Haggard, B.E.; Galloway, J.M.; Green, W.R.; Meyer, M.T.
2006-01-01
Recently, our attention has focused on the low level detection of many antibiotics, pharmaceuticals, and other organic chemicals in water resources. The limited studies available suggest that urban or rural streams receiving wastewater effluent are more susceptible to contamination. The purpose of this study was to evaluate the occurrence of antibiotics, pharmaceuticals, and other organic chemicals at 18 sites on seven selected streams in Arkansas, USA, during March, April, and August 2004. Water samples were collected upstream and downstream from the influence of effluent discharges in northwestern Arkansas and at one site on a relatively undeveloped stream in north-central Arkansas. At least one antibiotic, pharmaceutical, or other organic chemical was detected at all sites, except at Spavinaw Creek near Mayesville, Arkansas. The greatest number of detections was observed at Mud Creek downstream from an effluent discharge, including 31 pharmaceuticals and other organic chemicals. The detection of these chemicals occurred in higher frequency at sites downstream from effluent discharges compared to those sites upstream from effluent discharges; total chemical concentration was also greater downstream. Wastewater effluent discharge increased the concentrations of detergent metabolites, fire retardants, fragrances and flavors, and steroids in these streams. Antibiotics and associated degradation products were only found at two streams downstream from effluent discharges. Overall, 42 of the 108 chemicals targeted in this study were found in water samples from at least one site, and the most frequently detected organic chemicals included caffeine, phenol, para-cresol, and acetyl hexamethyl tetrahydro naphthalene (AHTN). ?? ASA, CSSA, SSSA.
W-007H B Plant Process Condensate Treatment Facility. Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rippy, G.L.
1995-01-20
B Plant Process Condensate (BCP) liquid effluent stream is the condensed vapors originating from the operation of the B Plant low-level liquid waste concentration system. In the past, the BCP stream was discharged into the soil column under a compliance plan which expired January 1, 1987. Currently, the BCP stream is inactive, awaiting restart of the E-23-3 Concentrator. B Plant Steam Condensate (BCS) liquid effluent stream is the spent steam condensate used to supply heat to the E-23-3 Concentrator. The tube bundles in the E-23-3 Concentrator discharge to the BCS. In the past, the BCS stream was discharged into themore » soil column. Currently, the BCS stream is inactive. This project shall provide liquid effluent systems (BCP/BCS/BCE) capable of operating for a minimum of 20 years, which does not include the anticipated decontamination and decommissioning (D and D) period.« less
Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.
2011-01-01
This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005 samplings, Boulder Creek downstream from the wastewater treatment plant was 40 percent effluent, and Fourmile Creek downstream from that wastewater treatment plant was 28 percent effluent. At each site, 300 individual constituents were determined to characterize the water. Most of the inorganic constituents were detected in all of the stream and treatment-plant effluent samples, whereas detection of synthetic organic compounds was more limited and contaminants typically occurred only in wastewater treatment-plant effluents and at downstream sites. Concentrations ranged from nanograms per liter to milligrams per liter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, W.L.
1991-10-01
In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F?H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presents themore » results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.« less
Potential tracers for tracking septic tank effluent discharges in watercourses.
Richards, Samia; Withers, Paul J A; Paterson, Eric; McRoberts, Colin W; Stutter, Marc
2017-09-01
Septic tank effluent (STE) contributes to catchment nutrient and pollutant loads. To assess the role of STE discharges in impairment of surface water, it is essential to identify the sources of pollution by tracing contaminants in watercourses. We examined tracers that were present in STE to establish their potential for identifying STE contamination in two stream systems (low and high dilution levels) against the background of upstream sources. The studied tracers were microbial, organic matter fluorescence, caffeine, artificial sweeteners and effluent chemical concentrations. The results revealed that tracer concentration ratios Cl/EC, Cl/NH 4 -N, Cl/TN, Cl/TSS, Cl/turbidity, Cl/total coliforms, Cl/sucralose, Cl/saccharin and Cl/Zn had potential as tracers in the stream with low dilution level (P < 0.05). Fluorescence spectroscopy could detect STE inputs through the presence of the tryptophan-like peak, but was limited to water courses with low level of dilution and was positively correlated with stream Escherichia coli (E. coli) and soluble reactive phosphorus (SRP). The results also suggested that caffeine and artificial sweeteners can be suitable tracers for effluent discharge in streams with low and high level of dilution. Caffeine and saccharin were positively correlated with faecal coliforms, E. coli, total P and SRP, indicating their potential to trace discharge of a faecal origin and to be a marker for effluent P. Caffeine and SRP had similar attenuation behaviour in the receiving stream waters suggesting caffeine's potential role as a surrogate indicator for the behaviour of P downstream of effluent inputs. Taken together, results suggest that a single tracer alone was not sufficient to evaluate STE contamination of watercourses, but rather a combination of multiple chemical and physical tracing approaches should be employed. A multiple tracing approach would help to identify individual and cumulative STE inputs that pose risks to stream waters in order to prioritise and target effective mitigation measures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Barber, Larry B.; Loyo-Rosales, Jorge E.; Rice, Clifford P.; Minarik, Thomas A.; Oskouie, Ali K.
2015-01-01
Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds, with the highest concentrations occurring in streams with the greatest WWTP effluent content. Biomarkers of endocrine disruption in the fish indicated long-term exposure to estrogenic chemicals in the wastewater impacted urban waterways.
Phillips, P.; Chalmers, A.
2009-01-01
Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater-treatment-plant effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater-treatment-plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP-effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10-100 ??g/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 ??g/l, and urban stream-stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP-effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2-butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 ??g/l) because CSO effluent is untreated, and were higher in urban-stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near-surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate that CSO effluent and urban stormwaters can be a significant major source of OWCs entering large water bodies such as Burlington Bay. ?? 2008 American Water Resources Association.
Effects of wastewater effluent discharge on stream quality in Indian Creek, Johnson County, Kansas
Graham, Jennifer L.; Foster, Guy M.
2014-01-01
Contaminants from point and other urban sources affect stream quality in Indian Creek, which is one of the most urban drainage basins in Johnson County, Kansas. The Johnson County Douglas L. Smith Middle Basin and Tomahawk Creek Wastewater Treatment Facilities discharge to Indian Creek. Data collected by the U.S. Geological Survey, in cooperation with Johnson County Wastewater, during June 2004 through June 2013 were used to evaluate stream quality in Indian Creek. This fact sheet summarizes the effects of wastewater effluent discharge on physical, chemical, and biological conditions in Indian Creek downstream from the Douglas L. Smith Middle Basin and Tomahawk Creek Wastewater Treatment Facilities.
A Conceptual Model For Effluent-Dependent Riverine Environments
NASA Astrophysics Data System (ADS)
Murphy, M. T.; Meyerhoff, R. D.; Osterkamp, W. R.; Smith, E. L.; Hawkins, R. H.
2001-12-01
The Arid West Water Quality Research Project (WQRP) is a multi-year, EPA-funded scientific endeavor directed by the Pima County, Wastewater Management Department in southern Arizona and focussed upon several interconnected ecological questions. These questions are crucial to water quality management in the arid and semi arid western US. A key component has been the ecological, hydrological and geomorphological investigation of habitat created by the discharge of treated effluent into ephemeral streams. Such environments are fundamentally different from the dry streams or rivers they displace; however, they are clearly not the perennial streams they superficially resemble. Under Arizona State regulations, such streams can bear the use designation of "Effluent Dependent Waters," or EDWs. Before this investigation, a hydrological/ecological conceptual model for these unique ecosystems had not been published. We have constructed one for general review that is designed to direct future work in the WQRP. The project investigated ten representative, yet contrasting EDW sites distributed throughout arid areas of the western US, to gather both historical and reconnaissance level field data, including in-stream and riparian, habitat and morphometric fluvial data. In most cases, the cross sectional area of the prior channel is oversized relative to the discharge of the introduced effluent. Where bed control is absent, the channels are incised downstream of the discharge point, further suggesting a disequilibrium between the channel and the regulated effluent flow. Several of the studied stream systems primarily convey storm water and are aggradational, exhibiting braided or anastomizing channels, high energy bedforms, and spatially dynamic interfluves. Active channels are formed in response to individual storm events and can be highly dynamic in both location and cross-sectional morphology. This poses a geomorphological challenge in the selection of a discharge point. We structured the conceptual model around accepted riverine ecological models but with important departures signaling the unique characteristics of EDW communities. In many cases, in-stream habitat values were naturally limited by substrate, flow regimes, or other pre-discharge conditions. Our model is designed to give terrestrial habitat equal footing with in-stream resources in ecological assessment techniques. In the arid West, where in-stream water resources are becoming increasingly limited, EDWs offer important refugia and corridors for neotropical migratory birds and other habitat-limited wildlife species. These beneficial uses require different hydrological tools than in-stream systems for assessing habitat health.
Richards, Samia; Withers, Paul J A; Paterson, Eric; McRoberts, Colin W; Stutter, Marc
2016-11-15
Discharges from the widely distributed small point sources of pollutants such as septic tanks contribute to microbial and nutrient loading of streams and can pose risks to human health and stream ecology, especially during periods of ecological sensitivity. Here we present the first comprehensive data on the compositional variability of septic tank effluents (STE) as a potential source of water pollution during different seasons and the associated links to their influence on stream waters. To determine STE parameters and nutrient variations, the biological and physicochemical properties of effluents sampled quarterly from 12 septic tank systems were investigated with concurrent analyses of upstream and downstream receiving waters. The study revealed that during the warmer dryer months of spring and summer, effluents were similar in composition, as were the colder wetter months of autumn and winter. However, spring/summer effluents differed significantly (P<0.05) from autumn/winter for concentrations of biological oxygen demand (BOD), arsenic, barium (Ba), cobalt, chromium, manganese, strontium (Sr), titanium, tungsten (W) and zinc (Zn). With the exception of BOD, Ba and Sr which were greater in summer and spring, the concentrations of these parameters were greater in winter. Receiving stream waters also showed significant seasonal variation (P≤0.05) in alkalinity, BOD, dissolved organic carbon, sulphate, sulphur, lithium, W, Zn and Escherichiacoli abundance. There was a clear significant influence of STE on downstream waters relative to upstream from the source (P<0.05) for total suspended solids, total particulate P and N, ammonium-N, coliforms and E. coli. The findings of this study found seasonal variation in STE and place effluent discharges as a factor affecting adjacent stream quality and call for appropriate measures to reduce or redirect STE discharges away from water courses. Copyright © 2016 Elsevier B.V. All rights reserved.
Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.
2016-01-01
Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.
Reif, Andrew G.; Crawford, J. Kent; Loper, Connie A.; Proctor, Arianne; Manning, Rhonda; Titler, Robert
2012-01-01
Concern over the presence of contaminants of emerging concern, such as pharmaceutical compounds, hormones, and organic wastewater compounds (OWCs), in waters of the United States and elsewhere is growing. Laboratory techniques developed within the last decade or new techniques currently under development within the U.S. Geological Survey now allow these compounds to be measured at concentrations in nanograms per liter. These new laboratory techniques were used in a reconnaissance study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, to determine the occurrence of contaminants of emerging concern in streams, streambed sediment, and groundwater of Pennsylvania. Compounds analyzed for in the study are pharmaceuticals (human and veterinary drugs), hormones (natural and synthetic), and OWCs (detergents, fragrances, pesticides, industrial compounds, disinfectants, polycyclic aromatic hydrocarbons, fire retardants and plasticizers). Reconnaissance sampling was conducted from 2006 to 2009 to identify contaminants of emerging concern in (1) groundwater from wells used to supply livestock, (2) streamwater upstream and downstream from animal feeding operations, (3) streamwater upstream from and streamwater and streambed sediment downstream from municipal wastewater effluent discharges, (4) streamwater from sites within 5 miles of drinking-water intakes, and (5) streamwater and streambed sediment where fish health assessments were conducted. Of the 44 pharmaceutical compounds analyzed in groundwater samples collected in 2006 from six wells used to supply livestock, only cotinine (a nicotine metabolite) and the antibiotics tylosin and sulfamethoxazole were detected. The maximum concentration of any contaminant of emerging concern was 24 nanograms per liter (ng/L) for cotinine, and was detected in a groundwater sample from a Lebanon County, Pa., well. Seven pharmaceutical compounds including acetaminophen, caffeine, carbamazepine, and the four antibiotics tylosin, sulfadimethoxine, sulfamethoxazole, and oxytetracycline were detected in streamwater samples collected in 2006 from six paired stream sampling sites located upstream and downstream from animal-feeding operations. The highest reported concentration of these seven compounds was for the antibiotic sulfamethoxazole (157 ng/L), in a sample from the downstream site on Snitz Creek in Lancaster County, Pa. Twenty-one pharmaceutical compounds were detected in streamwater samples collected in 2006 from five paired stream sampling sites located upstream or downstream from a municipal wastewater-effluent-discharge site. The most commonly detected compounds and maximum concentrations were the anticonvulsant carbamazepine, 276 ng/L; the antihistamine diphenhydramine, 135 ng/L; and the antibiotics ofloxacin, 329 ng/L; sulfamethoxazole, 1,340 ng/L; and trimethoprim, 256 ng/L. A total of 51 different contaminants of emerging concern were detected in streamwater samples collected from 2007 through 2009 at 13 stream sampling sites located downstream from a wastewater-effluent-discharge site. The concentrations and numbers of compounds detected were higher in stream sites downstream from a wastewater-effluent-discharge site than in stream sites upstream from a wastewater-effluent-discharge site. This finding indicates that wastewater-effluent discharges are a source of contaminants of emerging concern; these contaminants were present more frequently in the streambed-sediment samples than in streamwater samples. Antibiotic compounds were often present in both the streamwater and streambed-sediment samples, but many OWCs were present exclusively in the streambed-sediment samples. Compounds with endocrine disrupting potential including detergent metabolites, pesticides, and flame retardants, were present in the streamwater and streambed-sediment samples. Killinger Creek, a stream where wastewater-effluent discharges contribute a large percentage of the total flow, stands out as a stream with particularly high numbers of compounds detected and detected at the highest concentrations measured in the reconnaissance sampling. Nineteen contaminants of emerging concern were detected in streamwater samples collected quarterly from 2007 through 2009 at 27 stream sites within 5 miles of a drinking-water intake. The number of contaminants and the concentrations detected at the stream sites within 5 miles of drinking-water intakes were generally very low (concentrations less than 50 ng/L), much lower than those at sites downstream from a wastewater-effluent discharge. The most commonly detected compounds and maximum concentrations were caffeine, 517 ng/L; carbamazepine, 95 ng/L; sulfamethoxazole, 146 ng/L; and estrone, 3.15 ng/L. The concentrations and frequencies of detection of some of the contaminants of emerging concern appear to vary by season, which could be explained by compound use, flow regime, or differences in degradation rates. Concentrations of some contaminants were associated with lower flows as a result of decreased in-stream dilution of wastewater effluents or other contamination sources. Twenty-two contaminants of emerging concern were detected once each in streamwater samples collected in 2007 and 2008 from 16 fish-health stream sites located statewide. The highest concentrations were for the OWCs, including flame retardants tri(2-butoxyethyl)phosphate (604 ng/L) and tri(2-chloroethyl)phosphate (272 ng/L) and the fragrance isoquinoline (330 ng/L). Far fewer numbers of contaminants of emerging concern were detected at the fish-health sites than at the wastewater-effluent-discharge sites. Most of the fish-health sites were not located directly downstream from a wastewater-effluent discharge, but there were multiple wastewater-effluent discharges in the drainage basins upstream from the sampling sites. No distinct pattern of contaminant occurrence could be discerned for the fish-health stream sites
Riverbank filtration potential of pharmaceuticals in a wastewater-impacted stream
Bradley, Paul M.; Barber, Larry B.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Hubbard, Laura E.; Hutchinson, Kasey J.; Keefe, Steffanie H.; Kolpin, Dana W.
2014-01-01
Pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to high aqueous mobility, designed bioactivity, and effluent-driven hydraulic gradients. In October and December 2012, effluent contributed approximately 99% and 71%, respectively, to downstream flow in Fourmile Creek, Iowa, USA. Strong hydrologic connectivity was observed between surface-water and shallow-groundwater. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater at greater than 0.02 μg L−1 at distances up to 6 m from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed 43% and 55% of 110 total pharmaceutical analytes in surface-water samples in October and December, respectively, with 16% and 6%, respectively, detected in groundwater approximately 20 m from the stream bank. The results demonstrate the importance of effluent discharge as a driver of local hydrologic conditions in an effluent-impacted stream and thus as a fundamental control on surface-water to groundwater transport of effluent-derived pharmaceutical contaminants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-08-01
As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81more » Water Services waste water.« less
USDA-ARS?s Scientific Manuscript database
Urban streams are an integral part of the municipal wastewater treatment process by providing a point of discharge for wastewater treatment plant (WWTP) effluents and additional attenuation through dilution and transformation processes. The receiving surface waters also are a conduit for contaminan...
Williams, Donald R.; Sams, James I.; Mulkerrin, Mary E.
1996-01-01
This report describes the results of a study by the U.S. Geological Survey, done in cooperation with the Somerset Conservation District, to locate and sample abandoned coal-mine discharges in the Stonycreek River Basin, to prioritize the mine discharges for remediation, and to determine the effects of the mine discharges on water quality of the Stonycreek River and its major tributaries. From October 1991 through November 1994, 270 abandoned coal-mine discharges were located and sampled. Discharges from 193 mines exceeded U.S. Environmental Protection Agency effluent standards for pH, discharges from 122 mines exceeded effluent standards for total-iron concentration, and discharges from 141 mines exceeded effluent standards for total-manganese concentration. Discharges from 94 mines exceeded effluent standards for all three constituents. Only 40 mine discharges met effluent standards for pH and concentrations of total iron and total manganese.A prioritization index (PI) was developed to rank the mine discharges with respect to their loading capacity on the receiving stream. The PI lists the most severe mine discharges in a descending order for the Stonycreek River Basin and for subbasins that include the Shade Creek, Paint Creek, Wells Creek, Quemahoning Creek, Oven Run, and Pokeytown Run Basins.Passive-treatment systems that include aerobic wetlands, compost wetlands, and anoxic limestone drains (ALD's) are planned to remediate the abandoned mine discharges. The successive alkalinity-producing-system treatment combines ALD technology with the sulfate reduction mechanism of the compost wetland to effectively remediate mine discharge. The water quality and flow of each mine discharge will determine which treatment system or combination of treatment systems would be necessary for remediation.A network of 37 surface-water sampling sites was established to determine stream-water quality during base flow. A series of illustrations show how water quality in the mainstem deteriorates downstream because of inflows from tributaries affected by acidic mine discharges. From the upstream mainstem site (site 801) to the outflow mainstem site (site 805), pH decreased from 6.8 to 4.2, alkalinity was completely depleted by inflow acidities, and total-iron discharges increased from 30 to 684 pounds per day. Total-manganese and total-sulfate discharges increased because neither constituent precipitates readily. Also, discharges of manganese and sulfate entering the mainstem from tributary streams have a cumulative effect.Oven Run and Pokeytown Run are two small tributary streams significantly affected by acidic mine drainage (AMD) that flow into the Stonycreek River near the town of Hooversville. The Pokeytown Run inflow is about 0.5 mile downstream from the Oven Run inflow. These two streams are the first major source of AMD flowing into the Stonycreek River. Data collected on the Stonycreek River above the Oven Run inflow and below the Pokeytown Run inflow show a decrease in pH from 7.6 to 5.1, a decrease in alkalinity concentration from 42 to 2 milligrams per liter, an increase in total sulfate discharge from 18 to 41 tons per day, and an increase in total iron discharge from 29 to 1,770 pounds per day. Data collected at three mainstem sites on the Stonycreek River below Oven Run and Pokeytown Run show a progressive deterioration in river water quality from AMD.Shade Creek and Paint Creek are other tributary streams to the Stonycreek River that have a significant negative effect on water quality of the Stonycreek River. One third of the abandoned-mine discharges sampled were in the Shade Creek and Paint Creek Basins.
Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Foster, Guy M.; Poulton, Barry C.; Paxson, Chelsea R.; Harris, Theodore D.
2014-01-01
Indian Creek is one of the most urban drainage basins in Johnson County, Kansas, and environmental and biological conditions of the creek are affected by contaminants from point and other urban sources. The Johnson County Douglas L. Smith Middle Basin (hereafter referred to as the “Middle Basin”) and Tomahawk Creek Wastewater Treatment Facilities (WWTFs) discharge to Indian Creek. In summer 2010, upgrades were completed to increase capacity and include biological nutrient removal at the Middle Basin facility. There have been no recent infrastructure changes at the Tomahawk Creek facility; however, during 2009, chemically enhanced primary treatment was added to the treatment process for better process settling before disinfection and discharge with the added effect of enhanced phosphorus removal. The U.S. Geological Survey, in cooperation with Johnson County Wastewater, assessed the effects of wastewater effluent on environmental and biological conditions of Indian Creek by comparing two upstream sites to four sites located downstream from the WWTFs using data collected during June 2004 through June 2013. Environmental conditions were evaluated using previously and newly collected discrete and continuous data and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This study improves the understanding of the effects of wastewater effluent on stream-water and streambed sediment quality, biological community composition, and ecosystem function in urban areas. After the addition of biological nutrient removal to the Middle Basin WWTF in 2010, annual mean total nitrogen concentrations in effluent decreased by 46 percent, but still exceeded the National Pollutant Discharge Elimination System (NPDES) wastewater effluent permit concentration goal of 8.0 milligrams per liter (mg/L); however, the NPDES wastewater effluent permit total phosphorus concentration goal of 1.5 mg/L or less was achieved at the Middle Basin WWTF. At the Tomahawk Creek WWTF, after the addition of chemically enhanced primary treatment in 2009, effluent discharges also had total phosphorus concentrations below 1.5 mg/L. After the addition of biological nutrient removal, annual total nitrogen and phosphorus loads from the Middle Basin WWTF decreased by 42 and 54 percent, respectively, even though effluent volume increased by 11 percent. Annual total phosphorus loads from the Tomahawk Creek WWTF after the addition of chemically enhanced primary treatment decreased by 54 percent despite a 33-percent increase in effluent volume. Total nitrogen and phosphorus from the WWTFs contributed between 30 and nearly 100 percent to annual nutrient loads in Indian Creek depending on streamflow conditions. In-stream total nitrogen primarily came from wastewater effluent except during years with the highest streamflows. Most of the in-stream total phosphorus typically came from effluent during dry years and from other urban sources during wet years. During 2010 through 2013, annual mean discharge from the Middle Basin WWTF was about 75 percent of permitted design capacity. Annual nutrient loads likely will increase when the facility is operated at permitted design capacity; however, estimated maximum annual nutrient loads from the Middle Basin WWTF were 27 to 38 percent lower than before capacity upgrades and the addition of biological nutrient removal to treatment processes. Thus, the addition of biological nutrient removal to the Middle Basin wastewater treatment process should reduce overall nutrient loads from the facility even when the facility is operated at permitted design capacity. The effects of wastewater effluent on the water quality of Indian Creek were most evident during below-normal and normal streamflows (about 75 percent of the time) when wastewater effluent represented about 24 percent or more of total streamflow. Wastewater effluent had the most substantial effect on nutrient concentrations in Indian Creek. Total and inorganic nutrient concentrations at the downstream sites during below-normal and normal streamflows were 10 to 100 times higher than at the upstream sites, even after changes in treatment practices at the WWTFs. Median total phosphorus concentrations during below-normal and normal streamflows at a downstream site were 43 percent lower following improvements in wastewater treatment processes. Similar decreases in total nitrogen were not observed, likely because total nitrogen concentrations only decreased in Middle Basin effluent and wastewater contributed a higher percentage to streamflows when nutrient samples were collected during the after-upgrade period. The wastewater effluent discharges to Indian Creek caused changes in stream-water quality that may affect biological community structure and ecosystem processes, including higher concentrations of bioavailable nutrients (nitrate and orthophosphorus) and warmer water temperatures during winter months. Other urban sources of contaminants also caused changes in stream-water quality that may affect biological community structure and ecosystem processes, including higher turbidities downstream from construction areas and higher specific conductance and chloride concentrations during winter months. Chloride concentrations exceeded acute and chronic exposure criteria at all Indian Creek study sites, regardless of wastewater influence, for weeks or months during winter. Streambed sediment chemistry was affected by wastewater (elevated nutrient and organic wastewater-indicator compound concentrations) and other contaminants from urban sources (elevated polyaromatic hydrocarbon concentrations). Overall habitat conditions were suboptimal or marginal at all sites; general decline in habitat conditions along the upstream-downstream gradient likely was caused by the cumulative effects of urbanization with increasing drainage basin size. Wastewater effluent likely affected algal periphyton biomass and community composition, primary production, and community respiration in Indian Creek. Functional stream health, evaluated using a preliminary framework based on primary production and community respiration, was mildly or severely impaired at most downstream sites relative to an urban upstream Indian Creek site. The mechanistic cause of the changes in these biological variables are unclear, though elevated nutrient concentrations were positively correlated with algal biomass, primary production, and community respiration. Macroinvertebrate communities indicated impairment at all sites, and Kansas Department of Health and Environment aquatic life support scores indicated conditions nonsupporting of aquatic life, regardless of wastewater influences. Urban influences, other than wastewater effluent discharge, likely control macroinvertebrate community structure in Indian Creek. Changes in treatment processes at the Middle Basin and Tomahawk Creek WWTFs improved wastewater effluent quality and decreased nutrient loads, but wastewater effluent discharges still had negative effects on the environmental and biological conditions at downstream Indian Creek sites. Wastewater effluent discharge into Indian Creek likely contributed to changes in measures of ecosystem structure (streamflow, water and streambed-sediment chemistry, algal biomass, and algal periphyton community composition) and function (primary production and community respiration) along the upstream-downstream gradient. Wastewater effluent discharges maintained streamflows and increased nutrient concentrations, algal biomass, primary production, and community respiration at the downstream sites. Functional stream health was severely impaired downstream from the Middle Basin WWTF and mildly impaired downstream from the Tomahawk WWTF relative to the urban upstream site. As distance from the Middle Basin WWTF increased, nutrient concentrations, algal biomass, primary production, and community respiration decreased, and functional stream health was no longer impaired 9.5 kilometers downstream from the discharge relative to the urban upstream site. Therefore, although wastewater effluent caused persistent changes in environmental and biological conditions and functional stream health at sites located immediately downstream from WWTF effluent discharges, some recovery to conditions more similar to the urban upstream site occurred within a relatively short distance.
NASA Astrophysics Data System (ADS)
Ledford, S. H.; Price, J. R.; Ryan, M. O.; Toran, L.; Sales, C. M.
2017-12-01
New technologies are allowing for intense scrutiny of the impact of land use on microbial communities in stream networks. We used a combination of analytical chemistry, real-time polymerase chain reaction (qPCR) and targeted amplicon sequencing for a preliminary study on the impact of wastewater treatment plant effluent discharge on urban streams. Samples were collected on two dates above and below treatment plants on the Wissahickon Creek, and its tributary, Sandy Run, in Montgomery County, PA, USA. As expected, effluent was observed to be a significant source of nutrients and human and non-specific fecal associated taxa. There was an observed increase in the alpha diversity at locations immediately below effluent outflows, which contributed many taxa involved in wastewater treatment processes and nutrient cycling to the stream's microbial community. Unexpectedly, modeling of microbial community shifts along the stream was not controlled by concentrations of measured nutrients. Furthermore, partial recovery, in the form of decreasing abundances of bacteria and nutrients associated with wastewater treatment plant processes, nutrient cycling bacteria, and taxa associated with fecal and sewage sources, was observed between effluent sources. Antecedent moisture conditions impacted overall microbial community diversity, with higher diversity occurring after rainfall. These findings hint at resilience in stream microbial communities to recover from wastewater treatment plant effluent and are vital to understanding the impacts of urbanization on microbial stream communities.
Galloway, Joel M.; Haggard, Brian E.; Meyers, Michael T.; Green, W. Reed
2005-01-01
The U.S. Geological Survey, in cooperation with the University of Arkansas and the U.S. Department of Agriculture, Agricultural Research Service, collected data in 2004 to determine the occurrence of pharmaceuticals and other organic wastewater constituents, including many constituents of emerging environmental concern, in selected streams in northern Arkansas. Samples were collected in March and April 2004 from 17 sites located upstream and downstream from wastewater- treatment plant effluent discharges on 7 streams in northwestern Arkansas and at 1 stream site in a relatively undeveloped basin in north-central Arkansas. Additional samples were collected at three of the sites in August 2004. The targeted organic wastewater constituents and sample sites were selected because wastewater-treatment plant effluent discharge provides a potential point source of these constituents and analytical techniques have improved to accurately measure small amounts of these constituents in environmental samples. At least 1 of the 108 pharmaceutical or other organic wastewater constituents was detected at all sites in 2004, except at Spavinaw Creek near Maysville, Arkansas. The number of detections generally was greater at sites downstream from municipal wastewater-treatment plant effluent discharges (mean = 14) compared to sites not influenced by wastewatertreatment plants (mean = 3). Overall, 42 of the 108 constituents targeted in the collected water-quality samples were detected. The most frequently detected constituents included caffeine, phenol, para-cresol, and acetyl hexamethyl tetrahydro naphthalene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This document constitutes the WAC 173-216 State Waste Discharge Permit application for six W-252 liquid effluent streams at the Hanford Site. Appendices B through H correspond to Section B through H in the permit application form. Within each appendix, sections correspond directly to the respective questions on the application form. The appendices include: Product or service information; Plant operational characteristics; Water consumption and waterloss; Wastewater information; Stormwater; Other information; and Site assessment.
Nedeau, Ethan J; Merritt, Richard W; Kaufman, Michael G
2003-01-01
We studied the effect of an industrial effluent on the water quality, habitat quality, and benthic macroinvertebrates of an urban stream in southwestern Michigan (USA). The effluent affected water quality by raising in-stream temperatures 13-18 degree C during colder months and carrying high amounts of iron (> 20 x higher than ambient) that covered the streambed. The effluent also affected habitat conditions by increasing total stream discharge by 50-150%, causing a significant change in substrate and flow conditions. We used three methods to collect benthic macroinvertebrates in depositional and erosional habitats and to understand the relative importance of habitat quality and water quality alterations. Macroinvertebrate response variables included taxonomic richness, abundance, and proportional abundance of sensitive taxonomic groups. Results indicated that the effluent had a positive effect on macroinvertebrate communities by increasing the quantity of riffle habitat, but a negative effect on macroinvertebrate communities by reducing water quality. Results illustrated the need for careful consideration of habitat quality and water quality in restoration or remediation programs.
300 area TEDF NPDES Permit Compliance Monitoring Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loll, C.M.
1995-09-05
This document presents the 300 Area Treated Effluent Disposal Facility (TEDF) National Pollutant Discharge Elimination System (NPDES) Permit Compliance Monitoring Plan (MP). The MP describes how ongoing monitoring of the TEDF effluent stream for compliance with the NPDES permit will occur. The MP also includes Quality Assurance protocols to be followed.
Loar, James M; Stewart, Arthur J; Smith, John G
2011-06-01
In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy's Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated once-through cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody's biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.
NASA Astrophysics Data System (ADS)
Loar, James M.; Stewart, Arthur J.; Smith, John G.
2011-06-01
In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy's Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated once-through cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody's biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.
Fuller, Richard H.; Shay, J.M.; Ferreira, R.F.; Hoffman, R.J.
1978-01-01
Streams draining the mined areas of massive sulfide ore deposits in the Shasta Mining Districts of northern California are generally acidic and contain large concentrations of dissolved metals, including iron, copper, and zinc. The streams, including Flat, Little Backbone, Spring, West Squaw, Horse, and Zinc Creeks, discharge into Shasta Reservoir and the Sacramento River and have caused numerous fish kills. The sources of pollution are discharge from underground mines, streams that flow into open pits, and streams that flow through pyritic mine dumps where the oxidation of pyrite and other sulfide minerals results in the production of acid and the mobilization of metals. Suggested methods of treatment include the use of air and hydraulic seals in the mines, lime neutralization of mine effluent, channeling of runoff and mine effluent away from mine and tailing areas, and the grading and sealing of mine dumps. A comprehensive preabatement and postabatement program is recommended to evaluate the effects of any treatment method used. (Woodard-USGS)
Dean E. Fletcher; S. David Wilkins; J.V. McArthur; Gary K. Meffe
2000-01-01
Two tributary streams (Fourmile branch and Pen branch) located on the US Department of Energy's Savannah river site in west-central South Carolina, USA received thermal discharges from nuclear production reactors for over 30 years. Effluent releases produced stream water temperatures of over 50°C and stream flows of ten times above their base level. Consequently,...
Barber, Larry B.; Hladik, Michelle; Vajda, Alan M.; Fitzgerald, Kevin C.; Douville, Chris
2015-01-01
The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m3 d−1 design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L−1; n=5) and 10 HDBPs (mean total concentration = 4.5 μg L−1), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L−1) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative proportions of nitrogenous, brominated, and iodinated HDBPs than the chlorinated tap water. Conversion of the WWTF to UV disinfection reduced the loading of HDBPs to the receiving stream by >90%.
Barber, Larry B; Hladik, Michelle L; Vajda, Alan M; Fitzgerald, Kevin C; Douville, Chris
2015-10-01
The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m(3) d(-1) design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration=2.7 μg L(-1); n=5) and 10 HDBPs (mean total concentration=4.5 μg L(-1)), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration=1.4 μg L(-1)) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative proportions of nitrogenous, brominated, and iodinated HDBPs than the chlorinated tap water. Conversion of the WWTF to UV disinfection reduced the loading of HDBPs to the receiving stream by >90%. Copyright © 2015. Published by Elsevier B.V.
Armstead, Mindy Yeager; Bitzer-Creathers, Leah; Wilson, Mandee
2016-01-01
Salinization of freshwater ecosystems as a result of human activities has markedly increased in recent years. Much attention is currently directed at evaluating the effects of increased salinity on freshwater biota. In the Central Appalachian region of the eastern United States, specific conductance from alkaline discharges associated with mountain top mining practices has been implicated in macroinvertebrate community declines in streams receiving coal mining discharges. Whole effluent toxicity testing of receiving stream water was used to test the hypothesis that mine discharges are toxic to laboratory test organisms and further, that toxicity is related to ionic concentrations as indicated by conductivity. Chronic toxicity testing using Ceriodaphnia dubia was conducted by contract laboratories at 72 sites with a total of 129 tests over a 3.5 year period. The database was evaluated to determine the ionic composition of mine effluent dominated streams and whether discharge constituents were related to toxicity in C. dubia. As expected, sulfate was found to be the dominant anion in streams receiving mining discharges with bicarbonate variable and sometimes a substantial component of the dissolved solids. Overall, the temporal variability in conductance was low at each site which would indicate fairly stable water quality conditions. Results of the toxicity tests show no relationship between conductance and survival of C. dubia in the mining influenced streams with the traditional toxicity test endpoints. However, consideration of the entire dataset revealed a significant inverse relationship between conductivity and neonate production. While conductivity explained very little of the high variability in the offspring production (r2 = 0.1304), the average numbers of offspring were consistently less than 20 neonates at the highest conductivities. PMID:27814378
Excess TDS/Major Ionic Stress/Elevated Conductivities appeared increasing in streams in Central and Eastern Appalachia. Direct discharges from permitted point sources and regional interest in setting eco-based effluent guidelines/aquatic life criteria, as well as potential differ...
Occurrence of organic wastewater compounds in effluent-dominated streams in Northeastern Kansas
Lee, C.J.; Rasmussen, T.J.
2006-01-01
Fifty-nine stream-water samples and 14 municipal wastewater treatment facility (WWTF) discharge samples in Johnson County, northeastern Kansas, were analyzed for 55 compounds collectively described as organic wastewater compounds (OWCs). Stream-water samples were collected upstream, in, and downstream from WWTF discharges in urban and rural areas during base-flow conditions. The effect of secondary treatment processes on OWC occurrence was evaluated by collecting eight samples from WWTF discharges using activated sludge and six from WWTFs samples using trickling filter treatment processes. Samples collected directly from WWTF discharges contained the largest concentrations of most OWCs in this study. Samples from trickling filter discharges had significantly larger concentrations of many OWCs (p-value < 0.05) compared to samples collected from activated sludge discharges. OWC concentrations decreased significantly in samples from WWTF discharges compared to stream-water samples collected from sites greater than 2000??m downstream. Upstream from WWTF discharges, base-flow samples collected in streams draining predominantly urban watersheds had significantly larger concentrations of cumulative OWCs (p-value = 0.03), caffeine (p-value = 0.01), and tris(2-butoxyethyl) phosphate (p-value < 0.01) than those collected downstream from more rural watersheds.
Evaluation of ionic contribution to the toxicity of a coal-mine effluent using Ceriodaphnia dubia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, A.J.; Cherry, D.S.; Zipper, C.E.
2005-08-01
The United States Environmental Protection Agency has defined national in-stream water-quality criteria (WQC) for 157 pollutants. No WQC to protect aquatic life exist for total dissolved solids (TDS). Some water-treatment processes (e.g., pH modifications) discharge wastewaters of potentially adverse TDS into freshwater systems. Strong correlations between specific conductivity, a TDS surrogate, and several biotic indices in a previous study suggested that TDS caused by a coal-mine effluent was the primary stressor. Further acute and chronic testing in the current study with Ceriodaphnia dubia in laboratory-manipulated media indicated that the majority of the effluent toxicity could be attributed to the mostmore » abundant ions in the discharge, sodium (1952 mg/L) and/or sulfate (3672 mg/L), although the hardness of the effluent (792 43 mg/L as CaCO{sub 3}) ameliorated some toxicity. Based on laboratory testing of several effluent-mimicking media, sodium- and sulfate-dominated TDS was acutely toxic at approximately 7000 {mu} S/cm (5143 mg TDS/L), and chronic toxicity occurred at approximately 3200 {mu} S/cm (2331 mg TDS/L). At a lower hardness (88 mg/L as CaCO{sub 3}), acute and chronic toxicity end-points were decreased to approximately 5000 {mu} S/cm (3663 mg TDS/L) and approximately 2000 {mu} S/cm (1443 mg TDS/L), respectively. Point-source discharges causing in-stream TDS concentrations to exceed these levels may risk impairment to aquatic life.« less
Colman, John A.; Massey, Andrew J.; Brandt, Sara L.
2011-09-16
Dilution of aluminum discharged to reservoirs in filter-backwash effluents at water-treatment facilities in Massachusetts was investigated by a field study and computer simulation. Determination of dilution is needed so that permits for discharge ensure compliance with water-quality standards for aquatic life. The U.S. Environmental Protection Agency chronic standard for aluminum, 87 micrograms per liter (μg/L), rather than the acute standard, 750 μg/L, was used in this investigation because the time scales of chronic exposure (days) more nearly match rates of change in reservoir concentrations than do the time scales of acute exposure (hours).Whereas dilution factors are routinely computed for effluents discharged to streams solely on the basis of flow of the effluent and flow of the receiving stream, dilution determination for effluents discharged to reservoirs is more complex because (1), compared to streams, additional water is available for dilution in reservoirs during low flows as a result of reservoir flushing and storage during higher flows, and (2) aluminum removal in reservoirs occurs by aluminum sedimentation during the residence time of water in the reservoir. Possible resuspension of settled aluminum was not considered in this investigation. An additional concern for setting discharge standards is the substantial concentration of aluminum that can be naturally present in ambient surface waters, usually in association with dissolved organic carbon (DOC), which can bind aluminum and keep it in solution.A method for dilution determination was developed using a mass-balance equation for aluminum and considering sources of aluminum from groundwater, surface water, and filter-backwash effluents and losses caused by sedimentation, water withdrawal, and spill discharge from the reservoir. The method was applied to 13 reservoirs. Data on aluminum and DOC concentrations in reservoirs and influent water were collected during the fall of 2009. Complete reservoir volume was determined to be available for mixing on the basis of vertical and horizontal aluminum-concentration profiling. Losses caused by settling of aluminum were assumed to be proportional to aluminum concentration and reservoir area. The constant of proportionality, as a function of DOC concentration, was established by simulations in each of five reservoirs that differed in DOC concentration.In addition to computing dilution factors, the project determined dilution factors that would be protective with the same statistical basis (frequency of exceedance of the chronic standard) as dilutions computed for streams at the 7-day-average 10-year-recurrence annual low flow (the 7Q10). Low-flow dilutions are used for permitting so that receiving waters are protected even at the worst-case flow levels. The low-flow dilution factors that give the same statistical protection are the lowest annual 7-day-average dilution factors with a recurrence of 10 years, termed 7DF10s. Determination of 7DF10 values for reservoirs required that long periods of record be simulated so that dilution statistics could be determined. Dilution statistics were simulated for 13 reservoirs from 1960 to 2004 using U.S. Geological Survey Firm-Yield Estimator software to model reservoir inputs and outputs and present-day values of filter-effluent discharge and aluminum concentration.Computed settling velocities ranged from 0 centimeters per day (cm/d) at DOC concentrations of 15.5 milligrams per liter (mg/L) to 21.5 cm/d at DOC concentrations of 2.7 mg/L. The 7DF10 values were a function of aluminum effluent discharged. At current (2009) effluent discharge rates, the 7DF10 values varied from 1.8 to 115 among the 13 reservoirs. In most cases, the present-day (2009) discharge resulted in receiving water concentrations that did not exceed the standard at the 7DF10. Exceptions were one reservoir with a very small area and three reservoirs with high concentrations of DOC. Maximum permissible discharges were determined for water-treatment plants by adjusting discharges upward in simulations until the 7DF10 resulted in reservoir concentrations that just met the standard. In terms of aluminum flux, these discharges ranged from 0 to 28 kilograms of aluminum per day.
Biological monitoring of Upper Three Runs Creek, Savannah River Plant, Aiken County, South Carolina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, W.L.
1991-10-01
In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presentsmore » the results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.« less
NASA Astrophysics Data System (ADS)
Bradley, P. M.; Barber, L. B.; Duris, J. W.; Foreman, W. T.; Furlong, E. T.; Hubbard, L. E.; Hutchinson, K. J.; Keefe, S. H.; Kolpin, D. W.
2014-12-01
Wastewater pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to aqueous mobility and designed bioactivity of pharmaceuticals and due to effluent-driven hydraulic gradients. Improved understanding of the environmental fate and transport of wastewater-derived pharmaceuticals is essential for effective protection of vital aquatic ecosystem services, environmental health, and drinking-water supplies. Substantial longitudinal (downstream) transport of pharmaceutical contaminants has been documented in effluent-impacted streams. The comparative lack of information on vertical and lateral transport (infiltration) of wastewater contaminants from surface-water to hyporheic and shallow groundwater compartments is a critical scientific data gap, given the potential for contamination of groundwater supplies in effluent-impacted systems. Growing dependencies on bank filtration and artificial recharge applications for release of wastewater to the environment and for pretreatment of poor-quality surface-water for drinking water emphasize the critical need to better understand the exchange of wastewater contaminants, like pharmaceuticals, between surface-water and groundwater compartments. The potential transport of effluent-derived pharmaceutical contaminants from surface-water to hyporheic-water and shallow groundwater compartments was examined in a wastewater-treatment-facility (WWTF) impacted stream in Ankeny, Iowa under effluent-dominated (71-99% of downstream flow) conditions. Strong hydraulic gradients and hydrologic connectivity were evident between surface-water and shallow-groundwater compartments in the vicinity of the WWTF outfall. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater 10-20 meters from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed high percentage detections of pharmaceuticals (110 total analytes) in surface-water and groundwater samples. The results demonstrate the importance of effluent discharge as a driver of local hydrologic conditions in an effluent-impacted stream and thus as a fundamental control on surface-water to groundwater transport of effluent-derived pharmaceutical contaminants.
NASA Technical Reports Server (NTRS)
Campbell, J. F.
1972-01-01
An experimental and theoretical investigation was undertaken to study the trajectory and growth of thermal effluents having a range of discharge velocities and temperatures. The discharge of a turbulent effluent into a waterway was mathematically modeled as a submerged jet injection process by using an integral method which accounts for natural fluid mechanisms such as turbulence, entrainment, buoyancy, and heat transfer. The analytical results are supported by experimental data and demonstrate the usefulness of the theory for estimating the location and size of the effluent with respect to the discharge point. The capability of predicting jet flow properties, as well as two- and three-dimensional jet paths, was enhanced by obtaining the jet cross-sectional area during the solution of the conservation equations. Realistic estimates of temperature in the effluent were acquired by accounting for heat losses in the jet flow due to forced convection and to entrainment of free-stream fluid into the jet.
Wastewater movement near four treatment and disposal sites in Yellowstone National Park, Wyoming
Cox, E.R.
1986-01-01
The U.S. Geological Survey, in cooperation with the National Park Service, studied the effects on nearby streams and lakes of treated wastewater effluents that percolate from sewage lagoons at four sites in Yellowstone National Park. A network of observation wells has been established near the sites, and water level and water quality data were collected from 1974 through 1982. Groundwater mounds occur under the lagoons as percolation of effluents occurs. The percolating effluents mix with groundwater and form plumes of water that contain chemical constituents from the effluents. These plumes move down the hydraulic gradient toward groundwater discharge areas. The directions of movement of percolating effluents have been determined by analyzing water samples from wells near the lagoons for specific conductance, chloride concentration, and nitrite plus nitrate concentration. Other constituents and properties also were determined. The percolating effluents are diluted by groundwater and have no discernible effects on the quality of water in the nearby streams and lakes. (USGS)
NASA Astrophysics Data System (ADS)
Drummond, J. D.; Bernal, S.; Meredith, W.; Schumer, R.; Martí Roca, E.
2017-12-01
Waste water treatment plant (WWTP) effluents constitute point source inputs of fine sediment, nutrients, carbon, and microbes to stream ecosystems. A range of responses to these inputs may be observed in recipient streams, including increases in respiration rates, which augment CO2 emissions to the atmosphere. Yet, little is known about which fractions of organic carbon (OC) contribute the most to stream metabolism in WWTP-influenced streams. Fine particulate OC (POC) represents ca. 40% of the total mass of OC in river networks, and is generally more labile than dissolved OC. Therefore, POC inputs from WWTPs could contribute disproportionately to higher rates of heterotrophic metabolism by stream microbial communities. The aim of this study was to investigate the influence of POC inputs from a WWTP effluent on the metabolism of a Mediterranean stream over a wide range of hydrologic conditions. We hypothesized that POC inputs would have a positive effect on respiration rates, and that the response to POC availability would be larger during low flows when the dilution capacity of the recipient stream is negligible. We focused on the easily resuspended fine sediment near the sediment-water interface (top 3 cm), as this region is a known hot spot for biogeochemical processes. For one year, samples of resuspended sediment were collected bimonthly at 7 sites from 0 to 800 m downstream of the WWTP point source. We measured total POC, organic matter (OM) content (%), and the associated metabolic activity of the resuspended sediment using the resazurin-resorufin smart tracer system as a proxy for aerobic ecosystem respiration. Resuspended sediment showed no difference in total POC over the year, while the OM content increased with decreasing discharge. This result together with the decreasing trend of total POC observed downstream of the point source during autumn after a long dry period, suggests that the WWTP effluent was the main contributor to stream POC. Furthermore, there was a positive relationship between aerobic ecosystem respiration and OM content in resuspended sediments. Our results suggest that WWTP effluents can be important sources of POC to recipient streams, and that the increased availability of POC enhances aerobic ecosystem respiration, especially when the dilution capacity of the recipient streams is low.
Cox, Edward Riley
1976-01-01
This report describes a study by the U.S. Geological Survey in cooperation with the National Park Service to determine the effects on nearby lakes and streams of wastewater effluents that percolate from sewage lagoons at four sites in Yellowstone National Park. A network of observation wells has been established near the sites, and data have been collected from the wells and from nearby streams. Ground-water mounds have built up under the lagoons as percolation of effluents occurred. Percolating effluents mix with ground water and form plumes of ground water that contain chemical constituents for the effluents. Each plume tends to move down the hydraulic gradient in a direction generally perpendicular to the water-level contours. Water-level contours and most likely areas of movement of the plumes are shown on maps. Tests using rhodamine WT dye and dissolved solids as tracers suggested that chemical constituents in the plumes travel at different velocities as a result of dispersion and adsorlption. Chemical constituents from effluent percolating from the Old Faithful lagoons probably discharge into nearby Iron Spring Creek. Constituents from lagoons at the other three sites studied probably have not reached nearby streams or lakes. (Woodard-USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuenzler, E.J.
1987-09-01
An investigation was conducted of the impacts of sprayed municipal sewage on swamp tree survival and the effects of the swamp system on nutrient concentrations below the outfalls on two streams on the coastal plain of North Carolina. Effluent was discharged to one swamp stream by aerial spraying and to the other stream by way of a small ditch. Ninety-eight percent of the trees struck directly by the spray were dead within 18 months of the date spraying began. Both swamp systems removed sufficient quantities of nitrogen and phosphorus within a few kilometers to account for virtually all of themore » sewage nutrient load to the swamps.« less
NASA Astrophysics Data System (ADS)
Herrmann, H. W.; Henins, I.; Park, J.; Selwyn, G. S.
1999-05-01
The atmospheric pressure plasma jet (APPJ) [A. Schütze et al., IEEE Trans. Plasma Sci. 26, 1685 (1998)] is a nonthermal, high pressure, uniform glow plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O), which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz rf. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains neutral metastable species (e.g., O2*, He*) and radicals (e.g., O, OH). This reactive effluent has been shown to be an effective neutralizer of surrogates for anthrax spores and mustard blister agent. Unlike conventional wet decontamination methods, the plasma effluent does not cause corrosion and it does not destroy wiring, electronics, or most plastics, making it highly suitable for decontamination of sensitive equipment and interior spaces. Furthermore, the reactive species in the effluent rapidly degrade into harmless products leaving no lingering residue or harmful by-products.
Matamoros, Víctor; Rodríguez, Yolanda
2017-11-01
Treated wastewater from small communities is discharged into rivers or streams with a high biodiversity value. This is particularly important in Mediterranean countries, where most of the streams are dry almost all year round. This preliminary study assessed the occurrence and attenuation of 23 emerging contaminants (ECs) in 4 wastewater-dominated streams in which treated wastewater accounted for the entire stream flow. The concentration of ECs was monitored in the warm and cold seasons in the wastewater treatment plant (WWTP) effluent and at 6 downstream locations. The concentration of ECs in the WWTP effluents ranged from undetected to 12 μg L -1 . The attenuation of ECs 1 km downstream ranged from no removal to up to 80% (48% on average). The half-lives of ECs in the 4 streams ranged from 0.4 to 20 h (3.9 ± 3.5 h on average). Compounds such as benzodiazepine drugs and flame retardants were the most recalcitrant (half-lives >5 h). The highest attenuation of ECs and ammonia was observed in the stream completely covered by vegetation. The cumulative hazardous quotient 1 km downstream was reduced on average by more than 60%. Therefore, the results suggest that both seasonality and vegetation play an important role in in-stream attenuation of ECs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Waste Load Allocation for Conservative Substances to Protect Aquatic Organisms
NASA Astrophysics Data System (ADS)
Hutcheson, M. R.
1992-01-01
A waste load allocation process is developed to determine the maximum effluent concentration of a conservative substance that will not harm fish and wildlife propagation. If this concentration is not exceeded in the effluent, the acute toxicity criterion will not be violated in the receiving stream, and the chronic criterion will not be exceeded in the zone of passage, defined in many state water quality standards to allow the movement of aquatic organisms past a discharge. Considerable simplification of the concentration equation, which is the heart of any waste load allocation, is achieved because it is based on the concentration in the receiving stream when the concentration gradient on the zone of passage boundary is zero. Consequently, the expression obtained for effluent concentration is independent of source location or stream morphology. Only five independent variables, which are routinely available to regulatory agencies, are required to perform this allocation. It aids in developing permit limits which are protective without being unduly restrictive or requiring large expenditures of money and manpower on field investigations.
Effects of suburban development on runoff generation in the Croton River basin, New York, USA
Burns, D.; Vitvar, T.; McDonnell, J.; Hassett, J.; Duncan, J.; Kendall, C.
2005-01-01
The effects of impervious area, septic leach-field effluent, and a riparian wetland on runoff generation were studied in three small (0.38-0.56 km 2) headwater catchments that represent a range of suburban development (high density residential, medium density residential, and undeveloped) within the Croton River basin, 70 km north of New York City. Precipitation, stream discharge, and groundwater levels were monitored at 10-30 min intervals for 1 year, and stream water and groundwater samples were collected biweekly for ??18O, NO3-, and SO42- analysis for more than 2 years during an overlapping period in 2000-2002. Data from 27 storms confirmed that peak magnitudes increased and recession time decreased with increasing development, but lags in peak arrival and peak discharge/mean discharge were greatest in the medium density residential catchment, which contains a wetland in which storm runoff is retained before entering the stream. Baseflow during a dry period from Aug. 2001-Feb. 2002 was greatest in the high-density residential catchment, presumably from the discharge of septic effluent through the shallow groundwater system and into the stream. In contrast, moderate flows during a wet period from Mar.-Aug. 2002 were greatest in the undeveloped catchment, possibly as a result of greater subsurface storage or greater hydraulic conductivity at this site. The mean residence time of baseflow was about 30 weeks at all three catchments, indicating that human influence was insufficient to greatly affect the groundwater recharge and discharge properties that determine catchment residence time. These results suggest that while suburban development and its associated impervious surfaces and storm drains accelerate the transport of storm runoff into streams, the combined effects of remnant natural landscape features such as wetlands and human alterations such as deep groundwater supply and septic systems can change the expected effects of human development on storm runoff and groundwater recharge. ?? 2005 Elsevier B.V. All rights reserved.
Lagrangian mass-flow investigations of inorganic contaminants in wastewater-impacted streams
Barber, L.B.; Antweiler, Ronald C.; Flynn, J.L.; Keefe, S.H.; Kolpin, D.W.; Roth, D.A.; Schnoebelen, D.J.; Taylor, Howard E.; Verplanck, P.L.
2011-01-01
Understanding the potential effects of increased reliance on wastewater treatment plant (WWTP) effluents to meet municipal, agricultural, and environmental flow requires an understanding of the complex chemical loading characteristics of the WWTPs and the assimilative capacity of receiving waters. Stream ecosystem effects are linked to proportions of WWTP effluent under low-flow conditions as well as the nature of the effluent chemical mixtures. This study quantifies the loading of 58 inorganic constituents (nutrients to rare earth elements) from WWTP discharges relative to upstream landscape-based sources. Stream assimilation capacity was evaluated by Lagrangian sampling, using flow velocities determined from tracer experiments to track the same parcel of water as it moved downstream. Boulder Creek, Colorado and Fourmile Creek, Iowa, representing two different geologic and hydrologic landscapes, were sampled under low-flow conditions in the summer and spring. One-half of the constituents had greater loads from the WWTP effluents than the upstream drainages, and once introduced into the streams, dilution was the predominant assimilation mechanism. Only ammonium and bismuth had significant decreases in mass load downstream from the WWTPs during all samplings. The link between hydrology and water chemistry inherent in Lagrangian sampling allows quantitative assessment of chemical fate across different landscapes. ?? 2011 American Chemical Society.
Phillips, Patrick J.; Smith, Steven G.; Kolpin, Dana W.; Zaugg, Steven D.; Buxton, Herbert T.; Furlong, Edward T.
2010-01-01
Abstract Wastewater-treatment-plant (WWTP) effluents are a demonstrated source of pharmaceuticals to the environment. During 2004-09, a study was conducted to identify pharmaceutical compounds in effluents from WWTPs (including two that receive substantial discharges from pharmaceutical formulation facilities), streamwater, and reservoirs. The methods used to determine and quantify concentrations of seven pharmaceuticals are described. In addition, the report includes information on pharmaceuticals formulated or potentially formulated at the two pharmaceutical formulation facilities that provide substantial discharge to two of the WWTPs, and potential limitations to these data are discussed. The analytical methods used to provide data on the seven pharmaceuticals (including opioids, muscle relaxants, and other pharmaceuticals) in filtered water samples also are described. Data are provided on method performance, including spike data, method detection limit results, and an estimation of precision. Quality-assurance data for sample collection and handling are included. Quantitative data are presented for the seven pharmaceuticals in water samples collected at WWTP discharge points, from streams, and at reservoirs. Occurrence data also are provided for 19 pharmaceuticals that were qualitatively identified. Flow data at selected WWTP and streams are presented. Between 2004-09, 35-38 effluent samples were collected from each of three WWTPs in New York and analyzed for seven pharmaceuticals. Two WWTPs (NY2 and NY3) receive substantial inflows (greater than 20 percent of plant flow) from pharmaceutical formulation facilities (PFF) and one (NY1) receives no PFF flow. Samples of effluents from 23 WWTPs across the United States were analyzed once for these pharmaceuticals as part of a national survey. Maximum pharmaceutical effluent concentrations for the national survey and NY1 effluent samples were generally less than 1 ug/L. Four pharmaceuticals (methadone, oxycodone, butalbital and metaxalone) in samples of NY3 effluent had median concentrations ranging from 3.4 to greater than 400 ug/L. Maximum concentrations of oxycodone (1,700 ug/L) and metaxalone (3,800 ug/L) in samples from NY3 effluent exceeded 1,000 ug/L. Three pharmaceuticals (butalbital, carisoprodol, and oxycodone) in samples of NY2 effluent had median concentrations ranging from 2 to 11 ug/L. These findings suggest that current 2 manufacturing practices at these PFFs can result in pharmaceutical concentrations from 10 to 1,000 times higher than those typically found in WWTP effluents.
Ansah, Yaw Boamah; Frimpong, Emmanuel A; Amisah, Stephen
2012-07-01
Biological assessment of aquatic ecosystems is widely employed as an alternative or complement to chemical and toxicity testing due to numerous advantages of using biota to determine ecosystem condition. These advantages, especially to developing countries, include the relatively low cost and technical requirements. This study was conducted to determine the biological impacts of aquaculture operations on effluent-receiving streams in the Ashanti Region of Ghana. We collected water, fish and benthic macroinvertebrate samples from 12 aquaculture effluent-receiving streams upstream and downstream of fish farms and 12 reference streams between May and August of 2009, and then calculated structural and functional metrics for biotic assemblages. Fish species with non-guarding mode of reproduction were more abundant in reference streams than downstream (P = 0.0214) and upstream (P = 0.0251), and sand-detritus spawning fish were less predominant in reference stream than upstream (P = 0.0222) and marginally less in downstream locations (P = 0.0539). A possible subsidy-stress response of macroinvertebrate family richness and abundance was also observed, with nutrient (nitrogen) augmentation from aquaculture and other farming activities likely. Generally, there were no, or only marginal differences among locations downstream and upstream of fish farms and in reference streams in terms of several other biotic metrics considered. Therefore, the scale of impact in the future will depend not only on the management of nutrient augmentation from pond effluents, but also on the consideration of nutrient discharges from other industries like fruit and vegetable farming within the study area.
NASA Astrophysics Data System (ADS)
Ledford, S. H.; Toran, L.
2017-12-01
Impacts of wastewater treatment plant effluent on nutrient retention and stream productivity are highly varied. The working theory has been that large pulses of nutrients from plants may hinder in-stream nutrient retention. We evaluated nitrate, total dissolved phosphorus, and dissolved oxygen in Wissahickon Creek, an urban third-order stream in Montgomery and Philadelphia counties, PA, that receives effluent from four wastewater treatment plants. Wastewater treatment plant effluent had nitrate concentrations of 15-30 mg N/L and total dissolved phosphorus of 0.3 to 1.8 mg/L. Seasonal longitudinal water quality samples showed nitrate concentrations were highest in the fall, peaking at 22 mg N/L, due to low baseflow, but total dissolved phosphorous concentrations were highest in the spring, reaching 0.6 mg/L. Diurnal dissolved oxygen patterns above and below one of the treatment plants provided estimates of gross primary productivity (GPP) and ecosystem respiration (ER). A site 1 km below effluent discharge had higher GPP in April (80 g O2 m-2 d-1) than the site above the plant (28 g O2 m-2 d-1). The pulse in productivity did not continue downstream, as the site 3 km below the plant had GPP of only 12 g O2 m-2 d-1. Productivity fell in June to 1-2 g O2 m-2 d-1 and the differences in productivity above and below plants were minimal. Ecosystem respiration followed a similar pattern in April, increasing from -17 g O2 m-2 d-1 above the plant to -47 g O2 m-2 d-1 1 km below the plant, then decreasing to -8 g O2 m-2 d-1 3 km below the plant. Respiration dropped to -3 g O2 m-2 d-1 above the plant in June but only fell to -9 to -10 g O2 m-2 d-1 at the two downstream sites. These findings indicate that large nutrient pulses from wastewater treatment plants spur productivity and respiration, but that these increases may be strongly seasonally dependent. Examining in-stream productivity and respiration is critical in wastewater impacted streams to understanding the seasonal and spatial variability of nutrient stresses so that limitations on discharge can be better targeted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, S.; Wong, K.V.; Nemerow, N.
Characterization of the following waste streams: air-classified light (ACL), digester slurry, filter cake, filtrate, washwater input and washwater effluent has been made for the Refcom facility in order to assess the effects of these waste streams, if discharged into the environment. Special laboratory studies to evaluate the effect of plastics on anaerobic digestion have been undertaken. A separate report has been furnished describing the studies of lab-model digesters. Data collected for ACL has been statistically analyzed.
Barber, Larry B.; Keefe, Steffanie H.; Brown, Greg K.; Furlong, Edward T.; Gray, James L.; Kolpin, Dana W.; Meyer, Michael T.; Sandstrom, Mark W.; Zaugg, Steven D.
2013-01-01
Natural and synthetic organic contaminants in municipal wastewater treatment plant (WWTP) effluents can cause ecosystem impacts, raising concerns about their persistence in receiving streams. In this study, Lagrangian sampling, in which the same approximate parcel of water is tracked as it moves downstream, was conducted at Boulder Creek, Colorado and Fourmile Creek, Iowa to determine in-stream transport and attenuation of organic contaminants discharged from two secondary WWTPs. Similar stream reaches were evaluated, and samples were collected at multiple sites during summer and spring hydrologic conditions. Travel times to the most downstream (7.4 km) site in Boulder Creek were 6.2 h during the summer and 9.3 h during the spring, and to the Fourmile Creek 8.4 km downstream site times were 18 and 8.8 h, respectively. Discharge was measured at each site, and integrated composite samples were collected and analyzed for >200 organic contaminants including metal complexing agents, nonionic surfactant degradates, personal care products, pharmaceuticals, steroidal hormones, and pesticides. The highest concentration (>100 μg L–1) compounds detected in both WWTP effluents were ethylenediaminetetraacetic acid and 4-nonylphenolethoxycarboxylate oligomers, both of which persisted for at least 7 km downstream from the WWTPs. Concentrations of pharmaceuticals were lower (<1 μg L–1), and several compounds, including carbamazepine and sulfamethoxazole, were detected throughout the study reaches. After accounting for in-stream dilution, a complex mixture of contaminants showed little attenuation and was persistent in the receiving streams at concentrations with potential ecosystem implications.
The effect of nutrient ratios on E. coli re-growth in urban streams
NASA Astrophysics Data System (ADS)
Aitkenhead-Peterson, J. A.; McCrary, K.; Gentry, T. J.; Harclerode, C. L.
2010-12-01
E. coli an indicator for fecal pathogens in aquatic systems, is one of the major impairments of streams and rivers in USA. We examined re-growth of E.coli in UV-treated wastewater effluent by spiking effluent with extract obtained from managed turf grass and ornamental tree foliage. Our original hypothesis that the increased quantity and quality of DOC would increase re-growth was rejected. Instead we found that the ratio of C:N:P of our extracts was able to explain between 64 and 89% of the variance in E. coli re-growth. The C:N:P ratio of treated sewage effluent of 0.64 was too low to produce re-growth which commenced at C:N:P ratio’s of around 3.7 at 24 hrs and > 5.8 at 12 hrs. As precipitation or irrigation water interacts with the landscape vegetation of urban golf courses, athletic fields, parks and homeowner gardens in urban watersheds prior to running off to streams and rivers its solution C:N:P ratio may be conducive to E. coli re-growth in those watersheds with wastewater treatment plant point source discharge. To test this theory further we examined E. coli and stream C:N:P ratio in four watersheds downstream of wastewater treatment plants. Here we found that stream C:N:P ratio explained 98% of the variance in E. coli. Interestingly this phenomenon only occurs in streams downstream of waste water treatment plants suggesting that revival of E. coli in sewage effluent is possible if watershed conditions are conducive to their re-growth.
Implementing the NPDES program: An update on the WET ...
The U.S. EPA has utilized the Clean Water Act - National Pollutant Discharge Elimination System permitting program to protect waters of the U.S for over 40 years. NPDES permit effluent limitations serve as the primary mechanism for controlling discharges of pollutants to receiving waters. When developing effluent limitations for an NPDES permit, a permit writer must consider limits based on both the technology available to control the pollutants (i.e., technology-based effluent limits) and limits that are protective of the water quality standards of the receiving water (i.e., water quality-based effluent limits). WET testing is one of the water quality-based effluent limitation mechanisms available to permit writers that is useful in determining how the additive, synergistic and compounding effects of toxic effluents effect streams. This presentation will provide an overview of the current EPA NPDES permit program direction for increasing the efficacy of NPDES permits program administered by the U.S. EPA and States. The training implementation plan is expected to provide permit writers with a clearer understanding of WET requirements as established via the U.S. EPA WET test manuals, NPDES permitting regulatory authorities, and the WET science which has been long established. not applicable
Crawford, Charles G.; Wilber, William G.; Peters, James G.
1980-01-01
The Indiana State Board of Health is developing a State water-quality plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Duck Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The major point-source waste load affecting Duck Creek is the Elwood wastewater-treatment facility. Natural streamflow during the low flow is zero, so no benefit from dilution is provided. Natural reaeration at the low-flow condition (approximately 3 cubic feet per second), also low, is estimated to be less than 1 per day (base e at 20 Celsius). Consequently, the wasteload assimilative capacity of the stream is low. Effluent ammonia-nitrogen concentrations, projected by the Indiana State Board of Health, will result in stream ammonia-nitrogen concentrations that exceed the State ammonia-nitrogen toxicity standards (2.5 milligrams per liter from April to October and 4.0 milligrams per liter from November through March). The projected effluent ammonia-nitrogen load will also result in the present Indiana stream dissolved-oxygen standard (5.0 milligrams per liter) not being met. Benthic-oxygen demand may also affect stream water quality. During the summer low-flow, a benthic-oxygen demand of only 0.6 gram per square meter per day would utilize all the streams 's available assimilative capacity. (USGS)
Baldigo, Barry P.; Phillips, Patrick J.; Ernst, Anne G.; Gray, James L.; Hemming, Jocelyn D.C.
2014-01-01
Endocrine-disrupting compounds (EDCs) in wastewater effluents have been linked to changes in sex ratios, intersex (in males), behavioral modifications, and developmental abnormalities in aquatic organisms. Yet efforts to identify and regulate specific EDCs in complex mixtures are problematic because little is known about the estrogen activity (estrogenicity) levels of many common and emerging contaminants. The potential effects of EDCs on the water quality and health of biota in streams of the New York City water supply is especially worrisome because more than 150 wastewater-treatment plants (WWTPs) are permitted to discharge effluents into surface waters and groundwaters of watersheds that provide potable water to more than 9 million people. In 2008, the U.S. Geological Survey (USGS), the New York State Department of Environmental Conservation (NYSDEC), New York State Department of Health (NYSDOH), and New York City Department of Environmental Protection (NYCDEP) began a pilot study to increase the understanding of estrogenicity and EDCs in effluents and receiving streams mainly in southeastern New York. The primary goals of this study were to document and assess the spatial and temporal variability of estrogenicity levels; the effectiveness of various treatment-plant types to remove estrogenicity; the concentrations of hormones, EDCs, and pharmaceuticals, personal care products (PPCPs); and the relations between estrogenicity and concentrations of hormones, EDCs, and PPCPs. The levels of estrogenicity and selected hormones, non-hormone EDCs, and PPCPs were characterized in samples collected seasonally in effluents from 7 WWTPs, once or twice in effluents from 34 WWTPs, and once in influents to 6 WWTPs. Estrogenicity was quantified, as estradiol equivalents, using both the biological e-screen assay and a chemical model. Results generally show that (1) estrogenicity levels in effluents varied spatially and seasonally, (2) a wide range of known and unknown EDCs were present in both WWTP effluents and receiving streams, (3) some effluents may be important sources of estrogenicity in weakly diluted streams, (4) measured levels of biological estrogenicity were often higher than estimated levels of chemical estrogenicity, and (5) the type of treatment had a large effect on the removal efficacy, and consequently, the estrogenicity levels observed in treated effluents.
Impact of potential phosphate mining on the hydrology of Osceola National Forest, Florida
Miller, James A.; Hughes, G.H.; Hull, R.W.; Vecchioli, John; Seaber, P.R.
1978-01-01
Potentially exploitable phosphate deposits underlie part of Osceola National Forest, Fla. Hydrologic conditions in the forest are comparable with those in nearby Hamilton County, where phosphate mining and processing have been ongoing since 1965. Given similarity of operations, hydroloigc effects of mining in the forest are predicted. Flow of stream receiving phosphate industry effluent would increase somewhat during mining, but stream quality would not be greatly affected. Local changes in the configuration of the water table and the quality of water in the surficial aquifer will occur. Lowering of the potentiometric surface of the Floridan aquifer because of proposed pumpage would be less than five feet at nearby communities. Flordian aquifer water quality would be appreciably changed only if industrial effluent were discharged into streams which recharge the Flordian through sinkholes. The most significant hydrologic effects would occur at the time of active mining: long-term effects would be less significant. (Woodard-USGS)
Climatological influences on site-specific ecohydrology are particularly germane in semiarid regions where instream flows are strongly influenced by effluent discharges. Because many traditional and emerging aquatic contaminants, such as pharmaceuticals, are ionizable, we examin...
Rozon-Ramilo, Lisa D; Dubé, Monique G; Rickwood, Carrie J; Niyogi, Som
2011-09-01
This study illustrates the use of a mesocosm approach for assessing the independent effects of three treated metal mine effluents (MME) discharging into a common receiving environment and regulated under the same regulation. A field-based, multi-trophic artificial stream study was conducted in August 2008 to assess the effects of three metal mining effluents on fathead minnow (Pimephales promelas) in a 21-day reproduction bioassay. The nature of the approach allowed for assessment of both dietary and waterborne exposure pathways. Elements (e.g. Se, Co, Cl, Cu, Fe) were analyzed in several media (water, sediments) and tissues (biofilm, Chironomus dilutus, female fathead minnow (FHM) body, ovary, liver, gills). Significant increases in metal and micronutrient concentrations were observed in the water and biofilm tissues in all MME treatments [20% surface water effluent (SWE), 30% mine water effluent (MWE), and 45% process water effluent (PWE)], compared to reference. However, copper was the only element to significantly increase in the sediments when exposed to PWE. Co and Ni increased significantly in C. dilutus tissues in SWE (1.4- and 1.5-fold, respectively), Cu and Se also increased in chironomid tissues in PWE (5.2- and 3.3-fold, respectively); however, no significant increases in metals or micronutrients occurred in chironomid tissues when exposed to MWE compared to reference. There were no significant increases in metal concentrations in female FHM tissues (body, liver, gonads, gills) in any of the treatments suggesting that metals were either not bioavailable, lost from the females via the eggs, or naturally regulated through homeostatic mechanisms. Cumulative number of eggs per female per day increased significantly (∼127%) after exposure to SWE and decreased significantly (∼33%) after exposure to PWE when compared to reference. Mean total number of days to hatch was reduced in PWE compared to reference. This study shows the importance of isolating treatment streams in cumulative discharge environments to assess aquatic effects due to the different nature of the effluents. Copyright © 2011 Elsevier Inc. All rights reserved.
Effects of biologically-active chemical mixtures on fish in a wastewater-impacted urban stream
Barber, L.B.; Brown, G.K.; Nettesheim, T.G.; Murphy, E.W.; Bartell, S.E.; Schoenfuss, H.L.
2011-01-01
Stream flow in urban aquatic ecosystems often is maintained by water-reclamation plant (WRP) effluents that contain mixtures of natural and anthropogenic chemicals that persist through the treatment processes. In effluent-impacted streams, aquatic organisms such as fish are continuously exposed to biologically-active chemicals throughout their life cycles. The North Shore Channel of the Chicago River (Chicago, Illinois) is part of an urban ecosystem in which > 80% of the annual flow consists of effluent from the North Side WRP. In this study, multiple samplings of the effluent and stream water were conducted and fish (largemouth bass and carp) were collected on 2 occasions from the North Shore Channel. Fish also were collected once from the Outer Chicago Harbor in Lake Michigan, a reference site not impacted by WRP discharges. Over 100 organic chemicals with differing behaviors and biological effects were measured, and 23 compounds were detected in all of the water samples analyzed. The most frequently detected and highest concentration (> 100 ??g/L) compounds were ethylenediaminetetraacetic acid and 4-nonylphenolmono-to-tetraethoxycarboxylic acids. Other biologically-active chemicals including bisphenol A, 4-nonylphenol, 4-nonylphenolmono-to-tetraethoxylates, 4- tert-octylphenol, and 4- tert-octylphenolmono-to-tetraethoxylates were detected at lower concentrations (< 5 ??g/L). The biogenic steroidal hormones 17??-estradiol, estrone, testosterone, 4-androstene-3,17-dione, and cis-androsterone were detected at even lower concentrations (< 0.005 ??g/L). There were slight differences in concentrations between the North Side WRP effluent and the North Shore Channel, indicating minimal in-stream attenuation. Fish populations are continuously exposed to mixtures of biologically-active chemicals because of the relative persistency of the chemicals with respect to stream hydraulic residence time, and the lack of a fresh water source for dilution. The majority of male fish exhibited vitellogenin induction, a physiological response consistent with exposure to estrogenic compounds. Tissue-level signs of reproductive disruption, such as ovatestis, were not observed. ?? 2011.
Lambert, Rebecca B.; Opsahl, Stephen P.; Musgrove, MaryLynn
2017-12-22
Located in south-central Texas, the Geronimo Creek and Plum Creek watersheds have long been characterized by elevated nitrate concentrations. From April 2015 through March 2016, an assessment was done by the U.S. Geological Survey, in cooperation with the Guadalupe-Blanco River Authority and the Texas State Soil and Water Conservation Board, to characterize nitrate concentrations and to document possible sources of elevated nitrate in these two watersheds. Water-quality samples were collected from stream, spring, and groundwater sites distributed across the two watersheds, along with precipitation samples and wastewater treatment plant (WWTP) effluent samples from the Plum Creek watershed, to characterize endmember concentrations and isotopic compositions from April 2015 through March 2016. Stream, spring, and groundwater samples from both watersheds were collected during four synoptic sampling events to characterize spatial and temporal variations in water quality and chemical loadings. Water-quality and -quantity data from the WWTPs and stream discharge data also were considered. Samples were analyzed for major ions, selected trace elements, nutrients, and stable isotopes of water and nitrate.The dominant land use in both watersheds is agriculture (cultivated crops, rangeland, and grassland and pasture). The upper part of the Plum Creek watershed is more highly urbanized and has five major WWTPs; numerous smaller permitted wastewater outfalls are concentrated in the upper and central parts of the Plum Creek watershed. The Geronimo Creek watershed, in contrast, has no WWTPs upstream from or near the sampling sites.Results indicate that water quality in the Geronimo Creek watershed, which was evaluated only during base-flow conditions, is dominated by groundwater, which discharges to the stream by numerous springs at various locations. Nitrate isotope values for most Geronimo Creek samples were similar, which indicates that they likely have a common source (or sources) of nitrate. Nitrate sources in the Geronimo Creek watershed include a predominance of nitrate from fertilizer applications, as well as a contribution from septic systems. Additional nitrate loading from these sources is ongoing. Chemical loadings of dissolved solids, chloride, and sulfate varied little among sampling events and were low at most sites because of low streamflow.In contrast to the Geronimo Creek watershed, nitrate sources in the Plum Creek watershed are dominated by effluent discharge from the major WWTPs in the upper and central parts of the watershed. Results indicate that discharge from these WWTPs accounts for the majority of base flow in the watershed. Nitrate concentrations in Plum Creek were dependent on flow conditions, with the highest concentrations measured at lower flows, when flow is dominated by WWTP effluent discharge. In addition to WWTP effluent discharge, the Plum Creek watershed, similar to the Geronimo Creek watershed, also is affected by historical and current loading of nitrate from fertilizer applications and from septic systems in the watershed. Chemical loadings of dissolved solids, chloride, sulfate, and nitrate in Plum Creek at lower flow conditions are highest at the upstream sites and decrease downstream as distance from the WWTPs increases, which is consistent with WWTP effluent as an important control on water quality. Under higher flow conditions, however, nitrate loads to Plum Creek increased by about a factor of three. These higher nitrate loads cannot be accounted for by WWTP effluent discharge from the five major WWTPs in the watershed. This additional loading indicates that nitrate is exported from the northeastern part of the watershed. In the lower part of the Plum Creek watershed, higher concentrations of dissolved solids, chloride, and sulfate occur, which might be affected by produced water associated with oil and gas exploration, or mixing with saline groundwater.
2000-12-15
per trillion for tributyltin (“ TBT ”). This regulatory action lead to an intensive research effort to develop a treatment method for ship’s wash water...antifoulant coating systems, including tributyltin , copper and zinc. In 1997 The Commonwealth of Virginia established an effluent discharge limit of 50 parts...waste stream that could consistently remove TBT to levels below this discharge standard. This work is currently being performed by the Center for
Rajkumar, A Samuel; Nagan, S
2010-10-01
In Tiruppur, 729 textile dyeing units are under operation and these units generate 96.1 MLD of wastewater. The untreated effluent was discharged into the Noyyal River till 1997. After the issuance of directions by Tamil Nadu Pollution Control Board (TNPCB) in 1997, these units have installed 8 common effluent treatment plants (CETP) consisting of physical, chemical and biological treatment units. Some of the units have installed individual ETP (IETP). The treated effluent was finally discharged into the river. The dyeing units use sodium chloride in the dyeing process for efficient fixing of dye in the fabric efficiently. This contributes high total dissolved solids (TDS) and chlorides in the effluent. CETPs and IETPs failed to meet discharge standards of TDS and chlorides and thereby significantly affected the river water quality. TDS level in the river water was in the range of 900 - 6600 mg/L, and chloride was in the range of 230 - 2700 mg/L. Orathupalayam dam is located across Noyyal river at 32 km down stream of Tiruppur. The pollutants carried by the river were accumulated in the dam. TDS in the dam water was in the range of 4250 - 7900 mg/L and chloride was in the range of 1600 - 2700 mg/L. The dam sediments contain heavy metals of chromium, copper, zinc and lead. In 2006, the High Court has directed the dyeing units to install zero liquid discharge (ZLD) plant and to stop discharging of effluent into the river. Accordingly, the industries have installed and commissioned the ZLD plant consisting of RO plant and reject management system in 2010. The effluent after secondary treatment from the CETP is further treated in RO plant. The RO permeate is reused by the member units. The RO reject is concentrated in multiple effect evaporator (MEE)/ mechanical vacuum re-compressor (MVR). The concentrate is crystallized and centrifuged to recover salt. The salt recovered is reused. The liquid separated from the centrifuge is sent to solar evaporation pan. The salt collected in the solar pan is bagged and stored in secure land fill facility. Thus, the discharge into the river is now stopped. However, the damage caused to the groundwater and soil contamination in the river basin is yet to be restored.
An unexpected truth: increasing nitrate loading can decrease nitrate export from watersheds
NASA Astrophysics Data System (ADS)
Askarizadeh Bardsiri, A.; Grant, S. B.; Rippy, M.
2015-12-01
The discharge of anthropogenic nitrate (e.g., from partially treated sewage, return flows from agricultural irrigation, and runoff from animal feeding operations) to streams can negatively impact both human and ecosystem health. Managing these many point and non-point sources to achieve some specific end-point—for example, reducing the annual mass of nitrate exported from a watershed—can be a challenge, particularly in rapidly growing urban areas. Adding to this complexity is the fact that streams are not inert: they too can add or remove nitrate through assimilation (e.g., by stream-associated plants and animals) and microbially-mediated biogeochemical reactions that occur in streambed sediments (e.g., respiration, ammonification, nitrification, denitrification). By coupling a previously published correlation for in-stream processing of nitrate [Mulholland et al., Nature, 2008, 452, 202-205] with a stream network model of the Jacksons Creek watershed (Victoria, Australia) I demonstrate that managing anthropogenic sources of stream nitrate without consideration of in-stream processing can result in a number of non-intuitive "surprises"; for example, wastewater effluent discharges that increase nitrate loading but decrease in-stream nitrate concentrations can reduce the mass of nitrate exported from a watershed.
Organic compounds downstream from a treated-wastewater discharge near Dallas, Texas, March 1987
Buszka, P.M.; Barber, L.B.; Schroeder, M.P.; Becker, L.D.
1994-01-01
Comparison of instantaneous flux values of selected organic compounds in water from downstream sites indicates: (1) the formation of chloroform in the stream following the discharge of the treated effluent, and that (2) instream biodegradation may be decreasing concentrations of linear alkylbenzene compounds in water. The relative persistence of many of the selected organic compounds in Rowlett Creek downstream from the municipal wastewater-treatment plant indicates that they could be transported into Lake Ray Hubbard, a source of municipal water supply.
Effects of biologically-active chemical mixtures on fish in a wastewater-impacted urban stream
Barber, Larry B.; Brown, Gregory K.; Nettesheim, Todd G.; Murphy, Elizabeth W.; Bartell, Stephen E.; Schoenfuss, Heiko L.
2011-01-01
Stream flow in urban aquatic ecosystems often is maintained by water-reclamation plant (WRP) effluents that contain mixtures of natural and anthropogenic chemicals that persist through the treatment processes. In effluent-impactedstreams, aquatic organisms such as fish are continuously exposed to biologically-activechemicals throughout their life cycles. The North Shore Channel of the Chicago River (Chicago, Illinois) is part of an urban ecosystem in which > 80% of the annual flow consists of effluent from the North Side WRP. In this study, multiple samplings of the effluent and stream water were conducted and fish (largemouth bass and carp) were collected on 2 occasions from the North Shore Channel. Fish also were collected once from the Outer Chicago Harbor in Lake Michigan, a reference site not impacted by WRP discharges. Over 100 organic chemicals with differing behaviors and biological effects were measured, and 23 compounds were detected in all of the water samples analyzed. The most frequently detected and highest concentration (> 100 μg/L) compounds were ethylenediaminetetraacetic acid and 4-nonylphenolmono-to-tetraethoxycarboxylic acids. Other biologically-activechemicals including bisphenol A, 4-nonylphenol, 4-nonylphenolmono-to-tetraethoxylates, 4-tert-octylphenol, and 4-tert-octylphenolmono-to-tetraethoxylates were detected at lower concentrations (cis-androsterone were detected at even lower concentrations (< 0.005 μg/L). There were slight differences in concentrations between the North Side WRP effluent and the North Shore Channel, indicating minimal in-stream attenuation. Fish populations are continuously exposed to mixtures of biologically-activechemicals because of the relative persistency of the chemicals with respect to stream hydraulic residence time, and the lack of a fresh water source for dilution. The majority of male fish exhibited vitellogenin induction, a physiological response consistent with exposure to estrogenic compounds. Tissue-level signs of reproductive disruption, such as ovatestis, were not observed.
Benefits and Costs of Pulp and Paper Effluent Controls Under the Clean Water Act
NASA Astrophysics Data System (ADS)
Luken, Ralph A.; Johnson, F. Reed; Kibler, Virginia
1992-03-01
This study quantifies local improvements in environmental quality from controlling effluents in the pulp and paper industry. Although it is confined to a single industry, this study is the first effort to assess the actual net benefits of the Clean Water Act pollution control program. An assessment of water quality benefits requires linking regulatory policy, technical effects, and behavioral responses. Regulatory policies mandate specific controls that influence the quantity and nature of effluent discharges. We identify a subset of stream segments suitable for analysis, describe water quality simulations and control cost calculations under alternative regulatory scenarios, assign feasible water uses to each segment based on water quality, and determine probable upper bounds for the willingness of beneficiaries to pay. Because the act imposes uniform regulations that do not account for differences in compliance costs, existing stream quality, contributions of other effluent sources, and recreation potential, the relation between water quality benefits and costs varies widely across sites. This variation suggests that significant positive net benefits have probably been achieved in some cases, but we conclude that the costs of the Clean Water Act as a whole exceed likely benefits by a significant margin.
Calhoun, Lisa M; Avery, Melissa; Jones, Leeann; Gunarto, Karina; King, Raymond; Roberts, Jacquelin; Burkot, Thomas R
2007-09-01
A longitudinal study of mosquito ecology in Tanyard Creek, an urban stream in Atlanta, GA, that receives combined storm and waste water effluent from the Atlanta combined sewage overflow system, was undertaken in 2006. Culex quinquefasciatus was the dominant species found, but Culex restuans was also abundant during the spring with limited numbers of Culex nigripalpis and Anopheles punctipennis also collected. Significant differences in mosquito densities were found with greater densities associated with side pools of water and stagnant water. Mosquito numbers are regulated largely by flooding of the stream by effluent discharges exceeding 15 kgal/min. These floods are associated with significant immediate reductions, but not complete elimination, of mosquitoes from Tanyard Creek. Mosquito numbers rebound within 5-10 days after such floods and rapidly reach high densities.
Alshboul, Zeyad; Encinas-Fernández, Jorge; Hofmann, Hilmar; Lorke, Andreas
2016-06-07
Inland waters play an important role for regional and global scale carbon cycling and are significant sources of the atmospheric greenhouse gases methane (CH4) and carbon dioxide (CO2). Although most studies considered the input of terrestrially derived organic and inorganic carbon as the main sources for these emissions, anthropogenic sources have rarely been investigated. Municipal wastewater treatment plants (WWTPs) could be additional sources of carbon by discharging the treated wastewater into the surrounding aquatic ecosystems. Here we analyze seasonally resolved measurements of dissolved CH4 and CO2 concentrations in effluents and receiving streams at nine WWTPs in Germany. We found that effluent addition significantly altered the physicochemical properties of the streamwater. Downstream of the WWTPs, the concentrations of dissolved CH4 and CO2 were enhanced and the atmospheric fluxes of both gases increased by a factor of 1.2 and 8.6, respectively. The CH4 exported with discharged effluent, however, accounted for only a negligible fraction (0.02%) of the estimated total CH4 emissions during the treatment process. The CH4 concentration in the effluent water was linearly related to the organic load of the wastewater, which can provide an empirical basis for future attempts to add WWTPs inputs to regional-scale models for inland water-carbon fluxes.
Wilber, William G.; Peters, J.G.; Ayers, M.A.; Crawford, Charles G.
1979-01-01
A digital model calibrated to conditions in Cedar Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that the dissolved-oxygen concentration of the Auburn wastewater effluent and nitrification are the most significant factors affecting the dissolved-oxygen concentration in Cedar Creek during summer low flows. The observed dissolved-oxygen concentration of the Auburn wastewater effluent was low and averaged 30 percent of saturation. Projected nitrogenous biochemical-oxygen demand loads, from the Indiana State Board of Health, for the Auburn and Waterloo wastewater-treatment facilities will result in violations of the current instream dissolved-oxygen standard (5 mg/l), even with an effluent dissolved-oxygen concentration of 80 percent saturation. Natural streamflow for Cedar Creek upstream from the confluence of Willow and Little Cedar Creeks is small compared with the waste discharge, so benefits of dilution for Waterloo and Auburn are minimal. The model also indicates that, during winter low flows, ammonia toxicity, rather than dissolved oxygen, is the limiting water-quality criterion in the reach of Cedar Creek downstream from the wastewater-treatment facility at Auburn and the confluence of Garrett ditch. Ammonia-nitrogen concentrations predicted for 1978 through 2000 downstream from the Waterloo wastewater-treatment facility do not exceed Indiana water-quality standards for streams. Calculations of the stream 's assimilative capacity indicate that future waste discharge in the Cedar Creek basin will be limited to the reaches between the Auburn wastewater-treatment facility and County Road 68. (Kosco-USGS)
NASA Technical Reports Server (NTRS)
1991-01-01
Stennis Space Center's aquaculture research program has led to an attractive wastewater treatment for private homes. The system consists of a septic tank or tanks for initial sewage processing and a natural secondary treatment facility for further processing of septic tanks' effluent, consisting of a narrow trench, which contains marsh plants and rocks, providing a place for microorganisms. Plants and microorganisms absorb and digest, thus cleansing partially processed wastewater. No odors are evident and cleaned effluent may be discharged into streams or drainage canals. The system is useful in rural areas, costs about $1,900, and requires less maintenance than mechanical systems.
Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael
2011-01-01
This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the remaining samples were archived. Biological characteristics were determined by using an in-vitro bioassay to determine total estrogenicity in water samples and a caged fish study to determine characteristics of fish from experiments that exposed fish to wastewater effluent in 2009. St. Cloud State University deployed and processed caged fathead minnows at 13 stream sites during September 2009 for the caged fish study. Measured fish data included length, weight, body condition factor, and vitellogenin concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, W.K.; Ryon, M.G.; Hinzman, R.L.
1996-03-01
The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the US Enrichment Corporationmore » (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7 C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, W.K.
1999-01-01
The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the United States Enrichmentmore » Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.« less
Atkinson, Sov; Thomas, Simon F; Goddard, Paul; Bransgrove, Rachel M; Mason, Paul T; Oak, Ajeet; Bansode, Anand; Patankar, Rohit; Gleason, Zachary D; Sim, Marissa K; Whitesell, Andrew; Allen, Michael J
2015-05-21
It is estimated that approximately 1.1 billion people globally drink unsafe water. We previously reported both a novel copper-alginate bead, which quickly reduces pathogen loading in waste streams and the incorporation of these beads into a novel swirl flow bioreactor (SFB), of low capital and running costs and of simple construction from commercially available plumbing pipes and fittings. The purpose of the present study was to trial this system for pathogen reduction in waste streams from an operating Dewats system in Hinjewadi, Pune, India and in both simulated and real waste streams in Seattle, Washington, USA. The trials in India, showed a complete inactivation of coliforms in the discharged effluent (Mean Log removal Value (MLRV) = 3.51), accompanied by a total inactivation of E. coli with a MLRV of 1.95. The secondary clarifier effluent also showed a 4.38 MLRV in viable coliforms during treatment. However, the system was slightly less effective in reducing E. coli viability, with a MLRV of 1.80. The trials in Seattle also demonstrated the efficacy of the system in the reduction of viable bacteria, with a LRV of 5.67 observed of viable Raoultella terrigena cells (100%).
Schultz, M.M.; Furlong, E.T.; Kolpin, D.W.; Werner, S.L.; Schoenfuss, H.L.; Barber, L.B.; Blazer, V.S.; Norris, D.O.; Vajda, A.M.
2010-01-01
Antidepressant pharmaceuticals are widely prescribed in the United States; release of municipal wastewater effluent is a primary route introducing them to aquatic environments, where little is known about their distribution and fate. Water, bed sediment, and brain tissue from native white suckers (Catostomus commersoni)were collected upstream and atpoints progressively downstream from outfalls discharging to two effluentimpacted streams, Boulder Creek (Colorado) and Fourmile Creek (Iowa). A liquid chromatography/tandem mass spectrometry method was used to quantify antidepressants, including fluoxetine, norfluoxetine (degradate), sertraline, norsertraline (degradate), paroxetine, Citalopram, fluvoxamine, duloxetine, venlafaxine, and bupropion in all three sample matrices. Antidepressants were not present above the limit of quantitation in water samples upstream from the effluent outfalls but were present at points downstream at ng/L concentrations, even at the farthest downstream sampling site 8.4 km downstream from the outfall. The antidepressants with the highest measured concentrations in both streams were venlafaxine, bupropion, and Citalopram and typically were observed at concentrations of at least an order of magnitude greater than the more commonly investigated antidepressants fluoxetine and sertraline. Concentrations of antidepressants in bed sediment were measured at ng/g levels; venlafaxine and fluoxetine were the predominant chemicals observed. Fluoxetine, sertraline, and their degradates were the principal antidepressants observed in fish brain tissue, typically at low ng/g concentrations. Aqualitatively different antidepressant profile was observed in brain tissue compared to streamwater samples. This study documents that wastewater effluent can be a point source of antidepressants to stream ecosystems and that the qualitative composition of antidepressants in brain tissue from exposed fish differs substantially from the compositions observed in streamwater and sediment, suggesting selective uptake. ?? 2010 American Chemical Society.
Banerjee, Priya; Dey, Tanmoy Kumar; Sarkar, Sandeep; Swarnakar, Snehasikta; Mukhopadhyay, Aniruddha; Ghosh, Sourja
2016-03-01
Extensive usage of pharmaceutical and personal care products (PPCPs) and their discharge through domestic sewage have been recently recognized as a new generation environmental concern which deserves more scientific attention over the classical environmental pollutants. The major issues of this type of effluent addressed in this study were its colour, triclosan and anionic surfactant (SDS) content. Samples of cosmetic effluent were collected from different beauty treatment salons and spas in and around Kolkata, India and treated in bioreactors containing a bacterial consortium isolated from activated sludge samples collected from a common effluent treatment plant. Members of the consortium were isolated and identified as Klebsiella sp., Pseudomonas sp., Salmonella sp. and Comamonas sp. The biotreated effluent was subjected to ultrafiltration (UF) involving indigenously prepared ceramic membranes in both side-stream and submerged mode. Analysis of the MBR treated effluent revealed 99.22%, 98.56% and 99.74% removal of colour, triclosan and surfactant respectively. Investigation of probable acute and chronic cyto-genotoxic potential of the untreated and treated effluents along with their possible participation in triggering oxidative stress was carried out with Heteropneustes fossilis (Bloch). Comet formation recorded in both liver and gill cells and micronucleus count in peripheral erythrocytes of individuals exposed to untreated effluent increased with duration of exposure and was significantly higher than those treated with UF permeates which in turn neared control levels. Results of this study revealed successful application of the isolated bacterial consortium in MBR process for efficient detoxification of cosmetic effluent thereby conferring the same suitable for discharge and/or reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.
Septic tank discharges as multi-pollutant hotspots in catchments.
Richards, Samia; Paterson, Eric; Withers, Paul J A; Stutter, Marc
2016-01-15
Small point sources of pollutants such as septic tanks are recognised as significant contributors to streams' pathogen and nutrient loadings, however there is little data in the UK on which to judge the potential risks that septic tank effluents (STEs) pose to water quality and human health. We present the first comprehensive analysis of STE to help assess multi-pollutant characteristics, management-related risk factors and potential tracers that might be used to identify STE sources. Thirty-two septic tank effluents from residential households located in North East of Scotland were sampled along with adjacent stream waters. Biological, physical, chemical and fluorescence characterisation was coupled with information on system age, design, type of tank, tank management and number of users. Biological characterisation revealed that total coliforms and Escherichia coli (E. coli) concentration ranges were: 10(3)-10(8) and 10(3)-10(7)MPN/100 mL, respectively. Physical parameters such as electrical conductivity, turbidity and alkalinity ranged 160-1730 μS/cm, 8-916 NTU and 15-698 mg/L, respectively. Effluent total phosphorus (TP), soluble reactive P (SRP), total nitrogen (TN) and ammonium-N (NH4-N) concentrations ranged 1-32, <1-26, 11-146 and 2-144 mg/L, respectively. Positive correlations were obtained between phosphorus, sodium, potassium, barium, copper and aluminium. Domestic STE may pose pollution risks particularly for NH4-N, dissolved P, SRP, copper, dissolved N, and potassium since enrichment factors were >1651, 213, 176, 63, 14 and 8 times that of stream waters, respectively. Fluorescence characterisation revealed the presence of tryptophan peak in the effluent and downstream waters but not detected upstream from the source. Tank condition, management and number of users had influenced effluent quality that can pose a direct risk to stream waters as multiple points of pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.
Effects of urban wastewater on hyporheic habitat and invertebrates in Mediterranean streams.
Sánchez-Morales, Marc; Sabater, Francesc; Muñoz, Isabel
2018-06-18
Wastewater discharges into fluvial ecosystems represent a significant and continuous source of fine particles and nutrients that can severely modify stream community composition and functionality. Depending on both wastewater and stream features (e.g., nutrient removal treatments and stream dilution capacity), the ecological effects can be more or less severe. To determine how hyporheic habitat and hyporheos are affected, we analysed eight Mediterranean streams both upstream and downstream of a wastewater effluent. The results demonstrated that environmental factors associated with clogging, such as the quantity of fine particulate and organic matter in sediment, were magnified downstream of the wastewater inputs. Likewise, dissolved nutrients also increased but depended to a greater extent on the presence of a wastewater treatment plant and on the nitrogen and phosphorus removal treatments. The hyporheic invertebrates were more affected by clogging than by eutrophication. Both richness and diversity parameters were negatively correlated with clogging features but were not correlated with eutrophication. The most affected taxa were Macrocrustaceans, Hydrachnidia and several insect species, which decreased or were not detected downstream of the effluents. On the contrary, other taxa such as Naididae (Oligochaeta), Orthocladiinae (Chironomidae) and Potamopyrgus antipodarum (Gastropoda) benefited from the wastewater inputs. Copyright © 2018 Elsevier B.V. All rights reserved.
Lee, Kathy E.; Schoenfuss, Heiko L.; Jahns, Nathan D.; Brown, Greg K.; Barber, Larry B.
2008-01-01
This report presents the study design and environmental data for an integrated chemical and biological study of three streams (South Fork Crow River, Redwood River, and Grindstone River) that receive wastewater in Minnesota. The objective of the study was to identify distribution patterns of endocrine-active chemicals and other organic chemicals indicative of wastewater, and to identify fish responses in the same streams. Endocrine-active chemicals are a class of chemicals that interfere with the natural regulation of endocrine systems, and an understanding of their distribution in aquatic systems is important so that aquatic organism exposure can be evaluated. This study was a cooperative effort of the U.S. Geological Survey (USGS), the Minnesota Pollution Control Agency, and St. Cloud State University (St. Cloud, Minn.). The USGS collected and analyzed water and quality-assurance samples and measured streamflow during six sampling events in each of three streams. Water samples were collected upstream from and at two successive points downstream from wastewater-treatment plant (WWTP) effluent discharge and from treated effluent from February through September 2007. Bed-sediment samples were collected during one sampling period at each of the stream locations. Water and bed-sediment samples were analyzed for endocrine-active chemicals including alkylphenols, alkylphenol polyethoxylates, and nonylphenol ethoxycarboxlylates (NPECs). Water samples also were analyzed for major ions, nutrients, and organic carbon. In addition, as part of an intensive time-series investigation, the USGS staff collected daily water samples for 8 weeks from the Redwood River near Marshall, Minn., for analyses of total alkylphenols and atrazine. St. Cloud State University staff collected and analyzed fish to determine male fish responses at all water sampling sites and at an additional site near the discharge of wastewater-treatment plant effluent to these streams. Male fish responses included the presence and concentration of vitellogenin in plasma, gonadosomatic indices, and histological characterizations of liver and testes tissue. Hydrologic, chemical and biological characteristics were different among sites. The percentage of streamflow contributed by WWTP effluent (ranging from less than 1 to 79 percent) was greatest at the South Fork Crow River and least at the Grindstone River. WWTP effluent generally contributed the greatest percentage of streamflow during winter and late summer when streamflows were low. A wide variety of chemicals were detected. More chemicals were detected in WWTP effluent samples than in stream samples during most time periods. The most commonly detected chemicals in samples collected monthly and analyzed at the USGS National Research Program Laboratory were 2,6-di-tert-butyl-1,4-benzoquinone, 2,6-di-tert-butyl-4-methylphenol, 3-beta-coprostanol, 4-methylphenol, 4-nonylphenol (NP), 4-tert-octylphenol, bisphenol A, cholesterol, ethylenediaminetetraacetic acid, and triclosan. The chemicals 4-nonylphenolmonoethoxycarboxylate (NP1EC), 4-nonylphenoldiethoxycarboxylate (NP2EC), and 4-nonylphenoltriethoxycarboxylate (NP3EC) also were detected. Excluding nondetections, the sum of NP1EC through NP3EC concentrations ranged from 5.1 to 260 ug/L among all samples. NP was detected in upstream, effluent, and downstream samples in each stream during at least one time period. NP was detected in 49 percent of environmental samples. Excluding nondetections, concentrations of NP ranged from 100 to 880 nanograms per liter among all samples. NP was also detected in more than one-half of the bed-sediment samples. The most commonly detected wastewater indicator chemicals in samples analyzed by schedule 4433 at the USGS National Water Quality Laboratory were 3,4-dichlorophenyl isocyanate, acetyl-hexamethyl-tetrahydronaphthalene, benzophenone, cholesterol, hexahydrohexamethyl-cyclopenta-benzopyran, N,N-diethyl-meta-toluamide, and
Impact of point-source pollution on phosphorus and nitrogen cycling in stream-bed sediments.
Palmer-Felgate, Elizabeth J; Mortimer, Robert J G; Krom, Michael D; Jarvie, Helen P
2010-02-01
Diffusive equilibration in thin films was used to study the cycling of phosphorus and nitrogen at the sediment-water interface in situ and with minimal disturbance to redox conditions. Soluble reactive phosphate (SRP), nitrate, nitrite, ammonium, sulfate, iron, and manganese profiles were measured in a rural stream, 12 m upstream, adjacent to, and 8 m downstream of a septic tank discharge. Sewage fungus adjacent to the discharge resulted in anoxic conditions directly above the sediment. SRP and ammonium increased with depth through the fungus layer to environmentally significant concentrations (440 and 1800 microM, respectively) due to release at the sediment surface. This compared to only 0.8 microM of SRP and 2.0 microM of ammonium in the water column upstream of the discharge. Concomitant removal of ammonium, nitrite and nitrate within 0.5 cm below the fungus-water interface provided evidence for anaerobic ammonium oxidation (anammox). "Hotspots" of porewater SRP (up to 350 microM) at the downstream site demonstrated potential in-stream storage of the elevated P concentrations from the effluent. These results provide direct in situ evidence of phosphorus and nitrogen release from river-bed sediments under anoxic conditions created by sewage-fungus, and highlight the wider importance of redox conditions and rural point sources on in-stream nutrient cycling.
Quantifying the impact of septic tank systems on eutrophication risk in rural headwaters.
Withers, P J A; Jarvie, H P; Stoate, C
2011-04-01
Septic tank systems (STS) are a potential source of nutrient emissions to surface waters but few data exist in the UK to quantify their significance for eutrophication. We monitored the impact of STS on nutrient concentrations in a stream network around a typical English village over a 1-year period. Septic tank effluent discharging via a pipe directly into one stream was highly concentrated in soluble N (8-63mgL(-1)) and P (<1-14mgL(-1)) and other nutrients (Na, K, Cl, B and Mn) typical of detergent and household inputs. Ammonium-N (NH(4)N) and soluble reactive P (SRP) fractions were dominant (70-85% of total) and average concentrations of nitrite-N (NO(2)N) were above levels considered harmful to fish (0.1mgL(-1)). Lower nutrient concentrations were recorded at a ditch and a stream site, but range and average values downstream of rural habitation were still 4 to 10-fold greater than those in upstream sections. At the ditch site, where flow volumes were low, annual flow-weighted concentrations of NH(4)N and SRP increased from 0.04 and 0.07mgL(-1), respectively upstream to 0.55 and 0.21mgL(-1) downstream. At the stream site, flow volumes were twice as large and flow-weighted concentrations increased much less; from 0.04 to 0.21mgL(-1) for NH(4)N and from 0.06 to 0.08mgL(-1) for SRP. At all sites, largest nutrient concentrations were recorded under low flow and stream discharge was the most important factor determining the eutrophication impact of septic tank systems. The very high concentrations, intercorrelation and dilution patterns of SRP, NH(4)-N and the effluent markers Na and B suggested that soakaways in the heavy clay catchment soils were not retaining and treating the septic tank effluents efficiently, with profound implications for stream biodiversity. Water companies, water regulators and rural communities therefore need to be made more aware of the potential impacts of STS on water quality so that their management can be optimised to reduce the risk of potential eutrophication and toxicity to aquatic ecosystems during summer low flow periods. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wilber, William G.; Crawford, Charles G.; Peters, James G.
1979-01-01
The Indiana State Board of Health is developing a State water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Silver Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Effluents from the Sellersburg and Clarksville-North wastewater-treatment facilities are the only point-source waste loads that significantly affect the water quality in the modeled segment of Silver Creek. Model simulations indicate that nitrification is the most significant factor affecting the dissolved-oxygen concentration in Silver Creek during summer and winter low flows. Natural streamflow in Silver Creek during the summer and annual 7-day, 10-year low flow is zero, so no benefit from dilution is provided. Present ammonia-nitrogen and dissolved-oxygen concentrations of effluent from the Sellersburg and Clarksville-North wastewater-treatment facilities will violate current Indiana water-quality standards for ammonia toxicity and dissolved oxygen during summer and winter low flows. The current biochemical-oxygen demand limits for the Sellersburg and Clarksville-North wastewater-treatment facilities are not sufficient to maintain an average dissolved-oxygen concentration of at least 5 milligrams per liter, the State 's water-quality standard for streams. Calculations of the stream 's assimilative capacity indicate that Silver Creek cannot assimilate additional waste loadings and meet current Indiana water-quality standards. (Kosco-USGS)
Salmelin, Johanna; Leppänen, Matti T; Karjalainen, Anna K; Vuori, Kari-Matti; Gerhardt, Almut; Hämäläinen, Heikki
2017-01-01
Mining of sulfide-rich pyritic ores produces acid mine drainage waters and has induced major ecological problems in aquatic ecosystems worldwide. Biomining utilizes microbes to extract metals from the ore, and it has been suggested as a new sustainable way to produce metals. However, little is known of the potential ecotoxicological effects of biomining. In the present study, biomining impacts were assessed using survival and behavioral responses of aquatic macroinvertebrates at in situ exposures in streams. The authors used an impedance conversion technique to measure quantitatively in situ behavioral responses of larvae of the regionally common mayfly, Heptagenia dalecarlica, to discharges from the Talvivaara mine (Sotkamo, Northern Finland), which uses a biomining technique. Behavioral responses measured in 3 mine-impacted streams were compared with those measured in 3 reference streams. In addition, 3-d survival of the mayfly larvae and the oligochaete Lumbriculus variegatus was measured in the study sites. Biomining impacts on stream water quality included increased concentrations of sulfur, sulfate, and metals, especially manganese, cadmium, zinc, sodium, and calcium. Survival of the invertebrates in the short term was not affected by the mine effluents. In contrast, apparent behavioral changes in mayfly larvae were detected, but these responses were not consistent among sites, which may reflect differing natural water chemistry of the study sites. Environ Toxicol Chem 2017;36:147-155. © 2016 SETAC. © 2016 SETAC.
Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries.
Bielen, Ana; Šimatović, Ana; Kosić-Vukšić, Josipa; Senta, Ivan; Ahel, Marijan; Babić, Sanja; Jurina, Tamara; González Plaza, Juan José; Milaković, Milena; Udiković-Kolić, Nikolina
2017-12-01
Effluents from pharmaceutical industries are recognized as significant contributors to aquatic pollution with antibiotics. Although such pollution has been mostly reported in Asia, knowledge on industrial discharges in other regions of the world, including Europe, and on the effects associated with such exposures is still limited. Thus, we performed chemical, microbiological and ecotoxicological analyses of effluents from two Croatian pharmaceutical industries during four seasons. In treated effluents of the company synthesizing macrolide antibiotic azithromycin (AZI), the total concentration of AZI and two macrolide by-products from its synthesis was 1-3 orders of magnitude higher in winter and springtime (up to 10.5 mg/L) than during the other two seasons (up to 638 μg/L). Accordingly, the highest total concentrations (up to 30 μg/L) in the recipient river were measured in winter and spring. Effluents from second company formulating veterinary antibiotics contained fluoroquinolones, trimethoprim, sulfonamides and tetracyclines ranging from low μg/L to approx. 200 μg/L. Low concentrations of these antibiotics, from below the limit of quantification to approx. few μg/L, have also been measured in the recipient stream. High frequency of culturable bacteria resistant to AZI (up to 83%) or sulfamethazine (up to 90%) and oxytetracycline (up to 50%) were also found in studied effluents. Finally, we demonstrated that toxicity to algae and water fleas often exceeded the permitted values. Most highly contaminated effluents induced multiple abnormalities in zebrafish embryos. In conclusion, using a wide array of analyses we have demonstrated that discharges from pharmaceutical industries can pose a significant ecological and public health concern due to their toxicity to aquatic organisms and risks for promoting development and spread of antibiotic resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Herrmann, Hans W.
1998-11-01
The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure, uniform glow discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g. He/O_2/H_2O) which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains metastables (e.g. O2*, He*) and radicals (e.g. O, OH). These reactive species have been shown to be effective neutralizers of surrogates for anthrax spores, mustard blister agent and VX nerve gas. Unlike conventional, wet decontamination methods, the plasma effluent does not cause corrosion of most surfaces and does not damage wiring, electronics, nor most plastics. This makes it highly suitable for decontamination of high value sensitive equipment such as is found in vehicle interiors (i.e. tanks, planes...) for which there is currently no good decontamination technique. Furthermore, the reactive species rapidly degrade into harmless products leaving no lingering residue or harmful byproducts. Physics of the APPJ will be discussed and results of surface decontamination experiments using simulant and actual CBW agents will be presented.
Crawford, Charles G.; Wilber, William G.; Peters, James G.
1979-01-01
The Indiana State Board of Health is developing a State water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in South Fork Wildcat Creek was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Natural streamflow during the 7-day, 10-year low flow is zero, so no benefit from dilution is provided. The Indiana State Board of Health 's projected ammonia-nitrogen concentration for the Frankfort wastewater-treatment facility will violate the instream total ammonia-nitrogen standard of 2.5 mg/l and 4.0 mg/l during summer and winter low flows, respectively. The model indicates that nitrification and algal respiration were significant factors affecting the dissolved-oxygen dynamics of South Fork Wildcat Creek during two water-quality surveys. Stream water quality during the two water-quality surveys was degraded by the discharge of wastewater receiving only primary treatment. Benthic deposits resulting from this wastewater discharge seem to exert a considerable oxygen demand. The discharge of partially treated wastewater should be eliminated when a new wastewater-treatment facility becomes operational in mid-1979. Therefore, benthic-oxygen demand due to benthic deposits should become negligible at that time.
Lohner, T W; Reash, R J; Willet, V E; Fletcher, J
2001-11-01
Sunfish were collected from fly ash discharge-receiving streams to assess the possible effects of exposure to elevated selenium. Concentrations of selenium, copper, and arsenic were statistically higher in fish tissue (liver) samples from effluent-exposed fish than in reference fish. Several biomarkers were indicative of metal exposure and effect. Plasma protein levels and cholesterol levels were significantly lower in exposed fish, indicating nutritional stress. Ion levels (i.e., K) increased with exposure to ash pond metals, indicating possible gill damage. Fish from the receiving streams also had increased serum glucose and osmolality indicating possible acute stress due to sampling. Fish health assessments revealed a lower incidence of fin erosion, kidney discoloration, urolithiasis or nephrocalcinosis, liver discoloration, and parasites in exposed fish and a higher incidence of skin, eye, and gill aberrations. Condition factors of exposed fish were correlated with biomarker response and were the same as or lower than those of reference fish, but not related to selenium levels. Although several serum biochemical indicators differed between the ash pond-receiving stream and reference sites, pollutant exposure was apparently not sufficient to cause functional damage to critical organ systems.
Maupin, Molly A.; Ivahnenko, Tamara
2011-01-01
Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1 million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using "typical pollutant concentrations" to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales.
Lee, Kathy E.; Schoenfuss, Heiko L.; Barber, Larry B.; Writer, Jeff H.; Blazer, Vicki; Keisling, Richard L.; Ferrey, Mark L.
2010-01-01
Although these studies indicate that wastewater-treatment plant effluent is a conduit for endocrine active chemicals to surface waters, endocrine active chemicals also were present in surface waters with no obvious wastewater-treatment plant effluent sources. Endocrine active chemicals were detected and indicators of endocrine disruption in fish were measured at numerous sites upstream from discharge of wastewater-treatment plant effluent. These observations indicate that other unidentified sources of endocrine active chemicals exist, such as runoff from land surfaces, atmospheric deposition, inputs from onsite septic systems, or other groundwater sources. Alternatively, some endocrine active chemicals may not yet have been identified or measured. The presence of biological indicators of endocrine disruption in male fish indicates that the fish are exposed to endocrine active chemicals. However indicators of endocrine disruption in male fish does not indicate an effect on fish reproduction or changes in fish populations.
Carvalho, Fernando P; Oliveira, João M; Faria, Isabel
2009-11-01
Two large uranium mines, Quinta do Bispo and Cunha Baixa, district of Viseu, North of Portugal, were exploited until 1991. Sulfuric acid was used for in situ uranium leaching in Cunha Baixa mine and for heap leaching of low grade ores at both mines. Large amounts of mining and milling residues were accumulated nearby. Since closure of mines, the treatment of acid mine waters has been maintained and treated water is released into surface water lines. Analysis of radionuclides in the soluble phase and in the suspended matter of water samples from the uranium mines, from the creeks receiving the discharges of mine effluents, from the rivers and from wells in this area, show an enhancement of radioactivity levels. For example, downstream the discharge of mine effluents into Castelo Stream, the concentrations of dissolved uranium isotopes and uranium daughters were up to 14 times the concentrations measured upstream; (238)U concentration in suspended particulate matter of Castelo Stream reached 72 kBq kg(-1), which is about 170 times higher than background concentrations in Mondego River. Nevertheless, radionuclide concentrations decreased rapidly to near background values within a distance of about 7 kilometers from the discharge point. Enhancement of radioactivity in underground waters was positively correlated with a decrease in water pH and with an increase of sulfate ion concentration, pointing out to Cunha Baixa mine as the source of groundwater contamination. The radiotoxic exposure risk arising from using these well waters as drinking water and as irrigation water is discussed and implementation of environmental remediation measures is advised.
NASA Astrophysics Data System (ADS)
Noerfitriyani, Eki; Hartono, Djoko M.; Moersidik, Setyo S.; Gusniani, Irma
2018-03-01
The landfill operation can cause environmental problems due to solid waste decomposition in the form of leachate. The evaluation of environmental impacts related with solid waste landfilling is needed to ensure that leachate discharge to water bodies does not exceed the standard limit to prevent contamination of the environment. This study aims to analyze the impact of leachate discharge from Cipayung Landfill on water quality of Pesanggrahan River. The data were analyzed based on leachate samples taken from influent and effluent treatment unit, and river water samples taken from upstream, stream at leachate discharge, and downstream. All samples were taken three times under rainy season condition from April to May 2017. The results show the average leachate quality temperature is 34,81 °C, TSS 72.33 mg/L, pH 7.83, BOD 3,959.63 mg/L, COD 6,860 mg/L, TN 373.33 mg/L, Hg 0.0016 mg/L. The BOD5/COD ratio 0.58 indicated that leachate characteristics was biodegradable and resemble intermediate landfill due to the mixing of young leachate and old leachate. The effluent of leachate treatment plant exceeds the leachate standard limit for BOD, COD, and TN parameters. Statistical results from independent T-test showed significant differences (p<0,05) between upstream and downstream influenced with leachate discharge for DO parameter.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Specification Test Procedures for Monitoring Systems for Effluent Stream Gas Volumetric Flow Rate E Appendix E... Stream Gas Volumetric Flow Rate 1. Principle and applicability. 1.1Principle. Effluent stream gas... method is applicable to subparts which require continuous gas volumetric flow rate measurement...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Specification Test Procedures for Monitoring Systems for Effluent Stream Gas Volumetric Flow Rate E Appendix E... Stream Gas Volumetric Flow Rate 1. Principle and applicability. 1.1Principle. Effluent stream gas... method is applicable to subparts which require continuous gas volumetric flow rate measurement...
Groundwater impact assessment report for the 216-S-26 Crib, 200 West Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindberg, J.W.; Evelo, S.D.; Alexander, D.J.
1993-11-01
This report assesses the impact of wastewater discharged to the 216-S-26 Crib on groundwater quality. The 216-S-26 Crib, located in the southern 200 West Area, has been in use since 1984 to dispose of liquid effluents from the 222-S Laboratory Complex. The 222-S Laboratory Complex effluent stream includes wastewater from four sources: the 222-S Laboratory, the 219-S Waste Storage Facility, the 222-SA Chemical Standards Laboratory, and the 291-S Exhaust Fan Control House and Stack. Based on assessment of groundwater chemistry and flow data, contaminant transport predictions, and groundwater chemistry data, the 216-S-26 Crib has minimal influence on groundwater contamination inmore » the southern 200 West Area.« less
Albert, Ryan J; McLaughlin, Christine; Falatko, Debra
2014-10-15
Fish hold effluent and the effluent produced from the cleaning of fish holds may contain organic material resulting from the degradation of seafood and cleaning products (e.g., soaps and detergents). This effluent is often discharged by vessels into near shore waters and, therefore, could have the potential to contribute to water pollution in bays and estuaries. We characterized effluent from commercial fishing vessels with holds containing refrigerated seawater, ice slurry, or chipped ice. Concentrations of trace heavy metals, wet chemistry parameters, and nutrients in effluent were compared to screening benchmarks to determine if there is a reasonable potential for effluent discharge to contribute to nonattainment of water quality standards. Most analytes (67%) exceeded their benchmark concentration and, therefore, may have the potential to pose risk to human health or the environment if discharges are in significant quantities or there are many vessels discharging in the same areas. Published by Elsevier Ltd.
Crawford, Charles G.; Wilber, William G.; Peters, James G.
1979-01-01
The Indiana State Board of Health is developing a water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Wildcat Creek was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that benthic-oxygen demand is the most significant factor affecting the dissolved-oxygen concentrations in Wildcat Creek during summer low flows. The Indiana stream dissolved-oxygen standard should not be violated if the Kokomo wastewater-treatment facility meets its current National Pollution Discharge Elimination System permit restrictions (average monthly 5-day biochemical-oxygen demand of 5 milligrams per liter and maximum weekly 5-day biochemical-oxygen demand of 7.5 milligrams per liter) and benthic-oxygen demand becomes negligible. Ammonia-nitrogen toxicity may also be a water-quality limitation in Wildcat Creek. Ammonia-nitrogen waste loads for the Kokomo wastewater-treatment facility, projected by the Indiana State Board of Health, will result in stream ammonia-nitrogen concentrations that exceed the State standard (2.5 milligrams per liter during summer months and 4.0 milligrams per liter during winter months). (Kosco-USGS)
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology currently available (BPT). (The fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water stream): Effluent characteristic Effluent limitations Maximum for any 1...
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology currently available (BPT). (The fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water stream): Effluent characteristic Effluent limitations Maximum for any 1...
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology currently available (BPT). (The fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water stream): Effluent characteristic Effluent limitations Maximum for any 1...
Manekar, Pravin; Biswas, Rima; Karthik, Manikavasagam; Nandy, Tapas
2011-05-15
Effluent generated from coal carbonization to coke was characterized with high organic content, phenols, ammonium nitrogen, and cyanides. A full scale effluent treatment plant (ETP) working on the principle of single stage carbon-nitrogen bio-oxidation process (SSCNBP) revealed competition between heterotrophic and autotrophic bacteria in the bio-degradation and nitrification process. The effluent was pretreated in a stripper and further combined with other streams to treat in the SSCNBP. Laboratory studies were carried on process and stripped effluents in a bench scale model of ammonia stripper and a two stage bio-oxidation process. The free ammonia removal efficiency of stripper was in the range 70-89%. Bench scale studies of the two stage bio-oxidation process achieved a carbon-nitrogen reduction at 6 days hydraulic retention time (HRT) operating in an extended aeration mode. This paper addresses the studies on selection of a treatment process for removal of organic matter, phenols, cyanide and ammonia nitrogen. The treatment scheme comprising ammonia stripping (pretreatment) followed by the two stage bio-oxidation and chlorination process met the Indian Standards for discharge into Inland Surface Waters. This treatment process package offers a techno-economically viable treatment scheme to neuter hazardous effluent generated from coal carbonization process. Copyright © 2011 Elsevier B.V. All rights reserved.
Bradley, Paul M.; Journey, Celeste A.; Clark, Jimmy M.
2016-01-01
Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insight into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The U.S. Geological Survey assessed the fate of select endocrine disrupting chemicals (EDC) in surface water and streambed sediment one year before and one year after closure of a long-term WWTF located within the Spirit Creek watershed at Fort Gordon, Georgia. Sample sites included a WWTF-effluent control located upstream from the outfall, three downstream effluent-impacted sites located between the outfall and Spirit Lake, and one downstream from the lake's outfall. Prior to closure, the 2.2-km stream segment downstream from the WWTF outfall was characterized by EDC concentrations significantly higher (α = 0.05) than at the control site; indicating substantial downstream transport and limited in-stream attenuation of EDC, including pharmaceuticals, estrogens, alkylphenol ethoxylate (APE) metabolites, and organophosphate flame retardants (OPFR). Wastewater-derived pharmaceutical, APE metabolites, and OPFR compounds were also detected in the outflow of Spirit Lake, indicating the potential for EDC transport to aquatic ecosystems downstream of Fort Gordon under effluent discharge conditions. After the WWTF closure, no significant differences in concentrations or numbers of detected EDC compounds were observed between control and downstream locations. The results indicated EDC pseudo-persistence under preclosure, continuous supply conditions, with rapid attenuation following WWTF closure. Low concentrations of EDC at the control site throughout the study and comparable concentrations in downstream locations after WWTF closure indicated additional, continuing, upstream contaminant sources within the Spirit Creek watershed.
Foster, Guy M.; Graham, Jennifer L.; Williams, Thomas J.; King, Lindsey R.
2016-10-31
Nutrients, particularly nitrogen and phosphorus, are a leading cause of water-quality impairment in Kansas and the Nation. Indian Creek is one of the most urban drainage basins in Johnson County, Kansas, and environmental and biological conditions are affected by contaminants from point and other urban sources. The Johnson County Douglas L. Smith Middle Basin (hereinafter Middle Basin) wastewater treatment facility (WWTF) is the largest point-source discharge on Indian Creek. A second facility, the Tomahawk Creek WWTF, discharges into Indian Creek approximately 11.6 kilometers downstream from the Middle Basin WWTF. To better characterize the spatiotemporal variability of nutrients in Indian Creek, the U.S. Geological Survey, in cooperation with the Kansas Department of Health and Environment and Johnson County Wastewater, collected high-resolution spatial and temporal (a large number of samples collected over the entire reach or at single locations over a long period of time) inorganic nutrient (nitrate plus nitrite and orthophosphorus) data using a combination of discrete samples and sensor-measured data during 2012 through 2015.Nutrient patterns observed in Indian Creek along the upstream-downstream gradient during wastewater effluent dominated streamflow conditions were largely affected by the WWTFs and by travel time of the parcels of water. Nitrate plus nitrite concentrations in the Middle Basin WWTF effluent and at downstream sites varied by as much as 6 milligrams per liter over a 24-hour period. The cyclical variability in the Middle Basin WWTF effluent generated a nitrate plus nitrite pulse that could be tracked for approximately 11.5 kilometers downstream in Indian Creek, until the effect was masked by the Tomahawk Creek WWTF effluent discharge. All longitudinal surveys showed the same general patterns along the upstream-downstream gradient, though streamflows, wastewater effluent contributions to streamflow, and nutrient concentrations spanned a wide range. Differences in orthophosphorus and nitrate plus nitrite patterns were clear along the upstream-downstream gradient in Indian Creek, and orthophosphorus concentrations were not as variable as nitrate plus nitrite concentrations. In general, nitrate plus nitrite concentrations decreased downstream from the Middle Basin WWTF to minima near the confluence with Tomahawk Creek, increased downstream from the Tomahawk Creek WWTF, and then varied little within the study reach. Orthophosphorus concentrations generally decreased downstream from the Middle Basin WWTF.Despite the marked variability in nitrate plus nitrite concentrations caused by the Middle Basin WWTF effluent discharges, decreases in nitrate plus nitrite concentrations were discernable along the study reach between the two WWTFs. Decreases in nitrate plus nitrite concentrations along study reach were less variable than the cyclical variability typically measured, reiterating the effect of the Middle Basin WWTF effluent discharges on the spatiotemporal variability of nitrate plus nitrite in Indian Creek. Although decreases and rates of change in nitrate plus nitrite concentration were similar between the upper and lower reaches of Indian Creek, relations with initial nitrate plus nitrite concentrations and seasonal patterns were different between the upper (from College to the Marty study sites) and lower reaches (from Marty to the Mission Farms study sites) and did not reflect patterns observed for the overall reach. Quantifying the decreases in nitrate plus nitrite concentration caused by dilution and other in-stream processes were beyond the scope of this study, and were limited by available data. The data that are available suggest that dilution and other in-stream processes play a role in decreasing nitrate plus nitrite concentrations downstream from the Middle Basin WWTF in Indian Creek.Analysis of the spatiotemporal variability of nutrients focused on below-normal and normal streamflow conditions, when streamflow and nutrient conditions in Indian Creek were largely controlled by WWTF effluent flows and nutrient removal processes. Spatial and temporal data indicate there are decreases in nutrient concentrations along the upstream-downstream gradient in Indian Creek, but quantifying decreases is complicated by the variability in nutrient concentrations caused by the WWTFs. During below-normal and normal streamflow conditions, Indian Creek nutrient concentrations downstream from the Middle Basin WWTF primarily reflect effluent concentrations in the hours or days before depending on relative distance downstream.
Halaburka, Brian J; Lawrence, Justin E; Bischel, Heather N; Hsiao, Janet; Plumlee, Megan H; Resh, Vincent H; Luthy, Richard G
2013-10-01
Streamflow augmentation has the potential to become an important application of recycled water in water scarce areas. We assessed the economic and ecological merits of a recycled water project that opted for an inland release of tertiary-treated recycled water in a small stream and wetland compared to an ocean outfall discharge. Costs for the status-quo scenario of discharging secondary-treated effluent to the ocean were compared to those of the implemented scenario of inland streamflow augmentation using recycled water. The benefits of the inland-discharge scenario were greater than the increase in associated costs by US$1.8M, with recreational value and scenic amenity generating the greatest value. We also compared physical habitat quality, water quality, and benthic macroinvertebrate community upstream and downstream of the recycled water discharge to estimate the effect of streamflow augmentation on the ecosystem. The physical-habitat quality was higher downstream of the discharge, although streamflow came in unnatural diurnal pulses. Water quality remained relatively unchanged with respect to dissolved oxygen, pH, and ammonia-nitrogen, although temperatures were elevated. Benthic macroinvertebrates were present in higher abundances, although the diversity was relatively low. A federally listed species, the California red-legged frog (Rana draytonii), was present. Our results may support decision-making for wastewater treatment alternatives and recycled water applications in Mediterranean climates.
Basílico, Gabriel; Magdaleno, Anahí; Paz, Marta; Moretton, Juan; Faggi, Ana; de Cabo, Laura
2017-04-01
The discharge of sewage effluents into low-order streams has negative effects on water quality. Macrophytes can be efficient in the treatment of this wastewater due to the removal of the main pollutants. The genotoxicity of sewage-polluted water discharging into La Choza stream was evaluated by testing with Allium cepa. Also, a phytoremediation assay with continuous recirculation of the residual water was conducted for 12 days. Three treatments were carried out. One treatment (Hr) was performed with a macrophyte (Hydrocotyle ranunculoides), and two treatments were conducted without macrophytes: with lighting (Ai) and without lighting (Ao). The wastewater was toxic according to all the evaluated indexes (mitotic index, frequency of chromosomal aberrations and micronucleus). High concentrations of ammonium, dissolved inorganic nitrogen (DIN), total (TP) and soluble reactive phosphorous (SRP) and indicators of faecal contamination were determined in the wastewater. The ammonium, DIN, SRP and TP loads at the end of the assay were significantly lower in the treatments with light (Hr and Ai). So, the nutrient removal was due to their absorption and adsorption by the periphyton and H. ranunculoides. Our results lead us to recommend the maintenance and planting of macrophytes in lowland streams subject to sewage pollution.
Liquid-phase chromatography detector
Voigtman, E.G.; Winefordner, J.D.; Jurgensen, A.R.
1983-11-08
A liquid-phase chromatography detector comprises a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focusing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof. 5 figs.
Liquid-phase chromatography detector
Voigtman, Edward G.; Winefordner, James D.; Jurgensen, Arthur R.
1983-01-01
A liquid-phase chromatography detector comprising a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focussing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof.
A water-quality monitoring network for Vallecitos Valley, Alameda County, California
Farrar, C.D.
1980-01-01
A water-quality monitoring network is proposed to detect the presence of and trace the movement of radioisotopes in the hydrologic system in the vicinity of the Vallecitos Nuclear Center. The source of the radioisotopes is treated industrial wastewater from the Vallecitos Nuclear Center that is discharged into an unnamed tributary of Vallecitos Creek. The effluent infiltrates the alluvium along the stream course, percolates downward to the water table, and mixes with the native ground water in the subsurface. The average daily discharge of effluent to the hydrologic system in 1978 was about 100,000 gallons. In Vallecitos Valley, the Livermore Gravel and the overlying alluvium constitute the ground-water reservoir. There is no subsurface inflow from adjacent ground-water basins. Ground-water flow in the Vallecitos subbasin is toward the southwest.The proposed network consists of four surface-water sampling sites and six wells to sample the ground-water system. Samples collected monthly at each site and analyzed for tritium and for alpha, beta, and gamma radiation would provide adequate data for monitoring.
NASA Technical Reports Server (NTRS)
Carlson, P. R. (Principal Investigator); Conomos, T. J.; Janda, R. J.; Peterson, D. H.
1973-01-01
The author has identified the following significant results. ERTS-1 multispectral scanner imagery of the nearshore surface waters of the Northeast Pacific Ocean is proving to be a useful tool for determining source and dispersal of suspended particulate matter. The principal sources of the turbid water, seen best on the green and red bands, are river and stream effluents and actively eroding coastlines; secondary sources are waste effluents and production of planktonic organisms, but these may sometimes be masked by the very turbid plumes of suspended sediment being discharged into the nearshore zone during times of high river discharge. The configuration and distribution of the plumes of turbid water also can be used to infer near-surface current directions. Comparison of imagery of the nearshore water off the northern California coast from October 1972 and January 1973 shows a reversal of the near-surface currents, from predominantly south-setting in the fall (California Current) to north-setting in the winter (Davidson Current).
Metcalfe, Chris D; Miao, Xiu-Sheng; Koenig, Brenda G; Struger, John
2003-12-01
Prescription and nonprescription drugs have been detected in rivers and streams in Europe and the United States. Sewage treatment plants (STPs) are an important source of these contaminants, but few data exist on the spatial distribution of drugs in surface waters near STPs. Samples of surface water were collected in the summer and fall of 2000 at open-water sites in the lower Great Lakes (Lake Ontario and Lake Erie), at sites near the two STPs for the city of Windsor (ON, Canada), and at sites in Hamilton Harbour (ON, Canada), an embayment of western Lake Ontario that receives discharges from several STPs. In a follow-up study in the summer of 2002, samples of surface water and final effluent from adjacent STPs were collected from sites in Hamilton Harbour and Windsor. In addition, surface water and STP effluent samples were collected in Peterborough (ON, Canada). All samples of surface water and STP effluents were analyzed for selected acidic and neutral drugs. In the survey of Hamilton Harbour and Windsor conducted in 2000, acidic drugs and the antiepileptic drug carbamazepine were detected at ng/L concentrations at sites that were up to 500 m away from the STP, but the hydrological conditions of the receiving waters strongly influenced the spatial distribution of these compounds. Drugs were not detected at open-water locations in western Lake Erie or in the Niagara River near the municipality of Niagara-on-the-Lake (ON, Canada). However, clofibric acid, ketoprofen, fenoprofen, and carbamazepine were detected in samples collected in the summer of 2000 at sites in Lake Ontario and at a site in the Niagara River (Fort Erie, ON, Canada) that were relatively remote from STP discharges. Follow-up studies in the summer of 2002 indicated that concentrations of acidic and neutral drugs in surface waters near the point of sewage discharge into the Little River (ON, Canada) STP were approximately equal to the concentrations in the final effluent from the STP. Caffeine and cotinine, a metabolite of nicotine, were generally present in STP effluents and surface waters contaminated by drugs. The antidepressant fluoxetine and the antibiotic trimethoprom were also detected in most STP effluents and some surface water samples. For the first time, the lipid regulating drug atorvastatin was detected in samples of STP effluent and surface water.
El-Dars, F M S E; Mohammed, H A; Farag, A B
2011-01-01
Oil exploration in Egypt is a major contributor to the national Gross Domestic Product (GDP). With 50-65% of the oil resources located in the Gulf of Suez (GoS) region, the impact of such activity upon the region's water environment and its quality cannot be overlooked because of the volume of effluent generated. The objective of this study (September 2000-September 2001) was to assess the impact of a 650,000 barrels/day (bl/d) (100,000 m3/d) effluent arising from a major oil exploration site located south of GoS upon the local water environment. Another objective was to identify the pollutant contents amenable for reduction relative to the new Egyptian regulations. This was achieved by the characterization of the main contributing streams and the identification of the final effluent parameter constraints relative to the type of injection waters used. Subsequent investigations for the reduction of these contents were conducted on site and the results obtained are reviewed herewith.
Wright, Moncie V; Matson, Cole W; Baker, Leanne F; Castellon, Benjamin T; Watkins, Preston S; King, Ryan S
2018-06-01
A 5-week mesocosm experiment was conducted to investigate the toxicity of titanium dioxide nanoparticles (TiO 2 NPs) to periphytic algae in an environmentally-realistic scenario. We used outdoor experimental streams to simulate the characteristics of central Texas streams receiving large discharges of wastewater treatment plant effluent during prolonged periods of drought. The streams were continually dosed and maintained at two concentrations. The first represents an environmentally relevant concentration of 0.05 mg L -1 (low concentration). The second treatment of 5 mg L -1 (high concentration) was selected to represent a scenario where TiO 2 NPs are used for photocatalytic degradation of pharmaceuticals in wastewater. Algal cell density, chlorophyll-a, ash-free dry mass, algal assemblage composition, and Ti accumulation were determined for the periphyton in the riffle sections of each stream. The high concentration treatment of TiO 2 NPs significantly decreased algal cell density, ash-free dry mass, and chlorophyll-a, and altered algal assemblage composition. Decreased abundance of three typically pollution-sensitive taxa and increased abundance of two genera associated with heavy metal sorption and organic pollution significantly contributed to algal assemblage composition changes in response to TiO 2 NPs. Benefits of the use of TiO 2 NPs in wastewater treatment plants will need to be carefully weighed against the demonstrated ability of these NPs to cause large changes in periphyton that would likely propagate significant effects throughout the stream ecosystem, even in the absence of direct toxicity to higher trophic level organisms. Copyright © 2018 Elsevier B.V. All rights reserved.
Method of purifying a gas stream using 1,2,3-triazolium ionic liquids
Luebke, David; Nulwala, Hunald; Tang, Chau
2014-12-09
A method for separating a target gas from a gaseous mixture using 1,2,3-triazolium ionic liquids is presented. Industrial effluent streams may be cleaned by removing carbon dioxide from the stream by contacting the effluent stream with a 1,2,3-triazolium ionic liquid compound.
Vajda, Alan M.; Kumar, Anupama; Woods, Marianne; Williams, Mike; Doan, Hai; Tolsher, Peter; Kookana, Rai S.; Barber, Larry B.
2016-01-01
The contamination of major continental river systems by endocrine-active chemicals (EACs) derived from the discharge of wastewater treatment plant (WWTP) effluents can affect human and ecosystem health. As part of a long-term effort to develop a native fish model organism for assessment of endocrine disruption in Australia's largest watershed, the Murray-Darling River Basin, the present study evaluated endocrine disruption in adult males of the native Australian Murray rainbowfish (Melanotaenia fluviatilis) exposed to effluent from an activated sludge WWTP and water from the Murray River during a 28-d, continuous-flow, on-site experiment. Analysis of the WWTP effluent and river water detected estrone and 17β-estradiol at concentrations up to approximately 25 ng L−1. Anti-estrogenicity of effluent samples was detected in vitro using yeast-based bioassays (yeast estrogen screen) throughout the experiment, but estrogenicity was limited to the first week of the experiment. Histological evaluation of the testes indicated significant suppression of spermatogenesis by WWTP effluent after 28 d of exposure. Plasma vitellogenin concentrations and expression of vitellogenin messenger RNA in liver were not significantly affected by exposure to WWTP effluent. The combination of low contaminant concentrations in the WWTP effluent, limited endocrine disrupting effects in the Murray rainbowfish, and high in-stream dilution factors (>99%) suggest minimal endocrine disruption impacts on native Australian fish in the Murray River downstream from the WWTP outfall.
Sonntag, W.H.; McPherson, B.F.
1984-01-01
Two test discharges of treated-sewage effluent were made to the Loxahatchee River in February and September 1981 from the ENCON sewage-treatment plant to document nutrient loading and downstream transport of the effluent to the estuary under maximum daily discharge allowable by law (4 million gallons per day). Concentrations of total nitrogen in the effluent exceeded background concentrations by as much as 7 times during the February test, while concentrations of total phosphorus exceeded background concentrations by as much as 112 times during the September test. The effluent was transported downstream to the estuary in less than 24 hours. Discharge of treated sewage effluent to the river-estuary system in the 1981 water year accounted for less than 0.5 percent of the total nitrogen and 8 percent of the total phosphorus discharged from the major tributaries to the estuary. If maximum discharges of effluent (4 million gallons per day) were sustained throughout the year, annual nitrogen loading from the effluent would account for 5 to 18 percent of the total nitrogen input by the major tributaries to the estuary. With maximum discharges of effluent, annual phosphorus loading would exceed the amount of phosphorus input by the major tributaries to the estuary by 54 to 167 percent. (USGS)
Stream quality in the San Lorenzo River Basin, Santa Cruz County, California
Sylvester, Marc A.; Covay, Kenneth J.
1978-01-01
Stream quality was studied from November 1973 through June 1975 in the San Lorenzo River basin, Calif., a rapidly developing mountainous area. Dissolved-ion concentrations indicate the basin can be divided into three water-quality areas corresponding to three geologic areas. Pronounced changes in water quality occurred during storms when streamflow, turbidity, nitrogen, phosphorus, potassium, and fecal-coliform bacteria concentrations increased, while dissolved-ion concentrations decreased owing to dilution. Total nitrogen and fecal-coliform concentrations exceeded State objectives in the Zayante and Branciforte Creek drainages probably because of domestic sewage from improperly operating septic-tank systems or the primary-treated sewage effluent discharged into a pit near Scotts Valley. Diel studies did not show appreciable dissolved-oxygen depletion in streams. Greater streamflows and residential development appear responsible for reduced diversity of benthic invertebrates downstream of the residential areas in the basin. (Woodard-USGS)
Rickwood, Carrie J; Dubé, Monique G; Weber, Lynn P; Lux, Sarah; Janz, David M
2008-01-31
The Junction Creek watershed, located in Sudbury, ON, Canada receives effluent from three metal mine wastewater treatment plants, as well as a municipal wastewater (MWW) discharge. Effects on fish have been documented within the creek (decreased egg size and increased metal body burdens). It has been difficult to identify the cause of the effects observed due to the confounded nature of the creek. The objectives of this investigation were to assess the: (1) effects of a mine effluent and municipal wastewater (CCMWW) mixture on fathead minnow (FHM; Pimephales promelas) reproduction in an on-site artificial stream and (2) importance of food (Chironomus tentans) as a source of exposure using a trophic-transfer system. Exposures to CCMWW through the water significantly decreased egg production and spawning events. Exposure through food and water using the trophic-transfer system significantly increased egg production and spawning events. Embryos produced in the trophic-transfer system showed similar hatching success but increased incidence and severity of deformities after CCMWW exposure. We concluded that effects of CCMWW on FHM were more apparent when exposed through the water. Exposure through food and water may have reduced effluent toxicity, possibly due to increased nutrients and organic matter, which may have reduced metal bioavailability. More detailed examination of metal concentrations in the sediment, water column, prey (C. tentans) and FHM tissues is recommended to better understand the toxicokinetics of potential causative compounds within the different aquatic compartments when conducting exposures through different pathways.
Effluent Charts Help | ECHO | US EPA
Effluent Charts present dynamic charts and tables of permitted effluent limits, releases, and violations over time for Clean Water Act (CWA) wastewater discharge permits issued under the National Pollutant Discharge Elimination System (NPDES).
Thief carbon catalyst for oxidation of mercury in effluent stream
Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA
2011-12-06
A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.
Nutrient Loadings to Streams of the Continental United States from Municipal and Industrial Effluent
Maupin, M.A.; Ivahnenko, T.
2011-01-01
Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using "typical pollutant concentrations" to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.
Bradfield, A.D.; Porter, S.D.
1990-01-01
The Kentucky River basin, an area of approximately 7,000 sq mi, is divided into five hydrologic units that drain parts of three physiographic regions. Data on aquatic biological resources were collected and reviewed to assess conditions in the major streams for which data were available. The North, Middle, and South Forks of the Kentucky River are in the Eastern Coal Field physiographic region. Streams in this region are affected by drainage from coal mines and oil and gas operations, and many support only tolerant biotic stream forms. The Kentucky River from the confluence of the three forks to the Red River, is in the Knobs physiographic region. Oil and gas production operations and point discharges from municipalities have affected many streams in this region. The Red River, a Kentucky Wild River, supported a unique flora and fauna but accelerated sedimentation has eliminated many species of mussels. The Millers Creek drainage is affected by brines discharged from oil and gas operations, and some reaches support only halophilic algae and a few fish. The Kentucky River from the Red River to the Ohio River is in the Bluegrass physiographic region. Heavy sediment loads and sewage effluent from urban centers have limited the aquatic biota in this region. Silver Creek and South Elkhorn Creek have been particularly affected and aquatic communities in these streams are dominated by organisms tolerant of low dissolved oxygen concentrations. Biological data for other streams indicate that habitat and water quality conditions are favorable for most commonly occurring aquatic organisms. (USGS)
Colour removal and carbonyl by-production in high dose ozonation for effluent polishing.
Mezzanotte, V; Fornaroli, R; Canobbio, S; Zoia, L; Orlandi, M
2013-04-01
Experimental tests have been conducted to investigate the efficiency and the by-product generation of high dose ozonation (10-60 mg O3 L(-1)) for complete colour removal from a treated effluent with an important component of textile dyeing wastewater. The effluent is discharged into an effluent-dominated stream where no dilution takes place, and, thus, the quality requirement for the effluents is particularly strict. 30, 60 and 90 min contact times were adopted. Colour was measured as absorbance at 426, 558 and 660 nm wavelengths. pH was monitored throughout the experiments. The experimental work showed that at 50 mg L(-1) colour removal was complete and at 60 mg O3 L(-1) the final aldehyde concentration ranged between 0.72 and 1.02 mg L(-1). Glyoxal and methylglyoxal concentrations were directly related to colour removal, whereas formaldehyde, acetaldehyde, acetone and acrolein were not. Thus, the extent of colour removal can be used to predict the increase in glyoxal and methylglyoxal concentrations. As colour removal can be assessed by a simple absorbance measurement, in contrast to the analysis of specific carbonyl compounds, which is much longer and complex, the possibility of using colour removal as an indicator for predicting the toxic potential of ozone by-products for textile effluents is of great value. Copyright © 2013 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Packaging Subcategory § 455.43 Effluent limitations guidelines representing the degree of effluent reduction... shall provide no discharge additional discharge allowance for those pesticide active ingredients (PAIs) in the pesticide formulating, packaging and repackaging wastewaters when those PAIs are also...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Packaging Subcategory § 455.43 Effluent limitations guidelines representing the degree of effluent reduction... shall provide no discharge additional discharge allowance for those pesticide active ingredients (PAIs) in the pesticide formulating, packaging and repackaging wastewaters when those PAIs are also...
Chemical, biological, and DNA markers for tracing slaughterhouse effluent.
Harvey, P J; Taylor, M P; Handley, H K; Foster, S; Gillings, M R; Asher, A J
2017-07-01
Agricultural practices, if not managed correctly, can have a negative impact on receiving environments via waste disposal and discharge. In this study, a chicken slaughter facility on the rural outskirts of Sydney, Australia, has been identified as a possible source of persistent effluent discharge into a peri-urban catchment. Questions surrounding the facility's environmental management practices go back more than four decades. Despite there having never been a definitive determination of the facility's impact on local stream water quality, the New South Wales Environment Protection Authority (NSW EPA) has implemented numerous pollution reduction requirements to manage noise and water pollution at the slaughter facility. However, assessment of compliance remains complicated by potential additional sources of pollution in the catchment. To unravel this long-standing conundrum related to water pollution we apply a forensic, multiple lines of evidence approach to delineate the origin of the likely pollution source(s). Water samples collected between 2014 and 2016 from irrigation pipes and a watercourse exiting the slaughter facility had elevated concentrations of ammonia (max: 63,000µg/L), nitrogen (max: 67,000µg/L) and phosphorus (max: 39,000µg/L), which were significantly higher than samples from adjacent streams that did not receive direct runoff from the facility. Arsenic, sometimes utilised in growth promoting compounds, was detected in water discharging from the facility up to ~4 times (max 3.84µg/L) local background values (<0.5µg/L), with inorganic As (∑V+III) being the dominant species. The spatial association of elevated water pollution to the facility could not unequivocally distinguish a source and consequently DNA analysis of a suspected pollution discharge event was undertaken. Analysis of catchment runoff from several local streams showed that only water sampled at the downstream boundary of the facility tested positive for chicken DNA, with traces of duck DNA being absent, which was a potential confounder given that wild ducks are present in the area. Further, PCR analysis showed that only the discharge water emanating from the slaughter facility tested positive for a generalized marker of anthropogenic pollution, the clinical class 1 integron-integrase gene. The environmental data collected over a three-year period demonstrates that the slaughter facility is indisputably the primary source of water-borne pollution in the catchment. Moreover, application of DNA and PCR for confirming pollution sources demonstrates its potential for application by regulators in fingerprinting pollution sources. Copyright © 2017 Elsevier Inc. All rights reserved.
Hunt, Charles D.; Rosa, Sarah N.
2009-01-01
Municipal wastewater plumes discharging from aquifer to ocean were detected by nearshore wading surveys at Kihei and Lahaina, on the island of Maui in Hawaii. Developed in cooperation with the Hawaii State Department of Health, the survey methodology included instrument trolling to detect submarine groundwater discharge, followed by analysis of water and macroalgae for a suite of chemical and isotopic constituents that constitute a 'multitracer' approach. Surveys were conducted May 6-28, 2008, during fair-weather conditions and included: (1) wading and kayak trolling with a multiparameter water-quality sonde, (2) marine water-column sampling, and (3) collection of benthic algae samples. Instrument trolling helped guide the water sampling strategy by providing dense, continuous transects of water properties on which groundwater discharge zones could be identified. Water and algae samples for costly chemical and isotopic laboratory analyses were last to be collected but were highly diagnostic of wastewater presence and nutrient origin because of low detection levels and confirmation across multiple tracers. Laboratory results confirmed the presence of wastewater constituents in marine water-column samples at both locales and showed evidence of modifying processes such as denitrification and mixing of effluent with surrounding groundwater and seawater. Carbamazepine was the most diagnostic pharmaceutical, detected in several marine water-column samples and effluent at both Kihei and Lahaina. Heavy nitrogen-isotope compositions in water and algae were highly diagnostic of effluent, particularly where enriched to even heavier values than effluent source compositions by denitrification. Algae provided an added advantage of time-integrating their nitrogen source during growth. The measured Kihei plume coincided almost exactly with prior model predictions, but the Lahaina plume was detected well south of the expected direct path from injection wells to shore and may be guided by a buried valley fill from an ancestral course of Honokowai Stream. Nutrient concentrations in upland wells at Lahaina were comparable to concentrations in wastewater but originate instead from agricultural fertilizers. A key factor in detecting and mapping the wastewater plumes was sampling very close to shore (mostly within 20 m or so) and in very shallow water (mostly 0.5 to 2 m depth). Effluent probably discharges somewhat offshore as well, although prior attempts to detect an injected fluorescent tracer at Lahaina in the 1990s were inconclusive, having focused farther offshore in water mostly 10-30 m deep. Sampling of benthic porewater and algae would offer the best chances for further effluent detection and mapping offshore, and sampling of onland monitor wells could provide additional understanding of geochemical processes that take place in the effluent plumes and bring about some degree of natural attenuation of nutrients.
New Innovations in Highly Ion Specific Media for Recalcitrant Waste stream Radioisotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denton, M. S.; Wilson, J.; Ahrendt, M.
Specialty ion specific media were examined and developed for, not only pre- and post-outage waste streams, but also for very difficult outage waste streams. This work was carried out on first surrogate waste streams, then laboratory samples of actual waste streams, and, finally, actual on-site waste streams. This study was particularly focused on PWR wastewaters such as Floor Drain Tank (FDT), Boron Waste Storage Tank (BWST), and Waste Treatment Tank (WTT, or discharge tank). Over the last half decade, or so, treatment technologies have so greatly improved and discharge levels have become so low, that certain particularly problematic isotopes, recalcitrantmore » to current treatment skids, are all that remain prior to discharge. In reality, they have always been present, but overshadowed by the more prevalent and higher activity isotopes. Such recalcitrants include cobalt, especially Co 58 [both ionic/soluble (total dissolved solids, TDS) and colloidal (total suspended solids, TSS)] and antimony (Sb). The former is present in most FDT and BWST wastewaters, while the Sb is primarily present in BWST waste streams. The reasons Co 58 can be elusive to granulated activated carbon (GAC), ultrafiltration (UF) and ion exchange (IX) demineralizers is that it forms submicron colloids as well as has a tendency to form metal complexes with chelating agents (e.g., ethylene diamine tetraacetic acid, or EDTA). Such colloids and non-charged complexes will pass through the entire treatment skid. Antimony (Sb) on the other hand, has little or no ionic charge, and will, likewise, pass through both the filtration and de-min skids into the discharge tanks. While the latter will sometimes (the anionic vs. the cationic or neutral species) be removed on the anion bed(s), it will slough off (snow-plow effect) when a higher affinity anion (iodine slugs, etc.) comes along; thus causing effluents not meeting discharge criteria. The answer to these problems found in this study, during an actual Nuclear Power Plant (NPP) outage cycle and recovery (four months), was the down-select and development of a number of highly ion specific media for the specific removal of such elusive isotopes. Over three dozen media including standard cation and anion ion exchangers, specialty IX, standard carbons, and, finally, chemically doped media (e.g., carbon and alumina substrates). The latter involved doping with iron, manganese, and even metals. The media down-select was carried out on actual plant waste streams so that all possible outage affects were accounted for, and distribution coefficients (Kd's) were determined (vs. decontamination factors, DF's, or percent removals). Such Kd's, in milliliters of solution per gram of media (mug), produce data indicative of the longevity of the media in that particular waste stream. Herein, the down-select is reported in Pareto (decreasing order) tables. Further affects such as the presence of high cobalt concentrations, high boron concentrations, the presence of hydrazine and chelating agents, and extreme pH conditions. Of particular importance here is to avoid the affinity of competing ions (e.g., a Sb specific media having more than a slight affinity for Co). The latter results in the snow-plow effect of sloughing off 3 to 4 times the cobalt into the effluent as was in the feed upon picking up the Sb. The study was quite successful and resulted in the development of and selection of a resin-type and two granular media for antimony removal, and two resin-types and a granular media for cobalt removal. The decontamination factors for both media were hundreds to thousands of times that of the full filtration and de-min. (authors)« less
PRN 93-10: Effluent Discharge Labeling Statements
This notice describes revised effluent discharge labeling statements required on all manufacturing use products and end use products that may be discharged to waters of the United States ormunicipal sewer systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... section. (e) Effluent limitations for contaminated runoff. The following effluent limitations constitute... attributable to contaminated runoff which may be discharged after the application of the best conventional... contaminated runoff and is not commingled or treated with process wastewater, it may be discharged if it does...
Code of Federal Regulations, 2010 CFR
2010-07-01
... section. (e) Effluent limitations for contaminated runoff. The following effluent limitations constitute... attributable to contaminated runoff which may be discharged after the application of the best conventional... contaminated runoff and is not commingled or treated with process wastewater, it may be discharged if it does...
Code of Federal Regulations, 2010 CFR
2010-07-01
... this paragraph, which may be discharged from the carbon black lamp process by a point source subject to... Lamp Process Subcategory § 458.43 Effluent limitations guidelines representing the degree of effluent... achievable: There shall be no discharge of process waste water pollutants to navigable waters. ...
Apparatuses and methods for deoxygenating biomass-derived pyrolysis oil
Kalnes, Tom N.
2015-12-29
Apparatuses and methods for deoxygenating a biomass-derived pyrolysis oil are provided herein. In one example, the method comprises of dividing a feedstock stream into first and second feedstock portions. The feedstock stream comprises the biomass-derived pyrolysis oil and has a temperature of about 60.degree. C. or less. The first feedstock portion is combined with a heated organic liquid stream to form a first heated diluted pyoil feed stream. The first heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen to form an intermediate low-oxygen pyoil effluent. The second feedstock portion is combined with the intermediate low-oxygen pyoil effluent to form a second heated diluted pyoil feed stream. The second heated diluted pyoil feed stream is contacted with a second deoxygenating catalyst in the presence of hydrogen to form additional low-oxygen pyoil effluent.
Analyzing Conductivity Profiles in Stream Waters Influenced by Mine Water Discharges
NASA Astrophysics Data System (ADS)
Räsänen, Teemu; Hämäläinen, Emmy; Hämäläinen, Matias; Turunen, Kaisa; Pajula, Pasi; Backnäs, Soile
2015-04-01
Conductivity is useful as a general measure of stream water quality. Each stream inclines to have a quite constant range of conductivity that can be used as a baseline for comparing and detecting influence of contaminant sources. Conductivity in natural streams and rivers is affected primarily by the geology of the watershed. Thus discharges from ditches and streams affect not only the flow rate in the river but also the water quality and conductivity. In natural stream waters, the depth and the shape of the river channel change constantly, which changes also the water flow. Thus, an accurate measuring of conductivity or other water quality indicators is difficult. Reliable measurements are needed in order to have holistic view about amount of contaminants, sources of discharges and seasonal variation in mixing and dilution processes controlling the conductivity changes in river system. We tested the utility of CastAway-CTD measuring device (SonTek Inc) to indicate the influence of mine waters as well as mixing and dilution occurring in the recipient river affected by treated dewatering and process effluent water discharges from a Finnish gold mine. The CastAway-CTD measuring device is a small, rugged and designed for profiling of depths of up to 100m. Device measures temperature, salinity, conductivity and sound of speed using 5 Hz response time. It has also built-in GPS which produces location information. CTD casts are normally used to produce vertical conductivity profile for rather deep waters like seas or lakes. We did seasonal multiple Castaway-CTD measurements during 2013 and 2014 and produced scaled vertical and horizontal profiles of conductivity and water temperature at the river. CastAway-CTD measurement pinpoints how possible contaminants behave and locate in stream waters. The conductivity profiles measured by CastAway-CTD device show the variation in maximum conductivity values vertically in measuring locations and horizontally in measured cross-sections. The data from field measurements was combined with detailed water quality analysis and processed by data analysis with Matlab to produce more holistic information about the behavior, mixing and dilution of possible contaminants at the river. Moreover, the results can be used to improve water sampling procedures for more representative sampling and to plan continuous monitoring site locations and measuring device mounting places.
The occurrence of antibiotics in an urban watershed: from wastewater to drinking water.
Watkinson, A J; Murby, E J; Kolpin, D W; Costanzo, S D
2009-04-01
The presence of 28 antibiotics in three hospital effluents, five wastewater treatment plants (WWTPs), six rivers and a drinking water storage catchment were investigated within watersheds of South-East Queensland, Australia. All antibiotics were detected at least once, with the exception of the polypeptide bacitracin which was not detected at all. Antibiotics were found in hospital effluent ranging from 0.01-14.5 microg L(-1), dominated by the beta-lactam, quinolone and sulphonamide groups. Antibiotics were found in WWTP influent up to 64 microg L(-1), dominated by the beta-lactam, quinolone and sulphonamide groups. Investigated WWTPs were highly effective in removing antibiotics from the water phase, with an average removal rate of greater than 80% for all targeted antibiotics. However, antibiotics were still detected in WWTP effluents in the low ng L(-1) range up to a maximum of 3.4 microg L(-1), with the macrolide, quinolone and sulphonamide antibiotics most prevalent. Similarly, antibiotics were detected quite frequently in the low ng L(-1) range, up to 2 microg L(-1) in the surface waters of six investigated rivers including freshwater, estuarine and marine samples. The total investigated antibiotic concentration (TIAC) within the Nerang River was significantly lower (p<0.05) than all other rivers sampled. The absence of WWTP discharge to this river is a likely explanation for the significantly lower TIAC and suggests that WWTP discharges are a dominant source of antibiotics to investigated surface waters. A significant difference (p<0.001) was identified between TIACs at surface water sites with WWTP discharge compared to sites with no WWTP discharge, providing further evidence that WWTPs are an important source of antibiotics to streams. Despite the presence of antibiotics in surface waters used for drinking water extraction, no targeted antibiotics were detected in any drinking water samples.
Review of technologies for oil and gas produced water treatment.
Fakhru'l-Razi, Ahmadun; Pendashteh, Alireza; Abdullah, Luqman Chuah; Biak, Dayang Radiah Awang; Madaeni, Sayed Siavash; Abidin, Zurina Zainal
2009-10-30
Produced water is the largest waste stream generated in oil and gas industries. It is a mixture of different organic and inorganic compounds. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging produced water on the environment has lately become a significant issue of environmental concern. Produced water is conventionally treated through different physical, chemical, and biological methods. In offshore platforms because of space constraints, compact physical and chemical systems are used. However, current technologies cannot remove small-suspended oil particles and dissolved elements. Besides, many chemical treatments, whose initial and/or running cost are high and produce hazardous sludge. In onshore facilities, biological pretreatment of oily wastewater can be a cost-effective and environmental friendly method. As high salt concentration and variations of influent characteristics have direct influence on the turbidity of the effluent, it is appropriate to incorporate a physical treatment, e.g., membrane to refine the final effluent. For these reasons, major research efforts in the future could focus on the optimization of current technologies and use of combined physico-chemical and/or biological treatment of produced water in order to comply with reuse and discharge limits.
Treated mine drainage effluent benefits Maryland and West Virginia fisherman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashby, J.C.
1995-12-31
In January of 1994, the Maryland Department of Natural Resources-Freshwater Fisheries Division and Mettiki Coal Corporation of Oakland, Maryland entered into a cooperative agreement to construct a trout rearing facility within Mettiki`s 10 million gallons per day acid mine drainage treatment system to supplement the DNR stockings in the newly revitalized North Branch of the Potomac River. Due to pyrite oxidation and a lack of alkaline buffering capacity in the Freeport coal strata, seven thousand gallons per minute of acidic water containing oxidized sulfide minerals must be pumped through Mettiki`s AMD treatment systems and elevated to Federal standards prior tomore » discharge into the Upper North Branch of the Potomac River. Utilizing hydrated lime, aeration, flocculation, sedimentation, and sludge recirculation, Mettiki`s treatment imparts superior trout propagation qualities to the discharge (pH of 8.1, dissolved oxygen of 8.0 ppm, temperature ranges of from 52 to 60 degrees Fahrenheit) and has allowed for weight gain throughout the typically dormant winter months. Presently, 30,000 brown, rainbow, and cutthroat trout are suspended in floating net pens within the systems` discharge collection pond where pH, flow, temperature, feed assimilation, and growth rates were compared with typical stream diversion hatcheries. Growth rates, lack of significant disease, and quality parameters coupled with ideal temperatures suggests treated acidic mine effluent can offer successful fish propagation opportunities.« less
Martín, J; Camacho-Muñoz, D; Santos, J L; Aparicio, I; Alonso, E
2012-11-15
The occurrence of sixteen pharmaceutically active compounds in influent and effluent wastewater and in primary, secondary and digested sludge in one-year period has been evaluated. Solid-water partition coefficients (Kd) were calculated to evaluate the efficiency of removal of these compounds from wastewater by sorption onto sludge. The ecotoxicological risk to aquatic and terrestrial ecosystems, due to wastewater discharges to the receiving streams and to the application of digested sludge as fertilizer onto soils, was also evaluated. Twelve of the pharmaceuticals were detected in wastewater at mean concentrations from 0.1 to 32 μg/L. All the compounds found in wastewater were also found in sewage sludge, except diclofenac, at mean concentrations from 8.1 to 2206 μg/kg dm. Ibuprofen, salicylic acid, gemfibrozil and caffeine were the compounds at the highest concentrations. LogKd values were between 1.17 (naproxen) and 3.48 (carbamazepine). The highest ecotoxicological risk in effluent wastewater and digested sludge is due to ibuprofen (risk quotient (RQ): 3.2 and 4.4, respectively), 17α-ethinylestradiol (RQ: 12 and 22, respectively) and 17β-estradiol (RQ: 12 and 359, respectively). Ecotoxicological risk after wastewater discharge and sludge disposal is limited to the presence of 17β-estradiol in digested-sludge amended soil (RQ: 2.7). Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondratieff, P.; Kondratieff, B.C.
1985-07-01
The effects of thermal stress on lower food chain communities of streams and swamps of the Savannah River Plant. Both the autotroph assemblages and the macro invertebrate communities were studied in streams receiving heated reactor effluent. To document stream and swamp ecosystem recovery from thermal stress, the same communities of organisms were studied in a stream/swamp ecosystem which had received heated reactor effluent in the past. (ACR)
Toxicity of municipal wastewater effluents contaminated by pentachlorophenol in southwest Missouri
Wylie, G.D.; Finger, S.E.; Crawford, R.W.
1990-01-01
Toxicity of effluents from two sewage treatment plants in Joplin, Missouri, was tested using Ceriodaphnia dubia and Pimephales promelas. No test organisms survived in effluents from either plant, in effluents diluted with water from Turkey Creek (the receiving stream), or in water from Turkey Creek. Mortality was complete in all but the most dilute treatments of effluents, in which reconstituted water was used as the diluent. High concentrations of pentachlorophenol (130–970 μg liter−1) in effluents and the receiving stream likely caused mortality during the 7-day tests. Detectable concentrations of other phenolic compounds indicated the presence in Turkey Creek of other toxic by-products of pentachlorophenol manufacture. This study demonstrated the utility of biological tests of whole effluents to determine toxicity of wastewater effluents.
Naftz, D.L.; Bullen, T.D.; Stolp, B.J.; Wilkowske, C.D.
2008-01-01
Stream discharge and geochemical data were collected at two sites along lower Ashley Creek, Utah, from 1999 to 2003, to assess the success of a site specific salinity and Se remediation project. The remediation project involved the replacement of a leaking sewage lagoon system that was interacting with Mancos Shale and increasing the dissolved salinity and Se load in Ashley Creek. Regression modeling successfully simulated the mean daily dissolved salinity and Se loads (R2 values ranging from 0.82 to 0.97) at both the upstream (AC1) and downstream (AC2/AC2A) sites during the study period. Prior to lagoon closure, net gain in dissolved-salinity load exceeded 2177??metric tons/month and decreased after remediation to less than 590??metric tons/month. The net gain in dissolved Se load during the same pre-closure period exceeded 120??kg/month and decreased to less than 18??kg/month. Sen's slope estimator verified the statistical significance of the modeled reduction in monthly salinity and Se loads. Measured gain in dissolved constituent loads during seepage tests conducted during September and November 2003 ranged from 0.334 to 0.362??kg/day for dissolved Se and 16.9 to 26.1??metric tons/day for dissolved salinity. Stream discharge and changes in the isotopic values of delta boron-11 (??11B) were used in a mixing model to differentiate between constituent loadings contributed by residual sewage effluent and naturally occurring ground-water seepage entering Ashley Creek. The majority of the modeled ??11B values of ground-water seepage were positive, indicative of minimal seepage contributions from sewage effluent. The stream reach between sites S3 and AC2A contained a modeled ground-water seepage ??11B value of - 2.4???, indicative of ground-water seepage composed of remnant water still draining from the abandoned sewage lagoons.
Naftz, David L; Bullen, Thomas D; Stolp, Bert J; Wilkowske, Christopher D
2008-03-15
Stream discharge and geochemical data were collected at two sites along lower Ashley Creek, Utah, from 1999 to 2003, to assess the success of a site specific salinity and Se remediation project. The remediation project involved the replacement of a leaking sewage lagoon system that was interacting with Mancos Shale and increasing the dissolved salinity and Se load in Ashley Creek. Regression modeling successfully simulated the mean daily dissolved salinity and Se loads (R(2) values ranging from 0.82 to 0.97) at both the upstream (AC1) and downstream (AC2/AC2A) sites during the study period. Prior to lagoon closure, net gain in dissolved-salinity load exceeded 2177 metric tons/month and decreased after remediation to less than 590 metric tons/month. The net gain in dissolved Se load during the same pre-closure period exceeded 120 kg/month and decreased to less than 18 kg/month. Sen's slope estimator verified the statistical significance of the modeled reduction in monthly salinity and Se loads. Measured gain in dissolved constituent loads during seepage tests conducted during September and November 2003 ranged from 0.334 to 0.362 kg/day for dissolved Se and 16.9 to 26.1 metric tons/day for dissolved salinity. Stream discharge and changes in the isotopic values of delta boron-11 (delta(11)B) were used in a mixing model to differentiate between constituent loadings contributed by residual sewage effluent and naturally occurring ground-water seepage entering Ashley Creek. The majority of the modeled delta(11)B values of ground-water seepage were positive, indicative of minimal seepage contributions from sewage effluent. The stream reach between sites S3 and AC2A contained a modeled ground-water seepage delta(11)B value of -2.4 per thousand, indicative of ground-water seepage composed of remnant water still draining from the abandoned sewage lagoons.
NASA Astrophysics Data System (ADS)
Saleh, D.; Domagalski, J. L.
2012-12-01
Sources and factors affecting the transport of total nitrogen are being evaluated for a study area that covers most of California and some areas in Oregon and Nevada, by using the SPARROW model (SPAtially Referenced Regression On Watershed attributes) developed by the U.S. Geological Survey. Mass loads of total nitrogen calculated for monitoring sites at stream gauging stations are regressed against land-use factors affecting nitrogen transport, including fertilizer use, recharge, atmospheric deposition, stream characteristics, and other factors to understand how total nitrogen is transported under average conditions. SPARROW models have been used successfully in other parts of the country to understand how nutrients are transported, and how management strategies can be formulated, such as with Total Maximum Daily Load (TMDL) assessments. Fertilizer use, atmospheric deposition, and climatic data were obtained for 2002, and loads for that year were calculated for monitored streams and point sources (mostly from wastewater treatment plants). The stream loads were calculated by using the adjusted maximum likelihood estimation method (AMLE). River discharge and nitrogen concentrations were de-trended in these calculations in order eliminate the effect of temporal changes on stream load. Effluent discharge information as well as total nitrogen concentrations from point sources were obtained from USEPA databases and from facility records. The model indicates that atmospheric deposition and fertilizer use account for a large percentage of the total nitrogen load in many of the larger watersheds throughout the study area. Point sources, on the other hand, are generally localized around large cities, are considered insignificant sources, and account for a small percentage of the total nitrogen loads throughout the study area.
Gibs, Jacob; Heckathorn, Heather A; Meyer, Michael T; Klapinski, Frank R; Alebus, Marzooq; Lippincott, Robert L
2013-08-01
An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and ofloxacin. Generally, there was good agreement between the decreasing order of the pseudo-partition coefficients in this study and the order reported in the literature. Published by Elsevier B.V.
Gibs, Jacob; Heckathorn, Heather A.; Meyer, Michael T.; Klapinski, Frank R.; Alebus, Marzooq; Lippincott, Robert
2013-01-01
An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and ofloxacin. Generally, there was good agreement between the decreasing order of the pseudo-partition coefficients in this study and the order reported in the literature.
NASA Astrophysics Data System (ADS)
Vaute, L.; Drogue, C.; Garrelly, L.; Ghelfenstein, M.
1997-12-01
Study of the movement of chemical compounds naturally present in the water, or which result from pollution, are examined according to the reservoir structure in karstic aquifers. Structure is represented by a simple geometrical model; slow flow takes place in blocks with a network of low-permeability cracks. The blocks are separated by highly permeable karstic conduits that allow rapid flow, and these form the aquifer drainage system. The karst studied covers 110 km 2. It is fed by an interrupted stream draining a 35 km 2 non-karstic basin, contaminated at the entry to the karst by effluents from a sewage treatment station. The underground water reappears as a resurgence with an annual average flow of approximately 1 m 3 s -1, after an apparent underground course of 8 km in the karst. Several local sources of pollution (effluent from septic tanks) contaminate the underground water during its course. Sixteen measurement operations were performed at 12 water points, between the interrupted stream and the spring. Some sampling points were at drains, and others were in the low-permeability fissured blocks. Comparison at each point of the concentrations of 14 chemical compounds gave the following results: when pollutant discharge occurs in a permeable zone, movement is rapid in the drainage network formed by the karstic conduits, and does not reach the less permeable fissured blocks which are thus protected; however, if discharge is in a low-permeability zone, the flow does not allow rapid movement of the polluted water, and this increases the pollutant concentration at the discharge. This simple pattern can be upset by a reversal of the apparent piezometric gradient between a block and a conduit during floods or pumping; this may reverse flow directions and hence modify the movement of contaminants. The study made it possible to site five boreholes whose positions in the karstic structure were unknown, showing the interest of such an approach for the forecasting of the impact of potential pollution.
Floral ecology and insect visitation in riparian Tamarix sp. (saltcedar)
Andersen, D.C.; Nelson, S.M.
2013-01-01
Climate change projections for semiarid and arid North America include reductions in stream discharge that could adversely affect riparian plant species dependent on stream-derived ground water. In order to better understand this potential impact, we used a space-for-time substitution to test the hypotheses that increasing depth-to-groundwater (DGW) is inversely related to Tamarix sp. (saltcedar) flower abundance (F) and nectar production per flower (N). We also assessed whether DGW affected the richness or abundance of insects visiting flowers. We examined Tamarix floral attributes and insect visitation patterns during 2010 and 2011 at three locations along a deep DWG gradient (3.2–4.1 m) on a floodplain terrace adjacent to Las Vegas Wash, an effluent-dominated Mojave Desert stream. Flower abundance and insect visitation patterns differed between years, but no effect from DGW on either F or N was detected. An eruption of a novel non-native herbivore, the splendid tamarisk weevil (Coniatus splendidulus), likely reduced flower production in 2011.
PRN 95-1: Effluent Discharge Labeling Statements
This notice exempts certain pesticide products from bearing effluent discharge labeling statements specified by P.R. Notice 93-10 for manufacturing use products and end use products that may be discharged to waters of the U.S. or municipal sewer systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Formulating and Packaging Subcategory § 455.42 Effluent limitations guidelines representing the degree of... the formulation, packaging or repackaging of pesticides: There shall be no discharge of process... that permitting authorities shall provide no additional discharge allowance for those pesticide active...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Formulating and Packaging Subcategory § 455.42 Effluent limitations guidelines representing the degree of... the formulation, packaging or repackaging of pesticides: There shall be no discharge of process... that permitting authorities shall provide no additional discharge allowance for those pesticide active...
Nyhan, J W; White, G C; Trujillo, G
1982-10-01
Stream channel sediments and adjacent bank soils found in three intermittent streams used for treated liquid effluent disposal at Los Alamos, New Mexico were sampled to determine the distribution of 238Pu, 239,240Pu and 137Cs. Radionuclide concentrations and inventories were determined as functions of distance downstream from the waste outfall and from the center of the stream channel, soil sampling depth, stream channel-bank physiography, and the waste use history of each disposal area. Radionuclide concentrations in channel sediments were inversely related to distances up to 10 km downstream from the outfalls. For sites receiving appreciable waste effluent additions, contaminant concentrations in bank soils decreased with perpendicular distances greater than 0.38 m from the stream channel, and with stream bank sampling depths greater than 20-40 cm. Concentrations and total inventories of radionuclides in stream bank soils generally decreased as stream bank height increased. Inventory estimates of radionuclides in channel sediments exhibited coefficients of variation that ranged 0.41-2.6, reflecting the large variation in radionuclide concentrations at each site. Several interesting temporal relationships of these radionuclides in intermittent streams were gleaned from the varying waste use histories of the three effluent-receiving areas. Eleven yr after liquid wastes were added to one canyon, the major radionuclide inventories were found in the stream bank soils, unlike most of the other currently-used receiving areas. A period of time greater than 6 yr seems to be required before the plutonium in liquid wastes currently added to the canyon is approximately equilibrated with the plutonium in the bank soils. These observations are discussed relative to waste management practices in these southwestern intermittent streams.
Catherine F. Bowers; Hugh G. Hanlin; David C. Guynn; John P. McLendon; James R. Davis
2000-01-01
Pen Branch, a third order stream on the Savannah River Site (SRS), located near Aiken, SC, USA, received thermal effluents from the cooling system of a nuclear production reactor from 1954 to 1988. The thermal effluent and increased flow destroyed vegetation in the stream corridor (i.e. impacted portion of the floodplain), and subsequent erosion created a braided...
Code of Federal Regulations, 2012 CFR
2012-07-01
... operation using HF flotation, discharges of process waste water pollutants from facilities that recycle waste water, for use in the processing shall not exceed the following limitations: Effluent... paragraphs (a) (1) and (3) of this section, there shall be no discharge of process generated waste water...
Code of Federal Regulations, 2014 CFR
2014-07-01
... operation using HF flotation, discharges of process waste water pollutants from facilities that recycle waste water, for use in the processing shall not exceed the following limitations: Effluent... paragraphs (a) (1) and (3) of this section, there shall be no discharge of process generated waste water...
NASA Astrophysics Data System (ADS)
Takashima, Keisuke; Kaneko, Toshiro
2016-09-01
The control of hydroxyl radical and the other gas phase species generation in the ejected gas through air plasma (air plasma effluent) has been experimentally studied, which is a key to extend the range of plasma treatment. Nanosecond pulse discharge is known to produce high reduced electric field (E/N) discharge that leads to efficient generation of the reactive species than conventional low frequency discharge, while the charge-voltage cycle in the low frequency discharge is known to be well-controlled. In this study, the nanosecond pulse discharge biased with AC low frequency high voltage is used to take advantages of these discharges, which allows us to modulate the reactive species composition in the air plasma effluent. The utilization of the gas-liquid interface and the liquid phase chemical reactions between the modulated long-lived reactive species delivered from the air plasma effluent could realize efficient liquid phase chemical reactions leading to short-lived reactive species production far from the air plasma, which is crucial for some plasma agricultural applications.
40 CFR 412.46 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... production areas. There must be no discharge of manure, litter, or process wastewater pollutants into waters... practice effluent limitations designed to ensure no discharge of manure, litter, or process wastewater... such effluent limitations, “no discharge of manure, litter, or process wastewater pollutants,” as used...
Aluko, Olufemi Oludare; Sridhar, M K C
2005-06-01
Leachates are wastewater generated principally from landfills and solid waste disposal sites. Leachates emanating from municipal wastes are a major source of surface and groundwater pollution worldwide. Globally, leachates have been implicated in low yield of farm produce, developmental anomalies, low birth weights, leukemia incidence, and other cancers in communities around the site. They have also been implicated in hazards to the environment, loss of biodiversity, and contamination of water sources. At Aba-Eku in Nigeria, leachates are being discharged into the Omi Stream without treatment. A study was conducted on a method of leachate treatment that passes the leachate through constructed wetlands using Ipomoea aquatica (Forsk), a locally available plant found close to the landfill site. The aim of the study was to evolve a sustainable and cost-effective method of treatment whose effluents can be discharged into the Omi Stream with no or minimal impact. The study was descriptive and analytical in design. Samples were collected and analyzed with standard methods for pH, suspended solids (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia, nitrate, and trace metals. Raw leachates were turbid and amber in color and contained suspended solids (197.5 mg/L), ammonia (610.9 mg/L), lead (1.64 mg/L), iron (198.10 mg/L), and manganese (23.20 mg/L). When the leachates were passed through the constructed wetland with eight hours' detention time, effluents showed significant reductions in suspended solids (81.01 percent), BOD (86.03 percent), and ammonia (97.77 percent). The study shows that a constructed wetland is a feasible tool for the treatment of leachates before their disposal into the environment in Nigeria and can help safeguard environmental quality.
Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D
2011-11-30
The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength. Copyright © 2011 Elsevier B.V. All rights reserved.
Hemachandra, C K; Pathiratne, A
2017-10-01
Complex effluents originating from diverse industrial processes in industrial zones could pose cytotoxic/genotoxic hazards to biota in the receiving ecosystems which cannot be revealed by conventional monitoring methods. This study assessed potential cytotoxicity/genotoxicity of treated effluents of two industrial zones which are discharged into Kelani river, Sri Lanka combining erythrocytic abnormality tests and comet assay of the tropical model fish, Nile tilapia. Exposure of fish to the effluents induced erythrocytic DNA damage and deformed erythrocytes with serrated membranes, vacuolations, nuclear buds and micronuclei showing cytotoxic/genotoxic hazards in all cases. Occasional exceedance of industrial effluent discharge regulatory limits was noted for color and lead which may have contributed to the observed cytotoxicity/genotoxicity of effluents. The results demonstrate that fish erythrocytic responses could be used as effective bioanalytical tools for cytotoxic/genotoxic hazard assessments of complex effluents of industrial zones for optimization of the waste treatment process in order to reduce biological impacts.
Omanović, Dario; Pižeta, Ivanka; Vukosav, Petra; Kovács, Elza; Frančišković-Bilinski, Stanislav; Tamás, János
2015-04-01
The distribution and speciation of elements along a stream subjected to neutralised acid mine drainage (NAMD) effluent waters (Mátra Mountain, Hungary; Toka stream) were studied by a multi-methodological approach: dissolved and particulate fractions of elements were determined by HR-ICPMS, whereas speciation was carried out by DGT, supported by speciation modelling performed by Visual MINTEQ. Before the NAMD discharge, the Toka is considered as a pristine stream, with averages of dissolved concentrations of elements lower than world averages. A considerable increase of element concentrations caused by effluent water inflow is followed by a sharp or gradual concentration decrease. A large difference between total and dissolved concentrations was found for Fe, Al, Pb, Cu, Zn and As in effluent water and at the first downstream site, with high correlation factors between elements in particulate fraction, indicating their common behaviour, governed by the formation of ferri(hydr)oxides (co)precipitates. In-situ speciation by the DGT technique revealed that Zn, Cd, Ni, Co, Mn and U were predominantly present as a labile, potentially bioavailable fraction (>90%). The formation of strong complexes with dissolved organic matter (DOM) resulted in a relatively low DGT-labile concentration of Cu (42%), while low DGT-labile concentrations of Fe (5%) and Pb (12%) were presumably caused by their existence in colloidal (particulate) fraction which is not accessible to DGT. Except for Fe and Pb, a very good agreement between DGT-labile concentrations and those predicted by the applied speciation model was obtained, with an average correlation factor of 0.96. This study showed that the in-situ DGT technique in combination with model-predicted speciation and classical analysis of samples could provide a reasonable set of data for the assessment of the water quality status (WQS), as well as for the more general study of overall behaviour of the elements in natural waters subjected to high element loads. Copyright © 2014 Elsevier B.V. All rights reserved.
Gurung, Anup; Hassan, Sedky H A; Oh, Sang-Eun
2011-10-01
Bioassays are becoming an important tool for assessing the toxicity of complex mixtures of substances in aquatic environments in which Daphnia magna is routinely used as a test organism. Bioassays outweigh physicochemical analyses and are valuable in the decision-making process pertaining to the final discharge of effluents from wastewater treatment plants as they measure the total effect of the discharge which is ecologically relevant. In this study, the aquatic toxicity of a textile plant effluent and river water downstream from the plant were evaluated with sulfur-oxidizing bacterial biosensors in continuous mode. Collected samples were analysed for different physicochemical parameters and 1,4-dioxane was detected in the effluent. The effluent contained a relatively high chemical oxygen demand of 60 mg L(-1), which exceeded the limit set by the Korean government for industrial effluent discharges. Results showed that both the effluent and river waters were toxic to sulfur-oxidizing bacteria. These results show the importance of incorporating bioassays to detect toxicity in wastewater effluents for the sustainable management of water resources.
40 CFR 125.67 - Increase in effluent volume or amount of pollutants discharged.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Criteria for Modifying the Secondary Treatment Requirements Under Section 301(h) of the Clean Water Act § 125.67 Increase in effluent volume or amount of pollutants discharged. (a) No modified...
40 CFR 125.67 - Increase in effluent volume or amount of pollutants discharged.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Criteria for Modifying the Secondary Treatment Requirements Under Section 301(h) of the Clean Water Act § 125.67 Increase in effluent volume or amount of pollutants discharged. (a) No modified...
Power Plant Bromide Discharges and Downstream Drinking Water Systems in Pennsylvania.
Good, Kelly D; VanBriesen, Jeanne M
2017-10-17
Coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems have been implicated in increasing bromide levels and subsequent increases in disinfection byproducts at downstream drinking water plants. Bromide was not included as a regulated constituent in the recent steam electric effluent limitations guidelines and standards (ELGs) since the U.S. EPA analysis suggested few drinking water facilities would be affected by bromide discharges from power plants. The present analysis uses a watershed approach to identify Pennsylvania drinking water intakes downstream of wet FGD discharges and to assess the potential for bromide discharge effects. Twenty-two (22) public drinking water systems serving 2.5 million people were identified as being downstream of at least one wet FGD discharge. During mean August conditions (generally low-flow, minimal dilution) in receiving rivers, the median predicted bromide concentrations contributed by wet FGD at Pennsylvania intake locations ranged from 5.2 to 62 μg/L for the Base scenario (including only natural bromide in coal) and from 16 to 190 μg/L for the Bromide Addition scenario (natural plus added bromide for mercury control); ranges depend on bromide loads and receiving stream dilution capacity.
Nandy, T; Dhodapkar, R S; Pophali, G R; Kaul, S N; Devotta, S
2005-09-01
Environmental concerns associated with textile processing had placed the textile sector in a Southern State of India under serious threat of survival. The textile industries were closed under the orders of the Statutory Board for reason of inadequate compliance to environmental discharge norms of the State for the protection of the drinking water source of the State capital. In compliance with the direction of the Board for zero effluent discharge, advanced treatment process have been implemented for recovery of boiler feed quality water with recourse to effluent recycling/reuse. The paper describes to a case study on the adequacy assessment of the full scale effluent treatment plant comprising chemical, biological and filtration processes in a small scale textile industry. In addition, implementation of measures for discernable improvement in the performance of the existing units through effective operation & maintenance, and application of membrane separation processes leading to zero effluent discharge is also highlighted.
40 CFR 35.918-3 - Requirements for discharge of effluents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Requirements for discharge of effluents. 35.918-3 Section 35.918-3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER... by EPA under section 304(d)(2) of the Act shall be met for disposal of effluent on or into the soil...
Sepúlveda, M S; Ruessler, D S; Denslow, N D; Holm, S E; Schoeb, T R; Gross, T S
2001-11-01
This study evaluated the potential effects of different concentrations of bleached/unbleached kraft mill effluent (B/UKME) on several reproductive endpoints in adult largemouth bass (Micropterus salmoides). The kraft mill studied produces a 50/50 mix of bleached/unbleached market pulp with an estimated release of 36 million gal of effluent/day. Bleaching sequences were C90d10EopHDp and CEHD for softwood (pines) and hardwoods (mainly tupelo, gums, magnolia, and water oaks), respectively. Bass were exposed to different effluent concentrations (0 [controls, exposed to well water], 10, 20, 40, or 80%) for either 28 or 56 days. At the end of each exposure period, fish were euthanized, gonads collected for histological evaluation and determination of gonadosomatic index (GSI), and plasma was analyzed for 17beta-estradiol, 11-ketotestosterone, and vitellogenin (VTG). Largemouth bass exposed to B/UKME responded with changes at the biochemical level (decline in sex steroids in both sexes and VTG in females) that were usually translated into tissue/organ-level responses (declines in GSI in both sexes and in ovarian development in females). Although most of these responses occurred after exposing fish to 40% B/UKME concentrations or greater, some were observed after exposures to 20% B/UKME. These threshold concentrations fall within the 60% average yearly concentration of effluent that exists in the stream near the point of discharge (Rice Creek), but are above the <10% effluent concentration present in the St. Johns River. The chemical(s) responsible for such changes as well as their mode(s) of action remain unknown at this time.
NASA Astrophysics Data System (ADS)
Warner, N. R.; Menio, E. C.; Landis, J. D.; Vengosh, A.; Lauer, N.; Harkness, J.; Kondash, A.
2014-12-01
Recent public interest in high volume slickwater hydraulic fracturing (HVHF) has drawn increased interest in wastewater management practices by the public, researchers, industry, and regulators. The management of wastes, including both fluids and solids, poses many engineering challenges, including elevated total dissolved solids and elevated activities of naturally occurring radioactive materials (NORM). One management option for wastewater in particular, which is used in western Pennsylvania, USA, is treatment at centralized waste treatment facilities [1]. Previous studies conducted from 2010-2012 indicated that one centralized facility, the Josephine Brine Treatment facility, removed the majority of radium from produced water and hydraulic fracturing flowback fluid (HFFF) during treatment, but low activities of radium remained in treated effluent and were discharged to surface water [2]. Despite the treatment process and radium reduction, high activities (200 times higher than upstream/background) accumulated in stream sediments at the point of effluent discharge. Here we present new results from sampling conducted at two additional centralized waste treatment facilities (Franklin Brine Treatment and Hart Brine Treatment facilities) and Josephine Brine Treatment facility conducted in June 2014. Preliminary results indicate radium is released to surface water at very low (<50 pCi/L) to non-detectable activities, however; radium continues to accumulate in sediments surrounding the area of effluent release. Combined, the data indicate that 1) radium continues to be released to surface water streams in western Pennsylvania despite oil and gas operators voluntary ban on treatment and disposal of HFFF in centralized waste treatment facilities, 2) radium accumulation in sediments occurred at multiple brine treatment facilities and is not isolated to a single accidental release of contaminants or a single facility. [1] Wilson, J. M. and J. M. VanBriesen (2012). "Oil and Gas Produced Water Management and Surface Drinking Water Sources in Pennsylvania." Environmental Practice 14(04): 288-300. [2] Warner, N. R., C. A. Christie, R. B. Jackson and A. Vengosh (2013). "Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania." ES&T 47(20): 11849-11857.
Sponza, Delia Teresa
2002-01-01
Toxicity of some organic and inorganic chemicals to microorganisms is an important consideration in assessing their environmental impact against their economic benefits. Microorganisms play an important role in several environmental processes, both natural and engineered. Some organic and inorganics at toxic levels have been detected in industrial discharges resulting in plant upsets and discharge permit violations. In addition to this, even though in some cases the effluent wastewater does not exceed the discharge limits, the results of toxicity tests show potential toxicity. Toxicity knowledge of effluents can benefit treatment plant operators in optimising plant operation, setting pre-treatment standards, and protecting receiving water quality and in establishing sewer discharge permits to safeguard the plant. In the Turkish regulations only toxicity dilution factor (TDF) with fish is part of the toxicity monitoring program of permissible wastewater discharge. In various countries, laboratory studies involving the use of different organisms and protocol for toxicity assessment was conducted involving a number of discharges. In this study, it was aimed to investigate the acute toxicity of textile and metal industry wastewaters by traditional and enrichment toxicity tests and emphasize the importance of toxicity tests in wastewater discharge regulations. The enrichment toxicity tests are novel applications and give an idea whether there is potential toxicity or growth limiting and stimulation conditions. Different organisms were used such as bacteria (Floc and Coliform bacteria) algae (Chlorella sp.). fish (Lepistes sp.) and protozoan (Vorticella sp.) to represent four tropic levels. The textile industry results showed acute toxicity for at least one organism in 8 out of 23 effluent samples. Acute toxicity for at least two organisms in 7 out of 23 effluent sampling was observed for the metal industry. The toxicity test results were assessed with chemical analyses such as COD, BOD, color and heavy metals. It was observed that the toxicity of the effluents could not be explained by using physicochemical analyses in 5 cases for metal and 4 cases for the textile industries. The results clearly showed that the use of bioassay tests produce additional information about the toxicity potential of industrial discharges and effluents.
Optimizing liquid effluent monitoring at a large nuclear complex.
Chou, Charissa J; Barnett, D Brent; Johnson, Vernon G; Olson, Phil M
2003-12-01
Effluent monitoring typically requires a large number of analytes and samples during the initial or startup phase of a facility. Once a baseline is established, the analyte list and sampling frequency may be reduced. Although there is a large body of literature relevant to the initial design, few, if any, published papers exist on updating established effluent monitoring programs. This paper statistically evaluates four years of baseline data to optimize the liquid effluent monitoring efficiency of a centralized waste treatment and disposal facility at a large defense nuclear complex. Specific objectives were to: (1) assess temporal variability in analyte concentrations, (2) determine operational factors contributing to waste stream variability, (3) assess the probability of exceeding permit limits, and (4) streamline the sampling and analysis regime. Results indicated that the probability of exceeding permit limits was one in a million under normal facility operating conditions, sampling frequency could be reduced, and several analytes could be eliminated. Furthermore, indicators such as gross alpha and gross beta measurements could be used in lieu of more expensive specific isotopic analyses (radium, cesium-137, and strontium-90) for routine monitoring. Study results were used by the state regulatory agency to modify monitoring requirements for a new discharge permit, resulting in an annual cost savings of US dollars 223,000. This case study demonstrates that statistical evaluation of effluent contaminant variability coupled with process knowledge can help plant managers and regulators streamline analyte lists and sampling frequencies based on detection history and environmental risk.
Exhaust Gas Scrubber Washwater Effluent
2011-11-01
the washwater discharge and what are their concentrations or values? How are these pollutants dissipated into the environment when the ship is...40 Exhaust Gas Scrubber Washwater Effluent Contents ii LIST OF TABLES Page 1 PAH Discharge Concentration Limit by...Flow Rate ..........................................................11 2 Concentrations of Metals in the Washwater Discharge from the Zaandam
The occurrence of antibiotics in an urban watershed: From wastewater to drinking water
Watkinson, A.J.; Murby, E.J.; Kolpin, D.W.; Costanzo, S.D.
2009-01-01
The presence of 28 antibiotics in three hospital effluents, five wastewater treatment plants (WWTPs), six rivers and a drinking water storage catchment were investigated within watersheds of South–East Queensland, Australia. All antibiotics were detected at least once, with the exception of the polypeptide bacitracin which was not detected at all. Antibiotics were found in hospital effluent ranging from 0.01–14.5 μg L-1, dominated by the β-lactam, quinolone and sulphonamide groups. Antibiotics were found in WWTP influent up to 64 μg L-1, dominated by the β-lactam, quinolone and sulphonamide groups. Investigated WWTPs were highly effective in removing antibiotics from the water phase, with an average removal rate of greater than 80% for all targeted antibiotics. However, antibiotics were still detected in WWTP effluents in the low ng L-1 range up to a maximum of 3.4 μg L-1, with the macrolide, quinolone and sulphonamide antibiotics most prevalent. Similarly, antibiotics were detected quite frequently in the low ng L-1 range, up to 2 μg L-1 in the surface waters of six investigated rivers including freshwater, estuarine and marine samples. The total investigated antibiotic concentration (TIAC) within the Nerang River was significantly lower (p p < 0.001) was identified between TIACs at surface water sites with WWTP discharge compared to sites with no WWTP discharge, providing further evidence that WWTPs are an important source of antibiotics to streams. Despite the presence of antibiotics in surface waters used for drinking water extraction, no targeted antibiotics were detected in any drinking water samples.
40 CFR 125.67 - Increase in effluent volume or amount of pollutants discharged.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION... projections of effluent volume and mass loadings for any pollutants to which the modification applies in 5...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, Daniel J.; Nash, Charles A.; Adamson, Duane J.
The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it tomore » the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations. That simulant can be used in evaporator testing to predict the composition of the effluents from the Effluent Management Facility (EMF) evaporator to aid in planning for their disposition. This document describes the method used to formulate a simulant of this LAW Melter Off-Gas Condensate stream, which, after pH adjustment, is the feed to the evaporator in the EMF.« less
Code of Federal Regulations, 2012 CFR
2012-07-01
... normally exhibit a pH of less than 6.0 prior to treatment: BAT Effluent Limitations Pollutant or pollutant... economically achievable if discharges from such point sources normally exhibit a pH equal to or greater than 6... establish the concentration or quality of pollutants which may be discharged by any existing coal...
Chen, Lei; Han, Zhaoxing; Li, Shuang; Shen, Zhenyao
2016-10-01
The efficacy of traditional effluent trading systems is questionable due to their neglect of seasonal hydrological variation and the creation of upstream hot spots within a watershed. Besides, few studies have been conducted to distinguish the impacts of each influencing factor on effluent trading systems outputs. In this study, a water environmental functional zone-based effluent trading systems framework was configured and a comprehensive analysis of its influencing factors was conducted. This proposed water environmental functional zone-based effluent trading systems was then applied for the control of chemical oxygen demand in the Beiyun River watershed, Beijing, China. Optimal trading results highlighted the integration of water quality constraints and different hydrological seasons, especially for downstream dischargers. The optimal trading of each discharger, in terms of pollutant reduction load and abatement cost, is greatly influenced by environmental and political factors such as background water quality, the location of river assessment points, and tradable discharge permits. In addition, the initial permit allowance has little influence on the market as a whole but does impact the individual discharger. These results provide information that is critical to understanding the impact of policy design on the functionality of an effluent trading systems.
NASA Astrophysics Data System (ADS)
Chen, Lei; Han, Zhaoxing; Li, Shuang; Shen, Zhenyao
2016-10-01
The efficacy of traditional effluent trading systems is questionable due to their neglect of seasonal hydrological variation and the creation of upstream hot spots within a watershed. Besides, few studies have been conducted to distinguish the impacts of each influencing factor on effluent trading systems outputs. In this study, a water environmental functional zone-based effluent trading systems framework was configured and a comprehensive analysis of its influencing factors was conducted. This proposed water environmental functional zone-based effluent trading systems was then applied for the control of chemical oxygen demand in the Beiyun River watershed, Beijing, China. Optimal trading results highlighted the integration of water quality constraints and different hydrological seasons, especially for downstream dischargers. The optimal trading of each discharger, in terms of pollutant reduction load and abatement cost, is greatly influenced by environmental and political factors such as background water quality, the location of river assessment points, and tradable discharge permits. In addition, the initial permit allowance has little influence on the market as a whole but does impact the individual discharger. These results provide information that is critical to understanding the impact of policy design on the functionality of an effluent trading systems.
Radionuclide speciation in effluent from La Hague reprocessing plant in France.
Salbu, B; Skipperud, L; Germain, P; Guéguéniat, P; Strand, P; Lind, O C; Christensen, G
2003-09-01
Effluent from the La Hague nuclear fuel reprocessing plant was mixed with seawater in order to investigate the fate of the various radionuclides. Thus, a major objective of the present work is to characterize the effluent from La Hague reprocessing plant and to study how the radionuclide speciation changes with time when discharged into the marine environment. Discharges from the La Hague nuclear reprocessing plant represent an important source of artificially produced radionuclides to the North Sea. The transport, distribution, and biological uptake of radionuclides in the marine environment depends, however, on the physicochemical forms of radionuclides in the discharged effluents and on transformation processes that occur after entering the coastal waters. Information of these processes is needed to understand the transport and long-term distribution of the radionuclides. In the present work, a weekly discharged effluent from the nuclear fuel reprocessing plant at Cap La Hague in France was mixed with coastal water and fractionated with respect to particle size and charged species using ultra centrifugation and hollow fiber ultrafiltration with on line ion exchange. The size distribution pattern of gamma-emitting radionuclides was followed during a 62-h period after mixing the effluent with seawater. 54Mn was present as particulate material in the effluent, while other investigated radionuclides were discharged in a more mobile form or were mobilized after mixing with sea water (e.g., 60Co) and can be transported long distances in the sea. Sediments can act as a sink for less mobile discharged radionuclides (Skipperud et al. 2000). A kinetic model experiment was performed to provide information of the time-dependent distribution coefficients, Kd (t). The retention of the effluent radionuclides in sediments was surprisingly low (Kd 20-50), and the sediments acted as a poor sink for the released radionuclides. Due to the presence of non-reacting radionuclide species in the effluent, a major fraction of the radionuclides, such as Cs-isotopes, 106Ru and 125Sb, in the effluent will be subjected to marine transport to the Northern Seas (i.e., the North Sea, Norwegian Sea and the Barents Sea). The La Hague effluent may, therefore, contribute to enriched levels of radionuclides found in the English Channel, including 90Sr, 60Co and Pu-isotopes, and also 106Ru and 125Sb.
Hydrology of coal-resource areas in the southern Wasatch Plateau, central Utah
Danielson, T.W.; Sylla, D.A.
1982-01-01
The study defines the surface and groundwater hydrology of coal-resources areas in the Southern Wasatch Plateau in Central Utah and, where possible, predicts the hydrologic impacts of underground mining. Discharge data at four streamflow gaging stations indicated that from 5 to 29% of the average annual precipitation on a drainage runs off streams, mainly during the snowmelt period (spring and summer). Most of the base flow of streams originates as spring discharge in the higher altitudes of drainages. Peak flows, average 7-day flood flows, and flood depths were related to basin characteristics in order to develop flood equations for ungaged sites. Chemical quality of surface water was suitable for most uses. Dissolved-solids concentrations ranged from 97 to 835 milligrams per liter in 61 samples collected throughout the area. Data from wells and coal-test holes, and a comprehensive spring inventory indicate that groundwater occurs in all geologic units exposed in the study area. The coal-bearing Blackhawk Formation and underlying Star Point Sandstone are saturated in most areas. Some future mining operations would require dewatering of the Star Point-Blackhawk aquifer. Most of the springs issue from the Flagstaff Limestone and North Horn Formation above the Star Point-Blackhawk aquifer. It is not known whether water in the Flagstaff and North Horn is perched. Dissolved-solids concentrations in groundwater ranged from 105 to 1,080 milligrams per liter in 87 analyzed samples. Water levels in wells, the discharge of springs, benthic invertebrates in streams, and quantity and quality of mine effluents all need to be monitored in order to detect changes in the hydrologic system caused by coal mining. (USGS)
NASA Astrophysics Data System (ADS)
Vaessen, T. N.; Martí Roca, E.; Pinay, G.; Merbt, S. N.
2015-12-01
Biofilms play a pivotal role on nutrient cycling in streams, which ultimately dictates the export of nutrients to downstream ecosystems. The extent to which biofilms influence the concentration of dissolved nutrients, oxygen and pH in the water column may be determined by the composition of the microbial assemblages and their activity. Evidence of biological interactions among bacteria and algae are well documented. However, the development, succession and co-occurence of nitrifying and denitrifying bacteria remain poorly understood. These bacteria play a relevant role on the biogeochemical process associated to N cycling, and their relative abundance can dictate the fate of dissolved inorganic nitrogen in streams. In particular, previous studies indicated that nitrifiers are enhanced in streams receiving inputs from wastewater treatment plant (WWTP) effluents due to both increases in ammonium concentration and inputs of nitrifiers. However, less is known about the development of denitrifiers in receiving streams, although environmental conditions seem to favor it. We conducted an in situ colonization experiment in a stream receiving effluent from a WWTP to examine how this input influences the development and co-occurrence of nitrifying and denitrifying bacteria. We placed artificial substrata at different locations relative to the effluent and sampled them over time to characterize the developed biofilm in terms of bulk measurements (organic matter content and algae) as well as in terms of abundance of nitrifiers and denitrifiers (using qPCR). The results of this study contribute to a better understanding of the temporal dynamics of denitrifiers and nitrifiers in relation to the developed organic matter, dissolved oxygen and pH and the biomass accrual in stream biofilms under the influence of nutrients inputs from WWTP effluent. Ultimately, the results provide insights on the potential role of nitrifiers and denitrifiers on N cycling in WWTP effluent receiving streams.
Writer, Jeffrey; Barber, Larry B.; Ryan, Joseph N.; Bradley, Paul M.
2011-01-01
Biodegradation of select endocrine-disrupting compounds (17β-estradiol, estrone, 17α-ethynylestradiol, 4-nonylphenol, 4-nonylphenolmonoexthoylate, and 4-nonylphenoldiethoxylate) was evaluated in stream biofilm, sediment, and water matrices collected from locations upstream and downstream from a wastewater treatment plant effluent discharge. Both biologically mediated transformation to intermediate metabolites and biologically mediated mineralization were evaluated in separate time interval experiments. Initial time intervals (0–7 d) evaluated biodegradation by the microbial community dominant at the time of sampling. Later time intervals (70 and 185 d) evaluated the biodegradation potential as the microbial community adapted to the absence of outside energy sources. The sediment matrix was more effective than the biofilm and water matrices at biodegrading 4-nonylphenol and 17β-estradiol. Biodegradation by the sediment matrix of 17α-ethynylestradiol occurred at later time intervals (70 and 185 d) and was not observed in the biofilm or water matrices. Stream biofilms play an important role in the attenuation of endocrine-disrupting compounds in surface waters due to both biodegradation and sorption processes. Because sorption to stream biofilms and bed sediments occurs on a faster temporal scale (<1 h) than the potential to biodegrade the target compounds (50% mineralization at >185 d), these compounds can accumulate in stream biofilms and sediments.
Improving H-Q rating curves in temprorary streams by using Acoustic Doppler Current meters
NASA Astrophysics Data System (ADS)
Marchand, P.; Salles, C.; Rodier, C.; Hernandez, F.; Gayrard, E.; Tournoud, M.-G.
2012-04-01
Intermittent rivers pose different challenges to stream rating due to high spatial and temporal gradients. Long dry periods, cut by short duration flush flood events explain the difficulty to obtain reliable discharge data, for low flows as well as for floods: problems occur with standard gauging, zero flow period, etc. Our study aims to test the use of an acoustic Doppler currentmeter (ADC) for improving stream rating curves in small catchments subject to large variations of discharge, solid transport and high eutrophication levels. The study is conducted at the outlet of the river Vène, a small coastal river (67 km2) located close to the city of Montpellier (France). The low flow period lasts for more than 6 month; during this period the river flow is sustained by effluents from urban sewage systems, which allows development of algae and macrophytes in the riverbed. The ADC device (Sontek ®Argonaut SW) is a pulsed Doppler current profiling system designed for measuring water velocity profiles and levels that are used to compute volumetric flow rates. It is designed for shallow waters (less than 4 meter depth). Its main advantages are its low cost and high accuracy (±1% of the measured velocity or ±0.05 m/sec, as reported by the manufacturer). The study will evaluate the improvement in rating curves in an intermittent flow context and the effect of differences in sensitivity between low and high water level, by comparing mean flow velocity obtained by ADC to direct discharges measurements. The study will also report long-term use of ADC device, by considering effects of biofilms, algae and macrophytes, as well as solid transport on the accuracy of the measurements. In conclusion, we show the possibility to improve stream rating and continuous data collection of an intermittent river by using a ADC with some precautions.
40 CFR 60.266 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... effluent gas from exhaust stream “i”, dscm/hr (dscf/hr). P=average furnace power input, MW. K=conversion....8, the owner or operator shall not allow gaseous diluents to be added to the effluent gas stream after the fabric in an open pressurized fabric filter collector unless the total gas volume flow from...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) The discharger will meet the requirements of the Pollution Prevention Alternative listed in Table 8 to... in Table 8 of this part 455); (2) The discharger will notify its NPDES permit writer at the time of... discharger will submit to its NPDES permitting authority a periodic certification statements as described in...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) The discharger will meet the requirements of the Pollution Prevention Alternative listed in Table 8 to... in Table 8 of this part 455); (2) The discharger will notify its NPDES permit writer at the time of... discharger will submit to its NPDES permitting authority a periodic certification statements as described in...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) The discharger will meet the requirements of the Pollution Prevention Alternative listed in Table 8 to... on Table 8 of this part 455); (2) The discharger will notify its NPDES permitting authority at the....41(a); (3) The discharger will submit to its NPDES permit writer a periodic certification statement...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) The discharger will meet the requirements of the Pollution Prevention Alternative listed in Table 8 to... on Table 8 of this part 455); (2) The discharger will notify its NPDES permitting authority at the....41(a); (3) The discharger will submit to its NPDES permit writer a periodic certification statement...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) The discharger will meet the requirements of the Pollution Prevention Alternative listed in Table 8 to... in Table 8 of this part 455); (2) The discharger will notify its NPDES permit writer at the time of... discharger will submit to its NPDES permitting authority a periodic certification statements as described in...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) The discharger will meet the requirements of the Pollution Prevention Alternative listed in Table 8 to... on Table 8 of this part 455); (2) The discharger will notify its NPDES permitting authority at the....41(a); (3) The discharger will submit to its NPDES permit writer a periodic certification statement...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF)more » and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.« less
Modeling Land Application of Food-Processing Wastewater in the Central Valley, California
NASA Astrophysics Data System (ADS)
Rubin, Y.; Benito, P.; Miller, G.; McLaughlin, J.; Hou, Z.; Hermanowicz, S.; Mayer, U.
2007-12-01
California's Central Valley contains over 640 food-processing plants, serving a multi-billion dollar agricultural industry. These processors consume approximately 7.9 x 107 m3 of water per year. Approximately 80% of these processors discharge the resulting wastewater, which is typically high in organic matter, nitrogen, and salts, to land, and many of these use land application as a treatment method. Initial investigations revealed elevated salinity levels to be the most common form of groundwater degradation near land application sites, followed by concentrations of nitrogen compounds, namely ammonia and nitrate. Enforcement actions have been taken against multiple food processors, and the regulatory boards have begun to re-examine the land disposal permitting process. This paper summarizes a study that was commissioned in support of these actions. The study has multiple components which will be reviewed briefly, including: (1) characterization of the food-processing related waste stream; (2) fate and transport of the effluent waste stream in the unsaturated zone at the land application sites; (3) fate and transport of the effluent waste stream at the regional scale; (4) predictive uncertainty due to spatial variability and data scarcity at the land application sites and at the regional scale; (5) problem mitigation through off-site and in-situ actions; (6) long-term solutions. The emphasis of the talk will be placed on presenting and demonstrating a stochastic framework for modeling the transport and attenuation of these wastes in the vadose zone and in the saturated zone, and the related site characterization needs, as affected by site conditions, water table depth, waste water application rate, and waste constituent concentrations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That Do Not Use End-of-Pipe Biological Treatment 5 Table 5 to Part 455 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That Do Not Use End-of-Pipe Biological Treatment 5 Table 5 to Part 455 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That Do Not Use End-of-Pipe Biological Treatment 5 Table 5 to Part 455 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED)...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That Do Not Use End-of-Pipe Biological Treatment 5 Table 5 to Part 455 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED)...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That Do Not Use End-of-Pipe Biological Treatment 5 Table 5 to Part 455 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED)...
Loganathan, Bommanna; Phillips, Malia; Mowery, Holly; Jones-Lepp, Tammy L
2009-03-01
Information is limited regarding sources, distribution, environmental behavior, and fate of prescribed and illicit drugs. Wastewater treatment plant (WWTP) effluents can be one of the sources of pharmaceutical and personal care products (PPCP) into streams, rivers and lakes. The objective of this study was to determine the contamination profiles and mass loadings of urobilin (a chemical marker of human waste), macrolide antibiotics (azithromycin, clarithromycin, roxithromycin), and two drugs of abuse (methamphetamine and ecstasy), from a small (<19 mega liters day(-1), equivalent to <5 million gallons per day) wastewater treatment plant in southwestern Kentucky. The concentrations of azithromycin, clarithromycin, methamphetamine and ecstasy in wastewater samples varied widely, ranging from non-detects to 300 ng L(-1). Among the macrolide antibiotics analyzed, azithromycin was consistently detected in influent and effluent samples. In general, influent samples contained relatively higher concentrations of the analytes than the effluents. Based on the daily flow rates and an average concentration of 17.5 ng L(-1) in the effluent, the estimated discharge of azithromycin was 200 mg day(-1) (range 63-400 mg day(-1)). Removal efficiency of the detected analytes from this WWTP were in the following order: urobilin>methamphetamine>azithromycin with percentages of removal of 99.9%, 54.5% and 47%, respectively, indicating that the azithromycin and methamphetamine are relatively more recalcitrant than others and have potential for entering receiving waters.
Agrawal, Archana; Sahu, K K
2009-11-15
Every metal and metallurgical industry is associated with the generation of waste, which may be a solid, liquid or gaseous in nature. Their impacts on the ecological bodies are noticeable due to their complex and hazardous nature affecting the living and non-living environment which is an alarming issue to the environmentalist. The increasingly stringent regulations regarding the discharge of acid and metal into the environment, and the increasing stress upon the recycling/reuse of these effluents after proper treatment have focused the interest of the research community on the development of new approaches for the recovery of acid and metals from industrial wastes. This paper is a critical review on the acidic waste streams generated from steel and electroplating industries particularly from waste pickle liquor and spent bleed streams. Various aspects on the generation of these streams and the methods used for their treatment either for the recovery of acid for reuse or disposal are being dealt with. Major stress is laid upon the hydrometallurgical methods such as solvent extraction.
Effects of Kraft Mill effluent on the sexuality of fishes: An environmental early warning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, W.P.; Bortone, S.A.
1992-01-01
Arrhenoid or masculinized female fish species of the live-bearing family, Poeciliidae, have been observed for over thirteen years in specific southern streams which receive waste effluents from pulping mills. The complex mixture of organic compounds in kraft mill effluent (KME) has inhibited specific identification of causal agent(s). However, microbially degraded phytosterols (e.g. sitosterol or stigmastanol) in experimental exposures induce the same intersexual states that characterize affected female poeciliids sampled from KME streams. KME-polluted streams often exhibit a drastic reduction of fish species diversity and degrees of physiological stress, all of which suggests reduced reproduction in surviving forms. A potential ontogeneticmore » or developmental response is demonstrated in American eels captured in one of these streams as well. The authors examine available information, including laboratory and experimental field exposures, and suggest directions for additional research as well as the need for environmental concern.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... discharge. 4 Produced sand No discharge. Domestic Waste Foam No discharge. 1 All Alaskan facilities are..., both at 275 days as determined by ISO 11734:1995 [specified at § 435.11(e)] method: “Water quality... 11734:1995 (specified at § 435.11(e)) method: “Water quality—Evaluation of the ‘ultimate’ anaerobic...
Code of Federal Regulations, 2011 CFR
2011-07-01
... available technology economically achievable if discharges from such point sources normally exhibit a pH of... discharges from such point sources normally exhibit a pH equal to or greater than 6.0 prior to treatment: BAT... concentration or quality of pollutants which may be discharged by any existing coal preparation plant and coal...
Code of Federal Regulations, 2010 CFR
2010-07-01
... available technology economically achievable if discharges from such point sources normally exhibit a pH of... discharges from such point sources normally exhibit a pH equal to or greater than 6.0 prior to treatment: BAT... concentration or quality of pollutants which may be discharged by any existing coal preparation plant and coal...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That use End-of-Pipe Biological Treatment 4 Table 4... Limitations for Priority Pollutants for Direct Discharge Point Sources That use End-of-Pipe Biological...
Glassmeyer, S.T.; Furlong, E.T.; Kolpin, D.W.; Cahill, J.D.; Zaugg, S.D.; Werner, S.L.; Meyer, M.T.; Kryak, D.D.
2005-01-01
The quality of drinking and recreational water is currently (2005) determined using indicator bacteria. However, the culture tests used to analyze for these bacteria require a long time to complete and do not discriminate between human and animal fecal material sources. One complementary approach is to use chemicals found in human wastewater, which would have the advantages of (1) potentially shorter analysis times than the bacterial culture tests and (2) being selected for human-source specificity. At 10 locations, water samples were collected upstream and at two successive points downstream from a wastewaster treatment plant (WWTP); a treated effluent sample was also collected at each WWTP. This sampling plan was used to determine the persistence of a chemically diverse suite of emerging contaminants in streams. Samples were also collected at two reference locations assumed to have minimal human impacts. Of the 110 chemical analytes investigated in this project, 78 were detected at least once. The number of compounds in a given sample ranged from 3 at a reference location to 50 in a WWTP effluent sample. The total analyte load at each location varied from 0.018 μg/L at the reference location to 97.7 μg/L in a separate WWTP effluent sample. Although most of the compound concentrations were in the range of 0.01−1.0 μg/L, in some samples, individual concentrations were in the range of 5−38 μg/L. The concentrations of the majority of the chemicals present in the samples generally followed the expected trend: they were either nonexistent or at trace levels in the upstream samples, had their maximum concentrations in the WWTP effluent samples, and then declined in the two downstream samples. This research suggests that selected chemicals are useful as tracers of human wastewater discharge.
Atkinson, S F; Johnson, D R; Venables, B J; Slye, J L; Kennedy, J R; Dyer, S D; Price, B B; Ciarlo, M; Stanton, K; Sanderson, H; Nielsen, A
2009-06-15
Surfactants are high production volume chemicals that are used in a wide assortment of "down-the-drain" consumer products. Wastewater treatment plants (WWTPs) generally remove 85 to more than 99% of all surfactants from influents, but residual concentrations are discharged into receiving waters via wastewater treatment plant effluents. The Trinity River that flows through the Dallas-Fort Worth metropolitan area, Texas, is an ideal study site for surfactants due to the high ratio of wastewater treatment plant effluent to river flow (>95%) during late summer months, providing an interesting scenario for surfactant loading into the environment. The objective of this project was to determine whether surfactant concentrations, expressed as toxic units, in-stream water quality, and aquatic habitat in the upper Trinity River could be predicted based on easily accessible watershed characteristics. Surface water and pore water samples were collected in late summer 2005 at 11 sites on the Trinity River in and around the Dallas-Fort Worth metropolitan area. Effluents of 4 major waste water treatment plants that discharge effluents into the Trinity River were also sampled. General chemistries and individual surfactant concentrations were determined, and total surfactant toxic units were calculated. GIS models of geospatial, anthropogenic factors (e.g., population density) and natural factors (e.g., soil organic matter) were collected and analyzed according to subwatersheds. Multiple regression analyses using the stepwise maximum R(2) improvement method were performed to develop prediction models of surfactant risk, water quality, and aquatic habitat (dependent variables) using the geospatial parameters (independent variables) that characterized the upper Trinity River watershed. We show that GIS modeling has the potential to be a reliable and inexpensive method of predicting water and habitat quality in the upper Trinity River watershed and perhaps other highly urbanized watersheds in semi-arid regions.
Water quality of the Swatara Creek Basin, PA
McCarren, Edward F.; Wark, J.W.; George, J.R.
1964-01-01
The Swatara Creek of the Susquehanna River Basin is the farthest downstream sub-basin that drains acid water (pH of 4.5 or less) from anthracite coal mines. The Swatara Creek drainage area includes 567 square miles of parts of Schuylkill, Berks, Lebanon, and Dauphin Counties in Pennsylvania.To learn what environmental factors and dissolved constituents in water were influencing the quality of Swatara Creek, a reconnaissance of the basin was begun during the summer of 1958. Most of the surface streams and the wells adjacent to the principal tributaries of the Creek were sampled for chemical analysis. Effluents from aquifers underlying the basin were chemically analyzed because ground water is the basic source of supply to surface streams in the Swatara Creek basin. When there is little runoff during droughts, ground water has a dominating influence on the quality of surface water. Field tests showed that all ground water in the basin was non-acidic. However, several streams were acidic. Sources of acidity in these streams were traced to the overflow of impounded water in unworked coal mines.Acidic mine effluents and washings from coal breakers were detected downstream in Swatara Creek as far as Harper Tavern, although the pH at Harper Tavern infrequently went below 6.0. Suspended-sediment sampling at this location showed the mean daily concentration ranged from 2 to 500 ppm. The concentration of suspended sediment is influenced by runoff and land use, and at Harper Tavern it consisted of natural sediments and coal wastes. The average daily suspended-sediment discharge there during the period May 8 to September 30, 1959, was 109 tons per day, and the computed annual suspended-sediment load, 450 tons per square mile. Only moderate treatment would be required to restore the quality of Swatara Creek at Harper Tavern for many uses. Above Ravine, however, the quality of the Creek is generally acidic and, therefore, of limited usefulness to public supplies, industries and recreation. In general, the quality of Swatara Creek improves after it mixes with water from the Upper Little and Lower Little Swatara Creeks, which converge with the main stream near Pine Grove. Jonestown is the first downstream location where Swatara Creek contains bicarbonate ion most of the time, and for the remaining downstream length of the stream, the concentration of bicarbonate progressively increases. Before the stream enters the Susquehanna River, chemical and diluting processes contributed by tributaries change the acidic calcium sulfate water, which characterizes the upper Swatara, to a calcium bicarbonate water.A major tributary to Swatara Creek is Quittapahilla Creek, which drains a limestone region and has alkaline characteristics. Effluents from a sewage treatment plant are discharged into this stream west of Lebanon. Adjacent to the Creek are limestone quarries and during the recovery of limestone, ground water seeps into the mining areas. This water is pumped to upper levels and flows over the land surface into Quittapahilla Creek. As compared with the 1940's, the quality of Swatara Creek is better today, and the water is suitable for more uses. In large part, this improvement is due to curtailment of anthracite coal mining and because of the controls imposed on new mines, stripping mines, and the related coal mining operations, by the Pennsylvania Sanitary Water Board. Thus, today (1962) smaller amounts of coal mine wastes are more effectively flushed and scoured away with each successive runoff during storms that affect the drainage basin. Natural processes neutralizing acid water in the stream by infiltration of alkaline ground water through springs and through the streambed are also indicated.
Stabilization and Solidification of Nitric Acid Effluent Waste at Y-12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Dileep; Lorenzo-Martin, Cinta
Consolidated Nuclear Security, LLC (CNS) at the Y-12 plant is investigating approaches for the treatment (stabilization and solidification) of a nitric acid waste effluent that contains uranium. Because the pH of the waste stream is 1-2, it is a difficult waste stream to treat and stabilize by a standard cement-based process. Alternative waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the nitric acid effluent wastes.
Garcia, Santos N; Clubbs, Rebekah L; Stanley, Jacob K; Scheffe, Brian; Yelderman, Joe C; Brooks, Bryan W
2013-06-01
Though decentralized on-site technologies are extensively employed for wastewater treatment around the globe, an understanding of effluent water quality impairments associated with these systems remain less understood than effluent discharges from centralized municipal wastewater treatment facilities. Using a unique experimental facility, a novel comparative analysis of effluent water quality was performed from model decentralized aerobic (ATS) and septic (STS) on-site wastewater treatment systems and a centralized municipal wastewater treatment plant (MTP). The ATS and STS units did not benefit from further soil treatment. Each system received common influent wastewater from the Waco, Texas, USA Metropolitan Area Regional Sewerage System. We tested the hypothesis that MTP effluent would exhibit higher water quality than on-site effluents, based on parameters selected for study. A tiered testing approach was employed to assess the three effluent discharges: select routine water quality parameters (Tier I), whole effluent toxicity (Tier II), and select endocrine-active compounds (Tier III). Contrary to our hypothesis, ATS effluent was not statistically different from MTP effluents, based on Tier I and III parameters, but reproductive responses of Daphnia magna were slightly more sensitive to ATS than MTP effluents. STS effluent water quality was identified as most degraded of the three wastewater treatment systems. Parameters used to assess centralized wastewater treatment plant effluent water quality such as whole effluent toxicity and endocrine active substances appear useful for water quality assessments of decentralized discharges. Aerobic on-site wastewater treatment systems may represent more robust options than traditional septic systems for on-site wastewater treatment in watersheds with appreciable groundwater - surface water exchange. Copyright © 2013 Elsevier Ltd. All rights reserved.
Management scenarios for the Jordan River salinity crisis
Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U.
2005-01-01
Recent geochemical and hydrological findings show that the water quality of the base flow of the Lower Jordan River, between the Sea of Galilee and the Dead Sea, is dependent upon the ratio between surface water flow and groundwater discharge. Using water quality data, mass-balance calculations, and actual flow-rate measurements, possible management scenarios for the Lower Jordan River and their potential affects on its salinity are investigated. The predicted scenarios reveal that implementation of some elements of the Israel-Jordan peace treaty will have negative effects on the Jordan River water salinity. It is predicted that removal of sewage effluents dumped into the river (???13 MCM/a) will significantly reduce the river water's flow and increase the relative proportion of the saline groundwater flux into the river. Under this scenario, the Cl content of the river at its southern point (Abdalla Bridge) will rise to almost 7000 mg/L during the summer. In contrast, removal of all the saline water (16.5 MCM/a) that is artificially discharged into the Lower Jordan River will significantly reduce its Cl concentration, to levels of 650-2600 and 3000-3500 mg/L in the northern and southern areas of the Lower Jordan River, respectively. However, because the removal of either the sewage effluents or the saline water will decrease the river's discharge to a level that could potentially cause river desiccation during the summer months, other water sources must be allocated to preserve in-stream flow needs and hence the river's ecosystem. ?? 2005 Elsevier Ltd. All rights reserved.
Yu, Binglan; Blaesi, Aron H; Casey, Noel; Raykhtsaum, Grigory; Zazzeron, Luca; Jones, Rosemary; Morrese, Alexander; Dobrynin, Danil; Malhotra, Rajeev; Bloch, Donald B; Goldstein, Lee E; Zapol, Warren M
2016-11-30
Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N 2 cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge. The objective of this study was to investigate and optimize the purity and safety of NO generated by this device. By using low temperature streamer discharges in the plasma generator, we produced therapeutic levels of NO with very low levels of nitrogen dioxide (NO 2 ) and ozone. Despite the low temperature, spark generation eroded the surface of the electrodes, contaminating the gas stream with metal particles. During prolonged NO generation there was gradual loss of the iridium high-voltage tip (-90 μg/day) and the platinum-nickel ground electrode (-55 μg/day). Metal particles released from the electrodes were trapped by a high-efficiency particulate air (HEPA) filter. Quadrupole mass spectroscopy measurements of effluent gas during plasma NO generation showed that a single HEPA filter removed all of the metal particles. Mice were exposed to breathing 50 parts per million of electrically generated NO in air for 28 days with only a scavenger and no HEPA filter; the mice did not develop pulmonary inflammation or structural changes and iridium and platinum particles were not detected in the lungs of these mice. In conclusion, an electric plasma generator produced therapeutic levels of NO from air; scavenging and filtration effectively eliminated metallic impurities from the effluent gas. Copyright © 2016 Elsevier Inc. All rights reserved.
Yu, Binglan; Blaesi, Aron H.; Casey, Noel; Raykhtsaum, Grigory; Zazzeron, Luca; Jones, Rosemary; Morrese, Alexander; Dobrynin, Danil; Malhotra, Rajeev; Bloch, Donald B.; Goldstein, Lee E.; Zapol, Warren M.
2016-01-01
Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N2 cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge. The objective of this study was to investigate and optimize the purity and safety of NO generated by this device. By using low temperature streamer discharges in the plasma generator, we produced therapeutic levels of NO with very low levels of nitrogen dioxide (NO2) and ozone. Despite the low temperature, spark generation eroded the surface of the electrodes, contaminating the gas stream with metal particles. During prolonged NO generation there was gradual loss of the iridium high-voltage tip (−90 µg/day) and the platinum-nickel ground electrode (−55 µg/day). Metal particles released from the electrodes were trapped by a high-efficiency particulate air (HEPA) filter. Quadrupole mass spectroscopy measurements of effluent gas during plasma NO generation showed that a single HEPA filter removed all of the metal particles. Mice were exposed to breathing 50 parts per million of electrically generated NO in air for 28 days with only a scavenger and no HEPA filter; the mice did not develop pulmonary inflammation or structural changes and iridium and platinum particles were not detected in the lungs of these mice. In conclusion, an electric plasma generator produced therapeutic levels of NO from air; scavenging and filtration effectively eliminated metallic impurities from the effluent gas. PMID:27592386
Code of Federal Regulations, 2010 CFR
2010-07-01
... biocides are used must achieve the following effluent limitations representing the degree of effluent...-continuous dischargers. Permittees not using chlorophenolic-containing biocides must certify to the permit-issuing authority that they are not using these biocides: Subpart C [BAT effluent limitations for...
Code of Federal Regulations, 2010 CFR
2010-07-01
... biocides are used must achieve the following effluent limitations representing the degree of effluent...-continuous dischargers. Permittees not using chlorophenolic-containing biocides must certify to the permit-issuing authority that they are not using these biocides: Subpart A [BAT effluent limitations] Pollutant...
Code of Federal Regulations, 2010 CFR
2010-07-01
... biocides are used must achieve the following effluent limitations representing the degree of effluent...-continuous dischargers. Permittees not using chlorophenolic-containing biocides must certify to the permit-issuing authority that they are not using these biocides: Subpart D [BAT effluent limitations for...
Sepulveda, M.S.; Ruessler, D.S.; Denslow, N.D.; Holm, S.E.; Schoeb, T.R.; Gross, T.S.
2001-01-01
This study evaluated the potential effects of different concentrations of bleached/unbleached kraft mill effluent (B/UKME) on several reproductive endpoints in adult largemouth bass (Micropterus salmoides). The kraft mill studied produces a 50/50 mix of bleached/unbleached market pulp with an estimated release of 36 million gal of efffluent/day. Bleaching sequences were C90d10EopHDp and CEHD for softwood (pines) and hardwoods (mainly tupelo, gums, magnolia, and water oaks), respectively. Bass were exposed to different effluent concentrations (0 [controls, exposed to well water], 10, 20, 40, or 80%) for either 28 or 56 days. At the end of each exposure period, fish were euthanized, gonads collected for histological evaluation and determination of gonadosomatic index (GSI), and plasma was analyzed for 17??-estradiol, 11-ketotestosterone, and vitellogenin (VTG). Largemouth bass exposed to B/UKME responded with changes at the biochemical level (decline in sex steroids in both sexes and VTG in females) that were usually translated into tissue/organ-level responses (declines in GSI in both sexes and in ovarian development in females). Although most of these responses occurred after exposing fish to 40% B/UKME concentrations or greater, some were observed after exposures to 20% B/UKME. These threshold concentrations fall within the 60% average yearly concentration of effluent that exists in the stream near the point of discharge (Rice Creek), but are above the <10% effluent concentration present in the St. Johns River. The chemical(s) responsible for such changes as well as their mode(s) of action remain unknown at this time.
Combined sewer overflows: an environmental source of hormones and wastewater micropollutants
Phillips, P.J.; Chalmers, A.T.; Gray, J.L.; Kolpin, D.W.; Foreman, W.T.; Wall, G.R.
2012-01-01
Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency.
Combined Sewer Overflows: An Environmental Source of Hormones and Wastewater Micropollutants
2012-01-01
Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency. PMID:22540536
Groundwater Discharge along a Channelized Coastal Plain Stream
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaSage, Danita M; Sexton, Joshua L; Mukherjee, Abhijit
In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffusemore » discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.« less
Water Resources Data, Florida, Water Year 2003, Volume 3A: Southwest Florida Surface Water
Kane, R.L.; Fletcher, W.L.
2004-01-01
Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3A contains continuous or daily discharge for 103 streams, periodic discharge for 7 streams, continuous or daily stage for 67 streams, periodic stage for 13 streams, peak stage and discharge for 8 streams, continuous or daily elevations for 2 lakes, periodic elevations for 26 lakes, and quality-of-water data for 62 surface-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Lamp Process Subcategory § 458.43 Effluent limitations guidelines representing the degree of effluent... this paragraph, which may be discharged from the carbon black lamp process by a point source subject to...
Effects of an Extreme Flood on Trace Elements in River Water-From Urban Stream to Major River Basin.
Barber, Larry B; Paschke, Suzanne S; Battaglin, William A; Douville, Chris; Fitzgerald, Kevin C; Keefe, Steffanie H; Roth, David A; Vajda, Alan M
2017-09-19
Major floods adversely affect water quality through surface runoff, groundwater discharge, and damage to municipal water infrastructure. Despite their importance, it can be difficult to assess the effects of floods on streamwater chemistry because of challenges collecting samples and the absence of baseline data. This study documents water quality during the September 2013 extreme flood in the South Platte River, Colorado, USA. Weekly time-series water samples were collected from 3 urban source waters (municipal tap water, streamwater, and wastewater treatment facility effluent) under normal-flow and flood conditions. In addition, water samples were collected during the flood at 5 locations along the South Platte River and from 7 tributaries along the Colorado Front Range. Samples were analyzed for 54 major and trace elements. Specific chemical tracers, representing different natural and anthropogenic sources and geochemical behaviors, were used to compare streamwater composition before and during the flood. The results differentiate hydrological processes that affected water quality: (1) in the upper watershed, runoff diluted most dissolved constituents, (2) in the urban corridor and lower watershed, runoff mobilized soluble constituents accumulated on the landscape and contributed to stream loading, and (3) flood-induced groundwater discharge mobilized soluble constituents stored in the vadose zone.
Effects of an extreme flood on trace elements in river water—From urban stream to major river basin
Barber, Larry B.; Paschke, Suzanne; Battaglin, William A.; Douville, Chris; Fitzgerald, Kevin C.; Keefe, Steffanie H.; Roth, David A.; Vajda, Alan M.
2017-01-01
Major floods adversely affect water quality through surface runoff, groundwater discharge, and damage to municipal water infrastructure. Despite their importance, it can be difficult to assess the effects of floods on streamwater chemistry because of challenges collecting samples and the absence of baseline data. This study documents water quality during the September 2013 extreme flood in the South Platte River, Colorado, USA. Weekly time-series water samples were collected from 3 urban source waters (municipal tap water, streamwater, and wastewater treatment facility effluent) under normal-flow and flood conditions. In addition, water samples were collected during the flood at 5 locations along the South Platte River and from 7 tributaries along the Colorado Front Range. Samples were analyzed for 54 major and trace elements. Specific chemical tracers, representing different natural and anthropogenic sources and geochemical behaviors, were used to compare streamwater composition before and during the flood. The results differentiate hydrological processes that affected water quality: (1) in the upper watershed, runoff diluted most dissolved constituents, (2) in the urban corridor and lower watershed, runoff mobilized soluble constituents accumulated on the landscape and contributed to stream loading, and (3) flood-induced groundwater discharge mobilized soluble constituents stored in the vadose zone.
Oxidative Tritium Decontamination System
Gentile, Charles A. , Guttadora, Gregory L. , Parker, John J.
2006-02-07
The Oxidative Tritium Decontamination System, OTDS, provides a method and apparatus for reduction of tritium surface contamination on various items. The OTDS employs ozone gas as oxidizing agent to convert elemental tritium to tritium oxide. Tritium oxide vapor and excess ozone gas is purged from the OTDS, for discharge to atmosphere or transport to further process. An effluent stream is subjected to a catalytic process for the decomposition of excess ozone to diatomic oxygen. One of two configurations of the OTDS is employed: dynamic apparatus equipped with agitation mechanism and large volumetric capacity for decontamination of light items, or static apparatus equipped with pressurization and evacuation capability for decontamination of heavier, delicate, and/or valuable items.
Evaldi, Ronald D.; Paybins, Katherine S.; Kozar, Mark D.
2009-01-01
Base-flow yields at approximately the annual 75-percent-duration flow were determined for watersheds in the Jefferson County area, WV, from stream-discharge measurements made during October 31 to November 2, 2007. Five discharge measurements of Opequon Creek defined increased flow from 29,000,000 gallons per day (gal/d) at Carters Ford to 51,400,000 gal/d near Vanville. No flow was observed at 45 of 110 additional stream sites inspected, and discharge at the 65 flowing stream sites ranged from 1,940 to 17,100,000 gallons per day (gal/d). Discharge at 28 springs ranged from no flow to 2,430,000 gal/d. Base-flow yields were computed as the change in stream-channel discharge between measurement sites divided by the change in drainage area between the sites. Yields were negative for losing (influent) channel reaches and positive for gaining (effluent) reaches. Channels in 14 watersheds were determined to have lost flow ranging from -9.6 to -1,770 gallons per day per acre (gal/d/acre). Channels in 51 watersheds were determined to have gained flow ranging from 3.4 to 235,000 gal/d/acre. Water temperature at the stream sites ranged from 5.0 to 16.3 deg C (quarry pumpage), and specific conductance ranged from 51 to 881 microsiemens per centimeter (uS/cm). Water temperature at the springs ranged from 11.5 to 15.0 deg C, and specific conductance ranged from 22 to 958 uS/cm. Large springs in some watersheds in western Jefferson County are adjacent to other watersheds with little or no surface-water discharge; this is probably the result of interbasin transfer of groundwater along faults that dissect the area. Most watersheds located adjacent to the Potomac River in northeastern Jefferson County were not flowing during this study; this is most likely because the Potomac River is deeply incised, and groundwater flows directly to it rather than to the local stream systems in these areas. Except for one watershed with a yield of 651 gal/d/acre, no watersheds in northeastern Jefferson County yielded more than 305 gal/d/acre. Base-flow yields of several watersheds in south-central Jefferson County exceeded 400 gal/d/acre, and the effect of the Shenadoah River on base flows in the watershed appears to be less than that of the Potomac River in the northeastern part of the county. In the southeastern part of the county, because of steep relief and low-permeability bedrock, several streams were not flowing at the time of the study, and yields from all flowing streams were all less than 100 gal/d/acre. On the basis of historical data from 1961 through 2008, the mean and median depths to groundwater in 213 wells in western Jefferson County were 33.4 and 29.3 ft, respectively. Mean and median depths to groundwater in 69 wells in the northeastern county area were 56.0 and 55.0 ft below land surface, respectively. However, mean and median depths to groundwater in 28 wells within 1.5 miles of the Potomac River were 70.0 and 71.3 ft below land surface, respectively. Mean and median depths to groundwater in 108 wells in the south-central county area were 53.9 and 52.8 ft below land surface, respectively. Mean and median depths to groundwater of 26 wells in the southeastern county area were 86.6 and 59.5 ft below land surface, respectively.
Field evaluation of shallow-water acoustic doppler current profiler discharge measurements
Rehmel, M.S.
2007-01-01
In 2004, the U.S. Geological Survey (USGS) Office of Surface Water staff and USGS Water Science employees began testing the StreamPro, an acoustic Doppler current profiler (ADCP) for shallow-water discharge measurements. Teledyne RD Instruments introduced the StreamPro in December of 2003. The StreamPro is designed to make a "moving boat" discharge measurement in streams with depths between 0.15 and 2 m. If the StreamPro works reliably in these conditions, it will allow for use of ADCPs in a greater number of streams than previously possible. Evaluation sites were chosen to test the StreamPro over a range of conditions. Simultaneous discharge measurements with mechanical and other acoustic meters, along with stable rating curves at established USGS streamflow-gaging stations, were used for comparisons. The StreamPro measurements ranged in mean velocity from 0.076 to 1.04 m/s and in discharge from 0.083 m 3/s to 43.4 m 3/s. Tests indicate that discharges measured with the StreamPro compare favorably to the discharges measured with the other meters when the mean channel velocity is greater than 0.25 m/s. When the mean channel velocity is less than 0.25 m/s, the StreamPro discharge measurements for individual transects have greater variability than those StreamPro measurements where the mean channel velocity is greater than 0.25 m/s. Despite this greater variation in individual transects, there is no indication that the StreamPro measured discharges (the mean discharge for all transects) are biased, provided that enough transects are used to determine the mean discharge. ?? 2007 ASCE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fergen, R.E.; Vinci, P.; Bloetscher, F.
1999-07-01
A special bioassay study was conducted to review the impact of the City of Hollywood's Membrane Softening Water Treatment Plant (WRP) reject water as it mixes with the City's Wastewater Treatment Plant (WWTP) effluent. Three sampling periods occurred during 1997. The purpose of this study was to determine potential toxicity of the WTP reject water, pre-chlorinated effluent, and combined effluent, and to demonstrate if the combined effluent was acceptable for ocean discharge on the basis of no potential toxicity. Effluent was acceptable for ocean discharge on the basis of no potential toxicity. Effluent samples were collected at six sampling points;more » three were in the plant, while the other three were along the outfall pipeline. Definitive, static renewal bioassay tests were performed using Mysidopsis bahia and Menidia beryllina as indicators of potential toxicity. The bioassay tests at 30% effluent concentration indicate that there is not potential toxicity for the pre-chlorinated WTP effluent, WTP reject water, dechlorinate combined effluent at the plant, and chlorinated combined effluent at Holland Park, the riser, and the terminus. The results indicate that the WTP reject water (100%) is not toxic to Menidia beryllina but was toxic to Mysidopsis bahia. When combined with the WWRP effluent, the reject water's impact on the potential toxicity of the commingled effluent was insignificant. All of the tests indicate the combined effluents are not toxic to the species tested at the 30% effluent level. Therefore, potential toxicity concerns were not demonstrated for this outfall discharge and did not prevent FDEP from issuing a permit to the City of Hollywood for the disposal of the combined effluent. Furthermore, these results, in combination with the previous results, indicated that individual bioassay testing for the reject water for regulatory compliance is not required.« less
Barton, Lauren E; Auffan, Melanie; Bertrand, Marie; Barakat, Mohamed; Santaella, Catherine; Masion, Armand; Borschneck, Daniel; Olivi, Luca; Roche, Nicolas; Wiesner, Mark R; Bottero, Jean-Yves
2014-07-01
Engineered nanomaterials (ENMs) are used to enhance the properties of many manufactured products and technologies. Increased use of ENMs will inevitably lead to their release into the environment. An important route of exposure is through the waste stream, where ENMs will enter wastewater treatment plants (WWTPs), undergo transformations, and be discharged with treated effluent or biosolids. To better understand the fate of a common ENM in WWTPs, experiments with laboratory-scale activated sludge reactors and pristine and citrate-functionalized CeO2 nanoparticles (NPs) were conducted. Greater than 90% of the CeO2 introduced was observed to associate with biosolids. This association was accompanied by reduction of the Ce(IV) NPs to Ce(III). After 5 weeks in the reactor, 44 ± 4% reduction was observed for the pristine NPs and 31 ± 3% for the citrate-functionalized NPs, illustrating surface functionality dependence. Thermodynamic arguments suggest that the likely Ce(III) phase generated would be Ce2S3. This study indicates that the majority of CeO2 NPs (>90% by mass) entering WWTPs will be associated with the solid phase, and a significant portion will be present as Ce(III). At maximum, 10% of the CeO2 will remain in the effluent and be discharged as a Ce(IV) phase, governed by cerianite (CeO2).
Code of Federal Regulations, 2012 CFR
2012-07-01
... Dissolving Sulfite Subcategory § 430.44 Effluent limitations representing the degree of effluent reduction... limitations for dissolving sulfite pulp facilities where nitration, viscose, or cellophane pulps are produced... discharged in kgal per ton of product. Subpart D [BAT effluent limitations for dissolving sulfite pulp...
Patange, Apurva; Boehm, Daniela; Giltrap, Michelle; Lu, Peng; Cullen, P J; Bourke, Paula
2018-08-01
Generation of wastewater is one of the main environmental sustainability issues across food sector industries. The constituents of food process effluents are often complex and require high energy and processing for regulatory compliance. Wastewater streams are the subject of microbiological and chemical criteria, and can have a significant eco-toxicological impact on the aquatic life. Thus, innovative treatment approaches are required to mitigate environmental impact in an energy efficient manner. Here, dielectric barrier discharge atmospheric cold plasma (ACP) was evaluated for control of key microbial indicators encountered in food industry effluent. This study also investigated the eco-toxicological impact of cold plasma treatment of the effluents using a range of aquatic bioassays. Continuous ACP treatment was applied to synthetic dairy and meat effluents. Microbial inactivation showed treatment time dependence with significant reduction in microbial populations within 120 s, and to undetectable levels after 300 s. Post treatment retention time emerged as critical control parameter which promoted ACP bacterial inactivation efficiency. Moreover, ACP treatment for 20 min achieved significant reduction (≥2 Log 10 ) in Bacillus megaterium endospores in wastewater effluent. Acute aquatic toxicity was assessed using two fish cell lines (PLHC-1 and RTG-2) and a crustacean model (Daphnia magna). Untreated effluents were toxic to the aquatic models, however, plasma treatment limited the toxic effects. Differing sensitivities were observed to ACP treated effluents across the different test bio-assays in the following order: PLHC-1 > RTG-2 ≥ D. magna; with greater sensitivity retained to plasma treated meat effluent than dairy effluent. The toxic effects were dependent on concentration and treatment time of the ACP treated effluent; with 30% cytotoxicity in D. magna and fish cells observed after 24 h of exposure to ACP treated effluent for concentrations up to 5%. The findings suggest the need to employ wider variety of aquatic organisms for better understanding and complete toxicity evaluation of long-term effects. The study demonstrates the potential to tailor ACP system parameters to control pertinent microbial targets (mono/poly-microbial, vegetative or spore form) found in complex and nutritious wastewater effluents whilst maintaining a safe eco-toxicity profile for aquatic species. Copyright © 2018 Elsevier B.V. All rights reserved.
Hemachandra, Chamini K; Pathiratne, Asoka
2016-09-01
Bioassays for cyto-genotoxicity assessments are generally not required in current textile industry effluent discharge management regulations. The present study applied in vivo plant and fish based toxicity tests viz. Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay and nuclear abnormalities tests in combination with physico-chemical analysis for assessing potential cytotoxic/genotoxic impacts of treated textile industry effluents reaching a major river (Kelani River) in Sri Lanka. Of the treated effluents tested from two textile industries, color in the Textile industry 1 effluents occasionally and color, biochemical oxygen demand and chemical oxygen demand in the Textile industry 2 effluents frequently exceeded the specified Sri Lankan tolerance limits for discharge of industrial effluents into inland surface waters. Exposure of A. cepa bulbs to 100% and 12.5% treated effluents from both industries resulted in statistically significant root growth retardation, mito-depression, and induction of chromosomal abnormalities in root meristematic cells in comparison to the dilution water in all cases demonstrating cyto-genotoxicity associated with the treated effluents. Exposure of O. niloticus to the 100% and 12.5% effluents, resulted in erythrocytic genetic damage as shown by elevated total comet scores and induction of nuclear abnormalities confirming the genotoxicity of the treated effluents even with 1:8 dilution. The results provide strong scientific evidence for the crucial necessity of incorporating cyto-genotoxicity impact assessment tools in textile industry effluent management regulations considering human health and ecological health of the receiving water course under chronic exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
Method and system for the removal of oxides of nitrogen and sulfur from combustion processes
Walsh, John V.
1987-12-15
A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.
Crawford, Charles G.; Wangsness, David J.
1987-01-01
A diel (24-hour) water-quality survey was done to investigate the sources of dry-weather waste inputs attributable to other than permitted point-source effluent and to evaluate the waste-load assimilative capacity of the Grand Calumet River, Lake County, Indiana, and Cook County, Illinois, in October 1984. Flow in the Grand Calumet River consists almost entirely of municipal and industrial effluents which comprised more than 90% of the 500 cu ft/sec flow observed at the confluence of the East Branch Grand Calumet River and the Indiana Harbor Ship Canal during the study. At the time of the study, virtually all of the flow in the West Branch Grand Calumet River was municipal effluent. Diel variations in streamflow of as much as 300 cu ft/sec were observed in the East Branch near the ship canal. The diel variation diminished at the upstream sampling sites in the East Branch. In the West Branch, the diel variation in flow was quite drastic; complete reversals of flow were observed at sampling stations near the ship canal. Average dissolved-oxygen concentrations at stations in the East Branch ranged from 5.7 to 8.2 mg/L and at stations in the West Branch from 0.8 to 6.6 mg/L. Concentrations of dissolved solids, suspended solids, biochemical-oxygen demand, ammonia, nitrite, nitrate, and phosphorus were substantially higher in the West Branch than in the East Branch. In the East Branch, only the Indiana Stream Pollution Control Board water-quality standards for total phosphorus and phenol were exceeded. In the West Branch, water-quality standards for total ammonia, chloride, cyanide, dissolved solids, fluoride, total phosphorus, mercury, and phenol were exceeded and dissolved oxygen was less than the minimum allowable. Three areas of significant differences between cumulative effluent and instream chemical-mass discharges were identified in the East Branch and one in the West Branch. The presence of unidentified waste inputs in the East Branch were indicated by differences in the chemical-mass discharges at three sites. Elevated suspended solids, biochemical-oxygen demand, and ammonia chemical-mass discharges at Columbia Avenue indicated the presence of a source of what may have been untreated sewage to the West Branch during the survey. (Author 's abstract)
40 CFR 35.918-3 - Requirements for discharge of effluents.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Requirements for discharge of effluents. 35.918-3 Section 35.918-3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act...
40 CFR 35.918-3 - Requirements for discharge of effluents.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Requirements for discharge of effluents. 35.918-3 Section 35.918-3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act...
40 CFR 35.918-3 - Requirements for discharge of effluents.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Requirements for discharge of effluents. 35.918-3 Section 35.918-3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act...
40 CFR 35.918-3 - Requirements for discharge of effluents.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Requirements for discharge of effluents. 35.918-3 Section 35.918-3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act...
Igwe, Ogbonnaya; Una, Chuku Okoro; Abu, Ezekiel; Adepehin, Ekundayo Joseph
2017-09-07
Assessment of the impacts of lead-zinc mining in Adudu-Imon metallogenic province was carried out. Reconnaissance and detailed field studies were done. Lithologies, stream sediments, farmland soils, mine tailings, artificial pond water, stream water, well water, and borehole water were collected and subjected to atomic absorption spectrometry (AAS) and X-ray fluorescence (XRF) analyses. Geochemical maps were generated using ArcGIS 10.1. Significant contamination with cadmium (Cd), iron (Fe), and lead (Pb) was recorded in the collected water samples. Virtually all collected soil samples were observed to be highly contaminated when compared with the European Union environmental policy standard. The discharge of mining effluents through farmlands to the Bakebu stream, which drains the area, further exposes the dwellers of this environment to the accumulation of potentially harmful metals (PHMs) in their bodies through the consumption of food crops, aquatic animals, and domestic uses of the water collected from the stream channels. The study revealed non-conformity of past mining operations in the Adudu-Imon province to existing mining laws in Nigeria. Inhabitants of this region should stop farming in the vicinity of the mines, fishing from the Bakebu stream channels should be discouraged, and domestic use of the water should be condemned, even as concerned government agencies put necessary mercenaries in place to ensure conformity of miners to standard mining regulations in Nigeria.
Metathesis process for preparing an alpha, omega-functionalized olefin
Burdett, Kenneth A.; Mokhtarzadeh, Morteza; Timmers, Francis J.
2010-10-12
A cross-metathesis process for preparing an .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, and an .alpha.-olefin having three or more carbon atoms, such as 1-decene. The process involves contacting in a first reaction zone an .alpha.-functionalized internal olefin, such as methyl oleate, and an .alpha.-olefinic monomer having three or more carbon atoms, such as 1-decene, with a first metathesis catalyst to prepare an effluent stream containing the .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, an unfunctionalized internal olefin, such as 9-octadecene, unconverted reactant olefins, and optionally, an .alpha.,.omega.-difunctionalized internal olefinic dimer, such as dimethyl 9-octadecen-1,18-dioate; separating said effluent streams; then contacting in a second reaction zone the unfunctionalized internal olefin with ethylene in the presence of a second metathesis catalyst to obtain a second product effluent containing the .alpha.-olefinic monomer having three or more carbon atoms; and cycling a portion of the .alpha.-olefinic monomer stream(s) to the first zone.
Evaluation of nutrient retention in vegetated filter strips using the SWAT model.
Elçi, Alper
2017-11-01
Nutrient fluxes in stream basins need to be controlled to achieve good water quality status. In stream basins with intensive agricultural activities, nutrients predominantly come from diffuse sources. Therefore, best management practices (BMPs) are increasingly implemented to reduce nutrient input to streams. The objective of this study is to evaluate the impact of vegetated filter strip (VFS) application as an agricultural BMP. For this purpose, SWAT is chosen, a semi-distributed water quality assessment model that works at the watershed scale, and applied on the Nif stream basin, a small-sized basin in Western Turkey. The model is calibrated with an automated procedure against measured monthly discharge data. Nutrient loads for each sub-basin are estimated considering basin-wide data on chemical fertilizer and manure usage, population data for septic tank effluents and information about the land cover. Nutrient loads for 19 sub-basins are predicted on an annual basis. Average total nitrogen and total phosphorus loads are estimated as 47.85 t/yr and 13.36 t/yr for the entire basin. Results show that VFS application in one sub-basin offers limited retention of nutrients and that a selection of 20-m filter width is most effective from a cost-benefit perspective.
Whole Effluent Toxicity (WET) describes the aggregate toxic effect of an aqueous sample (e.g., whole effluent wastewater discharge) as measured by an organism's response upon exposure to the sample (e.g., lethality, impaired growth, or reproduction).
Chun, Ting Sie; Malek, M A; Ismail, Amelia Ritahani
2014-09-20
Effluent discharge from septic tanks is affecting the environment in developing countries. The most challenging issue facing these countries is the cost of inadequate sanitation, which includes significant economic, social, and environmental burdens. Although most sanitation facilities are evaluated based on their immediate costs and benefits, their long-term performance should also be investigated. In this study, effluent quality-namely, the biological oxygen demand (BOD), chemical oxygen demand (COD), and total suspended solid (TSS)-was assessed using a biomimetics engineering approach. A novel immune network algorithm (INA) approach was applied to a septic sludge treatment plant (SSTP) for effluent-removal predictive modelling. The Matang SSTP in the city of Kuching, Sarawak, on the island of Borneo, was selected as a case study. Monthly effluent discharges from 2007 to 2011 were used for training, validating, and testing purposes using MATLAB 7.10. The results showed that the BOD effluent-discharge prediction was less than 50% of the specified standard after the 97(th) month of operation. The COD and TSS effluent removals were simulated at the 85(th) and the 121(st) months, respectively. The study proved that the proposed INA-based SSTP model could be used to achieve an effective SSTP assessment and management technique.
Water quality in the Sugar Creek basin, Bloomington and Normal, Illinois
Prugh, Byron J.
1978-01-01
Urban runoff and overflows from combined sewers affect water quantity and quality in Sugar Creek within the twin cities of Bloomington and Normal, Illinois. Water-quality data from five primary and eight secondary locations showed three basic types of responses to climatic and hydrologic stresses. Stream temperatures and concentrations of dissolved oxygen, ammonia nitrogen, total phosphorus, biochemical oxygen demand, and fecal bacteria showed seasonal variations. Specific conductivity, pH, chloride, and suspended solids concentrations varied more closely with stream discharges. Total organic carbon, total nitrogen, total phosphorus, biochemical oxygen demand, and fecal coliform and fecal streptococcal bacteria concentrations exhibited variations indicative of intial flushing action during storm runoff. Selected analyses for herbicides, insecticides, and other complex organic compounds in solution and in bed material showed that these constituents were coming from sources other than the municipal sanitary treatment plant effluent. Analyses for 10 common metals: arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc showed changes in concentrations below the municipal sanitary plant outfall. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Zinabu, E.; Kelderman, P.; van der Kwast, J.; Irvine, K.
2018-04-01
Kombolcha, a city in Ethiopia, exemplifies the challenges and problems of the sub-Saharan countries where industrialization is growing fast but monitoring resources are poor and information on pollution unknown. This study monitored metals Cr, Cu, Zn, and Pb concentrations in five factories' effluents, and in the effluent mixing zones of two rivers receiving discharges during the rainy seasons of 2013 and 2014. The results indicate that median concentrations of Cr in the tannery effluents and Zn in the steel processing effluents were as high as 26,600 and 155,750 µg/L, respectively, much exceeding both the USEPA and Ethiopian emission guidelines. Cu concentrations were low in all effluents. Pb concentrations were high in the tannery effluent, but did not exceed emission guidelines. As expected, no metal emission guidelines were exceeded for the brewery, textile and meat processing effluents. Median Cr and Zn concentrations in the Leyole river in the effluent mixing zones downstream of the tannery and steel processing plant increased by factors of 52 (2660 compared with 51 µg Cr/L) and 5 (520 compared with 110 µg Zn/L), respectively, compared with stations further upstream. This poses substantial ecological risks downstream. Comparison with emission guidelines indicates poor environmental management by industries and regulating institutions. Despite appropriate legislation, no clear measures have yet been taken to control industrial discharges, with apparent mismatch between environmental enforcement and investment policies. Effluent management, treatment technologies and operational capacity of environmental institutions were identified as key improvement areas to adopt progressive sustainable development.
Blytheville AFB, Arkansas. Water quality management survey. Final report 11-14 Apr 83
DOE Office of Scientific and Technical Information (OSTI.GOV)
New, G.R.; Gibson, D.P. Jr.
1983-05-01
The USAF OEHL conducted an on site water quality management survey at Blytheville AFB. Main areas of interest were (1) the wastewater treatment plant effluent fecal coliform count, and residual chlorine content, and (2) the stream sampling protocol. The drinking water plant, landfill and industrial shops were also included in the survey. Results of the survey indicated that the low residual chlorine content caused high fecal coliform counts in the wastewater effluent. The chemical parameters sampled in the stream monitoring program did not coincide with the requirements of the State of Arkansas and required modification. Recommendations were made to increasemore » the residual chlorine content of the wastewater effluent and to increase the mixing of the chlorine contact chamber. A list of the chemical parameters was included in the report for stream monitoring.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... applicable to the abrasive polishing and acid polishing waste water streams. Effluent characteristic Effluent... units (g/kkg of furnace pull) Fluoride 120.0 60.0 Lead 0.9 0.45 English units (lb/1,000 lb of furnace pull) Fluoride 0.12 0.06 Lead 0.0009 0.00045 [44 FR 50747, Aug. 29, 1979] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... applicable to the abrasive polishing and acid polishing waste water streams. Effluent characteristic Effluent... units (g/kkg of furnace pull) Fluoride 120.0 60.0 Lead 0.9 0.45 English units (lb/1,000 lb of furnace pull) Fluoride 0.12 0.06 Lead 0.0009 0.00045 [44 FR 50747, Aug. 29, 1979] ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Metallo-Organic Pesticide Chemicals Manufacturing Subcategory § 455.32 Effluent limitations guidelines representing the... controlled by this paragraph which may be discharged from the manufacture of metallo-organic active...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Metallo-Organic Pesticide Chemicals Manufacturing Subcategory § 455.32 Effluent limitations guidelines representing the... controlled by this paragraph which may be discharged from the manufacture of metallo-organic active...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Metallo-Organic Pesticide Chemicals Manufacturing Subcategory § 455.32 Effluent limitations guidelines representing the... controlled by this paragraph which may be discharged from the manufacture of metallo-organic active...
Bradley, Paul M; Barber, Larry B; Clark, Jimmy M; Duris, Joseph W; Foreman, William T; Furlong, Edward T; Givens, Carrie E; Hubbard, Laura E; Hutchinson, Kasey J; Journey, Celeste A; Keefe, Steffanie H; Kolpin, Dana W
2016-10-15
Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem. Published by Elsevier B.V.
Bradley, Paul M.; Barber, Larry B.; Clark, Jimmy M.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Givens, Carrie E.; Hubbard, Laura E.; Hutchinson, Kasey J.; Journey, Celeste A.; Keefe, Steffanie H.; Kolpin, Dana W.
2016-01-01
Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.
Manzano, Bárbara Cassu; Roberto, Matheus Mantuanelli; Hoshina, Márcia Miyuki; Menegário, Amauri Antônio; Marin-Morales, Maria Aparecida
2015-01-01
The problems that most affect the quality of the waters of rivers and lakes are associated with the discharges performed in these environments, mainly industrial and domestic effluents inappropriately treated or untreated. The comet assay is a sensitive tool and is recommended for studies of environmental biomonitoring, which aim to determine the genotoxicity potential of water pollutants. This study aimed to assess the genotoxic potential of the Ribeirão Tatu waters, region of Limeira, São Paulo (SP), by the comet assay with mammalian cells (hepatoma tissue culture (HTC)). Water samples were collected along the Ribeirão Tatu at three distinct periods: November 2008, February 2009 and August 2009, and five collection sites were established: P1, source of the stream; P2, site located downstream the urban perimeter of the municipality of Cordeirópolis and after receiving the pollution load of this city; P3, collection site located upstream the urban perimeter of the city of Limeira; P4, urban area of Limeira; and P5, rural area of Limeira, downstream the discharges of the city sewage. The results showed that for the November 2008 collection, there was no water sample-induced genotoxicity; for the February 2009 collection, the sites P1 and P2 were statistically significant in relation to the negative control (NC), and for the August 2009 collection, the site P5 was statistically significant. These results could be explained by the content of different metals during the different seasons that are under the influence of domestic, industrial and agricultural effluents and also due to the seasonality, since the water samples collected in the period of heavy rain (February 2009) presented a higher genotoxicity possibly due to the entrainment of contaminants into the bed of the stream promoted by the outflow of rainwaters. The comet assay showed to be a useful and sensitive tool in the evaluation of hydric resources impacted by pollutants of diverse origins, and a constant monitoring should be done in order to verify the influence of different factors (season, amount of contaminants) in the water quality.
Water Resources Data, Florida, Water Year 2003, Volume 1A: Northeast Florida Surface Water
,
2004-01-01
Water resources data for the 2003 water year in Florida consist of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 streams, peak stage and discharge for 36 streams; continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells; quality-of-water data for 133 surface-water sites and 308 wells. The data for northeast Florida include continuous or daily discharge for 138 streams, periodic discharge for 3 streams, continuous or daily stage for 61 streams, periodic stage for 0 streams; peak stage and discharge for 0 streams; continuous or daily elevations for 9 lakes, periodic elevations for 20 lakes; continuous ground water levels for 73 wells, periodic groundwater levels for 543 wells; quality-of-water data for 43 surface-water sites and 115 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State and Federal agencies in Florida.
Water Resources Data, Florida, Water Year 2003, Volume 1B: Northeast Florida Ground Water
George, H.G.; Nazarian, A.P.; Dickerson, S.M.
2004-01-01
Water resources data for the 2003 water year in Florida consist of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 streams, peak stage and discharge for 36 streams; continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells; quality-of-water data for 133 surface-water sites and 308 wells. The data for northeast Florida include continuous or daily discharge for 138 streams, periodic discharge for 3 streams, continuous or daily stage for 61 streams, periodic stage for 0 streams; peak stage and discharge for 0 streams; continuous or daily elevations for 9 lakes, periodic elevations for 20 lakes; continuous ground water levels for 73 wells, periodic groundwater levels for 543 wells; quality-of-water data for 43 surface-water sites and 115 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State and Federal agencies in Florida.
Code of Federal Regulations, 2010 CFR
2010-07-01
... all mechanical barking installations: There shall be no discharge of process wastewater pollutants... hydraulic barking installations: Subpart A Pollutant or pollutant property BPT effluent limitations Maximum...
Code of Federal Regulations, 2011 CFR
2011-07-01
... all mechanical barking installations: There shall be no discharge of process wastewater pollutants... hydraulic barking installations: Subpart A Pollutant or pollutant property BPT effluent limitations Maximum...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Wet Dust... available technology economically achievable: There shall be no discharge of waste water pollutants to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Wet Dust... available technology economically achievable: There shall be no discharge of waste water pollutants to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Normal Rice Milling... technology economically achievable: there shall be no discharge of process waste water pollutants to...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Normal Rice Milling... technology economically achievable: there shall be no discharge of process waste water pollutants to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Normal Rice Milling... technology economically achievable: there shall be no discharge of process waste water pollutants to...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Normal Rice Milling... technology economically achievable: there shall be no discharge of process waste water pollutants to...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Wet... the best available technology economically achievable: There shall be no discharge of waste water...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Wet... the best available technology economically achievable: There shall be no discharge of waste water...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Wet... the best available technology economically achievable: There shall be no discharge of waste water...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Metallo-Organic Pesticide... this paragraph which may be discharged from the manufacture of metallo-organic active ingredient: There...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Metallo-Organic Pesticide... this paragraph which may be discharged from the manufacture of metallo-organic active ingredient: There...
Halford, K.J.; Mayer, G.C.
2000-01-01
Ground water discharge and recharge frequently have been estimated with hydrograph-separation techniques, but the critical assumptions of the techniques have not been investigated. The critical assumptions are that the hydraulic characteristics of the contributing aquifer (recession index) can be estimated from stream-discharge records; that periods of exclusively ground water discharge can be reliably identified; and that stream-discharge peaks approximate the magnitude and tinting of recharge events. The first assumption was tested by estimating the recession index from st earn-discharge hydrographs, ground water hydrographs, and hydraulic diffusivity estimates from aquifer tests in basins throughout the eastern United States and Montana. The recession index frequently could not be estimated reliably from stream-discharge records alone because many of the estimates of the recession index were greater than 1000 days. The ratio of stream discharge during baseflow periods was two to 36 times greater than the maximum expected range of ground water discharge at 12 of the 13 field sites. The identification of the ground water component of stream-discharge records was ambiguous because drainage from bank-storage, wetlands, surface water bodies, soils, and snowpacks frequently exceeded ground water discharge and also decreased exponentially during recession periods. The timing and magnitude of recharge events could not be ascertained from stream-discharge records at any of the sites investigated because recharge events were not directly correlated with stream peaks. When used alone, the recession-curve-displacement method and other hydrograph-separation techniques are poor tools for estimating ground water discharge or recharge because the major assumptions of the methods are commonly and grossly violated. Multiple, alternative methods of estimating ground water discharge and recharge should be used because of the uncertainty associated with any one technique.
Code of Federal Regulations, 2010 CFR
2010-07-01
... effluent limitations representing the application of BPT: There shall be no discharge of process waste water pollutants to navigable waters. (b) Process waste pollutants in the overflow may be discharged to... waste water from a facility designed, constructed and operated to contain all process generated waste...
78 FR 4170 - License Amendment Request for Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-18
... clay layer. Since the mean concentration of the effluent discharge area of the sanitary lagoon is well... authorize the release of the licensee's sanitary lagoon and the surrounding effluent discharge area for... the west side of the site and comprised approximately 28 acres. The licensee's sanitary lagoon was...
Code of Federal Regulations, 2014 CFR
2014-07-01
... operations not employing wet air emissions control scrubbers there shall be no discharge of process generated waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged...
Code of Federal Regulations, 2013 CFR
2013-07-01
... operations not employing wet air emissions control scrubbers there shall be no discharge of process generated waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged...
Code of Federal Regulations, 2012 CFR
2012-07-01
... operations not employing wet air emissions control scrubbers there shall be no discharge of process generated waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged...
Code of Federal Regulations, 2011 CFR
2011-07-01
... practicable control technology currently available (BPT): there shall be no discharge of process waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged from that impoundment...
Code of Federal Regulations, 2011 CFR
2011-07-01
... practicable control technology currently available (BPT): there shall be no discharge of process waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged from that impoundment...
Code of Federal Regulations, 2011 CFR
2011-07-01
... practicable control technology currently available (BPT): there shall be no discharge of process waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged from that impoundment...
The Design of Exhaust Systems and Discharge Stacks [With Comments].
ERIC Educational Resources Information Center
Clarke, John H.
1963-01-01
An important part of ventilating for safety consists of providing the necessary exhaust systems to remove building contaminants safely. Further, the effluent must be cleaned within practical limits by means of filters, collectors, and scrubbers. Where recirculation is not safe or feasible, the effluent must be discharged to the outside in a manner…
Code of Federal Regulations, 2010 CFR
2010-07-01
... best available technology economically achievable (BAT): There shall be no discharge of process... degree of effluent reduction attainable by the application of the best available technology economically...) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Dry Process Hardboard...
Code of Federal Regulations, 2010 CFR
2010-07-01
... application of the best practicable control technology (BPT): There shall be no discharge of process... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Dry Process...
Code of Federal Regulations, 2011 CFR
2011-07-01
... biocides are used must achieve the following effluent limitations representing the degree of effluent... shall be subject to concentration limitations. Concentration limitations are only applicable to non-continuous dischargers. Permittees not using chlorophenolic-containing biocides must certify to the permit...
Code of Federal Regulations, 2011 CFR
2011-07-01
... biocides are used must achieve the following effluent limitations representing the degree of effluent... shall be subject to concentration limitations. Concentration limitations are only applicable to non-continuous dischargers. Permittees not using chlorophenolic-containing biocides must certify to the permit...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Crystalline Cane Sugar Refining Subcategory § 409.22 Effluent limitations guidelines representing the degree of... crystalline cane sugar refinery discharging both barometric condenser cooling water and other process waters...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Puerto Rican Raw Cane Sugar Processing Subcategory § 409.82 Effluent limitations guidelines representing the degree...): (a) Any cane sugar factory continuously discharging both barometric condenser cooling water and other...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Louisiana Raw Cane Sugar Processing Subcategory § 409.42 Effluent limitations guidelines representing the degree of... cane sugar factory continuously discharging both barometric condenser cooling water and other process...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Crystalline Cane Sugar Refining Subcategory § 409.22 Effluent limitations guidelines representing the degree of... crystalline cane sugar refinery discharging both barometric condenser cooling water and other process waters...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Puerto Rican Raw Cane Sugar Processing Subcategory § 409.82 Effluent limitations guidelines representing the degree...): (a) Any cane sugar factory continuously discharging both barometric condenser cooling water and other...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Louisiana Raw Cane Sugar Processing Subcategory § 409.42 Effluent limitations guidelines representing the degree of... cane sugar factory continuously discharging both barometric condenser cooling water and other process...
Code of Federal Regulations, 2010 CFR
2010-07-01
... chlorophenolic-containing biocides are used must achieve the following effluent limitations representing the... applicable to non-continuous dischargers. Permittees not using chlorophenolic-containing biocides must certify to the permit-issuing authority that they are not using these biocides: Subpart J [BAT effluent...
Code of Federal Regulations, 2010 CFR
2010-07-01
... biocides are used must achieve the following effluent limitations representing the degree of effluent...-continuous dischargers. Permittees not using chlorophenolic-containing biocides must certify to the permit-issuing authority that they are not using these biocides: Subpart F Pollutant or pollutant property BAT...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Puerto Rican Raw Cane Sugar Processing Subcategory § 409.82 Effluent limitations guidelines representing the degree...): (a) Any cane sugar factory continuously discharging both barometric condenser cooling water and other...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Puerto Rican Raw Cane Sugar Processing Subcategory § 409.82 Effluent limitations guidelines representing the degree...): (a) Any cane sugar factory continuously discharging both barometric condenser cooling water and other...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Puerto Rican Raw Cane Sugar Processing Subcategory § 409.82 Effluent limitations guidelines representing the degree...): (a) Any cane sugar factory continuously discharging both barometric condenser cooling water and other...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Crystalline Cane Sugar Refining Subcategory § 409.22 Effluent limitations guidelines representing the degree of... crystalline cane sugar refinery discharging both barometric condenser cooling water and other process waters...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Crystalline Cane Sugar Refining Subcategory § 409.22 Effluent limitations guidelines representing the degree of... crystalline cane sugar refinery discharging both barometric condenser cooling water and other process waters...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Crystalline Cane Sugar Refining Subcategory § 409.22 Effluent limitations guidelines representing the degree of... crystalline cane sugar refinery discharging both barometric condenser cooling water and other process waters...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Louisiana Raw Cane Sugar Processing Subcategory § 409.42 Effluent limitations guidelines representing the degree of... cane sugar factory continuously discharging both barometric condenser cooling water and other process...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Louisiana Raw Cane Sugar Processing Subcategory § 409.42 Effluent limitations guidelines representing the degree of... cane sugar factory continuously discharging both barometric condenser cooling water and other process...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Louisiana Raw Cane Sugar Processing Subcategory § 409.42 Effluent limitations guidelines representing the degree of... cane sugar factory continuously discharging both barometric condenser cooling water and other process...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... representing the degree of effluent reduction attainable by the application of the best available technology... best available technology economically achievable (BAT). Non-continuous dischargers shall not be...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.42 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel Process Subcategory § 458.32 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.22 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.42 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel Process Subcategory § 458.32 Effluent limitations guidelines representing the degree...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.22 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.22 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.22 Effluent limitations guidelines representing the degree...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel Process Subcategory § 458.32 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel Process Subcategory § 458.32 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.42 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GUM AND WOOD CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Wood Rosin, Turpentine and Pine Oil Subcategory § 454.32 Effluent limitations and guidelines... properties, controlled by this paragraph, which may be discharged from the manufacture of wood rosin...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GUM AND WOOD CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Wood Rosin, Turpentine and Pine Oil Subcategory § 454.32 Effluent limitations and guidelines... properties, controlled by this paragraph, which may be discharged from the manufacture of wood rosin...
Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent.
Mason, Sherri A; Garneau, Danielle; Sutton, Rebecca; Chu, Yvonne; Ehmann, Karyn; Barnes, Jason; Fink, Parker; Papazissimos, Daniel; Rogers, Darrin L
2016-11-01
Municipal wastewater effluent has been proposed as one pathway for microplastics to enter the aquatic environment. Here we present a broad study of municipal wastewater treatment plant effluent as a pathway for microplastic pollution to enter receiving waters. A total of 90 samples were analyzed from 17 different facilities across the United States. Averaging all facilities and sampling dates, 0.05 ± 0.024 microparticles were found per liter of effluent. Though a small value on a per liter basis, even minor municipal wastewater treatment facilities process millions of liters of wastewater each day, yielding daily discharges that ranged from ∼50,000 up to nearly 15 million particles. Averaging across the 17 facilities tested, our results indicate that wastewater treatment facilities are releasing over 4 million microparticles per facility per day. Fibers and fragments were found to be the most common type of particle within the effluent; however, some fibers may be derived from non-plastic sources. Considerable inter- and intra-facility variation in discharge concentrations, as well as the relative proportions of particle types, was observed. Statistical analysis suggested facilities serving larger populations discharged more particles. Results did not suggest tertiary filtration treatments were an effective means of reducing discharge. Assuming that fragments and pellets found in the effluent arise from the 'microbeads' found in many cosmetics and personal care products, it is estimated that between 3 and 23 billion (with an average of 13 billion) of these microplastic particles are being released into US waterways every day via municipal wastewater. This estimate can be used to evaluate the contribution of microbeads to microplastic pollution relative to other sources (e.g., plastic litter and debris) and pathways (e.g., stormwater) of discharge. Published by Elsevier Ltd.
The suitability of using dissolved gases to determine groundwater discharge to high gradient streams
Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Mathew; Clark, Jordan F.
2018-01-01
Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.
The suitability of using dissolved gases to determine groundwater discharge to high gradient streams
NASA Astrophysics Data System (ADS)
Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Matthew; Clark, Jordan F.
2018-02-01
Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, Alex D.; McCabe, Daniel J.
The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to themore » LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate, along with entrained, volatile, and semi-volatile metals, such as Hg, As, and Se. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate that get recycled to the melter, and is a key objective of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of earlier tasks was to formulate and prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations and use it in evaporator testing to predict the composition of the effluents from the Effluent Management Facility (EMF) evaporator to aid in planning for their disposition. The objective of this task was to test immobilization options for this evaporator bottoms aqueous stream. This document describes the method used to formulate a simulant of this EMF evaporator bottoms stream, immobilize it, and determine if the immobilized waste forms meet disposal criteria.« less
Development of Software Sensors for Determining Total Phosphorus and Total Nitrogen in Waters
Lee, Eunhyoung; Han, Sanghoon; Kim, Hyunook
2013-01-01
Total nitrogen (TN) and total phosphorus (TP) concentrations are important parameters to assess the quality of water bodies and are used as criteria to regulate the water quality of the effluent from a wastewater treatment plant (WWTP) in Korea. Therefore, continuous monitoring of TN and TP using in situ instruments is conducted nationwide in Korea. However, most in situ instruments in the market are expensive and require a time-consuming sample pretreatment step, which hinders the widespread use of in situ TN and TP monitoring. In this study, therefore, software sensors based on multiple-regression with a few easily in situ measurable water quality parameters were applied to estimate the TN and TP concentrations in a stream, a lake, combined sewer overflows (CSOs), and WWTP effluent. In general, the developed software sensors predicted TN and TP concentrations of the WWTP effluent and CSOs reasonably well. However, they showed relatively lower predictability for TN and TP concentrations of stream and lake waters, possibly because the water quality of stream and lake waters is more variable than that of WWTP effluent or CSOs. PMID:23307350
NEUTRONIC REACTOR OPERATIONAL METHOD AND CORE SYSTEM
Winters, C.E.; Graham, C.B.; Culver, J.S.; Wilson, R.H.
1960-07-19
Homogeneous neutronic reactor systems are described wherein an aqueous fuel solution is continuously circulated through a spherical core tank. The pumped fuel solution-is injected tangentially into the hollow spherical interior, thereby maintaining vigorous rotation of the solution within the tank in the form of a vortex; gaseous radiolytic decomposition products concentrate within the axial vortex cavity. The evolved gas is continuously discharged through a gas- outlet port registering with an extremity of the vortex cavity. and the solution stream is discharged through an annular liquid outlet port concentrically encircling the gas outlet by virtue of which the vortex and its cavity are maintained precisely axially aligned with the gas outlet. A primary heat exchanger extracts useful heat from the hot effluent fuel solution before its recirculation into the core tank. Hollow cylinders and other alternative core- tank configurations defining geometric volumes of revolution about a principal axis are also covered. AEC's Homogeneous Reactor Experiment No. 1 is a preferred embodiment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Insulation Fiberglass... limitations establish the quantity or quality of pollutants or pollutant properties which may be discharged by...
Code of Federal Regulations, 2011 CFR
2011-07-01
... in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium... apply to non-continuous dischargers: Subpart E [Supplemental BAT effluent limitations] Pollutant or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium... apply to non-continuous dischargers: Subpart E [Supplemental BAT effluent limitations] Pollutant or...
Haag, K.H.; Porter, S.D.
1995-01-01
The U.S. Geological Survey investigated the water quality of the Kentucky River Basin in Kentucky as part of the National Water Quality Assessment program. Data collected during 1987-90 were used to describe the spatial and temporal variability of nutrients, suspended sediment, and pesticides in streams. Concentrations of phosphorus were signifi- cantly correlated with urban and agricultural land use. The high phosphorus content of Bluegrass Region soils was an important source of phosphorus in streams. At many sites in urban areas, all of the stream nitrogen load was attributable to wastewater- treatment-plant effluent. Tributary streams affected by agricultural sources of nutrients contained higher densities of phytoplankton than streams that drained forested areas. Data indicate that a consid- erable percentage of total nitrogen was transported as algal biomass during periods of low discharge. Average suspended-sediment concentrations for the study period were positively correlated with dis- charge. There was a downward trend in suspended- sediment concentrations downstream in the Kentucky River main stem during the study. Although a large amount of suspended sediment originates in the Eastern Coal Field Region, contributions of suspended sediment from the Red River and other tributary streams of the Knobs Region also are important. The most frequently detected herbicides in water samples were atrazine, 2,4-D, alachlor, metolachlor, and dicamba. Diazinon, malathion, and parathion were the most frequently detected organo- phosphate insecticides in water samples. Detectable concentrations of aldrin, chlordane, DDT, DDE, dieldrin, endrin, endosulfan, heptachlor, heptachlor epoxide, and lindane were found in streambed- sediment samples.
Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process
Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein
2012-01-01
Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater. PMID:22768233
Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.
Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein
2012-01-01
Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5) removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.
Predicting the physical effects of relocating Boston's sewage outfall
Signell, R.P.; Jenter, H.L.; Blumberg, A.F.
2000-01-01
Boston is scheduled to cease discharge of sewage effluent in Boston Harbor in Spring 2000 and begin discharge at a site 14 km offshore in Massachusetts Bay in a water depth of about 30 m. The effects of this outfall relocation on effluent dilution, salinity and circulation are predicted with a three-dimensional hydrodynamic model. The simulations predict that the new bay outfall will greatly decrease effluent concentrations in Boston Harbor (relative to the harbour outfall) and will not significantly change mean effluent concentrations over most of Massachusetts Bay. With the harbour outfall, previous observations and these simulations show that effluent concentrations exceed 0??5% throughout the harbour, with a harbour wide average of 1-2%. With the bay outfall, effluent concentrations exceed 0??5% only within a few km of the new outfall, and harbour concentrations drop to 0??1-0??2%, a 10-fold reduction. During unstratified winter conditions, the local increase in effluent concentration at the bay outfall site is predicted to exist throughout the water column. During stratified summer conditions, however, effluent released at the sea bed rises and is trapped beneath the pycnocline. The local increase in effluent concentration is limited to the lower layer, and as a result, surface layer effluent concentrations in the vicinity of the new outfall site are predicted to decrease (relative to the harbour outfall) during the summer. Slight changes are predicted for the salinity and circulation fields. Removing the fresh water associated with the effluent discharge in Boston Harbor is predicted to increase the mean salinity of the harbour by 0??5 and decrease the mean salinity by 0??10-0??15 within 2-3 km of the outfall. Relative to the existing mean flow, the buoyant discharge at the new outfall is predicted to generate density-driven mean currents of 2-4 cm s-1 that spiral out in a clockwise motion at the surface during winter and at the pycnocline (15-20 m depth) during summer. Compensating counterclockwise currents are predicted to spiral in toward the source at the bottom. Because the scale of the residual current structure induced by the new discharge is comparable to or smaller than typical subtidal water parcel excursions, Lagrangian trajectories will not follow the Eulerian residual flow. Thus, mean currents measured from moorings within 5 km of the bay outfall site will be more useful for model comparison than to indicate net transport pathways.
Zielinski, Robert A.; Otton, James K.; Schumann, R. Randall; Wirt, Laurie
2008-01-01
Geochemical sampling of 82 stream waters and 87 stream sediments within mountainous areas immediately west of Denver, Colorado, was conducted by the U.S. Geological Survey in October 1994. The primary purpose was to evaluate regionally the effects of geology and past mining on the concentration and distribution of uranium. The study area contains uranium- and thorium-rich bedrock, numerous noneconomic occurrences of uranium minerals, and several uranium deposits of variable size and production history. During the sampling period, local streams had low discharge and were more susceptible to uranium-bearing acid drainage originating from historical mines of base- and precious-metal sulfides. Results indicated that the spatial distribution of Precambrian granites and metamorphic rocks strongly influences the concentration of uranium in stream sediments. Within-stream transport increases the dispersion of uranium- and thorium rich mineral grains derived primarily from granitic source rocks. Dissolved uranium occurs predominantly as uranyl carbonate complexes, and concentrations ranged from less than 1 to 65 micrograms per liter. Most values were less than 5 micrograms per liter, which is less than the current drinking water standard of 30 micrograms per liter and much less than locally applied aquatic-life toxicity standards of several hundred micrograms per liter. In local streams that are affected by uranium-bearing acid mine drainage, dissolved uranium is moderated by dilution and sorptive uptake by stream sediments. Sorbents include mineral alteration products and chemical precipitates of iron- and aluminum-oxyhydroxides, which form where acid drainage enters streams and is neutralized. Suspended uranium is relatively abundant in some stream segments affected by nearby acid drainage, which likely represents mobilization of these chemical precipitates. The 234U/238U activity ratio of acid drainage (0.95-1.0) is distinct from that of local surface waters (more than 1.05), and this distinctive isotopic composition may be preserved in iron-oxyhydroxide precipitates of acid drainage origin. The study area includes a particularly large vein-type uranium deposit (Schwartzwalder mine) with past uranium production. Stream water and sediment collected downstream from the mine's surface operations have locally anomalous concentrations of uranium. Fine-grained sediments downstream from the mine contain rare minute particles (10-20 micrometers) of uraninite, which is unstable in a stream environment and thus probably of recent origin related to mining. Additional rare particles of very fine grained (less than 5 micrometer) barite likely entered the stream as discharge from settling ponds in which barite precipitation was formerly used to scavenge dissolved radium from mine effluent.
Loper, Connie A.; Crawford, J. Kent; Otto, Kim L.; Manning, Rhonda L.; Meyer, Michael T.; Furlong, Edward T.
2007-01-01
This report presents environmental and quality-control data from analyses of 15 pharmaceutical and 31 antibiotic compounds in water samples from streams and wells in south-central Pennsylvania. The analyses are part of a study by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Environmental Protection (PADEP) to define concentrations of selected emerging contaminants in streams and well water in Pennsylvania. Sampling was conducted at 11 stream sites and at 6 wells in 9 counties of south-central Pennsylvania. Five of the streams received municipal wastewater and 6 of the streams received runoff from agricultural areas dominated by animal-feeding operations. For all 11 streams, samples were collected at locations upstream and downstream of the municipal effluents or animal-feeding operations. All six wells were in agricultural settings. A total of 120 environmental samples and 21 quality-control samples were analyzed for the study. Samples were collected at each site in March/April, May, July, and September 2006 to obtain information on changes in concentration that could be related to seasonal use of compounds.For streams, 13 pharmaceuticals and 11 antibiotics were detected at least 1 time. Detections included analytical results that were estimated or above the minimum reporting limits. Seventy-eight percent of all detections were analyzed in samples collected downstream from municipal-wastewater effluents. For streams receiving wastewater effluents, the pharmaceuticals caffeine and para-xanthine (a degradation product of caffeine) had the greatest concentrations, 4.75 μg/L (micrograms per liter) and 0.853 μg/L, respectively. Other pharmaceuticals and their respective maximum concentrations were carbamazepine (0.516 μg/L) and ibuprofen (0.277 μg/L). For streams receiving wastewater effluents, the antibiotic azithromycin had the greatest concentration (1.65 μg/L), followed by sulfamethoxazole (1.34 μg/L), ofloxacin (0.329 μg/L), and trimethoprim (0.256 μg/L).For streams receiving runoff from animal-feeding operations, the only pharmaceuticals detected were acetaminophen, caffeine, cotinine, diphenhydramine, and carbamazepine. The maximum concentration for pharmaceuticals was 0.053 μg/L. Three streams receiving runoff from animal-feeding operations had detections of one or more antibiotic compound--oxytetracycline, sulfadimethoxine, sulfamethoxazole, and tylosin. The maximum concentration for antibiotics was 0.157 μg/L. The average number of compounds (pharmaceuticals and antibiotics) detected in sites downstream from animal-feeding operations was three. The average number of compounds detected downstream from municipal-wastewater effluents was 13.For wells used to supply livestock, four compounds were detected--two pharmaceuticals (cotinine and diphenhydramine) and two antibiotics (tylosin and sulfamethoxazole). There were five detections in all the well samples. The maximum concentration detected in well water was for cotinine, estimated to be 0.024 μg/L.Seasonal occurrence of pharmaceutical and antibiotic compounds in stream water varied by compound and site type. At four stream sites, the same compounds were detected in all four seasonal samples. At other sites, pharmaceutical or antibiotic compounds were detected only one time in seasonal samples. Winter samples collected in streams receiving municipalwastewater effluent had the greatest number of compounds detected (21). Research analytical methods were used to determine concentrations for pharmaceuticals and antibiotics. To assist in evaluating the quality of the analyses, detailed information is presented on laboratory methodology and results from qualitycontrol samples. Quality-control data include results for nine blanks, nine duplicate environmental sample pairs, and three laboratory-spiked environmental samples as well as the recoveries of compounds in laboratory surrogates and laboratory reagent spikes.
Walker, David B; Paretti, Nicholas V; Cordy, Gail; Gross, Timothy S; Zaugg, Steven D; Furlong, Edward T; Kolpin, Dana W; Matter, William J; Gwinn, Jessica; McIntosh, Dennis
2009-11-08
In arid regions of the southwestern United States, municipal wastewater treatment plants commonly discharge treated effluent directly into streams that would otherwise be dry most of the year. A better understanding is needed of how effluent-dependent waters (EDWs) differ from more natural aquatic ecosystems and the ecological effect of low levels of environmentally persistent organic wastewater compounds (OWCs) with distance from the pollutant source. In a controlled experiment, we found 26 compounds common to municipal effluent in treatment raceways all at concentrations <1.0 microg/L. Male bonytail chub (Gila elegans) in tanks containing municipal effluent had significantly lower levels of 11-ketotestosterone (p=0.021) yet higher levels of 17beta-estradiol (p=0.002) and vitellogenin (p=0.036) compared to control male fish. Female bonytail chub in treatment tanks had significantly lower concentrations of 17beta-estradiol than control females (p=0.001). The normally inverse relationship between primary male and female sex hormones, expected in un-impaired fish, was greatly decreased in treatment (r=0.00) versus control (r=-0.66) female fish. We found a similar, but not as significant, trend between treatment (r=-0.45) and control (r=-0.82) male fish. Measures of fish condition showed no significant differences between male or female fish housed in effluent or clean water. Inter-sex condition did not occur and testicular and ovarian cells appeared normal for the respective developmental stage and we observed no morphological alteration in fish. The population-level impacts of these findings are uncertain. Studies examining the long-term, generational and behavioral effects to aquatic organisms chronically exposed to low levels of OWC mixtures are needed.
Walker, D.B.; Paretti, N.V.; Cordy, G.; Gross, T.S.; Zaugg, S.D.; Furlong, E.T.; Kolpin, D.W.; Matter, W.J.; Gwinn, J.; McIntosh, D.
2009-01-01
In arid regions of the southwestern United States, municipal wastewater treatment plants commonly discharge treated effluent directly into streams that would otherwise be dry most of the year. A better understanding is needed of how effluent-dependent waters (EDWs) differ from more natural aquatic ecosystems and the ecological effect of low levels of environmentally persistent organic wastewater compounds (OWCs) with distance from the pollutant source. In a controlled experiment, we found 26 compounds common to municipal effluent in treatment raceways all at concentrations <1.0 ??g/L. Male bonytail chub (Gila elegans) in tanks containing municipal effluent had significantly lower levels of 11-ketotestosterone (p = 0.021) yet higher levels of 17??-estradiol (p = 0.002) and vitellogenin (p = 0.036) compared to control male fish. Female bonytail chub in treatment tanks had significantly lower concentrations of 17??-estradiol than control females (p = 0.001). The normally inverse relationship between primary male and female sex hormones, expected in un-impaired fish, was greatly decreased in treatment (r = 0.00) versus control (r = -0.66) female fish. We found a similar, but not as significant, trend between treatment (r = -0.45) and control (r = -0.82) male fish. Measures of fish condition showed no significant differences between male or female fish housed in effluent or clean water. Inter-sex condition did not occur and testicular and ovarian cells appeared normal for the respective developmental stage and we observed no morphological alteration in fish. The population-level impacts of these findings are uncertain. Studies examining the long-term, generational and behavioral effects to aquatic organisms chronically exposed to low levels of OWC mixtures are needed. ?? 2009 Elsevier B.V.
Walker, David B.; Paretti, Nicholas V.; Cordy, Gail; Gross, Timothy S.; Zaugg, Steven D.; Furlong, Edward T.; Kolpin, Dana W.; Matter, William J.; Gwinn, Jessica; McIntosh, Dennis
2009-01-01
In arid regions of the southwestern United States, municipal wastewater treatment plants commonly discharge treated effluent directly into streams that would otherwise be dry most of the year. A better understanding is needed of how effluent-dependent waters (EDWs) differ from more natural aquatic ecosystems and the ecological effect of low levels of environmentally persistent organic wastewater compounds (OWCs) with distance from the pollutant source. In a controlled experiment, we found 26 compounds common to municipal effluent in treatment raceways all at concentrations <1.0 μg/L. Male bonytail chub (Gila elegans) in tanks containing municipal effluent had significantly lower levels of 11-ketotestosterone (p = 0.021) yet higher levels of 17β-estradiol (p = 0.002) and vitellogenin (p = 0.036) compared to control male fish. Female bonytail chub in treatment tanks had significantly lower concentrations of 17β-estradiol than control females (p = 0.001). The normally inverse relationship between primary male and female sex hormones, expected in un-impaired fish, was greatly decreased in treatment (r = 0.00) versus control (r = −0.66) female fish. We found a similar, but not as significant, trend between treatment (r = −0.45) and control (r = −0.82) male fish. Measures of fish condition showed no significant differences between male or female fish housed in effluent or clean water. Inter-sex condition did not occur and testicular and ovarian cells appeared normal for the respective developmental stage and we observed no morphological alteration in fish. The population-level impacts of these findings are uncertain. Studies examining the long-term, generational and behavioral effects to aquatic organisms chronically exposed to low levels of OWC mixtures are needed.
Stream Discharge Measurements From Cableways
Nolan, K. Michael; Sultz, Lucky
2000-01-01
Cableways have been used for decades as a platform for making stream discharge measurements. Use of cableways eliminates the need to expose personnel to hazards associated with working from highway bridges. In addition, cableways allow sites to be selected that offer the best possible hydraulic characteristics for measuring stream discharge. This training presentation describes methods currently used by the U.S. Geological Survey to make stream discharge measurements from cableways.
Schreffler, Curtis L.; Galeone, Daniel G.; Veneziale, John M.; Olson, Leif E.; O'Brien, David L.
2005-01-01
An increasing number of communities in Pennsylvania are implementing land-treatment systems to dispose of treated sewage effluent. Disposal of treated effluent by spraying onto the land surface, instead of discharging to streams, may recharge the ground-water system and reduce degradation of stream-water quality. The U.S. Geological Survey (USGS), in cooperation with the Pennsylvania Department of Environmental Protection (PaDEP) and the Chester County Water Resources Authority (CCWRA) and with assistance from the New Garden Township Sewer Authority, conducted a study from October 1997 through December 2001 to assess the effects of spray irrigation of secondary treated sewage effluent on the water quantity and quality and the fate and transport of nitrogen in a 38-acre watershed in New Garden Township, Chester County, Pa. On an annual basis, the spray irrigation increased the recharge to the watershed. Compared to the annual recharge determined for the Red Clay Creek watershed above the USGS streamflow-gaging station (01479820) near Kennett Square, Pa., the spray irrigation increased annual recharge in the study watershed by approximately 8.8 in. (inches) in 2000 and 4.3 in. in 2001. For 2000 and 2001, the spray irrigation increased recharge 65-70 percent more than the recharge estimates determined for the Red Clay Creek watershed. The increased recharge was equal to 30-39 percent of the applied effluent. The spray-irrigated effluent increased base flow in the watershed. The magnitude of the increase appeared to be related to the time of year when the application rates increased. During the late fall through winter and into the early spring period, when application rates were low, base flow increased by approximately 50 percent over the period prior to effluent application. During the early spring through summer to the late fall period, when application rates were high, base flow increased by approximately 200 percent over the period prior to effluent application. The spray-irrigated effluent affected the ground-water quality of the shallow aquifer differently on the hilltop and hillside topographic settings of the watershed where spray irrigation was being applied (application area). Concentrations of nitrate-nitrogen (nitrate N) and chloride (Cl) in the effluent were higher than concentrations of these constituents in shallow ground water from wells on the hilltop and hillside prior to start of spray irrigation. In water from wells on the hilltop, concentrations of nitrate N and Cl increased in samples collected during effluent application compared to samples collected prior to effluent application. Also, increasing trends in concentration of these two constituents were evident through the study period. In water from wells on the hillside, which were on the eastern part of the application area, nitrate N and Cl concentrations increased in samples collected during effluent application compared to samples collected prior to effluent application. Also, increasing trends in concentration of these two constituents were evident through the study period. However, on the hillside of the western application area, the ground-water quality was not affected by the spray-irrigated effluent because of the greater thickness of unconsolidated material and higher amounts of clay present in those unconsolidated sands. Although nitrate N concentrations increased in water from hilltop and hillside wells in the application area, the nitrate N concentrations were below the effluent concentration. A combination of plant uptake, biological activity, and denitrification may be the processes accounting for the lower nitrate N concentrations in shallow ground water compared to the spray-irrigated effluent. Cl concentrations in water from hilltop western application area well Ch-5173 increased during the study period but were an order of magnitude less than the input effluent concentration. Cl concentrations in shallow ground water in the e
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORY Essential Oils Subcategory § 454.52 Effluent limitations and guidelines representing the degree of... this paragraph, which may be discharged from the manufacture of essential oils by a point source...
Code of Federal Regulations, 2014 CFR
2014-07-01
... POINT SOURCE CATEGORY Essential Oils Subcategory § 454.52 Effluent limitations and guidelines... properties, controlled by this paragraph, which may be discharged from the manufacture of essential oils by a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... POINT SOURCE CATEGORY Essential Oils Subcategory § 454.52 Effluent limitations and guidelines... properties, controlled by this paragraph, which may be discharged from the manufacture of essential oils by a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... POINT SOURCE CATEGORY Essential Oils Subcategory § 454.52 Effluent limitations and guidelines... properties, controlled by this paragraph, which may be discharged from the manufacture of essential oils by a...
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORY Essential Oils Subcategory § 454.52 Effluent limitations and guidelines representing the degree of... this paragraph, which may be discharged from the manufacture of essential oils by a point source...
Pollution of Nigerian Aquatic Ecosystems by Industrial Effluents: Effects on Fish Productivity
NASA Astrophysics Data System (ADS)
Nwagwu, S. N.; Kuyoro, E. O.; Agboola, D. M.; Salau, K. S.; Kuyoro, T. O.
2016-02-01
Nigeria is uniquely endowed with vast water resources. The near-shore, estuaries, rivers, lakes and pond all taken together, offer tremendous opportunities for fish production. Globally, water bodies are primary means for disposal of waste especially the effluents from industrial, municipal, sewage and agricultural practices near the water body. Studies carried out in most cities in Nigeria has shown that industrial effluent is one of the main sources of water pollution in Nigeria and less than 10% of industries in Nigeria treat their effluents before discharging them into the water bodies. This effluent can alter the physical, chemical and biological nature of the receiving water body resulting in the death of the inhabiting organisms including fish. Untreated industrial waste discharged into water bodies have resulted in eutrophication of aquatic ecosystem as evidence by substantial algal bloom leading to dissolve oxygen depletion and eventually massive mortality of fish and other organisms. Industries like textile producing factory, paper manufacturing plants, oil refinery, brewery and fermentation factory and metal producing industries discharge their wastes into the aquatic ecosystem. These industrial wastes contain pollutants like acids, heavy metals, oil, cyanide, organic chemicals, pesticides, polychlorinated biphenyls, dioxins etc. Some of these pollutants are carcinogenic, mutagenic and teratogenic while some are poisonous depending on the level of exposure and intake by aquatic organisms and man. These pollutants affect the biological growth and reproduction of fishes in the aquatic ecosystem thereby reducing the amount of captured fishes. Fish and other aquatic lives face total extinction due to destruction of aquatic lives and natural habitats by pollution of water bodies. Effluents and wastes produced by industries should be minimised by using low and non-waste technologies; and effluents should be properly treated before they are discharged into aquatic environment.
Code of Federal Regulations, 2010 CFR
2010-07-01
...: There shall be no discharge of process waste water pollutants to navigable waters. (b) During any calendar month there may be discharged from the overflow of a process waste water impoundment either a volume of process waste water equal to the difference between the precipitation for that month that falls...
Code of Federal Regulations, 2011 CFR
2011-07-01
... employing wet air emissions control scrubbers there shall be no discharge of process generated waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged from that impoundment...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Fiberglass Subcategory § 426.12 Effluent limitations guidelines representing the degree of effluent reduction... limitations establish the quantity or quality of pollutants or pollutant properties which may be discharged by... limitations establish the quantity or quality of pollutants or pollutant properties, controlled by this...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Fiberglass Subcategory § 426.12 Effluent limitations guidelines representing the degree of effluent reduction... limitations establish the quantity or quality of pollutants or pollutant properties which may be discharged by... limitations establish the quantity or quality of pollutants or pollutant properties, controlled by this...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (b) of this section. (e) Effluent limitations for contaminated runoff. The following effluent... paragraph and attributable to contaminated runoff which may be discharged after the application of the best... solely of contaminated runoff and is not commingled or treated with process wastewater, it may be...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (b) of this section. (e) Effluent limitations for contaminated runoff. The following effluent... paragraph and attributable to contaminated runoff which may be discharged after the application of the best... solely of contaminated runoff and is not commingled or treated with process wastewater, it may be...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.42 Effluent limitations guidelines representing the degree of... shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June 29...
Method of recovering adsorbed liquid compounds from molecular sieve columns
Burkholder, H.R.; Fanslow, G.E.
1983-12-20
Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed. 8 figs.
Method of recovering adsorbed liquid compounds from molecular sieve columns
Burkholder, Harvey R.; Fanslow, Glenn E.
1983-01-01
Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed.
NASA Astrophysics Data System (ADS)
Rice, Jacelyn; Westerhoff, Paul
2017-08-01
Wastewater discharges from publicly owned treatment works are a significant source of endocrine disruptors and other contaminants to the aquatic environment in the US. Although remaining pollutants in wastewater pose environmental risks, treated wastewater is also a primary source of stream flow, which in turn is critical in maintaining many aquatic and riparian wildlife habitats. Here we calculate the dilution factor--the ratio of flow in the stream receiving discharge to the flow of wastewater discharge--for over 14,000 receiving streams in the continental US using streamflow observations and a spatially explicit watershed-scale hydraulic model. We found that wastewater discharges make up more than 50% of in-stream flow for over 900 streams. However, in 1,049 streams that experienced exceptional low-flow conditions, the dilution factors in 635 of those streams fell so low during those conditions that the safety threshold for concentrations of one endocrine disrupting compound was exceeded, and in roughly a third of those streams, the threshold was exceeded for two compounds. We suggest that streams are vulnerable to public wastewater discharge of contaminants under low-flow conditions, at a time when wastewater discharges are likely to be most important for maintaining stream flow for smaller sized river systems.
Toxicity evaluation of the process effluent streams of a petrochemical industry.
Reis, J L R; Dezotti, M; Sant'Anna, G L
2007-02-01
The physico-chemical characteristics and the acute toxicity of several wastewater streams, generated in the industrial production of synthetic rubber, were determined. The acute toxicity was evaluated in bioassays using different organisms: Danio rerio (fish), Lactuca sativa (lettuce) and Brachionus calyciflorus (rotifer). The removal of toxicity attained in the industrial wastewater treatment plant was also determined upstream and downstream of the activated sludge process. The results obtained indicate that the critical streams in terms of acute toxicity are the effluents from the liquid polymer unit and the spent caustic butadiene washing stage. The biological treatment was able to partially remove the toxicity of the industrial wastewater. However, a residual toxicity level persisted in the biotreated wastewater. The results obtained with Lactuca sativa showed a high degree of reproducibility, using root length or germination index as evaluation parameters. The effect of volatile pollutants on the toxicity results obtained with lettuce seeds was assessed, using ethanol as a model compound. Modifications on the assay procedure were proposed. A strong correlation between the toxic responses of Lactuca sativa and Danio rerio was observed for most industrial effluent streams.
Water Resources Data, Florida, Water Year 2003 Volume 2A: South Florida Surface Water
Price, C.; Woolverton, J.; Overton, K.
2004-01-01
Water resources data for 2003 water year in Florida consists of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 stream, peak discharge for 36 streams, and peak stage for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes, continuous ground-water levels for 441 wells, periodic ground-water levels for 1227 wells, quality of water data for 133 surface-water sites, and 308 wells. The data for South Florida included continuous or daily discharge for 72 streams, continuous or daily stage for 50 streams, no peak stage discharge for streams, 1 continuous elevation for lake, continuous ground-water levels for 237 wells, periodic ground-water levels for 248 wells, water quality for 25 surface-water sites, and 161 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperation with local, state, and federal agencies in Florida.
Water Resources Data, Florida, Water Year 2003 Volume 2B: South Florida Ground Water
Prinos, S.; Irvin, R.; Byrne, M.
2004-01-01
Water resources data for 2003 water year in Florida consists of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 stream, peak discharge for 36 streams, and peak stage for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes, continuous ground-water levels for 441 wells, periodic ground-water levels for 1227 wells, quality of water data for 133 surface-water sites, and 308 wells. The data for South Florida included continuous or daily discharge for 72 streams, continuous or daily stage for 50 streams, no peak stage discharge for streams, 1 continuous elevation for lake, continuous ground-water levels for 237 wells, periodic ground-water levels for 248 wells, water quality for 25 surface-water sites, and 161 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperation with local, state, and federal agencies in Florida.
Ciparis, S.; Iwanowicz, L.R.; Voshell, J.R.
2012-01-01
Application of manures from animal feeding operations (AFOs) as fertilizer on agricultural land can introduce nutrients and hormones (e.g. estrogens) to streams. A landscape-scale study was conducted in the Shenandoah River watershed (Virginia, USA) in order to assess the relationship between densities of AFOs in watersheds of agricultural streams and in-stream nutrient concentrations and estrogenic activity. The effect of wastewater treatment plants (WWTPs) on nutrients and estrogenic activity was also evaluated. During periods of high and low flow, dissolved inorganic nitrogen (DIN) and orthophosphate (PO 4-P) concentrations were analyzed and estrogens/estrogenic compounds were extracted and quantified as17??-estradiol equivalents (E2Eq) using a bioluminescent yeast estrogen screen. Estrogenic activity was measurable in the majority of collected samples, and 20% had E2Eq concentrations >1ng/L. Relatively high concentrations of DIN (>1000??g/L) were also frequently detected. During all sampling periods, there were strong relationships between watershed densities of AFOs and in-stream concentrations of DIN (R 2=0.56-0.81) and E2Eq (R 2=0.39-0.75). Relationships between watershed densities of AFOs and PO 4-P were weaker, but were also significant (R 2=0.27-0.57). When combined with the effect of watershed AFO density, streams receiving WWTP effluent had higher concentrations of PO 4-P than streams without WWTP discharges, and PO 4-P was the only analyte with a consistent relationship to WWTPs. The results of this study suggest that as the watershed density of AFOs increases, there is a proportional increase in the potential for nonpoint source pollution of agricultural streams and their receiving waters by nutrients, particularly DIN, and compounds that can cause endocrine disruption in aquatic organisms. ?? 2011 Elsevier B.V.
Ciparis, Serena; Iwanowicz, Luke R.; Voshell, J. Reese
2012-01-01
Application of manures from animal feeding operations (AFOs) as fertilizer on agricultural land can introduce nutrients and hormones (e.g. estrogens) to streams. A landscape-scale study was conducted in the Shenandoah River watershed (Virginia, USA) in order to assess the relationship between densities of AFOs in watersheds of agricultural streams and in-stream nutrient concentrations and estrogenic activity. The effect of wastewater treatment plants (WWTPs) on nutrients and estrogenic activity was also evaluated. During periods of high and low flow, dissolved inorganic nitrogen (DIN) and orthophosphate (PO4-P) concentrations were analyzed and estrogens/estrogenic compounds were extracted and quantified as17β-estradiol equivalents (E2Eq) using a bioluminescent yeast estrogen screen. Estrogenic activity was measurable in the majority of collected samples, and 20% had E2Eq concentrations > 1 ng/L. Relatively high concentrations of DIN (> 1000 μg/L) were also frequently detected. During all sampling periods, there were strong relationships between watershed densities of AFOs and in-stream concentrations of DIN (R2 = 0.56–0.81) and E2Eq (R2 = 0.39–0.75). Relationships between watershed densities of AFOs and PO4-P were weaker, but were also significant (R2 = 0.27–0.57). When combined with the effect of watershed AFO density, streams receiving WWTP effluent had higher concentrations of PO4-P than streams without WWTP discharges, and PO4-P was the only analyte with a consistent relationship to WWTPs. The results of this study suggest that as the watershed density of AFOs increases, there is a proportional increase in the potential for nonpoint source pollution of agricultural streams and their receiving waters by nutrients, particularly DIN, and compounds that can cause endocrine disruption in aquatic organisms.
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORY Gum Rosin and Turpentine Subcategory § 454.22 Effluent limitations and guidelines representing the..., controlled by this paragraph, which may be discharged from the manufacture of gum rosin and turpentine by a...
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORY Gum Rosin and Turpentine Subcategory § 454.22 Effluent limitations and guidelines representing the..., controlled by this paragraph, which may be discharged from the manufacture of gum rosin and turpentine by a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Carbon Black Lamp Process Subcategory § 458.43 Effluent limitations guidelines representing the degree of..., controlled by this paragraph, which may be discharged from the carbon black lamp process by a point source...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Carbon Black Lamp Process Subcategory § 458.43 Effluent limitations guidelines representing the degree of..., controlled by this paragraph, which may be discharged from the carbon black lamp process by a point source...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Carbon Black Lamp Process Subcategory § 458.43 Effluent limitations guidelines representing the degree of..., controlled by this paragraph, which may be discharged from the carbon black lamp process by a point source...
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORY Tall Oil Rosin, Pitch and Fatty Acids Subcategory § 454.42 Effluent limitations and guidelines... properties, controlled by this paragraph, which may be discharged from the manufacture of tall oil rosin...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Carbon Black Lamp Process Subcategory § 458.42 Effluent limitations guidelines representing the degree of... shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June 29...
Lalonde, Benoit A; Jackman, Paula; Doe, Ken; Garron, Christine; Aubé, Jamie
2009-04-01
There are over 1100 fish-processing plants in Canada and the majority of them discharge untreated effluents directly to marine or estuarine receiving environments. The purpose of this study was to evaluate chemical and toxicological characteristics of sediments near fish-processing plant effluent discharges to assess potential impacts of seafood-processing effluents on receiving environments. Eighteen sediment samples were collected near effluent discharges of six seafood-processing plant outfalls in New Brunswick, Canada in the winter of 2006. Ammonia levels ranged from <0.2 to 3480 microg/g, sulfide levels ranged from <0.4 to 6970 microg/g, and redox ranged from -255 to 443 mV. Only one sample had a Microtox Solid-Phase Test IC(50) value below 1000 mg/kg, whereas three samples caused greater than 30% reduction to amphipod survival. Redox, sulfide, and ammonia concentrations were all found to be significantly related to both Eohaustorius estuarius survival and Microto (Vibrio fischeri) IC(50). An increase in sulfide (R (2) = 0.584; 0.750) and ammonia (R (2) = 0.478; 0.552) and a decrease in redox (R (2) = 0.485; 0.651) were associated with an increase in toxicity to E. estuarius and Microtox, respectively. The highest toxicity to both test organisms, and the most contaminated sediments based on physical/chemical characteristics measured, was observed in samples from Blacks Harbour.
Pollution control of industrial wastewater from soap and oil industries: a case study.
Abdel-Gawad, S; Abdel-Shafy, M
2002-01-01
Industrial wastewater from soap and oil industries represents a heavy pollution source on their receiving water body. This paper studies a case of pollution control at Tanta Soap and Oil Company, Banha Factory, Egypt. The factory production includes soap, edible oil, and animal fodder. About 4,347 m3/day of industrial wastewater effluent was discharged via gravity sewers to the public sewerage system. Most of the effluent was cooling water because the cooling process in the factory was open circle. In spite of the huge quantity of cooling water being disposed of, disposal of wastewater was violating pertinent legislation. Three procedures were used for controlling the pollution at the Banha Factory. Firstly, all open circuit cooling systems were converted to closed circuit thus reducing the quantity of the discharged wastewater down to 767 m3/day. Secondly, the heavily polluted oil and grease (O&G) wastewater from the refinery unit is treated via two gravity oil separator (GOS) units, dissolved air floatation (DAF), and biological units in order to reduce the high levels of O&G, BOD, COD, and SS to the allowable limits. Thirdly, the heavily polluted waste effluent from the 'red water' saponification unit is treated separately by acidification to convert the emulsified fatty acid to free form in order to be separated through an oil separation unit. The effluent is then passed to liming stage to neutralize excess acidity and precipitate some of the dissolved matters. The mixture is finally clarified and the pH is adjusted to the allowable limits. The effluent wastewater from the three processes is collected and mixed in a final equalization tank for discharging effluent to the public sewerage system. The characteristics of the effluent water are very good with respect to the allowable Egyptian limits for discharging effluent to the public sewerage system.
Hydrogeologic controls on groundwater discharge and nitrogen loads in a coastal watershed
Russoniello, Chrtopher J.; Konikow, Leonard F.; Kroeger, Kevin D.; Fernandez, Cristina; Andres, A. Scott; Michael, Holly A.
2016-01-01
Submarine groundwater discharge (SGD) is a small portion of the global water budget, but a potentially large contributor to coastal nutrient budgets due to high concentrations relative to stream discharge. A numerical groundwater flow model of the Inland Bays Watershed, Delaware, USA, was developed to identify the primary hydrogeologic factors that affect groundwater discharge rates and transit times to streams and bays. The distribution of groundwater discharge between streams and bays is sensitive to the depth of the water table below land surface. Higher recharge and reduced hydraulic conductivity raised the water table and increased discharge to streams relative to bays compared to the Reference case (in which 66% of recharge is discharged to streams). Increases to either factor decreased transit times for discharge to both streams and bays compared to the Reference case (in which mean transit times are 56.5 and 94.3 years, respectively), though sensitivity to recharge is greater. Groundwater-borne nitrogen loads were calculated from nitrogen concentrations measured in discharging fresh groundwater and modeled SGD rates. These loads combined with long SGD transit times suggest groundwater-borne nitrogen reductions and estuarine water quality improvements will lag decades behind implementation of efforts to manage nutrient sources. This work enhances understanding of the hydrogeologic controls on and uncertainties in absolute and relative rates and transit times of groundwater discharge to streams and bays in coastal watersheds.
Effects of wastewater disinfection on waterborne bacteria and viruses
Blatchley, E. R.; Gong, W.-L.; Alleman, J.E.; Rose, J.B.; Huffman, D.E.; Otaki, M.; Lisle, J.T.
2007-01-01
Wastewater disinfection is practiced with the goal of reducing risks of human exposure to pathogenic microorganisms. In most circumstances, the efficacy of a wastewater disinfection process is regulated and monitored based on measurements of the responses of indicator bacteria. However, inactivation of indicator bacteria does not guarantee an acceptable degree of inactivation among other waterborne microorganisms (e.g., microbial pathogens). Undisinfected effluent samples from several municipal wastewater treatment facilities were collected for analysis. Facilities were selected to provide a broad spectrum of effluent quality, particularly as related to nitrogenous compounds. Samples were subjected to bench-scale chlorination and dechlorination and UV irradiation under conditions that allowed compliance with relevant discharge regulations and such that disinfectant exposures could be accurately quantified. Disinfected samples were subjected to a battery of assays to assess the immediate and long-term effects of wastewater disinfection on waterborne bacteria and viruses. In general, (viable) bacterial populations showed an immediate decline as a result of disinfectant exposure; however, incubation of disinfected samples under conditions that were designed to mimic the conditions in a receiving stream resulted in substantial recovery of the total bacterial community. The bacterial groups that are commonly used as indicators do not provide an accurate representation of the response of the bacterial community to disinfectant exposure and subsequent recovery in the environment. UV irradiation and chlorination/dechlorination both accomplished measurable inactivation of indigenous phage; however, the extent of inactivation was fairly modest under the conditions of disinfection used in this study. UV irradiation was consistently more effective as a virucide than chlorination/dechlorination under the conditions of application, based on measurements of virus (phage) diversity and concentration. Taken together, and when considered in conjunction with previously published research, the results of these experiments illustrate several important limitations of common disinfection processes as applied in the treatment of municipal wastewaters. In general, it is not clear that conventional disinfection processes, as commonly implemented, are effective for control of the risks of disease transmission, particularly those associated with viral pathogens. Microbial quality in receiving streams may not be substantially improved by the application of these disinfection processes; under some circumstances, an argument can be made that disinfection may actually yield a decrease in effluent and receiving water quality. Decisions regarding the need for effluent disinfection must account for site-specific characteristics, but it is not clear that disinfection of municipal wastewater effluents is necessary or beneficial for all facilities. When direct human contact or ingestion of municipal wastewater effluents is likely, disinfection may be necessary. Under these circumstances, UV irradiation appears to be superior to chlorination in terms of microbial quality and chemistry and toxicology. This advantage is particularly evident in effluents that contain appreciable quantities of ammonia-nitrogen or organic nitrogen.
Essaid, Hedeff I; Caldwell, Rodney R
2017-12-01
Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures relative to natural PreIrr conditions improving fish thermal habitat. However, the decrease in groundwater discharge in the IrrGW scenario resulting from large-scale groundwater withdrawal for irrigation led to warmer than natural stream temperatures and possible degradation of fish habitat. Published by Elsevier B.V.
Essaid, Hedeff I.; Caldwell, Rodney R.
2017-01-01
Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures relative to natural PreIrr conditions improving fish thermal habitat. However, the decrease in groundwater discharge in the IrrGW scenario resulting from large-scale groundwater withdrawal for irrigation led to warmer than natural stream temperatures and possible degradation of fish habitat.
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste water, shall meet the following limitations. Effluent characteristic Effluent limitations Lead No limitation. Fluoride Do. TSS Do. pH Do. (b) Any plant which melts raw materials, produces non-leaded hand pressed or blown glassware, discharges greater than 50 gallons per day of process waste water, and employs...
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste water, shall meet the following limitations. Effluent characteristic Effluent limitations Lead No limitation. Fluoride Do. TSS Do. pH Do. (b) Any plant which melts raw materials, produces non-leaded hand pressed or blown glassware, discharges greater than 50 gallons per day of process waste water, and employs...
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste water, shall meet the following limitations. Effluent characteristic Effluent limitations Lead No limitation. Fluoride Do. TSS Do. pH Do. (b) Any plant which melts raw materials, produces non-leaded hand pressed or blown glassware, discharges greater than 50 gallons per day of process waste water, and employs...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Industrial Sand Subcategory § 436.42 Effluent limitations guidelines representing the degree of effluent... 6.0 and water quality criteria in water quality standards approved under the Act authorize such lower pH, the pH limitation for such discharge may be adjusted downward to the pH water quality...
NASA Astrophysics Data System (ADS)
Grant, Stanley B.; Litton-Mueller, Rachel M.; Ahn, Jong H.
2011-05-01
Sediments are a pervasive source of fecal indicator bacteria (FIB) in rivers, lakes, estuaries, and oceans and may constitute a long-term reservoir of human disease. Previous attempts to quantify the flux of FIB across the sediment-water interface (SWI) are limited to extreme flow events, for which the primary mechanism of bacterial release is disruption and/or erosion of the sediment substrate. Here we report measurements of FIB flux across the SWI in a turbulent stream that is not undergoing significant erosion. The stream is formed by the steady discharge of bacteria-free disinfected and highly treated wastewater effluent to an earthen channel harboring high concentrations of FIB in the sediment from in situ growth. The flux j″ of FIB across the SWI, estimated from mass balance on FIB measurements in the water column, scales linearly with the concentration of bacteria in sediment pore fluids Cpore over a 3 decade change in both variables: ? The magnitude of the observed mass transfer velocity (? m s-1) is significantly larger than values predicted for either the diffusion of bacteria across a concentration boundary layer (? m s-1) or sweep and eject fluid motions at the SWI (? m s-1) but is similar to the flux of water between the stream and its hyporheic zone estimated from dye injection experiments. These results support the hypothesis that hyporheic exchange controls the trafficking of bacteria, and perhaps other types of particulate organic matter, across the SWI in turbulent streams.
Ochando-Pulido, J M; Hodaifa, G; Victor-Ortega, M D; Rodriguez-Vives, S; Martinez-Ferez, A
2013-12-15
Production of olive oil results in the generation of high amounts of heavy polluted effluents characterized by extremely variable contaminants degree, leading to sensible complexity in treatment. In this work, batch membrane processes in series comprising ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) are used to purify the effluents exiting both the two-phase and tree-phase extraction processes to a grade compatible to the discharge in municipal sewer systems in Spain and Italy. However, one main problem in applying this technology to wastewater management issues is given by membrane fouling. In the last years, the threshold flux theory was introduced as a key tool to understand fouling problems, and threshold flux measurement can give valuable information regarding optimal membrane process design and operation. In the present manuscript, mathematical approach of threshold flux conditions for membranes operation is addressed, also implementing proper pretreatment processes such as pH-T flocculation and UV/TiO2 photocatalysis with ferromagnetic-core nanoparticles in order to reduce membranes fouling. Both influence the organic matter content as well as the particle size distribution of the solutes surviving in the wastewater stream, leading, when properly applied, to reduced fouling, higher rejection and recovery values, thus enhancing the economic feasibility of the process. Copyright © 2013 Elsevier B.V. All rights reserved.
Chiffre, Axelle; Degiorgi, François; Buleté, Audrey; Spinner, Loïc; Badot, Pierre-Marie
2016-12-01
The occurrence of pharmaceuticals in freshwater ecosystems provokes increasing concern due to their potential risk to non-target organisms and to human health. Pharmaceuticals are used in both human and veterinary medicine and are essentially released into the environment via wastewater treatment plants (WWTPs) and from livestock. In this study, 31 pharmaceuticals were analyzed in effluent and surface water upstream and downstream of two WWTPs in the Loue-Doubs rural karstic catchment in Eastern France. Diclofenac (965 and 2476 ng L -1 ), sulfamethoxazole (655 and 1380 ng L -1 ) and carbamazepine (566 and 1007 ng L -1 ) displayed the highest levels in the effluents of both WWTPs. Diclofenac levels were also high in surface water samples 300 and 166 ng L -1 in the River Doubs and the River Loue, respectively, followed by paracetamol (273 and 158 ng L -1 ) and sulfamethoxazole (126 and 73 ng L -1 ). In both rivers, the most critical compounds were found to be the antibiotic sulfamethoxazole (risk quotient (RQ) from 23.7 to 51.1) and ofloxacine (RQ from 1.1 to 18.9), which reached levels inducing toxic effects in aquatic organisms. This study showed that WWTP effluents are the major sources of the pharmaceuticals, but raw discharges from human residences, pastures and livestock manure represent significant sources of contamination of surface water and groundwater. The aim of this study was to assist scientists and authorities in understanding occurrence and sources of pharmaceuticals in order to improve water quality management in chalk streams.
Ying, Guang-Guo; Kookana, Rai S.; Kolpin, Dana W.
2009-01-01
Occurrence of eight selected pharmaceutically active compounds (PhACs; caffeine, carbamazepine, triclosan, gemfibrozil, diclofenac, ibuprofen, ketoprofen and naproxen) were investigated in effluents from fifteen sewage treatment plants (STPs) across South Australia. In addition, a detailed investigation into the removal of these compounds was also carried out in four STPs with different technologies (Plant A: conventional activated sludge; plant B: two oxidation ditches; plant C: three bioreactors; and plant D: ten lagoons in series). The concentrations of these compounds in the effluents from the fifteen STPs showed substantial variations among the STPs, with their median concentrations ranging from 26 ng/L for caffeine to 710 ng/L for carbamazepine. Risk assessment based on the "worst case scenario" of the monitoring data from the present study suggested potential toxic risks to aquatic organisms posed by carbamazepine, triclosan and diclofenac associated with such effluent discharge. With the exception of carbamazepine and gemfibrozil, significant concentration decreases between influent and effluent were observed in the four STPs studied in more detail. Biodegradation was found to be the main mechanism for removing concentrations from the liquid waste stream for the PhACs within the four STPs, while adsorption onto sludge appeared to be a minor process for all target PhACs except for triclosan. Some compounds (e.g. gemfibrozil) exhibited variable removal efficiencies within the four STPs. Plant D (10 lagoons in series) was least efficient in the removal of the target PhACs; significant biodegradation of these compounds only occurred from the sixth or seventh lagoon.
Ying, Guang-Guo; Kookana, Rai S; Kolpin, Dana W
2009-08-01
Occurrence of eight selected pharmaceutically active compounds (PhACs; caffeine, carbamazepine, triclosan, gemfibrozil, diclofenac, ibuprofen, ketoprofen and naproxen) were investigated in effluents from fifteen sewage treatment plants (STPs) across South Australia. In addition, a detailed investigation into the removal of these compounds was also carried out in four STPs with different technologies (Plant A: conventional activated sludge; plant B: two oxidation ditches; plant C: three bioreactors; and plant D: ten lagoons in series). The concentrations of these compounds in the effluents from the fifteen STPs showed substantial variations among the STPs, with their median concentrations ranging from 26 ng/L for caffeine to 710 ng/L for carbamazepine. Risk assessment based on the "worst case scenario" of the monitoring data from the present study suggested potential toxic risks to aquatic organisms posed by carbamazepine, triclosan and diclofenac associated with such effluent discharge. With the exception of carbamazepine and gemfibrozil, significant concentration decreases between influent and effluent were observed in the four STPs studied in more detail. Biodegradation was found to be the main mechanism for removing concentrations from the liquid waste stream for the PhACs within the four STPs, while adsorption onto sludge appeared to be a minor process for all target PhACs except for triclosan. Some compounds (e.g. gemfibrozil) exhibited variable removal efficiencies within the four STPs. Plant D (10 lagoons in series) was least efficient in the removal of the target PhACs; significant biodegradation of these compounds only occurred from the sixth or seventh lagoon.
Rajamanickam, R; Nagan, S
2010-10-01
Karur is an industrial town located on the bank of river Amaravathi. There are 487 textile processing units in operation and discharge about 14610 kilo litres per day of treated effluent into the river. The groundwater quality in the downstream is deteriorated due to continuous discharge of effluent. In order to assess the present quality of groundwater, 13 open wells were identified in the river basin around Karur and samples were collected during pre-monsoon, post monsoon and summer, and analyzed for physico-chemical parameters. TDS, total alkalinity, total hardness, calcium, chlorides and sulphates exceeded the desirable limit. Amaravathi River water samples were also colleted at the upstream and downstream of Karur and the result shows the river is polluted. During summer season, there is no flow in the river and the river acts as a drainage for the effluent. Hence, there is severe impact on the groundwater quality in the downstream. The best option to protect the groundwater quality in the river basin is that the textile processing units should adopt zero liquid discharge (ZLD) system and completely recycle the treated effluent.
Catalysts for oxidation of mercury in flue gas
Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA
2010-08-17
Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).
Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling
Antweiler, Ronald C.; Writer, Jeffrey H.; Murphy, Sheila F.
2014-01-01
Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations – such as missing the Lagrangian parcel by less than 1 h – can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed “verified Lagrangian” sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2–4 h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we show how data from other studies can be corrected.
Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling.
Antweiler, Ronald C; Writer, Jeffrey H; Murphy, Sheila F
2014-02-01
Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations - such as missing the Lagrangian parcel by less than 1h - can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed "verified Lagrangian" sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2-4h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we show how data from other studies can be corrected. © 2013.
Baker, Ronald J.; Hunchak-Kariouk, Kathryn
2006-01-01
The effects of nonpoint-source contamination on the water quality of four tributaries to the Toms River in Ocean County, New Jersey, have been investigated in a 5-year study by the U.S. Geological Survey (USGS), in cooperation with the New Jersey Department of Environmental Protection (NJDEP). The purpose of the study was to relate the extent of land development to loads of nutrients and other contaminants to these streams, and ultimately to Barnegat Bay. Volumetric streamflow (discharge) was measured at 6 monitoring sites during 37 stormflow and base-flow sampling events over a 5-year period (May 1994-September 1999). Concentrations and yields (area-normalized instantaneous load values) of nitrogen and phosphorus species, total suspended solids, and fecal coliform bacteria were quantified, and pH, dissolved oxygen, and stream stage were monitored during base-flow conditions and storms. Sufficient data were collected to allow for a statistical evaluation of differences in water quality among streams in subbasins with high, medium, and low levels of land development. Long Swamp Creek, in a highly developed subbasin (64.2 percent developed); Wrangle Brook, in a moderately developed subbasin (34.5 percent); Davenport Branch, in a slightly developed subbasin (22.8 percent); and Jakes Branch, in an undeveloped subbasin (0 percent) are the subbasins selected for this study. No point-source discharges are known to be present on these streams. Water samples were collected and analyzed by the NJDEP, and discharge measurements and data analysis were conducted by the USGS. Total nitrogen concentrations were lower in Davenport Branch than in Long Swamp Creek and Wrangle Brook during base flow and stormflow. Concentrations of total nitrogen and nitrate were highest in Wrangle Brook (as high as 3.0 mg/L and 1.6 mg/L, respectively) as a result of high concentrations of nitrate in samples collected during base flow; nitrate loading from ground-water discharge is much higher in Wrangle Brook than in any of the other streams, possibly as a result of an experimental wastewater-(secondary effluent) disposal site that was in operation during the 1980's. Ammonia concentrations were higher in samples from Long Swamp Creek than in those from the other two monitoring sites under all flow conditions, and ammonia yields were higher during stormflow than base flow at all monitoring sites. Concentrations and yields of fecal coliform bacteria and total suspended solids were higher during stormflow than during base flow at all monitoring sites. Concentrations and yields were significantly higher in Long Swamp Creek, a highly developed subbasin and Wrangle Brook, a moderately developed subbasin than in Davenport Branch, a slightly developed subbasin. Concentrations and yields of phosphate species, which also are strongly related to stormflow, were higher during stormflow in Long Swamp Creek than in the other subbasins. Base-flow separation techniques were used on hydrographs generated for storms to distinguish the fraction of discharge and constituent loading attributable to storm runoff (overland flow) from the fraction contributed by ground-water discharge. Precipitation records were used to determine the total annual volumes of ground-water discharge and runoff at each monitoring site. These volumes were used in conjunction with water-quality data to calculate total annual loads of each constituent at each monitoring site, separated into ground-water discharge and runoff fractions. It was determined that loads of ammonia, nitrate, organic nitrogen, total nitrogen, and orthophosphate in ground-water discharge were significantly higher in the moderately developed Wrangle Brook subbasin than in the highly developed Long Swamp Creek subbasin, and that no relation was apparent between the percent of land development and constituent loads from ground-water discharge. The loading of each constituent contributed by ground-water discharge is specific
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false BAT and NSPS Effluent Limitations for Priority Pollutants for Direct Discharge Point Sources That use End-of-Pipe Biological Treatment 4 Table 4... AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Pt. 455, Table 4 Table 4 to Part 455—BAT and NSPS...
Effluent guidelines are national standards for wastewater discharges to surface waters and municipal sewage treatment plants. We issue the regulations for industrial categories based on the performance of treatment and control technologies.
Aucott, W.R.; Meadows, R.S.; Patterson, G.G.
1987-01-01
Base flow was computed to estimate discharge from regional aquifers for six large streams in the upper Coastal Plain of South Carolina and parts of North Carolina and Georgia. Aquifers that sustain the base flow of both large and small streams are stratified into shallow and deep flow systems. Base-flow during dry conditions on main stems of large streams was assumed to be the discharge from the deep groundwater flow system. Six streams were analyzed: the Savannah, South and North Fork Edisto, Lynches, Pee Dee, and the Luber Rivers. Stream reaches in the Upper Coastal Plain were studied because of the relatively large aquifer discharge in these areas in comparison to the lower Coastal Plain. Estimates of discharge from the deep groundwater flow system to the six large streams averaged 1.8 cu ft/sec/mi of stream and 0.11 cu ft/sec/sq mi of surface drainage area. The estimates were made by subtracting all tributary inflows from the discharge gain between two gaging stations on a large stream during an extreme low-flow period. These estimates pertain only to flow in the deep groundwater flow system. Shallow flow systems and total base flow are > flow in the deep system. (USGS)
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology currently available. 436.182 Section 436.182 Protection of Environment ENVIRONMENTAL PROTECTION... degree of effluent reduction attainable by the application of the best practicable control technology... best practicable control technology currently available (BPT): (1) Discharges of process generated...
Code of Federal Regulations, 2011 CFR
2011-07-01
... technology currently available. 436.32 Section 436.32 Protection of Environment ENVIRONMENTAL PROTECTION... effluent reduction attainable by the application of the best practicable control technology currently... of the best practicable control technology currently available (BPT): (1) Discharges of process...
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology currently available. 436.182 Section 436.182 Protection of Environment ENVIRONMENTAL PROTECTION... degree of effluent reduction attainable by the application of the best practicable control technology... best practicable control technology currently available (BPT): (1) Discharges of process generated...
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology currently available. 436.182 Section 436.182 Protection of Environment ENVIRONMENTAL PROTECTION... degree of effluent reduction attainable by the application of the best practicable control technology... best practicable control technology currently available (BPT): (1) Discharges of process generated...
Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.
2014-01-01
The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.
Chanakya, H N; Khuntia, Himanshu Kumar; Mukherjee, Niranjan; Aniruddha, R; Mudakavi, J R; Thimmaraju, Preeti
2015-12-01
Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 264-6642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50% of the total volume and 50-60% of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of ≥350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria.
Pathiratne, Asoka; Hemachandra, Chamini K; De Silva, Nimal
2015-12-01
Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of treated effluents originated from four types of industrial activities (two textile industries, three rubber based industries, two common treatment plants of industrial zones, and two water treatment plants) was assessed. Physico-chemical parameters including the heavy metal/metalloid levels of the effluents varied depending on the industry profile, but most of the measured parameters in the effluents were within the specified tolerance limits of Sri Lankan environmental regulations for discharge of industrial effluents into inland surface waters. In the A. cepa test system, the undiluted effluents induced statistically significant root growth retardation, mitosis depression, and chromosomal aberrations in root meristematic cells in most cases in comparison to the dilution water and upstream water signifying effluent induced cytotoxicity and genotoxicity. Ethyl methane sulphonate (a mutagen, positive control) and all the effluents under 1:8 dilution significantly induced total chromosomal aberrations in root meristematic cells in comparison to the dilution water and upstream water indicating inadequacy of expected 1:8 dilutions in the receiving waters for curtailing genotoxic impacts. The results support the use of a practically feasible A. cepa test system for rapid screening of cytotoxicity and genotoxicity of diverse industrial effluents discharging into inland surface waters.
Tracking the Key Constituents of Concern of the WTP LAW Stream
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mabrouki, Ridha B.; Matlack, Keith S.; Abramowitz, Howard
The testing results presented in the present report were also obtained on a DM10 melter system operated with the primary WTP LAW offgas system components with recycle, as specified in the statement of work (SOW) [6] and detailed in the Test Plan for this work [7]. The primary offgas system components include the SBS, the WESP, and a recycle system that allows recycle of liquid effluents back to the melter, as in the present baseline for the WTP LAW vitrification. The partitioning of technetium and other key constituents between the glass waste form, the offgas system liquid effluents, the offgasmore » stream that exits the WESP, and the liquid condensate from the vacuum evaporator were quantified in this work. The tests employed three different LAW streams spanning a range of waste compositions anticipated for WTP. Modifications to the offgas system and operational strategy were made to expedite the approach to steady state concentrations of key constituents in the glass and offgas effluent solutions during each test.« less
Process and system for removing sulfur from sulfur-containing gaseous streams
Basu, Arunabha; Meyer, Howard S.; Lynn, Scott; Leppin, Dennis; Wangerow, James R.
2012-08-14
A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.
Effective discharge analysis of ecological processes in streams
Doyle, Martin W.; Stanley, Emily H.; Strayer, David L.; Jacobson, Robert B.; Schmidt, John C.
2005-01-01
Discharge is a master variable that controls many processes in stream ecosystems. However, there is uncertainty of which discharges are most important for driving particular ecological processes and thus how flow regime may influence entire stream ecosystems. Here the analytical method of effective discharge from fluvial geomorphology is used to analyze the interaction between frequency and magnitude of discharge events that drive organic matter transport, algal growth, nutrient retention, macroinvertebrate disturbance, and habitat availability. We quantify the ecological effective discharge using a synthesis of previously published studies and modeling from a range of study sites. An analytical expression is then developed for a particular case of ecological effective discharge and is used to explore how effective discharge varies within variable hydrologic regimes. Our results suggest that a range of discharges is important for different ecological processes in an individual stream. Discharges are not equally important; instead, effective discharge values exist that correspond to near modal flows and moderate floods for the variable sets examined. We suggest four types of ecological response to discharge variability: discharge as a transport mechanism, regulator of habitat, process modulator, and disturbance. Effective discharge analysis will perform well when there is a unique, essentially instantaneous relationship between discharge and an ecological process and poorly when effects of discharge are delayed or confounded by legacy effects. Despite some limitations the conceptual and analytical utility of the effective discharge analysis allows exploring general questions about how hydrologic variability influences various ecological processes in streams.
Choi, Minkyu; Furlong, Edward T.; Moon, Hyo-Bang; Yu, Jun; Choi, Hee-Gu
2011-01-01
Nonylphenolic compounds (NPs), coprostanol (COP), and cholestanol, major contaminants in industrial and domestic wastewaters, were analyzed in creek water, wastewater treatment plant (WWTP) effluent, and sediment samples from artificial Lake Shihwa and its vicinity, one of the most industrialized regions in Korea. We also determined mass discharge of NPs and COP, a fecal sterol, into the lake, to understand the linkage between discharge and sediment contamination. Total NP (the sum of nonylphenol, and nonylphenol mono- and di-ethoxylates) were 0.32–875 μg L-1 in creeks, 0.61–87.0 μg L-1 in WWTP effluents, and 29.3–230 μg g-1 TOC in sediments. Concentrations of COP were 0.09–19.0 μg L-1 in creeks, 0.11–44.0 μg L-1 in WWTP effluents, and 2.51–438 μg g-1 TOC in sediments. The spatial distributions of NPs in creeks and sediments from the inshore region were different from those of COP, suggesting that Lake Shihwa contamination patterns from industrial effluents differ from those from domestic effluents. The mass discharge from the combined outfall of the WWTPs, located in the offshore region, was 2.27 kg d-1 for NPs and 1.00 kg d-1 for COP, accounting for 91% and 95% of the total discharge into Lake Shihwa, respectively. The highest concentrations of NPs and COP in sediments were found in samples at sites near the submarine outfall of the WWTPs, indicating that the submarine outfall is an important point source of wastewater pollution in Lake Shihwa.
Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S
This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (<88%) when conducted in pH values higher than 1. Thus, sequential use of NF and RO was proved to be a promising treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water.
76 FR 75913 - Notice of Lodging of Modification of Consent Decree Under the Clean Water Act
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-05
... (``Regulated Bacteria'') and to comply with interim effluent limitations for those pollutants. The proposed Modification provides new, more stringent interim effluent limitations for Regulated Bacteria and requires... effluent limitations for Regulated Bacteria set forth in the Facility's National Pollutant Discharge...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Formulating and Packaging Subcategory § 455.44 Effluent limitations guidelines representing the degree of... permitting authorities shall provide no additional discharge allowance for those pesticide active ingredients (PAIs) in the pesticide formulating, packaging and repackaging wastewaters when those PAIs are also...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Formulating and Packaging Subcategory § 455.44 Effluent limitations guidelines representing the degree of... permitting authorities shall provide no additional discharge allowance for those pesticide active ingredients (PAIs) in the pesticide formulating, packaging and repackaging wastewaters when those PAIs are also...
Code of Federal Regulations, 2013 CFR
2013-07-01
... economically achievable (BAT). 434.53 Section 434.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) COAL MINING POINT SOURCE CATEGORY BPT, BAT, BCT... economically achievable (BAT). (a) Reclamation areas. The limitations of this subsection apply to discharges...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology economically achievable: there shall be no discharge of process waste water pollutants to... representing the degree of effluent reduction attainable by the application of the best available technology... by the application of the best available technology economically achievable. The following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology economically achievable: There shall be no discharge of process waste water pollutants to... representing the degree of effluent reduction attainable by the application of the best available technology... attainable by the application of the best available technology economically achievable. The following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology economically achievable: There shall be no discharge of process waste water pollutants to... representing the degree of effluent reduction attainable by the application of the best available technology... attainable by the application of the best available technology economically achievable. The following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... conventional pollutant control technology: There shall be no discharge of process waste water pollutants to... control technology. 418.77 Section 418.77 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... effluent reduction attainable by the application of the best conventional pollutant control technology. The...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology economically achievable: There shall be no discharge of process waste water pollutants to... representing the degree of effluent reduction attainable by the application of the best available technology... by the application of the best available technology economically achievable. The following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology economically achievable: There shall be no discharge of process waste water pollutants to... representing the degree of effluent reduction attainable by the application of the best available technology... attainable by the application of the best available technology economically achievable. The following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... application of the best available technology economically achievable: There shall be no discharge of process... representing the degree of effluent reduction attainable by the application of the best available technology... attainable by the application of the best available technology economically achievable. The following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology economically achievable: There shall be no discharge of process waste water pollutants to... representing the degree of effluent reduction attainable by the application of the best available technology... reduction attainable by the application of the best available technology economically achievable. The...
Code of Federal Regulations, 2010 CFR
2010-07-01
... practicable control technology currently available (BPT): There shall be no discharge of process waste water... technology currently available. 424.52 Section 424.52 Protection of Environment ENVIRONMENTAL PROTECTION... effluent reduction attainable by the application of the best practicable control technology currently...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology economically achievable: There shall be no discharge of process waste water pollutants to... representing the degree of effluent reduction attainable by the application of the best available technology... attainable by the application of the best available technology economically achievable. The following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology economically achievable: there shall be no discharge of process waste water pollutants to... representing the degree of effluent reduction attainable by the application of the best available technology... by the application of the best available technology economically achievable. The following...
Code of Federal Regulations, 2012 CFR
2012-07-01
... chlorophenolic-containing biocides are used must achieve the following effluent limitations representing the.../kkg (lb/1000 lb) but shall be subject to concentration limitations. Concentration limitations are only applicable to non-continuous dischargers. Permittees not using chlorophenolic-containing biocides must...
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology currently available. 436.22 Section 436.22 Protection of Environment ENVIRONMENTAL PROTECTION... degree of effluent reduction attainable by the application of the best practicable control technology... of the best practicable control technology currently available (BPT): (1) Discharges of process...
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology currently available (BPT): (a) The concentration of pollutants discharged in mine drainage from... technology currently available (BPT). 440.52 Section 440.52 Protection of Environment ENVIRONMENTAL... of effluent reduction attainable by the application of the best practicable control technology...
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology currently available. 436.22 Section 436.22 Protection of Environment ENVIRONMENTAL PROTECTION... degree of effluent reduction attainable by the application of the best practicable control technology... of the best practicable control technology currently available (BPT): (1) Discharges of process...
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology currently available. 436.22 Section 436.22 Protection of Environment ENVIRONMENTAL PROTECTION... degree of effluent reduction attainable by the application of the best practicable control technology... of the best practicable control technology currently available (BPT): (1) Discharges of process...
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology currently available (BPT): (a) The concentration of pollutants discharged in mine drainage from... technology currently available (BPT). 440.52 Section 440.52 Protection of Environment ENVIRONMENTAL... of effluent reduction attainable by the application of the best practicable control technology...
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology currently available (BPT): (a) The concentration of pollutants discharged in mine drainage from... technology currently available (BPT). 440.52 Section 440.52 Protection of Environment ENVIRONMENTAL... of effluent reduction attainable by the application of the best practicable control technology...
Code of Federal Regulations, 2010 CFR
2010-07-01
... chlorophenolic-containing biocides are used must achieve the following effluent limitations representing the... applicable to non-continuous dischargers. Permittees not using chlorophenolic-containing biocides must certify to the permit-issuing authority that they are not using these biocides: Subpart I [Facilities...
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS BATTERY MANUFACTURING POINT SOURCE CATEGORY Cadmium Subcategory § 461.12... 1.49 (b) There shall be no discharge allowance for process wastewater pollutants from any battery manufacturing operation other than those battery manufacturing operations listed above. ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS BATTERY MANUFACTURING POINT SOURCE CATEGORY Zinc Subcategory...) There shall be no discharge allowance for process wastewater pollutants from any battery manufacturing operation other than those battery manufacturing operations listed above. [49 FR 9134, Mar. 9, 1984; 49 FR...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) BATTERY MANUFACTURING POINT SOURCE CATEGORY Zinc...) There shall be no discharge allowance for process wastewater pollutants from any battery manufacturing operation other than those battery manufacturing operations listed above. [49 FR 9134, Mar. 9, 1984; 49 FR...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) BATTERY MANUFACTURING POINT SOURCE CATEGORY Zinc...) There shall be no discharge allowance for process wastewater pollutants from any battery manufacturing operation other than those battery manufacturing operations listed above. [49 FR 9134, Mar. 9, 1984; 49 FR...
Code of Federal Regulations, 2011 CFR
2011-07-01
...) EFFLUENT GUIDELINES AND STANDARDS BATTERY MANUFACTURING POINT SOURCE CATEGORY Cadmium Subcategory § 461.12... 1.49 (b) There shall be no discharge allowance for process wastewater pollutants from any battery manufacturing operation other than those battery manufacturing operations listed above. ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY... waters. (b) Process wastewater pollutants from a calcium sulfate storage pile runoff facility operated... a surge capacity equal to the runoff from the 10-year, 24-hour rainfall event may be discharged...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY... waters. (b) Process wastewater pollutants from a calcium sulfate storage pile runoff facility operated... a surge capacity equal to the runoff from the 10-year, 24-hour rainfall event may be discharged...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY... waters. (b) Process wastewater pollutants from a calcium sulfate storage pile runoff facility operated... a surge capacity equal to the runoff from the 10-year, 24-hour rainfall event may be discharged...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Incandescent Lamp... quality of pollutants or pollutant properties, controlled by this section, which may be discharged by a... technology economically achievable: (a) [Reserved] (b) Any manufacturing plant which frosts incandescent lamp...
Electrolytic pretreatment unit gaseous effluent conditioning
NASA Technical Reports Server (NTRS)
Colombo, G. V.; Putnam, D. F.
1976-01-01
The electrolytic pretreatment of urine is an advanced process that eliminates the need for handling and storing the highly corrosive chemicals that are normally used in water reclamation systems. The electrolytic pretreatment process also converts the organic materials in urine to gases (N2 and O2) that can be used to replenish those lost to space by leakage, venting, and air lock operations. The electrolytic process is more than a pretreatment, since it decreases the urine solids content by approximately one third, thus reducing the load and eventual solids storage requirements of the urine processing system. The evolved gases from the pretreatment step cannot, however, be returned directly to the atmosphere of a spacecraft without first removing several impurities including hydrogen, chlorine, and certain organic compounds. A treatment concept was developed that would decrease the impurities in the gas stream that emanates from an electrolysis unit to levels sufficiently low to allow the conditioned gas stream to be safely discharged to a spacecraft atmosphere. Two methods were experimentally demonstrated that can accomplish the desired cleanup. The bases of the two methods are, repectively: (1) raw urine scrubbing and (2) silica gel sorption.
Dourado, Priscila Leocádia Rosa; da Rocha, Monyque Palagano; Roveda, Liriana Mara; Raposo, Jorge Luiz; Cândido, Liliam Sílvia; Cardoso, Claudia Andréa Lima; Morales, Maria Aparecida Marin; de Oliveira, Kelly Mari Pires; Grisolia, Alexeia Barufatti
2016-01-01
Abstract This study aimed to evaluate DNA damage in animal and plant cells exposed to water from the Água Boa stream (Dourados, Mato Grosso do Sul, Brazil) by using bioassays, and to identify the chemical compounds in the water to determine the water quality in the area. Through the cytotoxicity bioassay with Allium cepa, using micronucleus test, and comet assay, using Astyanax altiparanae fish, the results indicated that biological samples were genetically altered. Micronuclei were observed in erythrocytes of A. altiparanae after exposure to water from locations close to industrial waste discharge. The highest DNA damage observed with the comet assay in fish occurred with the exposure to water from locations where the presence of metals (Cu, Pb, Cd, Ni) was high, indicating the possibility of genotoxic effects of these compounds. Thus, these results reinforce the importance of conducting genotoxicity tests for developing management plans to improve water quality, and indicate the need for waste management before domestic and industrial effluents are released into the rivers and streams. PMID:27801481
Estimating stream discharge from a Himalayan Glacier using coupled satellite sensor data
NASA Astrophysics Data System (ADS)
Child, S. F.; Stearns, L. A.; van der Veen, C. J.; Haritashya, U. K.; Tarpanelli, A.
2015-12-01
The 4th IPCC report highlighted our limited understanding of Himalayan glacier behavior and contribution to the region's hydrology. Seasonal snow and glacier melt in the Himalayas are important sources of water, but estimates greatly differ about the actual contribution of melted glacier ice to stream discharge. A more comprehensive understanding of the contribution of glaciers to stream discharge is needed because streams being fed by glaciers affect the livelihoods of a large part of the world's population. Most of the streams in the Himalayas are unmonitored because in situ measurements are logistically difficult and costly. This necessitates the use of remote sensing platforms to obtain estimates of river discharge for validating hydrological models. In this study, we estimate stream discharge using cost-effective methods via repeat satellite imagery from Landsat-8 and SENTINEL-1A sensors. The methodology is based on previous studies, which show that ratio values from optical satellite bands correlate well with measured stream discharge. While similar, our methodology relies on significantly higher resolution imagery (30 m) and utilizes bands that are in the blue and near-infrared spectrum as opposed to previous studies using 250 m resolution imagery and spectral bands only in the near-infrared. Higher resolution imagery is necessary for streams where the source is a glacier's terminus because the width of the stream is often only 10s of meters. We validate our methodology using two rivers in the state of Kansas, where stream gauges are plentiful. We then apply our method to the Bhagirathi River, in the North-Central Himalayas, which is fed by the Gangotri Glacier and has a well monitored stream gauge. The analysis will later be used to couple river discharge and glacier flow and mass balance through an integrated hydrologic model in the Bhagirathi Basin.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Copper Casting Subcategory § 464.22 Effluent limitations guidelines representing the degree of effluent... limitations for copper, lead, zinc, total phenols, oil and grease, and TSS. For non-continuous dischargers... metal poured Copper (T) 0.0307 0.0168 Lead (T) 0.0315 0.0156 Zinc (T) 0.0455 0.0171 Oil and grease 1.2 0...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Copper Casting Subcategory § 464.22 Effluent limitations guidelines representing the degree of effluent... limitations for copper, lead, zinc, total phenols, oil and grease, and TSS. For non-continuous dischargers... metal poured Copper (T) 0.0307 0.0168 Lead (T) 0.0315 0.0156 Zinc (T) 0.0455 0.0171 Oil and grease 1.2 0...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J.G.; Adams, S.M.; Hinzman, R.L.
1994-03-01
On September 11, 1986, a modified National Pollutant Discharge Elimination System permit was issued for the Oak Ridge Gaseous Diffusion Plant (ORGDP; now referred to as the Oak Ridge K-25 Site), a former uranium-enrichment production facility. As required in Part III of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed for the biological monitoring of Mitchell Branch (K-1700 stream) and submitted for approval to the US EPA and the Tennessee Department of Environment and Conservation. The plan described biomonitoring activities that would be conducted over the duration of the permit. The objectives of the BMAP are tomore » demonstrate that the effluent limitations established for the Oak Ridge K-25 Site protect and maintain the use of Mitchell Branch for growth and propagation of fish and other aquatic life, and to document the effects on stream biota resulting from operation of major new pollution abatement facilities. The BMAP consists of four tasks: ambient toxicity testing; bioaccumulation studies; biological indicator studies; and ecological surveys of stream communities, including benthic macroinvertebrates and fish. This document is the second in a series of reports presenting the results of the studies that were conducted over various periods of time between August 1987 and June 1990.« less
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC... Picolines, mixed/Condensation of acetaldehyde + formaldehyde + ammonia Organic pigments, Azo/Diazotization...
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC... Picolines, mixed/Condensation of acetaldehyde + formaldehyde + ammonia Organic pigments, Azo/Diazotization...
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC... Picolines, mixed/Condensation of acetaldehyde + formaldehyde + ammonia Organic pigments, Azo/Diazotization...
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC... Picolines, mixed/Condensation of acetaldehyde + formaldehyde + ammonia Organic pigments, Azo/Diazotization...
Code of Federal Regulations, 2014 CFR
2014-07-01
... consecutive days Concentration in mg/l Iron, total 7.0 3.5 Manganese, total 4.0 2.0 TSS 70 35 pH 1 1 1 Within... if discharges from such point sources normally exhibit a pH of less than 6.0 prior to treatment: BPT... practicable control technology currently available if discharges from such point sources normally exhibit a pH...
Code of Federal Regulations, 2010 CFR
2010-07-01
... consecutive days Concentration in mg/l Iron, total 7.0 3.5 Manganese, total 4.0 2.0 TSS 70 35 pH 1 1 1 Within... if discharges from such point sources normally exhibit a pH of less than 6.0 prior to treatment: BPT... practicable control technology currently available if discharges from such point sources normally exhibit a pH...
Code of Federal Regulations, 2011 CFR
2011-07-01
... consecutive days Concentration in mg/l Iron, total 7.0 3.5 Manganese, total 4.0 2.0 TSS 70 35 pH 1 1 1 Within... if discharges from such point sources normally exhibit a pH of less than 6.0 prior to treatment: BPT... practicable control technology currently available if discharges from such point sources normally exhibit a pH...
Code of Federal Regulations, 2013 CFR
2013-07-01
... consecutive days Concentration in mg/l Iron, total 7.0 3.5 Manganese, total 4.0 2.0 TSS 70 35 pH 1 1 1 Within... if discharges from such point sources normally exhibit a pH of less than 6.0 prior to treatment: BPT... practicable control technology currently available if discharges from such point sources normally exhibit a pH...
Code of Federal Regulations, 2012 CFR
2012-07-01
... consecutive days Concentration in mg/l Iron, total 7.0 3.5 Manganese, total 4.0 2.0 TSS 70 35 pH 1 1 1 Within... if discharges from such point sources normally exhibit a pH of less than 6.0 prior to treatment: BPT... practicable control technology currently available if discharges from such point sources normally exhibit a pH...
Terry, J.E.; Morris, E.E.; Bryant, C.T.
1982-01-01
The Arkansas Department of Pollution Control and Ecology and U.S. Geological Survey conducted a water quality assessment be made of the White River and, that a steady-state digital model be calibrated and used as a tool for simulating changes in nutrient loading. The city of Fayetteville 's wastewater-treatment plant is the only point-source discharger of waste effluent to the river. Data collected during synoptic surveys downstream from the wastewater-treatment plan indicate that temperature, dissolved oxygen, dissolved solids, un-ionized ammonia, total phosphorus, and floating solids and depositable materials did not meet Arkansas stream standards. Nutrient loadings below the treatment plant result in dissolved oxygen concentrations as low as 0.0 milligrams per liter. Biological surveys found low macroinvertebrate organism diversity and numerous dead fish. Computed dissolved oxygen deficits indicate that benthic demands are the most significant oxygen sinks in the river downstream from the wastewater-treatment plant. Benthic oxygen demands range from 2.8 to 11.0 grams per meter squared per day. Model projections indicate that for 7-day, 10-year low-flow conditions and water temperature of 29 degrees Celsius, daily average dissolved oxygen concentrations of 6.0 milligrams per liter can be maintained downstream from the wastewater-treatment plant if effluent concentrations of ultimate carbonaceous biochemical oxygen demand and ammonia nitrogen are 7.5 (5.0 5-day demand) and 2 milligrams per liter respectively. Model sensitivity analysis indicate that dissolved oxygen concentrations were most sensitive to changes in stream temperature. (USGS)
Modeling the Impact of Stream Discharge Events on Riparian Solute Dynamics.
Mahmood, Muhammad Nasir; Schmidt, Christian; Fleckenstein, Jan H; Trauth, Nico
2018-03-22
The biogeochemical composition of stream water and the surrounding riparian water is mainly defined by the exchange of water and solutes between the stream and the riparian zone. Short-term fluctuations in near stream hydraulic head gradients (e.g., during stream flow events) can significantly influence the extent and rate of exchange processes. In this study, we simulate exchanges between streams and their riparian zone driven by stream stage fluctuations during single stream discharge events of varying peak height and duration. Simulated results show that strong stream flow events can trigger solute mobilization in riparian soils and subsequent export to the stream. The timing and amount of solute export is linked to the shape of the discharge event. Higher peaks and increased durations significantly enhance solute export, however, peak height is found to be the dominant control for overall mass export. Mobilized solutes are transported to the stream in two stages (1) by return flow of stream water that was stored in the riparian zone during the event and (2) by vertical movement to the groundwater under gravity drainage from the unsaturated parts of the riparian zone, which lasts for significantly longer time (> 400 days) resulting in long tailing of bank outflows and solute mass outfluxes. We conclude that strong stream discharge events can mobilize and transport solutes from near stream riparian soils into the stream. The impact of short-term stream discharge variations on solute exchange may last for long times after the flow event. © 2018, National Ground Water Association.
Measurements of actinides in soil, sediments, water and vegetation in Northern New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallaher, B. M.; Efurd, D. W.
2002-01-01
This study was undertaken during 1991 - 1998 to identify the origin of plutonium uranium in northern New Mexico Rio Grande and tributary stream sediments. Isotopic fingerprinting techniques help distinguish radioactivity from Los Alamos National Laboratory (LANL) and from global fallout or natural sources. The geographic area covered by the study extended from the headwaters of the Rio Grande in southern Colorado to Elephant Butte Reservoir in southern New Mexico. Over 100 samples of stream channel and reservoir bottom sediments were analyzed for the atom ratios of plutonium and uranium isotopes using thermal ionization mass spectrometry (TIMS). Comparison of thesemore » ratios against those for fallout or natural sources allowed for quantification of the Laboratory impact. Of the seven major drainages crossing LANL, movement of LANL plutonium into the Rio Grande can only be traced via Los Alamos Canyon. The majority of sampled locations within and adjacent to LANL have little or no input of plutonium from the Laboratory. Samples collected upstream and distant to L A N show an average (+ s.d.) fallout 240Pu/239Pauto m ratio of 0.169 + 0.012, consistent with published worldwide global fallout values. These regional background ratios differ significantly from the 240Pu/239Pu atom ratio of 0.015 that is representative of LANL-derived plutonium entering the Rio Grande at Los Alamos Canyon. Mixing calculations of these sources indicate that the largest proportion (60% to 90%) of the plutonium in the Rio Grande sediments is from global atmospheric fallout, with an average of about 25% from the Laboratory. The LANL plutonium is identifiable intermittently along the 35-km reach of the Rio Grande to Cochiti Reservoir. The source of the LANL-derived plutonium in the Rio Grande was traced primarily to pre-1960 discharges of liquid effluents into a canyon bottom at a distance approximately 20 km upstream of the river. Plutonium levels decline exponentially with distance downstream after mixing with cleaner sediments, yet the LANL isotopic fingerprint remains distinct for at least 55 km from the effluent source. Plutonium isotopes in Rio Grande and Pajarito Plateau sediments are not at levels known to adversely affect public health. Activities of 239+240pwui thin this sample set ranged from 0.001- 0.046 pCUg in the Rio Grande to 3.7 pCi/g near the effluent discharge point. Levels in the Rio Grande are usually more than 1000 times. lower than prescribed cleanup standards. Uranium in stream and reservoir sediments is predominantly within natural concentration ranges and is of natural uranium isotopic composition. None of the sediments from the Rio Grande show identifiable Laboratory uranium, using the isotopic ratios. These results suggest that the mass of Laboratory-derived uranium entering the Rio Grande is small relative to the natural load carried with river sediments.« less
Code of Federal Regulations, 2014 CFR
2014-07-01
... limitations are applicable to the abrasive polishing and acid polishing waste water streams. Effluent... not exceed— Metric units (g/kkg of furnace pull) Fluoride 120.0 60.0 Lead 0.9 0.45 English units (lb/1,000 lb of furnace pull) Fluoride 0.12 0.06 Lead 0.0009 0.00045 [44 FR 50747, Aug. 29, 1979] ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... limitations are applicable to the abrasive polishing and acid polishing waste water streams. Effluent... not exceed— Metric units (g/kkg of furnace pull) Fluoride 120.0 60.0 Lead 0.9 0.45 English units (lb/1,000 lb of furnace pull) Fluoride 0.12 0.06 Lead 0.0009 0.00045 [44 FR 50747, Aug. 29, 1979] ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... limitations are applicable to the abrasive polishing and acid polishing waste water streams. Effluent... not exceed— Metric units (g/kkg of furnace pull) Fluoride 120.0 60.0 Lead 0.9 0.45 English units (lb/1,000 lb of furnace pull) Fluoride 0.12 0.06 Lead 0.0009 0.00045 [44 FR 50747, Aug. 29, 1979] ...
40 CFR 440.64 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... attainable by the application of the best available demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from tungsten mines shall not exceed: Effluent characteristic Effluent...
40 CFR 440.64 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... attainable by the application of the best available demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from tungsten mines shall not exceed: Effluent characteristic Effluent...
Sauco, Sebastián; Gómez, Julio; Barboza, Francisco R.; Lercari, Diego; Defeo, Omar
2013-01-01
Environmental gradients and wastewater discharges produce aggregated effects on marine populations, obscuring the detection of human impact. Classical assessment methods do not include environmental effects in toxicity tests designs, which could lead to incorrect conclusions. We proposed a modified Whole Effluent Toxicity test (mWET) that includes environmental gradients in addition to effluent dilutions, together with the application of Generalized Linear Mixed Models (GLMM) to assess and decouple those effects. We tested this approach, analyzing the lethal effects of wastewater on a marine sandy beach bivalve affected by an artificial canal freshwater discharge used for rice crops irrigation. To this end, we compared bivalve mortality between canal water dilutions (CWd) and salinity controls (SC: without canal water). CWd were prepared by diluting the water effluent (sampled during the pesticide application period) with artificial marine water. The salinity gradient was included in the design by achieving the same final salinities in both CWd and SC, allowing us to account for the effects of salinity by including this variable as a random factor in the GLMM. Our approach detected significantly higher mortalities in CWd, indicating potential toxic effects of the effluent discharge. mWET represents an improvement over the internationally standardized WET tests, since it considers environmental variability and uses appropriate statistical analyses. PMID:23755304
Treatment of winery wastewater by physicochemical, biological and advanced processes: a review.
Ioannou, L A; Li Puma, G; Fatta-Kassinos, D
2015-04-09
Winery wastewater is a major waste stream resulting from numerous cleaning operations that occur during the production stages of wine. The resulting effluent contains various organic and inorganic contaminants and its environmental impact is notable, mainly due to its high organic/inorganic load, the large volumes produced and its seasonal variability. Several processes for the treatment of winery wastewater are currently available, but the development of alternative treatment methods is necessary in order to (i) maximize the efficiency and flexibility of the treatment process to meet the discharge requirements for winery effluents, and (ii) decrease both the environmental footprint, as well as the investment/operational costs of the process. This review, presents the state-of-the-art of the processes currently applied and/or tested for the treatment of winery wastewater, which were divided into five categories: i.e., physicochemical, biological, membrane filtration and separation, advanced oxidation processes, and combined biological and advanced oxidation processes. The advantages and disadvantages, as well as the main parameters/factors affecting the efficiency of winery wastewater treatment are discussed. Both bench- and pilot/industrial-scale processes have been considered for this review. Copyright © 2014 Elsevier B.V. All rights reserved.
Kosmala, A; Migeon, B; Flammarion, P; Garric, J
1998-09-01
The impact of a wastewater treatment plant (WWTP) effluent was assessed with the fish biomarker ethoxyresorufin-O-deethylase (EROD) using field and on-site laboratory experiments. EROD activity was measured in chub (Leuciscus cephalus) and stone loach (Noemacheilus barbatulus) caught at three sites of the Chalaronne River (southeast France). Liver somatic index (LSI) and organochloride bioaccumulation in muscle were estimated for chub only. In September, EROD activity and LSI of chub increased significantly between the sites above and below the WWTP effluent discharge. EROD induction detected in chub was confirmed by on-site tank experiments. EROD levels were determined in juvenile rainbow trout (Oncorhynchus mykiss) and mirror carp (Cyprinus carpio) exposed to different concentrations of the WWTP effluent and river water for 16 days. After a 4-day exposure, EROD activities of the carp exposed to the effluent increased significantly compared with the control. The response was linked to the effluent concentration and was stable with exposure time. WWTP effluent induced EROD activity, whereas organic and metal analyses, performed on fish muscle and sediment, did not indicate any difference between upstream and downstream of the discharge. Copyright 1998 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DUNCAN JB; GUTHRIE MD
2008-08-29
This report documents the laboratory results of RPP-PLAN-35958, Test Plan for the Effluent Treatment Facility to Reduce Chrome (VI) to Chrome (III) in the Secondary Waste Stream With the exception of the electrochemical corrosion scans, all work was carried out at the Center for Laboratory Science (CLS) located at the Columbia Basin College. This document summarizes the work carried out at CLS and includes the electrochemical scans and associated corrosion rates for 304 and 316L stainless steel.
NASA Astrophysics Data System (ADS)
Schönenberger, Urs; Spycher, Barbara; Kistler, David; Burdon, Frank; Reyes, Marta; Eggen, Rik; Joss, Adriano; Singer, Heinz; Stamm, Christian
2016-04-01
Treated municipal wastewater is an important source of micropollutants entering the environment. Micropollutants are a diverse range of chemicals of which concentrations vary strongly in space and time. To better quantitatively understand the spatio-temporal patterns of micropollutants in streams, we compared upstream and downstream locations at 24 wastewater treatment plants (WWTPs) across the Swiss Plateau and Jura regions. Each site represents the most upstream treatment plant in the corresponding catchment. In 2013, a broad analytical screening was applied to samples collected at 12 sites during winter (January) and summer conditions (June). Based in these results, the bi-monthly samples obtained in 2014 at 12 additional sites were analysed for a group of approximately 60 selected organic micropollutants. The screening results demonstrate that generally, pharmaceuticals, artificial sweeteners and corrosion inhibitors make up the largest share of the organic micropollutants in wastewater. Pesticides including biocides and plant protection products are also regularly found, but at lower concentrations. The opposite holds true for the concentration variability: pesticides vary the most across time and space, while pharmaceuticals exhibit more stable concentrations. Heavy metals fluctuate to a similar degree as pharmaceuticals. Principal component analyses suggest that pesticide and pharmaceutical levels at both upstream locations and in the wastewater vary independently of each other. At the upstream locations, the pesticide levels increased with the proportion of arable land in the watershed, whilst decreasing with greater cover of pasture and forest. Interestingly, the same patterns hold true for the composition of wastewater when considering land use in the catchments of the WWTPs. This suggests that pesticide-intensive agricultural crops not only impact surface water quality via diffuse pollution but also increase levels of pesticides in wastewater discharged to the streams. As a consequence, catchment land uses and effluent composition appear to be inextricably bound.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY... discharged from that impoundment. The height difference between the maximum safe surge capacity level and the normal operating level must be greater than the inches of rain representing the 10-year, 24-hour rainfall...
Code of Federal Regulations, 2012 CFR
2012-07-01
... CATEGORY Insulation Fiberglass Subcategory § 426.12 Effluent limitations guidelines representing the degree... properties which may be discharged by a point source subject to the provisions of this subpart after.... (b) The following limitations establish the quantity or quality of pollutants or pollutant properties...
Code of Federal Regulations, 2014 CFR
2014-07-01
... CATEGORY Insulation Fiberglass Subcategory § 426.12 Effluent limitations guidelines representing the degree... properties which may be discharged by a point source subject to the provisions of this subpart after.... (b) The following limitations establish the quantity or quality of pollutants or pollutant properties...
Code of Federal Regulations, 2013 CFR
2013-07-01
... CATEGORY Insulation Fiberglass Subcategory § 426.12 Effluent limitations guidelines representing the degree... properties which may be discharged by a point source subject to the provisions of this subpart after.... (b) The following limitations establish the quantity or quality of pollutants or pollutant properties...
Code of Federal Regulations, 2011 CFR
2011-07-01
... pollutant properties, controlled by this section and attributable to pan, dry digestion, and mechanical... Digestion, and Mechanical Reclaimed Rubber Subcategory § 428.92 Effluent limitations guidelines representing... properties controlled by this section, which may be discharged by a point source subject to the provisions of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... pollutant properties, controlled by this section, and attributable to pan, dry digestion, and mechanical..., and Mechanical Reclaimed Rubber Subcategory § 428.93 Effluent limitations guidelines representing the... properties, controlled by this section, which may be discharged by a point source subject to the provisions...
Code of Federal Regulations, 2012 CFR
2012-07-01
... limitations apply to all dischargers in the calcium-, magnesium-, or sodium-based sulfite pulp segment: Subpart E [Production of Calcium-, Magnesium-, or Sodium-based Sulfite Pulps] Pollutant or pollutant... [Supplemental BAT effluent limitations] Pollutant or pollutant property Maximum for any 1 day kg/kkg (or pounds...
Code of Federal Regulations, 2013 CFR
2013-07-01
... CATEGORY Pan, Dry Digestion, and Mechanical Reclaimed Rubber Subcategory § 428.92 Effluent limitations... pan, dry digestion, and mechanical reclaimed rubber processes which are integrated with a wet digestion reclaimed process, which may be discharged by a point source subject to the provisions of this...
Code of Federal Regulations, 2012 CFR
2012-07-01
... CATEGORY Pan, Dry Digestion, and Mechanical Reclaimed Rubber Subcategory § 428.92 Effluent limitations... pan, dry digestion, and mechanical reclaimed rubber processes which are integrated with a wet digestion reclaimed process, which may be discharged by a point source subject to the provisions of this...
Code of Federal Regulations, 2014 CFR
2014-07-01
... CATEGORY Pan, Dry Digestion, and Mechanical Reclaimed Rubber Subcategory § 428.92 Effluent limitations... pan, dry digestion, and mechanical reclaimed rubber processes which are integrated with a wet digestion reclaimed process, which may be discharged by a point source subject to the provisions of this...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... technology currently available (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through... practicable control technology currently available (BPT): (a) The concentration of pollutants discharged in...
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... technology currently available (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through... practicable control technology currently available (BPT): (a) The concentration of pollutants discharged in...
Code of Federal Regulations, 2013 CFR
2013-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... technology currently available (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through... practicable control technology currently available (BPT): (a) The concentration of pollutants discharged in...
40 CFR 129.7 - Requirement and procedure for establishing a more stringent effluent limitation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS TOXIC POLLUTANT EFFLUENT STANDARDS Toxic Pollutant Effluent...) determines that the ambient water criterion established in these standards is not being met or will not be met in the receiving water as a result of one or more discharges at levels allowed by these standards...
Solute-specific scaling of inorganic nitrogen and phosphorus uptake in streams
NASA Astrophysics Data System (ADS)
Hall, R. O., Jr.; Baker, M. A.; Rosi-Marshall, E. J.; Tank, J. L.; Newbold, J. D.
2013-11-01
Stream ecosystem processes such as nutrient cycling may vary with stream position in the network. Using a scaling approach, we examined the relationship between stream size and nutrient uptake length, which represents the mean distance that a dissolved solute travels prior to removal from the water column. Ammonium (NH4+) uptake length increased proportionally with stream size measured as specific discharge (discharge/stream width) with a scaling exponent = 1.01. In contrast, uptake lengths for nitrate (NO3-) and soluble reactive phosphorus (SRP) increased more rapidly than increases in specific discharge (scaling exponents = 1.19 for NO3- and 1.35 for SRP). Additionally, the ratio of inorganic nitrogen (N) uptake length to SRP uptake length declined with stream size; there was relatively lower demand for SRP compared to N as stream size increased. Finally, we related the scaling of uptake length with specific discharge to that of stream length using Hack's law and downstream hydraulic geometry. Ammonium uptake length increased less than proportionally with distance from the headwaters, suggesting a strong role for larger streams and rivers in regulating nutrient transport.
Lowry, Christopher S.; Walker, John F.; Hunt, Randall J.; Anderson, Mary P.
2007-01-01
Discrete zones of groundwater discharge in a stream within a peat‐dominated wetland were identified on the basis of variations in streambed temperature using a distributed temperature sensor (DTS). The DTS gives measurements of the spatial (±1 m) and temporal (15 min) variation of streambed temperature over a much larger reach of stream (>800 m) than previous methods. Isolated temperature anomalies observed along the stream correspond to focused groundwater discharge zones likely caused by soil pipes within the peat. The DTS also recorded variations in the number of temperature anomalies, where higher numbers correlated well with a gaining reach identified by stream gauging. Focused zones of groundwater discharge showed essentially no change in position over successive measurement periods. Results suggest DTS measurements will complement other techniques (e.g., seepage meters and stream gauging) and help further improve our understanding of groundwater–surface water dynamics in wetland streams.
NASA Astrophysics Data System (ADS)
Pucci, Amleto A.; Pope, Daryll A.
1995-05-01
Stream flow in the Coastal Plain of New Jersey is primarily controlled by ground-water discharge. Ground-water flow in a 400 square mile area (1035 km 2) of the Potomac-Raritan-Magothy aquifer system (PRMA) in the northern Coastal Plain of New Jersey was simulated to examine development effects on water resources. Simulations showed that historical development caused significant capture of regional ground-water discharge to streams and wetlands. The Cretaceous PRMA primarily is composed of fine to coarse sand, clays and silts which form the Upper and Middle aquifers and their confining units. The aquifer outcrops are the principal areas of recharge and discharge for the regional flow system and have many traversing streams and surface-water bodies. A quasi-three-dimensional numerical model that incorporated ground-water/surface-water interactions and boundary flows from a larger regional model was used to represent the PRMA. To evaluate the influence of ground-water development on interactions in different areas, hydrogeologically similar and contiguous model stream cells were aggregated as 'stream zones'. The model representation of surface-water and ground-water interaction was limited in the areas of confining unit outcrops and because of this, simulated ground-water discharge could not be directly compared with base flow. Significant differences in simulated ground-water and surface-water interactions between the predevelopment and developed system, include; (1) redistribution of recharge and discharge areas; (2) reduced ground-water discharge to streams. In predevelopment, the primary discharge for the Upper and Middle aquifers is to low-lying streams and wetlands; in the developed system, the primary discharge is to ground-water withdrawals. Development reduces simulated ground-water discharge to streams in the Upper Aquifer from 61.4 to 10% of the Upper Aquifer hydrologic budget (28.9%, if impounded stream flow is included). Ground-water discharge to streams in the Middle Aquifer decreases from 80.0 to 22% of the Middle Aquifer hydrologic budget. The utility of assessing ground-water/surface-water interaction in a regional hydrogeologic system by simulation responses to development is demonstrated and which can compensate for lack of long-term stream-gaging data in determining management decisions.
Heavy metals in handloom-dyeing effluents and their biosorption by agricultural byproducts.
Nahar, Kamrun; Chowdhury, Md Abul Khair; Chowdhury, Md Akhter Hossain; Rahman, Afzal; Mohiuddin, K M
2018-03-01
The Madhabdi municipality in the Narsingdi district of Bangladesh is a well-known area for textile, handloom weaving, and dyeing industries. These textile industries produce a considerable amount of effluents, sewage sludge, and solid waste materials every day that they directly discharge into surrounding water bodies and agricultural fields. This disposal poses a serious threat to the overall epidemic and socio-economic pattern of the locality. This research entailed the collection of 34 handloom-dyeing effluent samples from different handloom-dyeing industries of Madhabdi, which were then analyzed to determine the contents of the heavy metals iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), manganese (Mn), lead (Pb), and cadmium (Cd). Average concentrations of Fe, Cr, Cu, Pb, Mn, and Zn were 3.81, 1.35, 1.70, 0.17, 0.75, and 0.73 mg L -1 , respectively, whereas Cd content was below the detectable limit of the atomic adsorption spectrophotometer. The concentrations of Fe, Cr, Cu, Pb, and Mn exceed the industrial effluent discharge standards (IEDS) for inland surface water and irrigation water guideline values. A biosorption experiment of the heavy metals (Fe, Cr, Cu, Mn, and Zn) was conducted without controlling for any experimental parameters (e.g., pH, temperature, or other compounds present in the effluent samples) by using four agricultural wastes or byproducts, namely rice husk, sawdust, lemon peel, and eggshell. Twenty grams of each biosorbent was added to 1 L of effluent samples and stored for 7 days. The biosorption capacity of each biosorbent is ranked as follows: eggshell, sawdust, rice husk, and lemon peel. Furthermore, the biosorption affinity of each metal ion was found in the following order: Cu and Cr (both had similar biosorption affinity), Zn, Fe, Mn. The effluents should not be discharged before treatment, and efficient treatment of effluents is possible with eggshell powder or sawdust at a rate of 20 g of biosorbent per liter of effluents.
Urban contributions of glyphosate and its degradate AMPA to streams in the United States
Kolpin, D.W.; Thurman, E.M.; Lee, E.A.; Meyer, M.T.; Furlong, E.T.; Glassmeyer, S.T.
2006-01-01
Glyphosate is the most widely used herbicide in the world, being routinely applied to control weeds in both agricultural and urban settings. Microbial degradation of glyphosate produces aminomethyl phosphonic acid (AMPA). The high polarity and water-solubility of glyphosate and AMPA has, until recently, made their analysis in water samples problematic. Thus, compared to other herbicides (e.g. atrazine) there are relatively few studies on the environmental occurrence of glyphosate and AMPA. In 2002, treated effluent samples were collected from 10 wastewater treatment plants (WWTPs) to study the occurrence of glyphosate and AMPA. Stream samples were collected upstream and downstream of the 10 WWTPs. Two reference streams were also sampled. The results document the apparent contribution of WWTP effluent to stream concentrations of glyphosate and AMPA, with roughly a two-fold increase in their frequencies of detection between stream samples collected upstream and those collected downstream of the WWTPs. Thus, urban use of glyphosate contributes to glyphosate and AMPA concentrations in streams in the United States. Overall, AMPA was detected much more frequently (67.5%) compared to glyphosate (17.5%).
Use of tracer injections and synoptic sampling to measure metal loading from acid mine drainage
Kimball, Briant A.
1997-01-01
Thousands of abandoned and inactive mines are located in environmentally sensitive mountain watersheds. Cost-effective remediation of the effects of metals from mining in these watersheds requires knowledge of the most significant sources of metals. The significance of a given source depends on the toxicity of a particular metal, how much of the metal enters the stream, and whether or not the metal remains in the stream in a toxic form. This discussion deals with accounting for how much metal enters the stream and whether it stays in the stream. The amount of metal entering the stream is called the mass loading and is calculated as the product of metal concentration and stream discharge. The overall effect of high metal concentrations on streams and aquatic organisms is unclear without discharge measurements.A traditional discharge measurement is obtained by dividing a stream into small sections and measuring the cross-sectional area and the average water velocity in each section. Summing the measurements of all the sections gives the discharge of the entire stream. This method works well where the channel bottom and banks are smooth. In mountain streams, however, the stream bottom typically is covered with cobbles, allowing much of the water to flow through the cobbles of the streambed where it cannot be measured by a flow meter (fig. 1). Thus, accurate discharge measurements are difficult to obtain in mountain streams, even under the best of conditions.
DeSimone, Leslie A.; Howes, Brian Louis
1995-01-01
Hydrogeologic, water-quality, and biogeochemical data were collected at the site of a septage- treatment facility in Orleans, Massachusetts, from October 1988 through December 1992, where a nitrogen-rich effluent is discharged to the underlying glacial aquifer. The data were collected as part of a study done by the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, Office of Watershed Management, to investigate the effect of effluent discharge on ground-water quality and the transport of effluent nitrogen through the aquifer. Hydrogeologic data include lithologic logs and ground-water levels. Water-quality data include chemical analyses of the treated septage effluent, of ground water at the water table beneath the infiltration beds, and of ground water throughout the aquifer. Dissolved concentrations of dinitrogen gas, nitrous oxide, and dissolved inorganic carbon also were measured. Biogeochemical data include concentrations of total ammonium and solid-phase carbon and nitrogen in aquifer sediments and sediments from the effluent-infiltration beds.
Bastos, R K X; Calijuri, M L; Bevilacqua, P D; Rios, E N; Dias, E H O; Capelete, B C; Magalhães, T B
2010-01-01
The results of a 20-month period study in Brazil were analyzed to compare horizontal-flow constructed wetlands (CW) and waste stabilization pond (WSP) systems in terms of land area requirements and performance to produce effluent qualities for surface water discharge, and for wastewater use in agriculture and/or aquaculture. Nitrogen, E. coli and helminth eggs were more effectively removed in WSP than in CW. It is indicated that CW and WSP require similar land areas to achieve a bacteriological effluent quality suitable for unrestricted irrigation (10(3) E. coli per 100 mL), but CW would require 2.6 times more land area than ponds to achieve quite relaxed ammonia effluent discharge standards (20 mg NH(3) L(-1)), and, by far, more land than WSP to produce an effluent complying with the WHO helminth guideline for agricultural use (< or =1 egg per litre).
Equivocating on the polluter-pays principle: The consequences for Pakistan.
Luken, Ralph A
2009-08-01
The polluter-pays principle has been widely implemented in OECD countries and credited for bring about a significant reduction in pollutant discharge. However, it has had only limited implementation in developing countries. The consequences of not implementing it in developing countries, to the extent they are documented, are limited to estimating the economic damages of environmental degradation. Yet there are several other but seldom documented negative consequences of the failure to implement the polluter-pays principle. These consequences are documented in the case of Pakistan. They include limited construction of effluent treatment plants, heavy dependence on the government and international donors for funding the only two operational common effluent treatment plants, significant operational issues at the two common effluent treatment plants, missed opportunities to build cost-effective common effluent treatment plants and minimal environmental improvements from isolated investments in individual effluent treatment plants in addition to the already documented significant level of environmental degradation due to uncontrolled pollutant discharge.
Habitat sequencing and the importance of discharge in inferences
Robert H. Hilderbrand; A. Dennis Lemly; C. Andrew Dolloff
1999-01-01
The authors constructed stream maps for a low-Âgradient trout stream in southwestern Virginia during autumn (base flow) and spring (elevated flows) to compare spatial and temporal variation in stream habitats. Pool-riffle sequencing and total area occupied by pools and riffles changed substantially depending on the level of discharge: reduced discharge resulted in an...
Assessment of the effluent quality from a gold mining industry in Ghana.
Acheampong, Mike A; Paksirajan, Kannan; Lens, Piet N L
2013-06-01
The physical and chemical qualities of the process effluent and the tailings dam wastewater of AngloGold-Ashanti Limited, a gold mining company in Ghana, were studied from June to September, 2010. The process effluent from the gold extraction plant contains high amounts of suspended solids and is therefore highly turbid. Arsenic, copper and cyanide were identified as the major pollutants in the process effluent with average concentrations of 10.0, 3.1 and 21.6 mg L(-1), respectively. Arsenic, copper, iron and free cyanide (CN(-)) concentrations in the process effluent exceeded the Ghana EPA discharge limits; therefore, it is necessary to treat the process effluent before it can be discharged into the environment. Principal component analysis of the data indicated that the process effluent characteristics were influenced by the gold extraction process as well as the nature of the gold-bearing ore processed. No significant correlation was observed between the wastewater characteristics themselves, except for the dissolved oxygen and the biochemical oxygen demand. The process effluent is fed to the Sansu tailings dam, which removes 99.9 % of the total suspended solids and 99.7 % of the turbidity; but copper, arsenic and cyanide concentrations were still high. The effluent produced can be classified as inorganic with a high load of non-biodegradable compounds. It was noted that, though the Sansu tailings dam stores the polluted effluent from the gold extraction plant, there will still be serious environmental problems in the event of failure of the dam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, W.L.
2000-02-28
The Savannah River Site currently has 33 permitted NPDES outfalls that have been permitted by the South Carolina Department of Health an Environmental Control to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams.
Water Resources Data, Florida, Water Year 2003, Volume 4. Northwest Florida
prepared by Blum, Darlene A.; Alvarez, A. Ernie
2004-01-01
The U.S. Geological Survey (USGS), in cooperation with Federal, State, and local agencies, obtains a large amount of data on the water resources of the State of Florida each water year. These data, accumulated during many water years, constitute a valuable database that is used by water-resources managers, emergency-management officials, and many others to develop an improved understanding of water resources within the State. This report series for the 2003 water year for the state of Florida consists of records for continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 streams, peak stage and discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes, continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water for 133 surface-water sites and 308 wells. This volume (Volume 4, Northwest Florida)contains records of continuous or daily discharge for 72 streams, periodic discharge for 3 stream, continuous or daily stage for 13 streams, periodic stage for 0 stream, peak stage and discharge for 28 streams, continuous or daily elevations for 1 lake, periodic elevations for 0 lakes, continuous ground-water levels for 3 wells, periodic ground-water levels for 0 wells, and quality-of-water for 3 surface-water sites and 0 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Florida.
Ward, Irene; Pivko, Susan; Brooks, Gary; Parkin, Kate
2011-11-01
To demonstrate sensitivity to change of the Stroke Rehabilitation Assessment of Movement (STREAM) as well as the concurrent and predictive validity of the STREAM in an acute rehabilitation setting. Prospective cohort study. Acute, in-patient rehabilitation department within a tertiary-care teaching hospital in the United States. Thirty adults with a newly diagnosed, first ischemic stroke. Clinical assessments were conducted on admission and then again on discharge from the rehabilitation hospital with the STREAM (total STREAM and upper extremity, lower extremity, and mobility subscales), Functional Independence Measure (FIM), and Stroke Impact Scale-16 (SIS-16). Sensitivity to change was determined with the Wilcoxon signed rank test and by the calculation of standardized response means. Spearman correlations were used to assess concurrent validity of the total STREAM and STREAM subscales with the FIM and SIS-16 on admission and discharge. We determined predictive validity for all instruments by correlating admission scores with actual and predicted length of stay and by testing associations between admission scores and discharge destination (home vs subacute facility). Not applicable. For all instruments, there was statistically significant improvement from admission to discharge. The standardized response means for the total STREAM and STREAM subscales were large. Spearman correlations between the total STREAM and STREAM subscales and the FIM and SIS-16 were moderate to excellent, both on admission and discharge. Among change scores, only the SIS-16 correlated with the total STREAM. All 3 instruments were significantly associated with discharge destination; however, the associations were strongest for the total STREAM and STREAM subscales. All instruments showed moderate-to-excellent correlations with predicted and actual length of stay. The STREAM is sensitive to change and demonstrates good concurrent and predictive validity as compared with the FIM and SIS-16 in the acute inpatient rehabilitation population. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinzman, R.L.; Adams, S.M.; Ashwood, T.L.
1995-08-01
As a condition of the modified National Pollutant Discharge Elimination System (NPDES) permit issued to the Oak Ridge Gaseous Diffusion Plant (ORGDP; now referred to as the Oak Ridge K-25 Site) on September 11, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream (Mitchell Branch or K-1700 stream). On October 1, 1992, a renewed NPDES permit was issued for the K-25 Site. A biological monitoring plan was submitted for Mitchell Branch, Poplar Creek, Poplar Creek Embayment of the Clinch River and any unnamed tributaries of these streams. The objectives of BMAP are to (1) demonstratemore » that the effluent limitations established for the Oak Ridge K-25 Site protect and maintain the use of Mitchell Branch for growth and propagation of fish and other aquatic life and (2) document the effects on stream biota resulting from operation of major new pollution abatement facilities, including the Central Neutralization Facility (CNF) and the Toxic Substances Control Act (TSCA) incinerator. The BMAP consists of four tasks: (1) toxicity monitoring; (2) bioaccumulation monitoring; (3) assessment of fish health; and (4) instream monitoring of biological communities, including benthic macroinvertebrates and fish. This document, the third in a series, reports on the results of the Oak Ridge K-25 Site BMAP; it describes studies that were conducted over various periods of time between June 1990 and December 1993, although monitoring conducted outside this time period is included, as appropriate.« less
Scott, Tia-Marie; Phillips, Patrick J.; Kolpin, Dana W.; Colella, Kaitlyn M.; Furlong, Edward T.; Foreman, William T.; Gray, James L.
2018-01-01
Discharges from pharmaceutical manufacturing facilities (PMFs) previously have been identified as important sources of pharmaceuticals to the environment. Yet few studies are available to establish the influence of PMFs on the pharmaceutical source contribution to wastewater treatment plants (WWTPs) and waterways at the national scale. Consequently, a national network of 13 WWTPs receiving PMF discharges, six WWTPs with no PMF input, and one WWTP that transitioned through a PMF closure were selected from across the United States to assess the influence of PMF inputs on pharmaceutical loading to WWTPs. Effluent samples were analyzed for 120 pharmaceuticals and pharmaceutical degradates. Of these, 33 pharmaceuticals had concentrations substantially higher in PMF-influenced effluent (maximum 555,000 ng/L) compared to effluent from control sites (maximum 175 ng/L). Concentrations in WWTP receiving PMF input are variable, as discharges from PMFs are episodic, indicating that production activities can vary substantially over relatively short (several months) periods and have the potential to rapidly transition to other pharmaceutical products. Results show that PMFs are an important, national-scale source of pharmaceuticals to the environment.
Surface wastewater in Samara and their impact on water basins as water supply sources
NASA Astrophysics Data System (ADS)
Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina
2017-10-01
The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.
NASA Astrophysics Data System (ADS)
Dalu, J. M.; Ndamba, J.
A three-year investigation into the potential use of duckweed based wastewater stabilizations ponds for wastewater treatment was carried out at two small urban areas in Zimbabwe. The study hoped to contribute towards improved environmental management through improving the quality of effluent being discharged into natural waterways. This was to be achieved through the development and facilitation of the use of duckweed based wastewater stabilizations ponds. The study was carried out at Nemanwa and Gutu Growth Points both with a total population of 23 000. The two centers, like more than 70% of Zimbabwe’s small urban areas, relied on algae based ponds for domestic wastewater treatment. The final effluent is used to irrigate gum plantations before finding its way into the nearest streams. Baseline wastewater quality information was collected on a monthly basis for three months after which duckweed ( Lemna minor) was introduced into the maturation ponds to at least 50% pond surface cover. The influent and effluent was then monitored on a monthly basis for chemical, physical and bacteriological parameters as stipulated in the Zimbabwe Water (Waste and Effluent Disposal) regulations of 2000. After five months, the range of parameters tested for was narrowed to include only those that sometimes surpassed the limits. These included: phosphates, nitrates, pH, biological oxygen demand, iron, conductivity, chemical oxygen demand, turbidity, total dissolved solids and total suspended solids. Significant reductions to within permissible limits were obtained for most of the above-mentioned parameters except for phosphates, chemical and biological oxygen demand and turbidity. However, in these cases, more than 60% reductions were observed when the influent and effluent levels were compared. It is our belief that duckweed based waste stabilization ponds can now be used successfully for the treatment of domestic wastewater in small urban areas of Zimbabwe.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Copper Casting... copper, lead, zinc, and total phenols. For non-continuous discharges, annual average mass limitations and... for monthly average kg/1,000 kkg (pounds per million pounds) of metal poured Copper (T) 0.0307 .0168...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Copper Casting... copper, lead, zinc, and total phenols. For non-continuous discharges, annual average mass limitations and... for monthly average kg/1,000 kkg (pounds per million pounds) of metal poured Copper (T) 0.0307 .0168...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting... copper, lead, zinc, and total phenols. For non-continuous dischargers, annual average mass limitations....0187 Lead (T) 0.0237 0.0116 Zinc (T) 0.0339 0.0129 Maximum for any 1 day Maximum for monthly average...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting... copper, lead, zinc, and total phenols. For non-continuous dischargers, annual average mass limitations....0187 Lead (T) 0.0237 0.0116 Zinc (T) 0.0339 0.0129 Maximum for any 1 day Maximum for monthly average...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) The concentration of pollutants discharged in mine drainage from mines, either open-pit or underground, that produce uranium ore, including mines using in-situ leach methods, shall not exceed: Effluent...). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source...
Code of Federal Regulations, 2011 CFR
2011-07-01
... concentration of pollutants discharged in mine drainage from mines, either open-pit or underground, that produce uranium ore, including mines using in-situ leach methods, shall not exceed: Effluent characteristic... provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source subject to...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) The concentration of pollutants discharged in mine drainage from mines, either open-pit or underground, that produce uranium ore, including mines using in-situ leach methods, shall not exceed: Effluent...). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source...
Code of Federal Regulations, 2010 CFR
2010-07-01
... concentration of pollutants discharged in mine drainage from mines, either open-pit or underground, that produce uranium ore, including mines using in-situ leach methods, shall not exceed: Effluent characteristic... provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source subject to...
Geochemistry of Standard Mine Waters, Gunnison County, Colorado, July 2009
Verplanck, Philip L.; Manning, Andrew H.; Graves, Jeffrey T.; McCleskey, R. Blaine; Todorov, Todor I.; Lamothe, Paul J.
2009-01-01
In many hard-rock-mining districts water flowing from abandoned mine adits is a primary source of metals to receiving streams. Understanding the generation of adit discharge is an important step in developing remediation plans. In 2006, the U.S. Environmental Protection Agency listed the Standard Mine in the Elk Creek drainage basin near Crested Butte, Colorado as a superfund site because drainage from the Standard Mine enters Elk Creek, contributing dissolved and suspended loads of zinc, cadmium, copper, and other metals to the stream. Elk Creek flows into Coal Creek, which is a source of drinking water for the town of Crested Butte. In 2006 and 2007, the U.S. Geological Survey undertook a hydrogeologic investigation of the Standard Mine and vicinity and identified areas of the underground workings for additional work. Mine drainage, underground-water samples, and selected spring water samples were collected in July 2009 for analysis of inorganic solutes as part of a follow-up study. Water analyses are reported for mine-effluent samples from Levels 1 and 5 of the Standard Mine, underground samples from Levels 2 and 3 of the Standard Mine, two spring samples, and an Elk Creek sample. Reported analyses include field measurements (pH, specific conductance, water temperature, dissolved oxygen, and redox potential), major constituents and trace elements, and oxygen and hydrogen isotopic determinations. Overall, water samples collected in 2009 at the same sites as were collected in 2006 have similar chemical compositions. Similar to 2006, water in Level 3 did not flow out the portal but was observed to flow into open workings to lower parts of the mine. Many dissolved constituent concentrations, including calcium, magnesium, sulfate, manganese, zinc, and cadmium, in Level 3 waters substantially are lower than in Level 1 effluent. Concentrations of these dissolved constituents in water samples collected from Level 2 approach or exceed concentrations of Level 1 effluent suggesting that water-rock interaction between Levels 3 and 1 can account for the elevated concentration of metals and other constituents in Level 1 portal effluent. Ore minerals (sphalerite, argentiferous galena, and chalcopyrite) are the likely sources of zinc, cadmium, lead, and copper and are present within the mine in unmined portions of the vein system, within plugged ore chutes, and in muck piles.
Pathway-based analysis of fish transcriptomics data along effluent gradients in Minnesota rivers
As part of a larger effort to assess the health of streams and rivers influenced by municipal effluents in Minnesota, fathead minnows (Pimephales promelas; FHM) were exposed to ambient surface waters from three locations. The locations were generally representative of the state: ...
Balancing water quality and water quantity concerns is an ongoing challenge for communities in the semi-arid southwest. Over pumping of groundwater aquifers and limited surface water resources have created effluent-dominated sections of watersheds. As rapid urbanization increases...
Edokpayi, Joshua N; Odiyo, John O; Msagati, Titus A M; Popoola, Elizabeth O
2015-06-29
Wastewater treatment facilities are known sources of fresh water pollution. This study was carried out from January to June 2014 to assess the reduction efficiency of some selected contaminants in the Thohoyandou wastewater treatment plant (WWTP). The pH and electrical conductivity of the effluent fell within the South African wastewater discharge guidelines. The WWTP showed the chemical oxygen demand reduction efficiency required by the Department of Water Affairs (DWA) guidelines of 75 mg/L for the months of April and June, although it was below this standard in March and May. Free chlorine concentration varied between 0.26-0.96 mg/L and exceeded the DWA guideline value of 0.25 mg/L. The concentration of nitrate-nitrogen (NO3(-) N) in the influent and effluent varied between 0.499-2.31 mg/L and 7.545-19.413 mg/L, respectively. The concentration of NO3- N in the effluent complied with DWA effluent discharge standard of 15 mg/L, except in April and May. Phosphate concentrations in the influent and effluent were in the ranges of 0.552-42.646 mg/L and 1.572-32.554 mg/L, respectively. The WWTP showed reduction efficiencies of E. coli and Enterococci during some sampling periods but the level found in the effluent exceeded the recommended guideline value of 1000 cfu/100 mL for faecal indicator organisms in wastewater effluents. Consistent removal efficiencies were observed for Al (32-74%), Fe (7-32%) and Zn (24-94%) in most of the sampling months. In conclusion, the Thohoyandou WWTP is inefficient in treating wastewater to the acceptable quality before discharge.
Edokpayi, Joshua N.; Odiyo, John O.; Msagati, Titus A. M.; Popoola, Elizabeth O.
2015-01-01
Wastewater treatment facilities are known sources of fresh water pollution. This study was carried out from January to June 2014 to assess the reduction efficiency of some selected contaminants in the Thohoyandou wastewater treatment plant (WWTP). The pH and electrical conductivity of the effluent fell within the South African wastewater discharge guidelines. The WWTP showed the chemical oxygen demand reduction efficiency required by the Department of Water Affairs (DWA) guidelines of 75 mg/L for the months of April and June, although it was below this standard in March and May. Free chlorine concentration varied between 0.26–0.96 mg/L and exceeded the DWA guideline value of 0.25 mg/L. The concentration of nitrate-nitrogen (NO3− N) in the influent and effluent varied between 0.499–2.31 mg/L and 7.545–19.413 mg/L, respectively. The concentration of NO3− N in the effluent complied with DWA effluent discharge standard of 15 mg/L, except in April and May. Phosphate concentrations in the influent and effluent were in the ranges of 0.552–42.646 mg/L and 1.572–32.554 mg/L, respectively. The WWTP showed reduction efficiencies of E. coli and Enterococci during some sampling periods but the level found in the effluent exceeded the recommended guideline value of 1000 cfu/100 mL for faecal indicator organisms in wastewater effluents. Consistent removal efficiencies were observed for Al (32–74%), Fe (7–32%) and Zn (24–94%) in most of the sampling months. In conclusion, the Thohoyandou WWTP is inefficient in treating wastewater to the acceptable quality before discharge. PMID:26132481
Telis, Pamela A.
1992-01-01
Mississippi State water laws require that the 7-day, 10-year low-flow characteristic (7Q10) of streams be used as a criterion for issuing wastedischarge permits to dischargers to streams and for limiting withdrawals of water from streams. This report presents techniques for estimating the 7Q10 for ungaged sites on streams in Mississippi based on the availability of baseflow discharge measurements at the site, location of nearby gaged sites on the same stream, and drainage area of the ungaged site. These techniques may be used to estimate the 7Q10 at sites on natural, unregulated or partially regulated, and non-tidal streams. Low-flow characteristics for streams in the Mississippi River alluvial plain were not estimated because the annual lowflow data exhibit decreasing trends with time. Also presented are estimates of the 7Q10 for 493 gaged sites on Mississippi streams.Techniques for estimating the 7Q10 have been developed for ungaged sites with base-flow discharge measurements, for ungaged sites on gaged streams, and for ungaged sites on ungaged streams. For an ungaged site with one or more base-flow discharge measurements, base-flow discharge data at the ungaged site are related to concurrent discharge data at a nearby gaged site. For ungaged sites on gaged streams, several methods of transferring the 7Q10 from a gaged site to an ungaged site were developed; the resulting 7Q10 values are based on drainage area prorations for the sites. For ungaged sites on ungaged streams, the 7Q10 is estimated from a map developed for. this study that shows the unit 7Q10 (7Q10 per square mile of drainage area) for ungaged basins in the State. The mapped values were estimated from the unit 7Q10 determined for nearby gaged basins, adjusted on the basis of the geology and topography of the ungaged basins.
Alumina Refinery Wastewater Management: When Zero Discharge Just Isn't Feasible….
NASA Astrophysics Data System (ADS)
Martin, Lucy; Howard, Steven
Management and treatment of liquid effluents are determinant considerations in the design of alumina refineries. Rainfall, evaporation rate, proximity to the coast, process design and layout, ore mineralogy, the local environment, and potential impact on contiguous communities are all integral to the development of an appropriate refinery water management strategy. The goal is to achieve zero discharge of liquid effluent to the environment. However this is not always the most feasible solution under the extreme rainfall conditions in tropical and subtropical locations. This paper will explore the following issues for both inland and coastal refineries: • Methods to reduce and control refinery discharges
Meyer, Wibke; Reich, Margrit; Beier, Silvio; Behrendt, Joachim; Gulyas, Holger; Otterpohl, Ralf
2016-08-01
This study evaluated the impact of secondary municipal effluent discharge on carbamazepine, diclofenac, and metoprolol concentrations in small and medium rivers in northern Germany and compared the measured environmental concentrations (MECs) to the predicted environmental concentrations (PECs) calculated with four well-established models. During a 1-year sampling period, secondary effluent grab samples were collected at four wastewater treatment plants (WWTPs) together with grab samples from the receiving waters upstream and downstream from the wastewater discharge points. The carbamazepine, diclofenac, and metoprolol concentrations were analyzed with high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS-MS) after solid phase extraction. In the secondary effluents, 84-790 ng/L carbamazepine, 395-2100 ng/L diclofenac, and 745-5000 ng/L metoprolol were detected. The carbamazepine, diclofenac, and metoprolol concentrations analyzed in the rivers downstream from the secondary effluent discharge sites ranged from <5 to 68, 370, and 520 ng/L, respectively. Most of the downstream pharmaceutical concentrations were markedly higher than the corresponding upstream concentrations. The impact of wastewater discharge on the MECs in rivers downstream from the WWTPs was clearly demonstrated, but the correlations of the MECs with dilution factors were poor. The smallest rivers exhibited the largest maximum MECs and the widest ranges of MECs downstream from the wastewater discharge point. Three of the four tested models were conservative, as they showed higher PECs than the MECs in the rivers downstream from the WWTPs. However, the most detailed model underestimated the diclofenac concentrations.