}PO{sub 4} starts from 470 nm. Under simulated visible light irradiation, Ag{sub 3}PO{sub 4} catalyst exhibits good catalytic ability for degrading MB dye.

  6. Downtown Detroit Energy Efficient Street Lighting

    SciTech Connect

    Goodwin, Malik

    2013-11-29

    Reliable public lighting remains a critically important and valuable public service in Detroit, Michigan. The Downtown Detroit Energy Efficiency Lighting Program (the, “Program”) was designed and implemented to bring the latest advancements in lighting technology, energy efficiency, public safety and reliability to Detroit’s Central Business District, and the Program accomplished those goals successfully. Downtown’s nighttime atmosphere has been upgraded as a result of the installation of over 1000 new LED roadway lighting fixtures that were installed as part of the Program. The reliability of the lighting system has also improved.

  7. The Influence of Dimming in Road Lighting on the Visibility of Drivers

    NASA Astrophysics Data System (ADS)

    Bacelar, Alexis

    Last years, people who are in charge of road lighting try to carry out energy savings but they do not really care about user considerations. This paper presents experimentation with observers, who were asked to assess the visibility of targets on the road surface under different levels of illumination (promoted by dimming). For our lighting installation, dimming does not influence the visibility of drivers very much and one can say that it affects less the visibility than the position of the target. Nevertheless, luminous flux reduction must be done with good and homogeneous lighting installation otherwise road users may have problems of visibility and comfort.

  8. Performance improvement by tilting receiver plane in M-QAM OFDM visible light communications.

    PubMed

    Wang, Zixiong; Yu, Changyuan; Zhong, Wen-De; Chen, Jian

    2011-07-04

    We propose a scheme to improve the SNR distribution as well as the spectral efficiency of M-QAM OFDM signal for indoor visible light communication by tilting the receiver plane. Newton method is employed for the photo-detector to receive maximum power by finding the optimal tilting angle. This method is a fast algorithm that only three searching steps are needed. The simulation results show that in the case of one LED source, the maximum spectral efficiency improvement is 0.44bit/s/Hz when the launching power of LED source is 12W; while in the case of four LED sources, the maximum spectral efficiency improvement is 0.21bit/s/Hz when the total launching power of the four LED sources is 12W.

  9. Hierarchical ZnO/S,N:GQD composites: Biotemplated synthesis and enhanced visible-light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Cai, Aijun; Wang, Xiuping; Qi, Yanling; Ma, Zichuan

    2017-01-01

    Graphene quantum dots co-doped with sulfur and nitrogen (S,N:GQDs) are successfully combined with leaf-templated ZnO nanoparticles (L-ZnO) to obtain hierarchical L-ZnO/S,N:GQD composites exhibiting highly surface area. The morphology, structure, and the visible-light-driven photocatalytic activity are investigated. Compared with non-templated ZnO/S,N:GQDs, L-ZnO/S,N:GQD composites exhibit higher photocatalytic activity for the degradation of rhodamine B under visible light irradiation. Such elevated photocatalytic activity results from two main effects: one is the highly effective charge separation in L-ZnO/S,N:GQD composites; the other is the high surface area, allowing for efficient capture of the visible light.

  10. Visible light photocatalytic degradation of 4-chlorophenol using vanadium and nitrogen co-doped TiO2

    NASA Astrophysics Data System (ADS)

    Jaiswal, R.; Patel, N.; Kothari, D. C.; Miotello, A.

    2013-02-01

    Vanadium and Nitrogen were codoped in TiO2 photocatalyst by Sol-gel method to utilize visible light more efficiently for photocatalytic reactions. A noticeable shift of absorption edge to visible light region was obtained for the singly-doped namely V-TiO2, N-TiO2 and codoped V-N-TiO2 samples in comparison with undoped TiO2, with smallest band gap obtained with codoped-TiO2. The photocatalytic activities for all TiO2 photocatalysts were tested by 4-chlorophenol (organic pollutant) degradation under visible light irradiation. It was found that codoped TiO2 exhibits the best photocatalytic activity, which could be attributed to the synergistic effect produced by V and N dopants.

  11. Visible light photocatalytic degradation of 4-chlorophenol using vanadium and nitrogen co-doped TiO{sub 2}

    SciTech Connect

    Jaiswal, R.; Kothari, D. C.; Patel, N.; Miotello, A.

    2013-02-05

    Vanadium and Nitrogen were codoped in TiO{sub 2} photocatalyst by Sol-gel method to utilize visible light more efficiently for photocatalytic reactions. A noticeable shift of absorption edge to visible light region was obtained for the singly-doped namely V-TiO{sub 2}, N-TiO{sub 2} and codoped V-N-TiO{sub 2} samples in comparison with undoped TiO{sub 2}, with smallest band gap obtained with codoped-TiO{sub 2}. The photocatalytic activities for all TiO{sub 2} photocatalysts were tested by 4-chlorophenol (organic pollutant) degradation under visible light irradiation. It was found that codoped TiO{sub 2} exhibits the best photocatalytic activity, which could be attributed to the synergistic effect produced by V and N dopants.

  12. Mobile-phone based visible light communication using region-grow light source tracking for unstable light source.

    PubMed

    Liang, Kevin; Chow, Chi-Wai; Liu, Yang

    2016-07-25

    In order to increase the data rate of the camera-based visible light communication (VLC) system, using rolling shutter effect has been demonstrated successfully, in which the pixel rows of the complementary-metal-oxide-semiconductor (CMOS) image sensor are activated sequentially. Previous camera-based VLCs focused on using a stable LED light source, and its illumination area is positioned at the center of an image frame. In this work, we investigate the performance of a camera-based VLC with light source at different parts of an image frame. We propose and demonstrate using region-grow algorithm to track the light source. We also evaluate and discuss different scenarios when the light source is moved. Besides, a recorded > 5 kbit/s net data rate can be achieved by using only a single phosphor-based white-light LED source. Here, we demonstrate that 4.502 pixel/bit can be achieved.

  13. Photocontrolled release using one-photon absorption of visible or NIR light.

    PubMed

    Olejniczak, Jason; Carling, Carl-Johan; Almutairi, Adah

    2015-12-10

    Light is an excellent means to externally control the properties of materials and small molecules for many applications. Light's ability to initiate chemistries largely independent of a material's local environment makes it particularly useful as a bio-orthogonal and on-demand trigger in living systems. Materials responsive to UV light are widely reported in the literature; however, UV light has substantial limitations for in vitro and in vivo applications. Many biological molecules absorb these energetic wavelengths directly, not only preventing substantial tissue penetration but also causing detrimental photochemical reactions. The more innocuous nature of long-wavelength light (>400nm) and its ability at longer wavelengths (600-950nm) to effectively penetrate tissues is ideal for biological applications. Multi-photon processes (e.g. two-photon excitation and upconversion) using longer wavelength light, often in the near-infrared (NIR) range, have been proposed as a means of avoiding the negative characteristics of UV light. However, high-power focused laser light and long irradiation times are often required to initiate photorelease using these inefficient non-linear optical methods, limiting their in vivo use in mammalian tissues where NIR light is readily scattered. The development of materials that efficiently convert a single photon of long-wavelength light to chemical change is a viable solution to achieve in vivo photorelease. However, to date only a few such materials have been reported. Here we review current technologies for photo-regulated release using photoactive organic materials that directly absorb visible and NIR light.

  14. Efficient Upconverting Multiferroic Core@Shell Photocatalysts: Visible-to-Near-Infrared Photon Harvesting.

    PubMed

    Zhang, Jianming; Huang, Yue; Jin, Lei; Rosei, Federico; Vetrone, Fiorenzo; Claverie, Jerome P

    2017-03-08

    We report the two-step synthesis of a core@shell nanohybrid material for visible-to-near-infrared (NIR) photocatalysis. The core is constituted of NaGdF4:Er(3+), Yb(3+) upconverting nanoparticles (UCNPs). A bismuth ferrite (BFO) shell is assembled around the UCNPs via a hydrothermal process. The photocatalytic degradation assays of methylene orange and 4-chlorophenol reveal that these core@shell nanostructures possess remarkably enhanced reaction activity under visible and NIR irradiation, compared to the BFO powder alone and the BFO-UCNP mixture. Photo-charge scavenger tests and fluorescent assays indicate that hydroxyl radicals play a pivotal role in the photodegradation mechanism. The enhanced photoactivity of the core@shell structure is attributed to the NIR radiation which is converted into visible light by UCNPs, and which is then captured by BFO via a nonradiative luminescence resonance energy transfer process. Therefore, this core@shell architecture optimizes solar energy use by efficiently harvesting visible and NIR photons.

  15. Visible light degradation of Orange II using xCuyOz/TiO2 heterojunctions.

    PubMed

    Helaïli, N; Bessekhouad, Y; Bouguelia, A; Trari, M

    2009-08-30

    Cu(2)O/TiO(2), Cu/Cu(2)O/TiO(2) and Cu/Cu(2)O/CuO/TiO(2) heterojunctions were prepared and studied for their potential application as photocatalysts able to induce high performance under visible light. Orange II was used as a representative dye molecule. The effect of the amount and composition of the photosensitizers toward the activation of TiO(2) was studied. In each case, the global mechanism of Inter Particle Electrons Injection (IPEI) was discussed. The highest photocatalytic activity was observed for the system Cu/Cu(2)O/CuO (MB2 catalyst) under visible light (t(1/2)=24 min, k=159.7 x 10(-3)min(-1)) and for the heterojunction cascade Cu/Cu(2)O/CuO/TiO(2) (MB2 (50%)/TiO(2)) under UV-vis light (t(1/2)=4 min, k=1342 x 10(-3)min(-1)). In the last case, the high performance was attributed firstly to the electromotive forces developed under this configuration in which CuO energy bands mediate the electrons transfer from Cu(2)O to TiO(2). The formation of monobloc sensitizers also accounts for the decrease of the probability of the charges lost. It was demonstrated that "Cu(2)O/CuO" governs the capability of the heterojunction cascade and Cu does not play a significant role regardless of the heterojunction cascade efficiency. The electrical energy consumption per order of magnitude for photocatalytic degradation of Orange II was investigated for some representative catalytic systems. Visible/MB2 and UV/vis MB2 (50%)/TiO(2) exhibited respectively 0.340 and 0.05 kW hm(-3) demonstrating the high efficiency of the systems.

  16. Mesoporous zinc ferrite: synthesis, characterization, and photocatalytic activity with H2O2/visible light.

    PubMed

    Su, Minhua; He, Chun; Sharma, Virender K; Abou Asi, Mudar; Xia, Dehua; Li, Xiang-zhong; Deng, Huiqi; Xiong, Ya

    2012-04-15

    Mesoporous ZnFe(2)O(4) (meso-ZnFe(2)O(4)) was synthesized by a hydrothermal process in which cetyltrimethylammonium bromide (CTAB) participates in the reaction to produce nanocrystals. Synthesized ZnFe(2)O(4) was characterized by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, scanning electronic microscopy (SEM), transmission electron microscopy (TEM), and diffuse reflectance spectra (DRS). The meso-ZnFe(2)O(4) was resulted from the agglomeration of nanoparticles with size of 5-10nm. The photocatalytic activity of ZnFe(2)O(4) under visible light (λ>400 nm) was evaluated by the degradation of Acid Orange II (AOII) at different sintering temperatures, the amount of ZnFe(2)O(4), and the concentration of H(2)O(2). The photocatalytic degradation of AOII was almost complete within 2h in H(2)O(2)/visible light system. The high efficiency for AOII degradation was attributed to the strong absorption of ZnFe(2)O(4) in visible-light region and the generation of reactive OH by H(2)O(2) in the system. The involvement of OH in oxidizing AOII was examined by determining the photocurrent of ZnFe(2)O(4), [OH], and degradation rates using different scavengers. Organic compounds as intermediates of the degradation process were identified by LC/MS. Moreover, ZnFe(2)O(4) retained their degradation efficiencies for a series of repetitive batch runs, indicating the true photocatalytic process.

  17. Visible light-responsive micelles formed from dialkoxyanthracene-containing block copolymers.

    PubMed

    Yan, Qiang; Hu, Jun; Zhou, Rong; Ju, Yong; Yin, Yingwu; Yuan, Jinying

    2012-02-11

    A class of dialkoxyanthracene-containing diblock copolymers is synthesized which possesses visible light-responsivity. These copolymers can self-assemble into a micellar structure in water. Green visible light (540 nm) is able to scissor these anthracene species and cleave the diblock copolymer into two fragments, inducing disassembly of the self-assembled micelles.

  18. Photoelectrochemical degradation of Methylene Blue with beta-PbO2 electrodes driven by visible light irradiation.

    PubMed

    Li, Guoting; Yip, Hoyin; Wong, Kin Hang; Hu, Chun; Qu, Jiuhui; Wong, Po Keung

    2011-01-01

    Beta-PbO2 electrodes were prepared by electro-deposition and characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and linear sweep voltammetry. We confirmed pure (beta-PbO2 crystals were on the electrode and it had a high oxygen evolution potential. The photoactivity and photoelectrochemical (PEC) properties of the beta-PbO2 electrode were investigated under visible light irradiation (lambda > 420 nm) for the decolorization of Methylene Blue. Pseudo first-order kinetics parameter (K(app)) for dye decolorization using the beta-PbO2 electrode achieved 6.71 x 10(-4) min(-1) under visible light irradiation, which indicated its excellent visible light-induced photoactivity. The K(app) of the PEC process was as much as 1.41 x 10(-3) min(-1) and was 1.71 times that of visible light irradiation or electrolysis even in the presence of the beta-PbO2 electrode. A significant synergetic effect was observed in the PEC system. We also employed TiO2 modified beta-PbO2 electrodes in this test, which revealed that the TiO2 immobilized on the beta-PbO2 electrode inhibited the visible light-induced PEC efficiency despite the amount of TiO2 used for electrode preparation. The beta-PbO2 electrode was also superior to the dimensionally stable anode (Ti/Ru(0.3)Ti(0.7)O2) in visible light-induced photoactivity and PEC efficiency.

  19. Broadband visible light source based on AllnGaN light emitting diodes

    DOEpatents

    Crawford, Mary H.; Nelson, Jeffrey S.

    2003-12-16

    A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.

  20. Photocatalytic Oxidation of Propylene on Pd-Loaded Anatase TiO2 Nanotubes Under Visible Light Irradiation.

    PubMed

    Li, Chen; Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Yang, Jianjun; Jin, Zhensheng

    2016-12-01

    TiO2 nanotubes attract much attention because of their high photoelectron-chemical and photocatalytic efficiency. But their large band gap leads to a low absorption of the solar light and limits the practical application. How to obtain TiO2 nanotubes without any dopant and possessing visible light response is a big challenge nowadays. Orthorhombic titanic acid nanotubes (TAN) are a special precursor of TiO2, which possess large Brunauer-Emmett-Teller (BET) surface areas and strong ion exchange and adsorption capacity. TAN can transform to a novel TiO2 with a large amount of single-electron-trapped oxygen vacancies (SETOV) during calcination, while their nanotubular structure would be destroyed, and a BET surface area would decrease remarkably. And interestingly, SETOV can lead to a visible light response for this kind of TiO2. Herein, glucose was penetrated into TAN by the vacuum inhalation method, and TAN would dehydrate to anatase TiO2, and glucose would undergo thermolysis completely in the calcination process. As a result, the pure TiO2 nanotubes with visible light response and large BET surface areas were obtained. For further improving the photocatalytic activity, Pd nanoparticles were loaded as the foreign electron traps on TiO2 nanotubes and the photocatalytic oxidation efficiency of propylene was as high as 71 % under visible light irradiation, and the photostability of the catalyst kept over 90 % after 4 cyclic tests.

  1. Photocatalytic Oxidation of Propylene on Pd-Loaded Anatase TiO2 Nanotubes Under Visible Light Irradiation

    NASA Astrophysics Data System (ADS)

    Li, Chen; Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Yang, Jianjun; Jin, Zhensheng

    2016-05-01

    TiO2 nanotubes attract much attention because of their high photoelectron-chemical and photocatalytic efficiency. But their large band gap leads to a low absorption of the solar light and limits the practical application. How to obtain TiO2 nanotubes without any dopant and possessing visible light response is a big challenge nowadays. Orthorhombic titanic acid nanotubes (TAN) are a special precursor of TiO2, which possess large Brunauer-Emmett-Teller (BET) surface areas and strong ion exchange and adsorption capacity. TAN can transform to a novel TiO2 with a large amount of single-electron-trapped oxygen vacancies (SETOV) during calcination, while their nanotubular structure would be destroyed, and a BET surface area would decrease remarkably. And interestingly, SETOV can lead to a visible light response for this kind of TiO2. Herein, glucose was penetrated into TAN by the vacuum inhalation method, and TAN would dehydrate to anatase TiO2, and glucose would undergo thermolysis completely in the calcination process. As a result, the pure TiO2 nanotubes with visible light response and large BET surface areas were obtained. For further improving the photocatalytic activity, Pd nanoparticles were loaded as the foreign electron traps on TiO2 nanotubes and the photocatalytic oxidation efficiency of propylene was as high as 71 % under visible light irradiation, and the photostability of the catalyst kept over 90 % after 4 cyclic tests.

  2. Sulfonated graphene oxide-ZnO-Ag photocatalyst for fast photodegradation and disinfection under visible light.

    PubMed

    Gao, Peng; Ng, Kokseng; Sun, Darren Delai

    2013-11-15

    Synthesis of efficient visible-light-driven photocatalyst is urgent but challenging for environmental remediation. In this work, for the first time, the hierarchical plasmonic sulfonated graphene oxide-ZnO-Ag (SGO-ZnO-Ag) composites were prepared through nanocrystal-seed-directed hydrothermal method combining with polyol-reduction process. The results indicated that SGO-ZnO-Ag exhibited much faster rate in photodegradation of Rhodamine B (RhB) and disinfection of Escherichia coli (E. coli), than ZnO, SGO-ZnO and ZnO-Ag. SGO-ZnO-Ag totally degraded RhB dye and kill 99% of E. coli within 20 min under visible light irradiation. The outstanding performances of SGO-ZnO-Ag were attributed to the synergetic merits of SGO sheets, ZnO nanorod arrays and Ag nanoparticles. Firstly, the light absorption ability of SGO-ZnO-Ag composite in the visible region was enhanced due to the surface plasmon resonance of Ag. In addition, the hierarchical structure of SGO-ZnO-Ag composite improved the incident light scattering and reflection. Furthermore, SGO sheets facilitated charge transfer and reduce electron-hole recombination rate. Finally, the tentative mechanism was proposed and verified by the photoluminescence (PL) measurement as well as the theoretical finite-difference time-domain (FDTD) simulation. In view of above, this work paves the way for preparation of multi-component plasmonic composites and highlights the potential applications of SGO-ZnO-Ag in photocatalytic wastewater treatment field.

  3. Simultaneous light emission and detection of InGaN/GaN multiple quantum well diodes for in-plane visible light communication

    NASA Astrophysics Data System (ADS)

    Wang, Yongjin; Xu, Yin; Yang, Yongchao; Gao, Xumin; Zhu, Bingcheng; Cai, Wei; Yuan, Jialei; Zhang, Rong; Zhu, Hongbo

    2017-03-01

    This paper presents the design, fabrication, and experimental characterization of monolithically integrated p-n junction InGaN/GaN multiple quantum well diodes (MQWDs) and suspended waveguides. Suspended MQWDs can be used as transmitters and receivers simultaneously, and suspended waveguides are used for light coupling to create an in-plane visible light communication system. Compared to the waveguide with separation trench, the calculated total light efficiency is increased from 18% to 22% for the continuous waveguide. The MQWDs are characterized by their typical current-voltage performance, and the pulse excitation measurements confirm that the InGaN/GaN MQWDs can achieve the light emission and photodetection at the same time. The photocurrent measurements indicate that the photocurrent is modulated by a bias voltage and that the photons are being supplied from another transmitter. An experimental demonstration is presented showing that the proposed device works well for in-plane full-duplex communication using visible light.

  4. Visible light photooxidative performance of a high-nuclearity molecular bismuth vanadium oxide cluster

    PubMed Central

    Tucher, Johannes

    2014-01-01

    Summary The visible light photooxidative performance of a new high-nuclearity molecular bismuth vanadium oxide cluster, H3[{Bi(dmso)3}4V13O40], is reported. Photocatalytic activity studies show faster reaction kinetics under anaerobic conditions, suggesting an oxygen-dependent quenching of the photoexcited cluster species. Further mechanistic analysis shows that the reaction proceeds via the intermediate formation of hydroxyl radicals which act as oxidant. Trapping experiments using ethanol as a hydroxyl radical scavenger show significantly decreased photocatalytic substrate oxidation in the presence of EtOH. Photocatalytic performance analyses using monochromatic visible light irradiation show that the quantum efficiency Φ for indigo photooxidation is strongly dependent on the irradiation wavelength, with higher quantum efficiencies being observed at shorter wavelengths (Φ395nm ca. 15%). Recycling tests show that the compound can be employed as homogeneous photooxidation catalyst multiple times without loss of catalytic activity. High turnover numbers (TON ca. 1200) and turnover frequencies up to TOF ca. 3.44 min−1 are observed, illustrating the practical applicability of the cluster species. PMID:24991508

  5. Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer.

    PubMed

    Staveness, Daryl; Bosque, Irene; Stephenson, Corey R J

    2016-10-18

    Harnessing visible light as the driving force for chemical transformations generally offers a more environmentally friendly alternative compared with classical synthetic methodology. The transition metal-based photocatalysts commonly employed in photoredox catalysis absorb efficiently in the visible spectrum, unlike most organic substrates, allowing for orthogonal excitation. The subsequent excited states are both more reducing and more oxidizing than the ground state catalyst and are competitive with some of the more powerful single-electron oxidants or reductants available to organic chemists yet are simply accessed via irradiation. The benefits of this strategy have proven particularly useful in radical chemistry, a field that traditionally employs rather toxic and hazardous reagents to generate the desired intermediates. In this Account, we discuss our efforts to leverage visible light photoredox catalysis in radical-based bond-forming and bond-cleaving events for which few, if any, environmentally benign alternatives exist. Mechanistic investigations have driven our contributions in this field, for both facilitating desired transformations and offering new, unexpected opportunities. In fact, our total synthesis of (+)-gliocladin C was only possible upon elucidating the propensity for various trialkylamine additives to elicit a dual behavior as both a reductive quencher and a H-atom donor. Importantly, while natural product synthesis was central to our initial motivations to explore these photochemical processes, we have since demonstrated applicability within other subfields of chemistry, and our evaluation of flow technologies demonstrates the potential to translate these results from the bench to pilot scale. Our forays into photoredox catalysis began with fundamental methodology, providing a tin-free reductive dehalogenation that exchanged the gamut of hazardous reagents previously employed for such a transformation for visible light-mediated, ambient

  6. Visible light emission and energy transfer processes in Sm-doped nitride films

    NASA Astrophysics Data System (ADS)

    Zanatta, A. R.

    2012-06-01

    Even though the great interest in studying the near-infrared light emission due to Er3+ ions for telecommunication purposes, efficient visible radiation can be achieved from many different rare-earth (RE) ions. In fact, visible and/or near-infrared light emission takes place in RE-doped wide bandgap semiconductors following either photon or electron excitation, suggesting their technological potential in devices such as light-emitting diodes (LED's) and flat-panel displays, for example. Taking into consideration these aspects, the present contribution reports on the investigation of AlN, BeN, GeN, and SiN thin films doped with samarium. The samples were prepared by sputtering and as a result of the deposition method and conditions they present an amorphous structure and Sm concentrations in the low 0.5 at. %. After deposition, the samples were submitted to thermal annealing treatments and investigated by different spectroscopic techniques. A detailed examination of the experimental data allowed to identify optical transitions due to Sm3+ and Sm2+ ions as well as differences in their mechanisms of photon excitation and recombination. Moreover, it is shown that the Sm-related spectral features and emission intensity are susceptible, respectively, to the atomic environment the Sm3+/Sm2+ ions experience and to the presence of non-radiative recombination centers.

  7. Antibacterial Properties of Visible-Light-Responsive Carbon-Containing Titanium Dioxide Photocatalytic Nanoparticles against Anthrax

    PubMed Central

    Sun, Der-Shan; Kau, Jyh-Hwa; Huang, Hsin-Hsien; Tseng, Yao-Hsuan; Wu, Wen-Shiang; Chang, Hsin-Hou

    2016-01-01

    The bactericidal activity of conventional titanium dioxide (TiO2) photocatalyst is effective only on irradiation by ultraviolet light, which restricts the applications of TiO2 for use in living environments. Recently, carbon-containing TiO2 nanoparticles [TiO2(C) NP] were found to be a visible-light-responsive photocatalyst (VLRP), which displayed significantly enhanced antibacterial properties under visible light illumination. However, whether TiO2(C) NPs exert antibacterial properties against Bacillus anthracis remains elusive. Here, we evaluated these VLRP NPs in the reduction of anthrax-induced pathogenesis. Bacteria-killing experiments indicated that a significantly higher proportion (40%–60%) of all tested Bacillus species, including B. subtilis, B. cereus, B. thuringiensis, and B. anthracis, were considerably eliminated by TiO2(C) NPs. Toxin inactivation analysis further suggested that the TiO2(C) NPs efficiently detoxify approximately 90% of tested anthrax lethal toxin, a major virulence factor of anthrax. Notably, macrophage clearance experiments further suggested that, even under suboptimal conditions without considerable bacterial killing, the TiO2(C) NP-mediated photocatalysis still exhibited antibacterial properties through the reduction of bacterial resistance against macrophage killing. Our results collectively suggested that TiO2(C) NP is a conceptually feasible anti-anthrax material, and the relevant technologies described herein may be useful in the development of new strategies against anthrax. PMID:28335365

  8. Visible light induced green transformation of primary amines to imines using a silicate supported anatase photocatalyst.

    PubMed

    Zavahir, Sifani; Zhu, Huaiyong

    2015-01-26

    Catalytic oxidation of amine to imine is of intense present interest since imines are important intermediates for the synthesis of fine chemicals, pharmaceuticals, and agricultural chemicals. However, considerable efforts have been made to develop efficient methods for the oxidation of secondary amines to imines, while little attention has until recently been given to the oxidation of primary amines, presumably owing to the high reactivity of generated imines of primary amines that are easily dehydrogenated to nitriles. Herein, we report the oxidative coupling of a series of primary benzylic amines into corresponding imines with dioxygen as the benign oxidant over composite catalysts of TiO2 (anatase)-silicate under visible light irradiation of λ > 460 nm. Visible light response of this system is believed to be as a result of high population of defects and contacts between silicate and anatase crystals in the composite and the strong interaction between benzylic amine and the catalyst. It is found that tuning the intensity and wavelength of the light irradiation and the reaction temperature can remarkably enhance the reaction activity. Water can also act as a green medium for the reaction with an excellent selectivity. This report contributes to the use of readily synthesized, environmentally benign, TiO2 based composite photocatalyst and solar energy to realize the transformation of primary amines to imine compounds.

  9. Visible light emission and energy transfer processes in Sm-doped nitride films

    SciTech Connect

    Zanatta, A. R.

    2012-06-15

    Even though the great interest in studying the near-infrared light emission due to Er{sup 3+} ions for telecommunication purposes, efficient visible radiation can be achieved from many different rare-earth (RE) ions. In fact, visible and/or near-infrared light emission takes place in RE-doped wide bandgap semiconductors following either photon or electron excitation, suggesting their technological potential in devices such as light-emitting diodes (LED's) and flat-panel displays, for example. Taking into consideration these aspects, the present contribution reports on the investigation of AlN, BeN, GeN, and SiN thin films doped with samarium. The samples were prepared by sputtering and as a result of the deposition method and conditions they present an amorphous structure and Sm concentrations in the low 0.5 at. %. After deposition, the samples were submitted to thermal annealing treatments and investigated by different spectroscopic techniques. A detailed examination of the experimental data allowed to identify optical transitions due to Sm{sup 3+} and Sm{sup 2+} ions as well as differences in their mechanisms of photon excitation and recombination. Moreover, it is shown that the Sm-related spectral features and emission intensity are susceptible, respectively, to the atomic environment the Sm{sup 3+}/Sm{sup 2+} ions experience and to the presence of non-radiative recombination centers.

  10. Ultrahigh-capacity non-periodic photon sieves operating in visible light

    NASA Astrophysics Data System (ADS)

    Huang, Kun; Liu, Hong; Garcia-Vidal, Francisco J.; Hong, Minghui; Luk'yanchuk, Boris; Teng, Jinghua; Qiu, Cheng-Wei

    2015-05-01

    Miniaturization of optical structures makes it possible to control light at the nanoscale, but on the other hand it imposes a challenge of accurately handling numerous unit elements in a miniaturized device with aperiodic and random arrangements. Here, we report both the new analytical model and experimental demonstration of the photon sieves with ultrahigh-capacity of subwavelength holes (over 34 thousands) arranged in two different structural orders of randomness and aperiodicity. The random photon sieve produces a uniform optical hologram with high diffraction efficiency and free from twin images that are usually seen in conventional holography, while the aperiodic photon sieve manifests sub-diffraction-limit focusing in air. A hybrid approach is developed to make the design of random and aperiodic photon sieve viable for high-accuracy control of the amplitude, phase and polarization of visible light. The polarization independence of the photon sieve will also greatly benefit its applications in optical imaging and spectroscopy.

  11. Ultrahigh-capacity non-periodic photon sieves operating in visible light.

    PubMed

    Huang, Kun; Liu, Hong; Garcia-Vidal, Francisco J; Hong, Minghui; Luk'yanchuk, Boris; Teng, Jinghua; Qiu, Cheng-Wei

    2015-05-05

    Miniaturization of optical structures makes it possible to control light at the nanoscale, but on the other hand it imposes a challenge of accurately handling numerous unit elements in a miniaturized device with aperiodic and random arrangements. Here, we report both the new analytical model and experimental demonstration of the photon sieves with ultrahigh-capacity of subwavelength holes (over 34 thousands) arranged in two different structural orders of randomness and aperiodicity. The random photon sieve produces a uniform optical hologram with high diffraction efficiency and free from twin images that are usually seen in conventional holography, while the aperiodic photon sieve manifests sub-diffraction-limit focusing in air. A hybrid approach is developed to make the design of random and aperiodic photon sieve viable for high-accuracy control of the amplitude, phase and polarization of visible light. The polarization independence of the photon sieve will also greatly benefit its applications in optical imaging and spectroscopy.

  12. Visible light photoreactivity from Carbon nitride bandgap states in Nb and Ti oxides

    NASA Astrophysics Data System (ADS)

    Lee, Hosik; Ohno, Takahisa; Icnsee Team

    2011-03-01

    Lamellar niobic and titanic solid acids (HNb3O8 , H2Ti4O9) are photocatalysts which can be used for environmental cleanup application and hydrogen production through water splitting. To increase their efficiency, bandgap adjustment which can induce visible light reactivity in addition to ultraviolet light has been one of hot issue in this kinds of photo-catalytic materials. Nitrogen-doping was one of the direction and its microscopic structures are disputed in this decade. In this work, we calculate the layered niobic and titanic solid acids structure and bandgap. Bandgap reduction by carbon nitride absorption are observed computationally. It is originated from localized nitrogen state which is consistent with previous experiments.

  13. Alternative Line Coding Scheme with Fixed Dimming for Visible Light Communication

    NASA Astrophysics Data System (ADS)

    Niaz, M. T.; Imdad, F.; Kim, H. S.

    2017-01-01

    An alternative line coding scheme called fixed-dimming on/off keying (FD-OOK) is proposed for visible-light communication (VLC). FD-OOK reduces the flickering caused by a VLC transmitter and can maintain a 50% dimming level. Simple encoder and decoder are proposed which generates codes where the number of bits representing one is same as the number of bits representing zero. By keeping the number of ones and zeros equal the change in the brightness of lighting may be minimized and kept constant at 50%, thereby reducing the flickering in VLC. The performance of FD-OOK is analysed with two parameters: the spectral efficiency and power requirement.

  14. A metal-free polymeric photocatalyst for hydrogen production from water under visible light.

    PubMed

    Wang, Xinchen; Maeda, Kazuhiko; Thomas, Arne; Takanabe, Kazuhiro; Xin, Gang; Carlsson, Johan M; Domen, Kazunari; Antonietti, Markus

    2009-01-01

    The production of hydrogen from water using a catalyst and solar energy is an ideal future energy source, independent of fossil reserves. For an economical use of water and solar energy, catalysts that are sufficiently efficient, stable, inexpensive and capable of harvesting light are required. Here, we show that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor. Contrary to other conducting polymer semiconductors, carbon nitride is chemically and thermally stable and does not rely on complicated device manufacturing. The results represent an important first step towards photosynthesis in general where artificial conjugated polymer semiconductors can be used as energy transducers.

  15. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light

    NASA Astrophysics Data System (ADS)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-01-01

    We report the preparation of TiO2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi2S3, to improve the photocathodic protection property of TiO2 for metals under visible light. Bi2S3/TiO2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi2S3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO2 and orthorhombic Bi2S3 and exhibited a high visible light response. The photocurrent density of Bi2S3/TiO2 was significantly higher than that of pure TiO2 under visible light. The sensitization of Bi2S3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO2. The Bi2S3/TiO2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  16. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light.

    PubMed

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-12-01

    We report the preparation of TiO2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi2S3, to improve the photocathodic protection property of TiO2 for metals under visible light. Bi2S3/TiO2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi2S3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO2 and orthorhombic Bi2S3 and exhibited a high visible light response. The photocurrent density of Bi2S3/TiO2 was significantly higher than that of pure TiO2 under visible light. The sensitization of Bi2S3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO2. The Bi2S3/TiO2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  17. Bacterial disinfection in a sunlight/visible-light-driven photocatalytic reactor by recyclable natural magnetic sphalerite.

    PubMed

    Peng, Xingxing; Ng, Tsz Wai; Huang, Guocheng; Wang, Wanjun; An, Taicheng; Wong, Po Keung

    2017-01-01

    A 5-L reactor was designed and used to enhance the sunlight/visible-light-driven (VLD) photocatalytic disinfection efficiency towards Gram-negative bacterium (Escherichia coli). Natural magnetic sphalerite (NMS) was used as the photocatalyst, which could be easily recycled by applying a magnetic field. Results showed that NMS with irradiation by the blue light emitting diode (LED) lamp could completely inactivate 1.5 × 10(5) cfu/mL of E. coli within 120 min in the first three runs. However, the inactivation efficiency of E. coli started to decrease in the 4th Run, while in the 5th run, the E. coli with the initial concentration of 5 logs was inactivated to 3.3 (blue-light) and 3.5 logs (sunlight), respectively. Moreover, the stability and deactivation mechanism of NMS during subsequent runs were also studied. The results showed that the decline of the photocatalytic activity was possibly attributed to adsorption of the bacterial decomposed compounds on the active sites. In addition, photocatalytic bactericidal mechanism of the NMS in the photocatalytic system was investigated by using multiple scavengers to remove the specific reactive species. Moreover, various Gram-positive bacteria including Staphylococcus aureus, Microbacterium barkeri, and Bacillus subtilis could also be efficiently inactivated in the photocatalytic system.

  18. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.

    PubMed

    Reiser, Oliver

    2016-09-20

    Visible-light photoredox catalysis offers exciting opportunities to achieve challenging carbon-carbon bond formations under mild and ecologically benign conditions. Desired features of photoredox catalysts are photostability, long excited-state lifetimes, strong absorption in the visible region, and high reduction or oxidation potentials to achieve electron transfer to substrates, thus generating radicals that can undergo synthetic organic transformations. These requirements are met in a convincing way by Ru(II)(phenanthroline)3- and Ir(III)(phenylpyridine)3-type complexes and, as a low-cost alternative, by organic dyes that offer a metal-free catalyst but suffer in general from lower photostability. Cu(I)(phenanthroline)2 complexes have been recognized for more than 30 years as photoresponsive compounds with highly negative Cu(I)* → Cu(II) oxidation potentials, but nevertheless, they have not been widely considered as suitable photoredox catalysts, mainly because their excited lifetimes are shorter by a factor of 5 to 10 compared with Ru(II) and Ir(III) complexes, their absorption in the visible region is weak, and their low Cu(II) → Cu(I) reduction potentials might impede the closure of a catalytic cycle for a given process. Contrasting again with Ru(II)L3 and Ir(III)L3 complexes, Cu(I)L2 assemblies undergo more rapid ligand exchange in solution, thus potentially reducing the concentration of the photoactive species. Focusing on atom transfer radical addition (ATRA) reactions and related processes, we highlight recent developments that show the utility of Cu(I)(phenanthroline)2 complexes as photoredox catalysts, demonstrating that despite their short excited-state lifetimes and weak absorption such complexes are efficient at low catalyst loadings. Moreover, some of the inherent disadvantages stated above can even be turned to advantages: (1) the low Cu(II) → Cu(I) reduction potential might efficiently promote reactions via a radical chain pathway, and (2

  19. Increasing visible-light absorption for photocatalysis with black BiOCl.

    PubMed

    Ye, Liqun; Deng, Kejian; Xu, Feng; Tian, Lihong; Peng, Tianyou; Zan, Ling

    2012-01-07

    Black BiOCl with oxygen vacancies was prepared by UV light irradiation with Ar blowing. The as-prepared black BiOCl sample showed 20 times higher visible light photocatalytic activity than white BiOCl for RhB degradation. The trapping experiment showed that the superoxide radical (O(2)(•-)) and holes (h(+)) were the main active species in aqueous solution under visible light irradiation.

  20. Isotope effects in photo dissociation of ozone with visible light

    NASA Astrophysics Data System (ADS)

    Früchtl, Marion; Janssen, Christof; Röckmann, Thomas

    2014-05-01

    Ozone (O3) plays a key role for many chemical oxidation processes in the Earth's atmosphere. In these chemical reactions, ozone can transfer oxygen to other trace gases. This is particularly interesting, since O3 has a very peculiar isotope composition. Following the mass dependent fractionation equation δ17O = 0.52 * δ18O, most fractionation processes depend directly on mass. However, O3 shows an offset to the mass dependent fractionation line. Processes, which show such anomalies, are termed mass independent fractionations (MIF). A very well studied example for a chemical reaction that leads to mass independent fractionation is the O3 formation reaction. To what degree O3 destruction reactions need to be considered in order to understand the isotope composition of atmospheric O3 is still not fully understood and an open question within scientific community. We set up new experiments to investigate the isotope effect resulting from photo dissociation of O3 in the Chappuis band (R1). Initial O3 is produced by an electric discharge. After photolysis O3 is collected in a cold trap at the triple point temperature of nitrogen (63K). O3 is then converted to O2 in order to measure the oxygen isotopes of O3 using isotope ratio mass spectrometry. To isolate O3 photo dissociation (R1) from O3 decomposition (R2) and secondary O3 formation (R3), we use varying amounts of carbon monoxide (CO) as O atom quencher (R4). In this way we suppress the O + O3 reaction (R3) and determine the isotope fractionation in R1 and R2 separately. We present first results on the isotope effects in O3 photo dissociation with visible light in the presence of different bath gases. Results are interpreted based on chemical kinetics modeling. (R1) O3 + hυ → O (3P) + O2 (R2) O3 + O (3P) → 2 O2 (R3) O + O2 + M → O3 + M (R4) O (3P) + CO + M → CO2 + M