Nitrogen removal from wastewater by an aerated subsurface-flow constructed wetland in cold climates.
Redmond, Eric D; Just, Craig L; Parkin, Gene F
2014-04-01
The objective of this study was to assess the role of cyclic aeration, vegetation, and temperature on nitrogen removal by subsurface-flow engineered wetlands. Aeration was shown to enhance total nitrogen and ammonia removal and to enhance removal of carbonaceous biochemical oxygen demand, chemical oxygen demand, and phosphorus. Effluent ammonia and total nitrogen concentrations were significantly lower in aerated wetland cells when compared with unaerated cells. There was no significant difference in nitrogen removal between planted and unplanted cells. Effluent total nitrogen concentrations ranged from 9 to 12 mg N/L in the aerated cells and from 23 to 24 mg N/L in unaerated cells. Effluent ammonia concentrations ranged from 3 to 7 mg N/L in aerated wetland cells and from 22 to 23 mg N/L in unaerated cells. For the conditions tested, temperature had only a minimal effect on effluent ammonia or total nitrogen concentrations. The tanks-in-series and the PkC models predicted the general trends in effluent ammonia and total nitrogen concentrations, but did not do well predicting short-term variability. Rate coefficients for aerated systems were 2 to 10 times greater than those for unaerated systems.
Sonntag, W.H.; McPherson, B.F.
1984-01-01
Two test discharges of treated-sewage effluent were made to the Loxahatchee River in February and September 1981 from the ENCON sewage-treatment plant to document nutrient loading and downstream transport of the effluent to the estuary under maximum daily discharge allowable by law (4 million gallons per day). Concentrations of total nitrogen in the effluent exceeded background concentrations by as much as 7 times during the February test, while concentrations of total phosphorus exceeded background concentrations by as much as 112 times during the September test. The effluent was transported downstream to the estuary in less than 24 hours. Discharge of treated sewage effluent to the river-estuary system in the 1981 water year accounted for less than 0.5 percent of the total nitrogen and 8 percent of the total phosphorus discharged from the major tributaries to the estuary. If maximum discharges of effluent (4 million gallons per day) were sustained throughout the year, annual nitrogen loading from the effluent would account for 5 to 18 percent of the total nitrogen input by the major tributaries to the estuary. With maximum discharges of effluent, annual phosphorus loading would exceed the amount of phosphorus input by the major tributaries to the estuary by 54 to 167 percent. (USGS)
Gill, L W; O'Luanaigh, N; Johnston, P M; Misstear, B D R; O'Suilleabhain, C
2009-06-01
The performance of six separate percolation areas was intensively monitored to ascertain the attenuation effects of unsaturated subsoils with respect to on-site wastewater effluent: three sites receiving septic tank effluent, the other three sites receiving secondary treated effluent. The development of a biomat across the percolation areas receiving secondary treated effluent was restricted on these sites compared to those sites receiving septic tank effluent and this created significant differences in terms of the potential nitrogen loading to groundwater. The average nitrogen loading per capita at 1.0m depth of unsaturated subsoil equated to 3.9 g total-N/d for the sites receiving secondary treated effluent, compared to 2.1 g total-N/d for the sites receiving septic tank effluent. Relatively high nitrogen loading was, however, found on the septic tank sites discharging effluent into highly permeable subsoil that counteracted any significant denitrification. Phosphorus removal was generally very good on all of the sites although a clear relationship to the soil mineralogy was determined.
Nutrient removal of effluent from quail farm through cultivation of Wolffia arrhiza.
Suppadit, T
2011-08-01
The objective of this work was to study the nutrient removal using the Wolffiaarrhiza during the treatment of laying quails farm effluent. The relationship between W. arrhiza biomass and treatment time, the change in water qualities, and nitrogen-balance (N-balance) were evaluated. The results showed that a biomass of 12.0g of W. arrhiza per liter of effluent and a treatment period of 30 days were found to provide the best conditions for W. arrhiza's growth and the quality of the treated effluent in terms of biological oxygen demand, suspended solids, total phosphorus, nitrate, total ammonia nitrogen and total Kjeldahl nitrogen. The pH and salinity were similar for each level of biomass. The W. arrhiza biomasses of 4.00-12.0g/l of effluent were suitable for W. arrhiza survival over time. Since W. arrhiza can fix N in the atmosphere, it can grow very well in effluent containing a low level of N. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fan, Lu; Brett, Michael T; Jiang, Wenju; Li, Bo
2017-10-01
The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L -1 . Nitrate (NO 3 - ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 - + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. Copyright © 2017 Elsevier Ltd. All rights reserved.
Removal of Nutrients from Septic Effluent with Re-circulated Hybrid Tidal Flow Constructed Wetland
Lihua Cui; Jigkun Feng; Ying Ouyang; Peiwen Deng
2012-01-01
Hybrid tidal flow constructed wetland (CW) with recirculation is an improved biological and engineering technique for removal of excess nutrients and certain pollutants from wastewater. This study investigated the removal efficiency of total phosphorus (TP), ammonia-nitrogen (NH3-N), and total nitrogen (TN) from septic tank effluent with the hybrid tidal flow CW system...
Mienis, Omer; Arye, Gilboa
2018-05-01
The long term behavior of total nitrogen and its components was investigated in a soil aquifer treatment system of the Dan Region Reclamation Project (Shafdan), Tel-Aviv, Israel. Use is made of the previous 40 years' secondary data for the main nitrogen components (ammonium, nitrate and organic nitrogen) in recharged effluent and observation wells located inside an infiltration basin. The wells were drilled to 106 and 67 m, both in a similar position within the basin. The transport characteristics of each nitrogen component were evaluated based on chloride travel-time, calculated by a cross-correlation between its concentration in the recharge effluent and the observation wells. Changes in the source of recharge effluent, wastewater treatment technology and recharge regime were found to be the main factors affecting turnover in total nitrogen and its components. During aerobic operation of the infiltration basins, most organic nitrogen and ammonium will be converted to nitrate. Total nitrogen removal in the upper part of the aquifer was found to be 47-63% by denitrification and absorption, and overall removal, including the lower part of the aquifer, was 49-83%. To maintain the aerobic operation of the infiltration fields, the total nitrogen load should remain below 10 mg/L. Above this limit, ammonium and organic nitrogen will be displaced into the aquifer. Copyright © 2018 Elsevier Ltd. All rights reserved.
Camargo Valero, M A; Mara, D D; Newton, R J
2010-01-01
In this work a set of experiments was undertaken in a pilot-scale WSP system to determine the importance of organic nitrogen sedimentation on ammonium and total nitrogen removals in maturation ponds and its seasonal variation under British weather conditions, from September 2004 to May 2007. The nitrogen content in collected sediment samples varied from 4.17% to 6.78% (dry weight) and calculated nitrogen sedimentation rates ranged from 273 to 2868 g N/ha d. High ammonium removals were observed together with high concentrations of chlorophyll-a in the pond effluent. Moreover, chlorophyll-a had a very good correlation with the corresponding increment of VSS (algal biomass) and suspended organic nitrogen (biological nitrogen uptake) in the maturation pond effluents. Therefore, when ammonium removal reached its maximum, total nitrogen removal was very poor as most of the ammonia taken up by algae was washed out in the pond effluent in the form of suspended solids. After sedimentation of the dead algal biomass, it was clear that algal-cell nitrogen was recycled from the sludge layer into the pond water column. Recycled nitrogen can either be taken up by algae or washed out in the pond effluent. Biological (mainly algal) uptake of inorganic nitrogen species and further sedimentation of dead biomass (together with its subsequent mineralization) is one of the major mechanisms controlling in-pond nitrogen recycling in maturation WSP, particularly when environmental and operational conditions are favourable for algal growth.
Khorsandi, Hassan; Alizadeh, Rahimeh; Tosinejad, Horiyeh; Porghaffar, Hadi
2014-01-01
In this descriptive-analytical study, nitrogenous and algal oxygen demand were assessed for effluent from a system of facultative partially mixed lagoons followed by the polishing pond using 120 grab samples over 1 year. Filtered and non-filtered samples of polishing pond effluent were tested in the presence and absence of a nitrification inhibitor. Effective factors, including 5-day biochemical and chemical oxygen demand (BOD and COD), total suspended solids (TSS), dissolved oxygen, chlorophyll A, and temperature, were measured using standard methods for water and wastewater tests. The results were analyzed using repeated measures analysis of variance with SPSS version 16. Findings show that the annual mean of the total 5-day BOD in the effluent from the polishing pond consisted of 44.92% as the algal carbonaceous biochemical oxygen demand (CBOD), 43.61% as the nitrogenous biochemical oxygen demand (NBOD), and 11.47% as the soluble CBOD. According to this study, the annual mean ratios of algal COD and 5-day algal CBOD to TSS were 0.8 and 0.37, respectively. As the results demonstrate, undertaking quality evaluation of the final effluent from the lagoons without considering nitrogenous and algal oxygen demand would undermine effluent quality assessment and interpretation of the performance of the wastewater treatment plant.
NASA Astrophysics Data System (ADS)
Cao, Jiashun; Oleyiblo, Oloche James; Xue, Zhaoxia; Otache, Y. Martins; Feng, Qian
2015-07-01
Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal (BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic (A2/O). The ASM2d implemented on the platform of WEST2011 software and the BioWin activated sludge/anaerobic digestion (AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2d parameters (the reduction factor for denitrification , the maximum growth rate of heterotrophs (µH), the rate constant for stored polyphosphates in PAOs ( q pp), and the hydrolysis rate constant ( k h)) were adjusted. Whereas three BioWin parameters (aerobic decay rate ( b H), heterotrophic dissolved oxygen (DO) half saturation ( K OA), and Y P/acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations (ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen (N-NO3), total nitrogen (TN), and total phosphorus (TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio (COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.
Pagilla, K R; Urgun-Demirtas, M; Czerwionka, K; Makinia, J
2008-01-01
The fate of N species, particularly dissolved organic nitrogen (DON), through process trains of a wastewater treatment plant (WWTP) was investigated. In this study, three fully nitrifying plants in Illinois, USA and biological nutrient removal (BNR) plants in northern Poland were sampled for N characterization in the primary and secondary effluents as a function of the particle size distribution. The correlations between dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations were examined. The key findings are that DON becomes significant portion (about 20%) of the effluent N, reaching up to 50% of effluent total N in one of the Polish plants. The DON constituted 56-95% of total ON (TON) in the secondary effluents, whereas in the Polish plants the DON contribution was substantially lower (19-62%) and in one case (Gdansk WWTP) colloidal ON was the dominating fraction (62% of TON). The DOC to DON ratio in the US plants is significantly lower than that in the receiving waters indicating potential for deterioration of receiving water quality. In Polish plants, the influent and effluent C:N ratios are similar, but not in the US plants. IWA Publishing 2008.
Evaluation of leachate dissolved organic nitrogen discharge effect on wastewater effluent quality.
Bolyard, Stephanie C; Reinhart, Debra R
2017-07-01
Nitrogen is limited more and more frequently in wastewater treatment plant (WWTP) effluents because of the concern of causing eutrophication in discharge waters. Twelve leachates from eight landfills in Florida and California were characterized for total nitrogen (TN) and dissolved organic nitrogen (DON). The average concentration of TN and DON in leachate was approximately 1146mg/L and 40mg/L, respectively. Solid-phase extraction was used to fractionate the DON based on hydrophobic (recalcitrant fraction) and hydrophilic (bioavailable fraction) chemical properties. The average leachate concentrations of bioavailable (bDON) and recalcitrant (rDON) DON were 16.5mg/L and 18.4mg/L, respectively. The rDON fraction was positively correlated, but with a low R 2 , with total leachate apparent color dissolved UV 254 , chemical oxygen demand (COD), and humic acid (R 2 equals 0.38, 0.49, and 0.40, respectively). The hydrophobic fraction of DON (rDON) was highly colored. This fraction was also associated with over 60% of the total leachate COD. Multiple leachate and wastewater co-treatment simulations were carried out to assess the effects of leachate on total nitrogen wastewater effluent quality using removals for four WWTPs under different scenarios. The calculated pass through of DON suggests that leachate could contribute to significant amounts of nitrogen discharged to aquatic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of Software Sensors for Determining Total Phosphorus and Total Nitrogen in Waters
Lee, Eunhyoung; Han, Sanghoon; Kim, Hyunook
2013-01-01
Total nitrogen (TN) and total phosphorus (TP) concentrations are important parameters to assess the quality of water bodies and are used as criteria to regulate the water quality of the effluent from a wastewater treatment plant (WWTP) in Korea. Therefore, continuous monitoring of TN and TP using in situ instruments is conducted nationwide in Korea. However, most in situ instruments in the market are expensive and require a time-consuming sample pretreatment step, which hinders the widespread use of in situ TN and TP monitoring. In this study, therefore, software sensors based on multiple-regression with a few easily in situ measurable water quality parameters were applied to estimate the TN and TP concentrations in a stream, a lake, combined sewer overflows (CSOs), and WWTP effluent. In general, the developed software sensors predicted TN and TP concentrations of the WWTP effluent and CSOs reasonably well. However, they showed relatively lower predictability for TN and TP concentrations of stream and lake waters, possibly because the water quality of stream and lake waters is more variable than that of WWTP effluent or CSOs. PMID:23307350
Silva, Bruno Garcia; Damianovic, Márcia Helena Rissato Zamariolli; Foresti, Eugenio
2018-04-20
This study assessed the simultaneous nitrification and denitrification processes and remaining organic matter removal from anaerobic reactor effluent treating wastewater in a single reactor. A structured-bed reactor, with polyurethane foam as support media, was subjected to intermittent aeration and effluent recirculation. Aerated/non-aerated periods varied in the range of 2/1-1/3 h. The chemical oxygen demand (COD) in the effluent remained between 26 and 42 mg L -1 throughout all the aeration conditions. Aeration periods of 1/2 h removed 80 and 26% of Total Kjeldahl Nitrogen and Total Nitrogen, respectively. A low solid production was observed during the 300 days of operation, resulting in a solid retention time of 139 days. The results indicate that the non-aerated periods generated alkalinity that favored nitrification, maintaining low COD concentrations in the effluent. The structured bed reactor presented a low solid production and effluent loss below 20 mgSSV L -1 , similar to concentrations obtained in secondary decanters.
DeSimone, Leslie A.; Howes, Brian Louis
1995-01-01
Hydrogeologic, water-quality, and biogeochemical data were collected at the site of a septage- treatment facility in Orleans, Massachusetts, from October 1988 through December 1992, where a nitrogen-rich effluent is discharged to the underlying glacial aquifer. The data were collected as part of a study done by the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, Office of Watershed Management, to investigate the effect of effluent discharge on ground-water quality and the transport of effluent nitrogen through the aquifer. Hydrogeologic data include lithologic logs and ground-water levels. Water-quality data include chemical analyses of the treated septage effluent, of ground water at the water table beneath the infiltration beds, and of ground water throughout the aquifer. Dissolved concentrations of dinitrogen gas, nitrous oxide, and dissolved inorganic carbon also were measured. Biogeochemical data include concentrations of total ammonium and solid-phase carbon and nitrogen in aquifer sediments and sediments from the effluent-infiltration beds.
Toyama, Tadashi; Hanaoka, Tsubasa; Tanaka, Yasuhiro; Morikawa, Masaaki; Mori, Kazuhiro
2018-02-01
To assess the potential of duckweeds as agents for nitrogen removal and biofuel feedstocks, Spirodela polyrhiza, Lemna minor, Lemna gibba, and Landoltia punctata were cultured in effluents of municipal wastewater, swine wastewater, or anaerobic digestion for 4 days. Total dissolved inorganic nitrogen (T-DIN) of 20-50 mg/L in effluents was effectively removed by inoculating with 0.3-1.0 g/L duckweeds. S. polyrhiza showed the highest nitrogen removal (2.0-10.8 mg T-DIN/L/day) and biomass production (52.6-70.3 mg d.w./L/day) rates in all the three effluents. Ethanol and methane were produced from duckweed biomass grown in each effluent. S. polyrhiza and L. punctata biomass showed higher ethanol (0.168-0.191, 0.166-0.172 and 0.174-0.191 g-ethanol/g-biomass, respectively) and methane (340-413 and 343-408 NL CH 4 /kg VS, respectively) production potentials than the others, which is related to their higher carbon and starch contents and calorific values. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Kalyuzhnyi, Sergey; Gladchenko, Marina; Epov, Andrey; Appanna, Vasu
2003-01-01
As a first step of treatment of landfill leachates (total chemical oxygen demand [COD]: 1.43-3.81 g/L; total nitrogen: 90-162 mg/L), performance of laboratory upflow anaerobic sludge bed reactors was investigated under mesophilic (30 degrees C), submesophilic (20 degrees C), and psychrophilic (10 degrees C) conditions. Under hydraulic retention times (HRTs) of about 0.3 d, when the average organic loading rates (OLRs) were about 5 g of COD/(L.d), the total COD removal accounted for 81% (on average) with the effluent concentrations close to the anaerobic biodegradability limit (0.25 g of COD/L) for mesophilic and submesophilic regimes. The psychrophilic treatment conducted under an average HRT of 0.34 d and an average OLR of 4.22 g of COD/(L.d) showed a total COD removal of 47%, giving effluents (0.75 g of COD/L) more suitable for subsequent biologic nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulfides inside the sludge bed. The application of aerobic/ anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater.
Cho, Kang-Woo; Yoon, Min-Hyuk; Song, Kyung-Guen; Ahn, Kyu-Hong
2011-01-01
The effects of antecedent dry days (ADD) on nitrogen removal efficiency were investigated in soil infiltration systems, with three distinguishable layers: mulch layer (ML), coarse soil layer (CSL) and fine soil layer (FSL). Two sets of lab-scale columns with loamy CSL (C1) and sandy CSL (C2) were dosed with synthetic run-off, carrying chemical oxygen demand of 100 mg L(-1) and total nitrogen of 13 mg L(-1). The intermittent dosing cycle was stepwise adjusted for 5, 10 and 20 days. The influent ammonium and organic nitrogen were adsorbed to the entire depth in C1, while dominantly to the FSL in C2. In both columns, the effluent ammonium concentration increased while the organic nitrogen concentration decreased, as ADD increased from 5 to 20 days. The effluent of C1 always showed nitrate concentration exceeding influent, caused by nitrification, by increasing amounts as ADD increased. However, the wash-out of nitrate in C1 was not distinct in terms of mass since the effluent flow rate was only 25% of the influent. In contrast, efficient reduction (>95%) of nitrate loading was observed in C2 under ADD of 5 and 10 days, because of insignificant nitrification in the CSL and denitrification in the FSL. However, for the ADD of 20 days, a significant nitrate wash-out appeared in C2 as well, possibly because of the re-aeration by the decreasing water content in the FSL. Consequently, the total nitrogen load escaping with the effluent was always smaller in C2, supporting the effectiveness of sandy CSL over loamy FSL for nitrogen removal under various ADDs.
Deacon, Jeffrey R.; Smith, Thor E.; Johnston, Craig M.; Moore, Richard B.; Blake, Laura J.; Weidman, Rebecca M.
2006-01-01
A study of total nitrogen concentrations and loads was conducted from December 2002 to September 2005 at 13 river sites in the upper Connecticut River Basin. Ten sites were selected to represent contributions of nitrogen from forested, agricultural, and urban land. Three sites were distributed spatially on the main stem of the Connecticut River to assess the cumulative total nitrogen loads. To further improve the understanding of the sources and concentrations and loads of total nitrogen in the upper Connecticut River Basin, ambient surface water-quality sampling was supplemented with sampling of effluent from 19 municipal and paper mill wastewater-treatment facilities. Mean concentrations of total nitrogen ranged from 0.19 to 2.8 milligrams per liter (mg/L) at river sampling sites. Instantaneous mean loads of total nitrogen ranged from 162 to 58,300 pounds per day (lb/d). Estimated mean annual loads of total nitrogen ranged from 49,100 to 21.6 million pounds per year (lb/yr) with about 30 to 55 percent of the loads being transported during the spring. The estimated mean annual yields of total nitrogen ranged from 1,190 to 7,300 pounds per square mile per year (lb/mi2)/yr. Mean concentrations of total nitrogen ranged from 4.4 to 30 mg/L at wastewater-treatment sampling sites. Instantaneous mean loads of total nitrogen from municipal wastewater-treatment facilities ranged from 36 to 1,780 lb/d. Instantaneous mean loads of total nitrogen from paper mill wastewater-treatment facilities ranged from 96 to 160 lb/d. The median concentration of total nitrogen was 0.24 mg/L at forested sites, 0.48 mg/L at agricultural sites, 0.54 mg/L at urban sites, 0.48 mg/L at main-stem sites, and 14 mg/L at wastewater-treatment sites. Concentrations of total nitrogen at forested sites were significantly less than at all other site types (p0.05) but were significantly greater (p<0.05) than at forested sites and significantly less than concentrations at wastewater-treatment sites (p<0.05). Total nitrogen concentrations at wastewater-treatment sites were significantly different from all other site types (p<0.05). Annual yields of total nitrogen ranged from 732 to 1,920 (lb/mi2)/yr at forested sites; 1,550 to 2,980 (lb/mi2)/yr at agricultural sites; 1,280 to 1,860 (lb/mi2)/yr at urban sites that were not directly affected by wastewater effluent; 7,090 to 7,770 (lb/mi2)/yr at an urban site directly affected by wastewater effluent; and 1,300 to 2,390 (lb/mi2)/yr at main-stem sites. In this study, the mean annual load and yield of total nitrogen at the Connecticut River at Wells River, VT, was estimated at 4.47 million lb/yr and 1,690 (lb/mi2)/yr, respectively. The mean annual load and yield of total nitrogen at the Connecticut River at North Walpole, NH, was estimated at 9.60 million lb/yr and 1,750 (lb/mi2)/yr, respectively. The mean annual load and yield of total nitrogen leaving the upper Connecticut River Basin, as estimated at the Connecticut River at Thompsonville, CT, was 21.6 million lb/yr and 2,230 (lb/mi2)/yr, respectively.
Giustinianovich, Elisa A; Aspé, Estrella R; Huiliñir, César E; Roeckel, Marlene D
2014-01-01
Salmon processing generates saline effluents with high protein load. To treat these effluents, three compact tubular filter reactors were installed and an integrated anoxic/anaerobic/aerobic process was developed with recycling flow from the reactor's exit to the inlet stream in order to save organic matter (OM) for denitrification. The reactors were aerated in the upper section with recycle ratios (RR) of 0, 2, and 10, respectively, at 30°C. A tubular reactor behave as a plug flow reactor when RR = 0, and as a mixed flow reactor when recycle increases, thus, different RR values were used to evaluate how it affects the product distribution and the global performance. Diluted salmon process effluent was prepared as substrate. Using loads of 1.0 kg COD m(-3)d(-1) and 0.15 kg total Kjeldahl nitrogen (TKN) m(-3)d(-1) at HRT of 2 d, 100% removal efficiencies for nitrite and nitrate were achieved in the anoxic-denitrifying section without effect of the dissolved oxygen in the recycled flow on denitrification. Removals >98% for total organic carbon (TOC) was achieved in the three reactors. The RR had no effect on the TOC removal; nevertheless a higher efficiency in total nitrogen removal in the reactor with the highest recycle ratio was observed: 94.3% for RR = 10 and 46.6% for RR = 2. Results showed that the proposed layout with an alternative distribution in a compact reactor can efficiently treat high organic carbon and nitrogen concentrations from a saline fish effluent with OM savings in denitrification.
Kalyuzhnyi, S; Gladchenko, M; Epov, A
2003-01-01
As a first step of treatment of landfill leachates (total COD--1,430-3,810 mg/l, total nitrogen 90-162 mg/l), a performance of laboratory UASB reactors has been investigated under mesophilic (30 degrees C), sub-mesophilic (20 degrees C) and psychrophilic (10 degrees C) conditions. Under hydraulic retention times (HRT) of around 7 h, when the average organic loading rates (OLR) were around 5 g COD/l/day, the total COD removal accounted for 81% (on the average) with the effluent concentrations close to anaerobic biodegradability limit (0.25 g COD/l) for mesophilic and sub-mesophilic regimes. The psychrophilic treatment conducted under the average HRT of 8 h and the average OLR of 4.22 g COD/l/day showed a total COD removal of 47% producing the effluents (0.75 g COD/l) more suitable for subsequent biological nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulphides inside the sludge bed. The application of aerobic/anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater.
2010-07-29
bedirectly catalyzed tomonosaccharidesby cellulaseswithout requiring thermochemical pretreatment , aswould typically be required with lignocellulosic ...of a similar process with lignocellulosic biomass, although such biomass would likely require ther- mochemical pretreatment prior to enzymatic...by the automatic addition of 0.1 N NaOH . Total organic carbon (TOC), ammonia nitrogen, nitrate nitrogen, nitrite nitrogen and phosphorus analyses
Cold climate performance analysis of on-site domestic wastewater treatment systems.
Williamson, Eric
2010-06-01
Household on-site septic systems with secondary wastewater treatment in Anchorage, Alaska, were sampled and analyzed for performance parameters during the winter to spring months. System types included intermittent dosing sand filters (ISF), three types of recirculating trickling filters (RTF), and suspended-growth aeration tanks. Total nitrogen from the trickling filter and aeration tank effluent was fairly uniform, at approximately 30 mg/L. Total suspended solids (TSS) means were mostly less than 15 mg/L. The 5-day biochemical oxygen demand (BODs) showed considerable variability, with means ranging from 9.2 mg/ L for ISFs up to 39.5 mg/L for one type of RTF, even though this type has shown excellent results in several test programs. The data suggested that effluent temperature within the sample range had almost no effect on effluent concentrations of BOD5 or TSS and only a small effect on the removal of total nitrogen. Non-climatic factors were probably of equal importance to treatment results.
Code of Federal Regulations, 2013 CFR
2013-07-01
... application of the best available technology economically achievable (BAT). 432.23 Section 432.23 Protection... limitations attainable by the application of the best available technology economically achievable (BAT... effluent limitations representing the application of BAT: Limitations for ammonia (as N) and total nitrogen...
Code of Federal Regulations, 2012 CFR
2012-07-01
... application of the best available technology economically achievable (BAT). 432.23 Section 432.23 Protection... limitations attainable by the application of the best available technology economically achievable (BAT... effluent limitations representing the application of BAT: Limitations for ammonia (as N) and total nitrogen...
Code of Federal Regulations, 2012 CFR
2012-07-01
... application of the best available technology economically achievable (BAT). 432.43 Section 432.43 Protection... limitations attainable by the application of the best available technology economically achievable (BAT... effluent limitations representing the application of BAT: Limitations for ammonia (as N) and total nitrogen...
Code of Federal Regulations, 2014 CFR
2014-07-01
... application of the best available technology economically achievable (BAT). 432.43 Section 432.43 Protection... limitations attainable by the application of the best available technology economically achievable (BAT... effluent limitations representing the application of BAT: Limitations for ammonia (as N) and total nitrogen...
Code of Federal Regulations, 2014 CFR
2014-07-01
... application of the best available technology economically achievable (BAT). 432.23 Section 432.23 Protection... limitations attainable by the application of the best available technology economically achievable (BAT... effluent limitations representing the application of BAT: Limitations for ammonia (as N) and total nitrogen...
Code of Federal Regulations, 2013 CFR
2013-07-01
... application of the best available technology economically achievable (BAT). 432.43 Section 432.43 Protection... limitations attainable by the application of the best available technology economically achievable (BAT... effluent limitations representing the application of BAT: Limitations for ammonia (as N) and total nitrogen...
Effects of effluent spray irrigation on ground water at a test site near Tarpon Springs, Florida
Brown, D.P.
1982-01-01
Secondary-treated effluent was applied to a 7.2-acre test site near Tarpon Springs, Fla., for about 1 year at an average rate of 0.06 million gallons per day and 3 years at 0.11 million gallons per day. Chemical fertilizer was applied periodically to the test site and adjacent areas. Periodic mounding of the water table occurred due to effluent irrigation, inducing radial flow from the test site. Physical, geochemical, biochemical processes effectively reduced total nitrogen concentration 90% and total phosphorous concentration more than 95% in the ground water of the surficial aquifer about 300 feet downgradient from the test site from that of the applied effluent. Downgradient, total nitrogen averaged 2.4 milligrams per liter and total phosphorus averaged 0.17 milligrams per liter. Substantial increases in total phosphorus were observed when the pH of the ground water increased. Total coliform bacteria in the ground water of the surficial aquifer were generally less than 100 colonies per 100 milliliters. Fecal coliform bacteria were generally less than 25 colonies per 100 milliliters at the test site and were not detected downgradient or near the test site. Fecal streptococcal bacteria were generally less than 100 colonies per 100 milliliters at the test site, but were detected on three occasions near the test site. (USGS)
Controlling sludge settleability in the oxidation ditch process.
Hartley, K J
2008-03-01
This paper describes an investigation aimed at developing an operating technique for controlling sludge settleability in the oxidation ditch form of the nitrification denitrification activated sludge process. It was hypothesized that specific sludge volume index (SSVI) is lowest at an optimum process anoxic fraction and increases at higher and lower fractions. Using effluent ammonia:nitrate ratio as a surrogate for anoxic fraction, it was found that a simple empirical model based on a three solids retention time moving average nitrogen ratio was able to replicate the long-term SSVI variations in two independent oxidation ditches at a full-scale plant. Operating data from a second oxidation ditch plant during periods when a prefermenter was on- or off-line showed that SSVI also varies with RBCOD, greater RBCOD giving lower SSVI. It was concluded that best settleability occurs at about the same anoxic fraction as lowest effluent total nitrogen concentration, with an ammonia:nitrate ratio of about 1. An operating rule of thumb is to use dissolved oxygen control to maintain effluent ammonia and nitrate nitrogen concentrations about equal. A third oxidation ditch plant deliberately operated in this manner achieved 15-month median operating values for SSVI of 60mL/g and for effluent ammonia, nitrate and total N, respectively, of 0.2, 0.3 and 2.0mgN/L.
Comparison between UV and VUV photolysis for the pre- and post-treatment of coking wastewater.
Xing, Rui; Zheng, Zhongyuan; Wen, Donghui
2015-03-01
In this study, ultraviolet (UV) and vacuum ultraviolet (VUV) photolysis were investigated for the pre-treatment and post-treatment of coking wastewater. First, 6-fold diluted raw coking wastewater was irradiated by UV and VUV. It was found that 15.9%-35.4% total organic carbon (TOC) was removed after 24 hr irradiation. The irradiated effluent could be degraded by the acclimated activated sludge. Even though the VUV photolysis removed more chemical oxygen demand (COD) than UV, the UV-irradiated effluent demonstrated better biodegradability. After 4 hr UV irradiation, the biological oxygen demand BOD5/COD ratio of irradiated coking wastewater increased from 0.163 to 0.224, and its toxicity decreased to the greatest extent. Second, the biologically treated coking wastewater was irradiated by UV and VUV. Both of them were able to remove 37%-47% TOC within 8 hr irradiation. Compared to UV, VUV photolysis could significantly improve the transparency of the bio-treated effluent. VUV also reduced 7% more ammonia nitrogen (NH4+-N), 17% more nitrite nitrogen (NO2--N), and 18% more total nitrogen (TN) than UV, producing 35% less nitrite nitrogen (NO3--N) as a result. In conclusion, UV irradiation was better in improving the biodegradability of coking wastewater, while VUV was more effective at photolyzing the residual organic compounds and inorganic N-species in the bio-treated effluent. Copyright © 2015. Published by Elsevier B.V.
Microalgae-activated sludge treatment of molasses wastewater in sequencing batch photo-bioreactor.
Tsioptsias, Costas; Lionta, Gesthimani; Samaras, Petros
2017-05-01
The aim of this work was the examination of the treatment potential of molasses wastewater, by the utilization of activated sludge and microalgae. The systems used included a sequencing batch bioreactor and a similar photo-bioreactor, favoring microalgae growth. The microalgae treatment of molasses wastewater mixture resulted in a considerable reduction in the total nitrogen content. A reduction in the ammonium and nitrate content was observed in the photo-bioreactor, while the effluent's total nitrogen consisted mainly of 50% organic nitrogen. The transformation of the nitrogen forms in the photo-bioreactor was attributed to microalgae activity, resulting in the production of a better quality effluent. Lower COD removal was observed for the photo-bioreactor than the control, which however increased, by the replacement of the anoxic phase by a long aeration period. The mechanism of nitrogen removal included both the denitrification process during the anoxic stage and the microalgae activities, as the replacement of the anoxic stage resulted in low total nitrogen removal capacities. A decrease in the photobioreactor performance was observed after 35 days of operation due to biofilm formation on the light tube surface, while the operation at higher temperature accelerated microalgae growth, resulting thus in the early failure of the photoreactor.
Healy, M G; Rodgers, M; Mulqueen, J
2007-06-01
A stratified sand filter column, operated in recirculation mode and treating synthetic effluent resembling high-strength dairy wastewaters was studied over a 342-d duration. The aim of this paper was to examine the organic, total suspended solids (TSS) and nutrient removal rates of the sand filter, operated in recirculation mode, under incrementally increasing hydraulic and organic loading rates and to propose a field filter-sizing criterion. Best performance was obtained at a system hydraulic loading rate of 10 L m(-2) d(-1); a higher system hydraulic loading rate (of 13.4 L m(-2) d(-1)) caused surface ponding. The system hydraulic loading rate of 10 L m(-2) d(-1) gave a filter chemical oxygen demand (COD), TSS, and total kjeldahl nitrogen (TKN) loading rate of 14, 3.7, and 2.1 g m(-2) d(-1), respectively, and produced consistent COD and TSS removals of greater than 99%, and an effluent NO(3)-N concentration of 42 mg L(-1) (accounting for an 86% reduction in total nitrogen (Tot-N)). As the proportional surface area requirement for the sand filter described in this study is less than the recommended surface area requirement of a free-water surface (FWS) wetland treating an effluent of similar quality, it could provide an economic and sustainable alternative to conventional wetland treatment.
NASA Astrophysics Data System (ADS)
Soo, Chen-Lin; Ling, Teck-Yee; Lee, Nyanti; Apun, Kasing
2016-03-01
The concentrations of nutrients (nitrogen and phosphorus), total metals, and fecal coliform (FC) coupling with chlorophyll- a (chl- a), 5-day biochemical oxygen demand (BOD5) and other general environmental parameters were evaluated at the sub-surface and near-bottom water columns of 13 stations in the Sibu Laut River during low and high slack waters. The results indicated that inorganic nitrogen (mainly nitrate) was the primary form of nitrogen whereas organic phosphorus was the major form of phosphorus. The abundance of total heavy metals in Sibu Laut River and its tributaries was in the order of Pb < Cu < Zn < Cd. Fecal coliform concentration was relatively low along Sibu Laut River. The shrimp farm effluents contributed a substantial amount of chl- a, BOD5, nutrients, and FC to the receiving creek except for total metals. Nevertheless, the influence was merely noticeable in the intake creek and amended rapidly along Selang Sibu River and brought minimal effects on the Sibu Laut River. Besides, the domestic sewage effluents from villages nearby also contributed a substantial amount of pollutants.
Performance of hybrid constructed wetland systems for treating septic tank effluent.
Cui, Li-hua; Liu, Wen; Zhu, Xi-zhen; Ma, Mei; Huang, Xi-hua; Xia, Yan-yang
2006-01-01
The integrated wetland systems were constructed by combining horizontal-flow and vertical-flow bed, and their purification efficiencies for septic tank effluent were detected when the hydraulic retention time (HRT) was 1 d, 3 d, 5 d under different seasons. The results showed that the removal efficiencies of the organics, phosphorus were steady in the hybrid systems, but the removal efficiency of total nitrogen was not steady due to high total nitrogen concentration in the septic tank effluent. The average removal rates of COD (chemical oxygen demand) were 89%, 87%, 83%, and 86% in summer, autumn, winter and spring, respectively, and it was up to 88%, 85%, 73%, and 74% for BOD5 (5 d biochemical oxygen demand) removal rate in four seasons. The average removal rates of TP (total phosphorous) could reach up to 97%, 98%, 95%, 98% in four seasons, but the removal rate of TN (total nitrogen) was very low. The results of this study also indicated that the capability of purification was the worst in winter. Cultivating with plants could improve the treated effluent quality from the hybrid systems. The results of the operation of the horizontal-flow and vertical-flow cells (hybrid systems) showed that the removal efficiencies of the organics, TP and TN in horizontal-flow and vertical-flow cells were improved significantly with the extension of HRT under the same season. The removal rate of 3 d HRT was obviously higher than that of 1 d HRT, and the removal rate of 5 d HRT was better than that of 3 d HRT, but the removal efficiency was not very obvious with the increment of HRT. Therefore, 3 d HRT might be recommended in the actual operation of the hybrid systems for economic and technical reasons.
Hama, T; Aoki, T; Osuga, K; Sugiyama, S; Iwasaki, D
2012-01-01
Japanese paddy rice systems commonly adopt the rotation of vegetables, wheat and soybeans with paddy rice. Crop rotation may, however, increase the nutrient load in effluent discharged from the district because more fertilizer is applied to the rotation crops than is applied to paddy crops. We investigated a paddy-field district subject to collective crop rotation and quantified the annual nutrient load of effluent from the district in three consecutive years. The total annual exports of nitrogen and phosphorus over the investigation period ranged from 30.3 to 40.6 kg N ha(-1) and 2.62 to 3.13 kg P ha(-1). The results suggest that rotation cropping increases the effluent nutrient load because applied fertilizer is converted to nitrate, and surface runoff is increased due to the absence of shuttering boards at the field outlets.
Salame, Clara; Eaton, Simon; Grimble, George; Davenport, Andrew
2018-04-28
Muscle wasting is associated with increased mortality and is commonly reported in dialysis patients. Hemodialysis (HD) and peritoneal dialysis (PD) treatments lead to protein losses in effluent dialysate. We wished to determine whether changes in current dialysis practice had increased therapy-associated nitrogen losses. Cross-sectional cohort study. Measurement of total protein, urea and total nitrogen in effluent dialysate from 24-hour collections from PD patients, and during haemodiafiltration (HDF) and haemodialysis (HD) sessions. One hundred eight adult dialysis patients. Peritoneal dialysis, high-flux haemodialysis and haemodiafiltration. Total nitrogen and protein losses. Dialysate protein losses were measured in 68 PD and 40 HD patients. Sessional losses of urea (13.9 [9.2-21.1] vs. 4.8 [2.8-7.8] g); protein (8.6 [7.2-11.1] vs. 6.7 [3.9-11.1] g); and nitrogen (11.5 [8.7-17.7] vs. 4.9 [2.6-9.5] g) were all greater for HD than PD, P < .001. Protein-derived nitrogen was 71.9 (54.4-110.4) g for HD and 30.8 (16.1-59.6) g for PD. Weekly protein losses were lower with HD 25.9 (21.5-33.4) versus 46.6 (27-77.6) g/week, but nitrogen losses were similar. We found no difference between high-flux HD and HDF: urea (13.5 [8.8-20.6] vs. 15.3 [10.5-25.5] g); protein (8.8 [7.3-12.2] vs. 7.6 [5.8-9.0] g); and total nitrogen (11.6 [8.3-17.3] vs. 10.8 [8.9-22.5] g). Urea nitrogen (UN) only accounted for 45.1 (38.3-51.0)% PD and 63.0 (55.3-62.4)% HD of total nitrogen losses. Although sessional losses of protein and UN were greater with HD, weekly losses were similar between modalities. We found no differences between HD and HDF. However, total nitrogen losses were much greater than the combination of protein and UN, suggesting greater nutritional losses with dialysis than previously reported. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Hazen, T C; Esch, G W
1983-01-01
The density of Aeromonas hydrophila, standard count bacteria, fecal coliform bacteria, and 18 physical and chemical parameters were measured simultaneously at six sites for 12 months in Albemarle Sound, N.C. One site was above and two sites were below the discharge plume of a Kraft pulping process paper mill. The fourth site was above and the remaining two sites were below the discharge point of a nitrogen fertilizer factory. The impact of the pulp mill on water quality was acute, whereas that of the nitrogen fertilizer factory was chronic and much more subtle. Diffusion chamber studies indicated that A. hydrophila survival is increased by pulp mill effluent and decreased by nitrogen fertilizer factory effluent. From correlation and regression analysis, A. hydrophila was found to be directly affected by phytoplankton density and, thus, indirectly by concentrations of phosphate, nitrate, and total organic carbon. These two point sources are suspect as indirect causes of red-sore disease epizootics, a disease of fish caused by A. hydrophila. PMID:6297393
Evaluation of the performance of the Tyson Foods wastewater treatment plant for nitrogen removal.
Ubay-Cokgor, E; Randall, C W; Orhon, D
2005-01-01
In this paper, the performance of the Tyson Foods wastewater treatment plant with an average flow rate of 6500 m3/d was evaluated before and after upgrading of the treatment system for nitrogen removal. This study was also covered with an additional recommendation of BIOWIN BNR program simulation after the modification period to achieve an additional nutrient removal. The results clearly show that the upgrading was very successful for improved nitrogen removal, with a 57% decrease on the total nitrogen discharge. There also were slight reductions in the discharged loads of biological oxygen demand, total suspended solids, ammonium and total phosphorus with denitrification, even though the effluent flow was higher during operation of the nitrogen removal configuration.
Liu, Zhiguo; Stromberg, David; Liu, Xuming; Liao, Wei; Liu, Yan
2015-03-21
A new multiple-stage treatment process was developed via integrating electrocoagulation with biogas pumping to simultaneously reclaim anaerobic digestion effluent and clean up biogas. The 1st stage of electrocoagulation treatment under the preferred reaction condition led to removal efficiencies of 30%, 81%, 37% and >99.9% for total solids, chemical oxygen demand, total nitrogen and total phosphorus, respectively. Raw biogas was then used as a reactant and pumped into the effluent to simultaneously neutralize pH of the effluent and remove H2S in the biogas. The 2nd stage of electrocoagulation treatment on the neutralized effluent showed that under the selected reaction condition, additional 60% and 10% of turbidity and chemical oxygen demand were further removed. The study concluded a dual-purpose approach for the first time to synergistically combine biogas purification and water reclamation for anaerobic digestion system, which well addresses the downstream challenges of anaerobic digestion technology. Copyright © 2014 Elsevier B.V. All rights reserved.
Efficient Utilization of Waste Carbon Source for Advanced Nitrogen Removal of Landfill Leachate
Yin, Wenjun; Tan, Fengxun
2017-01-01
A modified single sequencing batch reactor (SBR) was developed to remove the nitrogen of the real landfill leachate in this study. To take the full advantage of the SBR, stir phase was added before and after aeration, respectively. The new mechanism in this experiment could improve the removal of nitrogen efficiently by the utilization of carbon source in the raw leachate. This experiment adopts the SBR process to dispose of the real leachate, in which the COD and ammonia nitrogen concentrations were about 3800 mg/L and 1000 mg/L, respectively. Results showed that the removal rates of COD and total nitrogen were above 85% and 95%, respectively, and the effluent COD and total nitrogen were less than 500 mg/L and 40 mg/L under the condition of not adding any carbon source. Also, the specific nitrogen removal rate was 1.48 mgN/(h·gvss). In this process, polyhydroxyalkanoate (PHA) as a critical factor for the highly efficient nitrogen removal (>95%) was approved to be the primary carbon source in the sludge. Because most of the organic matter in raw water was used for denitrification, in the duration of this 160-day experiment, zero discharge of sludge was realized when the effluent suspended solids were 30–50 mg/L. PMID:29435456
Code of Federal Regulations, 2010 CFR
2010-07-01
... SOURCE CATEGORY Oxygen and Nitrogen Production Subcategory § 415.492 Effluent limitations guidelines... available (BPT): Subpart AW—Oxygen and Nitrogen Pollution or pollutant property BPT effluent limitations...
Code of Federal Regulations, 2013 CFR
2013-07-01
... SOURCE CATEGORY Oxygen and Nitrogen Production Subcategory § 415.492 Effluent limitations guidelines... available (BPT): Subpart AW—Oxygen and Nitrogen Pollution or pollutant property BPT effluent limitations...
Code of Federal Regulations, 2014 CFR
2014-07-01
... SOURCE CATEGORY Oxygen and Nitrogen Production Subcategory § 415.492 Effluent limitations guidelines... available (BPT): Subpart AW—Oxygen and Nitrogen Pollution or pollutant property BPT effluent limitations...
Code of Federal Regulations, 2012 CFR
2012-07-01
... SOURCE CATEGORY Oxygen and Nitrogen Production Subcategory § 415.492 Effluent limitations guidelines... available (BPT): Subpart AW—Oxygen and Nitrogen Pollution or pollutant property BPT effluent limitations...
Code of Federal Regulations, 2011 CFR
2011-07-01
... SOURCE CATEGORY Oxygen and Nitrogen Production Subcategory § 415.492 Effluent limitations guidelines... available (BPT): Subpart AW—Oxygen and Nitrogen Pollution or pollutant property BPT effluent limitations...
Ingildsen, P; Olsson, G; Yuan, Z
2002-01-01
An operational space map is an efficient tool to compare a large number of operational strategies to find an optimal choice of setpoints based on a multicriterion. Typically, such a multicriterion includes a weighted sum of cost of operation and effluent quality. Due to the relative high cost of aeration such a definition of optimality result in a relatively high fraction of the effluent total nitrogen in the form of ammonium. Such a strategy may however introduce a risk into operation because a low degree of ammonium removal leads to a low amount of nitrifiers. This in turn leads to a reduced ability to reject event disturbances, such as large variations in the ammonium load, drop in temperature, the presence of toxic/inhibitory compounds in the influent etc. Hedging is a risk minimisation tool, with the aim to "reduce one's risk of loss on a bet or speculation by compensating transactions on the other side" (The Concise Oxford Dictionary (1995)). In wastewater treatment plant operation hedging can be applied by choosing a higher level of ammonium removal to increase the amount of nitrifiers. This is a sensible way to introduce disturbance rejection ability into the multi criterion. In practice, this is done by deciding upon an internal effluent ammonium criterion. In some countries such as Germany, a separate criterion already applies to the level of ammonium in the effluent. However, in most countries the effluent criterion applies to total nitrogen only. In these cases, an internal effluent ammonium criterion should be selected in order to secure proper disturbance rejection ability.
Santhana Kumar, V; Pandey, P K; Anand, Theivasigamani; Bhuvaneswari, G Rathi; Dhinakaran, A; Kumar, Saurav
2018-06-01
Biofloc technology was evaluated with a view to analyse utilization of nitrogenous waste from the effluent and to improve water quality and growth parameters of Penaeus vannamei in intensive culture system. The experiment was carried out in two different treatment outdoor earthen ponds of 0.12 ha, one supplemented with carbon source (molasses, wheat and sugar) for biofloc formation and other was feed based control pond with a stocking density of 60 animals m -2 in duplicate for 120 days. Water, sediment and P. vannamei were sampled at regular intervals from the both set of ponds for evaluating physico-chemical parameters, nitrogen content and growth parameters, respectively. A significant reduction in the concentration of total ammonia nitrogen (TAN) and nitrite (NO 2 -N) were found in the biofloc pond than that of control pond. A significant low level of nitrogen was recorded in the effluents of biofloc pond in comparison to the control. In biofloc system, a significantly elevated heterotrophic bacterial count along with reduction in total Vibrio count was noticed. A significant improvement in the feed conversion efficiency (FCR) and growth parameters of P. vannamei was noticed in the biofloc pond. Growth of P. vannamei in the biofloc pond showed positive allometric pattern with an increased survival. The microbial biomass grown in biofloc consumes toxic inorganic nitrogen and converts it into useful protein, making it available for the cultured shrimp. This improved FCR and reduced the discharge of nitrogenous waste into adjacent environment, making intensive shrimp farming an eco-friendly enterprise. Copyright © 2018 Elsevier Ltd. All rights reserved.
De, Mriganka; Toor, Gurpal S
2016-11-01
Septic systems can be a major source of nitrogen (N) in shallow groundwater. We designed an in situ engineered drainfield with aerobic-anaerobic (sand-woodchips) and anaerobic (elemental sulfur-oyster shell) media to remove N in the vadose zone and reduce N transport to groundwater. Effluent was dispersed on top of the engineered drainfield (3.72 m infiltrative surface) and then infiltrated through the aerobic-anaerobic and anaerobic media before reaching natural soil. Water samples were collected over 64 sampling events (May 2012-December 2013) from three parts of the drainfield: (i) a suction cup lysimeter installed at the sand-woodchips interface, (ii) a pipe after effluent passed through the aerobic-anaerobic media, and (iii) a tank containing anaerobic media. In the effluent, most of the total N (66 mg L) was present as NH-N (88.8%), whereas at the sand-woodchips interface the dominant N form was NO-N (31 mg L; 85% of total N). As the effluent passed through the aerobic-anaerobic media in the drainfield, heterotrophic denitrification reduced NO-N to 5.4 mg L. In the tank containing anaerobic media, autotrophic denitrification, facilitated by elemental sulfur, further reduced NO-N to 1 mg L. Overall, 90% of total added N was removed as the effluent passed through the aerobic-anaerobic and anaerobic media within the engineered drainfield. We conclude that the use of multiple electron donors from external media (sand-woodchips and elemental sulfur-oyster shell) was effective at removing N in the engineered drainfield and will reduce the risk of groundwater N contamination from septic systems in areas with shallow groundwater. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Foster, Guy M.; Poulton, Barry C.; Paxson, Chelsea R.; Harris, Theodore D.
2014-01-01
Indian Creek is one of the most urban drainage basins in Johnson County, Kansas, and environmental and biological conditions of the creek are affected by contaminants from point and other urban sources. The Johnson County Douglas L. Smith Middle Basin (hereafter referred to as the “Middle Basin”) and Tomahawk Creek Wastewater Treatment Facilities (WWTFs) discharge to Indian Creek. In summer 2010, upgrades were completed to increase capacity and include biological nutrient removal at the Middle Basin facility. There have been no recent infrastructure changes at the Tomahawk Creek facility; however, during 2009, chemically enhanced primary treatment was added to the treatment process for better process settling before disinfection and discharge with the added effect of enhanced phosphorus removal. The U.S. Geological Survey, in cooperation with Johnson County Wastewater, assessed the effects of wastewater effluent on environmental and biological conditions of Indian Creek by comparing two upstream sites to four sites located downstream from the WWTFs using data collected during June 2004 through June 2013. Environmental conditions were evaluated using previously and newly collected discrete and continuous data and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This study improves the understanding of the effects of wastewater effluent on stream-water and streambed sediment quality, biological community composition, and ecosystem function in urban areas. After the addition of biological nutrient removal to the Middle Basin WWTF in 2010, annual mean total nitrogen concentrations in effluent decreased by 46 percent, but still exceeded the National Pollutant Discharge Elimination System (NPDES) wastewater effluent permit concentration goal of 8.0 milligrams per liter (mg/L); however, the NPDES wastewater effluent permit total phosphorus concentration goal of 1.5 mg/L or less was achieved at the Middle Basin WWTF. At the Tomahawk Creek WWTF, after the addition of chemically enhanced primary treatment in 2009, effluent discharges also had total phosphorus concentrations below 1.5 mg/L. After the addition of biological nutrient removal, annual total nitrogen and phosphorus loads from the Middle Basin WWTF decreased by 42 and 54 percent, respectively, even though effluent volume increased by 11 percent. Annual total phosphorus loads from the Tomahawk Creek WWTF after the addition of chemically enhanced primary treatment decreased by 54 percent despite a 33-percent increase in effluent volume. Total nitrogen and phosphorus from the WWTFs contributed between 30 and nearly 100 percent to annual nutrient loads in Indian Creek depending on streamflow conditions. In-stream total nitrogen primarily came from wastewater effluent except during years with the highest streamflows. Most of the in-stream total phosphorus typically came from effluent during dry years and from other urban sources during wet years. During 2010 through 2013, annual mean discharge from the Middle Basin WWTF was about 75 percent of permitted design capacity. Annual nutrient loads likely will increase when the facility is operated at permitted design capacity; however, estimated maximum annual nutrient loads from the Middle Basin WWTF were 27 to 38 percent lower than before capacity upgrades and the addition of biological nutrient removal to treatment processes. Thus, the addition of biological nutrient removal to the Middle Basin wastewater treatment process should reduce overall nutrient loads from the facility even when the facility is operated at permitted design capacity. The effects of wastewater effluent on the water quality of Indian Creek were most evident during below-normal and normal streamflows (about 75 percent of the time) when wastewater effluent represented about 24 percent or more of total streamflow. Wastewater effluent had the most substantial effect on nutrient concentrations in Indian Creek. Total and inorganic nutrient concentrations at the downstream sites during below-normal and normal streamflows were 10 to 100 times higher than at the upstream sites, even after changes in treatment practices at the WWTFs. Median total phosphorus concentrations during below-normal and normal streamflows at a downstream site were 43 percent lower following improvements in wastewater treatment processes. Similar decreases in total nitrogen were not observed, likely because total nitrogen concentrations only decreased in Middle Basin effluent and wastewater contributed a higher percentage to streamflows when nutrient samples were collected during the after-upgrade period. The wastewater effluent discharges to Indian Creek caused changes in stream-water quality that may affect biological community structure and ecosystem processes, including higher concentrations of bioavailable nutrients (nitrate and orthophosphorus) and warmer water temperatures during winter months. Other urban sources of contaminants also caused changes in stream-water quality that may affect biological community structure and ecosystem processes, including higher turbidities downstream from construction areas and higher specific conductance and chloride concentrations during winter months. Chloride concentrations exceeded acute and chronic exposure criteria at all Indian Creek study sites, regardless of wastewater influence, for weeks or months during winter. Streambed sediment chemistry was affected by wastewater (elevated nutrient and organic wastewater-indicator compound concentrations) and other contaminants from urban sources (elevated polyaromatic hydrocarbon concentrations). Overall habitat conditions were suboptimal or marginal at all sites; general decline in habitat conditions along the upstream-downstream gradient likely was caused by the cumulative effects of urbanization with increasing drainage basin size. Wastewater effluent likely affected algal periphyton biomass and community composition, primary production, and community respiration in Indian Creek. Functional stream health, evaluated using a preliminary framework based on primary production and community respiration, was mildly or severely impaired at most downstream sites relative to an urban upstream Indian Creek site. The mechanistic cause of the changes in these biological variables are unclear, though elevated nutrient concentrations were positively correlated with algal biomass, primary production, and community respiration. Macroinvertebrate communities indicated impairment at all sites, and Kansas Department of Health and Environment aquatic life support scores indicated conditions nonsupporting of aquatic life, regardless of wastewater influences. Urban influences, other than wastewater effluent discharge, likely control macroinvertebrate community structure in Indian Creek. Changes in treatment processes at the Middle Basin and Tomahawk Creek WWTFs improved wastewater effluent quality and decreased nutrient loads, but wastewater effluent discharges still had negative effects on the environmental and biological conditions at downstream Indian Creek sites. Wastewater effluent discharge into Indian Creek likely contributed to changes in measures of ecosystem structure (streamflow, water and streambed-sediment chemistry, algal biomass, and algal periphyton community composition) and function (primary production and community respiration) along the upstream-downstream gradient. Wastewater effluent discharges maintained streamflows and increased nutrient concentrations, algal biomass, primary production, and community respiration at the downstream sites. Functional stream health was severely impaired downstream from the Middle Basin WWTF and mildly impaired downstream from the Tomahawk WWTF relative to the urban upstream site. As distance from the Middle Basin WWTF increased, nutrient concentrations, algal biomass, primary production, and community respiration decreased, and functional stream health was no longer impaired 9.5 kilometers downstream from the discharge relative to the urban upstream site. Therefore, although wastewater effluent caused persistent changes in environmental and biological conditions and functional stream health at sites located immediately downstream from WWTF effluent discharges, some recovery to conditions more similar to the urban upstream site occurred within a relatively short distance.
Jiang, Ying-He; Liu, Pei-Ju; Wang, Lei; Tian, Zhong-Kai; Liu, Xiao-Ying
2014-04-01
By building the mass balance of nitrogen in A2/O process, the nitrogen model which raised some strategies on how to control sludge return ratio and mixed liquid return ratio to make the effluent nitrogen achieve the national standard A under different influent total nitrogen (TN) , was set up. And the presumed parameters were verified by the pilot test of the Wuhan's Longwangzui WWTP. The result showed that when the temperature and the TN were over 15 degrees C and below 30 mg x L(-1) respectively, the mixed liquid return ratio was 0. When the temperature was between 10 degrees C and 15 degrees C and TN was over 30 mg x L(-1), higher MLSS and DO elevated N removal. When the temperature was far below 10 degrees C, the mixed liquid return ratio was also at a higher level. Based on the Wuhan's Longwangzui WWTP influent water quality, measures of adjusting the return ratio were well adapted to obtain acceptable nitrogen effluent.
Onsite wastewater nitrogen reduction with expanded media and elemental sulfur biofiltration.
Smith, D P
2012-01-01
A passive biofiltration process has been developed to enhance nitrogen removal from onsite sanitation water. The system employs an initial unsaturated vertical flow biofilter with expanded clay media (nitrification), followed in series by a horizontal saturated biofilter for denitrification containing elemental sulfur media as electron donor. A small-scale prototype was operated continuously over eight months on primary wastewater effluent with total nitrogen (TN) of 72.2 mg/L. The average hydraulic loading to the unsaturated biofilter surface was 11.9 cm/day, applied at a 30 min dosing cycle. Average effluent TN was 2.6 mg/L and average TN reduction efficiency was 96.2%. Effluent nitrogen was 1.7 mg/L as organic N, 0.93 mg/L as ammonium (NH(4)-N), and 0.03 as oxidized (NO(3) + NO(2)) N. There was no surface clogging of unsaturated media, nitrate breakthrough, or replenishment of sulfur media over eight months. Visual and microscopic examinations revealed substantially open pores with limited material accumulation on the upper surface of the unsaturated media. Material accumulation was observed at the inlet zone of the denitrification biofilter, and sulfur media exhibited surface cavities consistent with oxidative dissolution. Two-stage biofiltration is a simple and resilient system for achieving high nitrogen reductions in onsite wastewater.
Desimone, Leslie A.; Howes, Brian L.
1998-01-01
Nitrogen transport and transformations were followed over the initial 3 years of development of a plume of wastewater-contaminated groundwater in Cape Cod, Massachusetts. Ammonification and nitrification in the unsaturated zone and ammonium sorption in the saturated zone were predominant, while loss of fixed nitrogen through denitrification was minor. The major effect of transport was the oxidation of discharged organic and inorganic forms to nitrate, which was the dominant nitrogen form in transit to receiving systems. Ammonification and nitrification in the unsaturated zone transformed 16–19% and 50–70%, respectively, of the total nitrogen mass discharged to the land surface during the study but did not attenuate the nitrogen loading. Nitrification in the unsaturated zone also contributed to pH decrease of 2 standard units and to an N2O increase (46–660 µg N/L in the plume). Other processes in the unsaturated zone had little net effect: Ammonium sorption removed <1% of the total discharged nitrogen mass; filtering of particulate organic nitrogen was less than 3%; ammonium and nitrate assimilation was less than 6%; and ammonia volatilization was less than 0.25%. In the saturated zone a central zone of anoxic groundwater (DO ≤ 0.05 mg/L) was first detected 17 months after effluent discharge to the aquifer began, which expanded at about the groundwater-flow velocity. Although nitrate was dominant at the water table, the low, carbon-limited rates of denitrification in the anoxic zone (3.0–9.6 (ng N/cm3)/d) reduced only about 2% of the recharged nitrogen mass to N2. In contrast, ammonium sorption in the saturated zone removed about 16% of the recharged nitrogen mass from the groundwater. Ammonium sorption was primarily limited to anoxic zone, where nitrification was prevented, and was best described by a Langmuir isotherm in which effluent ionic concentrations were simulated. The initial nitrogen load discharged from the groundwater system may depend largely on the growth and stability of the sorbed ammonium pool, which in turn depends on effluent-loading practices, subsurface microbial processes, and saturation of available exchange sites.
Welz, P J; Holtman, G; Haldenwang, R; le Roes-Hill, M
2016-11-01
Wineries generate 0.2 to 4 L of wastewater per litre of wine produced. Many cellars make use of irrigation as a means of disposal, either directly or after storage. In order to consider the potential downstream impacts of storage/no storage, this study critically compared the seasonal organic and inorganic composition of fresh winery effluent with effluent that had been stored in waste stabilisation ponds. Ethanol and short chain volatile fatty acids were the main contributors to chemical oxygen demand (COD), with average concentrations of 2,086 and 882 mgCOD/L, respectively. Total phenolics were typically present in concentrations <100 mg/L. The concentration of sodium from cleaning agents was higher in the non-crush season, while the converse was true for organics. The effluent was nitrogen-deficient for biological treatment, with COD:N ratios of 0.09 to 1.2. There was an accumulation of propionic and butyric acid during storage. The composition of the pond effluent was more stable in character, and it is possible that bacterial and algal nitrogen fixation in such systems may enhance biological wastewater treatment by natural nitrogen supplementation. It is therefore recommended that if land requirements can be met, winery effluent should be stored in ponds prior to treatment.
NASA Astrophysics Data System (ADS)
Xu, Kangning; Wang, Chengwen; Zheng, Min; Yuan, Xin
2010-11-01
This study aimed to construct an on-site eco-sewerage system for modern office buildings in urban area based on combined innovative technologies of vacuum and source-separation. Results showed that source-separated grey water had low concentrations of pollutants, which helped the reuse of grey water. However, the system had a low separation efficiency between the yellow water and the brown water, which was caused by the plug problem in the urine collection from the urine-diverting toilets. During the storage of yellow water for liquid fertilizer production, nearly all urea nitrogen transferred to ammonium nitrogen and about 2/3 phosphorus was lost because of the struvite precipitation. Total bacteria and coliforms increased first in the storage, but then decreased to low concentrations. The anaerobic/anoxic/aerobic MBR had high elimination rates of COD, ammonium nitrogen and total nitrogen of the brown water, which were 94.2%, 98.1% and 95.1%, respectively. However, the effluent still had high contents of colority, nitrate and phosphorus, which affected the application of the effluent for flushing water. Even though, the effluent might be used as dilution water for the yellow water fertilizer. Based on the results and the assumption of an ideal operation of the vacuum source-separation system, a future plan for on-site eco-sewerage system of modern office buildings was constructed. Its sustainability was validated by the analysis of the substances flow of water and nutrients.
Nitrogen loss from sprinkler applied beef feedlot effluent
USDA-ARS?s Scientific Manuscript database
Loss of nitrogen from sprinkler applied beef feedlot effluent can be costly for both the producer and the environment. Sprinkler application of effluent is common throughout the Great Plains, though little work has occurred focusing specifically on N losses from beef feedlot effluent. The objectives...
Alejo, Luz; Atkinson, John; Guzmán-Fierro, Víctor; Roeckel, Marlene
2018-05-16
Computational self-adapting methods (Support Vector Machines, SVM) are compared with an analytical method in effluent composition prediction of a two-stage anaerobic digestion (AD) process. Experimental data for the AD of poultry manure were used. The analytical method considers the protein as the only source of ammonia production in AD after degradation. Total ammonia nitrogen (TAN), total solids (TS), chemical oxygen demand (COD), and total volatile solids (TVS) were measured in the influent and effluent of the process. The TAN concentration in the effluent was predicted, this being the most inhibiting and polluting compound in AD. Despite the limited data available, the SVM-based model outperformed the analytical method for the TAN prediction, achieving a relative average error of 15.2% against 43% for the analytical method. Moreover, SVM showed higher prediction accuracy in comparison with Artificial Neural Networks. This result reveals the future promise of SVM for prediction in non-linear and dynamic AD processes. Graphical abstract ᅟ.
Liedl, B E; Bombardiere, J; Chaffield, J M
2006-01-01
Thermophilic anaerobic treatment of poultry litter produces an effluent stream of digested materials that can be separated into solid and liquid fractions for use as a crop fertilizer. The majority of the phosphorus is partitioned into the solid fraction while the majority of the nitrogen is present in the liquid fraction in the form of ammonium. These materials were tested over six years as an alternative fertilizer for the production of vegetable, fruit, and grassland crops. Application of the solids as a field crop fertilizer for vegetables and blueberries resulted in lower yields than the other fertilizer treatments, but an increase in soil phosphorus over a four-year period. Application of the digested liquids on grass and vegetable plots resulted in similar or superior yields to plots treated with commercially available nitrogen fertilizers. Hydroponic production of lettuce using liquid effluent was comparable to a commercial hydroponic fertilizer regime; however, the effluent treatment for hydroponic tomato production required supplementation and conversion of ammonium to nitrate. While not a total fertilizer solution, our research shows the effectiveness of digested effluent as part of a nutrient management program which could turn a livestock residuals problem into a crop nutrient resource.
Fate of dissolved organic nitrogen in two stage trickling filter process.
Simsek, Halis; Kasi, Murthy; Wadhawan, Tanush; Bye, Christopher; Blonigen, Mark; Khan, Eakalak
2012-10-15
Dissolved organic nitrogen (DON) represents a significant portion of nitrogen in the final effluent of wastewater treatment plants (WWTPs). Biodegradable portion of DON (BDON) can support algal growth and/or consume dissolved oxygen in the receiving waters. The fate of DON and BDON has not been studied for trickling filter WWTPs. DON and BDON data were collected along the treatment train of a WWTP with a two-stage trickling filter process. DON concentrations in the influent and effluent were 27% and 14% of total dissolved nitrogen (TDN). The plant removed about 62% and 72% of the influent DON and BDON mainly by the trickling filters. The final effluent BDON values averaged 1.8 mg/L. BDON was found to be between 51% and 69% of the DON in raw wastewater and after various treatment units. The fate of DON and BDON through the two-stage trickling filter treatment plant was modeled. The BioWin v3.1 model was successfully applied to simulate ammonia, nitrite, nitrate, TDN, DON and BDON concentrations along the treatment train. The maximum growth rates for ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria, and AOB half saturation constant influenced ammonia and nitrate output results. Hydrolysis and ammonification rates influenced all of the nitrogen species in the model output, including BDON. Copyright © 2012 Elsevier Ltd. All rights reserved.
Organics and nitrogen removal from textile auxiliaries wastewater with A2O-MBR in a pilot-scale.
Sun, Faqian; Sun, Bin; Hu, Jian; He, Yangyang; Wu, Weixiang
2015-04-09
The removal of organic compounds and nitrogen in an anaerobic-anoxic-aerobic membrane bioreactor process (A(2)O-MBR) for treatment of textile auxiliaries (TA) wastewater was investigated. The results show that the average effluent concentrations of chemical oxygen demand (COD), ammonium nitrogen (NH4(+)-N) and total nitrogen (TN) were about 119, 3 and 48 mg/L under an internal recycle ratio of 1.5. The average removal efficiency of COD, NH4(+)-N and TN were 87%, 96% and 55%, respectively. Gas chromatograph-mass spectrometer analysis indicated that, although as much as 121 different types of organic compounds were present in the TA wastewater, only 20 kinds of refractory organic compounds were found in the MBR effluent, which could be used as indicators of effluents from this kind of industrial wastewater. Scanning electron microscopy analysis revealed that bacterial foulants were significant contributors to membrane fouling. An examination of foulants components by wavelength dispersive X-ray fluorescence showed that the combination of organic foulants and inorganic compounds enhanced the formation of gel layer and thus caused membrane fouling. The results will provide valuable information for optimizing the design and operation of wastewater treatment system in the textile industry. Copyright © 2015 Elsevier B.V. All rights reserved.
Methods for Estimating Annual Wastewater Nutrient Loads in the Southeastern United States
McMahon, Gerard; Tervelt, Larinda; Donehoo, William
2007-01-01
This report describes an approach for estimating annual total nitrogen and total phosphorus loads from point-source dischargers in the southeastern United States. Nutrient load estimates for 2002 were used in the calibration and application of a regional nutrient model, referred to as the SPARROW (SPAtially Referenced Regression On Watershed attributes) watershed model. Loads from dischargers permitted under the National Pollutant Discharge Elimination System were calculated using data from the U.S. Environmental Protection Agency Permit Compliance System database and individual state databases. Site information from both state and U.S. Environmental Protection Agency databases, including latitude and longitude and monitored effluent data, was compiled into a project database. For sites with a complete effluent-monitoring record, effluent-flow and nutrient-concentration data were used to develop estimates of annual point-source nitrogen and phosphorus loads. When flow data were available but nutrient-concentration data were missing or incomplete, typical pollutant-concentration values of total nitrogen and total phosphorus were used to estimate load. In developing typical pollutant-concentration values, the major factors assumed to influence wastewater nutrient-concentration variability were the size of the discharger (the amount of flow), the season during which discharge occurred, and the Standard Industrial Classification code of the discharger. One insight gained from this study is that in order to gain access to flow, concentration, and location data, close communication and collaboration are required with the agencies that collect and manage the data. In addition, the accuracy and usefulness of the load estimates depend on the willingness of the states and the U.S. Environmental Protection Agency to provide guidance and review for at least a subset of the load estimates that may be problematic.
NASA Astrophysics Data System (ADS)
Seanego, K. G.; Moyo, N. A. G.
Population growth in urban areas is putting pressure on sewage treatment plants. The improper treatment of sewage entering the aquatic ecosystems causes deterioration of the water quality of the receiving water body. The effect of sewage effluent on the Sand River was assessed. Eight sampling sites were selected, site 1 and 2 were upstream of the sewage treatment plant along the urbanised area of Polokwane, whilst sites 3, 4, 5, 6, 7 and 8 were downstream. The physico-chemical parameters and coliform counts in the water samples were determined. The suitability of the water for irrigation was also determined. Hierarchical average linkage cluster analysis produced two clusters, grouping two sites above the sewage treatment works and six sites downstream of the sewage effluent discharge point. Principal component analysis (PCA) identified total nitrogen, total phosphorus, conductivity and salinity as the major factors contributing to the variability of the Sand River water quality. These factors are strongly associated with the downstream sites. Canonial correspondence analysis (CCA) indicated the macroinvertebrates, Chironomidae, Belastomatidae, Chaoborus and Hirudinea being strongly associated with nitrogen, phosphorus, conductivity and temperature. Escherichia coli levels in the Polokwane wastewater treatment works maturation ponds, could potentially lead to contamination of the Polokwane aquifer. The Sodium Adsorption Ratio was between 1.5 and 3.0 and residual sodium carbonate was below 1.24 Meq/l, indicating that the Sand River water is still suitable for irrigation. The total phosphorus concentrations fluctuated across the different site. Total nitrogen concentrations showed a gradual decrease downstream from the point of discharge. This shows that the river still has a good self-purification capacity.
Compiled data on the vascular aquatic plant program, 1975 - 1977. [for sewage lagoon
NASA Technical Reports Server (NTRS)
Wolverton, B. C.; Mcdonald, R.
1977-01-01
The performance of a single cell, facultative sewage lagoon was significantly improved with the introduction of vascular aquatic plants. Water hyacinth (Eichhornia crassipes) was the dominant plant from April to November; duckweed (Lemna spp.) and (Spirodela spp.) flourished from December to March. This 2 ha lagoon received approximately 475 cu m/day of untreated sewage and has a variable COD sub 5 loading rate of 22-30 kg/ha/day. During the first 14 months of operation with aquatic plants, the average influent BOD sub 5 was reduced by 95% from 110 mg/l to an average of 5 mg/l in the effluent. The average influent suspended solids were reduced by 90% from 97 mg/l to 10 mg/l in the effluent. Significant reductions in nitrogen and phosphorus were effected. The monthly kjeldahl nitrogen for influent and effluent averaged 12.0 and 3.4 mg/l, respectively, a reduction of 72%. The total phosphorus was reduced on an average of 56% from 3.7 mg/l influent to 1.6 mg/l effluent.
Young, Bradley; Delatolla, Robert; Ren, Baisha; Kennedy, Kevin; Laflamme, Edith; Stintzi, Alain
2016-08-01
Pilot-scale moving bed biofilm reactor (MBBR) is used to investigate the kinetics and biofilm response of municipal, tertiary nitrification at 1°C. The research demonstrates that significant rates of tertiary MBBR nitrification are attainable and stable for extended periods of operation at 1°C, with a maximum removal rate of 230 gN/m(3) d at 1°C. At conventional nitrogen loading rates, low ammonia effluent concentrations below 5 mg-N/L were achieved at 1°C. The biofilm thickness and dry weight biofilm mass (massdw) were shown to be stable, with thickness values showing a correlation to the protein/polysaccharide ratio of the biofilm extracellular polymeric substances. Lastly, tertiary MBBR nitrification is shown to increase the effluent suspended solids concentrations by approximately 3 mg total suspended solids /L, with 19-60% of effluent solids being removed after 30 min of settling. The settleability of the effluent solids was shown to be correlated to the nitrogen loading of the MBBR system.
2013-01-01
The evaluation of a membrane bioreactor (MBR) for pretreatment of reverse osmosis (RO) in order to reuse and reclamation of industrial town wastewater treatment plant was investigated in this study. Performance of MBR effluent through water quality in term of parameters such as chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN) and total coliform (TC) were measured. Also Silt density index (SDI) was used as indicator for RO feed water. The results of this study demonstrated that MBR produce a high quality permeate water. Approximately 75%, 98%, 74% and 99.9% removal of COD, TSS, TN and TC were recorded, respectively. Also SDI of the permeate effluent from membrane was below 3 for most of the times. It means that pilot yield a high quality treated effluent from the membrane module which can be used as RO feed water. PMID:24355199
Luo, Huilong; Song, Yudong; Zhou, Yuexi; Yang, Liwei; Zhao, Yaqian
2017-02-01
ABS resin wastewater is a high-temperature nitrogenous organic wastewater. It can be successfully treated with anoxic/aerobic (A/O) process. In this study, the effect of temperature on nitrogen removal and microbial community after quick temperature rise (QTR) was investigated. It was indicated that QTR from 25 to 30 °C facilitated the microbial growth and achieved a similar effluent quality as that at 25 °C. QTR from 25 to 35 °C or 40 °C resulted in higher effluent concentration of chemical oxygen demand (COD), biochemical oxygen demand (BOD 5 ), total nitrogen (TN), and total phosphorus (TP). Illumina MiSeq pyrosequencing analysis illustrated that the richness and diversity of the bacterial community was decreased as the temperature was increased. The percentage of many functional groups was changed significantly. QTR from 25 to 40 °C also resulted in the inhibition of ammonia oxidation rate and high concentration of free ammonia, which then inhibited the growth of NOB (Nitrospira), and thus resulted in nitrite accumulation. The high temperature above 35 °C promoted the growth of a denitrifying bacterial genus, Denitratisoma, which might increase N 2 O production during the denitrification process.
Guo, Jian-hua; Wang, Shu-ying; Peng, Yong-zhen; Zheng, Ya-nan; Huang, Hui-jun; Ge, Shi-jian; Sun, Zhi-rong
2008-12-01
Preliminary studies had been conducted to determine the correctness of the theory and technique of energy saving achieved by limited filamentous bulking under low DO using a lab-scale A/O reactor with real domestic wastewater as the influent. The results showed that SVI could be maintained 150-230 mL/g and sludge settleability would not become very poor under the condition of low DO. During the period of limited filamentous bulking, COD and total nitrogen removal efficiencies were improved, and distinct simultaneous nitrification and denitrification (SND) was achieved, while ammonia removal efficiency would slightly decline with decreasing of DO, compared with the period of good settleability sludge under high DO. COD, ammonia and total nitrogen removal efficiencies were 86%, 70% and 63%, respectively. It was found that about 10%-25% nitrogen would be removed by SND based on the mass balance of nitrogen. Besides, SS in the effluent was almost negligible and the effluent turbidity was lower than 3 NTU. Significantly, aeration consumptions would be decreased by 17% under the condition with DO of 0.5 mg/L compared with 2.0 mg/L according to theoretical calculation of air requirements to keep different DO levels, which was about 57% in lab-scale reactor correspondingly.
SOURCE ASSESSMENT: NITROGEN FERTILIZER INDUSTRY WATER EFFLUENTS
The report describes a study of waterborne pollutants from the manufacture of nitrogen fertilizers. It includes an evaluation of the ammonia, ammonium nitrate, urea, and nitric acid manufacturing processes. Water effluents in a nitrogen fertilizer plant originate from a variety o...
Zhang, Di; Tao, Yi; Liu, Xiaoning; Zhou, Kuiyu; Yuan, Zhenghao; Wu, Qianyuan; Zhang, Xihui
2016-01-01
Urban wastewater treatment plant (WWTP) effluent as reclaimed water provides an alternative water resource for urban rivers and effluent will pose a significant influence on the water quality of rivers. The objective of this study was to investigate the spatial and temporal variations of water quality in XZ River, an artificial urban river in Shenzhen city, Guangdong Province, China, after receiving reclaimed water from WWTP effluent. The water samples were collected monthly at different sites of XZ River from April 2013 to September 2014. Multivariate statistical techniques and a box-plot were used to assess the variations of water quality and to identify the main pollution factor. The results showed the input of WWTP effluent could effectively increase dissolved oxygen, decrease turbidity, phosphorus load and organic pollution load of XZ River. However, total nitrogen and nitrate pollution loads were found to remain at higher levels after receiving reclaimed water, which might aggravate eutrophication status of XZ River. Organic pollution load exhibited the lowest value on the 750 m downstream of XZ River, while turbidity and nutrient load showed the lowest values on the 2,300 m downstream. There was a higher load of nitrogen and phosphorus pollution in the dry season and at the beginning of wet season.
NASA Astrophysics Data System (ADS)
Alhajjar, Bashar J.; Linn Gould, C.; Chesters, Gordon; Harkin, John M.
1990-12-01
The effects of phosphate (P) and zeolite (Z) -built detergents on leaching of N and P through sand columns simulating septic system drainfields were examined in laboratory columns. To simulate mound septic system drainfields, paired sets of columns were dosed intermittently with septic tank effluent from households using P- or Z-built detergent. Two other paired sets of columns were flooded with P- or Z-effluent to simulate new conventional septic system drainfields; after clogging mats or "crusts" developed at infiltration surface, the subsurfaces of the columns were aerated to simulate mature (crusted) conventional septic system drainfields. NO 3 loading in leachate was 1.1 times higher and ortho-P loading was 4.3 times lower when columns were dosed with Z- than with P-effluent. Dosed columns removed P poorly; total phosphorus (TP) loading in leachate was 81 and 19 g m -2 yr -1 with P- and Z-effluent, respectively. In flooded columns 1.3, 2.0 and 1.8 times more NH 4, organic nitrogen (ON) and total nitrogen (TN) respectively, were leached with Z- than with P-effluent; NO 3 leaching was similar. Flooded columns removed P efficiently; TP leached through flooded systems was 2.5 and 1.4 g m -2 yr -1 with P- and Z effluent, respectively. Crusted columns fed Z-effluent leached 1.2, 2.6, 1.4 and 2.1 times more NH 4, NO 3, ON and TN, respectively, than those with P-effluent but 1.8 times less TP. Crusted columns removed P satisfactorily: 8.2 and 4.6 g m -2 yr -1 TP with P- and Z-effluent, respectively. The P-built detergent substantially improves the efficiency of N removal with satisfactory P removal in columns simulating conventional septic system drainfield. Simultaneous removal of N and P under flooded conditions might be explained by precipitation of struvite-type minerals. Dosed system drainfields were less efficient in removing N and P compared to flooded and crusted system drainfelds.
White, J R; Gardner, L M; Sees, M; Corstanje, R
2008-01-01
Nutrient removal by constructed wetlands can decline over time due to the accumulation of organic matter. A prescribed burn is one of many management strategies used to remove detritus in macrophyte-dominated systems. We quantified the short-term effects on effluent water quality and the amount of aboveground detritus removed from a prescribed burn event. Surface water outflow concentrations were approximately three times higher for P and 1.5 times higher for total Kjeldhal nitrogen (TKN) following the burn event when compared to the control. The length of time over which the fire effect was significant (P < 0.05), 3 d for TKN and up to 23 d for P fractions. Over time, the concentration of soluble reactive phosphorus (SRP) in the effluent decreased, but was compensated with increases in dissolved organic phosphorus (DOP) and particulate phosphorus (PP), such that net total P remained the same. Total aboveground biomass decreased by 68.5% as a result of the burn, however, much of the live vegetation was converted to standing dead material. These results demonstrate that a prescribed burn can significantly decrease the amount of senescent organic matter in a constructed wetland. However, short-term nutrient releases following the burn could increase effluent nutrient concentrations. Therefore, management strategies should include hydraulically isolating the burned area immediately following the burn event to prevent nutrient export.
A coupled system of half-nitritation and ANAMMOX for mature landfill leachate nitrogen removal.
Li, Yun; Li, Jun; Zhao, Baihang; Wang, Xiujie; Zhang, Yanzhuo; Wei, Jia; Bian, Wei
2017-09-01
A coupled system of membrane bioreactor-nitritation (MBR-nitritation) and up-flow anaerobic sludge blanket-anaerobic ammonium oxidation (UASB-ANAMMOX) was employed to treat mature landfill leachate containing high ammonia nitrogen and low C/N. MBR-nitritation was successfully realized for undiluted mature landfill leachate with initial concentrations of 900-1500 mg/L [Formula: see text] and 2000-4000 mg/L chemical oxygen demand. The effluent [Formula: see text] concentration and the [Formula: see text] accumulation efficiency were 889 mg/L and 97% at 125 d, respectively. Half-nitritation was quickly realized by adjustment of hydraulic retention time and dissolved oxygen (DO), and a low DO control strategy could allow long-term stable operation. The UASB-ANAMMOX system showed high effective nitrogen removal at a low concentration of mature landfill leachate. The nitrogen removal efficiency was inhibited at excessive influent substrate concentration and the nitrogen removal efficiency of the system decreased as the concentration of mature landfill leachate increased. The MBR-nitritation and UASB-ANAMMOX processes were coupled for mature landfill leachate treatment and together resulted in high effective nitrogen removal. The effluent average total nitrogen concentration and removal efficiency values were 176 mg/L and 83%, respectively. However, the average nitrogen removal load decreased from 2.16 to 0.77 g/(L d) at higher concentrations of mature landfill leachate.
Nitrogen mass balance in a constructed wetland treating piggery wastewater effluent.
Lee, Soyoung; Maniquiz-Redillas, Marla C; Choi, Jiyeon; Kim, Lee-Hyung
2014-06-01
The nitrogen changes and the nitrogen mass balance in a free water surface flow constructed wetland (CW) using the four-year monitoring data from 2008 to 2012 were estimated. The CW was composed of six cells in series that include the first settling basin (Cell 1), aeration pond (Cell 2), deep marsh (Cell 3), shallow marsh (Cell 4), deep marsh (Cell 5) and final settling basin (Cell 6). Analysis revealed that the NH(+)4-N concentration decreased because of ammonification which was then followed by nitrification. The NO(-)2-N and NO(-)2-N were also further reduced by means of microbial activities and plant uptake during photosynthesis. The average nitrogen concentration at the influent was 37,819 kg/year and approximately 45% of that amount exited the CW in the effluent. The denitrification amounted to 34% of the net nitrogen input, whereas the accretion of sediment was only 7%. The biomass uptake of plants was able to retain only 1% of total nitrogen load. In order to improve the nutrient removal by plant uptake, plant coverage in four cells (i.e., Cells 1, 3, 4 and 5) could be increased. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Cromar, N J; Sweeney, D G; O'Brien, M J; Fallowfield, H J
2005-01-01
This paper describes changes in effluent quality occurring before and after an upgrade to the Bolivar Wastewater Treatment Plant in South Australia. Trickling filters (TF) were replaced with an activated sludge (AS) plant, prior to tertiary treatment using waste stabilisation ponds (WSPs). The water quality in the WSPs following the upgrade was significantly improved. Reductions in total and soluble BOD, COD, TKN, suspended solids and organic nitrogen were recorded and the predominant form of inorganic nitrogen changed from NH(4)-N to NO(2)/NO(3)-N. The reduction in ammonium and potentially toxic free ammonia removed a control upon the growth of zooplankton, which may have contributed to decreases in algal biomass in the final ponds and consequently lower dissolved oxygen. Additionally, changes in inorganic nitrogen speciation contributed to a slightly elevated pH which reduced numbers of faecal coliforms in WSPs. The AS pretreated influent recorded significantly lower inorganic molar N:P ratio (10-4:1) compared to those fed with TF effluent (17-13:1). Algae within the WSPs may now be nitrogen limited, a condition which may favour the growth of nitrogen-fixing cyanobacteria. The decrease in algal biomass and in dissolved oxygen levels may enhance sedimentary denitrification, further driving the system towards nitrogen limitation.
Comparative treatment effectiveness of conventional trench and seepage pit systems.
Field, J P; Farrell-Poe, K L; Walworth, J L
2007-03-01
On-site wastewater treatment systems can be a potential source of groundwater contamination in regions throughout the United States and other parts of the world. Here, we evaluate four conventional trench systems and four seepage pit systems to determine the relative effectiveness of these systems for the treatment of septic tank effluent in medium- to coarse-textured arid and semiarid soils. Soil borings were advanced up to twice the depth of the trenches (4 m) and seepage pits (15 m) at two horizontal distances (30 cm and 1.5 m) from the sidewalls of the systems. Soil samples were analyzed for various biological and chemical parameters, including Escherichia coli, total coliform, pH, total organic carbon, total dissolved solids, total nitrogen, ammonium-nitrogen, and nitrate-nitrogen. Most soil parameters investigated approached background levels more rapidly near the trenches than the seepage pits, as sampling distance increased both vertically and horizontally from the sidewalls of the systems.
Hassanli, Ali M; Javan, Mahmood; Saadat, Yusof
2008-09-01
Irrigation with municipal effluent was evaluated during 25 months in Southern Iran from 2003 to 2005 in which 14 tree species were irrigated with effluent and borehole water at an annual supply rate of 3,940 and 5,395 m(3) ha(-1), respectively. To mitigate the environmental effects, a drip irrigation system was designed and the amount of applied water based on pan evaporation was measured by flow meters and soil properties were monitored. The statistical results showed that the applied effluent had no adverse effect on soil properties. The soil salinity was reduced from 8.2, 6.8 and 7.0 dSm(-1) to 1.07, 1.12 and 3.5 dSm(-1 )in the soil layers 0-30, 30-60 and 60-90 cm, respectively. The SAR decreased significantly, while soil pH increased by 0.8 and 0.6 units in the layers 0-30 and 30-60 cm. A total application of 9,335 m(3)ha(-1 )of effluent with a nitrogen and phosphorus concentration of 7.9 and 10.3 mg l(-1), added 73 and 101 kg ha(-1) of nitrogen and phosphorus to the soil. Organic carbon also increased significantly. Twenty-five months irrigation with effluent caused a slight increase in soil bulk density and a slight decrease in mean permeability. Because of an efficient filtration and high discharge rate of bubblers (drippers), no considerable sign of clogging was observed.
Decentralized or onsite wastewater treatment (OWT) systems have long been implicated in being a major source of N inputs to surface and ground waters and numerous regulatory bodies have promulgated strict total N (TN) effluent standards in N-sensitive areas. These standards, howe...
Viancelli, A; Kunz, A; Steinmetz, R L R; Kich, J D; Souza, C K; Canal, C W; Coldebella, A; Esteves, P A; Barardi, C R M
2013-01-01
Swine effluents must be correctly handled to avoid negative environmental impacts. In this study, the profiles of two swine manure treatment systems were evaluated: a solid-liquid separation step, followed by an anaerobic reactor, and an aerobic step (System 1); and a biodigester followed by serial lagoons (System 2). Both systems were described by the assessment of chemical, bacterial and viral parameters. The results showed that in System 1, there was reduction of chemicals (COD, phosphorus, total Kjeldhal nitrogen - TKN - and NH(3)), total coliforms and Escherichia coli; however, the same reduction was not observed for Salmonella sp. Viral particles were significantly reduced but not totally eliminated from the effluent. In System 2, there was a reduction of chemicals, bacteria and viruses with no detection of Salmonella sp., circovirus, parvovirus, and torque teno virus in the effluent. The chemical results indicate that the treated effluent can be reused for cleaning swine facilities. However, the microbiological results show a need of additional treatment to achieve a complete inactivation for cases when direct contact with animals is required. Copyright © 2012 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Urea... daily values for 30 consecutive days shall not exceed— Ammonia (as N) 0.95 0.48 Organic nitrogen (as N....18 0.59 Organic nitrogen (as N) 1.48 0.80 Note: Metric units: Kilogram/1,000 kg of product; English...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Urea Subcategory... consecutive days shall not exceed— Ammonia (as N) 0.53 0.27 Organic nitrogen (as N) 0.45 0.24 Note: Metric... of daily values for 30 consecutive days shall not exceed— Ammonia (as N) 0.53 0.27 Organic nitrogen...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Urea Subcategory... consecutive days shall not exceed— Ammonia (as N) 0.53 0.27 Organic nitrogen (as N) 0.45 0.24 Note: Metric... of daily values for 30 consecutive days shall not exceed— Ammonia (as N) 0.53 0.27 Organic nitrogen...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Urea Subcategory... consecutive days shall not exceed— Ammonia (as N) 0.53 0.27 Organic nitrogen (as N) 0.45 0.24 Note: Metric... of daily values for 30 consecutive days shall not exceed— Ammonia (as N) 0.53 0.27 Organic nitrogen...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Urea Subcategory... consecutive days shall not exceed— Ammonia (as N) 0.53 0.27 Organic nitrogen (as N) 0.45 0.24 Note: Metric... of daily values for 30 consecutive days shall not exceed— Ammonia (as N) 0.53 0.27 Organic nitrogen...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Urea Subcategory... consecutive days shall not exceed— Ammonia (as N) 0.53 0.27 Organic nitrogen (as N) 0.45 0.24 Note: Metric... of daily values for 30 consecutive days shall not exceed— Ammonia (as N) 0.53 0.27 Organic nitrogen...
Kim, Ga-Yeong; Yun, Yeo-Myeong; Shin, Hang-Sik; Kim, Hee-Sik; Han, Jong-In
2015-11-01
In this study, a microalgae-based technology was employed to treat wastewater and produce biodiesel at the same time. A local isolate Scenedesmus sp. was found to be a well suited species, particularly for an effluent from anaerobic digester (AD) containing low carbon but high nutrients (NH3-N=273mgL(-1), total P=58.75mgL(-1)). This algae-based treatment was quite effective: nutrient removal efficiencies were over 99.19% for nitrogen and 98.01% for phosphorus. Regarding the biodiesel production, FAME contents of Scenedesmus sp. were found to be relatively low (8.74% (w/w)), but overall FAME productivity was comparatively high (0.03gL(-1)d(-1)) due to its high biomass productivity (0.37gL(-1)d(-1)). FAMEs were satisfactory to the several standards for the biodiesel quality. The Scenedesmus-based technology may serve as a promising option for the treatment of nutrient-rich wastewater and especially so for the AD effluent. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mechanism and design of intermittent aeration activated sludge process for nitrogen removal.
Hanhan, Oytun; Insel, Güçlü; Yagci, Nevin Ozgur; Artan, Nazik; Orhon, Derin
2011-01-01
The paper provided a comprehensive evaluation of the mechanism and design of intermittent aeration activated sludge process for nitrogen removal. Based on the specific character of the process the total cycle time, (T(C)), the aerated fraction, (AF), and the cycle time ratio, (CTR) were defined as major design parameters, aside from the sludge age of the system. Their impact on system performance was evaluated by means of process simulation. A rational design procedure was developed on the basis of basic stochiometry and mass balance related to the oxidation and removal of nitrogen under aerobic and anoxic conditions, which enabled selected of operation parameters of optimum performance. The simulation results indicated that the total nitrogen level could be reduced to a minimum level by appropriate manipulation of the aerated fraction and cycle time ratio. They also showed that the effluent total nitrogen could be lowered to around 4.0 mgN/L by adjusting the dissolved oxygen set-point to 0.5 mg/L, a level which promotes simultaneous nitrification and denitrification.
Wanner, Oskar; Panagiotidis, Vassileios; Clavadetscher, Peter; Siegrist, Hansruedi
2005-11-01
By recovery of heat from the raw wastewater in the sewer system, the influent temperature of a wastewater treatment plant (WWTP) is reduced. This can have a negative effect on nitrification in the WWTP, since this process strongly depends on temperature. The analysis of the temperature regime in the WWTP of Zurich, Switzerland, revealed that in the cold season, the effluent temperature is about 0.7 degrees C higher than the influent temperature and that nitrification is not affected by a decrease of the influent wastewater temperature lasting for a couple of hours only, but is significantly affected by a longer lasting temperature decrease. Three diagrams were developed with a steady-state model, from which the consequences of a permanent temperature decrease on the nitrification safety factor, aerobic sludge retention time and total nitrogen removal can be evaluated. Using simulations with a dynamic model, calibrated for the Zurich WWTP, a quantitative relationship between the wastewater temperature and the ammonium effluent concentration was established. This relationship can, in combination with measured effluent concentrations of an existing WWTP, be used to predict the increase of the ammonium effluent concentration in this plant resulting from a permanent decrease of the wastewater influent temperature.
NASA Astrophysics Data System (ADS)
Saleh, D.; Domagalski, J. L.
2012-12-01
Sources and factors affecting the transport of total nitrogen are being evaluated for a study area that covers most of California and some areas in Oregon and Nevada, by using the SPARROW model (SPAtially Referenced Regression On Watershed attributes) developed by the U.S. Geological Survey. Mass loads of total nitrogen calculated for monitoring sites at stream gauging stations are regressed against land-use factors affecting nitrogen transport, including fertilizer use, recharge, atmospheric deposition, stream characteristics, and other factors to understand how total nitrogen is transported under average conditions. SPARROW models have been used successfully in other parts of the country to understand how nutrients are transported, and how management strategies can be formulated, such as with Total Maximum Daily Load (TMDL) assessments. Fertilizer use, atmospheric deposition, and climatic data were obtained for 2002, and loads for that year were calculated for monitored streams and point sources (mostly from wastewater treatment plants). The stream loads were calculated by using the adjusted maximum likelihood estimation method (AMLE). River discharge and nitrogen concentrations were de-trended in these calculations in order eliminate the effect of temporal changes on stream load. Effluent discharge information as well as total nitrogen concentrations from point sources were obtained from USEPA databases and from facility records. The model indicates that atmospheric deposition and fertilizer use account for a large percentage of the total nitrogen load in many of the larger watersheds throughout the study area. Point sources, on the other hand, are generally localized around large cities, are considered insignificant sources, and account for a small percentage of the total nitrogen loads throughout the study area.
Saraswat, Shweta; Rai, J P N
2011-03-01
The study deals with phytoextraction of Zn and Cd by Leucaena leucocephala grown on effluent fed and low nitrogen soils collected from S1, S2, and S3 sites, representing decreasing metal content with increasing distance from the effluent drain. Plant nitrogen fixation potential and soil micro-biochemical attributes against metal stress were also assessed. Increasing soil metal content and plant growth enhanced metal accumulation. Relatively greater amount of Zn than Cd was accumulated by L. leucocephala, which exceeded in roots with that of other parts. Remediation factor for Cd was maximum (3.6%) in S2 grown plant. Nodule numbers, their biomass, nitrogenase activity, and leghaemoglobin content were maximum in plants grown in S3 and minimum in S1 soil having maximum metals. Maximum soil organic C, total N, C(mic), and N(mic), respiration rate, ATP content, and enzymatic activities in response to phytoremediation was recorded in S3 followed by S2 and S1. Phytoremediation for a year enhanced extractable Zn and Cd by 36% and 45%, and their total removal by 20% and 30%, respectively from S2, which suggests the possible application of L. leucocephala for the remediation of metal contaminated sites and their fertility restoration by improving microbial functionalities and N-pool.
Urbain, V; Wright, P; Thomas, M
2001-01-01
Stringent effluent quality guidelines are progressively implemented in coastal and sensitive areas in Australia. Biological Nutrient Removal (BNR) plants are becoming a standard often including a tertiary treatment for disinfection. The BNR plant in Noosa - Queensland is designed to produce a treated effluent with less than 5 mg/l of BOD5, 5 mg/l of total nitrogen, 1 mg/l of total phosphorus, 5 mg/l of suspended solids and total coliforms of less than 10/100 ml. A flexible multi-stage biological process with a prefermentation stage, followed by sand filtration and UV disinfection was implemented to achieve this level of treatment. Acetic acid is added for phosphorus removal because: i) the volatile fatty acids (VFA) concentration in raw wastewater varies a lot, and ii) the prefermenter had to be turned off due to odor problems on the primary sedimentation tanks. An endogenous anoxic zone was added to the process to further reduce the nitrate concentration. This resulted in some secondary P-release events, a situation that happens when low nitrate and low phosphorus objectives are targeted. Long-term performance data and specific results on nitrogen removal and disinfection are presented in this paper.
Code of Federal Regulations, 2010 CFR
2010-07-01
... application of the best available technology economically achievable (BAT). 432.43 Section 432.43 Protection... attainable by the application of the best available technology economically achievable (BAT). Except as... representing the application of BAT: Limitations for ammonia (as N) and total nitrogen are the same as...
Code of Federal Regulations, 2010 CFR
2010-07-01
... application of the best available technology economically achievable (BAT). 432.23 Section 432.23 Protection... the application of the best available technology economically achievable (BAT). Except as provided in... representing the application of BAT: Limitations for ammonia (as N) and total nitrogen are the same as...
Code of Federal Regulations, 2011 CFR
2011-07-01
... application of the best available technology economically achievable (BAT). 432.43 Section 432.43 Protection... attainable by the application of the best available technology economically achievable (BAT). Except as... representing the application of BAT: Limitations for ammonia (as N) and total nitrogen are the same as...
Code of Federal Regulations, 2010 CFR
2010-07-01
... application of the best available technology economically achievable (BAT). 432.33 Section 432.33 Protection... attainable by the application of the best available technology economically achievable (BAT). Except as... representing the application of BAT: the limitations for ammonia (as N) and total nitrogen are the same as...
Code of Federal Regulations, 2011 CFR
2011-07-01
... application of the best available technology economically achievable (BAT). 432.33 Section 432.33 Protection... attainable by the application of the best available technology economically achievable (BAT). Except as... representing the application of BAT: the limitations for ammonia (as N) and total nitrogen are the same as...
Code of Federal Regulations, 2011 CFR
2011-07-01
... application of the best available technology economically achievable (BAT). 432.23 Section 432.23 Protection... the application of the best available technology economically achievable (BAT). Except as provided in... representing the application of BAT: Limitations for ammonia (as N) and total nitrogen are the same as...
Manekar, Pravin; Biswas, Rima; Karthik, Manikavasagam; Nandy, Tapas
2011-05-15
Effluent generated from coal carbonization to coke was characterized with high organic content, phenols, ammonium nitrogen, and cyanides. A full scale effluent treatment plant (ETP) working on the principle of single stage carbon-nitrogen bio-oxidation process (SSCNBP) revealed competition between heterotrophic and autotrophic bacteria in the bio-degradation and nitrification process. The effluent was pretreated in a stripper and further combined with other streams to treat in the SSCNBP. Laboratory studies were carried on process and stripped effluents in a bench scale model of ammonia stripper and a two stage bio-oxidation process. The free ammonia removal efficiency of stripper was in the range 70-89%. Bench scale studies of the two stage bio-oxidation process achieved a carbon-nitrogen reduction at 6 days hydraulic retention time (HRT) operating in an extended aeration mode. This paper addresses the studies on selection of a treatment process for removal of organic matter, phenols, cyanide and ammonia nitrogen. The treatment scheme comprising ammonia stripping (pretreatment) followed by the two stage bio-oxidation and chlorination process met the Indian Standards for discharge into Inland Surface Waters. This treatment process package offers a techno-economically viable treatment scheme to neuter hazardous effluent generated from coal carbonization process. Copyright © 2011 Elsevier B.V. All rights reserved.
Cheng, Jun; Xu, Jiao; Huang, Yun; Li, Yuyou; Zhou, Junhu; Cen, Kefa
2015-02-01
Growth rate of the microalga Chlorella PY-ZU1 mutated by nuclear irradiation was optimised for use in the purification of undiluted anaerobic digestion effluent of swine manure (UADESM) with 3745 mg L(-1) chemical oxygen demand (COD) and 1135 mg L(-1) total nitrogen content. The problem of accessible carbon in UADESM was solved by continuous introduction of 15% (v/v) CO2. Adding phosphorus to UADESM and aeration of UADESM before inoculation both markedly reduced the lag phase of microalgal growth. In addition, the biomass yield and average growth rate of Chlorella PY-ZU1 increased significantly to 4.81 g L(-1) and 601.2 mg L(-1) d(-1), respectively, while the removal efficiencies of total phosphorus, COD and ammonia nitrogen increased to 95%, 79% and 73%, respectively. Thus, the findings indicate that Chlorella PY-ZU1 can be used for effective purification of UADESM, while the biomass can be safely used as animal feed supplement. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nutrient mass balance and trends, Mobile River Basin, Alabama, Georgia, and Mississippi
Harned, D.A.; Atkins, J.B.; Harvill, J.S.
2004-01-01
A nutrient mass balance - accounting for nutrient inputs from atmospheric deposition, fertilizer, crop nitrogen fixation, and point source effluents; and nutrient outputs, including crop harvest and storage - was calculated for 18 subbasins in the Mobile River Basin, and trends (1970 to 1997) were evaluated as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program. Agricultural nonpoint nitrogen and phosphorus sources and urban nonpoint nitrogen sources are the most important factors associated with nutrients in this system. More than 30 percent of nitrogen yield in two basins and phosphorus yield in eight basins can be attributed to urban point source nutrient inputs. The total nitrogen yield (1.3 tons per square mile per year) for the Tombigbee River, which drains a greater percentage of agricultural (row crop) land use, was larger than the total nitrogen yield (0.99 tons per square mile per year) for the Alabama River. Decreasing trends of total nitrogen concentrations in the Tombigbee and Alabama Rivers indicate that a reduction occurred from 1975 to 1997 in the nitrogen contributions to Mobile Bay from the Mobile River. Nitrogen concentrations also decreased (1980 to 1995) in the Black Warrior River, one of the major tributaries to the Tombigbee River. Total phosphorus concentrations increased from 1970 to 1996 at three urban influenced sites on the Etowah River in Georgia. Multiple regression analysis indicates a distinct association between water quality in the streams of the Mobile River drainage basin and agricultural activities in the basin.
Marques, Bruna; Calado, Ricardo; Lillebø, Ana I
2017-12-01
The main objective of this study was to test an innovative biomitigation approach, where polychaete-assisted (Hediste diversicolor) sand filters were combined with the production of Halimione portulacoides in aquaponics, to remediate an organic-rich effluent generated by a super intensive fish farm operating a land-based RAS (Recirculating aquaculture system). The set up included four different experimental combinations that were periodically monitored for 5months. After this period, polychaete-assisted sand filters reduced in 70% the percentage of OM and the average densities increased from ≈400ind.m -2 to 7000ind.m -2 . H. portulacoides in aquaponics contributed to an average DIN (Dissolved inorganic Nitrogen) decrease of 65%, which increased to 67% when preceded by filter tanks stocked with polychaetes. From May until October (5months) halophytes biomass increased from 1.4kgm -2 ±0.7 (initial wet weight) to 18.6kgm -2 ±4.0. Bearing in mind that the uptake of carbon is mostly via photosynthesis and not though the uptake of dissolved inorganic carbon, this represents an approximate incorporation of ≈1.3kgm -2 carbon (C), ≈15gm -2 nitrogen (N) and ≈8gm -2 phosphorus (P) in the aerial part (76% of total biomass), and an approximate incorporation of ≈0.5kgm -2 carbon (C), ≈3gm -2 nitrogen (N) and ≈2gm -2 phosphorus (P) in the roots (24% of total biomass). In the present study, the potential of the two extractive species for biomitigation of a super-intensive marine fish farm effluent could be clearly demonstrated, contributing in this way to potentiate the implementation of more sustainable practices. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Lei; Li, Ying-Jun; Xiong, Ying; Tan, Wen-Bing; Zhang, Lie-Yu; Li, Xiang; Wang, Xiao-Shu; Xu, Jian-Feng; Li, Tong-Tong; Wang, Jin-Sheng; Cai, Ming-Xuan; Xi, Bei-Dou; Wang, Di-Hua
2017-01-01
The performance of the Sha-he wastewater reclamation plant was evaluated in this study. To remove residual nitrogen after Anaerobic-Anoxic-Oxic (A2O) treatment, three multistage Anoxic-Oxic (A/O) were added to investigate the nitrogen removal efficiency and its mechanism. In addition, the constituents and evolution of dissolved organic matter (DOM) during wastewater reclamation was also investigated using a method combining fluorescence spectroscopy with fluorescence regional integration (FRI). The results suggested that multistage A/O treatment can effectively improve the nitrogen removal ability under low concentrations of carbon sources. The total nitrogen (TN) exhibits significantly positive correlation with fulvic acid-like materials and humic acid-like materials. The correlation coefficient for TN and fulvic acid-like substances (R2 = 0.810, P < 0.01) removal was greater than that of humic acid-like substances (R2 = 0.636, P < 0.05). The results indicate that nitrogen removal may be achieved with the fulvic-like and humic-like substances, and the removal effects were higher by fulvic acid-like substances than humic-like substances, mostly due to that the latter were relatively more difficult to be utilized as carbon source during the nitrogen removal process. The effluent water quality of biological treatment reached the first grade A standard of "Cities sewage treatment plant pollutant discharge standard" (GB18918-2002). In addition, the effluent from the membrane bioreactor reached the "Standards of reclaimed water quality" (SL368-2006).
Wang, Lei; Li, Ying-Jun; Xiong, Ying; Tan, Wen-Bing; Zhang, Lie-Yu; Li, Xiang; Wang, Xiao-Shu; Xu, Jian-feng; Li, Tong-Tong; Wang, Jin-Sheng; Cai, Ming-Xuan; Xi, Bei-Dou; Wang, Di-Hua
2017-01-01
The performance of the Sha-he wastewater reclamation plant was evaluated in this study. To remove residual nitrogen after Anaerobic-Anoxic-Oxic (A2O) treatment, three multistage Anoxic-Oxic (A/O) were added to investigate the nitrogen removal efficiency and its mechanism. In addition, the constituents and evolution of dissolved organic matter (DOM) during wastewater reclamation was also investigated using a method combining fluorescence spectroscopy with fluorescence regional integration (FRI). The results suggested that multistage A/O treatment can effectively improve the nitrogen removal ability under low concentrations of carbon sources. The total nitrogen (TN) exhibits significantly positive correlation with fulvic acid-like materials and humic acid-like materials. The correlation coefficient for TN and fulvic acid-like substances (R2 = 0.810, P < 0.01) removal was greater than that of humic acid-like substances (R2 = 0.636, P < 0.05). The results indicate that nitrogen removal may be achieved with the fulvic-like and humic-like substances, and the removal effects were higher by fulvic acid-like substances than humic-like substances, mostly due to that the latter were relatively more difficult to be utilized as carbon source during the nitrogen removal process. The effluent water quality of biological treatment reached the first grade A standard of “Cities sewage treatment plant pollutant discharge standard” (GB18918-2002). In addition, the effluent from the membrane bioreactor reached the “Standards of reclaimed water quality” (SL368-2006). PMID:29149172
Petroselli, Andrea; Giannotti, Maurizio; Marras, Tatiana; Allegrini, Elena
2017-06-03
In dry regions, water resources have become increasingly limited, and the use of alternative sources is considered one of the main strategies in sustainable water management. A highly viable alternative to commonly used water resources is treated municipal wastewater, which could strongly benefit from advanced and low-cost techniques for depuration, such as the integrated system of phytodepuration (ISP). The current manuscript investigates four Italian case studies with different sizes and characteristics. The raw wastewaters and final effluents were sampled on a monthly basis over a period of up to five years, allowing the quantification of the ISP performances. The results obtained show that the investigated plants are characterized by an average efficiency value of approximately 83% for chemical oxygen demand removal, 84% for biochemical oxygen demand, 89% for total nitrogen, 91% for total phosphorus, and 85% for total suspended solids. Moreover, for three of the case studies, the ISP final effluent is suitable for irrigation, and in the fourth case study, the final effluent can be released in surface water.
Singh, Shail; Chandra, R; Patel, D K; Reddy, M M K; Rai, Vibhuti
2008-09-01
Mixed culture of two bacterial strains Bacillus sp. and Serratia marcescens showed potential pentachlorophenol (PCP) degradation and decolorisation of pulp paper mill effluent. The physico-chemical quality of pulp paper mill effluent has been analyzed after 168 h incubation period degraded by mixed culture. The study revealed that it has decreased high load of BOD, COD, TS, TDS, TSS, sulphate, phosphate, total nitrogen, total phenols, metals and different salts (i.e. chloride, sodium, nitrate, potassium) at 168 h incubation period. PCP degradation in pulp paper mill effluent was confirmed by HPLC analysis. Mixed culture was found to degrade PCP up to (94%) present in pulp paper mill effluent with 1% glucose and 0.5% peptone (w/v) at 30+/-1 degrees C, pH 8.0+/-0.2 at 120 rpm in 168 h incubation period. The simultaneous release of chloride ion up to 1,200 mg/l at 168 h emphasized the bacterial dechlorination in the medium. The pulp paper mill effluent degradation was also supported by decline in pH, AOX (absorbable organic halides), color, D.O., BOD, COD and PCP. The analysis of pulp paper mill effluent degradation products by GC-MS analysis revealed the formation of low molecular weight compound like 2-chlorophenol (RT=3.8 min) and tetrachlorohydroquinone (RT=11.86 min) from PCP extracted degraded sample. Further, mixed culture may be used for bioremediation of PCP containing pulp paper mill waste in the environment.
Efficiency of an emissions payment system for nitrogen in sewage treatment plants - a case study.
Malmaeus, J Mikael; Ek, Mats; Åmand, Linda; Roth, Susanna; Baresel, Christian; Olshammar, Mikael
2015-05-01
An emissions payment system for nitrogen in Swedish sewage treatment plants (STPs) was evaluated using a semi-empirical approach. The system was based on a tariff levied on each unit of nitrogen emitted by STPs, and profitable measures to reduce nitrogen emissions were identified for twenty municipal STPs. This was done through direct involvement with the plant personnel and the results were scaled up to cover all treatment plants larger than 2000 person equivalents in the Swedish tributary areas of the Kattegat and the Baltic Proper. The sum of costs and nitrogen reductions were compared with an assumed command-and-control regulation requiring all STPs to obtain 80% total nitrogen reduction in their effluents. Costs for the latter case were estimated using a database containing standard estimates for reduction costs by six specified measures. For both cases a total reduction target of 3000 tonnes of nitrogen was set. We did not find that the emissions payment system was more efficient in terms of total reduction costs, although some practical and administrative advantages could be identified. Our results emphasize the need to evaluate the performance of policy instruments on a case-by-case basis since the theoretical efficiency is not always reflected in practice. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vanotti, Matias B; Szogi, Ariel A
2008-01-01
Current trends of animal production concentration and new regulations promote the need for environmentally safe alternatives to land application of liquid manure. These technologies must be able to substantially remove nutrients, heavy metals, and emissions of ammonia and odors and disinfect the effluent. A new treatment system was tested full-scale in a 4360-swine farm in North Carolina to demonstrate environmentally superior technology (EST) that could replace traditional anaerobic lagoon treatment. The system combined liquid-solids separation with nitrogen and phosphorus removal processes. Water quality was monitored at three sites: (i) the treatment plant as the raw manure liquid was depurated in the various processes, (ii) the converted lagoon as it was being cleaned up with the treated effluent, and (iii) an adjacent traditional anaerobic lagoon. The treatment plant removed 98% of total suspended solids (TSS), 76% of total solids (TS), 100% of 5-d biochemical oxygen demand (BOD(5)), 98% of total Kjeldahl nitrogen (TKN) and NH(4)-N, 95% of total phosphorus (TP), 99% of Zn, and 99% of Cu. The quality of the liquid in the converted lagoon improved rapidly as cleaner effluent from the plant replaced anaerobic lagoon liquid. The converted lagoon liquid became aerobic (dissolved oxygen, 6.95 mg L(-1); Eh, 342 mv) with the following mean reductions in the second year of the conversion: 73% of TSS, 40% of TS, 77% of BOD(5), 85% of TKN, 92% of NH(4)-N, 38% of TP, 37% of Zn, and 39% of Cu. These findings overall showed that EST can have significant positive impacts on the environment and on the livestock industries.
Drake, Jennifer; Bradford, Andrea; Van Seters, Tim
2014-06-15
This study examined the spring, summer and fall water quality performance of three partial-infiltration permeable pavement (PP) systems and a conventional asphalt pavement in Ontario. The study, conducted between 2010 and 2012, compared the water quality of effluent from two Interlocking Permeable Concrete Pavements (AquaPave(®) and Eco-Optiloc(®)) and a Hydromedia(®) Pervious Concrete pavement with runoff from an Asphalt control pavement. The usage of permeable pavements can mitigate the impact of urbanization on receiving surface water systems through quantity control and stormwater treatment. The PP systems provided excellent stormwater treatment for petroleum hydrocarbons, total suspended solids, metals (copper, iron, manganese and zinc) and nutrients (total-nitrogen and total-phosphorus) by reducing event mean concentrations (EMC) as well as total pollutant loadings. The PPs significantly reduced the concentration and loading of ammonia (NH4(+)+NH3), nitrite (NO2(-)) and organic-nitrogen (Org-N) but increased the concentration and loading of nitrate (NO3(-)). The PP systems had mixed performances for the treatment of phosphate (PO4(3-)). The PP systems increased the concentration of sodium (Na) and chloride (Cl) but EMCs remained well below recommended levels for drinking water quality. Relative to the observed runoff, winter road salt was released more slowly from the PP systems resulting in elevated spring and early-summer Cl and Na concentrations in effluent. PP materials were found to introduce dissolved solids into the infiltrating stormwater. The release of these pollutants was verified by additional laboratory scale testing of the individual pavement and aggregate materials at the University of Guelph. Pollutant concentrations were greatest during the first few months after construction and declined rapidly over the course of the study. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Zhanguang; Zhou Xuefei; Zhang Yalei, E-mail: zhangyalei2003@163.com
Highlights: Black-Right-Pointing-Pointer Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure. Black-Right-Pointing-Pointer The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was key controlling factor. Black-Right-Pointing-Pointer The threshold of the SCOD/TAN ratio was 2.4 at an influent pH of 8.5-9. - Abstract: The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700 m{sup 3} chicken-manure continuous stirred tank reactor (CSTR). A 12.3 L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35 {+-} 1 Degree-Sign C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5more » kg-COD/m{sup 3} d over a hydraulic retention time of 1.5 d, a maximum volumetric biogas production rate of 1.2 m{sup 3}/m{sup 3} d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250 mg/L) at an influent pH of 8.5-9.« less
Lyu, Tao; He, Keli; Dong, Renjie; Wu, Shubiao
2018-05-01
This study investigated the treatment performance and nitrogen removal mechanism of highly alkaline ammonia-stripped digestate effluent in horizontal subsurface flow constructed wetlands (CWs). A promising nitrogen removal performance (up to 91%) was observed in CWs coupled with intensified configurations, i.e., aeration and effluent recirculation. The results clearly supported that the higher aeration ratio and presence of effluent recirculation are important to improve the alkalinity and pollutant removal in CWs. The influent pH (>10) was significantly decreased to 8.2-8.8 under the volumetric hydraulic loading rates of 0.105 and 0.21 d -1 in the CWs. Simultaneously, up to 91% of NH 4 + -N removal was achieved under the operation of a higher aeration ratio and effluent recirculation. Biological nitrogen transformations accounted for 94% of the consumption of alkalinity in the CWs. The significant enrichment of δ 15 N-NH 4 + in the effluent (47-58‰) strongly supports the occurrence of microbial transformations for NH 4 + -N removal. However, relatively lower enrichment factors of δ 15 N-NH 4 + (-1.8‰ to -11.6‰) compared to the values reported in previous studies reflected the inhibition effect of the high pH alkaline environment on nitrifiers in these CWs. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Widiastuti, Atika; Hartono, Djoko M.; Moersidik, Setyo S.; Gusniani, Irma
2018-03-01
The problems arising from landfill activity is leaked leachate that is not absorbed well into leachate stabilization pond which furthermore contaminates shallow groundwater around landfill, include Cipayung landfill. The aims of this study is to determine the characteristics of leachate and their effect on shallow groundwater quality around landfill based on temperature, pH, Total Suspended Solids (TSS), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Nitrogen (TN), Mercury (Hg), and fecal coliform. Data were analyzed based on leachate samples at influent point, effluent point, and 7 sampling points of residents’s well with distance variation every 100 meters within 300 meters radius having leachate stabilization pond as benchmark. According to the standard of Indonesia’s Ministry of Environment and Forestry law No. 59 of 2016, the results showed that leachate quality was still above the standard of BOD, COD, and Total Nitrogen parameters; 4178.0 mg/L, 70556.0 mg/L and 373.3 mg/L for influent point, and 3142.0 mg/L, 9055.2 mg/L, and 350 mg/L for the effluent point. Pollution Index of shallow groundwater is between lightly and moderately contaminated. This study showed that the further the distance between sampling point and leachate stabilization pond is, the lower the Polution Index is.
Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work
Lv, Junping; Feng, Jia; Liu, Qi; Xie, Shulian
2017-01-01
Eutrophication of water catchments and the greenhouse effect are major challenges in developing the global economy in the near future. Secondary effluents, containing high amounts of nitrogen and phosphorus, need further treatment before being discharged into receiving water bodies. At the same time, new environmentally friendly energy sources need to be developed. Integrating microalgal cultivation for the production of biodiesel feedstock with the treatment of secondary effluent is one way of addressing both issues. This article provides a comprehensive review of the latest progress in microalgal cultivation in secondary effluent to remove pollutants and accumulate lipids. Researchers have discovered that microalgae remove nitrogen and phosphorus effectively from secondary effluent, accumulating biomass and lipids in the process. Immobilization of appropriate microalgae, and establishing a consortium of microalgae and/or bacteria, were both found to be feasible ways to enhance pollutant removal and lipid production. Demonstrations of pilot-scale microalgal cultures in secondary effluent have also taken place. However there is still much work to be done in improving pollutants removal, biomass production, and lipid accumulation in secondary effluent. This includes screening microalgae, constructing the consortium, making use of flue gas and nitrogen, developing technologies related to microalgal harvesting, and using lipid-extracted algal residues (LEA). PMID:28045437
Zhao, Qian; Han, Hongjun; Xu, Chunyan; Zhuang, Haifeng; Fang, Fang; Zhang, Linghan
2013-08-01
A combined process consisting of a powdered activated carbon technology (PACT) and short-cut biological nitrogen removal reactor (SBNR) was developed to enhance the removal efficiency of the total nitrogen (TN) from the effluent of an upflow anaerobic sludge bed (UASB) reactor, which was used to treat coal gasification wastewater (CGW). The SBNR performance was improved with the increasing of COD and TP removal efficiency via PACT. The average removal efficiencies of COD and TP in PACT were respectively 85.80% and 90.30%. Meanwhile, the NH3-N to NO2-N conversion rate was achieved 86.89% in SBNR and the total nitrogen (TN) removal efficiency was 75.54%. In contrast, the AOB in SBNR was significantly inhibited without PACT or with poor performance of PACT in advance, which rendered the removal of TN. Furthermore, PAC was demonstrated to remove some refractory compounds, which therefore improved the biodegradability of the coal gasification wastewater. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Son, Dong-Jin; Yun, Chan-Young; Kim, Woo-Yeol; Zhang, Xing-Ya; Kim, Dae-Gun; Chang, Duk; Sunwoo, Young; Hong, Ki-Ho
2016-12-01
The pre-denitrification biofilm process for nitrogen removal was combined with ceramic membrane with pore sizes of 0.05-0.1 µm as a system for advanced post-treatment of municipal wastewater. The system was operated under an empty bed hydraulic retention time of 7.8 h, recirculation ratio of 3, and transmembrane pressure of 0.47 bar. The system showed average removals of organics, total nitrogen, and solids as high as 93%, 80%, and 100%, respectively. Rapid nitrification could be achieved and denitrification was performed in the anoxic filter without external carbon supplements. The residual particulate organics and nitrogen in effluent from biofilm process could be also removed successfully through membrane filtration and the removal of total coliform was noticeably improved after membrane filtration. Thus, a system composed of the pre-denitrification biofilm process with ceramic membrane would be a compact and flexible option for advanced post-treatment of municipal wastewater.
Ramírez-Godínez, Juan; Beltrán-Hernández, Icela; Álvarez-Hernández, Alejandro; Coronel-Olivares, Claudia; Contreras-López, Elizabeth; Quezada-Cruz, Maribel; Vázquez-Rodríguez, Gabriela
2015-01-01
In the bacterial processes involved in the mitigation of nitrogen pollution, an adequately high carbon-to-nitrogen (C : N) ratio is key to sustain denitrification. We evaluated three natural materials (woodchips, barley grains, and peanut shells) as carbon sources for low C : N wastewater. The amount of organic matter released from these materials to aqueous media was evaluated, as well as their pollution swapping potential by measuring the release of total Kjeldahl nitrogen, N-NH4 (+), NO2 (-), and NO3 (-), and total phosphorous. Barley grains yielded the highest amount of organic matter, which also showed to be the most easily biodegradable. Woodchips and peanut shells released carbon rather steadily and so they would not require frequent replenishment from biological reactors. These materials produced eluates with lower concentrations of nutrients than the leachates from barley grains. However, as woodchips yielded lower amounts of suspended solids, they constitute an adequate exogenous source for the biological treatment of carbon-deficient effluents.
Ramírez-Godínez, Juan; Beltrán-Hernández, Icela; Álvarez-Hernández, Alejandro; Coronel-Olivares, Claudia; Contreras-López, Elizabeth; Quezada-Cruz, Maribel
2015-01-01
In the bacterial processes involved in the mitigation of nitrogen pollution, an adequately high carbon-to-nitrogen (C : N) ratio is key to sustain denitrification. We evaluated three natural materials (woodchips, barley grains, and peanut shells) as carbon sources for low C : N wastewater. The amount of organic matter released from these materials to aqueous media was evaluated, as well as their pollution swapping potential by measuring the release of total Kjeldahl nitrogen, N-NH4 +, NO2 −, and NO3 −, and total phosphorous. Barley grains yielded the highest amount of organic matter, which also showed to be the most easily biodegradable. Woodchips and peanut shells released carbon rather steadily and so they would not require frequent replenishment from biological reactors. These materials produced eluates with lower concentrations of nutrients than the leachates from barley grains. However, as woodchips yielded lower amounts of suspended solids, they constitute an adequate exogenous source for the biological treatment of carbon-deficient effluents. PMID:26495313
USDA-ARS?s Scientific Manuscript database
Gas-permeable membranes coupled with low-rate aeration are useful to recover ammonium from livestock effluents. In this study, the role of inorganic carbon (bicarbonate) to enhance the nitrogen (N) recovery process was evaluated using synthetic effluents with various ammonium to bicarbonate molar ra...
Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity.
Cheng, Tuoyuan; Wei, Chun-Hai; Leiknes, TorOve
2017-10-01
To investigate anaerobic secondary effluent polishing by microalgae (Chlorella vulgaris) under low light intensity (14μmol/m 2 /s), bubbling column reactors were operated in batches of 8 d with initial ammonium nitrogen 10-50mg/L, initial phosphate phosphorus 2-10mg/L and microalgal seed 40mg/L. Maximum microalgal biomass and minimum generation time were 370.9mg/L and 2.5d, respectively. Nitrogen removal (maximum 99.6%) was mainly attributed to microalgal growth rate, while phosphorus removal (maximum 49.8%) was related to microalgal growth rate, cell phosphorus content (maximum 1.5%) and initial nutrients ratio. Dissolved microalgal organics release in terms of chemical oxygen demand (maximum 63.2mg/L) and hexane extractable material (i.e., oil and grease, maximum 8.5mg/L) was firstly reported and mainly affected by nitrogen deficiency and deteriorated effluent quality. Ultrafiltration critical flux (16.6-39.5L/m 2 /h) showed negative linear correlation to microalgal biomass. Anaerobic membrane bioreactor effluent polishing showed similar results with slight inhibition to synthetic effluent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Poulton, Barry C.
2010-01-01
The Johnson County Blue River Main Wastewater Treatment Facility discharges into the upper Blue River near the border between Johnson County, Kansas and Jackson County, Missouri. During 2005 through 2007 the wastewater treatment facility underwent upgrades to increase capacity and include biological nutrient removal. The effects of wastewater effluent on environmental and biological conditions of the upper Blue River were assessed by comparing an upstream site to two sites located downstream from the wastewater treatment facility. Environmental conditions were evaluated using previously and newly collected discrete and continuous data, and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This evaluation is useful for understanding the potential effects of wastewater effluent on water quality, biological community structure, and ecosystem function. In addition, this information can be used to help achieve National Pollution Discharge Elimination System (NPDES) wastewater effluent permit requirements after additional studies are conducted. The effects of wastewater effluent on the water-quality conditions of the upper Blue River were most evident during below-normal and normal streamflows (about 75 percent of the time), when wastewater effluent contributed more than 20 percent to total streamflow. The largest difference in water-quality conditions between the upstream and downstream sites was in nutrient concentrations. Total and inorganic nutrient concentrations at the downstream sites during below-normal and normal streamflows were 4 to 15 times larger than at the upstream site, even after upgrades to the wastewater treatment facility were completed. However, total nitrogen concentrations decreased in wastewater effluent and at the downstream site following wastewater treatment facility upgrades. Similar decreases in total phosphorus were not observed, likely because the biological phosphorus removal process was not optimized until after the study was completed. Total nitrogen and phosphorus from the wastewater treatment facility contributed a relatively small percentage (14 to 15 percent) to the annual nutrient load in the upper Blue River, but contributed substantially (as much as 75 percent) to monthly loads during seasonal low-flows in winter and summer. During 2007 and 2008, annual discharge from the wastewater treatment facility was about one-half maximum capacity, and estimated potential maximum annual loads were 1.6 to 2.4 times greater than annual loads before capacity upgrades. Even when target nutrient concentrations are met, annual nutrient loads will increase when the wastewater treatment facility is operated at full capacity. Regardless of changes in annual nutrient loads, the reduction of nutrient concentrations in the Blue River Main wastewater effluent will help prevent further degradation of the upper Blue River. The Blue River Main Wastewater Treatment Facility wastewater effluent caused changes in concentrations of several water-quality constituents that may affect biological community structure and function including larger concentrations of bioavailable nutrients (nitrate and orthophosphorus) and smaller turbidities. Streambed-sediment conditions were similar along the upstream-downstream gradient and measured constituents did not exceed probable effect concentrations. Habitat conditions declined along the upstream-downstream gradient, largely because of decreased canopy cover and riparian buffer width and increased riffle-substrate fouling. Algal biomass, primary production, and the abundance of nutrient-tolerant diatoms substantially increased downstream from the wastewater treatment facility. Likewise, the abundance of intolerant macroinvertebrate taxa and Kansas Department of Health and Environment aquatic-life-support scores, derived from macroinvertebrate data, significantly decreased downstream from the wastewater
Characterization of Microbial Communities Found in Bioreactor Effluent
NASA Technical Reports Server (NTRS)
Flowe, Candice
2013-01-01
The purpose of this investigation was to examine microbial communities of simulated wastewater effluent from hollow fiber membrane bioreactors collected from the Space Life Science Laboratory and Texas Technical University. Microbes were characterized using quantitative polymerase chain reaction where a total count of bacteria and fungi were determined. The primers that were used to determine the total count of bacteria and fungi were targeted for 16S rDNA genes and the internal transcribed spacer, respectively. PCR products were detected with SYBR Green I fluorescent dye and a melting curve analysis was performed to identify unique melt profiles resulting from DNA sequence variations from each species of the community. Results from both the total bacteria and total fungi count assays showed that distinct populations were present in isolates from these bioreactors. This was exhibited by variation in the number of peaks observed on the melting curve analysis graph. Further analysis of these results using species-specific primers will shed light on exactly which microbes are present in these effluents. Information gained from this study will enable the design of a system that can efficiently monitor microbes that play a role in the biogeochemical cycling of nitrogen in wastewater on the International Space Station to assist in the design of a sustainable system capable of converting this nutrient.
Biodegradation of effluent contaminated with diesel fuel and gasoline.
Vieira, P A; Vieira, R B; de França, F P; Cardoso, V L
2007-02-09
We studied the effects of fuel concentration (diesel and gasoline), nitrogen concentration and culture type on the biodegradation of synthetic effluent similar to what was found at inland fuel distribution terminals. An experimental design with two levels and three variables (2(3)) was used. The mixed cultures used in this study were obtained from lake with a history of petroleum contamination and were named culture C(1) (collected from surface sediment) and C(2) (collected from a depth of approximately 30cm). Of the parameters studied, the ones that had the greatest influence on the removal of total petroleum hydrocarbons (TPH) were a nitrogen concentration of 550mg/L and a fuel concentration of 4% (v/v) in the presence of culture C(1). The biodegradability study showed a TPH removal of 90+/-2% over a process period of 49 days. Analysis using gas chromatography identified 16 hydrocarbons. The aromatic compounds did not degrade as readily as the other hydrocarbons that were identified.
NASA Astrophysics Data System (ADS)
Saito, Mitsuyo; Onodera, Shin-ichi; Jin, Guangzhe; Shimizu, Yuta; Taniguchi, Masanobu
2018-12-01
In this study, we examined the nitrogen dynamics of a highly urbanized coastal area, focusing on the impacts of sewage-derived nitrogen. High levels of dissolved inorganic nitrogen were detected in seawater near treated sewage effluent (TSE) discharge points before decreasing in the offshore direction, suggesting that the impact zone of sewage effluent is about 1-2 km from the discharge point. The stable isotope ratios of nitrate and particulate organic nitrogen suggest nitrogen uptake by phytoplankton as well as dilution by offshore seawater, which contributed to a decrease in sewage-derived nitrogen levels. However, the extent of the impact zone was controlled by tidal variations and differences in temperature between the TSE and seawater. Our results also identify nitrogen transport processes, through exchange between seawater and sediment pore water, as an additional important source of nitrogen in the study area.
NASA Astrophysics Data System (ADS)
Oviatt, Candace; Smith, Leslie; Krumholz, Jason; Coupland, Catherine; Stoffel, Heather; Keller, Aimee; McManus, M. Conor; Reed, Laura
2017-12-01
Except for the Providence River and side embayments like Greenwich Bay, Narragansett Bay can no longer be considered eutrophic. In summer 2012 managed nitrogen treatment in Narragansett Bay achieved a goal of reducing effluent dissolved inorganic nitrogen inputs by over 50%. Narragansett Bay represents a small northeast US estuary that had been heavily loaded with sewage effluent nutrients since the late 1800s. The input reduction was reflected in standing stock nutrients resulting in a statistically significant 60% reduction in concentration. In the Providence River estuary, total nitrogen decreased from 100 μm to about 40 μm, for example. We tested four environmental changes that might be associated with the nitrogen reduction. System apparent production was significantly decreased by 31% and 45% in the upper and mid Bay. Nutrient reductions resulted in statistically improved water clarity in the mid and upper Bay and in a 34% reduction in summer hypoxia. Nitrogen reduction also reduced the winter spring diatom bloom; winter chlorophyll levels after nutrient reduction have been significantly lower than before the reduction. The impact on the Bay will continue to evolve over the next few years and be a natural experiment for other temperate estuaries that will be experiencing nitrogen reduction. To provide perspective we review factors effecting hypoxia in other estuaries with managed nutrient reduction and conclude that, as in Narragansett Bay, physical factors can be as important as nutrients. On a positive note managed nutrient reduction has mitigated further deterioration in most estuaries.
Jimenez, Jose; Bott, Charles; Love, Nancy; Bratby, John
2015-12-01
Municipal wastewater contains a mixture of brown (feces and toilet paper), yellow (urine), and gray (kitchen, bathroom and wash) waters. Urine contributes approximately 70-80% of the nitrogen (N), 50-70% of the phosphorus (P) load and 60-70% of the pharmaceutical residues in normal domestic sewage. This study evaluated the impact of different levels of source separation of urine on an existing biological nutrient removal (BNR) process. A process model of an existing biological nutrient removal (BNR) plant was used. Increasing the amount of urine diverted from the water reclamation facilities, has little impact on effluent ammonia (NH₃-N) concentration, but effluent nitrate (NO₃-N) concentration decreases. If nitrification is necessary then no reduction in the sludge age can be realized. However, a point is reached where the remaining influent nitrogen load matches the nitrogen requirements for biomass growth, and no residual nitrogen needs to be nitrified. That allows a significant reduction in sludge age, implying reduced process volume requirements. In situations where nitrification is required, lower effluent nitrate (NO₃-N) concentrations were realized due to both the lower influent nitrogen content in the wastewater and a more favorable nitrogen-to-carbon ratio for denitrification. The external carbon requirement for denitrification decreases as the urine separation efficiency increases due to the lower influent nitrogen content in the wastewater and a more favorable nitrogen-to-carbon ratio for denitrification. The effluent phosphorus concentration decreases when the amount of urine sent to water reclamation facilities is decreased due to lower influent phosphorus concentrations. In the case of chemical phosphate removal, urine separation reduces the amount of chemicals required.
Yuan, Quan; Wang, Haiyan; Hang, Qianyu; Deng, Yangfan; Liu, Kai; Li, Chunmei; Zheng, Shengzhi
2015-09-01
The moving bed biofilm reactors (MBBRs) were used to remove the residual NO3(-)-N of wastewater treatment plant (WWTP) effluent, and the MBBR carriers for denitrification were compared. The results showed that high denitrification efficiency can be achieved with polyethylene, polypropylene, polyurethane foam, and haydite carriers under following conditions: 7.2 to 8.0 pH, 24 to 26 °C temperature, 12 h hydraulic retention time (HRT), and 25.5 mg L(-1) external methanol dosage, while the WWTP effluent total nitrogen (TN) was between 2.6 and 15.4 mg L(-1) and NO3(-)-N was between 0.2 and 12.6 mg L(-1). The MBBR filled with polyethylene carriers had higher TN and NO3(-)-N removal rate (44.9 ± 19.1 and 83.4 ± 13.0%, respectively) than those with other carriers. The minimum effluent TN and NO3(-)-N of polyethylene MBBR were 1.6 and 0.1 mg L(-1), respectively, and the maximum denitrification rate reached 23.0 g m(-2) day(-1). When chemical oxygen demand (COD)/TN ratio dropped from 6 to 4, the NO3(-)- N and TN removal efficiency decreased significantly in all reactors except for that filled with polyethylene, which indicated that the polyethylene MBBR can resist influent fluctuation much better. The three-dimensional excitation-emission matrix analysis showed that all the influent and effluent of MBBRs contain soluble microbial products (SMPs)-like organics and biochemical oxygen demand (BOD), which can be removed better by MBBRs filled with haydite and polyethylene carriers. The nitrous oxide reductase (nosZ)-based terminal restriction fragment length polymorphism (T-RFLP) analysis suggested that the dominant bacteria in polyethylene MBBR are the key denitrificans.
Mohedano, R A; Velho, V F; Costa, R H R; Hofmann, S M; Belli Filho, P
2012-01-01
Brazil is one of the most important countries in pork production worldwide, ranking third. This activity has an important role in the national economic scenario. However, the fast growth of this activity has caused major environmental impacts, especially in developing countries. The large amount of nitrogen and phosphorus compounds found in pig manure has caused ecological imbalances, with eutrophication of major river basins in the producing regions. Moreover, much of the pig production in developing countries occurs on small farms, and therefore causes diffuse pollution. Therefore, duckweed pond have been successfully used in the swine waste polishing, generating further a biomass with high protein content. The present study evaluated the efficiency of two full scale duckweed ponds for the polishing of a small pig farm effluent, biomass yield and crude protein (CP) content. Duckweed pond series received the effluent from a biodigester-storage pond, with a flow rate of 1 m(3)/day (chemical oxygen demand rate = 186 kg/ha day) produced by 300 animals. After 1 year a great improvement of effluent quality was observed, with removal of 96% of total Kjeldahl nitrogen (TKN) and 89% of total phosphorus (TP), on average. Nitrogen removal rate is one of the highest ever found (4.4 g TKN/m(2) day). Also, the dissolved oxygen rose from 0.0 to 3.0 mg/L. The two ponds produced together over 13 tons of fresh biomass (90.5% moisture), with 35% of CP content, which represents a productivity of 24 tonsCP/ha year. Due to the high rate of nutrient removal, and also the high protein biomass production, duckweed ponds revealed, under the presented conditions, a great potential for the polishing and valorization of swine waste. Nevertheless, this technology should be better exploited to improve the sustainability of small pig farms in order to minimize the impacts of this activity on the environment.
Response of spinach and komatsuna to biogas effluent made from source-separated kitchen garbage.
Furukawa, Yuichiro; Hasegawa, Hiroshi
2006-01-01
Recycling of kitchen garbage is an urgent task for reducing public spending and environmental burdens by incineration and/or landfill. There is an interesting regional effort in Ogawa, Saitama prefecture, Japan, in which source-separated kitchen garbage is anaerobically fermented with a biogas plant and the resultant effluent is used as a quick-release organic fertilizer by surrounding farmers. However, scientific assessments of fertilizer values and risks in the use of the effluent were lacking. Thus, a field experiment was conducted from 2003 to 2004 in Tohoku National Agricultural Research Center to grow spinach (Spinacia oleracea L.) and komatsuna (Brassica rapa var. perviridis L. H. Bailey) for evaluating the fertilizer value of the kitchen garbage effluent (KGE), nitrate, coliform group (CG), Escherichia coli, fecal streptococci (FS), and Vibrio parahaemolyticus concentrations of KGE and in the soil and the plant leaves. A cattle manure effluent (CME) and chemical fertilizers (NPK) were used as controls. Total nitrogen (N) and ammonium N concentrations of the KGE were 1.47 and 1.46 g kg(-1), respectively. The bacteria tested were detected in both biogas effluents in the order of 2 to 3 log CFU g(-1), but there was little evidence that the biogas effluents increased these bacteria in the soil and the plant leaves. At the rate of 22 g N m(-2), yield, total N uptake, apparent N recovery rate, and leaf nitrate ion concentration at harvest of spinach and komatsuna in the KGE plot were mostly comparable to those in the NPK and CME plots. We conclude that the KGE is a quick-release N fertilizer comparable to chemical fertilizers and does not cause contamination of CG, E. coli, FS, or V. parahaemolyticus in the soil and spinach and komatsuna leaves.
A novel technique of semi-aerobic aged refuse biofilter for leachate treatment.
Han, Zhi-Yong; Liu, Dan; Li, Qi-Bin; Li, Gui-Zhi; Yin, Zhao-Yang; Chen, Xin; Chen, Jian-Nan
2011-08-01
We developed a semi-aerobic aged refuse biofilter (SAARB) for leachate treatment and examined its advantages and disadvantages compared to previous aged refuse biofilters (ARBs). To assess its treatment capability, decontamination mechanisms and optimal performance parameters, a single-period experiment and L(9)(3(4)) orthogonal array design experiments were conducted on artificial leachate. The SAARB markedly enhanced the treatment capability and removal efficiency of organic matter and nitrogen pollutants due to the alternating aerobic-anoxic-anaerobic zones in situ. The reduction in chemical oxygen demand (COD), ammonia nitrogen (NH(4)(+)-N) and total nitrogen (TN) exceeded 98%, 94%, and 80%, respectively. After the leachate was distributed onto the SAARB surface, the effluent velocity decreased as a logarithmic function, and there was a concomitant reduction in leachate effluent volume. Based on the capacity for removal of COD, NH(4)(+)-N, and TN, the effective height of aged refuse in a SAARB was enough to be 900mm. An excellent treatment efficiency could be achieved at 20-35°C, with a leachate distribution time of 1h once every period of 2-3 days, hydraulic loading of 11-30L/(m(3)day), and COD loading of 550-1200g/(m(3)day). This new SAARB system demonstrates superior efficacy for biofilter compared to other ARB systems, especially for nitrogen removal from leachate. Copyright © 2011 Elsevier Ltd. All rights reserved.
Xu, Fuqing; Shi, Jian; Lv, Wen; Yu, Zhongtang; Li, Yebo
2013-01-01
Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5L/kg VS(feed), while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6L/kg VS(feed). The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3g CaCO(3)/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nitrogen distribution in a tropical urbanized estuarine system in northeastern Brazil.
Dos Santos, Celimarcos Bezerra; Silva, Maria Aparecida Macêdo; de Souza, Marcelo F Landim; da Silva, Daniela Mariano Lopes
2018-01-08
Nitrogen enters estuaries mostly through fluvial discharge and tide, although anthropogenic sources are known to influence the amount of this element in these aquatic ecosystems. Thus, the objective of this work was to verify which river (Cachoeira, Fundão, and/or Santana) exerts greater influence on the distribution of dissolved N forms (Dissolved Organic Nitrogen and Dissolved Inorganic Nitrogen = NH 3 /NH 4 + , NO 2 - , and NO 3 - ) along a tropical urbanized estuarine system in northeastern Brazil. The studies estuarine system lies with in urban municipality, and the upper portion of the Cachoeira river estuary receives the treated effluent from this municipality through a sewage treatment station and untreated effluents from nearby villages. The selected sampling stations were located near the outfall of the rivers in the estuaries to the treatment plant and the villages. Of all the nitrogen forms, dissolved organic nitrogen (DON) prevailed in the estuarine system, followed by nitrate (NO 3 - ) as the main inorganic form. The highest concentrations were recorded in the fluvial portion and upper estuary of Cachoeira river in the dry season. Based on the N concentrations found in the estuarine system, Cachoeira river has the greatest anthropogenic influence due to the amount of untreated effluents from the villages and treated effluents from the sewage treatment plant (STP) in the upper portion of the estuary.
Langone, Michela; Ferrentino, Roberta; Cadonna, Maria; Andreottola, Gianni
2016-12-01
A laboratory-scale sequencing batch reactor (SBR) performing partial nitritation - anammox and denitrification was used to treat anaerobic digester effluents. The SBR cycle consisted of a short mixing filling phase followed by oxic and anoxic reaction phases. Working at 25 °C, an ammonium conversion efficiency of 96.5%, a total nitrogen removal efficiency of 88.6%, and an organic carbon removal efficiency of 63.5% were obtained at a nitrogen loading rate of 0.15 kg N m -3 d -1 , and a biodegradable organic carbon to nitrogen ratio of 0.37. The potential contribution of each biological process was evaluated by using a stoichiometric model. The nitritation contribution decreased as the temperature decreased, while the contribution from anammox depended on the wastewater type and soluble carbon to nitrogen ratio. Denitrification improved the total nitrogen removal efficiency, and it was influenced by the biodegradable organic carbon to nitrogen ratio. The characteristic patterns of conductivity, oxidation-reduction potential (ORP) and pH in the SBR cycle were well related to biological processes. Conductivity profiles were found to be directly related to the decreasing profiles of ammonium. Positive ORP values at the end of the anoxic phases were detected for total nitrogen removal efficiency of lower than 85%, and the occurrence of bending points on the ORP curves during the anoxic phases was associated with nitrite depletion by the anammox process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Water-quality investigation, Salinas River, California
Irwin, G.A.
1976-01-01
Concentrations of dissolved solids in the Salinas River, California, are variable and range from 164 to 494 milligrams per liter near Bradley and from 170 to 1,090 milligrams per liter near Spreckels. Higher concentrations near Spreckels are caused mainly by sewage inflow about 150 feet (50 meters) upstream. Concentrations of nitrogen, phosphorus, total organic carbon, selected trace elements, and pesticides also generally increase downstream from Pozo to Spreckels and are related to sewage effluent; however, high concentrations occur elsewhere in the river. Specific conductance and water discharge regression results indicate that relations were all significant at the 1-percent probability level at Paso Robles, Bradley, and Spreckels with the explained variance ranging from 66 to 74 percent. Concentations of nitrogen, phosphorus, total organic carbon, and trace elements are only infrequently related to water discharge. (Woodard-USGS)
Anaerobic/aerobic treatment of greywater via UASB and MBR for unrestricted reuse.
Abdel-Shafy, Hussein I; Al-Sulaiman, Ahmed Makki; Mansour, Mona S M
2015-01-01
The aim of the present study was to investigate the efficiency of integrated up-flow anaerobic sludge blanket (UASB) as anaerobic system followed by membrane bioreactor (MBR) as aerobic system for the treatment of greywater for unrestricted reuse. Pilot-scale UASB and MBR units were installed and operated in the NRC, Egypt. Real raw greywater was subjected to UASB and the effluent was further treated with microfiltration MBR. The necessary trans-membrane pressure difference is applied by the water head above the membrane (gravity flow) without any energy input. The average characteristics of the raw greywater were 95, 392, 298, 10.45, 0.4, 118.5 and 28 mg/L for total suspended solids (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total phosphates, nitrates, oil and grease, and total Kjeldahl nitrogen (TKN), respectively. The pH was 6.71. The UASB treatment efficiency reached 19.3, 57.8, 67.5 and 83.7% for TSS, COD, BOD5 and oil and grease, respectively. When the UASB effluent was further treated with MBR, the overall removal rate achieved 97.7, 97.8, 97.4 and 95.8% for the same parameters successively. The characteristics of the final effluent reached 2.5, 8.5, 6.1, 0.95, 4.6 and 2.3 mg/L for TSS, COD, BOD, phosphates, oil and grease and TKN, respectively. This final treated effluent could cope with the unrestricted water reuse of local Egyptian guidelines.
Further contributions to the understanding of nitrogen removal in waste stabilization ponds.
Bastos, R K X; Rios, E N; Sánchez, I A
2018-06-01
A set of experiments were conducted in Brazil in a pilot-scale waste stabilization pond (WSP) system (a four-maturation-pond series) treating an upflow anaerobic sludge blanket (UASB) reactor effluent. Over a year and a half the pond series was monitored under two flow rate conditions, hence also different hydraulic retention times and surface loading rates. On-site and laboratory trials were carried out to assess: (i) ammonia losses by volatilization using acrylic capture chambers placed at the surface of the ponds; (ii) organic nitrogen sedimentation rates using metal buckets placed at the bottom of the ponds for collecting settled particulate matter; (iii) nitrogen removal by algal uptake based on the nitrogen content of the suspended particulate matter in samples from the ponds' water column. In addition, nitrification and denitrification rates were measured in laboratory-based experiments using pond water and sediment samples. The pond system achieved high nitrogen removal (69% total nitrogen and 92% ammonia removal). The average total nitrogen removal rates varied from 10,098 to 3,849 g N/ha·d in the first and the last ponds, respectively, with the following fractions associated with the various removal pathways: (i) 23.5-45.6% sedimentation of organic nitrogen; (ii) 13.1-27.8% algal uptake; (iii) 1.2-3.1% ammonia volatilization; and (iv) 0.15-0.34% nitrification-denitrification.
Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.
Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni
2014-05-01
Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Comparative survey of the influent and effluent water quality of shrimp ponds on Mexican farms.
Ruiz-Fernández, A C; Páez-Osuna, F
2004-01-01
The influent and effluent water quality of two ponds at four aquaculture facilities (two intensive and two semiintensive growout systems) located on the Northwest coast of Mexico was monitored. Temperature, salinity, pH, dissolved oxygen, biochemical oxygen demand (self-consumption in 48 hours), total suspended solids, particulate organic material, nitrite, nitrate, ammonium, reactive and total phosphate, and chlorophyll a were analyzed every 2 weeks during two consecutive growout cycles. Changes recorded in most of these water quality variables were not strongly related to the management practices of the ponds, but rather to environmental factors. The mean percent differences between inflowing and outflowing water that were observed indicated that water used for culture returned to the natural environment depleted of nutrients (inorganic nitrogen and reactive phosphate), and it was evident that the rearing activities promoted the exportation of particulate material to the surrounding environment.
Lopez, M.A.; Giovannelli, R.F.
1984-01-01
Rainfall, runoff, and water quality data were collected at nine urban watersheds in the Tampa Bay area from 1975 to 1980. Watershed drainage area ranged from 0.34 to 0.45 sq mi. Land use was mixed. Development ranged from a mostly residential watershed with a 19% impervious surface, to a commercial-residential watershed with a 61% impervious surface. Average biochemical oxygen demand concentrations of base flow at two sites and of stormwater runoff at five sites exceeded treated sewage effluent standards. Average coliform concentrations of stormwater runoff at all sites were several orders of magnitude greater than standards for Florida Class III receiving water (for recreation or propagation and management of fish and wildlife). Average concentrations of lead and zinc in stormwater runoff were consistently higher than Class III standards. Stormwater-runoff loads and base-flow concentrations of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus, and lead were related to runoff volume, land use, urban development, and antecedent daily rainfall by multiple linear regression. Stormwater-runoff volume was related to pervious area, hydraulically connected impervious surfaces, storm rainfall, and soil-infiltration index. Base-flow daily discharge was related to drainage area and antecedent daily rainfall. The flow regression equations of this report were used to compute 1979 water-year loads of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus , and total lead for the nine Tampa Bay area urban watersheds. (Lantz-PTT)
Alternative Water Processor Test Development
NASA Technical Reports Server (NTRS)
Pickering, Karen D.; Mitchell, Julie; Vega, Leticia; Adam, Niklas; Flynn, Michael; Wjee (er. Rau); Lunn, Griffin; Jackson, Andrew
2012-01-01
The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrogen and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.
Ávila, Cristina; Pelissari, Catiane; Sezerino, Pablo H; Sgroi, Massimiliano; Roccaro, Paolo; García, Joan
2017-04-15
The effect of effluent recirculation on the removal of total nitrogen (TN) and eight pharmaceuticals and personal care products (PPCPs) was evaluated during 9months in an experimental hybrid constructed wetland (CW) system applied in the treatment of urban wastewater. An Imhoff tank was followed by three stages of CWs (two 1.5-m 2 vertical subsurface flow (VF) beds alternating feed-rest cycles, a 2-m 2 horizontal (HF) and a 2-m 2 free water surface (FWS) wetland in series). A fraction of the final effluent was recycled back to the Imhoff tank with a recirculation rate of 50% (hydraulic loading rate=0.37md -1 ). The system's performance varied throughout the study. In Period I (summer) consistently high load removal efficiencies of TN (89±5%) and a removal rate of 6.6±1.4gTNm -2 d -1 were exhibited. In Period II (fall), the poor performance of the FWS during the senescence of macrophytes caused a large increase in organic matter, solids and nutrient concentrations, drastically deteriorating water quality. The determination of PPCPs was conducted during this period. Recalcitrant compounds, namely sulfamethoxazole, carbamazapine, TCEP and sucralose were negligibly removed in all CWs. However, noteworthy was the ≈30% removal of sucralose in the VF wetland. Caffeine (80%) and fluoxetine (27%) showed similar elimination rates in both VF and HF units, whereas trimethoprim and DEET were significantly better removed in the VF than in the HF. The concentration of the four latter compounds showed a severe increase in the FWS, indicating possible desorption from the sediment/biomass during adverse conditions. Harvesting of the aboveground biomass in this unit returned the system's performance back to normality (Period III), achieving 77±7% TN removal despite the winter season, proving effluent recirculation as an effective strategy for TN removal in hybrid CW systems when stringent restrictions are in place. Copyright © 2017 Elsevier B.V. All rights reserved.
von Sperling, M; Oliveira, S C
2009-01-01
This article evaluates and compares the actual behavior of 166 full-scale anaerobic and aerobic wastewater treatment plants in operation in Brazil, providing information on the performance of the processes in terms of the quality of the generated effluent and the removal efficiency achieved. The observed results of effluent concentrations and removal efficiencies of the constituents BOD, COD, TSS (total suspended solids), TN (total nitrogen), TP (total phosphorus) and FC (faecal or thermotolerant coliforms) have been compared with the typical expected performance reported in the literature. The treatment technologies selected for study were: (a) predominantly anaerobic: (i) septic tank + anaerobic filter (ST + AF), (ii) UASB reactor without post-treatment (UASB) and (iii) UASB reactor followed by several post-treatment processes (UASB + POST); (b) predominantly aerobic: (iv) facultative pond (FP), (v) anaerobic pond followed by facultative pond (AP + FP) and (vi) activated sludge (AS). The results, confirmed by statistical tests, showed that, in general, the best performance was achieved by AS, but closely followed by UASB reactor, when operating with any kind of post-treatment. The effluent quality of the anaerobic processes ST + AF and UASB reactor without post-treatment was very similar to the one presented by facultative pond, a simpler aerobic process, regarding organic matter.
Sartoris, J.J.; Thullen, J.S.; Barber, L.B.; Salas, D.E.
2000-01-01
A 9.9-ha combined habitat and wastewater treatment demonstration wetland was constructed and planted in the summer of 1994, at Eastern Municipal Water District’s (EMWD) Hemet/San Jacinto Regional Water Reclamation Facility (RWRF) in southern California. From January 1996 through September 1997, the marsh–pond–marsh wetland system was operated to polish an average of 3785 m3 d−1 (1×106 gal day−1) of secondary-treated effluent from the RWRF. Nitrogen removal was a major objective of this wetland treatment. Weekly inflow/outflow water quality monitoring of the wetland was supplemented with biannual, 45-station synoptic surveys within the system to determine internal distribution patterns of the nitrogen species (total ammonia, nitrite, nitrate, and organic nitrogen), total organic carbon (TOC), and ultraviolet absorbance at 254 nm (UV254). Synoptic surveys were carried out during May 22 and September 17, 1996, and May 6 and September 25, 1997 and the results were mapped using the ARC/INFO processing package and inverse distance weighted mathematical techniques. Distribution patterns of the various nitrogen species, TOC, and UV254 within the wetland indicate that the nitrogen dynamics of the system are influenced both by variations in treatment plant loading, and, increasingly, by the degree of coverage and maturity of the emergent vegetation.
Cravotta, C.A.
1995-01-01
Stable isotopes of carbon (C), nitrogen (N), and sulfur (S) in nitrogen sources and nearby samples of topsoil, subsoil, runoff water, and stream water were measured to evaluate the feasibility of using isotopic data to identify nitrogen sources in stream water from forested, agricultural, or suburban land-use areas. Chemical and isotopic compositions were measured for six N-source types consisting of rain water, forest-leaf litter, synthetic fertilizer, farm-animal manure, municipal-sewage effluent and sludge, and septic-tank effluent and sludge. Compositions of topsoil, subsoil, runoff water, and stream water were measured to evaluate changes in compositions of transported N-containing materials near the N source. Animal manure, human waste (sewage plus septic), and forest-leaf litter can be distinguished on the basis of C; however, most N-sources can not be distinguished on the basis of N and S, owing to wide ranges of compositions and overlap among different N-source types. Although values of N for soil and runoff-water samples are qualitatively similar to those of the applied N source, values of C and S for runoff-water and stream-water samples appear to reflect the compositions of relatively large reservoirs of the elements in soil organic matter and minerals, respectively, and not the composition of the applied N source. Because of incomplete chemical transfor- mations, the ratio of organic carbon to total nitrogen for particulates in runoff or stream waters generally is lower than that for associated, nearby soils, and isotopic compositions commonly differ between particulate and dissolved fractions in the water.
[Effect of gas-lift device on the morphology and performance of ANAMMOX sludge].
Li, Xiang; Huang, Yong; Yuan, Yi; Zhou, Cheng; Chen, Zong-Heng; Zhang, Da-Lin
2014-12-01
The upflow reactor with gas-lift device was started up by inoculating ANAMMOX sludge granules of less than 0.9 mm. The effects of gas lift device system on the morphology and performance of ANAMMOX sludge were studied by using the nitrogen gas produced in ANAMMOX to drive the effluent circulation in the reactor. The results showed that, the airlift circulation function was not clear in the startup stage of the reactor, because the nitrogen gas production was very low. At the same time, the ANAMMOX granular sludge was easy to condensate. When the load rate of nitrogen removal reached 3.4 kg x (m3 x d)(-1), the function of gas lift was significant, resulting in gradually increased effluent self-circulation, and the granules were dispersed and grew gradually. After 183d of operation, the granular sludge was dominated by the granules with sizes of 1.6-2.5 mm, which accounted for 53.2% of the total sludge volume. The MLVSS content increased with the increase of sludge particle size. The gas lift device had the same function as the external reflux pump, and was helpful for sludge granulation in the ANAMMOX reactor, while reducing power consumption and the cost of the equipment.
Laboratory Investigation of Mineralization of Refractory Nitrogen from Sewage Treatment Plants
NASA Astrophysics Data System (ADS)
Benoit, Gaboury; Wang, Peng
2017-12-01
Laboratory studies were conducted and modeled to evaluate whether refractory organic nitrogen in tertiary-treated wastewater effluent could become bioavailable by conversion to mineral forms. Multiday incubations of effluent collected from the Branford and New Haven, Connecticut, waste water treatment plants (WWTP) revealed low but steady conversion of organic nitrogen to nitrate (NO3 -). In Branford, the principal form of organic nitrogen was dissolved, and in New Haven it was particulate. Modeling suggested that in both the cases conversion to NO3 - from organic forms occurred at several per cent per day, and appeared to happen via the intermediary NH4 +. The results suggest that organic nitrogen may be an important source of bioavailable N, contributing to the problem of hypoxia in Long Island Sound and other estuaries.
Laboratory Investigation of Mineralization of Refractory Nitrogen from Sewage Treatment Plants.
Benoit, Gaboury; Wang, Peng
2017-12-01
Laboratory studies were conducted and modeled to evaluate whether refractory organic nitrogen in tertiary-treated wastewater effluent could become bioavailable by conversion to mineral forms. Multiday incubations of effluent collected from the Branford and New Haven, Connecticut, waste water treatment plants (WWTP) revealed low but steady conversion of organic nitrogen to nitrate (NO 3 - ). In Branford, the principal form of organic nitrogen was dissolved, and in New Haven it was particulate. Modeling suggested that in both the cases conversion to NO 3 - from organic forms occurred at several per cent per day, and appeared to happen via the intermediary NH 4 + . The results suggest that organic nitrogen may be an important source of bioavailable N, contributing to the problem of hypoxia in Long Island Sound and other estuaries.
Fan, Jianling; Xiao, Jiao; Liu, Deyan; Ye, Guiping; Luo, Jiafa; Houlbrooke, David; Laurenson, Seth; Yan, Jing; Chen, Lvjun; Tian, Jinping; Ding, Weixin
2017-08-15
Dairy farm manure and effluent are applied to cropland in China to provide a source of plant nutrients, but there are concerns over its effect on nitrogen (N) leaching loss and groundwater quality. To investigate the effects of land application of dairy manure and effluent on potential N leaching loss, two lysimeter trials were set up in clayey fluvo-aquic soil in a winter wheat-summer maize rotation cropping system on the North China Plain. The solid dairy manure trial included control without N fertilization (CK), inorganic N fertilizer (SNPK), and fresh (RAW) and composted (COM) dairy manure. The liquid dairy effluent trial consisted of control without N fertilization (CF), inorganic N fertilizer (ENPK), and fresh (FDE) and stored (SDE) dairy effluent. The N application rate was 225kgNha -1 for inorganic N fertilizer, dairy manure, and effluent treatments in both seasons. Annual N leaching loss (ANLL) was highest in SNPK (53.02 and 16.21kgNha -1 in 2013/2014 and 2014/2015, respectively), which were 1.65- and 2.04-fold that of COM, and 1.59- and 1.26-fold that of RAW. In the effluent trial (2014/2015), ANLL for ENPK and SDE (16.22 and 16.86kgNha -1 , respectively) were significantly higher than CF and FDE (6.3 and 13.21kgNha -1 , respectively). NO 3 - contributed the most (34-92%) to total N leaching loss among all treatments, followed by dissolved organic N (14-57%). COM showed the lowest N leaching loss due to a reduction in NO 3 - loss. Yield-scaled N leaching in COM (0.35kgNMg -1 silage) was significantly (P<0.05) lower than that in the other fertilization treatments. Therefore, the use of composted dairy manure should be increased and that of inorganic fertilizer decreased to reduce N leaching loss while ensuring high crop yield in the North China Plain. Copyright © 2017 Elsevier B.V. All rights reserved.
Water quality in the Sugar Creek basin, Bloomington and Normal, Illinois
Prugh, Byron J.
1978-01-01
Urban runoff and overflows from combined sewers affect water quantity and quality in Sugar Creek within the twin cities of Bloomington and Normal, Illinois. Water-quality data from five primary and eight secondary locations showed three basic types of responses to climatic and hydrologic stresses. Stream temperatures and concentrations of dissolved oxygen, ammonia nitrogen, total phosphorus, biochemical oxygen demand, and fecal bacteria showed seasonal variations. Specific conductivity, pH, chloride, and suspended solids concentrations varied more closely with stream discharges. Total organic carbon, total nitrogen, total phosphorus, biochemical oxygen demand, and fecal coliform and fecal streptococcal bacteria concentrations exhibited variations indicative of intial flushing action during storm runoff. Selected analyses for herbicides, insecticides, and other complex organic compounds in solution and in bed material showed that these constituents were coming from sources other than the municipal sanitary treatment plant effluent. Analyses for 10 common metals: arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc showed changes in concentrations below the municipal sanitary plant outfall. (Woodard-USGS)
Moraes, M A B; Carmo, C F; Tabata, Y A; Vaz-Dos-Santos, A M; Mercante, C T J
2016-01-01
The phosphorus and nitrogen discharge via effluent of intensive trout farming system was quantified through the use of environmental indicators. The nutrient loads, the mass balance, the estimated amount of nutrients in feed and the amount of nutrients converted in fish biomass were calculated based on the concentrations of phosphorus (P) and nitrogen (N) in the feed and in the water. Of the offered feed, 24.75 kg were available as P and 99.00 kg as N, of these, 9.32 kg P (38%) and 29.12 kg N (25%) were converted into fish biomass and 15.43 kg P (62%) and 69.88 kg N (75%) were exported via effluent. The loads and the mass balance show the excessive discharge of nutrients via effluent, corroborated by the feed conversion ratio (2.12:1) due to the low efficiency of feed utilization, therefore, it is proposed the use of this zootechnical parameter as environmental indicator. In addition, feed management practices are not adequate, highlighting the low frequency of feeding during the day, excessive amount and low quality of feed offered. These results demonstrate the need for adequate feed management and the need for careful monitoring of effluent.
Park, Sora; Yu, Jaecheul; Byun, Imgyu; Cho, Sunja; Park, Taejoo; Lee, Taeho
2011-08-01
A laboratory-scale Bardenpho process was established to investigate the proper nitrogen loading rate (NLR) when modified spent caustic (MSC) is applied as electron donor and alkalinity source for denitrification. MSC injection induced autotrophic nitrogen removal with sulfur as electron donor and heterotrophic denitrification. The nitrogen removal rate (NRR) did not increase proportionally to NLR. Based on the total nitrogen concentration in the effluent observed in the trials with MSC, the NLR in the influent should not exceed 0.15 kg N/m(3)d in order to satisfy water quality regulations. Microbial communities in the anoxic reactors were characterized by pyrosequencing of 16S rRNA gene sequences amplified by the polymerase chain reaction of DNA extracted from sludge samples. Microbial diversity was lower as MSC dosage was increased, and the injection of MSC caused an increase in SOB belonging to the genus Thiobacillus which is responsible for denitrification using sulfur. Copyright © 2011 Elsevier Ltd. All rights reserved.
Xu, Ming; Liu, Weijing; Li, Chao; Xiao, Chun; Ding, Lili; Xu, Ke; Geng, Jinju; Ren, Hongqiang
2016-06-01
Constructed wetlands are ecosystems that use plants and microorganisms to remediate pollution in soil and water. In this study, two parallel pilot-scale vertical flow wetland and horizontal flow wetland (VF-HF) systems were implemented to investigate the treatment performance and microorganism community structure in the secondary effluent of an industrial park wastewater treatment plant (WWTP) with a loading rate of 100 mm/day near the Yangtze River in Suzhou City, East China. Removal efficiencies of 82.3, 69.8, 77.8, and 32.3 were achieved by the VF-HF systems for ammonium nitrogen (NH4 (+)-N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD), respectively. The VF system specialized in COD and NH4 (+)-N removal (73.6 and 79.2 %), whereas the HF system mainly contributed to TN removal (63.5 %). The effluents in all seasons are capable of achieving the "surface water environmental quality standard" (GB3838-2002) grade IV. In the VF system, the 16S gene and nirK gene were significantly correlated with depth, with the 16S gene showing significant correlations with the dissolved oxygen (DO) level (r = 0.954, p < 0.05), which was determined by real-time PCR and high-throughput sequencing. Many types of bacteria capable of biodegradation, including nitrifiers, denitrifiers, and polyaromatic hydrocarbon (PAH) degraders (improvement of the BOD5/COD ratio), were observed, and they contributed to approximately 90 % of the nitrogen removal in the VF-HF system.
Ge, Shijian; Peng, Yongzhen; Qiu, Shuang; Zhu, Ao; Ren, Nanqi
2014-05-15
This study assessed the technical feasibility of removing nitrogen from municipal wastewater by partial nitrification (nitritation) in a continuous plug-flow step feed process. Nitrite in the effluent accumulated to over 81.5 ± 9.2% but disappeared with the transition of process operation from anoxic/oxic mode to the anaerobic/anoxic/oxic mode. Batch tests showed obvious ammonia oxidizing bacteria (AOB) stimulation (advanced ammonia oxidation rate) and nitrite (NOB) oxidizing bacteria inhibition (reduced nitrite oxidation rate) under transient anoxic conditions. Two main factors contributed to nitritation in this continuous plug-flow process: One was the alternating anoxic and oxic operational condition; the step feed strategy guaranteed timely denitrification in anoxic zones, allowing a reduction in energy supply (nitrite) to NOB. Fluorescence in Situ Hybridization and quantitative real-time polymerase chain reaction analysis indicated that NOB population gradually decreased to 1.0 ± 0.1% of the total bacterial population (dominant Nitrospira spp., 1.55 × 10(9) copies/L) while AOB increased approximately two-fold (7.4 ± 0.9%, 1.25 × 10(10) copies/L) during the above anoxic to anaerobic transition. Most importantly, without addition of external carbon sources, the above wastewater treatment process reached 86.0 ± 4.2% of total nitrogen (TN) removal with only 7.23 ± 2.31 mg/L of TN in the effluent, which met the discharge requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.
Massé, D I; Croteau, F; Masse, L
2007-11-01
The objectives of the study were to measure the levels of manure nutrients retained in psychrophilic anaerobic sequencing batch reactors (PASBRs) digesting swine manure, and to determine the distribution of nutrients in the sludge and supernatant zones of settled bioreactor effluent. Anaerobic digestion reduced the total solids (TS) concentration and the soluble chemical oxygen demand (SCOD) of manure by 71.4% and 79.9%, respectively. The nitrogen, potassium, and sodium fed with the manure to the PASBRs were recovered in the effluent. The bioreactors retained on average 25.5% of the P, 8.7% of the Ca, 41.5% of the Cu, 18.4% of the Zn, and 67.7% of the S fed to the PASBRs. The natural settling of bioreactor effluent allowed further nutrient separation. The supernatant fraction, which represented 71.4% of effluent volume, contained 61.8% of the total N, 67.1% of the NH4-N, and 73.3% of the Na. The settled sludge fraction, which represented 28.6% of the volume, contained 57.6% of the solids, 62.3% of the P, 71.6% of the Ca, 89.6% of the Mg, 76.1% of the Al, 90.0% of the Cu, 74.2% of the Zn, and 52.2% of the S. The N/P ratio was increased from 3.9 in the raw manure to 5.2 in the bioreactor effluent and 9.2 in the supernatant fraction of the settled effluent. The PASBR technology will then substantially decrease the manure management costs of swine operations producing excess phosphorus, by reducing the volume of manure to export outside the farm. The separation of nutrients will also allow land spreading strategies that increase the agronomic value of manure by matching more closely the crop nutrient requirements.
Brennan, R B; Clifford, E; Devroedt, C; Morrison, L; Healy, M G
2017-03-01
Landfill leachate is the result of water percolating through waste deposits that have undergone aerobic and anaerobic microbial decomposition. In recent years, increasingly stringent wastewater discharge requirements have raised questions regarding the efficacy of co-treatment of leachate in municipal wastewater treatment plants (WWTPs). This study aimed to (1) examine the co-treatment of leachate with a 5-day biochemical oxygen demand (BOD 5 ): chemical oxygen demand (COD) ratio less than or slightly greater than 0.26 (intermediate age leachate) in municipal WWTPs (2) quantify the maximum hydraulic and mass (expressed as mass nitrogen or COD) loading of landfill leachate (as a percentage of the total influent loading rate) above which the performance of a WWTP may be inhibited, and (3) quantify the impact of a range of hydraulic loading rates (HLRs) of young and intermediate age leachate, loaded on a volumetric basis at 0 (study control), 2, 4 and 10% (volume landfill leachate influent as a percentage of influent municipal wastewater), on the effluent ammonium concentrations. The leachate loading regimes examined were found to be appropriate for effective treatment of intermediate age landfill leachate in the WWTPs examined, but co-treatment may not be suitable in WWTPs with low ammonium-nitrogen (NH 4 -N) and total nitrogen (TN) emission limit values (ELVs). In addition, intermediate leachate, loaded at volumetric rates of up to 4% or 50% of total WWTP NH 4 -N loading, did not significantly inhibit the nitrification processes, while young leachate, loaded at volumetric rates greater of than 2% (equivalent to 90% of total WWTP NH 4 -N loading), resulted in a significant decrease in nitrification. The results show that current hydraulic loading-based acceptance criteria recommendations should be considered in the context of leachate NH 4 -N composition. The results also indicate that co-treatment of old leachate in municipal WWTPs may represent the most sustainable solution for ongoing leachate treatment in the cases examined. Copyright © 2016 Elsevier Ltd. All rights reserved.
Maupin, Molly A.; Ivahnenko, Tamara
2011-01-01
Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1 million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using "typical pollutant concentrations" to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales.
Domestic wastewater treatment and biofuel production by using microalga Scenedesmus sp. ZTY1.
Zhang, Tian-Yuan; Wu, Yin-Hu; Hu, Hong-Ying
2014-01-01
Cultivation of microalgae for biomass production is a promising way to dispose of wastewater and recover nutrients simultaneously. The properties of nutrient removal and biomass production in domestic wastewater of a newly isolated microalga Scenedesmus sp. ZTY1 were investigated in this study. Scenedesmus sp. ZTY1, which was isolated from a wastewater treatment plant in Beijing, grew well in both the primary and secondary effluents of a wastewater treatment plant during the 21-day cultivation, with a maximal algal density of 3.6 × 10(6) and 1.9 × 10(6) cells · mL(-1), respectively. The total phosphorus concentrations in both effluents could be efficiently removed by over 97% after the cultivation. A high removal rate (over 90%) of total nitrogen (TN) was also observed. After cultivation in primary effluent for 21 days, the lipid content of Scenedesmus sp. ZTY1 in dry weight had reached about 32.2%. The lipid and triacylglycerol (TAG) production of Scenedesmus sp. ZTY1 was increased significantly with the extension of cultivation time. The TAG production of Scenedesmus sp. ZTY1 increased from 32 mg L(-1) at 21 d to 148 mg L(-1) at 45 d in primary effluent. All the experiments were carried out in non-sterilized domestic wastewater and Scenedesmus sp. ZTY1 showed good adaptability to the domestic wastewater environment.
Mubedi, Josué Ilunga; Devarajan, Naresh; Le Faucheur, Séverine; Mputu, John Kayembe; Atibu, Emmanuel K; Sivalingam, Periyasamy; Prabakar, Kandasamy; Mpiana, Pius T; Wildi, Walter; Poté, John
2013-10-01
Physicochemical and ecotoxicological analyses have been performed to assess the quality of sediments receiving untreated hospital effluents from Indian and Democratic Republic of Congo (DRC) hospitals. The sediments were collected monthly and characterized for grain size, organic matter, total organic carbon, total carbon, nitrogen, phosphorus, toxic metals and ecotoxicity. The results highlight the high concentration of toxic metals from the Indian hospital effluent receiving systems, especially for Cr, Cu, As, Zn and Hg. On the other hand, the metal concentrations in the sediment receiving system from DRC are low (e.g. maximum Hg and Zn concentration were 0.46 and 48.84 mg kg(-1) respectively). Ostracods exposed to sediment samples H2 (September month sample) and H3 (June and September month samples) were found dead after 6d of exposure whereas the higher mortality rate for Congo sediments was 23% but was accompanied with 33 ± 7% of growth inhibition. The results of this study show the variation of sediment composition on toxic metal levels as well as toxicity related to both, the type of hospitals and the sampling period. Additionally, hospital effluent disposal practices at the study sites can lead to the pollution of water resources and may generate risks for aquatic organisms and human health. Copyright © 2013 Elsevier Ltd. All rights reserved.
Denitrification and nitrogen transport in a coastal aquifer receiving wastewater discharge
DeSimone, L.A.; Howes, B.L.
1996-01-01
Denitrification and nitrogen transport were quantified in a sandy glacial aquifer receiving wastewater from a septage-treatment facility on Cape Cod, MA. The resulting groundwater plume contained high concentrations of NO3- (32 mg of NL-1), total dissolved nitrogen (40.5 mg of N L-1), and dissolved organic carbon (1.9 mg of C L-1) and developed a central anoxic zone after 17 months of effluent discharge. Denitrifying activity was measured using four approaches throughout the major biogeochemical zones of the plume. Three approaches that maintained the structure of aquifer materials yielded comparable rates: acetylene block in intact sediment cores, 9.6 ng of N cm-3 d-1 (n = 61); in situ N2 production, 3.0 ng of N cm-3 d-1 (n = 11); and in situ NO3- depletion, 7.1 ng of N cm-3 d-1 (n = 3). In contrast, the mixing of aquifer materials using a standard slurry method yielded rates that were more than 15-fold higher (150 ng of N cm-3 d-1, n = 16) than other methods. Concentrations and ??15N of groundwater and effluent N2, NO3-, and NH4+ were consistent with the lower rates of denitrification determined by the intact-core or in situ methods. These methods and a plumewide survey of excess N2 indicate that 2-9% of the total mass of fixed nitrogen recharged to the anoxic zone of the plume was denitrified during the 34-month study period. Denitrification was limited by organic carbon (not NO3-) concentrations, as evidenced by a nitrate and carbon addition experiment, the correlation of denitrifying activity with in situ concentrations of dissolved organic carbon, and the assessments of available organic carbon in plume sediments. Carbon limitation is consistent with the observed conservative transport of 85-96% of the nitrate in the anoxic zone. Although denitrifying activity removed a significant amount (46250 kg) of fixed nitrogen during transport, the effects of aquifer denitrification on the nitrogen load to receiving ecosystems are likely to be small (<10%).
USDA-ARS?s Scientific Manuscript database
Cattle (Bos taurus) manure and swine (Sus scrofa) effluent are applied to cropland to recycle nutrients, build soil quality, and increase crop productivity. The objective of this study was to determine the long-term effects of land application of cattle manure and swine effluent using the Kansas Nut...
Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Deletic, Ana; Hatt, Belinda E; Fletcher, Tim D
2017-04-04
Stormwater biofilters are dynamic environments, supporting diverse processes that act to capture and transform incoming pollutants. However, beneficial water treatment processes can be accompanied by undesirable greenhouse gas production. This study investigated the potential for nitrous oxide (N 2 O) and methane (CH 4 ) generation in dissolved form at the base of laboratory-scale stormwater biofilter columns. The influence of plant presence, species, inflow frequency, and inclusion of a saturated zone and carbon source were studied. Free-draining biofilters remained aerobic with negligible greenhouse gas production during storm events. Designs with a saturated zone were oxygenated at their base by incoming stormwater before anaerobic conditions rapidly re-established, although extended dry periods allowed the reintroduction of oxygen by evapotranspiration. Production of CH 4 and N 2 O in the saturated zone varied significantly in response to plant presence, species, and wetting and drying. Concentrations of N 2 O typically peaked rapidly following stormwater inundation, associated with limited plant root systems and poorer nitrogen removal from biofilter effluent. Production of CH 4 also commenced quickly but continued throughout the anaerobic interevent period and lacked clear relationships with plant characteristics or nitrogen removal performance. Dissolved greenhouse gas concentrations were highly variable, but peak concentrations of N 2 O accounted for <1.5% of the incoming total nitrogen load. While further work is required to measure surface emissions, the potential for substantial release of N 2 O or CH 4 in biofilter effluent appears relatively low.
2010-01-01
requiring thermochemical pretreatment , aswould typically be required with lignocellulosic feedstocks. Therefore it offers a readily-processed and...Standards and Technology. The pH of the reactors was controlled throughout all fermentations by the automatic addition of 0.1 N NaOH . Total organic...nutrients. The optimized conditions developed with paper as a substrate may also convey to the use of a similar process with lignocellulosic biomass
Mixing regime as a key factor to determine DON formation in drinking water biological treatment.
Lu, Changqing; Li, Shuai; Gong, Song; Yuan, Shoujun; Yu, Xin
2015-11-01
Dissolved organic nitrogen (DON) can act as precursor of nitrogenous disinfection by-products formed during chlorination disinfection. The performances of biological fluidized bed (continuous stirred tank reactor, CSTR) and bio-ceramic filters (plug flow reactor, PFR) were compared in this study to investigate the influence of mixing regime on DON formation in drinking water treatment. In the shared influent, DON ranged from 0.71mgL(-1) to 1.20mgL(-1). The two biological fluidized bed reactors, named BFB1 (mechanical stirring) and BFB2 (air agitation), contained 0.12 and 0.19mgL(-1) DON in their effluents, respectively. Meanwhile, the bio-ceramic reactors, labeled as BCF1 (no aeration) and BCF2 (with aeration), had 1.02 and 0.81mgL(-1) DON in their effluents, respectively. Comparative results showed that the CSTR mixing regime significantly reduced DON formation. This particular reduction was further investigated in this study. The viable/total microbial biomass was determined with propidium monoazide quantitative polymerase chain reaction (PMA-qPCR) and qPCR, respectively. The results of the investigation demonstrated that the microbes in BFB2 had higher viability than those in BCF2. The viable bacteria decreased more sharply than the total bacteria along the media depth in BCF2, and DON in BCF2 accumulated in the deeper media. These phenomena suggested that mixing regime determined DON formation by influencing the distribution of viable, total biomass, and ratio of viable biomass to total biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.
On-site wastewater treatment using subsurface flow constructed wetlands in Ireland.
Gill, Laurence W; O'Luanaigh, Niall; Johnston, Paul M
2011-01-01
The results from an Irish EPA-funded project on the effectiveness of using constructed wetlands for treating wastewater from single households is presented, which has contributed to the design guidelines included in the new EPA Code of Practice. Three subsurface flow gravel-filled wetlands were constructed on separate sites--one to provide secondary treatment and the other two to provide tertiary treatment stages for the domestic effluent. A comprehensive analysis over three years was then conducted to provide a robust characterization of the internal dynamics of the systems, particularly with respect to N and P removal as well as evaluating the temporal water balance across the different seasons. The removal of Total N was only 29% and 30% in the secondary and tertiary treatment wetlands, respectively; particularly disappointing for the tertiary treatment process, which was receiving nitrified effluent. Studies on the (15)N stable isotope confirmed that 35% of the ammonium from the septic tank was passing straight through the process without taking part in any biogeochemical processes. However, influent N in the wetlands was shown to be biologically assimilated into organic nitrogen and then released again as soluble ammonium--so-called nitrogen "spiraling." Removal of Total P in the wetlands averaged from 28% to 45% with higher P removals measured during summer periods, although the effluent concentrations were still found to be high (> 5 mg/l on average). The phosphorus in the plant material was also analysed revealing that the annual above-ground stem matter only accounted for 1.3% to 8.4% of the annual total P-load in the wetlands. Finally, the water balance analyses showed that the mean flow discharging from both the secondary and tertiary treatment wetlands was slightly greater than the mean flow to the reed bed over the trial period, with rainfall acting to increase flows by 13% and 5%, respectively, on average in winter while just about balancing evapotranspiration in the summer.
Sources and Transformations of Carbon and Nitrogen in the Potomac River Estuary
NASA Astrophysics Data System (ADS)
Pennino, M. J.; Kaushal, S.; Murthy, S.
2011-12-01
Urbanization has altered the transport of nitrogen (N) and carbon (C) in river ecosystems, making it important to understand how rivers are responding to these increased inputs of C and N. This study examines the capacity of a major tributary of the Chesapeake Bay, the Potomac River, to transform N and C inputs from the world's largest advanced wastewater treatment facility (Washington D.C. Water and Sewer Authority). Surface water and effluent samples were collected monthly for one year, along longitudinal transects of the Potomac River. Water samples were analyzed for the major dissolved and particulate forms of C and N. Nitrate stable isotopes were used to trace the fate of wastewater nitrate, as well as how other nitrate sources vary downriver. Sources of carbon downriver were traced using fluorescence spectroscopy, excitation emission matrices (EEMs), and PARAFAC modeling. Historical influent and effluent data on C and N levels were also compared with regional population growth data, climate change data, and long-term interannual records of C and N levels within downstream stations along the Potomac River. Improvements in treatment technology over the past two decades have shown significant decreases in effluent nitrogen levels, with corresponding decreases overtime of nutrients at downstream sampling stations. Levels of nitrate show increases within the vicinity of the wastewater treatment outfall, but decrease rapidly downstream, potentially indicating nutrient uptake and/or denitrification. Total organic carbon levels show a smaller decrease downstream, resulting in an increase in the C:N ratio downstream. Longitudinal river chemistry data also show that dissolved inorganic nitrogen goes down while total organic nitrogen goes up with distance downriver, indicating biological transformations are taking place along the river. Preliminary data from fluorescence EEMs suggested that more humic-like organic matter is important above the wastewater treatment plant, but more protein-like organic matter is present below the treatment plant. However, this fluorescence signal from wastewater organic matter disappears within 2-4 km downriver, indicating rapid processing of the labile organic matter within the river. Nitrate isotope data for both upriver and downriver samples show a signal from manure or sewage inputs, indicating a potential influence from animal farms upstream in the Potomac. However, only the downriver samples show evidence for denitrification. Additionally, the higher 15N isotope levels of nitrate, which are characteristic of wastewater sources, disappear by 20 km downriver. Majors rivers like the Potomac may have a huge capacity for transforming and processing large carbon and nitrogen inputs within a short distance. Greater knowledge of how land management and climate change impacts these transformations will be important in predicting changes in the amounts, forms, and stoichiometry of nutrient loads to coastal waters.
Regmi, Pusker; Holgate, Becky; Miller, Mark W; Park, Hongkeun; Chandran, Kartik; Wett, Bernhard; Murthy, Sudhir; Bott, Charles B
2016-03-01
As nitrogen discharge limits are becoming more stringent, short-cut nitrogen systems and tertiary nitrogen polishing steps are gaining popularity. For partial nitritation or nitritation-denitritation systems, anaerobic ammonia oxidation (anammox) polishing may be feasible to remove residual ammonia and nitrite from the effluent. Nitrogen polishing of mainstream nitritation-denitritation system effluent via anammox was studied at 25°C in a fully anoxic moving bed bioreactor (MBBR) (V = 0.45 m(3) ) over 385 days. Unlike other anammox based processes, a very fast startup of anammox MBBR was demonstrated, despite nitrite limited feeding conditions (influent nitrite = 0.7 ± 0.59 mgN/L, ammonia = 6.13 ± 2.86 mgN/L, nitrate = 3.41 ± 1.92 mgN/L). The nitrogen removal performance was very stable within a wide range of nitrogen inputs. Anammox bacteria (AMX) activity up to 1 gN/m(2) /d was observed which is comparable to other biofilm-based systems. It is generally believed that nitrate production limits nitrogen removal through AMX metabolism. However, in this study, anammox MBBR demonstrated ammonia, nitrite, and nitrate removal at limited chemical oxygen demand (COD) availability. AMX and heterotrophs contributed to 0.68 ± 0.17 and 0.32 ± 0.17 of TIN removal, respectively. It was speculated that nitrogen removal might be aided by denitratation which could be due to heterotrophs or the recently discovered ability for AMX to use short-chain fatty acids to reduce nitrate to nitrite. This study demonstrates the feasibility of anammox nitrogen polishing in an MBBR is possible for nitritation-denitration systems. © 2015 Wiley Periodicals, Inc.
Microalgae population dynamics in photobioreactors with secondary sewage effluent as culture medium
Marchello, Adriano E.; Lombardi, Ana T.; Dellamano-Oliveira, Maria José; de Souza, Clovis W.O.
2015-01-01
Nitrogen and phosphorus present in sewage can be used for microalgae growth, possibiliting cost reduction in the production of microalgae at the same time that it decreases the eutrophication potential of the effluent. This research aimed at monitoring the native community of microalgae and coliform bacteria in a secondary effluent from anaerobic municipal sewage treatment. Two treatments (aerated and non-aerated) were performed to grow microalgae under semi-controlled conditions in semi-closed photobioreactors in a greenhouse. The results showed no significant pH and coliforms (total and Escherichia coli ) variation between treatments. Nutrient concentrations were reduced supporting microalgae growth up to 10 7 cells.mL −1 independent of aeration. Exponential growth was obtained from the first day for the non-aerated, but a 5 day lag phase of growth was obtained for the aerated. Chlorella vulgaris was the dominant microalgae (99.9%) in both treatments. In the aerated, 5 algae classes were detected (Chlorophyceae, Cyanophyceae, Chrysophyceae, Bacillariophyceae and Euglenophyceae), with 12 taxa, whereas in the non-aerated, 2 classes were identified (Chlorophyceae and Cyanophyceae), with 5 taxa. We concluded that effluent is viable for microalgae growth, especially Chlorella vulgaris, at the same time that the eutrophication potential and coliforms are decreased, contributing for better quality of the final effluent. PMID:26221091
Effect of wastewater quality parameters on coliform inactivation by tin oxide anodes.
Teel, Amy L; Watts, Richard J
2018-04-16
The effect of six water quality constituents on wastewater effluent disinfection by tin oxide anodes (TOAs) was investigated in single cell laboratory reactors. Several concentrations of suspended solids, chemical oxygen demand (COD), alkalinity, ammonia-nitrogen, nitrite-nitrogen, and nitrate-nitrogen were added to media containing 10 6 total coliform bacteria mL -1 . Current was applied through the TOAs, and coliform bacteria viability was analyzed over time. Over 99.9% inactivation of coliform bacteria was found over 15 min in TOA reactors. Concentrations of the six water quality constituents typical of concentrations found in wastewaters had no effect on TOA disinfection efficacy. The results of this research demonstrate that TOAs, which could potentially be powered by solar panels, have potential as a sustainable disinfection process compared to chlorine, ozone, and ultraviolet light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Fuqing; Shi Jian; Lv Wen
2013-01-15
Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of cornmore » stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.« less
Nutrient contributions and biogas potential of co-digestion of feedstocks and dairy manure.
Ma, Guiling; Neibergs, J Shannon; Harrison, Joseph H; Whitefield, Elizabeth M
2017-06-01
This study focused on collection of data on nutrient flow and biogas yield at a commercial anaerobic digester managed with dairy manure from a 1000 cow dairy and co-digestion of additional feedstocks. Feedstocks included: blood, fish, paper pulp, out of date beverages and grease trap waste. Mass flow of inputs and outputs, nutrient concentration of inputs and outputs, and biogas yield were obtained. It was determined that manure was the primary source of nutrients to the anaerobic digester when co-digested with feedstocks. The percentage of contribution from manure to the total nutrient inputs for total nitrogen, ammonia-nitrogen, phosphorus and total solids was 46.3%, 67.7%, 32.8% and 23.4%, respectively. On average, manure contributed the greatest amount of total nitrogen and ammonia-nitrogen. Grease trap waste contributed the greatest amount of phosphorus and total solids at approximately 50%. Results demonstrated that a reliable estimate of nutrient inflow could be obtained from the product of the nutrient analyses of a single daily composite of influent subsamples times the total daily flow estimated with an in-line flow meter. This approach to estimate total daily nutrient inflow would be more cost effective than testing and summing the contribution of individual feedstocks. Data collected after liquid-solid separation confirmed that the majority (>75%) of nutrients remain with the liquid effluent portion of the manure stream. It was demonstrated that the ash concentration in solids before and after composting could be used to estimate the mass balance of total solids during the compost process. This data confirms that biogas or methane yield could be accurately measured from the ratio of % volatile solids to % total solids. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of wastewater disinfection on waterborne bacteria and viruses
Blatchley, E. R.; Gong, W.-L.; Alleman, J.E.; Rose, J.B.; Huffman, D.E.; Otaki, M.; Lisle, J.T.
2007-01-01
Wastewater disinfection is practiced with the goal of reducing risks of human exposure to pathogenic microorganisms. In most circumstances, the efficacy of a wastewater disinfection process is regulated and monitored based on measurements of the responses of indicator bacteria. However, inactivation of indicator bacteria does not guarantee an acceptable degree of inactivation among other waterborne microorganisms (e.g., microbial pathogens). Undisinfected effluent samples from several municipal wastewater treatment facilities were collected for analysis. Facilities were selected to provide a broad spectrum of effluent quality, particularly as related to nitrogenous compounds. Samples were subjected to bench-scale chlorination and dechlorination and UV irradiation under conditions that allowed compliance with relevant discharge regulations and such that disinfectant exposures could be accurately quantified. Disinfected samples were subjected to a battery of assays to assess the immediate and long-term effects of wastewater disinfection on waterborne bacteria and viruses. In general, (viable) bacterial populations showed an immediate decline as a result of disinfectant exposure; however, incubation of disinfected samples under conditions that were designed to mimic the conditions in a receiving stream resulted in substantial recovery of the total bacterial community. The bacterial groups that are commonly used as indicators do not provide an accurate representation of the response of the bacterial community to disinfectant exposure and subsequent recovery in the environment. UV irradiation and chlorination/dechlorination both accomplished measurable inactivation of indigenous phage; however, the extent of inactivation was fairly modest under the conditions of disinfection used in this study. UV irradiation was consistently more effective as a virucide than chlorination/dechlorination under the conditions of application, based on measurements of virus (phage) diversity and concentration. Taken together, and when considered in conjunction with previously published research, the results of these experiments illustrate several important limitations of common disinfection processes as applied in the treatment of municipal wastewaters. In general, it is not clear that conventional disinfection processes, as commonly implemented, are effective for control of the risks of disease transmission, particularly those associated with viral pathogens. Microbial quality in receiving streams may not be substantially improved by the application of these disinfection processes; under some circumstances, an argument can be made that disinfection may actually yield a decrease in effluent and receiving water quality. Decisions regarding the need for effluent disinfection must account for site-specific characteristics, but it is not clear that disinfection of municipal wastewater effluents is necessary or beneficial for all facilities. When direct human contact or ingestion of municipal wastewater effluents is likely, disinfection may be necessary. Under these circumstances, UV irradiation appears to be superior to chlorination in terms of microbial quality and chemistry and toxicology. This advantage is particularly evident in effluents that contain appreciable quantities of ammonia-nitrogen or organic nitrogen.
Anammox process for nitrogen removal from anaerobically digested fish canning effluents.
Dapena-Mora, A; Campos, J L; Mosquera-Corral, A; Méndez, R
2006-01-01
The Anammox process was used to treat the effluent generated in an anaerobic digester which treated the wastewater from a fish cannery once previously processed in a Sharon reactor. The effluents generated from the anaerobic digestion are characterised by their high ammonium content (700-1000 g NH4+ -Nm(-3)), organic carbon content (1000-1300 g TOCm(-3)) and salinity up to 8,000-10,000 g NaCl m(-3). In the Sharon reactor, approximately 50% of the NH4+ -N was oxidised to NO2- -N via partial nitrification. The effluent of the Sharon step was fed to the Anammox reactor which treated an averaged nitrogen loading rate of 500 g N m(-3) x d(-1). The system reached an averaged nitrogen removal efficiency of 68%, mainly limited due to the nonstoichiometric relation, for the Anammox process, between the ammonium and nitrite added in the feeding. The Anammox reactor bacterial population distribution, followed by FISH analysis and batch activity assays, did not change significantly despite the continuous entrance to the system of aerobic ammonium oxidisers coming from the Sharon reactor. Most of the bacteria corresponded to the Anammox population and the rest with slight variable shares to the ammonia oxidisers. The Anammox reactor showed an unexpected robustness despite the continuous variations in the influent composition regarding ammonium and nitrite concentrations. Only in the period when NO2- -N concentration was higher than the NH4+ -N concentration did the process destabilise and it took 14 days until the nitrogen removal percentage decreased to 34% with concentrations in the effluent of 340g NH4+ -N m(-3) and 440 g NO2- -N m(-3), respectively. Based on these results, it seems that the Sharon-Anammox system can be applied for the treatment of industrial wastewaters with high nitrogen load and salt concentration with an appropriate control of the NO2- -N/NH4+ -N ratio.
Yu, Min-Da; He, Xiao-Song; Xi, Bei-Dou; Gao, Ru-Tai; Zhao, Xian-Wei; Zhang, Hui; Huang, Cai-Hong; Tan, Wenbing
2018-03-01
Fluorescence excitation-emission matrix (EEM) spectroscopy combined with principal component analysis (PCA) and parallel factor analysis (PARAFAC) were used to investigate the compositional characteristics of dissolved and particulate/colloidal organic matter and its correlations with nitrogen, phosphorus, and heavy metals in an effluent-dominated stream, Northern China. The results showed that dissolved organic matter (DOM) was comprised of fulvic-like, humic-like, and protein-like components in the water samples, and fulvic-like substances were the main fraction of DOM among them. Particulate/colloidal organic matter (PcOM) consisted of fulvic-like and protein-like matter. Fulvic-like substances existed in the larger molecular form in PcOM, and they comprised a large amount of nitrogen and polar functional groups. On the other hand, protein-like components in PcOM were low in benzene ring and bound to heavy metals. It could be concluded that nitrogen, phosphorus, and heavy metals in effluent had an effect on the compositional characteristics of natural DOM and PcOM, which may deepen our understanding about the environmental behaviors of organic matter in effluent.
Modeling phytoremediation of nitrogen-polluted water using water hyacinth (Eichhornia crassipes)
NASA Astrophysics Data System (ADS)
Mayo, Aloyce W.; Hanai, Emmanuel E.
2017-08-01
Water hyacinth (Eichhornia crassipes) has a great potential for purification of wastewater through physical, chemical and biological mechanisms. In an attempt to improve the quality of effluents discharged from waste stabilization ponds at the University of Dar es Salaam, a pilot plant was constructed to experiment the effectiveness of this plants for transformation and removal of nitrogen. Samples of wastewater were collected and examined for water quality parameters, including pH, temperature, dissolved oxygen, and various forms of nitrogen, which were used as input parameters in a kinetic mathematical model. A conceptual model was then developed to model various processes in the system using STELLA 6.0.1 software. The results show that total nitrogen was removed by 63.9%. Denitrification contributed 73.8% of the removed nitrogen. Other dominant nitrogen removal mechanisms are net sedimentation and uptake by water hyacinth, which contributed 16.7% and 9.5% of the removed nitrogen, respectively. The model indicated that in presence of water hyacinth biofilm about 1.26 g Nm-2day-1 of nitrogen was removed. However, in the absence of biofilm in water hyacinth pond, the permanent nitrogen removal was only 0.89 g Nm-2day-1. This suggests that in absence of water hyacinth, the efficiency of nitrogen removal would decrease by 29.4%.
Design, construction and performance of a horizontal subsurface flow wetland system in Australia.
Bolton, Lise M W; Bolton, Keith G E
2013-01-01
Malabugilmah is a remote Aboriginal community located in Clarence Valley, Northern NSW, Australia. In 2006, seven horizontal subsurface flow wetland clusters consisting of 3 m × 2 m wetland cells in series were designed and constructed to treat septic tank effluent to a secondary level (Total Suspended Solids (TSS) < 30 mg/L and Biochemical Oxygen Demand (BOD5) <20 mg/L) and achieve >50% Total Nitrogen (TN) reduction, no net Total Phosphorus (TP) export and ≥99.9% Faecal Coliform (FC) reduction. The wetland cell configuration allowed the wetlands to be located on steeper terrain, enabling effluent to be treated to a secondary level without the use of pumps. In addition to the water quality targets, the wetlands were designed and constructed to satisfy environmental, economic and social needs of the community. The wetland systems were planted with a local Australian wetland tree species which has become well established. Two wetland clusters have been monitored over the last 4 years. The wetlands have demonstrated to be robust over time, providing a high level of secondary treatment over an extended period.
Watari, Takahiro; Cuong Mai, Trung; Tanikawa, Daisuke; Hirakata, Yuga; Hatamoto, Masashi; Syutsubo, Kazuaki; Fukuda, Masao; Nguyen, Ngoc Bich; Yamaguchi, Takashi
2017-01-01
Conventional aerated tank technology is widely applied for post treatment of natural rubber processing wastewater in Southeast Asia; however, a long hydraulic retention time (HRT) is required and the effluent standards are exceeded. In this study, a downflow hanging sponge (DHS) reactor was installed as post treatment of anaerobic tank effluent in a natural rubber factory in South Vietnam and the process performance was evaluated. The DHS reactor demonstrated removal efficiencies of 64.2 ± 7.5% and 55.3 ± 19.2% for total chemical oxygen demand (COD) and total nitrogen, respectively, with an organic loading rate of 0.97 ± 0.03 kg-COD m -3 day -1 and a nitrogen loading rate of 0.57 ± 0.21 kg-N m -3 day -1 . 16S rRNA gene sequencing analysis of the sludge retained in the DHS also corresponded to the result of reactor performance, and both nitrifying and denitrifying bacteria were detected in the sponge carrier. In addition, anammox bacteria was found in the retained sludge. The DHS reactor reduced the HRT of 30 days to 4.8 h compared with the existing algal tank. This result indicates that the DHS reactor could be an appropriate post treatment for the existing anaerobic tank for natural rubber processing wastewater treatment.
Calheiros, Cristina S C; Quitério, Paula V B; Silva, Gabriela; Crispim, Luís F C; Brix, Hans; Moura, Sandra C; Castro, Paula M L
2012-03-01
Treatment of tannery wastewater is problematic due to high and variable concentrations of complex pollutants often combined with high salinity levels. Two series of horizontal subsurface flow constructed wetlands (CWs) planted with Arundo donax and Sarcocornia fruticosa were set up after a conventional biological treatment system operating at a tannery site. The aim of the CWs was polishing organics and nitrogen from the high salinity effluent (2.2-6.6 g Cl(-) L(-1)). Both plant species established and grew well in the CW. Arundo, however, had more vigorous growth and a higher capacity to take up nutrients. The CWs were efficient in removing COD and BOD(5) with removal efficiencies varying between 51 and 80% for COD (inlet: 68-425 mg L(-1)) and between 53 and 90% for BOD(5) (inlet: 16-220 mg L(-1)). Mass removal rates were up to 615 kg COD ha(-1) d(-1) and 363 BOD(5) kg ha(-1) d(-1). Removal efficiencies were 40-93% for total P, 31-89% for NH(4)(+) and 41-90% for Total Kjeldahl Nitrogen. CW systems planted with salt tolerant plant species are a promising solution for polishing saline secondary effluent from the tannery industry to levels fulfilling the discharge standards. Copyright © 2011 Elsevier Ltd. All rights reserved.
Simsek, Halis; Kasi, Murthy; Ohm, Jae-Bom; Murthy, Sudhir; Khan, Eakalak
2016-04-01
Dissolved organic nitrogen (DON) and its biodegradability in treated wastewater have recently gained attention due to increased regulatory requirements on effluent quality to protect receiving waters. Laboratory scale chemostat experiments were conducted at 9 different solids retention times (SRTs) (0.3, 0.7, 2, 3, 4, 5, 7, 8, and 13 days) to examine whether SRT could be used to control DON, biodegradable DON (BDON), and DON biodegradability (BDON/DON) levels in treated wastewater. Results indicated no trend between effluent DON and SRTs. Effluent BDON was comparable for SRTs of 0.3-4 days and had a decreasing trend with SRT after that. Effluent DON biodegradability (effluent BDON/effluent DON) ranging from 23% to 59% tended to decrease with SRT. Chemostat during longer SRTs, however, was contributing to non-biodegradable DON (NBDON) and this fraction of DON increased with SRT above 4 days. Model calibration results indicated that ammonification rate, and growth rates for ordinary heterotrophs, ammonia oxidizing bacteria and nitrite oxidizing bacteria were not constants but have a decreasing trend with increasing SRT. This study indicates the benefit of high SRTs in term of producing effluent with less DON biodegradability leading to relatively less oxygen consumption and nutrient support in receiving waters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Salas, P M; Sujatha, C H; Ratheesh Kumar, C S; Cheriyan, Eldhose
2018-02-01
Surface sediments from three zones (fresh water, estuarine, and riverine/industrial zones) of the Cochin estuary, Southwest coast of India, were seasonally analyzed to understand the nature and degradation status of organic matter. Amino acid-based indices such as total hydrolyzable amino acids (THAAs), percentage contributions of amino acid carbon to total organic carbon (THAA-C%) and those of amino acid nitrogen to total nitrogen (THAA-N%), and degradation index (DI) were calculated. Elevated levels of amino acids in the sediments of the estuary were attributed to river runoff, autochthonous production, allochthonous inputs, and industrial and domestic effluent discharges. Higher levels of THAA-C%, THAA-N%, THAA, and positive DI found in most of the stations suggest the fresh deposition of organic matter. Multivariate statistical analyses revealed that the dispersal pattern of amino acids depends on the sediment texture, organic matter, redox state, and microbial processes in the study region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simulation of Triple Oxidation Ditch Wastewater Treatment Process
NASA Astrophysics Data System (ADS)
Yang, Yue; Zhang, Jinsong; Liu, Lixiang; Hu, Yongfeng; Xu, Ziming
2010-11-01
This paper presented the modeling mechanism and method of a sewage treatment system. A triple oxidation ditch process of a WWTP was simulated based on activated sludge model ASM2D with GPS-X software. In order to identify the adequate model structure to be implemented into the GPS-X environment, the oxidation ditch was divided into several completely stirred tank reactors depended on the distribution of aeration devices and dissolved oxygen concentration. The removal efficiency of COD, ammonia nitrogen, total nitrogen, total phosphorus and SS were simulated by GPS-X software with influent quality data of this WWTP from June to August 2009, to investigate the differences between the simulated results and the actual results. The results showed that, the simulated values could well reflect the actual condition of the triple oxidation ditch process. Mathematical modeling method was appropriate in effluent quality predicting and process optimizing.
Effectiveness of biochar for sorption of ammonium and phosphate from dairy effluent.
Sarkhot, D V; Ghezzehei, T A; Berhe, A A
2013-09-01
The use of biochar for recovery of excess nutrients in dairy manure effluent and the use of nutrient-enriched biochar as soil amendment can offer a robust solution for multiple environmental issues. In this study we determined the capacity of biochar, produced by pyrolyzing mixed hardwood feedstock at 300°C, to adsorb and retain or release two major nutrient ions: ammonium (NH) and phosphate (PO). We conducted the experiment using a range of nutrient concentrations that represent those commonly observed in dairy manure effluent (0-50 mg L for PO and 0-1000 mg L for NH). Up to 5.3 mg g NH and 0.24 mg g PO was adsorbed from manure by biochar (18 and 50% of total amount in the manure slurry, respectively). During the desorption phase of the experiment, biochar retained 78 to 91% of the sorbed NH and 60% of the sorbed PO at reaction times <24 h. Our findings confirm that biochar can be used for recovering excess nitrogen and phosphorus from agricultural water, such as dairy manure effluent. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Urea... daily values for 30 consecutive days shall not exceed— Ammonia (as N) 0.95 0.48 Organic nitrogen (as N...) Maximum for any 1 day Average of daily values for 30 consecutive days shall not exceed— Ammonia (as N) 1...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Urea... daily values for 30 consecutive days shall not exceed— Ammonia (as N) 0.95 0.48 Organic nitrogen (as N...) Maximum for any 1 day Average of daily values for 30 consecutive days shall not exceed— Ammonia (as N) 1...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Urea... daily values for 30 consecutive days shall not exceed— Ammonia (as N) 0.95 0.48 Organic nitrogen (as N...) Maximum for any 1 day Average of daily values for 30 consecutive days shall not exceed— Ammonia (as N) 1...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Urea... daily values for 30 consecutive days shall not exceed— Ammonia (as N) 0.95 0.48 Organic nitrogen (as N...) Maximum for any 1 day Average of daily values for 30 consecutive days shall not exceed— Ammonia (as N) 1...
Li, Xiaojin; Sun, Shan; Yuan, Heyang; Badgley, Brian D; He, Zhen
2017-11-15
Mainstream nitritation-anammox is of strong interest to energy- and resource-efficient domestic wastewater treatment. However, there lack in-depth studies of pretreatment, tests of actual wastewater, and examination of long-term performance. Herein, an upflow nitritation-anammox granular reactor has been investigated to treat primary effluent with a hybrid anaerobic reactor (HAR) as pretreatment for more than 300 days. This system achieved 92% of COD removal, 75% of which was accomplished by the HAR, and had an average final effluent COD concentration of 22 mg L -1 . More than 90% of ammonium was removed in the nitritation-anammox reactor, achieving a nitrogen removal rate of 81.0 g N m -3 d -1 in the last stage. The accumulation of sulfate-reducing bacteria in the HAR evidenced the effect of sulfate on COD removal and subsequent nitrogen removal. Anammox bacteria (predominantly Ca. Jettenia asiatica) accounted for up to 40.2% of total granular communities, but their abundance decreased over time in the suspended communities. The dynamics of major metabolisms and functional genes involved in nitrogen conversion were predicted by PICRUSt based on the taxonomic data, providing more insights into the functions of the microbial communities. These results have demonstrated the effectiveness and importance of anaerobic pretreatment to successful mainstream nitritation-anammox. Copyright © 2017 Elsevier Ltd. All rights reserved.
Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters
USDA-ARS?s Scientific Manuscript database
The ability to consistently and cost-effectively reduce nitrate-nitrogen loads in effluent from recirculating aquaculture systems would enhance the industry's environmental stewardship and allow improved facility proximity to large markets in sensitive watersheds. Heterotrophic denitrification techn...
2018-01-01
Biological wastewater treatment is economically feasible and ecofriendly. This study was aimed at isolating bacteria from brewery wastes and evaluating their bioremediation potential as individual isolate and/or their consortium in reducing the pollutants of brewery effluents. A total of 40 bacterial isolates were recovered and of these the three best isolates were selected. The selected bacteria were identified to genus level by using morphological and biochemical characteristics. Accordingly, the isolates were identified as Aeromonas sp., Pseudomonas sp., and Bacillus sp. After 12 days of incubation, the removal efficiency of these three isolates and their combinations for biological oxygen demand and chemical oxygen demand varied from 73.55% to 94.85% and 76.78% to 93.25%, respectively. Total nitrogen and phosphorus removal was within the range of 54.43% to 77.21% and 41.80% to 78.18%, respectively. Total suspended solid, total solid, and total dissolved solids removal ranged from 66.74% to 90.3%, 54.69% to 88.5%, and 53.02% to 88.2%, respectively. The pH and electrical conductivity values ranged from 6.81 to 8.65 and 3.31 mS/cm to 3.67 mS/cm, respectively. The treated effluent increased Beta vulgaris seeds germination from 80% to 100%, with mean germination time of 3.1 to 5.2 days and seedlings length of 2.3 cm to 6.3 cm. Therefore, the development of this finding into a large scale offers an attractive technology for brewery waste treatment. PMID:29610687
Zhang, Yi; Cheng, Yan; Yang, Chunping; Luo, Wei; Zeng, Guangming; Lu, Li
2015-10-01
In order to improve nitrogen removal for rural wastewater, a novel two-stage hybrid system, consisting of a vertical flow trickling filter (VFTF) and a horizontal flow multi-soil-layering (HFMSL) bioreactor was developed. The performance of the apparatus was observed under various carbon-nitrogen ratios and water spraying frequencies separately. The maximum removal efficiency of total nitrogen (TN) for the hybrid system was 92.8% while the removal rates of CODCr, ammonium (NH4(+)-N), and total phosphorus (TP) were 94.1%, 96.1%, 92.0% respectively, and the corresponding effluent concentrations were 3.61, 21.20, 1.91, and 0.33 mg L(-1). The horizontal flow mode for MSL led the system to denitrifying satisfactorily as it ensured relatively long hydraulic retention time (HRT), ideal anoxic condition and adequate organic substrates supply. Also, higher water spraying frequency benefited intermittent feeding system for pollutants removal. Shock loading test indicated that the hybrid system could operate well even at hydraulic shock loadings. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sun, Jingyi; Simsek, Halis
2017-07-01
Effluent dissolved organic nitrogen (DON) is problematic in nutrient sensitive surface waters and needs to be reduced to meet demanding total dissolved nitrogen discharge limits. Bioavailable DON (ABDON) is a portion of DON utilized by algae or algae+bacteria, while biodegradable DON (BDON) is a portion of DON decomposable by bacteria. ABDON and BDON in a two-stage trickling filter (TF) wastewater treatment plant was evaluated using three different microalgal species, Selenastrum capricornutum, Chlamydomonas reinhardtii and Chlorella vulgaris and mixed cultured bacteria. Results showed that up to 80% of DON was bioavailable to algae or algae+bacteria inoculum while up to 60% of DON was biodegradable in all the samples. Results showed that C. reinhardtii and C. vulgaris can be used as a test species the same as S. capricornutum since there were no significant differences among these three algae species based on their ability to remove nitrogen species. Copyright © 2017. Published by Elsevier B.V.
Kim, Jongmin; Novak, John T
2011-09-01
A combined anaerobic/aerobic sludge digestion system was studied to determine the effect of aerobic solids retention time (SRT) on its solids and nitrogen removal efficiencies. After the anaerobic digester reached steady state, effluent from the anaerobic digester was fed to aerobic digesters that were operated at 2- to 5-day SRTs. The anaerobic system was fed with a mixture of primary and secondary sludge from a local municipal wastewater treatment plant. Both systems were fed once per a day. The aerobic reactor was continuously aerated with ambient air, maintaining dissolved oxygen level at 1.1 +/- 0.3 mg/L. At a 4-day or longer SRT, more than 11% additional volatile solids and 90% or greater ammonia were removed in the aerobic digester, while 32.8 mg-N/L or more nitrite/nitrate also was measured. Most total Kjeldahl nitrogen removal was via ammonia removal, while little organic nitrogen was removed in the aerobic digester.
Cerrillo, Míriam; Viñas, Marc; Bonmatí, August
2016-09-01
The combination of the anaerobic digestion (AD) process with a microbial electrolysis cell (MEC) coupled to an ammonia stripping unit as a post-treatment was assessed both in series operation, to improve the quality of the effluent, and in loop configuration recirculating the effluent, to increase the AD robustness. The MEC allowed maintaining the chemical oxygen demand removal of the whole system of 46±5% despite the AD destabilization after doubling the organic and nitrogen loads, while recovering 40±3% of ammonia. The AD-MEC system, in loop configuration, helped to recover the AD (55% increase in methane productivity) and attained a more stable and robust operation. The microbial population assessment revealed an enhancement of AD methanogenic archaea numbers and a shift in eubacterial population. The AD-MEC combined system is a promising strategy for stabilizing AD against organic and nitrogen overloads, while improving the quality of the effluent and recovering nutrients for their reutilization. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hama, Takehide; Aoki, Takeru; Osuga, Katsuyuki; Nakamura, Kimihito; Sugiyama, Sho; Kawashima, Shigeto
Implementation of collective crop rotation in a paddy-field district may increase nutrients effluent load. We have investigated a paddy-field district implementing collective crop rotation of wheat and soybeans, measured temporal variations in nutrients concentration of drainage water and the amount of discharged water for consecutive three years, and estimated nutrients effluent load from the district during the irrigation and non-irrigation periods. As a result, the highest concentration of nutrients was observed during the non-irrigation period in every investigation year. It was shown that high nutrients concentration of drainage water during the non-irrigation period was caused by runoff of fertilizer applied to wheat because the peaks of nutrients concentration of drainage water were seen in rainy days after fertilizer application in the crop-rotation field. The effluent load during the non-irrigation periods was 16.9-22.1 kgN ha-1 (nitrogen) and 0.84-1.42 kgP ha-1 (phosphorus), which respectively accounted for 46-66% and 27-54% of annual nutrients effluent load.
Enhanced nitrogen removal with an onsite aerobic cyclic biological treatment unit.
Babcock, Roger W; Senthill, Atiim; Lamichhane, Krishna M; Agsalda, Jessica; Lindbo, Glen D
2015-01-01
Coastal Zone Act Reauthorization Amendments (CZARA, Section 6217) necessitate the requirement that onsite wastewater disposal units located near impaired surface waters or groundwater to provide at least 50% nitrogen removal. Approximately 38% of Hawaii households use onsite systems including septic tanks and cesspools that cannot meet this requirement. Upgrades to aerobic treatment units (ATUs) are a possible compliance solution. In Hawaii, ATUs must meet National Sanitation Foundation Standard 40 (NSF40) Class I effluent criteria. Previously, a multi-chamber, flow-through, combined attached/suspended growth type ATU (OESIS-750) and presently, a sequencing batch type ATU (CBT 0.8KF-210) were evaluated for NSF40 compliance, nutrient removal capability (NSF245), and adaptability for water reuse (NSF350). Both units easily achieved the NSF40 Class I effluent criteria. While the OESIS-750 achieved only 19% nitrogen removal, the CBT unit achieved 81% nitrogen removal, meeting the NSF245 criteria and CZARA requirements for applications in critical wastewater disposal areas. In addition, the CBT consistently produced effluent with turbidity less than 2 NTU (NSF350) and UVT254 greater than 70%, facilitating the production of unrestricted-use recycled water.
Bortolotto, Tiago; da Silva, Jaqueline; Sant'Ana, Alex Célio; Tomazi, Kamila Osowski; Geremias, Reginaldo; Angioletto, Elídio; Pich, Claus Tröger
2017-09-01
Red ceramic industry in southern Brazil commonly uses wood biomass as furnace fuel generating great amounts of gas emissions and ash. To avoid their impact on atmospheric environment, wet scrubbing is currently being applied in several plants. However, the water leachate formed could be potentially toxic and not managed as a common water-based effluent, since the resulting wastewater could carry many toxic compounds derived from wood pyrolysis. There is a lack of studies regarding this kind of effluent obtained specifically and strictly from wooden-based biomass furnaces. Therefore, we conducted an evaluation of toxic and genotoxic potentials of this particular type of wet gas scrubber effluent. Physical-chemical analysis showed high contents of several contaminants, including phenols, sulphates and ammoniacal nitrogen, as well as the total and suspended solids. The effluent cause significant toxicity towards microcrustacean Artemia sp. (LC 50 = 34.4%) and Daphnia magna (Toxicity Factor = 6 on average) and to higher plants (Lactuca sativa L. and Allium cepa L.) with acute and sub-acute effects in several parameters. Besides, using plasmid DNA, significant damage was observed in concentrations 12.5% and higher. In cellular DNA, concentrations starting from 12.5% and 6.25% showed significant increase in Damage Index (DI) and Damage Frequency (DF), respectively. The results altogether suggest that the effluent components, such phenols, produced by wood combustion can be volatilized, water scrubbed, resulting in a toxic and genotoxic effluent which could contaminate the environment. Copyright © 2017 Elsevier Inc. All rights reserved.
Septic tank discharges as multi-pollutant hotspots in catchments.
Richards, Samia; Paterson, Eric; Withers, Paul J A; Stutter, Marc
2016-01-15
Small point sources of pollutants such as septic tanks are recognised as significant contributors to streams' pathogen and nutrient loadings, however there is little data in the UK on which to judge the potential risks that septic tank effluents (STEs) pose to water quality and human health. We present the first comprehensive analysis of STE to help assess multi-pollutant characteristics, management-related risk factors and potential tracers that might be used to identify STE sources. Thirty-two septic tank effluents from residential households located in North East of Scotland were sampled along with adjacent stream waters. Biological, physical, chemical and fluorescence characterisation was coupled with information on system age, design, type of tank, tank management and number of users. Biological characterisation revealed that total coliforms and Escherichia coli (E. coli) concentration ranges were: 10(3)-10(8) and 10(3)-10(7)MPN/100 mL, respectively. Physical parameters such as electrical conductivity, turbidity and alkalinity ranged 160-1730 μS/cm, 8-916 NTU and 15-698 mg/L, respectively. Effluent total phosphorus (TP), soluble reactive P (SRP), total nitrogen (TN) and ammonium-N (NH4-N) concentrations ranged 1-32, <1-26, 11-146 and 2-144 mg/L, respectively. Positive correlations were obtained between phosphorus, sodium, potassium, barium, copper and aluminium. Domestic STE may pose pollution risks particularly for NH4-N, dissolved P, SRP, copper, dissolved N, and potassium since enrichment factors were >1651, 213, 176, 63, 14 and 8 times that of stream waters, respectively. Fluorescence characterisation revealed the presence of tryptophan peak in the effluent and downstream waters but not detected upstream from the source. Tank condition, management and number of users had influenced effluent quality that can pose a direct risk to stream waters as multiple points of pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.
Treatment of septic tank effluents by a full-scale capillary seepage soil biofiltration system.
Fan, Chihhao; Chang, Fang-Chih; Ko, Chun-Han; Teng, Chia-Ji; Chang, Tzi-Chin; Sheu, Yiong-Shing
2009-03-01
The purpose of this study is to evaluate the efficiency of septic tank effluent treatment by an underground capillary seepage soil biofiltration system in a suburban area of Taipei, Taiwan. In contrast to traditional subsurface wastewater infiltration systems, capillary seepage soil biofiltration systems initially draw incoming influent upwards from the distribution pipe by capillary and siphonage actions, then spread influent throughout the soil biofiltration bed. The underground capillary seepage soil biofiltration system consists of a train of underground treatment units, including one wastewater distribution tank, two capillary seepage soil biofiltration units in series, and a discharge tank. Each capillary seepage soil biofiltration unit contains one facultative digestion tank and one set of biofiltration beds. At the flow rate of 50 m3/day, average influent concentrations of biochemical oxygen demand (BOD), suspended solid (SS), ammonia nitrogen (NH3-N), and total phosphates (TP), were 36.15 mg/L, 29.14 mg/L, 16.05 mg/L, and 1.75 mg/L, respectively. After 1.5 years of system operation, the measured influent and effluent results show that the treatment efficiencies of the soil biofiltration system for BOD, SS, NH3-N, TP, and total coliforms are 82.96%, 60.95%, 67.17%, 74.86%, and 99.99%, respectively.
Fu, Liya; Wu, Changyong; Zhou, Yuexi; Zuo, Jiane; Ding, Yan
2017-10-01
Parameters for evaluation criteria of air-water backwashing effects of a pilot-scale biological aerated filter (BAF) treating petrochemical wastewater were investigated. The parameters included the suspended solids (SS) and specific oxygen uptake rate (SOUR) of the backwashing effluent, recovery of the BAF after backwashing, and the removal of the biomass/bioactivity attached on the filter media after backwashing. Results showed that the weight of the total sludge produced in the backwashing effluent increased with the increase in water-backwashing intensity, while the total SOUR of backwashing effluent rose notably with the increase of air-backwashing intensity. The optimal backwashing intensity of 14 L/(m 2 · s) for air and 4 L/(m 2 · s) for water were obtained. When the BAF was backwashed on this condition, the BAF recovered with high average removal of chemical oxygen demand (COD) and ammonia nitrogen [Formula: see text] of 14.3% and 50.3%, respectively. High amount of biomass removal at 15.8% and low level of bioactivity removal at 8.8% attached on the filter media were also found. Concentrations of the benzene, toluene, ethylbenzene and (o-, m-, p-) xylenes (BTEX) and phenol in the backwashed sludge were analyzed, showing that the backwashing was essential to remove some aromatic compounds adsorbed in the microorganisms.
Barbaro, Jeffrey R.; Sorenson, Jason R.
2013-01-01
Rapid development, population growth, and the changes in land and water use accompanying development are placing increasing stress on water resources in the Taunton River Basin. An assessment by the Massachusetts Department of Environmental Protection determined that a number of tributary streams to the Taunton River are impaired for a variety of beneficial uses because of nutrient enrichment. Most of the impaired reaches are in the Matfield River drainage area in the vicinity of the City of Brockton. In addition to impairments of stream reaches in the basin, discharge of nutrient-rich water from the Taunton River contributes to eutrophication of Mount Hope and Narragansett Bays. To assess water quality and loading in the impaired tributary stream reaches in the basin, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection compiled existing water-quality data from previous studies for the period 1997-2006, developed and calibrated a Hydrological Simulation Program-FORTRAN (HSPF) precipitation-runoff model to simulate streamflow in areas of the basin that contain the impaired reaches for the same time period, and collected additional streamflow and water-quality data from sites on the Matfield and Taunton Rivers in 2008. A majority of the waterquality samples used in the study were collected between 1999 and 2006. Overall, the concentration, yield, and load data presented in this report represent water-quality conditions in the basin for the period 1997-2008. Water-quality data from 52 unique sites were used in the study. Most of the samples from previous studies were collected between June and September under dry weather conditions. Simulated or measured daily mean streamflow and water-quality data were used to estimate constituent yields and loads in the impaired tributary stream reaches and the main stem of the Taunton River and to develop yield-duration plots for reaches with sufficient water-quality data. Total phosphorus concentrations in the impaired-reach areas ranged from 0.0046 to 0.91 milligrams per liter (mg/L) in individual samples (number of samples (n)=331), with a median of 0.090 mg/L; total nitrogen concentrations ranged from 0.34 to 14 mg/L in individual samples (n=139), with a median of 1.35 mg/L; and total suspended solids concentrations ranged from 2/d) for total phosphorus and 100 lb/mi2/d for total nitrogen in these reaches. In most of the impaired reaches not affected by the Brockton Advanced Water Reclamation Facility outfall, yields were lower than in reaches downstream from the outfall, and the difference between measured and threshold yields was fairly uniform over a wide range of flows, suggesting that multiple processes contribute to nonpoint loading in these reaches. The Northeast and Mid-Atlantic SPAtially-Referenced Regression On Watershed (SPARROW) models for total phosphorus and total nitrogen also were used to estimate annual nutrient loads in the impaired tributary stream reaches and main stem of the Taunton River and predict the distribution of these loads among point and diffuse sources in reach drainage areas. SPARROW is a regional, statistical model that relates nutrient loads in streams to upstream sources and land-use characteristics and can be used to make predictions for streams that do not have nutrient-load data. The model predicts mean annual loads based on longterm streamflow and water-quality data and nutrient source conditions for the year 2002. Predicted mean annual nutrient loads from the SPARROW models were consistent with the measured yield and load data from sampling sites in the basin. For conditions in 2002, the Brockton Advanced Water Reclamation Facility outfall accounted for over 75 percent of the total nitrogen load and over 93 percent of the total phosphorus load in the Salisbury Plain and Matfield Rivers downstream from the outfall. Municipal point sources also accounted for most of the load in the main stem of the Taunton River. Multiple municipal wastewater discharges in the basin accounted for about 76 and 46 percent of the delivered loads of total phosphorus and total nitrogen, respectively, to Mount Hope Bay. For similarly sized watersheds, total delivered loads were lower in watersheds without point sources compared to those with point sources, and sources associated with developed land accounted for most of the delivered phosphorus and nitrogen loads to the impaired reaches. The concentration, yield, and load data evaluated in this study may not be representative of current (2012) point-source loading in the basin; in particular, most of the water-quality data used in the study (1999-2006) were collected prior to completion of upgrades to the Brockton Advanced Water Reclamation Facility that reduced total phosphorus and nitrogen concentrations in treated effluent. Effluent concentration data indicate that, for a given flow rate, effluent loads of total phosphorus and total nitrogen declined by about 80 and 30 percent, respectively, between the late 1990s and 2008 in response to plant upgrades. Consequently, current (2012) water-quality conditions in the impaired reaches downstream from the facility likely have improved compared to conditions described in the report.
Capodici, Marco; Corsino, Santo Fabio; Torregrossa, Michele; Viviani, Gaspare
2018-02-15
Autochthonous halophilic biomass was cultivated in a sequencing batch reactor (SBR) aimed at analyzing the potential use of autochthonous halophilic activated sludge in treating saline industrial wastewater. Despite the high salt concentration (30 g NaCl L -1 ), biological oxygen demand (BOD) and total suspended solids (TSS), removal efficiencies were higher than 90%. More than 95% of the nitrogen was removed via a shortcut nitrification-denitrification process. Both the autotrophic and heterotrophic biomass samples exhibited high biological activity. The use of autochthonous halophilic biomass led to high-quality effluent and helped to manage the issues related to nitrogen removal in saline wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Improved nutrient removal using in situ continuous on-line sensors with short response time.
Ingildsen, P; Wendelboe, H
2003-01-01
Nutrient sensors that can be located directly in the activated sludge processes are gaining in number at wastewater treatment plants. The in situ location of the sensors means that they can be located close to the processes that they aim to control and hence are perfectly suited for automatic process control. Compared to the location of automatic analysers in the effluent from the sedimentation reactors the in situ location means a large reduction in the response time. The settlers typically work as a first-order delay on the signal with a retention time in the range of 4-12 hours depending on the size of the settlers. Automatic process control of the nitrogen and phosphorus removal processes means that considerable improvements in the performance of aeration, internal recirculation, carbon dosage and phosphate precipitation dosage can be reached by using a simple control structure as well as simple PID controllers. The performance improvements can be seen in decreased energy and chemicals consumption and less variation in effluent concentrations of ammonium, total nitrogen and phosphate. Simple control schemes are demonstrated for the pre-denitrification and the post precipitation system by means of full-scale plant experiments and model simulations.
Neglected sources of pharmaceuticals in river water--footprints of a Reggae festival.
Daneshvar, Atlasi; Svanfelt, Jesper; Kronberg, Leif; Weyhenmeyer, Gesa A
2012-02-01
Wastewater treatment plants (WWTPs) are commonly considered as the main source of pharmaceuticals in surface waters. Here, however, we show that an open-air festival, attracting approximately 10,000 visitors per year at the shores of River Fyris upstream of Uppsala WWTP, can temporarily result in a higher pharmaceutical input into the river water than the WWTP. Studying the influence of Uppsala Reggae festival on the occurrence of ten commonly used acidic and basic pharmaceuticals upstream, in the effluent, and downstream of the Uppsala WWTP, we found that occasional heavy rainfalls during the festival in 2008 severely increased the mass flows of all pharmaceuticals at the WWTP upstream site. Also, strong increases in ammonium (210-fold), nitrate (21-fold), and total nitrogen (21-fold) mass flows were observed. The pharmaceutical mass flows at the upstream site were up to 3.4 times higher than those observed in the WWTP effluent. In contrast, in 2009, the festival was not accompanied with rainfalls and no major additional input of pharmaceuticals and nitrogen was observed. The findings of this study give new insights into risk assessments and are relevant for monitoring programmes.
Plant-wide (BSM2) evaluation of reject water treatment with a SHARON-Anammox process.
Volcke, E I P; Gernaey, K V; Vrecko, D; Jeppsson, U; van Loosdrecht, M C M; Vanrolleghem, P A
2006-01-01
In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water streams on the performance of a WWTP is assessed in a simulation study, using the Benchmark Simulation Model no. 2 (BSM2), that includes the processes describing sludge treatment and in this way allows for plant-wide evaluation. Comparison of performance of a WWTP without reject water with a WWTP where reject water is recycled to the primary clarifier, i.e. the BSM2 plant, shows that the ammonium load of the influent to the primary clarifier is 28% higher in the case of reject water recycling. This results in violation of the effluent total nitrogen limit. In order to relieve the main wastewater treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios is performed using an Operating Cost Index (OCI).
Barber, Larry B.; Hladik, Michelle; Vajda, Alan M.; Fitzgerald, Kevin C.; Douville, Chris
2015-01-01
The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m3 d−1 design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L−1; n=5) and 10 HDBPs (mean total concentration = 4.5 μg L−1), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L−1) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative proportions of nitrogenous, brominated, and iodinated HDBPs than the chlorinated tap water. Conversion of the WWTF to UV disinfection reduced the loading of HDBPs to the receiving stream by >90%.
Barber, Larry B; Hladik, Michelle L; Vajda, Alan M; Fitzgerald, Kevin C; Douville, Chris
2015-10-01
The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m(3) d(-1) design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration=2.7 μg L(-1); n=5) and 10 HDBPs (mean total concentration=4.5 μg L(-1)), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration=1.4 μg L(-1)) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative proportions of nitrogenous, brominated, and iodinated HDBPs than the chlorinated tap water. Conversion of the WWTF to UV disinfection reduced the loading of HDBPs to the receiving stream by >90%. Copyright © 2015. Published by Elsevier B.V.
Crovadore, Julien; Soljan, Vice; Calmin, Gautier; Chablais, Romain; Cochard, Bastien; Lefort, François
2017-10-01
Anaerobic digestion is a common method for reducing the amount of sludge solids in used waters and enabling biogas production. The wet oxidation process (WOX) improves anaerobic digestion by converting carbon into methane through oxidation of organic compounds. WOX produces effluents rich in ammonia, which must be removed to maintain the activity of methanogens. Ammonia removal from WOX could be biologically operated by aerobic granules. To this end, granulation experiments were conducted in 2 bioreactors containing an activated sludge (AS). For the first time, the dynamics of the microbial community structure and the expression levels of 7 enzymes of the nitrogen metabolism in such active microbial communities were followed in regard to time by metagenomics and metatranscriptomics. It was shown that bacterial communities adapt to the wet oxidation effluent by increasing the expression level of the nitrogen metabolism, suggesting that these biological activities could be a less costly alternative for the elimination of ammonia, resulting in a reduction of the use of chemicals and energy consumption in sewage plants. This study reached a strong sequencing depth (from 4.4 to 7.6 Gb) and enlightened a yet unknown diversity of the microorganisms involved in the nitrogen pathway. Moreover, this approach revealed the abundance and expression levels of specialised enzymes involved in nitrification, denitrification, ammonification, dissimilatory nitrate reduction to ammonium (DNRA) and nitrogen fixation processes in AS.
Oxygen Limited Bioreactors System For Nitrogen Removal Using Immobilized Mix Culture
NASA Astrophysics Data System (ADS)
Pathak, B. K.; Sumino, T.; Saiki, Y.; Kazama, F.
2005-12-01
Recently nutrients concentrations especially nitrogen in natural water is alarming in the world wide. Most of the effort is being done on the removal of high concentration of nitrogen especially from the wastewater treatment plants. The removal efficiency is targeted in all considering the effluent discharge standard set by the national environment agency. In many cases, it does not meet the required standard and receiving water is being polluted. Eutrophication in natural water bodies has been reported even if the nitrogen concentration is low and self purification of natural systems itself is not sufficient to remove the nitrogen due to complex phenomenon. In order to recover the pristine water environment, it is very essential to explore bioreactor systems for natural water systems using immobilized mix culture. Microorganism were entrapped in Polyethylene glycol (PEG) prepolymer gel and cut into 3mm cubic immobilized pellets. Four laboratory scale micro bio-reactors having 0.1 L volumes were packed with immobilized pellets with 50% compact ratio. RUN1, RUN2, RUN3 and RUN4 were packed with immobilized pellets from reservoirs sediments, activated sludge (AS), mixed of AS, AG and biodegradable plastic and anaerobic granules (AG) respectively. Water from Shiokawa Reservoirs was feed to all reactors with supplemental ammonia and nitrite nitrogen as specified in the results and discussions. The reactors were operated dark incubated room in continuous flow mode with hydraulic retention time of 12 hours under oxygen limiting condition. Ammonium, nitrate nitrite nitrogen and total organic carbon (TOC) concentrations were measured as described in APWA and AWWA (1998). Laboratory scale four bioreactors containing different combination of immobilized cell were monitored for 218 days. Influent NH4+-N and NO2--N concentration were 2.27±0.43 and 2.05±0.41 mg/l respectively. Average dissolved oxygen concentration and pH in the reactors were 0.40-2.5 mg/l and pH 6.5-7.4 respectively. The molar ratio of NO2-N and NH4+-N was varied from 0.85 to 4.1 and RUN3 has closed to Stoichiometric ratio of anaerobic ammonia oxidation process. Total nitrogen removal in all reactors was ranged from 11-79% and RUN3 showed best removal performance (Table 1). Table 1 Characteristic of N removal process Parameters RUN1 RUN2 RUN3 RUN4 Effluent TOC (mg/l) 1.22 2.08 2.33 1.97 NO2- -N/ NH4+-N converted 1.18 0.85 1.32 4.15 Average NH4+-N removal % 86 95 74 32 Average NO2- -N removal % 97 81 98 92 Average TN removal % 11 36 79 59 Four different kinds of laboratory scale nitrogen removal bio-rectors were monitored for 218 days. Comparing reactors based on observed data, the bioreactor containing mix culture (RUN3) removed the 79% of incoming total nitrogen and suggests best for nitrogen removal in the natural water systems. It is recommended that further study is required in pilot scale to understand scaling effects and other natural phenomenon.
An assessment of the performance of municipal constructed wetlands in Ireland.
Hickey, Anthony; Arnscheidt, Joerg; Joyce, Eadaoin; O'Toole, James; Galvin, Gerry; O' Callaghan, Mark; Conroy, Ken; Killian, Darran; Shryane, Tommy; Hughes, Francis; Walsh, Katherine; Kavanagh, Emily
2018-03-15
While performance assessments of constructed wetlands sites around the world have appraised their capacity for effective removal of organics, a large variance remains in these sites' reported ability to retain nutrients, which appears to depend on differences in design, operation and climate factors. Nutrient retention is a very important objective for constructed wetlands, to avoid eutrophication of aquatic environments receiving their effluents. This study assessed the performance of constructed wetlands in terms of nutrient retention and associated parameters under the humid conditions of Ireland's temperate maritime climate. A review of the performance of 52 constructed wetland sites from 17 local authorities aimed to identify the best performing types of constructed wetlands and the treatment factors determining successful compliance with environmental standards. Data analysis compared effluent results from constructed wetlands with secondary free surface flow or tertiary horizontal subsurface flow, hybrid systems and integrated constructed wetlands with those from small-scale mechanical wastewater treatment plants of the same size class. Nutrient concentrations in effluents of constructed wetlands were negatively correlated (p < .01) with specific area, i.e. the ratio of surface area and population equivalents. The latest generation of integrated constructed wetlands, which had applied design guidelines issued by the Department of the Environment, performed best. Storm management design features improved treatment performance of constructed wetlands significantly (p < .05) for total suspended solids concentrations and exceedance frequency of limit values for total nitrogen. Mechanical wastewater treatment plants, secondary free surface water and tertiary horizontal subsurface flow wetlands showed a very large variance in effluent concentrations for organic and nutrient parameters. E. coli numbers in effluents were lowest for integrated constructed wetlands with an arithmetic mean of 89 MPN/100 ml. Despite Ireland's humid climate, some constructed wetland sites achieved long or frequent periods of zero effluent discharge and thus did not transfer any waterborne pollution to their receptors during these periods. Copyright © 2018 Elsevier Ltd. All rights reserved.
De Sanctis, Marco; Del Moro, Guido; Levantesi, Caterina; Luprano, Maria Laura; Di Iaconi, Claudio
2016-02-01
In the present paper, the effectiveness of a Sequencing Batch Biofilter Granular Reactor (SBBGR) and its integration with different disinfection strategies (UV irradiation, peracetic acid) for producing an effluent suitable for agricultural use was evaluated. The plant treated raw domestic sewage, and its performances were evaluated in terms of the removal efficiency of a wide group of physical, chemical and microbiological parameters. The SBBGR resulted really efficient in removing suspended solids, COD and nitrogen with an average effluent concentration of 5, 32 and 10 mg/L, respectively. Lower removal efficiency was observed for phosphorus with an average concentration in the effluent of 3 mg/L. Plant effluent was also characterized by an average electrical conductivity and sodium adsorption ratio of 680 μS/cm and 2.9, respectively. Therefore, according to these gross parameters, the SBBGR effluent was conformed to the national standards required in Italy for agricultural reuse. Moreover, disinfection performances of the SBBGR was higher than that of conventional municipal wastewater treatment plants and met the quality criteria suggested by WHO (Escherichia coli<1000 CFU/100 mL) for agricultural reuse. In particular, the biological treatment by SBBGR removed 3.8±0.4 log units of Giardia lamblia, 2.8±0.8 log units of E. coli, 2.5±0.7 log units of total coliforms, 2.0±0.3 log units of Clostridium perfringens, 2.0±0.4 log units of Cryptosporidium parvum and 1.7±0.7 log units of Somatic coliphages. The investigated disinfection processes (UV and peracetic acid) resulted very effective for total coliforms, E. coli and somatic coliphages. In particular, a UV radiation and peracetic acid doses of 40 mJ/cm(2) and 1 mg/L respectively reduced E. coli content in the effluent below the limit for agricultural reuse in Italy (10 CFU/100 mL). Conversely, they were both ineffective on C.perfringens spores. Copyright © 2015 Elsevier B.V. All rights reserved.
Moreira-Neto, S L; Mussatto, S I; Machado, K M G; Milagres, A M F
2013-04-01
The discharge of highly coloured synthetic dye effluents into rivers and lakes is harmful to the water bodies, and therefore, intensive researches have been focussed on the decolorization of wastewater by biological, physical or chemical treatments. In the present study, 12 basidiomycetes strains from the genus Pleurotus, Trametes, Lentinus, Peniophora, Pycnoporus, Rigidoporus, Hygrocybe and Psilocybe were evaluated for decolorization of the reactive dyes Cibacron Brilliant Blue H-GR and Cibacron Red FN-2BL, both in solid and liquid media. Among the evaluated fungi, seven showed great ability to decolorize the synthetic textile effluent, both in vivo (74-77%) or in vitro (60-74%), and laccase was the main ligninolytic enzyme involved on dyes decolorization. Pleurotus ostreatus, Trametes villosa and Peniophora cinerea reduced near to 60% of the effluent colour after only 1 h of treatment. The decolorization results were still improved by establishing the nitrogen source and amount to be used during the fungal strains cultivation in synthetic medium previous their action on the textile effluent, with yeast extract being a better nitrogen source than ammonium tartarate. These results contribute for the development of an effective microbiological process for decolorization of dye effluents with reduced time of treatment. © 2013 The Society for Applied Microbiology.
Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system.
Peng, Yongzhen; Hou, Hongxun; Wang, Shuying; Cui, Youwei; Zhiguo, Yuan
2008-01-01
To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobic-anoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (r(SND)) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and r(SND) dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NO(x) to NH4+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.
Recovery of nitrogen and light hydrocarbons from polyalkene purge gas
Zwilling, Daniel Patrick; Golden, Timothy Christoph; Weist, Jr., Edward Landis; Ludwig, Keith Alan
2003-06-10
A method for the separation of a gas mixture comprises (a) obtaining a feed gas mixture comprising nitrogen and at least one hydrocarbon having two to six carbon atoms; (b) introducing the feed gas mixture at a temperature of about 60.degree. F. to about 105.degree. F. into an adsorbent bed containing adsorbent material which selectively adsorbs the hydrocarbon, and withdrawing from the adsorbent bed an effluent gas enriched in nitrogen; (c) discontinuing the flow of the feed gas mixture into the adsorbent bed and depressurizing the adsorbent bed by withdrawing depressurization gas therefrom; (d) purging the adsorbent bed by introducing a purge gas into the bed and withdrawing therefrom an effluent gas comprising the hydrocarbon, wherein the purge gas contains nitrogen at a concentration higher than that of the nitrogen in the feed gas mixture; (e) pressurizing the adsorbent bed by introducing pressurization gas into the bed; and (f) repeating (b) through (e) in a cyclic manner.
Modeling contamination of shallow unconfined aquifers through infiltration beds
Ostendorf, D.W.
1986-01-01
We model the transport of a simply reactive contaminant through an infiltration bed and underlying shallow, one-dimensional, unconfined aquifer with a plane, steeply sloping bottom in the assumed absence of dispersion and downgradient dilution. The effluent discharge and ambient groundwater flow under the infiltration beds are presumed to form a vertically mixed plume marked by an appreciable radial velocity component in the near field flow region. The near field analysis routes effluent contamination as a single linear reservoir whose output forms a source plane for the one-dimensional, far field flow region downgradient of the facility; the location and width of the source plane reflect the relative strengths of ambient flow and effluent discharge. We model far field contaminant transport, using an existing method of characteristics solution with frame speeds modified by recharge, bottom slope, and linear adsorption, and concentrations reflecting first-order reaction kinetics. The near and far field models simulate transport of synthetic detergents, chloride, total nitrogen, and boron in a contaminant plume at the Otis Air Force Base sewage treatment plant in Barnstable County, Massachusetts, with reasonable accuracy.
Effect of leather industry effluents on soil microbial and protease activity.
Pradeep, M Reddi; Narasimha, G
2012-01-01
Release of leather industry effluents into the agricultural fields causes indicative changes in nutrient cycling and organic matter processing. In the present study, leather industry effluent discharged soil (test) and undischarged soil(control) were collected from the surrounding areas of industry. The physico-chemical, biological properties and soil protease activity were examined. The study reflected the average mean value of pH, electrical conductivity and water holding capacity of the test soil was found to be 7.94, 0.89 microMhos cm(-1) and 0.51 ml g(-1), respectively. In chemical parameters, organic matter, total nitrogen, phosphorus and potassium has the mean of 6.73%, 0.23 g kg(-1), 4.28 mg g(-1) and 28 microg g(-1), respectively. In all the respects, the test soil showed higher values than the control. The soil protease enzyme activity was determined by using substrate casein and the activity was found to be higher (180 microg TE g(-1) 24 hr(-1)) in test soil than the control soil (63 microg TE g(-1) 24 hr(-1)).
Pelaz, L; Gómez, A; Garralón, G; Letona, A; Fdz-Polanco, M
2017-11-01
A fixed film bioreactor for the denitrification of the effluent from an anaerobic membrane bioreactor (AnMBR) treating domestic wastewater was designed, built and investigated. After anaerobic treatment, the wastewater usually has a low C/N ratio (∼1.3), and a remaining chemical oxygen demand of around 117mg O 2 /L, which is not enough to make conventional heterotrophic denitrification possible. That effluent also holds methane and sulfide dissolved and oversaturated after leaving the AnMBR. This paper demonstrates the feasibility of using these reduced compounds as electron donors in order to remove 80mg NO x - -N/L at 18°C and 2h of hydraulic retention time. In addition, the influence of the NO 2 - /NO 3 - ratios in the feed was studied. Total nitrogen removal was achieved in all the cases studied, except for a feed with 100% NO 3 - . Methane was the main electron donor used to remove the nitrites and nitrates, with a participation rate of over 70%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Food webs of two intermittently open estuaries receiving 15N-enriched sewage effluent
NASA Astrophysics Data System (ADS)
Hadwen, Wade L.; Arthington, Angela H.
2007-01-01
Carbon and nitrogen stable isotope signatures were used to assess the response of food webs to sewage effluent discharged into two small intermittently open estuaries in northern New South Wales, Australia. One of these systems, Tallows Creek, has a history of direct sewage inputs, whilst the other, Belongil Creek, receives wastewater via an extensive wetland treatment system. The food webs of both systems were driven by algal sources of carbon, reflecting high autotrophic productivity in response to the nutrients entering the system from sewage effluent. All aquatic biota collected from Tallows Creek had significantly enriched δ15N signatures relative to their conspecifics from Belongil Creek, indicating that sewage nitrogen had been assimilated and transferred throughout the Tallows Creek food web. These δ15N values were higher than those reported from studies in permanently open estuaries receiving sewage effluent. We suggest that these enriched signatures and the transfer of nitrogen throughout the entire food web reflect differences in hydrology and associated nitrogen cycling processes between permanently open and intermittently open estuaries. Although all organisms in Tallows Creek were generally 15N-enriched, isotopically light (less 15N-enriched) individuals of estuary perchlet ( Ambassis marianus) and sea mullet ( Mugil cephalus) were also collected. These individuals were most likely recent immigrants into Tallows Creek, as this system had only recently been opened to the ocean. This isotopic discrimination between resident (enriched) and immigrant (significantly less enriched) individuals can provide information on fish movement patterns and the role of heavily polluted intermittently open estuaries in supporting commercially and recreationally valuable estuarine species.
Recovery of ammonia and production of high-grade phosphates from digester effluents
USDA-ARS?s Scientific Manuscript database
Conservation and recovery of nitrogen and phosphorus from animal wastes and municipal effluents is important because of economic and environmental reasons. In this paper we present a novel technology for separation and recovery of ammonia and phosphorus from liquid swine manure. Phosphorus recovery ...
Al-Mailem, D M; Kansour, M K; Radwan, S S
2014-11-01
Biofilm samples were established on glass slides by submerging them in oil-free and oil-containing sewage effluent for a month. In batch cultures, such biofilms were effective in removing crude oil, pure n-hexadecane, and pure phenanthrene contaminating sewage effluent. The amounts of the removed hydrocarbons increased with increasing biofilm surface area exposed to the effluent. On the other hand, addition of the reducing agent thioglycollate dramatically inhibited the hydrocarbon bioremediation potential of the biofilms. The same biofilm samples removed contaminating hydrocarbons effectively in three successive batch bioremediation cycles but started to become less effective in the cycles thereafter, apparently due to mechanical biofilm loss during successive transfers. As major hydrocarbonoclastic bacteria, the biofilms harbored species belonging to the genera Pseudomonas, Microvirga, Zavarzinia, Mycobacterium, Microbacterium, Stenotrophomonas, Gordonia, Bosea, Sphingobium, Brachybacterium, and others. The nitrogen fixer Azospirillum brasilense and the microalga Ochromonas distigma were also present; they seemed to enrich the biofilms, with nitrogenous compounds and molecular oxygen, respectively, which are known to enhance microbiological hydrocarbon degradation. It was concluded that man-made biofilms based upon sewage microflora are promising tools for bioremediation of hydrocarbons contaminating sewage effluent.
Guerra, Heidi B; Park, Kisoo; Kim, Youngchul
2013-01-01
Due to the highly variable hydrologic quantity and quality of stormwater runoff, which requires more complex models for proper prediction of treatment, a relatively few and site-specific models for stormwater wetlands have been developed. In this study, regression models based on extensive operational data and wastewater wetlands were adapted to a stormwater wetland receiving both base flow and storm flow from an agricultural area. The models were calibrated in Excel Solver using 15 sets of operational data gathered from random sampling during dry days. The calibrated models were then applied to 20 sets of event mean concentration data from composite sampling during 20 independent rainfall events. For dry days, the models estimated effluent concentrations of nitrogen species that were close to the measured values. However, overestimations during wet days were made for NH(3)-N and total Kjeldahl nitrogen, which resulted from higher hydraulic loading rates and influent nitrogen concentrations during storm flows. The results showed that biological nitrification and denitrification was the major nitrogen removal mechanism during dry days. Meanwhile, during wet days, the prevailing aerobic conditions decreased the denitrification capacity of the wetland, and sedimentation of particulate organic nitrogen and particle-associated forms of nitrogen was increased.
Biomass production and nutrient removal potential of water hyacinth cultured in sewage effluent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, K.R.; Hueston, F.M.; McKim, T.
1985-05-01
Growth and nutrient uptake of water hyacinth (Eichhornia crassipes (Mart) Solms) cultured in sewage effluent were measured over a period of 1 year in a prototype wastewater treatment system which has been in operation at Walt Disney World near Orlando, Florida. Annual productivity of water hyacinth cultured in primary sewage effluent (Channel II) was found to be in the range of 5 to 27 g dry wt m/sup -2/ day/sup -1/ (23.6 dry tons acre/sup -1/ yr/sup -1/). Average growth rate during the months of May through October 1982 for hyacinth cultured in Channel II (primary sewage effluent) and Channelmore » I (treated primary sewage effluent leaving Channel II) was about 16 g dry wt m/sup -2/ day/sup -1/ (27 dry tons acre/sup -1/ yr/sup -1/), compared to the growth rate of 13 g dry wt m/sup -2/ day/sup -1/ (22 dry tons acre/sup -1/ yr/sup -1/) for hyacinths cultured in secondary sewage effluent. Plants cultured in secondary sewage effluent generally had longer roots than the plants cultured in primary sewage effluent. A significant relationship was observed between the growth rate of hyacinth and the solar radiation. Nitrogen and P concentration of the plant tissue were higher in the hyacinths cultured during winter months compared to the plants grown in summer months. Average N and P concentration of the plants cultured in primary sewage effluent were found to be 3.7 percent N and 0.94 percent P, respectively, while the plants cultured in secondary sewage effluent had a total N and P content of 2.8 percent N and 0.79 percent P. Nutrient ratios of the major plant nutrients were found to be approximately the same as the nutrient ratios in the sewage effluent. Annual N and P uptake rates of hyacinth cultured in sewage effluent were found to be in the range of 1176 to 1193 kg N ha/sup -1/ yr/sup -1/ and 321 to 387 kg P ha/sup -1/ yr/sup -1/, respectively.« less
Li, Bo; Wu, Guangxue
2014-01-01
Sludge retention time (SRT) is an important factor affecting not only the performance of the nutrient removal and sludge characteristics, but also the production of secondary pollutants such as nitrous oxide (N2O) in biological nutrient removal (BNR) processes. Four laboratory-scale sequencing batch reactors (SBRs), namely, SBR5, SBR10, SBR20 and SBR40 with the SRT of 5 d, 10 d, 20 d and 40 d, respectively, were operated to examine effects of SRT on nutrient removal, activated sludge characteristics and N2O emissions. The removal of chemical oxygen demand or total phosphorus was similar under SRTs of 5–40 d, SRT mainly affected the nitrogen removal and the optimal SRT for BNR was 20 d. The molecular weight distribution of the effluent organic matters was in the range of 500–3,000 Da under SRTs of 5–40 d. The lowest concentration of the effluent soluble microbial products concentration was obtained at the SRT of 5 d. Nitrifier growth was limited at a short SRT and nitrite existed in the effluent of SBR5. With increasing SRTs, mixed liquor suspended solids concentration increased while the excess sludge production was reduced due to the high endogenous decay rate at high SRTs. Endogenous decay coefficients were 0.020 d−1, 0.036 d−1, 0.037 d−1 and 0.039 d−1 under SRTs of 5–40 d, respectively. In BNR, the N2O emission occurred mainly during the aerobic phase and its emission ratio decreased with increasing SRTs. The ratio between the N2O-N emission and the removed ammonium nitrogen in the aerobic phase was 5%, 3%, 1.8% and 0.8% at the SRT of 5 d, 10 d, 20 d and 40 d, respectively. With low concentrations of dissolved oxygen and high concentrations of oxidized nitrogen, the N2O emission was significantly accelerated due to heterotrophic denitrification activities. PMID:24681555
Xu, Ming; Cao, Jiashun; Li, Chao; Tu, Yong; Wu, Haisuo; Liu, Weijing
2018-01-01
The combined biological processes of branched water-adjustment, chemical precipitation, hydrolysis acidification, secondary sedimentation, Anoxic/Oxic and activated carbon treatment were used for chemical industrial wastewater treatment in the Taihu Lake Basin. Full-scale treatment resulted in effluent chemical oxygen demand, total nitrogen, NH 3 -N and total phosphorus of 35.1, 5.20, 3.10 and 0.15 mg/L, respectively, with a total removal efficiency of 91.1%, 67.1%, 70.5% and 89.3%, respectively. In this process, short-circuited organic carbon from brewery wastewater was beneficial for denitrification and second-sulfate reduction. The concentration of effluent fluoride was 6.22 mg/L, which also met the primary standard. Gas Chromatography-Mass Spectrometry analysis revealed that many types of refractory compounds were present in the inflow. Microbial community analysis performed in the summer by PCR-denaturing gradient gel electrophoresis and MiSeq demonstrated that certain special functional bacteria, such as denitrificans, phosphorus-accumulating bacteria, sulfate- and perhafnate-reducing bacteria, aromatic compound-degrading bacteria and organic fluoride-degrading bacteria, present in the bio-tanks were responsible for the acceptable specific biological pollutant reduction achieved.
NASA Astrophysics Data System (ADS)
Tengku Ibrahim, T. N. B.; Othman, F.; Mahmood, N. Z.
2017-06-01
Most of the landfills in Malaysia are situated near to the main river basin that supplies almost 90% of water requirement. This includes landfills in Selangor where a total of 20 landfill sites are situated in 5 main river basins and the highest number of operating landfills (three) are at the Selangor River Basin (Jeram, Bukit Tagar and Kuang Inert landfills). This situation has caused wide concern over the water safety, even the leachate has been treated. The leachate itself still contains contaminants that are difficult to treat. The main objective of this study is to investigate the effect on water quality of Sembilang River that receives effluent from the nearby landfill. In this study, we analyzed samples of water from ten sampling stations starting from the upstream to downstream of Sembilang River. The water quality was evaluated by the Water Quality Index (WQI) depending on in-situ and laboratory analysis. 11 water quality variables are selected for the quality assessment; temperature, pH, turbidity, salinity, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, total suspended solid, ammoniacal nitrogen, phosphate and nitrate. The result indicated that, when the effluent mixed with the river water, the water quality decreased gradually and was found to be lower at a few stations. The water quality of Sembilang River falls under Class III of Water Quality Index with ranges between 68.03 to 43.46 mg/L. It is revealed that the present scenario of water quality of Sembilang River is due to the effect of effluent from the landfill.
Nutrient Loadings to Streams of the Continental United States from Municipal and Industrial Effluent
Maupin, M.A.; Ivahnenko, T.
2011-01-01
Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using "typical pollutant concentrations" to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.
Oloibiri, Violet; Chys, Michael; De Wandel, Stijn; Demeestere, Kristof; Van Hulle, Stijn W H
2017-12-01
Several scenarios are available to landfilling facilities to effectively treat leachate at the lowest possible cost. In this study, the performance of various leachate treatment sequences to remove COD and nitrogen from a leachate stream and the associated cost are presented. The results show that, to achieve 100% nitrogen removal, autotrophic nitrogen removal (ANR) or a combination of ANR and nitrification - denitrification (N-dN) is more cost effective than using only the N-dN process (0.58 €/m 3 ) without changing the leachate polishing costs associated with granular activated carbon (GAC). Treatment of N-dN effluent by ozonation or coagulation led to the reduction of the COD concentration by 10% and 59% respectively before GAC adsorption. This reduced GAC costs and subsequently reduced the overall treatment costs by 7% (ozonation) and 22% (coagulation). On the contrary, using Fenton oxidation to reduce the COD concentration of N-dN effluent by 63% increased the overall leachate treatment costs by 3%. Leachate treatment sequences employing ANR for nitrogen removal followed by ozonation or Fenton or coagulation for COD removal and final polishing with GAC are on average 33% cheaper than a sequence with N-dN + GAC only. When ANR is the preceding step and GAC the final step, choice of AOP i.e., ozonation or Fenton did not affect the total treatment costs which amounted to 1.43 (ozonation) and 1.42 €/m 3 (Fenton). In all the investigated leachate treatment trains, the sequence with ANR + coagulation + GAC is the most cost effective at 0.94 €/m 3 . Copyright © 2016 Elsevier Ltd. All rights reserved.
Luo, Zhe; Zhou, Guang-Jie; Liu, Hong-Bo; Nie, Xin-Yu; Chen, Yu; Zhai, Li-Qin; Liu, He
2015-03-01
In order to explore the possibility of enhanced nitrogen and phosphorus removal in wastewater using sludge anaerobic fermentation liquid as external carbon source, the present study proposed an A2/O reactor system with a total effective volume of 4 660 L and real municipal wastewater for treatment. The results showed that under the conditions of the influent COD at 243.7 mg x L(-1), NH4(+) -N at 30. 9 mg x L(-1), TN at 42.9 mg'L- , TP at 2.8 mg x L(-1), the backflow ratio of nitrification liquid at 200% and recycle ratio of sludge at 100%, the addition of acetic acid into anoxic tank could enhance the removal efficiency of nitrogen and phosphorus, and the optimal influent quantity and SCOD incremental of carbon were 7 500 L x d(-1) and 50 mg L(-1), respectively. When the sludge fermentation liquid was used as external carbon source and the average effluent COD, NH4(+) -N, TN, TP removal efficiency were 81.60%, 88.91%, 64.86% and 87.61%, the effluent concentrations were 42.18, 2.77, 11.92 and 0.19 mg x L(-1), respectively, which met China's first Class (A) criteria specified in the Discharge Standard Urban Sewage Treatment Plant Pollutant (GB 18918-2002). The results of the present study demonstrated that the addition of sludge anaerobic fermented liquid as external carbon source was a feasible way to enhance the removal of nitrogen and phosphorous in municipal wastewater, providing a new feasible strategy for the reuse and recycle of sewage sludge in China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dill, J.W.; Sowa, W.A.; Samuelsen, G.S.
1996-06-30
Phase I of this project focused on the creation of a spatial emissions map of the plume effluent in the exhaust stream directly behind the engine in a jet engine test cell (JETC). Both afterburning TF30-P111+ and non-after-burning TF33-P9 engines were tested. Measurements were taken in conjunction with actual engine tests for validity of the data. Temperature, oxides of nitrogen (NOx), carbon monoxide (CO) concentration, and velocity were among the characteristics measured radially and axially in the plume for each engine type. The main focus of this study was on NOx, consisting of nitric oxide (NO) and nitrogen dioxide (NO2).more » Measurements in the P111+ plume reveal levels of NOx above 300 ppm along the centerline of the effluent. A dip in the NOx emissions at afterburner shows signs of a reburning and/or dilution effect by the atmospheric combustion in the effluent. Significant amounts of NO2 are present in the effluent over the entire power range. Temperatures at military power reach 1100 deg F along the centerline, and CO values are below 80 ppm. Carbon monoxide concentrations decrease from idle to military power (full power, no afterburner), then rise sharply in afterburner. The CO peaks shift outward from centerline as do the temperatures due to the radial geometry of the afterburner combustion (over 10 percent CO at 2850 deg F).« less
Sewage Effluent Infiltrates Frozen Forest Soil
Alfred Ray Harris
1976-01-01
Secondarily treated sewage effluent, applied at the rate of 1 and 2 inches per week, infiltrated a frozen Sparta sand soil forested with jack pine and scrub oak. Maximum frost depth in treated plots averaged 60 cm and in check plots averages 35 cm. Nitrogen was mobile with some accumulation. Phosphorus was absorbed.
USDA-ARS?s Scientific Manuscript database
Production of biogas from swine manure using anaerobic digesters (AD) is projected to be important in the future. However, surplus nitrogen (N) in AD effluents is difficult to remove using current technology (nitrification/denitrification) because low carbon availability after biogas production. W...
Nitrous oxide emissions from one-step partial nitritation/anammox processes.
Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta
2016-12-01
Measurements of nitrous oxide were made at pilot- and full-scale plants to evaluate greenhouse gas emissions from one-step partial nitritation/anammox processes applied in moving bed biofilm reactors treating reject water. It was found that 0.51-1.29% and 0.35-1.33% of the total nitrogen loads in the pilot- and full-scale reactor, respectively, were emitted as nitrous oxide. Between 80 and 90% of nitrous oxide emissions were in gaseous form and the rest amount was found in the reactor effluent; over 90% of nitrous oxide emissions occurred in the aerated period and less than 8% in the non-aerated period in the full-scale study. Nitrous oxide productions/consumptions were closely related to aeration and the nitrogen loads applied in the system.
Optimization of a mainstream nitritation-denitritation process and anammox polishing.
Regmi, Pusker; Holgate, Becky; Fredericks, Dana; Miller, Mark W; Wett, Bernhard; Murthy, Sudhir; Bott, Charles B
2015-01-01
This paper deals with an almost 1-year long pilot study of a nitritation-denitritation process that was followed by anammox polishing. The pilot plant treated real municipal wastewater at ambient temperatures. The effluent of high-rate activated sludge process (hydraulic retention time, HRT=30 min, solids retention time=0.25 d) was fed to the pilot plant described in this paper, where a constant temperature of 23 °C was maintained. The nitritation-denitritation process was operated to promote nitrite oxidizing bacteria out-selection in an intermittently aerated reactor. The intermittent aeration pattern was controlled using a strategy based on effluent ammonia and nitrate+nitrite concentrations. The unique feature of this aeration control was that fixed dissolved oxygen set-point was used and the length of aerobic and anoxic durations were changed based on the effluent ammonia and nitrate+nitrite concentrations. The anaerobic ammonia oxidation (anammox) bacteria were adapted in mainstream conditions by allowing the growth on the moving bed bioreactor plastic media in a fully anoxic reactor. The total inorganic nitrogen (TIN) removal performance of the entire system was 75±15% during the study at a modest influent chemical oxygen demand (COD)/NH4+-N ratio of 8.9±1.8 within the HRT range of 3.1-9.4 h. Anammox polishing contributed 11% of overall TIN removal. Therefore, this pilot-scale study demonstrates that application of the proposed nitritation-denitritation system followed by anammox polishing is capable of relatively high nitrogen removal without supplemental carbon and alkalinity at a low HRT.
Results of testing landspreading of treated municipal wastewater at St. Petersburg, Florida
Reichenbaugh, R.C.; Brown, David P.; Goetz, Carole L.
1979-01-01
Chlorinated secondary-treated effluent was used to irrigate a grassed 4-acre site at rates of 2 and 4 inches per week for periods of 11 and 14 weeks, respectively. Part of the site was drained by tile lines 5 feet below land surface. Irrigation of the drained plot resulted in rapid passage of the applied wastewater through the soil and, consequently, poor nitrogen removal. The rapid percolation permitted nitrification but prevented denitrification. Total phosphorus in the shallow ground water at the site increased from a maximum of 1.4 milligrams per liter before irrigation to as much as 5 milligrams per liter in the ground water 5 feet below land surface. Concentrations of nitrogen and phosphorus did not increase in ground water downgradient from the site, although increased chloride concentrations demonstrated downgradient migration of the applied wastewater. Prior to irrigation, total coliform bacteria were not detected in ground water at the site. After irrigation, total and fecal coliforms were detected in the ground water at the site and downgradient. (Woodard-USGS)
Alternative Water Processor Test Development
NASA Technical Reports Server (NTRS)
Pickering, Karen D.; Mitchell, Julie L.; Adam, Niklas M.; Barta, Daniel; Meyer, Caitlin E.; Pensinger, Stuart; Vega, Leticia M.; Callahan, Michael R.; Flynn, Michael; Wheeler, Ray;
2013-01-01
The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.
Water quality assessment of a highly polluted Mediterranean River - Oued Fez (Morocco)
NASA Astrophysics Data System (ADS)
Perrin, J.-L.; Bellarbi, M.; Raïs, N.; Chahinian, N.; Moulin, P.; Ijjaali, M.
2012-04-01
In the South of the Mediterranean basin, many rivers are characterized by an alternation of very long dry periods only cut by short flood events. Currently, the socio-economical development of these zones is limited by water scarcity and poor quality of the water resources. Indeed human activities, generally concentrated in overpopulated cities, generate large quantity of domestic and industrial effluents which are directly rejected in the environment without any treatment. In Morocco, the well known city of Fez illustrates perfectly this situation, observed in most developing countries. The oued Fez receives continuously the non-treated domestic and industrial effluents (90.000 m3/day) of the city and pollutes all the downstream water bodies. Indeed, it is a tributary of the Sebou River, a major body of great economical importance used for irrigation and freshwater supply. This study aims at characterising and quantifying the pollutant concentrations and fluxes in various points of oued Fez's hydrological network and assessing its impact on the Sebou River; this river's preservation being considered a national priority in Morocco. A coupled water quality-water quantity monitoring scheme has been implemented on oued Fez since 2008. In addition to basic hydrological data, water quality samples are collected at regular intervals at 8 locations where discharge is simultaneously measured using an Acoustic Doppler Current Profiler (ADCP). Water samples are analysed for different forms of nitrogen (nitrates, nitrites, ammonium and total nitrogen), phosphorus (soluble reactive phosphorus and total phosphorus) but also total chromium which is used in the leather tanning processes, one of the most important industrial production of the city of Fez, using a photospectrometer (Hach Lange DR 2800 VIS-photometer (Germany). The results of 17 sampling campaigns, carried out over 3 hydrological years, indicate that the rural areas contribute mostly to baseflow during the wet period while non-treated anthropogenic inputs constitute most of the flow during the dry period. The pollution levels are very high as the mean values reach 39 mg/l N, 5 mg/l P, 0.2mg/l Cr, for total nitrogen, total phosphorus and total chromium respectively at the most polluted sites. Even if the hydrological conditions induce important concentration variations, the pollution levels remain high all along the year. The nitrogen, phosphorus and chromium fluxes calculated for steady state conditions, show that more than 500 kg/hour of nitrogen, 60 kg/hour of phosphorus and 2.5 kg/hour of chromium are flushed by the oued Sebou downstream of its confluence with the oued Fez. These fluxes are due to human activities and do not vary significantly with the hydrological conditions. This study shows that a relatively limited observation network allows the characterization of the temporal and spatial variability of the pollution levels if the monitoring points are selected by taking into account the main pollution sources and the specificity of the hydrological conditions.
USDA-ARS?s Scientific Manuscript database
Nitrogen is an essential nutrient for plants and animals. However, an excess amount of nitrogen in waterways may lead to anoxic condition and negatively alter various aquatic lifeforms due to their toxicity. Main sources of nitrogen in the environment include the discharge from wastewater treatment ...
Li, Xiang; Zhu, Liang; Huang, Yong; Yang, Peng-bing; Cui, Jian-hong; Ma, Hang
2016-04-15
In order to reduce acid and alkali dosing in wastewater treatment process of polycrystalline silicon by using denitrification after fluoride removal. This experiment studied the feasibility of first removing nitrogen using the denitrification process by start-up denitrifying reactor before fluoride removal. The results showed that the F⁻ concentration in the waste water to had a certain influence on the denitrification. When the concentration of F⁻ was controlled to about 750 mg · L⁻¹, the activity of denitrifying bacteria was not significantly influenced; when the concentration of F⁻ continued to increase, the denitrification efficiency of denitrifying sludge gradually reduced. In wastewater treatment of polycrystalline silicon, if the concentration of F⁻ was kept below 800 mg · L⁻¹, the denitrification performance of denitrifying sludge was not obviously affected. After 93 d operation, the total nitrogen in effluent was stabilized below 50 mg · L⁻¹, the total nitrogen removal efficiency reached 90%, and the removal rate reached 5 kg · (m³ · d)⁻¹. The calculation result showed, compared with the conventional denitrification process after fluoride removal, the proposed process could save about 70% of acid and 100% of alkali dosing, greatly reducing the cost of wastewater treatment.
Curneen, S J; Gill, L W
2014-01-15
Short rotation coppiced willow trees can be used to treat on-site wastewater effluent with the advantage that, if planted in a sealed basin and sized correctly, they produce no effluent discharge. This paper has investigated the evapotranspiration rate of four different willow varieties while also monitoring the effects of three different effluent types on each variety. The willow varieties used are all cultivars of Salix viminalis. The effluents applied were primary (septic tank) effluent, secondary treated effluent and rain water (control). The results obtained showed that the addition of effluent had a positive effect on the evapotranspiration. The willows were also found to uptake a high proportion of the nitrogen and phosphorus from the primary and secondary treated effluents added during the first year. The effect of the different effluents on the evapotranspiration rate has been used to design ten full scale on-site treatment systems which are now being monitored. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yamashita, Takahiro; Aketo, Tsuyoshi; Minowa, Nobutaka; Sugimoto, Kiyomi; Yokoyama, Hiroshi; Ogino, Akifumi; Tanaka, Yasuo
2013-01-01
An agent synthesized from amorphous silica and hydrated lime (CSH-lime) was investigated for its ability to simultaneously remove the colour, phosphorus and disinfection from the effluents from wastewater treatment plants on swine farms. CSH-lime removed the colour and phosphate from the effluents, with the colour-removal effects especially high at pH 12, and phosphorous removal was more effective in strongly alkaline conditions (pH > 10). Colour decreased from 432 +/-111 (mean +/- SD) to 107 +/- 41 colour units and PO4(3-)P was reduced from 45 +/- 39 mg/L to undetectable levels at the CSH-lime dose of 2.0% w/v. Moreover, CSH-lime reduced the total organic carbon from 99.0 to 37.9 mg/L at the dose of 2.0% w/v and was effective at inactivating total heterotrophic and coliform bacteria. However, CSH-lime did not remove nitrogen compounds such as nitrite, nitrate and ammonium. Colour was also removed from dye solutions by CSH-lime, at the same dose.
Wang, Shen; Zheng, Dan; Wang, Shuang; Wang, Lan; Lei, Yunhui; Xu, Ze; Deng, Liangwei
2018-01-01
This study presents a novel strategy for remedying acidification and improving the removal efficiency of pollutants from digested effluent by using Zero-Valent Iron (iron scraps) in a sequencing batch reactor. Through this strategy, the pH increased from 5.7 (mixed liquid in the reactor without added ZVI) to 7.8 (reactors with added ZVI) because of Fe 0 oxidation and NO 3 - reduction. The removal efficiencies of COD increased from 11.5% to 77.5% because of oxidation of ferric ion and OH produced in chemical reactions of ZVI with oxygen and because of flocculation of iron ions. The removal efficiencies of total nitrogen rose from 1.83% to 93.3% probably because of autotrophic denitrification using electron donors produced by the corrosion of iron, as well as the favorable conditions for anammox due to iron ions. Total phosphorus increased from -25.8% to 77.1% because of the increase in pH and the precipitation with iron ions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xing, W; Ngo, H H; Guo, W S; Listowski, A; Cullum, P
2011-05-01
An integrated fluidized bed bioreactor (iFBBR) was designed to incorporate an aerobic sponge FBBR (ASB-FBBR) into an anoxic granular activated carbon FBBR (GAC-FBBR). This iFBBR was operated with and without adding a new starch based flocculant (NSBF) to treat synthetic primary treated sewage effluent (PTSE). The NSBF contains starch based cationic flocculants and trace nutrients. The results indicate that the iFBBR with NSBF addition could remove more than 93% dissolved organic carbon (DOC), 61% total nitrogen (T-N) and 60% total phosphorus (T-P) at just a very short hydraulic retention time of 50 min. The optimum frequency of adding NSBF to the iFFBR is four times per day. As a pretreatment to microfiltration, the iFFBR could increase 5L/m(2)h of critical flux thus reducing the membrane fouling. In addition, better microbial activity was also observed with high DO consumption (>66%) and specific oxygen uptake rate (>35 mg O(2)/g VSS h). Copyright © 2010 Elsevier Ltd. All rights reserved.
Safferman, Steven I; Burks, Bennette D; Parker, Robert A
2004-01-01
The need to improve on-site wastewater treatment processes is being realized as populations move into more environmentally sensitive regions and regulators adopt the total maximum daily load approach to watershed management. Under many conditions, septic systems do not provide adequate treatment; therefore, advanced systems are required. These systems must remove significant amounts of biochemical oxygen demand (BOD) and suspended solids, and substantially nitrify, denitrify, and remove phosphorus. Many existing advanced on-site wastewater systems effectively remove BOD, suspended solids, and ammonia, but few substantially denitrify and uptake phosphorus. The purpose of this research was to design and test modifications to an existing on-site wastewater treatment system to improve denitrification and phosphorus removal. The Nayadic (Consolidated Treatment Systems, Inc., Franklin, Ohio), an established, commercially available, extended-aeration, activated sludge process, was used to represent a typical existing system. Several modifications were considered based on a literature review, and the option with the best potential was tested. To improve denitrification, a supplemental treatment tank was installed before the Nayadic and a combination flow splitter, sump, and pump box with a recirculation system was installed after it. A recirculation pump returned a high proportion of the system effluent back to the supplemental treatment tank. Two supplemental treatment tank sizes, three flowrates, and three recirculation rates were tested. Actual wastewater was dosed as brief slugs to the system in accordance with a set schedule. Several ion-exchange resins housed in a contact column were tested on the effluent for their potential to remove phosphorus. Low effluent levels of five-day biochemical oxygen demand, suspended solids, and total nitrogen were achieved and substantial phosphorous removal was also achieved using a 3780-L supplemental treatment tank, a recirculation ratio of 5:1, and a fine-grain activated aluminum-oxide-exchange media. Good results were also obtained with an 1890-L supplemental treatment tank and a recirculation ratio of 3:1. The most significant benefit of the supplemental treatment tank, in combination with the recirculation system, appears to be the low nitrogen concentration dosed to the Nayadic. By reducing the nitrogen concentration and spreading out its mass over time during no-flow periods, the Nayadic's inherent low-level denitrifying capacity was more closely matched and effective treatment was achieved.
Ma, Bin; Bao, Peng; Wei, Yan; Zhu, Guibing; Yuan, Zhiguo; Peng, Yongzhen
2015-01-01
Achieving nitrogen removal from domestic wastewater using anaerobic ammonium oxidation (anammox) has the potential to make wastewater treatment energy-neutral or even energy-positive. The challenge is to suppress the growth of nitrite-oxidizing bacteria (NOB). This study presents a promising method based on intermittent aeration with low dissolved oxygen to limit NOB growth, thereby providing an advantage to anammox bacteria to form a partnership with the ammonium-oxidizing bacteria (AOB). The results showed that NOB was successfully suppressed using that method, with the relative abundance of NOB maintained between 2.0–2.6%, based on Fluorescent in-situ Hybridization. Nitrogen could be effectively removed from domestic wastewater with anammox at a temperature above 20 °C, with an effluent total nitrogen (TN) concentration of 6.6 ± 2.7 mg/L, while the influent TN and soluble chemical oxygen demand were 62.6 ± 3.1 mg/L and 88.0 ± 8.1 mg/L, respectively. PMID:26354321
Ren, Qingkai; Yu, Yang; Zhu, Suiyi; Bian, Dejun; Huo, Mingxin; Zhou, Dandan; Huo, Hongliang
2017-06-01
A novel micro-pressure swirl reactor (MPSR) was designed and applied to treat domestic wastewater at low temperature by acclimating microbial biomass with steadily decreasing temperature from 15 to 3 °C. Chemical oxygen demand (COD) was constantly removed by 85% and maintained below 50 mg L -1 in the effluent during the process. When the air flow was controlled at 0.2 m 3 h -1 , a swirl circulation was formed in the reactor, which created a dissolved oxygen (DO) gradient with a low DO zone in the center and a high DO zone in the periphery for denitrification and nitrification. 81% of total nitrogen was removed by this reactor, in which ammonium was reduced by over 90%. However, denitrification was less effective because of the presence of low levels of oxygen. The progressively decreasing temperature favored acclimation of psychrophilic bacteria in the reactor, which replaced mesophilic bacteria in the process of treatment.
Welz, Pamela J; Ramond, Jean-Baptiste; Braun, Lorenz; Vikram, Surendra; Le Roes-Hill, Marilize
2018-02-01
Heterotrophic bacteria proliferate in organic-rich environments and systems containing sufficient essential nutrients. Nitrogen, phosphorus and potassium are the nutrients required in the highest concentrations. The ratio of carbon to nitrogen is an important consideration for wastewater bioremediation because insufficient nitrogen may result in decreased treatment efficiency. It has been shown that during the treatment of effluent from the pulp and paper industry, bacterial nitrogen fixation can supplement the nitrogen requirements of suspended growth systems. This study was conducted using physicochemical analyses and culture-dependent and -independent techniques to ascertain whether nitrogen-fixing bacteria were selected in biological sand filters used to treat synthetic winery wastewater with a high carbon to nitrogen ratio (193:1). The systems performed well, with the influent COD of 1351 mg/L being reduced by 84-89%. It was shown that the nitrogen fixing bacterial population was influenced by the presence of synthetic winery effluent in the surface layers of the biological sand filters, but not in the deeper layers. It was hypothesised that this was due to the greater availability of atmospheric nitrogen at the surface. The numbers of culture-able nitrogen-fixing bacteria, including presumptive Azotobacter spp. exhibited 1-2 log increases at the surface. The results of this study confirm that nitrogen fixation is an important mechanism to be considered during treatment of high carbon to nitrogen wastewater. If biological treatment systems can be operated to stimulate this phenomenon, it may obviate the need for nitrogen addition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Khazaei, Esmaeil; Milne-Home, William
2017-05-01
Elevated levels of chloride concentration due to anthropogenic activities including the road salts, septic effluent and agricultural sources are common in shallow groundwater of the recent glacial deposits north of Toronto, Ontario, Canada. Identifying suitable techniques for discriminating the source of the chloride concentration helps to better plan the protection of groundwater in the area. This paper examines the applicability of geochemical techniques with emphasis on Panno et al. (Ground Water 44: 176-187, 2006) and Mullaney et al. (2009) graphical approaches for discriminating the sources of chloride with known causes of impacts. The results indicated that the graphical methods developed using Cl - , Br - and/or total nitrogen (N) could identify the combined sources of road salts and septic systems. However, discriminating between the road salts, septic effluent or agricultural sources needs to be complemented by other techniques including the artificial sweeteners and isotope tracers.
Evaluation of Lipid Content in Microalgae Biomass Using Palm Oil Mill Effluent (Pome)
NASA Astrophysics Data System (ADS)
Kamyab, Hesam; Chelliapan, Shreeshivadasan; Shahbazian-Yassar, Reza; Din, Mohd Fadhil Md; Khademi, Tayebeh; Kumar, Ashok; Rezania, Shahabaldin
2017-08-01
The scope of this study is to assess the main component of palm oil mill effluent (POME) to be used as organic carbon for microalgae. The applicable parameters such as optical density, chlorophyll content, mixed liquor suspended solid, mixed liquor volatile suspended solid, cell dry weight (CDW), carbon:total nitrogen ratio and growth rate were also investigated in this study. The characteristics and morphological features of the isolates showed similarity with Chlorella. Chlorella pyrenoidosa ( CP) was found to be a dominant species in POME and Chlorella vulgaris ( CV) could grow well in POME. Furthermore, the optimal lipid production was obtained at the ratio 95:05 CDW with highest lipid production by CP compared to CV. At day 20, CDW for CV species was obtained at 193 mg/L and with lipid content at 56 mg/L. Finally, the concentration ratio at 50:50 showed a higher absorbance of chlorophyll a for both strains.
Bioremediation of high-strength agricultural wastewater using Ochrobactrum sp. strain SZ1.
Neoh, Chin Hong; Lam, Chi Yong; Ghani, Suriati Mat; Ware, Ismail; Sarip, Siti Hajar Mat; Ibrahim, Zaharah
2016-12-01
The biggest agricultural sector that contributes to the Malaysian economy is the oil palm industry. The effluent generated during the production of crude palm oil known as palm oil mill effluent (POME). POME undergoes anaerobic treatment that requires long retention time and produces large amount of methane that consequently contributes to global warming. In this study, an isolated bacteria was selected based on its ability to degrade kraft lignin (KL) and identified as Ochrobactrum sp. The bacteria were able to treat POME (from anaerobic pond) under the aerobic condition without addition of nutrient, resulting in a significant chemical oxygen demand (COD) removal of 71 %, removal rate of 1385 mg/l/day, and 12.3 times higher than that of the ponding system. It has also resulted in 60 % removal of ammoniacal nitrogen and 55 % of total polyphenolic after 6-day treatment period with the detection of lignocellulolytic enzymes.
High performance of nitrogen and phosphorus removal in an electrolysis-integrated biofilter.
Gao, Y; Xie, Y W; Zhang, Q; Yu, Y X; Yang, L Y
A novel electrolysis-integrated biofilter system was developed in this study to evaluate the intensified removal of nitrogen and phosphorus from contaminated water. Two laboratory-scale biofilter systems were established, one with electrolysis (E-BF) and one without electrolysis (BF) as control. The dynamics of intensified nitrogen and phosphorus removal and the changes of inflow and outflow water qualities were also evaluated. The total nitrogen (TN) removal rate was 94.4% in our newly developed E-BF, but only 74.7% in the control BF. Ammonium removal rate was up to 95% in biofilters with or without electrolysis integration with an influent ammonium concentration of 40 mg/L, and the accumulation of nitrate and nitrite was much lower in the effluent of E-BF than that of BF. Thus electrolysis plays an important role in TN removal especially the nitrate and nitrite removal. Phosphorus removal was significantly enhanced, exceeding 90% in E-BF by chemical precipitation, physical adsorption, and flocculation of phosphorus because of the in situ formation of ferric ions by the anodizing of sacrificial iron anodes. Results from this study indicate that the electrolysis integrated biofilter is a promising solution for intensified nitrogen and phosphorus removal.
Enhanced nitrogen removal in trickling filter plants.
Dai, Y; Constantinou, A; Griffiths, P
2013-01-01
The Beaudesert Sewage Treatment Plant (STP), originally built in 1966 and augmented in 1977, is a typical biological trickling filter (TF) STP comprising primary sedimentation tanks (PSTs), TFs and humus tanks. The plant, despite not originally being designed for nitrogen removal, has been consistently achieving over 60% total nitrogen reduction and low effluent ammonium concentration of less than 5 mg NH3-N/L. Through the return of a NO3(-)-rich stream from the humus tanks to the PSTs and maintaining an adequate sludge age within the PSTs, the current plant is achieving a substantial degree of denitrification. Further enhanced denitrification has been achieved by raising the recycle flows and maintaining an adequate solids retention time (SRT) within the PSTs. This paper describes the approach to operating a TF plant to achieve a high degree of nitrification and denitrification. The effectiveness of this approach is demonstrated through the pilot plant trial. The results from the pilot trial demonstrate a significant improvement in nitrogen removal performance whilst maximising the asset life of the existing infrastructure. This shows great potential as a retrofit option for small and rural communities with pre-existing TFs that require improvements in terms of nitrogen removal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassery, A.; Universite de Toulouse, Laboratoire de Genie Chimique, Toulouse; CNRS, Laboratoire de Genie Chimique, Toulouse
Within the framework of the dismantling of fast breeder reactors in France several processes are under investigation regarding sodium disposal. One of them, called ELA (radioactive sodium waste treatment process), is based on the implementation of the sodium-water reaction, in a controlled and progressive way, to remove residual sodium. This sodium contains impurities such as sodium hydride, sodium oxide and tritiated sodium hydride. The hydrolysis of these various chemical species leads to the production of a liquid effluent, mainly composed of an aqueous solution of sodium hydroxide, and a gaseous effluent, mainly composed of nitrogen (inert gas), hydrogen and steam.more » The tritium is distributed between these effluents, and, within the gaseous effluent, according to its forms HT and HTO (tritiated water). HTO being 10,000 times more radio-toxic than HT, a precise knowledge of the mechanisms governing the phase distribution of tritium is necessary. This paper presents the first experimental results from a parametric study on the tritium distribution between the various effluents generated during hydrolysis operations. A series of experiments have been performed in order to study the influence of water flow rate, argon flow rate, initial mass and specific activity of the hydrolyzed sodium sample. An important influence of the total tritium concentration in the hydrolyzed sample has been highlighted. As for the phenomena suspected to be responsible for the phase change of tritiated water, in the studied range of parameters, vaporization induced by the heat of reactions seems to be dominant over the evaporation induced by the inert gas flow rate.« less
The stability of accumulating nitrite from Swine wastewater in a sequencing batch reactor.
Wang, Liang; Zhu, Jun; Miller, Curtis
2011-02-01
Shortcut nitrification is the first step of shortcut nitrogen removal from swine wastewater. Stably obtaining an effluent with a significant amount of nitrite is the premise for the subsequent shortcut denitrification. In this paper, the stability of nitrite accumulation was investigated using a 1.5-day hydraulic retention time in a 10-L (working volume) activated sludge sequencing batch reactor (SBR) with an 8-h cycle consisted of 4 h 38 min aerobic feeding, 1 h 22 min aerobic reaction, 30 min settling, 24 min withdrawal, and 1 h 6 min idle. The nitrite production stability was tested using four different ammonium loading rates, 0.075, 0.062, 0.053, and 0.039 g NH(4)-N/g (mixed liquid suspended solid, MLSS) day in a 2-month running period. The total inorganic nitrogen composition in the effluent was not affected when the ammonium load was between 0.053 and 0.075 g NH(4)-N/g MLSS · day (64% NO(2)-N, 16% NO(3)-N, and 20% NH(4)-N). Under 0.039 g NH(4)-N/g MLSS · day, more NO(2)-N was transformed to NO(3)-N with an effluent of 60% NO(2)-N, 20% NO(3)-N, and 20% NH(4)-N. The reducing load test was able to show the relationship between a declining free nitrous acid (FNA) concentration and the decreasing nitrite production, indicating that the inhibition of FNA on nitrite oxidizing bacteria depends on its levels and an ammonium loading rate around 0.035 g NH(4)-N/g MLSS · day is the lower threshold for producing a nitrite dominance effluent in the activated sludge SBR under the current settings.
Using a Macroalgal δ15N Bioassay to Detect Cruise Ship Waste Water Effluent Inputs
Nitrogen stable isotopes are a powerful tool for tracking sources of N to marine ecosystems. I used green macroalgae as a bioassay organism to evaluate if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in Skagway Harbor, AK. Opportunistic green...
Luo, Weiwei; Jin, Xibiao; Yu, Yonglian; Zhou, Sichen; Lu, Shuguang
2014-01-01
Nitrogen-removal performance was investigated in a penicillin wastewater biological treatment plant (P-WWTP) reconstructed from a cyclic activated sludge system (CASS) tank designed for simultaneous nitrification and denitrification (SND). Good performance was obtained during a 900-day operation period, as indicated by effluent chemical oxygen demand (COD), total nitrogen (TN) and ammonia nitrogen (NH₃‒N) values of 318 ± 34, 28.7 ± 2.4 and<0.2 mg L⁻¹ when the influent COD, total Kjeldahl nitrogen (TKN) and NH₃‒N were 3089 ± 453, 251.4 ± 26.5 and 124.8 ± 26.8 mg L⁻¹, respectively. Nitrification and denitrification occurred at different spaces, that is, 71.4% of TN removal occurred in the first 40% of the aeration tank, while 68.8% of the TKN removal occurred in 40-100% of the aeration tank. Sufficient easily biodegradable organics (EBO) in wastewater were key to the occurrence of SND. The denitrification rate under aeration conditions was 10.7 mg N g VSS⁻¹ h⁻¹ when EBO were sufficient, but 0.98 mg N g VSS⁻¹ h⁻¹ when EBO were completely degraded. Nitrification primarily occurred in the rear of the aeration tank owing to the competition for oxygen between carbonaceous oxidation and nitrification. The nitrification rate was only 7.13 mg NOD g VSS⁻¹ h⁻¹ at the beginning of the reaction, but 14.7 mg NOD g VSS⁻¹ h⁻¹ when EBO were completely degraded. These results will facilitate the improvement of nitrogen removal by existing WWTPs.
Van Den Hende, Sofie; Rodrigues, André; Hamaekers, Helen; Sonnenholzner, Stanislaus; Vervaeren, Han; Boon, Nico
2017-10-25
Treatment of upflow anaerobic sludge blanket (UASB) effluent from a paper mill in aerated activated sludge reactors involves high aeration costs. Moreover, this calcium-rich effluent leads to problematic scale formation. Therefore, a novel strategy for the aerobic treatment of paper mill UASB effluent in microalgal bacterial floc sequencing batch reactors (MaB-floc SBRs) is proposed, in which oxygen is provided via photosynthesis, and calcium is removed via bio-mineralization. Based on the results of batch experiments in the course of this study, a MaB-floc SBR was operated at an initial neutral pH. This SBR removed 58±21% organic carbon, 27±8% inorganic carbon, 77±5% nitrogen, 73±2% phosphorus, and 27±11% calcium. MaB-flocs contained 10±3% calcium, including biologically-influenced calcite crystals. The removal of calcium and inorganic carbon by MaB-flocs significantly decreased when inhibiting extracellular carbonic anhydrase (CA), an enzyme that catalyses the hydration and dehydration of CO 2 . This study demonstrates the potential of MaB-floc SBRs for the alternative treatment of calcium-rich paper mill effluent, and highlights the importance of extracellular CA in this treatment process. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of organic nitrogen concentration on the efficiency of trickling filters
NASA Astrophysics Data System (ADS)
Kopeć, Łukasz; Drewnowski, Jakub; Fernandez-Morales, F. J.
2018-02-01
The study was conducted in Poland at six selected wastewater treatment plants (WWTP) based on the trickling filters Bioclere® technology. The aim of the study was to find the relationship between the influent organic nitrogen concentration and the purification efficiency expressed as effluent COD concentration. In the tests performed, the COD to BOD5 relationship was close to 2 and the ratio of BOD5 to TN was lower than 4. The research indicated that this specific chemical composition of raw wastewater causes appearance of filamentous bacteria on the surface of trickling filter filling and strongly affect the effluent quality.
Kiguchi, Osamu; Sato, Go; Kobayashi, Takashi
2016-11-01
Source-specific elucidation of domestic sewage pollution caused by various effluent sources in an urban river water, as conducted for this study, demands knowledge of the relation between concentrations of pharmaceuticals and personal care products (PPCPs) as molecular indicators (caffeine, carbamazepine, triclosan) and water quality concentrations of total nitrogen (T-N) and total phosphorous (T-P). River water and wastewater samples from the Asahikawa River Basin in northern Japan were analyzed using derivatization-gas chromatography/mass spectrometry. Caffeine, used as an indicator of domestic sewage in the Asahikawa River Basin, was more ubiquitous than either carbamazepine or triclosan (92-100 %). Its concentration was higher than any target compound used to assess the basin: <4.4-370 ng/L for caffeine, <0.6-3.9 ng/L for carbamazepine, and <1.1-13 ng/L for triclosan. Higher caffeine concentrations detected in wastewater effluents and the strongly positive mutual linear correlation between caffeine and T-N or T-P (R 2 > 0.759) reflect the contribution of septic tank system effluents to the lower Asahikawa River Basin. Results of relative molecular indicators in combination with different molecular indicators (caffeine/carbamazepine and triclosan/carbamazepine) and cluster analysis better reflect the contribution of sewage than results obtained using concentrations of respective molecular indicators and cluster analysis. Relative molecular indicators used with water quality parameters (e.g., caffeine/T-N ratio) in this study provide results more clearly, relatively, and quantitatively than results obtained using molecular indicators alone. Moreover, the caffeine/T-N ratio reflects variations of caffeine flux from effluent sources. These results suggest strongly relative molecular indicators are also useful indicators, reflecting differences in spatial contributions of domestic sources for PPCPs in urban areas.
Taube, Nadine; He, Jianxun; Ryan, M Cathryn; Valeo, Caterina
2016-08-01
The role of nutrient loading on biomass growth in wastewater-impacted rivers is important in order to effectively optimize wastewater treatment to avoid excessive biomass growth in the receiving water body. This paper directly relates wastewater treatment plant (WWTP) effluent nutrients (including ammonia (NH3-N), nitrate (NO3-N) and total phosphorus (TP)) to the temporal and spatial distribution of epilithic algae and macrophyte biomass in an oligotrophic river. Annual macrophyte biomass, epilithic algae data and WWTP effluent nutrient data from 1980 to 2012 were statistically analysed. Because discharge can affect aquatic biomass growth, locally weighted scatterplot smoothing (LOWESS) was used to remove the influence of river discharge from the aquatic biomass (macrophytes and algae) data before further analysis was conducted. The results from LOWESS indicated that aquatic biomass did not increase beyond site-specific threshold discharge values in the river. The LOWESS-estimated biomass residuals showed a variable response to different nutrients. Macrophyte biomass residuals showed a decreasing trend concurrent with enhanced nutrient removal at the WWTP and decreased effluent P loading, whereas epilithic algae biomass residuals showed greater response to enhanced N removal. Correlation analysis between effluent nutrient concentrations and the biomass residuals (both epilithic algae and macrophytes) suggested that aquatic biomass is nitrogen limited, especially by NH3-N, at most sampling sites. The response of aquatic biomass residuals to effluent nutrient concentrations did not change with increasing distance to the WWTP but was different for P and N, allowing for additional conclusions about nutrient limitation in specific river reaches. The data further showed that the mixing process between the effluent and the river has an influence on the spatial distribution of biomass growth.
Using macroalgal δ15N bioassay to detect cruise ship waste water effluent inputs in Skagway, AK
Nitrogen stable isotopes are a powerful tool for tracking sources of N to marine ecosystems. I used green macroalgae as a bioassay organism to evaluate if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in Skagway Harbor, AK. Opportunistic green...
Effects of wastewater effluent on the South Platte River from Littleton to Denver
Spahr, N.E.; Blakely, S.R.
1985-01-01
The U.S. Geological Survey 's one-dimensional steady-state water quality model was used to investigate the effects of the effluent from the Bi-City WWTP (Wastewater Treatment Plant) on the South Platte River. The Bi-City WWTP is operated by the Cities of Littleton and Englewood. The model was calibrated from a 14.5 mile reach for 5-day carbonaceous biochemical oxygen demand, organic, ammonia, nitrite and nitrate using data collected during September 1983. Model verification was completed using data collected during October 1982 and January 1984 for all constituents except nitrite nitrogen. Nitrite nitrogen could not be verified for the cold temperature conditions of January of 1984. Measured benthic sediment oxygen demand used in model ranged from 1.01 to 2.77 grams per square meter per day. Model simulations were made for an estimated 7-day, 10-year discharge of 18 cubic feet per second, upstream from the outfall of the WWTP. Two groups of simulations were made for both warm and cold temperature conditions. In the first group of simulation variations were made in effluent 5-day carbonaceous biochemical oxygen demand concentrations and flow rates. The second group of simulations varied the amount of nitrogen discharged as ammonia and nitrate. The extent of the mixing zone downstream of the WWTP outfall was determined by injecting Rhodamine WT dye into the effluent. The mixing zone was found to extend 0.8 miles during low-flow conditions. (USGS)
NASA Astrophysics Data System (ADS)
Tazkiaturrizki, T.; Soewondo, P.; Handajani, M.
2018-01-01
Recycling water is a generic term for water reclamation and reuse to solve the scarcity of water. Constructed wetlands have been recognized as providing many benefits for wastewater treatment including water supply and control by recycling water. This research aims to find the best condition to significantly remove nitrogen using constructed wetland for recycling water of Bojongsoang Waste Water Treatment Plan (WWTP) effluent. Using media of soil, sand, gravel, and vegetation (Typha latifolia and Scirpus grossus) with an aeration system, BOD and COD parameters have been remarkably reduced. On the contrary, the removal efficiency for nitrogen is only between 50-60%. Modifications were then conducted by three step of treatment, i.e., Step I is to remove BOD/COD using Typha latifolia with an aeration system, Step II is todecrease nitrogen using Scirpus grossus with/without aeration, and Step III isto complete the nitrogen removal with denitrification process by Glycine max without aeration. Results of the research show that the nitrogen removal has been successfully increased to a high efficiency between 80-99%. The combination of aeration system and vegetation greatly affects the nitrogen removal. The vegetation acts as the organic nitrogen consumer (plant uptake) for amino acids, nitrate, and ammonium as nutrition, as well as theoxygen supplier to the roots so that aerobic microsites are formed for ammonification microorganisms.
Role of UASBs in River Water Quality Conservation in India
NASA Astrophysics Data System (ADS)
Gali, Veeresh; Thakur, Manisha; Gupta, Ashok Kumar; Ganguly, Rajiv
2018-03-01
Appropriate low-cost treatment technologies are a prerequisite for sound management of natural water resources against pollution in developing countries. Among the existing technologies available, UASB is found to be economically viable for India when considering all factors including operation and maintenance cost and treatment efficiency. However, this technology suffers setbacks in meeting the effluent guidelines prescribed by the government of India. Post treatment is supplemental to this process to meet the effluent standards in terms of removal of organic matter, suspended solids, pathogens and nutrients. Recent stringent effluent guidelines notified by the Ministry of Environment, Forests and Climate Change, Government of India has further reduced the limits of BOD by 3 times, COD and TSS by 5 times, NH4-N and total Nitrogen by 10 times as compared to the previous guidelines. Fecal Coliforms has been specified as <100MPN/100mL. In this paper, the present scenario of UASB based STPs and their role in river conservation is reviewed against the backdrop of stringent effluent guidelines. The minimum removal rates of BOD, COD and TSS in these plants are around 42 - 44% and the average removal rates are reported to be 66%, 61% and 65% respectively. The enhanced removal of BOD (97%), COD (98%) and TSS has been reported in STPs in conjunction with post treatment facilities such as facultative aerated lagoons, aeration tanks and polishing ponds.
Treatment of Palm Oil Mill Effluent by a Microbial Consortium Developed from Compost Soils
Nwuche, Charles O.; Ogbonna, James C.
2014-01-01
A method for the aerobic treatment of palm oil mill effluent (POME) was investigated in shake-flask experiments using a consortium developed from POME compost. POME was initially centrifuged at 4,000 g for 15 min and the supernatant was enriched with (NH4)2SO4 (0.5%) and yeast extract (0.25%) to boost its nitrogen content. At optimum pH (pH 4) and temperature (40°C) conditions, the chemical oxygen demand (COD) of the effluent decreased from 10,350 to 1,000 mg/L (90.3%) after 7 days. The total bacterial population determined by plate count enumeration was 2.4 × 106 CFU/mL, while the fungal count was 1.8 × 103 colonies/mL. Bacteria of the genera Pseudomonas, Flavobacterium, Micrococcus, and Bacillus were isolated, while the fungal genera included Aspergillus, Penicillium, Trichoderma, and Mucor. When the isolated species were each inoculated into separate batches of the raw effluent, both pH and COD were unchanged. However, at 75 and 50% POME dilutions, the COD dropped by 52 and 44%, respectively, while the pH increased from 4 to 7.53. POME treatment by aerobic method is sustainable and holds promising prospects for cushioning the environment from the problems associated with the use of anaerobic systems. PMID:27433536
Wilber, William G.; Crawford, Charles G.; Peters, James G.
1979-01-01
A digital model calibrated to conditions in Sand Creek near Greensburg, Ind., was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The only point-source waste load affecting Sand Creek in the vicinity of Greensburg is the Greensburg wastewater-treatment facility. Non-point, unrecorded waste loads seemed to be significant during three water-quality surveys done by the Indiana State Board of Health. Natural streamflow in Sand Creek during the summer and annual 7-day, 10-year low flow is zero so no benefit from dilution is provided. Effluent ammonia-nitrogen concentrations from the Greensburg wastewater-treatment facility will not meet Indiana water-quality standards during summer and winter low flows. To meet the water-quality standard the wastewater-effluent would be limited to a maximum total ammonia-nitrogen concentration of 2.5 mg/l for summer months (June through August) and 4.0 mg/l for winter months (November through March). Model simulations indicate that benthic-oxygen demand, nitrification, and the dissolved-oxygen concentration of the wastewater effluent are the most significant factors affecting the in-stream dissolved-oxygen concentration during summer low flows. The model predicts that with a benthic-oxygen demand of 1.5 grams per square meter per day at 20C the stream has no additional waste-load assimilative capacity. Present carbonaceous biochemical-oxygen demand loads from the Greensburg wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard (5 mg/l) during winter low flows. (Kosco-USGS)
Nitrogen source and application method impact on corn yield and nutrient uptake
USDA-ARS?s Scientific Manuscript database
Farmers are looking for better management practices to enhance production and reduce negative environmental impact from nitrogen (N) fertilizer application since N is one of the most important and costly nutrient inputs for crop production. In this field experiment pre-plant swine effluent applicati...
NASA Astrophysics Data System (ADS)
Caron, David A.; Gellene, Alyssa G.; Smith, Jayme; Seubert, Erica L.; Campbell, Victoria; Sukhatme, Gaurav S.; Seegers, Bridget; Jones, Burton H.; Lie, Alle A. Y.; Terrado, Ramon; Howard, Meredith D. A.; Kudela, Raphael M.; Hayashi, Kendra; Ryan, John; Birch, James; Demir-Hilton, Elif; Yamahara, Kevan; Scholin, Chris; Mengel, Michael; Robertson, George
2017-02-01
A 3-week diversion of the Orange County Sanitation District effluent discharge into nearshore waters off Newport Beach, CA constituted a considerable injection of secondarily-treated effluent into the coastal ecosystem. The location ≈1.6 km from shore, shallow water depth (≈16 m), volume and nutrient content of the discharge (≈5.3 × 108 L day-1 of effluent with inorganic nitrogen concentration >2 mM) during the diversion raised concerns regarding the potential for stimulating phytoplankton blooms and, in particular, blooms of toxic species. Remarkably, phytoplankton standing stocks during the event and shortly thereafter did not reach values associated even with minor blooms historically observed in the region (generally <5 μg l-1), although shifts in community composition were observed. Diatom abundances increased early during the diversion, dinoflagellates, phototrophic picoplanktonic eukaryotes and other algae increased mid-diversion, and cyanobacteria (Synechococcus, Prochlorococcus) increased near the end of the diversion. Concentrations of domoic acid (a phycotoxin commonly present in the area) remained near or below detection throughout the diversion, and abundances of potentially-harmful algal species were unresponsive. Bacterial biomass increased during the diversion, and equaled or exceeded total phytoplankton biomass in most samples. Abundances of microbial grazers were also elevated during the diversion. We speculate that nutrient uptake by the bacterial biomass, acting in concert with or a response to a negative effect of disinfection byproducts associated with chlorination on phytoplankton physiology, played a significant role in muting the response of the phytoplankton to nutrients released in the effluent.
2012-03-01
the Haber - Bosch process, in which hydrogen is first produced from methane (eq. 1), then ammonia is produced from nitrogen and hydrogen: N2 (g...3H2 (g) - 2NH3 (g) (5) Agronomists have calculated that well over one-third of the world’s present population is fed by virtue of the Haber - Bosch ...fixation of nitrogen through the Haber - Bosch process, leading to a potential confluence of energy and fertilizer crises. Biological nitrogen fixation
Desimone, Leslie A.; Barlow, Paul M.; Howes, Brian L.
1996-01-01
Physical, chemical, and microbial processes controlled transport of a nitrogen-rich ground-water plume through a glacial aquifer. Lithologic heterogeneity and vertical head gradients influenced plume movement and geometry. Nitrate was the predominant nitrogen form and oxygen was depleted in the ground-water plume. However, denitrification transformed only 2 percent of plume nitrogen because of limited organic-carbon availability. Aerobic respiration, nitrification and cation exchange (unsaturated zone) and ammonium sorption (saturated zone) had larger effects.
Physical, toxicological, and energy systems modeling were combined to make estimates of likely ecosystem-level effects due to residual chlorine in sewage effluent. The energy systems model also allowed us to make estimates of the effects of nutrient loading on the estuary both se...
NASA Astrophysics Data System (ADS)
Loh, Kenneth J.; Guest, Jeremy S.; Ho, Genevieve; Lynch, Jerome P.; Love, Nancy G.
2009-03-01
Despite the wide variety of effective disinfection and wastewater treatment techniques for removing organic and inorganic wastes, pollutants such as nitrogen remain in wastewater effluents. If left untreated, these nitrogenous wastes can adversely impact the environment by promoting the overgrowth of aquatic plants, depleting dissolved oxygen, and causing eutrophication. Although nitrification/denitrification processes are employed during advanced wastewater treatment, effective and efficient operation of these facilities require information of the pH, dissolved oxygen content, among many other parameters, of the wastewater effluent. In this preliminary study, a biocompatible CNT-based nanocomposite is proposed and validated for monitoring the biological metabolic activity of nitrifying bacteria in wastewater effluent environments (i.e., to monitor the nitrification process). Using carbon nanotubes and a pH-sensitive conductive polymer (i.e., poly(aniline) emeraldine base), a layer-by-layer fabrication technique is employed to fabricate a novel thin film pH sensor that changes its electrical properties in response to variations in ambient pH environments. Laboratory studies are conducted to evaluate the proposed nanocomposite's biocompatibility with wastewater effluent environments and its pH sensing performance.
Community-based wastewater treatment systems and water quality of an Indonesian village.
Lim, H S; Lee, L Y; Bramono, S E
2014-03-01
This paper examines the impact of community-based water treatment systems on water quality in a peri-urban village in Yogyakarta, Indonesia. Water samples were taken from the wastewater treatment plants (WWTPs), irrigation canals, paddy fields and wells during the dry and wet seasons. The samples were tested for biological and chemical oxygen demand, nutrients (ammonia, nitrate, total nitrogen and total phosphorus) and Escherichia coli. Water quality in this village is affected by the presence of active septic tanks, WWTP effluent discharge, small-scale tempe industries and external sources. We found that the WWTPs remove oxygen-demanding wastes effectively but discharged nutrients, such as nitrate and ammonia, into irrigation canals. Irrigation canals had high levels of E. coli as well as oxygen-demanding wastes. Well samples had high E. coli, nitrate and total nitrogen levels. Rainfall tended to increase concentrations of biological and chemical oxygen demand and some nutrients. All our samples fell within the drinking water standards for nitrate but failed the international and Indonesian standards for E. coli. Water quality in this village can be improved by improving the WWTP treatment of nutrients, encouraging more villagers to be connected to WWTPs and controlling hotspot contamination areas in the village.
Tee, Pei-Fang; Abdullah, Mohammad Omar; Tan, Ivy Ai Wei; Mohamed Amin, Mohamed Afizal; Nolasco-Hipolito, Cirilo; Bujang, Kopli
2016-09-01
An air-cathode MFC-adsorption hybrid system, made from earthen pot was designed and tested for simultaneous wastewater treatment and energy recovery. Such design had demonstrated superior characteristics of low internal resistance (29.3Ω) and favor to low-cost, efficient wastewater treatment and power generation (55mW/m(3)) with average current of 2.13±0.4mA. The performance between MFC-adsorption hybrid system was compared to the standalone adsorption system and results had demonstrated great pollutants removals of the integrated system especially for chemical oxygen demand (COD), biochemical oxygen demand (BOD3), total organic carbon (TOC), total volatile solids (TVS), ammoniacal nitrogen (NH3-N) and total nitrogen (TN) because such system combines the advantages of each individual unit. Besides the typical biological and electrochemical processes that happened in an MFC system, an additional physicochemical process from the activated carbon took place simultaneously in the MFC-adsorption hybrid system which would further improved on the wastewater quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pawar, Prabhakar R
2013-10-15
Surface water samples were collected from substations along Sheva creek and Dharamtar creek mangrove ecosystems of Uran (Raigad), Navi Mumbai, west coast of India. Water samples were collected fortnightly from April 2009 to March 2011 during spring low and high tides and were analyzed for pH, Temperature, Turbidity, Total solids (TS), Total dissolved solids (TDS), Total suspended solids (TSS), Dissolved oxygen (DO), Biochemical oxygen demand (BOD), Carbon dioxide (CO2), Chemical oxygen demand (COD), Salinity, Orthophosphate (O-PO4), Nitrite-nitrogen (NO2-N), Nitrate-nitrogen (NO3-N), and Silicates. Variables like pH, turbidity, TDS, salinity, DO, and BOD show seasonal variations. Higher content of O-PO4, NO3-N, and silicates is recorded due to discharge of domestic wastes and sewage, effluents from industries, oil tanking depots and also from maritime activities of Jawaharlal Nehru Port Trust (JNPT), hectic activities of Container Freight Stations (CFS), and other port wastes. This study reveals that water quality from mangrove ecosystems of Uran is deteriorating due to industrial pollution and that mangrove from Uran is facing the threat due to anthropogenic stress. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal.
Zheng, Xiong; Wu, Rui; Chen, Yinguang
2011-04-01
With the increasing utilization of nanomaterials, zinc oxide nanoparticles (ZnO NPs) have been reported to induce adverse effects on human health and aquatic organisms. However, the potential impacts of ZnO NPs on wastewater nitrogen and phosphorus removal with an activated sludge process are unknown. In this paper, short-term exposure experiments were conducted to determine whether ZnO NPs caused adverse impacts on biological nitrogen and phosphorus removal in the unacclimated anaerobic-low dissolved oxygen sequencing batch reactor. Compared with the absence of ZnO NPs, the presence of 10 and 50 mg/L of ZnO NPs decreased total nitrogen removal efficiencies from 81.5% to 75.6% and 70.8%, respectively. The corresponding effluent phosphorus concentrations increased from nondetectable to 10.3 and 16.5 mg/L, respectively, which were higher than the influent phosphorus (9.8 mg/L), suggesting that higher concentration of ZnO NPs induced the loss of normal phosphorus removal. It was found that the inhibition of nitrogen and phosphorus removal induced by higher concentrations of ZnO NPs was due to the release of zinc ions from ZnO NPs dissolution and increase of reactive oxygen species (ROS) production, which caused inhibitory effect on polyphosphate-accumulating organisms and decreased nitrate reductase, exopolyphosphatase, and polyphosphate kinase activities.
Crawford, Charles G.; Wilber, William G.; Peters, James G.
1980-01-01
The Indiana State Board of Health is developing a State water-quality plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Duck Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The major point-source waste load affecting Duck Creek is the Elwood wastewater-treatment facility. Natural streamflow during the low flow is zero, so no benefit from dilution is provided. Natural reaeration at the low-flow condition (approximately 3 cubic feet per second), also low, is estimated to be less than 1 per day (base e at 20 Celsius). Consequently, the wasteload assimilative capacity of the stream is low. Effluent ammonia-nitrogen concentrations, projected by the Indiana State Board of Health, will result in stream ammonia-nitrogen concentrations that exceed the State ammonia-nitrogen toxicity standards (2.5 milligrams per liter from April to October and 4.0 milligrams per liter from November through March). The projected effluent ammonia-nitrogen load will also result in the present Indiana stream dissolved-oxygen standard (5.0 milligrams per liter) not being met. Benthic-oxygen demand may also affect stream water quality. During the summer low-flow, a benthic-oxygen demand of only 0.6 gram per square meter per day would utilize all the streams 's available assimilative capacity. (USGS)
Mathematical modeling of wastewater-derived biodegradable dissolved organic nitrogen.
Simsek, Halis
2016-11-01
Wastewater-derived dissolved organic nitrogen (DON) typically constitutes the majority of total dissolved nitrogen (TDN) discharged to surface waters from advanced wastewater treatment plants (WWTPs). When considering the stringent regulations on nitrogen discharge limits in sensitive receiving waters, DON becomes problematic and needs to be reduced. Biodegradable DON (BDON) is a portion of DON that is biologically degradable by bacteria when the optimum environmental conditions are met. BDON in a two-stage trickling filter WWTP was estimated using artificial intelligence techniques, such as adaptive neuro-fuzzy inference systems, multilayer perceptron, radial basis neural networks (RBNN), and generalized regression neural networks. Nitrite, nitrate, ammonium, TDN, and DON data were used as input neurons. Wastewater samples were collected from four different locations in the plant. Model performances were evaluated using root mean square error, mean absolute error, mean bias error, and coefficient of determination statistics. Modeling results showed that the R(2) values were higher than 0.85 in all four models for all wastewater samples, except only R(2) in the final effluent sample for RBNN modeling was low (0.52). Overall, it was found that all four computing techniques could be employed successfully to predict BDON.
[Denitrification water treatment with zeolite composite filter by intermittent operation].
Qing, Cheng-Song; Bao, Tao; Chen, Tian-Hu; Chen, Dong; Xie, Jing-Jing
2012-12-01
The zeolite composite filters (ZCF) with the size of4-8 mm were prepared using raw zeolite (0.15-0.18 mm) as the main material and the cement as binder. After a combination of material characterizations, such as the void fraction, apparent density, compression strength and surface area, the optimal prepared conditions of composite filters were obtained as follow: weight ratio of m (zeolite): m (cement) = 7 : 3, curing for 15 d under the moisture condition and ambient temperature. Through upflow low-concentration ammonia nitrogen wastewater, ZCF filled in the experimental column was hung with the biological membrane. Thus, intermittent dynamic experiments were conducted, the intermittent operation cycle included adsorption, biological regeneration and drip washing. Until concentration of ammonia nitrogen was more than 2 mg x L(-1) of effluent standards, water in experiment column was firstly emptied, and then blast biological regeneration was conducted. After the filters were bathed with water, the zeolite adsorption-biological regeneration cycle was performed repeatedly. The experimental results show that under conditions of 24 h blast and 5 d of continuous operation period, ammonia nitrogen removal rate is up to 87.6% on average, total nitrogen removal rate reaches 51.2% on average.
NASA Astrophysics Data System (ADS)
Rose, P. S.; Smith, J. P.; Aller, R. C.; Cochran, J. K.; Swanson, R. L.; Murthy, S. N.; Coffin, R. B.
2010-12-01
Iodine-131(t1/2 = 8 days) has been measured in Potomac River water and sediments in the vicinity of the Blue Plains Water Pollution Control Plant (WPCP), Washington, DC. The source of I-131 is medical, where it is commonly used to treat thyroid cancer and hyperthyroidism. Iodine is metabolized by patients and eliminated primarily in urine. While other medical radioisotopes may enter the environment via sewage effluent, the nature and quantity of treatments using I-131 cause it to account for much of the radioactivity in sewage effluent. Natural iodine in aquatic systems is biologically cycled similar to other nutrients, such as nitrogen. Iodine-131 concentrations measured in sewage effluent from Blue Plains WPCP and in the Potomac River suggest a relatively continuous discharge of this isotope. Dissolved I-131 shows a strong, positive correlation with δ15N values of nitrate in the river. The range of I-131 concentrations detected in surface waters is 0.18 ± 0.01 to 0.68 ± 0.02 Bq/L. Surface water δ15NO3 values ranged from 8.7 ± 0.3 to 33.4 ± 7.3 ‰ with NO3+NO2 concentrations between 0.38 ± 0.02 and 2.79 ± 0.13 mgN/L. Sediment profiles of particulate I-131 and δ15N indicate rapid mixing or sedimentation and in many cases remineralization of a heavy nitrogen source consistent with wastewater nitrogen. Iodine-131 concentrations in sediments ranged from 1.31 ± 0.8 to 117 ± 2 Bq/kg dry weight. Values of δ15N in sediments ranged from 4.7 ± 0.1 ‰ to 9.3 ± 0.1 ‰. We propose that I-131 coupled with δ15N can be an excellent tracer for the short-term fate of wastewater nitrogen in this system. However, the utility of I-131 as a tracer is not limited to use in the Potomac River. Other studies have documented the presence of I-131 in several aquatic systems and continuous discharges of this radioisotope in sewage effluent are likely to be widespread in urban environments.
NASA Astrophysics Data System (ADS)
Manu, D. S.; Thalla, Arun Kumar
2017-11-01
The current work demonstrates the support vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS) modeling to assess the removal efficiency of Kjeldahl Nitrogen of a full-scale aerobic biological wastewater treatment plant. The influent variables such as pH, chemical oxygen demand, total solids (TS), free ammonia, ammonia nitrogen and Kjeldahl Nitrogen are used as input variables during modeling. Model development focused on postulating an adaptive, functional, real-time and alternative approach for modeling the removal efficiency of Kjeldahl Nitrogen. The input variables used for modeling were daily time series data recorded at wastewater treatment plant (WWTP) located in Mangalore during the period June 2014-September 2014. The performance of ANFIS model developed using Gbell and trapezoidal membership functions (MFs) and SVM are assessed using different statistical indices like root mean square error, correlation coefficients (CC) and Nash Sutcliff error (NSE). The errors related to the prediction of effluent Kjeldahl Nitrogen concentration by the SVM modeling appeared to be reasonable when compared to that of ANFIS models with Gbell and trapezoidal MF. From the performance evaluation of the developed SVM model, it is observed that the approach is capable to define the inter-relationship between various wastewater quality variables and thus SVM can be potentially applied for evaluating the efficiency of aerobic biological processes in WWTP.
de Aguiar Netto, Antenor Oliveira; Garcia, Carlos Alexandre Borges; Hora Alves, José do Patrocínio; Ferreira, Robério Anastácio; Gonzaga da Silva, Marinoé
2013-05-01
The Poxim River is one of Sergipe State's major waterways. It supplies water to the State capital, Aracaju, but is threatened by urban and agricultural developments that compromise both the quantity and the quality of the water. This has direct impacts on the daily lives of the region's population. In this work, a multivariate analytical approach was used to investigate the physical and chemical characteristics of the water in the river basin. Four sampling campaigns were undertaken, in November 2005, and in February, May, and September 2006, at 15 sites distributed along the Poxim. The parameters analyzed were conductivity, turbidity, color, total dissolved solids, dissolved oxygen, alkalinity, hardness, chlorophyll-a, and nutrients (total phosphorus, dissolved orthophosphate, nitrite, nitrate, ammoniacal nitrogen, and total nitrogen). Dissolved oxygen contents were very low in the Poxim-Açu River (1.0-2.8), the Poxim River (1.6-4.6), and the estuarine region (1.7-5.1), due to the dumping of wastes and discharges of domestic and industrial effluents containing organic matter into fluvial and estuarine regions of the Poxim. Factor analysis identified five components that were indicative of the quality of the water, and that explained 81.73 % of the total variance.
Uptake of stormwater nitrogen in bioretention systems demonstrated from 15N tracer techniques
NASA Astrophysics Data System (ADS)
Houdeshel, D.; Hultine, K. R.; Pomeroy, C. A.
2012-12-01
Bioretention stormwater management systems are engineered ecosystems that capture urban stormwater in order to reduce the harmful effects of stormwater pollution on receiving waters. Bioretention systems have been shown to be effective at reducing the volume of runoff, and thereby reduce the nutrient loading to receiving waters from urban areas. However, little work has been done to evaluate the treatment processes that are responsible for reductions in effluent nitrogen (N). We hypothesize that the pulses of inorganic nitrogen associated with urban runoff events are captured in the plat tissues within these systems and not adsorbed to the soil media, thus creating a long-term, sustainable treatment approach to reducing the total nutrient loading to receiving waters. Nitrogen treatment performance was tested on two bioretention systems in Salt Lake City, UT: 1) an upland native community that does not require irrigation in semi-arid climates, and 2) a wetland community that requires 250 l of daily irrigation to offset the relatively high evaporative demand in the region. Each cell is sized to treat a 2.5 cm storm from a 140 m2 impervious surface: the area of the bioretention system is 10 m2. To test the N removal performance of each system, runoff events were simulated to represent an average precipitation regime using a synthetic stormwater blend starting in January, 2012. Effluent was collected from an underdrain and analyzed for total nitrogen (TN); mass removal was calculated for each month by subtracting the TN mass added to the garden minus the TN mass that flowed out of the garden. To test the hypothesis that plants assimilate stormwater N, 4 g of 100 atom% 15N NH4NO3 tracer was used as the N source in the synthetic stormwater during the first 2,000 l synthetic storm event in May. This isotopic label was calculated to enrich the total N pool of each garden to 100‰ 15N/14Nair. New growth was harvested from each plant in both cells and analyzed for 15N before the isotopic label was introduced and weekly thereafter. In May 2012, the upland garden captured 6.2 grams of TN from the added stormwater (55% of TN added), and the wetland garden captured 7.1 grams of TN from the added stormwater (67% of TN added). Within two weeks of adding the label, the 15N ratio increased 500‰ to 3,000‰ in all plant tissues tested in both systems. The results of the isotopic labeling experiment support the hypothesis that the plants used in both vegetated bioretention systems directly contribute to stormwater N treatment through N assimilation.
USDA-ARS?s Scientific Manuscript database
Conservation and recovery of nitrogen (N) and phosphorus (P) from animal wastes is important in agriculture because of the high cost of commercial fertilizers and for environmental reasons. The objective of this work was to develop new technology for simultaneous N and P recovery suitable for anaero...
Li, Ming; Wu, Haiming; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Kong, Qiang
2017-09-01
In order to design treatment wetlands with maximal nitrogen removal and minimal nitrous oxide (N 2 O) emission, the effect of influent C/N ratios on nitrogen removal and N 2 O emission in surface flow constructed wetlands (SF CWs) for sewage treatment plant effluent treatment was investigated in this study. The results showed that nitrogen removal and N 2 O emission in CWs were significantly affected by C/N ratio of influent. Much higher removal efficiency of NH 4 + -N (98%) and TN (90%) was obtained simultaneously in SF CWs at C/N ratios of 12:1, and low N 2 O emission (8.2mg/m 2 /d) and the percentage of N 2 O-N emission in TN removal (1.44%) were also observed. These results obtained in this study would be utilized to determine how N 2 O fluxes respond to variations in C/N ratios and to improve the sustainability of CWs for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stream quality in the San Lorenzo River Basin, Santa Cruz County, California
Sylvester, Marc A.; Covay, Kenneth J.
1978-01-01
Stream quality was studied from November 1973 through June 1975 in the San Lorenzo River basin, Calif., a rapidly developing mountainous area. Dissolved-ion concentrations indicate the basin can be divided into three water-quality areas corresponding to three geologic areas. Pronounced changes in water quality occurred during storms when streamflow, turbidity, nitrogen, phosphorus, potassium, and fecal-coliform bacteria concentrations increased, while dissolved-ion concentrations decreased owing to dilution. Total nitrogen and fecal-coliform concentrations exceeded State objectives in the Zayante and Branciforte Creek drainages probably because of domestic sewage from improperly operating septic-tank systems or the primary-treated sewage effluent discharged into a pit near Scotts Valley. Diel studies did not show appreciable dissolved-oxygen depletion in streams. Greater streamflows and residential development appear responsible for reduced diversity of benthic invertebrates downstream of the residential areas in the basin. (Woodard-USGS)
Schreffler, Curtis L.; Galeone, Daniel G.; Veneziale, John M.; Olson, Leif E.; O'Brien, David L.
2005-01-01
An increasing number of communities in Pennsylvania are implementing land-treatment systems to dispose of treated sewage effluent. Disposal of treated effluent by spraying onto the land surface, instead of discharging to streams, may recharge the ground-water system and reduce degradation of stream-water quality. The U.S. Geological Survey (USGS), in cooperation with the Pennsylvania Department of Environmental Protection (PaDEP) and the Chester County Water Resources Authority (CCWRA) and with assistance from the New Garden Township Sewer Authority, conducted a study from October 1997 through December 2001 to assess the effects of spray irrigation of secondary treated sewage effluent on the water quantity and quality and the fate and transport of nitrogen in a 38-acre watershed in New Garden Township, Chester County, Pa. On an annual basis, the spray irrigation increased the recharge to the watershed. Compared to the annual recharge determined for the Red Clay Creek watershed above the USGS streamflow-gaging station (01479820) near Kennett Square, Pa., the spray irrigation increased annual recharge in the study watershed by approximately 8.8 in. (inches) in 2000 and 4.3 in. in 2001. For 2000 and 2001, the spray irrigation increased recharge 65-70 percent more than the recharge estimates determined for the Red Clay Creek watershed. The increased recharge was equal to 30-39 percent of the applied effluent. The spray-irrigated effluent increased base flow in the watershed. The magnitude of the increase appeared to be related to the time of year when the application rates increased. During the late fall through winter and into the early spring period, when application rates were low, base flow increased by approximately 50 percent over the period prior to effluent application. During the early spring through summer to the late fall period, when application rates were high, base flow increased by approximately 200 percent over the period prior to effluent application. The spray-irrigated effluent affected the ground-water quality of the shallow aquifer differently on the hilltop and hillside topographic settings of the watershed where spray irrigation was being applied (application area). Concentrations of nitrate-nitrogen (nitrate N) and chloride (Cl) in the effluent were higher than concentrations of these constituents in shallow ground water from wells on the hilltop and hillside prior to start of spray irrigation. In water from wells on the hilltop, concentrations of nitrate N and Cl increased in samples collected during effluent application compared to samples collected prior to effluent application. Also, increasing trends in concentration of these two constituents were evident through the study period. In water from wells on the hillside, which were on the eastern part of the application area, nitrate N and Cl concentrations increased in samples collected during effluent application compared to samples collected prior to effluent application. Also, increasing trends in concentration of these two constituents were evident through the study period. However, on the hillside of the western application area, the ground-water quality was not affected by the spray-irrigated effluent because of the greater thickness of unconsolidated material and higher amounts of clay present in those unconsolidated sands. Although nitrate N concentrations increased in water from hilltop and hillside wells in the application area, the nitrate N concentrations were below the effluent concentration. A combination of plant uptake, biological activity, and denitrification may be the processes accounting for the lower nitrate N concentrations in shallow ground water compared to the spray-irrigated effluent. Cl concentrations in water from hilltop western application area well Ch-5173 increased during the study period but were an order of magnitude less than the input effluent concentration. Cl concentrations in shallow ground water in the e
Mesophilic co-digestion of palm oil mill effluent and empty fruit bunches.
Kim, Sang-Hyoun; Choi, Seon-Mi; Ju, Hyun-Jun; Jung, Jin-Young
2013-01-01
The palm oil mill industry generates palm oil mill effluent (POME) and empty fruit bunches (EFB) as by-products. This study reports the mesophilic co-digestion of POME with EFB. The biochemical methane potential (BMP) of POME and EFB was 0.397 L CH4/g volatile solids (VS) and 0.264 L CH4/g VS, respectively. In a series of batch tests at various EFB to POME ratios, the maximum methane production rate was achieved at an EFB:POME ratio of 0.25-0.31:1. Performance data from lab-scale digesters confirmed the positive synergism by the addition of EFB to POME, which was attributed to the balanced chemical composition, for example the chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio. The EFB addition enhanced the acceptable organic loading rate, methane production, COD removal, and microbial activity. The mesophilic co-digestion of POME and EFB promises to be a viable recycling method to alleviate pollution problems and recover renewable energy in the palm oil mill industry.
N-nitrosodimethylamine (NDMA) formation during ozonation of wastewater and water treatment polymers.
Sgroi, Massimiliano; Roccaro, Paolo; Oelker, Gregg; Snyder, Shane A
2016-02-01
N-Nitrosodimethylamine (NDMA) formation by ozonation was investigated in the effluents of four different wastewater treatment plants destined for alternative reuse. Very high levels of NDMA formation were observed in wastewaters from treatment plants non operating with biological nitrogen removal. Selected experiments showed that hydroxyl radical did not have a significant role in NDMA formation during ozonation of wastewater. Furthermore, ozonation of three different polymers used for water treatment, including polyDADMAC, anionic polyacrylamide, and cationic polyacrylamide, spiked in wastewater did not increase the NDMA formation. Effluent organic matter (EfOM) likely reduced the availability of ozone in water able to react with polymers and quenched the produced ·OH radicals which limited polymer degradation and subsequent NDMA production. Excellent correlations were observed between NDMA formation, UV absorbance at 254 nm, and total fluorescence reduction. These data provide evidence that UV and fluorescence surrogates could be used for monitoring and/or controlling NDMA formation during ozonation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands
Lihu Cui; Ying Ouyang; Weizhi Yang; Zhujian Huang; Qiaoling Xu; Guangwei Yu
2015-01-01
Three new baffle flow constructed wetlands (CWs), namely the baffle horizontal flow CW (Z1), baffle vertical flow CW (Z2) and baffle hybrid flow CW (Z3), along with one traditional horizontal subsurface flow CW (Z4) were designed to test the removal efficiency of nitrogen (N) and phosphorus (P) from the septic tank effluent under varying hydraulic retention times (HRTs...
Balaji, S; Kalaivani, T; Rajasekaran, C; Shalini, M; Vinodhini, S; Priyadharshini, S Sunitha; Vidya, A G
2015-06-01
The present study was carried out with the tannery effluent contaminated with heavy metals collected from Ambur industrial area to determine the phycoremediation potential of Arthrospira (Spirulina) platensis. Two different concentrations (50 and 100 %) of heavy metals containing tannery effluent treated with A. platensis were analysed for growth, absorption spectra, biochemical properties and antioxidant enzyme activity levels. The effluent treatments revealed dose-dependent decrease in the levels of A. platensis growth (65.37 % for 50 % effluent and 49.32 % for 100 % effluent), chlorophyll content (97.43 % for 50 % effluent and 71.05 % for 100 % effluent) and total protein content (82.63 % for 50 % effluent and 62.10 % for 100 % effluent) that leads to the reduction of total solids, total dissolved solids and total suspended solids. A. platensis with lower effluent concentration was effective than at higher concentration. Treatment with the effluent also resulted in increased activity levels of antioxidant enzymes, such as superoxide dismutase (14.58 units/g fresh weight for 50 % and 24.57 units/g fresh weight for 100 %) and catalase (0.963 units/g fresh weight for 50 % and 1.263 units/g fresh weight for 100 %). Furthermore, heavy metal content was determined using atomic absorption spectrometry. These results indicated that A. platensis has the ability to combat heavy metal stress by the induction of antioxidant enzymes demonstrating its potential usefulness in phycoremediation of tannery effluent.
Prazeres, Ana R; Rivas, Javier; Paulo, Úrsula; Ruas, Filipa; Carvalho, Fátima
2016-07-01
Raw cheese whey wastewater (CWW) has been treated by means of FeCl3 coagulation-flocculation, NaOH precipitation, and Ca(OH)2 precipitation. Three different types of CWW were considered: without cheese whey recovery (CWW0), 60 % cheese whey recovery (CWW60), and 80 % cheese whey recovery (CWW80). Cheese whey recovery significantly influenced the characteristics of the wastewater to be treated: organic matter, solids, turbidity, conductivity, sodium, chloride, calcium, nitrogen, potassium, and phosphorus. Initial organic load was reduced to values in the interval of 60-70 %. Application of FeCl3, NaOH, or Ca(OH)2 involved additional chemical oxygen demand (COD) depletions regardless of the CWW used. Under optimum conditions, the combination of 80 % cheese whey recovery and lime application led to 90 % reduction in COD. Turbidity (99.8%), total suspended solids (TSS) (98-99 %), oils and fats (82-96 %), phosphorus (98-99 %), potassium (96-97 %), and total coliforms (100 %) were also reduced. Sludge generated in the latter process showed excellent settling properties. This solid after filtration and natural evaporation can be used as fertilizer with limitations due to its saline nature. In an innovative, low-cost, and environmentally friendly technology, supernatant coming from the Ca(OH)2 addition was naturally neutralized in 4-6 days by atmospheric CO2 absorption without reagent addition. Consequently, a final aerobic biodegradation step can be applied for effluent polishing. This technology also allows for some atmospheric CO2 mitigation. Time requirement for the natural carbonation depends on the effluent characteristics. A precipitate rich in organic matter and nutrients and depletions of solids, sodium, phosphorus, magnesium, Kjeldahl, and ammoniacal nitrogen were also achieved during the natural carbonation.
Väänänen, J; Memet, S; Günther, T; Lilja, M; Cimbritz, M; la Cour Jansen, J
2017-10-01
For chemically enhanced primary treatment (CEPT) with microsieving, a feedback proportional integral controller combined with a feedforward compensator was used in large pilot scale to control effluent water turbidity to desired set points. The effluent water turbidity from the microsieve was maintained at various set points in the range 12-80 NTU basically independent for a number of studied variations in influent flow rate and influent wastewater compositions. Effluent turbidity was highly correlated with effluent chemical oxygen demand (COD). Thus, for CEPT based on microsieving, controlling the removal of COD was possible. Thereby incoming carbon can be optimally distributed between biological nitrogen removal and anaerobic digestion for biogas production. The presented method is based on common automation and control strategies; therefore fine tuning and optimization for specific requirements are simplified compared to model-based dosing control.
Monitoring requirements for groundwaters under the influence of reclaimed water.
Fox, P
2001-07-01
Monitoring groundwaters under the influence of reclaimed water must consider the major constituents of concern in reclaimed water. This research focused on the fate of dissolved organic carbon and nitrogen species at field sites located throughout the Southwestern United States. A watershed approach was developed to predict the fate of dissolved organic carbon as a function of the drinking water dissolved organic carbon concentration and the total dissolved solids concentration in the reclaimed water. Extensive characterization of the dissolved organic carbon recovered from groundwaters under the influence of reclaimed water was done. With the exception of fluorescence spectroscopy, the dissolved organic carbon present in effluent organic matter was similar in structure, character and reactivity as compared to natural organic matter. Evidence for sustainable nitrogen removal mechanisms during groundwater recharge with reclaimed water was obtained. The autotrophic reaction between ammonia and nitrate appears to a mechanism for the removal nitrogen in a carbon-depleted environment. The monitoring tools and methodologies developed in this research can be used to assure protection of public health and determine the sustainability of indirect potable reuse projects.
Ye, Lihong; Li, Dong; Zhang, Jie; Zeng, Huiping
2018-05-04
Starvation of biomass is common during underloading of bioreactors or sludge storage in biological wastewater treatment industries. The aim of this work was to study the impact of starvation modes on the nitrogen removal capacity of anaerobic ammonium oxidation (anammox) process in sequencing batch reactor (SBR). The repeated short-term starvation and reactivation experiments were performed to evaluate the response of anammox sludge system in the condition of 27 ± 1.5 °C and 320 min HRT. Moreover, the nitrogen removal ability of the anammox process was reactivated rapidly in the low substrate condition, then the total nitrogen (TN) removal efficiency reached 82.5%, with the effluent TN of around 14.6 mgNL -1 . The repeated short-term starvation (1 day-4 days) and recovery mode could improve the tolerance and apparent activity of anammox sludge system. The dominant species of general anaerobic ammonium oxidation bacteria (AnAOB) was Candidatus Brocadia, which had better self-adaption to repeated starvation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Jing, Zhaoqian; Li, Yu-You; Cao, Shiwei; Liu, Yuyu
2012-09-01
To improve trickling filters' denitrification efficiency, a biofilter with a trickling upper layer and a submerged lower layer was developed and applied in treating highly polluted river water. It was packed with porous coal fly ash ceramic granules. Its start-up characteristics, influence of hydraulic loading rates (HLR), carbon/nitrogen (C/N) ratio and filter depth on pollutants removal were investigated. The results indicated this biofilter was started quickly in 16 days with river sediment as inoculum. Alternating nitrification and denitrification were achieved when water flowed downwards. COD and nitrogen were mainly removed in the upper layer and the lower layer, respectively. With HLR of 4.0-5.0m(3)/(m(2)d), chemical oxygen demand (COD), ammonium (NH(4)(+)-N) and total nitrogen (TN) in the effluent were below 50, 5 and 15 mg/L, respectively. This biofilter removed more than 80% of COD, 85% of NH(4)(+)-N and 60% of TN with C/N ratios ranging from 6 to 10. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhao, Zhimiao; Song, Xinshan; Zhang, Yinjiang; Zhao, Yufeng; Wang, Bodi; Wang, Yuhui
2017-12-01
In the paper, we explored the influences of different dosages of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in algal ponds combined with constructed wetlands. After 1-year operation of treatment systems, based on the high-throughput pyrosequencing analysis of microbial communities, the optimal operating conditions were obtained as follows: the ACW10 system with Fe 3+ (5.6 mg L -1 ), iron powder (2.8 mg L -1 ), and CaCO 3 powder (0.2 mg L -1 ) in influent as the adjusting agents, initial phosphorus source (PO 4 3- ) in influent, the ratio of nitrogen to phosphorus (N/P) of 30 in influent, and hydraulic retention time (HRT) of 1 day. Total nitrogen (TN) removal efficiency and total phosphorus (TP) removal efficiency were improved significantly. The hydrolysis of CaCO 3 promoted the physicochemical precipitation in contaminant removal. Meanwhile, Fe 3+ and iron powder produced Fe 2+ , which improved contaminant removal. Iron ion improved the diversity, distribution, and metabolic functions of microbial communities in integrated treatment systems. In the treatment ACW10, the dominant phylum in the microbial community was PLANCTOMYCETES, which positively promoted nitrogen removal. After 5 consecutive treatments in ACW10, contaminant removal efficiencies for TN and TP respectively reached 80.6% and 57.3% and total iron concentration in effluent was 0.042 mg L -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Nilsson, Charlotte; Lakshmanan, Ramnath; Renman, Gunno; Rajarao, Gunaratna Kuttuva
2013-09-15
Two mineral-based materials (Polonite and Sorbulite) intended for filter wells in on-site wastewater treatment were compared in terms of removal of phosphate (PO4-P), total inorganic nitrogen (TIN), total organic carbon (TOC) and faecal indicator bacteria (Escherichia coli and Enterococci). Using an innovative, recirculating system, septic tank effluent was pumped at a hydraulic loading rate of 3000 L m(2) d(-1) into triplicate bench-scale columns of each material over a 90-day period. The results showed that Polonite performed better with respect to removal of PO4-P, retaining on average 80% compared with 75% in Sorbulite. This difference was attributed to higher CaO content in Polonite and its faster dissolution. Polonite also performed better in terms of removal of bacteria because of its higher pH value. The total average reduction in E. coli was 60% in Polonite and 45% in Sorbulite, while for Enterococci the corresponding value was 56% in Polonite and 34% in Sorbulite. Sorbulite removed TIN more effectively, with a removal rate of 23%, while Polonite removed 11% of TIN, as well as TOC. Organic matter (measured as TOC) was accumulated in the filter materials but was also released periodically. The results showed that Sorbulite could meet the demand in removing phosphate and nitrogen with reduced microbial release from the wastewater treatment process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Flores-Alsina, Xavier; Rodriguez-Roda, Ignasi; Sin, Gürkan; Gernaey, Krist V
2009-01-01
The objective of this paper is to perform an uncertainty and sensitivity analysis of the predictions of the Benchmark Simulation Model (BSM) No. 1, when comparing four activated sludge control strategies. The Monte Carlo simulation technique is used to evaluate the uncertainty in the BSM1 predictions, considering the ASM1 bio-kinetic parameters and influent fractions as input uncertainties while the Effluent Quality Index (EQI) and the Operating Cost Index (OCI) are focused on as model outputs. The resulting Monte Carlo simulations are presented using descriptive statistics indicating the degree of uncertainty in the predicted EQI and OCI. Next, the Standard Regression Coefficients (SRC) method is used for sensitivity analysis to identify which input parameters influence the uncertainty in the EQI predictions the most. The results show that control strategies including an ammonium (S(NH)) controller reduce uncertainty in both overall pollution removal and effluent total Kjeldahl nitrogen. Also, control strategies with an external carbon source reduce the effluent nitrate (S(NO)) uncertainty increasing both their economical cost and variability as a trade-off. Finally, the maximum specific autotrophic growth rate (micro(A)) causes most of the variance in the effluent for all the evaluated control strategies. The influence of denitrification related parameters, e.g. eta(g) (anoxic growth rate correction factor) and eta(h) (anoxic hydrolysis rate correction factor), becomes less important when a S(NO) controller manipulating an external carbon source addition is implemented.
Method and system for the removal of oxides of nitrogen and sulfur from combustion processes
Walsh, John V.
1987-12-15
A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.
Berndt, M.P.
1990-01-01
The city of Tallahassee, Florida began applying sewage treatment-plant effluent to a sprayfield southeast of the city in 1980. Fertilizers containing inorganic nitrogen were also applied in conjunction with the operation of a commercial farm at this site. Analysis of groundwater in the surficial aquifer and the Upper Floridan aquifer have indicated that nitrate concentrations in some wells exceed the prescribed drinking water maximum contaminant level of 10 mg/L (nitrate as nitrogen). Nitrate concentrations greater than the maximum contaminant level were not detected in samples from monitoring wells outside the sprayfield boundary. Analyses of water from the unsaturated zone indicated that conversion of organic nitrogen and ammonia to nitrate was complete before the nitrogen- enriched water reached the water table. Groundwater samples from wells in the surficial and Upper Floridan aquifers less than 100 ft deep located inside sprayed areas had mean concentrations of nitrate much higher than samples from similar wells located outside sprayed areas at the southeast sprayfield. These shallow wells inside the sprayed areas were the only wells in which the maximum contaminant level for nitrate was exceeded. Analyses of the nitrogen isotope ratios in groundwater were used to determine whether the major source of nitrogen was treated sewage or fertilizers. The nitrogen isotope ratios in contaminated groundwater at the southeast sprayfield were compared to those at another sprayfield southwest of the city, where treated sewage was the sole source of nitrogen. Statistical analyses indicated a significant difference in the nitrogen isotope ratios at the two sites, indicating that both nitrogen sources are significant at the southeast sprayfield. (USGS)
40 CFR 418.35 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Urea Subcategory § 418.35... values for 30 consecutive days shall not exceed— Ammonia (as N) 0.53 0.27 Organic nitrogen (as N) .45 .24... Organic nitrogen (as N) .86 .46 Note: Metric units: Kilogram/1,000 kg of product; English units: Pound/1...
Tomar, Swati; Gupta, Sunil Kumar
2015-11-01
The present study emphasised on the development of new mathematical models based on mass balance and stoichiometry of nitrogen removal in anammox hybrid reactor (AHR). The performance of AHR at varying hydraulic retention times (HRTs) and nitrogen loading rates (NLRs) revealed that nitrogen removal efficiency (NRE) increases with increase in HRT and was found optimal (89 %) at HRT of 2 days. Mass balance of nitrogen revealed that major fraction (74.1 %) of input nitrogen is converted into N2 gas followed by 11.2 % utilised in biomass synthesis. Attached growth media (AGM) in AHR contributed to an additional 15.4 % ammonium removal and reduced the sludge washout rate by 29 %. This also enhanced the sludge retention capacity of AHR and thus minimised the formation of nitrate in the treated effluent, which is one of the bottlenecks of anammox process. Process kinetics was also studied using various mathematical models. The mass balance model derived from total nitrogen was found most precise and predicted N2 gas with least error (1.68 ± 4.44 %). Model validation for substrate removal kinetics dictated comparatively higher correlation for Grau second-order model (0.952) than modified Stover-Kincannon model (0.920). The study concluded that owing to features of high biomass retention, less nitrate formation and consistently higher nitrogen removal efficiency, this reactor configuration is techno-economically most efficient and viable. The study opens the door for researchers and scientists for pilot-scale testing of AHR leading to its wide industrial application.
Wu, Dong; Ma, Ruoqi; Wei, Huawei; Yang, Kai; Xie, Bing
2018-05-01
Around 350 million tons of solid waste is disposed of in landfills every year globally, with millions of cubic meters of landfill leachates released into neighboring environment. However, to date, little is known about the variations of antimicrobial resistance (AMR) in on-site leachate treatment systems and its development in leachate-receiving water environment. Here, we quantified 7 subtypes of antibiotic resistance genes (ARGs), 3 types of culturable antibiotic resistant bacteria (ARB) and 6 subtypes of mobile genetic elements (MGEs) in the effluents from a combined leachate treatment process, including biological treatment (MBR), physical separation (UF), ultraviolet (UV) disinfection and advanced oxidation process (AOP). The contents of ARGs, ARB and MGEs were generally enriched by the MBR, but then decreased significantly along with the tertiary treatment process. However, in the effluent-receiving water samples, the abundance of dominant ARGs (i.e. ermB, sul1, bla TEM ) increased by 1.5 orders of magnitude within 96 h, alongside a general increase of MGEs (~10.0 log 10 (copies/mL) and total ARB (~1100 CFU/mL). Structural correlation analyses reveal that target ARGs were closely associated with MGEs, particularly in effluent-receiving samples (Procrustes test; M 2 = 0.49, R = 0.71, P = 0.001); and occurrences of ARB were majorly affected by ARG's distribution and environmental conditions (e.g. nitrogen speciation) in effluent and recipient groups, respectively. This study indicates that current treatment technologies and operation protocols are not feasible in countering the development of AMR in effluent-receiving water environment, particularly in tidal rivers that are capable of retaining contaminants for a long residence time. Copyright © 2018 Elsevier Ltd. All rights reserved.
Increasing the fertilizer value of palm oil mill sludge: bioaugmentation in nitrification.
Onyia, C O; Uyu, A M; Akunna, J C; Norulaini, N A; Omar, A K
2001-01-01
Malaysia is essentially an agricultural country and her major polluting effluents have been from agro-based industries of which palm oil and rubber industries together contribute about 80% of the industrial pollution. Palm oil sludge, commonly referred to, as palm oil mill effluent (POME) is brown slurry composed of 4-5% solids, mainly organic, 0.5-1% residual oil, and about 95% water. The effluent also contains high concentrations of organic nitrogen. The technique for the treatment of POME is basically biological, consisting of pond systems, where the organic nitrogen is converted to ammonia, which is subsequently transformed to nitrate, in a process called nitrification. A 15-month monitoring program of a pond system (combined anaerobic, facultative, and aerobic ponds in series) confirmed studies by other authors and POME operators that nitrification in a pond system demands relatively long hydraulic retention time (HRT), which is not easily achieved, due to high production capacity of most factories. Bioaugmentation of POME with mixed culture of nitrifiers (ammonia and nitrite oxidizers) has been identified as an effective tool not only for enhancing nitrification of POME but also for improving quality of POME as source of liquid nitrogen fertilizer for use in the agricultural sector, especially in oil palm plantations. Nitrate is readily absorbable by most plants, although some plants are able to absorb nitrogen in the form of ammoniun. In this study, up to 60% reduction in HRT (or up to 20% reduction in potential land requirement) was achieved when bioaugmentation of POME was carried out with the aim of achieving full nitrification.
Kavvada, Olga; Tarpeh, William A; Horvath, Arpad; Nelson, Kara L
2017-11-07
Nitrogen standards for discharge of wastewater effluent into aquatic bodies are becoming more stringent, requiring some treatment plants to reduce effluent nitrogen concentrations. This study aimed to assess, from a life-cycle perspective, an innovative decentralized approach to nitrogen recovery: ion exchange of source-separated urine. We modeled an approach in which nitrogen from urine at individual buildings is sorbed onto resins, then transported by truck to regeneration and fertilizer production facilities. To provide insight into impacts from transportation, we enhanced the traditional economic and environmental assessment approach by combining spatial analysis, system-scale evaluation, and detailed last-mile logistics modeling using the city of San Francisco as an illustrative case study. The major contributor to energy intensity and greenhouse gas (GHG) emissions was the production of sulfuric acid to regenerate resins, rather than transportation. Energy and GHG emissions were not significantly sensitive to the number of regeneration facilities. Cost, however, increased with decentralization as rental costs per unit area are higher for smaller areas. The metrics assessed (unit energy, GHG emissions, and cost) were not significantly influenced by facility location in this high-density urban area. We determined that this decentralized approach has lower cost, unit energy, and GHG emissions than centralized nitrogen management via nitrification-denitrification if fertilizer production offsets are taken into account.
Nitrogen limited biobarriers remove atrazine from contaminated water: Laboratory studies
NASA Astrophysics Data System (ADS)
Hunter, William J.; Shaner, Dale L.
2009-01-01
Atrazine is one of the most frequently used herbicides. This usage coupled with its mobility and recalcitrant nature in deeper soils and aquifers makes it a frequently encountered groundwater contaminant. We formed biobarriers in sand filled columns by coating the sand with soybean oil; after which, we inoculated the barriers with a consortium of atrazine-degrading microorganisms and evaluated the ability of the barriers to remove atrazine from a simulated groundwater containing 1 mg L - 1 atrazine. The soybean oil provided a carbon rich and nitrogen poor substrate to the microbial consortium. Under these nitrogen-limiting conditions it was hypothesized that bacteria capable of using atrazine as a source of nitrogen would remove atrazine from the flowing water. Our hypothesis proved correct and the biobarriers were effective at removing atrazine when the nitrogen content of the influent water was low. Levels of atrazine in the biobarrier effluents declined with time and by the 24th week of the study no detectable atrazine was present (limit of detection < 0.005 mg L - 1 ). Larger amounts of atrazine were also removed by the biobarriers; when biobarriers were fed 16.3 mg L - 1 atrazine 97% was degraded. When nitrate (5 mg L - 1 N), an alternate source of nitrogen, was added to the influent water the atrazine removal efficiency of the barriers was reduced by almost 60%. This result supports the hypothesis that atrazine was degraded as a source of nitrogen. Poisoning of the biobarriers with mercury chloride resulted in an immediate and large increase in the amount of atrazine in the barrier effluents confirming that biological activity and not abiotic factors were responsible for most of the atrazine degradation. The presence of hydroxyatrazine in the barrier effluents indicated that dehalogenation was one of the pathways of atrazine degradation. Permeable barriers might be formed in-situ by the injection of innocuous vegetable oil emulsions into an aquifer or sandy soil and used to remove atrazine from a contaminated groundwater or to protect groundwater from an atrazine spill.
Durán, U; del Val Río, A; Campos, J L; Mosquera-Corral, A; Méndez, R
2014-01-01
The Anammox-based processes are suitable for the treatment of wastewaters characterized by a low carbon to nitrogen (C/N) ratio. The application of the Anammox process requires the availability of an effluent with a NO2- -N/NH4+ -N ratio composition around 1 g g-1, which involves the necessity of a previous step where the partial nitrification is performed. In this step, the inhibition of the nitrite-oxidizing bacteria (NOB) is crucial. In the present work, a combined partial nitrification-ANaerobic AMmonia OXidation (Anammox) two-units system operated at room temperature (20 degreeC) has been tested for the nitrogen removal of pre-treated pig slurry. To achieve the successful partial nitrification and inhibit the NOB activity, different ammonium/inorganic carbon (NH4+/IC) ratios were assayed from 1.19 to 0.82g NH4+-Ng-1 HCO3-C. This procedure provoked a decrease of the pH value to 6.0 to regulate the inhibitory effect over ammonia-oxidizing bacteria caused by free ammonia. Simultaneously, the NOB experienced the inhibitory effect of free nitrous acid which avoided the presence of nitrate in the effluent. The NH4+/IC ratio which allowed the obtaining of the desired effluent composition (50% of both ammonium and nitrite) was 0.82 +/- 0.02 g NH4+-N g-1 HCO3- -C. The Anammox reactor was fed with the effluent of the partial nitrification unit containing a NO2 -N/NH4+ -N ratio of 1 g g-1' where a nitrogen loading rate of 0.1 g N L-1 d-1 was efficiently removed.
Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor
NASA Technical Reports Server (NTRS)
Rollbuhler, R. J.; Kobak, J. A.
1980-01-01
The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.
Loss, Edenes; Royer, Andrea Rafaela; Barreto-Rodrigues, Marcio; Barana, Ana Claudia
2009-07-30
This study evaluated the Pleurotus spp. mushroom production process using an effluent from the maize agroindustrial process as a carbon and nitrogen source and as a wetting agent. A complete experimental design based on factorial planning was used to optimize the biological efficiency and evaluate the effect of the concentration of effluent, pH and species of Pleurotus. The results indicated that the effluent affects the biological efficiency for the production of both species of mushrooms at all pH values studied. The maximum biological efficiency predicted by the model (81.36%) corresponded to the point defined by the effluent contents (X(1)=1), pH (X(2)=-1) and fungus species (X(3)=1), specifically 50%, 5.0 and P. floridae, respectively. The results demonstrated that the effluent is a good alternative for the production of Pleurotus mushrooms.
Asgher, Muhammad; Noreen, Sadia; Bhatti, Haq Nawaz
2010-04-01
A locally isolated white rot fungus Ganoderma lucidum IBL-05 was used for development of a bioremediation process for original textile industry effluents. Dye-containing effluents of different colors were collected from the Arzoo (maroon), Ayesha (yellow), Ittemad (green), Crescent (navy blue) and Magna (yellowish) textile industries of Faisalabad, Pakistan. G. lucidum IBL-05 was screened for its decolorization potential on all the effluents. Maximum decolorization (49.5 %) was observed in the case of the Arzoo textile industry (ART) effluent (lambda(max) = 515 nm) on the 10th day of incubation. Therefore, the ART effluent was selected for optimization of its decolorization process. Process optimization could improve color removal efficiency of the fungus to 95% within only 2 days, catalyzed by manganese peroxidase (1295 U/mL) as the main enzyme activity at pH 3 and 35 degrees C using 1% starch supplemented Kirk's basal medium. Nitrogen addition inhibited enzyme formation and effluent decolorization. The economics and effectiveness of the process can be improved by further process optimization.
Andrade do Canto, Catarina Simone; Rodrigues, José Alberto Domingues; Ratusznei, Suzana Maria; Zaiat, Marcelo; Foresti, Eugênio
2008-02-01
An investigation was performed on the biological removal of ammonium nitrogen from synthetic wastewater by the simultaneous nitrification/denitrification (SND) process, using a sequencing batch biofilm reactor (SBBR). System behavior was analyzed as to the effects of sludge type used as inoculum (autotrophic/heterotrophic), wastewater feed strategy (batch/fed-batch) and aeration strategy (continuous/intermittent). The presence of an autotrophic aerobic sludge showed to be essential for nitrification startup, despite publications stating the existence of heterotrophic organisms capable of nitrifying organic and inorganic nitrogen compounds at low dissolved oxygen concentrations. As to feed strategy, batch operation (synthetic wastewater containing 100 mg COD/L and 50 mg N-NH(4)(+)/L) followed by fed-batch (synthetic wastewater with 100 mg COD/L) during a whole cycle seemed to be the most adequate, mainly during the denitrification phase. Regarding aeration strategy, an intermittent mode, with dissolved oxygen concentration of 2.0mg/L in the aeration phase, showed the best results. Under these optimal conditions, 97% of influent ammonium nitrogen (80% of total nitrogen) was removed at a rate of 86.5 mg N-NH(4)(+)/Ld. In the treated effluent only 0.2 mg N-NO(2)(-)/L,4.6 mg N-NO(3)(-)/L and 1.0 mg N-NH(4)(+)/L remained, demonstrating the potential viability of this process in post-treatment of wastewaters containing ammonium nitrogen.
On-Site Fecal Sludge Treatment with the Anaerobic Digestion Pasteurization Latrine.
Forbis-Stokes, Aaron A; O'Meara, Patrick F; Mugo, Wangare; Simiyu, Gelas M; Deshusses, Marc A
2016-11-01
The Anaerobic Digestion Pasteurization Latrine (ADPL) is a self-contained and energy neutral on-site sanitation system using anaerobic digestion of fecal sludge to generate biogas and then uses the biogas to pasteurize the digester effluent at 65-75°C to produce a safe effluent that can be reused locally as a fertilizer. Two ADPL systems were installed on residential plots with 17 and 35 residents in a peri-urban area outside of Eldoret, Kenya. Each system comprised three toilets built above a floating dome digester and one heat pasteurization system to sanitize the digested effluent. ADPLs are simple systems, with no moving parts and relying on gravity-induced flows. Adoption at the two sites was successful, and residents reported that the systems had little to no odor or flies. ADPLs were monitored for biogas production and temperatures in the pasteurization system. ADPLs serving 17 and 35 residents produced on average 16 and 11 L biogas /person/day (maximum of 20 and 15 L biogas /p/d), respectively. The temperature in the sterilization system was greater than 65°C on 58% and 87% of sampling days during the most stable period of operation. Treated effluent was analyzed periodically for chemical oxygen demand (COD), biochemical oxygen demand (BOD), total ammonia nitrogen (TAN), pH, and fecal coliform (FC). On average, the effluent at the two locations contained 4,540 and 6,450 mg COD/L (an 85% or 89% reduction of the estimated input), 2,050 and 3,970 mg BOD/L, and 2,420 and 4,760 mg NH 3 -N, respectively, and greater than 5 log reductions of FC (nondetectable) in the sterilization tank. Results from this field study show that anaerobic digestion of minimally diluted fecal sludge can provide enough energy to pasteurize digester effluent and that the ADPL may be a suitable option for on-site fecal sludge treatment.
On-Site Fecal Sludge Treatment with the Anaerobic Digestion Pasteurization Latrine
Forbis-Stokes, Aaron A.; O'Meara, Patrick F.; Mugo, Wangare; Simiyu, Gelas M.; Deshusses, Marc A.
2016-01-01
Abstract The Anaerobic Digestion Pasteurization Latrine (ADPL) is a self-contained and energy neutral on-site sanitation system using anaerobic digestion of fecal sludge to generate biogas and then uses the biogas to pasteurize the digester effluent at 65–75°C to produce a safe effluent that can be reused locally as a fertilizer. Two ADPL systems were installed on residential plots with 17 and 35 residents in a peri-urban area outside of Eldoret, Kenya. Each system comprised three toilets built above a floating dome digester and one heat pasteurization system to sanitize the digested effluent. ADPLs are simple systems, with no moving parts and relying on gravity-induced flows. Adoption at the two sites was successful, and residents reported that the systems had little to no odor or flies. ADPLs were monitored for biogas production and temperatures in the pasteurization system. ADPLs serving 17 and 35 residents produced on average 16 and 11 Lbiogas/person/day (maximum of 20 and 15 Lbiogas/p/d), respectively. The temperature in the sterilization system was greater than 65°C on 58% and 87% of sampling days during the most stable period of operation. Treated effluent was analyzed periodically for chemical oxygen demand (COD), biochemical oxygen demand (BOD), total ammonia nitrogen (TAN), pH, and fecal coliform (FC). On average, the effluent at the two locations contained 4,540 and 6,450 mg COD/L (an 85% or 89% reduction of the estimated input), 2,050 and 3,970 mg BOD/L, and 2,420 and 4,760 mg NH3-N, respectively, and greater than 5 log reductions of FC (nondetectable) in the sterilization tank. Results from this field study show that anaerobic digestion of minimally diluted fecal sludge can provide enough energy to pasteurize digester effluent and that the ADPL may be a suitable option for on-site fecal sludge treatment. PMID:27924135
Hur, Jin; Cho, Jinwoo
2012-01-01
The development of a real-time monitoring tool for the estimation of water quality is essential for efficient management of river pollution in urban areas. The Gap River in Korea is a typical urban river, which is affected by the effluent of a wastewater treatment plant (WWTP) and various anthropogenic activities. In this study, fluorescence excitation-emission matrices (EEM) with parallel factor analysis (PARAFAC) and UV absorption values at 220 nm and 254 nm were applied to evaluate the estimation capabilities for biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total nitrogen (TN) concentrations of the river samples. Three components were successfully identified by the PARAFAC modeling from the fluorescence EEM data, in which each fluorophore group represents microbial humic-like (C1), terrestrial humic-like organic substances (C2), and protein-like organic substances (C3), and UV absorption indices (UV(220) and UV(254)), and the score values of the three PARAFAC components were selected as the estimation parameters for the nitrogen and the organic pollution of the river samples. Among the selected indices, UV(220), C3 and C1 exhibited the highest correlation coefficients with BOD, COD, and TN concentrations, respectively. Multiple regression analysis using UV(220) and C3 demonstrated the enhancement of the prediction capability for TN.
Bisinella de Faria, A B; Spérandio, M; Ahmadi, A; Tiruta-Barna, L
2015-11-01
With a view to quantifying the energy and environmental advantages of Urine Source-Separation (USS) combined with different treatment processes, five wastewater treatment plant (WWTP) scenarios were compared to a reference scenario using Dynamic Modelling (DM) and Life Cycle Assessment (LCA), and an integrated DM-LCA framework was thus developed. Dynamic simulations were carried out in BioWin(®) in order to obtain a realistic evaluation of the dynamic behaviour and performance of plants under perturbation. LCA calculations were performed within Umberto(®) using the Ecoinvent database. A Python™ interface was used to integrate and convert simulation data and to introduce them into Umberto(®) to achieve a complete LCA evaluation comprising foreground and background processes. Comparisons between steady-state and dynamic simulations revealed the importance of considering dynamic aspects such as nutrient and flow peaks. The results of the evaluation highlighted the potential of the USS scenario for nutrient recovery whereas the Enhanced Primary Clarification (EPC) scenario gave increased biogas production and also notably decreased aeration consumption, leading to a positive energy balance. Both USS and EPC scenarios also showed increased stability of plant operation, with smaller daily averages of total nitrogen and phosphorus. In this context, USS and EPC results demonstrated that the coupled USS + EPC scenario and its combinations with agricultural spreading of N-rich effluent and nitritation/anaerobic deammonification could present an energy-positive balance with respectively 27% and 33% lower energy requirements and an increase in biogas production of 23%, compared to the reference scenario. The coupled scenarios also presented lesser environmental impacts (reduction of 31% and 39% in total endpoint impacts) along with effluent quality well within the specified limits. The marked environmental performance (reduction of global warming) when nitrogen is used in agriculture shows the importance of future research on sustainable solutions for nitrogen recovery. The contribution analysis of midpoint impacts also showed hotspots that it will be important to optimize further, such as plant infrastructure and direct N2O emissions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bakhshoodeh, Reza; Alavi, Nadali; Paydary, Pooya
2017-10-01
Handling and treatment of composting leachate is difficult and poses major burdens on composting facilities. The main goal of this study was to evaluate usage of a three-stage, constructed wetland to treat leachate produced in Isfahan composting facility. A pilot-scale, three-stage, subsurface, horizontal flow constructed wetland, planted with vetiver with a flow rate of 24 L/day and a 15-day hydraulic retention time, was used. Removal of organic matter, ammonia, nitrate, total nitrogen, suspended solids, and several heavy metals from Isfahan composting facility leachate was monitored over a 3-month period. Constructed wetland system was capable of efficiently removing BOD 5 (87.3%), COD (74.5%), ammonia (91.5%), nitrate (87.9%), total nitrogen (87.8%), total suspended solids (85.5%), and heavy metals (ranging from 70 to 90%) from the composting leachate. High contaminant removal efficiencies were achieved, but effluent still failed to meet Iranian standards for treated wastewater. This study shows that although a three-stage horizontal flow constructed wetland planted with vetiver cannot be used alone to treat Isfahan composting facility leachate, but it has the potential to be used as a leachate pre-treatment step, along with another complementary method.
Weber, Geraint J; O'Sullivan, Patrick E; Brassley, Paul
2006-01-01
Background Nutrient loadings from its catchment upon The Fleet, a highly valuable coastal lagoon in Southern England, were hindcast for the period AD 1866–2004, using a catchment model, export coefficients, and historical data on land use changes, livestock numbers, and human population. Agriculture was the main nutrient source throughout, other inputs representing minor contributions. Permanent pasture was historically the main land use, with temporary grassland and cereals increasing during the mid-20th century. Sheep, the main 19th century livestock, were replaced by cattle during the 1930s. Results Total nitrogen loadings rose from ca 41 t yr-1 during the late 19th century to 49–54 t yr-1 for the mid-20th, increasing to 98 t yr-1 by 1986. Current values are ca 77 t yr-1. Total phosphorus loads increased from ca 0.75 t yr-1 for the late 19th century to ca 1.6 t yr-1 for the mid-20th, reached ca 2.2 t yr-1 in 1986, and are now ca 1.5 t yr-1. Loadings rose most rapidly between 1946 and 1988, owing to increased use of inorganic fertilisers, and rising sheep and cattle numbers. Livestock were the main nutrient source throughout, but inputs from inorganic fertilisers increased after 1946, peaking in 1986. Sewage treatment works and other sources contribute little nitrogen, but ca 35% of total phosphorus. Abbotsbury Swannery, an ancient Mute Swan community, provides ca 0.5% of total nitrogen, and ca 5% of total phosphorus inputs. Conclusion The Fleet has been grossly overloaded with nitrogen since 1866, climaxing during the 1980s. Total phosphorus inputs lay below 'permissible' limits until the 1980s, exceeding them in inner, less tidal parts of the lagoon, during the 1940s. Loadings on Abbotsbury Bay exceeded 'permissible' limits by the 1860s, becoming 'dangerous' during the mid-20th century. Phosphorus stripping at point sources will not significantly reduce loadings to all parts of the lagoon. Installation of 5 m buffer strips throughout the catchment and shoreline will marginally affect nitrogen loadings, but will reduce phosphorus inputs to the West Fleet below 'permissible' limits. Only a combination of measures will significantly affect Abbotsbury Bay, where, without effluent diversion, loadings will remain beyond 'permissible'. PMID:17196108
Sweetapple, Christine; Fu, Guangtao; Butler, David
2013-09-01
This study investigates sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment, through the use of local and global sensitivity analysis tools, and contributes to an in-depth understanding of wastewater treatment modelling by revealing critical parameters and parameter interactions. One-factor-at-a-time sensitivity analysis is used to screen model parameters and identify those with significant individual effects on three performance indicators: total greenhouse gas emissions, effluent quality and operational cost. Sobol's method enables identification of parameters with significant higher order effects and of particular parameter pairs to which model outputs are sensitive. Use of a variance-based global sensitivity analysis tool to investigate parameter interactions enables identification of important parameters not revealed in one-factor-at-a-time sensitivity analysis. These interaction effects have not been considered in previous studies and thus provide a better understanding wastewater treatment plant model characterisation. It was found that uncertainty in modelled nitrous oxide emissions is the primary contributor to uncertainty in total greenhouse gas emissions, due largely to the interaction effects of three nitrogen conversion modelling parameters. The higher order effects of these parameters are also shown to be a key source of uncertainty in effluent quality. Copyright © 2013 Elsevier Ltd. All rights reserved.
Liu, Zhan-Guang; Zhou, Xue-Fei; Zhang, Ya-Lei; Zhu, Hong-Guang
2012-01-01
The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700m(3) chicken-manure continuous stirred tank reactor (CSTR). A 12.3L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35±1°C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5kg-COD/m(3)d over a hydraulic retention time of 1.5d, a maximum volumetric biogas production rate of 1.2m(3)/m(3)d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250mg/L) at an influent pH of 8.5-9. Copyright © 2011 Elsevier Ltd. All rights reserved.
Park, Chan Jin; Ahn, Hyo Min; Cho, Seong Chan; Kim, Tae-Hoon; Oh, Jong-Min; Ahn, Hong Kyu; Chun, Seung-Hoon; Gye, Myung Chan
2014-04-01
Amphibian populations have been decreasing in urban freshwater systems in Korea. To elucidate the biological safety of treated wastewater effluent (TWE) in the Tancheon basin, the capital area of Korea, a 7-d-exposure Bombina orientalis embryo developmental toxicity assay was examined during the breeding season. In March, there were no significant differences in embryonic survival or malformation among the water samples. In July, following monsoon precipitation, embryonic lethality in TWE was significantly higher than in the upstream water sample. Malformation in TWE and TWE-mixed waters was significantly higher than in the control and upstream water samples. Tail muscle height of tadpoles also significantly decreased in TWE and TWE-mixed waters. Heavy metals were not detected in any samples. Total nitrogen, total phosphorous, and chemical oxygen demand in TWE markedly increased together with a decrease in dissolved oxygen in July. The increase in organic and inorganic loading following precipitation could have made TWE and TWE-mixed water not suitable for embryonic development. Though being managed based on physicochemical criteria, the water quality of TWE may not be sufficient to assure normal development of amphibian embryos. An amphibian developmental toxicity assay would be helpful for the water-quality management of TWE and urban freshwater systems in Korea. © 2014 SETAC.
NASA Astrophysics Data System (ADS)
Noerfitriyani, E.; Hartono, D. M.; Moersidik, S. S.; Gusniani, I.
2018-01-01
The operation of landfill can cause environmental problems due to waste decomposition in the form of leachate production. Cipayung Landfill has a leachate treatment plant using stabilization ponds. The objective of this research is to evaluate the performance of stabilization ponds at Cipayung Landfill. The data were analyzed based on leachate samples from treatment unit’s influent and effluent under rainy season condition from April to May 2017. The results show the average leachate quality based on parameters of temperature by 34.81°C, Total Suspended Solid (TSS) of 72.33 mg/L, pH of 7.83, Biochemical Oxygen Demand (BOD) of 3,959.63 mg/L, Chemical Oxygen Demand (COD) of 6,860 mg/L, Total Nitrogen of 373.33 mg/L, and heavy metal Mercury of 0.0016 mg/L. The treatment plant’s effluent quality exceeds the leachate standard limit based on Indonesia’s Ministry of Environment and Forestry Law No. 59 of 2016. The results of design evaluation show that the anaerobic pond, facultative pond, and maturation pond system do not meet the design criteria. Therefore, a design improvement is needed to increase the performance of the leachate treatment plant and to ensure that the leachate discharged to water bodies does not exceed the standard limit to prevent contamination of the environment.
Hunt, Charles D.
2007-01-01
Water sampling and numerical modeling were used to estimate ground-water nutrient fluxes in the Kihei area of Maui, where growth of macroalgae (seaweed) on coral reefs raises ecologic concerns and accumulation on beaches has caused odor and removal problems. Fluxes and model results are highly approximate, first-order estimates because very few wells were sampled and there are few field data to constrain model calibration. Ground-water recharge was estimated to be 22.6 Mgal/d (million gallons per day) within a 73-square-mile area having a coastline length of 8 miles or 13 km (kilometers). Nearly all of the recharge discharges at the coast because ground-water withdrawals are small. Another 3.0 Mgal/d of tertiary-treated wastewater effluent is injected into the regional aquifer at a County treatment plant midway along the coast and about a mile from shore. The injection plume is 0.93 miles wide (1.5 km) at the shore, as estimated from a three-dimensional numerical ground-water model. Wastewater injected beneath the brackish ground-water lens rises buoyantly and spreads out at the top of the lens, diverting and mixing with ambient ground water. Ground water discharging from the core of the injection plume is less than 5 years old and is about 60 percent effluent at the shore, according to the model. Dissolved nitrogen and phosphorus concentrations in treated effluent were 7.33 and 1.72 milligrams per liter, roughly 6 and 26 times background concentrations at an upgradient well. Background nitrogen and phosphorus fluxes carried by ground water are 7.7 and 0.44 kg/d-km (kilograms per day per kilometer of coast). Injected wastewater fluxes distributed across the plume width are 55 and 13 kg/d-km nitrogen and phosphorus, roughly 7 and 30 times background flux. However, not all of the injected load reaches coastal waters because nutrients are naturally attenuated in the oxygen-depleted effluent plume. Water from a downgradient well reflects this attenuation and provides a more conservative estimate of injection flux approaching the shore: 27 and 1.5 kg/d-km nitrogen and phosphorus, roughly one-half and one-ninth the injection-source estimates, and 3.5 and 3.4 times background flux. Effluent has 8 O and 2 H stable-isotope signatures that are distinct from local ground water, as well as 15 N and 11 B signatures diagnostic of domestic waste and laundry detergents, respectively. Pharmaceuticals and organic wastewater compounds also were present in effluent and the downgradient well. These isotopes and chemicals served as wastewater tracers in Kihei ground water and may be useful tracers in nearshore marine waters and aquifers elsewhere in Hawaii.
Xing, Wei; Li, Jinlong; Li, Peng; Wang, Chong; Cao, Yanan; Li, Desheng; Yang, Yunfeng; Zhou, Jizhong; Zuo, Jiane
2018-03-01
Hydrogenotrophic denitrification is promising for tertiary nitrogen removal from municipal wastewater. To reveal the influence of residual organics in municipal wastewater on hydrogenotrophic denitrifiers, we adopted high-throughput 16S rRNA gene amplicon sequencing to examine microbial communities in hydrogenotrophic denitrification enrichments. Using effluent from a municipal wastewater treatment plant as water source, COD, nitrate and pH were controlled the same except for a gradient of biodegradable carbon (i.e., primary effluent (PE), secondary effluent (SE), or combined primary and secondary effluent (CE)). Inorganic synthetic water (IW) was used as a control. Hydrogenophaga, a major facultative autotroph, accounted for 17.1%, 5.3%, 32.7% and 12.9% of the sequences in PE, CE, SE and IW, respectively, implicating that Hydrogenophaga grew well with or without organics. Thauera, which contains likely obligate autotrophic denitrifiers, appeared to be the most dominant genera (23.6%) in IW and accounted for 2.5%, 4.6% and 8.9% in PE, CE and SE, respectively. Thermomonas, which is related to heterotrophic denitrification, accounted for 4.2% and 7.9% in PE and CE fed with a higher content of labile organics, respectively. In contrast, Thermomonas was not detected in IW and accounted for only 0.6% in SE. Our results suggest that Thermomonas are more competitive than Thauera in hydrogenotrophic denitrification with biodegradable organics. Moreover, facultative autotrophic denitrifiers, Hydrogenophaga, are accommodating to residual organic in effluent wastewater, thus we propose that hydrogenotrophic denitrification is amenable for tertiary nitrogen removal. Copyright © 2017. Published by Elsevier B.V.
Terrio, Paul J.
2006-01-01
Concentrations, spatial and temporal variations, and fluxes of nitrogen, phosphorus, and suspended sediment were determined for 16 streams in the Illinois River Basin, Illinois from October 1996 through September 2000. Water samples were collected through the National Water-Quality Assessment's Lower Illinois River Basin (LIRB) and Upper Illinois River Basin (UIRB) Study Units on a monthly to weekly frequency from watersheds representing predominantly agricultural and urban land, as well as areas of mixed land-use. Streams in agricultural watersheds had high concentrations and fluxes of nitrate nitrogen, whereas streams in predominantly urban watersheds had high concentrations (above background levels) of ammonia nitrogen, organic nitrogen, and phosphorus. Median concentrations of nitrate nitrogen and total phosphorus were similar at the two Illinois River sampling stations (Illinois River at Ottawa, Ill. and Illinois River at Valley City, Ill.) that represented the downstream points of the UIRB and LIRB Study Units, respectively, and integrated multiple land-use areas. Concentrations of nitrogen were typically highest in the spring and lowest in the fall in agricultural watersheds, but highest in the winter in urban watersheds. Phosphorus concentrations in urban watersheds were highest in the fall and winter, but there was minimal seasonal variation in phosphorus concentrations in agricultural watersheds. Concentrations of nitrate and total nitrogen were affected primarily by non-point sources and hydrologic factors such as streamflow, storm intensity, watershed configuration, and soil permeability, whereas concentrations of phosphorus were affected largely by point-source contributions that typically have little seasonal variation. Seasonal variation in hydrologic conditions was an important factor for seasonal variation in nutrient concentration. Fluxes and yields of nitrogen and phosphorus forms varied substantially throughout the Illinois River Basin, and yields of specific nutrient forms were determined primarily by upstream land uses. Yields of nitrate nitrogen were highest in predominantly agricultural watersheds, whereas yields of phosphorus and ammonia nitrogen were highest in urban watersheds with wastewater effluent contributions. Yields of both total nitrogen and total phosphorus were similar at the two Illinois River stations representing the integrated UIRB and LIRB Study Units. Concentrations of suspended sediment ranged from 1 to 3,110 milligrams per liter (mg/L), with median concentrations generally higher in the UIRB. Suspended-sediment concentrations were highest and most variable in the LaMoine River Basin. The median concentration of suspended sediment in the Illinois River at Valley City, Ill. (155 mg/L) was twice as high as that at Ottawa, Ill. (80 mg/L). Fluxes of suspended sediment generally corresponded to watershed size and yields from agricultural watersheds were larger than yields from urban watersheds. The flux in the Illinois River at Valley City, Ill. (4,880,000 tons per year) was approximately four times the flux in the Illinois River at Ottawa, Ill. (1,060,000 tons per year).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium, and Phenolic Compounds (4AAP) A...—Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium, and Phenolic Compounds (4AAP) A...—Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium, and Phenolic Compounds (4AAP) A...—Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium, and Phenolic Compounds (4AAP... Part 419—Processes Included in the Determination of BAT Effluent Limitations for Total Chromium...
Ou, Wen-Sheng; Lin, Ying-Feng; Jing, Shuh-Ren; Lin, Hsien-Te
2006-11-01
A constructed wetland-pond system consisting of two free-water-surface-flow (FWS) wetland cells, a scenic pond, and a slag filter in series was used for reclamation of septic tank effluent from a campus building. The results show that FWS wetlands effectively removed major pollutants under a hydraulic loading rate between 2.1 and 4.2 cm/d, with average efficiencies ranging from 74 to 78% for total suspended solids, 73 to 88% for 5-day biochemical oxygen demand, 42 to 49% for total nitrogen, 34 to 70% for total phosphorous, 64 to 79% for total coliforms, and 90 to 99.9% for Escherichia coli. After passing through the scenic pond and slag filter, the reclaimed water was used for landscape irrigation. There were a variety of ornamental plants and aquatic animals established in the second FWS cell and scenic pond with good water quality, thus enhancing landscape and ecology amenity in campuses.
NASA Astrophysics Data System (ADS)
Vaquer-Sunyer, Raquel; Reader, Heather E.; Muthusamy, Saraladevi; Lindh, Markus V.; Pinhassi, Jarone; Conley, Daniel J.; Kritzberg, Emma S.
2016-08-01
The Baltic Sea is the world's largest area suffering from eutrophication-driven hypoxia. Low oxygen levels are threatening its biodiversity and ecosystem functioning. The main causes for eutrophication-driven hypoxia are high nutrient loadings and global warming. Wastewater treatment plants (WWTP) contribute to eutrophication as they are important sources of nitrogen to coastal areas. Here, we evaluated the effects of wastewater treatment plant effluent inputs on Baltic Sea planktonic communities in four experiments. We tested for effects of effluent inputs on chlorophyll a content, bacterial community composition, and metabolic rates: gross primary production (GPP), net community production (NCP), community respiration (CR) and bacterial production (BP). Nitrogen-rich dissolved organic matter (DOM) inputs from effluents increased bacterial production and decreased primary production and community respiration. Nutrient amendments and seasonally variable environmental conditions lead to lower alpha-diversity and shifts in bacterial community composition (e.g. increased abundance of a few cyanobacterial populations in the summer experiment), concomitant with changes in metabolic rates. An increase in BP and decrease in CR could be caused by high lability of the DOM that can support secondary bacterial production, without an increase in respiration. Increases in bacterial production and simultaneous decreases of primary production lead to more carbon being consumed in the microbial loop, and may shift the ecosystem towards heterotrophy.
ENGINEERING BULLETIN: CONSTRUCTED WETLANDS TREATMENT
Constructed wetlands have been demonstrated effective in removing organic, metal, and nutrient elements including nitrogen and phosphorus from municipal wastewaters, mine drainage, industrial effluents, and agricultural runoff. The technology is waste stream-specific, requiring...
Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Zhao, Mengyue; Wang, Shuying
2016-05-01
A combined process including a partial nitritation SBR (PN-SBR) followed by a simultaneous sludge fermentation, denitrification and anammox reactor (SFDA) was established to treat low C/N domestic wastewater in this study. An average nitrite accumulation rate of 97.8% and total nitrogen of 9.4mg/L in the effluent was achieved during 140days' operation. The underlying mechanisms were investigated by using Illumina MiSeq sequencing to analyze the microbial community structures in the PN-SBR and SFDA. Results showed that the predominant bacterial phylum was Proteobacteria in the external waste activated sludge (WAS, added to the SFDA) and SFDA while Bacteroidetes in the PN-SBR. Further study indicated that in the PN-SBR, the dominant nitrobacteria, Nitrosomonas genus, facilitated nitritation and little nitrate was generated in the PN-SBR effluent. In the SFDA, the co-existence of functional microorganisms Thauera, Candidatus Anammoximicrobium and Pseudomonas were found to contribute to simultaneous sludge fermentation, denitrification and anammox. Copyright © 2016 Elsevier Ltd. All rights reserved.
Damschen, William C.; Hansel, John A.; Nustad, Rochelle A.
2008-01-01
From January through October 2006, six sets of water-quality samples were collected at 28 sites, which included inflow and outflow from seven major municipal water-treatment plants (14 sites) and influent and effluent samples from seven major municipal wastewater treatment plants (14 sites) along the Red River of the North in North Dakota and Minnesota. Samples were collected in cooperation with the Bureau of Reclamation for use in the development of return-flow boundary conditions in a 2006 water-quality model for the Red River of the North. All samples were analyzed for nutrients and major ions. For one set of effluent samples from each of the wastewater-treatment plants, water was analyzed for Eschirichia coli, fecal coliform, 20-day biochemical oxygen demand, 20-day nitrogenous biochemical oxygen demand, total organic carbon, and dissolved organic carbon. In general, results from the field equipment blank and replicate samples indicate that the overall process of sample collection, processing, and analysis did not introduce substantial contamination and that consistent results were obtained.
Wu, Yin-Hu; Li, Xin; Yu, Yin; Hu, Hong-Ying; Zhang, Tian-Yuan; Li, Feng-Min
2013-09-01
Microalgal growth is the key to the coupled system of wastewater treatment and microalgal biomass production. In this study, Monod model, Droop model and Steele model were incorporated to obtain an integrated growth model describing the combined effects of nitrogen, phosphorus and light intensity on the growth rate of Scenedesmus sp. LX1. The model parameters were obtained via fitting experimental data to these classical models. Furthermore, the biomass production of Scenedesmus sp. LX1 in open pond under nutrient level of secondary effluent was analyzed based on the integrated model, predicting a maximal microalgal biomass production rate about 20 g m(-2) d(-1). In order to optimize the biomass production of open pond the microalgal biomass concentration, light intensity on the surface of open pond, total depth of culture medium and hydraulic retention time should be 500 g m(-3), 16,000 lx, 0.2 m and 5.2 d in the conditions of this study, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Tong; Wang, Haiyan; Chang, Yang; Chu, Zhaosheng; Zhao, Yaqian; Liu, Ranbin
2018-05-27
The low carbon/nitrogen (C/N) ratio and high nitrate content characteristics of agricultural runoff restricted the nitrogen removal in constructed wetlands (CWs). To resolve such problems, the economically- and easily-obtained Phragmites Australis (reeds) litters were applied and packed in the surface layer of a surface flow CW as external carbon sources. The results demonstrated that the introduction of the reeds straw increased the C concentration as a result of their decomposition during the CW operation, which will help the denitrification in the ensuing operation of an entire 148 days. The total nitrogen (TN) and Chemical Oxygen Demand (COD) () in the effluent reached the peak level of 63.2 mg/L and 83 mg/L at the fourth and the second day, respectively. Subsequently, the pollutants in the CW that were filled with straw decreased rapidly and achieved a stable removal after 13 days of operation. Moreover, the present study showed that the N removal efficiency increased with the increase of the hydraulic retention time (HRT). Under the HRT of four days, the CW presented 74.1 ± 6%, 87.4 ± 6% and 56.0 ± 6% removal for TN, NO₃⁻, and TP, respectively.
Hasegawa, Teruaki; Kurose, Yohei; Tanaka, Yasuo
2017-10-01
The efficacy of advanced treatment of swine wastewater using thermally polymerized, modified amorphous silica and hydrated lime (M-CSH-lime) for color and phosphorus removal and sulfur for nitrogen removal was examined with a demonstration-scale treatment plant. The color removal rate was approximately 78% at M-CSH-lime addition rates of > 0.055 wt/v%. The PO43--P removal rate exceeded 99.9% with > 0.023 wt/v%. pH of the effluent from the M-CSH-lime reactor increased with the addition rate till a maximum value of 12.7, which was effective in disinfection. The recovered M-CSH-lime would be suitable as a phosphorus fertilizer because the total P 2 O 5 content was approximately 10%. The nitrogen oxide (NOx-N) removal rate by sulfur denitrification increased to approximately 80% when the NOx-N loading rate was around 0.1 kg-N/ton-S/day. It was suggested that the combination of the two processes would be effective in the advanced treatment of swine wastewater. © 2017 Japanese Society of Animal Science.
Zhao, Jing; Feng, Lijuan; Dai, Jincheng; Yang, Guangfeng; Mu, Jun
2017-12-01
Each kind of conventional plastic filler (polyurethane filler, SPR-1 suspension filler, TA-II elastic filler and sphere filler) coupled with alkaline pretreated corncob (A.H.corncob) was applied in each bioreactor system for treating polluted water with nitrate and organics. Results demonstrated that addition of A.H.corncob could achieve simultaneous removal of nitrogen and organics, and coupling of SPR-1 suspension filler with A.H.corncob (R 2 ) had the best performance. In coupling system of R 2 , the total nitrogen (TN) removal rate improved from below 10% to 55.92 ± 18.27% with effluent COD Mn concentration maintaining at a low level of 2.67 ± 0.44 mg L -1 . Microbial analysis of combined filler system demonstrated that conventional plastic filler mainly accumulated non-solid-phase denitrifiers for both nitrate and organics removal including genera Salipiger, Enterobacteriaceae etc. while A.H.corncob carrier was stronghold of solid-phase denitrifiers (Runella, etc.) directly using lignocellulosic materials as carbon source and fermentative bacteria (Coprococcus, etc.) for supplementing available carbon sources for denitrifiers in the system, which were integrated to achieve simultaneous removal of nitrate and organics.
Sgroi, Massimiliano; Roccaro, Paolo; Oelker, Gregg L; Snyder, Shane A
2014-09-02
Ozone doses normalized to the dissolved organic carbon concentration were applied to the primary influent, primary effluent, and secondary effluent of a wastewater treatment plant producing water destined for potable reuse. Results showed the most N-Nitrosodimethylamine (NDMA) production from primary effluent, and the recycle streams entering the primary clarifiers were identified as the main source of NDMA precursors. The degradation of aminomethylated polyacrylamide (Mannich) polymer used for sludge treatment was a significant cause of precursor occurrence. A strong correlation between NDMA formation and ammonia concentration was found suggesting an important role of ammonia oxidation on NDMA production. During ozonation tests in DI water using dimethylamine (DMA) as model precursor, the NDMA yield significantly increased in the presence of ammonia and bromide due to the formation of hydroxylamine and brominated nitrogenous oxidants. In addition, NDMA formation during ozonation of dimethylformamide (DMF), the other model precursor used in this study, occurred only in the presence of ammonia, and it was attributable to the oxidation of DMF by hydroxyl radicals. Filtered wastewater samples (0.7 μm) produced more NDMA than unfiltered samples, suggesting that ozone reacted with dissolved precursors and supporting the hypothesis of polymer degradation. Particularly, the total suspended solids content similarly affected NDMA formation and the UV absorbance decrease during ozonation due to the different ozone demand created in filtered and unfiltered samples.
Sweetapple, Christine; Fu, Guangtao; Butler, David
2014-05-15
This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vilela, Paulina; Liu, Hongbin; Lee, SeungChul; Hwangbo, Soonho; Nam, KiJeon; Yoo, ChangKyoo
2018-08-15
The release of silver nanoparticles (AgNPs) to wastewater caused by over-generation and poor treatment of the remaining nanomaterial has raised the interest of researchers. AgNPs can have a negative impact on watersheds and generate degradation of the effluent quality of wastewater treatment plants (WWTPs). The aim of this research is to design and analyze an integrated model system for the removal of AgNPs with high effluent quality in WWTPs using a systematic approach of removal mechanisms modeling, optimization, and control of the removal of silver nanoparticles. The activated sludge model 1 was modified with the inclusion of AgNPs removal mechanisms, such as adsorption/desorption, dissolution, and inhibition of microbial organisms. Response surface methodology was performed to minimize the AgNPs and total nitrogen concentrations in the effluent by optimizing operating conditions of the system. Then, the optimal operating conditions were utilized for the implementation of control strategies into the system for further analysis of enhancement of AgNPs removal efficiency. Thus, the overall AgNP removal efficiency was found to be slightly higher than 80%, which was an improvement of almost 7% compared to the BSM1 reference value. This study provides a systematic approach to find an optimal solution for enhancing AgNP removal efficiency in WWTPs and thereby to prevent pollution in the environment. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Gang-Jin; Zheng, Dan; Deng, Liang-Wei; Wen, Quan; Liu, Yi
2014-01-01
A laboratory-scale horizontal subsurface flow constructed wetland (HSFCW) and a stabilization pond (SP) were constructed to compare their performances on the treatment of digested effluent of swine wastewater. After 457 days of operation, the removal efficiencies of the HSFCW were as follows: chemical oxygen demand (COD), 17-54%; total phosphorus (TP), 32-45% and ammonia nitrogen [Formula: see text], 27-88%, while they were 25-55%, 31-56% and 56-98%, respectively, for the SP, with a hydraulic retention time of 54 days and hydraulic loading of 0.01 m³ m⁻² d⁻¹. The average removed loads for the HSFCW were as follows: COD, 0.25-4.33; TP, 0.01-0.11 and [Formula: see text], 0.34-2.54 g m⁻² d⁻¹, while they were 0.25-4.45, 0.02-0.13 and 0.72-2.87 g m⁻² d⁻¹, respectively, for the SP. The SP performed better than the HSFCW because the SP showed a 20% of higher removal efficiency for [Formula: see text] than the HSFCW. Especially, the COD removal rate of SP was 10% higher than the HSFCW when the influent concentration was at the lowest and highest stages. Meanwhile, given the lower costs, the SP is more suitable for the treatment of digested effluent of swine wastewater than the HSFCW.
Screening and identification of aerobic denitrifiers
NASA Astrophysics Data System (ADS)
Shao, K.; Deng, H. M.; Chen, Y. T.; Zhou, H. J.; Yan, G. X.
2016-08-01
With the standards of the effluent quality more stringent, it becomes a quite serious problem for municipalities and industries to remove nitrogen from wastewater. Bioremediation is a potential method for the removal of nitrogen and other pollutants because of its high efficiency and low cost. Seven predominant aerobic denitrifiers were screened and characterized from the activated sludge in the CAST unit. Some of these strains removed 87% nitrate nitrogen at least. Based on their phenotypic and phylogenetic characteristics, the isolates were identified as the genera of Ralstonia, Achromobacter, Aeromonas and Enterobacter.
NASA Astrophysics Data System (ADS)
Vaithiyanathan, Thanapal; Sundaramoorthy, Perumal
2017-12-01
Sugar industry is a very important agro-based industry in India and it discharges large amount of effluent into water bodies to create high pollution in water bodies which affects the plants and other living organisms. In the present investigation, the physico-chemical analyses of N. P. K. R. Ramaswamy co-operative sugar mill effluent was determined and impact of different concentrations (control, 10, 25, 50, 75 and 100%) of sugar mill effluent on seed germination behavior of African marigold ( Tagetes erecta L.) was studied. The morphological parameters such as germination percentage, shoot length, root length, fresh weight and dry weight of seedlings, seed vigour index, tolerance index and percentage of phytotoxicity were calculated. The results recorded for the analyses of sugar mill effluent indicated their some parameters such as PH, EC, acidity, TDS, TS, BOD, COD, sulphate, magnesium, nitrogen, zinc, iron, copper, lead, manganese and oil and grease exceeded the permissible limit compared to Tamil Nadu Pollution Control Board (TNPCB) and then germination and growth parameters increased in lower (10%) concentration of sugar mill effluent and this morphological parameters gradually decreased with increasing effluent concentration. The lower (10%) concentration of sugar mill effluent may be used for irrigation purposes.
Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab
2016-11-01
Biological and advanced oxidation processes are combined to treat an actual slaughterhouse wastewater (SWW) by a sequence of an anaerobic baffled reactor, an aerobic activated sludge reactor, and a UV/H2O2 photoreactor with recycle in continuous mode at laboratory scale. In the first part of this study, quadratic modeling along with response surface methodology are used for the statistical analysis and optimization of the combined process. The effects of the influent total organic carbon (TOC) concentration, the flow rate, the pH, the inlet H2O2 concentration, and their interaction on the overall treatment efficiency, CH4 yield, and H2O2 residual in the effluent of the photoreactor are investigated. The models are validated at different operating conditions using experimental data. Maximum TOC and total nitrogen (TN) removals of 91.29 and 86.05%, respectively, maximum CH4 yield of 55.72%, and minimum H2O2 residual of 1.45% in the photoreactor effluent were found at optimal operating conditions. In the second part of this study, continuous distribution kinetics is applied to establish a mathematical model for the degradation of SWW as a function of time. The agreement between model predictions and experimental values indicates that the proposed model could describe the performance of the combined anaerobic-aerobic-UV/H2O2 processes for the treatment of SWW. In the final part of the study, the optimized combined anaerobic-aerobic-UV/H2O2 processes with recycle were evaluated using a cost-effectiveness analysis to minimize the retention time, the electrical energy consumption, and the overall incurred treatment costs required for the efficient treatment of slaughterhouse wastewater effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Identification of pollutant sources in a rapidly developing urban river catchment in China
NASA Astrophysics Data System (ADS)
Huang, Jingshui; Yin, Hailong; Jomma, Seifeddine; Rode, Michael; Zhou, Qi
2016-04-01
Rapid economic development and urbanization worldwide cause serious ecological and environmental problems. A typical region that is in transition and requires systemic research for effective intervention is the rapidly developing city of Hefei in central P. R. China. In order to investigate the sources of pollutants over a one-year period in Nanfei River catchment that drains the city of Hefei, discharges were measured and water samples were taken and measured along the 14km river section at 10 sites for 4 times from 2013 to 2014. Overflow concentrations of combined sewer and separate storm drains were also measured by selecting 15 rain events in 4 typical drainage systems. Loads and budgets of water and different pollutant sources i.e., wastewater treatment plant (WWTP) effluent, urban drainage overflow, unknown wastewater were calculated. The water balance demonstrated that >70% of the discharge originated from WWTP effluent. Lack of clean upstream inflow thereby is threatening ecological safety and water quality. Furthermore, mass fluxes calculations revealed that >40% of the COD (Chemical Oxygen Demand) loads were from urban drainage overflow because of a large amount of discharge of untreated wastewater in pumping stations during rain events. WWTP effluent was the predominant source of the total nitrogen loads (>60%) and ammonia loads (>45%). However, the total phosphorous loads from three different sources are similar (˜1/3). Thus, our research provided a basis for appropriate and prior mitigation strategies (state-of-art of WWTP upgrade, sewer systems modification, storm water regulation and storage capacity improvement, etc.) for different precedence-controlled pollutants with the limited infrastructure investments in these rapidly developing urban regions.
Ruiz, J; Alvarez, P; Arbib, Z; Garrido, C; Barragán, J; Perales, J A
2011-10-01
This study evaluates the feasibility of removing nutrients by the microalgae Chlorella vulgaris, using urban wastewater as culture medium, namely the effluent subjected to secondary biological treatment in a wastewater treatment plant (WWTP). For this, laboratory experiments were performed in batch cultures to study the effect of initial nitrogen and phosphorus concentrations on growth and reduction of nutrient performance of C. vulgaris. The microalga was cultivated in enriched wastewater containing different phosphorus (1.3-143.5 mg x L(-1) P.PO4(3-)), ammonium (5.8-226.8 mg x L(-1) N-NH4+) and nitrate (1.5-198.3 mg x L(-1) N-NO3-) concentrations. The nutrient removal and growth kinetics have been studied: maximum productivity of 0.95 g SS x L(-1) x day(-1), minimum yield factor for cells on substrate (Y) of 11.51 g cells x g nitrogen(-1) and 0.04 g cells x g phosphorus(-1) were observed. The results suggested that C. vulgaris has a high potential to reduce nutrients in secondary WWTP effluents.
NASA Astrophysics Data System (ADS)
Kon, Hisao; Watanabe, Masahiro
This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.
Elementary sulfur in effluent from denitrifying sulfide removal process as adsorbent for zinc(II).
Chen, Chuan; Zhou, Xu; Wang, Aijie; Wu, Dong-hai; Liu, Li-hong; Ren, Nanqi; Lee, Duu-Jong
2012-10-01
The denitrifying sulfide removal (DSR) process can simultaneously convert sulfide, nitrate and organic compounds into elementary sulfur (S(0)), di-nitrogen gas and carbon dioxide, respectively. However, the S(0) formed in the DSR process are micro-sized colloids with negatively charged surface, making isolation of S(0) colloids from other biological cells and metabolites difficult. This study proposed the use of S(0) in DSR effluent as a novel adsorbent for zinc removal from wastewaters. Batch and continuous tests were conducted for efficient zinc removal with S(0)-containing DSR effluent. At pH<7.5, removal rates of zinc(II) were increased with increasing pH. The formed S(0) colloids carried negative charge onto which zinc(II) ions could be adsorbed via electrostatic interactions. The zinc(II) adsorbed S(0) colloids further enhanced coagulation-sedimentation efficiency of suspended solids in DSR effluents. The DSR effluent presents a promising coagulant for zinc(II) containing wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bastos, R K X; Calijuri, M L; Bevilacqua, P D; Rios, E N; Dias, E H O; Capelete, B C; Magalhães, T B
2010-01-01
The results of a 20-month period study in Brazil were analyzed to compare horizontal-flow constructed wetlands (CW) and waste stabilization pond (WSP) systems in terms of land area requirements and performance to produce effluent qualities for surface water discharge, and for wastewater use in agriculture and/or aquaculture. Nitrogen, E. coli and helminth eggs were more effectively removed in WSP than in CW. It is indicated that CW and WSP require similar land areas to achieve a bacteriological effluent quality suitable for unrestricted irrigation (10(3) E. coli per 100 mL), but CW would require 2.6 times more land area than ponds to achieve quite relaxed ammonia effluent discharge standards (20 mg NH(3) L(-1)), and, by far, more land than WSP to produce an effluent complying with the WHO helminth guideline for agricultural use (< or =1 egg per litre).
Lima, M X; Carvalho, K Q; Passig, F H; Borges, A C; Filippe, T C; Azevedo, J C R; Nagalli, A
2018-07-15
The present study aimed to assess removal potential of chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), total ammonia nitrogen (TAN), total phosphorus (TP) and acetylsalicylic acid (ASA) in synthetic wastewater simulating low-strength sewage by sequencing-batch mode constructed wetlands (CWs). Six CWs with three substrates (gravel, light expanded clay and clay bricks) and one CW of each substrate was planted with E. crassipes to verify the feasibility of using a floating macrophyte in CWs and verify the best optimized substrate. Results showed that the presence of E. crassipes enhanced the removal of COD for systems with gravel, increasing the removal efficiency from 37% in the unplanted system (CW G-U ) to 60% in the planted system (CW G-P ). The vegetated CW with clay bricks (CW B-P ) presented the best performance for both TKN and TAN removal, with maximum removal efficiencies of 68% and 35%, respectively. Phosphorus was observed to be efficiently removed in systems with clay bricks, both planted (CW B-U ) and unplanted (CW B-P ), with mean removal efficiencies of 82% and 87%, respectively, probably via adsorption. It was also observed that after 296days of operation, no desorption or increase on phosphorus in effluent samples were observed, thus indicating that the material was not yet saturated and phosphorus probably presents a strong binding to the media. ASA removal efficiency varied from 34% to 92% in CWs, probably due to plant uptake through roots and microbial biodegradation. Plant direct uptake varied from 4 to 74% of the total nitrogen and from 26 to 71% of the total phosphorus removed in CW G-P , CW C-P and CW B-P . E. crassipes was able to uptake up to 4.19g of phosphorus in CW C-P and 11.84g of nitrogen in CW B-P . The findings on this study suggest that E. crassipes could be used in CWs and clay bricks could significantly enhance phosphorus removal capacity in CWs. Copyright © 2018 Elsevier B.V. All rights reserved.
Harden, Stephen L.; Spruill, Timothy B.
2004-01-01
A study was conducted from August 2000 to August 2001 to characterize the influence of fertilizer use from different nitrogen sources on the quality of drainage water from 11 subsurface tile drains and 7 surface field ditches in a North Carolina Coastal Plain watershed. Agricultural fields receiving commercial fertilizer (conventional sites), swine lagoon effluent (spray sites), and wastewater-treatment plant sludge (sludge site) in the Middle Swamp watershed were investigated. The ionic composition of drainage water in tile drains and ditches varied depending on fertilizer source type. The dominant ions identified in water samples from tile drains and ditches include calcium, magnesium, sodium, chloride, nitrate, and sulfate, with tile drains generally having lower pH, low or no bicarbonates, and higher nitrate and chloride concentrations. Based on fertilizer source type, median nitrate-nitrogen concentrations were significantly higher at spray sites (32.0 milligrams per liter for tiles and 8.2 milligrams per liter for ditches) relative to conventional sites (6.8 milligrams per liter for tiles and 2.7 milligrams per liter for ditches). The median instantaneous nitrate-nitrogen yields also were significantly higher at spray sites (420 grams of nitrogen per hectare per day for tile drains and 15.6 grams of nitrogen per hectare per day for ditches) relative to conventional sites (25 grams of nitrogen per hectare per day for tile drains and 8.1 grams of nitrogen per hectare per day for ditches). The tile drain site where sludge is applied had a median nitrate-nitrogen concentration of 10.5 milligrams per liter and a median instantaneous nitrate-nitrogen yield of 93 grams of nitrogen per hectare per day, which were intermediate to those of the conventional and spray tile drain sites. Results from this study indicate that nitrogen loadings and subsequent edge-of-field nitrate-nitrogen yields through tile drains and ditches were significantly higher at sites receiving applications of swine lagoon effluent compared to sites receiving commercial fertilizer.
The Effects of Amine Based Missile Fuels on the Activated Sludge Process.
1979-10-01
centrations found to cause no significant effect on sewage treatment efficiency are 74 mg/i for UDMH, 44 mg/k for HZ, and 蕔 mg/k for MMH. Ammonia ...EXPERIMENTAL METHODS AND MATERIALS ........... 9 1. Substrate Base .. ................... 9 2. Supplemental Requirements. ............. 11 a. Nitrogen...Recycle .. ....... 5 3 Tyndall Sewage Treatment Plant .. .............. 10 4 Theoretical Effluent COD and Ammonia Nitrogen as a Function of Mean Cell
González-Martínez, Alejandro; Calderón, Kadiya; González-López, Jesús
2016-05-01
High concentrations of proteins and amino acids can be found in wastewater and wastewater stream produced in anaerobic digesters, having shown that amino acids could persist over different managements for nitrogen removal affecting the nitrogen removal processes. Nitrogen removal is completely necessary because of their implications and the significant adverse environmental impact of ammonium such as eutrophication and toxicity to aquatic life on the receiving bodies. In the last decade, the treatment of effluents with high ammonium concentration through anammox-based bioprocesses has been enhanced because these biotechnologies are cheaper and more environmentally friendly than conventional technologies. However, it has been shown that the presence of important amounts of proteins and amino acids in the effluents seriously affects the microbial autotrophic consortia leading to important losses in terms of ammonium oxidation efficiency. Particularly the presence of sulfur amino acids such as methionine and cysteine has been reported to drastically decrease the autotrophic denitrification processes as well as affect the microbial community structure promoting the decline of ammonium oxidizing bacteria in favor of other phylotypes. In this context we discuss that new biotechnological processes that improve the degradation of protein and amino acids must be considered as a priority to increase the performance of the autotrophic denitrification biotechnologies.
NASA Astrophysics Data System (ADS)
Muserere, Simon Takawira; Hoko, Zvikomborero; Nhapi, Innocent
Varying conditions are required for different species of microorganisms for the complex biological processes taking place within the activated sludge treatment system. It is against the requirement to manage this complex dynamic system that computer simulators were developed to aid in optimising activated sludge treatment processes. These computer simulators require calibration with quality data input that include wastewater fractionation among others. Thus, this research fractionated raw sewage, at Firle Sewage Treatment Works (STW), for calibration of the BioWin simulation model. Firle STW is a 3-stage activated sludge system. Wastewater characteristics of importance for activated sludge process design can be grouped into carbonaceous, nitrogenous and phosphorus compounds. Division of the substrates and compounds into their constituent fractions is called fractionation and is a valuable tool for process assessment. Fractionation can be carried out using bioassay methods or much simpler physico-chemical methods. The bioassay methods require considerable experience with experimental activated sludge systems and associated measurement techniques while the physico-chemical methods are straight forward. Plant raw wastewater fractionation was carried out through two 14-day campaign periods, the first being from 3 to 16 July 2013 and the second was from 1 to 14 October 2013. According to the Zimbabwean Environmental Management Act, and based on the sensitivity of its catchment, Firle STW effluent discharge regulatory standards in mg/L are COD (<60), TN (<10), ammonia (<0.2), and TP (<1). On the other hand Firle STW Unit 4 effluent quality results based on City of Harare records in mg/L during the period of study were COD (90 ± 35), TN (9.0 ± 3.0), ammonia (0.2 ± 0.4) and TP (3.0 ± 1.0). The raw sewage parameter concentrations measured during the study in mg/L and fractions for raw sewage respectively were as follows total COD (680 ± 37), slowly biodegradable COD (456 ± 23), (0.7), readily biodegradable COD (131 ± 11), (0.2), soluble unbiodegradable COD (40 ± 3), (0.06), particulate unbiodegradable COD (53 ± 3) (0.08), total TKN (40 ± 4) mg/L, ammonia (28 ± 6), (0.68), organically bound nitrogen (12 ± 2), (0.32), TP (15 ± 1.4), orthophosphates (9.6 ± 1.4), (0.64), and organically bound TP (5.4 ± 1.4), (0.36), soluble unbiodegradable TP (0.4 ± 0), (0.03), particulate unbiodegradable TP (0.05 ± 0), (0.003). Thus, wastewater at Firle STW was found to be highly biodegradable suggesting optimisation of biological nutrient removal process will generally achieve effluent regulatory standards compliance. Thus, opportunities for plant optimisation do exist of which modelling with the use of a simulator is recommended to achieve recommended effluent standards in addition to reduction of operating costs.
Zhang, Wei; Zhong, Xing; Che, Wu
2018-02-01
To investigate nutrient leaching from extensive green roofs, green roof platforms were established to investigate the effluent quantity and quality during artificial rainfall. When the influent volume reached three times the empty bed volume, for which the cumulative rainfall was around 300 mm, the effluent TP and COD concentrations of green roof platforms filled with peat soil did not tend to stabilize. For a long-term operation, the substrate depths had little significant influence on TN, TP and COD concentrations of the green roof effluents. A normalized cumulative emission process method was proposed to discuss the difference in various pollutant leaching processes. Obvious differences in the leaching process of different contaminants for green roof platforms filled with various substrates were observed. For the green roof filled with modified substrates, the nitrogen and phosphorus pollutant leaching rates were relatively high in the initial stage of green roof operation and the phosphorus leaching rate was higher than that of nitrogen. The green roof is a sink for TN, but not for TP and COD in this study. The outcomes are critical for the selection of green roof substrates and also contribute to green roof maintenance.
Akizuki, S; Toda, T
2018-04-01
Although combination of denitritation and methanogenesis for wastewater treatment has been widely investigated, an application of this technology to solid waste treatment has been rarely studied. This study investigated an anaerobic-aerobic batch system with simultaneous denitritation-methanogenesis as an effective treatment for marine biofoulings, which is a major source of intermittently discharged organic solid wastes. Preliminary NO 2 - -exposed sludge was inoculated to achieve stable methanogenesis process without NO 2 - inhibition. Both high NH 4 + -N removal of 99.5% and high NO 2 - -N accumulation of 96.4% were achieved on average during the nitritation step. Sufficient CH 4 recovery of 101 L-CH 4 kg-COD -1 was achieved, indicating that the use of NO 2 - -exposed sludge is effective to avoid NO 2 - inhibition on methanogenesis. Methanogenesis was the main COD utilization pathway when the substrate solubilization occurred actively, while denitritation was the main when solubilization was limited because of substrate shortage. The results showed a high COD removal efficiency of 96.0% and a relatively low nitrogen removal efficiency of 64.4%. Fitting equations were developed to optimize the effluent exchange ratio. The estimated results showed that the increase of effluent exchange ratio during the active solubilization period increased the nitrogen removal efficiency but decreased CH 4 content in biogas. An appropriate effluent exchange ratio with high anaerobic effluent quality below approximately 120 mg-N L -1 as well as sufficient CH 4 gas quality which can be used as fuel for gas engine generator was achieved by daily effluent exchange of 80% during the first week and 5% during the subsequent 8 days. Copyright © 2017 Elsevier Ltd. All rights reserved.
Research on denitrification efficiency of three types of solid carbon source
NASA Astrophysics Data System (ADS)
Cai, Y.; Zhang, J. D.; Li, F.; Cao, Y. X.; Zhu, L. Y.; Xiao, M. S.
2018-01-01
C/N rates can greatly influence efficiency of denitrification. It is difficult for current treated effluent to reach GB18918-2002 primary effluent standard because of its low C/N rate. To improve the efficiency of denitrification, the quality of effluent, and realize the waste recycling, this article selected magnolia leaves, loofah and degradable meal box as the solid carbon source and set different solid-liquid ratio of magnolia leaves for periodic denitrification stage to study the change of NO3 --N, TN, COD, NO2 --N, NH4 +, PO4 3- and color. The results showed that in the condition of influent nitrate concentration of 40 mg/L, carbon dosage of 10 g, the reaction temperature of 25°C, the nitrate removal rates of magnolia leaves and loofah reached 89.0% and 96.8% respectively, rather higher than degradable meal box (56.3%). The TN removal rates of magnolia leaves (91.7%) and loofah (77.7%) were both higher than degradable meal box (53.9%), and the effluent TN concentration of loofah and degradable meal box reached 25.4 mg/L and 21.1 mg/L respectively, which couldn’t be discharged according to the primary effluent concentration standard of GB18918-2002. The released concentration of ammonia nitrogen and phosphate: loofah> magnolia> degradable meal box. The high solid-liquid ratio of magnolia leaves helped to improve the TN removal rate, which reached 75.0% (1:200) and 91.7% (1:100), but it caused higher released concentration of carbon, ammonia nitrogen and phosphate to effect system heavily. Under the integrated analysis, the low solid-liquid ratio (1:200) of magnolia leaves was more suitable to be the denitrification external carbon source.
[Non-nitrification pathway for NH4+ -N removal in pilot-scale drinking water biological processes].
Yu, Xin; Ye, Lin; Li, Xu-dong; Zhang, Xiao-jian; Shi, Xu; Liu, Bo; Li, Rui-hua
2008-04-01
The non-nitrification pathway for NH4+ -N removal in pilot-scale drinking water biological treatment processes and its possible mechanism were investigated through calculating N and DO stoichiometric balance. With more than 2 mg/L NH4+ -N in the influent, for the fluidized bed bioreactor (FBBR), the total of NH4+ -N, NO2(-) -N, NO3(-) -N in the influent was 0.91 mg/L higher than that in the effluent, and for the biofilter, its DO consumption was 2.90 mg/L less than the stoichiometric amount. The results suggested that nitrogen loss occurred in both reactors and a part of NH4+ -N was removed through non-nitrification pathway. Because the utilization of phosphorus and organic matters was independent of nitrogen loss, the assimilation and denitrification could be excluded from the possible mechanisms. Because the very low C/N in the influent and the accumulation of NO2(-) -N in the reactors were similar with the wastewater biological processes, the "autotrophic removal of nitrogen" was regarded as the most probable non-nitrification pathway. In this mechanism, the couple of short-cut nitrification and ANAMMOX (or OLAND) leading to the transformation of NH4+ -N and NO2(-) -N into gaseous N2 was responsible for the nitrogen loss in drinking water biological processes.
Patil, Sagar; Chakraborty, Saswati
2017-03-21
The effect of step feed strategy and intermittent aeration on removal of chemical oxygen demand (COD) and nitrogen was investigated in a laboratory scale horizontal subsurface flow constructed wetland (HSSFCW). Wetland was divided into four zones along the length (zone I to IV), and influent was introduced into first and third zones by step feeding. Continuous study was carried out in four phases. In phases I to III, 30% of influent was bypassed to zone III for denitrification along with organics removal. Intermittent aeration was provided only in zone II at 2.5 L/min for 4 h/day, during phases II, III and IV. In phase I, 87% COD and 43% NH 4 + -N (ammonia-nitrogen) removal were obtained from influents of 331 and 30 mg/L, respectively. In phase II study, external aeration resulted in 97% COD and 71% NH 4 + -N removal in the wetland. In phase IV, 40% of feed was delivered to zone III. Higher supply of organic in zone III resulted in higher denitrification, and total nitrogen removal rate increased to 70% from 56%. In the final effluent, concentration of NO 3 - -N was 9-11 mg/L in phase I to III and decreased to 4 mg/L in phase IV. Batch study showed that COD and NH 4 + -N removal followed first order kinetics in different zones of wetland.
Wilber, William G.; Crawford, Charles G.; Peters, J.G.; Girardi, F.P.
1979-01-01
A digital model calibrated to conditions in Clear Creek, Monroe County, IN, was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The Winston Thomas wastewater-treatment facility is the only point-source waste load affecting the modeled reach of Clear Creek. A new waste-water-treatment facility under construction at Dillman Road (river mile 13.78) will replace the Winston Thomas wastewater-treatment facility (river mile 16.96) in 1980. Natural streamflow during the summer and annual 7-day, 10-year low flow is zero, so no benefit from dilution is provided. The model indicates that ammonia-nitrogen toxicity is the most significant factor affecting the stream water quality during summer and winter low flows. The ammonia-nitrogen concentration of the wastewater effluent exceeds the maximum total ammonia-nitrogen concentration of 2.5 milligrams per liter for summer months (June through August) and 4.0 milligrams per liter for winter months (November through March) required for Indiana streams. Nitrification, benthic-oxygen demand, and algal respiration were the most significant factors affecting the dissolved-oxygen concentration in Clear Creek during the model calibration. Nitrification should not significantly affect the dissolved-oxygen concentration in Clear Creek during summer low flows when the ammonia-nitrogen toxicity standards are met. (USGS)
Modeling riverine nutrient transport to the Baltic Sea: a large-scale approach.
Mörth, Carl-Magnus; Humborg, Christoph; Eriksson, Hanna; Danielsson, Asa; Medina, Miguel Rodriguez; Löfgren, Stefan; Swaney, Dennis P; Rahm, Lars
2007-04-01
We developed for the first time a catchment model simulating simultaneously the nutrient land-sea fluxes from all 105 major watersheds within the Baltic Sea drainage area. A consistent modeling approach to all these major watersheds, i.e., a consistent handling of water fluxes (hydrological simulations) and loading functions (emission data), will facilitate a comparison of riverine nutrient transport between Baltic Sea subbasins that differ substantially. Hot spots of riverine emissions, such as from the rivers Vistula, Oder, and Daugava or from the Danish coast, can be easily demonstrated and the comparison between these hot spots, and the relatively unperturbed rivers in the northern catchments show decisionmakers where remedial actions are most effective to improve the environmental state of the Baltic Sea, and, secondly, what percentage reduction of riverine nutrient loads is possible. The relative difference between measured and simulated fluxes during the validation period was generally small. The cumulative deviation (i.e., relative bias) [Sigma(Simulated - Measured)/Sigma Measured x 100 (%)] from monitored water and nutrient fluxes amounted to +8.2% for runoff, to -2.4% for dissolved inorganic nitrogen, to +5.1% for total nitrogen, to +13% for dissolved inorganic phosphorus and to +19% for total phosphorus. Moreover, the model suggests that point sources for total phosphorus compiled by existing pollution load compilations are underestimated because of inconsistencies in calculating effluent loads from municipalities.
NASA Astrophysics Data System (ADS)
Jones, A. B.; O'Donohue, M. J.; Udy, J.; Dennison, W. C.
2001-01-01
Despite evidence linking shrimp farming to several cases of environmental degradation, there remains a lack of ecologically meaningful information about the impacts of effluent on receiving waters. The aim of this study was to determine the biological impact of shrimp farm effluent, and to compare and distinguish its impacts from treated sewage effluent. Analyses included standard water quality/sediment parameters, as well as biological indicators including tissue nitrogen (N) content, stable isotope ratio of nitrogen (δ 15N), and amino acid composition of inhabitant seagrasses, mangroves and macroalgae. The study area consisted of two tidal creeks, one receiving effluent from a sewage treatment plant and the other from an intensive shrimp farm. The creeks discharged into the western side of Moreton Bay, a sub-tropical coastal embayment on the east coast of Australia. Characterization of water quality revealed significant differences between the creeks, and with unimpacted eastern Moreton Bay. The sewage creek had higher concentrations of dissolved nutrients (predominantly NO-3/NO-2 and PO3-4, compared to NH+4 in the shrimp creek). In contrast, the shrimp creek was more turbid and had higher phytoplankton productivity. Beyond 750 m from the creek mouths, water quality parameters were indistinguishable from eastern Moreton Bay values. Biological indicators detected significant impacts up to 4 km beyond the creek mouths (reference site). Elevated plant δ 15N values ranged from 10·4-19·6‰ at the site of sewage discharge to 2·9-4·5‰ at the reference site. The free amino acid concentration and composition of seagrass and macroalgae was used to distinguish between the uptake of sewage and shrimp derived N. Proline (seagrass) and serine (macroalgae) were high in sewage impacted plants and glutamine (seagrass) and alanine (macroalgae) were high in plants impacted by shrimp effluent. The δ 15N isotopic signatures and free amino acid composition of inhabitant flora indicated that sewage N extended further from the creek mouths than shrimp N. The combination of physical/chemical and biological indicators used in this study was effective in distinguishing the composition and subsequent impacts of aquaculture and sewage effluent on the receiving waters.
Mahlalela, Lwazi C; Ngila, Jane C; Dlamini, Langelihle N
2017-07-03
The use of nanoparticles (NPs) in several consumer products has led to them finding their way into wastewater treatment plants (WWTPs). Some of these NPs have photocatalytic properties, thus providing a possible solution to textile industries to photodegrade dyes from their wastewater. Thus, the interaction of NPs with industrial dye effluents is inevitable. The Organization for Economic Co-operation and development (OECD) guideline for testing of chemical 303A was employed to study the fate and behaviour of TiO 2 NPs in industrial dye-stuff effluent. This was due to the unavailability of NPs' fate and behaviour test protocols. The effect of TiO 2 NPs on the treatment process was ascertained by measuring chemical oxygen demand (COD) and 5-day biological oxygen demand (BOD5). Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to study the fate and behavior of TiO 2 NPs. Acclimatization of bacteria to target pollutants was a crucial factor for the treatment efficiency of activated sludge in a simulated wastewater treatment plant (SWTP). The acclimatization of the activated sludge to the synthetic industrial dye-stuff effluent was successfully achieved. Effect of TiO 2 NPs on the treatment process efficiency was then investigated. Addition of TiO 2 NPs had no effect on the treatment process as chemical oxygen demand (COD) removal remained >80%. Measured total plate count (TPC) affirmed that the addition of TiO 2 NPs had no effect on the treatment process. The removal of total nitrogen (TN) was not efficient as the treatment system was required to have an oxic and anoxic stage for efficient TN removal. Results from X-ray powder diffraction (XRD) confirmed that the anatase phase of the added TiO 2 NPs remained unchanged even after exposure to the treatment plant. Removal of the NPs from the influent was facilitated by biosorption of the NPs on the activated sludge. Nanoparticles received by wastewater treatment plants will therefore reach the environment through sludge waste dumped in landfill. About 90% of TiO 2 was retained in the activated sludge, and 10-11% escaped with the treated effluents. Scanning electron microscope (SEM) mapping micrographs together with an energy dispersive X-ray spectroscopy (EDS) confirmed the presence of Ti in the sludge.
Xing, W; Ngo, H H; Guo, W S; Listowski, A; Cullum, P
2012-06-01
A specific integrated fluidized bed bioreactor (iFBBR) was optimized in terms of organic loading rate (OLR), hydraulic retention time (HRT) and frequency of new sustainable flocculant (NSBF) addition for primary treated sewage effluent (PTSE) treatment. It was observed that iFBBR achieved the best performance with the operating conditions of 4 times/day NSBF addition, HRT of 90 min and OLR of 8.64 kg COD/day m(3). The removal efficiencies were found to be more than 93% of dissolved organic carbon (DOC), 61% of total nitrogen (T-N) and 60% of total phosphorus (T-P). iFBBR as pretreatment of submerged microfiltration (SMF) is successful in increasing the critical flux and reducing the membrane fouling. NSBF-iFBBR-SMF hybrid system led to very high organic removal efficiency with an average DOC removal of 97% from synthetic PTSE. Copyright © 2012 Elsevier Ltd. All rights reserved.
The effect of different surface materials on runoff quality in permeable pavement systems.
Li, Haiyan; Li, Zhifei; Zhang, Xiaoran; Li, Zhuorong; Liu, Dongqing; Li, Tanghu; Zhang, Ziyang
2017-09-01
To investigate the effect of different permeable pavement surface materials on the removal of pollutants from urban storm-runoff, six commonly surface materials (porous asphalt, porous concrete, cement brick, ceramic brick, sand base brick, and shale brick) were selected in this study and the research was carried out by column experiments. Except the concentrations of total suspended solids (TSS), chemical oxygen demand (COD), ammonia nitrogen (NH 4 -N), nitrate nitrogen (NO 3 -N), total nitrogen (TN), and total phosphorus (TP) in the influent and effluent that were measured, the removal mechanism of pollutants was discussed further. The results indicate that the surface materials influence the removal efficiency of pollutants greatly and have different effects on certain pollutant. Furthermore, the physical interception and adsorption would be the main mechanism for the removal of pollutants from runoff. For example, for all surface materials, the average removal efficiency of TSS is nearly about 90.0% because of physical interception. Due to the amount of iron oxide, the removal efficiency of COD, NO 3 -N, and TN of shale brick was 88.2, 35.1, and 17.5%, respectively. NH 4 -N and TN can be easily removed by porous asphalt due to the high content of organic matter. By lacking of useful adsorption sites, all the surface materials had little effect on the removal of TP from runoff. This research could offer useful guidelines for the better design of permeable pavement system and promote the insight into the removal mechanism of pollutants in permeable pavement system. Graphical abstract Different types of materials for the different types of pollutants in the runoff purification capacity were significantly different, overall, shale brick and porous asphalt Shale bricks and porous asphalt have a better purification effect according to the six kinds of materials.
Tang, Hao L; Xie, Yuefeng F; Chen, Yen-Chih
2012-11-01
This research investigated the application of Bio-Amp, a commercial bio-additive for the treatment of fat, oil, and grease (FOG) in a grease trap, and evaluated potential impacts of treated effluent on downstream collection system and treatment processes. Results show that after Bio-Amp treatment, FOG deposit formation was reduced by 40%, implicating a potential reduction of sewer line blockages. Chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP) and total fatty acids were reduced by 39%, 33%, 56%, and 59%, respectively, which represents an overall loading reduction of 9% COD, 5% TN and 40% TP received by the treatment plant from all the dining halls. On the other hand, readily biodegradable COD fractions significantly increased, which implies a potential improvement on Bio-P removal. Overall, the results showed that application of Bio-Amp in grease trap provides potential reduction of sewer line blockages, and can also alleviate downstream treatment burden. Copyright © 2012 Elsevier Ltd. All rights reserved.
Saba, Beenish; Jabeen, Madeeha; Khalid, Azeem; Aziz, Irfan; Christy, Ann D
2015-01-01
Azo dyes are commonly generated as effluent pollutants by dye using industries, causing contamination of surface and ground water. Various strategies are employed to treat such wastewater; however, a multi-faceted treatment strategy could be more effective for complete removal of azo dyes from industrial effluent than any single treatment. In the present study, rice husk material was used as a substratum in two constructed wetlands (CWs) and augmented with microorganisms in the presence of wetland plants to effectively treat dye-polluted water. To evaluate the efficiency of each process the study was divided into three levels, i.e., adsorption of dye onto the substratum, phytoremediation within the CW and then bioremediation along with the previous two processes in the augmented CW. The adsorption process was helpful in removing 50% dye in presence of rice husk while 80% in presence of rice husk biocahr. Augmentation of microorganisms in CW systems has improved dye removal efficiency to 90%. Similarly presence of microorganisms enhanced removal of total nitrogen (68% 0 and Total phosphorus (75%). A significant improvement in plant growth was also observed by measuring plant height, number of leaves and leave area. These findings suggest the use of agricultural waste as part of a CW substratum can provide enhanced removal of textile dyes.
Barros, Kenia Kelly; do Nascimento, Clístenes Williams Araújo; Florencio, Lourdinha
2012-01-01
Treated wastewater has great potential for agricultural use due to its concentrations of nutrients and organic matter, which are capable of improving soil characteristics. Additionally, effluents can induce suppression of plant diseases caused by soil pathogens. This study evaluates the effect of irrigation with effluent in a UASB reactor on maize (Zea mays L.) development and on suppression of the diseases caused by nematodes of the genus Meloidogyne. Twelve lysimeters of 1 m(3) each were arranged in a completely randomized design, with four treatments and three replicates. The following treatments were used: T1 (W+I), irrigation with water and infestation with nematodes; T2 (W+I+NPK), irrigation with water, infestation with nematodes and fertilization with nitrogen (N), phosphorus (P) and potassium (K); T3 (E+I), irrigation with effluent and infestation with nematodes; and T4 (E+I+P), irrigation with effluent, infestation with nematodes and fertilization with phosphorus. The plants irrigated with the effluent plus the phosphorus fertilizer had better growth and productivity and were more resistant to the disease symptoms caused by the nematodes. The suppression levels may have been due to the higher levels of Zn and NO(3)(-) found in the leaf tissue of the plants irrigated with the effluent and phosphorus fertilizer.
Impact of industrial effluents on the biochemical composition of fresh water fish Labeo rohita.
Muley, D V; Karanjkar, D M; Maske, S V
2007-04-01
In acute toxicity (96 hr) experiment the fingerlings of freshwater fish Labeo rohita was exposed to tannery, electroplating and textile mill effluents. The LC0 and LC50 concentrations were 15% and 20% for tannery effluents, 3% and 6% for electroplating effluents and 18% and 22% for textile mill effluents respectively. It was found that, electroplating effluent was more toxic than tannery and textile mill wastes. After acute toxicity experiments for different industrial effluents, various tissues viz. gill, liver, muscle and kidney were obtained separately from control, LC0 and LC50 groups. These tissues were used for biochemical estimations. The glycogen content in all the tissues decreased considerably upon acute toxicity of three industrial effluents except muscle in LC50 group of tannery effluent and kidney in LC50 group of textile mill effluent, when compared to control group. The total protein content decreased in all tissues in three effluents except gills in LC50 group of tannery effluent, kidney in LC50 group of electroplating effluent and kidney in LC0 group of textile mill effluent. In general total lipid content decreased in all tissues after acute exposure when compared to control group. The results obtained in the present study showed that, the industrial effluents from tannery, electroplating and textile mills caused marked depletion in biochemical composition in various tissues of the fish Labeo rohita after acute exposure.
Hong, K i-Ho; Chang, Duk; Hur, Joon-Moo; Han, Sang-Bae
2003-01-01
Phased isolation ditch system with intrachannel clarifier is a simplified novel oxidation ditch system enhancing simultaneous removal of biological nitrogen and phosphorus in municipal wastewater. The system employs two ditches with intra-clarifier, and eliminates external final clarifier, additional preanaerobic reactor, and recycle of sludge and nitrified effluent. Separation of anoxic, anaerobic, and aerobic phases can be accomplished by alternating flow and intermittent aeration. Its pilot-scale system operated at HRTs of 10-21 h, SRTs of 15-41 days, and a cycle times of 2-8 h showed removals of BOD, TN, and TP in the range of mixed liquor temperature above 10 degrees C as high as 88-97, 70-84, and 65-90%, respectively. As the SRTs became longer, the effluent TN decreased dramatically, whereas the effluent TP increased. Higher nitrogen removal was accomplished at shorter cycle times, while better phosphorus removal was achieved in longer cycle times. Optimal system operating strategies maximizing the performance and satisfying both the best nitrogen and phosphorus removals included HRTs ranged 10-14 h, SRTs ranged 25-30 days, and a cycle time of 4 h at the mixed liquor temperature above 10 degrees C. Thus, complete phase separation in a cycle maximizing phosphorus release and uptake as well as nitrification and denitrification was accomplished by scheduling of alternating flow and intermittent aeration in the simplified process scheme. Especially, temporal phase separation for phosphorus release without additional anaerobic reactor was successfully accomplished during anaerobic period without any nitrate interference and carbon-limiting.
Mosquera-Corral, A; Sánchez, M; Campos, J L; Méndez, R; Lema, J M
2001-02-01
A lab-scale hybrid upflow sludge bed-filter (USBF) reactor was employed to carry out methanogenesis and denitrification of the effluent from an anaerobic industrial reactor (EAIR) in a fish canning industry. The reactor was initially inoculated with methanogenic sludge and there were two different operational steps. During the first step (Step I: days 1-61), the methanogenic process was carried out at organic loading rates (OLR) of 1.0-1.25 g COD l-1 d-1 reaching COD removal percentages of 80%. During the second step (Step II: days 62-109) nitrate was added as KNO3 to the industrial effluent and the OLR was varied between 1.0 and 1.25 g COD l-1 d-1. Two different nitrogen loads of 0.10 and 0.22 g NO3(-)-N l-1 d-1 were applied and these led to nitrogen removal percentages of around 100% in both cases and COD removal percentages of around 80%. Carbon to nitrogen ratio (C:N) in the influent was maintained at 2.0 and eventually it was increased to 3.0, by means of glucose addition, to control the denitrification process. From these results it is possible to establish that wastewater produced in a fish canning industry can be used as a carbon source for denitrification and that denitrifying microorganisms were present in the initially methanogenic sludge. Biomass productions of 0.23 and 0.61 g VSS:g TOC fed for Steps I and II, respectively, were calculated from carbon global balances, showing an increase in biomass growth due to denitrification.
Marton, Daniele; Tapparo, Andrea; Di Marco, Valerio B; Repice, Carla; Giorio, Chiara; Bogialli, Sara
2013-07-26
A new analytical method for the determination of both available (free and weak acid dissociable, WAD) and total cyanides in industrial wastewaters has been developed. It is based on the static headspace (HS) sampling procedure followed by a GC separation and the selective nitrogen-phosphorous detection (NPD), in which different thermal treatment allows the speciation of total and available cyanides. Detection limits (0.5μg/L), recovery (84.7-114.6% for free and 76.8-121.5% for total cyanides) and precision (5% at 5μg/L), evaluated on both real and synthetic samples, were fit-for-purpose for the legal requirement (5μg/L) enforced in the Venice lagoon, without significant interfering species. In addition, analytical results of the HS-GC-NPD method have been compared with those obtained using the 4500 CN and EN ISO 14403 official methods for the determination of total and free cyanides, respectively. The new method has been successfully applied for the determination of cyanide concentrations in main influent and final effluent to the Venice lagoon to verify the efficiency of the industrial wastewater treatment plant of Porto Marghera (Venice, Italy). The capability of the proposed method to detect the WAD cyanides has been tested by studying the acid dissociation of K2[Ni(CN)4]. An unexpected speciation picture was obtained for this complex, which suggests that the present definition and analytical strategy of this cyanide class should be reconsidered. Copyright © 2013 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Organic Pesticide Chemicals....8000 pH * * * Within the range 6.0 to 9.0 ** Metric units: Kilogram pollutant/1,000 kg of total organic active ingredients. English units: Pound pollutant/1,000 lb of total organic active ingredients [58 FR...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Organic Pesticide Chemicals....8000 pH * * * Within the range 6.0 to 9.0 ** Metric units: Kilogram pollutant/1,000 kg of total organic active ingredients. English units: Pound pollutant/1,000 lb of total organic active ingredients [58 FR...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PESTICIDE CHEMICALS Organic Pesticide Chemicals....8000 pH * * * Within the range 6.0 to 9.0 ** Metric units: Kilogram pollutant/1,000 kg of total organic active ingredients. English units: Pound pollutant/1,000 lb of total organic active ingredients [58 FR...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Organic Pesticide Chemicals Manufacturing....8000 pH * * * Within the range 6.0 to 9.0 ** Metric units: Kilogram pollutant/1,000 kg of total organic active ingredients. English units: Pound pollutant/1,000 lb of total organic active ingredients [58 FR...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Organic Pesticide Chemicals Manufacturing....8000 pH * * * Within the range 6.0 to 9.0 ** Metric units: Kilogram pollutant/1,000 kg of total organic active ingredients. English units: Pound pollutant/1,000 lb of total organic active ingredients [58 FR...
Woodchip bioreactors effectively treat aquaculture effluent
USDA-ARS?s Scientific Manuscript database
Nutrients, in particular nitrogen and phosphorus, can create eutrophication problems in any watershed. Preventing water quality impairment requires controlling nutrients from both point-source and non-point source discharges. Woodchip bioreactors are one relatively new approach that can be utilized ...
40 CFR 415.491 - Specialized definitions. [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Specialized definitions. [Reserved] 415.491 Section 415.491 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Oxygen and Nitrogen...
40 CFR 415.491 - Specialized definitions. [Reserved
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Specialized definitions. [Reserved] 415.491 Section 415.491 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Oxygen and Nitrogen...
40 CFR 415.491 - Specialized definitions. [Reserved
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Specialized definitions. [Reserved] 415.491 Section 415.491 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Oxygen and Nitrogen...
40 CFR 415.491 - Specialized definitions. [Reserved
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Specialized definitions. [Reserved] 415.491 Section 415.491 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Oxygen and Nitrogen...
40 CFR 415.491 - Specialized definitions. [Reserved
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Specialized definitions. [Reserved] 415.491 Section 415.491 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Oxygen and Nitrogen...
NASA Astrophysics Data System (ADS)
Stewart, R. J.; Wollheim, W. M.; Whittinghill, K. A.; Mineau, M.; Rosenzweig, B.
2014-12-01
The magnitude and spatial distribution of point and non-point dissolved inorganic nitrogen (N) inputs to river systems greatly influences the potential for eutrophication of downstream water bodies. Wastewater treatment plants (WWTPs), the predominant point source of N in the northeast US, remove some but not all of human waste N they receive. Excess enters rivers, which may further mitigate N concentrations by dilution and denitrification. WWTP effluent combines with upstream flows, which may include non-point sources of N due to agriculture or urbanization. Natural N removal capacities in rivers may however be overwhelmed and become N saturated, which reduces their effectiveness. As a result, natural and man-made services of N removal are intimately linked at the river network scale for provisions of suitable water quality and aquatic habitat. We assessed the summer N mitigation capacity of rivers relative to N removal in WWTPs in the northeastern U.S. using a N removal model developed within the Framework for Aquatic Modeling in the Earth System (FrAMES). The spatially distributed river network model predicts average daily dissolved inorganic nitrogen concentrations at a 3-minute river grid resolution, accounting for the mixing of natural areas, nonpoint sources, WWTP effluent, and instream denitrification, which is simulated as a function of river temperature, water residence time, and biogeochemical activity. Model validation was done using N concentration data from 750 USGS gauges across the northeast during the period 2000-2010. Confidence intervals (90%) are estimated for river N concentrations based on key uncertainties in simulated river width, uptake rates, and N loading rates. Model results suggest WWTPs potentially impact 25,770 km of river length (10.7% of total river length in the northeast) and increase N concentrations an average of 42.3% at the facility locations. The in-stream ecosystem service of N removal accounts for 2.7% of the total cumulative N removed by WWTPs during the summer in the region. Despite providing a relatively small proportion of N removal, the expected deterioration of WWTP infrastructure and associated costs of upgrading existing systems puts the role of this riverine ecosystem service into economic perspective.
Sewage-derived nutrient dynamics in highly urbanized coastal rivers, western Japan
NASA Astrophysics Data System (ADS)
Onodera, S. I.; Saito, M.; Jin, G.; Taniguchi, M.
2016-12-01
Water pollution by domestic sewage is one of the critical environmental problems in the early stage of urbanization with significant growth of population. In case of Osaka metropolitan area in Japan, the pollution was significant until 1970s, while it has been improved by the development of sewage treatment systems. However, removal of nitrogen needs the advanced process therefore relatively large part of dissolved inorganic nitrogen (DIN) is usually discharged by treated sewage effluent. Besides, increase of sewage-derived pollutant loads through the combined sewage systems during rainfall events is recognized as a new problem in recent years. However, the impacts of sewage-derived loads on the water environment of river and coastal area have not been fully evaluated in previous studies. In the present research, we aimed to examine the dynamics of sewage-derived nutrients in highly urbanized coastal rivers. Study area is located on the coastal area of Osaka bay in Seto Inland Sea, western Japan. Treated sewage effluent is discharged from three sewage treatment plants (KH, SU and SA) to a river and channels. Water and sediment samples were collected and electric conductivity (EC), chlorophyll-a (Chl.-a) and dissolved oxygen concentration (DO) were measured from the discharging points to few kilometers offshore at 100-300 m intervals. Nutrients (nitrogen, phosphorus and silica), nitrogen and carbon contents and stable isotope ratios (δ15N and δ13C) of particulate organic matter (POM) and sediment, nitrogen and oxygen stable isotope ratios (δ15N and δ18O) in nitrate (NO3-) were measured. Nitrate-nitrogen (NO3-N) concentration were significantly high near the discharging point then it decreased to offshore suggesting that impact zone of sewage effluent is about 1 km from the discharging point. Significant NO3-N uptake by phytoplankton as well as dilution process were suggested in the area. However, the impact zone expanded more than twofold during the rainfall event (>20mm/h). Nutrient contents were significantly high both in the sediment and pore water near the discharging points and it caused relatively high diffusion flux to overlying water. It suggests nutrient regeneration process from the sediment is the secondary loading process in the study area.
Yang, Xu; Zhang, Xueping; Wang, Jifu; Zhao, Guangying; Wang, Baojian
2014-05-01
The slightly polluted source water of Yellow River was pretreated in a horizontal subsurface flow constructed wetland (HSFCW) and a lateral subsurface flow constructed wetland (LSFCW) in the Ji'nan city Reservoir, Shandong, China. During almost one years run, the results showed that at the hydraulic loading rate of 1 m/day, the removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), ammonium nitrogen (NH4 (+)-N) and total phosphorus (TP) in the HSFCW were 48.9, 51.4, 48.7 and 48.9 %, respectively, and the corresponding removal efficiencies in the LSFCW were 50.51, 53.12, 50.44 and 50.83 %, respectively. The HSFCW and LSFCW had a similar high potential for nutrients removal and LSFCW was slightly better. According to the China standard for surface water resources (GB3838-2002), mean effluent COD can reach the Class I (≤ 15 mg/L), and NH4 (+)-N and TP and TN can reach nearly the Class I (≤ 0.015 mg/L), the Class III (≤ 0.05 mg/L) and the Class IV (≤ 1.5 mg/L), respectively. It can be concluded that the slightly polluted source water from Reservoir was pretreated well by the constructed wetland.
Zeeman, Grietje; Kujawa, Katarzyna; de Mes, Titia; Hernandez, Lucia; de Graaff, Marthe; Abu-Ghunmi, Lina; Mels, Adriaan; Meulman, Brendo; Temmink, Hardy; Buisman, Cees; van Lier, Jules; Lettinga, Gatze
2008-01-01
Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas production. Post-treatment of the effluent is providing recovery of phosphorus and removal of remaining COD and nitrogen. The total energy saving of the new sanitation concept amounts to 200 MJ/year in comparison with conventional sanitation, moreover 0.14 kg P/p/year and 90 litres of potential reusable water are produced. (c) IWA Publishing 2008.
Ryu, Byung-Gon; Kim, Woong; Heo, Sung-Woon; Kim, Donghyun; Choi, Gang-Guk; Yang, Ji-Won
2015-09-01
This work describes the development of a microalga-mediated process for simultaneous removal of residual ammonium nitrogen (NH4(+)-N) and production of lipids from biologically treated coke effluent. Four species of green algae were tested using a sequential mixotrophic process. In the first phase-CO2-supplied mixotrophic condition-all microalgae assimilated NH4(+)-N with no evident inhibition. In second phase-volatile fatty acids (VFAs)-supplied mixotrophic condition-removal rates of NH4(+)-N and biomass significantly increased. Among the microalgae used, Arctic Chlorella sp. ArM0029B had the highest rate of NH4(+)-N removal (0.97 mg/L/h) and fatty acid production (24.9 mg/L/d) which were 3.6- and 2.1-fold higher than those observed under the CO2-supplied mixotrophic condition. Redundancy analysis (RDA) indicated that acetate and butyrate were decisive factors for increasing NH4(+)-N removal and fatty acid production. These results demonstrate that microalgae can be used in a sequential process for treatment of residual nitrogen after initial treatment of activated sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.
Moretti, Paul; Choubert, Jean-Marc; Canler, Jean-Pierre; Buffière, Pierre; Pétrimaux, Olivier; Lessard, Paul
2018-02-01
The integrated fixed-film activated sludge (IFAS) process is being increasingly used to enhance nitrogen removal for former activated sludge systems. The aim of this work is to evaluate a numerical model of a new nitrifying/denitrifying IFAS configuration. It consists of two carrier-free reactors (anoxic and aerobic) and one IFAS reactor with a filling ratio of 43% of carriers, followed by a clarifier. Simulations were carried out with GPS-X involving the nitrification reaction combined with a 1D heterogeneous biofilm model, including attachment/detachment processes. An original iterative calibration protocol was created comprising four steps and nine actions. Experimental campaigns were carried out to collect data on the pilot in operation, specifically for modelling purpose. The model used was able to predict properly the variations of the activated sludge (bulk) and the biofilm masses, the nitrification rates of both the activated sludge and the biofilm, and the nitrogen concentration in the effluent for short (4-10 days) and long (300 days) simulation runs. A calibrated parameter set is proposed (biokinetics, detachment, diffusion) related to the activated sludge, the biofilm and the effluent variables to enhance the model prediction on hourly and daily data sets.
Photochemical ozone formation from petroleum refinery emissions
NASA Astrophysics Data System (ADS)
Sexton, Ken; Westberg, Hal
Atmospheric emissions from the Marathon oil refinery at Robinson, Illinois were investigated during June and July 1977. Surface and aerial measurements were used to provide an integrated, three dimensional monitoring network. Concentrations of ozone, oxides of nitrogen, sulfur dioxide, methane, carbon dioxide, individual non-methane hydrocarbons and halocarbons were recorded on a routine basis. In addition, meteorological parameters such as wind speed, wind direction, solar radiation and mixing height were also measured. The field monitoring study focused on three major areas: (1) characterization of gaseous components within the refinery effluent, especially nonmethane hydrocarbons and nitrogen oxides; (2) natural sunlight bag irradiation experiments to examine ozone forming potential of refinery emissions and (3) aerial measurements of changes in plume chemistry during the first six to eight hours of transport. Results indicate levels of hydrocarbons and nitrogen oxides were elevated downwind of the refinery. Concentrations within the effluent exceeded background values by as much as 300- and 10-fold, respectively. Irradiations of captured refinery emissions suggest excess photochemical ozone can be produced in the first 6 h, with amounts varying according to NMHC/NO x, ratios and initial NMHC concentrations. Real-time measurements on board the aircraft documented instances of ozone buildup in the refinery plume as it drifted downwind.
Anammox-zeolite system acting as buffer to achieve stable effluent nitrogen values.
Yapsakli, Kozet; Aktan, Cigdem Kalkan; Mertoglu, Bulent
2017-02-01
For a successful nitrogen removal, Anammox process needs to be established in line with a stable partial nitritation pretreatment unit since wastewater influent is mostly unsuitable for direct treatment by Anammox. Partial nitritation is, however, a critical bottleneck for the nitrogen removal since it is often difficult to maintain the right proportions of NO 2 -N and NH 4 -N during long periods of time for Anammox process. This study investigated the potential of Anammox-zeolite biofilter to buffer inequalities in nitrite and ammonium nitrogen in the influent feed. Anammox-zeolite biofilter combines the ion-exchange property of zeolite with the biological removal by Anammox process. Continuous-flow biofilter was operated for 570 days to test the response of Anammox-zeolite system for irregular ammonium and nitrite nitrogen entries. The reactor demonstrated stable and high nitrogen removal efficiencies (approximately 95 %) even when the influent NO 2 -N to NH 4 -N ratios were far from the stoichiometric ratio for Anammox reaction (i.e. NO 2 -N to NH 4 -N ranging from 0 to infinity). This is achieved by the sorption of surplus NH 4 -N by zeolite particles in case ammonium rich influent came in excess with respect to Anammox stoichiometry. Similarly, when ammonium-poor influent is fed to the reactor, ammonium desorption took place due to shifts in ion-exchange equilibrium and deficient amount were supplied by previously sorbed NH 4 -N. Here, zeolite acted as a preserving reservoir of ammonium where both sorption and desorption took place when needed and this caused the Anammox-zeolite system to act as a buffer system to generate a stable effluent.
SOURCES AND TRANSFORMATIONS OF NITROGEN, CARBON, AND PHOSPHORUS IN THE POTOMAC RIVER ESTUARY
NASA Astrophysics Data System (ADS)
Pennino, M. J.; Kaushal, S.
2009-12-01
Global transport of nitrogen (N), carbon (C), and phosphorus (P) in river ecosystems has been dramatically altered due to urbanization. We examined the capacity of a major tributary of the Chesapeake Bay, the Potomac River, to transform carbon, nitrogen, and phosphorus inputs from the world’s largest advanced wastewater treatment facility (Washington D.C. Water and Sewer Authority). Surface water and effluent samples were collected along longitudinal transects of the Potomac River seasonally and compared to long-term interannual records of carbon, nitrogen, and phosphorus. Water samples from seasonal longitudinal transects were analyzed for dissolved organic and inorganic nitrogen and phosphorus, total organic carbon, and particulate carbon, nitrogen, and phosphorus. The source and quality of organic matter was characterized using fluorescence spectroscopy, excitation emission matrices (EEMs), and PARAFAC modeling. Sources of nitrate were tracked using stable isotopes of nitrogen and oxygen. Along the river network stoichiometric ratios of C, N, and P were determined across sites and related to changes in flow conditions. Land use data and historical water chemistry data were also compared to assess the relative importance of non-point sources from land-use change versus point-sources of carbon, nitrogen, and phosphorus. Preliminary data from EEMs suggested that more humic-like organic matter was important above the wastewater treatment plant, but more protein-like organic matter was present below the treatment plant. Levels of nitrate and ammonia showed increases within the vicinity of the wastewater treatment outfall, but decreased rapidly downstream, potentially indicating nutrient uptake and/or denitrification. Phosphate levels decreased gradually along the river with a small increase near the wastewater treatment plant and a larger increase and decrease further downstream near the high salinity zone. Total organic carbon levels show a small decrease downstream. Ecological stoichiometric ratios along the river indicate increases in C/N ratios downstream, but no corresponding trend with C/P ratios. The N/P ratios increased directly below the treatment plant and then decreased gradually downstream. The C/N/P ratios remained level until the last two sampling stations within 20 miles of the Chesapeake Bay, where there is a large increase. Despite large inputs, there may be large variations in sources and ecological stoichiometry along rivers and estuaries, and knowledge of these transformations will be important in predicting changes in the amounts, forms, and stoichiometry of nutrient loads to coastal waters.
Liu, Fang; Zhao, Chao-Cheng; Zhao, Dong-Feng; Liu, Guo-Hua
2008-12-15
An up-flow biological aerated filter packed with two layers media was employed for tertiary treatment of textile wastewater secondary effluent. Under steady state conditions, good performance of the reactor was achieved and the average COD, NH(4)(+)-N and total nitrogen (TN) in the effluent were 31, 2 and 8mg/L, respectively. For a fixed dissolved oxygen (DO) concentration, an increase of hydraulic loading resulted in a decrease in substrate removal. With the increase of hydraulic loadings from 0.13 to 0.78m(3)/(m(2)h), the removal efficiencies of COD, NH(4)(+)-N and TN all decreased, which dropped from 52 to 38%, from 90 to 68% and from 45 to 33%, respectively. In addition, the results also confirmed that the increase of COD and NH(4)(+)-N removal efficiencies resulted from the increase of DO concentrations, but this variation trend was not observed for TN removal. With the increase of DO concentrations from 2.4 to 6.1mg/L, the removal efficiencies of COD and NH(4)(+)-N were 39-53% and 64-88%, whenas TN removal efficiencies increased from 39 to 42% and then dropped to 35%.
Grey water characterization and treatment for reuse in an arid environment.
Smith, E; Bani-Melhem, K
2012-01-01
Grey water from a university facilities building in Cairo, Egypt was analysed for basic wastewater parameters. Mean concentrations were calculated based on grab samples over a 16-month period. Values for chemical oxygen demand (COD) and nutrients exceeded values reported in a number of other studies of grey water, while coliform counts were also high. A submerged membrane bioreactor (SMBR) system using a hollow fibre ultrafiltration membrane was used to treat the grey water with the aim of producing effluent that meets reuse guidelines for agriculture. A test run for 50 days at constant transmembrane pressure resulted in very good removal for key parameters including COD, total suspended solids (TSS), colour, turbidity, ammonia nitrogen, anionic surfactants, and coliform bacteria. High standard deviations were observed for COD and coliform concentrations for both monthly grab samples and influent values from the 50-day SMBR experiment. SMBR effluent meets international and local guidelines for at least restricted irrigation, particularly as pertains to COD, TSS, and faecal coliforms which were reduced to mean treated values of 50 mg/L, 0 mg/L (i.e., not detected), and <50 cfu/100 mL, respectively.
Biodecoloration of Reactive Black 5 by the methylotrophic yeast Candida boidinii MM 4035.
Martorell, María M; Pajot, Hipólito F; Ahmed, Pablo M; de Figueroa, Lucía I C
2017-03-01
Azo dyes are extensively used in textile dyeing and other industries. Effluents of dying industries are specially colored and could cause severe damage to the environment. The anaerobic treatment of textile dying effluents is nowadays the preferred option, but it could generate carcinogenic aromatic amines. Recently, yeasts have become a promising alternative, combining unicellular growth with oxidative mechanisms. This work reports the characterization of the first methylotrophic yeast with dye decolorizing ability, Candida boidinii MM 4035 and some insights into its decoloration mechanism. The analysis of two selected media revealed a possible two stages mechanism of Reactive Black 5 decoloration. In glucose poor media, decoloration is incomplete and only the first stage proceeds, leading to the accumulation of a purple compound. In media with higher glucose concentrations, the yeast is able to decolorize totally an initial concentration of 200mg/L. The entire process is co-metabolic, being largely dependent on glucose concentration but being able to proceed with several nitrogen sources. Manganese dependent peroxidase but not laccase activity could be detected during decoloration. Aromatic amines do not accumulate in culture media, supporting an oxidative decoloration mechanism of unknown ecophysiological relevance. Copyright © 2016. Published by Elsevier B.V.
Streamflow and water-quality conditions, Wilsons Creek and James River, Springfield area, Missouri
Berkas, Wayne R.
1982-01-01
A network of water-quality-monitoring stations was established upstream and downstream from the Southwest Wastewater-Treatment Plant on Wilsons Creek to monitor the effects of sewage effluent on water quality. Data indicate that 82 percent of the time the flow in Wilsons Creek upstream from the wastewater-treatment plant is less than the effluent discharged from the plant. On October 15, 1977, an advanced wastewater-treatment facility was put into operation. Of the four water-quality indicators measured at the monitoring stations (specific conductance, dissolved oxygen, pH, and water temperature), only dissolved oxygen showed improvement downstream from the plant. During urban runoff, the specific conductance momentarily increased and dissolved-oxygen concentration momentarily decreased in Wilsons Creek upstream from the plant. Urban runoff was found to have no long-term effects on specific conductance and dissolved oxygen downstream from the plant before or after the addition of the advanced wastewater-treatment facility. Data collected monthly from the James River showed that the dissolved-oxygen concentrations and the total nitrite plus nitrate nitrogen concentrations increased, whereas the dissolved-manganese concentrations decreased after the advanced wastewater-treatment facility became operational.
Septic wastewater treatment using recycled rubber particles as biofiltration media.
Oh, Jin Hwan; Park, Jaeyoung; Ellis, Timothy G
2014-01-01
Performance of the laboratory-scale recycled rubber particles (RRP) biofilter was compared to a conventional gravel system and a peat biofilter for treatment of septic tank effluent. During the study, the RRP biofilter provided similar or better performance than other systems in terms of organic removal and hydraulic capacity. After the start-up period, RRP biofilter achieved removal efficiencies for BOD5, total suspended solids (TSS), ammonia nitrogen of 96%, 93%, and 90%, respectively, over the range of hydraulic loading rates of 57-204 L/m2/d. On the other hand, the peat biofilter failed hydraulically and the gravel system showed high TSS concentrations in the effluent. RRP provided high surface area and sufficient time for biological treatment. In addition, RRP was observed to provide ammonia adsorption capacity. The results showed that RRP has the potential to be used as substitutes for natural aggregate such as gravel in septic system drainfields. The RRP biofilter can be used as alternative septic systems for the sites where an existing septic system has failed or site conditions, such as high groundwater table or small lot size, are not suitable for the installation of conventional septic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. V. Street
This report describes the calendar year 1998 compliance monitoring and environmental surveillance activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Drinking Water, Effluent, Storm Water, Groundwater Monitoring, and Environmental Surveillance Programs. This report compares the 1998 results to program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the monitoring and surveillance activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection ofmore » public health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends, which would indicate a loss of control or unplanned releases from facility operations. The INEEL complied with permits and applicable regulations, with the exception of nitrogen samples in a disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond. Data collected by the Environmental Monitoring Program demonstrate that the public health and environment were protected.« less
Wicklein, Shaun M.
2004-01-01
Tributary streamflow to the St. Johns River in Duval County is thought to be affected by septic tank leachate from residential areas adjacent to these tributaries. Water managers and the city of Jacksonville have committed to infrastructure improvements as part of a management plan to address the impairment of tributary water quality. In order to provide data to evaluate the effects of future remedial activities in selected tributaries, major ion and nutrient concentrations, fecal coliform concentrations, detection of wastewater compounds, and tracking of bacterial sources were used to document septic tank influences on the water quality of selected tributaries. The tributaries Fishing Creek and South Big Fishweir Creek were selected because they drain subdivisions identified as high priority locations for septic tank phase-out projects: the Pernecia and Murray Hill B subdivisions, respectively. Population, housing (number of residences), and septic tank densities for the Murray Hill B subdivision are greater than those for the Pernecia subdivision. Water-quality samples collected in the study basins indicate influences from ground water and septic tanks. Estimated concentrations of total nitrogen ranged from 0.33 to 2.86 milligrams per liter (mg/L), and ranged from less than laboratory reporting limit (0.02 mg/L) to 0.64 mg/L for total phosphorus. Major ion concentrations met the State of Florida Class III surface-water standards; total nitrogen and total phosphorus concentrations exceeded the U.S. Environmental Protection Agency Ecoregion XII nutrient criteria for rivers and streams 49 and 96 percent of the time, respectively. Organic wastewater compounds detected at study sites were categorized as detergents, antioxidants and flame retardants, manufactured polycarbonate resins, industrial solvents, and mosquito repellent. The most commonly detected compound was para-nonylphenol, a breakdown product of detergent. Results of wastewater sampling give evidence that stream water in the study basins is affected by septic tank effluent. Fecal coliform bacteria concentrations were measured on a monthly basis; of 115 samples, 63 percent exceeded the State of Florida fecal coliform bacteria standard for Class III surface waters of 800 colonies per 100 milliliters of water on any 1 day. Fecal coliform bacteria concentrations ranged from less than 20 colonies per 100 milliliters of sample to greater than or equal to 160,000 colonies per 100 milliliters of sample. Antibiotic resistance patterns of fecal coliform bacteria were used to identify the sources of fecal coliform bacteria. Significant sources of fecal coliform bacteria included wild animals, dogs, and humans. A majority of the fecal coliform bacteria were classified to be from human sources. Because the primary source of fecal coliform bacteria is from human sources, and most likely septic tank effluent, management of human sources may substantially improve microbiological water quality in both the Fishing Creek and South Branch Big Fishweir Creek basins.
Code of Federal Regulations, 2010 CFR
2010-07-01
... exceed— Total phosphorus (as P) 105 35 Fluoride 75 25 TSS 150 50 The total suspended solid limitation set...) Maximum for any 1 day Average of daily values for 30 consecutive days shall not exceed— Total phosphorus...
Code of Federal Regulations, 2011 CFR
2011-07-01
... exceed— Total phosphorus (as P) 105 35 Fluoride 75 25 TSS 150 50 The total suspended solid limitation set...) Maximum for any 1 day Average of daily values for 30 consecutive days shall not exceed— Total phosphorus...
Dong, Honghong; Wang, Wei; Song, Zhaozheng; Dong, Hao; Wang, Jianfeng; Sun, Shanshan; Zhang, Zhongzhi; Ke, Ming; Zhang, Zhenjia; Wu, Wei-Min; Zhang, Guangqing; Ma, Jie
2017-09-01
The performance of a laboratory-scale, high-efficiency denitrification bioreactor (15L) using activated sludge immobilized by waterborne polyurethane in treating acrylonitrile wastewater with high concentration of nitrate nitrogen (249mg/L) was investigated. The bioreactor was operated at 30°C for 220days. Batch denitrification experiments showed that the optimal operation parameters were C/NO 3 - -N molar ratio of 2.0 using sodium acetate as electron donor and carrier filling rate of 20% (V/V) in the bioreactor. Stable performance of denitrification was observed with a hydraulic retention time of 30 to 38h. A volumetric removal rate up to 2.1kgN/m 3 ·d was achieved with a total nitrogen removal efficiency of 95%. Pyrosequencing results showed that Rhodocyclaceae and Pseudomonadaceae were the dominant bacterial families in the immobilized carrier and bioreactor effluent. The overall microbial diversity declined as denitrifiers gradually dominated and the relative abundance of other bacteria decreased along with testing time. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Shunli; Hawkins, Gary L; Kiepper, Brian H; Das, Keshav C
2016-08-03
Accumulation of ammonia, measured as total ammonia nitrogen (TAN), a product of protein decomposition in slaughterhouse wastes, inhibits the anaerobic digestion process, reducing digester productivity and leading to failure. Struvite precipitation (SP) is an effective means to remove TAN and enhance the buffering of substrates. Different Mg and P sources were evaluated as reactants in SP in acidogenic digester effluents to reduce its TAN levels. In order to measure impact of TAN removal, a standard biochemical methane potential (BMP) test was conducted to measure methane yield from treatments that had the highest TAN reductions. SP results showed 6 of 9 reagent combinations resulted in greater than 70% TAN removal. The BMP results indicated that SP treatment by adding Mg(OH)₂ and H₃PO₄ resulted in 57.6% nitrogen recovery and 41.7% increase in methane yield relative to the substrate without SP. SP is an effective technology to improve nutrient recovery and methane production from the anaerobic digestion of protein-rich feedstocks.
Hydroponic system for the treatment of anaerobic liquid.
Krishnasamy, K; Nair, J; Bäuml, B
2012-01-01
The effluent from anaerobic digestion process has high concentrations of nutrients, particularly nitrogen, essential for plant growth but is not suitable for direct disposal or application due to high chemical oxygen demand (COD), low dissolved oxygen (DO), odour issues and is potentially phytotoxic. This research explored the optimum conditions of anaerobic effluent for application and dilutions of the effluent required to obtain better plant growth. A small-scale hydroponic system was constructed in a glasshouse to test different concentrations of anaerobic effluent against a commercial hydroponic medium as the control for the growth of silverbeet. It was found that the survival of silverbeet was negatively affected at 50% concentration due to low DO and NH(4) toxicity. The concentration of 20% anaerobic liquid was found to be the most efficient with highest foliage yield and plant growth. The hydroponic system with 20% concentrated effluent had better utilisation of nutrients for plant growth and a COD reduction of 95% was achieved during the 50-day growth period. This preliminary evaluation revealed that the growth and development of silverbeet was significantly lower in anaerobic effluent compared with a commercial hydroponic plant growth solution. The nutrient quality of anaerobic effluent could be highly variable with the process and the waste material used and dilution may depend on the nutrient content of the effluent. It is recommended that, a pre-treatment of the effluent to increase DO and reduce ammonium content is required before plant application, and simple dilution by itself is not suitable for optimum plant growth in a hydroponic system.
The development of a code of practice for single house on-site wastewater treatment in Ireland.
Gill, L W
2011-01-01
The performance of six separate percolation areas was intensively monitored to ascertain the attenuation effects of unsaturated subsoils with respect to on-site wastewater effluent: three sites receiving septic tank effluent, the other three sites receiving secondary treated effluent. The development of a biomat across the percolation areas receiving secondary treated effluent was restricted on these sites compared to those sites receiving septic tank effluent. This created significant differences in terms of the hydraulic loading on the percolation areas with implications for the transport and attenuation of indicator microorganisms and nitrogen down through the subsoils and into the groundwater. The results of this work have formed a large input into the production of a new Code of Practice Wastewater Treatment and Disposal Systems Serving Single Houses. This has led to changes in the design of on-site hydraulic loading from 180 L per capita per day (L/c.d) down to 150 L/c.d. The range of acceptable subsoils receiving septic tank effluent has narrowed for more highly permeable subsoils following a series of tracer studies using bacteriophages. However, the range has been extended for lower permeability subsoils (range 0.08 down to 0.06 m/d) receiving secondary treated effluent in order to encourage the effluent to spread further along the trenches. The maximum individual length of percolation trenches receiving secondary effluent has also been reduced to 10 m to encourage dispersion on a wider area. This paper thus highlights how research can directly feed into a Code of Practice.
NUTRIENT-BASED ECOLOGICAL CONSIDERATIONS FOR STORMWATER MANAGEMENT BASINS: PONDS AND WETLANDS
The effects of stormwater pond and wetland best management practice (BMP) designs on phosphorus and nitrogen concentrations in effluent were considered using extant data and experimental observations from pond and wetland mesocosms. Relative difference between BMP types were eva...
The effects of stormwater pond and wetland best management practice (BMP) designs on phosphorus and nitrogen concentrations in effluent were considered using extant data and experimental observations from pond and wetland mesocosms. Relative difference between BMP types were eva...
Abinandan, S; Bhattacharya, Ribhu; Shanthakumar, S
2015-01-01
Microalgae are product of sustainable development owing to its ability to treat variety of wastewater effluents and thus produced biomass can serve as value added product for various commercial applications. This paper deals with the cultivation of microalgae species namely Chlorella pyrenoidosa and Scenedesmus abundans in rice mill effluent (i.e., paddy soaked water) for nutrient removal. In order to investigate the nutrient removal capability, microalgae are subjected to cultivation in both raw and autoclaved samples. The maximum phosphate removal by Scenedesmus abundans and Chlorella pyrenoidosa in raw sample was 98.3% and 97.6%, respectively, whereas, the removal of ammoniacal nitrogen by Scenedesmus abundans and Chlorella pyrenoidosa in raw sample was 92% and 90.3%, respectively. The growth (measured in terms of chlorophyll content) of Scenedesmus abundans and Chlorella pyrenoidosa in raw sample was 3.88 mg/l and 5.55 mg/l, respectively. The results indicate the suitability of microalgae cultivation in rice mill effluent treatment for nutrient removal.
Martínez-Santos, Miren; Lanzén, Anders; Unda-Calvo, Jessica; Martín, Iker; Garbisu, Carlos; Ruiz-Romera, Estilita
2018-08-15
Studying the dynamics of nitrogen and sulphur cycling bacteria in river surface sediments is essential to better understand their contribution to global biogeochemical cycles. Evaporitic rocks settled at the headwater of the Deba River catchment (northern Spain) lead to high values of sulphate concentration in its waters. Besides, the discharge of effluents from untreated and treated residual (urban and industrial) wastewaters increases the concentration of metals, nutrients and organic compounds in its mid- and low-water courses. The aim of this study was to assess the impact of anthropogenic contamination from untreated and treated residual and industrial wastewaters on the structure and function of bacterial communities present in surface sediments of the Deba River catchment. The application of a quantitative functional approach (qPCR) based on denitrification genes (nir: nirS+nirK; and nosZ), together with a 16S rRNA gene metabarcoding structural analysis, revealed (i) the high relevance of the sulphur cycle at headwater surface sediments (as reflected by the abundance of members of the Syntrophobacterales order, and the Sulfuricurvum and Thiobacillus genera) and (ii) the predominance of sulphide-driven autotrophic denitrification over heterotrophic denitrification. Incomplete heterotrophic denitrification appeared to be predominant in surface sediments strongly impacted by treated and untreated effluents, as reflected by the lower values of the nosZ/nir ratio, thus favouring N 2 O emissions. Understanding nitrogen and sulphur cycling pathways has profound implications for the management of river ecosystems, since this knowledge can help us determine whether a specific river is acting or not as a source of greenhouse gases (i.e., N 2 O). Copyright © 2018 Elsevier B.V. All rights reserved.
Masi, F; Rizzo, A; Martinuzzi, N; Wallace, S D; Van Oirschot, D; Salazzari, P; Meers, E; Bresciani, R
2017-07-01
Swine wastewater management is often affected by two main issues: a too high volume for optimal reuse as a fertilizer and a too high strength for an economically sustainable treatment by classical solutions. Hence, an innovative scheme has been tested to treat swine wastewater, combining a low cost anaerobic reactor, upflow anaerobic sludge blanket (UASB), with intensified constructed wetlands (aerated CWs) in a pilot scale experimental study. The swine wastewater described in this paper is produced by a swine production facility situated in North Italy. The scheme of the pilot plant consisted of: (i) canvas-based thickener; (ii) UASB; (iii) two intensified aerated vertical subsurface flow CWs in series; (iv) a horizontal flow subsurface CW. The influent wastewater quality has been defined for total suspended solids (TSS 25,025 ± 9,323 mg/l), organic carbon (chemical oxygen demand (COD) 29,350 ± 16,983 mg/l), total reduced nitrogen and ammonium (total Kjeldahl nitrogen (TKN) 1,783 ± 498 mg/l and N-NH 4 + 735 ± 251 mg/l) and total phosphorus (1,285 ± 270 mg/l), with nitrates almost absent. The overall system has shown excellent performances in terms of TSS, COD, N-NH 4 + and TKN removal efficiencies (99.9%, 99.6%, 99.5%, and 99.0%, respectively). Denitrification (N-NO 3 - effluent concentration equal to 614 ± 268 mg/l) did not meet the Italian quality standards for discharging in water bodies, mainly because the organic carbon was almost completely removed in the intensified CW beds.
Han, Yuanyuan; Jin, Xibiao; Wang, Feng; Liu, Yongdi; Chen, Xiurong
2014-01-01
During the startup of a full-scale anoxic/aerobic (A/O) biological treatment plant for acrylonitrile wastewater, the removal efficiencies of NH(3)-N and total Kjeldahl nitrogen (TKN) were 1.29 and 0.83% on day 30, respectively. The nitrification process was almost totally inhibited, which was mainly caused by the inhibitory effects of toxic compounds. To eliminate the inhibition, cultivating the bacteria that degrade toxic compounds with patience was applied into the second startup of the biological treatment plant. After 75 days of startup, the inhibitory effects of the toxic compounds on nitrification were eliminated. The treatment plant has been operated stably for more than 3 years. During the last 100 days, the influent concentrations of chemical oxygen demand (COD), NH(3)-N, TKN and total cyanide (TCN) were 831-2,164, 188-516, 306-542 and 1.17-9.57 mg L(-1) respectively, and the effluent concentrations were 257 ± 30.9, 3.30 ± 1.10, 31.6 ± 4.49 and 0.40 ± 0.10 mg L(-1) (n = 100), respectively. Four strains of cyanide-degrading bacteria which were able to grow with cyanide as the sole carbon and nitrogen source were isolated from the full-scale biological treatment plant. They were short and rod-shaped under scanning electron microscopy (SEM) and were identified as Brevundimonas sp., Rhizobium sp., Dietzia natronolimnaea and Microbacterium sp., respectively.
Evaluation of Water Quality Renovation by Advanced Soil-Based Wastewater Treatment Systems
NASA Astrophysics Data System (ADS)
Cooper, J.; Loomis, G.; Kalen, D.; Boving, T.; Morales, I.; DeLuca, J.; Amador, J.
2013-12-01
25% of US households utilize onsite wastewater treatment systems (OWTS) for wastewater management. Advanced technologies were designed to overcome the inadequate wastewater treatment by conventional OWTS in critical shallow water table areas, such as coastal zones, in order to protect ground water quality. In addition to the septic tank and soil drainfield that comprise a conventional OWTS, advanced systems claim improved water renovation with the addition of sand filtration, timed dosing controls, and shallow placement of the infiltrative zone. We determined water quality renovation functions under current water table and temperature conditions, in anticipation of an experiment to measure OWTS response to a climate change scenario of 30-cm increase in water table elevation and 4C temperature increase. Replicate (n=3) intact soil mesocosms were used to evaluate the effectiveness of drainfields with a conventional wastewater delivery (pipe-and-stone) compared to two types of pressurized, shallow narrow drainfield. Results under steady state conditions indicate complete removal of fecal coliform bacteria, phosphorus and BOD by all soil-based systems. By contrast, removal of total nitrogen inputs was 16% in conventional and 11% for both advanced drainfields. Effluent waters maintained a steady state pH between 3.2 - 3.7 for all technologies. Average DO readings were 2.9mg/L for conventional drainfield effluent and 4.6mg/L for advanced, showing the expected oxygen uptake with shallow placement of the infiltrative zone. The conventional OWTS is outperforming the advanced with respect to nitrogen removal, but renovating wastewater equivalently for all other contaminants of concern. The results of this study are expected to facilitate development of future OWTS regulation and planning guidelines, particularly in coastal zones and in the face of a changing climate.
Siegrist, Robert L; Parzen, Rebecca; Tomaras, Jill; Lowe, Kathryn S
2014-04-01
Drip dispersal of partially treated wastewater was investigated as an approach for onsite water reclamation and beneficial reuse of water and nutrients in a semi-arid climate. At the Mines Park Test Site in Golden, Colorado, a drip dispersal system (DDS) was installed at 20- to 30-cm depth in an Ascalon sandy loam soil profile. Two zones with the same layout were established to enable study of two different hydraulic loading rates. Zones 1 and 2 each had one half of the landscape surface with native vegetation and the other with Kentucky bluegrass sod. After startup activities, domestic septic tank effluent was dispersed five times a day at footprint loading rates of 5 L/m(2)/d for Zone 1 and 10 L/m(2)/d for Zone 2. Over a two-year period, monitoring included the frequency and volume of effluent dispersed and its absorption by the landscape. After the first year of operation in October a (15)N tracer test was completed in the sodded portion of Zone 1 and samples of vegetation and soil materials were collected and analyzed for water content, pH, nitrogen, (15)N, and bacteria. Research revealed that both zones were capable of absorbing the effluent water applied at 5 or 10 L/m(2)/d. Effluent water dispersed from an emitter infiltrates at the emitter and along the drip tubing and water movement is influenced by hydrologic conditions. Based on precipitation and evapotranspiration at the Test Site, only a portion of the effluent water dispersed migrated downward in the soil (approx. 34% or 64% for Zone 1 or 2, respectively). Sampling within Zone 1 revealed water filled porosities were high throughout the soil profile (>85%) and water content was most elevated along the drip tubing (17-22% dry wt.), which is also where soil pH was most depressed (pH 4.5) due to nitrification reactions. NH4(+) and NO3(-) retention occurred near the dispersal location for several days and approximately 51% of the N applied was estimated to be removed by plant uptake and denitrification. Heterotrophic bacteria levels were elevated (up to 1 log) in the subsurface within the DDS but there was effective elimination of effluent fecal coliform and Escherichia coli bacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.
Molecular signature of organic nitrogen in septic-impacted groundwater
Arnold, William A.; Longnecker, Krista; Kroeger, Kevin D.; Kujawinski, Elizabeth B.
2014-01-01
Dissolved inorganic and organic nitrogen levels are elevated in aquatic systems due to anthropogenic activities. Dissolved organic nitrogen (DON) arises from various sources, and its impact could be more clearly constrained if specific sources were identified and if the molecular-level composition of DON were better understood. In this work, the pharmaceutical carbamazepine was used to identify septic-impacted groundwater in a coastal watershed. Using ultrahigh resolution mass spectrometry data, the nitrogen-containing features of the dissolved organic matter in septic-impacted and non-impacted samples were compared. The septic-impacted groundwater samples have a larger abundance of nitrogen-containing formulas. Impacted samples have additional DON features in the regions ascribed as ‘protein-like’ and ‘lipid-like’ in van Krevelen space and have more intense nitrogen-containing features in a specific region of a carbon versus mass plot. These features are potential indicators of dissolved organic nitrogen arising from septic effluents, and this work suggests that ultrahigh resolution mass spectrometry is a valuable tool to identify and characterize sources of DON.
Zhang, Guoliang; Qin, Lei; Meng, Qin; Fan, Zheng; Wu, Dexin
2013-08-01
A novel combined process of Fenton oxidation, submerged membrane bioreactor (SMBR) and reverse osmosis (RO) was applied as an appropriate option for old municipal landfill leachate treatment. Fenton process was designed to intensively solve the problem of non-biodegradable organic pollutant removal and low biodegradability of leachate, although the removal of ammonia-nitrogen was similar to 10%. After SMBR treatment, it not only presented a higher removal efficiency of organics, but also exhibited high ammonia-nitrogen removal of 80% on average. The variation of extracellular polymeric substance (EPS) content, zeta potential, and particle size of flocs after Fenton effluent continually fed in SMBR was found to be benefit for alleviating membrane fouling. Finally, three kinds of RO membranes (RE, CPA, and BW) were applied to treat SMBR effluents and successfully met wastewater re-utilization requirement. Compared with simple RO process, the troublesome membrane fouling can be effectively reduced in the combined process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Suitability of anaerobic digestion effluent as process water for corn fuel ethanol fermentation.
Wang, Ke; Zhang, Jian-Hua; Liu, Pei; Mao, Zhong-Gui
2014-01-01
A corn fuel ethanol plant integrated with anaerobic digestion treatment of thin stillage increases the net energy balance. Furthermore, the anaerobic digestion effluent (ADE) can be reused as a potential substitute for process water in the ethanol fermentation. In this study, the suitability of ADE as process water for corn ethanol fermentation was investigated by analyzing the potential inhibitory components in the ADE. It was found that ammonium influenced the growth and metabolism of Saccharomyces cerevisiae. Maximum ethanol production was obtained when the concentration of ammonium nitrogen was 200 mg/L, and ammonium could replace urea as the nitrogen source for S. cerevisiae under this concentration. In the ethanol fermentation with a higher concentration of ammonium, more glycerol was produced, thereby resulting in the decrease of ethanol production. In addition, components except ammonium in the ADE caused no inhibition to ethanol production. These results suggest that ADE could be reused as process water for corn ethanol fermentation without negative effect when ammonium concentration is well controlled.
NASA Astrophysics Data System (ADS)
Katz, Brian G.; Griffin, Dale W.
2008-08-01
Multiple chemical constituents (nutrients; N, O, H, C stable isotopes; 64 organic wastewater compounds, 16 pharmaceutical compounds) and microbiological indicators were used to assess the impact on groundwater quality from the land application of approximately 9.5 million liters per day of treated municipal sewage effluent to a sprayfield in the 960-km2 Ichetucknee Springs basin, northern Florida. Enriched stable isotope signatures (δ18O and δ2H) were found in water from the effluent reservoir and a sprayfield monitoring well (MW-7) due to evaporation; however, groundwater samples downgradient from the sprayfield have δ18O and δ2H concentrations that represented recharge of meteoric water. Boron and chloride concentrations also were elevated in water from the sprayfield effluent reservoir and MW-7, but concentrations in groundwater decreased substantially with distance downgradient to background levels in the springs (about 12 km) and indicated at least a tenfold dilution factor. Nitrate-nitrogen isotope (δ15N NO3) values above 10 ‰ in most water samples were indicative of organic nitrogen sources except Blue Hole Spring (δ15N NO3 = 4.6 4.9 ‰), which indicated an inorganic source of nitrogen (fertilizers). The detection of low concentrations the insect repellent N, N-diethyl-metatoluamide (DEET), and other organic compounds associated with domestic wastewater in Devil’s Eye Spring indicated that leakage from a nearby septic tank drainfield likely has occurred. Elevated levels of fecal coliforms and enterococci were found in Blue Hole Spring during higher flow conditions, which likely resulted from hydraulic connections to upgradient sinkholes and are consistent with previoius dye-trace studies. Enteroviruses were not detected in the sprayfield effluent reservoir, but were found in low concentrations in water samples from a downgradient well and Blue Hole Spring during high-flow conditions indicating a human wastewater source. The Upper Floridan aquifer in the Ichetucknee Springs basin is highly vulnerable to contamination from multiple anthropogenic sources throughout the springs basin.
Katz, B.G.; Griffin, Dale W.
2008-01-01
Multiple chemical constituents (nutrients; N, O, H, C stable isotopes; 64 organic wastewater compounds, 16 pharmaceutical compounds) and microbiological indicators were used to assess the impact on groundwater quality from the land application of approximately 9.5 million liters per day of treated municipal sewage effluent to a sprayfield in the 960-km2 Ichetucknee Springs basin, northern Florida. Enriched stable isotope signatures (?? 18O and ??2H) were found in water from the effluent reservoir and a sprayfield monitoring well (MW-7) due to evaporation; however, groundwater samples downgradient from the sprayfield have ??18O and ??2H concentrations that represented recharge of meteoric water. Boron and chloride concentrations also were elevated in water from the sprayfield effluent reservoir and MW-7, but concentrations in groundwater decreased substantially with distance downgradient to background levels in the springs (about 12 km) and indicated at least a tenfold dilution factor. Nitrate-nitrogen isotope (??15N-NO3) values above 10 ??? in most water samples were indicative of organic nitrogen sources except Blue Hole Spring (??15N-NO3 = 4.6-4.9 ???), which indicated an inorganic source of nitrogen (fertilizers). The detection of low concentrations the insect repellent N,N-diethyl-metatoluamide (DEET), and other organic compounds associated with domestic wastewater in Devil's Eye Spring indicated that leakage from a nearby septic tank drainfield likely has occurred. Elevated levels of fecal coliforms and enterococci were found in Blue Hole Spring during higher flow conditions, which likely resulted from hydraulic connections to upgradient sinkholes and are consistent with previoius dye-trace studies. Enteroviruses were not detected in the sprayfield effluent reservoir, but were found in low concentrations in water samples from a downgradient well and Blue Hole Spring during high-flow conditions indicating a human wastewater source. The Upper Floridan aquifer in the Ichetucknee Springs basin is highly vulnerable to contamination from multiple anthropogenic sources throughout the springs basin. ?? 2007 Springer-Verlag.
Phillips, P.; Chalmers, A.
2009-01-01
Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater-treatment-plant effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater-treatment-plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP-effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10-100 ??g/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 ??g/l, and urban stream-stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP-effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2-butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 ??g/l) because CSO effluent is untreated, and were higher in urban-stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near-surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate that CSO effluent and urban stormwaters can be a significant major source of OWCs entering large water bodies such as Burlington Bay. ?? 2008 American Water Resources Association.
Vaquer-Sunyer, Raquel; Conley, Daniel J; Muthusamy, Saraladevi; Lindh, Markus V; Pinhassi, Jarone; Kritzberg, Emma S
2015-10-06
Increased anthropogenic pressures on coastal marine ecosystems in the last century are threatening their biodiversity and functioning. Global warming and increases in nutrient loadings are two major stressors affecting these systems. Global warming is expected to increase both atmospheric and water temperatures and increase precipitation and terrestrial runoff, further increasing organic matter and nutrient inputs to coastal areas. Dissolved organic nitrogen (DON) concentrations frequently exceed those of dissolved inorganic nitrogen in aquatic systems. Many components of the DON pool have been shown to supply nitrogen nutrition to phytoplankton and bacteria. Predictions of how global warming and eutrophication will affect metabolic rates and dissolved oxygen dynamics in the future are needed to elucidate their impacts on biodiversity and ecosystem functioning. Here, we experimentally determine the effects of simultaneous DON additions and warming on planktonic community metabolism in the Baltic Sea, the largest coastal area suffering from eutrophication-driven hypoxia. Both bacterioplankton community composition and metabolic rates changed in relation to temperature. DON additions from wastewater treatment plant effluents significantly increased the activation energies for community respiration and gross primary production. Activation energies for community respiration were higher than those for gross primary production. Results support the prediction that warming of the Baltic Sea will enhance planktonic respiration rates faster than it will for planktonic primary production. Higher increases in respiration rates than in production may lead to the depletion of the oxygen pool, further aggravating hypoxia in the Baltic Sea.
Collison, R S; Grismer, M E
2013-09-01
Comparisons of the performance of constructed-wetland systems (CWs) for treating domestic wastewater in the laboratory and field may use pathogen-free synthetic wastewater to avoid regulatory health concerns. However, little to no data are available describing the relative treatment efficiencies of CWs to both actual and synthetic domestic wastewaters so as to enable such comparison. To fill this gap, treatment performances with respect to organics (chemical organic demand; COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) and a similar-strength synthetic wastewater under planted and non-planted subsurface-flow CWs are determined. One pair of CWs was planted with cattails in May 2008, whereas the adjacent system was non-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each CWs, and effluent samples were collected and tested for COD and nitrogen species regularly during four different periods over six months. Overall, statistically significant greater removal of COD (-12%) and nitrogen (-5%) occurred from the synthetic as compared with the domestic wastewater from the planted and non-planted CWs. Effluent BOD5/COD ratios from the synthetic wastewater CWs averaged nearly twice that from the domestic wastewater CWs (0.17 vs 0.10), reflecting greater concentrations of readily degraded compounds. That removal fractions were consistent across the mid-range loading rates to the CWs suggests that the synthetic wastewater can be used in testing laboratory CWs with reasonable success in application of their results to the field.
Luiz, Marguti André; Sidney Seckler, Ferreira Filho; Passos, Piveli Roque
2018-06-01
An emerging practice for water treatment plant (WTP) sludge is its disposal in wastewater treatment plants (WWTP), an alternative that does not require the installation of sludge treatment facilities in the WTP. This practice can cause both positive and negative impacts in the WWTP processes since the WTP sludge does not have the same characteristics as domestic wastewater. This issue gives plenty of information in laboratory and pilot scales, but lacks data from full-scale studies. The main purpose of this paper is to study the impact of disposing sludge from the Rio Grande conventional WTP into the ABC WWTP, an activated sludge process facility. Both plants are located in São Paulo, Brazil, and are full-scale facilities. The WTP volumetric flow rate (4.5 m³/s) is almost three times that of WWTP (1.6 m³/s). The data used in this study came from monitoring the processes at both plants. The WWTP liquid phase treatment analysis included the variables BOD, COD, TSS, VSS, ammonia, total nitrogen, phosphorus and iron, measured at the inlet, primary effluent, mixed liquor, and effluent. For the WWTP solids treatment, the parameters tested were total and volatile solids. The performance of the WWTP process was analyzed with and without sludge addition: 'without sludge' in years 2005 and 2006 and 'with sludge' from January 2007 to March 2008. During the second period, the WTP sludge addition increased the WWTP removal efficiencies for solids (93%-96%), organic matter (92%-94% for BOD) and phosphorus (52%-88%), when compared to the period 'without sludge'. These improvements can be explained by higher feed concentrations combined to same or lower effluent concentrations in the 'with sludge' period. No critical negative impacts occurred in the sludge treatment facilities, since the treatment units absorbed the extra solids load from the WTP sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total...
Code of Federal Regulations, 2011 CFR
2011-07-01
... carbonate produced from bertrandite ore as beryllium Beryllium 2,763.000 1,235.000 Chromium (total) 988.200... as beryllium Beryllium 270.6 121.0 Chromium (total) 96.8 39.6 Copper 418.0 220.0 Cyanide (total) 63.8... Beryllium 263.800 118.000 Chromium (total) 94.380 38.610 Copper 407.600 214.500 Cyanide (total) 62.210 25...
Separation of ammonia and phosphate minerals from wastewater using gas-permeable membranes
USDA-ARS?s Scientific Manuscript database
Conservation and recovery of nitrogen and phosphorus from animal wastes and municipal effluents is important because of economic and environmental reasons. In this paper we present a novel technology for separation and recovery of ammonia and phosphorus from liquid swine manure. Phosphorus recovery ...
Nitrogen and Winter Cover Crop Effects on Spring and Summer Nutrient Uptake
USDA-ARS?s Scientific Manuscript database
Fertilization of bermudagrass [Cynodon dactylon (L.) Pers.] with swine-lagoon effluent in summer, April to September, does not match the period of productivity of the winter annual cover crops, annual ryegrass (Lolium multiflorum L.), cereal rye (Secale cereale), and berseem clover (Trifolium alexan...
Managing Vegetation on Peat-Sand Filter Beds for Wastewater Disposal
Arthur E. Elling
1985-01-01
Five species of grass, one sedge, and cattail were grown on a peat-sand filter bed irrigated with sewage effluent. Yields, uptake of nitrogen and phosphorus, and lodging problems were determined for all species when grown to various heights ranging from 5 to 75 cm.
Malamis, S; Katsou, E; Di Fabio, S; Bolzonella, D; Fatone, F
2014-09-01
This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of phosphorus from the anaerobic supernatant of OFMSW is an interesting research topic that has not yet been explored. At the moment, standardization in the design of facilities that treat anaerobic supernatant produced from the treatment of OFMSW is still under development. To move toward this direction, it is first necessary to assess the performance of alternative treatment options. It study concentrates existing data regarding the characteristics of the anaerobic supernatant produced from the treatment of OFMSW and from their co-digestion with other BOW. This provides data documenting the effect of the anaerobic digestion operating conditions on the supernatant quality and critically evaluates alternative options for the post-treatment of the liquid fraction produced from the anaerobic digestion process.
Microbial community and performance of slaughterhouse wastewater treatment filters.
Stets, M I; Etto, R M; Galvão, C W; Ayub, R A; Cruz, L M; Steffens, M B R; Barana, A C
2014-06-16
The performance of anaerobic filter bioreactors (AFs) is influenced by the composition of the substrate, support medium, and the microbial species present in the sludge. In this study, the efficiency of a slaughterhouse effluent treatment using three AFs containing different support media was tested, and the microbial diversity was investigated by amplified ribosomal DNA restriction analysis and 16S rRNA gene sequencing. The physicochemical analysis of the AF systems tested suggested their feasibility, with rates of chemical oxygen demand removal of 72±8% in hydraulic retention times of 1 day. Analysis of pH, alkalinity, volatile acidity, total solids, total volatile solids, total Kjeldahl nitrogen, and the microbial community structures indicated high similarity among the three AFs. The composition of prokaryotic communities showed a prevalence of Proteobacteria (27.3%) and Bacteroidetes (18.4%) of the Bacteria domain and Methanomicrobiales (36.4%) and Methanosarcinales (35.3%) of the Archaea domain. Despite the high similarity of the microbial communities among the AFs, the reactor containing pieces of clay brick as a support medium presented the highest richness and diversity of bacterial and archaeal operational taxonomic units.
Johannessen, Sophia C; Macdonald, Robie W; Burd, Brenda; van Roodselaar, Albert; Bertold, Stan
2015-03-01
To predict the likely effects of management action on any point source discharge into the coastal ocean, it is essential to understand both the composition of the effluent and the environmental conditions in the receiving waters. We illustrate a broadly-applicable approach to evaluating the comprehensive environmental footprint of a discharge, using regional geochemical budgets and nearfield monitoring. We take as a case study municipal effluent discharged into the Strait of Georgia (west coast of Canada), where there has been public controversy over the discharge of screened or primary-treated effluent directly into the ocean. Wastewater contributes ≤ 1% of the nitrogen, organic carbon and oxygen demand in the Strait and is unlikely to cause eutrophication, harmful algal blooms or hypoxia in this region. Metals (Hg, Pb, Cd) are controlled by natural cycles augmented by past mining and urbanization, with 0.3-5% of the flux contributed by wastewater. Wastewater contributes ~5% of PCBs but ≤ 60% of PBDEs and is likely also important for pharmaceuticals and personal care products. Effects of high organic flux on benthos are measurable in the immediate receiving environment. The availability of particle-active contaminants to enter the food chain depends on how long those contaminants remain in the sediment surface mixed layer before burial. Secondary treatment, slated for completion in Vancouver in 2030, will reduce fluxes of some contaminants, but will have negligible effect on regional budgets for organic carbon, nitrogen, oxygen, metals and PCBs. Removal of PBDEs from wastewater will affect regional budgets, depending on how the sludge is sequestered. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Langergraber, Guenter; Pressl, Alexander; Haberl, Raimund
2014-01-01
This paper describes the results of the first full-scale implementation of a two-stage vertical flow constructed wetland (CW) system developed to increase nitrogen removal. The full-scale system was constructed for the Bärenkogelhaus, which is located in Styria at the top of a mountain, 1,168 m above sea level. The Bärenkogelhaus has a restaurant with 70 seats, 16 rooms for overnight guests and is a popular site for day visits, especially during weekends and public holidays. The CW treatment system was designed for a hydraulic load of 2,500 L.d(-1) with a specific surface area requirement of 2.7 m(2) per person equivalent (PE). It was built in fall 2009 and started operation in April 2010 when the restaurant was re-opened. Samples were taken between July 2010 and June 2013 and were analysed in the laboratory of the Institute of Sanitary Engineering at BOKU University using standard methods. During 2010 the restaurant at Bärenkogelhaus was open 5 days a week whereas from 2011 the Bärenkogelhaus was open only on demand for events. This resulted in decreased organic loads of the system in the later period. In general, the measured effluent concentrations were low and the removal efficiencies high. During the whole period the ammonia nitrogen effluent concentration was below 1 mg/L even at effluent water temperatures below 3 °C. Investigations during high-load periods, i.e. events like weddings and festivals at weekends, with more than 100 visitors, showed a very robust treatment performance of the two-stage CW system. Effluent concentrations of chemical oxygen demand and NH4-N were not affected by these events with high hydraulic loads.
Woodard, Kenneth R; French, Edwin C; Sweat, Lewin A; Graetz, Donald A; Sollenberger, Lynn E; Macoon, Bisoondat; Portier, Kenneth M; Rymph, Stuart J; Wade, Brett L; Prine, Gordon M; Van Horn, Harold H
2003-01-01
In northern Florida, year-round forage systems are used in dairy effluent sprayfields to reduce nitrate leaching. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentration below the rooting zone for two perennial, sod-based, triple-cropping systems over four 12-mo cycles (1996-2000). The soil is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzip-samment). Effluent N rates were 500, 690, and 910 kg ha(-1) per cycle. Differences in N removal between a corn (Zea mays L.)-bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (CBR) and corn-perennial peanut (Arachis glabrata Benth.)-rye system (CPR) were primarily related to the performance of the perennial forages. Nitrogen removal of corn (125-170 kg ha(-1)) and rye (62-90 kg ha(-1)) was relatively stable between systems and among cycles. The greatest N removal was measured for CBR in the first cycle (408 kg ha(-1)), with the bermudagrass removing an average of 191 kg N ha(-1). In later cycles, N removal for bermudagrass declined because dry matter (DM) yield declined. Yield and N removal of perennial peanut increased over the four cycles. Nitrate N concentrations below the rooting zone were lower for CBR than CPR in the first two cycles, but differences were inconsistent in the latter two. The CBR system maintained low NO3(-)-N leaching in the first cycle when the bermudagrass was the most productive; however, it was not a sustainable system for long-term prevention of NO3(-)-N leaching due to declining bermudagrass yield in subsequent cycles. For CPR, effluent N rates > or = 500 kg ha(-1) yr(-1) have the potential to negatively affect ground water quality.
Voolaid, Veiko; Ritz, Christian; Tenson, Tanel; Virta, Marko; Kisand, Veljo
2014-01-01
Antibiotics and antibiotic resistant bacteria enter wastewater treatment plants (WWTPs), an environment where resistance genes can potentially spread and exchange between microbes. Several antibiotic resistance genes (ARGs) were quantified using qPCR in three WWTPs of decreasing capacity located in Helsinki, Tallinn, and Tartu, respectively: sulphonamide resistance genes (sul1 and sul2), tetracycline resistance genes (tetM and tetC), and resistance genes for extended spectrum beta-lactams (blaoxa-58, blashv-34, and blactx-m-32). To avoid inconsistencies among qPCR assays we normalised the ARG abundances with 16S rRNA gene abundances while assessing if the respective genes increased or decreased during treatment. ARGs were detected in most samples; sul1, sul2, and tetM were detected in all samples. Statistically significant differences (adjusted p<0.01) between the inflow and effluent were detected in only four cases. Effluent values for blaoxa-58 and tetC decreased in the two larger plants while tetM decreased in the medium-sized plant. Only blashv-34 increased in the effluent from the medium-sized plant. In all other cases the purification process caused no significant change in the relative abundance of resistance genes, while the raw abundances fell by several orders of magnitude. Standard water quality variables (biological oxygen demand, total phosphorus and nitrogen, etc.) were weakly related or unrelated to the relative abundance of resistance genes. Based on our results we conclude that there is neither considerable enrichment nor purification of antibiotic resistance genes in studied conventional WWTPs. PMID:25084517
A single-stage biological process for municipal sewage treatment in tourist areas.
Di Iaconi, C; De Sanctis, M; Lopez, A
2014-11-01
This pilot scale study aims to test the effectiveness of an innovative compact biological system (SBBGR - Sequencing Batch Biofilter Granular Reactor) for treating municipal wastewater in tourist areas characterised by intense seasonal water demand and wastewater discharge. The results obtained after a long term operation of 463 days have shown that the proposed system is able to assure average removal efficiencies higher than 90% for COD (chemical oxygen demand), total suspended solids and TKN (total Kjeldahl nitrogen) independently of the influent concentration values and organic loading, which ranged from 0.2 to 5.1 kgCOD/m(3)biofilter.d Furthermore, the plant showed a high degree of operation flexibility and stability in response to the organic load variations occurring in tourist areas. In fact, no significant deterioration in the plant's effluent quality was observed even during a sudden several-fold increase in organic loading. High nitrogen removal efficiencies (80%, on average) were also achieved thanks to the establishment of simultaneous nitrification-denitrification process favoured by the plant's high biomass concentration and operating conditions. Finally, the system was characterized by an excess sludge production much lower (60-80% lower) than that of conventional biological systems operating without a primary clarifier. An acceptable level of stabilization of excess sludge was also obtained so that a further stabilization process was no longer required. Copyright © 2014 Elsevier Ltd. All rights reserved.
Healy, M G; Burke, P; Rodgers, M
2010-10-01
The aim of this study was to examine the performance of intermittently loaded, 150 mm-diameter stratified filter columns of 2 depths (0.65 and 0.375 m) comprising different media--sand, crushed glass and soil--in polishing the effluent from a laboratory horizontal flow biofilm reactor (HFBR) treating synthetic domestic-strength wastewater. The HFBR has been successfully used to remove organic carbon and ammonium-nitrogen (NH4-N) from domestic wastewater. In this treatment method, wastewater is allowed to flow over and back along a stack of polyvinyl chloride (PVC) sheets. Biofilms on the sheets reduce organic carbon, suspended matter, and nutrients in the wastewater, but to achieve the quality of a septic tank system, additional treatment is required. In all filters, at a hydraulic loading rate of 100 L m(-2) d(-1), 40-65% of chemical oxygen demand (COD) and practically 100% of total suspended solids (TSS) were removed, nitrification was complete, and bacterial numbers were reduced by over 80%, with best removals achieved in the soil filters (93%). Soil polishing filters with the depth of 0.65 m performed best in terms of organic carbon, total nitrogen (Tot-N) and bacterial removal. Data from this preliminary study are useful in the design of treatment systems to polish secondary wastewaters with similar water quality characteristics.
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORY Primary Electrolytic Copper Refining Subcategory § 421.52 Effluent limitations guidelines...,000 lb of product) Total suspended solids 0.100 0.050 Copper 0.0017 0.0008 Cadmium 0.00006 0.00003...
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORY Primary Electrolytic Copper Refining Subcategory § 421.52 Effluent limitations guidelines...,000 lb of product) Total suspended solids 0.100 0.050 Copper 0.0017 0.0008 Cadmium 0.00006 0.00003...
Zamalloa, Carlos; De Vrieze, Jo; Boon, Nico; Verstraete, Willy
2012-01-01
The biomass of industrially grown Phaeodactylum tricornutum was subjected in a novel way to bio-methanation at 33°C, i.e., in an anaerobic membrane bioreactor (AnMBR) at a hydraulic retention time of 2.5 days, at solid retention times of 20 to 10 days and at loading rates in the range of 2.6-5.9 g biomass-COD L(-1) day(-1) with membrane fluxes ranging from 1 to 0.8 L m(-2) h(-1). The total COD recovered as biogas was in the order of 52%. The input suspension was converted to a clear effluent rich in total ammonium nitrogen (546 mg TAN L(-1)) and phosphate (141 mg PO(4)-P L(-1)) usable as liquid fertilizer. The microbial community richness, dynamics, and organization in the reactor were interpreted using the microbial resource management approach. The AnMBR communities were found to be moderate in species richness and low in dynamics and community organization relative to UASB and conventional CSTR sludges. Quantitative polymerase chain reaction analysis revealed that Methanosaeta sp. was the dominant acetoclastic methanogen species followed by Methanosarcina sp. This work demonstrated that the use of AnMBR for the digestion of algal biomass is possible. The fact that some 50% of the organic matter is not liquefied means that the algal particulates in the digestate constitute a considerable fraction which should be valorized properly, for instance as slow release organic fertilizer. Overall, 1 kg of algae dry matter (DM) could be valorized in the form of biogas ( euro 2.07), N and P in the effluent (euro 0.02) and N and P in the digestate (euro 0.04), thus totaling about euro 2.13 per kilogram algae DM.
Two-stage soil infiltration treatment system for treating ammonium wastewaters of low COD/TN ratios.
Lei, Zhongfang; Wu, Ting; Zhang, Yi; Liu, Xiang; Wan, Chunli; Lee, Duu-Jong; Tay, Joo-Hwa
2013-01-01
Soil infiltration treatment (SIT) is ineffective to treat ammonium wastewaters of total nitrogen (TN) > 100 mg l(-1). This study applied a novel two-stage SIT process for effective TN removal from wastewaters of TN>100 mg l(-1) and of chemical oxygen demand (COD)/TN ratio of 3.2-8.6. The wastewater was first fed into the soil column (stage 1) at hydraulic loading rate (HLR) of 0.06 m(3) m(-2) d(-1) for COD removal and total phosphorus (TP) immobilization. Then the effluent from stage 1 was fed individually into four soil columns (stage 2) at 0.02 m(3) m(-2) d(-1) of HLR with different proportions of raw wastewater as additional carbon source. Over the one-year field test, balanced nitrification and denitrification in the two-stage SIT revealed excellent TN removal (>90%) from the tested wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.
Stephen, Dayana Priyadharshini; Ayalur, Bakthavatsalam Kannappan
2017-05-01
The ability of Chlorella pyrenoidosa, a freshwater microalga, to degrade phenolic effluent of coal-based producer gas plant under ambient conditions was investigated. C. pyrenoidosa was able to grow in high-strength phenolic effluent. Major contaminant present in the effluent was phenol (C 6 H 5 OH). The effluent has 1475.3 ± 68 mg/L of initial total phenolic concentration. The effect of nutrients used for algal cultivation in phenol degradation was analyzed by inoculating four different concentrations, viz.,1, 2, 3, and 4 g of wet biomass/L of raw effluent of C. pyrenoidosa mixed with effluent into two batches (with and without nutrients). C. pyrenoidosa was able to degrade more than 95% of the phenol (C 6 H 5 OH) concentration with the algal concentrations of 3 and 4 g/L when supplemented with nutrients. With effluent devoid of nutrients, the average percent reduction in total phenolic compounds was observed to a maximum of 46%. No physical changes in the C. pyrenoidosa were observed during degradation. C. pyrenoidosa was able to consume the organic carbon present in the phenolic compounds as carbon source for its growth despite the inorganic carbon supplemented externally.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Copper 2,875.000 1,370.000 Cyanide (total) 449.200 179.700 Ammonia (as N) 299,400.000 131,600.000... Beryllium 180.4 81.4 Chromium (total) 81.4 33.0 Copper 281.6 134.2 Cyanide (total) 44.0 17.6 Ammonia (as N... 79.370 Chromium (total) 79.370 32.180 Copper 274.600 130.800 Cyanide (total) 42.900 17.160 Ammonia...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Copper 2,875.000 1,370.000 Cyanide (total) 449.200 179.700 Ammonia (as N) 299,400.000 131,600.000... Beryllium 180.4 81.4 Chromium (total) 81.4 33.0 Copper 281.6 134.2 Cyanide (total) 44.0 17.6 Ammonia (as N... 79.370 Chromium (total) 79.370 32.180 Copper 274.600 130.800 Cyanide (total) 42.900 17.160 Ammonia...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Copper 2,875.000 1,370.000 Cyanide (total) 449.200 179.700 Ammonia (as N) 299,400.000 131,600.000... Beryllium 180.4 81.4 Chromium (total) 81.4 33.0 Copper 281.6 134.2 Cyanide (total) 44.0 17.6 Ammonia (as N... 79.370 Chromium (total) 79.370 32.180 Copper 274.600 130.800 Cyanide (total) 42.900 17.160 Ammonia...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Copper 2,875.000 1,370.000 Cyanide (total) 449.200 179.700 Ammonia (as N) 299,400.000 131,600.000... Beryllium 180.4 81.4 Chromium (total) 81.4 33.0 Copper 281.6 134.2 Cyanide (total) 44.0 17.6 Ammonia (as N... 79.370 Chromium (total) 79.370 32.180 Copper 274.600 130.800 Cyanide (total) 42.900 17.160 Ammonia...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Copper 2,875.000 1,370.000 Cyanide (total) 449.200 179.700 Ammonia (as N) 299,400.000 131,600.000... Beryllium 180.4 81.4 Chromium (total) 81.4 33.0 Copper 281.6 134.2 Cyanide (total) 44.0 17.6 Ammonia (as N... 79.370 Chromium (total) 79.370 32.180 Copper 274.600 130.800 Cyanide (total) 42.900 17.160 Ammonia...
USDA-ARS?s Scientific Manuscript database
Nitrate-nitrogen removal rates can be increased substantially in denitrifying bioreactors with a corn cob bed medium compared to woodchips; however, additional organic carbon (C) is released into the effluent. This laboratory column experiment was conducted to test the performance of a post-bed cha...
Corn grain and nutrient uptake response to different swine manure application methods
USDA-ARS?s Scientific Manuscript database
Farmers are looking for better management practices to enhance production and reduce negative environmental impact from nitrogen (N) fertilizer application since N is one of the most important and costly nutrient inputs for crop production. In this field experiment pre-plant swine effluent applicati...
Van Den Hende, Sofie; Beelen, Veerle; Julien, Lucie; Lefoulon, Alexandra; Vanhoucke, Thomas; Coolsaet, Carlos; Sonnenholzner, Stanislaus; Vervaeren, Han; Rousseau, Diederik P L
2016-10-01
To replace costly mechanical aeration by photosynthetical aeration, upflow anaerobic sludge blanket (UASB) effluent of food-industry was treated in an outdoor MaB-floc raceway pond. Photosynthetic aeration was sufficient for nitrification, but the raceway effluent quality was below current discharge limits, despite the high hydraulic retention time (HRT) of 35days. Hereafter, conventional activated sludge (CAS) effluent of food-industry was treated in this pond to recover phosphorus. The two-day HRT results in a more realistic pond area, but the phosphorus removal efficiency was low (20%). High biomass productivities were obtained, i.e. 31.3 and 24.9ton total suspended solids hapond(-1)year(-1) for UASB and CAS effluent, respectively. Bioflocculation enabled successful harvesting of CAS effluent-fed MaB-flocs by settling and filtering at 150-250μm to 22.7% total solids. To conclude, MaB-floc raceway ponds cannot be recommended as the sole treatment for these food-industry effluents, but huge potential lies in added-value biomass production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Performance assessment of aquatic macrophytes for treatment of municipal wastewater
2014-01-01
The objective of the study was to evaluate the performance of three different aquatic macrophytes for treatment of municipal wastewater collected from Taxila (Pakistan). A physical model of treatment plant was constructed and was operated for six experimental runs with each species of macrophyte. Every experimental run consist of thirty days period. Regular monitoring of influent and effluent concentrations were made during each experimental run. For the treatment locally available macrophyte species i.e. water hyacinth, duckweed & water lettuce were selected to use. To evaluate the treatment performance of each macrophyte, BOD5, COD, and Nutrients (Nitrogen and Phosphorus) were monitored in effluent from model at different detention time of every experimental run after ensuring steady state conditions. The average reduction of effluent value of each parameter using water hyacinth were 50.61% for BOD5, 46.38% for COD, 40.34% for Nitrogen and 18.76% for Phosphorus. For duckweed the average removal efficiency for selected parameters were 33.43% for BOD5, 26.37% for COD, 17.59% for Nitrogen and 15.25% for Phosphorus and for Water Lettuce the average removal efficiency were 33.43% for BOD5, 26.37% for COD, 17.59% for Nitrogen and 15.25% for Phosphorus. The mechanisms of pollutant removal in this system include both aerobic and anaerobic microbiological conversions, sorption, sedimentation, volatilization and chemical transformations. The rapid growth of the biomass was measured within first ten days detention time. It was also observed that performance of macrophytes is influenced by variation of pH and Temperature. A pH of 6-9 and Temperature of 15-38°C is most favorable for treatment of wastewater by macrophytes. The option of macrophytes for treatment of Municipal sewage under local environmental conditions can be explored by further verifying the removal efficiency under variation of different environmental conditions. Also this is need of time that macrophyte system should be used for treatment of wastewater because their performance is comparable to conventional wastewater treatment plants and also the system has very low O&M costs. PMID:25089203
Impact of solids residence time on biological nutrient removal performance of membrane bioreactor.
Ersu, Cagatayhan Bekir; Ong, Say Kee; Arslankaya, Ertan; Lee, Yong-Woo
2010-05-01
Impact of long solids residence times (SRTs) on nutrient removal was investigated using a submerged plate-frame membrane bioreactor with anaerobic and anoxic tanks. The system was operated at 10, 25, 50 and 75 days SRTs with hydraulic retention times (HRTs) of 2 h each for the anaerobic and anoxic tanks and 8 h for the oxic tank. Recirculation of oxic tank mixed liquor into the anaerobic tank and permeate into the anoxic tank were fixed at 100% each of the influent flow. For all SRTs, percent removals of soluble chemical oxygen demand were more than 93% and nitrification was more than 98.5% but total nitrogen percent removal seemed to peak at 81% at 50 days SRT while total phosphorus (TP) percent removal showed a deterioration from approximately 80% at 50 days SRT to 60% at 75 days SRT. Before calibrating the Biowin((R)) model to the experimental data, a sensitivity analysis of the model was conducted which indicated that heterotrophic anoxic yield, anaerobic hydrolysis factors of heterotrophs, heterotrophic hydrolysis, oxic endogenous decay rate for heterotrophs and oxic endogenous decay rate of PAOs had the most impact on predicted effluent TP concentration. The final values of kinetic parameters obtained in the calibration seemed to imply that nitrogen and phosphorus removal increased with SRT due to an increase in anoxic and anaerobic hydrolysis factors up to 50 days SRT but beyond that removal of phosphorus deteriorated due to high oxic endogenous decay rates. This indirectly imply that the decrease in phosphorus removal at 75 days SRT may be due to an increase in lysis of microbial cells at high SRTs along with the low food/microorganisms ratio as a result of high suspended solids in the oxic tank. Several polynomial correlations relating the various calibrated kinetic parameters with SRTs were derived. The Biowin((R)) model and the kinetic parameters predicted by the polynomial correlations were verified and found to predict well the effluent water quality of the MBR at 35 days SRT.
Nitrogen removal in Northern peatlands treating mine wastewaters
NASA Astrophysics Data System (ADS)
Palmer, Katharina; Karlsson, Teemu; Turunen, Kaisa; Liisa Räisänen, Marja; Backnäs, Soile
2015-04-01
Natural peatlands can be used as passive purification systems for mine wastewaters. These treatment peatlands are well-suited for passive water treatment as they delay the flow of water, and provide a large filtration network with many adsorptive surfaces on plant roots or soil particles. They have been shown to remove efficiently harmful metals and metalloids from mine waters due to variety of chemical, physical and biological processes such as adsorption, precipitation, sedimentation, oxidation and reduction reactions, as well as plant uptake. Many factors affect the removal efficiency such as inflow water quality, wetland hydrology, system pH, redox potential and temperature, the nature of the predominating purification processes, and the presence of other components such as salts. However, less attention has been paid to nitrogen (N) removal in peatlands. Thus, this study aimed to assess the efficiency of N removal and seasonal variation in the removal rate in two treatment peatlands treating mine dewatering waters and process effluent waters. Water sampling from treatment peatland inflow and outflow waters as well as pore waters in peatland were conducted multiple times during 2012-2014. Water samples were analysed for total N, nitrate-N and ammonium-N. Additionally, an YSI EXO2 device was used for continuous nitrate monitoring of waters discharged from treatment peatlands to the recipient river during summer 2014. The results showed that the oxic conditions in upper peat layer and microbial activity in treatment peatlands allowed the efficient oxidation of ammonium-N to nitrite-N and further to nitrate-N during summer time. However, the slow denitrification rate restricts the N removal as not all of the nitrate produced during nitrification is denitrified. In summer time, the removal rate of total N varied between 30-99 % being highest in late summer. N removal was clearly higher for treatment peatland treating process effluent waters than for peatland treating dewatering waters probably due to more oxidizing conditions. During winter time there is not enough microbial activity to maintain oxidation of ammonium-N to nitrate-N. However, almost 20 % of N may be removed during winter season due to nitrate denitrification.
Haack, Sheridan Kidd; Duris, Joseph W.
2008-01-01
A field trial was done in the Upper Tiffin River Watershed, in southeastern Michigan, to determine the influence of liquid dairy manure effluent (LDME) management practices on the quality of agricultural subsurface-drain water. Samples from subsurface drains were analyzed for nutrients, fecal-coliform and Escherichia coli (E. coli) bacteria, antibiotics, chemicals typically detected in wastewater, and the occurrence of genes indicating the presence of shiga-toxin-producing E. coli, or of bovine-specific Bacteroidetes bacteria. Samples were collected from November 2, 2006, to March 20, 2007, from eight subsurface drains under field plots that received no LDME and no tillage (controls) or received 4,000 or 8,000 gallons per acre (gal/acre) of LDME and either no tillage or two different types of tillage. The two types of tillage tested were (1) ground-driven, rotary, subsurface cultivation and (2) rolling-tine aeration. Samples were collected before LDME application and at 4 hours, and 1, 2, 6, 7, and 14 days post-application. Nutrient concentrations were high in subsurface-drain water throughout the field-trial period and could not be attributed to the field-trial LDME application. Of the 59 drain-water samples, including those collected before LDME application and control samples for each date, 56 had concentrations greater than the U.S. Environmental Protection Agency (USEPA), Ecoregion VI recommended surface-water criterion for total phosphorus, and all samples had concentrations greater than the recommended total nitrogen criterion. Nitrate + nitrite nitrogen concentration exceeded 20 milligrams per liter for every sample and contributed most to the total nitrogen concentrations. Substantial increases in drain-water concentrations of organic and ammonia nitrogen and total phosphorus were found for all treatments, including controls, at 14 days post-application after 0.84 inch of rainfall over 2 days. E. coli concentrations exceeded the USEPA recreational-water-quality single-sample criterion of 235 colony forming units per 100 milliliters in only 3 of 56 samples. Of these three samples, two were collected within 1 day post-LDME application from the treatment receiving 8,000 gal/acre LDME with no tillage (NT8000). The third sample was from the rolling-tine aerator treatment with 4,000 gal/acre LDME application rate after the first significant rainfall. Two wastewater chemicals and two bacterial genes (eaeA and stx1) detected in the LDME, but absent in field blank or pre-application samples, were detected in the 4-hour or 1-day postapplication NT8000 samples. No LDME-associated chemicals were detected in later samples from the NT8000 treatment, and none were detected in samples from other treatments after the first significant rainfall. Results of this field trial were somewhat equivocal with respect to the influence of LDME concentration and tillage practices on subsurface-drain water quality, both immediately after LDME application and in the longer term, after significant rainfall. Interpretation of study findings is limited by the fact that treatments were not replicated, and flow rate or discharge from the subsurface drains was not measured. Nevertheless, study results provide useful information about nutrient and bacteria concentrations in subsurface drains during the non-growing season. In addition, study results demonstrate some potential for the use of chemical and microbiological indicators of LDME transport to subsurface drains.
Nutrient pollution of coastal rivers, bays, and seas
Howarth, Robert; Anderson, Donald; Cloern, James; Elfring, Chris; Hopkinson, Charles; Lapointe, Brian; Malone, Tom; Marcus, Nancy; McGlathery, Karen; Sharpley , Andrew; Walker, Dan
2000-01-01
Over the past 40 years, antipollution laws have greatly reduced discharges of toxic substances into our coastal waters. This effort, however, has focused largely on point-source pollution of industrial and municipal effluent. No comparable effort has been made to restrict the input of nitrogen (N) from municipal effluent, nor to control the flows of N and phosphorus (P) that enter waterways from dispersed or nonpoint sources such as agricultural and urban runoff or as airborne pollutants. As a result, inputs of nonpoint pollutants, particularly N, have increased dramatically. Nonpoint pollution from N and P now represents the largest pollution problem facing the vital coastal waters of the United States.
Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands.
Cui, Lihua; Ouyang, Ying; Yang, Weizhi; Huang, Zhujian; Xu, Qiaoling; Yu, Guangwei
2015-04-15
Three new baffle flow constructed wetlands (CWs), namely the baffle horizontal flow CW (Z1), baffle vertical flow CW (Z2) and baffle hybrid flow CW (Z3), along with one traditional horizontal subsurface flow CW (Z4) were designed to test the removal efficiency of nitrogen (N) and phosphorus (P) from the septic tank effluent under varying hydraulic retention times (HRTs). Results showed that the optimal HRT was two days for maximal removal of N and P from the septic tank effluent among the four CWs. At this HRT, the Z1, Z2, Z3 and Z4 CWs removed, respectively, 49.93, 58.50, 46.01 and 44.44% of TN as well as 87.82, 93.23, 95.97 and 91.30% of TP. Our study further revealed that the Z3 CW was the best design for overall removal of N and P from the septic tank effluent due to its hybrid flow directions with better oxygen supply inside the CW system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Garcia, J C; Oliveira, J L; Silva, A E C; Oliveira, C C; Nozaki, J; de Souza, N E
2007-08-17
This work investigated the treatability of real textile effluents using several systems involving advanced oxidation processes (AOPs) such as UV/H2O2, UV/TiO2, UV/TiO2/H2O2, and UV/Fe2+/H2O2. The efficiency of each technique was evaluated according to the reduction levels observed in the UV absorbance of the effluents, COD, and organic nitrogen reduction, as well as mineralization as indicated by the formation of ammonium, nitrate, and sulfate ions. The results indicate the association of TiO2 and H2O2 as the most efficient treatment for removing organic pollutants from textile effluents. In spite of their efficiency, Fenton reactions based treatment proved to be slower and exhibited more complicated kinetics than the ones using TiO2, which are pseudo-first-order reactions. Decolorization was fast and effective in all the experiments despite the fact that only H2O2 was used.
Potential Impacts of Organic Wastes on Small Stream Water Quality
NASA Astrophysics Data System (ADS)
Kaushal, S. S.; Groffman, P. M.; Findlay, S. E.; Fischer, D. T.; Burke, R. A.; Molinero, J.
2005-05-01
We monitored concentrations of dissolved organic carbon (DOC), dissolved oxygen (DO) and other parameters in 17 small streams of the South Fork Broad River (SFBR) watershed on a monthly basis for 15 months. The subwatersheds were chosen to reflect a range of land uses including forested, pasture, mixed, and developed. The SFBR watershed is heavily impacted by organic wastes, primarily from its large poultry industry, but also from its rapidly growing human population. The poultry litter is primarily disposed of by application to pastures. Our monthly monitoring results showed a strong inverse relationship between mean DOC and mean DO and suggested that concentrations of total nitrogen (TN), DOC, and the trace gases nitrous oxide, methane and carbon dioxide are impacted by organic wastes and/or nutrients from animal manure applied to the land and/or human wastes from wastewater treatment plants or septic tanks in these watersheds. Here we estimate the organic waste loads of these watersheds and evaluate the impact of organic wastes on stream DOC and alkalinity concentrations, electrical conductivity, sediment potential denitrification rate and plant stable nitrogen isotope ratios. All of these water quality parameters are significantly correlated with watershed waste loading. DOC is most strongly correlated with total watershed waste loading whereas conductivity, alkalinity, potential denitrification rate and plant stable nitrogen isotope ratio are most strongly correlated with watershed human waste loading. These results suggest that more direct inputs (e.g., wastewater treatment plant effluents, near-stream septic tanks) have a greater relative impact on stream water quality than more dispersed inputs (land applied poultry litter, septic tanks far from streams) in the SFBR watershed. Conductivity, which is generally elevated in organic wastes, is also significantly correlated with total watershed waste loading suggesting it may be a useful indicator of overall watershed waste loading. Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.
Hammett, K.M.
1990-01-01
Charlotte Harbor is a 270-square-mile estuarine system in west-central Florida. It is being subjected to increasing environmental stress by rapid population growth and development. By 2020, population in the inflow area may double, which will result in increased demands for freshwater and increased waste loads. The Charlotte Harbor inflow area includes about 4,685 square miles. The Myakka, the Peace, and the Caloosahatchee are the major rivers emptying into the harbor. About 70 percent of the land in these three river basins is used for agriculture and range. In the coastal basin around Charlotte Harbor, about 50 percent of the total land area is devoted to commercial or residential uses. Water use in the inflow area is about 565 million gallons per day, of which 59 percent is used for irrigation, 26 percent for industry, 11 percent for public supply, and 4 percent for rural supply. Total freshwater inflow from the three major rivers, the coastal area, and rainfall directly into Charlotte Harbor averages between 5,700 and 6,100 cubic feet per second, which is more than 3,500 million gallons per day. A trend analysis of about 50 years of streamflow data shows a statistically significant decreasing trend for the Peace River stations at Bartow, Zolfo Springs, and Arcadia. No significant trend has been observed in the Myakka or the Caloosahatchee River data. In the Peace River, the decrease in flow may be related to a long-term decline in the potentiometric surface of the underlying Floridan aquifer system, which resulted from ground-water withdrawals. It is not possible to determine whether the trend will continue. However, if it does continue at the same rate, then, except for brief periods of storm runoff, the Peace River at Zolfo Springs could be dry year-round in about 100 years. Of the 114 facilities permitted to discharge domestic or industrial effluent to waters tributary to Charlotte Harbor, 88 are in the Peace River basin. Phosphate ore and citrus processing account for most of the industrial effluent. Several locations in the headwaters of the Peace River have been significantly affected as a result of receiving wastewater effluent. The Peace, the Myakka, and the Caloosahatchee Rivers transport more than 2,000 tons per day of dissolved solids, more than 17 tons per day of nitrogen, and about 6 tons per day of phosphorus. By 2020, the population in the inflow area is expected to increase by more than 500,000 people. They will require an additional 76 million gallons per day for water supply. The increased population will produce an additional 60 million gallons per day of domestic wastewater, which could result in an additional 3 tons per day of nitrogen and 0.65 ton per day of phosphorus. More than 150 square miles of land will be converted to urban uses, which will produce another 0.25 ton per day of nitrogen from urban runoff. These increased nutrient loads can be expected to occur concurrently with decreased freshwater inflow.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Copper Casting Subcategory § 464.22 Effluent limitations guidelines representing the degree of effluent... limitations for copper, lead, zinc, total phenols, oil and grease, and TSS. For non-continuous dischargers... metal poured Copper (T) 0.0307 0.0168 Lead (T) 0.0315 0.0156 Zinc (T) 0.0455 0.0171 Oil and grease 1.2 0...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Copper Casting Subcategory § 464.22 Effluent limitations guidelines representing the degree of effluent... limitations for copper, lead, zinc, total phenols, oil and grease, and TSS. For non-continuous dischargers... metal poured Copper (T) 0.0307 0.0168 Lead (T) 0.0315 0.0156 Zinc (T) 0.0455 0.0171 Oil and grease 1.2 0...
Zhao, Qian; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Fang, Fang
2014-11-01
A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAC compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW). Copyright © 2014. Published by Elsevier B.V.
Wu, Sarah Xiao; Zhu, Jun; Chen, Lide
2017-07-03
This study was undertaken to investigate the effect of two split feeding schemes (600 mL/200 mL and 400 mL/400 mL, designated as FS1 and FS2, respectively) on the performance of a step-fed sequencing batch reactor (SBR) in treating liquid swine manure for nutrient removal. The SBR was run on an 8-h cycle with a repeated pattern of anaerobic/anoxic/aerobic phases in each cycle and the two feedings always occurred at the beginning of each anaerobic phase. A low-level aeration was used (1.0 L/m 3 .sec) for the anoxic/aerobic phase to facilitate nitrification and phosphorus uptake while reducing the energy consumption. The results showed that FS1 reduced NH 4 + -N by 98.7% and FS2 by 98.3%. FS1 had 12.3 mg/L NO 3 -N left in the effluent, while FS2 had 4.51 mg/L. For soluble phosphorus removal, FS1 achieved 95.2%, while FS2 reached only 68.5%. Both feeding schemes achieved ≥ 95% removal of COD. A good power regression was observed between total nitrogen (sum of all three nitrogen species) and the carbon to nitrogen (C/N) ratio, with the correlation coefficients of 0.9729 and 0.9542 for FS1 and FS2, respectively, based on which it was concluded that higher C/N ratios were required to achieve higher nitrogen removal efficiencies.
A study of subsurface wastewater infiltration systems for distributed rural sewage treatment.
Qin, Wei; Dou, Junfeng; Ding, Aizhong; Xie, En; Zheng, Lei
2014-08-01
Three types of subsurface wastewater infiltration systems (SWIS) were developed to study the efficiency of organic pollutant removal from distributed rural sewage under various conditions. Of the three different layered substrate systems, the one with the greatest amount of decomposed cow dung (5%) and soil (DCDS) showed the highest removal efficiency with respect to total nitrogen (TN), where the others showed no significant difference. The TN removal efficiency was increased with an increasing filling height of DCDS. Compared with the TN removal efficiency of 25% in the system without DCDS, the removal efficiency of the systems in which DCDS filled half and one fourth of the height was increased by 72% and 31%, respectively. Based on seasonal variations in the discharge of the typical rural family, the SWIS were run at three different hydraulic loads of 6.5, 13 and 20 cm/d. These results illustrated that SWIS could perform well at any of the given hydraulic loads. The results of trials using different inlet configurations showed that the effluent concentration of the contaminants in the system operating a multiple-inlet mode was much lower compared with the system operated under single-inlet conditions. The effluent concentration ofa pilot-scale plant achieved the level III criteria specified by the Surface Water Quality Standard at the initial stage.
Code of Federal Regulations, 2011 CFR
2011-07-01
... not exceed— Total phosphorus (as P) 105 35 Fluoride (as F) 75 25 (d) The concentration of pollutants... values for 30 consecutive days shall not exceed— Total phosphorus (as P) 105 35 Fluoride (as F) 75 25 [41...
Code of Federal Regulations, 2011 CFR
2011-07-01
... values for 30 consecutive days shall not exceed— Total phosphorus (as P) 105 35 Fluoride (as F) 75 25 (d... Maximum for any 1 day Average of daily values for 30 consecutive days shall not exceed— Total phosphorus...
Code of Federal Regulations, 2010 CFR
2010-07-01
... values for 30 consecutive days shall not exceed— Total phosphorus (as P) 105 35 Fluoride (as F) 75 25 (d... Maximum for any 1 day Average of daily values for 30 consecutive days shall not exceed— Total phosphorus...
Code of Federal Regulations, 2010 CFR
2010-07-01
... not exceed— Total phosphorus (as P) 105 35 Fluoride (as F) 75 25 (d) The concentration of pollutants... values for 30 consecutive days shall not exceed— Total phosphorus (as P) 105 35 Fluoride (as F) 75 25 [41...
Goss, Richard L.
1987-01-01
As part of the statistical summaries, trend tests were conducted. Several small uptrends were detected for total nitrogen, total organic nitrogen, total ammonia nitrogen, total nitrite nitrogen, total nitrate nitrogen, total organic plus ammonia nitrogen, total nitrite plus nitrate nitrogen, and total phosphorus. Small downtrends were detected for biochemical oxygen demand and dissolved magnesium.
NASA Astrophysics Data System (ADS)
Decina, Stephen M.; Templer, Pamela H.; Hutyra, Lucy R.
2018-02-01
Rates of atmospheric deposition are declining across the United States, yet urban areas remain hotspots of atmospheric deposition. While past studies show elevated rates of inorganic nitrogen (N) deposition in cities, less is known about atmospheric inputs of organic N, organic carbon (C), and organic and inorganic phosphorus (P), all of which can affect ecosystem processes, water quality, and air quality. Further, the effect of the tree canopy on amounts and forms of nutrients reaching urban ground surfaces is not well-characterized. We measured growing season rates of total N, organic C, and total P in bulk atmospheric inputs, throughfall, and soil solution around the greater Boston area. We found that organic N constitutes a third of total N inputs, organic C inputs are comparable to rural inputs, and inorganic P inputs are 1.2 times higher than those in sewage effluent. Atmospheric inputs are enhanced two-to-eight times in late spring and are elevated beneath tree canopies, suggesting that trees augment atmospheric inputs to ground surfaces. Additionally, throughfall inputs may directly enter runoff when trees extend above impervious surfaces, as is the case with 26.1% of Boston's tree canopy. Our results indicate that the urban atmosphere is a significant source of elemental inputs that may impact urban ecosystems and efforts to improve water quality, particularly in terms of P. Further, as cities create policies encouraging tree planting to provide ecosystem services, locating trees above permeable surfaces to reduce runoff nutrient loads may be essential to managing urban biogeochemical cycling and water quality.
2015-01-01
Attenuation of the pesticide fipronil and its major degradates was determined during conventional wastewater treatment and wetland treatment. Analysis of flow-weighted composite samples by liquid and gas chromatography–tandem mass spectrometry showed fipronil occurrence at 12–31 ng/L in raw sewage, primary effluent, secondary effluent, chlorinated effluent, and wetland effluent. Mean daily loads of total fipronil related compounds in raw sewage and in plant effluent after chlorination were statistically indistinguishable (p = 0.29; n = 10), whereas fipronil itself was partially removed (25 ± 3%; p = 0.00025; n = 10); the associated loss in toxicity was balanced by the formation of toxic fipronil degradates, showing conventional treatment to be unfit for reducing overall toxicity. In contrast to these findings at the municipal wastewater treatment, both parental fipronil and the sum of fipronil-related compounds were removed in the wetland with efficiencies of 44 ± 4% and 47 ± 13%, respectively. Total fipronil concentrations in plant effluent (28 ± 6 ng/L as fipronil) were within an order of magnitude of half-maximal effective concentrations (EC50) of nontarget invertebrates. This is the first systematic assessment of the fate of fipronil and its major degradates during full-scale conventional wastewater and constructed wetland treatment. PMID:26710933
Alves, L de Carvalho; Cammarota, M C; De França, F P
2006-12-01
The School of Chemistry Environmental Technology Laboratory generates 43.4 1 of effluent with low pH (0.7) and high contents of COD (1908 mgO2 l(-1)), phenol (132.1 mg l(-1)), sulfate (36700 mg l(-1)) and heavy metals (28.2 mg Hg l(-1); 82.1 mg Cr(total) l(-1); 30.8 mg Cu l(-1); 57.4 mg Fe(total) l(-1); 16.2 mg Al l(-1)) weekly. These data show that this effluent presents high toxicity for biological treatment, with a physical-chemical step being necessary before a biological step. Preliminary studies showed that the most toxic constituents of the effluent were sulfate, phenol and total chromium. In this work, a chemical precipitation step with sodium hydroxide or lime was evaluated for the toxicity reduction on anaerobic microbial consortium. These experiments were carried out with increasing concentrations of alkalis in the effluent in order to obtain pH initial values of 8-12. Similar results were obtained for COD (15-28%), turbidity (95-98%), phenol (13-24%) and total chromium (99.8-99.9%) removals in each condition studied with soda or lime. Sulfate was only removed by precipitation with lime, obtaining reductions from 84 to 88%. The toxicity on the anaerobic sludge was studied employing specific methanogenic activity (SMA) analysis of raw and treated effluent (after chemical precipitation step). The SMA experiments showed that chemical precipitation at pH 8 reduces the toxic effect of the effluent on anaerobic microbial consortium three times (with soda) and thirteen times (with lime). These results indicate that precipitation with lime is more efficient at toxicity removal, however the produced sludge volume is around two times higher than that produced with soda.
Guo, Luchen; He, Keli; Wu, Shubiao; Sun, Hao; Wang, Yanfei; Huang, Xu; Dong, Renjie
2016-08-01
The potential of high-rate TN removal in three aerated horizontal subsurface-flow constructed wetlands to treat high-strength anaerobic digestate supernatant was evaluated. Different strategies of intermittent aeration and effluent recirculation were applied to compare their effect on nitrogen depuration performance. Additional glucose supply and iron-activated carbon based post-treatment systems were established and examined, respectively, to further remove nitrate that accumulated in the effluents from aerated wetlands. The results showed that intermittent aeration (1 h on:1 h off) significantly improved nitrification with ammonium removal efficiency of 90% (18.1 g/(m(2)·d)), but limited TN removal efficiency (53%). Even though effluent recirculation (a ratio of 1:1) increased TN removal from 53% to 71%, the effluent nitrate concentration was still high. Additional glucose was used as a post-treatment option and further increased the TN removal to 82%; however, this implementation caused additional organic pollution. Furthermore, the iron-activated carbon system stimulated with a microelectrolysis process achieved greater than 85% effluent nitrate removal and resulted in 86% TN removal. Considering the high TN removal rate, aerated constructed wetlands integrated with a microelectrolysis-driven system show great potential for treating high-strength digestate supernatant. Copyright © 2016 Elsevier Ltd. All rights reserved.
Radiological effluents released and public doses from nuclear power plants in Korea.
Son, Jung Kwon; Kim, Hee Geun; Kong, Tae Young; Ko, Jong Hyun; Lee, Goung Jin
2013-08-01
As of the end of 2010, there were 20 commercially operating nuclear reactors in Korea. Releases of radioactive effluents from nuclear power plants (NPPs) have increased continuously; the total radioactivity of effluent amount released in 2010 was 547.12 TBq. From 2001 to 2010, the annual average radioactivity of gaseous and liquid effluents per reactor was 11.61 TBq for pressurised water reactors and 118.12 TBq for pressurised heavy water reactors. Most of the radioactivity from gaseous and liquid effluents came from tritium. Based on the results of release trends and analyses, the characteristics of effluents have been investigated to improve the management of radioactive effluents from NPPs.
Del Rosario, Katie L; Humphrey, Charles P; Mitra, Siddhartha; O'Driscoll, Michael A
2014-01-01
On-site wastewater treatment systems (OWS) are a potentially significant non-point source of nutrients to groundwater and surface waters, and are extensively used in coastal North Carolina. The goal of this study was to determine the treatment efficiency of four OWS in reducing total dissolved nitrogen (TDN) and dissolved organic carbon (DOC) concentrations before discharge to groundwater and/or adjacent surface water. Piezometers were installed for groundwater sample collection and nutrient analysis at four separate residences that use OWS. Septic tank effluent, groundwater, and surface water samples (from an adjacent stream) were collected four times during 2012 for TDN and DOC analysis and pH, temperature, electrical conductivity, and dissolved oxygen measurements. Treatment efficiencies from the tank to the groundwater beneath the drainfields ranged from 33 to 95% for TDN and 45 to 82% for DOC, although dilution accounted for most of the concentration reductions. There was a significant positive correlation between nitrate concentration and separation distance from trench bottom to water table and a significant negative correlation between DOC concentration and separation distance. The TDN and DOC transport (>15 m) from two OWS with groundwater saturated drainfield trenches was significant.
Vertical flow constructed wetlands: kinetics of nutrient and organic matter removal.
Pérez, M M; Hernández, J M; Bossens, J; Jiménez, T; Rosa, E; Tack, F
2014-01-01
The kinetics of organic matter and nutrient removal in a pilot vertical subsurface wetland with red ferralitic soil as substrate were evaluated. The wetland (20 m(2)) was planted with Cyperus alternifolius. The domestic wastewater that was treated in the wetland had undergone a primary treatment consisting of a septic moat and a buffer tank. From the sixth week of operation, the performance of the wetland stabilized, and a significant reduction in pollutant concentration of the effluent wastewater was obtained. Also a significant increase of dissolved oxygen (5 mg/l) was obtained. The organic matter removal efficiency was greater than 85% and the nutrient removal efficiency was greater than 75% in the vertical subsurface wetland. Nitrogen and biochemical oxygen demand (BOD) removal could be described by a first-order model. The kinetic constants were 3.64 and 3.27 d(-1) for BOD and for total nitrogen, respectively. Data on the removal of phosphorus were adapted to a second-order model. The kinetic constant was 0.96 (mg/l)(-1) d(-1). The results demonstrated the potential of vertical flow constructed wetlands to clean treated domestic wastewater before discharge into the environment.
Man, Yu Bon; Chow, Ka Lai; Man, Ming; Lam, James Chung Wah; Lau, Frankie Tat Kwong; Fung, Wing Cheong; Wong, Ming Hung
2015-02-01
This study was to investigate removal efficiencies and profiles of 14 polybrominated diphenyl ether (PBDE) congeners by two different types of sewage treatment work (STW) in Hong Kong: Stonecutters Island STW (SCISTW) which uses chemically enhanced primary treatment (CEPT) process and Sha Tin STW (STSTW) which adopts biological treatment. The results indicated that both SCISTW and STSTW had a high total removal efficiency for BDE-47, BDE-99 BDE-209 and total PBDEs (SCISTW: 71.6 ± 15.8, 84.7 ± 12.3, 96.0 ± 2.62 and 87.4 ± 8.02%, respectively; STSTW: 74.8 ± 9.5, 90.7 ± 9.14, 96.2 ± 2.41 and 89.3 ± 2.62%, respectively) and PBDEs were chiefly removed by sorption. However, the profile of PBDEs demonstrated that the relative proportions of BDE-28 and BDE-47 in total PBDEs markedly increased, while that of BDE-209 decreased in the effluent samples of the two sewage treatment works, especially in STSTW. The percentage of BDE-209 in total PBDEs in effluent (49.3%) of SCISTW was 21.2% lower than that in influent (70.5%), and the percentage of BDE-209 in total PBDEs in effluent (13.8%) of STSTW was 34.1% reduced from influent (47.9%). Despite overall removal, the percentage of BDE-47 in total PBDEs in effluent (17.6%) of SCISTW was 6.85% higher than that in influent (10.7%), and the percentage of BDE-47 in total PBDEs in effluent (33.5%) of STSTW was 18.1% increased from influent (16.8%). The increase in proportion of BDE-47 in the effluent might raise environmental and public health concerns. Our study is a first attempt in reporting the PBDE congener profiles in different phases of sewage treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Maximum for any 1 day Average of daily values for 30 consecutive days shall not exceed— Total phosphorus... exceed— Total phosphorus (as P) 105 35 Fluoride 75 25 [39 FR 12836, Apr. 8, 1974, as amended at 41 FR...
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Maximum for any 1 day Average of daily values for 30 consecutive days shall not exceed— Total phosphorus... exceed— Total phosphorus (as P) 105 35 Fluoride 75 25 [39 FR 12836, Apr. 8, 1974, as amended at 41 FR...
Code of Federal Regulations, 2010 CFR
2010-07-01
... mg/l total organic carbon (TOC) based upon an analysis of any single grab or composite sample. (2) If... contaminated runoff which exceeds 15 mg/l oil and grease or 110 mg/l TOC is not commingled or treated with any... substitute TOC as a parameter in lieu of COD. A TOC effluent limitation shall be based on effluent data from...
Peng, Lai; Carvajal-Arroyo, José M; Seuntjens, Dries; Prat, Delphine; Colica, Giovanni; Pintucci, Cristina; Vlaeminck, Siegfried E
2017-12-15
The implementation of nitritation/denitritation (Nit/DNit) as alternative to nitrification/denitrification (N/DN) is driven by operational cost savings, e.g. 1.0-1.8 EUR/ton slurry treated. However, as for any biological nitrogen removal process, Nit/DNit can emit the potent greenhouse gas nitrous oxide (N 2 O). Challenges remain in understanding formation mechanisms and in mitigating the emissions, particularly at a low ratio of organic carbon consumption to nitrogen removal (COD rem /N rem ). In this study, the centrate (centrifuge supernatant) from anaerobic co-digestion of pig slurry was treated in a sequencing batch reactor. The process removed approximately 100% of ammonium a satisfactory nitrogen loading rate (0.4 g N/L/d), with minimum nitrite and nitrate in the effluent. Substantial N 2 O emission (around 17% of the ammonium nitrogen loading) was observed at the baseline operational condition (dissolved oxygen, DO, levels averaged at 0.85 mg O 2 /L; COD rem /N rem of 2.8) with ∼68% of the total emission contributed by nitritation. Emissions increased with higher nitrite accumulation and lower organic carbon to nitrogen ratio. Yet, higher DO levels (∼2.2 mg O 2 /L) lowered the aerobic N 2 O emission and weakened the dependency on nitrite concentration, suggesting a shift in N 2 O production pathway. The most effective N 2 O mitigation strategy combined intermittent patterns of aeration, anoxic feeding and anoxic carbon dosage, decreasing emission by over 99% (down to ∼0.12% of the ammonium nitrogen loading). Without anaerobic digestion, mitigated Nit/DNit decreases the operational carbon footprint with about 80% compared to N/DN. With anaerobic digestion included, about 4 times more carbon is sequestered. In conclusion, the low COD rem /N rem feature of Nit/DNit no longer offsets its environmental sustainability provided the process is smartly operated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Method for reducing nitrogen oxides in combustion effluents
Zauderer, Bert
2000-01-01
Method for reducing nitrogen oxides (NO.sub.x) in the gas stream from the combustion of fossil fuels is disclosed. In a narrow gas temperature zone, NO.sub.x is converted to nitrogen by reaction with urea or ammonia with negligible remaining ammonia and other reaction pollutants. Specially designed injectors are used to introduce air atomized water droplets containing dissolved urea or ammonia into the gaseous combustion products in a manner that widely disperses the droplets exclusively in the optimum reaction temperature zone. The injector operates in a manner that forms droplet of a size that results in their vaporization exclusively in this optimum NO.sub.x -urea/ammonia reaction temperature zone. Also disclosed is a design of a system to effectively accomplish this injection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... achievable (BAT). 425.73 Section 425.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... application of the best available technology economically achievable (BAT). Except as provided in 40 CFR 125... best available technology economically achievable (BAT): The effluent limitations are those for Total...
Code of Federal Regulations, 2013 CFR
2013-07-01
... achievable (BAT). 425.83 Section 425.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... application of the best available technology economically achievable (BAT). Except as provided in 40 CFR 125... best available technology economically achievable (BAT): The effluent limitations are those for Total...
Code of Federal Regulations, 2014 CFR
2014-07-01
... achievable (BAT). 425.83 Section 425.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... application of the best available technology economically achievable (BAT). Except as provided in 40 CFR 125... best available technology economically achievable (BAT): The effluent limitations are those for Total...
Code of Federal Regulations, 2014 CFR
2014-07-01
... achievable (BAT). 425.73 Section 425.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... application of the best available technology economically achievable (BAT). Except as provided in 40 CFR 125... best available technology economically achievable (BAT): The effluent limitations are those for Total...
USDA-ARS?s Scientific Manuscript database
The experiment was conducted at a commercial swine operation located in Lowndes County, Mississippi in an acid Vaiden silty clay (very fine, montmorillonitic, thermic Vertic Hapludalf) used in this study is representative of the Alabama and Mississippi Blackland Prairie major land resource area. A ...
Reduction of excess sludge production using mechanical disintegration devices.
Strünkmann, G W; Müller, J A; Albert, F; Schwedes, J
2006-01-01
The usability of mechanical disintegration techniques for the reduction of excess sludge production in the activated sludge process was investigated. Using three different disintegration devices (ultrasonic homogeniser, stirred media mill, high pressure homogeniser) and different operational parameters of the disintegration, the effect of mechanical disintegration on the excess sludge production and on the effluent quality was studied within a continuously operated, laboratory scale wastewater treatment system with pre-denitrification. Depending on the operational conditions and the disintegration device used, a reduction of excess sludge production of up to 70% was achieved. A combination of mechanical disintegration with a membrane bioreactor process with high sludge age is more energy effective concerning reduction of sludge production than with a conventional activated sludge process at lower sludge ages. Depending on the disintegration parameters, the disintegration has no, or only minor, negative effect on the soluble effluent COD and on the COD-removal capacity of the activated sludge process. Nitrogen-removal was slightly deteriorated by the disintegration, whereas the system used was not optimised for nitrogen removal before disintegration was implemented.
Yamashita, Takahiro; Yamamoto-Ikemoto, Ryoko
2014-01-01
We investigated the removal of nitrogen and phosphate from the effluent of a sewage treatment plant over a long-term operation in bioreactors packed with different combinations of wood and iron, with a trickling filter packed with foam ceramics for nitrification. The average nitrification rate in the trickling filter was 0.17 kg N/m3∙day and remained at 0.11 kg N/m3∙day even when the water temperature was below 15 °C. The denitrification and phosphate removal rates in the bioreactor packed with aspen wood and iron were higher than those in the bioreactor packed with cedar chips and iron. The bioreactor packed with aspen wood and iron continued to remove nitrate and phosphate for >1200 days of operation. The nitrate removal activity of a biofilm attached to the aspen wood from the bioreactor after 784 days of operation was 0.42 g NO3-N/kg dry weight wood∙ day. There was no increase in the amount of dissolved organic matter in the outflow from the bioreactors. PMID:25247426
Dissolved organic nitrogen (DON) profile during backwashing cycle of drinking water biofiltration.
Liu, Bing; Gu, Li; Yu, Xin; Yu, Guozhong; Zhang, Huining; Xu, Jinli
2012-01-01
A comprehensive investigation was made in this study on the variation of dissolved organic nitrogen (DON) during a whole backwashing cycle of the biofiltration for drinking water treatment. In such a cycle, the normalized DON concentration (C(effluent)/C(influent)) was decreased from 0.98 to 0.90 in the first 1.5h, and then gradually increased to about 1.5 in the following 8h. Finally, it remained stable until the end of this 24-hour cycle. This clearly 3-stage profile of DON could be explained by three aspects as follows: (1) the impact of the backwashing on the biomass and the microbial activity; (2) the release of soluble microbial products (SMPs) during the biofiltration; (3) the competition between heterotrophic bacteria and nitrifying bacteria. All the facts supported that more DON was generated during later part of the backwashing cycle. The significance of the conclusion is that the shorter backwashing intervals between backwashing for the drinking water biofilter should further decrease the DON concentration in effluent of biofilter. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Treatment of urea manufacturing facility effluent by Hopea odorata and Khaya ivorensis.
Yavari, Sara; Malakahmad, Amirhossein; Sapari, Nasiman B; Yavari, Saba
2017-04-01
Phytoremediation is an environmentally friendly and sustainable alternative for treatment of nitrogen-enriched wastewaters. In this study, Ta-khian (Hopea odorata) and Lagos mahogany (Khaya ivorensis), two tropical timber plants, were investigated for their performances in treatment of urea manufacturing factory effluent with high nitrogen (N) content. Plant seedlings received four concentrations of N (190, 240, 290 and 340 mg/L N) in laboratory-scale constructed wetlands every 4 days for a duration of 8 weeks. The solution volumes supplied to each container, amount of N recovered by plants and plant growth characteristics were measured throughout the experiment. Results showed that Ta-khian plants were highly effective at reducing N concentration and volume of water. A maximum of 63.05% N recovery was obtained by Ta-khian plants grown in 290 mg/L N, which was assimilated in the chlorophyll molecule structure and shoot biomass. Significant positive correlations have been shown between N recovery percentages and plant growth parameters. Ta-Khian plants can be applied as suitable phytoremediators for mitigating N pollution in water sources.
Qi, Wang; Fang Yee, Lim; Jiangyong, Hu
2014-12-01
The presence of organic compounds in water sources is one of the concerns in water treatment. They are potential precursors of disinfection byproducts (DBPs) and thus induce health problems in humans. Among the emerging DBPs, carcinogenic compound N-nitrosodimethylamine (NDMA) has been receiving attention during the last decade. This study examined the characteristics of organic components in various water sources and investigated their relationships with NDMA formation. Experiments were carried out on selected water samples from both natural water and wastewater. Results showed similar NDMA formation kinetics for both water sources. However, more contribution of NDMA precursors was found to be from the wastewater due to its higher organic nitrogen content. NDMA formation potential (NDMAFP) of secondary effluent ranged from 264 to 530 ng/L. A correlation study between organic compound characteristics and NDMAFP indicated that the majority of NDMA precursors came from dissolved organic nitrogen (DON) compound with small molecular weight (smaller than 500 Da), with correlation R(2) = 0.898. Although secondary treatment removed more than 90% of NDMA precursors, the remaining precursors in secondary effluent would still pose a challenge for water quality.
Effects of aeration on water quality from septic system leachfields.
Potts, David A; Görres, Josef H; Nicosia, Erika L; Amador, José A
2004-01-01
We conducted a pilot-scale study at a research facility in southeastern Connecticut to assess the effects of leachfield aeration on removal of nutrients and pathogens from septic system effluent. Treatments consisted of lysimeters periodically aerated to maintain a headspace O(2) concentration of 0.209 mol mol(-1) (AIR) or vented to an adjacent leachfield trench (LEACH) and were replicated three times. All lysimeters were dosed with effluent from a septic tank for 24 mo at a rate of 12 cm d(-1) and subsequently for 2 mo at 4 cm d(-1). LEACH lysimeters had developed a clogging mat, or biomat, 20 mo before the beginning of our study. The level of aeration in the AIR treatment was held constant regardless of loading rate. No conventional biomat developed in the AIR treatment, whereas a biomat was present in the LEACH lysimeters. The headspace of LEACH lysimeters was considerably depleted in O(2) and enriched in CH(4), CO(2), and H(2)S relative to AIR lysimeters. Drainage water from AIR lysimeters was saturated with O(2) and had significantly lower pH, five-day biological oxygen demand (BOD(5)), and ammonium, and higher levels of nitrate and sulfate than LEACH lysimeters regardless of dosing rate. By contrast, significantly lower levels of total N and fecal coliform bacteria were observed in AIR than in LEACH lysimeters only at the higher dosing rate. No significant differences in total P removal were observed. Our results suggest that aeration may improve the removal of nitrogen, BOD(5), and fecal coliforms in leachfield soil, even in the absence of a biomat.
Carbon and nitrogen stable isotope analysis of three types of oyster tissue in an impacted estuary
NASA Astrophysics Data System (ADS)
Piola, Richard F.; Moore, Stephanie K.; Suthers, Iain M.
2006-01-01
The stable isotope ratios of carbon ( δ13C) and nitrogen ( δ15N) of the muscle, ctenidia and viscera of the Sydney rock oyster, Saccostrea glomerata, showed the dilution and assimilation of tertiary treated sewage along an estuarine gradient. The enriched 15N values of oyster ctenidia and viscera from within 50 m of the sewage outfall indicated the use of 15N-enriched tertiary treated sewage effluent (16 ± 2.3‰) as a nutrient source. The effect of sewage nitrogen on oyster δ15N was localised, with oysters 5 km upstream and downstream of the outfall not significantly enriched. Viscera δ15N was most sensitive to sewage nutrients and δ13C significantly defined an ocean-to-estuarine gradient. High variance in isotope ratios of viscera compromised its use as an indicator of anthropogenic nutrients, and this also reduced the utility of whole-body stable isotope ratios. Ctenidia was the most useful indicator tissue of sewage discharge at the scale of this study, being consistently and significantly enriched in δ15N close to the sewage outfall and δ13C clearly defined an estuarine gradient with less internal variability than viscera. Muscle δ15N was least sensitive to sewage effluent and showed the least variability, making it more suited to investigations of anthropogenic nutrient enrichment over larger spatio-temporal scales.
Site Specific Metal Criteria Developed Using Kentucky Division of Water Procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kszos, L.A.; Phipps, T.L.
1999-10-09
Alternative limits for Cu, Ni, Pb, and Zn were developed for treated wastewater from four outfalls at a Gaseous Diffusion Plant. Guidance from the Kentucky Division of Water (KDOW) was used to (1) estimate the toxicity of the effluents using water fleas (Ceriodaphnia dubia) and fathead minnow (Pimephales promelas) larvae; (2) determine total recoverable and dissolved concentrations of Cu, Pb, Ni, and Zn ; (3) calculate ratios of dissolved metal (DM) to total recoverable metal (TRM); and (4) assess chemical characteristics of the effluents. Three effluent samples from each outfall were collected during each of six test periods; thus, amore » total of 18 samples from each outfall were evaluated for toxicity, DM and TRM. Subsamples were analyzed for alkalinity, hardness, pH, conductivity, and total suspended solids. Short-term (6 or 7 d), static renewal toxicity tests were conducted according to EPA methodology. Ceriodaphnia reproduction was reduced in one test of effluent from Outfall A , and effluent from Outfall B was acutely toxic to both test species during one test. However, the toxicity was not related to the metals present in the effluents. Of the 18 samples from each outfall, more than 65% of the metal concentrations were estimated quantities. With the exception of two total recoverable Cu values in Outfall C, all metal concentrations were below the permit limits and the federal water quality criteria. Ranges of TR for all outfalls were: Cd, ,0.1-0.4 {micro}g/L; Cr,1.07-3.93 {micro}g/L; Cu, 1.59-7.24 {micro}g/L; Pb, <0.1-3.20 {micro}g/L; Ni, 0.82-10.7 {micro}g/L, Zn, 4.75-67.3 {micro}g/L. DM:TRM ratios were developed for each outfall. The proportion of dissolved Cu in the effluents ranged from 67 to 82%; the proportion of dissolved Ni ranged from 84 to 91%; and the proportion of dissolved Zn ranged from 74 to 94%. The proportion of dissolved Pb in the effluents was considerably lower (37-51%). TRM and/or DM concentrations of Cu, Ni, Pb, or Zn differed significantly from outfall to outfall but the DM:TRM ratios for Cu, Ni, and Pb did not. Through the use of the KDOW method, the total recoverable metal measured in an effluent is adjusted by the proportion of dissolved metal present. The resulting alternative total recoverable metal concentration is reported in lieu of the measured total recoverable concentration for determining compliance with permit limits. For example, the monthly average permit limit for Pb in Outfall B (3 {micro}g/L) was exceeded at the Gaseous Diffusion Plant. Through the use of the KDOW method for calculating an alternative total recoverable metal concentration, 4.98 {micro}g Pb/L in Outfall B would be reported as 3.00 {micro}g/L, a difference of > 39%. Thus, the alternative, calculated total recoverable metal concentration provides the discharger with a ''cushion'' for meeting permit limits.« less
Lee, J W; Lee, H W; Kim, S W; Lee, S Y; Park, Y K; Han, J H; Choi, S I; Yi, Y S; Yun, Z
2004-01-01
In order to characterize the nitrogen conversion characteristics in a thermophilic aerobic digestion (TAD) system, a laboratory study has been conducted with the analysis of effluent gas and microbial community in the sludge samples. The lab TAD system was operated with HRT of 3 days and 60 degrees C. Based on the nitrogen mass balance, it has been found that about 2/3 of the daily load of nitrogen was converted to the gaseous form of nitrogen whereas cellular transformation and unmetabolized nitrogen accounted for about 1/3. Among the gaseous nitrogen transformation, significant amount of influent nitrogen had been converted to N2 gas (29% of influent N) and N2O (9% of influent N). Ammonia conversion was only 28% of influent N. The detection of N2O gas is a clear indication of the biological nitrogen reduction process in the thermophilic aerobic digester. No conclusive evidence for the existence of aerobic deammonification has been found. The microbial community analysis showed that thermophilic bacteria such as Bacillus thermocloacae, Bacillus sp. and Clostridial groups dominated in this TAD reactor. The diverse microbial community in TAD sludge may play an important role in removing both strong organics and nitrogen from piggery waste.
Neal, Colin; Jarvie, Helen P; Withers, Paul J A; Whitton, Brian A; Neal, Margaret
2010-03-01
The relationship between soluble and particulate phosphorus was examined for 9 major UK rivers including 26 major tributaries and 68 monitoring points, covering wide-ranging rural and agricultural/urban impacted systems with catchment areas varying from 1 to 6000km(2) scales. Phosphorus concentrations in Soluble Reactive (SRP), Total Dissolved (TDP), Total (TP), Dissolved Hydrolysable (DHP) and Particulate (PP) forms correlated with effluent markers (sodium and boron) and SRP was generally dominant signifying the importance of sewage sources. Low flows were particularly enriched in SRP, TDP and TP for average SRP>100microg/l indicating low effluent dilution. At particularly low average concentrations, SRP increased with flow but effluent sources were still implicated as the effluent markers (boron in particular) increased likewise. For rural areas, DHP had proportionately high concentrations and SRP+DHP concentrations could exceed environmental thresholds currently set for SRP. Given DHP has a high bioavailability the environmental implications need further consideration. PP concentrations were generally highest at high flows but PP in the suspended solids was generally at its lowest and in general PP correlated with particulate organic carbon and more so than the suspended sediment in total. Separation of pollutant inputs solely between effluent and diffuse (agriculture) components is misleading, as part of the "diffuse" term comprises effluents flushed from the catchments during high flow. Effluent sources of phosphorus supplied directly or indirectly to the river coupled with within-river interactions between water/sediment/biota largely determine pollutant levels. The study flags the fundamental need of placing direct and indirect effluent sources and contaminated storage with interchange to/from the river at the focus for remediation strategies for UK rivers in relation to eutrophication and the WFD.
Code of Federal Regulations, 2010 CFR
2010-07-01
... not exceed— Total phosphorus (as P) 105 35 Fluoride (as F) 75 25 TSS 150 50 pH (1) (1) 1 Within the... values for 30 consecutive days shall not exceed— Total phosphorus (as P) 105 35 Fluoride (as F) 75 25 pH...
Code of Federal Regulations, 2010 CFR
2010-07-01
... not exceed— Total phosphorus (as P) 105 35 Fluoride (as F) 75 25 TSS 150 50 pH (1) (1) 1 Within the... values for 30 consecutive days shall not exceed— Total phosphorus (as P) 105 35 Fluoride (as F) 75 25 pH...
Code of Federal Regulations, 2011 CFR
2011-07-01
... not exceed— Total phosphorus (as P) 105 35 Fluoride (as F) 75 25 TSS 150 50 pH (1) (1) 1 Within the... values for 30 consecutive days shall not exceed— Total phosphorus (as P) 105 35 Fluoride (as F) 75 25 pH...
Code of Federal Regulations, 2011 CFR
2011-07-01
... not exceed— Total phosphorus (as P) 105 35 Fluoride (as F) 75 25 TSS 150 50 pH (1) (1) 1 Within the... values for 30 consecutive days shall not exceed— Total phosphorus (as P) 105 35 Fluoride (as F) 75 25 pH...
Singh, G; Bhati, M
2005-06-01
Increasing demand for fodder and fuelwood and the scarcity of a good quality water in arid areas has resulted in a search for an alternative source of water for biomass production. An experiment utilizing municipal effluent in growing Dalbergia sissoo was conducted. Five treatments included T1, municipal effluent at 1 PET (Potential evapo-transpiration) (without plant); T2, municipal effluent at 1/2 PET; T3, municipal effluent at 1PET; T4, municipal effluent at 2 PET; and T5, canal water at 1 PET. Observations included plant height, collar diameter at one-month intervals and plant mineral composition, mineral uptake and changes in soil properties at 24 months of plant age. Application of municipal effluent produced better growth in D. sissoo seedlings. Concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) were greater in seedlings irrigated with municipal effluent than those of the seedlings irrigated by the treatment T5, and positively related with the quantity of irrigation. The concentrations were greatest in foliage compared to the other parts of seedling, with the exception of Cu concentration. Application of municipal effluents resulted in a 2- to 3-fold increase in the concentrations of soil K, Cu, Fe, Mn and Zn, whereas NH4-N and PO4-P availability increased by 8.1- and 4.5-fold, respectively. The increase in soil organic carbon was only observed in treatments T3 and T4. The accumulations of soil NO3-N, Na, Cu, Fe, Mn and Zn were more in lower soil layers but the other soil parameters showed their greatest values in the upper soil layer. Irrigation using municipal effluent did not result in toxicity to the seedlings before the age of 24 months. The results suggest that municipal effluent could be utilized, as an important source of water and nutrients in growing D. sissoo to increase biomass production in the needs of suburban dwellers. However, a preliminary treatment to reduce excess NH4-N and PO4-P will be required before application to the plantation.
Pruell, Richard J; Taplin, Bryan K; Miller, Kenneth M
2017-05-15
Nitrogen isotope ratios (δ 15 N) in juvenile winter flounder, Pseudopleuronectes americanus, were used to examine changes in nitrogen inputs to several Rhode Island, USA estuarine systems. Fish were collected over two three-year periods with a ten-year interval between sampling periods (2002-2004 and 2012-2014). During that interval numerous changes to nutrient management practices were initiated in the watersheds of these estuarine systems including the upgrade of several major wastewater treatment facilities that discharge to Narragansett Bay, which significantly reduced nitrogen inputs. Following these reductions, the δ 15 N values of flounder in several of the systems decreased as expected; however, isotope ratios in fish from upper Narragansett Bay significantly increased. We believe that low δ 15 N values measured in 2002-2004 were related to concentration-dependent fractionation at this location. Increased δ 15 N values measured between 2012 and 2014 may indicate reduced fractionation or that changes in wastewater treatment processes altered the nitrogen isotopic ratios of the effluents. Published by Elsevier Ltd.
Clark, Gregory M.
1997-01-01
Quality Assessment Program. As part of the investigation, intensive monitoring was conducted during water years 1993 through 1995 to assess surface-water quality in the basin. Sampling and analysis focused on nutrients, suspended sediments, and pesticides because of nationwide interest in these constituents. Concentrations of nutrients and suspended sediment in water samples from 19 sites in the upper Snake River Basin, including nine on the main stem, were assessed. In general, concentrations of nutrients and suspended sediment were smaller in water from the 11 sites upstream from American Falls Reservoir than in water from the 8 sites downstream from the reservoir where effects from land-use activities are most pronounced. Median concentrations of dissolved nitrite plus nitrate as nitrogen at the 19 sites ranged from less than 0.05 to 1.60 milligrams per liter; total phosphorus as phosphorus, less than 0.01 to 0.11 milligrams per liter; and suspended sediment, 4 to 72 milligrams per liter. Concentrations of nutrients and suspended sediment in the main stem of the Snake River, in general, increased downstream. The largest concentrations in the main stem were in the middle reach of the Snake River between Milner Dam and the outlet of the upper Snake River Basin at King Hill. Significant differences (p Nutrient and suspended sediment inputs to the middle Snake reach were from a variety of sources. During water year 1995, springs were the primary source of water and total nitrogen to the river and accounted for 66 and 60 percent of the total input, respectively. Isotope and water-table information indicated that the springs derived most of their nitrogen from agricultural activities along the margins of the Snake River. Aquacultural effluent was a major source of ammonia (82 percent), organic nitrogen (30 percent), and total phosphorus (35 percent). Tributary streams were a major source of organic nitrogen (28 percent) and suspended sediment (58 percent). In proportion to its discharge (less than 1 percent), the Twin Falls sewage-treatment plant was a major source of total phosphorus (13 percent). A comparison of discharge and loading in water year 1995 with estimates of instream transport showed a good correlation (relative difference of less than 15 percent) for discharge, total organic nitrogen, dissolved nitrite plus nitrate, total nitrogen, and total phosphorus. Estimates of dissolved ammonia and suspended sediment loads correlated poorly with instream transport; relative differences were about 79 and 61 percent, respectively. The pesticides EPTC, atrazine, desethylatrazine, metolachlor, and alachlor were the most commonly detected in the upper Snake River Basin and accounted for about 75 percent of all pesticide detections. All pesticides detected were at concentrations less than 1 microgram per liter and below water-quality criteria established by the U.S. Environmental Protection Agency. In samples collected from two small agriculturally dominated tributary basins, the largest number and concentrations of pesticides were detected in May and June following early growing season applications. At one of the sites, the pesticide atrazine and its metabolite desethylatrazine were detected throughout the year. On the basis of 37 samples collected basinwide in May and June 1994, total annual subbasin applications and instantaneous instream fluxes of EPTC and atrazine showed logarithmic relations with coefficients of determination (R2 values) of 0.55 and 0.62, respectively. At the time of sampling, the median daily flux of EPTC was about 0.0001 percent of the annual quantity applied, whereas the median daily flux of atrazine was between 0.001 and 0.01 percent.
Hashim, Sarfraz; Yuebo, Xie; Ahmad, Fiaz; Arslan, Chaudhry; Saifullah, Muhammad
2015-01-01
To protect against the environmental pollution, the present research was undertaken to enumerate the Bacterial Technologies (BTs) on the restoration of polluted urban rivers, that is, Fenghu-Song Yang River (FSR) and Xuxi River (XXR). Experimental research accounted for the physiochemical parameters (pH; temperature; dissolved oxygen (DO); chemical oxygen demand (COD); total phosphorus (TP); total nitrogen (TN); and ammonia nitrogen (NH3N)) before and after the BT operation. The results declared that the BT is efficient to restore the polluted rivers up to reliable condition. These results were analyzed by using multivariate statistical techniques (principal component analysis (PCA) and cluster analysis (CA)). These techniques interpreted the complex data sets and expressed the point source information about the water quality of these rivers at SA5, SA6, and SB3 under highly polluted regions. For better understanding, water quality index (WQI) was applied to compute the single numeric value. WQI results are evidence of the above results which prove the water quality of both rivers faced under outrageous condition (below 50 WQI scores) before the BT treatment, but, after the treatment, the rivers were restored from fair to good level (above 50 WQI scores) and overall output of these scores was quite similar to detect the point source of pollution. These results described an abrupt recovery of the urban rivers up to reliable condition for aquatic organism and clear effluents from the rivers.