Sample records for efficiently exploit reservoirs

  1. All-optical reservoir computer based on saturation of absorption.

    PubMed

    Dejonckheere, Antoine; Duport, François; Smerieri, Anteo; Fang, Li; Oudar, Jean-Louis; Haelterman, Marc; Massar, Serge

    2014-05-05

    Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

  2. Enhancement of seismic monitoring in hydrocarbon reservoirs

    NASA Astrophysics Data System (ADS)

    Caffagni, Enrico; Bokelmann, Götz

    2017-04-01

    Hydraulic Fracturing (HF) is widely considered as one of the most significant enablers of the successful exploitation of hydrocarbons in North America. Massive usage of HF is currently adopted to increase the permeability in shale and tight-sand deep reservoirs, despite the economical downturn. The exploitation success is less due to the subsurface geology, but in technology that improves exploration, production, and decision-making. This includes monitoring of the reservoir, which is vital. Indeed, the general mindset in the industry is to keep enhancing seismic monitoring. It allows understanding and tracking processes in hydrocarbon reservoirs, which serves two purposes, a) to optimize recovery, and b) to help minimize environmental impact. This raises the question of how monitoring, and especially seismic techniques could be more efficient. There is a pressing demand from seismic service industry to evolve quickly and to meet the oil-gas industry's changing needs. Nonetheless, the innovative monitoring techniques, to achieve the purpose, must enhance the characterization or the visualization of a superior-quality images of the reservoir. We discuss recent applications of seismic monitoring in hydrocarbon reservoirs, detailing potential enhancement and eventual limitations. The aim is to test the validity of these seismic monitoring techniques, qualitatively discuss their potential application to energy fields that are not only limited to HF. Outcomes from our investigation may benefit operators and regulators in case of future massive HF applications in Europe, as well. This work is part of the FracRisk consortium (www.fracrisk.eu), funded by the Horizon2020 research programme, whose aims is to help minimize the environmental footprint of the shale-gas exploration and exploitation.

  3. Michrohole Arrays Drilled with Advanced Abrasive Slurry Jet Technology to Efficiently Exploit Enhanced Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Kenneth; Finsterle, Stefan; Zhang, Yingqi

    2014-03-12

    This project had two major areas of research for Engineered/ Enhanced Geothermal System (EGS) development - 1) study the potential benefits from using microholes (i.e., bores with diameters less than 10.16 centimeters/ 4 inches) and 2) study FLASH ASJ to drill/ install those microbores between a well and a fracture system. This included the methods and benefits of drilling vertical microholes for exploring the EGS reservoir and for installing multiple (forming an array of) laterals/ directional microholes for creating the in-reservoir heat exchange flow paths. Significant benefit was found in utilizing small microbore sized connecting bores for EGS efficiency andmore » project life. FLASH ASJ was deemed too complicated to optimally work in such deep reservoirs at this time.« less

  4. Microbial Enhanced Heavy Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review

    PubMed Central

    Shibulal, Biji; Al-Bahry, Saif N.; Al-Wahaibi, Yahya M.; Elshafie, Abdulkader E.; Al-Bemani, Ali S.; Joshi, Sanket J.

    2014-01-01

    Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers. PMID:24550702

  5. Microbial enhanced heavy oil recovery by the aid of inhabitant spore-forming bacteria: an insight review.

    PubMed

    Shibulal, Biji; Al-Bahry, Saif N; Al-Wahaibi, Yahya M; Elshafie, Abdulkader E; Al-Bemani, Ali S; Joshi, Sanket J

    2014-01-01

    Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers.

  6. Poza Rica: 29 years of secondary recovery (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, H.G.

    1981-03-01

    One of the main objectives of the Mexican Goverment is the suitable exploitation of its hydrocarbon reservoirs. Therefore, the application of secondary recovery methods in those reservoirs sensitive to this method was increased. Petroleos Mexicanos has 27 systems of waterflooding in operation; 30% more than in 1976. The main objective is the continuous analysis of the optimum conditions, in order to optimize the efficiency of the waterflooding process, such as in the Tamabra formation in the Poza Rica field. A history is presented of the waterflooding process utilized in the Poza Rica field to increase the oil production from themore » Tamabra formation. Geology and reservoir characteristics, antecedents, producing well requirements, project development, future programs, and economic analyses are presented.« less

  7. Using pressure transient analysis to improve well performance and optimize field development in compartmentalized shelf margin deltaic reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badgett, K.L.; Crawford, G.E.; Mills, W.H.

    1996-12-31

    BP Exploration`s Gulf of Mexico group developed procedures to conduct effective well tests on conventional production wells and employed them during the development drilling phase of the Mississippi Canyon 109 (MC109) field. Bottomhole pressure data were recorded during the initial few weeks of production. Typically, a 48 hour pressure buildup survey (surface shut-in) was obtained near the end of data acquisition. Data from these tests were analyzed for completion efficiency, reservoir flow capacity, reservoir heterogeneities, and drainage area. Initially wells were gravel packed for sand control, until buildup interpretations indicated skins greater than 20. Frac packing technology was then employed,more » and an immediate improvement was observed with skins dropping into the teens. Over a period of time frac packs were optimized using the test derived skins as a metric. Analysis of pressure data also played an important role in identifying reservoir compartmentalization. The two major reservoir horizons at MC 109 are interpreted as shelf margin deltas. However, each of these has distinctly different compartmentalization issues. The continuous character of the G Sand made it easier to define the depositional system and investigate reservoir compartmentalization issues using a combination of well log, 3D seismic, static pressure trends, and fluid information. In the more distal deltaic reservoirs of the J Sand however, complications with seismic amplitudes and a less reliable tie between wireline and seismic data required the use of pressure transient analysis to efficiently exploit the reservoir.« less

  8. Reservoir engineering applications for development and exploitation of geothermal fields in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasquez, N.C.; Sarmiento, Z.F.

    1986-07-01

    After a geothermal well is completed, several tests and downhole measurements are conducted to help evaluate the subsurface fluid and reservoir properties intersected. From these tests, a conceptual model of the well can be developed by integrating data from the various parts of the field. This paper presents the completion techniques applied in geothermal wells, as well as the role of reservoir engineering science in delineating a field for development. Monitoring techniques and other reservoir engineering aspects of a field under exploitation are also discussed, with examples from the Philippines.

  9. Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing

    PubMed Central

    Kudithipudi, Dhireesha; Saleh, Qutaiba; Merkel, Cory; Thesing, James; Wysocki, Bryant

    2016-01-01

    Reservoir computing (RC) is gaining traction in several signal processing domains, owing to its non-linear stateful computation, spatiotemporal encoding, and reduced training complexity over recurrent neural networks (RNNs). Previous studies have shown the effectiveness of software-based RCs for a wide spectrum of applications. A parallel body of work indicates that realizing RNN architectures using custom integrated circuits and reconfigurable hardware platforms yields significant improvements in power and latency. In this research, we propose a neuromemristive RC architecture, with doubly twisted toroidal structure, that is validated for biosignal processing applications. We exploit the device mismatch to implement the random weight distributions within the reservoir and propose mixed-signal subthreshold circuits for energy efficiency. A comprehensive analysis is performed to compare the efficiency of the neuromemristive RC architecture in both digital(reconfigurable) and subthreshold mixed-signal realizations. Both Electroencephalogram (EEG) and Electromyogram (EMG) biosignal benchmarks are used for validating the RC designs. The proposed RC architecture demonstrated an accuracy of 90 and 84% for epileptic seizure detection and EMG prosthetic finger control, respectively. PMID:26869876

  10. Efficacy of using data from angler-caught Burbot to estimate population rate functions

    USGS Publications Warehouse

    Brauer, Tucker A.; Rhea, Darren T.; Walrath, John D.; Quist, Michael C.

    2018-01-01

    The effective management of a fish population depends on the collection of accurate demographic data from that population. Since demographic data are often expensive and difficult to obtain, developing cost‐effective and efficient collection methods is a high priority. This research evaluates the efficacy of using angler‐supplied data to monitor a nonnative population of Burbot Lota lota. Age and growth estimates were compared between Burbot collected by anglers and those collected in trammel nets from two Wyoming reservoirs. Collection methods produced different length‐frequency distributions, but no difference was observed in age‐frequency distributions. Mean back‐calculated lengths at age revealed that netted Burbot grew faster than angled Burbot in Fontenelle Reservoir. In contrast, angled Burbot grew slightly faster than netted Burbot in Flaming Gorge Reservoir. Von Bertalanffy growth models differed between collection methods, but differences in parameter estimates were minor. Estimates of total annual mortality (A) of Burbot in Fontenelle Reservoir were comparable between angled (A = 35.4%) and netted fish (33.9%); similar results were observed in Flaming Gorge Reservoir for angled (29.3%) and netted fish (30.5%). Beverton–Holt yield‐per‐recruit models were fit using data from both collection methods. Estimated yield differed by less than 15% between data sources and reservoir. Spawning potential ratios indicated that an exploitation rate of 20% would be required to induce recruitment overfishing in either reservoir, regardless of data source. Results of this study suggest that angler‐supplied data are useful for monitoring Burbot population dynamics in Wyoming and may be an option to efficiently monitor other fish populations in North America.

  11. Considering social and environmental concerns as reservoir operating objectives

    NASA Astrophysics Data System (ADS)

    Tilmant, A.; Georis, B.; Doulliez, P.

    2003-04-01

    Sustainability principles are now widely recognized as key criteria for water resource development schemes, such as hydroelectric and multipurpose reservoirs. Development decisions no longer rely solely on economic grounds, but also consider environmental and social concerns through the so-called environmental and social impact assessments. The objective of this paper is to show that environmental and social concerns can also be addressed in the management (operation) of existing or projected reservoir schemes. By either adequately exploiting the results of environmental and social impact assessments, or by carrying out survey of water users, experts and managers, efficient (Pareto optimal) reservoir operating rules can be derived using flexible mathematical programming techniques. By reformulating the problem as a multistage flexible constraint satisfaction problem, incommensurable and subjective operating objectives can contribute, along with classical economic objectives, to the determination of optimal release decisions. Employed in a simulation mode, the results can be used to assess the long-term impacts of various operating rules on the social well-being of affected populations as well as on the integrity of the environment. The methodology is illustrated with a reservoir reallocation problem in Chile.

  12. Global Assessment of Exploitable Surface Reservoir Storage under Climate Change

    NASA Astrophysics Data System (ADS)

    Liu, L.; Parkinson, S.; Gidden, M.; Byers, E.; Satoh, Y.; Riahi, K.

    2016-12-01

    Surface water reservoirs provide us with reliable water supply systems, hydropower generation, flood control, and recreation services. Reliable reservoirs can be robust measures for water security and can help smooth out challenging seasonal variability of river flows. Yet, reservoirs also cause flow fragmentation in rivers and can lead to flooding of upstream areas, thereby displacing existing land-uses and ecosystems. The anticipated population growth, land use and climate change in many regions globally suggest a critical need to assess the potential for appropriate reservoir capacity that can balance rising demands with long-term water security. In this research, we assessed exploitable reservoir potential under climate change and human development constraints by deriving storage-yield relationships for 235 river basins globally. The storage-yield relationships map the amount of storage capacity required to meet a given water demand based on a 30-year inflow sequence. Runoff data is simulated with an ensemble of Global Hydrological Models (GHMs) for each of five bias-corrected general circulation models (GCMs) under four climate change pathways. These data are used to define future 30-year inflows in each river basin for time period between 2010 and 2080. The calculated capacity is then combined with geographical information of environmental and human development exclusion zones to further limit the storage capacity expansion potential in each basin. We investigated the reliability of reservoir potentials across different climate change scenarios and Shared Socioeconomic Pathways (SSPs) to identify river basins where reservoir expansion will be particularly challenging. Preliminary results suggest large disparities in reservoir potential across basins: some basins have already approached exploitable reserves, while some others display abundant potential. Exclusions zones pose significant impact on the amount of actual exploitable storage and firm yields worldwide: 30% of reservoir potential would be unavailable because of land occupation by environmental and human development. Results from this study will help decision makers to understand the reliability of infrastructure systems particularly sensitive to future water availability.

  13. Assessing ecosystem effects of reservoir operations using food web-energy transfer and water quality models

    USGS Publications Warehouse

    Saito, L.; Johnson, B.M.; Bartholow, J.; Hanna, R.B.

    2001-01-01

    We investigated the effects on the reservoir food web of a new temperature control device (TCD) on the dam at Shasta Lake, California. We followed a linked modeling approach that used a specialized reservoir water quality model to forecast operation-induced changes in phytoplankton production. A food web–energy transfer model was also applied to propagate predicted changes in phytoplankton up through the food web to the predators and sport fishes of interest. The food web–energy transfer model employed a 10% trophic transfer efficiency through a food web that was mapped using carbon and nitrogen stable isotope analysis. Stable isotope analysis provided an efficient and comprehensive means of estimating the structure of the reservoir's food web with minimal sampling and background data. We used an optimization procedure to estimate the diet proportions of all food web components simultaneously from their isotopic signatures. Some consumers were estimated to be much more sensitive than others to perturbations to phytoplankton supply. The linked modeling approach demonstrated that interdisciplinary efforts enhance the value of information obtained from studies of managed ecosystems. The approach exploited the strengths of engineering and ecological modeling methods to address concerns that neither of the models could have addressed alone: (a) the water quality model could not have addressed quantitatively the possible impacts to fish, and (b) the food web model could not have examined how phytoplankton availability might change due to reservoir operations.

  14. Inverse Modeling of the Thermal Hydrodynamic and Chemical Processes During Exploitation of the Mutnovsky Geothermal Field (Kamchatka, Russia)

    NASA Astrophysics Data System (ADS)

    Kiryukhin, A. V.

    2012-12-01

    A TOUGH2-EOS1 3D rectangular numerical model of the Mutnovsky geothermal field (Kiryukhin, 1996) was re-calibrated using natural state and history exploitation data during the time period 1984-2006 years. Recalibration using iTOUGH2-EOS1+tracer inversion modeling capabilities, was useful to remove outliers from calibration data, identify sets of the estimated parameters of the model, and perform estimations. Chloride ion was used as a "tracer" in this modeling. Thermal hydrodynamic observational data which were used for model recalibration are as follows: 37 temperature and 1 pressure calibration points - for natural state, 13 production wells with monthly averaged enthalpies (650 values during the time period 1983-1987, 2000-2006 years) and 1 transient pressure monitoring wells (57 values during 2003-2006 years) - for exploitation history match. Chemical observational data includes transient mass chloride concentrations from 10 production wells and chloride hot spring sampling data (149 values during 1999-2006 years). The following features of Mutnovsky geothermal reservoir based on integrated inverse modeling analysis of natural state and exploitation data were estimated and better understood: 1. Reservoir permeability was found to be one order more comparable to model-1996, especially the lower part coinciding with intrusion contact zone (600-800 mD at -750 - -1250 masl); 2. Local meteoric inflow in the central part of the field accounting for 45 - 80 kg/s since year 2002; 3. Reinjection rates were estimated significantly lower, than officially reported as 100% of total fluid withdrawal; 4. Upflow fluid flows were estimated hotter (314oC) and the rates are larger (+50%), than assumed before; 5. Global double porosity parameters estimates are: fracture spacing - 5 - 10 m, void fraction N 10-3; 6. Main upflow zone chloride mass concentration estimate is 150 ppm. Conversion of the calibrated TOUGH2-EOS1+tracer model into electrical resistivity model using TOUGH2-EOS9 (L. Magnusdottir, 2012) may significantly improve efficiency of Electrical Resistivity Tomography (ETR) applications to detect spatial features of infiltration downflows and chloride enriched reinjected flows during reservoir exploitation.

  15. Reservoir depletion at The Geysers geothermal area, California, shown by four-dimensional seismic tomography

    USGS Publications Warehouse

    Gunasekera, R.C.; Foulger, G.R.; Julian, B.R.

    2003-01-01

    Intensive geothermal exploitation at The Geysers geothermal area, California, induces myriads of small-magnitude earthquakes that are monitored by a dense, permanent, local seismometer network. Using this network, tomographic inversions were performed for the three-dimensional Vp and Vp/Vs structure of the reservoir for April 1991, February 1993, December 1994, October 1996, and August 1998. The extensive low-Vp/Vs anomaly that occupies the reservoir grew in strength from a maximum of 9% to a maximum of 13.4% during the 7-year study period. This is attributed to depletion of pore liquid water in the reservoir and replacement with steam. This decreases Vp by increasing compressibility, and increases Vs because of reduction in pore pressure and the drying of argillaceous minerals, e.g., illite, which increase the shear modulus. These effects serendipitously combine to lower Vp/Vs, resulting in a strong overall effect that provides a convenient tool for monitoring reservoir depletion. Variations in the Vp and Vs fields indicate that water depletion is the dominant process in the central part of the exploited reservoir, and pressure reduction and mineral drying in the northwest and southeast parts of the reservoir. The rate at which the Vp/Vs anomaly grew in strength in the period 1991-1998 suggests most of the original anomaly was caused by exploitation. Continuous monitoring of Vp, Vs, and Vp/Vs is an effective geothermal reservoir depletion monitoring tool and can potentially provide information about depletion in parts of the reservoir that have not been drilled.

  16. Production of superheated steam from vapor-dominated geothermal reservoirs

    USGS Publications Warehouse

    Truesdell, A.H.; White, D.E.

    1973-01-01

    Vapor-dominated geothermal systems such as Larderello, Italy, The Geysers, California, and Matsukawa, Japan yield dry or superheated steam when exploited. Models for these systems are examined along with production data and the thermodynamic properties of water, steam and rock. It is concluded that these systems initially consist of a water and steam filled reservoir, a water-saturated cap rock, and a water or brine-saturated deep reservoir below a water table. Most liquid water in all parts of the system is relatively immobilized in small pores and crevices; steam dominates the large fractures and voids of the reservoir and is the continuous, pressure-controlling phase. With production, the pressure is lowered and the liquid water boils, causing massive transfer of heat from the rock and its eventual drying. Passage of steam through already dried rock produces superheating. After an initial vaporization of liquid water in the reservoir, the decrease in pressure produces increased boiling below the deep water table. With heavy exploitation, boiling extends deeper into hotter rock and the temperature of the steam increases. This model explains most features of the published production behavior of these systems and can be used to guide exploitation policies. ?? 1973.

  17. Interaction of cold-water aquifers with exploited reservoirs of the Cerro Prieto geothermal system

    USGS Publications Warehouse

    Truesdell, Alfred; Lippmann, Marcelo

    1990-01-01

    Cerro Prieto geothermal reservoirs tend to exhibit good hydraulic communication with adjacent cool groundwater aquifers. Under natural state conditions the hot fluids mix with the surrounding colder waters along the margins of the geothermal system, or discharge to shallow levels by flowing up fault L. In response to exploitation reservoir pressures decrease, leading to changes in the fluid flow pattern in the system and to groundwater influx. The various Cerro Prieto reservoirs have responded differently to production, showing localized near-well or generalized boiling, depending on their access to cool-water recharge. Significant cooling by dilution with groundwater has only been observed in wells located near the edges of the field. In general, entry of cool water at Cerro Prieto is beneficial because it tends to maintain reservoir pressures, restrict boiling, and lengthen the life and productivity of wells.

  18. Efficient 3He/4He separation in a nanoporous graphenylene membrane.

    PubMed

    Qu, Yuanyuan; Li, Feng; Zhao, Mingwen

    2017-08-16

    Helium-3 is a precious noble gas, which is essential in many advanced technologies such as cryogenics, isotope labeling and nuclear weapons. The current imbalance of 3 He demand and supply shortage leads to the search for an efficient membrane with high performance for 3 He separation. In this study, based on first-principles calculations, we demonstrated that highly efficient 3 He harvesting can be achieved in a nanoporous graphenylene membrane with industrially-acceptable selectivity and permeance. The quantum tunneling effect leads to 3 He harvesting with high efficiency via kinetic sieving. Both the quantum tunneling effect and zero-point energy (ZPE) determine the 3 He/ 4 He separation via thermally-driven equilibrium sieving, where the ZPE effect dominates efficient 3 He/ 4 He separation between two reservoirs. The quantum effects revealed in this work suggest that the nanoporous graphenylene membrane is promising for efficient 3 He harvesting that can be exploited for industrial applications.

  19. Past, present and future improvements of the efficiency of the local seismic network of the geothermal reservoir of Casaglia, Ferrara (North Italy)

    NASA Astrophysics Data System (ADS)

    Abu Zeid, Nasser; Dall'olio, Lorella; Bignardi, Samuel; Santarato, Giovanni

    2017-04-01

    The microseismic network of Ferrara was established, in the beginning of 1990 and started its monitoring activity few months before the start of reservoir exploitation, for residential and industrial heating purposes, of the Casaglia geothermal site characterised by fluids of 100 °C: February 1990. The purpose was to monitor the natural seismicity so as to be able to discriminate it from possible induced ones due to exploitation activities which consists of a closed loop system composed of three boreholes: one for re-injection "Casaglia001" and two for pumping hot fluids. The microseismic network started, and still today, its monitoring activities with five vertical 2 Hz and one 3D seismometers model Mark products L4A/C distributed at reciprocal distances of about 5 to 7 km around the reservoir covering an area of 100 km^2. Since its beginning the monitoring activities proceeded almost continuously. However, due to technological limitations of the network HW, although sufficient to capture small magnitude earthquakes (near zero), the exponential increase of anthropogenic and electromagnetic noise degraded the monitoring capability of the network especially for small ones. To this end and as of 2007, the network control passed to the University of Ferrara, Department of Physics and Earth Sciences, the network HD for digitalisation and continuous data transmission was replaced with GURALP equipment's.. Since its establishment, few earthquakes occurred in the geothermal area with Ml < 1.5 and hypocentre depth > 5 km. However, following the Emilia sequence of 2012, and as an example we present and discuss the local earthquake (Ml 2.5) occurred in Casaglia (Ferrara, Italy) on September 3, 2015, in the vicinity of the borehole Casaglia1 used for fluid re-injection. In this case, both INGV national network and OGS NE-Italy regional networks provided similar information, with hypocenter at about 5-6 km North of the reservoir edge and about 16 km of depth. However, the same event, relocated by using also the microseismic data, felt within the reservoir area at 4-5 km depth, i.e. close to the geothermal reservoir. Still problems related to anthropogenic noise still present hence future improvements shall include the deepening of the existing boreholes to at least 100 m and the replacement of the seismometers with at least 1 Hz modern ones. Moreover, at least two or three stations shall be installed to fully be in line with recent Italian Guidelines that discipline the monitoring of industrial activities that exploits the subsurface.

  20. Geothermal prospection in the Greater Geneva Basin (Switzerland and France). Impact of diagenesis on reservoir properties of the Upper Jurassic carbonate sediments

    NASA Astrophysics Data System (ADS)

    Makhloufi, Yasin; Rusillon, Elme; Brentini, Maud; Clerc, Nicolas; Meyer, Michel; Samankassou, Elias

    2017-04-01

    Diagenesis of carbonate rocks is known to affect the petrophysical properties (porosity, permeability) of the host rock. Assessing the diagenetic history of the rock is thus essential when evaluating any reservoir exploitation project. The Canton of Geneva (Switzerland) is currently exploring the opportunities for geothermal energy exploitation in the Great Geneva Basin (GGB) sub-surface. In this context, a structural analysis of the basin (Clerc et al., 2016) associated with reservoir appraisal (Brentini et al., 2017) and rock-typing of reservoir bodies of potential interest were conducted (Rusillon et al., 2017). Other geothermal exploitation projects elsewhere (e.g. Bavaria, south Germany, Paris Basin, France) showed that dolomitized carbonate rocks have good reservoir properties and are suitable for geothermal energy production. The objectives of this work are to (1) describe and characterize the dolomitized bodies in the GGB and especially their diagenetic history and (2) quantify the reservoir properties of those bodies (porosity, permeability). Currently, our study focuses on the Upper Jurassic sedimentary bodies of the GGB. Field and well data show that the dolomitization is not ubiquitous in the GGB. Results from the petrographical analyses of the Kimmeridgian cores (Humilly-2) and of field analogues (Jura, Saleve and Vuache mountains) display complex diagenetic histories, dependent of the study sites. The paragenesis exhibits several stages of interparticular calcite cementation as well as different stages of dolomitization and/or dedolomitization. Those processes seem to follow constrained path of fluid migrations through burial, faulting or exhumation during the basin's history. These complex diagenetic histories affected the petrophysical and microstructural properties via porogenesis (conservation of initial porosity, moldic porosity) and/or poronecrosis events. The best reservoir properties appear to be recorded in patch reef and peri-reefal depositional environments in association with porous dolomitized intervals (Rusilloon et al., 2017). The work presented here will help to constrain and quantify reservoir heterogeneities in a complex reservoir and to provide insights into porosity and permeability distribution that will ultimately help in reservoir modeling, a crucial step for further possible exploitation. Brentini et al. 2017: Geothermal prospection in the Greater Geneva Basin: integration of geological data in the new Information System. Abstract, EGU General Assembly 2017, Vienna, Austria. Clerc et al. 2016: Structural Modeling of the Geneva Basin for Geothermal Ressource Assessment. Abstract, 14th Swiss Geoscience Meeting, Geneva, Switzerland. Rusillon et al., 2017: Geothermal prospection in the Greater Geneva Basin (Switzerland and France): structural and reservoir quality assessment. Abstract, EGU General Assembly 2017, Vienna, Austria.

  1. Study on the integration of layered water injection technology and subdivision adjustment

    NASA Astrophysics Data System (ADS)

    Zhang, Yancui

    2018-06-01

    With oil many infillings, thin and poor reservoir exploitation changes gradually to low permeability, thin and poor reservoir development characteristics of multiple layers thickness, low permeability, in the actual development process, the General Department of oil layers of encryption perforation long thin and poor mining, interlayer contradiction more prominent, by conventional layered water injection that can alleviate the contradiction between layers to a certain extent, by the injection interval and other factors can not fundamentally solve the problem, leading to the potential well area key strata or layers is difficult to determine, the layering test and slicing technology is difficult to adapt to the need of tap water control block. This paper through numerical simulation using the conceptual model and the actual block, it has a great influence on the low permeability reservoir of different stratified water permeability combination of permeability technology and application limits, profit and loss balance principle, low oil prices on the lower series of subdivision technical and economic limit, so the reservoir subdivision reorganization, narrow wells mining, reduce the interference between layers, from the maximum fundamental improvement of layered water injection efficiency. At the same time, in order to meet the needs of reservoir subdivision adjustment, subdividing distance with water, a small interlayer wells subdivision technology for further research in the pickup, solved using two ordinary bridge eccentric water regulator with injection of two layers, by throwing exercise distance limit card from the larger problem, the water distribution card size from 7.0m to 1.0m, and the testing efficiency is improved, and provide technical support for further subdivision water injection wells.

  2. Geothermal reservoir simulation

    NASA Technical Reports Server (NTRS)

    Mercer, J. W., Jr.; Faust, C.; Pinder, G. F.

    1974-01-01

    The prediction of long-term geothermal reservoir performance and the environmental impact of exploiting this resource are two important problems associated with the utilization of geothermal energy for power production. Our research effort addresses these problems through numerical simulation. Computer codes based on the solution of partial-differential equations using finite-element techniques are being prepared to simulate multiphase energy transport, energy transport in fractured porous reservoirs, well bore phenomena, and subsidence.

  3. Industrially induced changes in Earth structure at the geysers geothermal area, California

    USGS Publications Warehouse

    Foulger, G.R.; Grant, C.C.; Ross, A.; Julian, B.R.

    1997-01-01

    Industrial exploitation is causing clearly-measurable changes in Earth structure at The Geysers geothermal area, California. Production at The Geysers peaked in the late 1980s at ???3.5 ?? 103 kg s-1 of steam and 1800 MW of electricity. It subsequently decreased by about 10% per year [Barker et al., 1992] because of declining reservoir pressure. The steam reservoir coincides with a strong negative anomaly (???0.16, ???9%) in the compressional-to-shear seismic wave speed ratio vP/vS, consistent with the expected effects of low-pressure vapor-phase pore fluid [Julian et al., 1996]. Between 1991 and 1994 this anomaly increased in amplitude by up to about 0.07 (???4%). This is consistent with the expected effects of continued pressure reduction and conversion of pore water to steam as a result of exploitation. These unique results show that vP/vS tomography can easily detect saturation changes caused by exploitation of reservoirs, and is a potentially valuable technique for monitoring environmental change. They also provide geophysical observational evidence that geothermal energy is not a renewable energy source.

  4. Industrially induced changes in Earth structure at the Geysers Geothermal Area, California

    NASA Astrophysics Data System (ADS)

    Foulger, G. R.; Grant, C. C.; Ross, A.; Julian, B. R.

    Industrial exploitation is causing clearly-measurable changes in Earth structure at The Geysers geothermal area, California. Production at The Geysers peaked in the late 1980s at ˜3.5 × 10³ kg s-1 of steam and 1800 MW of electricity. It subsequently decreased by about 10% per year [Barker et al., 1992] because of declining reservoir pressure. The steam reservoir coincides with a strong negative anomaly (˜0.16, ˜9%) in the compressional-to-shear seismic wave speed ratio VP/ VS, consistent with the expected effects of low-pressure vapor-phase pore fluid [Julian et al., 1996]. Between 1991 and 1994 this anomaly increased in amplitude by up to about 0.07 (˜4%). This is consistent with the expected effects of continued pressure reduction and conversion of pore water to steam as a result of exploitation. These unique results show that VP/VS tomography can easily detect saturation changes caused by exploitation of reservoirs, and is a potentially valuable technique for monitoring environmental change. They also provide geophysical observational evidence that geothermal energy is not a renewable energy source.

  5. Limnological study with reference to fish culture of Bothali (Mendha) reservoir, district - Gadchiroli (India).

    PubMed

    Tijare, Rajendra V

    2012-04-01

    Limnological study with reference to fish culture was carried out at Bothali (Mendha) reservoir, district Gadchiroli, India. Water samples from different sampling locations were collected and processed for physico-chemical analysis. The physico-chemical analysis revealed that the reservoir is favourable for fish culture as the phosphate content in water is moderate in amount. This reservoir can produce a good yield of fishes. Though the reservoir is presently exploited and is under pisciculture, a better treatment of the reservoir such as prevention of entry of organic matter, reduction of phosphate ion concentration to certain extent is necessary to obtain a maximum fish yield.

  6. Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma, Budget Period I, Class Revisit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelkar, Mohan

    2002-04-02

    This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. A geological history that explains the presence of mobile water and oil in the reservoir was proposed. The combination of matrix and fractures in the reservoir explains the reservoir?s flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.

  7. Nimrod Lake, An Archeological Survey of a Reservoir Drawdown.

    DTIC Science & Technology

    1978-01-01

    nomadic bands hunted late Pleistocene megafauna (e.g., mammoths, mastodons, bison and smaller game) and also gathered wild plant foods. The most...primary exploitation of Pleistocene megafauna , in particular the bison, to subsistence strategies exercising more variation in faunal and floral...a- the upper end of the reservoir where the reservoir is confined to the river channel and the gradient is much steeper, other factors in addition to

  8. Suggested Best Practice for seismic monitoring and characterization of non-conventional reservoirs

    NASA Astrophysics Data System (ADS)

    Malin, P. E.; Bohnhoff, M.; terHeege, J. H.; Deflandre, J. P.; Sicking, C.

    2017-12-01

    High rates of induced seismicity and gas leakage in non-conventional production have become a growing issue of public concern. It has resulted in calls for independent monitoring before, during and after reservoir production. To date no uniform practice for it exists and few reservoirs are locally monitored at all. Nonetheless, local seismic monitoring is a pre-requisite for detecting small earthquakes, increases of which can foreshadow damaging ones and indicate gas leaks. Appropriately designed networks, including seismic reflection studies, can be used to collect these and Seismic Emission Tomography (SET) data, the latter significantly helping reservoir characterization and exploitation. We suggest a Step-by-Step procedure for implementing such networks. We describe various field kits, installations, and workflows, all aimed at avoiding damaging seismicity, as indicators of well stability, and improving reservoir exploitation. In Step 1, a single downhole seismograph is recommended for establishing baseline seismicity before development. Subsequent Steps are used to decide cost-effective ways of monitoring treatments, production, and abandonment. We include suggestions for monitoring of disposal and underground storage. We also describe how repeated SET observations improve reservoir management as well as regulatory monitoring. Moreover, SET acquisition can be included at incremental cost in active surveys or temporary passive deployments.

  9. Trolling may intensify exploitation in crappie fisheries

    USGS Publications Warehouse

    Meals, K. O.; Dunn, A. W.; Miranda, Leandro E.

    2012-01-01

    In some parts of the USA, anglers targeting crappies Pomoxis spp. are transitioning from mostly stationary angling with a single pole around submerged structures to using multiple poles while drifting with the wind or under power. This shift in fishing methods could result in a change in catch efficiency, possibly increasing exploitation rates to levels that would be of concern to managers. We studied the catch statistics of anglers fishing while trolling with multiple poles (trollers) and those fishing with single poles (polers) in Mississippi reservoirs. Specifically, we tested whether (1) various catch statistics differed between trollers and polers, (2) catch rates of trollers were related to the number of poles fished, and (3) trollers could raise exploitation rates to potentially unsustainable levels. Results showed that participation in the crappie fisheries was about equally split between polers and trollers. In spring, 90% of crappie anglers were polers; in summer, 85% of crappie anglers were trollers. The size of harvested crappies was similar for the two angler groups, but the catch per hour was almost three times higher for trollers than for polers. Catch rates by trollers were directly correlated to the number of poles fished, although the relationship flattened as the number of poles increased. The average harvest rate for one troller fishing with three poles was similar to the harvest rate obtained by one poler. Simulations predicted that at the existing mix of about 50% polers and 50% trollers and with no restrictions on the number of poles used by trollers, exploitation of crappies is about 1.3 times higher than that in a polers-only fishery; under a scenario in which 100% of crappie anglers were trollers, exploitation was forecasted to increase to about 1.7 times the polers-only rate. The efficiency of trolling for crappies should be of concern to fishery managers because crappie fisheries are mostly consumptive and may increase exploitation rates to unsustainable levels.

  10. Assessment of geothermal resources of the United States, 1975

    USGS Publications Warehouse

    White, Donald Edward; Williams, David L.

    1975-01-01

    This assessment of geothermal resources of the United States consists of two major parts: (1) estimates of total heat in the ground to a depth of 10 km and (2) estimates of the part of this total heat that is recoverable with present technology, regardless of price. No attempt has been made to consider most aspects of the legal, environmental, and institutional limitations in exploiting these resouces. In general, the average heat content of rocks is considerably higher in the Western United States than in the East. This also helps to explain why the most favorable hydrothermal convection systems and the hot young igneous systems occur in the West. Resources of the most attractive identified convection systems (excluding national parks) with predicted reservoir temperatures above 150 deg C have an estimated electrical production potential of about 8,000 megawatt century, or about 26,000 megawatt for 30 years. Assumptions in this conversion are: (1) one-half of the volume of the heat reservoirs is porous and permeable, (2) one-half of the heat of the porous, permeable parts is recoverable in fluids at the wellheads, and (3) the conversion efficiency of heat in wellhead fluids to electricity ranges from about 8 to 20 percent , depending on temperature and kind of fluid (hot water or steam). The estimated overall efficiency of conversion of heat in the ground to electrical energy generally ranges from less than 2 to 5 percent, depending on type of system and reservoir temperature. (See also W77-07477) (Woodard-USGS)

  11. Applicability of WRF-Lake System in Studying Reservoir-Induced Impacts on Local Climate: Case Study of Two Reservoirs with Contrasting Characteristics

    NASA Astrophysics Data System (ADS)

    Wang, F.; Zhu, D.; Ni, G.; Sun, T.

    2017-12-01

    Large reservoirs play a key role in regional hydrological cycles as well as in modulating the local climate. The emerging large reservoirs in concomitant with rapid hydropower exploitation in southwestern China warrant better understanding of their impacts on local and regional climates. One of the crucial pathways through which reservoirs impact the climate is lake-atmospheric interaction. Although such interactions have been widely studied with numeric weather prediction (NWP) models, an outstanding limitation across various NWPs resides on the poor thermodynamic representation of lakes. The recent version of Weather Research and Forecasting (WRF) system has been equipped with a one-dimensional lake model to better represent the thermodynamics of large water body and has been shown to enhance the its predication skill in the lake-atmospheric interaction. In this study, we further explore the applicability of the WRF-Lake system in two reservoirs with contrasting characteristics: Miyun Reservoir with an average depth of 30 meters in North China Plain, and Nuozhadu Reservoir with an average depth of 200 meters in the Tibetan Plateau Region. Driven by the high spatiotemporal resolution meteorological forcing data, the WRF-Lake system is used to simulate the water temperature and surface energy budgets of the two reservoirs after the evaluation against temperature observations. The simulated results show the WRF-Lake model can well predict the vertical profile of water temperature in Miyun Reservoir, but underestimates deep water temperature and overestimates surface temperature in the deeper Nuozhadu Reservoir. In addition, sensitivity analysis indicates the poor performance of the WRF-Lake system in Nuozhadu Reservoir could be attributed to the weak vertical mixing in the model, which can be improved by tuning the eddy diffusion coefficient ke . Keywords: reservoir-induced climatic impact; lake-atmospheric interaction; WRF-Lake system; hydropower exploitation

  12. Trap efficiency of reservoirs

    USGS Publications Warehouse

    Brune, Gunnar M.

    1953-01-01

    Forty-four records of reservoir trap efficiency and the factors affecting trap efficiency are analyzed. The capacity-inflow (C/I) ratio is found to offer a much closer correlation with trap efficiency than the capacity-watershed (C/W) ratio heretofore widely used. It appears likely from the cases studied that accurate timing of venting or sluicing operations to intercept gravity underflows can treble or quadruple the amount of sediment discharged from a reservoir. Desilting basins, because of their shape and method of operation, may have trap efficiencies above 90 pct even with very low C/I ratios.Semi-dry reservoirs with high C/I ratios, like John Martin Reservoir, may have trap efficiencies as low as 60 pct. Truly “dry” reservoirs, such as those in the Miami Conservancy District, probably have trap efficiencies in the 10 to 40 pct range, depending upon C/I ratio

  13. The Research on Borehole Stability in Depleted Reservoir and Caprock: Using the Geophysics Logging Data

    PubMed Central

    Deng, Jingen; Luo, Yong; Guo, Shisheng; Zhang, Haishan; Tan, Qiang; Zhao, Kai; Hu, Lianbo

    2013-01-01

    Long-term oil and gas exploitation in reservoir will lead to pore pressure depletion. The pore pressure depletion will result in changes of horizontal in-situ stresses both in reservoirs and caprock formations. Using the geophysics logging data, the magnitude and orientation changes of horizontal stresses in caprock and reservoir are studied. Furthermore, the borehole stability can be affected by in-situ stresses changes. To address this issue, the dehydration from caprock to reservoir and roof effect of caprock are performed. Based on that, the influence scope and magnitude of horizontal stresses reduction in caprock above the depleted reservoirs are estimated. The effects of development on borehole stability in both reservoir and caprock are studied step by step with the above geomechanical model. PMID:24228021

  14. Biodesalination: A Case Study for Applications of Photosynthetic Bacteria in Water Treatment1[C

    PubMed Central

    Amezaga, Jaime M.; Amtmann, Anna; Biggs, Catherine A.; Bond, Tom; Gandy, Catherine J.; Honsbein, Annegret; Karunakaran, Esther; Lawton, Linda; Madsen, Mary Ann; Minas, Konstantinos; Templeton, Michael R.

    2014-01-01

    Shortage of freshwater is a serious problem in many regions worldwide, and is expected to become even more urgent over the next decades as a result of increased demand for food production and adverse effects of climate change. Vast water resources in the oceans can only be tapped into if sustainable, energy-efficient technologies for desalination are developed. Energization of desalination by sunlight through photosynthetic organisms offers a potential opportunity to exploit biological processes for this purpose. Cyanobacterial cultures in particular can generate a large biomass in brackish and seawater, thereby forming a low-salt reservoir within the saline water. The latter could be used as an ion exchanger through manipulation of transport proteins in the cell membrane. In this article, we use the example of biodesalination as a vehicle to review the availability of tools and methods for the exploitation of cyanobacteria in water biotechnology. Issues discussed relate to strain selection, environmental factors, genetic manipulation, ion transport, cell-water separation, process design, safety, and public acceptance. PMID:24610748

  15. 3D characterization of the fracture network in a deformed chalk reservoir analogue: The Lagerdorf case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koestler, A.G.; Reksten, K.

    1994-12-31

    Quantitative descriptions of the 3D fracture networks in terms of connectivity, fracture types, fracture surface roughness and flow characteristics are necessary for reservoir evaluation, management, and enhanced oil recovery programs of fractured reservoirs. For a period of 2 years, a research project focused on an analogue to fractured chalk reservoirs excellently exposed near Laegerdorf, NW Germany. Upper Cretaceous chalk has been uplifted and deformed by an underlying salt diapir, and is now exploited for the cement industry. In the production wall of a quarry, the fracture network of the deformed chalk was characterized and mapped at different scales. The wallmore » was scraped off as chalk exploitation proceeded, continuously revealing new sections through the faulted and fractured chalk body. A 230 m long part of the 35m high production wall was investigated during its recess of 25m. The large amount of fracture data were analyzed with respect to parameters such as fracture density distribution, orientation- and length distribution, and in terms of the representativity of data sets collected from restricted rock volumes. This 3D description and analysis of a fracture network revealed quantitative generic parameters of importance for modeling chalk reservoirs with less data and lower data quality.« less

  16. What's shaking?: Understanding creep and induced seismicity in depleting sandstone reservoirs

    NASA Astrophysics Data System (ADS)

    Hangx, Suzanne; Spiers, Christopher

    2015-04-01

    Subsurface exploitation of the Earth's natural resources, such as oil, gas and groundwater, removes the natural system from its chemical and physical equilibrium. With global energy and water demand increasing rapidly, while availability diminishes, densely populated areas are becoming increasingly targeted for exploitation. Indeed, the impact of our geo-resources needs on the environment has already become noticeable. Deep groundwater pumping has led to significant surface subsidence in urban areas such as Venice and Bangkok. Hydrocarbons production has also led to subsidence and seismicity in offshore (e.g. Ekofisk, Norway) and onshore hydrocarbon fields (e.g. Groningen, the Netherlands). Fluid extraction inevitably leads to (poro)elastic compaction of reservoirs, hence subsidence and occasional fault reactivation. However, such effects often exceed what is expected from purely elastic reservoir behaviour and may continue long after exploitation has ceased or show other time-lag effects in relation to changes in production rates. One of the main hypotheses advanced to explain this is time-dependent compaction, or 'creep deformation', of such reservoirs, driven by the reduction in pore fluid pressure compared with the vertical rock overburden pressure. The operative deformation mechanisms may include grain-scale brittle fracturing and thermally-activated mass transfer processes (e.g. pressure solution). Unfortunately, these mechanisms are poorly known and poorly quantified. As a first step to better describe creep in sedimentary granular aggregates, we have derived a universal, simple model for intergranular pressure solution (IPS) within an ordered pack of spherical grains. This universal model is able to predict the conditions under which each of the respective pressure solution serial processes, i.e. diffusion, precipitation or dissolution, is dominant. In essence, this creates a generic deformation mechanism map for IPS in any granular material. We have used our model to predict the amount and rate of compaction for depleting reservoirs, and compared our predictions to known subsidence rates for reservoirs around the world. This gives a first order-comparison to verify whether or not IPS is an important mechanism in controlling reservoir creep.

  17. Numerical simulation of gas hydrate exploitation from subsea reservoirs in the Black Sea

    NASA Astrophysics Data System (ADS)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2017-04-01

    Natural gas (methane) is the most environmental friendly source of fossil energy. When coal is replace by natural gas in power production the emission of carbon dioxide is reduced by 50 %. The vast amount of methane assumed in gas hydrate deposits can help to overcome a shortage of fossil energy resources in the future. To increase their potential for energy applications new technological approaches are being discussed and developed worldwide. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e. g. depressurization and/or carbon dioxide injection) is numerically studied in the frame of the German research project »SUGAR - Submarine Gas Hydrate Reservoirs«. In order to simulate the exploitation of hydrate-bearing sediments in the subsea, an in-house simulation model HyReS which is implemented in the general-purpose software COMSOL Multiphysics is used. This tool turned out to be especially suited for the flexible implementation of non-standard correlations concerning heat transfer, fluid flow, hydrate kinetics, and other relevant model data. Partially based on the simulation results, the development of a technical concept and its evaluation are the subject of ongoing investigations, whereby geological and ecological criteria are to be considered. The results illustrate the processes and effects occurring during the gas production from a subsea gas hydrate deposit by depressurization. The simulation results from a case study for a deposit located in the Black Sea reveal that the production of natural gas by simple depressurization is possible but with quite low rates. It can be shown that the hydrate decomposition and thus the gas production strongly depend on the geophysical properties of the reservoir, the mass and heat transport within the reservoir, and the model settings. In particular, the permeability and the available heat, which is required to decompose the hydrate, play an important role. The work is focused on the thermodynamic principles and technological approaches for the exploitation.

  18. Genesis analysis of high-gamma ray sandstone reservoir and its log evaluation techniques: a case study from the Junggar basin, northwest China.

    PubMed

    Wang, Liang; Mao, Zhiqiang; Sun, Zhongchun; Luo, Xingping; Song, Yong; Liu, Zhen

    2013-01-01

    In the Junggar basin, northwest China, many high gamma-ray (GR) sandstone reservoirs are found and routinely interpreted as mudstone non-reservoirs, with negative implications for the exploration and exploitation of oil and gas. Then, the high GR sandstone reservoirs' recognition principles, genesis, and log evaluation techniques are systematically studied. Studies show that the sandstone reservoirs with apparent shale content greater than 50% and GR value higher than 110API can be regarded as high GR sandstone reservoir. The high GR sandstone reservoir is mainly and directly caused by abnormally high uranium enrichment, but not the tuff, feldspar or clay mineral. Affected by formation's high water sensitivity and poor borehole quality, the conventional logs can not recognize reservoir and evaluate the physical property of reservoirs. Then, the nuclear magnetic resonance (NMR) logs is proposed and proved to be useful in reservoir recognition and physical property evaluation.

  19. Genesis Analysis of High-Gamma Ray Sandstone Reservoir and Its Log Evaluation Techniques: A Case Study from the Junggar Basin, Northwest China

    PubMed Central

    Wang, Liang; Mao, Zhiqiang; Sun, Zhongchun; Luo, Xingping; Song, Yong; Liu, Zhen

    2013-01-01

    In the Junggar basin, northwest China, many high gamma-ray (GR) sandstone reservoirs are found and routinely interpreted as mudstone non-reservoirs, with negative implications for the exploration and exploitation of oil and gas. Then, the high GR sandstone reservoirs' recognition principles, genesis, and log evaluation techniques are systematically studied. Studies show that the sandstone reservoirs with apparent shale content greater than 50% and GR value higher than 110API can be regarded as high GR sandstone reservoir. The high GR sandstone reservoir is mainly and directly caused by abnormally high uranium enrichment, but not the tuff, feldspar or clay mineral. Affected by formation's high water sensitivity and poor borehole quality, the conventional logs can not recognize reservoir and evaluate the physical property of reservoirs. Then, the nuclear magnetic resonance (NMR) logs is proposed and proved to be useful in reservoir recognition and physical property evaluation. PMID:24078797

  20. Progress report on LBL's numerical modeling studies on Cerro Prieto

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halfman-Dooley, S.E.; Lippman, M.J.; Bodvarsson, G.S.

    1989-04-01

    An exploitation model of the Cerro Prieto geothermal system is needed to assess the energy capacity of the field, estimate its productive lifetime and develop an optimal reservoir management plan. The model must consider the natural state (i.e., pre-exploitation) conditions of the system and be able to predict changes in the reservoir thermodynamic conditions (and fluid chemistry) in response to fluid production (and injection). This paper discusses the results of a three-dimensional numerical simulation of the natural state conditions of the Cerro Prieto field and compares computed and observed pressure and temperature/enthalpy changes for the 1973--1987 production period. 16 refs.,more » 24 figs., 2 tabs.« less

  1. Environmental response nanosilica for reducing the pressure of water injection in ultra-low permeability reservoirs

    NASA Astrophysics Data System (ADS)

    Liu, Peisong; Niu, Liyong; Li, Xiaohong; Zhang, Zhijun

    2017-12-01

    The super-hydrophobic silica nanoparticles are applied to alter the wettability of rock surface from water-wet to oil-wet. The aim of this is to reduce injection pressure so as to enhance water injection efficiency in low permeability reservoirs. Therefore, a new type of environmentally responsive nanosilica (denote as ERS) is modified with organic compound containing hydrophobic groups and "pinning" groups by covalent bond and then covered with a layer of hydrophilic organic compound by chemical adsorption to achieve excellent water dispersibility. Resultant ERS is homogeneously dispersed in water with a size of about 4-8 nm like a micro-emulsion system and can be easily injected into the macro or nano channels of ultra-low permeability reservoirs. The hydrophobic nanosilica core can be released from the aqueous delivery system owing to its strong dependence on the environmental variation from normal condition to injection wells (such as pH and salinity). Then the exposed silica nanoparticles form a thin layer on the surface of narrow pore throat, leading to the wettability from water-wet to oil-wet. More importantly, the two rock cores with different permeability were surface treated with ERS dispersion with a concentration of 2 g/L, exhibit great reduce of water injection pressure by 57.4 and 39.6%, respectively, which shows great potential for exploitation of crude oil from ultra-low permeability reservoirs during water flooding. [Figure not available: see fulltext.

  2. Geopressured geothermal bibliography. Volume I. Citation extracts. Second edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepehrnoori, K.; Carter, F.; Schneider, R.

    This annoted bibliography contains 1131 citations. It represents reports, papers, and articles appearing over the past eighteen years covering topics from the scientific and technical aspects of geopressured geothermal reservoirs to the social, environmental, and legal considerations of exploiting those reservoirs for their energy resources. Six indexes include: author, conference title, descriptor, journal title, report number, and sponsor. (MHR)

  3. Earthquakes and depleted gas reservoirs: which comes first?

    NASA Astrophysics Data System (ADS)

    Mucciarelli, M.; Donda, F.; Valensise, G.

    2014-12-01

    While scientists are paying increasing attention to the seismicity potentially induced by hydrocarbon exploitation, little is known about the reverse problem, i.e. the impact of active faulting and earthquakes on hydrocarbon reservoirs. The recent 2012 earthquakes in Emilia, Italy, raised concerns among the public for being possibly human-induced, but also shed light on the possible use of gas wells as a marker of the seismogenic potential of an active fold-and-thrust belt. Based on the analysis of over 400 borehole datasets from wells drilled along the Ferrara-Romagna Arc, a large oil and gas reserve in the southeastern Po Plain, we found that the 2012 earthquakes occurred within a cluster of sterile wells surrounded by productive ones. Since the geology of the productive and sterile areas is quite similar, we suggest that past earthquakes caused the loss of all natural gas from the potential reservoirs lying above their causative faults. Our findings have two important practical implications: (1) they may allow major seismogenic zones to be identified in areas of sparse seismicity, and (2) suggest that gas should be stored in exploited reservoirs rather than in sterile hydrocarbon traps or aquifers as this is likely to reduce the hazard of triggering significant earthquakes.

  4. Application and analysis of geodetic protocols for monitoring subsidence phenomena along on-shore hydrocarbon reservoirs

    NASA Astrophysics Data System (ADS)

    Montuori, Antonio; Anderlini, Letizia; Palano, Mimmo; Albano, Matteo; Pezzo, Giuseppe; Antoncecchi, Ilaria; Chiarabba, Claudio; Serpelloni, Enrico; Stramondo, Salvatore

    2018-07-01

    In this study, we tested the "land-subsidence monitoring guidelines" proposed by the Italian Ministry of Economic Development (MISE), to study ground deformations along on-shore hydrocarbon reservoirs. We propose protocols that include the joint use of Global Positioning System (GPS) and multi-temporal Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques, for a twofold purpose: a) monitoring land subsidence phenomena along selected areas after defining the background of ground deformations; b) analyzing possible relationships between hydrocarbon exploitation and anomalous deformation patterns. Experimental results, gathered along the Ravenna coastline (northern Italy) and in the southeastern Sicily (southern Italy), show wide areas of subsidence mainly related to natural and anthropogenic processes. Moreover, ground deformations retrieved through multi-temporal DInSAR time series exhibit low sensitivity as well as poor spatial and temporal correlation with hydrocarbon exploitation activities. Results allow evaluating the advantages and limitations of proposed protocols, to improve the techniques and security standards established by MISE guidelines for monitoring on-shore hydrocarbon reservoirs.

  5. A review of the hydrogeologic-geochemical model for Cerro Prieto

    USGS Publications Warehouse

    Lippmann, M.J.; Truesdell, A.H.; Halfman-Dooley, S. E.; Mañónm, A.

    1991-01-01

    With continued exploitation of the Cerro Prieto, Mexico, geothermal field, there is increasing evidence that the hydrogeologic model developed by Halfman and co-workers presents the basic features controlling the movement of geothermal fluids in the system. In mid-1987 the total installed capacity at Cerro Prieto reached 620 MWc, requiring a large rate of fluid production (more than 10,500 tonnes/hr of a brine-steam mixture; August 1988). This significant mass extraction has led to changes in reservoir thermodynamic conditions and in the chemistry of the produced fluids. Pressure drawdown has caused an increase in cold water recharge in the southern and western edges of the field, and local and general reservoir boiling in parts of the geothermal system. After reviewing the hydrogeologic and geochemical models of Cerro Prieto, the exploitation-induced cold water recharge and reservoir boiling (and plugging) observed in different areas of the field, are discussed and interpreted on the basis of these models and schematic flow models that describe the hydrogeology. ?? 1991.

  6. Conjunctively optimizing flash flood control and water quality in urban water reservoirs by model predictive control and dynamic emulation

    NASA Astrophysics Data System (ADS)

    Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea

    2014-05-01

    Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.

  7. Water Resource Assessment in KRS Reservoir Using Remote Sensing and GIS Modelling

    NASA Astrophysics Data System (ADS)

    Manubabu, V. H.; Gouda, K. C.; Bhat, N.; Reddy, A.

    2014-12-01

    In the recent time the fresh water resource becomes very important because of various reasons like population growth, pollution, over exploitation of the ground water resources etc. As there is no efficient and proper measures for recharging ground water exists and also the climatological impacts on water resources like global warming exacerbating water shortages, growing populations and rising demand for freshwater in agriculture, industry, and energy production. There is a need and challenging task for analyzing the future changes in regional water availability and it is also very much necessary to asses and predict the fresh water present in a lake or reservoir to make better decision making in the optimal usage of surface water. In the present study is intended to provide a practical discussion of methodology that deals with how to asses and predict amount of surface water available in the future using Remote Sensing(RS) data , Geographical Information System(GIS) techniques, and GCM (Global Circulation Model). Basically the study emphasized over one of the biggest reservoir i.e. the Krishna Raja Sagara (KRS) reservoir situated in the state of Karnataka in India. Multispectral satellite images like IRS LISS III and Landsat L8 from different open source web portals like NRSC-Bhuvan and NASA Earth Explorer respectively are used for the present analysis. The multispectral satellite images are used to identify the temporal changes of the water quantity in the reservoir for the period 2000 to 2014. Also the water volume are being calculated using Advances Space born Thermal Emission and Reflection Radiometer (ASTER) Global DEM over the reservoir basin. The hydro meteorological parameters are also studied using multi-source observed data and the empirical water budget models for the reservoir in terms of rainfall, temperature, run off, water inflow and outflow etc. are being developed and analyzed. Statistical analysis are also carried out to quantify the relation between reservoir water volume and the hydrological parameters (Figure 1). A general circulation model (GCM) is used for the prediction of major hydro meteorological parameters like rainfall and using the GCM predictions the water availability in terms of water volume in future are simulated using the empirical water budget model.

  8. Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix

    PubMed Central

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.

    2017-01-01

    Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix. PMID:28772465

  9. Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix.

    PubMed

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N

    2017-01-25

    Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix.

  10. Differences in the Metabolic Rates of Exploited and Unexploited Fish Populations: A Signature of Recreational Fisheries Induced Evolution?

    PubMed Central

    Hessenauer, Jan-Michael; Vokoun, Jason C.; Suski, Cory D.; Davis, Justin; Jacobs, Robert; O’Donnell, Eileen

    2015-01-01

    Non-random mortality associated with commercial and recreational fisheries have the potential to cause evolutionary changes in fish populations. Inland recreational fisheries offer unique opportunities for the study of fisheries induced evolution due to the ability to replicate study systems, limited gene flow among populations, and the existence of unexploited reference populations. Experimental research has demonstrated that angling vulnerability is heritable in Largemouth Bass Micropterus salmoides, and is correlated with elevated resting metabolic rates (RMR) and higher fitness. However, whether such differences are present in wild populations is unclear. This study sought to quantify differences in RMR among replicated exploited and unexploited populations of Largemouth Bass. We collected age-0 Largemouth Bass from two Connecticut drinking water reservoirs unexploited by anglers for almost a century, and two exploited lakes, then transported and reared them in the same pond. Field RMR of individuals from each population was quantified using intermittent-flow respirometry. Individuals from unexploited reservoirs had a significantly higher mean RMR (6%) than individuals from exploited populations. These findings are consistent with expectations derived from artificial selection by angling on Largemouth Bass, suggesting that recreational angling may act as an evolutionary force influencing the metabolic rates of fishes in the wild. Reduced RMR as a result of fisheries induced evolution may have ecosystem level effects on energy demand, and be common in exploited recreational populations globally. PMID:26039091

  11. Egypt Nile delta gas plays take off

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petzet, G.A.

    1996-08-26

    This paper reviews the exploration and resource potential of Egypt`s Nile delta as a major gas/condensate province. It discusses the various company`s involved in developing these resources and their plans for exploitation. It reviews the drilling in the area and gives a summary of the reservoir geology of the areas. It identifies the major discoveries as they relate to the various reservoirs in the delta area.

  12. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir (Pre-Work and Project Proposal), Class I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bou-Mikael, Sami

    This project outlines a proposal to improve the recovery of light oil from waterflooded fluvial dominated deltaic (FDD) reservoir through a miscible carbon dioxide (CO2) flood. The site is the Port Neches Field in Orange County, Texas. The field is well explored and well exploited. The project area is 270 acres within the Port Neches Field.

  13. Analysis of passive surface-wave noise in surface microseismic data and its implications

    USGS Publications Warehouse

    Forghani-Arani, F.; Willis, M.; Haines, S.; Batzle, M.; Davidson, M.

    2011-01-01

    Tight gas reservoirs are projected to be a major portion of future energy resources. Because of their low permeability, hydraulic fracturing of these reservoirs is required to improve the permeability and reservoir productivity. Passive seismic monitoring is one of the few tools that can be used to characterize the changes in the reservoir due to hydraulic fracturing. Although the majority of the studies monitoring hydraulic fracturing exploit down hole microseismic data, surface microseismic monitoring is receiving increased attention because it is potentially much less expensive to acquire. Due to a broader receiver aperture and spatial coverage, surface microseismic data may be more advantageous than down hole microseismic data. The effectiveness of this monitoring technique, however, is strongly dependent on the signal-to-noise ratio of the data. Cultural and ambient noise can mask parts of the waveform that carry information about the subsurface, thereby decreasing the effectiveness of surface microseismic analysis in identifying and locating the microseismic events. Hence, time and spatially varying suppression of the surface-wave noise ground roll is a critical step in surface microseismic monitoring. Here, we study a surface passive dataset that was acquired over a Barnett Shale Formation reservoir during two weeks of hydraulic fracturing, in order to characterize and suppress the surface noise in this data. We apply techniques to identify the characteristics of the passive ground roll. Exploiting those characteristics, we can apply effective noise suppression techniques to the passive data. ?? 2011 Society of Exploration Geophysicists.

  14. May through July 2015 storm event effects on suspended-sediment loads, sediment trapping efficiency, and storage capacity of John Redmond Reservoir

    USGS Publications Warehouse

    Foster, Guy M.; King, Lindsey R.

    2016-06-20

    The Neosho River and its primary tributary, the Cottonwood River, are the main sources of inflow to John Redmond Reservoir in east-central Kansas. Storm events during May through July 2015 caused large inflows of water and sediment into the reservoir. The U.S. Geological Survey, in cooperation with the Kansas Water Office, and funded in part through the Kansas State Water Plan Fund, computed the suspended-sediment inflows to, and trapping efficiency of, John Redmond Reservoir during May through July 2015. This fact sheet summarizes the quantification of suspended-sediment loads to and from the reservoir during May through July 2015 storm events and describes reservoir sediment trapping efficiency and effects on water-storage capacity.

  15. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead

    2003-04-01

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Informationmore » System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.« less

  16. The potential of coordinated reservoir operation for flood mitigation in large basins - A case study on the Bavarian Danube using coupled hydrological-hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Seibert, S. P.; Skublics, D.; Ehret, U.

    2014-09-01

    The coordinated operation of reservoirs in large-scale river basins has great potential to improve flood mitigation. However, this requires large scale hydrological models to translate the effect of reservoir operation to downstream points of interest, in a quality sufficient for the iterative development of optimized operation strategies. And, of course, it requires reservoirs large enough to make a noticeable impact. In this paper, we present and discuss several methods dealing with these prerequisites for reservoir operation using the example of three major floods in the Bavarian Danube basin (45,000 km2) and nine reservoirs therein: We start by presenting an approach for multi-criteria evaluation of model performance during floods, including aspects of local sensitivity to simulation quality. Then we investigate the potential of joint hydrologic-2d-hydrodynamic modeling to improve model performance. Based on this, we evaluate upper limits of reservoir impact under idealized conditions (perfect knowledge of future rainfall) with two methods: Detailed simulations and statistical analysis of the reservoirs' specific retention volume. Finally, we investigate to what degree reservoir operation strategies optimized for local (downstream vicinity to the reservoir) and regional (at the Danube) points of interest are compatible. With respect to model evaluation, we found that the consideration of local sensitivities to simulation quality added valuable information not included in the other evaluation criteria (Nash-Sutcliffe efficiency and Peak timing). With respect to the second question, adding hydrodynamic models to the model chain did, contrary to our expectations, not improve simulations, despite the fact that under idealized conditions (using observed instead of simulated lateral inflow) the hydrodynamic models clearly outperformed the routing schemes of the hydrological models. Apparently, the advantages of hydrodynamic models could not be fully exploited when fed by output from hydrological models afflicted with systematic errors in volume and timing. This effect could potentially be reduced by joint calibration of the hydrological-hydrodynamic model chain. Finally, based on the combination of the simulation-based and statistical impact assessment, we identified one reservoir potentially useful for coordinated, regional flood mitigation for the Danube. While this finding is specific to our test basin, the more interesting and generally valid finding is that operation strategies optimized for local and regional flood mitigation are not necessarily mutually exclusive, sometimes they are identical, sometimes they can, due to temporal offsets, be pursued simultaneously.

  17. Numerical simulations of highly buoyant flows in the Castel Giorgio - Torre Alfina deep geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Volpi, Giorgio; Crosta, Giovanni B.; Colucci, Francesca; Fischer, Thomas; Magri, Fabien

    2017-04-01

    Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. However, nowadays its utilization is inconsistent with the enormous amount of energy available underneath the surface of the earth. This is mainly due to the uncertainties associated with it, as for example the lack of appropriate computational tools, necessary to perform effective analyses. The aim of the present study is to build an accurate 3D numerical model, to simulate the exploitation process of the deep geothermal reservoir of Castel Giorgio - Torre Alfina (central Italy), and to compare results and performances of parallel simulations performed with TOUGH2 (Pruess et al. 1999), FEFLOW (Diersch 2014) and the open source software OpenGeoSys (Kolditz et al. 2012). Detailed geological, structural and hydrogeological data, available for the selected area since early 70s, show that Castel Giorgio - Torre Alfina is a potential geothermal reservoir with high thermal characteristics (120 ° C - 150 ° C) and fluids such as pressurized water and gas, mainly CO2, hosted in a carbonate formation. Our two steps simulations firstly recreate the undisturbed natural state of the considered system and then perform the predictive analysis of the industrial exploitation process. The three adopted software showed a strong numerical simulations accuracy, which has been verified by comparing the simulated and measured temperature and pressure values of the geothermal wells in the area. The results of our simulations have demonstrated the sustainability of the investigated geothermal field for the development of a 5 MW pilot plant with total fluids reinjection in the same original formation. From the thermal point of view, a very efficient buoyant circulation inside the geothermal system has been observed, thus allowing the reservoir to support the hypothesis of a 50 years production time with a flow rate of 1050 t/h. Furthermore, with the modeled distances our simulations showed no interference effects between the production and re-injection wells. Besides providing valuable guidelines for future exploitation of the Castel Giorgio - Torre Alfina deep geothermal reservoir, this example also highlights the large applicability and the high performance of the OpenGeoSys open-source code in handling coupled hydro-thermal simulations. REFERENCES Diersch, H. J. (2014). FEFLOW Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-38738-8. Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J. O., Fischer, T., U. J. Görke, T. Kalbacher, G. Kosakowski, McDermott, C. I., Park, C. H., Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y., Sun, A., Singh, K., Taron, J., Walther, M., Wang,W., Watanabe, N., Wu, Y., Xie, M., Xu, W., Zehner, B. (2012). OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental Earth Sciences, 67(2), 589-599. Pruess, K., Oldenburg, C. M., & Moridis, G. J. (1999). TOUGH2 user's guide version 2. Lawrence Berkeley National Laboratory.

  18. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    DOEpatents

    Rao, Dandina N [Baton Rouge, LA

    2012-07-10

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  19. Different approaches for centralized and decentralized water system management in multiple decision makers' problems

    NASA Astrophysics Data System (ADS)

    Anghileri, D.; Giuliani, M.; Castelletti, A.

    2012-04-01

    There is a general agreement that one of the most challenging issues related to water system management is the presence of many and often conflicting interests as well as the presence of several and independent decision makers. The traditional approach to multi-objective water systems management is a centralized management, in which an ideal central regulator coordinates the operation of the whole system, exploiting all the available information and balancing all the operating objectives. Although this approach allows to obtain Pareto-optimal solutions representing the maximum achievable benefit, it is based on assumptions which strongly limits its application in real world contexts: 1) top-down management, 2) existence of a central regulation institution, 3) complete information exchange within the system, 4) perfect economic efficiency. A bottom-up decentralized approach seems therefore to be more suitable for real case applications since different reservoir operators may maintain their independence. In this work we tested the consequences of a change in the water management approach moving from a centralized toward a decentralized one. In particular we compared three different cases: the centralized management approach, the independent management approach where each reservoir operator takes the daily release decision maximizing (or minimizing) his operating objective independently from each other, and an intermediate approach, leading to the Nash equilibrium of the associated game, where different reservoir operators try to model the behaviours of the other operators. The three approaches are demonstrated using a test case-study composed of two reservoirs regulated for the minimization of flooding in different locations. The operating policies are computed by solving one single multi-objective optimal control problem, in the centralized management approach; multiple single-objective optimization problems, i.e. one for each operator, in the independent case; using techniques related to game theory for the description of the interaction between the two operators, in the last approach. Computational results shows that the Pareto-optimal control policies obtained in the centralized approach dominate the control policies of both the two cases of decentralized management and that the so called price of anarchy increases moving toward the independent management approach. However, the Nash equilibrium solution seems to be the most promising alternative because it represents a good compromise in maximizing management efficiency without limiting the behaviours of the reservoir operators.

  20. EQUILGAS: Program to estimate temperatures and in situ two-phase conditions in geothermal reservoirs using three combined FT-HSH gas equilibria models

    NASA Astrophysics Data System (ADS)

    Barragán, Rosa María; Núñez, José; Arellano, Víctor Manuel; Nieva, David

    2016-03-01

    Exploration and exploitation of geothermal resources require the estimation of important physical characteristics of reservoirs including temperatures, pressures and in situ two-phase conditions, in order to evaluate possible uses and/or investigate changes due to exploitation. As at relatively high temperatures (>150 °C) reservoir fluids usually attain chemical equilibrium in contact with hot rocks, different models based on the chemistry of fluids have been developed that allow deep conditions to be estimated. Currently either in water-dominated or steam-dominated reservoirs the chemistry of steam has been useful for working out reservoir conditions. In this context, three methods based on the Fischer-Tropsch (FT) and combined H2S-H2 (HSH) mineral-gas reactions have been developed for estimating temperatures and the quality of the in situ two-phase mixture prevailing in the reservoir. For these methods the mineral buffers considered to be controlling H2S-H2 composition of fluids are as follows. The pyrite-magnetite buffer (FT-HSH1); the pyrite-hematite buffer (FT-HSH2) and the pyrite-pyrrhotite buffer (FT-HSH3). Currently from such models the estimations of both, temperature and steam fraction in the two-phase fluid are obtained graphically by using a blank diagram with a background theoretical solution as reference. Thus large errors are involved since the isotherms are highly nonlinear functions while reservoir steam fractions are taken from a logarithmic scale. In order to facilitate the use of the three FT-HSH methods and minimize visual interpolation errors, the EQUILGAS program that numerically solves the equations of the FT-HSH methods was developed. In this work the FT-HSH methods and the EQUILGAS program are described. Illustrative examples for Mexican fields are also given in order to help the users in deciding which method could be more suitable for every specific data set.

  1. CO2 Capture by Injection of Flue Gas or CO2-N2 Mixtures into Hydrate Reservoirs: Dependence of CO2 Capture Efficiency on Gas Hydrate Reservoir Conditions.

    PubMed

    Hassanpouryouzband, Aliakbar; Yang, Jinhai; Tohidi, Bahman; Chuvilin, Evgeny; Istomin, Vladimir; Bukhanov, Boris; Cheremisin, Alexey

    2018-04-03

    Injection of flue gas or CO 2 -N 2 mixtures into gas hydrate reservoirs has been considered as a promising option for geological storage of CO 2 . However, the thermodynamic process in which the CO 2 present in flue gas or a CO 2 -N 2 mixture is captured as hydrate has not been well understood. In this work, a series of experiments were conducted to investigate the dependence of CO 2 capture efficiency on reservoir conditions. The CO 2 capture efficiency was investigated at different injection pressures from 2.6 to 23.8 MPa and hydrate reservoir temperatures from 273.2 to 283.2 K in the presence of two different saturations of methane hydrate. The results showed that more than 60% of the CO 2 in the flue gas was captured and stored as CO 2 hydrate or CO 2 -mixed hydrates, while methane-rich gas was produced. The efficiency of CO 2 capture depends on the reservoir conditions including temperature, pressure, and hydrate saturation. For a certain reservoir temperature, there is an optimum reservoir pressure at which the maximum amount of CO 2 can be captured from the injected flue gas or CO 2 -N 2 mixtures. This finding suggests that it is essential to control the injection pressure to enhance CO 2 capture efficiency by flue gas or CO 2 -N 2 mixtures injection.

  2. Rationale for finding and exploiting fractured reservoirs, based on the MWX/SHCT-Piceance basin experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, J.C.; Warpinski, N.R.; Teufel, L.W.

    The deliverability of a reservoir depends primarily on its permeability, which, in many reservoirs, is controlled by a combination of natural fractures and the in situ stresses. Therefore it is important to be able to predict which parts of a basin are most likely to contain naturally fractured strata, what the characteristics of those fractures might be, and what the most likely in situ stresses are at a given location. This paper presents a set of geologic criteria that can be superimposed onto factors, such as levels of maturation and porosity development, in order to predict whether fractures are presentmore » once the likelihood of petroleum presence and reservoir development have been determined. Stress causes fracturing, but stresses are not permanent. A natural-fracture permeability pathway opened by one system of stresses may be held open by those stresses, or narrowed or even closed by changes of the stress to an oblique or normal orientation. The origin of stresses and stress anisotropies in a basin, the potential for stress to create natural fractures, and the causes of stress reorientation are examined in this paper. The appendices to this paper present specific techniques for exploiting and characterizing natural fractures, for measuring the present-day in situ stresses, and for reconstructing a computerized stress history for a basin.« less

  3. Chemical water shutoff profile research status and development trends

    NASA Astrophysics Data System (ADS)

    Xu, L. T.

    2017-08-01

    Excess water production is now a common problem encountered in almost every water flooding mature oilfield. The exploitation of oil field is faced with great challenge because of the decrease of oil field production. For the development of high water cut rare the status quo chemical water shutoff profile control technology is an important solution to solve this problem. Oilfield chemical water shutoff has important application prospects. This paper analyzes the water shutoff profile control and water shutoff profile control agent currently oilfield applications, moreover the use and development of blocking agent profile technology is to improve reservoir recovery and propose solutions. With the constant increase in water cut, profile technology should be simple, efficient, practical and profile control agent of development should be economic, environmental, and long period

  4. Mercury methylation rates of biofilm and plankton microorganisms from a hydroelectric reservoir in French Guiana.

    PubMed

    Huguet, L; Castelle, S; Schäfer, J; Blanc, G; Maury-Brachet, R; Reynouard, C; Jorand, F

    2010-02-15

    The Petit-Saut ecosystem is a hydroelectric reservoir covering 365km(2) of flooded tropical forest. This reservoir and the Sinnamary Estuary downstream of the dam are subject to significant mercury methylation. The mercury methylation potential of plankton and biofilm microorganisms/components from different depths in the anoxic reservoir water column and from two different sites along the estuary was assessed. For this, reservoir water and samples of epiphytic biofilms from the trunk of a submerged tree in the anoxic water column and from submerged branches in the estuary were batch-incubated from 1h to 3 months with a nominal 1000ng/L spike of Hg(II) chloride enriched in (199)Hg. Methylation rates were determined for different reservoir and estuarine communities under natural nutrient (reservoir water, estuary freshwater) and artificial nutrient (culture medium) conditions. Methylation rates in reservoir water incubations were the highest with plankton microorganisms sampled at -9.5m depth (0.5%/d) without addition of biofilm components. Mercury methylation rates of incubated biofilm components were strongly enhanced by nutrient addition. The results suggested that plankton microorganisms strongly contribute to the total Hg methylation in the Petit-Saut reservoir and in the Sinnamary Estuary. Moreover, specific methylation efficiencies (%Me(199)Hg(net)/cell) suggested that plankton microorganisms could be more efficient methylating actors than biofilm consortia and that their methylation efficiency may be reduced in the presence of biofilm components. Extrapolation to the reservoir scale of the experimentally determined preliminary methylation efficiencies suggested that plankton microorganisms in the anoxic water column could produce up to 27mol MeHg/year. Taking into account that (i) demethylation probably occurs in the reservoir and (ii) that the presence of biofilm components may limit the methylation efficiency of plankton microorganisms, this result is highly consistent with the annual net MeHg production estimated from mass balances (8.1mol MeHg/year, Muresan et al., 2008a).

  5. [Impacts of hydroelectric cascade exploitation on river ecosystem and landscape: a review].

    PubMed

    Yang, Kun; Deng, Xi; Li, Xue-Ling; Wen, Ping

    2011-05-01

    Hydroelectric cascade exploitation, one of the major ways for exploiting water resources and developing hydropower, not only satisfies the needs of various national economic sectors, but also promotes the socio-economic sustainable development of river basin. unavoidable anthropogenic impacts on the entire basin ecosystem. Based on the process of hydroelectric cascade exploitation and the ecological characteristics of river basins, this paper reviewed the major impacts of hydroelectric cascade exploitation on dam-area ecosystems, river reservoirs micro-climate, riparian ecosystems, river aquatic ecosystems, wetlands, and river landscapes. Some prospects for future research were offered, e.g., strengthening the research of chain reactions and cumulative effects of ecological factors affected by hydroelectric cascade exploitation, intensifying the study of positive and negative ecological effects under the dam networks and their joint operations, and improving the research of successional development and stability of basin ecosystems at different temporal and spatial scales.

  6. Simple Deterministically Constructed Recurrent Neural Networks

    NASA Astrophysics Data System (ADS)

    Rodan, Ali; Tiňo, Peter

    A large number of models for time series processing, forecasting or modeling follows a state-space formulation. Models in the specific class of state-space approaches, referred to as Reservoir Computing, fix their state-transition function. The state space with the associated state transition structure forms a reservoir, which is supposed to be sufficiently complex so as to capture a large number of features of the input stream that can be potentially exploited by the reservoir-to-output readout mapping. The largely "black box" character of reservoirs prevents us from performing a deeper theoretical investigation of the dynamical properties of successful reservoirs. Reservoir construction is largely driven by a series of (more-or-less) ad-hoc randomized model building stages, with both the researchers and practitioners having to rely on a series of trials and errors. We show that a very simple deterministically constructed reservoir with simple cycle topology gives performances comparable to those of the Echo State Network (ESN) on a number of time series benchmarks. Moreover, we argue that the memory capacity of such a model can be made arbitrarily close to the proved theoretical limit.

  7. Balancing exploration, uncertainty and computational demands in many objective reservoir optimization

    NASA Astrophysics Data System (ADS)

    Zatarain Salazar, Jazmin; Reed, Patrick M.; Quinn, Julianne D.; Giuliani, Matteo; Castelletti, Andrea

    2017-11-01

    Reservoir operations are central to our ability to manage river basin systems serving conflicting multi-sectoral demands under increasingly uncertain futures. These challenges motivate the need for new solution strategies capable of effectively and efficiently discovering the multi-sectoral tradeoffs that are inherent to alternative reservoir operation policies. Evolutionary many-objective direct policy search (EMODPS) is gaining importance in this context due to its capability of addressing multiple objectives and its flexibility in incorporating multiple sources of uncertainties. This simulation-optimization framework has high potential for addressing the complexities of water resources management, and it can benefit from current advances in parallel computing and meta-heuristics. This study contributes a diagnostic assessment of state-of-the-art parallel strategies for the auto-adaptive Borg Multi Objective Evolutionary Algorithm (MOEA) to support EMODPS. Our analysis focuses on the Lower Susquehanna River Basin (LSRB) system where multiple sectoral demands from hydropower production, urban water supply, recreation and environmental flows need to be balanced. Using EMODPS with different parallel configurations of the Borg MOEA, we optimize operating policies over different size ensembles of synthetic streamflows and evaporation rates. As we increase the ensemble size, we increase the statistical fidelity of our objective function evaluations at the cost of higher computational demands. This study demonstrates how to overcome the mathematical and computational barriers associated with capturing uncertainties in stochastic multiobjective reservoir control optimization, where parallel algorithmic search serves to reduce the wall-clock time in discovering high quality representations of key operational tradeoffs. Our results show that emerging self-adaptive parallelization schemes exploiting cooperative search populations are crucial. Such strategies provide a promising new set of tools for effectively balancing exploration, uncertainty, and computational demands when using EMODPS.

  8. Towards a non-linear theory for fluid pressure and osmosis in shales

    NASA Astrophysics Data System (ADS)

    Droghei, Riccardo; Salusti, Ettore

    2015-04-01

    In exploiting deep hydrocarbon reservoirs, often injections of fluid and/or solute are used. To control and avoid troubles as fluid and gas unexpected diffusions, a reservoir characterization can be obtained also from observations of space and time evolution of micro-earthquake clouds resulting from such injections. This is important since several among the processes caused by fluid injections can modify the deep matrix. Information about the evolution of such micro-seismicity clouds therefore plays a realistic role in the reservoir analyses. To reach a better insight about such processes, and obtain a better system control, we here analyze the initial stress necessary to originate strong non linear transients of combined fluid pressure and solute density (osmosis) in a porous matrix. All this can indeed perturb in a mild (i.e. a linear diffusion) or dramatic non linear way the rock structure, till inducing rock deformations, micro-earthquakes or fractures. I more detail we here assume first a linear Hooke law relating strain, stress, solute density and fluid pressure, and analyze their effect in the porous rock dynamics. Then we analyze its generalization, i.e. the further non linear effect of a stronger external pressure, also in presence of a trend of pressure or solute in the whole region. We moreover characterize the zones where a sudden arrival of such a front can cause micro-earthquakes or fractures. All this allows to reach a novel, more realistic insight about the control of rock evolution in presence of strong pressure fronts. We thus obtain a more efficient reservoir control to avoid large geological perturbations. It is of interest that our results are very similar to those found by Shapiro et al.(2013) with a different approach.

  9. The time-lapse AVO difference inversion for changes in reservoir parameters

    NASA Astrophysics Data System (ADS)

    Longxiao, Zhi; Hanming, Gu; Yan, Li

    2016-12-01

    The result of conventional time-lapse seismic processing is the difference between the amplitude and the post-stack seismic data. Although stack processing can improve the signal-to-noise ratio (SNR) of seismic data, it also causes a considerable loss of important information about the amplitude changes and only gives the qualitative interpretation. To predict the changes in reservoir fluid more precisely and accurately, we also need the quantitative information of the reservoir. To achieve this aim, we develop the method of time-lapse AVO (amplitude versus offset) difference inversion. For the inversion of reservoir changes in elastic parameters, we apply the Gardner equation as the constraint and convert the three-parameter inversion of elastic parameter changes into a two-parameter inversion to make the inversion more stable. For the inversion of variations in the reservoir parameters, we infer the relation between the difference of the reflection coefficient and variations in the reservoir parameters, and then invert reservoir parameter changes directly. The results of the theoretical modeling computation and practical application show that our method can estimate the relative variations in reservoir density, P-wave and S-wave velocity, calculate reservoir changes in water saturation and effective pressure accurately, and then provide reference for the rational exploitation of the reservoir.

  10. Diagnostic Assessment of the Difficulty Using Direct Policy Search in Many-Objective Reservoir Control

    NASA Astrophysics Data System (ADS)

    Zatarain-Salazar, J.; Reed, P. M.; Herman, J. D.; Giuliani, M.; Castelletti, A.

    2014-12-01

    Globally reservoir operations provide fundamental services to water supply, energy generation, recreation, and ecosystems. The pressures of expanding populations, climate change, and increased energy demands are motivating a significant investment in re-operationalizing existing reservoirs or defining operations for new reservoirs. Recent work has highlighted the potential benefits of exploiting recent advances in many-objective optimization and direct policy search (DPS) to aid in addressing these systems' multi-sector demand tradeoffs. This study contributes to a comprehensive diagnostic assessment of multi-objective evolutionary optimization algorithms (MOEAs) efficiency, effectiveness, reliability, and controllability when supporting DPS for the Conowingo dam in the Lower Susquehanna River Basin. The Lower Susquehanna River is an interstate water body that has been subject to intensive water management efforts due to the system's competing demands from urban water supply, atomic power plant cooling, hydropower production, and federally regulated environmental flows. Seven benchmark and state-of-the-art MOEAs are tested on deterministic and stochastic instances of the Susquehanna test case. In the deterministic formulation, the operating objectives are evaluated over the historical realization of the hydroclimatic variables (i.e., inflows and evaporation rates). In the stochastic formulation, the same objectives are instead evaluated over an ensemble of stochastic inflows and evaporation rates realizations. The algorithms are evaluated in their ability to support DPS in discovering reservoir operations that compose the tradeoffs for six multi-sector performance objectives with thirty-two decision variables. Our diagnostic results highlight that many-objective DPS is very challenging for modern MOEAs and that epsilon dominance is critical for attaining high levels of performance. Epsilon dominance algorithms epsilon-MOEA, epsilon-NSGAII and the auto adaptive Borg MOEA, are statistically superior for the six-objective Susquehanna instance of this important class of problems. Additionally, shifting from deterministic history-based DPS to stochastic DPS significantly increases the difficulty of the problem.

  11. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensormore » packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging survivability issues. Our findings indicate that packaging represents the most significant technical challenge associated with application of sensors in the downhole environment for long periods (5+ years) of time. These issues are described in detail within the report. The impact of successful reservoir monitoring programs and coincident improved reservoir management is measured by the production of additional oil and gas volumes from existing reservoirs, revitalization of nearly depleted reservoirs, possible re-establishment of already abandoned reservoirs, and improved economics for all cases. Smart Well monitoring provides the means to understand how a reservoir process is developing and to provide active reservoir management. At the same time it also provides data for developing high-fidelity simulation models. This work has been a joint effort with Sandia National Laboratories and UT-Austin's Bureau of Economic Geology, Department of Petroleum and Geosystems Engineering, and the Institute of Computational and Engineering Mathematics.« less

  12. Limno-reservoirs as a new landscape, environmental and touristic resource: Pareja Limno-reservoir as a case of study (Guadalajara, Spain)

    NASA Astrophysics Data System (ADS)

    Díaz-Carrión, I.; Sastre-Merlín, A.; Martínez-Pérez, S.; Molina-Navarro, E.; Bienes-Allas, R.

    2012-04-01

    A limno-reservoir is a hydrologic infrastructure with the main goal of generating a body of water with a constant level in the riverine zone of a reservoir, building a dam that makes de limno-reservoir independent from the main body of water. This dam can be built in the main river supplying the reservoir or any tributary as well flowing into it. Despite its novel conception and design, around a dozen are already operative in some Spanish reservoirs. This infrastructure allows the new water body to be independent of the main reservoir management, so the water level stability is its main distinctive characteristic. It leads to the development of environmental, sports and cultural initiatives; which may be included in a touristic exploitation in a wide sense. An opinion poll was designed in 2009 to be carried out the Pareja Limno-reservoir (Entrepeñas reservoir area, Tajo River Basin, central Spain). The results showed that for both, Pareja inhabitants and occasional visitors, the limno-reservoir has become an important touristic resource, mainly demanded during summer season. The performance of leisure activities (especially swimming) are being the main brand of this novel hydraulic and environmental infrastructure, playing a role as corrective and/or compensatory action which is needed to apply in order to mitigate the environmental impacts of the large hydraulic constructions.

  13. An assessment of sauger population characteristics on two Tennessee River reservoirs

    USGS Publications Warehouse

    Graham, Christy L.; Bettoli, Phillip William; Churchill, Timothy N.

    2015-01-01

    In 1992, a 356-mm minimum length limit (MLL) was enacted on Kentucky Lake and a 381-mm MLL was enacted on Watts Bar Lake, two mainstem reservoirs on the Tennessee River, in an attempt to reduce exploitation and improve the size structure of the sauger (Sander canadensis) populations. The objectives of this study were to compare sauger population characteristics immediately following (1993–1994) and 15 years after (2008–2009) the regulations took effect, examine spatial and temporal patterns in growth, examine recruitment patterns in each reservoir using a recruitment variability index (RVI), and assess the current likelihood of overfishing. Saugers were collected with experimental gill nets in each reservoir and aged using otoliths. A Beverton-Holt yield-per-recruit model was used to simulate angler yields and estimate the likelihood of growth overfishing. Recruitment overfishing was assessed by examining spawning potential ratios under various MLL and exploitation rate scenarios. The sauger population in Kentucky Lake experienced modest improvements in size and age structure over the 15 years following enactment of more restrictive harvest regulations, whereas the population in Watts Bar Lake changed very little, if at all, in terms of size and age structure. Mean lengths of age-3 sauger were significantly greater in Watts Bar Lake than in Kentucky Lake in both time periods. The RVI values indicated that between 1993 and 2009 the sauger in Kentucky Lake displayed more stable recruitment than the Watts Bar Lake population. Neither population exhibited signs of growth overfishing in 2008–09 under the current length limits; however, the Watts Bar Lake population would be susceptible to recruitment overfishing at high (>40%) exploitation rates if natural mortality was as low as 20%. These analyses have demonstrated that the Watts Bar Lake and Kentucky Lake populations, in terms of size and age structure, have remained relatively stable over 15+ years and the MLLs appear to be conserving the stocks.

  14. Minimum complexity echo state network.

    PubMed

    Rodan, Ali; Tino, Peter

    2011-01-01

    Reservoir computing (RC) refers to a new class of state-space models with a fixed state transition structure (the reservoir) and an adaptable readout form the state space. The reservoir is supposed to be sufficiently complex so as to capture a large number of features of the input stream that can be exploited by the reservoir-to-output readout mapping. The field of RC has been growing rapidly with many successful applications. However, RC has been criticized for not being principled enough. Reservoir construction is largely driven by a series of randomized model-building stages, with both researchers and practitioners having to rely on a series of trials and errors. To initialize a systematic study of the field, we concentrate on one of the most popular classes of RC methods, namely echo state network, and ask: What is the minimal complexity of reservoir construction for obtaining competitive models and what is the memory capacity (MC) of such simplified reservoirs? On a number of widely used time series benchmarks of different origin and characteristics, as well as by conducting a theoretical analysis we show that a simple deterministically constructed cycle reservoir is comparable to the standard echo state network methodology. The (short-term) MC of linear cyclic reservoirs can be made arbitrarily close to the proved optimal value.

  15. Western Greece unconventional hydrocarbon potential from oil shale and shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Karakitsios, Vasileios; Agiadi, Konstantina

    2013-04-01

    It is clear that we are gradually running out of new sedimentary basins to explore for conventional oil and gas and that the reserves of conventional oil, which can be produced cheaply, are limited. This is the reason why several major oil companies invest in what are often called unconventional hydrocarbons: mainly oil shales, heavy oil, tar sand and shale gas. In western Greece exist important oil and gas shale reservoirs which must be added to its hydrocarbon potential1,2. Regarding oil shales, Western Greece presents significant underground immature, or close to the early maturation stage, source rocks with black shale composition. These source rock oils may be produced by applying an in-situ conversion process (ICP). A modern technology, yet unproven at a commercial scale, is the thermally conductive in-situ conversion technology, developed by Shell3. Since most of western Greece source rocks are black shales with high organic content, those, which are immature or close to the maturity limit have sufficient thickness and are located below 1500 meters depth, may be converted artificially by in situ pyrolysis. In western Greece, there are several extensive areas with these characteristics, which may be subject of exploitation in the future2. Shale gas reservoirs in Western Greece are quite possibly present in all areas where shales occur below the ground-water level, with significant extent and organic matter content greater than 1%, and during their geological history, were found under conditions corresponding to the gas window (generally at depths over 5,000 to 6,000m). Western Greece contains argillaceous source rocks, found within the gas window, from which shale gas may be produced and consequently these rocks represent exploitable shale gas reservoirs. Considering the inevitable increase in crude oil prices, it is expected that at some point soon Western Greece shales will most probably be targeted. Exploration for conventional petroleum reservoirs, through the interpretation of seismic profiles and the surface geological data, will simultaneously provide the subsurface geometry of the unconventional reservoirs. Their exploitation should follow that of conventional hydrocarbons, in order to benefit from the anticipated technological advances, eliminating environmental repercussions. As a realistic approach, the environmental consequences of the oil shale and shale gas exploitation to the natural environment of western Greece, which holds other very significant natural resources, should be delved into as early as possible. References 1Karakitsios V. & Rigakis N. 2007. Evolution and Petroleum Potential of Western Greece. J.Petroleum Geology, v. 30, no. 3, p. 197-218. 2Karakitsios V. 2013. Western Greece and Ionian Sea petroleum systems. AAPG Bulletin, in press. 3Bartis J.T., Latourrette T., Dixon L., Peterson D.J., Cecchine G. 2005. Oil Shale Development in the United States: Prospect and Policy Issues. Prepared for the National Energy Tech. Lab. of the U.S. Dept Energy. RAND Corporation, 65 p.

  16. Trap-efficiency investigation, Bernalillo Floodwater Retarding Reservoir No. 1 (Piedra Lisa Arroyo) near Bernalillo, New Mexico, water years 1956-1974

    USGS Publications Warehouse

    Funderburg, D.E.

    1977-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Soil Conservation Service, began an investigation of sedimentation of Bernalillo Floodwater Retarding Reservoir No. 1 (Piedra Lisa Arroyo) near Bernalillo, New Mexico in 1956. This investigation was part of a nationwide investigation of the trap efficiency of detention reservoirs. Reservoirs No. 1 is normally a dry reservoir and runoff from the 10.6 sq km drainage area generally occurs from high-intensity summer thundershowers. The mesa area of the drainage basin was treated to prevent erosion and gullying and to retard rapid runoff of rainfall. The land treatment consisted of pits, terraces, seeding, and restricted grazing. The total outflow recorded for the period of record (July 19, 1956 to June 30, 1974) was 133 acre-feet, yielding 1 ,439 tons of sediment. Over 99 percent of the coarse sediments and a high percentage of the silts and clays were deposited in the reservoir before reaching the outflow pipe. The determined trap efficiency of Reservoir No. 1 was 96 percent for the period of record. (Woordard-USGS)

  17. Earthquakes and depleted gas reservoirs: which comes first?

    NASA Astrophysics Data System (ADS)

    Mucciarelli, M.; Donda, F.; Valensise, G.

    2015-10-01

    While scientists are paying increasing attention to the seismicity potentially induced by hydrocarbon exploitation, so far, little is known about the reverse problem, i.e. the impact of active faulting and earthquakes on hydrocarbon reservoirs. The 20 and 29 May 2012 earthquakes in Emilia, northern Italy (Mw 6.1 and 6.0), raised concerns among the public for being possibly human-induced, but also shed light on the possible use of gas wells as a marker of the seismogenic potential of an active fold and thrust belt. We compared the location, depth and production history of 455 gas wells drilled along the Ferrara-Romagna arc, a large hydrocarbon reserve in the southeastern Po Plain (northern Italy), with the location of the inferred surface projection of the causative faults of the 2012 Emilia earthquakes and of two pre-instrumental damaging earthquakes. We found that these earthquake sources fall within a cluster of sterile wells, surrounded by productive wells at a few kilometres' distance. Since the geology of the productive and sterile areas is quite similar, we suggest that past earthquakes caused the loss of all natural gas from the potential reservoirs lying above their causative faults. To validate our hypothesis we performed two different statistical tests (binomial and Monte Carlo) on the relative distribution of productive and sterile wells, with respect to seismogenic faults. Our findings have important practical implications: (1) they may allow major seismogenic sources to be singled out within large active thrust systems; (2) they suggest that reservoirs hosted in smaller anticlines are more likely to be intact; and (3) they also suggest that in order to minimize the hazard of triggering significant earthquakes, all new gas storage facilities should use exploited reservoirs rather than sterile hydrocarbon traps or aquifers.

  18. Succession of microbial communities and changes of incremental oil in a post-polymer flooded reservoir with nutrient stimulation.

    PubMed

    Gao, Peike; Li, Guoqiang; Le, Jianjun; Liu, Xiaobo; Liu, Fang; Ma, Ting

    2018-02-01

    Further exploitation of the residual oil underground in post-polymer flooded reservoirs is attractive and challengeable. In this study, indigenous microbial enhanced oil recovery (IMEOR) in a post-polymer flooded reservoir was performed. The succession of microbial communities was revealed by high-throughput sequencing of 16S rRNA genes and changes of incremental oil were analyzed. The results indicated that the abundances of reservoir microorganisms significantly increased, with alpha diversities decreased in the IMEOR process. With the intermittent nutrient injection, microbial communities showed a regular change and were alternately dominated by minority populations: Pseudomonas and Acinetobacter significantly increased when nutrients were injected; Thauera, Azovibrio, Arcobacter, Helicobacter, Desulfitobacterium, and Clostridium increased in the following water-flooding process. Accompanied by the stimulated populations, higher oil production was obtained. However, these populations did not contribute a persistent level of incremental oil in the reservoir. In summary, this study revealed the alternative succession of microbial communities and the changes of incremental oil in a post-polymer flooded reservoir with intermittent nutrient stimulation process.

  19. Efficiency optimization of a closed indirectly fired gas turbine cycle working under two variable-temperature heat reservoirs

    NASA Astrophysics Data System (ADS)

    Ma, Zheshu; Wu, Jieer

    2011-08-01

    Indirectly or externally fired gas turbines (IFGT or EFGT) are interesting technologies under development for small and medium scale combined heat and power (CHP) supplies in combination with micro gas turbine technologies. The emphasis is primarily on the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass even "dirty" fuel by employing a high temperature heat exchanger (HTHE) to avoid the combustion gases passing through the turbine. In this paper, finite time thermodynamics is employed in the performance analysis of a class of irreversible closed IFGT cycles coupled to variable temperature heat reservoirs. Based on the derived analytical formulae for the dimensionless power output and efficiency, the efficiency optimization is performed in two aspects. The first is to search the optimum heat conductance distribution corresponding to the efficiency optimization among the hot- and cold-side of the heat reservoirs and the high temperature heat exchangers for a fixed total heat exchanger inventory. The second is to search the optimum thermal capacitance rate matching corresponding to the maximum efficiency between the working fluid and the high-temperature heat reservoir for a fixed ratio of the thermal capacitance rates of the two heat reservoirs. The influences of some design parameters on the optimum heat conductance distribution, the optimum thermal capacitance rate matching and the maximum power output, which include the inlet temperature ratio of the two heat reservoirs, the efficiencies of the compressor and the gas turbine, and the total pressure recovery coefficient, are provided by numerical examples. The power plant configuration under optimized operation condition leads to a smaller size, including the compressor, turbine, two heat reservoirs and the HTHE.

  20. Heat engine by exorcism of Maxwell Demon using spin angular momentum reservoir

    NASA Astrophysics Data System (ADS)

    Bedkihal, Salil; Wright, Jackson; Vaccaro, Joan; Gould, Tim

    Landauer's erasure principle is a hallmark in thermodynamics and information theory. According to this principle, erasing one bit of information incurs a minimum energy cost. Recently, Vaccaro and Barnett (VB) have explored the role of multiple conserved quantities in memory erasure. They further illustrated that for the energy degenerate spin reservoirs, the cost of erasure can be solely in terms of spin angular momentum and no energy. Motivated by the VB erasure, in this work we propose a novel optical heat engine that operates under a single thermal reservoir and a spin angular momentum reservoir. The novel heat engine exploits ultrafast processes of phonon absorption to convert thermal phonon energy to coherent light. The entropy generated in this process then corresponds to a mixture of spin up and spin down populations of energy degenerate electronic ground states which acts as demon's memory. This information is then erased using a polarised spin reservoir that acts as an entropy sink. The proposed heat engines goes beyond the traditional Carnot engine.

  1. A Review of Methods Applied by the U.S. Geological Survey in the Assessment of Identified Geothermal Resources

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.

    2008-01-01

    The U. S. Geological Survey (USGS) is conducting an updated assessment of geothermal resources in the United States. The primary method applied in assessments of identified geothermal systems by the USGS and other organizations is the volume method, in which the recoverable heat is estimated from the thermal energy available in a reservoir. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. The new assessment will incorporate some changes in the models for temperature and depth ranges for electric power production, preferred chemical geothermometers for estimates of reservoir temperatures, estimates of reservoir volumes, and geothermal energy recovery factors. Monte Carlo simulations are used to characterize uncertainties in the estimates of electric power generation. These new models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of natural geothermal reservoirs.

  2. Integration of seismic and petrophysics to characterize reservoirs in "ALA" oil field, Niger Delta.

    PubMed

    Alao, P A; Olabode, S O; Opeloye, S A

    2013-01-01

    In the exploration and production business, by far the largest component of geophysical spending is driven by the need to characterize (potential) reservoirs. The simple reason is that better reservoir characterization means higher success rates and fewer wells for reservoir exploitation. In this research work, seismic and well log data were integrated in characterizing the reservoirs on "ALA" field in Niger Delta. Three-dimensional seismic data was used to identify the faults and map the horizons. Petrophysical parameters and time-depth structure maps were obtained. Seismic attributes was also employed in characterizing the reservoirs. Seven hydrocarbon-bearing reservoirs with thickness ranging from 9.9 to 71.6 m were delineated. Structural maps of horizons in six wells containing hydrocarbon-bearing zones with tops and bottoms at range of -2,453 to -3,950 m were generated; this portrayed the trapping mechanism to be mainly fault-assisted anticlinal closures. The identified prospective zones have good porosity, permeability, and hydrocarbon saturation. The environments of deposition were identified from log shapes which indicate a transitional-to-deltaic depositional environment. In this research work, new prospects have been recommended for drilling and further research work. Geochemical and biostratigraphic studies should be done to better characterize the reservoirs and reliably interpret the depositional environments.

  3. Environmental impact assessments of the Xiaolangdi Reservoir on the most hyperconcentrated laden river, Yellow River, China.

    PubMed

    Kong, Dongxian; Miao, Chiyuan; Wu, Jingwen; Borthwick, Alistair G L; Duan, Qingyun; Zhang, Xiaoming

    2017-02-01

    The Yellow River is the most hyperconcentrated sediment-laden river in the world. Throughout recorded history, the Lower Yellow River (LYR) experienced many catastrophic flood and drought events. To regulate the LYR, a reservoir was constructed at Xiaolangdi that became operational in the early 2000s. An annual water-sediment regulation scheme (WSRS) was then implemented, aimed at flood control, sediment reduction, regulated water supply, and power generation. This study examines the eco-environmental and socioenvironmental impacts of Xiaolangdi Reservoir. In retrospect, it is found that the reservoir construction phase incurred huge financial cost and required large-scale human resettlement. Subsequent reservoir operations affected the local geological environment, downstream riverbed erosion, evolution of the Yellow River delta, water quality, and aquatic biodiversity. Lessons from the impact assessment of the Xiaolangdi Reservoir are summarized as follows: (1) The construction of large reservoirs is not merely an engineering challenge but must also be viewed in terms of resource exploitation, environmental protection, and social development; (2) long-term systems for monitoring large reservoirs should be established, and decision makers involved at national policy and planning levels must be prepared to react quickly to the changing impact of large reservoirs; and (3) the key to solving sedimentation in the LYR is not Xiaolangdi Reservoir but instead soil conservation in the middle reaches of the Yellow River basin. Proper assessment of the impacts of large reservoirs will help promote development strategies that enhance the long-term sustainability of dam projects.

  4. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan Kelkar

    2002-03-31

    The West Carney Field in Lincoln County, Oklahoma is one of few newly discovered oil fields in Oklahoma. Although profitable, the field exhibits several unusual characteristics. These include decreasing water-oil ratios, decreasing gas-oil ratios, decreasing bottomhole pressures during shut-ins in some wells, and transient behavior for water production in many wells. This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. We propose a geological history that explains the presence of mobile water and oil in the reservoir. The combination of matrix and fractures in the reservoir explains the reservoir's flow behavior. Wemore » confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.« less

  5. Unconventional energy resources: 2015 review. Shale gas and liquids

    USGS Publications Warehouse

    Fishman, Neil S.; Bowker, Kent; Cander, Harris; Cardott, Brian; Charette, Marc; Chew, Kenneth; Chidsey, Thomas; Dubiel, Russell F.; Egenhoff, Sven O.; Enomoto, Catherine B.; Hammes, Ursula; Harrison, William; Jiang, Shu; LeFever, Julie A.; McCracken, Jock; Nordeng, Stephen; Nyahay, Richard; Sonnenberg, Stephen; Vanden Berg, Michael; ,

    2015-01-01

    Introduction As the source rocks from which petroleum is generated, organic-rich shales have always been considered an important component of petroleum systems. Over the last few years, it has been realized that in some mudrocks, sufficient hydrocarbons remain in place to allow for commercial development, although advanced drilling and completion technology is typically required to access hydrocarbons from these reservoirs. Tight oil reservoirs (also referred to as continuous oil accumulations) contain hydrocarbons migrated from source rocks that are geologically/stratigraphically interbedded with or occur immediately overlying/underlying them. Migration is minimal in charging these tight oil accumulations (Gaswirth and Marra 2014). Companies around the world are now successfully exploiting organic-rich shales and tight rocks for contained hydrocarbons, and the search for these types of unconventional petroleum reservoirs is growing. Unconventional reservoirs range in geologic age from Ordovician to Tertiary (Silverman et al. 2005; EIA 2013a). 

  6. Effects of May through July 2015 storm events on suspended sediment loads, sediment trapping efficiency, and storage capacity of John Redmond Reservoir, east-central Kansas

    USGS Publications Warehouse

    Foster, Guy M.

    2016-06-20

    The U.S. Geological Survey, in cooperation with the Kansas Water Office, computed the suspended-sediment inflows and retention in John Redmond Reservoir during May through July 2015. Computations relied upon previously published turbidity-suspended sediment relations at water-quality monitoring sites located upstream and downstream from the reservoir. During the 3-month period, approximately 872,000 tons of sediment entered the reservoir, and 57,000 tons were released through the reservoir outlet. The average monthly trapping efficiency during this period was 93 percent, and monthly averages ranged from 83 to 97 percent. During the study period, an estimated 980 acre-feet of storage was lost, over 2.4 times the design annual sedimentation rate of the reservoir. Storm inflows during the 3-month analysis period reduced reservoir storage in the conservation pool approximately 1.6 percent. This indicates that large inflows, coupled with minimal releases, can have substantial effects on reservoir storage and lifespan.

  7. Development of a Systemwide Predator Control Program, Section II : Northern Squawfish Management Program Evaluation, 1996 annual report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Franklin R.

    1997-11-01

    Predator control fisheries aimed at reducing predation on juvenile salmonids by northern squawfish Ptychocheilus oregonensis were implemented for the seventh consecutive year in the mainstem Columbia and Snake rivers. In this report, we (1) evaluate northern squawfish exploitation and size composition, and compare catch rate of incidentally-harvested fishes among the three major management fisheries in 1996, (2) estimate reductions in predation on juvenile salmonids since implementation of the fisheries, and (3) evaluate changes from 1990-96 in relative abundance, consumption, size and age structure, growth, and fecundity of northern squawfish. Systemwide exploitation of northern squawfish 2 250 mm fork length wasmore » 12.1% for sport-reward, 0.3% for dam-angling, and 0.5% for site-specific gill-net fisheries. Total exploitation was lowest in Lower Monumental Reservoir (0.0%) and highest in McNary Reservoir (18.2%). Mean fork length of harvested northern squawfish was 355 mm in the sport-reward, 391 mm in the dam-angling, and 408 mm in the gill-net fisheries. The dam-angling fishery had the lowest percentage (3.6%) of incidental catch relative to the total number of fish caught. Incidental catch was 27.0% in the sport-reward fishery and 54.6% in the gill-net fishery. If exploitation rates remain similar to mean 1991-96 levels, we estimate that potential predation by northern squawfish on juvenile salmonids in 1997 will be approximately 62% of predation levels prior to the implementation of removal fisheries. Further reductions in predation may be small, unless average exploitation in future years is higher than 1994-96 levels. Relative abundance of northern squawfish declined slightly from 1995 in Bonneville Reservoir, Lower Monumental Dam tailrace, and Little Goose Dam tailrace. Mean abundance for 1994-96 was 48-60% of 1990-93 levels among areas sampled at least five years. Indices of consumption were lower than 1995 in all areas except during summer in the tailrace boat-restricted zones of Bonneville and The Dalles dams. Predation indices have declined 69% from pre- 1994 levels. Decreases in proportional stock density were greater than could be explained by fluctuations in year-class strength, strongly suggesting that sustained removals may be altering the size structure of predator-sized northern squawfish. We found no evidence that northern squawfish have compensated in growth or fecundity in response to sustained exploitation.« less

  8. Double-wall tubing for oil recovery

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Carroll, W. F.; Jaffee, L. D.; Stimpson, L. D.

    1980-01-01

    Insulated double-wall tubing designed for steam injection oil recovery makes process more economical and allows deeper extension of wells. Higher quality wet steam is delivered through tubing to oil deposits with significant reductions in heat loss to surrounding rock allowing greater exploitation of previously unworkable reservoirs.

  9. Hydrology of the Greater Tongonan Geothermal system, Philippines and its implications to field exploitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seastres, J.S. Jr.; Salonga, N.D.; Saw, V.S.

    1996-12-31

    The Greater Tongonan Geothermal Field will be operating a total of 694 MWe by July 1997. The field has produced steam for the 112.5 MWe Tongonan I power plant since June 1983. With massive fluid withdrawal starting July 1996, a pre-commissioning hydrology was constructed to assess its implications to field exploitation. Pressure drawdown centered at well 106 in Mahiao was induced by fluid withdrawal at Tongonan-I production field. This drawdown will be accelerated by major steam withdrawal (734 kg/s) upon commissioning of power plants at Mahiao, Sambaloran and Malitbog sectors. To resolve this concern, fluid injection will be conducted atmore » the periphery of Mahiao to provide recharge of reheated reinjection fluids in the reservoir. At Mahanagdong, the acidic fluid breakthrough will unlikely occur since the acidic zone north of this sector is not hydrologically well-connected to the main neutral-pH reservoir as indicated by pressure profiles.« less

  10. CO2 injection into submarine, CH4-hydrate bearing sediments: Parameter studies towards the development of a hydrate conversion technology

    NASA Astrophysics Data System (ADS)

    Deusner, Christian; Bigalke, Nikolaus; Kossel, Elke; Haeckel, Matthias

    2013-04-01

    In the recent past, international research efforts towards exploitation of submarine and permafrost hydrate reservoirs have increased substantially. Until now, findings indicate that a combination of different technical means such as depressurization, thermal stimulation and chemical activation is the most promising approach for producing gas from natural hydrates. Moreover, emission neutral exploitation of CH4-hydrates could potentially be achieved in a combined process with CO2 injection and storage as CO2-hydrate. In the German gas hydrate initiative SUGAR, a combination of experimental and numerical studies is used to elucidate the process mechanisms and technical parameters on different scales. Experiments were carried out in the novel high-pressure flow-through system NESSI (Natural Environment Simulator for sub-Seafloor Interactions). Recent findings suggest that the injection of heated, supercritical CO2 is beneficial for both CH4 production and CO2 retention. Among the parameters tested so far are the CO2 injection regime (alternating vs. continuous injection) and the reservoir pressure / temperature conditions. Currently, the influence of CO2 injection temperature is investigated. It was shown that CH4 production is optimal at intermediate reservoir temperatures (8 ° C) compared to lower (2 ° C) and higher temperatures (10 ° C). The reservoir pressure, however, was of minor importance for the production efficiency. At 8 ° C, where CH4- and CO2-hydrates are thermodynamically stable, CO2-hydrate formation appears to be slow. Eventual clogging of fluid conduits due to CO2-rich hydrate formation force open new conduits, thereby tapping different regions inside the CH4-hydrate sample volume for CH4gas. In contrast, at 2 ° C immediate formation of CO2-hydrate results in rapid and irreversible obstruction of the entire pore space. At 10 ° C pure CO2-hydrates can no longer be formed. Consequently the injected CO2 flows through quickly and interaction with the reservoir is minimized. Our results clearly indicate that the formation of mixed CH4-CO2-hydrates is an important aspect in the conversion process. The experimental studies have shown that the injection of heated CO2 into the hydrate reservoir induces a variety of spatial and temporal processes which result in substantial bulk heterogeneity. Current numerical simulators are not able to predict these process dynamics and it is important to improve available transport-reaction models (e.g. to include the effect of bulk sediment permeability on the conversion dynamics). Our results confirm that experimental studies are important to better understand the mechanisms of hydrate dissociation and conversion at CO2-injection conditions as a basis towards the development of a suitable hydrate conversion technology. The application of non-invasive analytical methods such as Magnetic Resonance Imaging (MRI) and Raman microscopy are important tools, which were applied to resolve process dynamics on the pore scale. Additionally, the NESSI system is being modified to allow high-pressure flow-through experiments under triaxial loading to better simulate hydrate-sediment mechanics. This aspect is important for overall process development and evaluation of process safety issues.

  11. Internal Surface Adsorption of Methane in the Microporous and the Mesoporous Montmorillonite Models

    NASA Astrophysics Data System (ADS)

    Shao, Changjin; Nie, Dakai; Zhai, Zengqiang; Yang, Zhenqing

    2018-05-01

    Due to the rising worldwide energy demands and the shortage of natural gas resources, the development of shale gas has become the new research focus in the field of novel energy resources. To understand the adsorption mechanism of shale gas in the reservoir, we use grand canonical Monte Carlo (GCMC) method to investigate the internal surface adsorption behavior of methane (main component of shale gas) in microporous and mesoporous montmorillonite materials for changing pressure, temperature and surface spacing. The results show that the adsorption capacity of methane decreases with increasing temperature while increasing as the surface spacing increases. Especially, the adsorption isotherm of the microporous model has a mutation when the surface spacing is about 10 ˚A. According to the trend for the change in the adsorption capacity, the best scheme for the exploitation of shale gas can be selected so that the mining efficiency is greatly improved.

  12. Application of random seismic inversion method based on tectonic model in thin sand body research

    NASA Astrophysics Data System (ADS)

    Dianju, W.; Jianghai, L.; Qingkai, F.

    2017-12-01

    The oil and gas exploitation at Songliao Basin, Northeast China have already progressed to the period with high water production. The previous detailed reservoir description that based on seismic image, sediment core, borehole logging has great limitations in small scale structural interpretation and thin sand body characterization. Thus, precise guidance for petroleum exploration is badly in need of a more advanced method. To do so, we derived the method of random seismic inversion constrained by tectonic model.It can effectively improve the depicting ability of thin sand bodies, combining numerical simulation techniques, which can credibly reducing the blindness of reservoir analysis from the whole to the local and from the macroscopic to the microscopic. At the same time, this can reduce the limitations of the study under the constraints of different geological conditions of the reservoir, accomplish probably the exact estimation for the effective reservoir. Based on the research, this paper has optimized the regional effective reservoir evaluation and the productive location adjustment of applicability, combined with the practical exploration and development in Aonan oil field.

  13. Modelling of Bouillante geothermal field (Guadeloupe, French West Indies)

    NASA Astrophysics Data System (ADS)

    Lakhssassi, Morad; Lopez, Simon; Calcagno, Philippe; Bouchot, Vincent

    2010-05-01

    The French islands of West Indies are experiencing rapid population growth. There is a consequent rise in energy demand with a high dependence on oil. In this context, and given their volcanic origin, the development of geothermal high energy in these islands is economically and environmentally interesting. Since the commissioning of the second production unit of the plant of Bouillante in 2005, geothermal energy provides 6 to 8% of electricity consumption energy of the Guadeloupe island. Yet, the geothermal fluid withdrawal was tripled which induced an increase in the quantity of separated brines which are cooled and mixed with sea water before disposal to the sea. It also caused a change in the Bouillante reservoir behavior and well head pressures evolution with a quick and steady pressure drop. Consequently, to optimize the exploitation of the geothermal resource, there was need to better characterize the reservoir, predict pressures evolution and plan reinjection of the separated brines. With this aim in view, available data were gathered to build a geological model integrating both regional and reservoir scale data. In parallel, a 3D hydrodynamic model using the computer code TOUGH 2 is developed to study and predict the behavior of pressure and temperature of Bouillante geothermal field during its exploitation and evaluate the contribution of reinjection to exploitation strategy. Both models should ultimately be linked. The hydrodynamic model is centered on neighboring wells BO-4, BO-5 and BO-6 which are the three producing wells at the moment. The old producing well BO-2 is now used to monitor pressure evolutions at the top of the reservoir. As a first step, model parameters were fitted to reproduce the pressure interference between the three wells recorded between July 2002 and April 2003 when well BO-5 was the only producing well. The model reproduces the hydrodynamic properties of the reservoir via the MINC method (Multiple INteracting Continua). (Pruess, 1992) which generalizes the "dual porosity" model (Warren and Root, 1963). The reservoir is conceptually decomposed into a "fracture" medium and a "matrix" one, each characterized by specific properties such as porosity, permeability and pore compressibility. Both media communicate with the possibility for the flow of matter or heat between fracture and matrix and between different fractures, possibly taking also into account the flow between matrix elements ("dual permeability"). Simulations were fitted to data both manually and automatically. Manual fit of parameters allowed the physical understanding of the influence of each parameter on the pressure curves. Yet, given the multitude of parameters and the large number of simulations to run, we also performed an automatic fit using optimization algorithms from the scipy optimization module. The resulting curves satisfactorily reproduce the measurement curves, especially the rapid pressure transients characterizing fractured media. The next step is to couple the hydrodynamic model to the 3D geological model incorporating information on the geothermal reservoir in terms of fracturation and the correlated distribution of petrophysical parameters…

  14. Incorporating reservoir heterogeneity with geostatistics to investigate waterflood recoveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolcott, D.S.; Chopra, A.K.

    1993-03-01

    This paper presents an investigation of infill drilling performance and reservoir continuity with geostatistics and a reservoir simulator. The geostatistical technique provides many possible realizations and realistic descriptions of reservoir heterogeneity. Correlation between recovery efficiency and thickness of individual sand subunits is shown. Additional recovery from infill drilling results from thin, discontinuous subunits. The technique may be applied to variations in continuity for other sandstone reservoirs.

  15. Improved Efficiency of Miscible CO(2) Floods and Enhanced Prospects for CO(2) Flooding Heterogeneous Reservoirs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigg, R.B.; Schechter, D.S.

    The overall goal of this project was to improve the efficiency of miscible C0{sub 2} floods and enhance the prospects for flooding heterogeneous reservoirs. This objective was accomplished through experimental and modeling research in three task areas: (1) foams for selective mobility control in heterogeneous reservoirs,( 2) reduction of the amount of C0{sub 2} required in C0{sub 2} floods, and (3) low IFT processe and the possibility of C0{sub 2} flooding in fractured reservoirs. This report provides results from the three-year project for each of the three task areas.

  16. Drainage-system development in consecutive melt seasons at a polythermal, Arctic glacier, evaluated by flow-recession analysis and linear-reservoir simulation.

    PubMed

    Hodgkins, Richard; Cooper, Richard; Tranter, Martyn; Wadham, Jemma

    2013-07-26

    [1] The drainage systems of polythermal glaciers play an important role in high-latitude hydrology, and are determinants of ice flow rate. Flow-recession analysis and linear-reservoir simulation of runoff time series are here used to evaluate seasonal and inter-annual variability in the drainage system of the polythermal Finsterwalderbreen, Svalbard, in 1999 and 2000. Linear-flow recessions are pervasive, with mean coefficients of a fast reservoir varying from 16 (1999) to 41 h (2000), and mean coefficients of an intermittent, slow reservoir varying from 54 (1999) to 114 h (2000). Drainage-system efficiency is greater overall in the first of the two seasons, the simplest explanation of which is more rapid depletion of the snow cover. Reservoir coefficients generally decline during each season (at 0.22 h d -1 in 1999 and 0.52 h d -1 in 2000), denoting an increase in drainage efficiency. However, coefficients do not exhibit a consistent relationship with discharge. Finsterwalderbreen therefore appears to behave as an intermediate case between temperate glaciers and other polythermal glaciers with smaller proportions of temperate ice. Linear-reservoir runoff simulations exhibit limited sensitivity to a relatively wide range of reservoir coefficients, although the use of fixed coefficients in a spatially lumped model can generate significant subseasonal error. At Finsterwalderbreen, an ice-marginal channel with the characteristics of a fast reservoir, and a subglacial upwelling with the characteristics of a slow reservoir, both route meltwater to the terminus. This suggests that drainage-system components of significantly contrasting efficiencies can coexist spatially and temporally at polythermal glaciers.

  17. A Study of the Optimal Planning Model for Reservoir Sustainable Management- A Case Study of Shihmen Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ho, C. C.; Chang, L. C.

    2017-12-01

    The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.

  18. Underground Pumped Storage Hydropower using abandoned open pit mines: influence of groundwater seepage on the system efficiency

    NASA Astrophysics Data System (ADS)

    Pujades, Estanislao; Bodeux, Sarah; Orban, Philippe; Dassargues, Alain

    2016-04-01

    Pumped Storage Hydropower (PSH) plants can be used to manage the production of electrical energy according to the demand. These plants allow storing and generating electricity during low and high demand energy periods, respectively. Nevertheless, PSH plants require a determined topography because two reservoirs located at different heights are needed. At sites where PSH plants cannot be constructed due to topography requirements (flat regions), Underground Pumped Storage Hydropower (UPSH) plants can be used to adjust the electricity production. These plants consist in two reservoirs, the upper one is located at the surface (or at shallow depth) while the lower one is underground (or deeper). Abandoned open pit mines can be used as lower reservoirs but these are rarely isolated. As a consequence, UPSH plants will interact with surrounding aquifers exchanging groundwater. Groundwater seepage will modify hydraulic head inside the underground reservoir affecting global efficiency of the UPSH plant. The influence on the plant efficiency caused by the interaction between UPSH plants and aquifers will depend on the aquifer parameters, underground reservoir properties and pumping and injection characteristics. The alteration of the efficiency produced by the groundwater exchanges, which has not been previously considered, is now studied numerically. A set of numerical simulations are performed to establish in terms of efficiency the effects of groundwater exchanges and the optimum conditions to locate an UPSH plant.

  19. Real-time management of a multipurpose water reservoir with a heteroscedastic inflow model

    NASA Astrophysics Data System (ADS)

    Pianosi, F.; Soncini-Sessa, R.

    2009-10-01

    Stochastic dynamic programming has been extensively used as a method for designing optimal regulation policies for water reservoirs. However, the potential of this method is dramatically reduced by its computational burden, which often forces to introduce strong approximations in the model of the system, especially in the description of the reservoir inflow. In this paper, an approach to partially remedy this problem is proposed and applied to a real world case study. It foresees solving the management problem on-line, using a reduced model of the system and the inflow forecast provided by a dynamic model. By doing so, all the hydrometeorological information that is available in real-time is fully exploited. The model here proposed for the inflow forecasting is a nonlinear, heteroscedastic model that provides both the expected value and the standard deviation of the inflow through dynamic relations. The effectiveness of such model for the purpose of the reservoir regulation is evaluated through simulation and comparison with the results provided by conventional homoscedastic inflow models.

  20. Chemical equilibria of thermal waters for the application of geothermometers from the Guanzhong basin, China

    NASA Astrophysics Data System (ADS)

    Xilai, Zheng; Armannsson, Halldor; Yongle, Li; Hanxue, Qiu

    2002-03-01

    In this study, representative samples from thermal wells and springs were chemically analyzed and geothermometers were used to calculate the deep temperatures of geothermal reservoirs on the basis of water-mineral equilibrium. In some cases, however, the chemical components are not in equilibrium with the minerals in the reservoir. Therefore, log( Q/ K) diagrams are used to study the chemical equilibrium for the minerals that are likely to participate. The Na-K-Mg triangular diagram is also applied to evaluate the equilibrium of water with reservoir rocks. Standard curves at the reference temperatures are prepared to reveal which type of silica geothermometer is appropriate for the specified condition. This study shows that water samples from geothermal wells W9 and W12 are in equilibrium with the selective minerals, and chalcedony may control the fluid-silica equilibrium. It is estimated that there is an exploitable low-temperature reservoir with possible temperatures of 80-90°C in the Guanzhong basin.

  1. A micrometre-sized heat engine operating between bacterial reservoirs

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Sudeesh; Ghosh, Subho; Chatterji, Dipankar; Ganapathy, Rajesh; Sood, A. K.

    2016-12-01

    Artificial microscale heat engines are prototypical models to explore the mechanisms of energy transduction in a fluctuation-dominated regime. The heat engines realized so far on this scale have operated between thermal reservoirs, such that stochastic thermodynamics provides a precise framework for quantifying their performance. It remains to be seen whether these concepts readily carry over to situations where the reservoirs are out of equilibrium, a scenario of particular importance to the functioning of synthetic and biological microscale engines and motors. Here, we experimentally realize a micrometre-sized active Stirling engine by periodically cycling a colloidal particle in a time-varying optical potential across bacterial baths characterized by different degrees of activity. We find that the displacement statistics of the trapped particle becomes increasingly non-Gaussian with activity and contributes substantially to the overall power output and the efficiency. Remarkably, even for engines with the same energy input, differences in non-Gaussianity of reservoir noise results in distinct performances. At high activities, the efficiency of our engines surpasses the equilibrium saturation limit of Stirling efficiency, the maximum efficiency of a Stirling engine where the ratio of cold to hot reservoir temperatures is vanishingly small. Our experiments provide fundamental insights into the functioning of micromotors and engines operating out of equilibrium.

  2. Enhanced Assimilation of InSAR Displacement and Well Data for Groundwater Monitoring

    NASA Astrophysics Data System (ADS)

    Abdullin, A.; Jonsson, S.

    2016-12-01

    Ground deformation related to aquifer exploitation can cause damage to buildings and infrastructure leading to major economic losses and sometimes even loss of human lives. Understanding reservoir behavior helps in assessing possible future ground movement and water depletion hazard of a region under study. We have developed an InSAR-based data assimilation framework for groundwater reservoirs that efficiently incorporates InSAR data for improved reservoir management and forecasts. InSAR displacement data are integrated with the groundwater modeling software MODFLOW using ensemble-based assimilation approaches. We have examined several Ensemble Methods for updating model parameters such as hydraulic conductivity and model variables like pressure head while simultaneously providing an estimate of the uncertainty. A realistic three-dimensional aquifer model was built to demonstrate the capability of the Ensemble Methods incorporating InSAR-derived displacement measurements. We find from these numerical tests that including both ground deformation and well water level data as observations improves the RMSE of the hydraulic conductivity estimate by up to 20% comparing to using only one type of observations. The RMSE estimation of this property after the final time step is similar for Ensemble Kalman Filter (EnKF), Ensemble Smoother (ES) and ES with multiple data assimilation (ES-MDA) methods. The results suggest that the high spatial and temporal resolution subsidence observations from InSAR are very helpful for accurately quantifying hydraulic parameters. We have tested the framework on several different examples and have found good performance in improving aquifer properties estimation, which should prove useful for groundwater management. Our ongoing work focuses on assimilating real InSAR-derived time series and hydraulic head data for calibrating and predicting aquifer properties of basin-wide groundwater systems.

  3. Spatial and temporal variation in proportional stock density and relative weight of smallmouth bass in a reservoir

    USGS Publications Warehouse

    Mesa, Matthew G.; Duke, S.D.; Ward, David L.

    1990-01-01

    Population data for smallmouth bass Micropterus dolomieui in 20,235 ha John Day Reservoir on the Columbia River were used to (1) determine whether Proportional Stock Density (PSD) and Relative Weight (Wr) varied spatially and temporally in two areas of the reservoir with established smallmouth bass fisheries; (2) explore possible causes of any observed variation; and (3) discuss some management implications and recommendations. Both PSD and Wr varied spatially and monthly in all years examined. On an annual basis, PSD varied at one area but not at the other, whereas Wr showed little variation. Possible explanations for the variation in PSD and Wr are differences in growth, mortality, recruitment, and exploitation. Our data suggested that regulations established or changed on a reservoir-wide basis may have different effects on the fishery, depending on location in the reservoir. Also, pooling data from various areas within a reservoir to yield point estimates of structural indices may not represent the variation present in the population as a whole. The significant temporal variability reflects the importance of determining the proper time to sample fish to yield representative estimates of the variable of interest. In areas with valuable fisheries or markedly different population structures, we suggest that an area-specific approach be made to reservoir fishery management, and that efforts be made toward effecting consistent harvest regulations in interstate waters.

  4. Beneficial effects of groundwater entry into liquid-dominated geothermal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lippmann, M.J.; Truesdell, A.H.

    In all active liquid-dominated geothermal systems there is continuous circulation of mass and transfer of heat, otherwise they would slowly cool and fade away. In the natural state these systems are in dynamic equilibrium with the surrounding colder groundwater aquifers. The ascending geothermal fluids cool conductively, boil, or mix with groundwaters, and ultimately may discharge at the surface as fumaroles or hot springs. With the start of fluid production and the lowering of reservoir pressure, the natural equilibrium is disrupted and cooler groundwater tends to enter the reservoir. Improperly constructed or damaged wells, and wells located near the margins ofmore » the geothermal system, exhibit temperature reductions (and possibly scaling from mixing of chemically distinct fluids) as the cooler-water moves into the reservoir. These negative effects, especially in peripheral wells are, however, compensated by the maintenance of reservoir pressure and a reduction in reservoir boiling that might result in mineral precipitation in the formation pores and fractures. The positive effect of cold groundwater entry on the behavior of liquid-dominated system is illustrated by using simple reservoir models. The simulation results show that even though groundwater influx into the reservoir causes cooling of fluids produced from wells located near the cold-water recharge area, it also reduces pressure drawdown and boiling in the exploited zone, and sweeps the heat stored in the reservoir rocks toward production wells, thus increasing the productive life of the wells and field. 9 refs.« less

  5. Reservoir description and future development plans for the Unam/Mfem Fields, OML 67, Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kofron, B.M.; Jenkinson, J.T.; Maxwell, G.S.

    1995-08-01

    The Unam/Mfem fields, which are currently produced from three platforms, are, located 25 km offshore (southeastern Nigeria) in water depths of 60 feet to 100 feet. Over 100 MMBO have been produced to date from both unconformity bounded and fault trap reservoirs in the Upper and Middle Biafra Sands. These structural and stratigraphic geometries define at least eleven different reservoirs that are not interconnected. STOIIP for all eleven reservoirs is estimated to exceed 900 MMBO based on a recently completed reservoir characterization study. A two year reservoir description study followed the acquisition of a 1991 3-D seismic survey and resultedmore » in the drilling of six successful wells and two sidetracks. A 3-D model of reservoir geometries and fluid flow properties was generated by integrating geologic, geophysical, and reservoir engineering data. These diverse data sets were interpreted using a combination of workstations, software packages, and displays that included Landmark, IREX, wireline log and seismic correlation charts. A detailed stratigraphic zonation scheme with 28 zones was defined and correlated field wide and subregionally to build the reservoir framework. Twenty seismic horizons were created. More than 300 critical compute, generated grids were then used to calculate STOIIP volumes. This study led to the identification of new pay zones along with a much better understanding of the spatial distribution of all pays within the fields. A revised exploitation strategy has subsequently been proposed which calls for 5 new platforms and the drilling of 21 additional wells over the next few years.« less

  6. Hydrogeologic controls on saturation profiles in heat-pipe-like hydrothermal systems: numerical study

    NASA Astrophysics Data System (ADS)

    Pervin, Mollika; Ghergut, Iulia; Graf, Thomas; Peche, Aaron

    2016-04-01

    Most geothermal reservoirs are of the liquid-dominated type, and their unexploited-state pressure profile approximately follows the hydrostatic gradient. In very hot liquid-dominated systems, temperature typically follows a boiling-point-for-depth (BPD) relationship. By contrast, vapor-dominated systems exhibit (in their unexploited state) surprisingly small vertical gradients of temperature and pressure, such that a constantly high temperature is encountered over a large vertical thickness, while their pressure approximately follows vapour pressure, pvap(T°). This implies that (Pruess 1985, Truesdell and White 1973): (i) for a vapor-dominated reservoir to exist, it must be sealed laterally - otherwise it would be flooded by neighboring groundwaters with hydrostatic p profile, and (ii) liquid water should somehow be present in the whole system - otherwise p values would not be constrained by the pvap(T°) relationship for water. Historically, one of the most puzzling aspects of vapor-dominated systems was the large amount of heat flowing upwards, while vertical T° gradients remained negligible. This mechanism was deemed as 'heat pipe'(HP) (Eastman 1968): In the central zone of a vapor-dominated system, both vapor and liquid are mobile; vapor flows upwards, condenses at shallower depth, and the liquid condensate flows downwards. Due to the large amount of latent enthalpy released in vapor condensation, the vapor-liquid counter-flow can generate large rates of heat flow with negligible net mass transport (Pruess 1985). In order to be able to exploit two-phase (including vapor-dominated) reservoirs in a sustainable manner, one first needs to understand the conditions under which a two-phase (or a vapor-dominated) system has evolved naturally, and which have led to its present (quasi-) steady undisturbed state. Past studies have found that HP can exist in two distinct states, corresponding to liquid-dominated and vapor-dominated p profiles, respectively. Within this work, we explore some mechanisms and geologic controls that can lead to the formation of extensive vapor-dominated zones within a two-phase system. In particular, we investigate the effect of vertical heterogeneity of permeability (stratified reservoir, containing a permeability barrier) on the liquid water saturation profile within a modified HP model. Though in field observations liquid water has been directly encountered only within the condensation zone at reservoir top, it was speculated that large amounts of liquid water might also exist below the condensation zone. This is of great practical significance to the exploitation of vapor-dominated reservoirs, as their longevity depends on the fluid reserves in place. Within this work, we demonstrate by numerical simulations of a modified HP model that high values of liquid water saturation (>0.8) can prevail even far below the condensation zone. Such findings are useful as a baseline for future calculations regarding the economic exploitation of vapor-dominated systems, where premature productivity drop (or dry-out) is the main issue of concern. References: Eastman, G. Y:, 1968: The heat pipe. Scientific American, 218(5):38-46. Preuss, K. A., 1985: A quantitative model of vapor-dominated geothermal reservoirs as heat pipes in fractured porous rock, Transactions, Geothermal Resources. Council, 9(2), 353-361. Truesdell, A. H., and White, D.E. 1973: Production of superheated Steam from Vapor- dominated geothermal reservoirs. Geothermics, 2(3-4), 154-173

  7. How does the connectivity of open-framework conglomerates within multi-scale hierarchical fluvial architecture affect oil-sweep efficiency in waterflooding?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gershenzon, Naum I.; Soltanian, Mohamad Reza; Ritzi, Robert W.

    Understanding multi-phase fluid flow and transport processes within aquifers, candidate reservoirs for CO 2 sequestration, and petroleum reservoirs requires understanding a diverse set of geologic properties of the aquifer or reservoir, over a wide range of spatial and temporal scales. We focus on multiphase flow dynamics with wetting (e.g., water) and non-wetting (e.g., gas or oil) fluids, with one invading another. This problem is of general interest in a number of fields and is illustrated here by considering the sweep efficiency of oil during a waterflood. Using a relatively fine-resolution grid throughout a relatively large domain in these simulations andmore » probing the results with advanced scientific visualization tools (Reservoir Visualization Analysis [RVA]/ ParaView software) promote a better understanding of how smaller-scale features affect the aggregate behavior at larger scales. We studied the effects on oil-sweep efficiency of the proportion, hierarchical organization, and connectivity of high-permeability open-framework conglomerate (OFC) cross-sets within the multi-scale stratal architecture found in fluvial deposits. We further analyzed oil production rate, water breakthrough time, and spatial and temporal distribution of residual oil saturation. As expected, the effective permeability of the reservoir exhibits large-scale anisotropy created by the organization of OFC cross-sets within unit bars, and the organization of unit bars within compound- bars. As a result, oil-sweep efficiency critically depends on the direction of the pressure gradient. However, contrary to expectations, the total amount of trapped oil due to the effect of capillary trapping does not depend on the magnitude of the pressure gradient within the examined range. Hence the pressure difference between production and injection wells does not affect sweep efficiency; although the spatial distribution of oil remaining in the reservoir depends on this value. Whether or not clusters of connected OFC span the domain affects only the absolute rate of oil production—not sweep efficiency.« less

  8. How does the connectivity of open-framework conglomerates within multi-scale hierarchical fluvial architecture affect oil-sweep efficiency in waterflooding?

    DOE PAGES

    Gershenzon, Naum I.; Soltanian, Mohamad Reza; Ritzi, Robert W.; ...

    2015-10-23

    Understanding multi-phase fluid flow and transport processes within aquifers, candidate reservoirs for CO 2 sequestration, and petroleum reservoirs requires understanding a diverse set of geologic properties of the aquifer or reservoir, over a wide range of spatial and temporal scales. We focus on multiphase flow dynamics with wetting (e.g., water) and non-wetting (e.g., gas or oil) fluids, with one invading another. This problem is of general interest in a number of fields and is illustrated here by considering the sweep efficiency of oil during a waterflood. Using a relatively fine-resolution grid throughout a relatively large domain in these simulations andmore » probing the results with advanced scientific visualization tools (Reservoir Visualization Analysis [RVA]/ ParaView software) promote a better understanding of how smaller-scale features affect the aggregate behavior at larger scales. We studied the effects on oil-sweep efficiency of the proportion, hierarchical organization, and connectivity of high-permeability open-framework conglomerate (OFC) cross-sets within the multi-scale stratal architecture found in fluvial deposits. We further analyzed oil production rate, water breakthrough time, and spatial and temporal distribution of residual oil saturation. As expected, the effective permeability of the reservoir exhibits large-scale anisotropy created by the organization of OFC cross-sets within unit bars, and the organization of unit bars within compound- bars. As a result, oil-sweep efficiency critically depends on the direction of the pressure gradient. However, contrary to expectations, the total amount of trapped oil due to the effect of capillary trapping does not depend on the magnitude of the pressure gradient within the examined range. Hence the pressure difference between production and injection wells does not affect sweep efficiency; although the spatial distribution of oil remaining in the reservoir depends on this value. Whether or not clusters of connected OFC span the domain affects only the absolute rate of oil production—not sweep efficiency.« less

  9. A Comprehensive Well Testing Implementation during Exploration Phase in Rantau Dedap, Indonesia

    NASA Astrophysics Data System (ADS)

    Humaedi, M. T.; Alfiady; Putra, A. P.; Martikno, R.; Situmorang, J.

    2016-09-01

    This paper describes the implementation of comprehensive well testing programs during the 2014-2015 exploration drilling in Rantau Dedap Geothermal Field. The well testing programs were designed to provide reliable data as foundation for resource assessment as well as useful information for decision making during drilling. A series of well testing survey consisting of SFTT, completion test, heating-up downhole logging, discharge test, chemistry sampling was conducted to understand individual wells characteristics such as thermodynamic state of the reservoir fluid, permeability distribution, well output and fluid chemistry. Furthermore, interference test was carried out to investigate the response of reservoir to exploitation.

  10. Dendritic cells cross-present HIV antigens from live as well as apoptotic infected CD4+ T lymphocytes

    NASA Astrophysics Data System (ADS)

    Marañón, Concepción; Desoutter, Jean-François; Hoeffel, Guillaume; Cohen, William; Hanau, Daniel; Hosmalin, Anne

    2004-04-01

    A better understanding of the antigen presentation pathways that lead to CD8+ T cell recognition of HIV epitopes in vivo is needed to achieve better immune control of HIV replication. Here, we show that cross-presentation of very small amounts of HIV proteins from apoptotic infected CD4+ T lymphocytes by dendritic cells to CD8+ T cells is much more efficient than other known HIV presentation pathways, i.e., direct presentation of infectious virus or cross-presentation of defective virus. Unexpectedly, dendritic cells also take up actively antigens into endosomes from live infected CD4+ T lymphocytes and cross-present them as efficiently as antigens derived from apoptotic infected cells. Moreover, live infected CD4+ T cells costimulate cross-presenting dendritic cells in the process. Therefore, dendritic cells can present very small amounts of viral proteins from infected T cells either after apoptosis, which is frequent during HIV infection, or not. Thus, if HIV expression is transiently induced while costimulation is enhanced (for instance after IL-2 and IFN immune therapy), this HIV antigen presentation pathway could be exploited to eradicate latently infected reservoirs, which are poorly recognized by patients' immune systems.

  11. Design and development of bio-inspired framework for reservoir operation optimization

    NASA Astrophysics Data System (ADS)

    Asvini, M. Sakthi; Amudha, T.

    2017-12-01

    Frameworks for optimal reservoir operation play an important role in the management of water resources and delivery of economic benefits. Effective utilization and conservation of water from reservoirs helps to manage water deficit periods. The main challenge in reservoir optimization is to design operating rules that can be used to inform real-time decisions on reservoir release. We develop a bio-inspired framework for the optimization of reservoir release to satisfy the diverse needs of various stakeholders. In this work, single-objective optimization and multiobjective optimization problems are formulated using an algorithm known as "strawberry optimization" and tested with actual reservoir data. Results indicate that well planned reservoir operations lead to efficient deployment of the reservoir water with the help of optimal release patterns.

  12. Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.

    2017-12-01

    Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given power rating.

  13. 43 CFR 418.36 - Incentives for additional long term conservation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) There is a deficit created and remaining in Lahontan Reservoir from operations penalties in a prior year... expected efficiency, the District may store in Lahontan Reservoir two-thirds (2/3) of the additional water... reduced diversions to Lahontan Reservoir). This water will be considered incentive water saved from the...

  14. 43 CFR 418.36 - Incentives for additional long term conservation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) There is a deficit created and remaining in Lahontan Reservoir from operations penalties in a prior year... expected efficiency, the District may store in Lahontan Reservoir two-thirds (2/3) of the additional water... reduced diversions to Lahontan Reservoir). This water will be considered incentive water saved from the...

  15. Bridging the Gap between Chemical Flooding and Independent Oil Producers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan McCool; Tony Walton; Paul Whillhite

    2012-03-31

    Ten Kanas oil reservoirs/leases were studied through geological and engineering analysis to assess the potential performance of chemical flooding to recover oil. Reservoirs/leases that have been efficiently waterflooded have the highest performance potential for chemical flooding. Laboratory work to identify efficient chemical systems and to test the oil recovery performance of the systems was the major effort of the project. Efficient chemical systems were identified for crude oils from nine of the reservoirs/leases. Oil recovery performance of the identified chemical systems in Berea sandstone rocks showed 90+ % recoveries of waterflood residual oil for seven crude oils. Oil recoveries increasedmore » with the amount of chemical injected. Recoveries were less in Indiana limestone cores. One formulation recovered 80% of the tertiary oil in the limestone rock. Geological studies for nine of the oil reservoirs are presented. Pleasant Prairie, Trembley, Vinland and Stewart Oilfields in Kansas were the most favorable of the studied reservoirs for a pilot chemical flood from geological considerations. Computer simulations of the performance of a laboratory coreflood were used to predict a field application of chemical flooding for the Trembley Oilfield. Estimates of field applications indicated chemical flooding is an economically viable technology for oil recovery.« less

  16. Mechanical behaviour of the Krafla geothermal reservoir: Insight into an active magmatic hydrothermal system

    NASA Astrophysics Data System (ADS)

    Eggertsson, Guðjón H.; Lavallée, Yan; Kendrick, Jackie E.

    2017-04-01

    Krafla volcano, located in North-East Iceland, holds an active magmatic hydrothermal system. Since 1978, this system has been exploited for geothermal energy. Today it is exploited by Landsvirkjun National Power of Iceland and the system is generating 60 MWg from 18 wells, tapping into fluids at 200-300°C. In order to meet further demands of environmentally sustainable energy, Landsvirkjun aims to drill deeper and source fluids in the super-heated, super high-enthalpy system which resides deeper (at 400-600°C). In relation to this, the first well of the Icelandic Deep Drilling Project (IDDP) was drilled in Krafla in 2009. Drilling stopped at a depth of 2.1 km, when the drill string penetrated a rhyolitic magma body, which could not be bypassed despite attempts to side-track the well. This pioneering effort demonstrated that the area close to magma had great energy potential. Here we seek a constraint on the mechanical properties of reservoir rocks overlying the magmatic systems to gain knowledge on these systems to improve energy extraction. During two field surveys in 2015 and 2016, and through information gathered from drilling of geothermal wells, five main rock types were identified and sampled [and their porosities (i.e., storage capacities) where determined with a helium-pycnometer]: basalts (5-60% porosity), hyaloclastites (<35-45% porosity), obsidians (0.25-5% porosity), ignimbrites (13-18% porosity), and intrusive felsites and microgabbros (9-16% porosity). Samples are primarily from surface exposures, but selected samples were taken from cores drilled within the Krafla caldera, outside of the geothermal reservoir. Uniaxial and triaxial compressive strength tests have been carried out, as well as indirect tensile strength tests using the Brazilian disc method, to measure the rock strengths. The results show that the rock strength is inversely proportional to the porosity and strongly affected by the abundance of microcracks; some of the rocks are unusually weak considering their porosities, especially at low effective pressure as constrained at Krafla. The results also show that the porous lithologies may undergo significant compaction at relatively low loads (i.e., depth). Integration of the observed mechanical behaviour and associated permeability into future fluid flow simulations will aim to increase our understanding and exploitation of geothermal reservoirs.

  17. Thermodiffusion in multicomponent n-alkane mixtures.

    PubMed

    Galliero, Guillaume; Bataller, Henri; Bazile, Jean-Patrick; Diaz, Joseph; Croccolo, Fabrizio; Hoang, Hai; Vermorel, Romain; Artola, Pierre-Arnaud; Rousseau, Bernard; Vesovic, Velisa; Bou-Ali, M Mounir; Ortiz de Zárate, José M; Xu, Shenghua; Zhang, Ke; Montel, François; Verga, Antonio; Minster, Olivier

    2017-01-01

    Compositional grading within a mixture has a strong impact on the evaluation of the pre-exploitation distribution of hydrocarbons in underground layers and sediments. Thermodiffusion, which leads to a partial diffusive separation of species in a mixture due to the geothermal gradient, is thought to play an important role in determining the distribution of species in a reservoir. However, despite recent progress, thermodiffusion is still difficult to measure and model in multicomponent mixtures. In this work, we report on experimental investigations of the thermodiffusion of multicomponent n -alkane mixtures at pressure above 30 MPa. The experiments have been conducted in space onboard the Shi Jian 10 spacecraft so as to isolate the studied phenomena from convection. For the two exploitable cells, containing a ternary liquid mixture and a condensate gas, measurements have shown that the lightest and heaviest species had a tendency to migrate, relatively to the rest of the species, to the hot and cold region, respectively. These trends have been confirmed by molecular dynamics simulations. The measured condensate gas data have been used to quantify the influence of thermodiffusion on the initial fluid distribution of an idealised one dimension reservoir. The results obtained indicate that thermodiffusion tends to noticeably counteract the influence of gravitational segregation on the vertical distribution of species, which could result in an unstable fluid column. This confirms that, in oil and gas reservoirs, the availability of thermodiffusion data for multicomponent mixtures is crucial for a correct evaluation of the initial state fluid distribution.

  18. Numerical Modeling of Permeability Enhancement by Hydroshearing: the Case of Phase I Reservoir Creation at Fenton Hill

    NASA Astrophysics Data System (ADS)

    Rutqvist, J.; Rinaldi, A. P.

    2017-12-01

    The exploitation of a geothermal system is one of the most promising clean and almost inexhaustible forms of energy production. However, the exploitation of hot dry rock (HDR) reservoirs at depth requires circulation of a large amount of fluids. Indeed, the conceptual model of an Enhanced Geothermal System (EGS) requires that the circulation is enhanced by fluid injection. The pioneering experiments at Fenton Hill demonstrated the feasibility of EGS by producing the world's first HDR reservoirs. Such pioneering project demonstrated that the fluid circulation can be effectively enhanced by stimulating a preexisting fracture zone. The so-called "hydroshearing" involving shear activation of preexisting fractures is recognized as one of the main processes effectively enhancing permeability. The goal of this work is to quantify the effect of shear reactivation on permeability by proposing a model that accounts for fracture opening and shearing. We develop a case base on a pressure stimulation experiment at Fenton Hill, in which observation suggest that a fracture was jacked open by pressure increase. The proposed model can successfully reproduce such a behavior, and we compare the base case of pure elastic opening with the hydroshearing model to demonstrate that this latter could have occurred at the field, although no "felt" seismicity was observed. Then we investigate on the sensitivity of the proposed model by varying some of the critical parameters such as the maximum aperture, the dilation angle, as well as the fracture density.

  19. Improving multi-objective reservoir operation optimization with sensitivity-informed dimension reduction

    NASA Astrophysics Data System (ADS)

    Chu, J.; Zhang, C.; Fu, G.; Li, Y.; Zhou, H.

    2015-08-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed method dramatically reduces the computational demands required for attaining high-quality approximations of optimal trade-off relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed dimension reduction and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform dimension reduction of optimization problems when solving complex multi-objective reservoir operation problems.

  20. Improving multi-objective reservoir operation optimization with sensitivity-informed problem decomposition

    NASA Astrophysics Data System (ADS)

    Chu, J. G.; Zhang, C.; Fu, G. T.; Li, Y.; Zhou, H. C.

    2015-04-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce the computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed problem decomposition dramatically reduces the computational demands required for attaining high quality approximations of optimal tradeoff relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed problem decomposition and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform problem decomposition when solving the complex multi-objective reservoir operation problems.

  1. Effective Stress Law in Unconventional Reservoirs under Different Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Saurabh, S.; Harpalani, S.

    2017-12-01

    Unconventional reservoirs have attracted a great deal of research interest worldwide during the past two decades. Low permeability and specialized techniques required to exploit these resources present opportunities for improvement in both production rates and ultimate recovery. Understanding subsurface stress modifications and permeability evolution are valuable when evaluating the prospects of unconventional reservoirs. These reservoir properties are functions of effective stress. As a part of this study, effective stress law, specifically the variation of anisotropic Biot's coefficient under various boundary conditions believed to exist in gas reservoirs by different researchers, has been established. Pressure-dependent-permeability (PdK) experiments were carried out on San Juan coal under different boundary conditions, that is, uniaxial strain condition and constant volume condition. Stress and strain in the vertical and horizontal directions were monitored throughout the experiment. Data collected during the experiments was used to determine the Biot's coefficient in vertical and horizontal directions under these two boundary conditions, treating coal as transversely isotropic. The variation of Biot's coefficient was found to be well correlated with the variation in coal permeability. Based on the estimated values of Biot's coefficients, a theory of variation in its value is presented for other boundary conditions. The findings of the study shed light on the inherent behavior of Biot's coefficient under different reservoir boundary conditions. This knowledge can improve the modeling work requiring estimation of effective stress in reservoirs, such as, pressure-/stress- dependent permeability. At the same time, if the effective stresses are known with more certainty by other methods, it enables assessment of the unknown reservoir boundary conditions.

  2. Reservoir analysis of the Palinpinon geothermal field, Negros Oriental, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amistoso, A.E.; Aquino, B.G.; Aunzo, Z.P.

    1993-10-01

    The Philippine National Oil Company and Lawrence Berkeley Laboratory have conducted an informal cooperative project on the reservoir evaluation of the Palinpinon geothermal field in the Philippines. The work involved the development of various numerical models of the field in order to understand the observed data. A three-dimensional porous medium model of the reservoir has been developed that matches well the observed pressure declines and enthalpy transients of the wells. Submodels representing the reservoir as a fractured porous medium were developed for the analysis of chemical transport of chlorides within the reservoir and the movement of the cold water frontmore » away from injection wells. These models indicate that the effective porosity of the reservoir varies between 1 and 7% and the effective permeability between 1 and 45 millidarcies. The numerical models were used to predict the future performance of the Palinpinon reservoir using various possible exploitation scenarios. A limited number of make-up wells were allocated to each sector of the field. When all the make-up wells had been put on line, power production gradually began to decline. The model indicates that under the assumed conditions it will not be possible to maintain the planned power production of 112.5 MWe at Palinpinon I and 80 MWe at Palinpinon II for the next 30 years, but the decline in power output will be within acceptable normal operating capacities of the plants.« less

  3. Deposition and simulation of sediment transport in the Lower Susquehanna River reservoir system

    USGS Publications Warehouse

    Hainly, R.A.; Reed, L.A.; Flippo, H.N.; Barton, G.J.

    1995-01-01

    The Susquehanna River drains 27,510 square miles in New York, Pennsylvania, and Maryland and is the largest tributary to the Chesapeake Bay. Three large hydroelectric dams are located on the river, Safe Harbor (Lake Clarke) and Holtwood (Lake Aldred) in southern Pennsylvania, and Conowingo (Conowingo Reservoir) in northern Maryland. About 259 million tons of sediment have been deposited in the three reservoirs. Lake Clarke contains about 90.7 million tons of sediment, Lake Aldred contains about 13.6 million tons, and Conowingo Reservoir contains about 155 million tons. An estimated 64.8 million tons of sand, 19.7 million tons of coal, 112 million tons of silt, and 63.3 million tons of clay are deposited in the three reservoirs. Deposition in the reservoirs is variable and ranges from 0 to 30 feet. Chemical analyses of sediment core samples indicate that the three reservoirs combined contain about 814,000 tons of organic nitrogen, 98,900 tons of ammonia as nitrogen, 226,000 tons of phosphorus, 5,610,000 1tons of iron, 2,250,000 tons of aluminum, and about 409,000 tons of manganese. Historical data indicate that Lake Clarke and Lake Aldred have reached equilibrium, and that they no longer store sediment. A comparison of cross-sectional data from Lake Clarke and Lake Aldred with data from Conowingo Reservoir indicates that Conowingo Reservoir will reach equilibrium within the next 20 to 30 years. As the Conowingo Reservoir fills with sediment and approaches equilibrium, the amount of sediment transported to the Chesapeake Bay will increase. The most notable increases will take place when very high flows scour the deposited sediment. Sediment transport through the reservoir system was simulated with the U.S. Army Corps of Engineers' HEC-6 computer model. The model was calibrated with monthly sediment loads for calendar year 1987. Calibration runs with options set for maximum trap efficiency and a "natural" particle-size distribution resulted in an overall computed trap efficiency of 34 percent for 1987, much less than the measured efficiency of 71 percent.

  4. Unconventional Tight Reservoirs Characterization with Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Santiago, C. J. S.; Solatpour, R.; Kantzas, A.

    2017-12-01

    The increase in tight reservoir exploitation projects causes producing many papers each year on new, modern, and modified methods and techniques on estimating characteristics of these reservoirs. The most ambiguous of all basic reservoir property estimations deals with permeability. One of the logging methods that is advertised to predict permeability but is always met by skepticism is Nuclear Magnetic Resonance (NMR). The ability of NMR to differentiate between bound and movable fluids and providing porosity increased the capability of NMR as a permeability prediction technique. This leads to a multitude of publications and the motivation of a review paper on this subject by Babadagli et al. (2002). The first part of this presentation is dedicated to an extensive review of the existing correlation models for NMR based estimates of tight reservoir permeability to update this topic. On the second part, the collected literature information is used to analyze new experimental data. The data are collected from tight reservoirs from Canada, the Middle East, and China. A case study is created to apply NMR measurement in the prediction of reservoir characterization parameters such as porosity, permeability, cut-offs, irreducible saturations etc. Moreover, permeability correlations are utilized to predict permeability. NMR experiments were conducted on water saturated cores. NMR T2 relaxation times were measured. NMR porosity, the geometric mean relaxation time (T2gm), Irreducible Bulk Volume (BVI), and Movable Bulk Volume (BVM) were calculated. The correlation coefficients were computed based on multiple regression analysis. Results are cross plots of NMR permeability versus the independently measured Klinkenberg corrected permeability. More complicated equations are discussed. Error analysis of models is presented and compared. This presentation is beneficial in understanding existing tight reservoir permeability models. The results can be used as a guide for choosing the best permeability estimation model for tight reservoirs data.

  5. Geophysical monitoring in a hydrocarbon reservoir

    NASA Astrophysics Data System (ADS)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the environmental footprint of the shale-gas exploration and exploitation.

  6. Integrated core-log petrofacies analysis in the construction of a reservoir geomodel: A case study of a mature Mississippian carbonate reservoir using limited data

    USGS Publications Warehouse

    Bhattacharya, S.; Doveton, J.H.; Carr, T.R.; Guy, W.R.; Gerlach, P.M.

    2005-01-01

    Small independent operators produce most of the Mississippian carbonate fields in the United States mid-continent, where a lack of integrated characterization studies precludes maximization of hydrocarbon recovery. This study uses integrative techniques to leverage extant data in an Osagian and Meramecian (Mississippian) cherty carbonate reservoir in Kansas. Available data include petrophysical logs of varying vintages, limited number of cores, and production histories from each well. A consistent set of assumptions were used to extract well-level porosity and initial saturations, from logs of different types and vintages, to build a geomodel. Lacking regularly recorded well shut-in pressures, an iterative technique, based on material balance formulations, was used to estimate average reservoir-pressure decline that matched available drillstem test data and validated log-analysis assumptions. Core plugs representing the principal reservoir petrofacies provide critical inputs for characterization and simulation studies. However, assigning plugs among multiple reservoir petrofacies is difficult in complex (carbonate) reservoirs. In a bottom-up approach, raw capillary pressure (Pc) data were plotted on the Super-Pickett plot, and log- and core-derived saturation-height distributions were reconciled to group plugs by facies, to identify core plugs representative of the principal reservoir facies, and to discriminate facies in the logged interval. Pc data from representative core plugs were used for effective pay evaluation to estimate water cut from completions, in infill and producing wells, and guide-selective perforations for economic exploitation of mature fields. The results from this study were used to drill 22 infill wells. Techniques demonstrated here can be applied in other fields and reservoirs. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.

  7. Fracture-network 3D characterization in a deformed chalk reservoir analogue -- the Laegerdorf case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koestler, A.G.; Reksten, K.

    1995-09-01

    Quantitative descriptions of 3D fracture networks in terms of fracture characteristics and connectivity are necessary for reservoir evaluation, management, and EOR programs of fractured reservoirs. The author`s research has focused on an analogue to North Sea fractured chalk reservoirs that is excellently exposed near Laegerdorf, northwest Germany. An underlying salt diapir uplifted and deformed Upper Cretaceous chalk; the cement industry now exploits it. The fracture network in the production wall of the quarry was characterized and mapped at different scales, and 12 profiles of the 230-m wide and 35-m high production wall were investigated as the wall receded 25 m.more » In addition, three wells were drilled into the chalk volume. The wells were cored and the wellbores were imaged with both the resistivity formation micro scanner (FMS) and the sonic circumferential borehole image logger (CBIL). The large amount of fracture data was analyzed with respect to parameters, such as fracture density distribution, orientation, and length distribution, and in terms of the representativity and predictability of data sets collected from restricted rock volumes.« less

  8. Interfacing 3D micro/nanochannels with a branch-shaped reservoir enhances fluid and mass transport

    NASA Astrophysics Data System (ADS)

    Kumar, Prasoon; Gandhi, Prasanna S.; Majumder, Mainak

    2017-01-01

    Three-dimensional (3D) micro/nanofluidic devices can accelerate progress in numerous fields such as tissue engineering, drug delivery, self-healing and cooling devices. However, efficient connections between networks of micro/nanochannels and external fluidic ports are key to successful applications of 3D micro/nanofluidic devices. Therefore, in this work, the extent of the role of reservoir geometry in interfacing with vascular (micro/nanochannel) networks, and in the enabling of connections with external fluidic ports while maintaining the compactness of devices, has been experimentally and theoretically investigated. A statistical modelling suggested that a branch-shaped reservoir demonstrates enhanced interfacing with vascular networks when compared to other regular geometries of reservoirs. Time-lapse dye flow experiments by capillary action through fabricated 3D micro/nanofluidic devices confirmed the connectivity of branch-shaped reservoirs with micro/nanochannel networks in fluidic devices. This demonstrated a ~2.2-fold enhancement of the volumetric flow rate in micro/nanofluidic networks when interfaced to branch-shaped reservoirs over rectangular reservoirs. The enhancement is due to a ~2.8-fold increase in the perimeter of the reservoirs. In addition, the mass transfer experiments exhibited a ~1.7-fold enhancement in solute flux across 3D micro/nanofluidic devices that interfaced with branch-shaped reservoirs when compared to rectangular reservoirs. The fabrication of 3D micro/nanofluidic devices and their efficient interfacing through branch-shaped reservoirs to an external fluidic port can potentially enable their use in complex applications, in which enhanced surface-to-volume interactions are desirable.

  9. Application of Decision Tree to Obtain Optimal Operation Rules for Reservoir Flood Control Considering Sediment Desilting-Case Study of Tseng Wen Reservoir

    NASA Astrophysics Data System (ADS)

    ShiouWei, L.

    2014-12-01

    Reservoirs are the most important water resources facilities in Taiwan.However,due to the steep slope and fragile geological conditions in the mountain area,storm events usually cause serious debris flow and flood,and the flood then will flush large amount of sediment into reservoirs.The sedimentation caused by flood has great impact on the reservoirs life.Hence,how to operate a reservoir during flood events to increase the efficiency of sediment desilting without risk the reservoir safety and impact the water supply afterward is a crucial issue in Taiwan.  Therefore,this study developed a novel optimization planning model for reservoir flood operation considering flood control and sediment desilting,and proposed easy to use operating rules represented by decision trees.The decision trees rules have considered flood mitigation,water supply and sediment desilting.The optimal planning model computes the optimal reservoir release for each flood event that minimum water supply impact and maximum sediment desilting without risk the reservoir safety.Beside the optimal flood operation planning model,this study also proposed decision tree based flood operating rules that were trained by the multiple optimal reservoir releases to synthesis flood scenarios.The synthesis flood scenarios consists of various synthesis storm events,reservoir's initial storage and target storages at the end of flood operating.  Comparing the results operated by the decision tree operation rules(DTOR) with that by historical operation for Krosa Typhoon in 2007,the DTOR removed sediment 15.4% more than that of historical operation with reservoir storage only8.38×106m3 less than that of historical operation.For Jangmi Typhoon in 2008,the DTOR removed sediment 24.4% more than that of historical operation with reservoir storage only 7.58×106m3 less than that of historical operation.The results show that the proposed DTOR model can increase the sediment desilting efficiency and extend the reservoir life.

  10. The impact of lake and reservoir parameterization on global streamflow simulation.

    PubMed

    Zajac, Zuzanna; Revilla-Romero, Beatriz; Salamon, Peter; Burek, Peter; Hirpa, Feyera A; Beck, Hylke

    2017-05-01

    Lakes and reservoirs affect the timing and magnitude of streamflow, and are therefore essential hydrological model components, especially in the context of global flood forecasting. However, the parameterization of lake and reservoir routines on a global scale is subject to considerable uncertainty due to lack of information on lake hydrographic characteristics and reservoir operating rules. In this study we estimated the effect of lakes and reservoirs on global daily streamflow simulations of a spatially-distributed LISFLOOD hydrological model. We applied state-of-the-art global sensitivity and uncertainty analyses for selected catchments to examine the effect of uncertain lake and reservoir parameterization on model performance. Streamflow observations from 390 catchments around the globe and multiple performance measures were used to assess model performance. Results indicate a considerable geographical variability in the lake and reservoir effects on the streamflow simulation. Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE) metrics improved for 65% and 38% of catchments respectively, with median skill score values of 0.16 and 0.2 while scores deteriorated for 28% and 52% of the catchments, with median values -0.09 and -0.16, respectively. The effect of reservoirs on extreme high flows was substantial and widespread in the global domain, while the effect of lakes was spatially limited to a few catchments. As indicated by global sensitivity analysis, parameter uncertainty substantially affected uncertainty of model performance. Reservoir parameters often contributed to this uncertainty, although the effect varied widely among catchments. The effect of reservoir parameters on model performance diminished with distance downstream of reservoirs in favor of other parameters, notably groundwater-related parameters and channel Manning's roughness coefficient. This study underscores the importance of accounting for lakes and, especially, reservoirs and using appropriate parameterization in large-scale hydrological simulations.

  11. A real-time control framework for urban water reservoirs operation

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Goedbloed, A.; Schwanenberg, D.

    2012-04-01

    Drinking water demand in urban areas is growing parallel to the worldwide urban population, and it is acquiring an increasing part of the total water consumption. Since the delivery of sufficient water volumes in urban areas represents a difficult logistic and economical problem, different metropolitan areas are evaluating the opportunity of constructing relatively small reservoirs within urban areas. Singapore, for example, is developing the so-called 'Four National Taps Strategies', which detects the maximization of water yields from local, urban catchments as one of the most important water sources. However, the peculiar location of these reservoirs can provide a certain advantage from the logistical point of view, but it can pose serious difficulties in their daily management. Urban catchments are indeed characterized by large impervious areas: this results in a change of the hydrological cycle, with decreased infiltration and groundwater recharge, and increased patterns of surface and river discharges, with higher peak flows, volumes and concentration time. Moreover, the high concentrations of nutrients and sediments characterizing urban discharges can cause further water quality problems. In this critical hydrological context, the effective operation of urban water reservoirs must rely on real-time control techniques, which can exploit hydro-meteorological information available in real-time from hydrological and nowcasting models. This work proposes a novel framework for the real-time control of combined water quality and quantity objectives in urban reservoirs. The core of this framework is a non-linear Model Predictive Control (MPC) scheme, which employs the current state of the system, the future discharges furnished by a predictive model and a further model describing the internal dynamics of the controlled sub-system to determine an optimal control sequence over a finite prediction horizon. The main advantage of this scheme stands in its reduced computational requests and the capability of exploiting real-time hydro-meteorological information, which are crucial for an effective operation of these fast-varying hydrological systems. The framework is here demonstrated on the operation of Marina Reservoir (Singapore), whose recent construction in late 2008 increased the effective catchment area to about 50% of the total available. Its operation, which accounts for drinking water supply, flash floods control and water quality standards, is here designed by combining the MPC scheme with the process-based hydrological model SOBEK. Extensive simulation experiments show the validity of the proposed framework.

  12. Large scale in-situ BOrehole and Geofluid Simulator (i.BOGS) for the development and testing of borehole technologies at reservoir conditions

    NASA Astrophysics Data System (ADS)

    Duda, Mandy; Bracke, Rolf; Stöckhert, Ferdinand; Wittig, Volker

    2017-04-01

    A fundamental problem of technological applications related to the exploration and provision of geothermal energy is the inaccessibility of subsurface processes. As a result, actual reservoir properties can only be determined using (a) indirect measurement techniques such as seismic surveys, machine feedback and geophysical borehole logging, (b) laboratory experiments capable of simulating in-situ properties, but failing to preserve temporal and spatial scales, or vice versa, and (c) numerical simulations. Moreover, technological applications related to the drilling process, the completion and cementation of a wellbore or the stimulation and exploitation of the reservoir are exposed to high pressure and temperature conditions as well as corrosive environments resulting from both, rock formation and geofluid characteristics. To address fundamental and applied questions in the context of geothermal energy provision and subsurface exploration in general one of Europe's largest geoscientific laboratory infrastructures is introduced. The in-situ Borehole and Geofluid Simulator (i.BOGS) allows to simulate quasi scale-preserving processes at reservoir conditions up to depths of 5000 m and represents a large scale pressure vessel for iso-/hydrostatic and pore pressures up to 125 MPa and temperatures from -10°C to 180°C. The autoclave can either be filled with large rock core samples (25 cm in diameter, up to 3 m length) or with fluids and technical borehole devices (e.g. pumps, sensors). The pressure vessel is equipped with an ultrasound system for active transmission and passive recording of acoustic emissions, and can be complemented by additional sensors. The i.BOGS forms the basic module for the Match.BOGS finally consisting of three modules, i.e. (A) the i.BOGS, (B) the Drill.BOGS, a drilling module to be attached to the i.BOGS capable of applying realistic torques and contact forces to a drilling device that enters the i.BOGS, and (C) the Fluid.BOGS, a geofluid reactor for the composition of highly corrosive geofluids serving as synthetic groundwater / pore fluid in the i.BOGS. The i.BOGS will support scientists and engineers in developing instruments and applications such as drilling tooling and drillstrings, borehole cements and cementation procedures, geophysical tooling and sensors, or logging/measuring while drilling equipment, but will also contribute to optimized reservoir exploitation methods, for example related to stimulation techniques, pumping equipment and long-term reservoir accessibility.

  13. Mechanism of the M L 4.0 25 April 2016 earthquake in southwest of France in the vicinity of the Lacq gas field

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo; Burnol, André

    2018-05-01

    The source mechanism of the M L 4.0 25 April 2016 Lacq earthquake (Aquitaine Basin, South-West France) is analyzed from the available public data and discussed with respect to the geometry of the nearby Lacq gas field. It is one of the biggest earthquakes in the area in the past few decades of gas extraction and the biggest after the end of gas exploitation in 2013. The routinely obtained location shows its hypocenter position inside the gas reservoir. We first analyze its focal mechanism through regional broad-band seismograms recorded in a radius of about 50 km epicentral distances and obtain EW running normal faulting above the reservoir. While the solution is stable using regional data only, we observe a large discrepancy between the recorded data on nearby station URDF and the forward modeling up to 1 Hz. We then look for the best epicenter position through performing wave propagation simulations and constraining the potential source area by the peak ground velocity (PGV). The resulting epicentral position is a few to several km away to the north or south direction with respect to station URDF such that the simulated particle motions are consistent with the observation. The initial motion of the seismograms shows that the epicenter position in the north from URDF is preferable, indicating the north-east of the Lacq reservoir. This study is an application of full waveform simulations and characterization of near-field ground motion in terms of an engineering factor such as PGV. The finally obtained solution gives a moment magnitude of M w 3.9 and the best focal depth of 4 km, which corresponds to the crust above the reservoir rather than its interior. This position is consistent with the tendency of Coulomb stress change due to a compaction at 5 km depth in the crust. Therefore, this earthquake can be interpreted as a relaxation of the shallow crust due to a deeper gas reservoir compaction so that the occurrence of similar events cannot be excluded in the near future. It would be necessary to continue monitoring such local induced seismicity in order to better understand the reservoir/overburden behavior and better assess the local seismic hazard even after the end of gas exploitation.

  14. Game-Theory Based Research on Oil-Spill Prevention and Control Modes in Three Gorges Reservoir Area

    NASA Astrophysics Data System (ADS)

    Yin, Jie; Xiong, Ting

    2018-01-01

    Aiming at solving the existing oil pollution in the Three Gorges reservoir, this paper makes research on oil-spill prevention and control mode based on game theory. Regarding the built modes and comparative indicator system, overall efficiency indicator functions are used to compare general effect, overall cost, and overall efficiency, which concludes that the mode combining government and enterprise has the highest overall efficiency in preventing and controlling ship oil spills. The suggested mode together its correspondingly designed management system, has been applied to practice for a year in Three Gorges Reservoir Area and has made evident improvements to the existing oil pollution, meanwhile proved to be quite helpful to the pollution prevention and control in the lower reaches of Yangtze River.

  15. Understanding creep in sandstone reservoirs - theoretical deformation mechanism maps for pressure solution in granular materials

    NASA Astrophysics Data System (ADS)

    Hangx, Suzanne; Spiers, Christopher

    2014-05-01

    Subsurface exploitation of the Earth's natural resources removes the natural system from its chemical and physical equilibrium. As such, groundwater extraction and hydrocarbon production from subsurface reservoirs frequently causes surface subsidence and induces (micro)seismicity. These effects are not only a problem in onshore (e.g. Groningen, the Netherlands) and offshore hydrocarbon fields (e.g. Ekofisk, Norway), but also in urban areas with extensive groundwater pumping (e.g. Venice, Italy). It is known that fluid extraction inevitably leads to (poro)elastic compaction of reservoirs, hence subsidence and occasional fault reactivation, and causes significant technical, economic and ecological impact. However, such effects often exceed what is expected from purely elastic reservoir behaviour and may continue long after exploitation has ceased. This is most likely due to time-dependent compaction, or 'creep deformation', of such reservoirs, driven by the reduction in pore fluid pressure compared with the rock overburden. Given the societal and ecological impact of surface subsidence, as well as the current interest in developing geothermal energy and unconventional gas resources in densely populated areas, there is much need for obtaining better quantitative understanding of creep in sediments to improve the predictability of the impact of geo-energy and groundwater production. The key problem in developing a reliable, quantitative description of the creep behaviour of sediments, such as sands and sandstones, is that the operative deformation mechanisms are poorly known and poorly quantified. While grain-scale brittle fracturing plus intergranular sliding play an important role in the early stages of compaction, these time-independent, brittle-frictional processes give way to compaction creep on longer time-scales. Thermally-activated mass transfer processes, like pressure solution, can cause creep via dissolution of material at stressed grain contacts, grain-boundary diffusion and precipitation on pore walls. As a first step to better describe creep in sands and sandstones, we have derived a simple model for intergranular pressure solution (IPS) within an ordered pack of spherical grains, employing existing IPS rate models, such as those derived by Renard et al. (1999) and Spiers et al. (2004). This universal model is able to predict the conditions under which each of the respective pressure solution serial processes, i.e. diffusion, precipitation or dissolution, is dominant. In essence, this creates generic deformation mechanism maps for any granular material. We have used our model to predict the amount and rate of compaction for sandstone reservoirs, and compared our predictions to known subsidence rates for reservoirs around the world. This gives a first order-comparison to verify whether or not IPS is an important mechanism in controlling reservoir compaction.

  16. Tilted pillar array fabrication by the combination of proton beam writing and soft lithography for microfluidic cell capture: Part 1 Design and feasibility.

    PubMed

    Rajta, Istvan; Huszánk, Robert; Szabó, Atilla T T; Nagy, Gyula U L; Szilasi, Szabolcs; Fürjes, Peter; Holczer, Eszter; Fekete, Zoltan; Járvás, Gabor; Szigeti, Marton; Hajba, Laszlo; Bodnár, Judit; Guttman, Andras

    2016-02-01

    Design, fabrication, integration, and feasibility test results of a novel microfluidic cell capture device is presented, exploiting the advantages of proton beam writing to make lithographic irradiations under multiple target tilting angles and UV lithography to easily reproduce large area structures. A cell capture device is demonstrated with a unique doubly tilted micropillar array design for cell manipulation in microfluidic applications. Tilting the pillars increased their functional surface, therefore, enhanced fluidic interaction when special bioaffinity coating was used, and improved fluid dynamic behavior regarding cell culture injection. The proposed microstructures were capable to support adequate distribution of body fluids, such as blood, spinal fluid, etc., between the inlet and outlet of the microfluidic sample reservoirs, offering advanced cell capture capability on the functionalized surfaces. The hydrodynamic characteristics of the microfluidic systems were tested with yeast cells (similar size as red blood cells) for efficient capture. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Reservoir simulation with the cubic plus (cross-) association equation of state for water, CO2, hydrocarbons, and tracers

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim

    2018-04-01

    This work presents an efficient reservoir simulation framework for multicomponent, multiphase, compressible flow, based on the cubic-plus-association (CPA) equation of state (EOS). CPA is an accurate EOS for mixtures that contain non-polar hydrocarbons, self-associating polar water, and cross-associating molecules like methane, ethane, unsaturated hydrocarbons, CO2, and H2S. While CPA is accurate, its mathematical formulation is highly non-linear, resulting in excessive computational costs that have made the EOS unfeasible for large scale reservoir simulations. This work presents algorithms that overcome these bottlenecks and achieve an efficiency comparable to the much simpler cubic EOS approach. The main applications that require such accurate phase behavior modeling are 1) the study of methane leakage from high-pressure production wells and its potential impact on groundwater resources, 2) modeling of geological CO2 sequestration in brine aquifers when one is interested in more than the CO2 and H2O components, e.g. methane, other light hydrocarbons, and various tracers, and 3) enhanced oil recovery by CO2 injection in reservoirs that have previously been waterflooded or contain connate water. We present numerical examples of all those scenarios, extensive validation of the CPA EOS with experimental data, and analyses of the efficiency of our proposed numerical schemes. The accuracy, efficiency, and robustness of the presented phase split computations pave the way to more widespread adoption of CPA in reservoir simulators.

  18. 33 CFR 211.103 - Determination of whether land is required for public purposes, including public recreational use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Therein Acquired for Grapevine, Garza-Little Elm, Benbrook, Belton, and Whitney Reservoir Projects in... efficient operation of the project. This delegation of authority shall not apply to lands below the level of 529 feet in the Garza-Little Elm Reservoir project and below 560 feet in the Grapevine Reservoir...

  19. 33 CFR 211.103 - Determination of whether land is required for public purposes, including public recreational use.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Therein Acquired for Grapevine, Garza-Little Elm, Benbrook, Belton, and Whitney Reservoir Projects in... efficient operation of the project. This delegation of authority shall not apply to lands below the level of 529 feet in the Garza-Little Elm Reservoir project and below 560 feet in the Grapevine Reservoir...

  20. Do predators influence the distribution of age-0 kokanee in a Colorado Reservoir?

    USGS Publications Warehouse

    Hardiman, J.M.; Johnson, B.M.; Martinez, P.J.

    2004-01-01

    Seasonal changes in reservoir conditions such as productivity, light, and temperature create spatiotemporal variation in habitat that may segregate or aggregate predators and prey, producing implications for the distribution, growth, and survival of fishes. We used hydroacoustics to document the diel vertical distribution of age-0 kokanee Oncorhynchus nerka relative to environmental gradients at Blue Mesa Reservoir, Colorado, during May-August of 2002. Temperature, light, and zooplankton density profiles were examined relative to foraging conditions for kokanee and their primary predator, lake trout Salvelinus namaycush. Age-0 kokanee displayed large diel vertical migrations in May despite the lack of an energetic advantage before reservoir stratification. Age-0 kokanee minimized near-surface foraging at this time, perhaps to avoid predation by visual predators, such as lake trout, in the well-lit surface waters. Strong reservoir stratification in midsummer appeared to provide a thermal refuge from lake trout that the kokanee exploited. By August vertical migrations were shallow and most kokanee remained in the epilimnion throughout the day. Although the energetic implications of the late-summer strategy are unclear, it appears that kokanee were responding to changes in their predator environment. A robust model for kokanee diel vertical migration across a range of systems should include a predator avoidance component.

  1. Continuous-flow separation of live and dead yeasts using reservoir-based dielectrophoresis (rDEP)

    NASA Astrophysics Data System (ADS)

    Patel, Saurin; Showers, Daniel; Vedantam, Pallavi; Tzeng, Tzuen-Rong; Qian, Shizhi; Xuan, Xiangchun

    2012-11-01

    Separating live and dead cells is critical to the diagnosis of early stage diseases and to the efficacy test of drug screening etc. We develop a novel microfluidic approach to continuous separation of yeast cells by viability inside a reservoir. It exploits the cell dielectrophoresis that is induced by the inherent electric field gradient at the reservoir-microchannel junction to selectively trap dead yeasts and continuously sort them from live ones. We term this approach reservoir-based dielectrophoresis (rDEP). The transporting, focusing, and trapping of live and dead yeast cells at the reservoir-microchannel junction are studied separately by varying the DC-biased AC electric fields. These phenomena can all be reasonably predicted by a 2D numerical model. We find that the AC to DC field ratio for live yeast trapping is higher than that for dead cells because the former experiences a weaker rDEP while having a larger electrokinetic mobility. It is this difference in the AC to DC field ratio that enables the viability-based yeast cell separation. The rDEP approach has unique advantages over existing DEP-based techniques such as the occupation of zero channel space and the elimination of in-channel mechanical or electrical parts. NSF

  2. Geochemistry of thermal fluids in NW Honduras: New perspectives for exploitation of geothermal areas in the southern Sula graben

    NASA Astrophysics Data System (ADS)

    Capaccioni, Bruno; Franco, Tassi; Alberto, Renzulli; Orlando, Vaselli; Marco, Menichetti; Salvatore, Inguaggiato

    2014-06-01

    The results of a geochemical survey on thermal waters and, for the first time for this site, gas discharges in five geothermal sites (Azacualpa "La Cueva", Río Ulua, Río Gualcarque, El Olivar and Laguna de Agua Caliente) in NW Honduras are here presented and discussed. El Olivar and Laguna de Agua Caliente, in the southern part of the Sula graben are very close to a Quaternary basaltic field, whereas Azacualpa "La Cueva", Río Ulua and Río Gualcarque, located to the southwest of the Yojoa Lake, direcly emerge from the Cretaceous limestone deposits. The measured temperatures range between 37.5 and 104.8 °C. "Mature", alkaline, Na-SO4 thermal waters discharge from Azacualpa "La Cueva", while those from El Olivar and Laguna de Agua Caliente are "immature" and show a Na-HCO3 composition. Chemical equilibria of waters and gases from the Azacualpa "La Cueva" thermal springs indicate temperatures ranging from 150 to 200 °C. Conversely, gas discharges from El Olivar and Laguna de Agua Caliente have attained a partial chemical equilibrium in the liquid phase at slightly higher temperatures (200-250 °C), although gas-gas faster reactions involving CO seem to be adjusted in an isothermally separated vapor phase. Unlike Azacualpa, SiO2 geothermometer at El Olivar and Laguna de Agua Caliente indicates equilibrium temperatures for the liquid phase much lower than those calculated for the gas phase (≤ 120 °C). We conclude that thermal waters from the Azacualpa area likely represent the direct emergence of a water dominated reservoir having temperatures ≤ 150-200 °C. By contrast, at El Olivar and Laguna de Agua Caliente hot springs are supplied by a boiling shallow aquifer fed by a vapor phase rising from a steam-dominated zone. The above geochemical model is consistent with a geothermal reservoir hosted within the Cretaceous carbonate sequences of the Yojoa Group in the whole investigated sites. The reservoir extensively crops out in the Azacualpa area whereas the geothermal sites of the southern Sula graben (Laguna de Agua Caliente and El Olivar) are covered by the Oligocene-Miocene volcano-sedimentary sequences of the Matagalpa formation, possibly acting as efficient impermeable cap rocks. These results significantly differ from those reported by previous studies and emphasize that the southern Sula graben, in particular the El Olivar area, can represent among the investigated thermal springs, the most promising site for the exploitation of a high-enthalpy geothermal field.

  3. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan

    In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic amplitude versus angle (AVA) and controlled source electromagnetic (CSEM) data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo (MCMC) sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis (DREAM) and Adaptive Metropolis (AM) samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and CSEM data. The multi-chain MCMC is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration,more » the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic AVA and CSEM joint inversion provides better estimation of reservoir saturations than the seismic AVA-only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated – reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  4. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    NASA Astrophysics Data System (ADS)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura

    2017-12-01

    In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated - reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.

  5. Mechanical equivalent of quantum heat engines.

    PubMed

    Arnaud, Jacques; Chusseau, Laurent; Philippe, Fabrice

    2008-06-01

    Quantum heat engines employ as working agents multilevel systems instead of classical gases. We show that under some conditions quantum heat engines are equivalent to a series of reservoirs at different altitudes containing balls of various weights. A cycle consists of picking up at random a ball from one reservoir and carrying it to the next, thereby performing or absorbing some work. In particular, quantum heat engines, employing two-level atoms as working agents, are modeled by reservoirs containing balls of weight 0 or 1. The mechanical model helps us prove that the maximum efficiency of quantum heat engines is the Carnot efficiency. Heat pumps and negative temperatures are considered.

  6. Potential evaluation of CO2 storage and enhanced oil recovery of tight oil reservoir in the Ordos Basin, China.

    PubMed

    Tian, Xiaofeng; Cheng, Linsong; Cao, Renyi; Zhang, Miaoyi; Guo, Qiang; Wang, Yimin; Zhang, Jian; Cui, Yu

    2015-07-01

    Carbon -di-oxide (CO2) is regarded as the most important greenhouse gas to accelerate climate change and ocean acidification. The Chinese government is seeking methods to reduce anthropogenic CO2 gas emission. CO2 capture and geological storage is one of the main methods. In addition, injecting CO2 is also an effective method to replenish formation energy in developing tight oil reservoirs. However, exiting methods to estimate CO2 storage capacity are all based on the material balance theory. This was absolutely correct for normal reservoirs. However, as natural fractures widely exist in tight oil reservoirs and majority of them are vertical ones, tight oil reservoirs are not close. Therefore, material balance theory is not adaptive. In the present study, a new method to calculate CO2 storage capacity is presented. The CO2 effective storage capacity, in this new method, consisted of free CO2, CO2 dissolved in oil and CO2 dissolved in water. Case studies of tight oil reservoir from Ordos Basin was conducted and it was found that due to far lower viscosity of CO2 and larger solubility in oil, CO2 could flow in tight oil reservoirs more easily. As a result, injecting CO2 in tight oil reservoirs could obviously enhance sweep efficiency by 24.5% and oil recovery efficiency by 7.5%. CO2 effective storage capacity of Chang 7 tight oil reservoir in Longdong area was 1.88 x 10(7) t. The Chang 7 tight oil reservoir in Ordos Basin was estimated to be 6.38 x 10(11) t. As tight oil reservoirs were widely distributed in Songliao Basin, Sichuan Basin and so on, geological storage capacity of CO2 in China is potential.

  7. 3D Modeling and Characterization of Hydraulic Fracture Efficiency Integrated with 4D/9C Time-Lapse Seismic Interpretations in the Niobrara Formation, Wattenberg Field, Denver Basin

    NASA Astrophysics Data System (ADS)

    Alfataierge, Ahmed

    Hydrocarbon recovery rates within the Niobrara Shale are estimated as low as 2-8%. These recovery rates are controlled by the ability to effectively hydraulic fracture stimulate the reservoir using multistage horizontal wells. Subsequent to any mechanical issues that affect production from lateral wells, the variability in production performance and reserve recovery along multistage lateral shale wells is controlled by the reservoir heterogeneity and its consequent effect on hydraulic fracture stimulation efficiency. Using identical stimulation designs on a number of wells that are as close as 600ft apart can yield variable production and recovery rates due to inefficiencies in hydraulic fracture stimulation that result from the variability in elastic rock properties and in-situ stress conditions. As a means for examining the effect of the geological heterogeneity on hydraulic fracturing and production within the Niobrara Formation, a 3D geomechanical model is derived using geostatistical methods and volumetric calculations as an input to hydraulic fracture stimulation. The 3D geomechanical model incorporates the faults, lithological facies changes and lateral variation in reservoir properties and elastic rock properties that best represent the static reservoir conditions pre-hydraulic fracturing. Using a 3D numerical reservoir simulator, a hydraulic fracture predictive model is generated and calibrated to field diagnostic measurements (DFIT) and observations (microseismic and 4D/9C multicomponent time-lapse seismic). By incorporating the geological heterogeneity into the 3D hydraulic fracture simulation, a more representative response is generated that demonstrate the variability in hydraulic fracturing efficiency along the lateral wells that will inevitability influence production performance. Based on the 3D hydraulic fracture simulation results, integrated with microseismic observations and 4D/9C time-lapse seismic analysis (post-hydraulic fracturing & post production), the variability in production performance within the Niobrara Shale wells is shown to significantly be affected by the lateral variability in reservoir quality, well and stage positioning relative to the target interval, and the relative completion efficiency. The variation in reservoir properties, faults, rock strength parameters, and in-situ stress conditions are shown to influence and control the hydraulic fracturing geometry and stimulation efficiency resulting in complex and isolated induced fracture geometries to form within the reservoir. This consequently impacts the effective drainage areas, production performance and recovery rates from inefficiently stimulated horizontal wells. The 3D simulation results coupled with the 4D seismic interpretations illustrate that there is still room for improvement to be made in optimizing well spacing and hydraulic fracturing efficiency within the Niobrara Formation. Integrated analysis show that the Niobrara reservoir is not uniformly stimulated. The vertical and lateral variability in rock properties control the hydraulic fracturing efficiency and geometry. Better production is also correlated to higher fracture conductivity. 4D seismic interpretation is also shown to be essential for the validation and calibration hydraulic fracture simulation models. The hydraulic fracture modeling also demonstrations that there is bypassed pay in the Niobrara B chalk resulting from initial Niobrara C chalk stimulation treatments. Forward modeling also shows that low pressure intervals within the Niobrara reservoir influence hydraulic fracturing and infill drilling during field development.

  8. Volume sharing of reservoir water

    NASA Astrophysics Data System (ADS)

    Dudley, Norman J.

    1988-05-01

    Previous models optimize short-, intermediate-, and long-run irrigation decision making in a simplified river valley system characterized by highly variable water supplies and demands for a single decision maker controlling both reservoir releases and farm water use. A major problem in relaxing the assumption of one decision maker is communicating the stochastic nature of supplies and demands between reservoir and farm managers. In this paper, an optimizing model is used to develop release rules for reservoir management when all users share equally in releases, and computer simulation is used to generate an historical time sequence of announced releases. These announced releases become a state variable in a farm management model which optimizes farm area-to-irrigate decisions through time. Such modeling envisages the use of growing area climatic data by the reservoir authority to gauge water demand and the transfer of water supply data from reservoir to farm managers via computer data files. Alternative model forms, including allocating water on a priority basis, are discussed briefly. Results show lower mean aggregate farm income and lower variance of aggregate farm income than in the single decision-maker case. This short-run economic efficiency loss coupled with likely long-run economic efficiency losses due to the attenuated nature of property rights indicates the need for quite different ways of integrating reservoir and farm management.

  9. Limnological characteristics and trophic state of a newly created site: the Pareja Limno-reservoir

    NASA Astrophysics Data System (ADS)

    Molina-Navarro, E.; Martínez-Pérez, S.; Sastre-Merlín, A.

    2012-04-01

    The creation of dams in the riverine zone of large reservoirs is an innovative action whose primary goal is to generate water bodies that ensure a stable level of water there. We have termed these bodies of water "limno-reservoirs" because their water level becomes constant and independent of the fluctuations occurring in the main reservoir. In addition, limno-reservoirs represent environmental initiatives with corrective and/or compensatory effects. Pareja Limno-reservoir, located near the left side of Entrepeñas Reservoir (Guadalajara province, central Spain), is one of the first initiatives of this type in Spain. We are investigating the hydrology, limnology, microbiology, siltation risk and other aspects of this site. This research has a special interest since the building of limno-reservoirs is rising in Spain. To acquire knowledge about their behavior may be helpful for further constructions. In fact, every new reservoir building project usually includes a limno-reservoir. Moreover, there are many initiatives related with the construction of this kind of hydraulic infrastructures in the reservoirs under exploitation. This work focuses on the limnological study of the Pareja Limno-reservoir. To conduct this research, twelve seasonal sample collections at two sampling points (the dam and inflow zones) have been made in Pareja Limno-reservoir, from spring 2008 to winter 2011. The primary goal of this study is to describe the limnological characteristics of the limno-reservoir. Special interest is placed in the study of the trophic state through different indicators (nutrients, transparency, phytoplankton and zooplankton populations), as the European Water Framework Directive objective is to achieve a "good ecological status" in every aquatic ecosystem by 2015. The results of the study show that the Pareja Limno-reservoir follows a warm monomictic water stratification pattern. Water was slightly alkaline and conductivity values were mostly over 1000 μS cm-1 due to the high SO4= concentrations. The highest N and P levels were found in the winter, whereas the highest chlorophyll aand phytoplankton biomass values were found in the summer and autumn. The total zooplankton species richness was high, especially in the inflow zone. Globally, the results obtained suggest that the Pareja Limno-reservoir is oligo-mesotrophic, so it may be under the WFD requirements, although some differences were found using a variety of trophic state criteria.

  10. Harry S. Truman Dam and Reservoir, Missouri, Holocene Adaptations Within the Lower Pomme de Terre River Valley, Missouri. Volume 1.

    DTIC Science & Technology

    1982-06-01

    4 Research Design ........... ...................... 6 References ............ ......................... 6 2 VEGETATIONAL...deer herds and, concomitantly, to a procurement 0 system designed to exploit these animals. Thf- was also increased use of aquatic resources, although...34...o ’ design , and attempt to further define those cultural processes through wh ich scit ties articiflate wi th

  11. Improved recovery demonstration for Williston Basin carbonates. Annual report, June 10, 1995--June 9, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrell, L.A.; Sippel, M.A.

    1996-09-01

    The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in Red River and Ratcliffe shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short-radius lateral technologies. Improved completion efficiency, additional wells at closer spacing andmore » better estimates of oil in place will result in additional oil recovery by primary and enhanced recovery processes.« less

  12. Update on Production Chemistry of the Roosevelt Hot Springs Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Stuart; Kirby, Stefan; Allis, Rick

    Analyses of production fluids from the Roosevelt Hot Springs reservoir were acquired from well sampling campaigns in 2015 and 2016. The resulting data have been recalculated to reservoir conditions by correcting for effects of steam loss, and the values are compared to legacy data from earlier reports to quantify changes with time in response to fluid production. The reservoir composition is similar to that at the start of reservoir exploitation, having near neutral pH, total dissolved solids of 7000-10,000 mg/kg, and ionic ratios of Cl/HCO3 ~50-100, Cl/SO4 ~50-100, and Na/K ~4-5. Cation, gas and silica geothermometers indicate a range ofmore » equilibration temperatures between 240 and 300 °C, but quartz-silica values are most closely consistent with measured reservoir temperatures and well enthalpies. The largest change in fluid composition is observed in well 54-3. The fluid has evolved from being fed by a single phase liquid to a twophase mixture of steam and liquid due to pressure draw down. The fluid also shows a 25% increase in reservoir chloride and a ~20° C decrement of cooling related to mixing with injected brine. The other production wells also show increase in chloride and decrease in temperature, but these changes diminish in magnitude with distance from injection well 14-2. Stable isotope compositions indicate that the reservoir water is largely meteoric in origin, having been modified by hydrothermal waterrock interaction. The water has also become progressively enriched in isotopic values in response to steam loss and mixing of injectate. N2-Ar-He and helium isotope ratios indicate a deep magmatic source region that probably supplies the heat for the hydrothermal system, consistent with recent Quaternary volcanism in the Mineral Mountains.« less

  13. Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury

    PubMed Central

    Embree, Mildred C.; Chen, Mo; Pylawka, Serhiy; Kong, Danielle; Iwaoka, George M.; Kalajzic, Ivo; Yao, Hai; Shi, Chancheng; Sun, Dongming; Sheu, Tzong-Jen; Koslovsky, David A.; Koch, Alia; Mao, Jeremy J.

    2016-01-01

    Tissue regeneration using stem cell-based transplantation faces many hurdles. Alternatively, therapeutically exploiting endogenous stem cells to regenerate injured or diseased tissue may circumvent these challenges. Here we show resident fibrocartilage stem cells (FCSCs) can be used to regenerate and repair cartilage. We identify FCSCs residing within the superficial zone niche in the temporomandibular joint (TMJ) condyle. A single FCSC spontaneously generates a cartilage anlage, remodels into bone and organizes a haematopoietic microenvironment. Wnt signals deplete the reservoir of FCSCs and cause cartilage degeneration. We also show that intra-articular treatment with the Wnt inhibitor sclerostin sustains the FCSC pool and regenerates cartilage in a TMJ injury model. We demonstrate the promise of exploiting resident FCSCs as a regenerative therapeutic strategy to substitute cell transplantation that could be beneficial for patients suffering from fibrocartilage injury and disease. These data prompt the examination of utilizing this strategy for other musculoskeletal tissues. PMID:27721375

  14. Trophic feasibility of reintroducing anadromous salmonids in three reservoirs on the north fork Lewis River, Washington: Prey supply and consumption demand of resident fishes

    USGS Publications Warehouse

    Sorel, Mark H.; Hansen, Adam G.; Connelly, Kristin A.; Beauchamp, David A.

    2016-01-01

    The reintroduction of anadromous salmonids in reservoirs is being proposed with increasing frequency, requiring baseline studies to evaluate feasibility and estimate the capacity of reservoir food webs to support reintroduced populations. Using three reservoirs on the north fork Lewis River as a case study, we demonstrate a method to determine juvenile salmonid smolt rearing capacities for lakes and reservoirs. To determine if the Lewis River reservoirs can support reintroduced populations of juvenile stream-type Chinook Salmon Oncorhynchus tshawytscha, we evaluated the monthly production of daphniaDaphnia spp. (the primary zooplankton consumed by resident salmonids in the system) and used bioenergetics to model the consumption demand of resident fishes in each reservoir. To estimate the surplus of Daphnia prey available for reintroduced salmonids, we assumed a maximum sustainable exploitation rate and accounted for the consumption demand of resident fishes. The number of smolts that could have been supported was estimated by dividing any surplus Daphnia production by the simulated consumption demand of an individual Chinook Salmon fry rearing in the reservoir to successful smolt size. In all three reservoirs, densities of Daphnia were highest in the epilimnion, but warm epilimnetic temperatures and the vertical distribution of planktivores suggested that access to abundant epilimnetic prey was limited. By comparing accessible prey supply and demand on a monthly basis, we were able to identify potential prey supply bottlenecks that could limit smolt production and growth. These results demonstrate that a bioenergetics approach can be a valuable method of examining constraints on lake and reservoir rearing capacity, such as thermal structure and temporal food supply. This method enables numerical estimation of rearing capacity, which is a useful metric for managers evaluating the feasibility of reintroducing Pacific salmon Oncorhynchus spp. in lentic systems.

  15. Microbial battery for efficient energy recovery.

    PubMed

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S; Cui, Yi

    2013-10-01

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs-a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power.

  16. Fluvial sediment in Double Creek subwatershed No. 5, Washington County, Oklahoma

    USGS Publications Warehouse

    Bednar, Gene A.; Waldrep, Thomas E.

    1973-01-01

    A total of 21,370 tons of fluvial sediment was transported into reservoir No. 5 and a total of 19,930 tons was deposited. Seventy-eight percent of the total fluvial sediment was deposited during the first 9.2 years, or 63 percent of time of reservoir operation. The computed trap efficiency of reservoir No. 5 was 93 percent.

  17. Influences of porous reservoir Laplace pressure on emissions from passively fed ionic liquid electrospray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtney, Daniel G., E-mail: dcourtney@alum.mit.edu; Shea, Herbert

    2015-09-07

    Passively fed ionic liquid electrospray sources are capable of efficiently emitting a variety of ion beams with promising applications to spacecraft propulsion and as focused ion beams. Practical devices will require integrated or coupled ionic liquid reservoirs; the effects of which have not been explored in detail. Porous reservoirs are a simple, scalable solution. However, we have shown that their pore size can dramatically alter the beam composition. Emitting the ionic liquid 1-ethyl-3-methylimidazolium bis(triflouromethylsulfonyl)amide, the same device was shown to yield either an ion or droplet dominated beam when using reservoirs of small or large pore size, respectively; with themore » latter having a mass flow in excess of 15 times larger than the former at negative polarity. Another source, emitting nearly purely ionic beams of 1-ethyl-3-methylimidazolium tetrafluoroborate, was similarly shown to emit a significant droplet population when coupled to reservoirs of large (>100 μm) pores; constituting a reduction in propulsive efficiency from greater than 70% to less than 30%. Furthermore, we show that reservoir selection can alter the voltage required to obtain and sustain emission, increasing with smaller pore size.« less

  18. Insulin fibrillation and protein design: topological resistance of single-chain analogs to thermal degradation with application to a pump reservoir.

    PubMed

    Phillips, Nelson B; Whittaker, Jonathan; Ismail-Beigi, Faramarz; Weiss, Michael A

    2012-03-01

    Insulin is susceptible to thermal fibrillation, a misfolding process that leads to nonnative cross-β assembly analogous to pathological amyloid deposition. Pharmaceutical formulations are ordinarily protected from such degradation by sequestration of the susceptible monomer within native protein assemblies. With respect to the safety and efficacy of insulin pumps, however, this strategy imposes an intrinsic trade-off between pharmacokinetic goals (rapid absorption and clearance) and the requisite physical properties of a formulation (prolonged shelf life and stability within the reservoir). Available rapid-acting formulations are suboptimal in both respects; susceptibility to fibrillation is exacerbated even as absorption is delayed relative to the ideal specifications of a closed-loop system. To circumvent this molecular trade-off, we exploited structural models of insulin fibrils and amyloidogenic intermediates to define an alternative protective mechanism. Single-chain insulin (SCI) analogs were shown to be refractory to thermal fibrillation with maintenance of biological activity for more than 3 months under conditions that promote the rapid fibrillation and inactivation of insulin. The essential idea exploits an intrinsic incompatibility between SCI topology and the geometry of cross-β assembly. A peptide tether was thus interposed between the A- and B-chains whose length was (a) sufficiently long to provide the "play" needed for induced fit of the hormone on receptor binding and yet (b) sufficiently short to impose a topological barrier to fibrillation. Our findings suggest that ultrastable monomeric SCI analogs may be formulated without protective self-assembly and so permit simultaneous optimization of pharmacokinetics and reservoir life. © 2012 Diabetes Technology Society.

  19. Modeling thermal stress propagation during hydraulic stimulation of geothermal wells

    NASA Astrophysics Data System (ADS)

    Jansen, Gunnar; Miller, Stephen A.

    2017-04-01

    A large fraction of the world's water and energy resources are located in naturally fractured reservoirs within the earth's crust. Depending on the lithology and tectonic history of a formation, fracture networks can range from dense and homogeneous highly fractured networks to single large scale fractures dominating the flow behavior. Understanding the dynamics of such reservoirs in terms of flow and transport is crucial to successful application of engineered geothermal systems (also known as enhanced geothermal systems or EGS) for geothermal energy production in the future. Fractured reservoirs are considered to consist of two distinct separate media, namely the fracture and matrix space respectively. Fractures are generally thin, highly conductive containing only small amounts of fluid, whereas the matrix rock provides high fluid storage but typically has much smaller permeability. Simulation of flow and transport through fractured porous media is challenging due to the high permeability contrast between the fractures and the surrounding rock matrix. However, accurate and efficient simulation of flow through a fracture network is crucial in order to understand, optimize and engineer reservoirs. It has been a research topic for several decades and is still under active research. Accurate fluid flow simulations through field-scale fractured reservoirs are still limited by the power of current computer processing units (CPU). We present an efficient implementation of the embedded discrete fracture model, which is a promising new technique in modeling the behavior of enhanced geothermal systems. An efficient coupling strategy is determined for numerical performance of the model. We provide new insight into the coupled modeling of fluid flow, heat transport of engineered geothermal reservoirs with focus on the thermal stress changes during the stimulation process. We further investigate the interplay of thermal and poro-elastic stress changes in the reservoir. Combined with a analytical formulation for the injection temperatures in the open hole section of a geothermal well, the stress changes induced during the injection period of reservoir development can be studied.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoak, T.E.; Decker, A.D.

    Mesaverde Group reservoirs in the Piceance Basin, Western Colorado contain a large reservoir base. Attempts to exploit this resource base are stymied by low permeability reservoir conditions. The presence of abundant natural fracture systems throughout this basin, however, does permit economic production. Substantial production is associated with fractured reservoirs in Divide Creek, Piceance Creek, Wolf Creek, White River Dome, Plateau, Shire Gulch, Grand Valley, Parachute and Rulison fields. Successful Piceance Basin gas production requires detailed information about fracture networks and subsurface gas and water distribution in an overall gas-centered basin geometry. Assessment of these three parameters requires an integrated basinmore » analysis incorporating conventional subsurface geology, seismic data, remote sensing imagery analysis, and an analysis of regional tectonics. To delineate the gas-centered basin geometry in the Piceance Basin, a regional cross-section spanning the basin was constructed using hydrocarbon and gamma radiation logs. The resultant hybrid logs were used for stratigraphic correlations in addition to outlining the trans-basin gas-saturated conditions. The magnitude of both pressure gradients (paludal and marine intervals) is greater than can be generated by a hydrodynamic model. To investigate the relationships between structure and production, detailed mapping of the basin (top of the Iles Formation) was used to define subtle subsurface structures that control fractured reservoir development. The most productive fields in the basin possess fractured reservoirs. Detailed studies in the Grand Valley-Parachute-Rulison and Shire Gulch-Plateau fields indicate that zones of maximum structural flexure on kilometer-scale structural features are directly related to areas of enhanced production.« less

  1. Efficient Operation of a Multi-purpose Reservoir in Chile: Integration of Economic Water Value for Irrigation and Hydropower

    NASA Astrophysics Data System (ADS)

    Olivares, M. A.; Gonzalez Cabrera, J. M., Sr.; Moreno, R.

    2016-12-01

    Operation of hydropower reservoirs in Chile is prescribed by an Independent Power System Operator. This study proposes a methodology that integrates power grid operations planning with basin-scale multi-use reservoir operations planning. The aim is to efficiently manage a multi-purpose reservoir, in which hydroelectric generation is competing with other water uses, most notably irrigation. Hydropower and irrigation are competing water uses due to a seasonality mismatch. Currently, the operation of multi-purpose reservoirs with substantial power capacity is prescribed as the result of a grid-wide cost-minimization model which takes irrigation requirements as constraints. We propose advancing in the economic co-optimization of reservoir water use for irrigation and hydropower at the basin level, by explicitly introducing the economic value of water for irrigation represented by a demand function for irrigation water. The proposed methodology uses the solution of a long-term grid-wide operations planning model, a stochastic dual dynamic program (SDDP), to obtain the marginal benefit function for water use in hydropower. This marginal benefit corresponds to the energy price in the power grid as a function of the water availability in the reservoir and the hydrologic scenarios. This function allows capture technical and economic aspects to the operation of hydropower reservoir in the power grid and is generated with the dual variable of the power-balance constraint, the optimal reservoir operation and the hydrologic scenarios used in SDDP. The economic value of water for irrigation and hydropower are then integrated into a basin scale stochastic dynamic program, from which stored water value functions are derived. These value functions are then used to re-optimize reservoir operations under several inflow scenarios.

  2. Comparative evaluation of surface and downhole steam-generation techniques

    NASA Astrophysics Data System (ADS)

    Hart, C.

    The application of heat to reservoirs containing high API gravity oils can substantially improve recovery. Although steam injection is currently the principal thermal recovery method, heat transmission losses associated with delivery of the steam from the surface generators to the oil bearing formation has limited conventional steam injection to shallow reservoirs. The objective of the Department of Energy's Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this effort are the development and evaluation of thermally efficient delivery systems and downhole steam generation systems. The technical and economic performance of conventional surface steam drives, which are strongly influenced by heat losses are compared. The selection of a preferred technology based upon either total efficiency or cost is found to be strongly influenced by reservoir depth, steam mass flow rate, and sandface steam quality.

  3. A fast complex domain-matching pursuit algorithm and its application to deep-water gas reservoir detection

    NASA Astrophysics Data System (ADS)

    Zeng, Jing; Huang, Handong; Li, Huijie; Miao, Yuxin; Wen, Junxiang; Zhou, Fei

    2017-12-01

    The main emphasis of exploration and development is shifting from simple structural reservoirs to complex reservoirs, which all have the characteristics of complex structure, thin reservoir thickness and large buried depth. Faced with these complex geological features, hydrocarbon detection technology is a direct indication of changes in hydrocarbon reservoirs and a good approach for delimiting the distribution of underground reservoirs. It is common to utilize the time-frequency (TF) features of seismic data in detecting hydrocarbon reservoirs. Therefore, we research the complex domain-matching pursuit (CDMP) method and propose some improvements. First is the introduction of a scale parameter, which corrects the defect that atomic waveforms only change with the frequency parameter. Its introduction not only decomposes seismic signal with high accuracy and high efficiency but also reduces iterations. We also integrate jumping search with ergodic search to improve computational efficiency while maintaining the reasonable accuracy. Then we combine the improved CDMP with the Wigner-Ville distribution to obtain a high-resolution TF spectrum. A one-dimensional modeling experiment has proved the validity of our method. Basing on the low-frequency domain reflection coefficient in fluid-saturated porous media, we finally get an approximation formula for the mobility attributes of reservoir fluid. This approximation formula is used as a hydrocarbon identification factor to predict deep-water gas-bearing sand of the M oil field in the South China Sea. The results are consistent with the actual well test results and our method can help inform the future exploration of deep-water gas reservoirs.

  4. An ultrasonic analysis of the comparative efficiency of various cardiotomy reservoirs and micropore blood filters.

    PubMed Central

    Pearson, D T; Watson, B G; Waterhouse, P S

    1978-01-01

    The ability of 12 commercially available cardiotomy reservoirs to remove bubbles from aspirated blood was investigated by means of a simulated cardiopulmonary bypass circuit and an ultrasonic microbubble detector. Performance varied considerably. The number of gaseous microemboli remaining after passage of blood through the reservoir was reduced by (a) holding the blood in the reservoir, (b) reducing the volume of air mixed with the aspirated blood, and (c) using a reservoir that did not induce turbulence and that contained integral micropore filtration material. Further micropore filtration of the blood after passage through the cardiotomy reservoir was beneficial, and significantly more bubbles were extracted when the microfilter was sited below the reservoir than when it was placed in the arterial line. PMID:684672

  5. Frontopolar cortex and decision-making efficiency: comparing brain activity of experts with different professional background during an exploration-exploitation task.

    PubMed

    Laureiro-Martínez, Daniella; Canessa, Nicola; Brusoni, Stefano; Zollo, Maurizio; Hare, Todd; Alemanno, Federica; Cappa, Stefano F

    2013-01-01

    An optimal balance between efficient exploitation of available resources and creative exploration of alternatives is critical for adaptation and survival. Previous studies associated these behavioral drives with, respectively, the dopaminergic mesocorticolimbic system and frontopolar-intraparietal networks. We study the activation of these systems in two age and gender-matched groups of experienced decision-makers differing in prior professional background, with the aim to understand the neural bases of individual differences in decision-making efficiency (performance divided by response time). We compare brain activity of entrepreneurs (who currently manage the organization they founded based on their venture idea) and managers (who are constantly involved in making strategic decisions but have no venture experience) engaged in a gambling-task assessing exploitative vs. explorative decision-making. Compared with managers, entrepreneurs showed higher decision-making efficiency, and a stronger activation in regions of frontopolar cortex (FPC) previously associated with explorative choice. Moreover, activity across a network of regions previously linked to explore/exploit tradeoffs explained individual differences in choice efficiency. These results suggest new avenues for the study of individual differences in the neural antecedents of efficient decision-making.

  6. Frontopolar cortex and decision-making efficiency: comparing brain activity of experts with different professional background during an exploration-exploitation task

    PubMed Central

    Laureiro-Martínez, Daniella; Canessa, Nicola; Brusoni, Stefano; Zollo, Maurizio; Hare, Todd; Alemanno, Federica; Cappa, Stefano F.

    2014-01-01

    An optimal balance between efficient exploitation of available resources and creative exploration of alternatives is critical for adaptation and survival. Previous studies associated these behavioral drives with, respectively, the dopaminergic mesocorticolimbic system and frontopolar-intraparietal networks. We study the activation of these systems in two age and gender-matched groups of experienced decision-makers differing in prior professional background, with the aim to understand the neural bases of individual differences in decision-making efficiency (performance divided by response time). We compare brain activity of entrepreneurs (who currently manage the organization they founded based on their venture idea) and managers (who are constantly involved in making strategic decisions but have no venture experience) engaged in a gambling-task assessing exploitative vs. explorative decision-making. Compared with managers, entrepreneurs showed higher decision-making efficiency, and a stronger activation in regions of frontopolar cortex (FPC) previously associated with explorative choice. Moreover, activity across a network of regions previously linked to explore/exploit tradeoffs explained individual differences in choice efficiency. These results suggest new avenues for the study of individual differences in the neural antecedents of efficient decision-making. PMID:24478664

  7. The USGS national geothermal resource assessment: An update

    USGS Publications Warehouse

    Williams, C.F.; Reed, M.J.; Galanis, S.P.; DeAngelo, J.

    2007-01-01

    The U. S. Geological Survey (USGS) is working with the Department of Energy's (DOE) Geothermal Technologies Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir volumes, and limits to temperatures and depths for electric power production. It will also include the potential impact of evolving Enhanced Geothermal Systems (EGS) technology. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. New models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of both natural geothermal reservoirs and reservoirs that may be created through the application of EGS technology. Project investigators have also made substantial progress studying geothermal systems and the factors responsible for their formation through studies in the Great Basin-Modoc Plateau region, Coso, Long Valley, the Imperial Valley and central Alaska, Project personnel are also entering the supporting data and resulting analyses into geospatial databases that will be produced as part of the resource assessment.

  8. Estimation of brittleness indices for pay zone determination in a shale-gas reservoir by using elastic properties obtained from micromechanics

    NASA Astrophysics Data System (ADS)

    Lizcano-Hernández, Edgar G.; Nicolás-López, Rubén; Valdiviezo-Mijangos, Oscar C.; Meléndez-Martínez, Jaime

    2018-04-01

    The brittleness indices (BI) of gas-shales are computed by using their effective mechanical properties obtained from micromechanical self-consistent modeling with the purpose of assisting in the identification of the more-brittle regions in shale-gas reservoirs, i.e., the so-called ‘pay zone’. The obtained BI are plotted in lambda-rho versus mu-rho λ ρ -μ ρ and Young’s modulus versus Poisson’s ratio E-ν ternary diagrams along with the estimated elastic properties from log data of three productive shale-gas wells where the pay zone is already known. A quantitative comparison between the obtained BI and the well log data allows for the delimitation of regions where BI values could indicate the best reservoir target in regions with the highest shale-gas exploitation potential. Therefore, a range of values for elastic properties and brittleness indexes that can be used as a data source to support the well placement procedure is obtained.

  9. Stress estimation in reservoirs using an integrated inverse method

    NASA Astrophysics Data System (ADS)

    Mazuyer, Antoine; Cupillard, Paul; Giot, Richard; Conin, Marianne; Leroy, Yves; Thore, Pierre

    2018-05-01

    Estimating the stress in reservoirs and their surroundings prior to the production is a key issue for reservoir management planning. In this study, we propose an integrated inverse method to estimate such initial stress state. The 3D stress state is constructed with the displacement-based finite element method assuming linear isotropic elasticity and small perturbations in the current geometry of the geological structures. The Neumann boundary conditions are defined as piecewise linear functions of depth. The discontinuous functions are determined with the CMA-ES (Covariance Matrix Adaptation Evolution Strategy) optimization algorithm to fit wellbore stress data deduced from leak-off tests and breakouts. The disregard of the geological history and the simplified rheological assumptions mean that only the stress field, statically admissible and matching the wellbore data should be exploited. The spatial domain of validity of this statement is assessed by comparing the stress estimations for a synthetic folded structure of finite amplitude with a history constructed assuming a viscous response.

  10. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General reservoir study, Appendix 4, Fourth Wilhelm sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, K.B.

    1987-09-01

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. This study, Appendix IV, addresses the Fourth Wilhelm Sand and its sub units and pools. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. Basic pressure production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification.more » This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs toward the end. 12 figs., 9 tabs.« less

  11. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General reservoir study, Appendix 3, Second Wilhelm Sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, K.B.

    1987-09-01

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 under Contract No. DE-ACO1-85FE60600 with the United States Department of Energy. This study Appendix III, the second Wilhelm Sand and it's sub units and pools. Basic pressure, production and assorted technical data were provided by the U.S. Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primarymore » reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can not additionally serve as a take off point for exploitation engineers to develop specific programs towards these ends. 15 figs., 9 tabs.« less

  12. Using a compositionally step graded hole reservoir layer with hole accelerating ability for reducing efficiency droop in GaN-based LEDs

    NASA Astrophysics Data System (ADS)

    Ye, Daqian; Zhang, Dongyan; Wu, Chaoyu; Wang, Duxiang; Xu, Chenke; Zhang, Jie; Huang, Meichun

    2017-05-01

    We presented a compositionally graded hole reservoir layers(HRL) - an AlGaN/GaN super lattice hole reservoir layer with Al mole fraction multi-step gradient from high to low (GSL-HRL) in this paper. The designed LED with compositionally step graded HRL shows comparable low operating voltage and less efficiency droop. Simulation results reveal that this graded HRL could reserve the hole effectively and the hole in HRL can be energized by the strong electric field due to the polarization caused by different Al contents AlxGa1-xN layers. Such a design makes hole travel across the p-type EBL and inject into the MQWs more efficiently and smoothly. The novel structure of HRL improves the performance of the LED significantly and gives a promising application in high power GaN-based LED in the future.

  13. Heterogeneity, pore pressure, and injectate chemistry: Control measures for geologic carbon storage

    DOE PAGES

    Dewers, Thomas; Eichhubl, Peter; Ganis, Ben; ...

    2017-11-28

    Desirable outcomes for geologic carbon storage include maximizing storage efficiency, preserving injectivity, and avoiding unwanted consequences such as caprock or wellbore leakage or induced seismicity during and post injection. Here, to achieve these outcomes, three control measures are evident including pore pressure, injectate chemistry, and knowledge and prudent use of geologic heterogeneity. Field, experimental, and modeling examples are presented that demonstrate controllable GCS via these three measures. Observed changes in reservoir response accompanying CO 2 injection at the Cranfield (Mississippi, USA) site, along with lab testing, show potential for use of injectate chemistry as a means to alter fracture permeabilitymore » (with concomitant improvements for sweep and storage efficiency). Further control of reservoir sweep attends brine extraction from reservoirs, with benefit for pressure control, mitigation of reservoir and wellbore damage, and water use. State-of-the-art validated models predict the extent of damage and deformation associated with pore pressure hazards in reservoirs, timing and location of networks of fractures, and development of localized leakage pathways. Experimentally validated geomechanics models show where wellbore failure is likely to occur during injection, and efficiency of repair methods. Use of heterogeneity as a control measure includes where best to inject, and where to avoid attempts at storage. Lastly, an example is use of waste zones or leaky seals to both reduce pore pressure hazards and enhance residual CO 2 trapping.« less

  14. Heterogeneity, pore pressure, and injectate chemistry: Control measures for geologic carbon storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewers, Thomas; Eichhubl, Peter; Ganis, Ben

    Desirable outcomes for geologic carbon storage include maximizing storage efficiency, preserving injectivity, and avoiding unwanted consequences such as caprock or wellbore leakage or induced seismicity during and post injection. Here, to achieve these outcomes, three control measures are evident including pore pressure, injectate chemistry, and knowledge and prudent use of geologic heterogeneity. Field, experimental, and modeling examples are presented that demonstrate controllable GCS via these three measures. Observed changes in reservoir response accompanying CO 2 injection at the Cranfield (Mississippi, USA) site, along with lab testing, show potential for use of injectate chemistry as a means to alter fracture permeabilitymore » (with concomitant improvements for sweep and storage efficiency). Further control of reservoir sweep attends brine extraction from reservoirs, with benefit for pressure control, mitigation of reservoir and wellbore damage, and water use. State-of-the-art validated models predict the extent of damage and deformation associated with pore pressure hazards in reservoirs, timing and location of networks of fractures, and development of localized leakage pathways. Experimentally validated geomechanics models show where wellbore failure is likely to occur during injection, and efficiency of repair methods. Use of heterogeneity as a control measure includes where best to inject, and where to avoid attempts at storage. Lastly, an example is use of waste zones or leaky seals to both reduce pore pressure hazards and enhance residual CO 2 trapping.« less

  15. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE PAGES

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; ...

    2017-10-17

    In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  16. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan

    In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  17. Qaharir Field, Oman: A textbook case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Dell, P.M.

    1995-12-31

    Qaharir Field is located in the southern part of the Sultanate of Oman. Like several fields in South Oman, it produces a light oil with very little solution gas. Qaharir Field contains a large depletion reservoir and several natural water drive reservoirs. There is, therefore, a large variation in the primary recovery efficiencies. A recent petroleum engineering review of this field determined the reservoir drive mechanisms and provided a basis for further development plans. This review of Qaharir Field demonstrates the application of conventional reservoir engineering tools to gain an understanding of the reservoir in sufficient detail to select andmore » plan the next development objectives.« less

  18. An efficient cooling loop for connecting cryocooler to a helium reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, C.E.; Abbott, C.S.R.; Leitner, D.

    2003-09-21

    The magnet system of the VENUS ECR Ion Source at LBNL has two 1.5-watt cryocoolers suspended in the cryostat vacuum. Helium vapor from the liquid reservoir is admitted to a finned condenser bolted to the cryocooler 2nd stage and returns as liquid via gravity. Small-diameter flexible tubes allow the cryocoolers to be located remotely from the reservoir. With 3.1 watts load, the helium reservoir is maintained at 4.35 K, 0.05K above the cryocooler temperature. Design, analysis, and performance are presented.

  19. A fully-coupled discontinuous Galerkin spectral element method for two-phase flow in petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Taneja, Ankur; Higdon, Jonathan

    2018-01-01

    A high-order spectral element discontinuous Galerkin method is presented for simulating immiscible two-phase flow in petroleum reservoirs. The governing equations involve a coupled system of strongly nonlinear partial differential equations for the pressure and fluid saturation in the reservoir. A fully implicit method is used with a high-order accurate time integration using an implicit Rosenbrock method. Numerical tests give the first demonstration of high order hp spatial convergence results for multiphase flow in petroleum reservoirs with industry standard relative permeability models. High order convergence is shown formally for spectral elements with up to 8th order polynomials for both homogeneous and heterogeneous permeability fields. Numerical results are presented for multiphase fluid flow in heterogeneous reservoirs with complex geometric or geologic features using up to 11th order polynomials. Robust, stable simulations are presented for heterogeneous geologic features, including globally heterogeneous permeability fields, anisotropic permeability tensors, broad regions of low-permeability, high-permeability channels, thin shale barriers and thin high-permeability fractures. A major result of this paper is the demonstration that the resolution of the high order spectral element method may be exploited to achieve accurate results utilizing a simple cartesian mesh for non-conforming geological features. Eliminating the need to mesh to the boundaries of geological features greatly simplifies the workflow for petroleum engineers testing multiple scenarios in the face of uncertainty in the subsurface geology.

  20. Reservoir Changes Derived from Seismic Observations at The Geysers Geothermal Field, CA, USA

    NASA Astrophysics Data System (ADS)

    Gritto, R.; Jarpre, S.

    2012-04-01

    Induced seismicity associated with the exploitation of geothermal fields is used as a tool to characterize and delineate changes associated with injection and production of fluids from the reservoir. At the same time public concern of felt seismicity has led to objections against the operation of geothermal reservoirs in close proximity to population centers. Production at the EGS sites in Basel (Switzerland) was stopped after renewed seismicity caused concern and objection from the public in the city. Operations in other geothermal reservoirs had to be scaled back or interrupted due to an unexpected increase in seismicity (Soultz-sous-forêt, France, Berlín, El Salvador). As a consequence of these concerns and in order to optimize the use of induced seismicity for reservoir engineering purposes, it becomes imperative to understand the relationship between seismic events and stress changes in the reservoir. We will address seismicity trends at The Geysers Geothermal Reservoir, CA USA, to understand the role of historical seismicity associated with past injection of water and/or production of steam. Our analysis makes use of a comprehensive database of earthquakes and associated phase arrivals from 2004 to 2011. A high-precision sub-set of the earthquake data was selected to analyze temporal changes in seismic velocities and Vp/Vs-ratio throughout the whole reservoir. We find relatively low Vp/Vs values in 2004 suggestive of a vapor dominated reservoir. With passing time, however, the observed temporal increase in Vp/Vs, coupled with a decrease in P- and S-wave velocities suggests the presence of fluid-filled fractured rock. Considering the start of a continuous water injection project in 2004, it can be concluded that the fluid saturation of the reservoir has successfully recovered. Preliminary results of 3-D velocity inversions of seismic data appear to corroborate earlier findings that the lowest Vp/Vs estimates are observed in the center of the reservoir. Vertical depth-sections indicate that these low values are co-located with production zones and production related seismicity. In contrast, the highest Vp/Vs estimates are co-located with injection zones and their associated seismicity.

  1. Tuning Fractures With Dynamic Data

    NASA Astrophysics Data System (ADS)

    Yao, Mengbi; Chang, Haibin; Li, Xiang; Zhang, Dongxiao

    2018-02-01

    Flow in fractured porous media is crucial for production of oil/gas reservoirs and exploitation of geothermal energy. Flow behaviors in such media are mainly dictated by the distribution of fractures. Measuring and inferring the distribution of fractures is subject to large uncertainty, which, in turn, leads to great uncertainty in the prediction of flow behaviors. Inverse modeling with dynamic data may assist to constrain fracture distributions, thus reducing the uncertainty of flow prediction. However, inverse modeling for flow in fractured reservoirs is challenging, owing to the discrete and non-Gaussian distribution of fractures, as well as strong nonlinearity in the relationship between flow responses and model parameters. In this work, building upon a series of recent advances, an inverse modeling approach is proposed to efficiently update the flow model to match the dynamic data while retaining geological realism in the distribution of fractures. In the approach, the Hough-transform method is employed to parameterize non-Gaussian fracture fields with continuous parameter fields, thus rendering desirable properties required by many inverse modeling methods. In addition, a recently developed forward simulation method, the embedded discrete fracture method (EDFM), is utilized to model the fractures. The EDFM maintains computational efficiency while preserving the ability to capture the geometrical details of fractures because the matrix is discretized as structured grid, while the fractures being handled as planes are inserted into the matrix grids. The combination of Hough representation of fractures with the EDFM makes it possible to tune the fractures (through updating their existence, location, orientation, length, and other properties) without requiring either unstructured grids or regridding during updating. Such a treatment is amenable to numerous inverse modeling approaches, such as the iterative inverse modeling method employed in this study, which is capable of dealing with strongly nonlinear problems. A series of numerical case studies with increasing complexity are set up to examine the performance of the proposed approach.

  2. Suspended-sediment loads, reservoir sediment trap efficiency, and upstream and downstream channel stability for Kanopolis and Tuttle Creek Lakes, Kansas, 2008-10

    USGS Publications Warehouse

    Juracek, Kyle E.

    2011-01-01

    Continuous streamflow and turbidity data collected from October 1, 2008, to September 30, 2010, at streamgage sites upstream and downstream from Kanopolis and Tuttle Creek Lakes, Kansas, were used to compute the total suspended-sediment load delivered to and released from each reservoir as well as the sediment trap efficiency for each reservoir. Ongoing sedimentation is decreasing the ability of the reservoirs to serve several purposes including flood control, water supply, and recreation. River channel stability upstream and downstream from the reservoirs was assessed using historical streamgage information. For Kanopolis Lake, the total 2-year inflow suspended-sediment load was computed to be 600 million pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 31 million pounds. Sediment trap efficiency for the reservoir was estimated to be 95 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 129,000 pounds per square mile per year. No pronounced changes in channel width were evident at five streamgage sites located upstream from the reservoir. At the Ellsworth streamgage site, located upstream from the reservoir, long-term channel-bed aggradation was followed by a period of stability. Current (2010) conditions at five streamgages located upstream from the reservoir were typified by channel-bed stability. At the Langley streamgage site, located immediately downstream from the reservoir, the channel bed degraded 6.15 feet from 1948 to 2010. For Tuttle Creek Lake, the total 2-year inflow suspended-sediment load was computed to be 13.3 billion pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 327 million pounds. Sediment trap efficiency for the reservoir was estimated to be 98 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 691,000 pounds per square mile per year. In general, no pronounced changes in channel width were evident at six streamgage sites located upstream from the reservoir. At the Barnes and Marysville streamgage sites, located upstream from the reservoir, long-term channel-bed degradation followed by stability was indicated. At the Frankfort streamgage site, located upstream from the reservoir, channel-bed aggradation of 1.65 feet from 1969 to 1989 followed by channel-bed degradation of 2.4 feet from 1989 to 2010 was indicated and may represent the passage of a sediment pulse caused by historical disturbances (for example, channelization) in the upstream basin. With the exception of the Frankfort streamgage site, current (2010) conditions at four streamgages located upstream from the reservoir were typified by channel-bed stability. At the Manhattan streamgage site, located downstream from the reservoir, high-flow releases associated with the 1993 flood widened the channel about 60 feet (30 percent). The channel bed at this site degraded 4.2 feet from 1960 to 1998 and since has been relatively stable. For the purpose of computing suspended-sediment concentration and load, the use of turbidity data in a regression model can provide more reliable and reproducible estimates than a regression model that uses discharge as the sole independent variable. Moreover, the use of discharge only to compute suspended-sediment concentration and load may result in overprediction. Stream channel banks, compared to channel beds, likely are a more important source of sediment to Kanopolis and Tuttle Creek Lakes from the upstream basins. Other sediment sources include surface-soil erosion in the basins and shoreline erosion in the reservoirs.

  3. Analysis of bacterial diversity in two oil blocks from two low-permeability reservoirs with high salinities.

    PubMed

    Xiao, Meng; Sun, Shan-Shan; Zhang, Zhong-Zhi; Wang, Jun-Ming; Qiu, Long-Wei; Sun, Hua-Yang; Song, Zhao-Zheng; Zhang, Bei-Yu; Gao, De-Li; Zhang, Guang-Qing; Wu, Wei-Min

    2016-01-20

    The community diversities of two oil reservoirs with low permeability of 1.81 × 10(-3) and 2.29 × 10(-3) μm(2) in Changqing, China, were investigated using a high throughput sequencing technique to analyze the influence of biostimulation with a nutrient activator on the bacterial communities. These two blocks differed significantly in salinity (average 17,500 vs 40,900 mg/L). A core simulation test was used to evaluate the effectiveness of indigenous microbial-enhanced oil recovery (MEOR). The results indicated that in the two high salinity oil reservoirs, one reservoir having relatively lower salinity level and a narrow salinity range had higher bacterial and phylogenetic diversity. The addition of the nutrient activator increased the diversity of the bacterial community structure and the diversity differences between the two blocks. The results of the core simulation test showed that the bacterial community in the reservoir with a salinity level of 17,500 mg/L did not show significant higher MEOR efficiency compared with the reservoir with 40,900 mg/L i.e. MEOR efficiency of 8.12% vs 6.56% (test p = 0.291 > 0.05). Therefore, salinity levels affected the bacterial diversities in the two low permeability oil blocks remarkably. But the influence of salinity for the MEOR recovery was slightly.

  4. [Effects of cascading hydropower dams operation on the structure and distribution pattern of benthic macroinvertebrate assemblages in Manwan Reservoir, Southwest China].

    PubMed

    Li, Jin Peng; Dong, Shi Kui; Peng, Ming Chun; Wu, Xuan; Zhou, Fang; Yu, Yin

    2017-12-01

    Benthic macroinvertebrate assemblages are one of the biological groups in aquatic ecosystem most sensitive to the habitat change and degradation, and can be a biological indicator for the aquatic ecosystem change and succession in cascading hydropower dam reservoir. The middle and lower reaches of the Lancang River are key spot for international biodiversity conservation and ecological studies on the effects of cascading hydropower dam exploitation. In this study, the reservoir of Manwan hydropower dam, the first dam in Lancang-Mekong river main stream, was selected as the study site. The benthic macroinvertebrate assemblages were sampled in 2011 and 2016 respectively. Meanwhile, the survey data before impounding (natural river, 1996) and early stage of single dam (1997) were collected to conduct the overall analysis for structure, distribution pattern and evolution of benthic macroinvertebrate assemblages. The results showed that the dominant biological group was gradually changed from the Oligochaeta and Insecta to the Mollusca. Along the longitudinal gradient, the density and biomass of the benthic macroinvertebrate assemblages were remarkably increased in reservoir, especially in the lacustrine zone. As for the functional feeding group, the predator and gatherer-collector changed into filter-collector predominantly in lacustrine zone. With the cascading dams operation, the biotic index indicated that the water quality of reservoir in 2016 was better than in 2011. The evolution of benthic macroinvertebrate assemblages in the Manwan Reservoir was related to the operation of Xiaowan dam in the upper reach, the hydrological regime and siltation in the reservoir, and would continue with dynamic changes with the operation of the cascading hydropower dam.

  5. Changes in the water quality and bacterial community composition of an alkaline and saline oxbow lake used for temporary reservoir of geothermal waters.

    PubMed

    Borsodi, Andrea K; Szirányi, Barbara; Krett, Gergely; Márialigeti, Károly; Janurik, Endre; Pekár, Ferenc

    2016-09-01

    Geothermal waters exploited in the southeastern region of Hungary are alkali-hydrogen-carbonate type, and beside the high amount of dissolved salt, they contain a variety of aromatic, heteroaromatic, and polyaromatic hydrocarbons. The majority of these geothermal waters used for heating are directed into surface waters following a temporary storage in reservoir lakes. The aim of this study was to gain information about the temporal and spatial changes of the water quality as well as the bacterial community composition of an alkaline and saline oxbow lake operated as reservoir of used geothermal water. On the basis of the water physical and chemical measurements as well as the denaturing gradient gel electrophoresis (DGGE) patterns of the bacterial communities, temporal changes were more pronounced than spatial differences. During the storage periods, the inflow, reservoir water, and sediment samples were characterized with different bacterial community structures in both studied years. The 16S ribosomal RNA (rRNA) gene sequences of the bacterial strains and molecular clones confirmed the differences among the studied habitats. Thermophilic bacteria were most abundant in the geothermal inflow, whereas the water of the reservoir was dominated by cyanobacteria and various anoxygenic phototrophic prokaryotes. In addition, members of several facultative anaerobic denitrifying, obligate anaerobic sulfate-reducing and syntrophic bacterial species capable of decomposition of different organic compounds including phenols were revealed from the water and sediment of the reservoir. Most of these alkaliphilic and/or halophilic species may participate in the local nitrogen and sulfur cycles and contribute to the bloom of phototrophs manifesting in a characteristic pink-reddish discoloration of the water of the reservoir.

  6. Evaluation of input output efficiency of oil field considering undesirable output —A case study of sandstone reservoir in Xinjiang oilfield

    NASA Astrophysics Data System (ADS)

    Zhang, Shuying; Wu, Xuquan; Li, Deshan; Xu, Yadong; Song, Shulin

    2017-06-01

    Based on the input and output data of sandstone reservoir in Xinjiang oilfield, the SBM-Undesirable model is used to study the technical efficiency of each block. Results show that: the model of SBM-undesirable to evaluate its efficiency and to avoid defects caused by traditional DEA model radial angle, improve the accuracy of the efficiency evaluation. by analyzing the projection of the oil blocks, we find that each block is in the negative external effects of input redundancy and output deficiency benefit and undesirable output, and there are greater differences in the production efficiency of each block; the way to improve the input-output efficiency of oilfield is to optimize the allocation of resources, reduce the undesirable output and increase the expected output.

  7. Efficiency bounds for nonequilibrium heat engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Pankaj; Polkovnikov, Anatoli, E-mail: asp@bu.edu

    2013-05-15

    We analyze the efficiency of thermal engines (either quantum or classical) working with a single heat reservoir like an atmosphere. The engine first gets an energy intake, which can be done in an arbitrary nonequilibrium way e.g. combustion of fuel. Then the engine performs the work and returns to the initial state. We distinguish two general classes of engines where the working body first equilibrates within itself and then performs the work (ergodic engine) or when it performs the work before equilibrating (non-ergodic engine). We show that in both cases the second law of thermodynamics limits their efficiency. For ergodicmore » engines we find a rigorous upper bound for the efficiency, which is strictly smaller than the equivalent Carnot efficiency. I.e. the Carnot efficiency can be never achieved in single reservoir heat engines. For non-ergodic engines the efficiency can be higher and can exceed the equilibrium Carnot bound. By extending the fundamental thermodynamic relation to nonequilibrium processes, we find a rigorous thermodynamic bound for the efficiency of both ergodic and non-ergodic engines and show that it is given by the relative entropy of the nonequilibrium and initial equilibrium distributions. These results suggest a new general strategy for designing more efficient engines. We illustrate our ideas by using simple examples. -- Highlights: ► Derived efficiency bounds for heat engines working with a single reservoir. ► Analyzed both ergodic and non-ergodic engines. ► Showed that non-ergodic engines can be more efficient. ► Extended fundamental thermodynamic relation to arbitrary nonequilibrium processes.« less

  8. Concerns about irrigation efficiency as an adaptation measure to cope with droughts and climate change in semi-arid basins

    NASA Astrophysics Data System (ADS)

    Vicuna, S.; Henriquez, L.; Melo, O.

    2016-12-01

    As expected in the late 1960s, the Paloma reservoir was built in the Limari basin in the semi-arid region in central Chile with the premise that climate conditions of the past, including the recurrence of dry and wet periods, were going to repeat in the future. That was in fact the case for almost 30 years after the reservoir was built. During this period water supplies from the reservoir were reliable and irrigation efficiency was improved with the result of irrigated land in the basin increasing four times especially with high value-permanent-water-consumption crops (fruits, orchards). Since 2003, during a mega-drought that has affected large proportions of central Chile, inflows to the Paloma reservoir have never again equaled or surpassed average historic flows. The refill of the reservoir, an event that happened every 3-4 years has not occurred in the last 13 years. And the capacity of the basin to accommodate to such a drastic reduction in water availability is no longer present because of the already large "efficient" and permanent use of water. The results in terms of agriculture losses and runoff at the outlet of the basin have been dramatic. Some 400 kms. south of the Limari basin, with higher precipitation levels but still in the semi-arid region in Chile is located the Maipo basin home to the 6 million people city of Santiago and around 250,000 has of irrigated land. Irrigation efficiency is also improving in this basin with savings being used mostly to supply drinking water supply shortages via transfer of water rights. Considering costly infrastructure alternatives, adaptation to climate change projections in this basin will likely extend the improvements in irrigation efficiency most likely affecting downstream environmental uses and reducing overall resilience of the basin to cope with droughts.

  9. Microbial enhanced oil recovery and compositions therefor

    DOEpatents

    Bryant, Rebecca S.

    1990-01-01

    A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.

  10. Geo-Engineering through Internet Informatics (GEMINI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W. Lynn; Doveton, John H.; Victorine, John R.

    GEMINI will resolve reservoir parameters that control well performance; characterize subtle reservoir properties important in understanding and modeling hydrocarbon pore volume and fluid flow; expedite recognition of bypassed, subtle, and complex oil and gas reservoirs at regional and local scale; differentiate commingled reservoirs; build integrated geologic and engineering model based on real-time, iterate solutions to evaluate reservoir management options for improved recovery; provide practical tools to assist the geoscientist, engineer, and petroleum operator in making their tasks more efficient and effective; enable evaluations to be made at different scales, ranging from individual well, through lease, field, to play and regionmore » (scalable information infrastructure); and provide training and technology transfer to evaluate capabilities of the client.« less

  11. Linking pollinator efficiency to patterns of pollen limitation: small bees exploit the plant-pollinator mutualism.

    PubMed

    Koski, Matthew H; Ison, Jennifer L; Padilla, Ashley; Pham, Angela Q; Galloway, Laura F

    2018-06-13

    Seemingly mutualistic relationships can be exploited, in some cases reducing fitness of the exploited species. In plants, the insufficient receipt of pollen limits reproduction. While infrequent pollination commonly underlies pollen limitation (PL), frequent interactions with low-efficiency, exploitative pollinators may also cause PL. In the widespread protandrous herb Campanula americana , visitation by three pollinators explained 63% of the variation in PL among populations spanning the range. Bumblebees and the medium-sized Megachile campanulae enhanced reproductive success, but small solitary bees exacerbated PL. To dissect mechanisms behind these relationships, we scored sex-specific floral visitation, and the contributions of each pollinator to plant fitness using single flower visits. Small bees and M. campanulae overvisited male-phase flowers, but bumblebees frequently visited female-phase flowers. Fewer bumblebee visits were required to saturate seed set compared to other bees. Scaling pollinator efficiency metrics to populations, small bees deplete large amounts of pollen due to highly male-biased flower visitation and infrequent pollen deposition. Thus, small bees reduce plant reproduction by limiting pollen available for transfer by efficient pollinators, and appear to exploit the plant-pollinator mutualism, acting as functional parasites to C. americana It is therefore unlikely that small bees will compensate for reproductive failure in C. americana when bumblebees are scarce. © 2018 The Author(s).

  12. Negotiating designs of multi-purpose reservoir systems in international basins

    NASA Astrophysics Data System (ADS)

    Geressu, Robel; Harou, Julien

    2016-04-01

    Given increasing agricultural and energy demands, coordinated management of multi-reservoir systems could help increase production without further stressing available water resources. However, regional or international disputes about water-use rights pose a challenge to efficient expansion and management of many large reservoir systems. Even when projects are likely to benefit all stakeholders, agreeing on the design, operation, financing, and benefit sharing can be challenging. This is due to the difficulty of considering multiple stakeholder interests in the design of projects and understanding the benefit trade-offs that designs imply. Incommensurate performance metrics, incomplete knowledge on system requirements, lack of objectivity in managing conflict and difficulty to communicate complex issue exacerbate the problem. This work proposes a multi-step hybrid multi-objective optimization and multi-criteria ranking approach for supporting negotiation in water resource systems. The approach uses many-objective optimization to generate alternative efficient designs and reveal the trade-offs between conflicting objectives. This enables informed elicitation of criteria weights for further multi-criteria ranking of alternatives. An ideal design would be ranked as best by all stakeholders. Resource-sharing mechanisms such as power-trade and/or cost sharing may help competing stakeholders arrive at designs acceptable to all. Many-objective optimization helps suggests efficient designs (reservoir site, its storage size and operating rule) and coordination levels considering the perspectives of multiple stakeholders simultaneously. We apply the proposed approach to a proof-of-concept study of the expansion of the Blue Nile transboundary reservoir system.

  13. Getting into the brain: Potential of nanotechnology in the management of NeuroAIDS.

    PubMed

    Nair, Madhavan; Jayant, Rahul Dev; Kaushik, Ajeet; Sagar, Vidya

    2016-08-01

    In spite of significant advances in antiretroviral (ARV) therapy, the elimination of human immunodeficiency virus (HIV) reservoirs from the periphery and the central nervous system (CNS) remains a formidable task. The incapability of ARV to go across the blood-brain barrier (BBB) after systemic administration makes the brain one of the dominant HIV reservoirs. Thus, screening, monitoring, and elimination of HIV reservoirs from the brain remain a clinically daunting and key task. The practice and investigation of nanomedicine possesses potentials for therapeutics against neuroAIDS. This review highlights the advancements in nanoscience and nanotechnology to design and develop specific size therapeutic cargo for efficient navigation across BBB so as to recognize and eradicate HIV brain reservoirs. Different navigation and drug release strategies, their biocompatibility and efficacy with related challenges and future prospects are also discussed. This review would be an excellent platform to understand nano-enable multidisciplinary research to formulate efficient nanomedicine for the management of neuroAIDS. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Thermodynamic limits for solar energy conversion by a quantum-thermal hybrid system

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1981-01-01

    The limits are presented fo air mass 1.5 conditions. A maximum conversion efficiency of 74 percent is thermodynamically achievable for the quantum device operating at 3500 K and the heat engine in contact with a reservoir at 0 K. The efficiency drops to 56 percent for a cold reservoir at approximately room temperature conditions. Hybrid system efficiencies exceed 50 percent over receiver temperatures ranging from 1400 K to 4000 K, suggesting little benefit is gained in operating the system above 1400 K. The results are applied to a system consisting of a photovoltaic solar cell in series with a heat engine.

  15. Daily reservoir sedimentation model: Case study from the Fena Valley Reservoir, Guam

    USGS Publications Warehouse

    Marineau, Mathieu D.; Wright, Scott A.

    2017-01-01

    A model to compute reservoir sedimentation rates at daily timescales is presented. The model uses streamflow and sediment load data from nearby stream gauges to obtain an initial estimate of sediment yield for the reservoir’s watershed; it is then calibrated to the total deposition calculated from repeat bathymetric surveys. Long-term changes to reservoir trapping efficiency are also taken into account. The model was applied to the Fena Valley Reservoir, a water supply reservoir on the island of Guam. This reservoir became operational in 1951 and was recently surveyed in 2014. The model results show that the highest rate of deposition occurred during two typhoons (Typhoon Alice in 1953 and Typhoon Tingting in 2004); each storm decreased reservoir capacity by approximately 2–3% in only a few days. The presented model can be used to evaluate the impact of an extreme event, or it can be coupled with a watershed runoff model to evaluate potential impacts to storage capacity as a result of climate change or other hydrologic modifications.

  16. Cooling system for superconducting magnet

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed

    1998-01-01

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.

  17. Cooling system for superconducting magnet

    DOEpatents

    Gamble, B.B.; Sidi-Yekhlef, A.

    1998-12-15

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.

  18. Quantitative tools link portfolio management with use of technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.N.; Boulanger, A.; Amaefule, J.

    1998-11-30

    The exploration and production (E and P) business is in the midst of a major transformation from an emphasis on cost-cutting to more diverse portfolio management practices. The industry has found that it is not easy to simultaneously optimize net present value (NPV), return on investment (ROI), and long-term growth. The result has been the adaptation of quantitative business practices that rival their subsurface geological equivalents in sophistication and complexity. The computational tools assess the risk-reward tradeoffs inherent in the upstream linkages between (1) the application of advanced technologies to improve success in exploration and in exploitation (reservoir evaluation, drilling,more » producing, and delivery to market) and (2) the maximization of both short- and long-term profitability. Exploitation is a critical link to the industry`s E and P profitability, as can be seen from the correlation between earnings growth of the international majors and production growth. The paper discusses the use of tools to optimize exploitation.« less

  19. Stress heterogeneity above and within a deep geothermal reservoir: From borehole observations to geomechanical modelling

    NASA Astrophysics Data System (ADS)

    Seithel, Robin; Peters, Max; Lesueur, Martin; Kohl, Thomas

    2017-04-01

    Overpressured reservoir conditions, local stress concentrations or a locally rotated stress field can initiate substantial problems during drilling or reservoir exploitation. Increasing geothermal utilization in the Molasse basin area in S-Germany is faced with such problems of deeply seated reservoir sections. In several wells, radial fluid flow systems are interpreted as highly porous layers. However, in nearby wells a combination of linear fluid flow, local stress heterogeneities and structural geology hint to a rather fault dominated reservoir (Seithel et al. 2015). Due to missing knowledge of the stress magnitude, stress orientation and their coupling to reservoir response, we will present a THMC model of critical formations and the geothermal reservoir targeting nearby faults. In an area south of Munich, where several geothermal wells are constructed, such wells are interpreted and integrated into a 30 x 30 km simulated model area. One of the main objectives here is to create a geomechanical reservoir model in a thermo-mechanical manner in order to understand the coupling between reservoir heterogeneities and stress distributions. To this end, stress analyses of wellbore data and laboratory tests will help to calibrate a reliable model. In order to implement the complex geological structure of the studied wedge-shaped foreland basin, an automatic export of lithology, fault and borehole data (e.g. from Petrel) into a FE mesh is used. We will present a reservoir-scale model that considers thermo-mechanic effects and analyze their influence on reservoir deformation, fluid flow and stress concentration. We use the currently developed finite element application REDBACK (https://github.com/pou036/redback), inside the MOOSE framework (Poulet et al. 2016). We show that mechanical heterogeneities nearby fault zones and their orientation within the stress field correlate to fracture pattern, interpreted stress heterogeneities or variegated flow systems within the reservoir. REFERENCES Poulet, T.; Paesold, M.; Veveakis, M. (2016), Multi-Physics Modelling of Fault Mechanics Using REDBACK. A Parallel Open-Source Simulator for Tightly Coupled Problems. Rock Mechanics and Rock Engineering. doi: 10.1007/s00603-016-0927-y. Seithel, R.; Steiner, U.; Müller, B.I.R.; Hecht, Ch.; Kohl, T. (2015), Local stress anomaly in the Bavarian Molasse Basin, Geothermal Energy 3(1), p.77. doi:10.1186/s40517-014-0023-z

  20. Effect of Streamflow Forecast Uncertainty on Real-Time Reservoir Operation

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Cai, X.; Yang, D.

    2010-12-01

    Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (DPSF), and ensemble streamflow forecast (ESF), which represent forecast uncertainty in the form of deterministic forecast error, deterministic forecast error-based uncertainty distribution, and ensemble forecast errors, respectively. Compared to previous studies that treat these forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. In hydrology, there are various indices reflecting the magnitude of streamflow forecast uncertainty; meanwhile, few models illustrate the forecast uncertainty evolution process. This research introduces Martingale Model of Forecast Evolution (MMFE) from supply chain management and justifies its assumptions for quantifying the evolution of uncertainty in streamflow forecast as time progresses. Based on MMFE, this research simulates the evolution of forecast uncertainty in DSF, DPSF, and ESF, and applies the reservoir operation models (dynamic programming, DP; stochastic dynamic programming, SDP; and standard operation policy, SOP) to assess the effect of different forms of forecast uncertainty on real-time reservoir operation. Through a hypothetical single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases. Meanwhile, these effects also depend on the type of forecast product being used. In general, the utility of reservoir operation with ESF is nearly as high as the utility obtained with a perfect forecast; the utilities of DSF and DPSF are similar to each other but not as efficient as ESF. Moreover, streamflow variability and reservoir capacity can change the magnitude of the effects of forecast uncertainty, but not the relative merit of DSF, DPSF, and ESF. Schematic diagram of the increase in forecast uncertainty with forecast lead-time and the dynamic updating property of real-time streamflow forecast

  1. Quantifying the potential for reservoirs to secure future surface water yields in the world’s largest river basins

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Parkinson, Simon; Gidden, Matthew; Byers, Edward; Satoh, Yusuke; Riahi, Keywan; Forman, Barton

    2018-04-01

    Surface water reservoirs provide us with reliable water supply, hydropower generation, flood control and recreation services. Yet reservoirs also cause flow fragmentation in rivers and lead to flooding of upstream areas, thereby displacing existing land-use activities and ecosystems. Anticipated population growth and development coupled with climate change in many regions of the globe suggests a critical need to assess the potential for future reservoir capacity to help balance rising water demands with long-term water availability. Here, we assess the potential of large-scale reservoirs to provide reliable surface water yields while also considering environmental flows within 235 of the world’s largest river basins. Maps of existing cropland and habitat conservation zones are integrated with spatially-explicit population and urbanization projections from the Shared Socioeconomic Pathways to identify regions unsuitable for increasing water supply by exploiting new reservoir storage. Results show that even when maximizing the global reservoir storage to its potential limit (∼4.3–4.8 times the current capacity), firm yields would only increase by about 50% over current levels. However, there exist large disparities across different basins. The majority of river basins in North America are found to gain relatively little firm yield by increasing storage capacity, whereas basins in Southeast Asia display greater potential for expansion as well as proportional gains in firm yield under multiple uncertainties. Parts of Europe, the United States and South America show relatively low reliability of maintaining current firm yields under future climate change, whereas most of Asia and higher latitude regions display comparatively high reliability. Findings from this study highlight the importance of incorporating different factors, including human development, land-use activities, and climate change, over a time span of multiple decades and across a range of different scenarios when quantifying available surface water yields and the potential for reservoir expansion.

  2. Alpha 2-macroglobulin capture allows detection of mast cell chymase in serum and creates a reservoir of angiotensin II-generating activity.

    PubMed

    Raymond, Wilfred W; Su, Sharon; Makarova, Anastasia; Wilson, Todd M; Carter, Melody C; Metcalfe, Dean D; Caughey, George H

    2009-05-01

    Human chymase is a highly efficient angiotensin II-generating serine peptidase expressed by mast cells. When secreted from degranulating cells, it can interact with a variety of circulating antipeptidases, but is mostly captured by alpha(2)-macroglobulin, which sequesters peptidases in a cage-like structure that precludes interactions with large protein substrates and inhibitors, like serpins. The present work shows that alpha(2)-macroglobulin-bound chymase remains accessible to small substrates, including angiotensin I, with activity in serum that is stable with prolonged incubation. We used alpha(2)-macroglobulin capture to develop a sensitive, microtiter plate-based assay for serum chymase, assisted by a novel substrate synthesized based on results of combinatorial screening of peptide substrates. The substrate has low background hydrolysis in serum and is chymase-selective, with minimal cleavage by the chymotryptic peptidases cathepsin G and chymotrypsin. The assay detects activity in chymase-spiked serum with a threshold of approximately 1 pM (30 pg/ml), and reveals native chymase activity in serum of most subjects with systemic mastocytosis. alpha(2)-Macroglobulin-bound chymase generates angiotensin II in chymase-spiked serum, and it appears in native serum as chymostatin-inhibited activity, which can exceed activity of captopril-sensitive angiotensin-converting enzyme. These findings suggest that chymase bound to alpha(2)-macroglobulin is active, that the complex is an angiotensin-converting enzyme inhibitor-resistant reservoir of angiotensin II-generating activity, and that alpha(2)-macroglobulin capture may be exploited in assessing systemic release of secreted peptidases.

  3. α2-Macroglobulin Capture Allows Detection of Mast Cell Chymase in Serum and Creates a Circulating Reservoir of Angiotensin II-generating Activity1

    PubMed Central

    Raymond, Wilfred W.; Su, Sharon; Makarova, Anastasia; Wilson, Todd M.; Carter, Melody C.; Metcalfe, Dean D.; Caughey, George H.

    2009-01-01

    Human chymase is a highly efficient angiotensin II-generating serine peptidase expressed by the MCTC subset of mast cells. When secreted from degranulating cells, it can interact with a variety of circulating anti-peptidases, but is mostly captured by α2-macroglobulin, which sequesters peptidases in a cage-like structure that precludes interactions with large protein substrates and inhibitors, like serpins. The present work shows that α2-macroglobulin-bound chymase remains accessible to small substrates, including angiotensin I, with activity in serum that is stable with prolonged incubation. We used α2-macroglobulin capture to develop a sensitive, microtiter plate-based assay for serum chymase, assisted by a novel substrate synthesized based on results of combinatorial screening of peptide substrates. The substrate has low background hydrolysis in serum and is chymase-selective, with minimal cleavage by the chymotryptic peptidases cathepsin G and chymotrypsin. The assay detects activity in chymase-spiked serum with a threshold of ~1 pM (30 pg/ml), and reveals native chymase activity in serum of most subjects with systemic mastocytosis. α2-Macroglobulin-bound chymase generates angiotensin II in chymase-spiked serum, and appears in native serum as chymostatin-inhibited activity, which can exceed activity of captopril-sensitive angiotensin converting enzyme. These findings suggest that chymase bound to α2-macroglobulin is active, that the circulating complex is an angiotensin-converting enzyme inhibitor-resistant reservoir of angiotensin II-generating activity, and that α2-macroglobulin capture may be exploited in assessing systemic release of secreted peptidases. PMID:19380825

  4. A chemical EOR benchmark study of different reservoir simulators

    NASA Astrophysics Data System (ADS)

    Goudarzi, Ali; Delshad, Mojdeh; Sepehrnoori, Kamy

    2016-09-01

    Interest in chemical EOR processes has intensified in recent years due to the advancements in chemical formulations and injection techniques. Injecting Polymer (P), surfactant/polymer (SP), and alkaline/surfactant/polymer (ASP) are techniques for improving sweep and displacement efficiencies with the aim of improving oil production in both secondary and tertiary floods. There has been great interest in chemical flooding recently for different challenging situations. These include high temperature reservoirs, formations with extreme salinity and hardness, naturally fractured carbonates, and sandstone reservoirs with heavy and viscous crude oils. More oil reservoirs are reaching maturity where secondary polymer floods and tertiary surfactant methods have become increasingly important. This significance has added to the industry's interest in using reservoir simulators as tools for reservoir evaluation and management to minimize costs and increase the process efficiency. Reservoir simulators with special features are needed to represent coupled chemical and physical processes present in chemical EOR processes. The simulators need to be first validated against well controlled lab and pilot scale experiments to reliably predict the full field implementations. The available data from laboratory scale include 1) phase behavior and rheological data; and 2) results of secondary and tertiary coreflood experiments for P, SP, and ASP floods under reservoir conditions, i.e. chemical retentions, pressure drop, and oil recovery. Data collected from corefloods are used as benchmark tests comparing numerical reservoir simulators with chemical EOR modeling capabilities such as STARS of CMG, ECLIPSE-100 of Schlumberger, REVEAL of Petroleum Experts. The research UTCHEM simulator from The University of Texas at Austin is also included since it has been the benchmark for chemical flooding simulation for over 25 years. The results of this benchmark comparison will be utilized to improve chemical design for field-scale studies using commercial simulators. The benchmark tests illustrate the potential of commercial simulators for chemical flooding projects and provide a comprehensive table of strengths and limitations of each simulator for a given chemical EOR process. Mechanistic simulations of chemical EOR processes will provide predictive capability and can aid in optimization of the field injection projects. The objective of this paper is not to compare the computational efficiency and solution algorithms; it only focuses on the process modeling comparison.

  5. 43 CFR 418.12 - Project efficiency.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Thus, the diversions from the Truckee River, operation of other facilities (e.g., Stampede Reservoir... nearest minute. 4. Change operation of regulating reservoirs ??4 Eliminate use of all or parts of... from operations to changes in the facilities and can be measured as an end product without regard to...

  6. 43 CFR 418.12 - Project efficiency.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Thus, the diversions from the Truckee River, operation of other facilities (e.g., Stampede Reservoir... nearest minute. 4. Change operation of regulating reservoirs ??4 Eliminate use of all or parts of... from operations to changes in the facilities and can be measured as an end product without regard to...

  7. Expanding the chemical space for natural products by Aspergillus-Streptomyces co-cultivation and biotransformation

    PubMed Central

    Wu, Changsheng; Zacchetti, Boris; Ram, Arthur F.J.; van Wezel, Gilles P.; Claessen, Dennis; Hae Choi, Young

    2015-01-01

    Actinomycetes and filamentous fungi produce a wide range of bioactive compounds, with applications as antimicrobials, anticancer agents or agrochemicals. Their genomes contain a far larger number of gene clusters for natural products than originally anticipated, and novel approaches are required to exploit this potential reservoir of new drugs. Here, we show that co-cultivation of the filamentous model microbes Streptomyces coelicolor and Aspergillus niger has a major impact on their secondary metabolism. NMR-based metabolomics combined with multivariate data analysis revealed several compounds that correlated specifically to co-cultures, including the cyclic dipeptide cyclo(Phe-Phe) and 2-hydroxyphenylacetic acid, both of which were produced by A. niger in response to S. coelicolor. Furthermore, biotransformation studies with o-coumaric acid and caffeic acid resulted in the production of the novel compounds (E)-2-(3-hydroxyprop-1-en-1-yl)-phenol and (2E,4E)-3-(2-carboxy-1-hydroxyethyl)-2,4-hexadienedioxic acid, respectively. This highlights the utility of microbial co-cultivation combined with NMR-based metabolomics as an efficient pipeline for the discovery of novel natural products. PMID:26040782

  8. Thermally-enhanced oil recovery method and apparatus

    DOEpatents

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  9. Structural control on geothermal circulation in the Tocomar geothermal volcanic area (Puna plateau, Argentina)

    NASA Astrophysics Data System (ADS)

    Giordano, Guido

    2016-04-01

    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous thermal springs. This study presents new stratigraphic, structural, volcanological, geochemical and hydrogeological data on the geothermal field. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field.

  10. Hydrochemical characterization of a mine water geothermal energy resource in NW Spain.

    PubMed

    Loredo, C; Ordóñez, A; Garcia-Ordiales, E; Álvarez, R; Roqueñi, N; Cienfuegos, P; Peña, A; Burnside, N M

    2017-01-15

    Abandoned and flooded mine networks provide underground reservoirs of mine water that can be used as a renewable geothermal energy source. A complete hydrochemical characterization of mine water is required to optimally design the geothermal installation, understand the hydraulic behavior of the water in the reservoir and prevent undesired effects such as pipe clogging via mineral precipitation. Water pumped from the Barredo-Figaredo mining reservoir (Asturias, NW Spain), which is currently exploited for geothermal use, has been studied and compared to water from a separate, nearby mountain mine and a river that receives mine water discharge and partially infiltrates into the mine workings. Although the hydrochemistry was altered during the flooding process, the deep mine waters are currently near neutral, net alkaline, high metal waters of Na-HCO 3 type. Isotopic values suggest that mine waters are closely related to modern meteoric water, and likely correspond to rapid infiltration. Suspended and dissolved solids, and particularly iron content, of mine water results in some scaling and partial clogging of heat exchangers, but water temperature is stable (22°C) and increases with depth, so, considering the available flow (>100Ls -1 ), the Barredo-Figaredo mining reservoir represents a sustainable, long-term resource for geothermal use. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Analysis of bacterial diversity in two oil blocks from two low-permeability reservoirs with high salinities

    PubMed Central

    Xiao, Meng; Sun, Shan-Shan; Zhang, Zhong-Zhi; Wang, Jun-Ming; Qiu, Long-Wei; Sun, Hua-Yang; Song, Zhao-Zheng; Zhang, Bei-Yu; Gao, De-Li; Zhang, Guang-Qing; Wu, Wei-Min

    2016-01-01

    The community diversities of two oil reservoirs with low permeability of 1.81 × 10−3 and 2.29 × 10−3 μm2 in Changqing, China, were investigated using a high throughput sequencing technique to analyze the influence of biostimulation with a nutrient activator on the bacterial communities. These two blocks differed significantly in salinity (average 17,500 vs 40,900 mg/L). A core simulation test was used to evaluate the effectiveness of indigenous microbial-enhanced oil recovery (MEOR). The results indicated that in the two high salinity oil reservoirs, one reservoir having relatively lower salinity level and a narrow salinity range had higher bacterial and phylogenetic diversity. The addition of the nutrient activator increased the diversity of the bacterial community structure and the diversity differences between the two blocks. The results of the core simulation test showed that the bacterial community in the reservoir with a salinity level of 17,500 mg/L did not show significant higher MEOR efficiency compared with the reservoir with 40,900 mg/L i.e. MEOR efficiency of 8.12% vs 6.56% (test p = 0.291 > 0.05). Therefore, salinity levels affected the bacterial diversities in the two low permeability oil blocks remarkably. But the influence of salinity for the MEOR recovery was slightly. PMID:26786765

  12. AN INTEGRATED APPROACH TO CHARACTERIZING BYPASSED OIL IN HETEROGENEOUS AND FRACTURED RESERVOIRS USING PARTITIONING TRACERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhil Datta-Gupta

    2003-08-01

    We explore the use of efficient streamline-based simulation approaches for modeling partitioning interwell tracer tests in hydrocarbon reservoirs. Specifically, we utilize the unique features of streamline models to develop an efficient approach for interpretation and history matching of field tracer response. A critical aspect here is the underdetermined and highly ill-posed nature of the associated inverse problems. We have adopted an integrated approach whereby we combine data from multiple sources to minimize the uncertainty and non-uniqueness in the interpreted results. For partitioning interwell tracer tests, these are primarily the distribution of reservoir permeability and oil saturation distribution. A novel approachmore » to multiscale data integration using Markov Random Fields (MRF) has been developed to integrate static data sources from the reservoir such as core, well log and 3-D seismic data. We have also explored the use of a finite difference reservoir simulator, UTCHEM, for field-scale design and optimization of partitioning interwell tracer tests. The finite-difference model allows us to include detailed physics associated with reactive tracer transport, particularly those related with transverse and cross-streamline mechanisms. We have investigated the potential use of downhole tracer samplers and also the use of natural tracers for the design of partitioning tracer tests. Finally, the behavior of partitioning tracer tests in fractured reservoirs is investigated using a dual-porosity finite-difference model.« less

  13. Distinct Urban Mines: Exploiting secondary resources in unique anthropogenic spaces.

    PubMed

    Ongondo, F O; Williams, I D; Whitlock, G

    2015-11-01

    Fear of scarcity of resources highlight the need to exploit secondary materials from urban mines in the anthroposphere. Analogous to primary mines rich in one type of material (e.g. copper, gold, etc.), some urban mines are unique/distinct. We introduce, illustrate and discuss the concept of Distinct Urban Mines (DUM). Using the example of a university DUM in the UK, analogous to a primary mine, we illustrate potential product/material yields in respect of size, concentration and spatial location of the mine. Product ownership and replacement cycles for 17 high-value electrical and electronic equipment (EEE) among students showed that 20 tonnes of valuable e-waste were in stockpile in this DUM and a further 87 tonnes would 'soon' be available for exploitation. We address the opportunities and challenges of exploiting DUMs and conclude that they are readily available reservoirs for resource recovery. Two original contributions arise from this work: (i) a novel approach to urban mining with a potential for maximising resource recovery within the anthroposphere is conceptualised; and (ii) previously unavailable data for high-value products for a typical university DUM are presented and analysed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Seasonal and diel effects on acoustic fish biomass estimates: application to a shallow reservoir with untargeted common carp (Cyprinus carpio)

    USGS Publications Warehouse

    Djemali, Imed; Yule, Daniel; Guillard, Jean

    2016-01-01

    The aim of the present study was to understand how seasonal fish distributions affect acoustically derived fish biomass estimates in a shallow reservoir in a semi-arid country (Tunisia). To that end, sampling events were performed during four seasons (spring (June), summer (September), autumn (December) and winter (March)) that included day and night surveys. A Simrad EK60 echosounder, equipped with two 120-kHz split-beam transducers for simultaneous horizontal and vertical beaming, was used to sample the entire water column. Surveys during spring and summer and daytime hours of winter were deemed unusable owing to high methane flux from the sediment, and during the day survey of autumn, fish were close to the reservoir bottom leading to low detectability. It follows that acoustic surveys should be conducted only at night during the cold season (December–March) for shallow reservoirs having carp Cyprinus carpio (L.) as the dominant species. Further, night-time biomass estimates during the cold season declined significantly (P < 0.001) from autumn to winter. Based on our autumn night-time survey, overall fish biomass in the Bir-Mcherga Reservoir was high (mean (± s.d.) 185 ± 98 tonnes (Mg)), but annual fishery exploitation is low (19.3–24.1 Mg) because the fish biomass is likely dominated by invasive carp not targeted by fishers. The results suggest that controlling carp would help improve the fishery.

  15. Origin and transport of chloride in superheated geothermal steam

    USGS Publications Warehouse

    Truesdell, A.H.; Haizlip, J.R.; Armannsson, H.; D'Amore, F.

    1989-01-01

    Hydrogen chloride (HCl) is a known component of some volcanic gases and volcanic-related hydrothermal systems. It has recently been discovered in superheated steam in exploited geothermal systems, usually as a result of HCl-induced corrosion of well casing and steam gathering systems. Evaluation of four geothermal systems (Tatun, Taiwan; Krafla, Iceland; Larderello, Italy and The Geysers, USA) which produce CI-bearing steam provides evidence for the presence of Cl as HCl and the natural reservoir conditions which can produce HCl-bearing steam. Theoretical calculations defining the physical and chemical conditions of the reservoir liquid which can produce HCl-bearing steam are presented. The main factors are pH, temperature and Cl concentration. Lower pH, higher temperature and higher chlorinity allow more HCl to be volatilized with steam. In order to reach the surface in steam, the HCl cannot contact liquid water in which it is more soluble, essentially limiting transport to superheated steam. Temperature, pH and Cl concentration of reservoir liquids in each of the geothermal systems evaluated combine differently to produce HCl-bearing steam. ?? 1989.

  16. Constructing the deep temperature section of the Travale geothermal area in Italy, with the use of an electromagnetic geothermometer

    NASA Astrophysics Data System (ADS)

    Spichak, V. V.; Zakharova, O. K.

    2015-01-01

    The technology of electromagnetic geothermometer is applied for constructing the two-dimensional (2D) section of temperature in the Travale geothermal region in Italy up to a depth of 10 km. The joint analysis of this section, together with the previously constructed model of electric resistivity suggests that the heat transfer in the Travale region is rendered by the overheated vapor-gas fluids instead of liquid fluids as it was previously believed based on the interpretation of the resistivity model. Another important conclusion consists in the fact that, instead of two geothermal reservoirs, whose existence was previously tentatively inferred from the interpretation of the electromagnetic and seismic data, it is likely that there is a single deep reservoir with a shallow (near-surface) offshoot. From the constructed temperature distribution it can be seen that the temperature below a depth of 4 km exceeds 500°C, which indicates that drilling down to these depths could be useful for the subsequent exploitation of this geothermal reservoir.

  17. Silica phase changes: Diagenetic agent for oil entrapment, Lost Hills field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julander, D.R.; Szymanski, D.L.

    1991-02-01

    The siliceous shales of the Monterey Group are the primary development target at Lost Hills. Silica phase changes have influenced the distribution and entrapment of hydrocarbons. With increasing temperature, opal A phase diatomite is converted to opal CT and finally quartz phase rock. All phases are low in permeability. The opal A diatomite is characteristically high in oil saturation and productive saturation. Productivity from this phase is dependent on structural position and fieldwide variations in oil viscosity and biodegradation. The deeper chert reservoir coincides with the opal CT to quartz phase transition. Porosity is again reduced in this transition, butmore » saturations in the quartz phase rocks increase. Tests in the chert reservoir indicate a single, low-permeability system, suggesting the importance of matric contribution. resistivity and porosity in the diatomite, and resistivity and velocity in the chert, are the physical properties which best reflect saturation. Methods exploiting these properties (FMS, BHTV, borehole, and surface shear wave studies) should be helpful in further characterizing the reservoirs and identifying future pay.« less

  18. 43 CFR 418.37 - Disincentives for lower efficiency.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... borrowed will be accounted for in the form of a deficit in Lahontan Reservoir storage. This deficit amount will be added to the actual Lahontan Reservoir storage quantity for the purpose of determining the... and other factors. This approach should allow the District to plan its operation to correct for any...

  19. 43 CFR 418.37 - Disincentives for lower efficiency.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... borrowed will be accounted for in the form of a deficit in Lahontan Reservoir storage. This deficit amount will be added to the actual Lahontan Reservoir storage quantity for the purpose of determining the... and other factors. This approach should allow the District to plan its operation to correct for any...

  20. The nonlinear oil-water two-phase flow behavior for a horizontal well in triple media carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Tao, Zhengwu; Chen, Liang; Ma, Xin

    2017-10-01

    Carbonate reservoir is one of the important reservoirs in the world. Because of the characteristics of carbonate reservoir, horizontal well has become a key technology for efficiently developing carbonate reservoir. Establishing corresponding mathematical models and analyzing transient pressure behaviors of this type of well-reservoir configuration can provide a better understanding of fluid flow patterns in formation as well as estimations of important parameters. A mathematical model for a oil-water two-phase flow horizontal well in triple media carbonate reservoir by conceptualizing vugs as spherical shapes are presented in this article. A semi-analytical solution is obtained in the Laplace domain using source function theory, Laplace transformation, and superposition principle. Analysis of transient pressure responses indicates that seven characteristic flow periods of horizontal well in triple media carbonate reservoir can be identified. Parametric analysis shows that water saturation of matrix, vug and fracture system, horizontal section length, and horizontal well position can significantly influence the transient pressure responses of horizontal well in triple media carbonate reservoir. The model presented in this article can be applied to obtain important parameters pertinent to reservoir by type curve matching.

  1. Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead

    2004-01-13

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest onshore petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of oil through 2000. Of these significant-sized reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. There are 32 geologic plays that have been defined for Permian Basin oil reservoirs, and each of the 1,300 major reservoirs was assigned to a play. The reservoirs were mapped and compiledmore » in a Geographic Information System (GIS) by play. The final reservoir shapefile for each play contains the geographic location of each reservoir. Associated reservoir information within the linked data tables includes RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are smaller than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. Oil production from the reservoirs in the Permian Basin having cumulative production of >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 x 10{sup 8} m{sup 3}]), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]). Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonard Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.« less

  2. Are drought vulnerability indices useful tools in order to evaluate the state of a water supply system?

    NASA Astrophysics Data System (ADS)

    Preziosi, E.; Del Bon, A.; Romano, E.; Petrangeli, A. B.; Casadei, S.

    2012-04-01

    Water resources availability is affected both by anthropic drivers (increasing demand, modification in the uses) and natural ones such as precipitation decrease related to global climate changes. Water managers and water policy makers are more and more aware that they are facing a changing climate in which the availability of water is claimed to be decreasing in many parts of the world. The possibility that droughts will be more frequent and severe in the next decades is getting a real possibility and a wise manager should know in advance how to face this new reality. Hence new tools and, more important, a methodology to assess the weakest points of a complex water supply system to water scarcity scenarios, are necessary. The importance of simulation models to assess in advance the impacts of possible conditions of severe water shortage and the effects of feasible mitigation options on water supply systems is well known. Vulnerability is commonly used to characterize the performance of water supply systems, and it can be a helpful indicator in the evaluation of the most likely failures in a complex system in ordinary as well as in more severe climatic conditions. However a common procedure about the exploitation of modeling results is not established yet. In this research the water supply network of a case study area in Central Italy was modeled under different climatic and management hypothesis. In this area both ground water resources (well fields in alluvial aquifers and Apennine springs) and surface water resources stored in two large reservoirs, are exploited mainly for drinking water supply and irrigation. Climate scenarios were drawn based on three simplistic hypothesis: firstly a progressive reduction of precipitation in 55 years, secondly an increase in its variance during time, lastly a combination of the two. The model results were elaborated to calculate different indices, in order to analyze the variation of vulnerability of the water supply system to drought, in time and space. For our case study the model results show that the safety of the water supply system mainly relies on the reservoirs capacity and that the foreseen exploitation of the Apennine springs for drinking water supply could be seriously limited by the discharge natural decrease in fall. A decrease of the water system vulnerability to drought determined by a hypothetical but feasible mitigation option (augmentation of the total reservoir capacity with small reservoirs) was positively tested by the model. As a conclusion, vulnerability indices as well as synoptic risk maps, appear to be useful tools in order to analyze model results. Additionally they could provide scientific based scenarios to be used in a decision making framework considering negotiating among the main users.

  3. Using Polymer Alternating Gas to Enhance Oil Recovery in Heavy Oil

    NASA Astrophysics Data System (ADS)

    Yang, Yongzhi; Li, Weirong; Zhou, Tiyao; Dong, Zhenzhen

    2018-02-01

    CO2 has been used to recover oil for more than 40 years. Currently, about 43% of EOR production in U.S. is from CO2 flooding. CO2 flooding is a well-established EOR technique, but its density and viscosity nature are challenges for CO2 projects. Low density (0.5 to 0.8 g/cm3) causes gas to rise upward in reservoirs and bypass many lower portions of the reservoir. Low viscosity (0.02 to 0.08 cp) leads to poor volumetric sweep efficiency. So water-alternating-gas (WAG) method was used to control the mobility of CO2 and improve sweep efficiency. However, WAG process has some other problems in heavy oil reservoir, such as poor mobility ratio and gravity overriding. To examine the applicability of carbon dioxide to recover viscous oil from highly heterogeneous reservoirs, this study suggests a new EOR method--polymer-alternating gas (PAG) process. The process involves a combination of polymer flooding and CO2 injection. To confirm the effectiveness of PAG process in heavy oils, a reservoir model from Liaohe Oilfield is used to compare the technical and economic performance among PAG, WAG and polymer flooding. Simulation results show that PAG method would increase oil recovery over 10% compared with other EOR methods and PAG would be economically success based on assumption in this study. This study is the first to apply PAG to enhance oil recovery in heavy oil reservoir with highly heterogeneous. Besides, this paper provides detailed discussions and comparison about PAG with other EOR methods in this heavy oil reservoir.

  4. Increasing energy efficiency level of building production based on applying modern mechanization facilities

    NASA Astrophysics Data System (ADS)

    Prokhorov, Sergey

    2017-10-01

    Building industry in a present day going through the hard times. Machine and mechanism exploitation cost, on a field of construction and installation works, takes a substantial part in total building construction expenses. There is a necessity to elaborate high efficient method, which allows not only to increase production, but also to reduce direct costs during machine fleet exploitation, and to increase its energy efficiency. In order to achieve the goal we plan to use modern methods of work production, hi-tech and energy saving machine tools and technologies, and use of optimal mechanization sets. As the optimization criteria there are exploitation prime cost and set efficiency. During actual task-solving process we made a conclusion, which shows that mechanization works, energy audit with production juxtaposition, prime prices and costs for energy resources allow to make complex machine fleet supply, improve ecological level and increase construction and installation work quality.

  5. Characterization of Mixed Wettability at Different Scales and its Impact on Oil Recovery Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Mukul M.; Hirasaki, George J.

    The objectives of this project was to: (1) quantify the pore scale mechanisms that determine the wettability state of a reservoir, (2) study the effect of crude oil, brine and mineral compositions in the establishment of mixed wet states, (3) clarify the effect of mixed - wettability on oil displacement efficiency in waterfloods, (4) develop a new tracer technique to measure wettability, fluid distributions, residual saturation's and relative permeabilities, and (5) develop methods for properly incorporating wettability in up-scaling from pore to core to reservoir scales.

  6. Optoelectronic Reservoir Computing

    PubMed Central

    Paquot, Y.; Duport, F.; Smerieri, A.; Dambre, J.; Schrauwen, B.; Haelterman, M.; Massar, S.

    2012-01-01

    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an optoelectronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations. PMID:22371825

  7. Analytical modeling of mercury injection in high-rank coalbed methane reservoirs based on pores and microfractures: a case study of the upper carboniferous Taiyuan Formation in the Heshun block of the Qinshui Basin, central China

    NASA Astrophysics Data System (ADS)

    Gu, Yang; Ding, Wenlong; Yin, Shuai; Wang, Ruyue; Mei, Yonggui; Liu, Jianjun

    2017-03-01

    The coalbed gas reservoirs in the Qinshui Basin in central China are highly heterogeneous; thus, the reservoir characteristics are difficult to assess. Research on the pore structure of a reservoir can provide a basis for understanding the occurrence and seepage mechanisms of coal reservoirs, rock physics modeling and the formulation of rational development plans. Therefore, the pore structure characteristics of the coalbed gas reservoirs in the high rank bituminous coal in the No. 15 coal seam of the Carboniferous Taiyuan Group in the Heshun coalbed methane (CBM) blocks in the northeastern Qinshui Basin were analyzed based on pressure mercury and scanning electron microscopy data. The results showed that the effective porosity system of the coal reservoir was mainly composed of pores and microfractures and that the pore throat configuration of the coal reservoir was composed of pores and microthroats. A model was developed based on the porosity and microfractures of the high rank coal rock and the mercury injection and drainage curves. The mercury injection curve model and the coal permeability are well correlated and were more reliable for the analysis of coal and rock pore system connectivity than the mercury drainage curve model. Coal rocks with developed microfractures are highly permeable; the production levels are often high during the initial drainage stages, but they decrease rapidly. A significant portion of the natural gas remains in the strata and cannot be exploited; therefore, the ultimate recovery is rather low. Coal samples with underdeveloped microfractures have lower permeabilities. While the initial production levels are lower, the production cycle is longer, and the ultimate recovery is higher. Therefore, the initial production levels of coal reservoirs with poorly developed microfractures in some regions of China may be low. However, over the long term, due to their higher ultimate recoveries and longer production cycles, the total gas production levels will increase. This understanding can provide an important reference for developing appropriate CBM development plans.

  8. Integration of On-Chip Peristaltic Pumps and Injection Valves with Microchip Electrophoresis and Electrochemical Detection

    PubMed Central

    Bowen, Amanda L; Martin, R. Scott

    2010-01-01

    A microfluidic approach that integrates peristaltic pumping from an on-chip reservoir with injection valves, microchip electrophoresis and electrochemical detection is described. Fabrication and operation of both the peristaltic pumps and injection valves were optimized to ensure efficient pumping and discrete injections. The final device uses the peristaltic pumps to continuously direct sample from a reservoir containing a mixture of analytes to injection valves that are coupled with microchip electrophoresis and amperometric detection. The separation and direct detection of dopamine and norepinephrine were possible with this approach and the utility of the device was demonstrated by monitoring the stimulated release of these neurotransmitters from a layer of cells introduced into the microchip. It is also shown that this pumping/reservoir approach can be expanded to multiple reservoirs and pumps, where one reservoir can be addressed individually or multiple reservoirs sampled simultaneously. PMID:20665914

  9. Potential implementation of reservoir computing models based on magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Bourianoff, George; Pinna, Daniele; Sitte, Matthias; Everschor-Sitte, Karin

    2018-05-01

    Reservoir Computing is a type of recursive neural network commonly used for recognizing and predicting spatio-temporal events relying on a complex hierarchy of nested feedback loops to generate a memory functionality. The Reservoir Computing paradigm does not require any knowledge of the reservoir topology or node weights for training purposes and can therefore utilize naturally existing networks formed by a wide variety of physical processes. Most efforts to implement reservoir computing prior to this have focused on utilizing memristor techniques to implement recursive neural networks. This paper examines the potential of magnetic skyrmion fabrics and the complex current patterns which form in them as an attractive physical instantiation for Reservoir Computing. We argue that their nonlinear dynamical interplay resulting from anisotropic magnetoresistance and spin-torque effects allows for an effective and energy efficient nonlinear processing of spatial temporal events with the aim of event recognition and prediction.

  10. Development of a 1 D hydrodynamic habitat model for the Hippopotamus amphibious as basis for sustainable exploitation of hydroelectric power

    NASA Astrophysics Data System (ADS)

    Manful, D. Y.; Kaule, G.; Wieprecht, S.; Rees, J.; Hu, W.

    2009-12-01

    Hydroelectric Power (HEP) is proving to be a good alternative to carbon based energy. In the past hydropower especially large scale hydro attracted significant criticism as a result of its impact on the environment. A new breed of hydroelectric dam is in the offing. The aim is to have as little a footprint as possible on the environment in both pre and post construction phases and thus minimize impact on biodiversity whilst producing clean renewable energy. The Bui dam is 400 MW scheme currently under development on the Black Volta River in the Bui national park in Ghana. The reservoir created by the Bui barrage is expected to impact (through inundation) the habitat of two species of hippos know to exist in the park, the Hippopotamus amphibius and the Choeropsis liberiensis. Computer-based models present a unique opportunity to assess quantitatively the impact of the new reservoir on the habitat of the target species in this case the H. amphibious. Until this undertaking, there were very few studies documenting the habitat of the H. amphibious let alone model it. The work and subsequent presentation will show the development of a habitat model for the Hippopotamus amphibius. The Habitat Information retrieval Program based on Streamflow Analysis, in short HIPStrA, is a one dimensional (1D) in-stream, spatially explicit hybrid construct that combines physico-chemical evidence and expert knowledge to forecast river habitat suitability (Hs) for the Hippopotamus amphibius. The version of the model presented is specifically developed to assess the impact of a reservoir created by a hydroelectric dam on potential dwelling areas in the Bui gorge for hippos. Accordingly, this version of HIPStrA simulates a special reservoir suitability index (Rsi), a metric that captures the”hippo friendliness” of any lake or reservoir. The impact of measured and simulated flood events as well as low flows, representing extreme events is also assessed. Recommendations are made for the operating rules of the reservoir in the post-construction phase of the dam. A great deal of work has been done on the effects of stream flow changes on fish especially salmonids. Very little work however has been done assessing the impact of hydropower schemes on aquatic mammals especially in Africa. HIPStrA is the first attempt at developing a computer-based habitat model for a large aquatic megaherbivore. The need for energy for development, the availability of large rivers and a rich biodiversity base in Africa makes a case for careful and ecological smart exploitation. The overarching aim of the study is the sustainable development of hydroelectric power through the use of methodologies and tools to rigorously assess changes in instream conditions that impact aquatic mammals.

  11. Efficiency at maximum power output of quantum heat engines under finite-time operation.

    PubMed

    Wang, Jianhui; He, Jizhou; Wu, Zhaoqi

    2012-03-01

    We study the efficiency at maximum power, η(m), of irreversible quantum Carnot engines (QCEs) that perform finite-time cycles between a hot and a cold reservoir at temperatures T(h) and T(c), respectively. For QCEs in the reversible limit (long cycle period, zero dissipation), η(m) becomes identical to the Carnot efficiency η(C)=1-T(c)/T(h). For QCE cycles in which nonadiabatic dissipation and the time spent on two adiabats are included, the efficiency η(m) at maximum power output is bounded from above by η(C)/(2-η(C)) and from below by η(C)/2. In the case of symmetric dissipation, the Curzon-Ahlborn efficiency η(CA)=1-√(T(c)/T(h)) is recovered under the condition that the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation.

  12. Western Shallow Oil Zone, Elk Hills Field, Kern County, California:

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, K.B.

    1987-09-01

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. This study, Appendix II addresses the first Wilhelm Sands and its sub unites and pools. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have beenmore » determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs toward the end.« less

  13. Sharing Water Data to Encourage Sustainable Choices in Areas of the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Brantley, S. L.; Abad, J. D.; Vastine, J.; Yoxtheimer, D.; Wilderman, C.; Vidic, R.; Hooper, R. P.; Brasier, K.

    2012-12-01

    Natural gas sourced from shales but stored in more permeable formations has long been exploited as an energy resource. Now, however, gas is exploited directly from the low-porosity and low-permeability shale reservoirs through the use of hydrofracturing. Hydrofracturing is not a new technique: it has long been utilized in the energy industry to promote flow of oil and gas from traditional reservoirs. To exploit gas in reservoirs such as the Marcellus shale in PA, hydrofracturing is paired with directional drilling. Such hydrofracturing utilizes large volumes of water to increase porosity in the shale formations at depth. Small concentrations of chemicals are added to the water to improve the formation and maintenance of the fractures. Significant public controversy has developed in response to the use of hydrofracturing especially in the northeastern states underlain by the Marcellus shale where some citizens and scientists question whether shale gas recovery will contaminate local surface and ground waters. Researchers, government agencies, and citizen scientists in Pennsylvania are teaming up to run the ShaleNetwork (www.shalenetwork.org), an NSF-funded research collaboration network that is currently finding, collating, sharing, publishing, and exploring data related to water quality and quantity in areas that are exploiting shale gas. The effort, focussed initially on Pennsylvania, is now developing the ShaleNetwork database that can be accessed through HydroDesktop in the CUAHSI Hydrologic Information System. In the first year since inception, the ShaleNetwork ran a workshop and reached eight conclusions, largely focussed on issues related to the sources, entry, and use of data. First, the group discovered that extensive water data is available in areas of shale gas. Second, participants agreed that the Shale Network team should partner with state agencies and industry to move datasets online. Third, participants discovered that the database allows participants to assess data gaps. Fourth, the team was encouraged to search for data that plug gaps. Fifth, the database should be easily sustained by others long-term if the Shale Network team simplifies the process of uploading data and finds ways to create community buy-in or incentives for data uploads. Sixth, the database itself and the workshops for the database should drive future agreement about analytical protocols. Seventh, the database is already encouraging other groups to publish data online. Finally, a user interface is needed that is easier and more accessible for citizens to use. Overall, it is clear that sharing data is one way to build bridges among decision makers, scientists, and citizens to understand issues related to sustainable development of energy resources in the face of issues related to water quality and quantity.

  14. Multistability of cavity exciton polaritons affected by the thermally generated exciton reservoir

    NASA Astrophysics Data System (ADS)

    Vishnevsky, D. V.; Solnyshkov, D. D.; Gippius, N. A.; Malpuech, G.

    2012-04-01

    Recently the buildup of an excitonic reservoir in a GaAs cavity polariton system under quasiresonant pumping has been demonstrated experimentally [S. S. Gavrilov , JETP Lett.JTPLA20021-364010.1134/S0021364010150105 92, 171 (2010)]. We show that in microcavities having a small Rabi splitting (typically GaAs cavities with a single quantum well), this reservoir can be efficiently populated by polariton-phonon scattering. We consider the influence of the exciton reservoir on the energy shifts of the resonantly pumped polariton modes. We show that the presence of this reservoir effectively reduces the spin anisotropy of the polariton-polariton interaction, in agreement with recent experimental measurements, where the multistability of cavity polaritons has been analyzed [T. K. Paraiso , Nat. Mater.1476-112210.1038/nmat2787 9, 655 (2010)].

  15. The Fault Block Model: A novel approach for faulted gas reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ursin, J.R.; Moerkeseth, P.O.

    1994-12-31

    The Fault Block Model was designed for the development of gas production from Sleipner Vest. The reservoir consists of marginal marine sandstone of Hugine Formation. Modeling of highly faulted and compartmentalized reservoirs is severely impeded by the nature and extent of known and undetected faults and, in particular, their effectiveness as flow barrier. The model presented is efficient and superior to other models, for highly faulted reservoir, i.e. grid based simulators, because it minimizes the effect of major undetected faults and geological uncertainties. In this article the authors present the Fault Block Model as a new tool to better understandmore » the implications of geological uncertainty in faulted gas reservoirs with good productivity, with respect to uncertainty in well coverage and optimum gas recovery.« less

  16. Estimation of Carbon Dioxide Storage Capacity for Depleted Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Lai, Yen Ting; Shen, Chien-Hao; Tseng, Chi-Chung; Fan, Chen-Hui; Hsieh, Bieng-Zih

    2015-04-01

    A depleted gas reservoir is one of the best options for CO2 storage for many reasons. First of all, the storage safety or the caprock integrity has been proven because the natural gas was trapped in the formation for a very long period of time. Also the formation properties and fluid flow characteristics for the reservoir have been well studied since the discovery of the gas reservoir. Finally the surface constructions and facilities are very useful and relatively easy to convert for the use of CO2 storage. The purpose of this study was to apply an analytical approach to estimate CO2 storage capacity in a depleted gas reservoir. The analytical method we used is the material balance equation (MBE), which have been widely used in natural gas storage. We proposed a modified MBE for CO2 storage in a depleted gas reservoir by introducing the z-factors of gas, CO2 and the mixture of the two. The MBE can be derived to a linear relationship between the ratio of pressure to gas z-factor (p/z) and the cumulative term (Gp-Ginj, where Gp is the cumulative gas production and Ginj is the cumulative CO2 injection). The CO2 storage capacity can be calculated when constraints of reservoir recovery pressure are adopted. The numerical simulation was also used for the validation of the theoretical estimation of CO2 storage capacity from the MBE. We found that the quantity of CO2 stored is more than that of gas produced when the reservoir pressure is recovered from the abandon pressure to the initial pressure. This result was basically from the fact that the gas- CO2 mixture z-factors are lower than the natural gas z-factors in reservoir conditions. We also established a useful p/z plot to easily observe the pressure behavior of CO2 storage and efficiently calculate the CO2 storage capacity. The application of the MBE we proposed was demonstrated by a case study of a depleted gas reservoir in northwestern Taiwan. The estimated CO2 storage capacities from conducting reservoir simulation and using analytical equation were very consistent. The validation results showed that the modified MBE we proposed in this study can be efficiently used for the estimation of CO2 storage capacity in a depleted gas reservoir.

  17. Derivation of Optimal Operating Rules for Large-scale Reservoir Systems Considering Multiple Trade-off

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lei, X.; Liu, P.; Wang, H.; Li, Z.

    2017-12-01

    Flood control operation of multi-reservoir systems such as parallel reservoirs and hybrid reservoirs often suffer from complex interactions and trade-off among tributaries and the mainstream. The optimization of such systems is computationally intensive due to nonlinear storage curves, numerous constraints and complex hydraulic connections. This paper aims to derive the optimal flood control operating rules based on the trade-off among tributaries and the mainstream using a new algorithm known as weighted non-dominated sorting genetic algorithm II (WNSGA II). WNSGA II could locate the Pareto frontier in non-dominated region efficiently due to the directed searching by weighted crowding distance, and the results are compared with those of conventional operating rules (COR) and single objective genetic algorithm (GA). Xijiang river basin in China is selected as a case study, with eight reservoirs and five flood control sections within four tributaries and the mainstream. Furthermore, the effects of inflow uncertainty have been assessed. Results indicate that: (1) WNSGA II could locate the non-dominated solutions faster and provide better Pareto frontier than the traditional non-dominated sorting genetic algorithm II (NSGA II) due to the weighted crowding distance; (2) WNSGA II outperforms COR and GA on flood control in the whole basin; (3) The multi-objective operating rules from WNSGA II deal with the inflow uncertainties better than COR. Therefore, the WNSGA II can be used to derive stable operating rules for large-scale reservoir systems effectively and efficiently.

  18. Permeability enhancement by shock cooling

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of granitic geothermal reservoirs.

  19. Assessing the potential of reservoir outflow management to reduce sedimentation using continuous turbidity monitoring and reservoir modelling

    USGS Publications Warehouse

    Lee, Casey; Foster, Guy

    2013-01-01

    In-stream sensors are increasingly deployed as part of ambient water quality-monitoring networks. Temporally dense data from these networks can be used to better understand the transport of constituents through streams, lakes or reservoirs. Data from existing, continuously recording in-stream flow and water quality monitoring stations were coupled with the two-dimensional hydrodynamic CE-QUAL-W2 model to assess the potential of altered reservoir outflow management to reduce sediment trapping in John Redmond Reservoir, located in east-central Kansas. Monitoring stations upstream and downstream from the reservoir were used to estimate 5.6 million metric tons of sediment transported to John Redmond Reservoir from 2007 through 2010, 88% of which was trapped within the reservoir. The two-dimensional model was used to estimate the residence time of 55 equal-volume releases from the reservoir; sediment trapping for these releases varied from 48% to 97%. Smaller trapping efficiencies were observed when the reservoir was maintained near the normal operating capacity (relative to higher flood pool levels) and when average residence times were relatively short. An idealized, alternative outflow management scenario was constructed, which minimized reservoir elevations and the length of time water was in the reservoir, while continuing to meet downstream flood control end points identified in the reservoir water control manual. The alternative scenario is projected to reduce sediment trapping in the reservoir by approximately 3%, preventing approximately 45 000 metric tons of sediment from being deposited within the reservoir annually. This article presents an approach to quantify the potential of reservoir management using existing in-stream data; actual management decisions need to consider the effects on other reservoir benefits, such as downstream flood control and aquatic life.

  20. Coupled-Double-Quantum-Dot Environmental Information Engines: A Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Tanabe, Katsuaki

    2016-06-01

    We conduct numerical simulations for an autonomous information engine comprising a set of coupled double quantum dots using a simple model. The steady-state entropy production rate in each component, heat and electron transfer rates are calculated via the probability distribution of the four electronic states from the master transition-rate equations. We define an information-engine efficiency based on the entropy change of the reservoir, implicating power generators that employ the environmental order as a new energy resource. We acquire device-design principles, toward the realization of corresponding practical energy converters, including that (1) higher energy levels of the detector-side reservoir than those of the detector dot provide significantly higher work production rates by faster states' circulation, (2) the efficiency is strongly dependent on the relative temperatures of the detector and system sides and becomes high in a particular Coulomb-interaction strength region between the quantum dots, and (3) the efficiency depends little on the system dot's energy level relative to its reservoir but largely on the antisymmetric relative amplitudes of the electronic tunneling rates.

  1. Influence of pH on dynamics of microbial enhanced oil recovery processes using biosurfactant producing Pseudomonas putida: Mathematical modelling and numerical simulation.

    PubMed

    Sivasankar, P; Suresh Kumar, G

    2017-01-01

    In present work, the influence of reservoir pH conditions on dynamics of microbial enhanced oil recovery (MEOR) processes using Pseudomonas putida was analysed numerically from the developed mathematical model for MEOR processes. Further, a new strategy to improve the MEOR performance has also been proposed. It is concluded from present study that by reversing the reservoir pH from highly acidic to low alkaline condition (pH 5-8), flow and mobility of displaced oil, displacement efficiency, and original oil in place (OOIP) recovered gets significantly enhanced, resulting from improved interfacial tension (IFT) reduction by biosurfactants. At pH 8, maximum of 26.1% of OOIP was recovered with higher displacement efficiency. The present study introduces a new strategy to increase the recovery efficiency of MEOR technique by characterizing the biosurfactants for IFT min /IFT max values for different pH conditions and subsequently, reversing the reservoir pH conditions at which the IFT min /IFT max value is minimum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Thermal regime of the deep carbonate reservoir of the Po Plain (Italy)

    NASA Astrophysics Data System (ADS)

    Pasquale, V.; Chiozzi, P.; Verdoya, M.

    2012-04-01

    Italy is one of the most important countries in the world with regard to high-medium enthalpy geothermal resources, a large part of which is already extracted at relatively low cost. High temperatures at shallow to medium depth occur within a wide belt, several hundred kilometre long, west of the Apennines mountain chain. This belt, affected by recent lithosphere extension, includes several geothermal fields, which are largely exploited for electricity generation. Between the Alps and Apennines ranges, the deeper aquifer, occurring in carbonate rocks of the Po Plain, can host medium enthalpy fluids, which are exploited for district heating. Such a general picture of the available geothermal resources has been well established through several geophysical investigations and drillings. Nevertheless, additional studies are necessary to evaluate future developments, especially with reference to the deep carbonate aquifer of the Po Plain. In this paper, we focus on the eastern sector of the plain and try to gain a better understanding of the thermal regime by using synergically geothermal methodologies and geological information. The analysis of the temperatures recorded to about 6 km depth in hydrocarbon wells supplies basic constraints to outline the thermal regime of the sedimentary basin and to investigate the occurrence and importance of hydrothermal processes in the carbonate layer. After correction for drilling disturbance, temperatures were analysed, together with geological information, through an inversion technique based on a laterally constant thermal gradient model. The inferred thermal gradient changes with depth; it is quite low within the carbonate layer, while is larger in the overlying, practically impermeable formations. As the thermal conductivity variation does not justify such a thermal gradient difference, the vertical change can be interpreted as due to convective processes occurring in the carbonate layer, acting as thermal reservoir. The hydrogeological characteristics hardly permit forced convection in the deep aquifer. Thus, we argue that thermal convection could be the driving mechanism of water flow in the carbonate reservoir. The potential of this mechanism was evaluated by means of the Rayleigh number analysis. A relatively low permeability is required for thermal convection to occur. The carbonate reservoir can be thus envisaged as a hydrothermal convection system of large thickness and extension having a large over-heat ratio. Lateral variation of hydrothermal regime was also tested by using temperature data representing the reservoir thermal conditions. We found that thermal convection is of variable intensity and may more likely occur at an area (Ferrara structural high) where widespread fracturing due to tectonism is expected yielding a local increase in permeability.

  3. [ASSESSMENT OF POTENTIAL RISK FOR CONTAMINATION OF SURFACE WATER RESERVOIRS BY PATHOGENS OF HUMAN PARASITIC DISEASES].

    PubMed

    Khromenkova, E P; Dimidova, L L; Dumbadze, O S; Aidinov, G T; Shendo, G L; Agirov, A Kh; Batchaev, Kh Kh

    2015-01-01

    Sanitary and parasitological studies of the waste effluents and surface reservoir waters were conducted in the south of Russia. The efficiency of purification of waste effluents from the pathogens of parasitic diseases was investigated in the region's sewage-purification facilities. The water of the surface water reservoirs was found to contain helminthic eggs and larvae and intestinal protozoan cysts because of the poor purification and disinfection of service fecal sewage waters. The poor purification and disinvasion of waste effluents in the region determine the potential risk of contamination of the surface water reservoirs and infection of the population with the pathogens of human parasitic diseases.

  4. Information processing using a single dynamical node as complex system

    PubMed Central

    Appeltant, L.; Soriano, M.C.; Van der Sande, G.; Danckaert, J.; Massar, S.; Dambre, J.; Schrauwen, B.; Mirasso, C.R.; Fischer, I.

    2011-01-01

    Novel methods for information processing are highly desired in our information-driven society. Inspired by the brain's ability to process information, the recently introduced paradigm known as 'reservoir computing' shows that complex networks can efficiently perform computation. Here we introduce a novel architecture that reduces the usually required large number of elements to a single nonlinear node with delayed feedback. Through an electronic implementation, we experimentally and numerically demonstrate excellent performance in a speech recognition benchmark. Complementary numerical studies also show excellent performance for a time series prediction benchmark. These results prove that delay-dynamical systems, even in their simplest manifestation, can perform efficient information processing. This finding paves the way to feasible and resource-efficient technological implementations of reservoir computing. PMID:21915110

  5. Physical and economic potential of geological CO2 storage in saline aquifers.

    PubMed

    Eccles, Jordan K; Pratson, Lincoln; Newell, Richard G; Jackson, Robert B

    2009-03-15

    Carbon sequestration in sandstone saline reservoirs holds great potential for mitigating climate change, but its storage potential and cost per ton of avoided CO2 emissions are uncertain. We develop a general model to determine the maximum theoretical constraints on both storage potential and injection rate and use it to characterize the economic viability of geosequestration in sandstone saline aquifers. When applied to a representative set of aquifer characteristics, the model yields results that compare favorably with pilot projects currently underway. Over a range of reservoir properties, maximum effective storage peaks at an optimal depth of 1600 m, at which point 0.18-0.31 metric tons can be stored per cubic meter of bulk volume of reservoir. Maximum modeled injection rates predict minima for storage costs in a typical basin in the range of $2-7/ ton CO2 (2005 U.S.$) depending on depth and basin characteristics in our base-case scenario. Because the properties of natural reservoirs in the United States vary substantially, storage costs could in some cases be lower or higher by orders of magnitude. We conclude that available geosequestration capacity exhibits a wide range of technological and economic attractiveness. Like traditional projects in the extractive industries, geosequestration capacity should be exploited starting with the low-cost storage options first then moving gradually up the supply curve.

  6. Application of geochemical techniques to deduce the reservoir performance of the Palinpinon Geothermal Field, Philippines - an update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos-Candelaria, M.N.; Garcia, S.E.; Hermoso, D.Z.

    1997-12-31

    Regular monitoring of various geochemical parameters in the water and vapor phases of the production wells at the Palinpinon I and II sectors of the Southern Negros Geothermal Field have been useful in the identification of the dominant reservoir processes occurring related to the present exploitation strategy. Observed geochemical and physical changes in the output of production wells have dictated production and injection strategies adopted to maximize production to meet the steam requirements of the power plant. Correlation of both physical and chemical data have identified the following reservoir processes: (1) Injection breakthrough via the Ticala Fault of the highlymore » mineralized (Cl {approximately}8,000-10,500 mg/kg), isotopically enriched ({delta}{sup 18}O = -3.00{per_thousand}, {delta}{sup 2} H = -39{per_thousand}), and gas depleted brine for wells in the SW and central Puhagan. Injection breakthrough is also occurring in Palinpinon II and has resulted in temperature drops of 5-10{degrees}C.2. Pressure drawdown enhanced boiling in the liquid reservoir with steam separation of 220-240{degrees}C, feeding wells tapping the natural steam zone. However, enhanced drawdown has induced the entry of shallow acid steam condensate fluids in some wells (e.g. OK-7, PN-29D, PN-18D), which if not arrested could reduce production.« less

  7. Ground-based hyperspectral imaging and terrestrial laser scanning for fracture characterization in the Mississippian Boone Formation

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Khan, Shuhab D.; Sarmiento, Sergio; Lakshmikantha, M. R.; Zhou, Huawei

    2017-12-01

    Petroleum geoscientists have been using cores and well logs to study source rocks and reservoirs, however, the inherent discontinuous nature of these data cannot account for horizontal heterogeneities. Modern exploitation requires better understanding of important source rocks and reservoirs at outcrop scale. Remote sensing of outcrops is becoming a first order tool for reservoir analog studies including horizontal heterogeneities. This work used ground-based hyperspectral imaging, terrestrial laser scanning (TLS), and high-resolution photography to study a roadcut of the Boone Formation at Bella Vista, northwest Arkansas, and developed an outcrop model for reservoir analog analyses. The petroliferous Boone Formation consists of fossiliferous limestones interbedded with chert of early Mississippian age. We used remote sensing techniques to identify rock types and to collect 3D geometrical data. Mixture tuned matched filtering classification of hyperspectral data show that the outcrop is mostly limestones with interbedded chert nodules. 1315 fractures were classified according to their strata-bounding relationships, among these, larger fractures are dominantly striking in ENE - WSW directions. Fracture extraction data show that chert holds more fractures than limestones, and both vertical and horizontal heterogeneities exist in chert nodule distribution. Utilizing ground-based remote sensing, we have assembled a virtual outcrop model to extract mineral composition as well as fracture data from the model. We inferred anisotropy in vertical fracture permeability based on the dominancy of fracture orientations, the preferential distribution of fractures and distribution of chert nodules. These data are beneficial in reservoir analogs to study rock mechanics and fluid flow, and to improve well performances.

  8. A game theory-reinforcement learning (GT-RL) method to develop optimal operation policies for multi-operator reservoir systems

    NASA Astrophysics Data System (ADS)

    Madani, Kaveh; Hooshyar, Milad

    2014-11-01

    Reservoir systems with multiple operators can benefit from coordination of operation policies. To maximize the total benefit of these systems the literature has normally used the social planner's approach. Based on this approach operation decisions are optimized using a multi-objective optimization model with a compound system's objective. While the utility of the system can be increased this way, fair allocation of benefits among the operators remains challenging for the social planner who has to assign controversial weights to the system's beneficiaries and their objectives. Cooperative game theory provides an alternative framework for fair and efficient allocation of the incremental benefits of cooperation. To determine the fair and efficient utility shares of the beneficiaries, cooperative game theory solution methods consider the gains of each party in the status quo (non-cooperation) as well as what can be gained through the grand coalition (social planner's solution or full cooperation) and partial coalitions. Nevertheless, estimation of the benefits of different coalitions can be challenging in complex multi-beneficiary systems. Reinforcement learning can be used to address this challenge and determine the gains of the beneficiaries for different levels of cooperation, i.e., non-cooperation, partial cooperation, and full cooperation, providing the essential input for allocation based on cooperative game theory. This paper develops a game theory-reinforcement learning (GT-RL) method for determining the optimal operation policies in multi-operator multi-reservoir systems with respect to fairness and efficiency criteria. As the first step to underline the utility of the GT-RL method in solving complex multi-agent multi-reservoir problems without a need for developing compound objectives and weight assignment, the proposed method is applied to a hypothetical three-agent three-reservoir system.

  9. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir, Class I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bou-Mikael, Sami

    This report demonstrates the effectiveness of the CO2 miscible process in Fluvial Dominated Deltaic reservoirs. It also evaluated the use of horizontal CO2 injection wells to improve the overall sweep efficiency. A database of FDD reservoirs for the gulf coast region was developed by LSU, using a screening model developed by Texaco Research Center in Houston. The results of the information gained in this project is disseminated throughout the oil industry via a series of SPE papers and industry open forums.

  10. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which aremore » common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.« less

  11. Design of a high temperature subsurface thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Zheng, Qi

    Solar thermal energy is taking up increasing proportions of future power generation worldwide. Thermal energy storage technology is a key method for compensating for the inherent intermittency of solar resources and solving the time mismatch between solar energy supply and electricity demand. However, there is currently no cost-effective high-capacity compact storage technology available (Bakker et al., 2008). The goal of this work is to propose a high temperature subsurface thermal energy storage (HSTES) technology and demonstrate its potential energy storage capability by developing a solar-HSTES-electricity generation system. In this work, main elements of the proposed system and their related state-of-art technologies are reviewed. A conceptual model is built to illustrate the concept, design, operating procedure and application of such a system. A numerical base model is built within the TOUGH2-EOS1 multiphase flow simulator for the evaluation of system performance. Additional models are constructed and simulations are done to identify the effect of different operational and geological influential factors on the system performance. Our work shows that when the base model is run with ten years operation of alternate injection and production processes - each for a month - with a thermal power input of 10.85 MW, about 83% of the injected thermal energy could be recovered within each working cycle from a stabilized HSTES system. After the final conversion into electrical energy, a relative (compared with the direct use of hot water) electricity generation efficiency of 73% is obtained. In a typical daily storage scenario, the simulated thermal storage efficiency could exceed 78% and the relative electricity generation efficiency is over 66% in the long run. In a seasonal storage scenario, these two efficiencies reach 69% and 53% respectively by the end of the simulation period of 10 years. Additional simulations reveal a thinner storage aquifer with a higher horizontal-to-vertical permeability ratio is favored by the storage system. A basin-shape reservoir is more favored than a flat reservoir, while a flat reservoir is better than a dome-shape reservoir. The effect of aquifer stratification is variable: it depends on the relative position of the well screen and the impermeable lenses within the reservoir. From the operational aspect, the well screen position is crucial and properly shortening the screen length can help heat recovery. The proportion of the injection/storage/recovery processes within a cycle, rather than their exact lengths, affects the storage efficiency. Reservoir preheating helps improve the energy storage efficiency for the first several cycles. However, it does not contribute much to the system performance in the long run. Simulations also indicate that buoyancy effect is of significant importance in heat distribution and the plume migration. Reducing the gravity override effect of the heat plume could be an important consideration in efficiency optimization.

  12. Bordetella bronchiseptica exploits the complex life cycle of Dictyostelium discoideum as an amplifying transmission vector

    PubMed Central

    Linz, Bodo; Rivera, Israel; Ryman, Valerie E.; Dewan, Kalyan K.; Wagner, Shannon M.; Wilson, Emily F.; Hilburger, Lindsay J.; Cuff, Laura E.; West, Christopher M.; Harvill, Eric T.

    2017-01-01

    Multiple lines of evidence suggest that Bordetella species have a significant life stage outside of the mammalian respiratory tract that has yet to be defined. The Bordetella virulence gene (BvgAS) two-component system, a paradigm for a global virulence regulon, controls the expression of many “virulence factors” expressed in the Bvg positive (Bvg+) phase that are necessary for successful respiratory tract infection. A similarly large set of highly conserved genes are expressed under Bvg negative (Bvg-) phase growth conditions; however, these appear to be primarily expressed outside of the host and are thus hypothesized to be important in an undefined extrahost reservoir. Here, we show that Bvg- phase genes are involved in the ability of Bordetella bronchiseptica to grow and disseminate via the complex life cycle of the amoeba Dictyostelium discoideum. Unlike bacteria that serve as an amoeba food source, B. bronchiseptica evades amoeba predation, survives within the amoeba for extended periods of time, incorporates itself into the amoeba sori, and disseminates along with the amoeba. Remarkably, B. bronchiseptica continues to be transferred with the amoeba for months, through multiple life cycles of amoebae grown on the lawns of other bacteria, thus demonstrating a stable relationship that allows B. bronchiseptica to expand and disperse geographically via the D. discoideum life cycle. Furthermore, B. bronchiseptica within the sori can efficiently infect mice, indicating that amoebae may represent an environmental vector within which pathogenic bordetellae expand and disseminate to encounter new mammalian hosts. These data identify amoebae as potential environmental reservoirs as well as amplifying and disseminating vectors for B. bronchiseptica and reveal an important role for the Bvg- phase in these interactions. PMID:28403138

  13. Vector quantization for efficient coding of upper subbands

    NASA Technical Reports Server (NTRS)

    Zeng, W. J.; Huang, Y. F.

    1994-01-01

    This paper examines the application of vector quantization (VQ) to exploit both intra-band and inter-band redundancy in subband coding. The focus here is on the exploitation of inter-band dependency. It is shown that VQ is particularly suitable and effective for coding the upper subbands. Three subband decomposition-based VQ coding schemes are proposed here to exploit the inter-band dependency by making full use of the extra flexibility of VQ approach over scalar quantization. A quadtree-based variable rate VQ (VRVQ) scheme which takes full advantage of the intra-band and inter-band redundancy is first proposed. Then, a more easily implementable alternative based on an efficient block-based edge estimation technique is employed to overcome the implementational barriers of the first scheme. Finally, a predictive VQ scheme formulated in the context of finite state VQ is proposed to further exploit the dependency among different subbands. A VRVQ scheme proposed elsewhere is extended to provide an efficient bit allocation procedure. Simulation results show that these three hybrid techniques have advantages, in terms of peak signal-to-noise ratio (PSNR) and complexity, over other existing subband-VQ approaches.

  14. Efficient operation of a multi-purpose reservoir in Chile: Tradeoffs between irrigation and hydropower production

    NASA Astrophysics Data System (ADS)

    Gonzalez Cabrera, J. M., Sr.; Olivares, M. A.

    2015-12-01

    This study proposes a method to develop efficient operational policies for a reservoir the southern Chile. The main water uses in this system are hydropower and irrigation, with conflicting seasonal demands. The conflict between these two uses is currently managed through a so-called "irrigation agreement" which defines a series of operational conditions on the reservoir by restricting volumes used for power production depending on reservoir storage level. Other than that, the reservoir operation is driven by cost-minimization over the power grid. Recent evidence shows an increasing degree of conflict in this basin, which suggests that the static approach of irrigation agreements, might no longer be appropriate. Moreover, this agreement could be revised in light of decreased water availability. This problem poses a challenge related to the spatial scope of analysis. Thus, irrigation benefits are driven by decisions made within the basin, whereas hydropower benefits depend on the operation of the entire power grid. Exploring the tradeoffs between these two water uses involves modeling both scales. The proposed methodology integrates information from both a grid-wide power operations model and a basin-wide agro-economic model into a decision model for optimal reservoir operation. The first model, a hydrothermal coordination tool, schedules power production by each plant in the grid, and allows capturing technical and economic aspects to the operation of hydropower reservoirs. The agro-economic model incorporates economic features of irrigation in the basin, and allows obtaining irrigation water demand functions. Finally, the results of both models are integrated into a single model for optimal reservoir operation considering the tradeoffs between the two uses. The result of the joint operation of water resources, show a flexible coordination of uses, revealing the opportunity cost of irrigation, which it gives the possibility of negotiating transfers of water to hydropower in dry years, with the aim of obtaining greater benefits from water use in the basin

  15. Automated Discovery of Machine-Specific Code Improvements

    DTIC Science & Technology

    1984-12-01

    operation of the source language. Additional analysis may reveal special features of the target architecture that may be exploited to generate efficient...Additional analysis may reveal special features of the target architecture that may be exploited to generate efficient code. Such analysis is optional...incorporate knowledge of the source language, but do not refer to features of the target machine. These early phases are sometimes referred to as the

  16. Analysis of change of retention capacity of a small water reservoir

    NASA Astrophysics Data System (ADS)

    Výleta, R.; Danáčová, M.; Valent, P.

    2017-10-01

    This study is focused on the analysis of the changes of retention capacity of a small water reservoir induced by intensive erosion and sedimentation processes. The water reservoir is situated near the village of Vrbovce in the Western part of Slovakia, and the analysis is carried out for a period 2008-2017. The data used to build a digital elevation model (DEM) of the reservoir’s bed came from a terrain measurement, utilizing an acoustic Doppler current profiler (ADCP) to measure the water depth in the reservoir. The DEM was used to quantify the soil loss from agricultural land situated within the basin of the reservoir. The ability of the water reservoir to transform a design flood with a return period of 100 years is evaluated for both design (2008) and current conditions (2017). The results show that the small water reservoir is a subject to siltation, with sediments comprised of fine soil particles transported from nearby agricultural land. The ability of the water reservoir to transform a 100-year flood has not changed significantly. The reduction of the reservoir’s retention capacity should be systematically and regularly monitored in order to adjust its operational manual and improve its efficiency.

  17. Strategies for broadening public involvement in space developments

    NASA Technical Reports Server (NTRS)

    Harris, Philip R.

    1992-01-01

    There is widespread public interest in and goodwill toward the space program. For NASA's plans for the next 25 years to be achieved, this public reservoir of support needs to be tapped and channeled. NASA endeavors have to reach out beyond the scientific, technological, and aerospace communities to foster wider participation in space exploration and exploitation. To broaden NASA support and spread out the financing of space activities, recommendations for consideration are offered in the area of economics, political, institutional, international, and managerial areas.

  18. Water column attenuation coefficient estimations in Alqueva reservoir

    NASA Astrophysics Data System (ADS)

    Potes, Miguel; João Costa, Maria; Salgado, Rui; Rodrigues, Gonçalo; Bortoli, Daniele

    2017-04-01

    The vertical structure of the underwater radiative absorption plays an important role in the thermal dynamics of the water surface layer and consequently on the energy budget at the water-lake interface. Thus, a better estimation of the irradiance at different levels is relevant to understand the lake-air interactions. The main purpose of this dataset of measurements is to estimate the spectral attenuation coefficient of the water column. The apparatus exploited in this work are composed of an optical cable linked to a portable FieldSpec UV/VNIR (ASD). This version has hemispherical field-of-view (FOV) of 180° allowing for measurements under all range of solar zenith. In situ water spectral reflectances were also obtained to help in the validation of satellite water leaving reflectances obtained from satellite spectroradiometers. It is intention of the team to develop an algorithm to derive the attenuation coefficient from satellite data in this reservoir.

  19. The calculation of the phase equilibrium of the multicomponent hydrocarbon systems

    NASA Astrophysics Data System (ADS)

    Molchanov, D. A.

    2018-01-01

    Hydrocarbon mixtures filtration process simulation development has resulted in use of cubic equations of state of the van der Waals type to describe the thermodynamic properties of natural fluids under real thermobaric conditions. Binary hydrocarbon systems allow to simulate the fluids of different types of reservoirs qualitatively, what makes it possible to carry out the experimental study of their filtration features. Exploitation of gas-condensate reservoirs shows the possibility of existence of various two-phase filtration regimes, including self-oscillatory one, which occurs under certain values of mixture composition, temperature and pressure drop. Plotting of the phase diagram of the model mixture is required to determine these values. A software package to calculate the vapor-liquid equilibrium of binary systems using cubic equation of state of the van der Waals type has been created. Phase diagrams of gas-condensate model mixtures have been calculated.

  20. Continuous-variable quantum probes for structured environments

    NASA Astrophysics Data System (ADS)

    Bina, Matteo; Grasselli, Federico; Paris, Matteo G. A.

    2018-01-01

    We address parameter estimation for structured environments and suggest an effective estimation scheme based on continuous-variables quantum probes. In particular, we investigate the use of a single bosonic mode as a probe for Ohmic reservoirs, and obtain the ultimate quantum limits to the precise estimation of their cutoff frequency. We assume the probe prepared in a Gaussian state and determine the optimal working regime, i.e., the conditions for the maximization of the quantum Fisher information in terms of the initial preparation, the reservoir temperature, and the interaction time. Upon investigating the Fisher information of feasible measurements, we arrive at a remarkable simple result: homodyne detection of canonical variables allows one to achieve the ultimate quantum limit to precision under suitable, mild, conditions. Finally, upon exploiting a perturbative approach, we find the invariant sweet spots of the (tunable) characteristic frequency of the probe, able to drive the probe towards the optimal working regime.

  1. Experimental and numerical investigation of the Fast-SAGD process

    NASA Astrophysics Data System (ADS)

    Shin, Hyundon

    The SAGD process has been tested in the field, and is now in a commercial stage in Western Canadian oil sands areas. The Fast-SAGD method can partly solve the drilling difficulty and reduce costs in a SAGD operation requiring paired parallel wells one above the other. This method also enhances the thermal efficiency in the reservoir. In this research, the reservoir parameters and operating conditions for the SAGD and Fast-SAGD processes are investigated by numerical simulation in the three Alberta oil sands areas. Scaled physical model experiments, which are operated by an automated process control system, are conducted under high temperature and high pressure conditions. The results of the study indicate that the shallow Athabasca-type reservoir, which is thick with high permeability (high kxh), is a good candidate for SAGD application, whereas Cold Lake- and Peace River-type reservoirs, which are thin with low permeability, are not as good candidates for conventional SAGD implementation. The simulation results indicate improved energy efficiency and productivity in most cases for the Fast-SAGD process; in those cases, the project economics were enhanced compared to the SAGD process. Both Cold Lake- and Peace River-type reservoirs are good candidates for a Fast-SAGD application rather than a conventional SAGD application. This new process demonstrates improved efficiency and lower costs for extracting heavy oil from these important reservoirs. A new economic indicator, called simple thermal efficiency parameter (STEP), was developed and validated to evaluate the performance of a SAGD project. STEP is based on cumulative steam-oil ratio (CSOR), calendar day oil rate (CDOR) and recovery factor (RF) for the time prior to the steam-oil ratio (SOR) attaining 4. STEP can be used as a financial metric quantitatively as well as qualitatively for this type of thermal project. An automated process control system was set-up and validated, and has the capability of controlling and handling steam injection processes like the steam-assisted gravity drainage process. The results of these preliminary experiments showed the overall cumulative oil production to be larger in the Fast-SAGD case, but end-point CSOR to be lower in the SAGD case. History matching results indicated that the steam quality was as low as 0.3 in the SAGD experiments, and even lower in the Fast-SAGD experiments after starting the CSS.

  2. A new array system for multiphysics (MT, LOTEM, and microseismics) with focus on reservoir monitoring

    NASA Astrophysics Data System (ADS)

    Strack, K.; Davydycheva, S.; Hanstein, T.; Smirnov, M.

    2017-07-01

    Over the last 6 years we developed an array system for electromagnetic acquisition (magnetotelluric & long offset transient electromagnetics [LOTEM]) that includes microseismic acquisition. While predominantly used for magnetotellurics, we focus on the autonomous operation as reservoir monitoring system including a shallow borehole receiver and 100/150 KVA transmitter. A marine extension is also under development. For Enhanced Oil recovery (EOR), in addition to reservoir flood front movements, reservoir seal integrity has become an issue [1]. Seal integrity is best addressed with microseismics while the water flood front is best addressed with electromagnetics. Since the flooded reservoir is conductive and the hydrocarbon saturated part is resistive, you need both magnetic and electric fields. The fluid imaging is addressed using electromagnetics. To overcome the volume-focus inherent to electromagnetics a new methodology to focus the sensitivity under the receiver is proposed. Field data and 3D modeling confirm this could increase the efficiency of LOTEM to reservoir monitoring.

  3. The ecological dynamics of Barra Bonita (Tietê River, SP, Brazil) reservoir: implications for its biodiversity.

    PubMed

    Tundisi, J G; Matsumura-Tundisi, T; Abe, D S

    2008-11-01

    Barra Bonita reservoir is located in the Tietê River Basin - São Paulo state - 22 degrees 29' to 22 degrees 44' S and 48 degrees 10 degrees W and it is the first of a series of six large reservoirs in this river. Built up in 1963 with the aim to produce hydroelectricity this reservoir is utilized for several activities such as fish production, irrigation, navigation, tourism and recreation, besides hydroelectricity production. The seasonal cycle of events in this reservoir is driven by the hydrological features of the basin with consequences on the retention time and on the limnological functions of this artificial ecosystem. The reservoir is polymitic with short periods of stability. Hydrology of the basin, retention time of the reservoir and cold fronts have an impact in the vertical and horizontal structure of the system promoting rapid changes in the planktonic community and in the succession of species. Blooms of Microcystis sp. are common during periods of stability. Superimposed to the climatological and hydrological forcing functions the human activities in the watershed produce considerable impact such as the discharge of untreated wastewater, the high suspended material contributions and fertilizers from the sugar cane plantations. The fish fauna of the reservoir has been changed extent due to the introduction of exotic fish species that exploit the pelagic zone of the reservoir. Changes in the primary productivity of phytoplankton in this reservoir, in the zooplankton community in the diversity and organization of trophic structure are a consequence of eutrophication and its increase during the last 20 years. Control of eutrophication by treating wastewater from urban sources, adequate agricultural practices in order to diminish the suspended particulate matter contribution, revegetation of the watershed and riparian forests along the tributaries are some possible restoration measures. Another action that can be effective is the protection of wetlands in the main tributaries as an effort to control eutrophication and particulate material load. Hydrology, climatic forcing and retention time are major forcing functions that promote the circulation (vertical and horizontal) in the reservoir and probably have a strong effect on dissolved and particulate material distribution. The 114 tributaries are systems that enhance spatial heterogeneity promoting diversity throughout ecological niches. Switches of control systems of this artificial ecosystem seems to be related with physical - physical forces; physical - biological forces during short periods of time, and biological - biological interactions at varying degrees during the seasonal cycle.

  4. Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information

    NASA Astrophysics Data System (ADS)

    Yang, Tiantian; Asanjan, Ata Akbari; Welles, Edwin; Gao, Xiaogang; Sorooshian, Soroosh; Liu, Xiaomang

    2017-04-01

    Reservoirs are fundamental human-built infrastructures that collect, store, and deliver fresh surface water in a timely manner for many purposes. Efficient reservoir operation requires policy makers and operators to understand how reservoir inflows are changing under different hydrological and climatic conditions to enable forecast-informed operations. Over the last decade, the uses of Artificial Intelligence and Data Mining [AI & DM] techniques in assisting reservoir streamflow subseasonal to seasonal forecasts have been increasing. In this study, Random Forest [RF), Artificial Neural Network (ANN), and Support Vector Regression (SVR) are employed and compared with respect to their capabilities for predicting 1 month-ahead reservoir inflows for two headwater reservoirs in USA and China. Both current and lagged hydrological information and 17 known climate phenomenon indices, i.e., PDO and ENSO, etc., are selected as predictors for simulating reservoir inflows. Results show (1) three methods are capable of providing monthly reservoir inflows with satisfactory statistics; (2) the results obtained by Random Forest have the best statistical performances compared with the other two methods; (3) another advantage of Random Forest algorithm is its capability of interpreting raw model inputs; (4) climate phenomenon indices are useful in assisting monthly or seasonal forecasts of reservoir inflow; and (5) different climate conditions are autocorrelated with up to several months, and the climatic information and their lags are cross correlated with local hydrological conditions in our case studies.

  5. Schaben field, Kansas: Improving performance in a Mississippian shallow-shelf carbonate

    USGS Publications Warehouse

    Montgomery, S.L.; Franseen, E.K.; Bhattacharya, S.; Gerlach, P.; Byrnes, A.; Guy, W.; Carr, T.R.

    2000-01-01

    Schaben field (Kansas), located along the northeastern shelf of the Hugoton embayment, produces from Mississippian carbonates in erosional highs immediately beneath a regional unconformity. Production comes from depths of around 4400 ft (1342 m) in partially dolomitized shelf deposits. A detailed reservoir characterization/simulation study, recently performed as part of a Department of Energy Reservoir Class Oil Field Demonstration Project, has led to important revision in explanations for observed patterns of production. Cores recovered from three new data wells identify three main facies: Spicule-rich wackestone-packstone, echinoderm wackestone/packstone/grainstone, and dolomitic mudstone-wackestone. Reservoir quality is highest in spicule-rich wackestone/packstones but is subject to a very high degree of vertical heterogeneity due to facies interbedding, silification, and variable natural fracturing. The oil reservoir is underlain by an active aquifer, which helps maintain reservoir pressure but supports significant water production. Reservoir simulation, using public-domain, PC-based software, suggests that infill drilling is an efficient approach to enhanced recovery. Recent drilling directed by simulation results has shown considerable success in improving field production rates. Results from the Schaben field demonstration project are likely to have wide application for independent oil and exploration companies in western Kansas.Schaben field (Kansas), located along the northeastern shelf of the Hugoton embayment, produces from Mississippian carbonates in erosional highs immediately beneath a regional unconformity. Production comes from depths of around 4400 ft (1342 m) in partially dolomitized shelf deposits. A detailed reservoir characterization/simulation study, recently performed as part of a Department of Energy Reservoir Class Oil Field Demonstration Project, has led to important revision in explanations for observed patterns of production. Cores recovered from three new data wells identify three main facies: spicule-rich wackestone-packstone, echinoderm wackestone/packstone/grainstone, and dolomitic mudstone-wackestone. Reservoir quality is highest in spicule-rich wackestone/packstones but is subject to a very high degree of vertical heterogeneity due to facies interbedding, silification, and variable natural fracturing. The oil reservoir is underlain by an active aquifer, which helps maintain reservoir pressure but supports significant water production. Reservoir simulation, using public-domain, PC-based software, suggests that infill drilling is an efficient approach to enhanced recovery. Recent drilling directed by simulation results has shown considerable success in improving field production rates. Results from the Schaben field demonstration project are likely to have wide application for independent oil and exploration companies in western Kansas.

  6. Post waterflood CO{sub 2} miscible flood in light oil, fluvial-dominated deltaic reservoir. FY 1993 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, D.W.

    1995-03-01

    The project is a Class 1 DOE-sponsored field demonstration project of a CO{sub 2} miscible flood project at the Port Neches Field in Orange County, Texas. The project will determine the recovery efficiency of CO{sub 2} flooding a waterflooded and a partial waterdrive sandstone reservoir at a depth of 5,800. The project will also evaluate the use of a horizontal CO{sub 2} injection well placed at the original oil-water contact of the waterflooded reservoir. A PC-based reservoir screening model will be developed by Texaco`s research lab in Houston and Louisiana State University will assist in the development of a databasemore » of fluvial-dominated deltaic reservoirs where CO{sub 2} flooding may be applicable. This technology will be transferred throughout the oil industry through a series of technical papers and industry open forums.« less

  7. Low-Loss Photonic Reservoir Computing with Multimode Photonic Integrated Circuits.

    PubMed

    Katumba, Andrew; Heyvaert, Jelle; Schneider, Bendix; Uvin, Sarah; Dambre, Joni; Bienstman, Peter

    2018-02-08

    We present a numerical study of a passive integrated photonics reservoir computing platform based on multimodal Y-junctions. We propose a novel design of this junction where the level of adiabaticity is carefully tailored to capture the radiation loss in higher-order modes, while at the same time providing additional mode mixing that increases the richness of the reservoir dynamics. With this design, we report an overall average combination efficiency of 61% compared to the standard 50% for the single-mode case. We demonstrate that with this design, much more power is able to reach the distant nodes of the reservoir, leading to increased scaling prospects. We use the example of a header recognition task to confirm that such a reservoir can be used for bit-level processing tasks. The design itself is CMOS-compatible and can be fabricated through the known standard fabrication procedures.

  8. Preparation of dart tags for use in the field

    USGS Publications Warehouse

    Higham, Joseph R.

    1966-01-01

    Tagging in the field requires an efficient method of preparing the tags for dispensation under a wide range of conditions. The method described here was very efficient in an extensive tagging program on Oahe Reservoir, South Dakota.

  9. About how to capture and exploit the CO2 surplus that nature, per se, is not capable of fixing.

    PubMed

    Godoy, Manuel S; Mongili, Beatrice; Fino, Debora; Prieto, M Auxiliadora

    2017-09-01

    Human activity has been altering many ecological cycles for decades, disturbing the natural mechanisms which are responsible for re-establishing the normal environmental balances. Probably, the most disrupted of these cycles is the cycle of carbon. In this context, many technologies have been developed for an efficient CO 2 removal from the atmosphere. Once captured, it could be stored in large geological formations and other reservoirs like oceans. This strategy could present some environmental and economic problems. Alternately, CO 2 can be transformed into carbonates or different added-value products, such as biofuels and bioplastics, recycling CO 2 from fossil fuel. Currently different methods are being studied in this field. We classified them into biological, inorganic and hybrid systems for CO 2 transformation. To be environmentally compatible, they should be powered by renewable energy sources. Although hybrid systems are still incipient technologies, they have made great advances in the recent years. In this scenario, biotechnology is the spearhead of ambitious strategies to capture CO 2 and reduce global warming. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-01-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  11. NREL/PG&E Condensation System Increases Geothermal Power Plant Efficiency

    Science.gov Websites

    . Geothermal power plants like The Geysers produce energy by collecting steam from underground reservoirs and NREL/PG&E Condensation System Increases Geothermal Power Plant Efficiency For more information world's largest producer of geothermal power has improved its power production efficiency thanks to a new

  12. Blocky inversion of multichannel elastic impedance for elastic parameters

    NASA Astrophysics Data System (ADS)

    Mozayan, Davoud Karami; Gholami, Ali; Siahkoohi, Hamid Reza

    2018-04-01

    Petrophysical description of reservoirs requires proper knowledge of elastic parameters like P- and S-wave velocities (Vp and Vs) and density (ρ), which can be retrieved from pre-stack seismic data using the concept of elastic impedance (EI). We propose an inversion algorithm which recovers elastic parameters from pre-stack seismic data in two sequential steps. In the first step, using the multichannel blind seismic inversion method (exploited recently for recovering acoustic impedance from post-stack seismic data), high-resolution blocky EI models are obtained directly from partial angle-stacks. Using an efficient total-variation (TV) regularization, each angle-stack is inverted independently in a multichannel form without prior knowledge of the corresponding wavelet. The second step involves inversion of the resulting EI models for elastic parameters. Mathematically, under some assumptions, the EI's are linearly described by the elastic parameters in the logarithm domain. Thus a linear weighted least squares inversion is employed to perform this step. Accuracy of the concept of elastic impedance in predicting reflection coefficients at low and high angles of incidence is compared with that of exact Zoeppritz elastic impedance and the role of low frequency content in the problem is discussed. The performance of the proposed inversion method is tested using synthetic 2D data sets obtained from the Marmousi model and also 2D field data sets. The results confirm the efficiency and accuracy of the proposed method for inversion of pre-stack seismic data.

  13. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California

    PubMed Central

    Taira, Taka’aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael

    2018-01-01

    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes. PMID:29326977

  14. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California.

    PubMed

    Taira, Taka'aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael

    2018-01-01

    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes.

  15. Optimizing and Quantifying CO 2 Storage Resource in Saline Formations and Hydrocarbon Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosshart, Nicholas W.; Ayash, Scott C.; Azzolina, Nicholas A.

    In an effort to reduce carbon dioxide (CO 2) emissions from large stationary sources, carbon capture and storage (CCS) is being investigated as one approach. This work assesses CO 2 storage resource estimation methods for deep saline formations (DSFs) and hydrocarbon reservoirs undergoing CO 2 enhanced oil recovery (EOR). Project activities were conducted using geologic modeling and simulation to investigate CO 2 storage efficiency. CO 2 storage rates and efficiencies in DSFs classified by interpreted depositional environment were evaluated at the regional scale over a 100-year time frame. A focus was placed on developing results applicable to future widespread commercial-scalemore » CO 2 storage operations in which an array of injection wells may be used to optimize storage in saline formations. The results of this work suggest future investigations of prospective storage resource in closed or semiclosed formations need not have a detailed understanding of the depositional environment of the reservoir to generate meaningful estimates. However, the results of this work also illustrate the relative importance of depositional environment, formation depth, structural geometry, and boundary conditions on the rate of CO 2 storage in these types of systems. CO 2 EOR occupies an important place in the realm of geologic storage of CO 2, as it is likely to be the primary means of geologic CO 2 storage during the early stages of commercial implementation, given the lack of a national policy and the viability of the current business case. This work estimates CO 2 storage efficiency factors using a unique industry database of CO 2 EOR sites and 18 different reservoir simulation models capturing fluvial clastic and shallow shelf carbonate depositional environments for reservoir depths of 1219 and 2438 meters (4000 and 8000 feet) and 7.6-, 20-, and 64-meter (25-, 66,- and 209-foot) pay zones. The results of this work provide practical information that can be used to quantify CO 2 storage resource estimates in oil reservoirs during CO 2 EOR operations (as opposed to storage following depletion) and the uncertainty associated with those estimates.« less

  16. Review on applications of artificial intelligence methods for dam and reservoir-hydro-environment models.

    PubMed

    Allawi, Mohammed Falah; Jaafar, Othman; Mohamad Hamzah, Firdaus; Abdullah, Sharifah Mastura Syed; El-Shafie, Ahmed

    2018-05-01

    Efficacious operation for dam and reservoir system could guarantee not only a defenselessness policy against natural hazard but also identify rule to meet the water demand. Successful operation of dam and reservoir systems to ensure optimal use of water resources could be unattainable without accurate and reliable simulation models. According to the highly stochastic nature of hydrologic parameters, developing accurate predictive model that efficiently mimic such a complex pattern is an increasing domain of research. During the last two decades, artificial intelligence (AI) techniques have been significantly utilized for attaining a robust modeling to handle different stochastic hydrological parameters. AI techniques have also shown considerable progress in finding optimal rules for reservoir operation. This review research explores the history of developing AI in reservoir inflow forecasting and prediction of evaporation from a reservoir as the major components of the reservoir simulation. In addition, critical assessment of the advantages and disadvantages of integrated AI simulation methods with optimization methods has been reported. Future research on the potential of utilizing new innovative methods based AI techniques for reservoir simulation and optimization models have also been discussed. Finally, proposal for the new mathematical procedure to accomplish the realistic evaluation of the whole optimization model performance (reliability, resilience, and vulnerability indices) has been recommended.

  17. The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment

    NASA Astrophysics Data System (ADS)

    Amann, Florian; Gischig, Valentin; Evans, Keith; Doetsch, Joseph; Jalali, Reza; Valley, Benoît; Krietsch, Hannes; Dutler, Nathan; Villiger, Linus; Brixel, Bernard; Klepikova, Maria; Kittilä, Anniina; Madonna, Claudio; Wiemer, Stefan; Saar, Martin O.; Loew, Simon; Driesner, Thomas; Maurer, Hansruedi; Giardini, Domenico

    2018-02-01

    In this contribution, we present a review of scientific research results that address seismo-hydromechanically coupled processes relevant for the development of a sustainable heat exchanger in low-permeability crystalline rock and introduce the design of the In situ Stimulation and Circulation (ISC) experiment at the Grimsel Test Site dedicated to studying such processes under controlled conditions. The review shows that research on reservoir stimulation for deep geothermal energy exploitation has been largely based on laboratory observations, large-scale projects and numerical models. Observations of full-scale reservoir stimulations have yielded important results. However, the limited access to the reservoir and limitations in the control on the experimental conditions during deep reservoir stimulations is insufficient to resolve the details of the hydromechanical processes that would enhance process understanding in a way that aids future stimulation design. Small-scale laboratory experiments provide fundamental insights into various processes relevant for enhanced geothermal energy, but suffer from (1) difficulties and uncertainties in upscaling the results to the field scale and (2) relatively homogeneous material and stress conditions that lead to an oversimplistic fracture flow and/or hydraulic fracture propagation behavior that is not representative of a heterogeneous reservoir. Thus, there is a need for intermediate-scale hydraulic stimulation experiments with high experimental control that bridge the various scales and for which access to the target rock mass with a comprehensive monitoring system is possible. The ISC experiment is designed to address open research questions in a naturally fractured and faulted crystalline rock mass at the Grimsel Test Site (Switzerland). Two hydraulic injection phases were executed to enhance the permeability of the rock mass. During the injection phases the rock mass deformation across fractures and within intact rock, the pore pressure distribution and propagation, and the microseismic response were monitored at a high spatial and temporal resolution.

  18. A candidate anti-HIV reservoir compound, auranofin, exerts a selective ‘anti-memory' effect by exploiting the baseline oxidative status of lymphocytes

    PubMed Central

    Chirullo, B; Sgarbanti, R; Limongi, D; Shytaj, I L; Alvarez, D; Das, B; Boe, A; DaFonseca, S; Chomont, N; Liotta, L; III Petricoin, E; Norelli, S; Pelosi, E; Garaci, E; Savarino, A; Palamara, A T

    2013-01-01

    Central memory (TCM) and transitional memory (TTM) CD4+ T cells are known to be the major cellular reservoirs for HIV, as these cells can harbor a transcriptionally silent form of viral DNA that is not targeted by either the immune system or current antiretroviral drug regimens. In the present study, we explored the molecular bases of the anti-HIV reservoir effects of auranofin (AF), a pro-oxidant gold-based drug and a candidate compound for a cure of AIDS. We here show that TCM and TTM lymphocytes have lower baseline antioxidant defenses as compared with their naive counterpart. These differences are mirrored by the effects exerted by AF on T-lymphocytes: AF was able to exert a pro-differentiating and pro-apoptotic effect, which was more pronounced in the memory subsets. AF induced an early activation of the p38 mitogen-activated protein kinase (p38 MAPK) followed by mitochondrial depolarization and a final burst in intracellular peroxides. The pro-differentiating effect was characterized by a downregulation of the CD27 marker expression. Interestingly, AF-induced apoptosis was inhibited by pyruvate, a well-known peroxide scavenger, but pyruvate did not inhibit the pro-differentiating effect of AF, indicating that the pro-apoptotic and pro-differentiating effects involve different pathways. In conclusion, our results demonstrate that AF selectively targets the TCM/TTM lymphocyte subsets, which encompass the HIV reservoir, by affecting redox-sensitive cell death pathways. PMID:24309931

  19. Effect of permafrost properties on gas hydrate petroleum system in the Qilian Mountains, Qinghai, Northwest China.

    PubMed

    Wang, Pingkang; Zhang, Xuhui; Zhu, Youhai; Li, Bing; Huang, Xia; Pang, Shouji; Zhang, Shuai; Lu, Cheng; Xiao, Rui

    2014-12-01

    The gas hydrate petroleum system in the permafrost of the Qilian Mountains, which exists as an epigenetic hydrocarbon reservoir above a deep-seated hydrocarbon reservoir, has been dynamic since the end of the Late Pleistocene because of climate change. The permafrost limits the occurrence of gas hydrate reservoirs by changing the pressure-temperature (P-T) conditions, and it affects the migration of the underlying hydrocarbon gas because of its strong sealing ability. In this study, we reconstructed the permafrost structure of the Qilian Mountains using a combination of methods and measured methane permeability in ice-bearing sediment permafrost. A relationship between the ice saturation of permafrost and methane permeability was established, which permitted the quantitative evaluation of the sealing ability of permafrost with regard to methane migration. The test results showed that when ice saturation is >80%, methane gas can be completely sealed within the permafrost. Based on the permafrost properties and genesis of shallow gas, we suggest that a shallow "gas pool" occurred in the gas hydrate petroleum system in the Qilian Mountains. Its formation was related to a metastable gas hydrate reservoir controlled by the P-T conditions, sealing ability of the permafrost, fault system, and climatic warming. From an energy perspective, the increasing volume of the gas pool means that it will likely become a shallow gas resource available for exploitation; however, for the environment, the gas pool is an underground "time bomb" that is a potential source of greenhouse gas.

  20. Origins of invasive piscivores determined from the strontium isotope ratio (87Sr/86Sr) of otoliths

    USGS Publications Warehouse

    Wolff, Brian A.; Johnson, Brett M.; Breton, Andre R.; Martinez, Patrick J.; Winkelman, Dana L.; Gillanders, Bronwyn

    2012-01-01

    We examined strontium isotope ratios (87Sr/86Sr) in fish otoliths to determine the origins of invasive piscivores in the Upper Colorado River Basin (UCRB, western USA). We examined 87Sr/86Sr from fishes in different reservoirs, as well as the temporal stability and interspecies variability of 87Sr/86Sr of fishes within reservoirs, determined if 87Sr/86Sr would be useful for "fingerprinting" reservoirs where invasive piscivores may have been escaping into riverine habitat of endangered fishes in the UCRB, and looked for evidence that such movement was occurring. Our results showed that in most cases 87Sr/86Sr was unique among reservoirs, overlapped among species in a given reservoir, and was temporally stable across years. We identified the likely reservoir of origin of river-caught fish in some cases, and we were also able to determine the year of possible escapement. The approach allowed us to precisely describe the 87Sr/86Sr fingerprint of reservoir fishes, trace likely origins of immigrant river fish, and exclude potential sources, enabling managers to focus control efforts more efficiently. Our results demonstrate the potential utility of 87Sr/86Sr as a site-specific and temporally stable marker for reservoir fish and its promise for tracking fish movements of invasive fishes in river-reservoir systems.

  1. Prediction in Ungauged Basins (PUB) for estimating water availability during water scarcity conditions: rainfall-runoff modelling of the ungauged diversion inflows to the Ridracoli water supply reservoir

    NASA Astrophysics Data System (ADS)

    Toth, Elena

    2013-04-01

    The Ridracoli reservoir is the main drinking water supply reservoir serving the whole Romagna region, in Northern Italy. Such water supply system has a crucial role in an area where the different characteristics of the communities to be served, their size, the mass tourism and the presence of food industries highlight strong differences in drinking water needs. Its operation allows high quality drinking water supply to a million resident customers, plus a few millions of tourists during the summer of people and it reduces the need for water pumping from underground sources, and this is particularly important since the coastal area is subject also to subsidence and saline ingression into aquifers. The system experienced water shortage conditions thrice in the last decade, in 2002, in 2007 and in autumn-winter 2011-2012, when the reservoir water storage fell below the attention and the pre-emergency thresholds, thus prompting the implementation of a set of mitigation measures, including limitations to the population's water consumption. The reservoir receives water not only from the headwater catchment, closed at the dam, but also from four diversion watersheds, linked to the reservoir through an underground water channel. Such withdrawals are currently undersized, abstracting only a part of the streamflow exceeding the established minimum flows, due to the design of the water intake structures; it is therefore crucial understanding how the reservoir water availability might be increased through a fuller exploitation of the existing diversion catchment area. Since one of the four diversion catchment is currently ungauged (at least at the fine temporal scale needed for keeping into account the minimum flow requirements downstream of the intakes), the study first presents the set up and parameterisation of a continuous rainfall-runoff model at hourly time-step for the three gauged diversion watersheds and for the headwater catchment: a regional parameterisation approach is then applied for modelling the streamflow originated in the fourth, ungauged, diversion watershed. Finally, the potential reservoir water availability is estimated, hypothesising to take from the diversion catchments all the streamflow exceeding the minimum flow requirements. The results indicate that modifying the water intake structures might allow a consistent increase in the storage volumes in the reservoir during the water scarcity periods: the water available to the reservoir would in fact - on average - increase of around the 13% of the abstracted annual volume.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohn, M.E.; Patchen, D.G.; Heald, M.

    Non-uniform composition and permeability of a reservoir, commonly referred to as reservoir heterogeneity, is recognized as a major factor in the efficient recovery of oil during primary production and enhanced recovery operations. Heterogeneities are present at various scales and are caused by various factors, including folding and faulting, fractures, diagenesis and depositional environments. Thus, a reservoir consists of a complex flow system, or series of flow systems, dependent on lithology, sandstone genesis, and structural and thermal history. Ultimately, however, fundamental flow units are controlled by the distribution and type of depositional environments. Reservoir heterogeneity is difficult to measure and predict,more » especially in more complex reservoirs such as fluvial-deltaic sandstones. The Appalachian Oil and Natural Gas Research Consortium (AONGRC), a partnership of Appalachian basin state geological surveys in Kentucky, Ohio, Pennsylvania, and West Virginia, and West Virginia University, studied the Lower Mississippian Big Injun sandstone in West Virginia. The Big Injun research was multidisciplinary and designed to measure and map heterogeneity in existing fields and undrilled areas. The main goal was to develop an understanding of the reservoir sufficient to predict, in a given reservoir, optimum drilling locations versus high-risk locations for infill, outpost, or deeper-pool tests.« less

  3. Reservoir water level forecasting using group method of data handling

    NASA Astrophysics Data System (ADS)

    Zaji, Amir Hossein; Bonakdari, Hossein; Gharabaghi, Bahram

    2018-06-01

    Accurately forecasted reservoir water level is among the most vital data for efficient reservoir structure design and management. In this study, the group method of data handling is combined with the minimum description length method to develop a very practical and functional model for predicting reservoir water levels. The models' performance is evaluated using two groups of input combinations based on recent days and recent weeks. Four different input combinations are considered in total. The data collected from Chahnimeh#1 Reservoir in eastern Iran are used for model training and validation. To assess the models' applicability in practical situations, the models are made to predict a non-observed dataset for the nearby Chahnimeh#4 Reservoir. According to the results, input combinations (L, L -1) and (L, L -1, L -12) for recent days with root-mean-squared error (RMSE) of 0.3478 and 0.3767, respectively, outperform input combinations (L, L -7) and (L, L -7, L -14) for recent weeks with RMSE of 0.3866 and 0.4378, respectively, with the dataset from https://www.typingclub.com/st. Accordingly, (L, L -1) is selected as the best input combination for making 7-day ahead predictions of reservoir water levels.

  4. Hydraulic Fracture Extending into Network in Shale: Reviewing Influence Factors and Their Mechanism

    PubMed Central

    Ren, Lan; Zhao, Jinzhou; Hu, Yongquan

    2014-01-01

    Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design. PMID:25032240

  5. Behavior and dam passage of juvenile Chinook salmon at Cougar Reservoir and Dam, Oregon, March 2012 - February 2013

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal C.; Hansen, Amy C.; Evans, Scott D.; Haner, Philip V.; Hatton, Tyson; Kofoot, Eric E.; Sprando, Jamie M.; Smith, Collin

    2014-01-01

    The movements and dam passage of individual juvenile Chinook salmon (Oncorhynchus tshawytscha) were studied at Cougar Reservoir and Dam, near Springfield, Oregon, during 2012 and 2013. Cougar Dam is a high-head flood-control reservoir with a temperature control tower as its outlet enabling selective withdrawals of water at various depths to control the temperature of water passed downstream. This report describes the second year of a 2-year study with the goal of providing information to inform decisions about future downstream passage alternatives. Inferences were based on the behavior of yearling-size juvenile Chinook salmon implanted with acoustic transmitters. The fish were released near the head of the reservoir during the spring (March, April, and May) and fall (September, October, and November) of 2012. Most tagged fish were of hatchery origin (468 spring, 449 fall) because of the low number of wild fish captured from within the reservoir (0 spring, 65 fall). Detections at hydrophones placed in several lines across the reservoir and within a collective system used to estimate three-dimensional positions near the temperature control tower were used to determine fish behavior and factors affecting dam passage rates. Most tagged fish made repeated non-random migrations from one end of the reservoir to the other and took a median of 3.7–11.7 days to travel about 7 kilometers from the release site to within about 100 meters of the temperature control tower, depending on season and origin. Reservoir passage efficiency (percentage of tagged fish detected at the head of the forebay) was 97.8 percent for hatchery fish and 74.2 percent for wild fish. Tagged fish commonly were within about 100 meters of the temperature control tower, and often spent considerable time near the entrance to the tower; however, the dam passage efficiency (percentage of dam passage of fish detected at the head of the forebay) was low for fish released during the spring (11.1 percent) and moderate for fish released during the fall (58.1 percent for hatchery fish, 65.2 percent for wild fish) over the 90th percentile of the empirically determined tag life, which was about 90 days. The primary factors affecting the dam passage rate were diel period, dam discharge, and reservoir elevation, and most passage occurred during conditions of night, high dam discharge, and low reservoir elevation. Most fish entering the temperature control tower passed the dam without returning to the reservoir. The common presence of tagged fish near the tower entrance and high proportion of dam passage after tower entry suggests that the primary cause of the poor dam passage rate was the low rate of tower entry. We hypothesize that fish reject the tower entrance because of low water velocities contributing to a small flow field, an abrupt deceleration at the trash rack, or a combination of those two conditions. Results of a controlled test of head differential (the difference between water elevation outside and inside the temperature control tower) indicated weak statistical support (P= 0.0930) for a greater tower entry rate when the differential was 0.65–1.00 foot compared to 0.00–0.30 foot. Results from hatchery and wild fish were similar, with the exception of the reservoir passage efficiency, indicating hatchery fish were suitable surrogates for the wild fish for the purpose of this study.

  6. A hybrid framework for reservoir characterization using fuzzy ranking and an artificial neural network

    NASA Astrophysics Data System (ADS)

    Wang, Baijie; Wang, Xin; Chen, Zhangxin

    2013-08-01

    Reservoir characterization refers to the process of quantitatively assigning reservoir properties using all available field data. Artificial neural networks (ANN) have recently been introduced to solve reservoir characterization problems dealing with the complex underlying relationships inherent in well log data. Despite the utility of ANNs, the current limitation is that most existing applications simply focus on directly implementing existing ANN models instead of improving/customizing them to fit the specific reservoir characterization tasks at hand. In this paper, we propose a novel intelligent framework that integrates fuzzy ranking (FR) and multilayer perceptron (MLP) neural networks for reservoir characterization. FR can automatically identify a minimum subset of well log data as neural inputs, and the MLP is trained to learn the complex correlations from the selected well log data to a target reservoir property. FR guarantees the selection of the optimal subset of representative data from the overall well log data set for the characterization of a specific reservoir property; and, this implicitly improves the modeling and predication accuracy of the MLP. In addition, a growing number of industrial agencies are implementing geographic information systems (GIS) in field data management; and, we have designed the GFAR solution (GIS-based FR ANN Reservoir characterization solution) system, which integrates the proposed framework into a GIS system that provides an efficient characterization solution. Three separate petroleum wells from southwestern Alberta, Canada, were used in the presented case study of reservoir porosity characterization. Our experiments demonstrate that our method can generate reliable results.

  7. Understanding biorefining efficiency--the case of agrifood waste.

    PubMed

    Kuisma, Miia; Kahiluoto, Helena; Havukainen, Jouni; Lehtonen, Eeva; Luoranen, Mika; Myllymaa, Tuuli; Grönroos, Juha; Horttanainen, Mika

    2013-05-01

    The aim of this study was to determine biorefining efficiency according to the choices made in the entire value chain. The importance of the share of biomass volume biorefined or products substituted was investigated. Agrifood-waste-based biorefining represented the case. Anticipatory scenarios were designed for contrasting targets and compared with the current situation in two Finnish regions. Biorefining increases nutrient and energy efficiency in comparison with current use of waste. System boundaries decisively influence the relative efficiency of biorefining designs. For nutrient efficiency, full exploitation of biomass potential and anaerobic digestion increase nutrient efficiency, but the main determinant is efficient substitution for mineral fertilisers. For energy efficiency, combustion and location of biorefining close to heat demand are crucial. Regional differences in agricultural structure, the extent of the food industry and population density have a major impact on biorefining. High degrees of exploitation of feedstock potential and substitution efficiency are the keys. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Nitrogen Removal Characteristics of a Newly Isolated Indigenous Aerobic Denitrifier from Oligotrophic Drinking Water Reservoir, Zoogloea sp. N299.

    PubMed

    Huang, Ting-Lin; Zhou, Shi-Lei; Zhang, Hai-Han; Bai, Shi-Yuan; He, Xiu-Xiu; Yang, Xiao

    2015-05-04

    Nitrogen is considered to be one of the most widespread pollutants leading to eutrophication of freshwater ecosystems, especially in drinking water reservoirs. In this study, an oligotrophic aerobic denitrifier was isolated from drinking water reservoir sediment. Nitrogen removal performance was explored. The strain was identified by 16S rRNA gene sequence analysis as Zoogloea sp. N299. This species exhibits a periplasmic nitrate reductase gene (napA). Its specific growth rate was 0.22 h-1. Obvious denitrification and perfect nitrogen removal performances occurred when cultured in nitrate and nitrite mediums, at rates of 75.53%±1.69% and 58.65%±0.61%, respectively. The ammonia removal rate reached 44.12%±1.61% in ammonia medium. Zoogloea sp. N299 was inoculated into sterilized and unsterilized reservoir source waters with a dissolved oxygen level of 5-9 mg/L, pH 8-9, and C/N 1.14:1. The total nitrogen removal rate reached 46.41%±3.17% (sterilized) and 44.88%±4.31% (unsterilized). The cell optical density suggested the strain could survive in oligotrophic drinking water reservoir water conditions and perform nitrogen removal. Sodium acetate was the most favorable carbon source for nitrogen removal by strain N299 (p<0.05). High C/N was beneficial for nitrate reduction (p<0.05). The nitrate removal efficiencies showed no significant differences among the tested inoculums dosage (p>0.05). Furthermore, strain N299 could efficiently remove nitrate at neutral and slightly alkaline and low temperature conditions. These results, therefore, demonstrate that Zoogloea sp. N299 has high removal characteristics, and can be used as a nitrogen removal microbial inoculum with simultaneous aerobic nitrification and denitrification in a micro-polluted reservoir water ecosystem.

  9. An Integrated Mobile Application to Improve the Watershed Management in Taiwan

    NASA Astrophysics Data System (ADS)

    Chou, T. Y.; Chen, M. H.; Lee, C. Y.

    2015-12-01

    This study aims to focus on the application of information technology on the reservoir watershed management. For the civil and commercial water usage, reservoirs and its upstream plays a significant role due to water scarcity and inequality, especially in Taiwan. Due to the progress of information technology, apply it can improve the efficiency and accuracy of daily affairs significantly which already proved by previous researches. Taipei Water Resource District (TWRD) is selected as study area for this study, it is the first reservoir watershed which authorized as special protection district by urban planning act. This study has designed a framework of mobile application, which addressed three types of public affairs relate to watershed management, includes building management, illegal land-use investigation, and a dashboard of real time stream information. This mobile application integrated a dis-connected map and interactive interface to collect, record and calculate field information which helps the authority manage the public affairs more efficiency.

  10. Sedimentation survey of Lago de Matrullas, Puerto Rico, December 2001

    USGS Publications Warehouse

    Soler-López, Luis R.

    2003-01-01

    Lago de Matrullas reservoir, constructed in 1934, is located at an altitude of approximately 730 meters above mean sea level in the municipality of Orocovis in central Puerto Rico, and has a drainage area of 11.45 square kilometers. The reservoir is part of the Puerto Rico Electric Power Authority Toro Negro Hydroelectric Project, which also includes the Lago El Guineo reservoir and a hydroelectric plant to the south of the insular hydrographic divide. Historically, the drainage area had been protected from soil erosion by dense vegetation and the lack of basin development. However, transportation, potable water, and electric power infrastructure construction has facilitated development in rural areas resulting in the clearing of land. This trend in land-use changes is impacting the useful life of Lago de Matrullas. The reservoir storage capacity has been reduced from 3.71 million cubic meters in 1934 to 3.08 million cubic meters in 2001. This represents a total storage-capacity loss of 0.63 million cubic meters by 2001 (17 percent), or a long-term annual storage loss of 0.25 percent per year. The sediment trapping efficiency of Lago de Matrullas has been estimated at approximately 90 percent. If the current long-term sedimentation rate continues, Lago de Matrullas would fill by the year 2328. However, this life expectancy could be reduced at a faster than predicted rate as a result of rural development in the Lago de Matrullas basin and the high sediment trapping efficiency of the reservoir.

  11. Integrating a reservoir regulation scheme into a spatially distributed hydrological model

    DOE PAGES

    Zhao, Gang; Gao, Huili; Naz, Bibi S; ...

    2016-10-14

    During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal/industrial water supplies, and hydropower generation. Consequently, timing and magnitude of natural streamflows have been altered significantly by reservoir operations. In addition, the hydrological cycle can be modified by land-use/land-cover and climate changes. To understand the fine-scale feedback between hydrological processes and water management decisions, a distributed hydrological model embedded with a reservoir component is desired. In this study, a multi-purpose reservoir module with predefined complex operational rules was integrated into the Distributed Hydrology Soil Vegetation Modelmore » (DHSVM). Conditional operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The performance of the integrated model was tested over the upper Brazos River Basin in Texas, where two U.S. Army Corps of Engineers reservoirs, Lake Whitney and Aquilla Lake, are located. The integrated DHSVM was calibrated and validated using observed reservoir inflow, outflow, and storage data. The error statistics were summarized for both reservoirs on a daily, weekly, and monthly basis. Using the weekly reservoir storage for Lake Whitney as an example, the coefficient of determination (R 2) and the Nash-Sutcliff Efficiency (NSE) were 0.85 and 0.75, respectively. These results suggest that this reservoir module holds promise for use in sub-monthly hydrological simulations. Furthermore, with the new reservoir component, the DHSVM provides a platform to support adaptive water resources management under the impacts of evolving anthropogenic activities and substantial environmental changes.« less

  12. Integrating a reservoir regulation scheme into a spatially distributed hydrological model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Gang; Gao, Huili; Naz, Bibi S

    During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal/industrial water supplies, and hydropower generation. Consequently, timing and magnitude of natural streamflows have been altered significantly by reservoir operations. In addition, the hydrological cycle can be modified by land-use/land-cover and climate changes. To understand the fine-scale feedback between hydrological processes and water management decisions, a distributed hydrological model embedded with a reservoir component is desired. In this study, a multi-purpose reservoir module with predefined complex operational rules was integrated into the Distributed Hydrology Soil Vegetation Modelmore » (DHSVM). Conditional operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The performance of the integrated model was tested over the upper Brazos River Basin in Texas, where two U.S. Army Corps of Engineers reservoirs, Lake Whitney and Aquilla Lake, are located. The integrated DHSVM was calibrated and validated using observed reservoir inflow, outflow, and storage data. The error statistics were summarized for both reservoirs on a daily, weekly, and monthly basis. Using the weekly reservoir storage for Lake Whitney as an example, the coefficient of determination (R 2) and the Nash-Sutcliff Efficiency (NSE) were 0.85 and 0.75, respectively. These results suggest that this reservoir module holds promise for use in sub-monthly hydrological simulations. Furthermore, with the new reservoir component, the DHSVM provides a platform to support adaptive water resources management under the impacts of evolving anthropogenic activities and substantial environmental changes.« less

  13. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    NASA Astrophysics Data System (ADS)

    Shams, Bilal; Yao, Jun; Zhang, Kai; Zhang, Lei

    2017-08-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources. In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days. In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery preventing financial, economic and resource loss that previously occurred.

  14. How hot? Systematic convergence of the replica exchange method using multiple reservoirs.

    PubMed

    Ruscio, Jory Z; Fawzi, Nicolas L; Head-Gordon, Teresa

    2010-02-01

    We have devised a systematic approach to converge a replica exchange molecular dynamics simulation by dividing the full temperature range into a series of higher temperature reservoirs and a finite number of lower temperature subreplicas. A defined highest temperature reservoir of equilibrium conformations is used to help converge a lower but still hot temperature subreplica, which in turn serves as the high-temperature reservoir for the next set of lower temperature subreplicas. The process is continued until an optimal temperature reservoir is reached to converge the simulation at the target temperature. This gradual convergence of subreplicas allows for better and faster convergence at the temperature of interest and all intermediate temperatures for thermodynamic analysis, as well as optimizing the use of multiple processors. We illustrate the overall effectiveness of our multiple reservoir replica exchange strategy by comparing sampling and computational efficiency with respect to replica exchange, as well as comparing methods when converging the structural ensemble of the disordered Abeta(21-30) peptide simulated with explicit water by comparing calculated Rotating Overhauser Effect Spectroscopy intensities to experimentally measured values. Copyright 2009 Wiley Periodicals, Inc.

  15. Gas network model allows full reservoir coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Methnani, M.M.

    The gas-network flow model (Gasnet) developed for and added to an existing Qatar General Petroleum Corp. (OGPC) in-house reservoir simulator, allows improved modeling of the interaction among the reservoir, wells, and pipeline networks. Gasnet is a three-phase model that is modified to handle gas-condensate systems. The numerical solution is based on a control volume scheme that uses the concept of cells and junctions, whereby pressure and phase densities are defined in cells, while phase flows are defined at junction links. The model features common numerical equations for the reservoir, the well, and the pipeline components and an efficient state-variable solutionmore » method in which all primary variables including phase flows are solved directly. Both steady-state and transient flow events can be simulated with the same tool. Three test cases show how the model runs. One case simulates flow redistribution in a simple two-branch gas network. The second simulates a horizontal gas well in a waterflooded gas reservoir. The third involves an export gas pipeline coupled to a producing reservoir.« less

  16. Consequences of seasonal variation in reservoir water level for predatory fishes: linking visual foraging and prey densities

    USGS Publications Warehouse

    Klobucar, Stephen L.; Budy, Phaedra

    2016-01-01

    In reservoirs, seasonal drawdown can alter the physical environment and may influence predatory fish performance. We investigated the performance of lake trout (Salvelinus namaycush) in a western reservoir by coupling field measurements with visual foraging and bioenergetic models at four distinct states (early summer, mid-summer, late summer, and fall). The models suggested that lake trout prey, juvenile kokanee (Oncorhynchus nerka), are limited seasonally by suitable temperature and dissolved oxygen. Accordingly, prey densities were greatest in late summer when reservoir volume was lowest and fish were concentrated by stratification. Prey encounter rates (up to 68 fish·day−1) and predator consumption are also predicted to be greatest during late summer. However, our models suggested that turbidity negatively correlates with prey detection and consumption across reservoir states. Under the most turbid conditions, lake trout did not meet physiological demands; however, during less turbid periods, predator consumption reached maximum bioenergetic efficiency. Overall, our findings demonstrate that rapid reservoir fluctuations and associated abiotic conditions can influence predator–prey interactions, and our models describe the potential impacts of water level fluctuation on valuable sport fishes.

  17. Water reservoir characteristics derivation from pubicly available global elevation data

    NASA Astrophysics Data System (ADS)

    Van De Giesen, N.; van Bemmelen, C.; Mann, M.; de Ridder, M.; Gupta, V.; Rutten, M.

    2017-12-01

    In order to assess human impact on the global hydrological cycle, it is imperative to characterize all major man made reservoirs. One important characteristic is the relationship between the surface area of a reservoir and its stored water volume. Surface areas can readily be determined through optical and radar satellite remote sensing. Once the relationship between the surface area of a reservoir and its stored water volume is known, one can determine the stored volumes over time using remotely sensed surface areas. It has been known for some time that this relationship between surface and stored volume shows a very high level of regional consistency [1]. This implies that if one knows this relationship in a certain region, one can predict the same for any nearby reservoir. We have tried to exploit this fact by examining whether one can build virtual dams in the neighborhood of an existing dam to determine the general relationship between surface area and stored volume. We examined twelve reservoirs around the world and found, generally, very good results. Especially in geomorphologically homogeneous areas, the relationships could reliable be extrapolated over space. Even in very heterogeneous areas, the final results were acceptable and much better than generic relationships used so far. Finally, we have examined to what extent it is possible to select virtual dam sites automatically. The first results for this are promising and show that it may be possible to characterize most major dams in the world according to this approach. It is likely that there will be the need for human detection for a reasonable percentage. For these relatively rare case, some human micro-tasking may be the way forward. It is expected, however, that >90% of the worldś dams can be characterized automatically [1] Liebe, J., N. Van De Giesen, and Marc Andreini. "Estimation of small reservoir storage capacities in a semi-arid environment: A case study in the Upper East Region of Ghana." Physics and Chemistry of the Earth, Parts A/B/C 30, no. 6 (2005): 448-454.

  18. An Embedded 3D Fracture Modeling Approach for Simulating Fracture-Dominated Fluid Flow and Heat Transfer in Geothermal Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Henry; Wang, Cong; Winterfeld, Philip

    An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added tomore » the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.« less

  19. Forecast Informed Reservoir Operations: Bringing Science and Decision-Makers Together to Explore Use of Hydrometeorological Forecasts to Support Future Reservoir Operations

    NASA Astrophysics Data System (ADS)

    Ralph, F. M.; Jasperse, J.

    2017-12-01

    Forecast Informed Reservoir Operations (FIRO) is a proposed strategy that is exploring inorporation of improved hydrometeorological forecasts of land-falling atmospheric rivers on the U.S. West Coast into reservoir operations. The first testbed for this strategy is Lake Mendocino, which is located in the East Fork of the 1485 mi2 Russian River Watershed in northern California. This project is guided by the Lake Mendocino FIRO Steering Committee (SC). The SC is an ad hoc committee that consists of water managers and scientists from several federal, state, and local agencies, and universities who have teamed to evaluate whether current or improved technology and scientific understanding can be utilized to improve water supply reliability, enhance flood mitigation and support recovery of listed salmon for the Russian River of northern California. In 2015, the SC created a detailed work plan, which included a Preliminary Viability Assessment, which has now been completed. The SC developed a vision that operational efficiency would be improved by using forecasts to inform decisions about releasing or storing water. FIRO would use available reservoir storage in an efficient manner by (1) better forecasting inflow (or lack of inflow) with enhanced technology, and (2) adapting operation in real time to meet the need for storage, rather than making storage available just in case it is needed. The envisioned FIRO strategy has the potential to simultaneously improve water supply reliability, flood protection, and ecosystem outcomes through a more efficient use of existing infrastructure while requiring minimal capital improvements in the physical structure of the dam. This presentation will provide an overview of the creation of the FIRO SC and how it operates, and describes the lessons learned through this partnership. Results in the FIRO Preliminary Viability Assessment will be summarized and next steps described.

  20. The use of efficiency frontiers to evaluate the optimal land cover and irrigation practices for economic returns and ecosystem services

    NASA Astrophysics Data System (ADS)

    Kovacs, Kent; West, Grant; Xu, Ying

    2017-04-01

    Efficiency frontiers are a useful tool for governmental agencies that balance the protection of ecosystem services with the economic returns from an agricultural landscape because the tool illustrates that a compromise of objectives generates greater value to society than optimizing a sole objective. Policy makers facing the problem of groundwater overdraft on an agricultural landscape want to know if regulations or irrigation technology adoption will enhance both economic and ecosystem service benefits. Conjunctive water management with on-farm reservoirs and tail water recovery system is frequently suggested to alleviate groundwater and surface water quality problems in the Lower Mississippi River Basin of the United States, and this study evaluates the consequence of the adoption of this technology for the balance of ecosystem service and economic objectives. A compromise of objectives that maximizes the value to society provides 76% more value to society without reservoirs and 66% more value to society with reservoirs than the sole objective of economic returns. The reservoirs help an agricultural landscape maximizing economic returns to align more closely with a landscape maximizing the value to society, although there are still significant gains possible from finding a landscape that directly compromises on the objectives.

  1. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibilitymore » problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.« less

  2. Investigation on the Inertance Tubes of Pulse Tube Cryocooler Without Reservoir

    NASA Astrophysics Data System (ADS)

    Liu, Y. J.; Yang, L. W.; Liang, J. T.; Hong, G. T.

    2010-04-01

    Phase angle is of vital importance for high-efficiency pulse tube cryocoolers (PTCs). Inertance tube as the main phase shifter is useful for the PTCs to obtain appropriate phase angle. Experiments of inertance tube without reservoir under variable frequency, variable length and diameter of inertance tube and variable pressure amplitude are investigated respectively. In addition, the authors used DeltaEC, a computer program to predict the performance of low-amplitude thermoacoustic engines, to simulate the effects of inertance tube without reservoir. According to the comparison of experiments and theoretical simulations, DeltaEC method is feasible and effective to direct and improve the design of inertance tubes.

  3. Management of turbidity current venting in reservoirs under different bed slopes.

    PubMed

    Chamoun, Sabine; De Cesare, Giovanni; Schleiss, Anton J

    2017-12-15

    The lifetime and efficiency of dams is endangered by the process of sedimentation. To ensure the sustainable use of reservoirs, many sediment management techniques exist, among which venting of turbidity currents. Nevertheless, a number of practical questions remain unanswered due to a lack of systematic investigations. The present research introduces venting and evaluates its performance using an experimental model. In the latter, turbidity currents travel on a smooth bed towards the dam and venting is applied through a rectangular bottom outlet. The combined effect of outflow discharge and bed slopes on the sediment release efficiency of venting is studied based on different criteria. Several outflow discharges are tested using three different bed slopes (i.e., 0%, 2.4% and 5.0%). Steeper slopes yield higher venting efficiency. Additionally, the optimal outflow discharge leading to the largest venting efficiency with the lowest water loss increases when moving from the horizontal bed to the inclined positions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Microbial battery for efficient energy recovery

    PubMed Central

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S.; Cui, Yi

    2013-01-01

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs—a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power. PMID:24043800

  5. Effects of silica-based nanostructures with raspberry-like morphology and surfactant on the interfacial behavior of light, medium, and heavy crude oils at oil-aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Bai, Lingyun; Li, Chunyan; Korte, Caroline; Huibers, Britta M. J.; Pales, Ashley R.; Liang, Wei-zhen; Ladner, David; Daigle, Hugh; Darnault, Christophe J. G.

    2017-11-01

    Any efficient exploitation of new petroleum reservoirs necessitates developing methods to mobilize the crude oils from such reservoirs. Here silicon dioxide nanoparticles (SiO2 NPs) were used to improve the efficiency of the chemical-enhanced oil recovery process that uses surfactant flooding. Specifically, SiO2 NPs (i.e., 0, 0.001, 0.005, 0.01, 0.05, and 0.1 wt%) and Tween®20, a nonionic surfactant, at 0, 0.5, and 2 critical micelle concentration (CMC) were varied to determine their effect on the stability of nanofluids and the interfacial tension (IFT) at the oil-aqueous interface for 5 wt% brine-surfactant-SiO2 nanofluid-oil systems for West Texas Intermediate light crude oil, Prudhoe Bay medium crude oil, and Lloydminster heavy crude oil. Our study demonstrates that SiO2 NPs may either decrease, increase the IFT of the brine-surfactant-oil systems, or exhibit no effects at all. For the brine-surfactant-oil systems, the constituents of the oil and aqueous substances affected the IFT behavior, with the nanoparticles causing a contrast in IFT trends according to the type of crude oil. For the light oil system (0.5 and 2 CMC Tween®20), the IFT increased as a function of SiO2 NP concentration, while a threshold concentration of SiO2 NPs was observed for the medium (0.5 and 2 CMC Tween®20) and heavy (2 CMC Tween®20) oil systems in terms of IFT trends. Concentrations below the SiO2 NP threshold concentration resulted in a decrease in IFT, and concentrations above this threshold resulted in an increase in IFT. The IFT decreased until the NP concentration reached a threshold concentration where synergetic effects between nonionic surfactants and SiO2 NPs are the opposite and result in antagonistic effects. Adsorption of both SiO2 NPs and surfactants at an interface caused a synergistic effect and an increased reduction in IFT. The effectiveness of the brine-surfactant-SiO2 nanofluids in decreasing the IFT between the oil-aqueous phase for the three tested crude oils were ranked as follows: (1) Prudhoe Bay > (2) Lloydminster > and (3) West Texas Intermediate. The level of asphaltenes and resins in these crude oil samples reflected these rankings. A decrease in the IFT also indicated the potential of the SiO2 NPs to decrease capillary pressure and induce the movement and recovery of oil in original water-wet reservoirs. Conversely, an increase in IFT indicated the potential of SiO2 NPs to increase capillary pressure and oil recovery in reservoirs subject to wettability reversal under water-wet conditions. Raspberry-like morphology particles were discovered in 5 wt% brine-surfactant-SiO2 nanofluid-oil systems. The development of raspberry-like particles material with high surface area, high salt stability, and high capability of interfaces alteration and therefore wettability changes offers a wide range of applications in the fields of applied nanoscience, environmental engineering, and petroleum engineering.

  6. Numerical analysis for electrokinetic soil processing enhanced by chemical conditioning of the electrode reservoirs.

    PubMed

    Park, Jin-Soo; Kim, Soon-Oh; Kim, Kyoung-Woong; Kim, Byung Ro; Moon, Seung-Hyeon

    2003-04-04

    A numerical analysis was undertaken for enhanced electrokinetic soil processing. To perform chemical conditioning of the electrode reservoirs, the electrokinetic soil process employed a membrane as a barrier between the electrode reservoirs and the contaminated soil. An alkaline solution was purged in the anode reservoir that was bounded by the membrane. A mathematical model was used for demonstration of pH change and phenol removal from a kaolinite soil bed, the prediction of pH variations in both electrode reservoirs, and the determination of an optimized injection time of the anode-purging solution. The time-dependent dispersion coefficient was employed in consideration of the averaging effect of the velocity profile on a one-dimensional transport. The estimation of pH and phenol profiles in the soil bed reasonably agreed with the experimental data. The simulation revealed that the removal efficiency of phenol from the kaolinite soil could be improved by maintaining pH of the anode solution.

  7. Single-electron-occupation metal-oxide-semiconductor quantum dots formed from efficient poly-silicon gate layout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Malcolm S.; rochette, sophie; Rudolph, Martin

    We introduce a silicon metal-oxide-semiconductor quantum dot structure that achieves dot-reservoir tunnel coupling control without a dedicated barrier gate. The elementary structure consists of two accumulation gates separated spatially by a gap, one gate accumulating a reservoir and the other a quantum dot. Control of the tunnel rate between the dot and the reservoir across the gap is demonstrated in the single electron regime by varying the reservoir accumulation gate voltage while compensating with the dot accumulation gate voltage. The method is then applied to a quantum dot connected in series to source and drain reservoirs, enabling transport down tomore » the single electron regime. Finally, tuning of the valley splitting with the dot accumulation gate voltage is observed. This split accumulation gate structure creates silicon quantum dots of similar characteristics to other realizations but with less electrodes, in a single gate stack subtractive fabrication process that is fully compatible with silicon foundry manufacturing.« less

  8. Estimating reservoir permeability from gravity current modeling of CO2 flow at Sleipner storage project, North Sea

    NASA Astrophysics Data System (ADS)

    Cowton, L. R.; Neufeld, J. A.; Bickle, M.; White, N.; White, J.; Chadwick, A.

    2017-12-01

    Vertically-integrated gravity current models enable computationally efficient simulations of CO2 flow in sub-surface reservoirs. These simulations can be used to investigate the properties of reservoirs by minimizing differences between observed and modeled CO2 distributions. At the Sleipner project, about 1 Mt yr-1 of supercritical CO2 is injected at a depth of 1 km into a pristine saline aquifer with a thick shale caprock. Analysis of time-lapse seismic reflection surveys shows that CO2 is distributed within 9 discrete layers. The trapping mechanism comprises a stacked series of 1 m thick, impermeable shale horizons that are spaced at 30 m intervals through the reservoir. Within the stratigraphically highest reservoir layer, Layer 9, a submarine channel deposit has been mapped on the pre-injection seismic survey. Detailed measurements of the three-dimensional CO2 distribution within Layer 9 have been made using seven time-lapse surveys, providing a useful benchmark against which numerical flow simulations can be tested. Previous simulations have, in general, been largely unsuccessful in matching the migration rate of CO2 in this layer. Here, CO2 flow within Layer 9 is modeled as a vertically-integrated gravity current that spreads beneath a structurally complex caprock using a two-dimensional grid, considerably increasing computational efficiency compared to conventional three-dimensional simulators. This flow model is inverted to find the optimal reservoir permeability in Layer 9 by minimizing the difference between observed and predicted distributions of CO2 as a function of space and time. A three parameter inverse model, comprising reservoir permeability, channel permeability and channel width, is investigated by grid search. The best-fitting reservoir permeability is 3 Darcys, which is consistent with measurements made on core material from the reservoir. Best-fitting channel permeability is 26 Darcys. Finally, the ability of this simplified numerical model to forecast CO2 flow within Layer 9 is tested. Permeability recovered by modeling a suite of early seismic surveys is used to predict the CO2 distribution for a suite of later seismic surveys with a considerable degree of success. Forecasts have also been carried out that can be tested using future seismic surveys.

  9. Multi-objective Operation Chart Optimization for Aquatic Species Habitat Conservation of Cascaded Hydropower System on Yuan River, Southwestern China

    NASA Astrophysics Data System (ADS)

    Wen, X.; Lei, X.; Fang, G.; Huang, X.

    2017-12-01

    Extensive cascading hydropower exploitation in southwestern China has been the subject of debate and conflict in recent years. Introducing limited ecological curves, a novel approach for derivation of hydropower-ecological joint operation chart of cascaded hydropower system was proposed, aiming to optimize the general hydropower and ecological benefits, and to alleviate the ecological deterioration in specific flood/dry conditions. The physical habitat simulation model is proposed initially to simulate the relationship between streamflow and physical habitat of target fish species and to determine the optimal ecological flow range of representative reach. The ecological—hydropower joint optimization model is established to produce the multi-objective operation chart of cascaded hydropower system. Finally, the limited ecological guiding curves were generated and added into the operation chart. The JS-MDS cascaded hydropower system on the Yuan River in southwestern China is employed as the research area. As the result, the proposed guiding curves could increase the hydropower production amount by 1.72% and 5.99% and optimize ecological conservation degree by 0.27% and 1.13% for JS and MDS Reservoir, respectively. Meanwhile, the ecological deterioration rate also sees a decrease from 6.11% to 1.11% for JS Reservoir and 26.67% to 3.89% for MDS Reservoir.

  10. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    NASA Astrophysics Data System (ADS)

    Haukwa, C.; Bodvarsson, G. S.; Lippmann, M. J.; Mainieri, A.

    1992-01-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells, a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260 C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt. On the basis of the natural-state model, a two-dimensional exploitation model was developed. The field has a production area of about 10 km(exp 2), with temperatures exceeding 220 C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.

  11. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haukwa, C.; Bodvarsson, G.S. Lippmann, M.J.; Mainieri, A.

    1992-01-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260{degrees}C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt.more » On the basis of the natural-state model a two-dimensional exploitation model was develope. The field has a production area of about 10 km{sup 2}, with temperatures exceeding 220{degrees}C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.« less

  12. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haukwa, C.; Bodvarsson, G.S.; Lippmann, M.J.

    1992-01-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells, a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260 C) water recharge is 130 kg/s, corresponding to a thermal input of about 150more » MWt. On the basis of the natural-state model a two-dimensional exploitation model was developed. The field has a production area of about 10 km{sup 2}, with temperatures exceeding 220 C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.« less

  13. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haukwa, C.; Bodvarsson, G.S. Lippmann, M.J.; Mainieri, A.

    1992-01-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260[degrees]C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt.more » On the basis of the natural-state model a two-dimensional exploitation model was develope. The field has a production area of about 10 km[sup 2], with temperatures exceeding 220[degrees]C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.« less

  14. Eighth report of the Normandy Archaeological Project: 1975 excavations at the Eoff I site (40CF32), Aaron Shelton site (40CF69) and the Duke I site (40CF97)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulkner, C.H.; McCollough, C.R.

    This report discusses the research conducted during the last full field season for the Normandy Archaeological Project. There was a deep sense of urgency to use all available resources to continue to test crucial hypotheses about subsistence and settlement patterns of the Middle Woodland and Mississippian cultures in the lower and upper reservoir zones. The most salient of these hypotheses were prehistoric agricultural societies in the upper Duck Valley, and exploitative strategies of prehistoric hunters and gatherers in the upper Duck Valley differed in the lower and upper reservoir zones. Since the early Mississippian Banks phase and the late Middlemore » Woodland Owl Hollow phase exhibited evidence for both food production and permanent settlement in the lower reservoir zone, a continued attempt was made to excavate those sites on which components of these two phase were found. Additional community pattern data and chronometric dates for the Banks phase were also sought since previously obtained radiocarbon assays indicated this was one of the earliest Mississippian cultures in the Middle South. The study of the origins and local development of this culture was also given priority status in Normandy Research. 145 refs., 33 figs., 94 tabs.« less

  15. Feasibility of Optimizing Recovery and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore Calif. Reservoir through the Drilling and Completion of a Trilateral Horizontal Well, Class III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacific Operators Offshore, Inc.

    The intent of this project was to increase production and extend the economic life of this mature field through the application of advanced reservoir characterization and drilling technology, demonstrating the efficacy of these technologies to other small operators of aging fields. Two study periods were proposed; the first to include data assimilation and reservoir characterization and the second to drill the demonstration well. The initial study period showed that a single tri-lateral well would not be economically efficient in redevelopment of Carpinteria's multiple deep water turbidite sand reservoirs, and the study was amended to include the drilling of a seriesmore » of horizontal redrills from existing surplus well bores on Pacific Operators' Platform Hogan.« less

  16. Research on removing reservoir core water sensitivity using the method of ultrasound-chemical agent for enhanced oil recovery.

    PubMed

    Wang, Zhenjun; Huang, Jiehao

    2018-04-01

    The phenomenon of water sensitivity often occurs in the oil reservoir core during the process of crude oil production, which seriously affects the efficiency of oil extraction. In recent years, near-well ultrasonic processing technology attaches more attention due to its safety and energy efficient. In this paper, the comparison of removing core water sensitivity by ultrasonic wave, chemical injection and ultrasound-chemical combination technique are investigated through experiments. Results show that: lower ultrasonic frequency and higher power can improve the efficiency of core water sensitivity removal; the effects of removing core water sensitivity under ultrasonic treatment get better with increase of core initial permeability; the effect of removing core water sensitivity using ultrasonic treatment won't get better over time. Ultrasonic treatment time should be controlled in a reasonable range; the effect of removing core water sensitivity using chemical agent alone is slightly better than that using ultrasonic treatment, however, chemical injection could be replaced by ultrasonic treatment for removing core water sensitivity from the viewpoint of oil reservoir protection and the sustainable development of oil field; ultrasound-chemical combination technique has the best effect for water sensitivity removal than using ultrasonic treatment or chemical injection alone. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An iron-iron hydrogenase mimic with appended electron reservoir for efficient proton reduction in aqueous media

    PubMed Central

    Becker, René; Amirjalayer, Saeed; Li, Ping; Woutersen, Sander; Reek, Joost N. H.

    2016-01-01

    The transition from a fossil-based economy to a hydrogen-based economy requires cheap and abundant, yet stable and efficient, hydrogen production catalysts. Nature shows the potential of iron-based catalysts such as the iron-iron hydrogenase (H2ase) enzyme, which catalyzes hydrogen evolution at rates similar to platinum with low overpotential. However, existing synthetic H2ase mimics generally suffer from low efficiency and oxygen sensitivity and generally operate in organic solvents. We report on a synthetic H2ase mimic that contains a redox-active phosphole ligand as an electron reservoir, a feature that is also crucial for the working of the natural enzyme. Using a combination of (spectro)electrochemistry and time-resolved infrared spectroscopy, we elucidate the unique redox behavior of the catalyst. We find that the electron reservoir actively partakes in the reduction of protons and that its electron-rich redox states are stabilized through ligand protonation. In dilute sulfuric acid, the catalyst has a turnover frequency of 7.0 × 104 s−1 at an overpotential of 0.66 V. This catalyst is tolerant to the presence of oxygen, thereby paving the way for a new generation of synthetic H2ase mimics that combine the benefits of the enzyme with synthetic versatility and improved stability. PMID:26844297

  18. Optimal performance of heat engines with a finite source or sink and inequalities between means.

    PubMed

    Johal, Ramandeep S

    2016-07-01

    Given a system with a finite heat capacity and a heat reservoir, and two values of initial temperatures, T_{+} and T_{-}(

  19. Using the nonlinear aquifer storage-discharge relationship to simulate the base flow of glacier- and snowmelt-dominated basins in northwest China

    NASA Astrophysics Data System (ADS)

    Gan, R.; Luo, Y.

    2013-09-01

    Base flow is an important component in hydrological modeling. This process is usually modeled by using the linear aquifer storage-discharge relation approach, although the outflow from groundwater aquifers is nonlinear. To identify the accuracy of base flow estimates in rivers dominated by snowmelt and/or glacier melt in arid and cold northwestern China, a nonlinear storage-discharge relationship for use in SWAT (Soil Water Assessment Tool) modeling was developed and applied to the Manas River basin in the Tian Shan Mountains. Linear reservoir models and a digital filter program were used for comparisons. Meanwhile, numerical analysis of recession curves from 78 river gauge stations revealed variation in the parameters of the nonlinear relationship. It was found that the nonlinear reservoir model can improve the streamflow simulation, especially for low-flow period. The higher Nash-Sutcliffe efficiency, logarithmic efficiency, and volumetric efficiency, and lower percent bias were obtained when compared to the one-linear reservoir approach. The parameter b of the aquifer storage-discharge function varied mostly between 0.0 and 0.1, which is much smaller than the suggested value of 0.5. The coefficient a of the function is related to catchment properties, primarily the basin and glacier areas.

  20. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan, M.E.; Wilson, M.L.; Wightman, J.

    1996-12-31

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity & permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based onmore » marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic & petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.« less

  1. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan, M.E.; Wilson, M.L.; Wightman, J.

    1996-01-01

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on markermore » correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.« less

  2. Integrating a reservoir regulation scheme into a spatially distributed hydrological model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Gang; Gao, Huilin; Naz, Bibi S.

    2016-12-01

    During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal/industrial water supplies, and hydropower generation. Consequently, natural streamflow timing and magnitude have been altered significantly by reservoir operations. In addition, the hydrological cycle can be modified by land use/land cover and climate changes. To understand the fine scale feedback between hydrological processes and water management decisions, a distributed hydrological model embedded with a reservoir component is of desire. In this study, a multi-purpose reservoir module with predefined complex operational rules was integrated into the Distributed Hydrologymore » Soil Vegetation Model (DHSVM). Conditional operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The performance of the integrated model was tested over the upper Brazos River Basin in Texas, where two U.S. Army Corps of Engineers reservoirs, Lake Whitney and Aquilla Lake, are located. The integrated DHSVM model was calibrated and validated using observed reservoir inflow, outflow, and storage data. The error statistics were summarized for both reservoirs on a daily, weekly, and monthly basis. Using the weekly reservoir storage for Lake Whitney as an example, the coefficients of determination (R2) and the Nash-Sutcliff Efficiency (NSE) are 0.85 and 0.75, respectively. These results suggest that this reservoir module has promise for use in sub-monthly hydrological simulations. Enabled with the new reservoir component, the DHSVM model provides a platform to support adaptive water resources management under the impacts of evolving anthropogenic activities and substantial environmental changes.« less

  3. Screening reservoir systems by considering the efficient trade-offs—informing infrastructure investment decisions on the Blue Nile

    NASA Astrophysics Data System (ADS)

    Geressu, Robel T.; Harou, Julien J.

    2015-12-01

    Multi-reservoir system planners should consider how new dams impact downstream reservoirs and the potential contribution of each component to coordinated management. We propose an optimized multi-criteria screening approach to identify best performing designs, i.e., the selection, size and operating rules of new reservoirs within multi-reservoir systems. Reservoir release operating rules and storage sizes are optimized concurrently for each separate infrastructure design under consideration. Outputs reveal system trade-offs using multi-dimensional scatter plots where each point represents an approximately Pareto-optimal design. The method is applied to proposed Blue Nile River reservoirs in Ethiopia, where trade-offs between total and firm energy output, aggregate storage and downstream irrigation and energy provision for the best performing designs are evaluated. This proof-of concept study shows that recommended Blue Nile system designs would depend on whether monthly firm energy or annual energy is prioritized. 39 TWh/yr of energy potential is available from the proposed Blue Nile reservoirs. The results show that depending on the amount of energy deemed sufficient, the current maximum capacities of the planned reservoirs could be larger than they need to be. The method can also be used to inform which of the proposed reservoir type and their storage sizes would allow for the highest downstream benefits to Sudan in different objectives of upstream operating objectives (i.e., operated to maximize either average annual energy or firm energy). The proposed approach identifies the most promising system designs, reveals how they imply different trade-offs between metrics of system performance, and helps system planners asses the sensitivity of overall performance to the design parameters of component reservoirs.

  4. Rupture Dynamics and Scaling Behavior of Hydraulically Stimulated Micro-Earthquakes in a Shale Reservoir

    NASA Astrophysics Data System (ADS)

    Viegas, G. F.; Urbancic, T.; Baig, A. M.

    2014-12-01

    In hydraulic fracturing completion programs fluids are injected under pressure into fractured rock formations to open escape pathways for trapped hydrocarbons along pre-existing and newly generated fractures. To characterize the failure process, we estimate static and dynamic source and rupture parameters, such as dynamic and static stress drop, radiated energy, seismic efficiency, failure modes, failure plane orientations and dimensions, and rupture velocity to investigate the rupture dynamics and scaling relations of micro-earthquakes induced during a hydraulic fracturing shale completion program in NE British Columbia, Canada. The relationships between the different parameters combined with the in-situ stress field and rock properties provide valuable information on the rupture process giving insights into the generation and development of the fracture network. Approximately 30,000 micro-earthquakes were recorded using three multi-sensor arrays of high frequency geophones temporarily placed close to the treatment area at reservoir depth (~2km). On average the events have low radiated energy, low dynamic stress and low seismic efficiency, consistent with the obtained slow rupture velocities. Events fail in overshoot mode (slip weakening failure model), with fluids lubricating faults and decreasing friction resistance. Events occurring in deeper formations tend to have faster rupture velocities and are more efficient in radiating energy. Variations in rupture velocity tend to correlate with variation in depth, fault azimuth and elapsed time, reflecting a dominance of the local stress field over other factors. Several regions with different characteristic failure modes are identifiable based on coherent stress drop, seismic efficiency, rupture velocities and fracture orientations. Variations of source parameters with rock rheology and hydro-fracture fluids are also observed. Our results suggest that the spatial and temporal distribution of events with similar characteristic rupture behaviors can be used to determine reservoir geophysical properties, constrain reservoir geo-mechanical models, classify dynamic rupture processes for fracture models and improve fracture treatment designs.

  5. Evaluating the Implications of Climate Phenomenon Indices in Supporting Reservoir Operation Using the Artificial Neural Network and Decision-Tree Methods: A Case Study on Trinity Lake in Northern California

    NASA Astrophysics Data System (ADS)

    Yang, T.; Akbari Asanjan, A.; Gao, X.; Sorooshian, S.

    2016-12-01

    Reservoirs are fundamental human-built infrastructures that collect, store, and deliver fresh surface water in a timely manner for all kinds of purposes, including residential and industrial water supply, flood control, hydropower, and irrigation, etc. Efficient reservoir operation requires that policy makers and operators understand how reservoir inflows, available storage, and discharges are changing under different climatic conditions. Over the last decade, the uses of Artificial Intelligence and Data Mining (AI & DM) techniques in assisting reservoir management and seasonal forecasts have been increasing. Therefore, in this study, two distinct AI & DM methods, Artificial Neural Network (ANN) and Random Forest (RF), are employed and compared with respect to their capabilities of predicting monthly reservoir inflow, managing storage, and scheduling reservoir releases. A case study on Trinity Lake in northern California is conducted using long-term (over 50 years) reservoir operation records and 17 known climate phenomenon indices, i.e. PDO and ENSO, etc., as predictors. Results show that (1) both ANN and RF are capable of providing reasonable monthly reservoir storage, inflow, and outflow prediction with satisfactory statistics, and (2) climate phenomenon indices are useful in assisting monthly or seasonal forecasts of reservoir inflow and outflow. It is also found that reservoir storage has a consistent high autocorrelation effect, while inflow and outflow are more likely to be influenced by climate conditions. Using a Gini diversity index, RF method identifies that the reservoir discharges are associated with Southern Oscillation Index (SOI) and reservoir inflows are influenced by multiple climate phenomenon indices during different seasons. Furthermore, results also show that, during the winter season, reservoir discharges are controlled by the storage level for flood-control purposes, while, during the summer season, the flood-control operation is not as significant as that in the winter. With regard to the suitability of the AI & DM methods in support of reservoir operation, the Decision Tree method is suggested for future reservoir studies because of its transparency and non-parametric features over the "black-box" style ANN regression model.

  6. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: a case study of the Daming geothermal field in China.

    PubMed

    Guo, Xuyang; Song, Hongqing; Killough, John; Du, Li; Sun, Pengguang

    2018-02-01

    The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by placing wells at locations with higher rock stiffness. Compared with the reference case with coal burning for heating purposes, the yearly emission reduction capacity can reach 1 × 10 7  kg by switching to the direct utilization of geothermal energy in Daming field.

  7. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs.

    PubMed

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  8. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands,more » high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.« less

  9. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs

    PubMed Central

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing. PMID:25966285

  10. Quantifying the clay content with borehole depth and impact on reservoir flow

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, Aaraellu D.; Chattopadhyay, Pallavi B.

    2017-04-01

    This study focuses on the application of reservoir well log data and 3D transient numerical model for proper optimization of flow dynamics and hydrocarbon potential. Fluid flow through porous media depends on clay content that controls porosity, permeability and pore pressure. The pressure dependence of permeability is more pronounced in tight formations. Therefore, preliminary clay concentration analysis and geo-mechanical characterizations have been done by using wells logs. The assumption of a constant permeability for a reservoir is inappropriate and therefore the study deals with impact of permeability variation for pressure-sensitive formation. The study started with obtaining field data from available well logs. Then, the mathematical models are developed to understand the efficient extraction of oil in terms of reservoir architecture, porosity and permeability. The fluid flow simulations have been done using COMSOL Multiphysics Software by choosing time dependent subsurface flow module that is governed by Darcy's law. This study suggests that the reservoir should not be treated as a single homogeneous structure with unique porosity and permeability. The reservoir parameters change with varying clay content and it should be considered for effective planning and extraction of oil. There is an optimum drawdown for maximum production with varying permeability in a reservoir.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, F.M. Jr.; Best, D.A.; Clarke, R.T.

    The need for even more efficient reservoir characterization and management has forced a change in the way Mobil Oil provides technical support to its production operations. We`ve learned that to be successful, a good understanding of the reservoir is essential. This includes an understanding of the technical and business significance of reservoir heterogeneities at different stages of field development. A multi-disciplinary understanding of the business of integrated reservoir characterization is essential and to facilitate this understanding, Mobil has developed a highly successful {open_quotes}Reservoir Characterization Field Seminar{close_quotes}. Through specific team based case studies that incorporate outcrop examples and data the programmore » provides participants the opportunity to explore historic and alternative approaches to reservoir description, characterization and management. We explore appropriate levels and timing of data gathering, technology applications, risk assessment and management practices at different stages of field development. The case studies presented throughout the course are a unique element of the program which combine real life and hypothetical problem sets that explore how different technical disciplines interact, the approaches to a problem solving they use, the assumptions and uncertainties contained in their contributions and the impact those conclusions may have on other disciplines involved in the overall reservoir management process. The team building aspect of the course was an added bonus.« less

  12. High resolution multi-facies realizations of sedimentary reservoir and aquifer analogs

    PubMed Central

    Bayer, Peter; Comunian, Alessandro; Höyng, Dominik; Mariethoz, Gregoire

    2015-01-01

    Geological structures are by nature inaccessible to direct observation. This can cause difficulties in applications where a spatially explicit representation of such structures is required, in particular when modelling fluid migration in geological formations. An increasing trend in recent years has been to use analogs to palliate this lack of knowledge, i.e., exploiting the spatial information from sites where the geology is accessible (outcrops, quarry sites) and transferring the observed properties to a study site deemed geologically similar. While this approach is appealing, it is difficult to put in place because of the lack of access to well-documented analog data. In this paper we present comprehensive analog data sets which characterize sedimentary structures from important groundwater hosting formations in Germany and Brazil. Multiple 2-D outcrop faces are described in terms of hydraulic, thermal and chemical properties and interpolated in 3-D using stochastic techniques. These unique data sets can be used by the wider community to implement analog approaches for characterizing reservoir and aquifer formations. PMID:26175910

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, G.A.; Commer, M.

    Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/Lmore » supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.« less

  14. Microbial enhanced oil recovery research. Annex 5, Summary annual report 1990--1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, M.M.; Georgiou, G.

    1991-12-31

    The objective of this work is to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. Specific goals include: (1) the production, isolation, chemical characterization and study of the physical properties of microbially produced surfactants; (2) development of simulators for MEOR; (3) model studies in sandstone cores for the characterization of the interactions between growing microbially cultures and oil reservoirs,; (4) design of operation strategies for the sequential injection of microorganisms and nutrient in reservoirs. Accomplishments are: (1) ultra low interfacial tensions (0.003 mN/M) were obtained between decane and 5% NaCl brine using biosurfactants obtained frommore » Bacillus Licheniformis, JF-2 which is the lowest IFT ever reported for biosurfactants; (2) a method to was developed isolate the biosurfactant from the growth medium; (3) the structure of the isolated biosurfactant has been determined; (4) several techniques have been proposed to increase the yield of the surfactant; and (5) an MEOR simulator has been completed.« less

  15. Geotechnology for low permeability gas reservoirs; [Progress report], April 1, 1992--September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, J.C.; Warpinski, N.R.; Teufel, L.W.

    The objectives of this program are (1) to use and refine a basinal analysis methodology for natural fracture exploration and exploitation, and (2) to determine the important characteritics of natural fracture systems for their use in completion, stimulation and production operations. Continuing work on this project has demonstrated that natural fracture systems and their flow characteristics can be defined by a thorough study of well and outcrop data within a basin. Outcrop data provides key information on fracture sets and lithologic controls, but some fracture sets found in the outcrop may not exist at depth. Well log and core datamore » provide the important reservoir information to obtain the correct synthesis of the fracture data. In situ stress information is then linked with the natural fracture studies to define permeability anisotropy and stimulation effectiveness. All of these elements require field data, and in the cases of logs, core, and well test data, the cooperation of an operator.« less

  16. Restoring Natural Streamflow Variability by Modifying Multi-purpose Reservoir Operation

    NASA Astrophysics Data System (ADS)

    Shiau, J.

    2010-12-01

    Multi-purpose reservoirs typically provide benefits of water supply, hydroelectric power, and flood mitigation. Hydroelectric power generations generally do not consume water. However, temporal distribution of downstream flows is highly changed due to hydro-peaking effects. Associated with offstream diversion of water supplies for municipal, industrial, and agricultural requirements, natural streamflow characteristics of magnitude, duration, frequency, timing, and rate of change is significantly altered by multi-purpose reservoir operation. Natural flow regime has long been recognized a master factor for ecosystem health and biodiversity. Restoration of altered flow regime caused by multi-purpose reservoir operation is the main objective of this study. This study presents an optimization framework that modifying reservoir operation to seeking balance between human and environmental needs. The methodology presented in this study is applied to the Feitsui Reservoir, located in northern Taiwan, with main purpose of providing stable water-supply and auxiliary purpose of electricity generation and flood-peak attenuation. Reservoir releases are dominated by two decision variables, i.e., duration of water releases for each day and percentage of daily required releases within the duration. The current releasing policy of the Feitsui Reservoir releases water for water-supply and hydropower purposes during 8:00 am to 16:00 pm each day and no environmental flows releases. Although greater power generation is obtained by 100% releases distributed within 8-hour period, severe temporal alteration of streamflow is observed downstream of the reservoir. Modifying reservoir operation by relaxing these two variables and reserve certain ratio of streamflow as environmental flow to maintain downstream natural variability. The optimal reservoir releasing policy is searched by the multi-criterion decision making technique for considering reservoir performance in terms of shortage ratio and power generation and downstream hydrologic alterations in terms of ecological relevant indicators. The results show that the proposed methodology can mitigate hydro-peaking effects on natural variability, while maintains efficient reservoir operation.

  17. Assessing the weighted multi-objective adaptive surrogate model optimization to derive large-scale reservoir operating rules with sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Jingwen; Wang, Xu; Liu, Pan; Lei, Xiaohui; Li, Zejun; Gong, Wei; Duan, Qingyun; Wang, Hao

    2017-01-01

    The optimization of large-scale reservoir system is time-consuming due to its intrinsic characteristics of non-commensurable objectives and high dimensionality. One way to solve the problem is to employ an efficient multi-objective optimization algorithm in the derivation of large-scale reservoir operating rules. In this study, the Weighted Multi-Objective Adaptive Surrogate Model Optimization (WMO-ASMO) algorithm is used. It consists of three steps: (1) simplifying the large-scale reservoir operating rules by the aggregation-decomposition model, (2) identifying the most sensitive parameters through multivariate adaptive regression splines (MARS) for dimensional reduction, and (3) reducing computational cost and speeding the searching process by WMO-ASMO, embedded with weighted non-dominated sorting genetic algorithm II (WNSGAII). The intercomparison of non-dominated sorting genetic algorithm (NSGAII), WNSGAII and WMO-ASMO are conducted in the large-scale reservoir system of Xijiang river basin in China. Results indicate that: (1) WNSGAII surpasses NSGAII in the median of annual power generation, increased by 1.03% (from 523.29 to 528.67 billion kW h), and the median of ecological index, optimized by 3.87% (from 1.879 to 1.809) with 500 simulations, because of the weighted crowding distance and (2) WMO-ASMO outperforms NSGAII and WNSGAII in terms of better solutions (annual power generation (530.032 billion kW h) and ecological index (1.675)) with 1000 simulations and computational time reduced by 25% (from 10 h to 8 h) with 500 simulations. Therefore, the proposed method is proved to be more efficient and could provide better Pareto frontier.

  18. Optimized polymer enhanced foam flooding for ordinary heavy oil reservoir after cross-linked polymer flooding.

    PubMed

    Sun, Chen; Hou, Jian; Pan, Guangming; Xia, Zhizeng

    2016-01-01

    A successful cross-linked polymer flooding has been implemented in JD reservoir, an ordinary heavy oil reservoir with high permeability zones. For all that, there are still significant volumes of continuous oil remaining in place, which can not be easily extracted due to stronger vertical heterogeneity. Considering selective plugging feature, polymer enhanced foam (PEF) flooding was taken as following EOR technology for JD reservoir. For low cost and rich source, natural gas was used as foaming gas in our work. In the former work, the surfactant systems CEA/FSA1 was recommended as foam agent for natural gas foam flooding after series of compatibility studies. Foam performance evaluation experiments showed that foaming volume reached 110 mL, half-life time reached 40 min, and dimensionless filter coefficient reached 1.180 when CEA/FSA1 reacted with oil produced by JD reservoir. To compare the recovery efficiency by different EOR technologies, series of oil displacement experiments were carried out in a parallel core system which contained cores with relatively high and low permeability. EOR technologies concerned in our work include further cross-linked polymer (C-P) flooding, surfactant-polymer (S-P) flooding, and PEF flooding. Results showed that PEF flooding had the highest enhanced oil recovery of 19.2 % original oil in place (OOIP), followed by S-P flooding (9.6 % OOIP) and C-P flooding (6.1 % OOIP). Also, produced liquid percentage results indicated PEF flooding can efficiently promote the oil recovery in the lower permeability core by modifying the injection profile.

  19. Microbial mineral illization of montmorillonite in low-permeability oil reservoirs for microbial enhanced oil recovery.

    PubMed

    Cui, Kai; Sun, Shanshan; Xiao, Meng; Liu, Tongjing; Xu, Quanshu; Dong, Honghong; Wang, Di; Gong, Yejing; Sha, Te; Hou, Jirui; Zhang, Zhongzhi; Fu, Pengcheng

    2018-05-11

    Microbial mineral illization has been investigated for its role in the extraction and recovery of metals from ores. Here we report our application of mineral bioillization for the microbial enhanced oil recovery in low-permeability oil reservoirs. It aimed to reveal the etching mechanism of the four Fe (III)-reducing microbial strains under anaerobic growth conditions on the Ca-montmorillonite. The mineralogical characterization of the Ca-montmorillonite was performed by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and energy dispersive spectrometer. Results showed that the microbial strains could efficiently reduce Fe (III) at an optimal rate of 71 %, and alter the crystal lattice structure of the lamella to promote the interlayer cation exchange, and to efficiently inhibit the Ca-montmorillonite swelling at an inhibitory rate of 48.9 %. Importance Microbial mineral illization is ubiquitous in the natural environment. Microbes in low-permeability reservoirs are able to enable the alteration of the structure and phase of the Fe-poor minerals by reducing Fe (III) and inhibiting clay swelling which is still poorly studied. This study aimed to reveal the interaction mechanism between Fe (III)-reducing bacterial strains and Ca-montmorillonite under anaerobic atmosphere, and to investigate the extent and rates of Fe (III) reduction and phase changes with their activities. Application of Fe (III)-reducing bacteria will provide a new way to inhibit clay swelling, to elevate reservoir permeability, and to reduce pore throat resistance after water flooding for enhanced oil recovery in low-permeability reservoirs. Copyright © 2018 American Society for Microbiology.

  20. A geostatistical approach to estimate mining efficiency indicators with flexible meshes

    NASA Astrophysics Data System (ADS)

    Freixas, Genis; Garriga, David; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier

    2014-05-01

    Geostatistics is a branch of statistics developed originally to predict probability distributions of ore grades for mining operations by considering the attributes of a geological formation at unknown locations as a set of correlated random variables. Mining exploitations typically aim to maintain acceptable mineral laws to produce commercial products based upon demand. In this context, we present a new geostatistical methodology to estimate strategic efficiency maps that incorporate hydraulic test data, the evolution of concentrations with time obtained from chemical analysis (packer tests and production wells) as well as hydraulic head variations. The methodology is applied to a salt basin in South America. The exploitation is based on the extraction of brines through vertical and horizontal wells. Thereafter, brines are precipitated in evaporation ponds to obtain target potassium and magnesium salts of economic interest. Lithium carbonate is obtained as a byproduct of the production of potassium chloride. Aside from providing an assemble of traditional geostatistical methods, the strength of this study falls with the new methodology developed, which focus on finding the best sites to exploit the brines while maintaining efficiency criteria. Thus, some strategic indicator efficiency maps have been developed under the specific criteria imposed by exploitation standards to incorporate new extraction wells in new areas that would allow maintain or improve production. Results show that the uncertainty quantification of the efficiency plays a dominant role and that the use flexible meshes, which properly describe the curvilinear features associated with vertical stratification, provides a more consistent estimation of the geological processes. Moreover, we demonstrate that the vertical correlation structure at the given salt basin is essentially linked to variations in the formation thickness, which calls for flexible meshes and non-stationarity stochastic processes.

  1. Terrestrial tight oil reservoir characteristics and Graded Resource Assessment in China

    NASA Astrophysics Data System (ADS)

    Wang, Shejiao; Wu, Xiaozhi; Guo, Giulin

    2016-04-01

    The success of shale/tight plays and the advanced exploitation technology applied in North America have triggered interest in exploring and exploiting tight oil in China. Due to the increased support of exploration and exploitation,great progress has been made in Erdos basin, Songliao basin, Junggar basin, Santanghu basin, Bohai Bay basin, Qaidam Basin, and Sichuan basin currently. China's first tight oil field has been found in Erdos basin in 2015, called xinanbian oil field, with over one hundred million tons oil reserves and one million tons of production scale. Several hundred million tons of tight oil reserve has been found in other basins, showing a great potential in China. Tight oil in China mainly developed in terrestrial sedimentary environment. According to the relations of source rock and reservoir, the source-reservoir combination of tight oil can be divided into three types, which are bottom generating and top storing tight oil,self- generating and self-storing tight oil,top generating and bottom storing tight oil. The self- generating and self-storing tight oil is the main type discovered at present. This type of tight oil has following characteristics:(1) The formation and distribution of tight oil are controlled by high quality source rocks. Terrestrial tight oil source rocks in China are mainly formed in the deep to half deep lacustrine facies. The lithology includes dark mudstone, shale, argillaceous limestone and dolomite. These source rocks with thickness between 20m-150m, kerogen type mostly I-II, and peak oil generation thermal maturity(Ro 0.6-1.4%), have great hydrocarbon generating potential. Most discovered tight oil is distributed in the area of TOC greater than 2 %.( 2) the reservoir with strong heterogeneity is very tight. In these low porosity and permeability reservoir,the resources distribution is controlled by the physical property. Tight sandstone, carbonate and hybrid sedimentary rocks are three main tight reservoir types in China. The porosity is 2-14%(average 5-10%)and the permeability is less than 1mD. The laboratory test and exploration practice confirmed that the oil content was positively related to physical property. The higher the porosity, the better the oil content will have. (3) Source rock and reservoir are superimposed. From the contact relationship of source rock and reservoir, the reservoir developed in the source rock has the advantage of capturing oil and gas, so the oil saturation can be as high as 70-80%. (4) The increased pressure caused by hydrocarbon generation and the connected fracture are the key factors for tight oil accumulation. The Fuyu tight oil formed underling source rock in Songliao Basin is a good example. The fracture system is the key factor for tight oil accumulation. Considering the strong heterogeneity of terrestrial tight oil reservoir in china, we create hierarchical resource abundance analogy, EUR analogy, cell element volumetric methods to evaluate tight oil resource potential. In order to find exploration "sweet spots", establishing tight oil resource classification evaluation standards are key steps to objectively evaluate tight oil resource distribution. The resource classification evaluation standards are established by the relationship analysis between reservoir properties and oil properties, and the correlation analysis between production, resource abundance, and reservoir thickness. The first-grade tight oil resource, which is recently available and can easily be developed, has following main parameters: the porosity is greater than 8%, thickness is over 10m, resource abundance is above 150,000 tons / km2, and pressure coefficient is greater than 1.3; The second-grade tight oil resource is currently unavailable, but with advanced technology can expected to be developed. The main parameters are as following: the porosity is 5% -8%, thickness is less than 5-10m, resource abundance is 50000-150000 tons / km2, the pressure coefficient is 1.0 to 1.3; The third-grade resource has poor quality, need long-term to be effective explored, has following main parameters: porosity is less than 5%, the thickness is less than 5m, resource abundance is less than 50,000 tons / km2, the pressure coefficient is less than 1.0. Using created resource evaluation methods, the tight oil resources has been calculated in china. The first-grade recoverable resource of tight oil is about 610 million tons. The second-grade recoverable resource is 450 million tons. And the third-grade recoverable resource is 400 million tons. The first-grade and second-grade recoverable resources are mainly distributed in the Ordos basin, Bohai Bay basin, Songliao basin, Junggar basin, and Qaidam Basin. The third-grade resources are mainly distributed in Sichuan and Santanghu basin.

  2. Preservation of high primary porosity in Paleozoic crinoidal and bioclastic grainstones: Mississippian and Permian subsurface examples from western Canada and Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eby, D.E.; Kirkby, K.C.

    1991-03-01

    Limestone reservoirs with anomalously high porosity and permeability exist in several Paleozoic basinal settings in western North America. They are commonly either crinoidal or bioclastic grainstones that escaped the varied diagenetic environments that most carbonate shelves and slopes experience during sea-level fluctuations. Thus, these diagenetically 'conservative' settings can preserve most of the primary depositional porosity in calcarenites because of sedimentation and burial within normal marine basinal waters. These excellent reservoirs are often encased in deep marine, highly organic shales which may serve as both source rock and seal. Several subsurface examples of remarkable primary porosity occur within Mississippian Waulsortian buildupsmore » of western Canada and north-center Texas. Buildups within the Pekisko Formation of Alberta, for instance, contain abundant flanking crinoidal/bryozoan grainstones with up to 25% primary porosity and 10 d permeability. Muddy core facies with productive flank and capping calcarenites are up to 300 ft (90 m) thick and 600-1,200 ft (182-364 m) in diameter. The Bowar 'reef complex' in the Chappel Formation of Stephens County, Texas (2.6 MMBO to date) is similar in many respects to the Canadian buildups. Diagenetic 'conservatism' has also promoted excellent reservoir quality within the outer slope to basinal lower Permian bioclastic grain-flow deposit ('Wolfcamp detrital') plays of the eastern Midland basin where significant diagenesis was arrested after basinal deposition. Interpretations of these examples based upon core and outcrop control provide analogs for future exploration and exploitation in highly porous basinal carbonate reservoirs.« less

  3. Petrology and reservoir quality of the Gaikema Sandstone: Initial impressions

    USGS Publications Warehouse

    Helmold, Kenneth P.; Stanley, Richard G.

    2015-01-01

    The Division of Geological & Geophysical Surveys (DGGS) and Division of Oil & Gas (DOG) are currently conducting a study of the hydrocarbon potential of Cook Inlet basin (LePain and others, 2011). The Tertiary stratigraphic section of the basin includes coal-bearing units that are prolific gas reservoirs, particularly the Neogene sandstones. The Paleogene sandstones are locally prolific oil reservoirs that are sourced largely from the underlying Middle Jurassic Tuxedni Group. Several large structures act as hydrocarbon traps and the possibility exists for stratigraphic traps although this potential has not been fully exploited. As part of this study a significant number of Tertiary sandstones from the basin have been already collected and analyzed (Helmold and others, 2013). Recent field programs have shifted attention to the Mesozoic stratigraphic section to ascertain whether it contains potential hydrocarbon reservoirs. During the 2013 Cook Inlet field season, two days were spent on the Iniskin Peninsula examining outcrops of the Middle Jurassic Gaikema Sandstone along the south shore of Chinitna Bay (fig. 7-1). A stratigraphic section approximately 34 m in thickness was measured and a detailed description was initiated (Stanley and others, 2015), but due to deteriorating weather it was not possible to complete the description. During the 2014 field season two additional days were spent completing work on the Gaikema section. Analyses of thin sections from six of the samples collected in 2013 are available for incorporation in this report (table 7-1). Data from samples collected during the 2014 field season will be included in future reports.

  4. Assessing Performance of Multipurpose Reservoir System Using Two-Point Linear Hedging Rule

    NASA Astrophysics Data System (ADS)

    Sasireka, K.; Neelakantan, T. R.

    2017-07-01

    Reservoir operation is the one of the important filed of water resource management. Innovative techniques in water resource management are focussed at optimizing the available water and in decreasing the environmental impact of water utilization on the natural environment. In the operation of multi reservoir system, efficient regulation of the release to satisfy the demand for various purpose like domestic, irrigation and hydropower can lead to increase the benefit from the reservoir as well as significantly reduces the damage due to floods. Hedging rule is one of the emerging techniques in reservoir operation, which reduce the severity of drought by accepting number of smaller shortages. The key objective of this paper is to maximize the minimum power production and improve the reliability of water supply for municipal and irrigation purpose by using hedging rule. In this paper, Type II two-point linear hedging rule is attempted to improve the operation of Bargi reservoir in the Narmada basin in India. The results obtained from simulation of hedging rule is compared with results from Standard Operating Policy, the result shows that the application of hedging rule significantly improved the reliability of water supply and reliability of irrigation release and firm power production.

  5. Modeling the thermostability of surface functionalisation by oxygen, hydroxyl, and water on nanodiamonds.

    PubMed

    Lai, Lin; Barnard, Amanda S

    2011-06-01

    Understanding nanodiamond functionalisation is of great importance for biological and medical applications. Here we examine the stabilities of oxygen, hydroxyl, and water functionalisation of the nanodiamonds using the self-consistent charge density functional tight-binding simulations. We find that the oxygen and hydroxyl termination are thermodynamically favourable and form strong C–O covalent bonds on the nanodiamond surface in an O2 and H2 gas reservoir, which confirms previous experiments. Yet, the thermodynamic stabilities of oxygen and hydroxyl functionalisation decrease dramatically in a water vapour reservoir. In contrast, H2O molecules are found to be physically adsorbed on the nanodiamond surface, and forced chemical adsorption results in decomposition of H2O. Moreover, the functionalisation efficiency is found to be facet dependent. The oxygen functionalisation prefers the {100} facets as opposed to alternative facets in an O2 and H2 gas reservoir. The hydroxyl functionalisation favors the {111} surfaces in an O2 and H2 reservoir and the {100} facets in a water vapour reservoir, respectively. This facet selectivity is found to be largely dependent upon the environmental temperature, chemical reservoir, and morphology of the nanodiamonds.

  6. Electricity storage using a thermal storage scheme

    NASA Astrophysics Data System (ADS)

    White, Alexander

    2015-01-01

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on "sensible heat" storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round-trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.

  7. Dynamic Programming for Structured Continuous Markov Decision Problems

    NASA Technical Reports Server (NTRS)

    Dearden, Richard; Meuleau, Nicholas; Washington, Richard; Feng, Zhengzhu

    2004-01-01

    We describe an approach for exploiting structure in Markov Decision Processes with continuous state variables. At each step of the dynamic programming, the state space is dynamically partitioned into regions where the value function is the same throughout the region. We first describe the algorithm for piecewise constant representations. We then extend it to piecewise linear representations, using techniques from POMDPs to represent and reason about linear surfaces efficiently. We show that for complex, structured problems, our approach exploits the natural structure so that optimal solutions can be computed efficiently.

  8. The situation of sanitary systems in rural areas in the Miyun catchment, China.

    PubMed

    Kröger, C; Xu, A; Duan, S; Zhang, B; Eckstädt, H; Meissner, R

    2012-01-01

    The Miyun Reservoir provides most of Beijing's drinking water. Despite its importance, the Miyun reservoir suffers from decreasing water quality caused by uncontrolled wastewater discharges, inadequate land use and over fertilization, which increase the pressure on soil and water resources. The major pollutants are nitrogen and phosphorus which emanate to some extent from untreated sewage. So far there is little data about the existing wastewater quantity and quality in rural settlements in northern China. This study was conducted in typical villages situated along upstream rivers in the catchment of the Miyun Reservoir. The main objective was to determine the current situation and efficiency of the wastewater treatment system in rural settlements.

  9. The utilization of the microflora indigenous to and present in oil-bearing formations to selectively plug the more porous zones thereby increasing oil recovery during waterflooding, Class 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, James O.; Brown, Lewis R.; Vadie, A. Alex

    2000-02-02

    The objectives of this project were (1) to demonstrate the in situ microbial population in a fluvial dominated deltaic reservoir could be induced to proliferate to such an extent that they will selectively restrict flow in the more porous zones in the reservoir thereby forcing injection water to flow through previously unswept areas thus improving the sweep efficiency of the waterflood and (2) to obtain scientific validation that microorganisms are indeed responsible for the increased oil recovery. One expected outcome of this new technology was the prolongation of economical life of the reservoir, i.e. economical oil recovery should continue formore » much longer periods in areas of the reservoir subjected to the MPPM technology than it would if it followed its historic trend.« less

  10. Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler,David M.; Miller, William A.; Wilson, Travis C.

    2002-03-11

    The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order tomore » improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.« less

  11. Severe situation of rural nonpoint source pollution and efficient utilization of agricultural wastes in the Three Gorges Reservoir Area.

    PubMed

    Zhang, Tong; Ni, Jiupai; Xie, Deti

    2015-11-01

    Rural nonpoint source (NPS) pollution caused by agricultural wastes has become increasingly serious in the Three Gorges Reservoir Area (TGRA), significantly affecting the reservoir water quality. The grim situation of rural NPS pollution in the TGRA indicated that agrochemicals (chemical fertilizer and pesticide) were currently the highest contributor of rural NPS pollution (50.38%). The harmless disposal rates of livestock excrement, crop straws, rural domestic refuse, and sewage also cause severe water pollution. More importantly, the backward agricultural economy and the poor environmental awareness of farmers in the hinterland of the TGRA contribute to high levels of rural NPS pollution. Over the past decade, researchers and the local people have carried out various successful studies and practices to realize the effective control of rural NPS pollution by efficiently utilizing agricultural wastes in the TGRA, including agricultural waste biogas-oriented utilization, crop straw gasification, decentralized land treatment of livestock excrement technology, and crop straw modification. These technologies have greatly increased the renewable resource utilization of agricultural wastes and improved water quality and ecological environment in the TGRA.

  12. Facies Modeling Using 3D Pre-Stack Simultaneous Seismic Inversion and Multi-Attribute Probability Neural Network Transform in the Wattenberg Field, Colorado

    NASA Astrophysics Data System (ADS)

    Harryandi, Sheila

    The Niobrara/Codell unconventional tight reservoir play at Wattenberg Field, Colorado has potentially two billion barrels of oil equivalent requiring hundreds of wells to access this resource. The Reservoir Characterization Project (RCP), in conjunction with Anadarko Petroleum Corporation (APC), began reservoir characterization research to determine how to increase reservoir recovery while maximizing operational efficiency. Past research results indicate that targeting the highest rock quality within the reservoir section for hydraulic fracturing is optimal for improving horizontal well stimulation through multi-stage hydraulic fracturing. The reservoir is highly heterogeneous, consisting of alternating chalks and marls. Modeling the facies within the reservoir is very important to be able to capture the heterogeneity at the well-bore scale; this heterogeneity is then upscaled from the borehole scale to the seismic scale to distribute the heterogeneity in the inter-well space. I performed facies clustering analysis to create several facies defining the reservoir interval in the RCP Wattenberg Field study area. Each facies can be expressed in terms of a range of rock property values from wells obtained by cluster analysis. I used the facies classification from the wells to guide the pre-stack seismic inversion and multi-attribute transform. The seismic data extended the facies information and rock quality information from the wells. By obtaining this information from the 3D facies model, I generated a facies volume capturing the reservoir heterogeneity throughout a ten square mile study-area within the field area. Recommendations are made based on the facies modeling, which include the location for future hydraulic fracturing/re-fracturing treatments to improve recovery from the reservoir, and potential deeper intervals for future exploration drilling targets.

  13. Stochastic thermodynamics for Ising chain and symmetric exclusion process.

    PubMed

    Toral, R; Van den Broeck, C; Escaff, D; Lindenberg, Katja

    2017-03-01

    We verify the finite-time fluctuation theorem for a linear Ising chain in contact with heat reservoirs at its ends. Analytic results are derived for a chain consisting of two spins. The system can be mapped onto a model for particle transport, namely, the symmetric exclusion process in contact with thermal and particle reservoirs. We modify the symmetric exclusion process to represent a thermal engine and reproduce universal features of the efficiency at maximum power.

  14. Mines as lower reservoir of an UPSH (Underground Pumping Storage Hydroelectricity): groundwater impacts and feasibility

    NASA Astrophysics Data System (ADS)

    Bodeux, Sarah; Pujades, Estanislao; Orban, Philippe; Dassargues, Alain

    2016-04-01

    The energy framework is currently characterized by an expanding use of renewable sources. However, their intermittence could not afford a stable production according to the energy demand. Pumped Storage Hydroelectricity (PSH) is an efficient possibility to store and release electricity according to the demand needs. Because of the topographic and environmental constraints of classical PSH, new potential suitable sites are rare in countries whose topography is weak or with a high population density. Nevertheless, an innovative alternative is to construct Underground Pumped Storage Hydroelectricity (UPSH) plants by using old underground mine works as lower reservoir. In that configuration, large amount of pumped or injected water in the underground cavities would impact the groundwater system. A representative UPSH facility is used to numerically determine the interactions with surrounding aquifers Different scenarios with varying parameters (hydrogeological and lower reservoir characteristics, boundaries conditions and pumping/injection time-sequence) are computed. Analysis of the computed piezometric heads around the reservoir allows assessing the magnitude of aquifer response and the required time to achieve a mean pseudo-steady state under cyclic solicitations. The efficiency of the plant is also evaluated taking the leakage into the cavity into account. Combining these two outcomes, some criterions are identified to assess the feasibility of this type of projects within potential old mine sites from a hydrogeological point of view.

  15. Simulation of a multistage fractured horizontal well in a water-bearing tight fractured gas reservoir under non-Darcy flow

    NASA Astrophysics Data System (ADS)

    Zhang, Rui-Han; Zhang, Lie-Hui; Wang, Rui-He; Zhao, Yu-Long; Huang, Rui

    2018-06-01

    Reservoir development for unconventional resources such as tight gas reservoirs is in increasing demand due to the rapid decline of production in conventional reserves. Compared with conventional reservoirs, fluid flow in water-bearing tight gas reservoirs is subject to more nonlinear multiphase flow and gas slippage in nano/micro matrix pores because of the strong collisions between rock and gas molecules. Economic gas production from tight gas reservoirs depends on extensive application of water-based hydraulic fracturing of horizontal wells, associated with non-Darcy flow at a high flow rate, geomechanical stress sensitivity of un-propped natural fractures, complex flow geometry and multiscale heterogeneity. How to efficiently and accurately predict the production performance of a multistage fractured horizontal well (MFHW) is challenging. In this paper, a novel multicontinuum, multimechanism, two-phase simulator is established based on unstructured meshes and the control volume finite element method to analyze the production performance of MFHWs. The multiple interacting continua model and discrete fracture model are coupled to integrate the unstimulated fractured reservoir, induced fracture networks (stimulated reservoir volumes, SRVs) and irregular discrete hydraulic fractures. Several simulations and sensitivity analyses are performed with the developed simulator for determining the key factors affecting the production performance of MFHWs. Two widely applied fracturing models, classic hydraulic fracturing which generates long double-wing fractures and the volumetric fracturing aimed at creating large SRVs, are compared to identify which of them can make better use of tight gas reserves.

  16. Cost Implications of Uncertainty in CO{sub 2} Storage Resource Estimates: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Steven T., E-mail: sanderson@usgs.gov

    Carbon capture from stationary sources and geologic storage of carbon dioxide (CO{sub 2}) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO{sub 2} storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference,more » and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO{sub 2}, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO{sub 2} storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO{sub 2} injection will be mitigated by reservoir pressure management, estimates of the costs of CO{sub 2} storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO{sub 2} storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO{sub 2} storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the scarcity of (data from) long-term commercial-scale CO{sub 2} storage projects, decision makers may experience considerable difficulty in ascertaining the realistic potential, the likely costs, and the most beneficial pattern of deployment of CCS as an option to reduce CO{sub 2} concentrations in the atmosphere.« less

  17. Cost implications of uncertainty in CO2 storage resource estimates: A review

    USGS Publications Warehouse

    Anderson, Steven T.

    2017-01-01

    Carbon capture from stationary sources and geologic storage of carbon dioxide (CO2) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO2 storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference, and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO2, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO2 storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO2 injection will be mitigated by reservoir pressure management, estimates of the costs of CO2 storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO2 storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO2 storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the scarcity of (data from) long-term commercial-scale CO2 storage projects, decision makers may experience considerable difficulty in ascertaining the realistic potential, the likely costs, and the most beneficial pattern of deployment of CCS as an option to reduce CO2 concentrations in the atmosphere.

  18. Nitrogen Removal Characteristics of a Newly Isolated Indigenous Aerobic Denitrifier from Oligotrophic Drinking Water Reservoir, Zoogloea sp. N299

    PubMed Central

    Huang, Ting-Lin; Zhou, Shi-Lei; Zhang, Hai-Han; Bai, Shi-Yuan; He, Xiu-Xiu; Yang, Xiao

    2015-01-01

    Nitrogen is considered to be one of the most widespread pollutants leading to eutrophication of freshwater ecosystems, especially in drinking water reservoirs. In this study, an oligotrophic aerobic denitrifier was isolated from drinking water reservoir sediment. Nitrogen removal performance was explored. The strain was identified by 16S rRNA gene sequence analysis as Zoogloea sp. N299. This species exhibits a periplasmic nitrate reductase gene (napA). Its specific growth rate was 0.22 h−1. Obvious denitrification and perfect nitrogen removal performances occurred when cultured in nitrate and nitrite mediums, at rates of 75.53% ± 1.69% and 58.65% ± 0.61%, respectively. The ammonia removal rate reached 44.12% ± 1.61% in ammonia medium. Zoogloea sp. N299 was inoculated into sterilized and unsterilized reservoir source waters with a dissolved oxygen level of 5–9 mg/L, pH 8–9, and C/N 1.14:1. The total nitrogen removal rate reached 46.41% ± 3.17% (sterilized) and 44.88% ± 4.31% (unsterilized). The cell optical density suggested the strain could survive in oligotrophic drinking water reservoir water conditions and perform nitrogen removal. Sodium acetate was the most favorable carbon source for nitrogen removal by strain N299 (p < 0.05). High C/N was beneficial for nitrate reduction (p < 0.05). The nitrate removal efficiencies showed no significant differences among the tested inoculums dosage (p > 0.05). Furthermore, strain N299 could efficiently remove nitrate at neutral and slightly alkaline and low temperature conditions. These results, therefore, demonstrate that Zoogloea sp. N299 has high removal characteristics, and can be used as a nitrogen removal microbial inoculum with simultaneous aerobic nitrification and denitrification in a micro-polluted reservoir water ecosystem. PMID:25946341

  19. Combined geophysical, geochemical and geological investigations of geothermal reservoir characteristics in Lower Saxony, Germany

    NASA Astrophysics Data System (ADS)

    Hahne, B.; Thomas, R.

    2012-04-01

    The North German basin provides a significant geothermal potential, although temperature gradients are moderate. However, deep drilling up to several thousand meters is required to reach temperatures high enough for efficient generation of geothermal heat and electric power. In these depths we have not much information yet about relevant physical properties like porosity or permeability of the rock formations. Therefore the costs of developing a geothermal reservoir and the risk of missing the optimum drilling location are high. The collaborative research association "Geothermal Energy and High Performance Drilling" (gebo) unites several universities and research institutes in Lower Saxony, Germany. It aims at a significant increase of economic efficiency by introducing innovative technology and high tech materials resisting temperatures up to 200 °C in the drilling process. Furthermore, a better understanding of the geothermal reservoir is essential. gebo is structured into four main fields: Drilling Technology, Materials, Technical Systems and Geosystem. Here, we show the combined work of the Geosystem group, which focuses on the exploration of geological fault zones as a potential geothermal reservoir as well as on modeling the stress field, heat transport, coupled thermo-hydro-mechanical processes, geochemical interactions and prediction of the long-term behavior of the reservoir. First results include combined seismic and geoelectric images of the Leinetalgraben fault system, a comparison of seismic images from P- and S-wave measurements, mechanical properties of North German rocks from field and laboratory measurements as well as from drill cores, seismological characterization of stimulated reservoirs, a thermodynamic "gebo" database for modeling hydrogeochemical processes in North German formation waters with high salinity and at high temperatures, stress models for specific sites in northern Germany, and modeling results of permeability and heat transport in different (fractured) media. gebo is funded by the Ministry of Science and Culture of Lower Saxony, Germany and the industry partner Baker Hughes, Celle, Germany.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 1 of the project has been reservoir description and characterization. This effort has included four tasks: (1) geoscientific reservoir characterization, (2) the study of rock-fluid interactions, (3) petrophysical and engineering characterization and (4) data integration. This work was scheduled for completion in Year 1. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been initiated. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization is progressing. Data on reservoir production rate and pressure history at Appleton and Vocation Fields have been tabulated, and porosity data from core analysis has been correlated with porosity as observed from well log response. Data integration is on schedule, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database for reservoir characterization, modeling and simulation for the reef and carbonate shoal reservoirs for each of these fields.« less

  1. Hydraulic Fracturing and Production Optimization in Eagle Ford Shale Using Coupled Geomechanics and Fluid Flow Model

    NASA Astrophysics Data System (ADS)

    Suppachoknirun, Theerapat; Tutuncu, Azra N.

    2017-12-01

    With increasing production from shale gas and tight oil reservoirs, horizontal drilling and multistage hydraulic fracturing processes have become a routine procedure in unconventional field development efforts. Natural fractures play a critical role in hydraulic fracture growth, subsequently affecting stimulated reservoir volume and the production efficiency. Moreover, the existing fractures can also contribute to the pressure-dependent fluid leak-off during the operations. Hence, a reliable identification of the discrete fracture network covering the zone of interest prior to the hydraulic fracturing design needs to be incorporated into the hydraulic fracturing and reservoir simulations for realistic representation of the in situ reservoir conditions. In this research study, an integrated 3-D fracture and fluid flow model have been developed using a new approach to simulate the fluid flow and deliver reliable production forecasting in naturally fractured and hydraulically stimulated tight reservoirs. The model was created with three key modules. A complex 3-D discrete fracture network model introduces realistic natural fracture geometry with the associated fractured reservoir characteristics. A hydraulic fracturing model is created utilizing the discrete fracture network for simulation of the hydraulic fracture and flow in the complex discrete fracture network. Finally, a reservoir model with the production grid system is used allowing the user to efficiently perform the fluid flow simulation in tight formations with complex fracture networks. The complex discrete natural fracture model, the integrated discrete fracture model for the hydraulic fracturing, the fluid flow model, and the input dataset have been validated against microseismic fracture mapping and commingled production data obtained from a well pad with three horizontal production wells located in the Eagle Ford oil window in south Texas. Two other fracturing geometries were also evaluated to optimize the cumulative production and for the three wells individually. Significant reduction in the production rate in early production times is anticipated in tight reservoirs regardless of the fracturing techniques implemented. The simulations conducted using the alternating fracturing technique led to more oil production than when zipper fracturing was used for a 20-year production period. Yet, due to the decline experienced, the differences in cumulative production get smaller, and the alternating fracturing is not practically implementable while field application of zipper fracturing technique is more practical and widely used.

  2. The Research and Application of Microbial Degradation Technology on Heavy Oil Reservoir in Huabei Oilfield

    NASA Astrophysics Data System (ADS)

    Wang, Guan; Wang, Rui; Fu, Yaxiu; Duan, Lisha; Yuan, Xizhi; Zheng, Ya; Wang, Ai; Huo, Ran; Su, Na

    2018-06-01

    Mengulin sandstone reservoir in Huabei oilfield is low- temperature heavy oil reservoir. Recently, it is at later stage of waterflooding development. The producing degree of water flooding is poor, and it is difficult to keep yield stable. To improve oilfield development effect, according to the characteristics of reservoir geology, microbial enhanced oil recovery to improve oil displacement efficiency is researched. 2 microbial strains suitable for the reservoir conditions were screened indoor. The growth characteristics of strains, compatibility and function mechanism with crude oil were studied. Results show that the screened strains have very strong ability to utilize petroleum hydrocarbon to grow and metabolize, can achieve the purpose of reducing oil viscosity, and can also produce biological molecules with high surface activity to reduce the oil-water interfacial tension. 9 oil wells had been chosen to carry on the pilot test of microbial stimulation, of which 7 wells became effective with better experiment results. The measures effective rate is 77.8%, the increased oil is 1,093.5 tons and the valid is up to 190 days.

  3. Assessing the operation rules of a reservoir system based on a detailed modelling-chain

    NASA Astrophysics Data System (ADS)

    Bruwier, M.; Erpicum, S.; Pirotton, M.; Archambeau, P.; Dewals, B.

    2014-09-01

    According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two muti-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking, to control floods, to produce hydropower and to reduce low-flow condition. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.

  4. Assessing the operation rules of a reservoir system based on a detailed modelling chain

    NASA Astrophysics Data System (ADS)

    Bruwier, M.; Erpicum, S.; Pirotton, M.; Archambeau, P.; Dewals, B. J.

    2015-03-01

    According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two multi-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking water, to control floods, to produce hydropower and to reduce low-flow conditions. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.

  5. Magnetic Skyrmion as a Nonlinear Resistive Element: A Potential Building Block for Reservoir Computing

    NASA Astrophysics Data System (ADS)

    Prychynenko, Diana; Sitte, Matthias; Litzius, Kai; Krüger, Benjamin; Bourianoff, George; Kläui, Mathias; Sinova, Jairo; Everschor-Sitte, Karin

    2018-01-01

    Inspired by the human brain, there is a strong effort to find alternative models of information processing capable of imitating the high energy efficiency of neuromorphic information processing. One possible realization of cognitive computing involves reservoir computing networks. These networks are built out of nonlinear resistive elements which are recursively connected. We propose that a Skyrmion network embedded in magnetic films may provide a suitable physical implementation for reservoir computing applications. The significant key ingredient of such a network is a two-terminal device with nonlinear voltage characteristics originating from magnetoresistive effects, such as the anisotropic magnetoresistance or the recently discovered noncollinear magnetoresistance. The most basic element for a reservoir computing network built from "Skyrmion fabrics" is a single Skyrmion embedded in a ferromagnetic ribbon. In order to pave the way towards reservoir computing systems based on Skyrmion fabrics, we simulate and analyze (i) the current flow through a single magnetic Skyrmion due to the anisotropic magnetoresistive effect and (ii) the combined physics of local pinning and the anisotropic magnetoresistive effect.

  6. A three-dimensional self-assembled SnS 2 -nano-dots@graphene hybrid aerogel as an efficient polysulfide reservoir for high-performance lithium–sulfur batteries

    DOE PAGES

    Luo, Liu; Chung, Sheng-Heng; Manthiram, Arumugam

    2018-01-01

    A free-standing self-assembled graphene aerogel embedded with SnS 2 nano-dots (SnS 2 -ND@G) is established as an efficient substrate for high-loading sulfur cathodes with synergistically physical and chemical polysulfide-trapping capability.

  7. A three-dimensional self-assembled SnS 2 -nano-dots@graphene hybrid aerogel as an efficient polysulfide reservoir for high-performance lithium–sulfur batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Liu; Chung, Sheng-Heng; Manthiram, Arumugam

    A free-standing self-assembled graphene aerogel embedded with SnS 2 nano-dots (SnS 2 -ND@G) is established as an efficient substrate for high-loading sulfur cathodes with synergistically physical and chemical polysulfide-trapping capability.

  8. Analysis of induced seismicity in geothermal reservoirs – An overview

    USGS Publications Warehouse

    Zang, Arno; Oye, Volker; Jousset, Philippe; Deichmann, Nicholas; Gritto, Roland; McGarr, Arthur F.; Majer, Ernest; Bruhn, David

    2014-01-01

    In this overview we report results of analysing induced seismicity in geothermal reservoirs in various tectonic settings within the framework of the European Geothermal Engineering Integrating Mitigation of Induced Seismicity in Reservoirs (GEISER) project. In the reconnaissance phase of a field, the subsurface fault mapping, in situ stress and the seismic network are of primary interest in order to help assess the geothermal resource. The hypocentres of the observed seismic events (seismic cloud) are dependent on the design of the installed network, the used velocity model and the applied location technique. During the stimulation phase, the attention is turned to reservoir hydraulics (e.g., fluid pressure, injection volume) and its relation to larger magnitude seismic events, their source characteristics and occurrence in space and time. A change in isotropic components of the full waveform moment tensor is observed for events close to the injection well (tensile character) as compared to events further away from the injection well (shear character). Tensile events coincide with high Gutenberg-Richter b-values and low Brune stress drop values. The stress regime in the reservoir controls the direction of the fracture growth at depth, as indicated by the extent of the seismic cloud detected. Stress magnitudes are important in multiple stimulation of wells, where little or no seismicity is observed until the previous maximum stress level is exceeded (Kaiser Effect). Prior to drilling, obtaining a 3D P-wave (Vp) and S-wave velocity (Vs) model down to reservoir depth is recommended. In the stimulation phase, we recommend to monitor and to locate seismicity with high precision (decametre) in real-time and to perform local 4D tomography for velocity ratio (Vp/Vs). During exploitation, one should use observed and model induced seismicity to forward estimate seismic hazard so that field operators are in a position to adjust well hydraulics (rate and volume of the fluid injected) when induced events start to occur far away from the boundary of the seismic cloud.

  9. Thermal-permeability structure and recharge conditions of the Mutnovsky high-temperature geothermal field (Kamchatka, Russia)

    NASA Astrophysics Data System (ADS)

    Kiryukhin, A. V.; Polyakov, A. Y.; Usacheva, O. O.; Kiryukhin, P. A.

    2018-05-01

    The Mutnovsky geothermal area is part of the Eastern Kamchatka active volcano belt. Mutnovsky, 80 kY old and an aging strato-volcano (a complex of 4 composite volcanic cones), acts as a magma- and water-injector into the 25-km-long North Mutnovsky extension zone. Magmatic injection events (dykes) are associated with plane-oriented MEQ (Micro Earth Quakes) clusters, most of them occurring in the NE sector of the volcano (2 × 10 km2) at elevations from -4 to -2 km, while some magmatic injections occur at elevations from -6.0 to -4.0 km below the Mutnovsky production field. Water recharge of production reservoirs is from the Mutnovsky volcano crater glacier (+1500 to +1800 masl), which was confirmed by water isotopic data (δD, δ18O) of production wells at an earlier stage of development. The Mutnovsky (Dachny) 260-310 °C high-temperature production geothermal reservoir with a volume of 16 km3 is at the junction of NNE- and NE-striking normal faults, which coincides with the current dominant dyke injection orientation. TOUGH2-modeling estimates of the reservoir properties are as follows: the reservoir permeability is 90-600 e-15 m2, the deep upflow recharge is 80 kg/s and the enthalpy is 1420 kJ/kg. Modeling was used to reproduce the history of the Mutnovsky (Dachny) reservoir exploitation since 1983 with an effective power of 48 MWe by 2016. Modeling also showed that the reservoir is capable of yielding 65-83 MWe of sustainable production until 2055, if additional production drilling in the SE part of the field is performed. Moreover, this power value may increase to 87-105 MWe if binary technologies are applied. Modeling also shows that the predicted power is sensitive to local meteoric water influx during development. Conceptual iTOUGH2-EOS1sc thermal hydrodynamic modeling of the Mutnovsky magma-hydrothermal system as a whole reasonably explains its evolution over the last 1500-5000 years in terms of heat recharge (dyke injection from the Mutnovsky-4 funnel) and mass recharge (water injection through the Mutnovsky-2 and Mutnovsky-3 funnels) conditions as previously mentioned.

  10. Natural products as reservoirs of novel therapeutic agents.

    PubMed

    Mushtaq, Sadaf; Abbasi, Bilal Haider; Uzair, Bushra; Abbasi, Rashda

    2018-01-01

    Since ancient times, natural products from plants, animals, microbial and marine sources have been exploited for treatment of several diseases. The knowledge of our ancestors is the base of modern drug discovery process. However, due to the presence of extensive biodiversity in natural sources, the percentage of secondary metabolites screened for bioactivity is low. This review aims to provide a brief overview of historically significant natural therapeutic agents along with some current potential drug candidates. It will also provide an insight into pros and cons of natural product discovery and how development of recent approaches has answered the challenges associated with it.

  11. Modeling of Karachaganak field development

    NASA Astrophysics Data System (ADS)

    Sadvakasov, A. A.; Shamsutdinova, G. F.; Almukhametova, E. M.; Gabdrakhmanov, N. Kh

    2018-05-01

    Management of a geological deposit includes the study and analysis of oil recovery, identification of factors influencing production performance and oil-bearing rock flooding, reserve recovery and other indicators characterizing field development in general. Regulation of oil deposits exploitation is a mere control over the fluid flow within a reservoir, which is ensured through the designed system of development via continuous improvement of production and injection wells placement, optimum performance modes, service conditions of downhole and surface oil-field equipment taking into account various changes and physical-geological properties of a field when using modern equipment to obtain the best performance indicators.

  12. Forecasting of reservoir pressures of oil and gas bearing complexes in northern part of West Siberia for safety oil and gas deposits exploration and development

    NASA Astrophysics Data System (ADS)

    Gorbunov, P. A.; Vorobyov, S. V.

    2017-10-01

    In the paper the features of reservoir pressures changes in the northern part of West Siberian oil-and gas province are described. This research is based on the results of hydrodynamic studies in prospecting and explorating wells in Yamal-Nenets Autonomous District. In the Cenomanian, Albian, Aptian and in the top of Neocomian deposits, according to the research, reservoir pressure is usually equal to hydrostatic pressure. At the bottom of the Neocomian and Jurassic deposits zones with abnormally high reservoir pressures (AHRP) are distinguished within Gydan and Yamal Peninsula and in the Nadym-Pur-Taz interfluve. Authors performed the unique zoning of the territory of the Yamal-Nenets Autonomous District according to the patterns of changes of reservoir pressures in the section of the sedimentary cover. The performed zoning and structural modeling allow authors to create a set of the initial reservoir pressures maps for the main oil and gas bearing complexes of the northern part of West Siberia. The results of the survey should improve the efficiency of exploration drilling by preventing complications and accidents during this operation in zones with abnormally high reservoir pressures. In addition, the results of the study can be used to estimate gas resources within prospective areas of Yamal-Nenets Autonomous District.

  13. Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Jenkins, Andrew

    Hydraulic fracturing is a technique which is used to exploit geologic features and subsurface properties in an effort to increase production in low-permeability formations. The process of hydraulic fracturing provides a greater surface contact area between the producing formation and the wellbore and thus increases the amount of recoverable hydrocarbons from within the reservoir. The use of this stimulation technique has brought on massive applause from the industry due to its widespread success and effectiveness, however the dynamic processes that take part in the development of hydraulic fractures is a relatively new area of research with respect to the massive scale operations that are seen today. The process of hydraulic fracturing relies upon understanding and exploiting the in-situ stress distribution throughout the area of study. These in-situ stress conditions are responsible for directing fracture orientation and propagation paths throughout the period of injection. The relative magnitude of these principle stresses is key in developing a successful stimulation plan. In horizontal well plan development the interpretation of stress within the reservoir is required for determining the azimuth of the horizontal well path. These horizontal laterals are typically oriented in a manner such that the well path lies parallel to the minimum horizontal stress. This allows for vertical fractures to develop transversely to the wellbore, or normal to the least principle stress without the theoretical possibility of fractures overlapping, creating the most efficient use of the fluid energy during injection. The orientation and magnitude of these in-situ stress fields however can be dynamic, controlled by the subsequent fracture propagation and redistribution of the surrounding stresses. That is, that as the fracture propagates throughout the reservoir, the relative stress fields surrounding the fractures may see a shift and deviate from their original direction or magnitude. These types of shifts are of great concern because they can impact subsequent fracture development causing non-uniform fracture propagation and the potential overlapping of fracture paths as they extend from the wellbore at the point of injection. The dynamics of stress variation that occur with respect to hydraulic fracturing is a somewhat new area of study. In order to accomplish the goals of this thesis and continue future research in this area a new transient model has been developed in order to asses these dynamic systems and determine their influence on fracture behavior. This applies the use of a fully coupled finite element method in 2-D using linear elastic fracture mechanics which is then expanded using displacement discontinuity to a cohesive zone model in 3-D. A static boundary element model was also used to determine stress fields surrounding static, predetermined fracture geometries. These models have been verified against analytical solutions for simple cases and are now being applied to more detailed case studies and analysis. These models have been briefly discussed throughout this thesis in order to give insight on their current capabilities and application as well as their future potential within this area of research. The majority of this work introduces transient stress field prediction to cases of single and multiple hydraulic fractures. The static assessment of these stresses is determined for verification of results to those found in publication which leads into these transient stress field variations. A new method has been developed and applied to the stress state prediction for the first time in a transient fracture model which is partly based upon a critical distance theory. These dynamic interactions can provide useful insight to pertinent issues within the petroleum and natural gas industry such as those to hydraulic fracturing fluid loss and induced seismic events, as well as to applications of efficiency and optimization of the stimulation treatment plan.

  14. Radium content of oil- and gas-field produced waters in the northern Appalachian Basin (USA)—Summary and discussion of data

    USGS Publications Warehouse

    Rowan, E.L.; Engle, M.A.; Kirby, C.S.; Kraemer, T.F.

    2011-01-01

    Radium activity data for waters co-produced with oil and gas in New York and Pennsylvania have been compiled from publicly available sources and are presented together with new data for six wells, including one time series. When available, total dissolved solids (TDS), and gross alpha and gross beta particle activities also were compiled. Data from the 1990s and earlier are from sandstone and limestone oil/gas reservoirs of Cambrian-Mississippian age; however, the recent data are almost exclusively from the Middle Devonian Marcellus Shale. The Marcellus Shale represents a vast resource of natural gas the size and significance of which have only recently been recognized. Exploitation of the Marcellus involves hydraulic fracturing of the shale to release tightly held gas. Analyses of the water produced with the gas commonly show elevated levels of salinity and radium. Similarities and differences in radium data from reservoirs of different ages and lithologies are discussed. The range of radium activities for samples from the Marcellus Shale (less than detection to 18,000 picocuries per liter (pCi/L)) overlaps the range for non-Marcellus reservoirs (less than detection to 6,700 pCi/L), and the median values are 2,460 pCi/L and 734 pCi/L, respectively. A positive correlation between the logs of TDS and radium activity can be demonstrated for the entire dataset, and controlling for this TDS dependence, Marcellus shale produced water samples contain statistically more radium than non-Marcellus samples. The radium isotopic ratio, Ra-228/Ra-226, in samples from the Marcellus Shale is generally less than 0.3, distinctly lower than the median values from other reservoirs. This ratio may serve as an indicator of the provenance or reservoir source of radium in samples of uncertain origin.

  15. Quantification and Multi-purpose Allocation of Water Resources in a Dual-reservoir System

    NASA Astrophysics Data System (ADS)

    Salami, Y. D.

    2017-12-01

    Transboundary rivers that run through separate water management jurisdictions sometimes experience competitive water usage. Where the river has multiple existing or planned dams along its course, quantification and efficient allocation of water for such purposes as hydropower generation, irrigation for agriculture, and water supply can be a challenge. This problem is even more pronounced when large parts of the river basin are located in semi-arid regions known for water insecurity, poor crop yields from irrigation scheme failures, and human population displacement arising from water-related conflict. This study seeks to mitigate the impacts of such factors on the Kainji-Jebba dual-reservoir system located along the Niger River in Africa by seasonally quantifying and efficiently apportioning water to all stipulated uses of both dams thereby improving operational policy and long-term water security. Historical storage fluctuations (18 km3 to 5 km3) and flows into and out of both reservoirs were analyzed for relationships to such things as surrounding catchment contribution, dam operational policies, irrigation and hydropower requirements, etc. Optimum values of the aforementioned parameters were then determined by simulations based upon hydrological contributions and withdrawals and worst case scenarios of natural and anthropogenic conditions (like annual probability of reservoir depletion) affecting water availability and allocation. Finally, quantification and optimized allocation of water was done based on needs for hydropower, irrigation for agriculture, water supply, and storage evacuation for flood control. Results revealed that water supply potential increased by 69%, average agricultural yield improved by 36%, and hydropower generation increased by 54% and 66% at the upstream and downstream dams respectively. Lessons learned from this study may help provide a robust and practical means of water resources management in similar river basins and multi-reservoir systems.

  16. Reservoir Characterization using geostatistical and numerical modeling in GIS with noble gas geochemistry

    NASA Astrophysics Data System (ADS)

    Vasquez, D. A.; Swift, J. N.; Tan, S.; Darrah, T. H.

    2013-12-01

    The integration of precise geochemical analyses with quantitative engineering modeling into an interactive GIS system allows for a sophisticated and efficient method of reservoir engineering and characterization. Geographic Information Systems (GIS) is utilized as an advanced technique for oil field reservoir analysis by combining field engineering and geological/geochemical spatial datasets with the available systematic modeling and mapping methods to integrate the information into a spatially correlated first-hand approach in defining surface and subsurface characteristics. Three key methods of analysis include: 1) Geostatistical modeling to create a static and volumetric 3-dimensional representation of the geological body, 2) Numerical modeling to develop a dynamic and interactive 2-dimensional model of fluid flow across the reservoir and 3) Noble gas geochemistry to further define the physical conditions, components and history of the geologic system. Results thus far include using engineering algorithms for interpolating electrical well log properties across the field (spontaneous potential, resistivity) yielding a highly accurate and high-resolution 3D model of rock properties. Results so far also include using numerical finite difference methods (crank-nicholson) to solve for equations describing the distribution of pressure across field yielding a 2D simulation model of fluid flow across reservoir. Ongoing noble gas geochemistry results will also include determination of the source, thermal maturity and the extent/style of fluid migration (connectivity, continuity and directionality). Future work will include developing an inverse engineering algorithm to model for permeability, porosity and water saturation.This combination of new and efficient technological and analytical capabilities is geared to provide a better understanding of the field geology and hydrocarbon dynamics system with applications to determine the presence of hydrocarbon pay zones (or other reserves) and improve oil field management (e.g. perforating, drilling, EOR and reserves estimation)

  17. STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles McCormick; Roger Hester

    This sixth and final progress report for DOE Award Number DE-FC26-01BC15317 describes research during the period March 01, 2004 through August 31, 2004 performed at the University of Southern Mississippi on ''Stimuli Responsive Polymers with Enhanced Efficiency in Reservoir Recovery'' processes. Significantly, terpolymers that are responsive to changes in pH and ionic strength have been synthesized, characterized, and their solution properties have been extensively examined. Terpolymers composed of acrylamide, a carboxylated acrylamido monomer (AMBA), and a quaternary ammonium monomer (AMBATAC) with balanced compositions of the latter two, exhibit increases in aqueous solution viscosity as NaCl concentration is increased. This increasemore » in polymer coil size can be expected upon injection of this type of polymer into oil reservoirs of moderate-to-high salinity, leading to better mobility control. The opposite effect (loss of viscosity) is observed for conventional polymer systems. Additionally polymer mobility characteristics have been conducted for a number of hydrophilic copolymers utilizing an extensional flow apparatus and size exclusion chromatography. This study reveled that oil recovery enhancement through use of polymers in a water flood is due to the polymer's resistance to deformation as it flows through the reservoir. Individual polymers when in aqueous solution form coils. The larger the polymer's coil size, the greater the polymer's resistance to extensional flow and the more effective the polymer is in enhancing oil recovery. Large coil sizes are obtained by increasing the polymer molecular weight and having macromolecular structures that favor greater swelling of the coil by the aqueous solvent conditions (temperature, pH and electrolyte concentration) existing in the reservoir.« less

  18. Geothermal waste heat utilization from in situ thermal bitumen recovery operations.

    PubMed

    Nakevska, Nevenka; Schincariol, Robert A; Dehkordi, S Emad; Cheadle, Burns A

    2015-01-01

    In situ thermal methods for bitumen extraction introduce a tremendous amount of energy into the reservoirs raising ambient temperatures of 13 °C to as high as 200 °C at the steam chamber edge and 50 °C along the reservoir edge. In essence these operations have unintentionally acted as underground thermal energy storage systems which can be recovered after completion of bitumen extraction activities. Groundwater flow and heat transport models of the Cold Lake, Alberta, reservoir, coupled with a borehole heat exchanger (BHE) model, allowed for investigating the use of closed-loop geothermal systems for energy recovery. Three types of BHEs (single U-tube, double U-tube, coaxial) were tested and analyzed by comparing outlet temperatures and corresponding heat extraction rates. Initial one year continuous operation simulations show that the double U-tube configuration had the best performance producing an average temperature difference of 5.7 °C, and an average heat extraction of 41 W/m. Given the top of the reservoir is at a depth of 400 m, polyethylene piping provided for larger extraction gains over more thermally conductive steel piping. Thirty year operation simulations illustrate that allowing 6 month cyclic recovery periods only increases the loop temperature gain by a factor of 1.2 over continuous operation. Due to the wide spacing of existing boreholes and reservoir depth, only a small fraction of the energy is efficiently recovered. Drilling additional boreholes between existing wells would increase energy extraction. In areas with shallower bitumen deposits such as the Athabasca region, i.e. 65 to 115 m deep, BHE efficiencies should be larger. © 2014, National Ground Water Association.

  19. Improved recovery demonstration for Williston Basin carbonates. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sippel, M.A.

    The purpose of this project was to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, and methods for improved completion efficiency. The investigations and demonstrations were focussed on Red River and Ratcliffe reservoirs in the Williston Basin within portions of Montana, North Dakota and South Dakota. Both of these formations have been successfully explored with conventional 2-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) seismic was investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterizations were integrated with geological and engineering studies. The project tested lateral completion techniques, including high-pressure jetting lance technologymore » and short-radius lateral drilling to enhance completion efficiency. Lateral completions should improve economics for both primary and secondary oil where low permeability is a problem and higher-density drilling of vertical infill wells is limited by drilling cost. New vertical wells were drilled to test bypassed oil in ares that were identified by 3D seismic. These new wells are expected to recover as much or greater oil than was produced by nearby old wells. The project tested water injection through vertical and horizontal wells in reservoirs where application of waterflooding has been limited. A horizontal well was drilled for testing water injection. Injection rates were tested at three times that of a vertical well. This demonstration well shows that water injection with horizontal completions can improve injection rates for economic waterflooding. This report is divided into two sections, part 1 covers the Red River and part 2 covers the Ratcliffe. Each part summarizes integrated reservoir characterizations and outlines methods for targeting by-passed oil reserves in the respective formation and locality.« less

  20. Are the Columbia River Basalts, Columbia Plateau, Idaho, Oregon, and Washington, USA, a viable geothermal target? A preliminary analysis

    USGS Publications Warehouse

    Burns, Erick R.; Williams, Colin F.; Tolan, Terry; Kaven, Joern Ole

    2016-01-01

    The successful development of a geothermal electric power generation facility relies on (1) the identification of sufficiently high temperatures at an economically viable depth and (2) the existence of or potential to create and maintain a permeable zone (permeability >10-14 m2) of sufficient size to allow efficient long-term extraction of heat from the reservoir host rock. If both occur at depth under the Columbia Plateau, development of geothermal resources there has the potential to expand both the magnitude and spatial extent of geothermal energy production. However, a number of scientific and technical issues must be resolved in order to evaluate the likelihood that the Columbia River Basalts, or deeper geologic units under the Columbia Plateau, are viable geothermal targets.Recent research has demonstrated that heat flow beneath the Columbia Plateau Regional Aquifer System may be higher than previously measured in relatively shallow (<600 m depth) wells, indicating that sufficient temperatures for electricity generation occur at depths 5 km. The remaining consideration is evaluating the likelihood that naturally high permeability exists, or that it is possible to replicate the high average permeability (approximately 10-14 to 10-12 m2) characteristic of natural hydrothermal reservoirs. From a hydraulic perspective, Columbia River Basalts are typically divided into dense, impermeable flow interiors and interflow zones comprising the top of one flow, the bottom of the overlying flow, and any sedimentary interbed. Interflow zones are highly variable in texture but, at depths <600 m, some of them form highly permeable regional aquifers with connectivity over many tens of kilometers. Below depths of ~600 m, permeability reduction occurs in many interflow zones, caused by the formation of low-temperature hydrothermal alteration minerals (corresponding to temperatures above ~35 °C). However, some high permeability (>10-14 m2) interflows are documented at depths up to ~1,400 m. If the elevated permeability in these zones persists to greater depths, they may provide natural permeability of sufficient magnitude to allow their exploitation as conventional geothermal reservoirs. Alternatively, if the permeability in these interflow zones is less than 10-14 m2 at depth, it may be possible to use hydraulic and thermal stimulation to enhance the permeability of both the interflow zones and the natural jointing within the low-permeability interior portions of individual basalt flows in order to develop Enhanced/Engineered Geothermal System (EGS) reservoirs. The key challenge for an improved Columbia Plateau geothermal assessment is acquiring and interpreting comprehensive field data that can provide quantitative constraints on the recovery of heat from the Columbia River Basalts at depths greater than those currently tested by deep boreholes.

  1. A Parallel Stochastic Framework for Reservoir Characterization and History Matching

    DOE PAGES

    Thomas, Sunil G.; Klie, Hector M.; Rodriguez, Adolfo A.; ...

    2011-01-01

    The spatial distribution of parameters that characterize the subsurface is never known to any reasonable level of accuracy required to solve the governing PDEs of multiphase flow or species transport through porous media. This paper presents a numerically cheap, yet efficient, accurate and parallel framework to estimate reservoir parameters, for example, medium permeability, using sensor information from measurements of the solution variables such as phase pressures, phase concentrations, fluxes, and seismic and well log data. Numerical results are presented to demonstrate the method.

  2. Interactions between striped bass and other gamefish in reservoirs

    USGS Publications Warehouse

    Miranda, Leandro E.; Raborn, Scott W.

    2013-01-01

    Competitive interactions among reservoir fishes may be pronounced because fish assemblages in these artificial environments have had little time to develop niche-partitioning strategies that alleviate negative interspecific interactions. Such interactions may at times have been intensified by introductions of predators such as striped bass Morone saxatilis, introduced to create additional fisheries and control pelagic clupeids. Possible interactions between existing fish assemblages and striped bass include predation and competition. While there is a perception among angler groups that predation by striped bass on co-existing game fish is significant, most studies have reported little or no predation on game fish my striped bass and have considered predation rare and inconsequential. Moreover, predation that occurs will likely be compensatory and fail to reduce overall game fish survival. Any indirect effect of striped bass predation by restricting prey-sized game fish to limited refuge sites remains unknown. Exploitative competition may be more common. Although infrequently, introduced striped bass have depleted prey resources shared with other piscivores, particularly when stocking rates have been high, when there is a high rate of natural reproduction, or when prey supply has plunged in response to environmental fluxes. Fluctuation in prey supply, associated with ordinary environmental variability, and associated time lages in prey supply and predator demand, preclude adjusting predator densities to exactly balance demand with supply. The frequency of low supply-demand rations varies across systems and exhibits seasonal trends. Nevertheless, chronic supply-demand imbalances are manageable where the predator assemblage is at least partially controlled through stocking, harvest regulations, or both. Because of the poor state of knowledge concerning the parameters defining balance and because uncontrollable annual fluctuations preclude exact management of alternating prey levels, we suggest adjusting stocking to manage demand to that it equals the median historical prey supply. Simulating the removal of striped bass and predicting the aftermath may be the most cost-efficient way to provide decision support for stakeholders involved in determining if a striped bass stocking program is beneficial to most users.

  3. 75 FR 32538 - Sunshine Act Meeting Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... contract extension 4. Report of the Operations, Environment, and Safety Committee 5. Report of the Audit... Efficiency Committee A. EnerNOC capacity expansion agreement B. Northeastern tributary reservoirs Land...

  4. Characterization of the natural radioactivity of the first deep geothermal doublet in Flanders, Belgium.

    PubMed

    Vasile, M; Bruggeman, M; Van Meensel, S; Bos, S; Laenen, B

    2017-08-01

    Deep geothermal energy is a local energy resource that is based on the heat generated by the Earth. As the heat is continuously regenerated, geothermal exploitation can be considered as a renewable and, depending on the techniques used, a sustainable energy production system. In September 2015, the Flemish Institute for Technological Research (VITO) started drilling an exploration well targeting a hot water reservoir at a depth of about 3km on the Balmatt site near Mol. Geothermal hot water contains naturally occurring gases, chemicals and radionuclides at variable concentrations. The actual concentrations and potentially related hazards strongly depend on local geological and hydrogeological conditions. This paper summarizes the radiological characterization of several rock samples obtained from different depths during the drilling, the formation water, the salt and the sediment fraction. The results of our analyses show low values for the activity concentration for uranium and thorium in the formation water and in the precipitate/sediment fraction. Also, the activity concentrations of 210 Pb and 210 Po are low in these samples and the activity concentration of 226 Ra is dominant. From the analysis of the rock samples, it was found that the layer above the reservoir has a higher uranium and thorium concentration than the layer of the reservoir, which on the other hand contains more radium than the layer above it. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A remote sensing method for estimating regional reservoir area and evaporative loss

    DOE PAGES

    Zhang, Hua; Gorelick, Steven M.; Zimba, Paul V.; ...

    2017-10-07

    Evaporation from the water surface of a reservoir can significantly affect its function of ensuring the availability and temporal stability of water supply. Current estimations of reservoir evaporative loss are dependent on water area derived from a reservoir storage-area curve. Such curves are unavailable if the reservoir is located in a data-sparse region or questionable if long-term sedimentation has changed the original elevation-area relationship. In this paper, we propose a remote sensing framework to estimate reservoir evaporative loss at the regional scale. This framework uses a multispectral water index to extract reservoir area from Landsat imagery and estimate monthly evaporationmore » volume based on pan-derived evaporative rates. The optimal index threshold is determined based on local observations and extended to unobserved locations and periods. Built on the cloud computing capacity of the Google Earth Engine, this framework can efficiently analyze satellite images at large spatiotemporal scales, where such analysis is infeasible with a single computer. Our study involves 200 major reservoirs in Texas, captured in 17,811 Landsat images over a 32-year period. The results show that these reservoirs contribute to an annual evaporative loss of 8.0 billion cubic meters, equivalent to 20% of their total active storage or 53% of total annual water use in Texas. At five coastal basins, reservoir evaporative losses exceed the minimum freshwater inflows required to sustain ecosystem health and fishery productivity of the receiving estuaries. Reservoir evaporative loss can be significant enough to counterbalance the positive effects of impounding water and to offset the contribution of water conservation and reuse practices. Our results also reveal the spatially variable performance of the multispectral water index and indicate the limitation of using scene-level cloud cover to screen satellite images. Finally, this study demonstrates the advantage of combining satellite remote sensing and cloud computing to support regional water resources assessment.« less

  6. A remote sensing method for estimating regional reservoir area and evaporative loss

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Gorelick, Steven M.; Zimba, Paul V.; Zhang, Xiaodong

    2017-12-01

    Evaporation from the water surface of a reservoir can significantly affect its function of ensuring the availability and temporal stability of water supply. Current estimations of reservoir evaporative loss are dependent on water area derived from a reservoir storage-area curve. Such curves are unavailable if the reservoir is located in a data-sparse region or questionable if long-term sedimentation has changed the original elevation-area relationship. We propose a remote sensing framework to estimate reservoir evaporative loss at the regional scale. This framework uses a multispectral water index to extract reservoir area from Landsat imagery and estimate monthly evaporation volume based on pan-derived evaporative rates. The optimal index threshold is determined based on local observations and extended to unobserved locations and periods. Built on the cloud computing capacity of the Google Earth Engine, this framework can efficiently analyze satellite images at large spatiotemporal scales, where such analysis is infeasible with a single computer. Our study involves 200 major reservoirs in Texas, captured in 17,811 Landsat images over a 32-year period. The results show that these reservoirs contribute to an annual evaporative loss of 8.0 billion cubic meters, equivalent to 20% of their total active storage or 53% of total annual water use in Texas. At five coastal basins, reservoir evaporative losses exceed the minimum freshwater inflows required to sustain ecosystem health and fishery productivity of the receiving estuaries. Reservoir evaporative loss can be significant enough to counterbalance the positive effects of impounding water and to offset the contribution of water conservation and reuse practices. Our results also reveal the spatially variable performance of the multispectral water index and indicate the limitation of using scene-level cloud cover to screen satellite images. This study demonstrates the advantage of combining satellite remote sensing and cloud computing to support regional water resources assessment.

  7. A remote sensing method for estimating regional reservoir area and evaporative loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hua; Gorelick, Steven M.; Zimba, Paul V.

    Evaporation from the water surface of a reservoir can significantly affect its function of ensuring the availability and temporal stability of water supply. Current estimations of reservoir evaporative loss are dependent on water area derived from a reservoir storage-area curve. Such curves are unavailable if the reservoir is located in a data-sparse region or questionable if long-term sedimentation has changed the original elevation-area relationship. In this paper, we propose a remote sensing framework to estimate reservoir evaporative loss at the regional scale. This framework uses a multispectral water index to extract reservoir area from Landsat imagery and estimate monthly evaporationmore » volume based on pan-derived evaporative rates. The optimal index threshold is determined based on local observations and extended to unobserved locations and periods. Built on the cloud computing capacity of the Google Earth Engine, this framework can efficiently analyze satellite images at large spatiotemporal scales, where such analysis is infeasible with a single computer. Our study involves 200 major reservoirs in Texas, captured in 17,811 Landsat images over a 32-year period. The results show that these reservoirs contribute to an annual evaporative loss of 8.0 billion cubic meters, equivalent to 20% of their total active storage or 53% of total annual water use in Texas. At five coastal basins, reservoir evaporative losses exceed the minimum freshwater inflows required to sustain ecosystem health and fishery productivity of the receiving estuaries. Reservoir evaporative loss can be significant enough to counterbalance the positive effects of impounding water and to offset the contribution of water conservation and reuse practices. Our results also reveal the spatially variable performance of the multispectral water index and indicate the limitation of using scene-level cloud cover to screen satellite images. Finally, this study demonstrates the advantage of combining satellite remote sensing and cloud computing to support regional water resources assessment.« less

  8. Bathymetric surveys of Morse and Geist Reservoirs in central Indiana made with acoustic Doppler current profiler and global positioning system technology, 1996

    USGS Publications Warehouse

    Wilson, J.T.; Morlock, S.E.; Baker, N.T.

    1997-01-01

    Acoustic Doppler current profiler, global positioning system, and geographic information system technology were used to map the bathymetry of Morse and Geist Reservoirs, two artificial lakes used for public water supply in central Indiana. The project was a pilot study to evaluate the use of the technologies for bathymetric surveys. Bathymetric surveys were last conducted in 1978 on Morse Reservoir and in 1980 on Geist Reservoir; those surveys were done with conventional methods using networks of fathometer transects. The 1996 bathymetric surveys produced updated estimates of reservoir volumes that will serve as base-line data for future estimates of storage capacity and sedimentation rates.An acoustic Doppler current profiler and global positioning system receiver were used to collect water-depth and position data from April 1996 through October 1996. All water-depth and position data were imported to a geographic information system to create a data base. The geographic information system then was used to generate water-depth contour maps and to compute the volumes for each reservoir.The computed volume of Morse Reservoir was 22,820 acre-feet (7.44 billion gallons), with a surface area of 1,484 acres. The computed volume of Geist Reservoir was 19,280 acre-feet (6.29 billion gallons), with a surface area of 1,848 acres. The computed 1996 reservoir volumes are less than the design volumes and indicate that sedimentation has occurred in both reservoirs. Cross sections were constructed from the computer-generated surfaces for 1996 and compared to the fathometer profiles from the 1978 and 1980 surveys; analysis of these cross sections also indicates that some sedimentation has occurred in both reservoirs.The acoustic Doppler current profiler, global positioning system, and geographic information system technologies described in this report produced bathymetric maps and volume estimates more efficiently and with comparable or greater resolution than conventional bathymetry methods.

  9. Carnot efficiency at divergent power output

    NASA Astrophysics Data System (ADS)

    Polettini, Matteo; Esposito, Massimiliano

    2017-05-01

    The widely debated feasibility of thermodynamic machines achieving Carnot efficiency at finite power has been convincingly dismissed. Yet, the common wisdom that efficiency can only be optimal in the limit of infinitely slow processes overlooks the dual scenario of infinitely fast processes. We corroborate that efficient engines at divergent power output are not theoretically impossible, framing our claims within the theory of Stochastic Thermodynamics. We inspect the case of an electronic quantum dot coupled to three particle reservoirs to illustrate the physical rationale.

  10. Sediment deposition in the White River Reservoir, northwestern Wisconsin

    USGS Publications Warehouse

    Batten, W.G.; Hindall, S.M.

    1980-01-01

    The history of deposition in the White River Reservoir was reconstructed from a study of sediment in the reservoir. Suspended-sediment concentrations, particle size, and streamflow characteristics were measured at gaging stations upstream and downstream from the reservoir from November 1975 through September 1977. Characteristics of the sediments were determined from borings and samples taken while the reservoir was drained in September 1976. The sediment surface and the pre-reservoir topography were mapped. Sediment thickness ranged from less than 1 foot near the shore to more than 20 feet in the old stream channel. The original reservoir capacity and the volume of deposited sediment were calculated to be 815 acre-feet and 487 acre-feet, respectively. Sediment size ranged from clay and silt in the pool area to large cobbles and boulders at the upstream end of the reservoir. Analyses of all samples averaged 43 percent sand, 40 percent silt, and 17 percent clay, and particle size typically increased upstream. Cobbles, boulders, and gravel deposits were not sampled. The average density of the deposited sediment was about 80 pounds per cubic foot for the entire reservoir. The reservoir was able to trap about 80 percent of the sediment entering from upstream, early in its history. This trap efficiency has declined as the reservoir filled with sediment. Today (1976), it traps only sand and silt-sized sediment, or only about 20 percent of the sediment entering from upstream. Data collected during this study indicate that essentially all of the clay-sized sediment (<0.062 mm) passes through the reservoir. The gross rate of deposition was 7.0 acre-feet per year over the reservoir history, 1907-76. Rates during 1907-63 and 1963-76 were 7.4 and 5.7 acre-feet per year, respectively, determined by the cesium-137 method. Based on scant data, the average annual sediment yield of the total 279 square mile drainage area above the gaging station at the powerhouse was about 50 tons per square mile. Analysis of the drainage-basin characteristics indicates that most of this sediment was derived from less than 10 percent of the total drainage area and from steep unvegetated streambanks.

  11. Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries

    PubMed Central

    Zuloaga-Molero, Pavel; Yu, Wei; Xu, Yifei; Sepehrnoori, Kamy; Li, Baozhen

    2016-01-01

    The recent development of tight oil reservoirs has led to an increase in oil production in the past several years due to the progress in horizontal drilling and hydraulic fracturing. However, the expected oil recovery factor from these reservoirs is still very low. CO2-based enhanced oil recovery is a suitable solution to improve the recovery. One challenge of the estimation of the recovery is to properly model complex hydraulic fracture geometries which are often assumed to be planar due to the limitation of local grid refinement approach. More flexible methods like the use of unstructured grids can significantly increase the computational demand. In this study, we introduce an efficient methodology of the embedded discrete fracture model to explicitly model complex fracture geometries. We build a compositional reservoir model to investigate the effects of complex fracture geometries on performance of CO2 Huff-n-Puff and CO2 continuous injection. The results confirm that the appropriate modelling of the fracture geometry plays a critical role in the estimation of the incremental oil recovery. This study also provides new insights into the understanding of the impacts of CO2 molecular diffusion, reservoir permeability, and natural fractures on the performance of CO2-EOR processes in tight oil reservoirs. PMID:27628131

  12. Stochastic optimal operation of reservoirs based on copula functions

    NASA Astrophysics Data System (ADS)

    Lei, Xiao-hui; Tan, Qiao-feng; Wang, Xu; Wang, Hao; Wen, Xin; Wang, Chao; Zhang, Jing-wen

    2018-02-01

    Stochastic dynamic programming (SDP) has been widely used to derive operating policies for reservoirs considering streamflow uncertainties. In SDP, there is a need to calculate the transition probability matrix more accurately and efficiently in order to improve the economic benefit of reservoir operation. In this study, we proposed a stochastic optimization model for hydropower generation reservoirs, in which 1) the transition probability matrix was calculated based on copula functions; and 2) the value function of the last period was calculated by stepwise iteration. Firstly, the marginal distribution of stochastic inflow in each period was built and the joint distributions of adjacent periods were obtained using the three members of the Archimedean copulas, based on which the conditional probability formula was derived. Then, the value in the last period was calculated by a simple recursive equation with the proposed stepwise iteration method and the value function was fitted with a linear regression model. These improvements were incorporated into the classic SDP and applied to the case study in Ertan reservoir, China. The results show that the transition probability matrix can be more easily and accurately obtained by the proposed copula function based method than conventional methods based on the observed or synthetic streamflow series, and the reservoir operation benefit can also be increased.

  13. Intelligent control for modeling of real-time reservoir operation, part II: artificial neural network with operating rule curves

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Ting; Chang, Li-Chiu; Chang, Fi-John

    2005-04-01

    To bridge the gap between academic research and actual operation, we propose an intelligent control system for reservoir operation. The methodology includes two major processes, the knowledge acquired and implemented, and the inference system. In this study, a genetic algorithm (GA) and a fuzzy rule base (FRB) are used to extract knowledge based on the historical inflow data with a design objective function and on the operating rule curves respectively. The adaptive network-based fuzzy inference system (ANFIS) is then used to implement the knowledge, to create the fuzzy inference system, and then to estimate the optimal reservoir operation. To investigate its applicability and practicability, the Shihmen reservoir, Taiwan, is used as a case study. For the purpose of comparison, a simulation of the currently used M-5 operating rule curve is also performed. The results demonstrate that (1) the GA is an efficient way to search the optimal input-output patterns, (2) the FRB can extract the knowledge from the operating rule curves, and (3) the ANFIS models built on different types of knowledge can produce much better performance than the traditional M-5 curves in real-time reservoir operation. Moreover, we show that the model can be more intelligent for reservoir operation if more information (or knowledge) is involved.

  14. Architecture Controls on Reservoir Performance of Zubair Formation, Rumaila and West Qurna Oilfields in the Southern Iraq

    NASA Astrophysics Data System (ADS)

    Al-Ziayyir, Haitham; Hodgetts, David

    2015-04-01

    The main reservoir in Rumaila /West Qurna oilfields is the Zubair Formation of Hautervian and Barremian age. This silicilastic formation extends over the regions of central and southern Iraq. This study attempts to improve the understanding of the architectural elements and their control on fluid flow paths within the Zubair Formation. A significant source of uncertainty in the zubair formation is the control on hydrodynamic pressure distribution. The reasons for pressure variation in the Zubair are not well understood. This work aims to reduce this uncertainty by providing a more detailed knowledge of reservoir architecture, distribution of barriers and baffles, and reservoir compartmentalization. To characterize the stratigraphic architecture of the Zubair formation,high resolution reservoir models that incorporate dynamic and static data were built. Facies modelling is accomplished by means of stochastic modelling techniques.The work is based on a large data set collected from the Rumaila oilfields. These data, comprising conventional logs of varying vintages, NMR logs, cores from six wells, and pressure data, were used for performing geological and petrophysical analyses.Flow simulation studies have also been applied to examine the impact of architecture on recovery. Understanding of geology and reservoir performance can be greatly improved by using an efficient, quick and viable integrated analysis, interpretation, and modelling.

  15. Using hierarchical Bayesian multi-species mixture models to estimate tandem hoop-net based habitat associations and detection probabilities of fishes in reservoirs

    USGS Publications Warehouse

    Stewart, David R.; Long, James M.

    2015-01-01

    Species distribution models are useful tools to evaluate habitat relationships of fishes. We used hierarchical Bayesian multispecies mixture models to evaluate the relationships of both detection and abundance with habitat of reservoir fishes caught using tandem hoop nets. A total of 7,212 fish from 12 species were captured, and the majority of the catch was composed of Channel Catfish Ictalurus punctatus (46%), Bluegill Lepomis macrochirus(25%), and White Crappie Pomoxis annularis (14%). Detection estimates ranged from 8% to 69%, and modeling results suggested that fishes were primarily influenced by reservoir size and context, water clarity and temperature, and land-use types. Species were differentially abundant within and among habitat types, and some fishes were found to be more abundant in turbid, less impacted (e.g., by urbanization and agriculture) reservoirs with longer shoreline lengths; whereas, other species were found more often in clear, nutrient-rich impoundments that had generally shorter shoreline length and were surrounded by a higher percentage of agricultural land. Our results demonstrated that habitat and reservoir characteristics may differentially benefit species and assemblage structure. This study provides a useful framework for evaluating capture efficiency for not only hoop nets but other gear types used to sample fishes in reservoirs.

  16. [Structure and function of Fenshuijiang Reservoir ecosystem based on the analysis with Ecopath model].

    PubMed

    Wu, Zhen; Jia, Pei-Qiao; Hu, Zhong-Jun; Chen, Li-Qiao; Gu, Zhi-Min; Liu, Qi-Gen

    2012-03-01

    Based on the 2008-2009 survey data of fishery resources and eco-environment of Fenshuijiang Reservoir, a mass balance model for the Reservoir ecosystem was constructed by Ecopath with Ecosim software. The model was composed of 14 functional groups, including silver carp, bighead carp, Hemibarbus maculates, Cutler alburnus, Microlepis and other fishes, Oligochaeta, aquatic insect, zooplankton, phytoplankton, and organic detritus, etc. , being able to better simulate Fenshuijiang Reservoir ecosystem. In this ecosystem, there were five trophic levels (TLs), and the nutrient flow mainly occurred in the first three TLs. Grazing and detritus food chains were the main energy flows in the ecosystem, but the food web was simpler and susceptible to be disturbed by outer environment. The transfer efficiency at lower TLs was relatively low, indicating that the ecosystem had a lower capability in energy utilization, and the excessive stock of nutrients in the ecosystem could lead to eutrophication. The lower connectance index, system omnivory index, Finn' s cycled index, and Finn's mean path length demonstrated that the ecosystem was unstable, while the high ecosystem property indices such as Pp/R and Pp/B showed that the ecosystem was immature and highly productive. It was suggested that Fenshuijiang Reservoir was still a developing new reservoir ecosystem, with a very short history and comparatively high primary productivity.

  17. Application of Discrete Fracture Modeling and Upscaling Techniques to Complex Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Karimi-Fard, M.; Lapene, A.; Pauget, L.

    2012-12-01

    During the last decade, an important effort has been made to improve data acquisition (seismic and borehole imaging) and workflow for reservoir characterization which has greatly benefited the description of fractured reservoirs. However, the geological models resulting from the interpretations need to be validated or calibrated against dynamic data. Flow modeling in fractured reservoirs remains a challenge due to the difficulty of representing mass transfers at different heterogeneity scales. The majority of the existing approaches are based on dual continuum representation where the fracture network and the matrix are represented separately and their interactions are modeled using transfer functions. These models are usually based on idealized representation of the fracture distribution which makes the integration of real data difficult. In recent years, due to increases in computer power, discrete fracture modeling techniques (DFM) are becoming popular. In these techniques the fractures are represented explicitly allowing the direct use of data. In this work we consider the DFM technique developed by Karimi-Fard et al. [1] which is based on an unstructured finite-volume discretization. The mass flux between two adjacent control-volumes is evaluated using an optimized two-point flux approximation. The result of the discretization is a list of control-volumes with the associated pore-volumes and positions, and a list of connections with the associated transmissibilities. Fracture intersections are simplified using a connectivity transformation which contributes considerably to the efficiency of the methodology. In addition, the method is designed for general purpose simulators and any connectivity based simulator can be used for flow simulations. The DFM technique is either used standalone or as part of an upscaling technique. The upscaling techniques are required for large reservoirs where the explicit representation of all fractures and faults is not possible. Karimi-Fard et al. [2] have developed an upscaling technique based on DFM representation. The original version of this technique was developed to construct a dual-porosity model from a discrete fracture description. This technique has been extended and generalized so it can be applied to a wide range of problems from reservoirs with a few or no fracture to highly fractured reservoirs. In this work, we present the application of these techniques to two three-dimensional fractured reservoirs constructed using real data. The first model contains more than 600 medium and large scale fractures. The fractures are not always connected which requires a general modeling technique. The reservoir has 50 wells (injectors and producers) and water flooding simulations are performed. The second test case is a larger reservoir with sparsely distributed faults. Single-phase simulations are performed with 5 producing wells. [1] Karimi-Fard M., Durlofsky L.J., and Aziz K. 2004. An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE Journal, 9(2): 227-236. [2] Karimi-Fard M., Gong B., and Durlofsky L.J. 2006. Generation of coarse-scale continuum flow models from detailed fracture characterizations. Water Resources Research, 42(10): W10423.

  18. Multi-objective evolutionary optimization for the joint operation of reservoirs of water supply under water-food-energy nexus management

    NASA Astrophysics Data System (ADS)

    Uen, T. S.; Tsai, W. P.; Chang, F. J.; Huang, A.

    2016-12-01

    In recent years, urbanization had a great effect on the growth of population and the resource management scheme of water, food and energy nexus (WFE nexus) in Taiwan. Resource shortages of WFE become a long-term and thorny issue due to the complex interactions of WFE nexus. In consideration of rapid socio-economic development, it is imperative to explore an efficient and practical approach for WFE resources management. This study aims to search the optimal solution to WFE nexus and construct a stable water supply system for multiple stakeholders. The Shimen Reservoir and Feitsui Reservoir in northern Taiwan are chosen to conduct the joint operation of the two reservoirs for water supply. This study intends to achieve water resource allocation from the two reservoirs subject to different operating rules and restrictions of resource allocation. The multi-objectives of the joint operation aim at maximizing hydro-power synergistic gains while minimizing water supply deficiency as well as food shortages. We propose to build a multi-objective evolutionary optimization model for analyzing the hydro-power synergistic gains to suggest the most favorable solutions in terms of tradeoffs between WFE. First, this study collected data from two reservoirs and Taiwan power company. Next, we built a WFE nexus model based on system dynamics. Finally, this study optimized the joint operation of the two reservoirs and calculated the synergy of hydro-power generation. The proposed methodology can tackle the complex joint reservoir operation problems. Results can suggest a reliable policy for joint reservoir operation for creating a green economic city under the lowest risks of water supply.

  19. Comparative evaluation of light-trap catches, electric motor mosquito catches and human biting catches of Anopheles in the Three Gorges Reservoir.

    PubMed

    Duo-quan, Wang; Lin-hua, Tang; Zhen-cheng, Gu; Xiang, Zheng; Man-ni, Yang; Wei-kang, Jiang

    2012-01-01

    The mosquito sampling efficiency of light-trap catches and electric motor mosquito catches were compared with that of human biting catches in the Three Gorges Reservoir. There was consistency in the sampling efficiency between light-trap catches and human biting catches for Anopheles sinensis (r = 0.82, P<0.01) and light-trap catches were 1.52 (1.35-1.71) times that of human biting catches regardless of mosquito density (r = 0.33, P>0.01), while the correlation between electric motor mosquito catches and human biting catches was found to be not statistically significant (r = 0.43, P>0.01) and its sampling efficiency was below that of human biting catches. It is concluded that light-traps can be used as an alternative to human biting catches of Anopheles sinensis in the study area and is a promising tool for sampling malaria vector populations.

  20. Comparative Evaluation of Light-Trap Catches, Electric Motor Mosquito Catches and Human Biting Catches of Anopheles in the Three Gorges Reservoir

    PubMed Central

    Duo-quan, Wang; Lin-hua, Tang; Zhen-cheng, Gu; Xiang, Zheng; Man-ni, Yang; Wei-kang, Jiang

    2012-01-01

    The mosquito sampling efficiency of light-trap catches and electric motor mosquito catches were compared with that of human biting catches in the Three Gorges Reservoir. There was consistency in the sampling efficiency between light-trap catches and human biting catches for Anopheles sinensis (r = 0.82, P<0.01) and light-trap catches were 1.52 (1.35–1.71) times that of human biting catches regardless of mosquito density (r = 0.33, P>0.01), while the correlation between electric motor mosquito catches and human biting catches was found to be not statistically significant (r = 0.43, P>0.01) and its sampling efficiency was below that of human biting catches. It is concluded that light-traps can be used as an alternative to human biting catches of Anopheles sinensis in the study area and is a promising tool for sampling malaria vector populations. PMID:22235256

  1. The Dora-Maira Unit (Italian Cottian Alps): a reservoir of ornamental stones locally and worldwide employed since Roman age

    NASA Astrophysics Data System (ADS)

    Borghi, Alessandro; Cadoppi, Paola; Antonella Dino, Giovanna

    2015-04-01

    The Dora-Maira is a geological unit belonging to the Penninic Domain of the Western Alps (NW Italy), which covers over 1000 km2 from the Susa to the Maira valleys, in the inner part of the Cottian Alps. It consists of different superposed complexes made of micaschists, fine-grained gneisses, quartzites, impure and dolomitic marbles, metabasites and various types of orthogneisses deriving from metamorphic transformation, during alpine orogeny, of a Palaeozoic upper continental crust and its Mesozoic carbonate cover. Thanks to the presence of different varieties of rocks, the Dora-Maira Unit can be considered as a reservoir of ornamental stones, locally employed, since Roman age, for military and religious buildings. Furthermore, these materials were used in Piedmont region for the construction of important historical palaces (17th and 18th centuries). Several varieties of gneisses, quartzites and marbles, exploited in the past and up to now, come from the Paleozoic basement. The most famous variety of gneiss is the so called "Luserna stone", a leucocratic gneiss characterized by a mylonitic fabric deriving from highly differentiated granitoids of Permian age. The first traces of Luserna Stone exploitation arise to the medieval age in the Pellice Valley). This material was widely employed in Turin, from Savoia kingdom period up to know. The very peculiar and precious application of Luserna stone were: Royal Palace and Venaria Reale Palace, Mole Antonelliana. Recently, it has been employed for the construction of Turin Metro stations (launched in 2006). Other varieties of orthogneisses, not yet exploited, are: Borgone and Vaie Stones, Villarfocchiardo and Cumiana Stones. They were used for the realization of the columns characterising the façade of several churches in Turin and in the piers of different bridges over the Po River. Another gneiss variety, with dioritic composition, is the Malanaggio Stone employed in the Fenestrelle Fortress. As for the palaeozoic marbles, the so called "Rocca Bianca marble" have to be quoted. It has been extensively exploited from the 17th century up to 2003, in two different quarries at an altitude of ca. 2000 m a.s.l. in the Germanasca Valley and the Varaita Valley (Brossasco Marble variety). As regards to Mesozoic carbonate cover, the Foresto and Chianocco white dolomitic marbles have to be cited. They were exploited in the lower Susa Valley and were employed since Roman age (eg. for the construction of the Arch of Augustus at Susa, dating to 9 BC). They were also used during the Renaissance for the façade of the Turin Cathedral. Finally, it must be highlighted the Bargiolina quartzite variety belonging to the Palaeozoic basement: it was known from XVI century (Leonardo Da Vinci wrote about the beauty and the high quality of this material), and was widely employed for historical baroque buildings (palaces and churches). The high number of exploited ornamental and building stones, used over the centuries in local and worldwide historical buildings and infrastructures, allow to think the Dora-Maira Unit as a source of Global Heritage Stones and therefore it could be considered as a Global Heritage Stone Province.

  2. Structural control on geothermal circulation in the Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Argentina)

    NASA Astrophysics Data System (ADS)

    Giordano, Guido; Pinton, Annamaria; Cianfarra, Paola; Baez, Walter; Chiodi, Agostina; Viramonte, José; Norini, Gianluca; Groppelli, Gianluca

    2013-01-01

    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous springs. This study presents new stratigraphic and hydrogeological data on the geothermal field, together with the analysis from remote sensed image analysis of morphostructural evidences associated with the structural framework and active tectonics. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field. Away from the main tectonic features, such as at the Cerro Tuzgle field, the less developed network of faults and fractures allows only a moderate upwelling of geothermal fluids and a mixing between hot and shallow cold waters. The integration of field-based and remote-sensing analyses at the Cerro Tuzgle-Tocomar area proved to be effective in approaching the prospection of remote geothermal fields, and in defining the conceptual model for geothermal circulation.

  3. Growth, mortality and reproduction of the blue tilapia Oreochromis aureus (Perciformes: Cichlidae) in the Aguamilpa Reservoir, Mexico.

    PubMed

    Peña Messina, Emilio; Tapia Varela, Raul; Velázquez Abunader, José Iván; Orbe Mendoza, Alma Araceli; Velazco Arce, Javier Marcial de Jesús Ruiz

    2010-12-01

    Tilapia production has increased in Aguamilpa Reservoir, in Nayarit, Mexico, in the last few years and represents a good economic activity for rural communities and the country. We determined growth parameters, mortality and reproductive aspects for 2413 specimens of blue tilapia Oreochromis aureus in this reservoir. Samples were taken monthly from July 2000 through June 2001, of which 1 371 were males and 1 042 were females. Standard length (SL) and total weight (TW) were measured in each organism. The SL/TW relationships through power models for sexes were determined. The growth parameters L infinity k, and t0 of the von Bertalanffy equation were estimated using frequency distribution of length through ELEFAN-I computer program. Finally the reproductive cycle and size of first maturity were established using morph chromatic maturity scale. The results suggested that the males and females had negative allometric growth (b < 3). Significant differences were found between SL/TW model for the sexes, suggesting separate models for males and females. Results indicate that there are no differences in growth rates between sexes; the proposed parameters were L infinity = 43.33 cm standard length, k = 0.36/year and t0 = -0.43 years. Natural and fishing mortality coefficients were 0.83/year and 1.10/year, respectively. The estimated exploitation rate (0.57/year) suggested that during the study period the fishery showed signs of overfishing. Blue tilapia reproduces year-round; the highest activity occurs from January through May and size of first maturity was 23 cm SL. We conclude that it is necessary to establish a minimum catch size in this reservoir based on the reproductive behavior of this species.

  4. Fate and forms of Cu in a reservoir ecosystem following copper sulfate treatment (Saint Germain les Belles, France)

    NASA Astrophysics Data System (ADS)

    van Hullebusch, E.; Chatenet, P.; Deluchat, V.; Chazal, P. M.; Froissard, D.; Lens, P. N. L.; Baudu, M.

    2003-05-01

    Copper sulfate (CuSO4) addition to freshwater for phytoplankton control has been practiced for decades, and remains the most effective algicidal treatment for numerous managed water bodies. A reservoir in the centre of France was the site for an investigation of copper distribution in aquatic systems after a copper sulfate treatment Results of copper monitoring showed a rapid conversion of dissolved Cu to particulate forms, with significant accumulation in the sediments/83% of total copper added). Total sediment Cu content increasedfrom approximately 37.7 to 45.4 μg.g^{-1} dry weight after the first treatment. Sequential extraction suggested that a significanl portion of the sediment-borne Cu was associated with the organic fraction which may release Cu to the water column, although significant release would occur only under extreme changes in water chemistry. Based upon measured Cu concentrations, flows at the down-stream water, and known mass applied during treatment, mass balance calculations indicated that approximately 17% of the Cu was exported from the reservoir over a 70 day period following a 196 μg.L^{-l} Cu^{2+} (as CuSO4, 5 H2O) treatment. The largest amount of copper was probably adsorbed on downstream sediment or lost in running water, Copper bioaccumulation by a moss, Fontinalis antipyretica, in the down-stream water showed that it was possible to distinguish between a treated and an untreated area. The impact of copper treatment in the down-stream reservoir could be followed using mosses. The bioaccumulation data further showed that there is a distance effect which could be exploited to determine potential copper impact on receiving water bodies. Thirty days after copper sulfate addition, Fontinalis still indicated copper exposure.

  5. Improved efficiency of plant regeneration from protoplasts of eggplant Solanum melongena L.

    PubMed

    Guri, A; Izhar, S

    1984-12-01

    Eggplant (Solanum melongena L.) mesophyll protoplasts were obtained from in vitro growing plants of line 410 and cv. 'Classic'. Relatively high (15%) plating efficiency was achieved using petri dishes with alternate quadrants containing reservoir medium (R medium + 1% activated charcoal) and culture medium. Shoot regeneration occurred within 6 weeks following initiation of protoplast culture.

  6. Geothermal energy from deep sedimentary basins: The Valley of Mexico (Central Mexico)

    NASA Astrophysics Data System (ADS)

    Lenhardt, Nils; Götz, Annette E.

    2015-04-01

    The geothermal potential of the Valley of Mexico has not been addressed in the past, although volcaniclastic settings in other parts of the world contain promising target reservoir formations. A first assessment of the geothermal potential of the Valley of Mexico is based on thermophysical data gained from outcrop analogues, covering all lithofacies types, and evaluation of groundwater temperature and heat flow values from literature. Furthermore, the volumetric approach of Muffler and Cataldi (1978) leads to a first estimation of ca. 4000 TWh (14.4 EJ) of power generation from Neogene volcanic rocks within the Valley of Mexico. Comparison with data from other sedimentary basins where deep geothermal reservoirs are identified shows the high potential of the Valley of Mexico for future geothermal reservoir utilization. The mainly low permeable lithotypes may be operated as stimulated systems, depending on the fracture porosity in the deeper subsurface. In some areas also auto-convective thermal water circulation might be expected and direct heat use without artificial stimulation becomes reasonable. Thermophysical properties of tuffs and siliciclastic rocks qualify them as promising target horizons (Lenhardt and Götz, 2015). The here presented data serve to identify exploration areas and are valuable attributes for reservoir modelling, contributing to (1) a reliable reservoir prognosis, (2) the decision of potential reservoir stimulation, and (3) the planning of long-term efficient reservoir utilization. References Lenhardt, N., Götz, A.E., 2015. Geothermal reservoir potential of volcaniclastic settings: The Valley of Mexico, Central Mexico. Renewable Energy. [in press] Muffler, P., Cataldi, R., 1978. Methods for regional assessment of geothermal resources. Geothermics, 7, 53-89.

  7. Exploiting Fast Exciton Diffusion in Dye-Doped Polymer Nanoparticles to Engineer Efficient Photoswitching.

    PubMed

    Trofymchuk, Kateryna; Prodi, Luca; Reisch, Andreas; Mély, Yves; Altenhöner, Kai; Mattay, Jochen; Klymchenko, Andrey S

    2015-06-18

    Photoswitching of bright fluorescent nanoparticles opens new possibilities for bioimaging with superior temporal and spatial resolution. However, efficient photoswitching of nanoparticles is hard to achieve using Förster resonance energy transfer (FRET) to a photochromic dye, because the particle size is usually larger than the Förster radius. Here, we propose to exploit the exciton diffusion within the FRET donor dyes to boost photoswitching efficiency in dye-doped polymer nanoparticles. To this end, we utilized bulky hydrophobic counterions that prevent self-quenching and favor communication of octadecyl rhodamine B dyes inside a polymer matrix of poly(D,L-lactide-co-glycolide). Among tested counterions, only perfluorinated tetraphenylborate that favors the exciton diffusion enables high photoswitching efficiency (on/off ratio ∼20). The switching improves with donor dye loading and requires only 0.1-0.3 wt % of a diphenylethene photochromic dye. Our nanoparticles were validated both in solution and at the single-particle level. The proposed concept paves the way to new efficient photoswitchable nanomaterials.

  8. Outcrop analogue study of Permocarboniferous geothermal sandstone reservoir formations (northern Upper Rhine Graben, Germany): impact of mineral content, depositional environment and diagenesis on petrophysical properties

    NASA Astrophysics Data System (ADS)

    Aretz, Achim; Bär, Kristian; Götz, Annette E.; Sass, Ingo

    2016-07-01

    The Permocarboniferous siliciclastic formations represent the largest hydrothermal reservoir in the northern Upper Rhine Graben in SW Germany and have so far been investigated in large-scale studies only. The Cenozoic Upper Rhine Graben crosses the Permocarboniferous Saar-Nahe Basin, a Variscan intramontane molasse basin. Due to the subsidence in this graben structure, the top of the up to 2-km-thick Permocarboniferous is located at a depth of 600-2900 m and is overlain by Tertiary and Quaternary sediments. At this depth, the reservoir temperatures exceed 150 °C, which are sufficient for geothermal electricity generation with binary power plants. To further assess the potential of this geothermal reservoir, detailed information on thermophysical and hydraulic properties of the different lithostratigraphical units and their depositional environment is essential. Here, we present an integrated study of outcrop analogues and drill core material. In total, 850 outcrop samples were analyzed, measuring porosity, permeability, thermal conductivity and thermal diffusivity. Furthermore, 62 plugs were taken from drillings that encountered or intersected the Permocarboniferous at depths between 1800 and 2900 m. Petrographic analysis of 155 thin sections of outcrop samples and samples taken from reservoir depth was conducted to quantify the mineral composition, sorting and rounding of grains and the kind of cementation. Its influence on porosity, permeability, the degree of compaction and illitization was quantified. Three parameters influencing the reservoir properties of the Permocarboniferous were detected. The strongest and most destructive influence on reservoir quality is related to late diagenetic processes. An illitic and kaolinitic cementation and impregnation of bitumina document CO2- and CH4-rich acidic pore water conditions, which are interpreted as fluids that migrated along a hydraulic contact from an underlying Carboniferous hydrocarbon source rock. Migrating oil and acidic waters led to the dissolution of haematite cements in the lower Permocarboniferous formations. During the Eocene, subsidence of the Upper Rhine Graben porosities and permeabilities of the sandstones of these formations were strongly reduced to 2.5 % and 3.2 × 10-18 m2. The second important influence on reservoir quality is the distinct depositional environment and its influence on early diagenetic processes. In early stage diagenesis, the best influence on reservoir properties exhibits a haematite cementation. It typically occurs in eolian sandstones of the Kreuznach Formation (Upper Permocarboniferous) and is characterized by grain covering haematite coatings, which are interpreted to inhibit cementation, compaction and illitization of pore space during burial. Eolian sandstones taken from outcrops and reservoir depths exhibit the highest porosities (16.4; 12.3 %) and permeabilities (2.0 × 10-15; 8.4 × 10-16 m2). A third important influence on reservoir quality is the general mineral composition and the quartz content which is the highest in the Kreuznach Formation with 73.8 %. Based on the integrated study of depositional environments and diagenetic processes, reservoir properties of the different Permocarboniferous formations within the northern Upper Rhine Graben and their changes with burial depth can be predicted with satisfactory accuracy. This leads to a better understanding of the reservoir quality and enables an appropriate well design for exploration and exploitation of these geothermal resources.

  9. Induced seismicity in EGS reservoir : analysis of persistent multiplets at Soultz-sous-Forêts, France

    NASA Astrophysics Data System (ADS)

    Cauchie, Léna; Lengliné, Olivier; Schmittbuhl, Jean

    2017-04-01

    Abundant seismicity is generally observed during the exploitation of geothermal reservoirs, especially during phases of hydraulic stimulations. At the Enhanced Geothermal System of Soultz-Sous-Forêts in France, the induced seismicity has been thoroughly studied over the years of exploitation and the mechanism at its origin has been related to both fluid pressure increase during stimulation and aseismic creeping movements. The fluid-induced seismic events often exhibit a high degree of similarity and the mechanism at the origin of these repeated events is thought to be associated with slow slip process where asperities on the rupture zone act several times. In order to improve our knowledge on the mechanisms associated with such events and on the damaged zones involved during the hydraulic stimulations, we investigate the behaviour of the multiplets and their persistent nature, if it prevails, over several water injection intervals. For this purpose, we analysed large datasets recorded from a downhole seismic network for several water injection periods (1993, 2000, …). For each stimulation interval, thousands of events are recorded at depth. We detected the events using the continuous kurtosis-based migration method and classified them into families of comparable waveforms using an approach based on cross-correlation analysis. We obtain precise relative locations of the multiplets using differential arrival times obtained through cross-correlation of similar waveforms. Finally, the properties of the similar fluid-induced seismic events are derived (magnitude, spectral content) and examined over the several hydraulic tests. Hopefully these steps will lead to a better understanding of the repetitive nature of these events and the investigation of their persistence will outline the heterogeneities of the structures (temperatures anomalies, regional stress perturbations, fluid flow channelling) regularly involved during the different stimulations.

  10. Probabilistic Risk Assessment of Hydraulic Fracturing in Unconventional Reservoirs by Means of Fault Tree Analysis: An Initial Discussion

    NASA Astrophysics Data System (ADS)

    Rodak, C. M.; McHugh, R.; Wei, X.

    2016-12-01

    The development and combination of horizontal drilling and hydraulic fracturing has unlocked unconventional hydrocarbon reserves around the globe. These advances have triggered a number of concerns regarding aquifer contamination and over-exploitation, leading to scientific studies investigating potential risks posed by directional hydraulic fracturing activities. These studies, balanced with potential economic benefits of energy production, are a crucial source of information for communities considering the development of unconventional reservoirs. However, probabilistic quantification of the overall risk posed by hydraulic fracturing at the system level are rare. Here we present the concept of fault tree analysis to determine the overall probability of groundwater contamination or over-exploitation, broadly referred to as the probability of failure. The potential utility of fault tree analysis for the quantification and communication of risks is approached with a general application. However, the fault tree design is robust and can handle various combinations of regional-specific data pertaining to relevant spatial scales, geological conditions, and industry practices where available. All available data are grouped into quantity and quality-based impacts and sub-divided based on the stage of the hydraulic fracturing process in which the data is relevant as described by the USEPA. Each stage is broken down into the unique basic events required for failure; for example, to quantify the risk of an on-site spill we must consider the likelihood, magnitude, composition, and subsurface transport of the spill. The structure of the fault tree described above can be used to render a highly complex system of variables into a straightforward equation for risk calculation based on Boolean logic. This project shows the utility of fault tree analysis for the visual communication of the potential risks of hydraulic fracturing activities on groundwater resources.

  11. Efficient Numeric and Geometric Computations using Heterogeneous Shared Memory Architectures

    DTIC Science & Technology

    2017-10-04

    Report: Efficient Numeric and Geometric Computations using Heterogeneous Shared Memory Architectures The views, opinions and/or findings contained in this...Chapel Hill Title: Efficient Numeric and Geometric Computations using Heterogeneous Shared Memory Architectures Report Term: 0-Other Email: dm...algorithms for scientific and geometric computing by exploiting the power and performance efficiency of heterogeneous shared memory architectures . These

  12. Exploiting Thread Parallelism for Ocean Modeling on Cray XC Supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarje, Abhinav; Jacobsen, Douglas W.; Williams, Samuel W.

    The incorporation of increasing core counts in modern processors used to build state-of-the-art supercomputers is driving application development towards exploitation of thread parallelism, in addition to distributed memory parallelism, with the goal of delivering efficient high-performance codes. In this work we describe the exploitation of threading and our experiences with it with respect to a real-world ocean modeling application code, MPAS-Ocean. We present detailed performance analysis and comparisons of various approaches and configurations for threading on the Cray XC series supercomputers.

  13. A Framework for Fracture Network Formation in Overpressurised Impermeable Shale: Deformability Versus Diagenesis

    NASA Astrophysics Data System (ADS)

    Alevizos, Sotiris; Poulet, Thomas; Sari, Mustafa; Lesueur, Martin; Regenauer-Lieb, Klaus; Veveakis, Manolis

    2017-03-01

    Understanding the formation, geometry and fluid connectivity of nominally impermeable unconventional shale gas and oil reservoirs is crucial for safe unlocking of these vast energy resources. We present a recent discovery of volumetric instabilities of ductile materials that may explain why impermeable formations become permeable. Here, we present the fundamental mechanisms, the critical parameters and the applicability of the novel theory to unconventional reservoirs. We show that for a reservoir under compaction, there exist certain ambient and permeability conditions at which diagenetic (fluid-release) reactions may provoke channelling localisation instabilities. These channels are periodically interspersed in the matrix and represent areas where the excess fluid from the reaction is segregated at high velocity. We find that channelling instabilities are favoured from pore collapse features for extremely low-permeability formations and fluid-release diagenetic reactions, therefore providing a natural, periodic network of efficient fluid pathways in an otherwise impermeable matrix (i.e. fractures). Such an outcome is of extreme importance the for exploration and extraction phases of unconventional reservoirs.

  14. Free-piston reciprocating cryogenic expander utilizing phase controller

    NASA Astrophysics Data System (ADS)

    Cha, Jeongmin; Park, Jiho; Kim, Kyungjoong; Jeong, Sangkwon

    2017-02-01

    In a free-piston expander which eliminates mechanical linkages, a prescribed behaviour of the free-piston movement is the key to an expander performance. In this paper, we have proposed an idea of reducing complexity of the free-piston expander. It is to replace both multiple solenoid valves and reservoirs that are indispensable in a previous machine with a combination of a single orifice-reservoir assembly. It functions as a phase controller like that of a pulse tube refrigerator so that it generates time-delay of pressure variation between the warm-end and the reservoir resulting in the intended expansion of the cold-end volume down to the pre-set reservoir pressure. The modeling of this unique free-piston reciprocating expander utilizing phase controller is developed to understand and predict the performance of the new-type expander. Additionally, the operating parameters are analysed at the specified conditions to enable one to develop a more efficient free-piston type cryogenic expander.

  15. Optimizing withdrawal from drinking water reservoirs to reduce downstream temperature pollution and reservoir hypoxia.

    PubMed

    Weber, M; Rinke, K; Hipsey, M R; Boehrer, B

    2017-07-15

    Sustainable management of drinking water reservoirs requires balancing the demands of water supply whilst minimizing environmental impact. This study numerically simulates the effect of an improved withdrawal scheme designed to alleviate the temperature pollution downstream of a reservoir. The aim was to identify an optimal withdrawal strategy such that water of a desirable discharge temperature can be supplied downstream without leading to unacceptably low oxygen concentrations within the reservoir. First, we calibrated a one-dimensional numerical model for hydrodynamics and oxygen dynamics (GLM-AED2), verifying that the model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, the model was extended to include an adaptive withdrawal functionality, allowing for a prescribed withdrawal temperature to be found, with the potential constraint of hypolimnetic oxygen concentration. Scenario simulations on epi-/metalimnetic withdrawal demonstrate that the model is able to autonomously determine the best withdrawal height depending on the thermal structure and the hypolimnetic oxygen concentration thereby optimizing the ability to supply a desirable discharge temperature to the downstream river during summer. This new withdrawal strategy also increased the hypolimnetic raw water volume to be used for drinking water supply, but reduced the dissolved oxygen concentrations in the deep and cold water layers (hypolimnion). Implications of the results for reservoir management are discussed and the numerical model is provided for operators as a simple and efficient tool for optimizing the withdrawal strategy within different reservoir contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The structural architecture of the Los Humeros volcanic complex and geothermal field, Trans-Mexican Volcanic Belt, Central Mexico

    NASA Astrophysics Data System (ADS)

    Norini, Gianluca; Groppelli, Gianluca; Sulpizio, Roberto; Carrasco Núñez, Gerardo; Davila Harris, Pablo

    2014-05-01

    The development of geothermal energy in Mexico is a very important goal, given the presence of a large heat anomaly, associated with the Trans-Mexican Volcanic Belt, the renewability of the resource and the low environmental impact. The Quaternary Los Humeros volcanic complex is an important geothermal target, whose evolution involved at least two caldera events, that alternated with other explosive and effusive activity. The first caldera forming event was the 460 ka eruption that produced the Xaltipan ignimbrite and formed a 15-20 km wide caldera. The second collapse event occurred 100 ka with the formation of the Zaragoza ignimbrite and a nested 8-10 km wide caldera. The whole volcano structure, the style of the collapses and the exact location of the calderas scarps and ring faults are still a matter of debate. The Los Humeros volcano hosts the productive Los Humeros Geothermal Field, with an installed capacity of 40 MW and additional 75 MW power plants under construction. Recent models of the geothermal reservoir predict the existence of at least two reservoirs in the geothermal system, separated by impermeable rock units. Hydraulic connectivity and hydrothermal fluids circulation occurs through faults and fractures, allowing deep steam to ascend while condensate flows descend. As a consequence, the plans for the exploration and exploitation of the geothermal reservoir have been based on the identification of the main channels for the circulation of hydrothermal fluids, constituted by faults, so that the full comprehension of the structural architecture of the caldera is crucial to improve the efficiency and minimize the costs of the geothermal field operation. In this study, we present an analysis of the Los Humeros volcanic complex focused on the Quaternary tectonic and volcanotectonics features, like fault scarps and aligned/elongated monogenetic volcanic centres. Morphostructural analysis and field mapping reveal the geometry, kinematics and dynamics of the structural features of the studied area. The integration of these structural data with available stratigraphy, geological maps and well logs is used to propose a new model of the caldera and geothermal field. As a result of our study, we interpret the Xaltipan and Zaragoza calderas mainly as trap-door structures. These calderas affected a cone-shaped volcanic sequence, formed mainly by effusive products emitted in the pre-caldera forming phase and now hosting the geothermal reservoir (11-1.5 Ma). The main ring faults of the two calderas are buried and sealed by widespread post-calderas volcanic products, and for this reason probably do not have enough secondary permeability to be main channels for hydrothermal fluid circulation. Active, fast-moving subvertical faults have been identified inside the Zaragoza caldera depression. These structures affect recent post-caldera pyroclastic deposits and probably are related both to active resurgence inside the caldera and to regional faults NW-SE striking. The presence of active faults generating high secondary permeability is the most important structural element shaping the geothermal reservoir. Future plans of expansion of the geothermal field should focus on these active faults, considering their geometry at depth and the whole structural architecture of the Los Humeros volcanic complex.

  17. Simple interpretations of chemical transients in multi-feed, two-phase geothermal wells; Examples from Philippine Geothermal fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruaya, J.R.; Solis, R.P.; Solana, R.R.

    1991-01-01

    This paper reports that the main process responsible for the extreme variations in chloride concentrations in the water discharged by selected multi-feed, two-phase geothermal wells in the Philippines is steam addition brought about by fluid flashing in the formation or by a shallow and distinct steam zone. Correlation of enthalpy with chloride data over a span of seven years for well 106, Tongonan field, revealed the entry of reservoir fluid from the hotter portion of the field as the well responded to exploitation. Using a plot of discharge enthalpy versus total chloride, the deep chloride near well OP-3D which ismore » drilled at the periphery of the Bacon-Manito field, has been determined at about 8700 mg/k. This is somewhat higher than the inferred chloride level of 7000 mg/kg in the postulated main geothermal reservoir. The competing effects of returns of reinjected water and flashing in the formation on the observed chloride concentrations in the discharge water of well PN-20D, Palinpinon field, have been segregated using the technique described above.« less

  18. Deep geothermal resources in the Yangbajing Field, Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Ping; Jin Jian; Duo Ji

    1997-12-31

    Since the first well was bored in July 1997 in the Yangbajing geothermal field, more than 80 wells have been drilled. The total of installed capacity is 25.18MWe for geothermal power plant that has generated about 1.0 x 10{sup 9} kWh electricity in all. Temperatures inside shallow reservoir are in the range from 150{degrees}C to 165{degrees}C. No high-temperature field if found below the shallow reservoir in the southern part. In order to enlarge the installed capacity and solve pressure decline in current productive wells, an exploration project of deep geothermal resources has been carried out in the northern part. Themore » highest temperature of 329{degrees}C was detected in well ZK4002 at 1850m depth in 1994. Well ZK4001 drilled in 1996 flows out high-enthalpy thermal fluid at the wellhead, in which the average temperature is 248{degrees}C in the feeding zones. There is a great potential for power generation in the northern part. The exploitation of deep geothermal resources would effect the production of existing wells.« less

  19. Massively parallel electrical conductivity imaging of the subsurface: Applications to hydrocarbon exploration

    NASA Astrophysics Data System (ADS)

    Newman, Gregory A.; Commer, Michael

    2009-07-01

    Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/L supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.

  20. Electrical characteristics in reverse electrodialysis using nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Chanda, Sourayon; Tsai, Peichun Amy

    2017-11-01

    We experimentally and numerically investigate the effects of concentration difference and flow velocity on sustainable electricity generation and associated fluid dynamics using a single reverse electrodialysis (RED) cell. By exploiting the charge-selective nature of nanoporous interfaces, electrical energy is generated by reverse electrodialysis harnessing chemical Gibbs energy via a salinity gradient. Experimentally, a RED cell was designed with two reservoirs, which are separated by a nanoporous, cation-selective membrane. We injected deionized water through one reservoir, whereas a solution of high salt concentration through the other. The gradient of salt concentration primarily drives the flow in the charged nano-pores, due to the interplay between charge selectivity, diffusion processes, and electro-migration. The current-voltage characteristics of the single RED cell shows a linear current-voltage relationship, similar to an electrochemical cell. The membrane resistance is increased with increasing salt concentration difference and external flow rate. The present experimental work was further analyzed numerically to better understand the detailed electrical and flow fields under different concentration gradients and external flows. NSERC Discovery, Accelerator, and CRC Programs.

  1. Advances in multiphase flow measurements using magnetic resonance relaxometry

    NASA Astrophysics Data System (ADS)

    Kantzas, Apostolos; Kryuchkov, Sergey; Chandrasekaran, Blake

    2009-02-01

    When it comes to the measurement of bitumen and water content as they are produced from thermally exploited reservoirs (cyclic steam stimulation or steam assisted gravity drainage) most of the current tools that are available in the market fail. This was demonstrated previously when our group introduced the first concept of a magnetic resonance based water-cut meter. The use of magnetic resonance as a potential tool for fluid cut metering from thermally produced heavy oil and bitumen reservoirs is revisited. At first a review of the work to date is presented. Our recent approach in the tackling of this problem follows. A patented process is coupled with a patented pipe design that can be used inside a magnetic field and can capture fluids up to 260°C and 4.2MPa. The paper describes the technical advances to this goal and offers a first glimpse of field data from an actual thermal facility for bitumen production. The paper also addresses an approach for converting the current discrete measurement device into a continuous measurement system. Preliminary results for this new concept are also presented.

  2. NoScale - Characterisation of thermal deep groundwater for the prevention of scaling and corrosion in geothermal plants

    NASA Astrophysics Data System (ADS)

    Haslinger, Edith; Goldbrunner, Johann; Dietzel, Martin; Leis, Albrecht; Boch, Ronny; Knauss, Ralf; Hippler, Dorothee; Shirbaz, Andrea; Fröschl, Heinz; Wyhlidal, Stefan; Plank, Otmar; Gold, Marlies; Elster, Daniel

    2017-04-01

    During the exploitation of thermal water for the use in a geothermal plant a series of hydrochemical reactions such as solution and precipitation processes (scaling) or corrosion processes can be caused by pressure and temperature changes and degassing of the thermal water. Operators of hydrogeothermal plants are often confronted with precipitations in water-bearing parts of their plant, such as heat exchangers and pipes, which result in considerable costs for cleaning or remediation or the use of inhibitors. In the worst case, scaling and corrosion can lead to the abandonment of the system. The effects of the fluids on the technical facilities of hydrogeothermal plants are usually difficult to predict. This applies in particular to the long-term effects in the exploitation and use as well as the aspect of the reinjection of the fluids. In publications and guides for thermal water use in Austria, it is emphasized that the hydrochemical conditions have to be checked during the operation of geothermal plants, but precise directives and thus guidance for operators as well as a scientific investigations on this topic are almost completely missing today. The aim of the research project NoScale was the assessment of deep thermal water bodies in different geological reservoirs in Austria and Bavaria and therefore different hydrochemical compositions with regard to their scaling and corrosion potential in geothermal use. In the course of parallel chemical and mineralogical laboratory investigations, conclusions were drawn about the effects of thermal water on different technical components of hydrogeothermal plants and on the other hand a data basis for the model simulation of the relevant hydrochemical processes was developed. Subsequently, on the basis of detailed hydrochemical model calculations, possible effects of the use of the thermal waters on the technical components of the geothermal plants were shown. This approach of complex process modeling, detailed laboratory studies and experimental approaches has not been followed in Austria so far. The research results contribute significantly to the increased visibility of potential risks of the exploitation and use of thermal water. Thus, the project NoScale supports the operators of hydrogeothermal plants to assess risks of scaling in corrosion already in the pre-drilling phase, which leads to a much more energy and cost efficient operation.

  3. Ensemble hydrological forecast efficiency evolution over various issue dates and lead-time: case study for the Cheboksary reservoir (Volga River)

    NASA Astrophysics Data System (ADS)

    Gelfan, Alexander; Moreido, Vsevolod

    2017-04-01

    Ensemble hydrological forecasting allows for describing uncertainty caused by variability of meteorological conditions in the river basin for the forecast lead-time. At the same time, in snowmelt-dependent river basins another significant source of uncertainty relates to variability of initial conditions of the basin (snow water equivalent, soil moisture content, etc.) prior to forecast issue. Accurate long-term hydrological forecast is most crucial for large water management systems, such as the Cheboksary reservoir (the catchment area is 374 000 sq.km) located in the Middle Volga river in Russia. Accurate forecasts of water inflow volume, maximum discharge and other flow characteristics are of great value for this basin, especially before the beginning of the spring freshet season that lasts here from April to June. The semi-distributed hydrological model ECOMAG was used to develop long-term ensemble forecast of daily water inflow into the Cheboksary reservoir. To describe variability of the meteorological conditions and construct ensemble of possible weather scenarios for the lead-time of the forecast, two approaches were applied. The first one utilizes 50 weather scenarios observed in the previous years (similar to the ensemble streamflow prediction (ESP) procedure), the second one uses 1000 synthetic scenarios simulated by a stochastic weather generator. We investigated the evolution of forecast uncertainty reduction, expressed as forecast efficiency, over various consequent forecast issue dates and lead time. We analyzed the Nash-Sutcliffe efficiency of inflow hindcasts for the period 1982 to 2016 starting from 1st of March with 15 days frequency for lead-time of 1 to 6 months. This resulted in the forecast efficiency matrix with issue dates versus lead-time that allows for predictability identification of the basin. The matrix was constructed separately for observed and synthetic weather ensembles.

  4. A welfare study into capture fisheries in cirata reservoir: a bio-economic model

    NASA Astrophysics Data System (ADS)

    Anna, Z.; Hindayani, P.

    2018-04-01

    Capture fishery in inland such as reservoirs can be a source of food security and even the economy and public welfare of the surrounding community. This research was conducted on Cirata reservoir fishery in West Java, to see how far reservoir capture fishery can contribute economically in the form of resource rents. The method used is the bioeconomic model Copes, which can analyze the demand and supply functions to calculate the optimization of stakeholders’ welfare in various management regimes. The results showed that the management of capture fishery using Maximum Economic Yield regime (MEY) gave the most efficient result, where fewer inputs would produce maximum profit. In the MEY management, the producer surplus obtained is IDR 2,610.203.099, - per quarter and IDR 273.885.400,- of consumer surplus per quarter. Furthermore, researches showed that sustainable management regime policy MEY result in the government rent/surplus ofIDR 217.891,345, - per quarter with the average price of fish per kg being IDR 13.929. In open access fishery, it was shown that the producer surplus becomesIDR 0. Thus the implementation of the MEY-based instrument policy becomes a necessity for Cirata reservoir capture fishery.

  5. On learning navigation behaviors for small mobile robots with reservoir computing architectures.

    PubMed

    Antonelo, Eric Aislan; Schrauwen, Benjamin

    2015-04-01

    This paper proposes a general reservoir computing (RC) learning framework that can be used to learn navigation behaviors for mobile robots in simple and complex unknown partially observable environments. RC provides an efficient way to train recurrent neural networks by letting the recurrent part of the network (called reservoir) be fixed while only a linear readout output layer is trained. The proposed RC framework builds upon the notion of navigation attractor or behavior that can be embedded in the high-dimensional space of the reservoir after learning. The learning of multiple behaviors is possible because the dynamic robot behavior, consisting of a sensory-motor sequence, can be linearly discriminated in the high-dimensional nonlinear space of the dynamic reservoir. Three learning approaches for navigation behaviors are shown in this paper. The first approach learns multiple behaviors based on the examples of navigation behaviors generated by a supervisor, while the second approach learns goal-directed navigation behaviors based only on rewards. The third approach learns complex goal-directed behaviors, in a supervised way, using a hierarchical architecture whose internal predictions of contextual switches guide the sequence of basic navigation behaviors toward the goal.

  6. Modeling Responses of Naturally Fractured Geothermal Reservoir to Low-Pressure Stimulation

    DOE Data Explorer

    Fu, Pengcheng; Carrigan, Charles R.

    2012-01-01

    Hydraulic shearing is an appealing reservoir stimulation strategy for Enhanced Geothermal Systems. It is believed that hydro-shearing is likely to simulate a fracture network that covers a relatively large volume of the reservoir whereas hydro-fracturing tends to create a small number of fractures. In this paper, we examine the geomechanical and hydraulic behaviors of natural fracture systems subjected to hydro-shearing stimulation and develop a coupled numerical model within the framework of discrete fracture network modeling. We found that in the low pressure hydro-shearing regime, the coupling between the fluid phase and the rock solid phase is relatively simple, and the numerical model is computationally efficient. Using this modified model, we study the behavior of a random fracture network subjected to hydro-shearing stimulation.

  7. Highly efficient router-based readout algorithm for single-photon-avalanche-diode imagers for time-correlated experiments

    NASA Astrophysics Data System (ADS)

    Cominelli, A.; Acconcia, G.; Caldi, F.; Peronio, P.; Ghioni, M.; Rech, I.

    2018-02-01

    Time-Correlated Single Photon Counting (TCSPC) is a powerful tool that permits to record extremely fast optical signals with a precision down to few picoseconds. On the other hand, it is recognized as a relatively slow technique, especially when a large time-resolved image is acquired exploiting a single acquisition channel and a scanning system. During the last years, much effort has been made towards the parallelization of many acquisition and conversion chains. In particular, the exploitation of Single-Photon Avalanche Diodes in standard CMOS technology has paved the way to the integration of thousands of independent channels on the same chip. Unfortunately, the presence of a large number of detectors can give rise to a huge rate of events, which can easily lead to the saturation of the transfer rate toward the elaboration unit. As a result, a smart readout approach is needed to guarantee an efficient exploitation of the limited transfer bandwidth. We recently introduced a novel readout architecture, aimed at maximizing the counting efficiency of the system in typical TCSPC measurements. It features a limited number of high-performance converters, which are shared with a much larger array, while a smart routing logic provides a dynamic multiplexing between the two parts. Here we propose a novel routing algorithm, which exploits standard digital gates distributed among a large 32x32 array to ensure a dynamic connection between detectors and external time-measurement circuits.

  8. Biopolymer system for permeability modification in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepp, A.K.; Bryant, R.S.; Llave, F.M.

    1995-12-31

    New technologies are needed to reduce the current high rate of well abandonment. Improved sweep efficiency, reservoir conformance, and permeability modification can have a significant impact on oil recovery processes. Microorganisms can be used to selectively plug high-permeability zones to improve sweep efficiency and impart conformance control. Studies of a promising microbial system for polymer production were conducted to evaluate reservoir conditions in which this system would be effective. Factors which can affect microbial growth and polymer production include salinity, pH, temperature, divalent ions, presence of residual oil, and rock matrix. Flask tests and coreflooding experiments were conducted to optimizemore » and evaluate the effectiveness of this system. Nuclear magnetic resonance imaging (NMRI) was used to visualize microbial polymer production in porous media. Changes in fluid distribution within the pore system of the core were detected.« less

  9. Adjustable lossless image compression based on a natural splitting of an image into drawing, shading, and fine-grained components

    NASA Technical Reports Server (NTRS)

    Novik, Dmitry A.; Tilton, James C.

    1993-01-01

    The compression, or efficient coding, of single band or multispectral still images is becoming an increasingly important topic. While lossy compression approaches can produce reconstructions that are visually close to the original, many scientific and engineering applications require exact (lossless) reconstructions. However, the most popular and efficient lossless compression techniques do not fully exploit the two-dimensional structural links existing in the image data. We describe here a general approach to lossless data compression that effectively exploits two-dimensional structural links of any length. After describing in detail two main variants on this scheme, we discuss experimental results.

  10. Exploiting Software Tool Towards Easier Use And Higher Efficiency

    NASA Astrophysics Data System (ADS)

    Lin, G. H.; Su, J. T.; Deng, Y. Y.

    2006-08-01

    In developing countries, using data based on instrument made by themselves in maximum extent is very important. It is not only related to maximizing science returns upon prophase investment -- deep accumulations in every aspects but also science output. Based on the idea, we are exploiting a software (called THDP: Tool of Huairou Data Processing). It is used for processing a series of issues, which is met necessary in processing data. This paper discusses its designed purpose, functions, method and specialities. The primary vehicle for general data interpretation is through various techniques of data visualization, techniques of interactive. In the software, we employed Object Oriented approach. It is appropriate to the vehicle. it is imperative that the approach provide not only function, but do so in as convenient a fashion as possible. As result of the software exploiting, it is not only easier to learn data processing for beginner and more convenienter to need further improvement for senior but also increase greatly efficiency in every phrases include analyse, parameter adjusting, result display. Under frame of virtual observatory, for developing countries, we should study more and newer related technologies, which can advance ability and efficiency in science research, like the software we are developing

  11. Near real-time, on-the-move software PED using VPEF

    NASA Astrophysics Data System (ADS)

    Green, Kevin; Geyer, Chris; Burnette, Chris; Agarwal, Sanjeev; Swett, Bruce; Phan, Chung; Deterline, Diane

    2015-05-01

    The scope of the Micro-Cloud for Operational, Vehicle-Based EO-IR Reconnaissance System (MOVERS) development effort, managed by the Night Vision and Electronic Sensors Directorate (NVESD), is to develop, integrate, and demonstrate new sensor technologies and algorithms that improve improvised device/mine detection using efficient and effective exploitation and fusion of sensor data and target cues from existing and future Route Clearance Package (RCP) sensor systems. Unfortunately, the majority of forward looking Full Motion Video (FMV) and computer vision processing, exploitation, and dissemination (PED) algorithms are often developed using proprietary, incompatible software. This makes the insertion of new algorithms difficult due to the lack of standardized processing chains. In order to overcome these limitations, EOIR developed the Government off-the-shelf (GOTS) Video Processing and Exploitation Framework (VPEF) to be able to provide standardized interfaces (e.g., input/output video formats, sensor metadata, and detected objects) for exploitation software and to rapidly integrate and test computer vision algorithms. EOIR developed a vehicle-based computing framework within the MOVERS and integrated it with VPEF. VPEF was further enhanced for automated processing, detection, and publishing of detections in near real-time, thus improving the efficiency and effectiveness of RCP sensor systems.

  12. Improved CO sub 2 enhanced oil recovery -- Mobility control by in-situ chemical precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ameri, S.; Aminian, K.; Wasson, J.A.

    1991-06-01

    The overall objective of this study has been to evaluate the feasibility of chemical precipitation to improve CO{sub 2} sweep efficiency and mobility control. The laboratory experiments have indicated that carbonate precipitation can alter the permeability of the core samples under reservoir conditions. Furthermore, the relative permeability measurements have revealed that precipitation reduces the gas permeability in favor of liquid permeability. This indicates that precipitation is occurring preferentially in the larger pores. Additional experimental work with a series of connected cores have indicated that the permeability profile can be successfully modified. However, Ph control plays a critical role in propagationmore » of the chemical precipitation reaction. A numerical reservoir model has been utilized to evaluate the effects of permeability heterogeneity and permeability modification on the CO{sub 2} sweep efficiency. The computer simulation results indicate that the permeability profile modification can significantly enhance CO{sub 2} vertical and horizontal sweep efficiencies. The scoping studies with the model have further revealed that only a fraction of high permeability zones need to be altered to achieve sweep efficiency enhancement. 64 refs., 30 figs., 16 tabs.« less

  13. Targeted Water Quality Assessment in Small Reservoirs in Brazil, Zimbabwe, Morocco and Burkina Faso

    NASA Astrophysics Data System (ADS)

    Boelee, Eline; Rodrigues, Lineu; Senzanje, Aidan; Laamrani, Hammou; Cecchi, Philippe

    2010-05-01

    Background Physical and chemical parameters of water in reservoirs can be affected by natural and manmade pollutants, causing damage to the aquatic life and water quality. However, the exact water quality considerations depend on what the water will be used for. Brick making, livestock watering, fisheries, irrigation and domestic uses all have their own specific water quality requirements. In turn, these uses impact on water quality. Methodology Water quality was assessed with a variety of methods in small multipurpose reservoirs in the São Francisco Basin in Brazil, Limpopo in Zimbabwe, Souss Massa in Morocco and Nakambé in Burkina Faso. In each case the first step was to select the reservoirs for which the water quality was to be monitored, then identify the main water uses, followed by a determination of key relevant water quality parameters. In addition, a survey was done in some cases to identify quality perceptions of the users. Samples were taken from the reservoir itself and related water bodies such as canals and wells where relevant. Results Accordingly in the four basins different methods gave different locally relevant results. In the Preto River in the Sao Francisco in Brazil small reservoirs are mainly used for irrigated agriculture. Chemical analysis of various small reservoirs showed that water quality was mainly influenced by geological origins. In addition there was nutrient inflow from surrounding areas of intensive agriculture with high fertilizer use. In the Limpopo basin in Zimbabwe small reservoirs are used for almost all community water needs. Plankton was selected as indicator and sampling was carried out in reservoirs in communal areas and in a national park. Park reservoirs were significantly more diversified in phytoplankton taxa compared to those in the communal lands, but not for zooplankton, though communal lands had the highest zooplankton abundance. In Souss Massa in Morocco a combination of perceptions and scientific water quality analyses was applied to a small reservoir. High levels of fecal coliform bacteria were found in the reservoir, which made it unfit for human and animal consumption but suitable for most other purposes. In Burkina Faso, the Nakambé basin has been targeted because of its elevated densities of both population and (small) reservoirs that are used for irrigation, livestock, fishing and other purposes. While a large diversity of phytoplankton was found, the massive dominance of aquatic cyanobacteria was the most significant result. Two lakes exhibited significant cyanotoxins concentrations, which had never been documented before. The presence of the involved bacteria in a large number of sites indicated that such contamination with toxins could potentially affect large populations. Classical limnological descriptors failed to explain the observed situations. Conversely, the cyanobacterial abundances were positively correlated with population densities and land-use. This is probably associated with agricultural intensification and particularly horticulture around most reservoirs, because of the high use of pesticides and their selective impacts on plankton communities that tend to favor cynaobacteria. Still, the scientific hypotheses linking human activities to water quality remain to be formally assessed. Discussion and conclusion Both financial difficulties and the frequent absence of specific and academic local competences limit the implementation of relevant water quality monitoring programs. However, on the basis of our findings in four basins we postulate that while the mobilization of water resources has been an emergency priority for a long time, now the time has come to explicitly target the preservation and protection of aquatic ecosystems. This urgent need should dominate the debate on sustainable multipurpose exploitation of small reservoirs whose several benefits (especially fisheries) appear clearly linked to their quality.

  14. Thermodynamic fingerprints of non-Markovianity in a system of coupled superconducting qubits

    NASA Astrophysics Data System (ADS)

    Hamedani Raja, Sina; Borrelli, Massimo; Schmidt, Rebecca; Pekola, Jukka P.; Maniscalco, Sabrina

    2018-03-01

    The exploitation and characterization of memory effects arising from the interaction between system and environment is a key prerequisite for quantum reservoir engineering beyond the standard Markovian limit. In this paper we investigate a prototype of non-Markovian dynamics experimentally implementable with superconducting qubits. We rigorously quantify non-Markovianity, highlighting the effects of the environmental temperature on the Markovian to non-Markovian crossover. We investigate how memory effects influence, and specifically suppress, the ability to perform work on the driven qubit. We show that the average work performed on the qubit can be used as a diagnostic tool to detect the presence or absence of memory effects.

  15. Three dimensional images of geothermal systems: local earthquake P-wave velocity tomography at the Hengill and Krafla geothermal areas, Iceland, and The Geysers, California

    USGS Publications Warehouse

    Julian, B.R.; Prisk, A.; Foulger, G.R.; Evans, J.R.; ,

    1993-01-01

    Local earthquake tomography - the use of earthquake signals to form a 3-dimensional structural image - is now a mature geophysical analysis method, particularly suited to the study of geothermal reservoirs, which are often seismically active and severely laterally inhomogeneous. Studies have been conducted of the Hengill (Iceland), Krafla (Iceland) and The Geysers (California) geothermal areas. All three systems are exploited for electricity and/or heat production, and all are highly seismically active. Tomographic studies of volumes a few km in dimension were conducted for each area using the method of Thurber (1983).

  16. Natural products as reservoirs of novel therapeutic agents

    PubMed Central

    Mushtaq, Sadaf; Abbasi, Bilal Haider; Uzair, Bushra; Abbasi, Rashda

    2018-01-01

    Since ancient times, natural products from plants, animals, microbial and marine sources have been exploited for treatment of several diseases. The knowledge of our ancestors is the base of modern drug discovery process. However, due to the presence of extensive biodiversity in natural sources, the percentage of secondary metabolites screened for bioactivity is low. This review aims to provide a brief overview of historically significant natural therapeutic agents along with some current potential drug candidates. It will also provide an insight into pros and cons of natural product discovery and how development of recent approaches has answered the challenges associated with it. PMID:29805348

  17. Glycoconjugates in Host-Helminth Interactions

    PubMed Central

    Prasanphanich, Nina Salinger; Mickum, Megan L.; Heimburg-Molinaro, Jamie; Cummings, Richard D.

    2013-01-01

    Helminths are multicellular parasitic worms that comprise a major class of human pathogens and cause an immense amount of suffering worldwide. Helminths possess an abundance of complex and unique glycoconjugates that interact with both the innate and adaptive arms of immunity in definitive and intermediate hosts. These glycoconjugates represent a major untapped reservoir of immunomodulatory compounds, which have the potential to treat autoimmune and inflammatory disorders, and antigenic glycans, which could be exploited as vaccines and diagnostics. This review will survey current knowledge of the interactions between helminth glycans and host immunity and highlight the gaps in our understanding which are relevant to advancing therapeutics, vaccine development, and diagnostics. PMID:24009607

  18. Optimal and centralized reservoir management for drought and flood protection via Stochastic Dual Dynamic Programming on the Upper Seine-Aube River system

    NASA Astrophysics Data System (ADS)

    Chiavico, Mattia; Raso, Luciano; Dorchies, David; Malaterre, Pierre-Olivier

    2015-04-01

    Seine river region is an extremely important logistic and economic junction for France and Europe. The hydraulic protection of most part of the region relies on four controlled reservoirs, managed by EPTB Seine-Grands Lacs. Presently, reservoirs operation is not centrally coordinated, and release rules are based on empirical filling curves. In this study, we analyze how a centralized release policy can face flood and drought risks, optimizing water system efficiency. The optimal and centralized decisional problem is solved by Stochastic Dual Dynamic Programming (SDDP) method, minimizing an operational indicator for each planning objective. SDDP allows us to include into the system: 1) the hydrological discharge, specifically a stochastic semi-distributed auto-regressive model, 2) the hydraulic transfer model, represented by a linear lag and route model, and 3) reservoirs and diversions. The novelty of this study lies on the combination of reservoir and hydraulic models in SDDP for flood and drought protection problems. The study case covers the Seine basin until the confluence with Aube River: this system includes two reservoirs, the city of Troyes, and the Nuclear power plant of Nogent-Sur-Seine. The conflict between the interests of flood protection, drought protection, water use and ecology leads to analyze the environmental system in a Multi-Objective perspective.

  19. A relationship between porosity and permeability of carbonate rock reservoirs

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, Y.; Jo, Y.; Jeong, J.; Eom, S.

    2009-12-01

    Most of oil reservoirs in the world occur in carbonate rocks. Thus, characterization of the carbonate reservoirs, including understanding the correlation between porosity and permeability is essentially required to enhance oil recovery. Compared with the other sedimentary rocks such as sandstone and shale, the carbonate rocks would exhibit a wide variety of vertical and horizontal heterogeneities. In general, pores of the carbonate rocks can be affected by mineral dissolution, replacement by other minerals and re-crystallization, which are the post-depositional processes. Permeability has been estimated at a wide scale by thin section image analysis, rock core experiments, geophysical well logging data and large scale aquifer tests. For the same porosity, the permeability might show a wide variation. In this study, a large number of the porosity and the permeability data pairs for world wide carbonate rocks (reservoirs) were collected from many literatures. The porosity and permeability data were grouped according to test scale, the reservoir location and the rock types. As is already known, the relation showed a rather scattered distribution also in this study, not monotonous, which indicates that higher porosity does not mean higher permeability of the rock formation. This study provides the analysis results and implications for oil production of the carbonate reservoirs. This research was funded by Energy Efficiency and Resources Program of KETEP (Korea Institute of Energy Technology Evaluation and Planning), Grant No. 2009T100200058.

  20. Modeling CO2 Storage in Fractured Reservoirs: Fracture-Matrix Interactions of Free-Phase and Dissolved CO2

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.

    2017-12-01

    The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.

  1. Designing Improved Enzymes of industrial application from marine microorganisms using Protein Engineering

    NASA Astrophysics Data System (ADS)

    Prajapati, A. S.; Panchal, K.; Subramanian, R. B.; Patel, D. H.; Sudhir, A. P.; Dave, B. R.

    2015-12-01

    Global demand for energy has grown with the development of new industries, requiring constant improvement and search for new sources of energy. One of the challenges today is releasing the energy of glucose that nature has cleverly locked into lignocellulosic biomass. Potent and efficient enzyme preparations need to be developed for the enzymatic saccharification process to be more economical. Approaches like enzyme engineering, reconstitution of enzyme mixtures and bioprospecting for superior enzymes are gaining importance. The ocean is considered to be a great reservoir of biodiversity. Because enzymes have unequalled advantages, many industries are keenly interested in adapting enzymatic methods for their processes. Microbial communities in marine environments are ecologically relevant as intermediaries of energy and play an important role in nutrient regeneration cycles as decomposers of dead and decaying organic matter. The exploitation of marine bacteria in the search for improved enzymes or strategies provides a means to upgrade feasibility for lignocellulosic biomass conversion, ultimately providing means to a 'greener' technology. Several industrial enzymes are derived from terrestrial sources, whereas, marine environment which encompasses about 71 percent of the earth's surface and a vast resources for useful enzymes, remain unexplored. Marine microorganisms take active part in the mineralization of complex organic matter through degradative pathways of their metabolism. Bacteria from marine environments secrete different enzymes based on their habitat and their ecological functions. Therefore marine microbial enzymes have become the focal point of interest. Even though many of these enzymes are being isolated, the efficiency of hydrolysis is very poor. This could be overcome by altering the substrate specificity of lignocellulases. Protein engineering could prove to be useful to improve the catalytic function these enzymes.

  2. Global fluvial sediment retention by registered dam systems

    NASA Astrophysics Data System (ADS)

    Vorosmarty, C.; Meybeck, M.; Fekete, B.; Sharma, K.; Green, P.; Syvitski, J.

    2003-04-01

    A framework for estimating global-scale impacts from reservoir construction on riverine sediment transport to the ocean is presented. Framework results depict a large, global-scale, and growing impact from anthropogenic impoundment. This study analyzes data on 633 of the world’s largest reservoirs (LRs) (>= 0.5 km^3 maximum storage) and uses statistical inference to assess the impact of the remaining >44,000 smaller reservoirs (SRs). Information on the LRs was linked to a digitized river network at 30' (latitude x longitude) resolution. A residence time change BoxBox_R) for otherwise free-flowing river water is determined locally at each reservoir and used with a sediment retention function to predict the proportion of incident sediment flux trapped within each impoundment. More than 40% of global river discharge is intercepted locally by the LRs analyzed and a significant proportion (≈ 70%) of this discharge maintains a sediment trapping efficiency in excess of 50%. Half of all discharge entering LRs shows a local trapping efficiency of 80% or more. Several large basins such as the Colorado and Nile show nearly complete trapping due to large reservoir construction and flow diversion. From the standpoint of sediment retention rates, the most heavily regulated drainage basins reside in Europe. North America, Africa, Australia/Oceania are also strongly affected by LRs. Globally, greater than 50% of basin-scale sediment flux in regulated basins is potentially trapped in artificial impoundments, with a discharge-weighted sediment trapping due to LRs of 30%, and an additional contribution of 23% from SRs. If we consider both regulated and unregulated basins, the interception of global sediment flux by all registered reservoirs (n ≈ 45,000) is conservatively placed at 4 to 5 Gt yr-1 or 25-30% of the total. There is an additional but unknown impact due to still smaller unregistered impoundments (n ≈ 800,000). From a global change perspective, the long-term impact of such hydraulic engineering works on the world's coastal zone appears to be significant but has yet to be fully elucidated.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been essentially completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The model represents an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic model served as the framework for the simulations. A technology workshop on reservoir characterization and modeling at Appleton and Vocation Fields was conducted to transfer the results of the project to the petroleum industry.« less

  4. Investigation on trophic state index by artificial neural networks (case study: Dez Dam of Iran)

    NASA Astrophysics Data System (ADS)

    Saghi, H.; Karimi, L.; Javid, A. H.

    2015-06-01

    Dam construction and surface runoff control is one of the most common approaches for water-needs supply of human societies. However, the increasing development of social activities and hence the subsequent increase in environmental pollutants leads to deterioration of water quality in dam reservoirs and eutrophication process could be intensified. So, the water quality of reservoirs is now one of the key factors in operation and water quality management of reservoirs. Hence, maintaining the quality of the stored water and identification and examination of changes along time has been a constant concern of humans that involves the water authorities. Traditionally, empirical trophic state indices of dam reservoirs often defined based on changes in concentration of effective factors (nutrients) and its consequences (increase in chlorophyll a), have been used as an efficient tool in the definition of dam reservoirs quality. In recent years, modeling techniques such as artificial neural networks have enhanced the prediction capability and the accuracy of these studies. In this study, artificial neural networks have been applied to analyze eutrophication process in the Dez Dam reservoir in Iran. In this paper, feed forward neural network with one input layer, one hidden layer and one output layer was applied using MATLAB neural network toolbox for trophic state index (TSI) analysis in the Dez Dam reservoir. The input data of this network are effective parameters in the eutrophication: nitrogen cycle parameters and phosphorous cycle parameters and parameters that will be changed by eutrophication: Chl a, SD, DO and the output data is TSI. Based on the results from estimation of modified Carlson trophic state index, Dez Dam reservoir is considered to be eutrophic in the early July to mid-November and would be mesotrophic with decrease in temperature. Therefore, a decrease in water quality of the dam reservoir during the warm seasons is expectable. The results indicated that artificial neural network (ANN) is a suitable tool for quality modeling of reservoir of dam and increment and decrement of nutrients in trend of eutrophication. Therefore, ANN is a suitable tool for quality modeling of reservoir of dam.

  5. Modeling the Impact of Energy and Water Prices on Reservoir and Aquifer Management

    NASA Astrophysics Data System (ADS)

    Dale, L. L.; Vicuna, S.; Faybishenko, B.

    2008-12-01

    Climate change and polices to limit carbon emissions are likely to increase energy and water scarcity and raise prices. These price impacts affect the way that reservoirs and aquifers should be managed to maximize the value of water and energy outputs. In this paper, we use a model of storage in a specific region to illustrate how energy and water prices affect optimal reservoir and aquifer management. We evaluate reservoir-aquifer water management in the Merced water basin in California, applying an optimization model of storage benefits associated with different management options and input prices. The model includes two submodels: (a) a monthly nonlinear submodel for optimization of the conjunctive energy/water use and (b) an inter-annual stochastic dynamic programming submodel used for determining an operating rule matrix which maximizes system benefits for given economic and hydrologic conditions. The model input parameters include annual inflows, initial storage, crop water demands, crop prices and electricity prices. The model is used to determine changes in net energy generation and water delivery and associated changes in water storage levels caused by changes in water and energy output prices. For the scenario of water/energy tradeoffs for a pure reservoir (with no groundwater use), we illustrate the tradeoff between the agricultural water use and hydropower generation (MWh) for different energy/agriculture price ratios. The analysis is divided into four steps. The first and second steps describe these price impacts on reservoirs and aquifers, respectively. The third step covers price impacts on conjunctive reservoir and aquifer management. The forth step describes price impacts on reservoir and aquifer storage in the more common historical situation, when these facilities are managed separately. The study indicates that optimal reservoir and aquifer storage levels are a positive function of the energy to water price ratio. The study also concludes that conjunctive use of a reservoir and an aquifer tends to force convergence in the long term, multiyear, average groundwater and reservoir storage heads. The results of this study can be used for developing an efficient strategy of managing energy and water resources in different regions across a broad range of climatic, agricultural, and economic scenarios.

  6. Development and evaluation of a reservoir model for the Chain of Lakes in Illinois

    USGS Publications Warehouse

    Domanski, Marian M.

    2017-01-27

    Forecasts of flows entering and leaving the Chain of Lakes reservoir on the Fox River in northeastern Illinois are critical information to water-resource managers who determine the optimal operation of the dam at McHenry, Illinois, to help minimize damages to property and loss of life because of flooding on the Fox River. In 2014, the U.S. Geological Survey; the Illinois Department of Natural Resources, Office of Water Resources; and National Weather Service, North Central River Forecast Center began a cooperative study to develop a system to enable engineers and planners to simulate and communicate flows and to prepare proactively for precipitation events in near real time in the upper Fox River watershed. The purpose of this report is to document the development and evaluation of the Chain of Lakes reservoir model developed in this study.The reservoir model for the Chain of Lakes was developed using the Hydrologic Engineering Center–Reservoir System Simulation program. Because of the complex relation between the dam headwater and reservoir pool elevations, the reservoir model uses a linear regression model that relates dam headwater elevation to reservoir pool elevation. The linear regression model was developed using 17 U.S. Geological Survey streamflow measurements, along with the gage height in the reservoir pool and the gage height at the dam headwater. The Nash-Sutcliffe model efficiency coefficients for all three linear regression model variables ranged from 0.90 to 0.98.The reservoir model performance was evaluated by graphically comparing simulated and observed reservoir pool elevation time series during nine periods of high pool elevation. In addition, the peak elevations during these time periods were graphically compared to the closest-in-time observed pool elevation peak. The mean difference in the simulated and observed peak elevations was -0.03 feet, with a standard deviation of 0.19 feet. The Nash-Sutcliffe coefficient for peak prediction was calculated as 0.94. Evaluation of the model based on accuracy of peak prediction and the ability to simulate an elevation time series showed the performance of the model was satisfactory.

  7. Rodents as potential couriers for bioterrorism agents.

    PubMed

    Lõhmus, Mare; Janse, Ingmar; van de Goot, Frank; van Rotterdam, Bart J

    2013-09-01

    Many pathogens that can cause major public health, economic, and social damage are relatively easily accessible and could be used as biological weapons. Wildlife is a natural reservoir for many potential bioterrorism agents, and, as history has shown, eliminating a pathogen that has dispersed among wild fauna can be extremely challenging. Since a number of wild rodent species live close to humans, rodents constitute a vector for pathogens to circulate among wildlife, domestic animals, and humans. This article reviews the possible consequences of a deliberate spread of rodentborne pathogens. It is relatively easy to infect wild rodents with certain pathogens or to release infected rodents, and the action would be difficult to trace. Rodents can also function as reservoirs for diseases that have been spread during a bioterrorism attack and cause recurring disease outbreaks. As rats and mice are common in both urban and rural settlements, deliberately released rodentborne infections have the capacity to spread very rapidly. The majority of pathogens that are listed as potential agents of bioterrorism by the Centers for Disease Control and Prevention and the National Institute of Allergy and Infectious Diseases exploit rodents as vectors or reservoirs. In addition to zoonotic diseases, deliberately released rodentborne epizootics can have serious economic consequences for society, for example, in the area of international trade restrictions. The ability to rapidly detect introduced diseases and effectively communicate with the public in crisis situations enables a quick response and is essential for successful and cost-effective disease control.

  8. Soil gas (²²²Rn, CO₂, ⁴He) behaviour over a natural CO₂ accumulation, Montmiral area (Drôme, France): geographical, geological and temporal relationships.

    PubMed

    Gal, Frédérick; Joublin, Franck; Haas, Hubert; Jean-Prost, Véronique; Ruffier, Véronique

    2011-02-01

    The south east basin of France shelters deep CO₂ reservoirs often studied with the aim of better constraining geological CO₂ storage operations. Here we present new soil gas data, completing an existing dataset (CO₂, ²²²Rn, ⁴He), together with mineralogical and physical characterisations of soil columns, in an attempt to better understand the spatial distribution of gas concentrations in the soils and to rule on the sealed character of the CO₂ reservoir at present time. Anomalous gas concentrations were found but did not appear to be clearly related to geological structures that may drain deep gases up to the surface, implying a dominant influence of near surface processes as indicated by carbon isotope ratios. Coarse grained, quartz-rich soils favoured the existence of high CO₂ concentrations. Fine grained clayey soils preferentially favoured the existence of ²²²Rn but not CO₂. Soil formations did not act as barriers preventing gas migrations in soils, either due to water content or due to mineralogical composition. No abundant leakage from the Montmiral reservoir can be highlighted by the measurements, even near the exploitation well. As good correlation between CO₂ and ²²²Rn concentrations still exist, it is suggested that ²²²Rn migration is also CO₂ dependent in non-leaking areas--diffusion dominated systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Estimating the reactivation potential of existing fractures in subsurface granitoids from outcrop analogues and in-situ stress modeling: implications for EGS reservoir stimulation with an example from Meiningen (Thuringia, Central Germany)

    NASA Astrophysics Data System (ADS)

    Ustaszewski, Kamil; Kasch, Norbert; Siegburg, Melanie; Navabpour, Payman; Thieme, Manuel

    2014-05-01

    The southwestern part of Thuringia (central Germany) hosts large subsurface extents of Lower Carboniferous granitoids of the Mid-German Crystalline Rise, overlain by an up to several kilometer thick succession of Lower Permian to Mid-Triassic volcanic and sedimentary rocks. The granitic basement represents a conductivity-controlled ('hot dry rock') reservoir of high potential that could be targeted for economic exploitation as an enhanced geothermal system (EGS) in the future. As a preparatory measure, the federal states of Thuringia and Saxony have jointly funded a collaborative research and development project ('Optiriss') aimed at mitigating non-productivity risks during the exploration of such reservoirs. In order to provide structural constraints on the fracture network design during reservoir stimulation, we have carried out a geometric and kinematic analysis of pre-existing fracture patterns in exposures of the Carboniferous basement and Mesozoic cover rocks within an area of c. 500 km2 around the towns of Meiningen and Suhl, where granitic basement and sedimentary cover are juxtaposed along the southern border fault of the Thuringian Forest basement high. The frequency distribution of fractures was assessed by combining outcrop-scale fracture measurements in 31 exposures and photogrammetric analysis of fractures using a LIDAR DEM with 5 m horizontal resolution and rectified aerial images at 4 localities. This analysis revealed a prevalence of NW-SE-trending fractures of mainly joints, extension veins, Permian magmatic dikes and subordinately brittle faults in the Carboniferous granitic basement, which probably resulted from Permian tectonics. In order to assess the reactivation potential of fractures in the reservoir during a stimulation phase, constraints on the current strain regime and in-situ stress magnitudes, including borehole data and earthquake focal mechanisms in a larger area, were needed. These data reveal a presently NW-SE-trending maximum horizontal stress SHmax and a strike-slip regime (Heidbach et al. 2008). In-situ stress magnitudes at a reservoir depth of 4.5 km were calculated assuming hydrostatic pore pressures and frictional equilibrium along pre-existing fractures. Our estimates allow predicting that NW-SE-trending fractures in the reservoir would probably be reactivated as dilational veins during stimulation. In order to ensure that the stimulated rock volume is as large as possible and injected fluids circulate along newly-formed fractures rather than other pre-existing fractures, hydraulic fracturing at reservoir depth should follow a well trajectory parallel to the minimum horizontal stress Shmin, i.e. subhorizontal and NE-SW-oriented. References: Heidbach, O., et al., 2008, World Stress Map database release 2008, doi:10.1594/GFZ.WSM.Rel2008.

  10. CO2 Injection Into CH4 Hydrate Reservoirs: Quantifying Controls of Micro-Scale Processes

    NASA Astrophysics Data System (ADS)

    Bigalke, N. K.; Deusner, C.; Kossel, E.; Haeckel, M.

    2014-12-01

    The exchangeability of methane for carbon dioxide in gas hydrates opens the possibility of producing emission-neutral hydrocarbon energy. Recent field tests have shown that the production of natural gas from gas hydrates is feasible via injection of carbon dioxide into sandy, methane-hydrate-bearing sediment strata. Industrial-scale application of this method requires identification of thermo- and fluid-dynamic as well as kinetic controls on methane yield from and carbon dioxide retention within the reservoir. Extraction of gas via injection of carbon dioxide into the hydrate reservoir triggers a number of macroscopic effects, which are revealed for example by changes of the hydraulic conductivity and geomechanical stability. Thus far, due to analytical limitations, localized reactions and fluid-flow phenomena held responsible for these effects remain unresolved on the microscale (1 µm - 1 mm) and at near-natural reservoir conditions. We address this deficit by showing results from high-resolution, two-dimensional Raman spectroscopy mappings of an artificial hydrate reservoir during carbon dioxide injection under realistic reservoir conditions. The experiments allow us to resolve hydrate conversion rate and efficiency as well as activation of fluid pathways in space and time and their effect on methane yield, carbon-dioxide retention and hydraulic conductivity of the reservoir. We hypothesize that the conversion of single hydrate grains is a diffusion-controlled process which starts at the grain surface before continuing into the grain interior and show that the conversion can be modeled simply by using published permeation coefficients for CO2 and CH4 in hydrate and grain size as only input parameters.

  11. Microwave drying remediation of petroleum-contaminated drill cuttings.

    PubMed

    Júnior, Irineu Petri; Martins, André Leibsohn; Ataíde, Carlos H; Duarte, Cláudio R

    2017-07-01

    The oil reservoir drilling phase generates contaminated cuttings with oil formation itself. These cuttings must be subjected to a decontamination process before being disposed of in the environment. Several technologies are cited in literature for the remediation of soil contaminated with oil or diesel, but none have been reported to remedy drill cuttings contaminated with oil from reservoir. The reservoir drill cuttings are a problem because its discharge is not allowed. The drying technology using microwave has shown promise in the decontamination of cuttings with non-aqueous base drilling fluid, conciliating good robustness and high removal efficiency. Considering the aspects mentioned previously, the application of heating and drying technology using microwave in the remediation of oil contaminated cuttings from well drill was studied. The influence of temperature, specific energy and initial content of water in the drying operation of the reservoir cuttings and of the drilling cuttings artificially contaminated with oil were analyzed. The results showed an influence of temperature in the drying of the cuttings, being necessary to reach the boiling temperature of heavier hydrocarbons to reach an efficient removal in the operation. The specific energy has a strong influence, reaching a total decontamination using 2.67 kWh/kg. The initial water content was effective in removing oil, reducing the residual level of oil with the increase of initial content of water. It also modifies the temperature profiles of the kinetic-warming of the contaminated cuttings. Both the technology and the equipment used proved effective for obtaining total decontamination of oil from the cuttings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. An efficient assisted history matching and uncertainty quantification workflow using Gaussian processes proxy models and variogram based sensitivity analysis: GP-VARS

    NASA Astrophysics Data System (ADS)

    Rana, Sachin; Ertekin, Turgay; King, Gregory R.

    2018-05-01

    Reservoir history matching is frequently viewed as an optimization problem which involves minimizing misfit between simulated and observed data. Many gradient and evolutionary strategy based optimization algorithms have been proposed to solve this problem which typically require a large number of numerical simulations to find feasible solutions. Therefore, a new methodology referred to as GP-VARS is proposed in this study which uses forward and inverse Gaussian processes (GP) based proxy models combined with a novel application of variogram analysis of response surface (VARS) based sensitivity analysis to efficiently solve high dimensional history matching problems. Empirical Bayes approach is proposed to optimally train GP proxy models for any given data. The history matching solutions are found via Bayesian optimization (BO) on forward GP models and via predictions of inverse GP model in an iterative manner. An uncertainty quantification method using MCMC sampling in conjunction with GP model is also presented to obtain a probabilistic estimate of reservoir properties and estimated ultimate recovery (EUR). An application of the proposed GP-VARS methodology on PUNQ-S3 reservoir is presented in which it is shown that GP-VARS provides history match solutions in approximately four times less numerical simulations as compared to the differential evolution (DE) algorithm. Furthermore, a comparison of uncertainty quantification results obtained by GP-VARS, EnKF and other previously published methods shows that the P50 estimate of oil EUR obtained by GP-VARS is in close agreement to the true values for the PUNQ-S3 reservoir.

  13. Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir.

    PubMed

    Rabiei, Arash; Sharifinik, Milad; Niazi, Ali; Hashemi, Abdolnabi; Ayatollahi, Shahab

    2013-07-01

    Microbial enhanced oil recovery (MEOR) refers to the process of using bacterial activities for more oil recovery from oil reservoirs mainly by interfacial tension reduction and wettability alteration mechanisms. Investigating the impact of these two mechanisms on enhanced oil recovery during MEOR process is the main objective of this work. Different analytical methods such as oil spreading and surface activity measurements were utilized to screen the biosurfactant-producing bacteria isolated from the brine of a specific oil reservoir located in the southwest of Iran. The isolates identified by 16S rDNA and biochemical analysis as Enterobacter cloacae (Persian Type Culture Collection (PTCC) 1798) and Enterobacter hormaechei (PTCC 1799) produce 1.53 g/l of biosurfactant. The produced biosurfactant caused substantial surface tension reduction of the growth medium and interfacial tension reduction between oil and brine to 31 and 3.2 mN/m from the original value of 72 and 29 mN/m, respectively. A novel set of core flooding tests, including in situ and ex situ scenarios, was designed to explore the potential of the isolated consortium as an agent for MEOR process. Besides, the individual effects of wettability alteration and IFT reduction on oil recovery efficiency by this process were investigated. The results show that the wettability alteration of the reservoir rock toward neutrally wet condition in the course of the adsorption of bacteria cells and biofilm formation are the dominant mechanisms on the improvement of oil recovery efficiency.

  14. Tracing Injection Fluids in Engineered Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Rose, P. E.; Leecaster, K.; Mella, M.; Ayling, B.; Bartl, M. H.

    2011-12-01

    The reinjection of produced fluids is crucial to the effective management of geothermal reservoirs, since it provides a mechanism for maintaining reservoir pressures while allowing for the disposal of a toxic byproduct. Tracers are essential to the proper location of injection wells since they are the only known tool for reliably characterizing the flow patterns of recirculated fluids. If injection wells are placed too close to production wells, then reinjected fluids do not have sufficient residence time to extract heat from the reservoir and premature thermal breakthrough results. If injection wells are placed too far away, then the reservoir risks unacceptable pressure loss. Several thermally stable compounds from a family of very detectable fluorescent organic compounds (the naphthalene sulfonates) were characterized and found to be effective for use as geothermal tracers. Through batch-autoclave reactions, their Arrhenius pseudo-first-order decay-rate constants were determined. An analytical method was developed that allows for the laboratory determination of concentrations in the low parts-per-trillion range. Field experiments in numerous geothermal reservoirs throughout the world have confirmed the laboratory findings. Whereas conservative tracers such as the naphthalene sulfonates are effective tools for indicating interwell flow patterns and for measuring reservoir pore volumes, 'reactive' tracers can be used to constrain fracture surface area, which is the effective area for heat extraction. This is especially important for engineered geothermal system (EGS) wells, since reactive tracers can be used to measure fracture surface area immediately after drilling and while the well stimulation equipment is still on site. The reactive properties of these tracers that can be exploited to constrain fracture surface area are reversible sorption, contrasting diffusivity, and thermal decay. Laboratory batch- and flow-reactor experiments in combination with numerical simulation studies have served to identify candidate compounds for use as reactive tracers. An emerging class of materials that show promise for use as geothermal and EGS tracers are colloidal nanocrystals (quantum dots). These are semiconductor particles that fluoresce as a function of particle size. Preliminary laboratory experimentation has demonstrated that these thermally stable, water-soluble particles can serve as conservative tracers for geothermal applications. Likewise, they show promise as potential reactive tracers, since their surfaces can be modified to be reversibly sorptive and their diameters are sufficiently large to allow for contrasts in diffusivity with solute tracers.

  15. Comparison of Spatiotemporal Mapping Techniques for Enormous Etl and Exploitation Patterns

    NASA Astrophysics Data System (ADS)

    Deiotte, R.; La Valley, R.

    2017-10-01

    The need to extract, transform, and exploit enormous volumes of spatiotemporal data has exploded with the rise of social media, advanced military sensors, wearables, automotive tracking, etc. However, current methods of spatiotemporal encoding and exploitation simultaneously limit the use of that information and increase computing complexity. Current spatiotemporal encoding methods from Niemeyer and Usher rely on a Z-order space filling curve, a relative of Peano's 1890 space filling curve, for spatial hashing and interleaving temporal hashes to generate a spatiotemporal encoding. However, there exist other space-filling curves, and that provide different manifold coverings that could promote better hashing techniques for spatial data and have the potential to map spatiotemporal data without interleaving. The concatenation of Niemeyer's and Usher's techniques provide a highly efficient space-time index. However, other methods have advantages and disadvantages regarding computational cost, efficiency, and utility. This paper explores the several methods using a range of sizes of data sets from 1K to 10M observations and provides a comparison of the methods.

  16. Natural flow and vertical heterogeneities in a sedimentary geothermal reservoir (Paris Basin, France): Geochemical investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Criaud, Annie, Fouassier, Philippe; Fouillac, Christian; Brach, Michel

    1988-01-01

    Three geothermal wells tapping the Dogger aquifer were studied in detail for their variations in chemical composition with time or conditions of exploitation. Analytical improvements for the determination of Cl, SO{sub 4}, Ca, Mg, Na and K make it possible to detect variations respectively of 0.15, 0.8, 0.6, 1.8, 1.8 and 1.4 %. Despite the fact that the natural flow may be important in some parts of the basin aquifer, we conclude that this factor is not responsible for the small variations noticed in mineralization within the one year survey period. The results concerning reactive and nonreactive species are bestmore » explained if a vertical heterogeneity of the chemistry of the fluid is assumed. A number of calcareous sub-layers, already demonstrated by geological studies, contribute to varying degrees to the production of the hot water. The changes in pumping rates, which are fixed according to external requirements, play a major role in the hydrodynamic and chemical disequilibrium of the wells. The consequences for the geothermal exploitations are emphasized.« less

  17. k-t Acceleration in pure phase encode MRI to monitor dynamic flooding processes in rock core plugs

    NASA Astrophysics Data System (ADS)

    Xiao, Dan; Balcom, Bruce J.

    2014-06-01

    Monitoring the pore system in sedimentary rocks with MRI when fluids are introduced is very important in the study of petroleum reservoirs and enhanced oil recovery. However, the lengthy acquisition time of each image, with pure phase encode MRI, limits the temporal resolution. Spatiotemporal correlations can be exploited to undersample the k-t space data. The stacked frames/profiles can be well approximated by an image matrix with rank deficiency, which can be recovered by nonlinear nuclear norm minimization. Sparsity of the x-t image can also be exploited for nonlinear reconstruction. In this work the results of a low rank matrix completion technique were compared with k-t sparse compressed sensing. These methods are demonstrated with one dimensional SPRITE imaging of a Bentheimer rock core plug and SESPI imaging of a Berea rock core plug, but can be easily extended to higher dimensionality and/or other pure phase encode measurements. These ideas will enable higher dimensionality pure phase encode MRI studies of dynamic flooding processes in low magnetic field systems.

  18. Permeability Estimation of Rock Reservoir Based on PCA and Elman Neural Networks

    NASA Astrophysics Data System (ADS)

    Shi, Ying; Jian, Shaoyong

    2018-03-01

    an intelligent method which based on fuzzy neural networks with PCA algorithm, is proposed to estimate the permeability of rock reservoir. First, the dimensionality reduction process is utilized for these parameters by principal component analysis method. Further, the mapping relationship between rock slice characteristic parameters and permeability had been found through fuzzy neural networks. The estimation validity and reliability for this method were tested with practical data from Yan’an region in Ordos Basin. The result showed that the average relative errors of permeability estimation for this method is 6.25%, and this method had the better convergence speed and more accuracy than other. Therefore, by using the cheap rock slice related information, the permeability of rock reservoir can be estimated efficiently and accurately, and it is of high reliability, practicability and application prospect.

  19. Gulf Petro Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fathi Boukadi

    2011-02-05

    In this report, technologies for petroleum production and exploration enhancement in deepwater and mature fields are developed through basic and applied research by: (1) Designing new fluids to efficiently drill deepwater wells that can not be cost-effectively drilled with current technologies. The new fluids will be heavy liquid foams that have low-density at shallow dept to avoid formation breakdown and high density at drilling depth to control formation pressure. The goal of this project is to provide industry with formulations of new fluids for reducing casing programs and thus well construction cost in deepwater development. (2) Studying the effects ofmore » flue gas/CO{sub 2} huff n puff on incremental oil recovery in Louisiana oilfields bearing light oil. An artificial neural network (ANN) model will be developed and used to map recovery efficiencies for candidate reservoirs in Louisiana. (3) Arriving at a quantitative understanding for the three-dimensional controlled-source electromagnetic (CSEM) geophysical response of typical Gulf of Mexico hydrocarbon reservoirs. We will seek to make available tools for the qualitative, rapid interpretation of marine CSEM signatures, and tools for efficient, three-dimensional subsurface conductivity modeling.« less

  20. General Properties for an Agrawal Thermal Engine

    NASA Astrophysics Data System (ADS)

    Paéz-Hernández, Ricardo T.; Chimal-Eguía, Juan Carlos; Sánchez-Salas, Norma; Ladino-Luna, Delfino

    2018-04-01

    This paper presents a general property of endoreversible thermal engines known as the Semisum property previously studied in a finite-time thermodynamics context for a Curzon-Ahlborn (CA) engine but now extended to a simplified version of the CA engine studied by Agrawal in 2009 (A simplified version of the Curzon-Ahlborn engine, European Journal of Physics 30 (2009), 1173). By building the Ecological function, proposed by Angulo-Brown (An ecological optimization criterion for finite-time heat engines, Journal of Applied Physics 69 (1991), 7465-7469) in 1991, and considering two heat transfer laws an analytical expression is obtained for efficiency and power output which depends only on the heat reservoirs' temperature. When comparing the existing efficiency values of real power plants and the theoretical efficiencies obtained in this work, it is observed that the Semisum property is satisfied. Moreover, for the Newton and the Dulong-Petit heat transfer laws the existence of the g function is demonstrated and we confirm that in a Carnot-type thermal engine there is a general property independent of the heat transfer law used between the thermal reservoirs and the working substance.

  1. Designing multi-reservoir system designs via efficient water-energy-food nexus trade-offs - Selecting new hydropower dams for the Blue Nile and Nepal's Koshi Basin

    NASA Astrophysics Data System (ADS)

    Harou, J. J.; Hurford, A.; Geressu, R. T.

    2015-12-01

    Many of the world's multi-reservoir water resource systems are being considered for further development of hydropower and irrigation aiming to meet economic, political and ecological goals. Complex river basins serve many needs so how should the different proposed groupings of reservoirs and their operations be evaluated? How should uncertainty about future supply and demand conditions be factored in? What reservoir designs can meet multiple goals and perform robustly in a context of global change? We propose an optimized multi-criteria screening approach to identify best performing designs, i.e., the selection, size and operating rules of new reservoirs within multi-reservoir systems in a context of deeply uncertain change. Reservoir release operating rules and storage sizes are optimized concurrently for each separate infrastructure design under consideration across many scenarios representing plausible future conditions. Outputs reveal system trade-offs using multi-dimensional scatter plots where each point represents an approximately Pareto-optimal design. The method is applied to proposed Blue Nile River reservoirs in Ethiopia, where trade-offs between capital costs, total and firm energy output, aggregate storage and downstream irrigation and energy provision for the best performing designs are evaluated. The impact of filling period for large reservoirs is considered in a context of hydrological uncertainty. The approach is also applied to the Koshi basin in Nepal where combinations of hydropower storage and run-of-river dams are being considered for investment. We show searching for investment portfolios that meet multiple objectives provides stakeholders with a rich view on the trade-offs inherent in the nexus and how different investment bundles perform differently under plausible futures. Both case-studies show how the proposed approach helps explore and understand the implications of investing in new dams in a global change context.

  2. Efficient generation of far-infrared radiation in the vicinity of polariton resonance of lithium niobate.

    PubMed

    Lin, Xiaomu; Wang, Lei; Ding, Yujie J

    2012-09-01

    We efficiently generated far-infrared radiation at the wavelengths centered at 20.8 μm in the vicinity of one of the polariton resonances of lithium niobate. Such an efficient nonlinear conversion is made possible by exploiting phase matching for difference-frequency generation in lithium niobate. The highest peak power reached 233 W.

  3. Blocking effect and numerical study of polymer particles dispersion flooding in heterogeneous reservoir

    NASA Astrophysics Data System (ADS)

    Zhu, Weiyao; Li, Jianhui; Lou, Yu

    2018-02-01

    Polymer flooding has become an effective way to improve the sweep efficiency in many oil fields. Many scholars have carried out a lot of researches on the mechanism of polymer flooding. In this paper, the effect of polymer on seepage is analyzed. The blocking effect of polymer particles was studied experimentally, and the residual resistance coefficient (RRF) were used to represent the blocking effect. We also build a mathematical model for heterogeneous concentration distribution of polymer particles. Furthermore, the effects of polymer particles on reservoir permeability, fluid viscosity and relative permeability are considered, and a two-phase flow model of oil and polymer particles is established. In addition, the model was tested in the heterogeneous stratum model, and three influencing factors, such as particle concentration, injection volume and PPD (short for polymer particle dispersion) injection time, were analyzed. Simulation results show that PPD can effectively improve sweep efficiency and especially improve oil recovery of low permeability layer. Oil recovery increases with the increase of particle concentration, but oil recovery increase rate gradually decreases with that. The greater the injected amount of PPD, the greater oil recovery and the smaller oil recovery increase rate. And there is an optimal timing to inject PPD for specific reservoir.

  4. Searching for the Signature of Wastewater Injection in continuous GPS Data from The Geysers Geothermal Field

    NASA Astrophysics Data System (ADS)

    Terry, R. L.; Funning, G.; Floyd, M.

    2017-12-01

    The Geysers geothermal field in California, which provides a large portion of northern California's power, has seen declining steam pressures over the past three decades, accompanied by surface subsidence. Together, these two phenomena are likely the result of the exploitation of the reservoir without adequate time for natural restoration. To combat the decline in steam pressures, The Geysers began injecting imported wastewater into the geothermal reservoir in 1997 and expanded injection in 2003. In 2012 and 2013, we installed three continuously recording GPS stations in The Geysers to closely monitor crustal deformation due to both the extraction of steam and the injection of wastewater. To assess the impact of the current injection and extraction activities on the geothermal reservoir, we analyze the position time-series from these GPS stations alongside wastewater injection and steam extraction data. We use common-mode filtering to remove any regionally-correlated noise from our GPS time series, and also estimate and subtract any seasonal signals present. To predict the effect of injection and production on surface movement, we summed the monthly time series of well data within a rectangular grid framework. We then use an array of Mogi sources based on each grid cell's total volume change to calculate the expected surface deformation due to these volume changes at depth. The temporal resolution provided by GPS allows us to characterize more accurately the properties of the subsurface geothermal reservoir related to forcing. For example, based on a similar spatiotemporal relationship between injection and seismicity, we hypothesize that there may be a delayed deformation response following injection, related to the permeability of the reservoir, and are undertaking detailed comparisons between our time series data to identify this response. Overall changes in the sense and rate of vertical motion in the field due to injection over time are also expected. We anticipate that the impact of discovering a relationship between injection and surface deformation will be of great importance in maintaining and managing geothermal resources in the future.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duval, B.C.; Allen, G.; Madaoui, K.

    The paper describes how modern geoscience techniques, developed for a large part in intensive exploration programs, can be used at the field level to improve reservoir prediction and production planning and also to optimize recovery. Detailed sedimentological studies has allowed the authors to determine the environment of the reservoir formations and help define the likely shape and size of individual sands and refine the reservoir model. An illustration is given by fields located in the Mahakam delta area of Kalimantan (Handil, Tunu) and in the Gulf of Thailand (Bongkot). Sequence stratigraphy assists in identifying efficient regional seals which, at fieldmore » scale, lead to the recomposition of a great number of individual sands (several hundreds in some cases) into fewer flow units, making the system manageable from a reservoir standpoint. This technology was used extensively to delineate the giant Peciko gas field of Indonesia. The geophysical approach of reservoir parameters and the use of seismic attributes are rapidly expanding. The Yadana gas field in the Gulf of Martaban (Myanmar) is a case in point to show how porosities can be determined from impedances obtained by seismic inversion techniques. An example from the Bongkot field shows how 3D seismic and direct hydrocarbon indication technology (DHI) are used to deal with complex faulting to optimize deviated well profiles and improve recoveries.« less

  6. Uncertainty quantification for evaluating the impacts of fracture zone on pressure build-up and ground surface uplift during geological CO₂ sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Jie; Hou, Zhangshuan; Fang, Yilin

    2015-06-01

    A series of numerical test cases reflecting broad and realistic ranges of geological formation and preexisting fault properties was developed to systematically evaluate the impacts of preexisting faults on pressure buildup and ground surface uplift during CO₂ injection. Numerical test cases were conducted using a coupled hydro-geomechanical simulator, eSTOMP (extreme-scale Subsurface Transport over Multiple Phases). For efficient sensitivity analysis and reliable construction of a reduced-order model, a quasi-Monte Carlo sampling method was applied to effectively sample a high-dimensional input parameter space to explore uncertainties associated with hydrologic, geologic, and geomechanical properties. The uncertainty quantification results show that the impacts onmore » geomechanical response from the pre-existing faults mainly depend on reservoir and fault permeability. When the fault permeability is two to three orders of magnitude smaller than the reservoir permeability, the fault can be considered as an impermeable block that resists fluid transport in the reservoir, which causes pressure increase near the fault. When the fault permeability is close to the reservoir permeability, or higher than 10⁻¹⁵ m² in this study, the fault can be considered as a conduit that penetrates the caprock, connecting the fluid flow between the reservoir and the upper rock.« less

  7. Fine-Scale Spatial Heterogeneity in the Distribution of Waterborne Protozoa in a Drinking Water Reservoir.

    PubMed

    Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel

    2015-09-23

    The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies.

  8. Synopsis of Past Stimulation Methods in Enhanced (Engineered) Geothermal Systems, Boreholes, and Existing Hydrothermal Systems with Success Analysis and Recommendations for Future Projects

    NASA Astrophysics Data System (ADS)

    Broadhurst, T.; Mattson, E.

    2017-12-01

    Enhanced geothermal systems (EGS) are gaining in popularity as a technology that can be used to increase areas for geothermal resource procurement. One of the most important factors in the success of an EGS system is the success of the subsurface reservoir that is used for fluid flow and heat mining through advection. There are numerous challenges in stimulating a successful reservoir, including maintaining flow rates, minimizing leak off, preventing short-circuiting, and reducing the risk of microseismicity associated with subsurface activity. Understanding past examples of stimulation can be invaluable in addressing these challenges. This study provides an overview of stimulation methods that have been employed in EGS systems from 1974-2017. We include all geothermal reservoirs and demonstration projects that have experienced hydrofracturing, chemical stimulation, and induced thermal stress for a comprehensive list. We also examine different metrics and measures of success in geothermal reservoir stimulation to draw conclusions and provide recommendations for future projects. Multiple project characteristics are reported including geologic setting, stress conditions, reservoir temperature, injection specifics, resulting microseismicity, and overall project goals. Insight into optimal and unproductive stimulation methods is crucial to conserving mental capital, utilizing project funding, and ensuring EGS technology advances as efficiently as possible.

  9. Oil recovery by alkaline waterflooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, C.E. Jr.; Williams, R.E.; Kolodzie, P.A.

    1974-01-01

    Flooding of oil containing organic acids with alkaline water under favorable conditions can result in recovery of around 50% of the residual oil left in a watered-out model. A high recovery efficiency results from the formation of a bank of viscous water-in-oil emulsion as surface active agents (soaps) are created by reactions of base in the water with the organic acids in the oil. The type and amount of organic acids in the oil, the pH and salt content of the water, and the amount of fines in the porous medium are the primary factors which determine the amount ofmore » additional oil recovered by this method. Interaction of alkaline water with reservoir rock largely determines the amount of chemical needed to flood a reservoir. Laboratory investigations using synthetic oils and crude oils show the importance of oil-water and liquid-solid interfacial properties to the results of an alkaline waterflood. A small field test demonstrated that emulsion banks can be formed in the reservoir and that chemical costs can be reasonable in selected reservoirs. Although studies have provided many qualitative guide lines for evaluating the feasibility of alkaline waterflooding, the economic attractiveness of the process must be considered on an individual reservoir.« less

  10. Automatic optimization of well locations in a North Sea fractured chalk reservoir using a front tracking reservoir simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rian, D.T.; Hage, A.

    1994-12-31

    A numerical simulator is often used as a reservoir management tool. One of its main purposes is to aid in the evaluation of number of wells, well locations and start time for wells. Traditionally, the optimization of a field development is done by a manual trial and error process. In this paper, an example of an automated technique is given. The core in the automization process is the reservoir simulator Frontline. Frontline is based on front tracking techniques, which makes it fast and accurate compared to traditional finite difference simulators. Due to its CPU-efficiency the simulator has been coupled withmore » an optimization module, which enables automatic optimization of location of wells, number of wells and start-up times. The simulator was used as an alternative method in the evaluation of waterflooding in a North Sea fractured chalk reservoir. Since Frontline, in principle, is 2D, Buckley-Leverett pseudo functions were used to represent the 3rd dimension. The area full field simulation model was run with up to 25 wells for 20 years in less than one minute of Vax 9000 CPU-time. The automatic Frontline evaluation indicated that a peripheral waterflood could double incremental recovery compared to a central pattern drive.« less

  11. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2005-07-01

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectivesmore » of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.« less

  12. A Framework to Design and Optimize Chemical Flooding Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2006-08-31

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectivesmore » of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.« less

  13. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2004-11-01

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectivesmore » of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.« less

  14. Long-term predictions of minewater geothermal systems heat resources

    NASA Astrophysics Data System (ADS)

    Harcout-Menou, Virginie; de ridder, fjo; laenen, ben; ferket, helga

    2014-05-01

    Abandoned underground mines usually flood due to the natural rise of the water table. In most cases the process is relatively slow giving the mine water time to equilibrate thermally with the the surrounding rock massif. Typical mine water temperature is too low to be used for direct heating, but is well suited to be combined with heat pumps. For example, heat extracted from the mine can be used during winter for space heating, while the process could be reversed during summer to provide space cooling. Altough not yet widely spread, the use of low temperature geothermal energy from abandoned mines has already been implemented in the Netherlands, Spain, USA, Germany and the UK. Reliable reservoir modelling is crucial to predict how geothermal minewater systems will react to predefined exploitation schemes and to define the energy potential and development strategy of a large-scale geothermal - cold/heat storage mine water systems. However, most numerical reservoir modelling software are developed for typical environments, such as porous media (a.o. many codes developed for petroleum reservoirs or groundwater formations) and cannot be applied to mine systems. Indeed, mines are atypical environments that encompass different types of flow, namely porous media flow, fracture flow and open pipe flow usually described with different modelling codes. Ideally, 3D models accounting for the subsurface geometry, geology, hydrogeology, thermal aspects and flooding history of the mine as well as long-term effects of heat extraction should be used. A new modelling approach is proposed here to predict the long-term behaviour of Minewater geothermal systems in a reactive and reliable manner. The simulation method integrates concepts for heat and mass transport through various media (e.g., back-filled areas, fractured rock, fault zones). As a base, the standard software EPANET2 (Rossman 1999; 2000) was used. Additional equations for describing heat flow through the mine (both through open pipes and from the rock massif) have been implemented. Among others, parametric methods are used to bypass some shortcomings in the physical models used for the subsurface. The advantage is that the complete geometry of the mine workings can be integrated and that computing is fast enough to allow implementing and testing several scenarios (e.g. contributions from fault zones, different assumptions about the actual status of shafts, drifts and mined out areas) in an efficient way (Ferket et al., 2011). EPANET allows to incorporate the full complexity of the subsurface mine structure. As a result, the flooded mine is considered as a network of pipes, each with a custom-defined diameter, length and roughness.

  15. Risk Decision Making Model for Reservoir Floodwater resources Utilization

    NASA Astrophysics Data System (ADS)

    Huang, X.

    2017-12-01

    Floodwater resources utilization(FRU) can alleviate the shortage of water resources, but there are risks. In order to safely and efficiently utilize the floodwater resources, it is necessary to study the risk of reservoir FRU. In this paper, the risk rate of exceeding the design flood water level and the risk rate of exceeding safety discharge are estimated. Based on the principle of the minimum risk and the maximum benefit of FRU, a multi-objective risk decision making model for FRU is constructed. Probability theory and mathematical statistics method is selected to calculate the risk rate; C-D production function method and emergy analysis method is selected to calculate the risk benefit; the risk loss is related to flood inundation area and unit area loss; the multi-objective decision making problem of the model is solved by the constraint method. Taking the Shilianghe reservoir in Jiangsu Province as an example, the optimal equilibrium solution of FRU of the Shilianghe reservoir is found by using the risk decision making model, and the validity and applicability of the model are verified.

  16. Post flooding damage assessment of earth dams and historical reservoirs using non-invasive geophysical techniques

    NASA Astrophysics Data System (ADS)

    Sentenac, Philippe; Benes, Vojtech; Budinsky, Vladimir; Keenan, Helen; Baron, Ron

    2017-11-01

    This paper describes the use of four geophysical techniques to map the structural integrity of historical earth reservoir embankments which are susceptible to natural decay with time. The four techniques that were used to assess the post flood damage were 1. A fast scanning technique using a dipole electromagnetic profile apparatus (GEM2), 2. Electrical Resistivity Tomography (ERT) in order to obtain a high resolution image of the shape of the damaged/seepage zone, 3. Self-Potential surveys were carried out to relate the detected seepage evolution and change of the water displacement inside the embankment, 4. The washed zone in the areas with piping was characterised with microgravimetry. The four geophysical techniques used were evaluated against the case studies of two reservoirs in South Bohemia, Czech Republic. A risk approach based on the Geophysical results was undertaken for the reservoir embankments. The four techniques together enabled a comprehensive non-invasive assessment whereby remedial action could be recommended where required. Conclusions were also drawn on the efficiency of the techniques to be applied for embankments with wood structures.

  17. [Distribution Characteristics and Source of Fluoride in Groundwater in Lower Plain Area of North China Plain: A Case Study in Nanpi County].

    PubMed

    Kong, Xiao-le; Wang, Shi-qin; Zhao, Huan; Yuan, Rui-qiang

    2015-11-01

    There is an obvious regional contradiction between water resources and agricultural produce in lower plain area of North China, however, excessive fluorine in deep groundwater further limits the use of regional water resources. In order to understand the spatial distribution characteristics and source of F(-) in groundwater, study was carried out in Nanpi County by field survey and sampling, hydrogeochemical analysis and stable isotopes methods. The results showed that the center of low fluoride concentrations of shallow groundwater was located around reservoir of Dalang Lake, and centers of high fluoride concentrations were located in southeast and southwest of the study area. The region with high fluoride concentration was consistent with the over-exploitation region of deep groundwater. Point source pollution of subsurface drainage and non-point source of irrigation with deep groundwater in some regions were the main causes for the increasing F(-) concentrations of shallow groundwater in parts of the sampling sites. Rock deposition and hydrogeology conditions were the main causes for the high F(-) concentrations (1.00 mg x L(-1), threshold of drinking water quality standard in China) in deep groundwater. F(-) released from clay minerals into the water increased the F(-) concentrations in deep groundwater because of over-exploitation. With the increasing exploitation and utilization of brackish shallow groundwater and the compressing and restricting of deep groundwater exploitation, the water environment in the middle and east lower plain area of North China will undergo significant change, and it is important to identify the distribution and source of F(-) in surface water and groundwater for reasonable development and use of water resources in future.

  18. An Integrated Approach to Characterizing Bypassed Oil in Heterogeneous and Fractured Reservoirs Using Partitioning Tracers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhil Datta-Gupta

    2006-12-31

    We explore the use of efficient streamline-based simulation approaches for modeling partitioning interwell tracer tests in hydrocarbon reservoirs. Specifically, we utilize the unique features of streamline models to develop an efficient approach for interpretation and history matching of field tracer response. A critical aspect here is the underdetermined and highly ill-posed nature of the associated inverse problems. We have investigated the relative merits of the traditional history matching ('amplitude inversion') and a novel travel time inversion in terms of robustness of the method and convergence behavior of the solution. We show that the traditional amplitude inversion is orders of magnitudemore » more non-linear and the solution here is likely to get trapped in local minimum, leading to inadequate history match. The proposed travel time inversion is shown to be extremely efficient and robust for practical field applications. The streamline approach is generalized to model water injection in naturally fractured reservoirs through the use of a dual media approach. The fractures and matrix are treated as separate continua that are connected through a transfer function, as in conventional finite difference simulators for modeling fractured systems. A detailed comparison with a commercial finite difference simulator shows very good agreement. Furthermore, an examination of the scaling behavior of the computation time indicates that the streamline approach is likely to result in significant savings for large-scale field applications. We also propose a novel approach to history matching finite-difference models that combines the advantage of the streamline models with the versatility of finite-difference simulation. In our approach, we utilize the streamline-derived sensitivities to facilitate history matching during finite-difference simulation. The use of finite-difference model allows us to account for detailed process physics and compressibility effects. The approach is very fast and avoids much of the subjective judgments and time-consuming trial-and-errors associated with manual history matching. We demonstrate the power and utility of our approach using a synthetic example and two field examples. We have also explored the use of a finite difference reservoir simulator, UTCHEM, for field-scale design and optimization of partitioning interwell tracer tests. The finite-difference model allows us to include detailed physics associated with reactive tracer transport, particularly those related with transverse and cross-streamline mechanisms. We have investigated the potential use of downhole tracer samplers and also the use of natural tracers for the design of partitioning tracer tests. Finally, we discuss several alternative ways of using partitioning interwell tracer tests (PITTs) in oil fields for the calculation of oil saturation, swept pore volume and sweep efficiency, and assess the accuracy of such tests under a variety of reservoir conditions.« less

  19. Nanostructured systems for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Kuvshinov, V. A.; Kuvshinov, I. V.

    2015-10-01

    The reservoir energy or that of the injected heat carrier was used to generate in situ intelligent chemical systems—nanostructured gels, sols and oil-displacing surfactants systems, preserving for a long time in the reservoir a complex of the properties being optimal for oil displacement. The results of field tests and commercial application of physicochemical technologies using nanostructured systems for enhanced oil recovery in oilfields with difficult-to-recover reserves, including deposits of high-viscosity oils, have been presented. Field tests of new "cold" technologies on the deposit of high-viscosity oil in Usinskoye oilfield proved their high efficiency.

  20. Exploiting temporal gradients of antibiotic concentration against the emergence of resistance

    NASA Astrophysics Data System (ADS)

    Bauer, Marianne; Ngampruetikorn, Vudtiwat; Frey, Erwin; Stephens, Greg

    A very simple model for antibiotic resistance - involving one normal and one more resistant species interacting indirectly through a carrying capacity - shows that the temporal variation of the antibiotic can affect the effect of the antibiotic. For a single antibiotic pulse, we find that for different minimal inhibitory concentrations of the two species an optimal pulse shape may exist, which increases the likelihood of bacterial extinction. For a long series of pulses, efficiency does not vary monotonically with the length of the gap between two individual pulses, but instead, the gap length can be optimised by exploiting the competition between the two species. Finally, a series of pulses is not always more efficient than a single pulse. Shorter pulses may be more efficient in an initial time window without risking population level resistance. We elucidate this behaviour with a phase diagram, and discuss the meaning of this work for current experiments. (equally contributing author).

  1. Secure detection in quantum key distribution by real-time calibration of receiver

    NASA Astrophysics Data System (ADS)

    Marøy, Øystein; Makarov, Vadim; Skaar, Johannes

    2017-12-01

    The single-photon detectionefficiency of the detector unit is crucial for the security of common quantum key distribution protocols like Bennett-Brassard 1984 (BB84). A low value for the efficiency indicates a possible eavesdropping attack that exploits the photon receiver’s imperfections. We present a method for estimating the detection efficiency, and calculate the corresponding secure key generation rate. The estimation is done by testing gated detectors using a randomly activated photon source inside the receiver unit. This estimate gives a secure rate for any detector with non-unity single-photon detection efficiency, both inherit or due to blinding. By adding extra optical components to the receiver, we make sure that the key is extracted from photon states for which our estimate is valid. The result is a quantum key distribution scheme that is secure against any attack that exploits detector imperfections.

  2. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar.« less

  3. First report of the successful operation of a side stream supersaturation hypolimnetic oxygenation system in a eutrophic, shallow reservoir.

    PubMed

    Gerling, Alexandra B; Browne, Richard G; Gantzer, Paul A; Mobley, Mark H; Little, John C; Carey, Cayelan C

    2014-12-15

    Controlling hypolimnetic hypoxia is a key goal of water quality management. Hypoxic conditions can trigger the release of reduced metals and nutrients from lake sediments, resulting in taste and odor problems as well as nuisance algal blooms. In deep lakes and reservoirs, hypolimnetic oxygenation has emerged as a viable solution for combating hypoxia. In shallow lakes, however, it is difficult to add oxygen into the hypolimnion efficiently, and a poorly designed hypolimnetic oxygenation system could potentially result in higher turbidity, weakened thermal stratification, and warming of the sediments. As a result, little is known about the viability of hypolimnetic oxygenation in shallow bodies of water. Here, we present the results from recent successful tests of side stream supersaturation (SSS), a type of hypolimnetic oxygenation system, in a shallow reservoir and compare it to previous side stream deployments. We investigated the sensitivity of Falling Creek Reservoir, a shallow (Zmax = 9.3 m) drinking water reservoir located in Vinton, Virginia, USA, to SSS operation. We found that the SSS system increased hypolimnetic dissolved oxygen concentrations at a rate of ∼1 mg/L/week without weakening stratification or warming the sediments. Moreover, the SSS system suppressed the release of reduced iron and manganese, and likely phosphorus, from the sediments. In summary, SSS systems hold great promise for controlling hypolimnetic oxygen conditions in shallow lakes and reservoirs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The Early Differentiation History of Mars from W-182-Nd-142 Isotope Systematics in the SNC Meteorites

    NASA Technical Reports Server (NTRS)

    Foley, C. Nicole; Wadhwa, M.; Borg, L. E.; Janney, P. E.; Hines, R.; Grove, T. L.

    2005-01-01

    We report here the results of an investigation of W and Nd isotopes in the SNC (Shergottite-Nakhlite-Chassignite (martian)) meteorites. We have determined that epsilon W-182 values in the nakhlites are uniform within analytical uncertainties and have an average value of approx. 3. Also, while epsilon W-182 values in the shergottites have a limited range (from 0.3-0.7), their epsilon Nd-142 values vary considerably (from -0.2-0.9). There appears to be no correlation between epsilon W-182 and epsilon Nd-142 in the nakhlites and shergottites. These results shed new light on early differentiation processes on Mars, particularly on the timing and nature of fractionation in silicate reservoirs. Assuming a two-stage model, the metallic core is estimated to have formed at approx. 12 Myr after the beginning of the solar system. Major silicate differentiation established the nakhlite source reservoir before approx. 4542 Ma and the shergottite source reservoirs at 4525 [sup +19 sub -21] Ma. These ages imply that, within the uncertainties afforded by the Hf-182-W-182 and Sm-146-Nd-142 chronometers, the silicate differentiation events that established the source reservoirs of the nakhlites and shergottites may have occurred contemporaneously, possibly during crystallization of a global magma ocean. The distinct W-182-Nd-142 isotope systematics in the nakhlites and the shergottites imply the presence of at least three isotopically distinct silicate reservoirs on Mars, two of which are depleted in incompatible lithophile elements relative to chondrites, and the third is enriched. The two depleted silicate reservoirs most likely reside in the Martian mantle, while the enriched reservoir could be either in the crust or the mantle. Therefore, the W-182-Nd-142 isotope systematics indicate that the nakhlites and the shergottites originated from distinct source reservoirs and cannot be petrogenetically related. A further implication is that the source reservoirs of the nakhlites and shergottites on Mars have been isolated since their establishment before approx. 4.5 Ga. Therefore, there has been no giant impact or efficient global mantle convection to thoroughly homogenize the Martian mantle following the establishment of the SNC source reservoirs.

  5. Effective water surface mapping in macrophyte-covered reservoirs in NE Brazil based on TerraSAR-X time series

    NASA Astrophysics Data System (ADS)

    Zhang, Shuping; Foerster, Saskia; Medeiros, Pedro; de Araújo, José Carlos; Waske, Bjoern

    2018-07-01

    Water supplies in northeastern Brazil strongly depend on the numerous surface water reservoirs of various sizes there. However, the seasonal and long-term water surface dynamics of these reservoirs, particularly the large number of small ones, remain inadequately known. Remote sensing techniques have shown great potentials in water bodies mapping. Yet, the widespread presence of macrophytes in most of the reservoirs often impedes the delineation of the effective water surfaces. Knowledge of the dynamics of the effective water surfaces in the reservoirs is essential for understanding, managing, and modelling the local and regional water resources. In this study, a two-year time series of TerraSAR-X (TSX) satellite data was used to monitor the effective water surface areas in nine reservoirs in NE Brazil. Calm open water surfaces were obtained by segmenting the backscattering coefficients of TSX images with minimum error thresholding. Linear unmixing was implemented on the distributions of gray-level co-occurrence matrix (GLCM) variance in the reservoirs to quantify the proportions of sub-populations dominated by different types of scattering along the TSX time series. By referring to the statistics and the seasonal proportions of the GLCM variance sub-populations the GLCM variance was segmented to map the vegetated water surfaces. The effective water surface areas that include the vegetation-covered waters as well as calm open water in the reservoirs were mapped with accuracies >77%. The temporal and spatial change patterns of water surfaces in the nine reservoirs over a period of two consecutive dry and wet seasons were derived. Precipitation-related soil moisture changes, topography and the dense macrophyte canopies are the main sources of errors in the such-derived effective water surfaces. Independent from in-situ data, the approach employed in this study shows great potential in monitoring water surfaces of different complexity and macrophyte coverage. The effective water surface areas obtained for the reservoirs can provide valuable input for efficient water management and improve the hydrological modelling in this region.

  6. Impact of NiB Coating on the Efficiency, Scuffing, and Wear of Gear Contacts

    DTIC Science & Technology

    2013-05-01

    required for gear applications. 15. SUBJECT TERMS surface engineering, tribology , traction, wear, scuffing, transmission efficiency 16. SECURITY...force. A third thermocouple was placed inside the oil reservoir to measure supply temperature. The temperature measurements were also monitored and...in figure 7b. Similarly, a commonly used chemical polishing process was applied to a third batch of ground specimens to achieve smoother isotropic

  7. Universality of maximum-work efficiency of a cyclic heat engine based on a finite system of ultracold atoms.

    PubMed

    Ye, Zhuolin; Hu, Yingying; He, Jizhou; Wang, Jianhui

    2017-07-24

    We study the performance of a cyclic heat engine which uses a small system with a finite number of ultracold atoms as its working substance and works between two heat reservoirs at constant temperatures T h and T c (

  8. Integration of geology, geostatistics, well logs and pressure data to model a heterogeneous supergiant field in Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samimi, B.; Bagherpour, H.; Nioc, A.

    1995-08-01

    The geological reservoir study of the supergiant Ahwaz field significantly improved the history matching process in many aspects, particularly the development of a geostatistical model which allowed a sound basis for changes and by delivering much needed accurate estimates of grid block vertical permeabilities. The geostatistical reservoir evaluation was facilitated by using the Heresim package and litho-stratigraphic zonations for the entire field. For each of the geological zones, 3-dimensional electrolithofacies and petrophysical property distributions (realizations) were treated which captured the heterogeneities which significantly affected fluid flow. However, as this level of heterogeneity was at a significantly smaller scale than themore » flow simulation grid blocks, a scaling up effort was needed to derive the effective flow properties of the blocks (porosity, horizontal and vertical permeability, and water saturation). The properties relating to the static reservoir description were accurately derived by using stream tube techniques developed in-house whereas, the relative permeabilities of the grid block were derived by dynamic pseudo relative permeability techniques. The prediction of vertical and lateral communication and water encroachment was facilitated by a close integration of pressure, saturation data, geostatistical modelling and sedimentological studies of the depositional environments and paleocurrents. The nature of reservoir barriers and baffles varied both vertically and laterally in this heterogeneous reservoir. Maps showing differences in pressure between zones after years of production served as a guide to integrating the static geological studies to the dynamic behaviour of each of the 16 reservoir zones. The use of deep wells being drilled to a deeper reservoir provided data to better understand the sweep efficiency and the continuity of barriers and baffles.« less

  9. Efficient reinforcement learning of a reservoir network model of parametric working memory achieved with a cluster population winner-take-all readout mechanism.

    PubMed

    Cheng, Zhenbo; Deng, Zhidong; Hu, Xiaolin; Zhang, Bo; Yang, Tianming

    2015-12-01

    The brain often has to make decisions based on information stored in working memory, but the neural circuitry underlying working memory is not fully understood. Many theoretical efforts have been focused on modeling the persistent delay period activity in the prefrontal areas that is believed to represent working memory. Recent experiments reveal that the delay period activity in the prefrontal cortex is neither static nor homogeneous as previously assumed. Models based on reservoir networks have been proposed to model such a dynamical activity pattern. The connections between neurons within a reservoir are random and do not require explicit tuning. Information storage does not depend on the stable states of the network. However, it is not clear how the encoded information can be retrieved for decision making with a biologically realistic algorithm. We therefore built a reservoir-based neural network to model the neuronal responses of the prefrontal cortex in a somatosensory delayed discrimination task. We first illustrate that the neurons in the reservoir exhibit a heterogeneous and dynamical delay period activity observed in previous experiments. Then we show that a cluster population circuit decodes the information from the reservoir with a winner-take-all mechanism and contributes to the decision making. Finally, we show that the model achieves a good performance rapidly by shaping only the readout with reinforcement learning. Our model reproduces important features of previous behavior and neurophysiology data. We illustrate for the first time how task-specific information stored in a reservoir network can be retrieved with a biologically plausible reinforcement learning training scheme. Copyright © 2015 the American Physiological Society.

  10. How Darcy's equation is linked to the linear reservoir at catchment scale

    NASA Astrophysics Data System (ADS)

    Savenije, Hubert H. G.

    2017-04-01

    In groundwater hydrology two simple linear equations exist that describe the relation between groundwater flow and the gradient that drives it: Darcy's equation and the linear reservoir. Both equations are empirical at heart: Darcy's equation at the laboratory scale and the linear reservoir at the watershed scale. Although at first sight they show similarity, without having detailed knowledge of the structure of the underlying aquifers it is not trivial to upscale Darcy's equation to the watershed scale. In this paper, a relatively simple connection is provided between the two, based on the assumption that the groundwater system is organized by an efficient drainage network, a mostly invisible pattern that has evolved over geological time scales. This drainage network provides equally distributed resistance to flow along the streamlines that connect the active groundwater body to the stream, much like a leaf is organized to provide all stomata access to moisture at equal resistance.

  11. Overspill avalanching in a dense reservoir network

    PubMed Central

    Mamede, George L.; Araújo, Nuno A. M.; Schneider, Christian M.; de Araújo, José Carlos; Herrmann, Hans J.

    2012-01-01

    Sustainability of communities, agriculture, and industry is strongly dependent on an effective storage and supply of water resources. In some regions the economic growth has led to a level of water demand that can only be accomplished through efficient reservoir networks. Such infrastructures are not always planned at larger scale but rather made by farmers according to their local needs of irrigation during droughts. Based on extensive data from the upper Jaguaribe basin, one of the world’s largest system of reservoirs, located in the Brazilian semiarid northeast, we reveal that surprisingly it self-organizes into a scale-free network exhibiting also a power-law in the distribution of the lakes and avalanches of discharges. With a new self-organized-criticality-type model we manage to explain the novel critical exponents. Implementing a flow model we are able to reproduce the measured overspill evolution providing a tool for catastrophe mitigation and future planning. PMID:22529343

  12. New policies and measures for saving a great manmade reservoir providing drinking water for 20 million people in the Republic of Korea.

    PubMed

    Ahn, K H

    2000-01-01

    Water quality of the Paldang reservoir, the largest drinking water supply source in the Republic Korea provides raw water for about 20 million people living in Seoul Metropolitan area. Water quality has been deteriorating mainly due to improperly treated livestock waste and domestic wastewater discharged from motels, restaurants, and private homes. A recent survey conducted by the Ministry of Environment (MOE) showed that the water quality of this reservoir has been identified as Class III must contain less than 6 ppm of BOD, which will require advanced purification treatment before it can be used as drinking water. The MOE also announced that this water source would no longer be potable unless wastewater in the catchment is treated efficiently. To protect drinking water resources, the MOE has set up comprehensive management. These programmes include new regulations, measures, land use planning and economic incentives.

  13. Multiwell fracturing experiments. [Nitrogen foam fracture treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.

    The objective of the Multiwell fracturing experiments is to test and develop the technology for the efficient stimulation of tight, lenticular gas sands. This requires basic understanding of: (1) fracture behavior and geometry in this complex lithologic environment, and (2) subsequent production into the created fracture. The intricate interplay of the hydraulic fracture with the lens geometry, the internal reservoir characteristics (fractures, reservoir breaks, etc.), the in situ stresses, and the mechanical defects (fracture, bedding, etc.) need to be defined in order to develop a successful stimulation program. The stimulation phase of the Multiwell Experiment is concerned with: (1) determiningmore » important rock/reservoir properties that influence or control fracture geometry and behavior, (2) designing fracture treatments to achieve a desired size and objectives, and (3) conducting post-treatment analyses to evaluate the effectiveness of the treatment. Background statement, project description, results and evaluation of future plans are presented. 5 refs., 2 figs., 2 tabs.« less

  14. Enhancing the revision of the static geological model of the Stuttgart Formation at the Ketzin pilot site by integration of reservoir simulations and 3D seismics

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Norden, Ben; Ivanova, Alexandra; Lüth, Stefan

    2017-04-01

    Pilot-scale carbon dioxide storage has been performed at the Ketzin pilot site in Germany from June 2007 to August 2013 with about 67 kt of CO2 injected into the Upper Triassic Stuttgart Formation. In this context, the main aims focussed on verification of the technical feasibility of CO2 storage in saline aquifers and development of efficient strategies for CO2 behaviour monitoring and prediction. A static geological model has been already developed at an early stage of this undertaking, and continuously revised with the availability of additional geological and operational data as well as by means of reservoir simulations, allowing for revisions in line with the efforts to achieve a solid history match in view of well bottomhole pressures and CO2 arrival times at the observation wells. Three 3D seismic campaigns followed the 2005 3D seismic baseline in 2009, 2012 and 2015. Consequently, the interpreted seismic data on spatial CO2 thickness distributions in the storage reservoir as well as seismic CO2 detection limits from recent conformity studies enabled us to enhance the previous history-matching results by adding a spatial component to the previous observations, limited to points only. For that purpose, we employed the latest version of the history-matched static geological reservoir model and revised the gridding scheme of the reservoir simulation model by coarsening and introducing local grid refinements at the areas of interest. Further measures to ensure computational efficiency included the application of the MUFITS reservoir simulator (BLACKOIL module) with PVT data derived from the MUFITS GASSTORE module. Observations considered in the inverse model calibration for a simulation time of about 5 years included well bottomhole pressures, CO2 arrival times and seismically determined CO2 thickness maps for 2009 and 2012. Pilot points were employed by means of the PEST++ inverse simulation framework to apply permeability multipliers, interpolated by kriging to the reservoir simulation model grid. Our results exhibit an excellent well bottomhole pressure match, good agreement with the observed CO2 arrival times at the observation wells, a reasonable agreement of the spatial CO2 distribution with the CO2 thickness maps derived from the 2009, 2012 and 2015 3D seismic campaigns as well as a good agreement with hydraulic tests conducted before CO2 injection. Hence, the inversely determined permeability multipliers provide an excellent basis for further revision of the static geological model of the Stuttgart Formation.

  15. Population dynamics modeling of introduced smallmouth bass in the upper Colorado River basin

    USGS Publications Warehouse

    Breton, André R.; Winkelman, Dana L.; Bestgen, Kevin R.; Hawkins, John A.

    2014-01-01

    The purpose of these analyses was to identify an effective control strategy to further reduce smallmouth bass in the upper Colorado River basin from the current level. Our simulation results showed that “the surge”, an early to mid-summer increase in electrofishing effort targeting nest-guarding male smallmouth bass, should be made a core component of any future smallmouth bass management strategy in the upper basin. Immigration from off channel reservoirs is supporting smallmouth bass popualtions in the Yampa River and our modeling analyses suggest that smallmouth bass  in Little Yampa Canyon might go extinct in a few years under the present level of exploitation.

  16. FPGA-Based Stochastic Echo State Networks for Time-Series Forecasting.

    PubMed

    Alomar, Miquel L; Canals, Vincent; Perez-Mora, Nicolas; Martínez-Moll, Víctor; Rosselló, Josep L

    2016-01-01

    Hardware implementation of artificial neural networks (ANNs) allows exploiting the inherent parallelism of these systems. Nevertheless, they require a large amount of resources in terms of area and power dissipation. Recently, Reservoir Computing (RC) has arisen as a strategic technique to design recurrent neural networks (RNNs) with simple learning capabilities. In this work, we show a new approach to implement RC systems with digital gates. The proposed method is based on the use of probabilistic computing concepts to reduce the hardware required to implement different arithmetic operations. The result is the development of a highly functional system with low hardware resources. The presented methodology is applied to chaotic time-series forecasting.

  17. Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene

    DOE PAGES

    O'Hern, Sean C.; Jang, Doojoon; Bose, Suman; ...

    2015-04-27

    Monolayer nanoporous graphene represents an ideal membrane for molecular separations, but its practical realization is impeded by leakage through defects in the ultrathin graphene. Here, we report a multiscale leakage-sealing process that exploits the nonpolar nature and impermeability of pristine graphene to selectively block defects, resulting in a centimeter-scale membrane that can separate two fluid reservoirs by an atomically thin layer of graphene. After introducing subnanometer pores in graphene, the membrane exhibited rejection of multivalent ions and small molecules and water flux consistent with prior molecular dynamics simulations. The results indicate the feasibility of constructing defect-tolerant monolayer graphene membranes formore » nanofiltration, desalination, and other separation processes.« less

  18. FPGA-Based Stochastic Echo State Networks for Time-Series Forecasting

    PubMed Central

    Alomar, Miquel L.; Canals, Vincent; Perez-Mora, Nicolas; Martínez-Moll, Víctor; Rosselló, Josep L.

    2016-01-01

    Hardware implementation of artificial neural networks (ANNs) allows exploiting the inherent parallelism of these systems. Nevertheless, they require a large amount of resources in terms of area and power dissipation. Recently, Reservoir Computing (RC) has arisen as a strategic technique to design recurrent neural networks (RNNs) with simple learning capabilities. In this work, we show a new approach to implement RC systems with digital gates. The proposed method is based on the use of probabilistic computing concepts to reduce the hardware required to implement different arithmetic operations. The result is the development of a highly functional system with low hardware resources. The presented methodology is applied to chaotic time-series forecasting. PMID:26880876

  19. STS operations planning - Current status and outlook for the future

    NASA Technical Reports Server (NTRS)

    Lee, C. M.

    1981-01-01

    Consideration is given to the status of Space Shuttle operations planning and outlook for the period 1982-94, with some speculations on Shuttle-related space operations early in the next century. Attention is given to the evolution of Shuttle payload capabilities over the next five years. The following list of near-earth environment factors to be exploited by the Space Shuttle is given: (1) easy control of gravity; (2) absence of atmosphere; (3) a comprehensive view of the earth's surface and atmosphere; (4) isolation of hazardous processes from earth biosphere; (5) freely available light, heat and photovoltaic power; (6) an infinite natural reservoir for the disposal of radioactive waste products; and (7) a super-cold heat sink.

  20. MULTIPHASE FLOW AND TRANSPORT IN POROUS MEDIA

    EPA Science Inventory

    Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. n petroleum reservoir engineering efficient recovery of energy reserves is the principal goal. nfortuna...

Top