Sample records for egfr activation upstream

  1. Src-dependent EGFR transactivation regulates lung inflammation via downstream signaling involving ERK1/2, PI3Kδ/Akt and NFκB induction in a murine asthma model.

    PubMed

    El-Hashim, Ahmed Z; Khajah, Maitham A; Renno, Waleed M; Babyson, Rhema S; Uddin, Mohib; Benter, Ibrahim F; Ezeamuzie, Charles; Akhtar, Saghir

    2017-08-30

    The molecular mechanisms underlying asthma pathogenesis are poorly characterized. In this study, we investigated (1) whether Src mediates epidermal growth factor receptor (EGFR) transactivation; (2) if ERK1/2, PI3Kδ/Akt and NF-κB are signaling effectors downstream of Src/EGFR activation; and (3) if upstream inhibition of Src/EGFR is more effective in downregulating the allergic inflammation than selective inhibition of downstream signaling pathways. Allergic inflammation resulted in increased phosphorylation of EGFR, Akt, ERK1/2 and IκB in the lung tissues from ovalbumin (OVA)-challenged BALB/c mice. Treatment with inhibitors of Src (SU6656) or EGFR (AG1478) reduced EGFR phosphorylation and downstream signaling which resulted in the inhibition of the OVA-induced inflammatory cell influx in bronchoalveolar lavage fluid (BALF), perivascular and peribronchial inflammation, fibrosis, goblet cell hyper/metaplasia and airway hyper-responsiveness. Treatment with pathway-selective inhibitors for ERK1/2 (PD89059) and PI3Kδ/Akt (IC-87114) respectively, or an inhibitor of NF-κB (BAY11-7085) also reduced the OVA-induced asthmatic phenotype but to a lesser extent compared to Src/EGFR inhibition. Thus, Src via EGFR transactivation and subsequent downstream activation of multiple pathways regulates the allergic airway inflammatory response. Furthermore, a broader upstream inhibition of Src/EGFR offers an attractive therapeutic alternative in the treatment of asthma relative to selectively targeting the individual downstream signaling effectors.

  2. Lead acetate induces EGFR activation upstream of SFK and PKC{alpha} linkage to the Ras/Raf-1/ERK signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C.-Y.; Wang, Y.-T.; Tzeng, D.-W.

    2009-03-01

    Lead acetate (Pb), a probable human carcinogen, can activate protein kinase C (PKC) upstream of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Yet, it remains unclear whether Pb activation of PKC {yields} ERK1/2 involves receptor/non-receptor tyrosine kinases and the Ras signaling transducer. Here we demonstrate a novel mechanism elicited by Pb for transmitting ERK1/2 signaling in CL3 human non-small-cell lung adenocarcinoma cells. Pb induction of higher steady-state levels of Ras-GTP was essential for increasing phospho-Raf-1{sup S338} and phospho-ERK1/2. Pre-treatment of the cells with a conventional PKC inhibitor Goe6976 or depleting PKC{alpha} using specific small interfering RNA blocked Pb induction ofmore » Ras-GTP. Pb also activated cellular tyrosine kinases. Specific pharmacological inhibitors, PD153035 for epidermal growth factor receptor (EGFR) and SU6656 for Src family tyrosine kinases (SFK), but not AG1296 for platelet-derived growth factor receptor, could suppress the Pb-induced tyrosine kinases, PKC{alpha}, Ras-GTP, phospho-Raf-1{sup S338} and phospho-ERK1/2. Furthermore, phosphorylation of tyrosines on the EGFR multiple autophosphorylation sites and the conserved SFK autophosphorylation site occurred during exposure of cells to Pb for 1-5 min and 5-30 min, respectively. Intriguingly, Pb activation of EGFR required the intrinsic kinase activity but not dimerization of the receptor. Inhibition of SFK or PKC{alpha} activities did not affect EGFR phosphorylation, while knockdown of EGFR blocked SFK phosphorylation and PKC{alpha} activation following Pb. Together, these results indicate that immediate activation of EGFR in response to Pb is obligatory for activation of SFK and PKC{alpha} and subsequent the Ras-Raf-1-MKK1/2-ERK1/2 signaling cascade.« less

  3. The prostaglandin receptor EP2 activates multiple signaling pathways and β-arrestin1 complex formation during mouse skin papilloma development

    PubMed Central

    Chun, Kyung-Soo; Lao, Huei-Chen; Trempus, Carol S.; Okada, Manabu; Langenbach, Robert

    2009-01-01

    Prostaglandin E2 (PGE2) is elevated in many tumor types, but PGE2's contributions to tumor growth are largely unknown. To investigate PGE2's roles, the contributions of one of its receptors, EP2, were studied using the mouse skin initiation/promotion model. Initial studies indicated that protein kinase A (PKA), epidermal growth factor receptor (EGFR) and several effectors—cyclic adenosine 3′,5′-monophosphate response element-binding protein (CREB), H-Ras, Src, protein kinase B (AKT) and extracellular signal-regulated kinase (ERK)1/2—were activated in 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted papillomas and that PKA and EGFR inhibition (H89 and AG1478, respectively) decreased papilloma formation. EP2's contributions to the activation of these pathways and papilloma development were determined by inhibiting endogenous TPA-induced PGE2 production with indomethacin (Indo) and concomitantly treating with the EP2 agonist, CAY10399 (CAY). CAY treatment restored papilloma formation in TPA/Indo-treated mice and increased cyclic adenosine 3′,5′-monophosphate and PKA activation as measured by p-CREB formation. CAY treatment also increased EGFR and Src activation and their inhibition by AG1478 and PP2 indicated that Src was upstream of EGFR. CAY also increased H-Ras, ERK1/2 and AKT activation, and AG1478 decreased their activation indicating EGFR being upstream. Supporting EP2's contribution, EP2−/− mice exhibited 65% fewer papillomas and reduced Src, EGFR, H-Ras, AKT and ERK1/2 activation. G protein-coupled receptor (GPCR) activation of EGFR has been reported to involve Src's activation via a GPCR–β-arrestin–Src complex. Indeed, immunoprecipitation of β-arrestin1 or p-Src indicated the presence of an EP2–β-arrestin1–p-Src complex in papillomas. The data indicated that EP2 contributed to tumor formation via activation of PKA and EGFR and that EP2 formed a complex with β-arrestin1 and Src that contributed to signaling and/or EP2 desensitization. PMID:19587094

  4. Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response

    PubMed Central

    Lee, Hong-Jen; Lan, Li; Peng, Guang; Chang, Wei-Chao; Hsu, Ming-Chuan; Wang, Ying-Nai; Cheng, Chien-Chia; Wei, Leizhen; Nakajima, Satoshi; Chang, Shih-Shin; Liao, Hsin-Wei; Chen, Chung-Hsuan; Lavin, Martin; Ang, K Kian; Lin, Shiaw-Yih; Hung, Mien-Chie

    2015-01-01

    Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition. PMID:25601159

  5. Sphingosine 1-Phosphate Activation of EGFR As a Novel Target for Meningitic Escherichia coli Penetration of the Blood-Brain Barrier

    PubMed Central

    Wang, Xiangru; Maruvada, Ravi; Morris, Andrew J.; Liu, Jun O.; Baek, Dong Jae; Kim, Kwang Sik

    2016-01-01

    Central nervous system (CNS) infection continues to be an important cause of mortality and morbidity, necessitating new approaches for investigating its pathogenesis, prevention and therapy. Escherichia coli is the most common Gram-negative bacillary organism causing meningitis, which develops following penetration of the blood–brain barrier (BBB). By chemical library screening, we identified epidermal growth factor receptor (EGFR) as a contributor to E. coli invasion of the BBB in vitro. Here, we obtained the direct evidence that CNS-infecting E. coli exploited sphingosine 1-phosphate (S1P) for EGFR activation in penetration of the BBB in vitro and in vivo. We found that S1P was upstream of EGFR and participated in EGFR activation through S1P receptor as well as through S1P-mediated up-regulation of EGFR-related ligand HB-EGF, and blockade of S1P function through targeting sphingosine kinase and S1P receptor inhibited EGFR activation, and also E. coli invasion of the BBB. We further found that both S1P and EGFR activations occurred in response to the same E. coli proteins (OmpA, FimH, NlpI), and that S1P and EGFR promoted E. coli invasion of the BBB by activating the downstream c-Src. These findings indicate that S1P and EGFR represent the novel host targets for meningitic E. coli penetration of the BBB, and counteracting such targets provide a novel approach for controlling E. coli meningitis in the era of increasing resistance to conventional antibiotics. PMID:27711202

  6. Naturally occurring phenolic acids modulate TPA-induced activation of EGFR, AP-1, and STATs in mouse epidermis.

    PubMed

    Cichocki, Michał; Dałek, Miłosz; Szamałek, Mateusz; Baer-Dubowska, Wanda

    2014-01-01

    Epidermal growth factor receptor (EGFR) plays an important role in epithelial carcinogenesis and appears to be involved in STATs activation. In this study we investigated the possible interference of naturally occurring phenolic acids with EGFR, activator protein-1 (AP-1), and signal transducers and activators of transcription (STATs) pathways activated by topical application of tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in Balb/c mice epidermis. Pretreatment with tannic or chlorogenic acid resulted in a significant decrease in the phosphorylation of EGFR Y-1068 and Y-1173 tyrosine residues, which was accompanied by reduced activation of AP-1. Tannic acid decreased also the c-Jun AP-1 subunit level and binding to TPA response element (TRE) (3- and 2-fold in comparison with TPA-treated group respectively). Simultaneous reduction of JNK activity might be responsible for reduced activation of AP-1. In contrast to these more complex phenolics, protocatechuic acid increased the activity of JNK and was also the most efficient inhibitor of STATs activation. These results indicate that naturally occurring phenolic acids, by decreasing EGFR, AP-1, and STATs activation, may modulate other elements both upstream and downstream in these pathways and thus inhibit the tumor development. Although more complex phenolics affect mainly the EGFR/AP-1 pathway, STATs seem to be the most important targets for simple compounds, such as protocatechuic acid.

  7. Dynein-mediated trafficking negatively regulates LET-23 EGFR signaling

    PubMed Central

    Skorobogata, Olga; Meng, Jassy; Gauthier, Kimberley; Rocheleau, Christian E.

    2016-01-01

    Epidermal growth factor receptor (EGFR) signaling is essential for animal development, and increased signaling underlies many human cancers. Identifying the genes and cellular processes that regulate EGFR signaling in vivo will help to elucidate how this pathway can become inappropriately activated. Caenorhabditis elegans vulva development provides an in vivo model to genetically dissect EGFR signaling. Here we identified a mutation in dhc-1, the heavy chain of the cytoplasmic dynein minus end–directed microtubule motor, in a genetic screen for regulators of EGFR signaling. Despite the many cellular functions of dynein, DHC-1 is a strong negative regulator of EGFR signaling during vulva induction. DHC-1 is required in the signal-receiving cell and genetically functions upstream or in parallel to LET-23 EGFR. LET-23 EGFR accumulates in cytoplasmic foci in dhc-1 mutants, consistent with mammalian cell studies in which dynein is shown to regulate late endosome trafficking of EGFR with the Rab7 GTPase. However, we found different distributions of LET-23 EGFR foci in rab-7 versus dhc-1 mutants, suggesting that dynein functions at an earlier step of LET-23 EGFR trafficking to the lysosome than RAB-7. Our results demonstrate an in vivo role for dynein in limiting LET-23 EGFR signaling via endosomal trafficking. PMID:27654944

  8. Analysis of corkscrew signaling in the Drosophila epidermal growth factor receptor pathway during myogenesis.

    PubMed

    Johnson Hamlet, M R; Perkins, L A

    2001-11-01

    The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway.

  9. Analysis of corkscrew signaling in the Drosophila epidermal growth factor receptor pathway during myogenesis.

    PubMed Central

    Johnson Hamlet, M R; Perkins, L A

    2001-01-01

    The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway. PMID:11729154

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penrose, Harrison; Heller, Sandra; Cable, Chloe

    The proliferation of colon cancer cells is mediated in part by epidermal growth factor receptor (EGFR) signaling and requires sustained levels of cellular energy to meet its high metabolic needs. Intracellular lipid droplets (LDs) are a source of energy used for various cellular functions and they are elevated in density in human cancer, yet their regulation and function are not well understood. Here, in human colon cancer cells, EGF stimulates increases in LD density, which depends on EGFR expression and activation as well as the individual cellular capacity for lipid synthesis. Increases in LDs are blockaded by inhibition of PI3K/mTORmore » and PGE2 synthesis, supporting their dependency on select upstream pathways. In colon cancer cells, silencing of the FOXO3 transcription factor leads to down regulation of SIRT6, a negative regulator of lipid synthesis, and consequent increases in the LD coat protein PLIN2, revealing that increases in LDs depend on loss of FOXO3/SIRT6. Moreover, EGF stimulates loss of FOXO3/SIRT6, which is blockaded by the inhibition of upstream pathways as well as lipid synthesis, revealing existence of a negative regulatory loop between LDs and FOXO3/SIRT6. Elevated LDs are utilized by EGF treatment and their depletion through the inhibition of lipid synthesis or silencing of PLIN2 significantly attenuates proliferation. This novel mechanism of proliferative EGFR signaling leading to elevated LD density in colon cancer cells could potentially be therapeutically targeted for the treatment of tumor progression. - Highlights: • In colon cancer cells, EGFR activation leads to increases in LD density. • EGFR signaling includes PI3K/mTOR and PGE2 leading to lipid synthesis. • Increases in LDs are controlled by a negative regulatory loop with FOXO3/SIRT6. • EGFR mediated colon cancer cell proliferation depends on increased LD density.« less

  11. RAB-7 Antagonizes LET-23 EGFR Signaling during Vulva Development in Caenorhabditis elegans

    PubMed Central

    Skorobogata, Olga; Rocheleau, Christian E.

    2012-01-01

    The Rab7 GTPase regulates late endosome trafficking of the Epidermal Growth Factor Receptor (EGFR) to the lysosome for degradation. However, less is known about how Rab7 activity, functioning late in the endocytic pathway, affects EGFR signaling. Here we used Caenorhabditis elegans vulva cell fate induction, a paradigm for genetic analysis of EGFR/Receptor Tyrosine Kinase (RTK) signaling, to assess the genetic requirements for rab-7. Using a rab-7 deletion mutant, we demonstrate that rab-7 antagonizes LET-23 EGFR signaling to a similar extent, but in a distinct manner, as previously described negative regulators such as sli-1 c-Cbl. Epistasis analysis places rab-7 upstream of or in parallel to lin-3 EGF and let-23 EGFR. However, expression of gfp::rab-7 in the Vulva Presursor Cells (VPCs) is sufficient to rescue the rab-7(−) VPC induction phenotypes indicating that RAB-7 functions in the signal receiving cell. We show that components of the Endosomal Sorting Complex Required for Transport (ESCRT)-0, and -I, complexes, hgrs-1 Hrs, and vps-28, also antagonize signaling, suggesting that LET-23 EGFR likely transits through Multivesicular Bodies (MVBs) en route to the lysosome. Consistent with RAB-7 regulating LET-23 EGFR trafficking, rab-7 mutants have increased number of LET-23::GFP-positive endosomes. Our data imply that Rab7, by mediating EGFR trafficking and degradation, plays an important role in downregulation of EGFR signaling. Failure to downregulate EGFR signaling contributes to oncogenesis, and thus Rab7 could possess tumor suppressor activity in humans. PMID:22558469

  12. RAB-7 antagonizes LET-23 EGFR signaling during vulva development in Caenorhabditis elegans.

    PubMed

    Skorobogata, Olga; Rocheleau, Christian E

    2012-01-01

    The Rab7 GTPase regulates late endosome trafficking of the Epidermal Growth Factor Receptor (EGFR) to the lysosome for degradation. However, less is known about how Rab7 activity, functioning late in the endocytic pathway, affects EGFR signaling. Here we used Caenorhabditis elegans vulva cell fate induction, a paradigm for genetic analysis of EGFR/Receptor Tyrosine Kinase (RTK) signaling, to assess the genetic requirements for rab-7. Using a rab-7 deletion mutant, we demonstrate that rab-7 antagonizes LET-23 EGFR signaling to a similar extent, but in a distinct manner, as previously described negative regulators such as sli-1 c-Cbl. Epistasis analysis places rab-7 upstream of or in parallel to lin-3 EGF and let-23 EGFR. However, expression of gfp::rab-7 in the Vulva Presursor Cells (VPCs) is sufficient to rescue the rab-7(-) VPC induction phenotypes indicating that RAB-7 functions in the signal receiving cell. We show that components of the Endosomal Sorting Complex Required for Transport (ESCRT)-0, and -I, complexes, hgrs-1 Hrs, and vps-28, also antagonize signaling, suggesting that LET-23 EGFR likely transits through Multivesicular Bodies (MVBs) en route to the lysosome. Consistent with RAB-7 regulating LET-23 EGFR trafficking, rab-7 mutants have increased number of LET-23::GFP-positive endosomes. Our data imply that Rab7, by mediating EGFR trafficking and degradation, plays an important role in downregulation of EGFR signaling. Failure to downregulate EGFR signaling contributes to oncogenesis, and thus Rab7 could possess tumor suppressor activity in humans.

  13. Metalloproteinase-dependent transforming growth factor-alpha release mediates neurotensin-stimulated MAP kinase activation in human colonic epithelial cells.

    PubMed

    Zhao, Dezheng; Zhan, Yanai; Koon, Hon Wai; Zeng, Huiyan; Keates, Sarah; Moyer, Mary P; Pothoulakis, Charalabos

    2004-10-15

    Expression of the neuropeptide neurotensin (NT) and its high affinity receptor (NTR1) is increased during the course of Clostridium difficile toxin A-induced acute colitis, and NTR1 antagonism attenuates the severity of toxin A-induced inflammation. We recently demonstrated in non-transformed human colonic epithelial NCM460 cells that NT treatment caused activation of a Ras-mediated MAP kinase pathway that significantly contributes to NT-induced interleukin-8 (IL-8) secretion. Here we used NCM460 cells, which normally express low levels of NTR1, and NCM460 cells stably transfected with NTR1 to identify the upstream signaling molecules involved in NT-NTR1-mediated MAP kinase activation. We found that inhibition of the epidermal growth factor receptor (EGFR) by either an EGFR neutralizing antibody or by its specific inhibitor AG1478 (0.2 microm) blocked NT-induced MAP kinase activation. Moreover, NT stimulated tyrosine phosphorylation of the EGFR, and pretreatment with a broad spectrum metalloproteinase inhibitor batimastat reduced NT-induced MAP kinase activation. Using neutralizing antibodies against the EGFR ligands EGF, heparin-binding-EGF, transforming growth factor-alpha (TGFalpha), or amphiregulin we have shown that only the anti-TGFalpha antibody significantly decreases NT-induced phosphorylation of EGFR and MAP kinases. Furthermore, inhibition of the EGF receptor by AG1478 significantly reduced NT-induced IL-8 promoter activity and IL-8 secretion. This is the first report demonstrating that NT binding to NTR1 transactivates the EGFR and that this response is linked to NT-mediated proinflammatory signaling. Our findings indicate that matrix metalloproteinase-mediated release of TGFalpha and subsequent EGFR transactivation triggers a NT-mediated MAP kinase pathway that leads to IL-8 gene expression in human colonic epithelial cells.

  14. EGFR inhibition by pentacyclic triterpenes exhibit cell cycle and growth arrest in breast cancer cells.

    PubMed

    Sathya, Shanmugaraj; Sudhagar, Selvaraj; Sarathkumar, Baskaran; Lakshmi, Baddireddi Subhadra

    2014-01-24

    Pentacyclic triterpenes are a group of molecules with promising anticancer potential, although their precise molecular target remains elusive. The current work aims to investigate the antiproliferative and associated mechanisms of triterpenes in breast cancer cells in vitro. Effect of triterpenes on cell cycle distribution, ROS and key regulatory proteins were analyzed in three breast cancer cells in vitro. Growth inhibition, new DNA synthesis, colony formation assays and Western blot analysis were performed to assess the EGFR inhibitory effect of triterpenes. Molecular docking was performed to study the interaction between EGFR and triterpenes. We have demonstrated the ability of dimethyl melaleucate (DMM), a pentacyclic triterpene to exhibit cell cycle arrest at G0/G1 phase by down-regulation of cyclin D1 through PI3K/AKT inhibition. Further, to identify the upstream target of DMM, potential EGFR inhibitory activity of DMM and three structurally related pentacyclic triterpenes, ursolic acid, 18α-glycyrrhetinic acid and carbenoxolone was investigated. Interestingly, pentacyclic triterpenes limit EGF mediated breast cancer proliferation through sustained inhibition of EGFR and its downstream effectors STAT3 and cyclin D1 in breast cancer lines. We also show pentacyclic triterpenes to bind at the ATP binding pocket of tyrosine kinase domain of EGFR leading to the hypothesis that pentacyclic triterpenes could be a novel class of EGFR inhibitors. In conclusion, pentacyclic triterpenes inhibit EGFR activation through binding with tyrosine kinase domain thereby suppressing breast cancer proliferation. Pentacyclic triterpenes may serve as a potential platform for development of novel drugs against breast cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Computational modeling of the EGFR network elucidates control mechanisms regulating signal dynamics

    PubMed Central

    2009-01-01

    Background The epidermal growth factor receptor (EGFR) signaling pathway plays a key role in regulation of cellular growth and development. While highly studied, it is still not fully understood how the signal is orchestrated. One of the reasons for the complexity of this pathway is the extensive network of inter-connected components involved in the signaling. In the aim of identifying critical mechanisms controlling signal transduction we have performed extensive analysis of an executable model of the EGFR pathway using the stochastic pi-calculus as a modeling language. Results Our analysis, done through simulation of various perturbations, suggests that the EGFR pathway contains regions of functional redundancy in the upstream parts; in the event of low EGF stimulus or partial system failure, this redundancy helps to maintain functional robustness. Downstream parts, like the parts controlling Ras and ERK, have fewer redundancies, and more than 50% inhibition of specific reactions in those parts greatly attenuates signal response. In addition, we suggest an abstract model that captures the main control mechanisms in the pathway. Simulation of this abstract model suggests that without redundancies in the upstream modules, signal transduction through the entire pathway could be attenuated. In terms of specific control mechanisms, we have identified positive feedback loops whose role is to prolong the active state of key components (e.g., MEK-PP, Ras-GTP), and negative feedback loops that help promote signal adaptation and stabilization. Conclusions The insights gained from simulating this executable model facilitate the formulation of specific hypotheses regarding the control mechanisms of the EGFR signaling, and further substantiate the benefit to construct abstract executable models of large complex biological networks. PMID:20028552

  16. Polyethylene Glycol Mediated Colorectal Cancer Chemoprevention: Roles of Epidermal Growth Factor Receptor and Snail

    PubMed Central

    Wali, Ramesh K.; Kunte, Dhananjay P.; Koetsier, Jennifer L.; Bissonnette, Marc; Roy, Hemant K.

    2008-01-01

    Polyethylene glycol (PEG) is a clinically widely used agent with profound chemopreventive properties in experimental colon carcinogenesis. We previously reported that Snail/β-catenin signaling may mediate the suppression of epithelial proliferation by PEG, although the upstream events remain unclear. We report herein the role of epidermal growth factor receptor (EGFR), a known mediator of Snail and overepressed in ~80% of human colorectal cancers (CRC), on PEG-mediated anti-proliferative and hence anti-neoplastic effects in azoxymethane (AOM)-rats and HT-29 colon cancer cells. AOM-rats were randomized to either standard diet or one with 10% PEG 3350 and euthanized 8 weeks later. The colonic samples were subjected to immunohistochemical or Western blot analyses. PEG decreased mucosal EGFR by 60% (p<0.001). Similar PEG effects were obtained in HT-29 cells. PEG suppressed EGFR protein via lysosmal degradation with no change in mRNA levels. To show that EGFR antagonism per se was responsible for the antiproliferative effect, we inhibited EGFR by either pre-treating cells with gefitinib or stably transfecting with EGFR-shRNA and measured the effect of PEG on proliferation. In either case PEG effect was blunted suggesting a vital role of EGFR. Flow cytometric analysis revealed that EGFR-shRNA cells, besides having reduced membrane EGFR also expressed low Snail levels (40%), corroborating a strong association. Furthermore, in EGFR silenced cells PEG effect on EGFR or Snail was muted, similar to that on proliferation. In conclusion, we show that EGFR is the proximate membrane signaling molecule through which PEG initiates antiproliferative activity with Snail/β-catenin pathway playing the central intermediary function. PMID:18790788

  17. Polyethylene glycol-mediated colorectal cancer chemoprevention: roles of epidermal growth factor receptor and Snail.

    PubMed

    Wali, Ramesh K; Kunte, Dhananjay P; Koetsier, Jennifer L; Bissonnette, Marc; Roy, Hemant K

    2008-09-01

    Polyethylene glycol (PEG) is a clinically widely used agent with profound chemopreventive properties in experimental colon carcinogenesis. We reported previously that Snail/beta-catenin signaling may mediate the suppression of epithelial proliferation by PEG, although the upstream events remain unclear. We report herein the role of epidermal growth factor receptor (EGFR), a known mediator of Snail and overexpressed in approximately 80% of human colorectal cancers, on PEG-mediated antiproliferative and hence antineoplastic effects in azoxymethane (AOM) rats and HT-29 colon cancer cells. AOM rats were randomized to either standard diet or one with 10% PEG-3350 and euthanized 8 weeks later. The colonic samples were subjected to immunohistochemical or Western blot analyses. PEG decreased mucosal EGFR by 60% (P < 0.001). Similar PEG effects were obtained in HT-29 cells. PEG suppressed EGFR protein via lysosmal degradation with no change in mRNA levels. To show that EGFR antagonism per se was responsible for the antiproliferative effect, we inhibited EGFR by either pretreating cells with gefitinib or stably transfecting with EGFR-short hairpin RNA and measured the effect of PEG on proliferation. In either case, PEG effect was blunted, suggesting a vital role of EGFR. Flow cytometric analysis revealed that EGFR-short hairpin RNA cells, besides having reduced membrane EGFR, also expressed low Snail levels (40%), corroborating a strong association. Furthermore, in EGFR silenced cells, PEG effect on EGFR or Snail was muted, similar to that on proliferation. In conclusion, we show that EGFR is the proximate membrane signaling molecule through which PEG initiates antiproliferative activity with Snail/beta-catenin pathway playing the central intermediary function.

  18. Genetic predictors of MEK dependence in non-small cell lung cancer.

    PubMed

    Pratilas, Christine A; Hanrahan, Aphrothiti J; Halilovic, Ensar; Persaud, Yogindra; Soh, Junichi; Chitale, Dhananjay; Shigematsu, Hisayuki; Yamamoto, Hiromasa; Sawai, Ayana; Janakiraman, Manickam; Taylor, Barry S; Pao, William; Toyooka, Shinichi; Ladanyi, Marc; Gazdar, Adi; Rosen, Neal; Solit, David B

    2008-11-15

    Hyperactivated extracellular signal-regulated kinase (ERK) signaling is common in human cancer and is often the result of activating mutations in BRAF, RAS, and upstream receptor tyrosine kinases. To characterize the mitogen-activated protein kinase/ERK kinase (MEK)/ERK dependence of lung cancers harboring BRAF kinase domain mutations, we screened a large panel of human lung cancer cell lines (n = 87) and tumors (n = 916) for BRAF mutations. We found that non-small cell lung cancers (NSCLC) cells with both V600E and non-V600E BRAF mutations were selectively sensitive to MEK inhibition compared with those harboring mutations in epidermal growth factor receptor (EGFR), KRAS, or ALK and ROS kinase fusions. Supporting its classification as a "driver" mutation in the cells in which it is expressed, MEK inhibition in (V600E)BRAF NSCLC cells led to substantial induction of apoptosis, comparable with that seen with EGFR kinase inhibition in EGFR mutant NSCLC models. Despite high basal ERK phosphorylation, EGFR mutant cells were uniformly resistant to MEK inhibition. Conversely, BRAF mutant cell lines were resistant to EGFR inhibition. These data, together with the nonoverlapping pattern of EGFR and BRAF mutations in human lung cancer, suggest that these lesions define distinct clinical entities whose treatment should be guided by prospective real-time genotyping. To facilitate such an effort, we developed a mass spectrometry-based genotyping method for the detection of hotspot mutations in BRAF, KRAS, and EGFR. Using this assay, we confirmed that BRAF mutations can be identified in a minority of NSCLC tumors and that patients whose tumors harbor BRAF mutations have a distinct clinical profile compared with those whose tumors harbor kinase domain mutations in EGFR.

  19. Functional cooperation between HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR.

    PubMed

    Meng, Shuyan; Wang, Guorui; Lu, Yang; Fan, Zhen

    2018-07-01

    Hypoxia-inducible factor 1 (HIF-1) and activator protein 1 (AP-1) are important transcription factors regulating expression of genes involved in cell survival. HIF-1α and c-Jun are key components of HIF-1 and AP-1, respectively, and are regulated by epidermal growth factor receptor (EGFR)-mediated cell signaling and tumor microenvironmental cues. The roles of HIF-1α and c-Jun in development of resistance to EGFR tyrosine kinase inhibitor (TKI) in non-small cell lung cancer (NSCLC) with activating mutation of EGFR have not been explored. In this study, we investigated the roles of HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR. Changes in HIF-1α protein and in total and phosphorylated c-Jun levels in relation to changes in total and phosphorylated EGFR levels before and after gefitinib treatment were measured using Western blot analysis in NSCLC cells sensitive or resistant to gefitinib. The impact of overexpression of a constitutively expressed HIF-1α (HIF-1α/ΔODD) or a constitutively active c-Jun upstream regulator (SEK1 S220E/T224D mutant) on cell response to gefitinib was also examined. The effect of pharmacological inhibition of SEK1-JNK-c-Jun pathway on cell response to gefitinib was evaluated. Downregulation of HIF-1α and total and phosphorylated c-Jun levels correlated with cell inhibitory response to gefitinib better than decrease in phosphorylated EGFR did in NSCLC cells with intrinsic or acquired resistance to gefitinib. Overexpression of HIF-1α/ΔODD or SEK1 S220E/T224D mutant conferred resistance to gefitinib. There exists a positive feed-forward regulation loop between HIF-1 and c-Jun. The JNK inhibitor SP600125 sensitized gefitinib-resistant NSCLC cells to gefitinib. HIF-1α and c-Jun functionally cooperate in development of resistance to gefitinib in NSCLC cells. The translational value of inhibiting HIF-1α/c-Jun cooperation in overcoming resistance to EGFR TKI treatment of NSCLC cells with activating mutation of EGFR deserves further investigation. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Angiotensin II initiates tyrosine kinase Pyk2-dependent signalings leading to activation of Rac1-mediated c-Jun NH2-terminal kinase.

    PubMed

    Murasawa, S; Matsubara, H; Mori, Y; Masaki, H; Tsutsumi, Y; Shibasaki, Y; Kitabayashi, I; Tanaka, Y; Fujiyama, S; Koyama, Y; Fujiyama, A; Iba, S; Iwasaka, T

    2000-09-01

    Ca(2+)-sensitive tyrosine kinase Pyk2 was shown to be involved in angiotensin (Ang) II-mediated activation of extracellular signal-regulated kinase (ERK) via transactivation of epidermal growth factor receptor (EGF-R). In this study, we tested the involvement of Pyk2 and EGF-R in Ang II-induced activation of JNK and c-Jun in cardiac fibroblasts. Ang II markedly stimulated JNK activities, which were abolished by genistein and intracellular Ca(2+) chelators but partially by protein kinase C depletion. Inhibition of EGF-R did not affect Pyk2 and JNK activation by Ang II. Stable transfection with a dominant negative (DN) mutant for Pyk2 (PKM) completely blocked JNK activation by Ang II. DN mutants of Rac1 (DN-Rac1) and MEK kinase (DN-MEKK1) also abolished it, whereas those of Cdc42, RhoA, and Ha-Ras had no effect. Induction of c-Jun gene transcription by Ang II was abolished in PKM, DN-Rac1, and DN-MEKK1, in which Ang II-induced binding of ATF2/c-Jun heterodimer to the activator protein-1 sequence at -190 played a key role. These results suggest that 1) in cardiac fibroblasts activation of JNK and c-Jun by Ang II is initiated by Pyk2-dependent signalings but not by downstream signals of EGF-R or Ras, 2) Rac1 but not Cdc42 is required for JNK activation by Ang II upstream of MEKK1, and 3) ATF-2/c-Jun binding to the activator protein-1 sequence at -190 plays a key role for induction of c-Jun gene by Ang II.

  1. Saccharomyces boulardii Inhibits EGF Receptor Signaling and Intestinal Tumor Growth in Apcmin Mice

    PubMed Central

    Chen, Xinhua; Fruehauf, Johannes; Goldsmith, Jeffrey D.; Xu, Hua; Katchar, Kianoosh K; Koon, Hon-Wai; Zhao, Dezheng; Kokkotou, Efi G.; Pothoulakis, Charalabos; Kelly, Ciarán P.

    2009-01-01

    Saccharomyces boulardii (Sb) is a probiotic yeast with anti-inflammatory and antimicrobial activities and has been used for decades in the prevention and treatment of a variety of human gastrointestinal disorders. We reported previously that Sb modulates host inflammatory responses through down regulation of Erk1/2 MAP kinase activities both in vitro and in vivo. The aim of this study was to identify upstream mediators responsible for Erk1/2 inactivation and to examine the effects of Sb on tumor development in ApcMin mice. We found that the EGF receptor was deactivated upon exposure to Sb leading to inactivation of both the EGFR-Erk and EGFR-Akt pathways. In human colonic cancer cells, Sb prevented EGF induced proliferation, reduced cell colony formation and promoted apoptosis. HER-2, HER-3 and IGF-1R were also found to be inactivated by Sb. Oral intake of Sb reduced intestinal tumor growth and dysplasia in C57BL/6J Min/+ (ApcMin) mice. Thus, in addition to its anti-inflammatory effects, S. boulardii inhibits EGFR and other receptor tyrosine kinase signaling and thereby may also serve a novel therapeutic or prophylactic role in intestinal neoplasia. PMID:19482027

  2. Alternative HER/PTEN/Akt Pathway Activation in HPV Positive and Negative Penile Carcinomas

    PubMed Central

    Stankiewicz, Elzbieta; Prowse, David M.; Ng, Mansum; Cuzick, Jack; Mesher, David; Hiscock, Frances; Lu, Yong-Jie; Watkin, Nicholas; Corbishley, Catherine; Lam, Wayne; Berney, Daniel M.

    2011-01-01

    Background The pathogenesis of penile squamous cell carcinoma (PSCC) is not well understood, though risk factors include human papillomavirus (HPV). Disruption of HER/PTEN/Akt pathway is present in many cancers; however there is little information on its function in PSCC. We investigated HER family receptors and phosphatase and tension homolog (PTEN) in HPV-positive and negative PSCC and its impact on Akt activation using immunohistochemistry and fluorescent in situ hybridisation (FISH). Methodology/Principal Findings 148 PSCCs were microarrayed and immunostained for phosphorylated EGFR (pEGFR), HER2, HER3, HER4, phosphorylated Akt (pAkt), Akt1 and PTEN proteins. EGFR and PTEN gene status were also evaluated using FISH. HPV presence was assessed by PCR. pEGFR expression was detected significantly less frequently in HPV-positive than HPV-negative tumours (p = 0.0143). Conversely, HER3 expression was significantly more common in HPV-positive cases (p = 0.0128). HER4, pAkt, Akt and PTEN protein expression were not related to HPV. HER3 (p = 0.0054) and HER4 (p = 0.0002) receptors significantly correlated with cytoplasmic Akt1 immunostaining. All three proteins positively correlated with tumour grade (HER3, p = 0.0029; HER4, p = 0.0118; Akt1, p = 0.0001). pEGFR expression correlated with pAkt but not with tumour grade or stage. There was no EGFR gene amplification. HER2 was not detected. PTEN protein expression was reduced or absent in 62% of tumours but PTEN gene copy loss was present only in 4% of PSCCs. Conclusions/Significance EGFR, HER3 and HER4 but not HER2 are associated with penile carcinogenesis. HPV-negative tumours tend to express significantly more pEGFR than HPV-positive cancers and this expression correlates with pAkt protein, indicating EGFR as an upstream regulator of Akt signalling in PSCC. Conversely, HER3 expression is significantly more common in HPV-positive cases and positively correlates with cytoplasmic Akt1 expression. HER4 and PTEN protein expression are not related to HPV infection. Our results suggest that PSCC patients could benefit from therapies developed to target HER receptors. PMID:21407808

  3. Alternative HER/PTEN/Akt pathway activation in HPV positive and negative penile carcinomas.

    PubMed

    Stankiewicz, Elzbieta; Prowse, David M; Ng, Mansum; Cuzick, Jack; Mesher, David; Hiscock, Frances; Lu, Yong-Jie; Watkin, Nicholas; Corbishley, Catherine; Lam, Wayne; Berney, Daniel M

    2011-03-02

    The pathogenesis of penile squamous cell carcinoma (PSCC) is not well understood, though risk factors include human papillomavirus (HPV). Disruption of HER/PTEN/Akt pathway is present in many cancers; however there is little information on its function in PSCC. We investigated HER family receptors and phosphatase and tension homolog (PTEN) in HPV-positive and negative PSCC and its impact on Akt activation using immunohistochemistry and fluorescent in situ hybridisation (FISH). 148 PSCCs were microarrayed and immunostained for phosphorylated EGFR (pEGFR), HER2, HER3, HER4, phosphorylated Akt (pAkt), Akt1 and PTEN proteins. EGFR and PTEN gene status were also evaluated using FISH. HPV presence was assessed by PCR. pEGFR expression was detected significantly less frequently in HPV-positive than HPV-negative tumours (p = 0.0143). Conversely, HER3 expression was significantly more common in HPV-positive cases (p = 0.0128). HER4, pAkt, Akt and PTEN protein expression were not related to HPV. HER3 (p = 0.0054) and HER4 (p = 0.0002) receptors significantly correlated with cytoplasmic Akt1 immunostaining. All three proteins positively correlated with tumour grade (HER3, p = 0.0029; HER4, p = 0.0118; Akt1, p = 0.0001). pEGFR expression correlated with pAkt but not with tumour grade or stage. There was no EGFR gene amplification. HER2 was not detected. PTEN protein expression was reduced or absent in 62% of tumours but PTEN gene copy loss was present only in 4% of PSCCs. EGFR, HER3 and HER4 but not HER2 are associated with penile carcinogenesis. HPV-negative tumours tend to express significantly more pEGFR than HPV-positive cancers and this expression correlates with pAkt protein, indicating EGFR as an upstream regulator of Akt signalling in PSCC. Conversely, HER3 expression is significantly more common in HPV-positive cases and positively correlates with cytoplasmic Akt1 expression. HER4 and PTEN protein expression are not related to HPV infection. Our results suggest that PSCC patients could benefit from therapies developed to target HER receptors.

  4. A Novel Positive Feedback Loop Mediated by the Docking Protein Gab1 and Phosphatidylinositol 3-Kinase in Epidermal Growth Factor Receptor Signaling

    PubMed Central

    Rodrigues, Gerard A.; Falasca, Marco; Zhang, Zhongtao; Ong, Siew Hwa; Schlessinger, Joseph

    2000-01-01

    The Gab1 protein is tyrosine phosphorylated in response to various growth factors and serves as a docking protein that recruits a number of downstream signaling proteins, including phosphatidylinositol 3-kinase (PI-3 kinase). To determine the role of Gab1 in signaling via the epidermal growth factor (EGF) receptor (EGFR) we tested the ability of Gab1 to associate with and modulate signaling by this receptor. We show that Gab1 associates with the EGFR in vivo and in vitro via pTyr sites 1068 and 1086 in the carboxy-terminal tail of the receptor and that overexpression of Gab1 potentiates EGF-induced activation of the mitogen-activated protein kinase and Jun kinase signaling pathways. A mutant of Gab1 unable to bind the p85 subunit of PI-3 kinase is defective in potentiating EGFR signaling, confirming a role for PI-3 kinase as a downstream effector of Gab1. Inhibition of PI-3 kinase by a dominant-interfering mutant of p85 or by Wortmannin treatment similarly impairs Gab1-induced enhancement of signaling via the EGFR. The PH domain of Gab1 was shown to bind specifically to phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3], a product of PI-3 kinase, and is required for activation of Gab1-mediated enhancement of EGFR signaling. Moreover, the PH domain mediates Gab1 translocation to the plasma membrane in response to EGF and is required for efficient tyrosine phosphorylation of Gab1 upon EGF stimulation. In addition, overexpression of Gab1 PH domain blocks Gab1 potentiation of EGFR signaling. Finally, expression of the gene for the lipid phosphatase PTEN, which dephosphorylates PtdIns(3,4,5)P3, inhibits EGF signaling and translocation of Gab1 to the plasma membrane. These results reveal a novel positive feedback loop, modulated by PTEN, in which PI-3 kinase functions as both an upstream regulator and a downstream effector of Gab1 in signaling via the EGFR. PMID:10648629

  5. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation inmore » HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.« less

  6. Activation of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) induces cell death through MAPK-dependent mechanism in osteoblastic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung Hun; Yoo, Chong Il; Medical Research Institute, College of Medicine, Pusan National University, Pusan, 602-739

    2006-09-01

    The present study was undertaken to determine the role of the mitogen-activated protein kinase (MAPK) subfamilies in cell death induced by PPAR{gamma} agonists in osteoblastic cells. Ciglitazone and troglitazone, PPAR{gamma} agonists, resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. But a PPAR{alpha} agonist ciprofibrate did not affect the cell death. Ciglitazone caused reactive oxygen species (ROS) generation and ciglitazone-induced cell death was prevented by antioxidants, suggesting an important role of ROS generation in the ciglitazone-induced cell death. ROS generation and cell death induced by ciglitazone were inhibited by the PPAR{gamma} antagonist GW9662. Ciglitazone treatmentmore » caused activation of extracellular signal-regulated kinase (ERK) and p38. Activation of ERK was dependent on epidermal growth factor receptor (EGFR) and that of p38 was independent. Ciglitazone-induced cell death was significantly prevented by PD98059, an inhibitor of ERK upstream kinase MEK1/2, and SB203580, a p38 inhibitor. Ciglitazone treatment increased Bax expression and caused a loss of mitochondrial membrane potential, and its effect was prevented by N-acetylcysteine, PD98059, and SB203580. Ciglitazone induced caspase activation, which was prevented by PD98059 and SB203580. The general caspase inhibitor z-DEVD-FMK and the specific inhibitor of caspases-3 DEVD-CHO exerted the protective effect against the ciglitazone-induced cell death. The EGFR inhibitors AG1478 and suramin protected against the ciglitazone-induced cell death. Taken together, these findings suggest that the MAPK signaling pathways play an active role in mediating the ciglitazone-induced cell death of osteoblasts and function upstream of a mitochondria-dependent mechanism. These data may provide a novel insight into potential therapeutic strategies for treatment of osteoporosis.« less

  7. The Metastasis Suppressor, N-MYC Downstream-regulated Gene-1 (NDRG1), Down-regulates the ErbB Family of Receptors to Inhibit Downstream Oncogenic Signaling Pathways*

    PubMed Central

    Kovacevic, Zaklina; Menezes, Sharleen V.; Sahni, Sumit; Kalinowski, Danuta S.; Bae, Dong-Hun; Lane, Darius J. R.; Richardson, Des R.

    2016-01-01

    N-MYC downstream-regulated gene-1 (NDRG1) is a potent growth and metastasis suppressor that acts through its inhibitory effects on a wide variety of cellular signaling pathways, including the TGF-β pathway, protein kinase B (AKT)/PI3K pathway, RAS, etc. To investigate the hypothesis that its multiple effects could be regulated by a common upstream effector, the role of NDRG1 on the epidermal growth factor receptor (EGFR) and other members of the ErbB family, namely human epidermal growth factor receptor 2 (HER2) and human epidermal growth factor receptor 3 (HER3), was examined. We demonstrate that NDRG1 markedly decreased the expression and activation of EGFR, HER2, and HER3 in response to the epidermal growth factor (EGF) ligand, while also inhibiting formation of the EGFR/HER2 and HER2/HER3 heterodimers. In addition, NDRG1 also decreased activation of the downstream MAPKK in response to EGF. Moreover, novel anti-tumor agents of the di-2-pyridylketone class of thiosemicarbazones, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, which markedly up-regulate NDRG1, were found to inhibit EGFR, HER2, and HER3 expression and phosphorylation in cancer cells. However, the mechanism involved appeared dependent on NDRG1 for di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone, but was independent of this metastasis suppressor for di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone. This observation demonstrates that small structural changes in thiosemicarbazones result in marked alterations in molecular targeting. Collectively, these results reveal a mechanism for the extensive downstream effects on cellular signaling attributed to NDRG1. Furthermore, this study identifies a novel approach for the treatment of tumors resistant to traditional EGFR inhibitors. PMID:26534963

  8. Bisphenol A and Related Alkylphenols Exert Nongenomic Estrogenic Actions Through a G Protein-Coupled Estrogen Receptor 1 (Gper)/Epidermal Growth Factor Receptor (Egfr) Pathway to Inhibit Meiotic Maturation of Zebrafish Oocytes1

    PubMed Central

    Fitzgerald, Amanda C.; Peyton, Candace; Dong, Jing; Thomas, Peter

    2015-01-01

    Xenobiotic estrogens, such as bisphenol A (BPA), disrupt a wide variety of genomic estrogen actions, but their nongenomic estrogen actions remain poorly understood. We investigated nongenomic estrogenic effects of low concentrations of BPA and three related alkylphenols on the inhibition of zebrafish oocye maturation (OM) mediated through a G protein-coupled estrogen receptor 1 (Gper)-dependent epidermal growth factor receptor (Egfr) pathway. BPA (10–100 nM) treatment for 3 h mimicked the effects of estradiol-17beta (E2) and EGF, decreasing spontaneous maturation of defolliculated zebrafish oocytes, an effect not blocked by coincubation with actinomycin D, but blocked by coincubation with a Gper antibody. BPA displayed relatively high binding affinity (15.8% that of E2) for recombinant zebrafish Gper. The inhibitory effects of BPA were attenuated by inhibition of upstream regulators of Egfr, intracellular tyrosine kinase (Src) with PP2, and matrix metalloproteinase with ilomastat. Treatment with an inhibitor of Egfr transactivation, AG1478, and an inhibitor of the mitogen-activated protein kinase (MAPK) 3/1 pathway, U0126, increased spontaneous OM and blocked the inhibitory effects of BPA, E2, and the selective GPER agonist, G-1. Western blot analysis showed that BPA (10–200 nM) mimicked the stimulatory effects of E2 and EGF on Mapk3/1 phosphorylation. Tetrabromobisphenol A, 4-nonylphenol, and tetrachlorobisphenol A (5–100 nM) also inhibited OM, an effect blocked by cotreatment with AG1478, as well as with the GPER antagonist, G-15, and displayed similar binding affinities as BPA to zebrafish Gper. The results suggest that BPA and related alkylphenols disrupt zebrafish OM by a novel nongenomic estrogenic mechanism involving activation of the Gper/Egfr/Mapk3/1 pathway. PMID:26490843

  9. Linking γ-aminobutyric acid A receptor to epidermal growth factor receptor pathways activation in human prostate cancer.

    PubMed

    Wu, Weijuan; Yang, Qing; Fung, Kar-Ming; Humphreys, Mitchell R; Brame, Lacy S; Cao, Amy; Fang, Yu-Ting; Shih, Pin-Tsen; Kropp, Bradley P; Lin, Hsueh-Kung

    2014-03-05

    Neuroendocrine (NE) differentiation has been attributed to the progression of castration-resistant prostate cancer (CRPC). Growth factor pathways including the epidermal growth factor receptor (EGFR) signaling have been implicated in the development of NE features and progression to a castration-resistant phenotype. However, upstream molecules that regulate the growth factor pathway remain largely unknown. Using androgen-insensitive bone metastasis PC-3 cells and androgen-sensitive lymph node metastasis LNCaP cells derived from human prostate cancer (PCa) patients, we demonstrated that γ-aminobutyric acid A receptor (GABA(A)R) ligand (GABA) and agonist (isoguvacine) stimulate cell proliferation, enhance EGF family members expression, and activate EGFR and a downstream signaling molecule, Src, in both PC-3 and LNCaP cells. Inclusion of a GABA(A)R antagonist, picrotoxin, or an EGFR tyrosine kinase inhibitor, Gefitinib (ZD1839 or Iressa), blocked isoguvacine and GABA-stimulated cell growth, trans-phospohorylation of EGFR, and tyrosyl phosphorylation of Src in both PCa cell lines. Spatial distributions of GABAAR α₁ and phosphorylated Src (Tyr416) were studied in human prostate tissues by immunohistochemistry. In contrast to extremely low or absence of GABA(A)R α₁-positive immunoreactivity in normal prostate epithelium, elevated GABA(A)R α₁ immunoreactivity was detected in prostate carcinomatous glands. Similarly, immunoreactivity of phospho-Src (Tyr416) was specifically localized and limited to the nucleoli of all invasive prostate carcinoma cells, but negative in normal tissues. Strong GABAAR α₁ immunoreactivity was spatially adjacent to the neoplastic glands where strong phospho-Src (Tyr416)-positive immunoreactivity was demonstrated, but not in adjacent to normal glands. These results suggest that the GABA signaling is linked to the EGFR pathway and may work through autocrine or paracine mechanism to promote CRPC progression. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Bisphenol A and Related Alkylphenols Exert Nongenomic Estrogenic Actions Through a G Protein-Coupled Estrogen Receptor 1 (Gper)/Epidermal Growth Factor Receptor (Egfr) Pathway to Inhibit Meiotic Maturation of Zebrafish Oocytes.

    PubMed

    Fitzgerald, Amanda C; Peyton, Candace; Dong, Jing; Thomas, Peter

    2015-12-01

    Xenobiotic estrogens, such as bisphenol A (BPA), disrupt a wide variety of genomic estrogen actions, but their nongenomic estrogen actions remain poorly understood. We investigated nongenomic estrogenic effects of low concentrations of BPA and three related alkylphenols on the inhibition of zebrafish oocye maturation (OM) mediated through a G protein-coupled estrogen receptor 1 (Gper)-dependent epidermal growth factor receptor (Egfr) pathway. BPA (10-100 nM) treatment for 3 h mimicked the effects of estradiol-17beta (E2) and EGF, decreasing spontaneous maturation of defolliculated zebrafish oocytes, an effect not blocked by coincubation with actinomycin D, but blocked by coincubation with a Gper antibody. BPA displayed relatively high binding affinity (15.8% that of E2) for recombinant zebrafish Gper. The inhibitory effects of BPA were attenuated by inhibition of upstream regulators of Egfr, intracellular tyrosine kinase (Src) with PP2, and matrix metalloproteinase with ilomastat. Treatment with an inhibitor of Egfr transactivation, AG1478, and an inhibitor of the mitogen-activated protein kinase (MAPK) 3/1 pathway, U0126, increased spontaneous OM and blocked the inhibitory effects of BPA, E2, and the selective GPER agonist, G-1. Western blot analysis showed that BPA (10-200 nM) mimicked the stimulatory effects of E2 and EGF on Mapk3/1 phosphorylation. Tetrabromobisphenol A, 4-nonylphenol, and tetrachlorobisphenol A (5-100 nM) also inhibited OM, an effect blocked by cotreatment with AG1478, as well as with the GPER antagonist, G-15, and displayed similar binding affinities as BPA to zebrafish Gper. The results suggest that BPA and related alkylphenols disrupt zebrafish OM by a novel nongenomic estrogenic mechanism involving activation of the Gper/Egfr/Mapk3/1 pathway. © 2015 by the Society for the Study of Reproduction, Inc.

  11. Hole-in-One Mutant Phenotypes Link EGFR/ERK Signaling to Epithelial Tissue Repair in Drosophila

    PubMed Central

    Campos, Isabel; Santos, Ana Catarina; Jacinto, Antonio

    2011-01-01

    Background Epithelia act as physical barriers protecting living organisms and their organs from the surrounding environment. Simple epithelial tissues have the capacity to efficiently repair wounds through a resealing mechanism. The known molecular mechanisms underlying this process appear to be conserved in both vertebrates and invertebrates, namely the involvement of the transcription factors Grainy head (Grh) and Fos. In Drosophila, Grh and Fos lead to the activation of wound response genes required for epithelial repair. ERK is upstream of this pathway and known to be one of the first kinases to be activated upon wounding. However, it is still unclear how ERK activation contributes to a proper wound response and which molecular mechanisms regulate its activation. Methodology/Principal Findings In a previous screen, we isolated mutants with defects in wound healing. Here, we describe the role of one of these genes, hole-in-one (holn1), in the wound healing process. Holn1 is a GYF domain containing protein that we found to be required for the activation of several Grh and Fos regulated wound response genes at the wound site. We also provide evidence suggesting that Holn1 may be involved in the Ras/ERK signaling pathway, by acting downstream of ERK. Finally, we show that wound healing requires the function of EGFR and ERK signaling. Conclusions/Significance Based on these data, we conclude that holn1 is a novel gene required for a proper wound healing response. We further propose and discuss a model whereby Holn1 acts downstream of EGFR and ERK signaling in the Grh/Fos mediated wound closure pathway. PMID:22140578

  12. NFkB hyperactivation causes invasion of esophageal squamous cell carcinoma with EGFR overexpression and p120-catenin down-regulation.

    PubMed

    Lehman, Heather L; Kidacki, Michal; Warrick, Joshua I; Stairs, Douglas B

    2018-02-16

    Four out of five patients diagnosed with esophageal squamous cell carcinoma (ESCC) will die within five years. This is primarily a result of the aggressive invasive potential of the disease. Our research is focused on the interplay between tumor suppressors and oncogenes in the invasive process. Specifically, EGFR and p120-catenin (p120ctn) are commonly dysregulated genes that are indicative of poor prognosis in ESCC. In a previous study we demonstrated that in our 3D organotypic culture model, only when EGFR overexpression is combined with p120ctn inactivation do the cells transform and invade - as opposed to either event alone. The purpose of this present study was to identify the components of the molecular pathways downstream of p120ctn and EGFR that lead to invasion. Using both human esophageal keratinocytes and human ESCC cells, we have identified NFkB as a central regulator of the invasive process downstream of p120ctn down-regulation and EGFR overexpression. Interestingly, we found that NFkB is hyperactivated in cells with EGFR overexpression and p120ctn inactivation than with either EGFR or p120ctn alone. Inhibition of this NFkB hyperactivation results in complete loss of invasion, suggesting that NFkB signaling is necessary for invasion in this aggressive cell type. Furthermore, we have identified RhoA and Rho-kinase as upstream regulators of NFkB in this process. We believe the cooperation of p120ctn down-regulation and EGFR overexpression is not only important in the aggressive mechanisms of ESCC but could be broadly applicable to many other cancer types in which p120ctn and EGFR are involved.

  13. Nuclear factor ETF specifically stimulates transcription from promoters without a TATA box.

    PubMed

    Kageyama, R; Merlino, G T; Pastan, I

    1989-09-15

    Transcription factor ETF stimulates the expression of the epidermal growth factor receptor (EGFR) gene which does not have a TATA box in the promoter region. Here, we show that ETF recognizes various GC-rich sequences including stretches of deoxycytidine or deoxyguanosine residues and GC boxes with similar affinities. ETF also binds to TATA boxes but with a lower affinity. ETF stimulated in vitro transcription from several promoters without TATA boxes but had little or no effect on TATA box-containing promoters even though they had strong ETF-binding sites. These inactive ETF-binding sites became functional when placed upstream of the EGFR promoter whose own ETF-binding sites were removed. Furthermore, when a TATA box was introduced into the EGFR promoter, the responsiveness to ETF was abolished. These results indicate that ETF is a specific transcription factor for promoters which do not contain TATA elements.

  14. EGF stimulates the activation of EGF receptors and the selective activation of major signaling pathways during mitosis.

    PubMed

    Wee, Ping; Shi, Huaiping; Jiang, Jennifer; Wang, Yuluan; Wang, Zhixiang

    2015-03-01

    Mitosis and epidermal growth factor (EGF) receptor (EGFR) are both targets for cancer therapy. The role of EGFR signaling in mitosis has been rarely studied and poorly understood. The limited studies indicate that the activation of EGFR and downstream signaling pathways is mostly inhibited during mitosis. However, we recently showed that EGFR is phosphorylated in response to EGF stimulation in mitosis. Here we studied EGF-induced EGFR activation and the activation of major signaling pathways downstream of EGFR during mitosis. We showed that EGFR was strongly activated by EGF during mitosis as all the five major tyrosine residues including Y992, Y1045, Y1068, Y1086, and Y1173 were phosphorylated to a level similar to that in the interphase. We further showed that the activated EGFR is able to selectively activate some downstream signaling pathways while avoiding others. Activated EGFR is able to activate PI3K and AKT2, but not AKT1, which may be responsible for the observed effects of EGF against nocodazole-induced cell death. Activated EGFR is also able to activate c-Src, c-Cbl and PLC-γ1 during mitosis. However, activated EGFR is unable to activate ERK1/2 and their downstream substrates RSK and Elk-1. While it activated Ras, EGFR failed to fully activate Raf-1 in mitosis due to the lack of phosphorylation at Y341 and the lack of dephosphorylation at pS259. We conclude that contrary to the dogma, EGFR is activated by EGF during mitosis. Moreover, EGFR-mediated cell signaling is regulated differently from the interphase to specifically serve the needs of the cell in mitosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Brk/PTK6 Sustains Activated EGFR Signaling through Inhibiting EGFR Degradation and Transactivating EGFR

    PubMed Central

    Li, X; Lu, Y; Liang, K; Hsu, J -M.; Albarracin, C; Mills, G B; Hung, M-C; Fan, Z

    2011-01-01

    Epidermal growth factor receptor (EGFR)-mediated cell signaling is critical for mammary epithelial cell growth and survival; however, targeting EGFR has shown no or only minimal therapeutic benefit in patients with breast cancer. Here, we report a novel regulatory mechanism of EGFR signaling that may explain the low response rates. We found that breast tumor kinase (Brk)/protein-tyrosine kinase 6 (PTK6), a nonreceptor protein tyrosine kinase highly expressed in most human breast tumors, interacted with EGFR and sustained ligand-induced EGFR signaling. We demonstrate that Brk inhibits ligand-induced EGFR degradation through uncoupling activated EGFR from Cbl-mediated EGFR ubiquitination. In addition, upon activation by EGFR, Brk directly phosphorylated Y845 in the EGFR kinase domain, thereby further potentiating EGFR kinase activity. Experimental elevation of Brk conferred resistance of breast cancer cells to cetuximab (an EGFR-blocking antibody)-induced inhibition of cell signaling and proliferation, whereas knockdown of Brk sensitized the cells to cetuximab by inducing apoptosis. Our findings reveal a previously unknown role of Brk in EGFR-targeted therapy. PMID:22231447

  16. Next-Generation EGFR Tyrosine Kinase Inhibitors for Treating EGFR-Mutant Lung Cancer beyond First Line

    PubMed Central

    Sullivan, Ivana; Planchard, David

    2017-01-01

    Tyrosine kinase inhibitors (TKIs) against the human epidermal growth factor receptor (EGFR) are now standard treatment in the clinic for patients with advanced EGFR mutant non-small-cell lung cancer (NSCLC). First-generation EGFR TKIs, binding competitively and reversibly to the ATP-binding site of the EGFR tyrosine kinase domain, have resulted in a significant improvement in outcome for NSCLC patients with activating EGFR mutations (L858R and Del19). However, after a median duration of response of ~12 months, all patients develop tumor resistance, and in over half of these patients this is due to the emergence of the EGFR T790M resistance mutation. The second-generation EGFR/HER TKIs were developed to treat resistant disease, targeting not only T790M but EGFR-activating mutations and wild-type EGFR. Although they exhibited promising anti-T790M activity in the laboratory, their clinical activity among T790M+ NSCLC was poor mainly because of dose-limiting toxicity due to simultaneous inhibition of wild-type EGFR. The third-generation EGFR TKIs selectively and irreversibly target EGFR T790M and activating EGFR mutations, showing promising efficacy in NSCLC resistant to the first- and second-generation EGFR TKIs. They also appear to have lower incidences of toxicity due to the limited inhibitory effect on wild-type EGFR. Currently, the first-generation gefitinib and erlotinib and second-generation afatinib have been approved for first-line treatment of metastatic NSCLC with activating EGFR mutations. Among the third-generation EGFR TKIs, osimertinib is today the only drug approved by the Food and Drug Administration and the European Medicines Agency to treat metastatic EGFR T790M NSCLC patients who have progressed on or after EGFR TKI therapy. In this review, we summarize the available post-progression therapies including third-generation EGFR inhibitors and combination treatment strategies for treating patients with NSCLC harboring EGFR mutations and address the known mechanisms of resistance. PMID:28149837

  17. Intrinsic resistance to EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer with activating EGFR mutations

    PubMed Central

    Wang, Jun; Wang, Baocheng; Chu, Huili; Yao, Yunfeng

    2016-01-01

    Identifying activating EGFR mutations is a useful predictive strategy that helps select a population of advanced non-small-cell lung cancer (NSCLC) patients for treatment with EGFR tyrosine kinase inhibitors (TKIs). Patients with sensitizing EGFR mutations (predominantly an in-frame deletion in exon 19 and an L858R substitution) are highly responsive to first-generation EGFR TKIs, such as gefitinib and erlotinib, and show improved progression-free survival without serious side effects. However, all patients with activating EGFR mutations who are initially responsive to EGFR TKIs eventually develop acquired resistance after a median progression-free survival of 10–16 months, followed by disease progression. Moreover, ~20%–30% of NSCLC patients have no objective tumor regression on initial EGFR TKI treatment, although they harbor an activating EGFR mutation. These patients represent an NSCLC subgroup that is defined as having intrinsic or primary resistance to EGFR TKIs. Different mechanisms of acquired EGFR TKI resistance have been identified, and several novel compounds have been developed to reverse acquired resistance, but little is known about EGFR TKI intrinsic resistance. In this review, we summarize the latest findings involving mechanisms of intrinsic resistance to EGFR TKIs in advanced NSCLC with activating EGFR mutations and present possible therapeutic strategies to overcome this resistance. PMID:27382309

  18. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention

    PubMed Central

    Davis, Nicole M.; Sokolosky, Melissa; Stadelman, Kristin; Abrams, Stephen L.; Libra, Massimo; Candido, Saverio; Nicoletti, Ferdinando; Polesel, Jerry; Maestro, Roberta; D’Assoro, Antonino; Drobot, Lyudmyla; Rakus, Dariusz; Gizak, Agnieszka; Laidler, Piotr; Dulińska-Litewka, Joanna; Basecke, Joerg; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Montalto, Giuseppe; Cervello, Melchiorre; Fitzgerald, Timothy L.; Demidenko, Zoya N.; Martelli, Alberto M.; Cocco, Lucio; Steelman, Linda S.; McCubrey, James A.

    2014-01-01

    The EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance and metastasis. The expression of this pathway is frequently altered in breast cancer due to mutations at or aberrant expression of: HER2, ERalpha, BRCA1, BRCA2, EGFR1, PIK3CA, PTEN, TP53, RB as well as other oncogenes and tumor suppressor genes. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway and upstream HER2 has been associated with breast cancer initiating cells (CICs) and in some cases resistance to treatment. The anti-diabetes drug metformin can suppress the growth of breast CICs and herceptin-resistant HER2+ cells. This review will discuss the importance of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway primarily in breast cancer but will also include relevant examples from other cancer types. The targeting of this pathway will be discussed as well as clinical trials with novel small molecule inhibitors. The targeting of the hormone receptor, HER2 and EGFR1 in breast cancer will be reviewed in association with suppression of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway. PMID:25051360

  19. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention.

    PubMed

    Davis, Nicole M; Sokolosky, Melissa; Stadelman, Kristin; Abrams, Steve L; Libra, Massimo; Candido, Saverio; Nicoletti, Ferdinando; Polesel, Jerry; Maestro, Roberta; D'Assoro, Antonino; Drobot, Lyudmyla; Rakus, Dariusz; Gizak, Agnieszka; Laidler, Piotr; Dulińska-Litewka, Joanna; Basecke, Joerg; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Montalto, Giuseppe; Cervello, Melchiorre; Fitzgerald, Timothy L; Demidenko, Zoya; Martelli, Alberto M; Cocco, Lucio; Steelman, Linda S; McCubrey, James A

    2014-07-15

    The EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance and metastasis. The expression of this pathway is frequently altered in breast cancer due to mutations at or aberrant expression of: HER2, ERalpha, BRCA1, BRCA2, EGFR1, PIK3CA, PTEN, TP53, RB as well as other oncogenes and tumor suppressor genes. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway and upstream HER2 has been associated with breast cancer initiating cells (CICs) and in some cases resistance to treatment. The anti-diabetes drug metformin can suppress the growth of breast CICs and herceptin-resistant HER2+ cells. This review will discuss the importance of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway primarily in breast cancer but will also include relevant examples from other cancer types. The targeting of this pathway will be discussed as well as clinical trials with novel small molecule inhibitors. The targeting of the hormone receptor, HER2 and EGFR1 in breast cancer will be reviewed in association with suppression of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway.

  20. Cellular localization of the activated EGFR determines its effect on cell growth in MDA-MB-468 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyatt, Dustin C.; Ceresa, Brian P.

    2008-11-01

    The epidermal growth factor (EGF) receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase that regulates diverse cell functions that are dependent upon cell type, the presence of downstream effectors, and receptor density. In addition to activating biochemical pathways, ligand stimulation causes the EGFR to enter the cell via clathrin-coated pits. Endocytic trafficking influences receptor signaling by controlling the duration of EGFR phosphorylation and coordinating the receptor's association with downstream effectors. To better understand the individual contributions of cell surface and cytosolic EGFRs on cell physiology, we used EGF that was conjugated to 900 nm polystyrene beads (EGF-beads). EGF-beads canmore » stimulate the EGFR and retain the activated receptor at the plasma membrane. In MDA-MB-468 cells, a breast cancer cell line that over-expresses the EGFR, only internalized, activated EGFRs stimulate caspase-3 and induce cell death. Conversely, signaling cascades triggered from activated EGFR retained at the cell surface inhibit caspase-3 and promote cell proliferation. Thus, through endocytosis, the activated EGFR can differentially regulate cell growth in MDA-MB-468 cells.« less

  1. Cigarette smoke induces aberrant EGF receptor activation which mediates lung cancer development and resistance to tyrosine kinase inhibitors

    PubMed Central

    Filosto, Simone; Becker, Cathleen R.; Goldkorn, Tzipora

    2015-01-01

    The EGF Receptor (EGFR) and its downstream signaling are implicated in lung cancer development. Therefore, much effort was spent in developing specific tyrosine kinase inhibitors (TKIs) that bind to the EGFR ATP-pocket, blocking EGFR phosphorylation/signaling. Clinical use of TKIs is effective in a subset of lung cancers with mutations in the EGFR kinase domain, rendering the receptor highly susceptible to TKIs. However, these benefits are limited, and emergence of additional EGFR mutations usually results in TKI resistance and disease progression. Previously, we demonstrated one mechanism linking cigarette smoke (CS) to EGFR-driven lung cancer. Specifically, exposure of lung epithelial cells to CS-induced oxidative stress stimulates aberrant EGFR phosphorylation/activation with impaired receptor ubiquitination/degradation. The abnormal stabilization of the activated receptor leads to uncontrolled cell growth and tumorigenesis. Here we describe for the first time a novel post-translational mechanism of EGFR resistance to TKIs. Exposure of airway epithelial cells to CS causes aberrant phosphorylation/activation of EGFR, resulting in a conformation that is different from that induced by the ligand EGF. Unlike EGF-activated EGFR, CS-activated EGFR binds c-Src and caveolin-1 and does not undergo canonical dimerization. Importantly, the CS-activated EGFR is not inhibited by TKIs (AG1478; Erlotinib; Gefitinib); in fact, the CS exposure induces TKI-resistance even in the TKI-sensitive EGFR mutants. Our findings demonstrate that CS exposure stimulates not only aberrant EGFR phosphorylation impairing receptor degradation, but also induces a different EGFR conformation and signaling that are resistant to TKIs. Together, these findings offer new insights into CS-induced lung cancer development and TKI resistance. PMID:22302097

  2. Loss of Activating EGFR Mutant Gene Contributes to Acquired Resistance to EGFR Tyrosine Kinase Inhibitors in Lung Cancer Cells

    PubMed Central

    Kubo, Takuya; Murakami, Yuichi; Kawahara, Akihiko; Azuma, Koichi; Abe, Hideyuki; Kage, Masayoshi; Yoshinaga, Aki; Tahira, Tomoko; Hayashi, Kenshi; Arao, Tokuzo; Nishio, Kazuto; Rosell, Rafael; Kuwano, Michihiko; Ono, Mayumi

    2012-01-01

    Non-small-cell lung cancer harboring epidermal growth factor receptor (EGFR) mutations attains a meaningful response to EGFR-tyrosine kinase inhibitors (TKIs). However, acquired resistance to EGFR-TKIs could affect long-term outcome in almost all patients. To identify the potential mechanisms of resistance, we established cell lines resistant to EGFR-TKIs from the human lung cancer cell lines PC9 and11–18, which harbored activating EGFR mutations. One erlotinib-resistant cell line from PC9 and two erlotinib-resistant cell lines and two gefitinib-resistant cell lines from 11–18 were independently established. Almost complete loss of mutant delE746-A750 EGFR gene was observed in the erlotinib-resistant cells isolated from PC9, and partial loss of the mutant L858R EGFR gene copy was specifically observed in the erlotinib- and gefitinib-resistant cells from 11–18. However, constitutive activation of EGFR downstream signaling, PI3K/Akt, was observed even after loss of the mutated EGFR gene in all resistant cell lines even in the presence of the drug. In the erlotinib-resistant cells from PC9, constitutive PI3K/Akt activation was effectively inhibited by lapatinib (a dual TKI of EGFR and HER2) or BIBW2992 (pan-TKI of EGFR family proteins). Furthermore, erlotinib with either HER2 or HER3 knockdown by their cognate siRNAs also inhibited PI3K/Akt activation. Transfection of activating mutant EGFR complementary DNA restored drug sensitivity in the erlotinib-resistant cell line. Our study indicates that loss of addiction to mutant EGFR resulted in gain of addiction to both HER2/HER3 and PI3K/Akt signaling to acquire EGFR-TKI resistance. PMID:22815900

  3. Collagen type I induces EGFR-TKI resistance in EGFR-mutated cancer cells by mTOR activation through Akt-independent pathway.

    PubMed

    Yamazaki, Shota; Higuchi, Youichi; Ishibashi, Masayuki; Hashimoto, Hiroko; Yasunaga, Masahiro; Matsumura, Yasuhiro; Tsuchihara, Katsuya; Tsuboi, Masahiro; Goto, Koichi; Ochiai, Atsushi; Ishii, Genichiro

    2018-06-01

    Primary resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is a serious problem in lung adenocarcinoma patients harboring EGFR mutations. The aim of this study was to examine whether and how collagen type I (Col I), the most abundantly deposited matrix in tumor stroma, affects EGFR-TKI sensitivity in EGFR-mutant cells. We evaluated the EGFR-TKI sensitivity of EGFR-mutated cancer cells cultured with Col I. Changes in the activation of downstream signaling molecules of EGFR were analyzed. We also examined the association between the Col I expression in tumor stroma in surgical specimens and EGFR-TKI response of postoperative recurrence patients with EGFR mutations. Compared to cancer cells without Col I, the survival rate of cancer cells cultured with Col I was significantly higher after EGFR-TKI treatment. In cancer cells cultured with and without Col I, EGFR-TKI suppressed the levels of phosphorylated (p-)EGFR, p-ERK1/2, and p-Akt. When compared to cancer cells without Col I, expression of p-P70S6K, a hallmark of mTOR activation, was dramatically upregulated in cancer cells with Col I. This activation was maintained even after EGFR-TKI treatment. Simultaneous treatment with EGFR-TKI and mTOR inhibitor abrogated Col I-induced resistance to EGFR-TKI. Patients with Col I-rich stroma had a significantly shorter progression-free survival time after EGFR-TKI therapy (238 days vs 404 days; P < .05). Collagen type I induces mTOR activation through an Akt-independent pathway, which results in EGFR-TKI resistance. Combination therapy using EGFR-TKI and mTOR inhibitor could be a possible strategy to combat this resistance. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  4. Early Induction of NRF2 Antioxidant Pathway by RHBDF2 Mediates Rapid Cutaneous Wound Healing

    PubMed Central

    Hosur, Vishnu; Burzenski, Lisa M.; Stearns, Timothy M.; Farley, Michelle L.; Sundberg, John P.; Wiles, Michael V.; Shultz, Leonard D.

    2017-01-01

    Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2cub/cub) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2cub/cub and Rhbdf2+/+ mice at 0h, 15 min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15 min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds. PMID:28268192

  5. Early induction of NRF2 antioxidant pathway by RHBDF2 mediates rapid cutaneous wound healing.

    PubMed

    Hosur, Vishnu; Burzenski, Lisa M; Stearns, Timothy M; Farley, Michelle L; Sundberg, John P; Wiles, Michael V; Shultz, Leonard D

    2017-04-01

    Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2 cub/cub ) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2 cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2 cub/cub and Rhbdf2 +/+ mice at 0h, 15min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2 cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Cetuximab in combination with anti-human IgG antibodies efficiently down-regulates the EGF receptor by macropinocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Christian; Madshus, Inger Helene; Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo

    The monoclonal antibody C225 (Cetuximab) blocks binding of ligand to the epidermal growth factor receptor (EGFR). In addition, it is known that incubation with C225 induces endocytosis of the EGFR. This endocytosis has previously been shown to be increased when C225 is combined with an additional monoclonal anti-EGFR antibody. However, the effects of antibody combinations on EGFR activation, endocytosis, trafficking and degradation have been unclear. By binding a secondary antibody to the C225-EGFR complex, we here demonstrate that a combination of antibodies can efficiently internalize and degrade the EGFR. Although the combination of antibodies activated the EGFR kinase and inducedmore » ubiquitination of the EGFR, the kinase activity was not required for internalization of the EGFR. In contrast to EGF-induced EGFR down-regulation, the antibody combination efficiently degraded the EGFR without initiating downstream proliferative signaling. The antibody-induced internalization of EGFR was found not to depend on clathrin and/or dynamin, but depended on actin polymerization, suggesting induction of macropinocytosis. Macropinocytosis may cause internalization of large membrane areas, and this could explain the highly efficient internalization of the EGFR induced by combination of antibodies. -- Highlight: Black-Right-Pointing-Pointer Cetuximab induced endocytosis of EGFR increases upon combination with anti-human IgG. Black-Right-Pointing-Pointer Antibody combination causes internalization of EGFR by macropinocytosis. Black-Right-Pointing-Pointer Antibody-induced internalization of EGFR is independent of EGFR kinase activity. Black-Right-Pointing-Pointer Antibody combination may have a zipper effect and cross-link EGFRs on neighboring cells.« less

  7. Unravelling signal escape through maintained EGFR activation in advanced non-small cell lung cancer (NSCLC): new treatment options

    PubMed Central

    Remon, Jordi; Besse, Benjamin

    2016-01-01

    The discovery of activating epidermal growth factor receptor (EGFR) mutations has opened up a new era in the development of more effective treatments for patients with non-small cell lung cancer (NSCLC). However, patients with EGFR-activating mutated NSCLC treated with EGFR tyrosine kinase inhibitors (TKIs) ultimately develop acquired resistance (AR). Among known cases of patients with AR, 70% of the mechanisms involved in the development of AR to EGFR TKI have been identified and may be categorised as either secondary EGFR mutations such as the T790M mutation, activation of bypass track signalling pathways such as MET amplification, or histologic transformation. EGFR-mutant NSCLC tumours maintain oncogenic addiction to the EGFR pathway beyond progression with EGFR TKI. Clinical strategies that can be implemented in daily clinical practice to potentially overcome this resistance and prolong the outcome in this subgroup of patients are presented. PMID:27843631

  8. Inhibition of EGFR/MAPK signaling reduces microglial inflammatory response and the associated secondary damage in rats after spinal cord injury.

    PubMed

    Qu, Wen-Sheng; Tian, Dai-Shi; Guo, Zhi-Bao; Fang, Jun; Zhang, Qiang; Yu, Zhi-Yuan; Xie, Min-Jie; Zhang, Hua-Qiu; Lü, Jia-Gao; Wang, Wei

    2012-07-23

    Emerging evidence indicates that reactive microglia-initiated inflammatory responses are responsible for secondary damage after primary traumatic spinal cord injury (SCI); epidermal growth factor receptor (EGFR) signaling may be involved in cell activation. In this report, we investigate the influence of EGFR signaling inhibition on microglia activation, proinflammatory cytokine production, and the neuronal microenvironment after SCI. Lipopolysaccharide-treated primary microglia/BV2 line cells and SCI rats were used as model systems. Both C225 and AG1478 were used to inhibit EGFR signaling activation. Cell activation and EGFR phosphorylation were observed after fluorescent staining and western blot. Production of interleukin-1 beta (IL-1 β) and tumor necrosis factor alpha (TNF α) was tested by reverse transcription PCR and ELISA. Western blot was performed to semi-quantify the expression of EGFR/phospho-EGFR, and phosphorylation of Erk, JNK and p38 mitogen-activated protein kinases (MAPK). Wet-dry weight was compared to show tissue edema. Finally, axonal tracing and functional scoring were performed to show recovery of rats. EGFR phosphorylation was found to parallel microglia activation, while EGFR blockade inhibited activation-associated cell morphological changes and production of IL-1 β and TNF α. EGFR blockade significantly downregulated the elevated MAPK activation after cell activation; selective MAPK inhibitors depressed production of cytokines to a certain degree, suggesting that MAPK mediates the depression of microglia activation brought about by EGFR inhibitors. Subsequently, seven-day continual infusion of C225 or AG1478 in rats: reduced the expression of phospho-EGFR, phosphorylation of Erk and p38 MAPK, and production of IL-1 β and TNF α; lessened neuroinflammation-associated secondary damage, like microglia/astrocyte activation, tissue edema and glial scar/cavity formation; and enhanced axonal outgrowth and functional recovery. These findings indicate that inhibition of EGFR/MAPK suppresses microglia activation and associated cytokine production; reduces neuroinflammation-associated secondary damage, thus provides neuroprotection to SCI rats, suggesting that EGFR may be a therapeutic target, and C225 and AG1478 have potential for use in SCI treatment.

  9. [Regulation on EGFR function via its interacting proteins and its potential application].

    PubMed

    Zheng, Jun-Fang; Chen, Hui-Min; He, Jun-Qi

    2013-12-01

    Epidermal growth factor receptor (EGFR) is imptortant for cell activities, oncogenesis and cell migration, and EGFR inhibitor can treat cancer efficiently, but its side effects, for example, in skin, limited its usage. On the other hand, EGFR interacting proteins may also lead to oncogenesis and its interacting protein as drug targets can avoid cutaneous side effect, which implies possibly a better outcome and life quality of cancer patients. For the multiple EGFR interaction proteins, B1R enhances Erk/MAPK signaling, while PTPN12, Kek1, CEACAM1 and NHERF repress Erk/MAPK signaling. CaM may alter charge of EGFR juxamembrane domain and regulate activation of PI3K/Akt and PLC-gamma/PKC. STAT1, STAT5b are widely thought to be activated by EGFR, while there is unexpectedly inhibiting sequence within EGFR to repress the activity of STATs. LRIG1 and ACK1 enhance the internalization and degration of EGFR, while NHERF and HIP1 repress it. In this article, proteins interacting with EGFR, their interacting sites and their regulation on EGFR signal transduction will be reviewed.

  10. The signaling pathway of Campylobacter jejuni-induced Cdc42 activation: Role of fibronectin, integrin beta1, tyrosine kinases and guanine exchange factor Vav2

    PubMed Central

    2011-01-01

    Background Host cell invasion by the foodborne pathogen Campylobacter jejuni is considered as one of the primary reasons of gut tissue damage, however, mechanisms and key factors involved in this process are widely unclear. It was reported that small Rho GTPases, including Cdc42, are activated and play a role during invasion, but the involved signaling cascades remained unknown. Here we utilised knockout cell lines derived from fibronectin-/-, integrin-beta1-/-, focal adhesion kinase (FAK)-/- and Src/Yes/Fyn-/- deficient mice, and wild-type control cells, to investigate C. jejuni-induced mechanisms leading to Cdc42 activation and bacterial uptake. Results Using high-resolution scanning electron microscopy, GTPase pulldowns, G-Lisa and gentamicin protection assays we found that each studied host factor is necessary for induction of Cdc42-GTP and efficient invasion. Interestingly, filopodia formation and associated membrane dynamics linked to invasion were only seen during infection of wild-type but not in knockout cells. Infection of cells stably expressing integrin-beta1 variants with well-known defects in fibronectin fibril formation or FAK signaling also exhibited severe deficiencies in Cdc42 activation and bacterial invasion. We further demonstrated that infection of wild-type cells induces increasing amounts of phosphorylated FAK and growth factor receptors (EGFR and PDGFR) during the course of infection, correlating with accumulating Cdc42-GTP levels and C. jejuni invasion over time. In studies using pharmacological inhibitors, silencing RNA (siRNA) and dominant-negative expression constructs, EGFR, PDGFR and PI3-kinase appeared to represent other crucial components upstream of Cdc42 and invasion. siRNA and the use of Vav1/2-/- knockout cells further showed that the guanine exchange factor Vav2 is required for Cdc42 activation and maximal bacterial invasion. Overexpression of certain mutant constructs indicated that Vav2 is a linker molecule between Cdc42 and activated EGFR/PDGFR/PI3-kinase. Using C. jejuni mutant strains we further demonstrated that the fibronectin-binding protein CadF and intact flagella are involved in Cdc42-GTP induction, indicating that the bacteria may directly target the fibronectin/integrin complex for inducing signaling leading to its host cell entry. Conclusion Collectively, our findings led us propose that C. jejuni infection triggers a novel fibronectin→integrin-beta1→FAK/Src→EGFR/PDGFR→PI3-kinase→Vav2 signaling cascade, which plays a crucial role for Cdc42 GTPase activity associated with filopodia formation and enhances bacterial invasion. PMID:22204307

  11. Interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in human epithelial cancer cells.

    PubMed

    Piyush, Tushar; Chacko, Anisha R; Sindrewicz, Paulina; Hilkens, John; Rhodes, Jonathan M; Yu, Lu-Gang

    2017-11-01

    Epidermal growth factor receptor (EGFR) is an important regulator of epithelial cell growth and survival in normal and cancerous tissues and is a principal therapeutic target for cancer treatment. EGFR is associated in epithelial cells with the heavily glycosylated transmembrane mucin protein MUC1, a natural ligand of galectin-3 that is overexpressed in cancer. This study reveals that the expression of cell surface MUC1 is a critical enhancer of EGF-induced EGFR activation in human breast and colon cancer cells. Both the MUC1 extracellular and intracellular domains are involved in EGFR activation but the predominant influence comes from its extracellular domain. Binding of galectin-3 to the MUC1 extracellular domain induces MUC1 cell surface polarization and increases MUC1-EGFR association. This leads to a rapid increase of EGFR homo-/hetero-dimerization and subsequently increased, and also prolonged, EGFR activation and signalling. This effect requires both the galectin-3 C-terminal carbohydrate recognition domain and its N-terminal ligand multi-merization domain. Thus, interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in epithelial cancer cells. As MUC1 and galectin-3 are both commonly overexpressed in most types of epithelial cancers, their interaction and impact on EGFR activation likely makes important contribution to EGFR-associated tumorigenesis and cancer progression and may also influence the effectiveness of EGFR-targeted cancer therapy.

  12. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer.

    PubMed

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; Castro Junior, Gilberto de

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC.

  13. PGE2/EP3/SRC signaling induces EGFR nuclear translocation and growth through EGFR ligands release in lung adenocarcinoma cells

    PubMed Central

    Bazzani, Lorenzo; Donnini, Sandra; Finetti, Federica; Christofori, Gerhard; Ziche, Marina

    2017-01-01

    Prostaglandin E2 (PGE2) interacts with tyrosine kinases receptor signaling in both tumor and stromal cells supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, A549 and GLC82, PGE2 promotes nuclear translocation of epidermal growth factor receptor (nEGFR), affects gene expression and induces cell growth. Indeed, cyclin D1, COX-2, iNOS and c-Myc mRNA levels are upregulated following PGE2 treatment. The nuclear localization sequence (NLS) of EGFR as well as its tyrosine kinase activity are required for the effect of PGE2 on nEGFR and downstream signaling activities. PGE2 binds its bona fide receptor EP3 which by activating SRC family kinases, induces ADAMs activation which, in turn, releases EGFR-ligands from the cell membrane and promotes nEGFR. Amphiregulin (AREG) and Epiregulin (EREG) appear to be involved in nEGFR promoted by the PGE2/EP3-SRC axis. Pharmacological inhibition or silencing of the PGE2/EP3/SRC-ADAMs signaling axis or EGFR ligands i.e. AREG and EREG expression abolishes nEGFR induced by PGE2. In conclusion, PGE2 induces NSCLC cell proliferation by EP3 receptor, SRC-ADAMs activation, EGFR ligands shedding and finally, phosphorylation and nEGFR. Since nuclear EGFR is a hallmark of cancer aggressiveness, our findings reveal a novel mechanism for the contribution of PGE2 to tumor progression. PMID:28415726

  14. Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain

    PubMed Central

    Lee, Jeffrey C; Vivanco, Igor; Beroukhim, Rameen; Huang, Julie H. Y; Feng, Whei L; DeBiasi, Ralph M; Yoshimoto, Koji; King, Jennifer C; Nghiemphu, Phioanh; Yuza, Yuki; Xu, Qing; Greulich, Heidi; Thomas, Roman K; Paez, J. Guillermo; Peck, Timothy C; Linhart, David J; Glatt, Karen A; Getz, Gad; Onofrio, Robert; Ziaugra, Liuda; Levine, Ross L; Gabriel, Stacey; Kawaguchi, Tomohiro; O'Neill, Keith; Khan, Haumith; Liau, Linda M; Nelson, Stanley F; Rao, P. Nagesh; Mischel, Paul; Pieper, Russell O; Cloughesy, Tim; Leahy, Daniel J; Sellers, William R; Sawyers, Charles L; Meyerson, Matthew; Mellinghoff, Ingo K

    2006-01-01

    Background Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy. Methods and Findings Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR) kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132) of glioblastomas and 12.5% (1/8) of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors. Conclusions Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma. PMID:17177598

  15. Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Lili; Yang, Min; Ding, Wei

    Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangialmore » cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. - Highlights: • EGFR was involved in aldosterone-induced renal profibrotic responses. • Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation. • EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis.« less

  16. Antitumor Activity of Osimertinib, an Irreversible Mutant-Selective EGFR Tyrosine Kinase Inhibitor, in NSCLC Harboring EGFR Exon 20 Insertions.

    PubMed

    Floc'h, Nicolas; Martin, Matthew J; Riess, Jonathan W; Orme, Jonathan P; Staniszewska, Anna D; Ménard, Ludovic; Cuomo, Maria Emanuela; O'Neill, Daniel J; Ward, Richard A; Finlay, M Raymond V; McKerrecher, Darren; Cheng, Mingshan; Vang, Daniel P; Burich, Rebekah A; Keck, James G; Gandara, David R; Mack, Philip C; Cross, Darren A E

    2018-05-01

    EGFR exon 20 insertions (Ex20Ins) account for 4% to 10% of EGFR activating mutations in non-small cell lung cancer (NSCLC). EGFR Ex20Ins tumors are generally unresponsive to first- and second-generation EGFR inhibitors, and current standard of care for NSCLC patients with EGFR Ex20Ins is conventional cytotoxic chemotherapy. Therefore, the development of an EGFR TKI that can more effectively target NSCLC with EGFR Ex20Ins mutations represents a major advance for this patient subset. Osimertinib is a third-generation EGFR TKI approved for the treatment of advanced NSCLC harboring EGFR T790M; however, the activity of osimertinib in EGFR Ex20Ins NSCLC has yet to be fully assessed. Using CRISPR-Cas 9 engineered cell lines carrying the most prevalent Ex20Ins mutations, namely Ex20Ins D770_N771InsSVD (22%) or Ex20Ins V769_D770InsASV (17%), and a series of patient-derived xenografts, we have characterized osimertinib and AZ5104 (a circulating metabolite of osimertinib) activities against NSCLC harboring Ex20Ins. We report that osimertinib and AZ5104 inhibit signaling pathways and cellular growth in Ex20Ins mutant cell lines in vitro and demonstrate sustained tumor growth inhibition of EGFR-mutant tumor xenograft harboring the most prevalent Ex20Ins in vivo The antitumor activity of osimertinib and AZ5104 in NSCLC harboring EGFR Ex20Ins is further described herein using a series of patient-derived xenograft models. Together these data support clinical testing of osimertinib in patients with EGFR Ex20Ins NSCLC. Mol Cancer Ther; 17(5); 885-96. ©2018 AACR . ©2018 American Association for Cancer Research.

  17. Exosome production and its regulation of EGFR during wound healing in renal tubular cells.

    PubMed

    Zhou, Xiangjun; Zhang, Wei; Yao, Qisheng; Zhang, Hao; Dong, Guie; Zhang, Ming; Liu, Yutao; Chen, Jian-Kang; Dong, Zheng

    2017-06-01

    Kidney repair following injury involves the reconstitution of a structurally and functionally intact tubular epithelium. Growth factors and their receptors, such as EGFR, are important in the repair of renal tubules. Exosomes are cell-produced small (~100 nm in diameter) vesicles that contain and transfer proteins, lipids, RNAs, and DNAs between cells. In this study, we examined the relationship between exosome production and EGFR activation and the potential role of exosome in wound healing. EGFR activation occurred shortly after scratch wounding in renal tubular cells. Wound repair after scratching was significantly promoted by EGF and suppressed by EGFR inhibitor gefitinib. Interestingly, scratch wounding induced a significant increase of exosome production. The exosome production was decreased by EGF and increased by gefitinib, suggesting a suppressive role of EGFR signaling in exosome production. Conversely, inhibition of exosome release by GW4869 and manumycin A markedly increased EGFR activation and promoted wound healing. Moreover, exosomes derived from scratch-wounding cells could inhibit wound healing. Collectively, the results indicate that wound healing in renal tubular cells is associated with EGFR activation and exosome production. Although EGFR activation promotes wound healing, released exosomes may antagonize EGFR activation and wound healing. Copyright © 2017 the American Physiological Society.

  18. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER).

    PubMed

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-05-30

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.

  19. Differential signaling and regulation of apical vs. basolateral EGFR in polarized epithelial cells.

    PubMed

    Kuwada, S K; Lund, K A; Li, X F; Cliften, P; Amsler, K; Opresko, L K; Wiley, H S

    1998-12-01

    Overexpression of the epidermal growth factor receptors (EGFR) in polarized kidney epithelial cells caused them to appear in high numbers at both the basolateral and apical cell surfaces. We utilized these cells to look for differences in the regulation and signaling of apical vs. basolateral EGFR. Apical and basolateral EGFR were biologically active and mediated EGF-induced cell proliferation to similar degrees. Receptor downregulation and endocytosis were less efficient at the apical surface, resulting in prolonged EGF-induced tyrosine kinase activity at the apical cell membrane. Tyrosine phosphorylation of EGFR substrates known to mediate cell proliferation, Src-homologous and collagen protein (SHC), extracellularly regulated kinase 1 (ERK1), and ERK2 could be induced similarly by activation of apical or basolateral EGFR. Focal adhesion kinase was tyrosine phosphorylated more by basolateral than by apical EGFR; however, beta-catenin was tyrosine phosphorylated to a much greater degree following the activation of mislocalized apical EGFR. Thus EGFR regulation and EGFR-mediated phosphorylation of certain substrates differ at the apical and basolateral cell membrane domains. This suggests that EGFR mislocalization could result in abnormal signal transduction and aberrant cell behavior.

  20. Inhibition of EGFR attenuates fibrosis and stellate cell activation in diet-induced model of nonalcoholic fatty liver disease.

    PubMed

    Liang, Dandan; Chen, Hongjin; Zhao, Leping; Zhang, Wenxin; Hu, Jie; Liu, Zhiguo; Zhong, Peng; Wang, Wei; Wang, Jingying; Liang, Guang

    2018-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. NAFLD begins with steatosis and advances to nonalcoholic steatohepatitis (NASH) and cirrhosis. The molecular mechanisms involved in NAFLD progression are not understood. Based on recent studies showing dysregulation of epidermal growth factor receptor (EGFR) in animal models of liver injury, we sought to determine if inhibition of EGFR mitigates liver fibrosis and HSC activation in NAFLD. We utilized the high fat diet (HFD)-induced murine model of liver injury to study the role of EGFR in NAFLD. The lipid accumulation, oxidative stress, hepatic stellate cell (HSC) activation and matrix deposition were examined in the liver tissues. We also evaluated the EGFR signaling pathway, ROS activation and pro-fibrogenic phenotype in oxidized low density lipoproteins (ox-LDL) challenged cultured HSCs. We demonstrate that EGFR was phosphorylated in liver tissues of HFD murine model of NAFLD. Inhibition of EGFR prevented diet-induced lipid accumulation, oxidative stress, and HSC activation and matrix deposition. In cultured HSCs, we show that ox-LDL caused rapid activation of the EGFR signaling pathway and induce the production of reactive oxygen species. EGFR also mediated HSC activation and promoted a pro-fibrogenic phenotype. In conclusion, our data demonstrate that EGFR plays an important role in NAFLD and is an attractive target for NAFLD therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The NADPH Oxidases DUOX1 and NOX2 Play Distinct Roles in Redox Regulation of Epidermal Growth Factor Receptor Signaling.

    PubMed

    Heppner, David E; Hristova, Milena; Dustin, Christopher M; Danyal, Karamatullah; Habibovic, Aida; van der Vliet, Albert

    2016-10-28

    The epidermal growth factor receptor (EGFR) plays a critical role in regulating airway epithelial homeostasis and responses to injury. Activation of EGFR is regulated by redox-dependent processes involving reversible cysteine oxidation by reactive oxygen species (ROS) and involves both ligand-dependent and -independent mechanisms, but the precise source(s) of ROS and the molecular mechanisms that control tyrosine kinase activity are incompletely understood. Here, we demonstrate that stimulation of EGFR activation by ATP in airway epithelial cells is closely associated with dynamic reversible oxidation of cysteine residues via sequential sulfenylation and S-glutathionylation within EGFR and the non-receptor-tyrosine kinase Src. Moreover, the intrinsic kinase activity of recombinant Src or EGFR was in both cases enhanced by H 2 O 2 but not by GSSG, indicating that the intermediate sulfenylation is the activating modification. H 2 O 2 -induced increase in EGFR tyrosine kinase activity was not observed with the C797S variant, confirming Cys-797 as the redox-sensitive cysteine residue that regulates kinase activity. Redox-dependent regulation of EGFR activation in airway epithelial cells was found to strongly depend on activation of either the NADPH oxidase DUOX1 or the homolog NOX2, depending on the activation mechanism. Whereas DUOX1 and Src play a primary role in EGFR transactivation by wound-derived signals such as ATP, direct ligand-dependent EGFR activation primarily involves NOX2 with a secondary role for DUOX1 and Src. Collectively, our findings establish that redox-dependent EGFR kinase activation involves a dynamic and reversible cysteine oxidation mechanism and that this activation mechanism variably involves DUOX1 and NOX2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Impact of active smoking on survival of patients with metastatic lung adenocarcinoma harboring an epidermal growth factor receptor (EGFR) mutation.

    PubMed

    Erdogan, Bulent; Kodaz, Hilmi; Karabulut, Senem; Cinkaya, Ahmet; Tozkir, Hilmi; Tanriverdi, Ozgur; Cabuk, Devrim; Hacioglu, Muhammed Bekir; Turkmen, Esma; Hacibekiroglu, Ilhan; Uzunoglu, Sernaz; Cicin, Irfan

    2016-11-10

    Lung cancer in smokers and non-smokers demonstrates distinct genetic profiles, and cigarette smoking affects epidermal growth factor receptor (EGFR) function and causes secondary EGFR tyrosine kinase resistance. We evaluated the effect of active smoking in patients with metastatic lung adenocarcinoma. A total of 132 metastatic lung adenocarcinoma patients, diagnosed between 2008 and 2013, with known EGFR mutation status, were evaluated retrospectively. Among these patients, 40 had an activating EGFR mutation. Patients who continued smoking during the treatment were defined as active smokers. Former smokers and never smokers were together defined as non-smokers. The outcomes of the treatment in relation to the EGFR mutation and smoking status were evaluated. The median follow-up time was 10.5 months. The overall response rate for the first-line therapy was significantly higher among the EGFR-mutant patients (p = 0.01), however, smoking status had no impact on the response rate (p = 0.1). The EGFR-mutant active smokers progressed earlier than the non-smokers (p < 0.01). The overall survival (OS) of the non-smokers and patients treated with erlotinib was significantly longer (p = 0.02 and p = 0.01, respectively). Smoking status did not affect the OS in EGFR wild type tumors (p = 0.49) but EGFR-mutant non-smokers had a longer OS than the active smokers (p = 0.01).The active smokers treated with erlotinib had poorer survival than the non-smokers (p = 0.03). Multivariate analysis of EGFR-mutant patients showed that erlotinib treatment at any line and non-smoking were independent prognostic factors for the OS (p = 0.04 and p = 0.01, respectively). Smoking during treatment is a negative prognostic factor in metastatic lung adenocarcinoma with an EGFR mutation.

  3. Ligand-independent Dimer Formation of Epidermal Growth Factor Receptor (EGFR) Is a Step Separable from Ligand-induced EGFR Signaling

    PubMed Central

    Yu, Xiaochun; Sharma, Kailash D.; Takahashi, Tsuyoshi; Iwamoto, Ryo; Mekada, Eisuke

    2002-01-01

    Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between 835Ala and 918Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events. PMID:12134089

  4. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer *

    PubMed Central

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; de Castro, Gilberto

    2015-01-01

    Abstract Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC. PMID:26398757

  5. Measurement of Epidermal Growth Factor Receptor-Derived Signals Within Plasma Membrane Clathrin Structures.

    PubMed

    Lucarelli, Stefanie; Delos Santos, Ralph Christian; Antonescu, Costin N

    2017-01-01

    The epidermal growth factor (EGF) receptor (EGFR) is an important regulator of cell growth, proliferation, survival, migration, and metabolism. EGF binding to EGFR triggers the activation of the receptor's intrinsic kinase activity, in turn eliciting the recruitment of many secondary signaling proteins and activation of downstream signals, such as the activation of phosphatidylinositol-3-kinase (PI3K) and Akt, a process requiring the phosphorylation of Gab1. While the identity of many signals that can be activated by EGFR has been revealed, how the spatiotemporal organization of EGFR signaling within cells controls receptor outcome remains poorly understood. Upon EGF binding at the plasma membrane, EGFR is internalized by clathrin-mediated endocytosis following recruitment to clathrin-coated pits (CCPs). Further, plasma membrane CCPs, but not EGFR internalization, are required for EGF-stimulated Akt phosphorylation. Signaling intermediates such as phosphorylated Gab1, which lead to Akt phosphorylation, are enriched within CCPs upon EGF stimulation. These findings indicate that some plasma membrane CCPs also serve as signaling microdomains required for certain facets of EGFR signaling and are enriched in key EGFR signaling intermediates. Understanding how the spatiotemporal organization of EGFR signals within CCP microdomains controls receptor signaling outcome requires imaging methods that can systematically resolve and analyze the properties of CCPs, EGFR and key signaling intermediates. Here, we describe methods using total internal reflection fluorescence microscopy imaging and analysis to systematically study the enrichment of EGFR and key EGFR-derived signals within CCPs.

  6. First-line therapy for advanced non-small cell lung cancer with activating EGFR mutation: is combined EGFR-TKIs and chemotherapy a better choice?

    PubMed

    Wang, Shuyun; Gao, Aiqin; Liu, Jie; Sun, Yuping

    2018-03-01

    As the standard first-line treatment for advanced non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutation, EGFR-tyrosine kinase inhibitors (EGFR-TKIs) have significantly improved the median progression-free survival (PFS) up to 18.9 months. However, almost all patients eventually develop acquired resistance to EGFR-TKIs, which limits the first-line PFS. To overcome the resistance and improve overall survival, researchers have tried to identify the resistance mechanisms and develop new treatment strategies, among which a combination of EGFR-TKIs and cytotoxic chemotherapy is one of the hotspots. The data from preclinical and clinical studies on combined EGFR-TKIs and chemotherapy have shown very interesting results. Here, we reviewed the available preclinical and clinical studies on first-line EGFR-TKIs-chemotherapy combination in patients with advanced NSCLC harboring activating EGFR mutation, aiming to provide evidences for more potential choices and shed light on clinical treatment.

  7. EGFR-SGLT1 interaction does not respond to EGFR modulators, but inhibition of SGLT1 sensitizes prostate cancer cells to EGFR tyrosine kinase inhibitors.

    PubMed

    Ren, Jiangong; Bollu, Lakshmi R; Su, Fei; Gao, Guang; Xu, Lei; Huang, Wei-Chien; Hung, Mien-Chie; Weihua, Zhang

    2013-09-01

    Overexpression of epidermal growth factor receptor (EGFR) is associated with poor prognosis in malignant tumors. Sodium/glucose co-transporter 1 (SGLT1) is an active glucose transporter that is overexpressed in many cancers including prostate cancer. Previously, we found that EGFR interacts with and stabilizes SGLT1 in cancer cells. In this study, we determined the micro-domain of EGFR that is required for its interaction with SGLT1 and the effects of activation/inactivation of EGFR on EGFR-SGLT1 interaction, measured the expression of EGFR and SGLT1 in prostate cancer tissues, and tested the effect of inhibition of SGLT1 on the sensitivity of prostate cancer cells to EGFR tyrosine inhibitors. We found that the autophosphorylation region (978-1210 amino acids) of EGFR was required for its sufficient interaction with SGLT1 and that this interaction was independent of EGFR's tyrosine kinase activity. Most importantly, the EGFR-SGLT1 interaction does not respond to EGFR tyrosine kinase modulators (EGF and tyrosine kinase inhibitors). EGFR and SGLT1 co-localized in prostate cancer tissues, and inhibition of SGLT1 by a SGLT1 inhibitor (Phlorizin) sensitized prostate cancer cells to EGFR inhibitors (Gefitinib and Erlotinib). These data suggest that EGFR in cancer cells can exist as either a tyrosine kinase modulator responsive status or an irresponsive status. SGLT1 is a protein involved in EGFR's functions that are irresponsive to EGFR tyrosine kinase inhibitors and, therefore, the EGFR-SGLT1 interaction might be a novel target for prostate cancer therapy. © 2013 Wiley Periodicals, Inc. This article is a U.S. Government work and is in the public domain in the USA.

  8. WASH and Tsg101/ALIX-dependent diversion of stress-internalized EGFR from the canonical endocytic pathway

    PubMed Central

    Tomas, Alejandra; Vaughan, Simon O.; Burgoyne, Thomas; Sorkin, Alexander; Hartley, John A.; Hochhauser, Daniel; Futter, Clare E.

    2015-01-01

    Stress exposure triggers ligand-independent EGF receptor (EGFR) endocytosis, but its post-endocytic fate and role in regulating signalling are unclear. We show that the p38 MAP kinase-dependent, EGFR tyrosine kinase (TK)-independent EGFR internalization induced by ultraviolet light C (UVC) or the cancer therapeutic cisplatin, is followed by diversion from the canonical endocytic pathway. Instead of lysosomal degradation or plasma membrane recycling, EGFR accumulates in a subset of LBPA-rich perinuclear multivesicular bodies (MVBs) distinct from those carrying EGF-stimulated EGFR. Stress-internalized EGFR co-segregates with exogenously expressed pre-melanosomal markers OA1 and fibrillar PMEL, following early endosomal sorting by the actin polymerization-promoting WASH complex. Stress-internalized EGFR is retained intracellularly by continued p38 activity in a mechanism involving ubiquitin-independent, ESCRT/ALIX-dependent incorporation onto intraluminal vesicles (ILVs) of MVBs. In contrast to the internalization-independent EGF-stimulated activation, UVC/cisplatin-triggered EGFR activation depends on EGFR internalization and intracellular retention. EGFR signalling from this MVB subpopulation delays apoptosis and might contribute to chemoresistance. PMID:26066081

  9. JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors

    PubMed Central

    Gao, Sizhi P.; Chang, Qing; Mao, Ninghui; Daly, Laura A.; Vogel, Robert; Chan, Tyler; Liu, Shu Hui; Bournazou, Eirini; Schori, Erez; Zhang, Haiying; Brewer, Monica Red; Pao, William; Morris, Luc; Ladanyi, Marc; Arcila, Maria; Manova-Todorova, Katia; de Stanchina, Elisa; Norton, Larry; Levine, Ross L.; Altan-Bonnet, Gregoire; Solit, David; Zinda, Michael; Huszar, Dennis; Lyden, David; Bromberg, Jacqueline F.

    2016-01-01

    Lung adenocarcinomas with mutant epidermal growth factor receptor (EGFR) respond to EGFR-targeted tyrosine kinase inhibitors (TKIs), but resistance invariably occurs. We found that the Janus kinase (JAK)/signal transduction and activator of transcription 3 (STAT3) signaling pathway was aberrantly increased in TKI-resistant EGFR-mutant non–small cell lung cancer (NSCLC) cells. JAK2 inhibition restored sensitivity to the EGFR inhibitor erlotinib in TKI-resistant cell lines and xenograft models of EGFR-mutant TKI-resistant lung cancer. JAK2 inhibition uncoupled EGFR from its negative regulator, suppressor of cytokine signaling 5 (SOCS5), consequently increasing EGFR abundance and restoring the tumor cells’ dependence on EGFR signaling. Furthermore, JAK2 inhibition led to heterodimerization of mutant and wild-type EGFR subunits, the activity of which was then blocked by TKIs. Our results reveal a mechanism whereby JAK2 inhibition overcomes acquired resistance to EGFR inhibitors and support the use of combination therapy with JAK and EGFR inhibitors for the treatment of EGFR-dependent NSCLC. PMID:27025877

  10. EGFR and HER2 activate rigidity sensing only on rigid matrices

    NASA Astrophysics Data System (ADS)

    Saxena, Mayur; Liu, Shuaimin; Yang, Bo; Hajal, Cynthia; Changede, Rishita; Hu, Junqiang; Wolfenson, Haguy; Hone, James; Sheetz, Michael P.

    2017-07-01

    Epidermal growth factor receptor (EGFR) interacts with integrins during cell spreading and motility, but little is known about the role of EGFR in these mechanosensing processes. Here we show, using two different cell lines, that in serum- and EGF-free conditions, EGFR or HER2 activity increase spreading and rigidity-sensing contractions on rigid, but not soft, substrates. Contractions peak after 15-20 min, but diminish by tenfold after 4 h. Addition of EGF at that point increases spreading and contractions, but this can be blocked by myosin-II inhibition. We further show that EGFR and HER2 are activated through phosphorylation by Src family kinases (SFK). On soft surfaces, neither EGFR inhibition nor EGF stimulation have any effect on cell motility. Thus, EGFR or HER2 can catalyse rigidity sensing after associating with nascent adhesions under rigidity-dependent tension downstream of SFK activity. This has broad implications for the roles of EGFR and HER2 in the absence of EGF both for normal and cancerous growth.

  11. EGFR and HER2 Activate Rigidity Sensing Only on Rigid Matrices

    PubMed Central

    Saxena, Mayur; Liu, Shuaimin; Yang, Bo; Hajal, Cynthia; Changede, Rishita; Hu, Junqiang

    2017-01-01

    Epidermal growth factor receptor (EGFR) interacts with integrins during cell spreading and motility, but little is known about the role of EGFR in these mechanosensing processes. Here we show, using two different cell lines, that in serum- and EGF-free conditions, EGFR or HER2 activity increase spreading and rigidity-sensing contractions on rigid, but not soft, substrates. Contractions peak after 15–20 min, but diminish by 10-fold after 4 hours. Addition of EGF at that point increases spreading and contractions, but this can be blocked by myosin-II inhibition. We further show that EGFR and HER2 are activated through phosphorylation by Src family kinases (SFK). On soft surfaces, neither EGFR inhibition nor EGF stimulation have any effect on cell motility. Thus, EGFR or HER2 can catalyse rigidity sensing after associating with nascent adhesions under rigidity-dependent tension downstream of SFK activity. This has broad implications for the roles of EGFR and HER2 in absence of EGF both for normal and cancerous growth. PMID:28459445

  12. Recruitment of the Adaptor Protein Grb2 to EGFR Tetramers

    PubMed Central

    2015-01-01

    Adaptor protein Grb2 binds phosphotyrosines in the epidermal growth factor (EGF) receptor (EGFR) and thereby links receptor activation to intracellular signaling cascades. Here, we investigated how recruitment of Grb2 to EGFR is affected by the spatial organization and quaternary state of activated EGFR. We used the techniques of image correlation spectroscopy (ICS) and lifetime-detected Förster resonance energy transfer (also known as FLIM-based FRET or FLIM–FRET) to measure ligand-induced receptor clustering and Grb2 binding to activated EGFR in BaF/3 cells. BaF/3 cells were stably transfected with fluorescently labeled forms of Grb2 (Grb2–mRFP) and EGFR (EGFR–eGFP). Following stimulation of the cells with EGF, we detected nanometer-scale association of Grb2–mRFP with EGFR–eGFP clusters, which contained, on average, 4 ± 1 copies of EGFR–eGFP per cluster. In contrast, the pool of EGFR–eGFP without Grb2–mRFP had an average cluster size of 1 ± 0.3 EGFR molecules per punctum. In the absence of EGF, there was no association between EGFR–eGFP and Grb2–mRFP. To interpret these data, we extended our recently developed model for EGFR activation, which considers EGFR oligomerization up to tetramers, to include recruitment of Grb2 to phosphorylated EGFR. The extended model, with adjustment of one new parameter (the ratio of the Grb2 and EGFR copy numbers), is consistent with a cluster size distribution where 2% of EGFR monomers, 5% of EGFR dimers, <1% of EGFR trimers, and 94% of EGFR tetramers are associated with Grb2. Together, our experimental and modeling results further implicate tetrameric EGFR as the key signaling unit and call into question the widely held view that dimeric EGFR is the predominant signaling unit. PMID:24697349

  13. Glioma Specific Extracellular Missense Mutations in the First Cysteine Rich Region of Epidermal Growth Factor Receptor (EGFR) Initiate Ligand Independent Activation

    PubMed Central

    Ymer, Susie I.; Greenall, Sameer A.; Cvrljevic, Anna; Cao, Diana X.; Donoghue, Jacqui F.; Epa, V. Chandana; Scott, Andrew M.; Adams, Timothy E.; Johns, Terrance G.

    2011-01-01

    The epidermal growth factor receptor (EGFR) is overexpressed or mutated in glioma. Recently, a series of missense mutations in the extracellular domain (ECD) of EGFR were reported in glioma patients. Some of these mutations clustered within a cysteine-rich region of the EGFR targeted by the therapeutic antibody mAb806. This region is only exposed when EGFR activates and appears to locally misfold during activation. We expressed two of these mutations (R324L and E330K) in NR6 mouse fibroblasts, as they do not express any EGFR-related receptors. Both mutants were autophosphorylated in the absence of ligand and enhanced cell survival and anchorage-independent and xenograft growth. The ECD truncation that produces the de2-7EGFR (or EGFRvIII), the most common EGFR mutation in glioma, generates a free cysteine in this same region. Using a technique optimized for detecting disulfide-bonded dimers, we definitively demonstrated that the de2-7EGFR is robustly dimerized and that ablation of the free cysteine prevents dimerization and activation. Modeling of the R324L mutation suggests it may cause transient breaking of disulfide bonds, leading to similar disulfide-bonded dimers as seen for the de2-7EGFR. These ECD mutations confirm that the cysteine-rich region of EGFR around the mAb806 epitope has a significant role in receptor activation. PMID:24212795

  14. Involvement of lipid rafts in adhesion-induced activation of Met and EGFR.

    PubMed

    Lu, Ying-Che; Chen, Hong-Chen

    2011-10-27

    Cell adhesion has been shown to induce activation of certain growth factor receptors in a ligand-independent manner. However, the mechanism for such activation remains obscure. Human epidermal carcinoma A431 cells were used as a model to examine the mechanism for adhesion-induced activation of hepatocyte growth factor receptor Met and epidermal growth factor receptor (EGFR). The cells were suspended and replated on culture dishes under various conditions. The phosphorylation of Met at Y1234/1235 and EGFR at Y1173 were used as indicators for their activation. The distribution of the receptors and lipid rafts on the plasma membrane were visualized by confocal fluorescent microscopy and total internal reflection microscopy. We demonstrate that Met and EGFR are constitutively activated in A431 cells, which confers proliferative and invasive potentials to the cells. The ligand-independent activation of Met and EGFR in A431 cells relies on cell adhesion to a substratum, but is independent of cell spreading, extracellular matrix proteins, and substratum stiffness. This adhesion-induced activation of Met and EGFR cannot be attributed to Src activation, production of reactive oxygen species, and the integrity of the cytoskeleton. In addition, we demonstrate that Met and EGFR are independently activated upon cell adhesion. However, partial depletion of Met and EGFR prevents their activation upon cell adhesion, suggesting that overexpression of the receptors is a prerequisite for their self-activation upon cell adhesion. Although Met and EGFR are largely distributed in 0.04% Triton-insoluble fractions (i.e. raft fraction), their activated forms are detected mainly in 0.04% Triton-soluble fractions (i.e. non-raft fraction). Upon cell adhesion, lipid rafts are accumulated at the cell surface close to the cell-substratum interface, while Met and EGFR are mostly excluded from the membrane enriched by lipid rafts. Our results suggest for the first time that cell adhesion to a substratum may induce a polarized distribution of lipid rafts to the cell-substratum interface, which may allow Met and EGFR to be released from lipid rafts, thus leading to their activation in a ligand-independent manner.

  15. EGF-dependent re-routing of vesicular recycling switches spontaneous phosphorylation suppression to EGFR signaling

    PubMed Central

    Baumdick, Martin; Brüggemann, Yannick; Schmick, Malte; Xouri, Georgia; Sabet, Ola; Davis, Lloyd; Chin, Jason W; Bastiaens, Philippe IH

    2015-01-01

    Autocatalytic activation of epidermal growth factor receptor (EGFR) coupled to dephosphorylating activity of protein tyrosine phosphatases (PTPs) ensures robust yet diverse responses to extracellular stimuli. The inevitable tradeoff of this plasticity is spontaneous receptor activation and spurious signaling. We show that a ligand-mediated switch in EGFR trafficking enables suppression of spontaneous activation while maintaining EGFR’s capacity to transduce extracellular signals. Autocatalytic phosphorylation of tyrosine 845 on unliganded EGFR monomers is suppressed by vesicular recycling through perinuclear areas with high PTP1B activity. Ligand-binding results in phosphorylation of the c-Cbl docking tyrosine and ubiquitination of the receptor. This secondary signal relies on EGF-induced EGFR self-association and switches suppressive recycling to directional trafficking. The re-routing regulates EGFR signaling response by the transit-time to late endosomes where it is switched-off by high PTP1B activity. This ubiquitin-mediated switch in EGFR trafficking is a uniquely suited solution to suppress spontaneous activation while maintaining responsiveness to EGF. DOI: http://dx.doi.org/10.7554/eLife.12223.001 PMID:26609808

  16. EGFR-TKIs resistance via EGFR-independent signaling pathways.

    PubMed

    Liu, Qian; Yu, Shengnan; Zhao, Weiheng; Qin, Shuang; Chu, Qian; Wu, Kongming

    2018-02-19

    Tyrosine kinase inhibitors (TKIs)-treatments bring significant benefit for patients harboring epidermal growth factor receptor (EGFR) mutations, especially for those with lung cancer. Unfortunately, the majority of these patients ultimately develop to the acquired resistance after a period of treatment. Two central mechanisms are involved in the resistant process: EGFR secondary mutations and bypass signaling activations. In an EGFR-dependent manner, acquired mutations, such as T790 M, interferes the interaction between TKIs and the kinase domain of EGFR. While in an EGFR-independent manner, dysregulation of other receptor tyrosine kinases (RTKs) or abnormal activation of downstream compounds both have compensatory functions against the inhibition of EGFR through triggering phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) signaling axes. Nowadays, many clinical trials aiming to overcome and prevent TKIs resistance in various cancers are ongoing or completed. EGFR-TKIs in accompany with the targeted agents for resistance-related factors afford a promising first-line strategy to further clinical application.

  17. Sonic Hedgehog modulates EGFR dependent proliferation of neural stem cells during late mouse embryogenesis through EGFR transactivation

    PubMed Central

    Reinchisi, Gisela; Parada, Margarita; Lois, Pablo; Oyanadel, Claudia; Shaughnessy, Ronan; Gonzalez, Alfonso; Palma, Verónica

    2013-01-01

    Sonic Hedgehog (Shh/GLI) and EGFR signaling pathways modulate Neural Stem Cell (NSC) proliferation. How these signals cooperate is therefore critical for understanding normal brain development and function. Here we report a novel acute effect of Shh signaling on EGFR function. We show that during late neocortex development, Shh mediates the activation of the ERK1/2 signaling pathway in Radial Glial cells (RGC) through EGFR transactivation. This process is dependent on metalloprotease activity and accounts for almost 50% of the EGFR-dependent mitogenic response of late NSCs. Furthermore, in HeLa cancer cells, a well-known model for studying the EGFR receptor function, Shh also induces cell proliferation involving EGFR activation, as reflected by EGFR internalization and ERK1/2 phosphorylation. These findings may have important implications for understanding the mechanisms that regulate NSC proliferation during neurogenesis and may lead to novel approaches to the treatment of tumors. PMID:24133411

  18. Genistein enhances the effect of epidermal growth factor receptor tyrosine kinase inhibitors and inhibits nuclear factor kappa B in nonsmall cell lung cancer cell lines.

    PubMed

    Gadgeel, Shirish M; Ali, Shadan; Philip, Philip A; Wozniak, Antoinette; Sarkar, Fazlul H

    2009-05-15

    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have shown modest clinical benefit in patients with relapsed nonsmall cell lung cancer (NSCLC). Down-regulation of Akt appears to correlate with the antitumor activity of EGFR-TKIs. Akt activates nuclear factor kappa B (NF-kappaB), which transcribes genes important for cell survival, invasion, and metastasis. The authors hypothesized that genistein, through the inhibition of NF-kappaB, could enhance the activity of EGFR-TKIs in NSCLCs. Three NSCLC cell lines with various EGFR mutation status and sensitivities to EGFR-TKIs were selected: H3255 (L858R), H1650 (del E746-A750), and H1781 (wild-type EGFR). Cells were treated with erlotinib, gefitinib, genistein, or the combination of each of the EGFR-TKIs with genistein. Cell survival and apoptosis were assessed, and expression levels of EGFR, pAkt, cyclooxygenase-2 (COX-2), E-cadherin, prostaglandin E(2) (PGE(2)), and NF-kappaB were measured. Both EGFR-TKIs demonstrated growth inhibition and apoptosis in each of the cell lines, but H1650 and H1781 were much less sensitive. Genistein demonstrated some antitumor activity in all cell lines, but enhanced growth inhibition and apoptosis when combined with the EGFR-TKIs in each of the cell lines. Both combinations down-regulated NF-kappaB significantly more than either agent alone in H3255. In addition, the combinations reduced the expression of EGFR, pAkt, COX-2, and PGE(2,) consistent with inactivation of NF-kappaB. The authors concluded that genistein enhances the antitumor effects of EGFR-TKIs in 3 separate NSCLC cell lines. This enhanced activity is in part because of greater reduction in the DNA-binding activity of NF-kappaB when EGFR-TKIs were combined with genistein.

  19. ASP8273 tolerability and antitumor activity in TKI-naive Japanese patients with EGFR mutation-positive non-small cell lung cancer.

    PubMed

    Azuma, Koichi; Nishio, Makoto; Hayashi, Hidetoshi; Kiura, Katsuyuki; Satouchi, Miyako; Sugawara, Shunichi; Hida, Toyoaki; Iwamoto, Yasuo; Inoue, Akira; Takeda, Koji; Ikeda, Satoshi; Nakagawa, Tomoki; Takeda, Kentaro; Asahina, Seitaro; Komatsu, Kanji; Morita, Satoshi; Fukuoka, Masahiro; Nakagawa, Kazuhiko

    2018-05-28

    Epidermal growth factor receptor (EGFR) activating mutations occur in approximately 50% of East Asian patients with non-small cell lung cancer (NSCLC) and confer sensitivity to tyrosine kinase inhibitors (TKI). ASP8273 is an orally administered, irreversible EGFR-TKI that inhibits EGFR activating mutations and has demonstrated clinical activity in patients with EGFR mutation-positive NSCLC. EGFR-TKI-naïve Japanese adult patients (≥20 years) with NSCLC harboring EGFR mutations were enrolled in this open-label, single-arm, Phase 2 study (NCT02500927). Patients received ASP8273 300mg once daily until discontinuation criteria were met. The primary endpoint was to determine the safety of ASP8273 300mg; secondary endpoint was antitumor activity defined by RECIST v1.1. Thirty-one patients (12M/19F; median age 64 years [range: 31-82]) with EGFR mutation-positive NSCLC were enrolled; as of 23 February 2016, 25 patients (81%) were still on study. Of the 31 patients, 27 (87%) had an ex19del (n=13, 42%) or a L858R (n=14, 45%) EGFR activating mutation; 2 (7%) had L861Q mutation and 5 (16%) had other EGFR activating mutations, two had an activating mutation and the T790M resistance mutation. The most commonly reported treatment-emergent adverse event was diarrhea [n=24, 77%]. All patients had at least 1 post-baseline scan; 1 patient (3%) achieved a confirmed complete response, 13 (42%) had a confirmed partial response, and 15 (48%) had confirmed stable disease (disease control rate: 94% [n=29/31]) per investigator assessment. Once-daily ASP8273 300 mg was generally well tolerated and demonstrated antitumor activity in TKI-naïve Japanese patients with EGFR mutation-positive NSCLC. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer APPL1 regulates the protein level of EGFR in response to EGF stimulation. Black-Right-Pointing-Pointer Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. Black-Right-Pointing-Pointer Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation.more » Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.« less

  1. Sequential liquid biopsies reveal dynamic alterations of EGFR driver mutations and indicate EGFR amplification as a new mechanism of resistance to osimertinib in NSCLC.

    PubMed

    Knebel, Franciele H; Bettoni, Fabiana; Shimada, Andrea K; Cruz, Manoel; Alessi, João Victor; Negrão, Marcelo V; Reis, Luiz Fernando L; Katz, Artur; Camargo, Anamaria A

    2017-06-01

    Osimertinib is an EGFR-T790M-specific TKI, which has demonstrated impressive response rates in NSCLC, after failure to first-line anti-EGFR TKIs. However, acquired resistance to osimertinib is also observed and the molecular mechanisms of resistance are not yet fully understood. Monitoring and managing NSCLC patients who progressed on osimertinib is, therefore, emerging as an important clinical challenge. Sequential liquid biopsies were used to monitor a patient with EGFR-exon19del positive NSCLC, who received erlotinib and progressed through the acquisition of the EGFR-T790M mutation. Erlotinib was discontinued and osimertinib was initiated. Blood samples were collected at erlotinib progression and during osimertinib treatment for the detection of the activating (EGFR-exon19del) and resistance mutations (EGFR-T790M, EGFR-C797S, BRAF-V600E, METamp and ERBB2amp) in the plasma DNA using digital droplet PCR. Plasma levels of the activating EGFR-exon19del accurately paralleled the clinical and radiological progression of disease and allowed early detection of AR to osimertinib. Resistance to osimertinib coincided with the emergence of a small tumor cell subpopulation carrying the known EGFR-C797S resistance mutation and an additional subpopulation carrying amplified copies of EGFR-exon19del. Given the existence of multiple AR mechanisms, quantification of the original EGFR activation mutation, instead of the resistance mutations, can be efficiently used to monitor response to osimertinib, allowing early detection of AR. Absolute quantification of both activation and resistance mutations can provide important information on tumor clonal evolution upon progression to osimertinib. Selective amplification of the EGFR-exon19del allele may represent a novel resistance mechanism to osimertinib. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. InsR/IGF1R pathway mediates resistance to EGFR inhibitors in glioblastoma

    PubMed Central

    Ma, Yufang; Tang, Nan; Thompson, Reid; Mobley, Bret C.; Clark, Steven W.; Sarkaria, Jann N.; Wang, Jialiang

    2015-01-01

    Purpose Aberrant activation of epidermal growth factor receptor (EGFR) is a hallmark of glioblastoma. However, EGFR inhibitors exhibit at best modest efficacy in glioblastoma. This is in sharp contrast to the observations in EGFR-mutant lung cancer. We examined whether activation of functionally redundant receptor tyrosine kinases (RTKs) conferred resistance to EGFR inhibitors in glioblastoma. Experimental Design We collected a panel of patient-derived glioblastoma xenograft (PDX) lines that maintained expression of wild type or mutant EGFR in serial xenotransplantation and tissue cultures. Using this physiologically relevant platform, we tested the abilities of several RTK ligands to protect glioblastoma cells against an EGFR inhibitor, gefitinib. Based on the screening results, we further developed a combination therapy co-targeting EGFR and insulin receptor (InsR)/insulin-like growth factor 1 receptor (IGF1R). Results Insulin and IGF1 induced significant protection against gefitinib in the majority of EGFR-dependent PDX lines with one exception that did not expression InsR or IGF1R. Blockade of the InsR/IGF1R pathway synergistically improved sensitivity to gefitinib or dacomitinib. Gefitinib alone effectively attenuated EGFR activities and the downstream MEK/ERK pathway. However, repression of AKT and induction of apoptosis required concurrent inhibition of both EGFR and InsR/IGF1R. A combination of gefitinib and OSI-906, a dual InsR/IGF1R inhibitor, was more effective than either agent alone to treat subcutaneous glioblastoma xenograft tumors. Conclusions Our results suggest that activation of the InsR/IGF1R pathway confers resistance to EGFR inhibitors in EGFR-dependent glioblastoma through AKT regulation. Concurrent blockade of these two pathways holds promise to treat EGFR-dependent glioblastoma. PMID:26561558

  3. CMTM7 knockdown increases tumorigenicity of human non-small cell lung cancer cells and EGFR-AKT signaling by reducing Rab5 activation.

    PubMed

    Liu, Baocai; Su, Yu; Li, Ting; Yuan, Wanqiong; Mo, Xiaoning; Li, Henan; He, Qihua; Ma, Dalong; Han, Wenling

    2015-12-01

    The dysregulation of epidermal growth factor receptor (EGFR) signaling has been well documented to contribute to the progression of non-small cell lung cancer (NSCLC), the leading cause of cancer death in the world. EGF-stimulated EGFR activation induces receptor internalization and degradation, which plays an important role in EGFR signaling. This process is frequently deregulated in cancer cells, leading to enhanced EGFR levels and signaling. Our previous study on CMTM7 is only limited to a brief description of the relationship of overexpressed CMTM7 with EGFR-AKT signaling. The biological functions of endogenous CMTM7 and its molecular mechanism remained unclear. In this study, we show that the stable knockdown of CMTM7 augments the malignant potential of NSCLC cells and enhances EGFR-AKT signaling by decreasing EGFR internalization and degradation. Mechanistically, CMTM7 knockdown reduces the activation of Rab5, a protein known to be required for early endosome fusion. In NSCLC, the loss of CMTM7 would therefore serve to sustain aberrant EGFR-mediated oncogenic signaling. Together, our findings highlight the role of CMTM7 in the regulation of EGFR signaling in tumor cells, revealing CMTM7 as a novel molecule related to Rab5 activation.

  4. Novel irreversible EGFR tyrosine kinase inhibitor 324674 sensitizes human colon carcinoma HT29 and SW480 cells to apoptosis by blocking the EGFR pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhiwei; Cui, Binbin; Jin, Yinghu

    2011-08-12

    Highlights: {yields} This article described the effects of the EGFR tyrosine kinase inhibitor on the cell proliferation and the apoptosis induction of the colon carcinoma cell lines. {yields} Demonstrated that 326474 is a more potent EGFR inhibitor on colon cancer cells than other three TKIs. {yields} It can be important when considering chemotherapy for colonic cancer patients. -- Abstract: Background: Epidermal growth factor receptor (EGFR) is widely expressed in multiple solid tumors including colorectal cancer by promoting cancer cell growth and proliferation. Therefore, the inhibition of EGFR activity may establish a clinical strategy of cancer therapy. Methods: In this study,more » using human colon adenocarcinoma HT29 and SW480 cells as research models, we compared the efficacy of four EGFR inhibitors in of EGFR-mediated pathways, including the novel irreversible inhibitor 324674, conventional reversible inhibitor AG1478, dual EGFR/HER2 inhibitor GW583340 and the pan-EGFR/ErbB2/ErbB4 inhibitor. Cell proliferation was assessed by MTT analysis, and apoptosis was evaluated by the Annexin-V binding assay. EGFR and its downstream signaling effectors were examined by western blotting analysis. Results: Among the four inhibitors, the irreversible EGFR inhibitor 324674 was more potent at inhibiting HT29 and SW480 cell proliferation and was able to efficiently induce apoptosis at lower concentrations. Western blotting analysis revealed that AG1478, GW583340 and pan-EGFR/ErbB2/ErbB4 inhibitors failed to suppress EGFR activation as well as the downstream mitogen-activated protein kinase (MAPK) and PI3K/AKT/mTOR (AKT) pathways. In contrast, 324674 inhibited EGFR activation and the downstream AKT signaling pathway in a dose-dependent manner. Conclusion: Our studies indicated that the novel irreversible EGFR inhibitor 324674 may have a therapeutic application in colon cancer therapy.« less

  5. NF-{kappa}B signaling is activated and confers resistance to apoptosis in three-dimensionally cultured EGFR-mutant lung adenocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakuma, Yuji, E-mail: ysakuma@gancen.asahi.yokohama.jp; Yamazaki, Yukiko; Nakamura, Yoshiyasu

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. Black-Right-Pointing-Pointer Degradation of I{kappa}B and activation of NF-{kappa}B are observed in 3D-cultured cells. Black-Right-Pointing-Pointer Inhibiting NF-{kappa}B enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cellsmore » cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of I{kappa}B{alpha}, the inhibitor of nuclear factor (NF)-{kappa}B, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-{kappa}B. Moreover, the inhibition of NF-{kappa}B with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-{kappa}B signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.« less

  6. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor.

    PubMed

    Kourouniotis, George; Wang, Yi; Pennock, Steven; Chen, Xinmei; Wang, Zhixiang

    2016-07-25

    The binding of epidermal growth factor (EGF) to EGF receptor (EGFR) stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internalization is still very controversial. In this study, we constructed a chimeric EGFR by replacing its extracellular domain with leucine zipper (LZ) and tagged a green fluorescent protein (GFP) at its C-terminus. We showed that the chimeric LZ-EGFR-GFP was constitutively dimerized. The LZ-EGFR-GFP dimer autophosphorylated each of its five well-defined C-terminal tyrosine residues as the ligand-induced EGFR dimer does. Phosphorylated LZ-EGFR-GFP was localized to both the plasma membrane and endosomes, suggesting it is capable of endocytosis. We also showed that LZ-EGFR-GFP activated major signalling proteins including Src homology collagen-like (Shc), extracellular signal-regulated kinase (ERK) and Akt. Moreover, LZ-EGFR-GFP was able to stimulate cell proliferation. These results indicate that non-ligand induced dimerization is sufficient to activate EGFR and initiate cell signalling and EGFR endocytosis. We conclude that receptor dimerization is a critical event in EGF-induced cell signalling and EGFR endocytosis.

  7. Composite regulation of ERK activity dynamics underlying tumour-specific traits in the intestine.

    PubMed

    Muta, Yu; Fujita, Yoshihisa; Sumiyama, Kenta; Sakurai, Atsuro; Taketo, M Mark; Chiba, Tsutomu; Seno, Hiroshi; Aoki, Kazuhiro; Matsuda, Michiyuki; Imajo, Masamichi

    2018-06-05

    Acting downstream of many growth factors, extracellular signal-regulated kinase (ERK) plays a pivotal role in regulating cell proliferation and tumorigenesis, where its spatiotemporal dynamics, as well as its strength, determine cellular responses. Here, we uncover the ERK activity dynamics in intestinal epithelial cells (IECs) and their association with tumour characteristics. Intravital imaging identifies two distinct modes of ERK activity, sustained and pulse-like activity, in IECs. The sustained and pulse-like activities depend on ErbB2 and EGFR, respectively. Notably, activation of Wnt signalling, the earliest event in intestinal tumorigenesis, augments EGFR signalling and increases the frequency of ERK activity pulses through controlling the expression of EGFR and its regulators, rendering IECs sensitive to EGFR inhibition. Furthermore, the increased pulse frequency is correlated with increased cell proliferation. Thus, ERK activity dynamics are defined by composite inputs from EGFR and ErbB2 signalling in IECs and their alterations might underlie tumour-specific sensitivity to pharmacological EGFR inhibition.

  8. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer

    NASA Astrophysics Data System (ADS)

    Uchibori, Ken; Inase, Naohiko; Araki, Mitsugu; Kamada, Mayumi; Sato, Shigeo; Okuno, Yasushi; Fujita, Naoya; Katayama, Ryohei

    2017-03-01

    Osimertinib has been demonstrated to overcome the epidermal growth factor receptor (EGFR)-T790M, the most relevant acquired resistance to first-generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs). However, the C797S mutation, which impairs the covalent binding between the cysteine residue at position 797 of EGFR and osimertinib, induces resistance to osimertinib. Currently, there are no effective therapeutic strategies to overcome the C797S/T790M/activating-mutation (triple-mutation)-mediated EGFR-TKI resistance. In the present study, we identify brigatinib to be effective against triple-mutation-harbouring cells in vitro and in vivo. Our original computational simulation demonstrates that brigatinib fits into the ATP-binding pocket of triple-mutant EGFR. The structure-activity relationship analysis reveals the key component in brigatinib to inhibit the triple-mutant EGFR. The efficacy of brigatinib is enhanced markedly by combination with anti-EGFR antibody because of the decrease of surface and total EGFR expression. Thus, the combination therapy of brigatinib with anti-EGFR antibody is a powerful candidate to overcome triple-mutant EGFR.

  9. Interactions between EGFR and PD-1/PD-L1 pathway: Implications for treatment of NSCLC.

    PubMed

    Li, Xue; Lian, Zhen; Wang, Shuai; Xing, Ligang; Yu, Jinming

    2018-04-01

    Immune checkpoint inhibitors targeting the programmed cell death receptor/ligand 1 (PD-1/PD-L1) pathway displayed striking and durable clinical responses in patients with non-small-cell lung cancer (NSCLC). However, it is still undefined about the efficacy of PD-1/PD-L1 inhibitors in NSCLC patients with EGFR activating mutations. Preclinical studies indicate the immune modulatory effect of EGFR signaling by regulating expression of MHC I/II and PD-L1 on tumor cells and activity of lymphocytes. Thus, it might be practicable for the use of PD-1/PD-L1 inhibitors as monotherapy or combined with EGFR-TKIs in patients with EGFR activating mutations. In this review, we discussed the regulation effect of EGFR signaling on PD-1/PD-L1 pathway and the potential mechanisms behind combing EGFR-TKIs with PD-1/PD-L1 inhibitors. We also reviewed current available data on PD-1/PD-L1 inhibitors as monotherapy or combined with EGFR-TKIs in NSCLC with EGFR activating mutations, and explored possible factors influence its efficacy, which would be important considerations for future clinical trial designs. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Inhibition of Shp2 suppresses mutant EGFR-induced lung tumors in transgenic mouse model of lung adenocarcinoma

    PubMed Central

    Schneeberger, Valentina E.; Ren, Yuan; Luetteke, Noreen; Huang, Qingling; Chen, Liwei; Lawrence, Harshani R.; Lawrence, Nicholas J.; Haura, Eric B.; Koomen, John M.; Coppola, Domenico; Wu, Jie

    2015-01-01

    Epidermal growth factor receptor (EGFR) mutants drive lung tumorigenesis and are targeted for therapy. However, resistance to EGFR inhibitors has been observed, in which the mutant EGFR remains active. Thus, it is important to uncover mediators of EGFR mutant-driven lung tumors to develop new treatment strategies. The protein tyrosine phosphatase (PTP) Shp2 mediates EGF signaling. Nevertheless, it is unclear if Shp2 is activated by oncogenic EGFR mutants in lung carcinoma or if inhibiting the Shp2 PTP activity can suppress EGFR mutant-induced lung adenocarcinoma. Here, we generated transgenic mice containing a doxycycline (Dox)-inducible PTP-defective Shp2 mutant (tetO-Shp2CSDA). Using the rat Clara cell secretory protein (CCSP)-rtTA-directed transgene expression in the type II lung pneumocytes of transgenic mice, we found that the Gab1-Shp2 pathway was activated by EGFRL858R in the lungs of transgenic mice. Consistently, the Gab1-Shp2 pathway was activated in human lung adenocarcinoma cells containing mutant EGFR. Importantly, Shp2CSDA inhibited EGFRL858R-induced lung adenocarcinoma in transgenic animals. Analysis of lung tissues showed that Shp2CSDA suppressed Gab1 tyrosine phosphorylation and Gab1-Shp2 association, suggesting that Shp2 modulates a positive feedback loop to regulate its own activity. These results show that inhibition of the Shp2 PTP activity impairs mutant EGFR signaling and suppresses EGFRL858R-driven lung adenocarcinoma. PMID:25730908

  11. A role for the epidermal growth factor receptor signaling in development of intestinal serrated polyps in mice and humans.

    PubMed

    Bongers, Gerold; Muniz, Luciana R; Pacer, Michelle E; Iuga, Alina C; Thirunarayanan, Nanthakumar; Slinger, Erik; Smit, Martine J; Reddy, E Premkumar; Mayer, Lloyd; Furtado, Glaucia C; Harpaz, Noam; Lira, Sergio A

    2012-09-01

    Epithelial cancers can be initiated by activating mutations in components of the mitogen-activated protein kinase signaling pathway such as v-raf murine sarcoma viral oncogene homolog B1 (BRAF), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), or epidermal growth factor receptor (EGFR). Human intestinal serrated polyps are a heterogeneous group of benign lesions, but some progress to colorectal cancer. Tumors that arise from these polyps frequently contain activating mutations in BRAF or KRAS, but little is known about the role of EGFR activation in their development. Polyp samples were obtained from adults during screening colonoscopies at Mount Sinai Hospital in New York. We measured levels of EGFR protein and phosphorylation in human serrated polyps by immunohistochemical and immunoblot analyses. We generated transgenic mice that express the ligand for EGFR, Heparin-binding EGF-like growth factor (HB-EGF), in the intestine. EGFR and the extracellular-regulated kinases (ERK)1/2 were phosphorylated in serrated areas of human hyperplastic polyps (HPPs), sessile serrated adenomas, and traditional serrated adenomas. EGFR and ERK1/2 were phosphorylated in the absence of KRAS or BRAF activating mutations in a subset of HPP. Transgenic expression of the EGFR ligand HB-EGF in the intestines of mice promoted development of small cecal serrated polyps. Mice that expressed a combination of HB-EGF and US28 (a constitutively active, G-protein-coupled receptor that increases processing of HB-EGF from the membrane) rapidly developed large cecal serrated polyps. These polyps were similar to HPPs and had increased phosphorylation of EGFR and ERK1/2 within the serrated epithelium. Administration of pharmacologic inhibitors of EGFR or MAPK to these transgenic mice significantly reduced polyp development. Activation of EGFR signaling in the intestine of mice promotes development of serrated polyps. EGFR signaling also is activated in human HPPs, sessile serrated adenomas, and traditional serrated adenomas. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Antitumor activity of taspine by modulating the EGFR signaling pathway of Erk1/2 and Akt in vitro and in vivo.

    PubMed

    Zhang, Yanmin; Zheng, Lei; Zhang, Jie; Dai, Bingling; Wang, Nan; Chen, Yinnan; He, Langchong

    2011-11-01

    EGFR, as a critical signaling pathway in many human tumors, has become an important target of cancer drug design. Taspine has shown meaningful angiogenesis activity in previous studies. This paper is to investigate the antitumor action of taspine by modulating the EGFR signaling pathway. The study determined the expression of key signaling molecules of EGFR (EGFR, Akt, p-Akt, Erk, and p-Erk) by Western blot and real-time PCR and analyzed their correlations with subsequent reactions. In addition, the cell proliferation, migration, and EGF production were examined by MTT, transwell system, and ELISA. The antitumor activity in vivo was carried out by xenograft in athymic mice. The results showed that taspine could inhibit A431 and Hek293/EGFR cell proliferation and A431 cell migration as well as EGF production. Compared to the negative control, EGFR, Akt, and phosphorylation of Akt were significantly inhibited by taspine treatment in A431 and HEK293/EGFR cells. Consistent with the inhibition of Akt activity, Erk1/2 and its phosphorylation were reduced. Moreover, taspine inhibited A431 xenograft tumor growth. These results suggest that EGFR activated by EGF and its downstream signaling pathways proteins could be downregulated by taspine in a dose-dependent manner. The antitumor mechanism of taspine through the EGFR pathway lies in the ability to inhibit A431 cell proliferation and migration by reducing EGF secretion. This occurs through the repression of EGFR which mediates not only MAPK (Erk1/2) but also Akt signals. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Sialylation of EGFR by the ST6Gal-I sialyltransferase promotes EGFR activation and resistance to gefitinib-mediated cell death.

    PubMed

    Britain, Colleen M; Holdbrooks, Andrew T; Anderson, Joshua C; Willey, Christopher D; Bellis, Susan L

    2018-02-05

    The ST6Gal-I sialyltransferase is upregulated in numerous cancers, and high expression of this enzyme correlates with poor patient prognosis in various malignancies, including ovarian cancer. Through its sialylation of a select cohort of cell surface receptors, ST6Gal-I modulates cell signaling to promote tumor cell survival. The goal of the present study was to investigate the influence of ST6Gal-I on another important receptor that controls cancer cell behavior, EGFR. Additionally, the effect of ST6Gal-I on cancer cells treated with the common EGFR inhibitor, gefitinib, was evaluated. Using the OV4 ovarian cancer cell line, which lacks endogenous ST6Gal-I expression, a kinomics assay revealed that cells with forced overexpression of ST6Gal-I exhibited increased global tyrosine kinase activity, a finding confirmed by immunoblotting whole cell lysates with an anti-phosphotyrosine antibody. Interestingly, the kinomics assay suggested that one of the most highly activated tyrosine kinases in ST6Gal-I-overexpressing OV4 cells was EGFR. Based on these findings, additional analyses were performed to investigate the effect of ST6Gal-I on EGFR activation. To this end, we utilized, in addition to OV4 cells, the SKOV3 ovarian cancer cell line, engineered with both ST6Gal-I overexpression and knockdown, as well as the BxPC3 pancreatic cancer cell line with knockdown of ST6Gal-I. In all three cell lines, we determined that EGFR is a substrate of ST6Gal-I, and that the sialylation status of EGFR directly correlates with ST6Gal-I expression. Cells with differential ST6Gal-I expression were subsequently evaluated for EGFR tyrosine phosphorylation. Cells with high ST6Gal-I expression were found to have elevated levels of basal and EGF-induced EGFR activation. Conversely, knockdown of ST6Gal-I greatly attenuated EGFR activation, both basally and post EGF treatment. Finally, to illustrate the functional importance of ST6Gal-I in regulating EGFR-dependent survival, cells were treated with gefitinib, an EGFR inhibitor widely used for cancer therapy. These studies showed that ST6Gal-I promotes resistance to gefitinib-mediated apoptosis, as measured by caspase activity assays. Results herein indicate that ST6Gal-I promotes EGFR activation and protects against gefitinib-mediated cell death. Establishing the tumor-associated ST6Gal-I sialyltransferase as a regulator of EGFR provides novel insight into the role of glycosylation in growth factor signaling and chemoresistance.

  14. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma.

    PubMed

    Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R

    2016-01-01

    Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase-dependent and kinase-independent functions, both potentially involved in CCRCC progression. These results might have important implications on therapeutic approaches to CCRCC, since the disruption of the interaction between EGFR/SGLT1, mediated by anti-EGFR antibodies and/or SGLT1 inhibitors, might constitute a novel therapeutic target for CCRCC treatment, and new clinical trials should be evaluated on the basis of this therapeutic proposal.

  15. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma

    PubMed Central

    Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R

    2016-01-01

    Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase-dependent and kinase-independent functions, both potentially involved in CCRCC progression. These results might have important implications on therapeutic approaches to CCRCC, since the disruption of the interaction between EGFR/SGLT1, mediated by anti-EGFR antibodies and/or SGLT1 inhibitors, might constitute a novel therapeutic target for CCRCC treatment, and new clinical trials should be evaluated on the basis of this therapeutic proposal. PMID:27073724

  16. Gefitinib targets EGFR dimerization and ERK1/2 phosphorylation to inhibit pleural mesothelioma cell proliferation.

    PubMed

    Favoni, Roberto E; Pattarozzi, Alessandra; Lo Casto, Michele; Barbieri, Federica; Gatti, Monica; Paleari, Laura; Bajetto, Adriana; Porcile, Carola; Gaudino, Giovanni; Mutti, Luciano; Corte, Giorgio; Florio, Tullio

    2010-03-01

    Altered EGFR activity is a causal factor for human tumor development, including malignant pleural mesotheliomas. The aim of the present study was the evaluation of the effects of Gefitinib on EGF-induced mesothelioma cell proliferation and the intracellular mechanisms involved. Cell proliferation, DNA synthesis and apoptosis were measured by MTT, thymidine incorporation and FACS analysis; EGFR, ERK1/2 and Akt expression and phosphorylation by Western blot, whereas receptor sites were analyzed by binding studies. Gefitinib inhibited EGF-induced proliferation in two mesothelioma cell lines, derived from pleural effusion (IST-Mes2) or tumor biopsy (ZL55). The treatment with Gefitinib induced cell cycle arrest in both cell lines, while apoptosis was observed only for high concentrations and prolonged drug exposure. EGF-dependent mesothelioma cell proliferation was mediated by EGFR and ERK1/2 phosphorylation, while Akt was not affected. Gefitinib inhibited both EGFR and ERK1/2 activation, being maximal at drug concentrations that induce cytostatic effects, suggesting that the proapoptotic activity of Gefitinib is independent from EGFR inhibition. Gefitinib treatment increased EGFR Bmax, possibly through membrane stabilization of inactive receptor dimers that we show to be induced by the drug also in the absence of EGF. EGFR activation of ERK1/2 represents a key pathway for pleural mesothelioma cell proliferation. Low concentrations of Gefitinib cause mesothelioma cell cycle arrest through the blockade of EGFR activity while high concentrations induce apoptosis. Finally, we propose that the formation of inactive EGFR dimers may contribute to the antitumoral activity of Gefitinib.

  17. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression.

    PubMed

    Pangburn, Heather A; Kraus, Hanna; Ahnen, Dennis J; Rice, Pamela L

    2005-09-02

    Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with a decreased mortality from colorectal cancer (CRC). NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2) signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF) receptor (EGFR). HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068), total EGFR, phosphorylated ERK1/2 (pERK1/2), total ERK1/2, activated caspase-3, and alpha-tubulin. EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. These results suggest that downregulation of EGFR signaling by sulindac metabolites may occur, at least in part, by inhibiting activation and expression of EGFR. Inhibition of EGFR signaling may account for part of the growth inhibitory and chemopreventive effects of these compounds.

  18. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhi-Dong; Xu, Liang; Tang, Kan-Kai

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβmore » phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF-κB-dependent manner. • NF-κB-dependent cyclin D1 upregulation is required for the EGFR-mediated cytoprotection against hypoxia-induced injury. • Endogenous EGFR activity antagonizes hypoxia-induced PC12 cells injury.« less

  19. Anti-Epidermal Growth Factor Vaccine Antibodies Enhance the Efficacy of Tyrosine Kinase Inhibitors and Delay the Emergence of Resistance in EGFR Mutant Lung Cancer Cells.

    PubMed

    Codony-Servat, Jordi; García-Roman, Silvia; Molina-Vila, Miguel Ángel; Bertran-Alamillo, Jordi; Giménez-Capitán, Ana; Viteri, Santiago; Cardona, Andrés F; d'Hondt, Erik; Karachaliou, Niki; Rosell, Rafael

    2018-05-08

    Mutations in EGFR correlate with impaired response to immune checkpoint inhibitors and the development of novel immunotherapeutic approaches for EGFR mutant non-small cell lung cancer (NSCLC) is of particular interest. Immunization against EGF has demonstrated efficacy in a phase III trial including unselected NSCLC patients, but little was known about the mechanisms involved in the effects of the anti-EGF antibodies generated by vaccination (anti-EGF VacAbs) or their activity in tumor cells with EGFR mutations. The EGFR-mutant, NSCLC cell lines H1975 and PC9, together with several gefitinib and osimertinib-resistant cells derived from PC9, were treated with anti-EGF VacAbs and/or EGFR tyrosine kinase inhibitors (TKIs). Cell viability was analyzed by proliferation assays, cell cycle by fluorescence-activated cell sorting analysis and levels of RNA and proteins by quantitative retro-transcription PCR and Western blotting. Anti-EGF VacAbs generated in rabbits suppressed EGF-induced cell proliferation and cycle progression and inhibited downstream EGFR signaling in EGFR-mutant cells. Sera from patients immunized with an EGF vaccine were also able to block activation of EGFR effectors. In combination, the anti-EGF VacAbs significantly enhanced the antitumor activity of all TKIs tested, suppressed Erk1/2 phosphorylation, blocked the activation of signal transducer and activator of transcription 3 (STAT3) and downregulated the expression of AXL. Finally, anti-EGF VacAbs significantly delayed the emergence in vitro of EGFR TKI resistant clones. EGFR-mutant patients can derive benefit from immunization against EGF, particularly if combined with EGFR TKIs. A Phase I trial of an EGF vaccine in combination with afatinib has been initiated. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  20. In-silico evidences for binding of Glucokinase activators to EGFR C797S to overcome EGFR resistance obstacle with mutant-selective allosteric inhibition.

    PubMed

    Patel, Harun; Pawara, Rahul; Surana, Sanjay

    2018-03-29

    The tyrosine kinase inhibitors (TKI) against epidermal growth factor receptor (EGFR) are generally utilized as a part of patients with non-small cell lung carcinoma (NSCLC). However, EGFR T790M mutation results in resistance to most clinically available EGFR TKIs. Third-generation EGFR TKIs against the T790M mutation has been in active clinical development to triumph the resistance problem; they covalently bind with conserved Cys797 inside the EGFR active site, offering both potency and kinase-selectivity. Third generation drugs target C797, which makes the C797S resistance mutation more subtle. EGFR C797S mutation was accounted to be a main mechanism of resistance to the third-generation inhibitors. The C797S mutation gives off an impression of being an ideal target for conquering the acquired resistance to the third generation inhibitors. We have performed structure based-virtual screening strategies for binding of glucokinase activator to EGFR C797S, which can overcome EGFR resistance impediment with mutant-selective allosteric inhibition towards all kinds of mutant EGFR (T790M, L858R, TMLR) and WT EGFR. The final filter of Lipinski's Rule of Five, Jargan's Rule of Three and in silico ADME predictions gave 23 hits, which conform to Lipinski's rule and Jorgensen's rule and all their pharmacokinetic parameters are inside the appropriate range characterized for human use, in this manner demonstrating their potential as a drug-like molecule. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. CDK4/6 or MAPK blockade enhances efficacy of EGFR inhibition in oesophageal squamous cell carcinoma.

    PubMed

    Zhou, Jin; Wu, Zhong; Wong, Gabrielle; Pectasides, Eirini; Nagaraja, Ankur; Stachler, Matthew; Zhang, Haikuo; Chen, Ting; Zhang, Haisheng; Liu, Jie Bin; Xu, Xinsen; Sicinska, Ewa; Sanchez-Vega, Francisco; Rustgi, Anil K; Diehl, J Alan; Wong, Kwok-Kin; Bass, Adam J

    2017-01-06

    Oesophageal squamous cell carcinoma is a deadly disease where systemic therapy has relied upon empiric chemotherapy despite the presence of genomic alterations pointing to candidate therapeutic targets, including recurrent amplification of the gene encoding receptor tyrosine kinase epidermal growth factor receptor (EGFR). Here, we demonstrate that EGFR-targeting small-molecule inhibitors have efficacy in EGFR-amplified oesophageal squamous cell carcinoma (ESCC), but may become quickly ineffective. Resistance can occur following the emergence of epithelial-mesenchymal transition and by reactivation of the mitogen-activated protein kinase (MAPK) pathway following EGFR blockade. We demonstrate that blockade of this rebound activation with MEK (mitogen-activated protein kinase kinase) inhibition enhances EGFR inhibitor-induced apoptosis and cell cycle arrest, and delays resistance to EGFR monotherapy. Furthermore, genomic profiling shows that cell cycle regulators are altered in the majority of EGFR-amplified tumours and a combination of cyclin-dependent kinase 4/6 (CDK4/6) and EGFR inhibitors prevents the emergence of resistance in vitro and in vivo. These data suggest that upfront combination strategies targeting EGFR amplification, guided by adaptive pathway reactivation or by co-occurring genomic alterations, should be tested clinically.

  2. 17beta-estradiol promotes breast cancer cell proliferation-inducing stromal cell-derived factor-1-mediated epidermal growth factor receptor transactivation: reversal by gefitinib pretreatment.

    PubMed

    Pattarozzi, Alessandra; Gatti, Monica; Barbieri, Federica; Würth, Roberto; Porcile, Carola; Lunardi, Gianluigi; Ratto, Alessandra; Favoni, Roberto; Bajetto, Adriana; Ferrari, Angelo; Florio, Tullio

    2008-01-01

    The coordinated activity of estrogens and epidermal growth factor receptor (EGFR) family agonists represents the main determinant of breast cancer cell proliferation. Stromal cell-derived factor-1 (SDF-1) enhances extracellular signal-regulated kinases 1 and 2 (ERK1/2) activity via the transactivation of EGFR and 17beta-estradiol (E2) induces SDF-1 production to exert autocrine proliferative effects. On this basis, we evaluated whether the inhibition of the tyrosine kinase (TK) activity of EGFR may control different mitogenic stimuli in breast tumors using the EGFR-TK inhibitor gefitinib to antagonize the proliferation induced by E2 in T47D human breast cancer cells. EGF, E2, and SDF-1 induced a dose-dependent T47D cell proliferation, that being nonadditive suggested the activation of common intracellular pathways. Gefitinib treatment inhibited not only the EGF-dependent proliferation and ERK1/2 activation but also the effects of SDF-1 and E2, suggesting that these activities were mediated by EGFR transactivation. Indeed, both SDF-1 and E2 caused EGFR tyrosine phosphorylation. The molecular link between E2 and SDF-1 proliferative effects was identified because 1,1'-(1,4-phenylenebis(methylene))-bis-1,4,8,11-tetraazacyclotetradecane octahydrochloride (AMD3100), a CXCR4 antagonist, inhibited SDF-1- and E2-dependent proliferation and EGFR and ERK1/2 phosphorylation. EGFR transactivation was dependent on c-Src activation. E2 treatment caused a powerful SDF-1 release from T47D cells. Finally, in SKBR3, E2-resistant cells, EGFR was constitutively activated, and AMD3100 reduced EGFR phosphorylation and cell proliferation, whereas HER2-neu was transactivated by SDF-1 in SKBR3 but not in T47D cells. In conclusion, we show that activation of CXCR4 transduces proliferative signals from the E2 receptor to EGFR, whose inhibition is able to revert breast cancer cell proliferation induced by multiple receptor activation.

  3. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling

    PubMed Central

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2017-01-01

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr52, which then promoted the dephosphorylation of CAR at Thr38 by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR. PMID:23652203

  4. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    PubMed

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  5. Acquired Resistance Mechanisms to Combination Met-TKI/EGFR-TKI Exposure in Met-Amplified EGFR-TKI-Resistant Lung Adenocarcinoma Harboring an Activating EGFR Mutation.

    PubMed

    Yamaoka, Toshimitsu; Ohmori, Tohru; Ohba, Motoi; Arata, Satoru; Kishino, Yasunari; Murata, Yasunori; Kusumoto, Sojiro; Ishida, Hiroo; Shirai, Takao; Hirose, Takashi; Ohnishi, Tsukasa; Sasaki, Yasutsuna

    2016-12-01

    Met-amplified EGFR-tyrosine kinase inhibitor (TKI)-resistant non-small cell lung cancer (NSCLC) harboring an activating EGFR mutation is responsive to concurrent EGFR-TKI and Met-TKI treatment in a preclinical model. Here, we determined that Met-amplified gefitinib-resistant cells acquire dual resistance to inhibition of EGFR and Met tyrosine kinase activities. PC-9 lung adenocarcinoma cells harboring 15-bp deletions (Del E746_A750) in EGFR exon 19 were treated with increasing concentrations of the Met-TKI PHA665752 and 1 μmol/L gefitinib for 1 year; three resistant clones were established via Met amplification. The three dual-resistance cell lines (PC-9DR2, PC-9DR4, and PC-9DR6, designated as DR2, DR4, and DR6, respectively) exhibited different mechanisms for evading both EGFR and Met inhibition. None of the clones harbored a secondary mutation of EGFR T790M or a Met mutation. Insulin-like growth factor (IGF)/IGF1 receptor activation in DR2 and DR4 cells acted as a bypass signaling pathway. Met expression was attenuated to a greater extent in DR2 than in PC-9 cells, but was maintained in DR4 cells by overexpression of IGF-binding protein 3. In DR6 cells, Met was further amplified by association with HSP90, which protected Met from degradation and induced SET and MYND domain-containing 3 (SMYD3)-mediated Met transcription. This is the first report describing the acquisition of dual resistance mechanisms in NSCLC harboring an activating EGFR mutation to Met-TKI and EGFR-TKI following previous EGFR-TKI treatment. These results might inform the development of more effective therapeutic strategies for NSCLC treatment. Mol Cancer Ther; 15(12); 3040-54. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. Resistance to EGFR inhibitors in non-small cell lung cancer: Clinical management and future perspectives.

    PubMed

    Tomasello, Chiara; Baldessari, Cinzia; Napolitano, Martina; Orsi, Giulia; Grizzi, Giulia; Bertolini, Federica; Barbieri, Fausto; Cascinu, Stefano

    2018-03-01

    In the last few years, the development of targeted therapies for non-small cell lung cancer (NSCLC) expressing oncogenic driver mutations (e.g. EGFR) has changed the clinical management and the survival outcomes of this specific minority of patients. Several phase III trials demonstrated the superiority of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) over chemotherapy in EGFR-mutant NSCLC patients. However, in the vast majority of cases EGFR TKIs lose their clinical activity within 8-12 months. Many genetic aberrations have been described as possible mechanisms of EGFR TKIs acquired resistance and can be clustered in four main sub-groups: 1. Development of secondary EGFR mutations; 2. Activation of parallel signaling pathways; 3. Histological transformation; 4. Activation of downstream signaling pathways. In this review we will describe the molecular alterations underlying each of these EGFR TKIs resistance mechanisms, focusing on the currently available and future therapeutic strategies to overcome these phenomena. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors

    PubMed Central

    Akbay, Esra A; Koyama, Shohei; Carretero, Julian; Altabef, Abigail; Tchaicha, Jeremy H; Christensen, Camilla L; Mikse, Oliver R; Cherniack, Andrew D; Beauchamp, Ellen M; Pugh, Trevor J; Wilkerson, Matthew D; Fecci, Peter E; Butaney, Mohit; Reibel, Jacob B; Soucheray, Margaret; Cohoon, Travis J; Janne, Pasi A; Meyerson, Matthew; Hayes, D. Neil; Shapiro, Geoffrey I; Shimamura, Takeshi; Sholl, Lynette M; Rodig, Scott J; Freeman, Gordon J; Hammerman, Peter S; Dranoff, Glenn; Wong, Kwok-Kin

    2013-01-01

    The success in lung cancer therapy with Programmed Death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between Epidermal Growth Factor Receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, cytotoxic T lymphocyte antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased cytotoxic T cells and increased markers of T cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T cell function and lowering the levels of tumor-promoting cytokines. Expression of mutant EGFR in bronchial epithelial cells induced PD-L1, and PD-L1 expression was reduced by EGFR inhibitors in non-small cell lung cancer cell lines with activated EGFR. These data suggest that oncogenic EGFR signaling remodels the tumor microenvironment to trigger immune escape, and mechanistically link treatment response to PD-1 inhibition. PMID:24078774

  8. A Pathophysiologic Role for Epidermal Growth Factor Receptor in Pemphigus Acantholysis*

    PubMed Central

    Bektas, Meryem; Jolly, Puneet S.; Berkowitz, Paula; Amagai, Masayuki; Rubenstein, David S.

    2013-01-01

    The pemphigus family of autoimmune bullous disorders is characterized by autoantibody binding to desmoglein 1 and/or 3 (dsg1/dsg3). In this study we show that EGF receptor (EGFR) is activated following pemphigus vulgaris (PV) IgG treatment of primary human keratinocytes and that EGFR activation is downstream of p38 mitogen-activated protein kinase (p38). Inhibition of EGFR blocked PV IgG-triggered dsg3 endocytosis, keratin intermediate filament retraction, and loss of cell-cell adhesion in vitro. Significantly, inhibiting EGFR prevented PV IgG-induced blister formation in the passive transfer mouse model of pemphigus. These data demonstrate cross-talk between dsg3 and EGFR, that this cross-talk is regulated by p38, and that EGFR is a potential therapeutic target for pemphigus. Small-molecule inhibitors and monoclonal antibodies directed against EGFR are currently used to treat several types of solid tumors. This study provides the experimental rationale for investigating the use of EGFR inhibitors in pemphigus. PMID:23404504

  9. Molecular basis for multimerization in the activation of the epidermal growth factor receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yongjian; Bharill, Shashank; Karandur, Deepti

    The epidermal growth factor receptor (EGFR) is activated by dimerization, but activation also generates higher-order multimers, whose nature and function are poorly understood. We have characterized ligand-induced dimerization and multimerization of EGFR using single-molecule analysis, and show that multimerization can be blocked by mutations in a specific region of Domain IV of the extracellular module. These mutations reduce autophosphorylation of the C-terminal tail of EGFR and attenuate phosphorylation of phosphatidyl inositol 3-kinase, which is recruited by EGFR. The catalytic activity of EGFR is switched on through allosteric activation of one kinase domain by another, and we show that if thismore » is restricted to dimers, then sites in the tail that are proximal to the kinase domain are phosphorylated in only one subunit. We propose a structural model for EGFR multimerization through self-association of ligand-bound dimers, in which the majority of kinase domains are activated cooperatively, thereby boosting tail phosphorylation.« less

  10. Molecular basis for multimerization in the activation of the epidermal growth factor receptor

    DOE PAGES

    Huang, Yongjian; Bharill, Shashank; Karandur, Deepti; ...

    2016-03-28

    The epidermal growth factor receptor (EGFR) is activated by dimerization, but activation also generates higher-order multimers, whose nature and function are poorly understood. We have characterized ligand-induced dimerization and multimerization of EGFR using single-molecule analysis, and show that multimerization can be blocked by mutations in a specific region of Domain IV of the extracellular module. These mutations reduce autophosphorylation of the C-terminal tail of EGFR and attenuate phosphorylation of phosphatidyl inositol 3-kinase, which is recruited by EGFR. The catalytic activity of EGFR is switched on through allosteric activation of one kinase domain by another, and we show that if thismore » is restricted to dimers, then sites in the tail that are proximal to the kinase domain are phosphorylated in only one subunit. We propose a structural model for EGFR multimerization through self-association of ligand-bound dimers, in which the majority of kinase domains are activated cooperatively, thereby boosting tail phosphorylation.« less

  11. Proteomic Analysis of the Epidermal Growth Factor Receptor (EGFR) Interactome and Post-translational Modifications Associated with Receptor Endocytosis in Response to EGF and Stress*

    PubMed Central

    Tong, Jiefei; Taylor, Paul; Moran, Michael F.

    2014-01-01

    Aberrant expression, activation, and stabilization of epidermal growth factor receptor (EGFR) are causally associated with several human cancers. Post-translational modifications and protein-protein interactions directly modulate the signaling and trafficking of the EGFR. Activated EGFR is internalized by endocytosis and then either recycled back to the cell surface or degraded in the lysosome. EGFR internalization and recycling also occur in response to stresses that activate p38 MAP kinase. Mass spectrometry was applied to comprehensively analyze the phosphorylation, ubiquitination, and protein-protein interactions of wild type and endocytosis-defective EGFR variants before and after internalization in response to EGF ligand and stress. Prior to internalization, EGF-stimulated EGFR accumulated ubiquitin at 7 K residues and phosphorylation at 7 Y sites and at S1104. Following internalization, these modifications diminished and there was an accumulation of S/T phosphorylations. EGFR internalization and many but not all of the EGF-induced S/T phosphorylations were also stimulated by anisomycin-induced cell stress, which was not associated with receptor ubiquitination or elevated Y phosphorylation. EGFR protein interactions were dramatically modulated by ligand, internalization, and stress. In response to EGF, different E3 ubiquitin ligases became maximally associated with EGFR before (CBL, HUWE1, and UBR4) or after (ITCH) internalization, whereas CBLB was distinctively most highly EGFR associated following anisomycin treatment. Adaptin subunits of AP-1 and AP-2 clathrin adaptor complexes also became EGFR associated in response to EGF and anisomycin stress. Mutations preventing EGFR phosphorylation at Y998 or in the S1039 region abolished or greatly reduced EGFR interactions with AP-2 and AP-1, and impaired receptor trafficking. These results provide new insight into spatial, temporal, and mechanistic aspects of EGFR regulation. PMID:24797263

  12. PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response

    PubMed Central

    Liao, Hsin-Wei; Hsu, Jung-Mao; Xia, Weiya; Wang, Hung-Ling; Wang, Ying-Nai; Chang, Wei-Chao; Arold, Stefan T.; Chou, Chao-Kai; Tsou, Pei-Hsiang; Yamaguchi, Hirohito; Fang, Yueh-Fu; Lee, Hong-Jen; Lee, Heng-Huan; Tai, Shyh-Kuan; Yang, Mhu-Hwa; Morelli, Maria P.; Sen, Malabika; Ladbury, John E.; Chen, Chung-Hsuan; Grandis, Jennifer R.; Kopetz, Scott; Hung, Mien-Chie

    2015-01-01

    Posttranslational modifications to the intracellular domain of the EGFR are known to regulate EGFR functions; however, modifications to the extracellular domain and their effects remain relatively unexplored. Here, we determined that methylation at R198 and R200 of the EGFR extracellular domain by protein arginine methyltransferase 1 (PRMT1) enhances binding to EGF and subsequent receptor dimerization and signaling activation. In a mouse orthotopic colorectal cancer xenograft model, expression of a methylation-defective EGFR reduced tumor growth. Moreover, increased EGFR methylation sustained signaling activation and cell proliferation in the presence of the therapeutic EGFR monoclonal antibody cetuximab. In colorectal cancer patients, EGFR methylation level also correlated with a higher recurrence rate after cetuximab treatment and reduced overall survival. Together, these data indicate that R198/R200 methylation of the EGFR plays an important role in regulating EGFR functionality and resistance to cetuximab treatment. PMID:26571401

  13. EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance.

    PubMed

    Sevelda, Florian; Mayr, Lisa; Kubista, Bernd; Lötsch, Daniela; van Schoonhoven, Sushilla; Windhager, Reinhard; Pirker, Christine; Micksche, Michael; Berger, Walter

    2015-11-02

    Enhanced signalling via the epidermal growth factor receptor (EGFR) is a hallmark of multiple human carcinomas. However, in recent years data have accumulated that EGFR might also be hyperactivated in human sarcomas. Aim of this study was to investigate the influence of EGFR inhibition on cell viability and its interaction with chemotherapy response in osteosarcoma cell lines. We have investigated a panel of human osteosarcoma cell lines regarding EGFR expression and downstream signalling. To test its potential applicability as therapeutic target, inhibition of EGFR by gefitinib was combined with osteosarcoma chemotherapeutics and cell viability, migration, and cell death assays were performed. Osteosarcoma cells expressed distinctly differing levels of functional EGFR reaching in some cases high amounts. Functionality of EGFR in osteosarcoma cells was proven by EGF-mediated activation of both MAPK and PI3K/AKT pathway (determined by phosphorylation of ERK1/2, AKT, S6, and GSK3β). The EGFR-specific inhibitor gefitinib blocked EGF-mediated downstream signal activation. At standard in vitro culture conditions, clinically achievable gefitinib doses demonstrated only limited cytotoxic activity, however, significantly reduced long-term colony formation and cell migration. In contrast, under serum-starvation conditions active gefitinib doses were distinctly reduced while EGF promoted starvation survival. Importantly, gefitinib significantly supported the anti-osteosarcoma activities of doxorubicin and methotrexate regarding cell survival and migratory potential. Our data suggest that EGFR is not a major driver for osteosarcoma cell growth but contributes to starvation- and chemotherapy-induced stress survival. Consequently, combination approaches including EGFR inhibitors should be evaluated for treatment of high-grade osteosarcoma patients.

  14. EGFR and Ras regulate DDX59 during lung cancer development.

    PubMed

    Yang, Lin; Zhang, Hanyin; Chen, Dan; Ding, Peikun; Yuan, Yunchang; Zhang, Yandong

    2018-02-05

    Oncogenes EGFR and ras are frequently mutated and activated in human lung cancers. In this report, we found that both EGFR and Ras signaling can upregulate RNA helicase DDX59 in lung cancer cells. DDX59 can be induced through the mitogen activated protein kinase (MAPK) pathway after EGFR or Ras activation. Inhibitors for Ras/Raf/MAP pathway significantly decreased DDX59 expression at both protein and mRNA levels. Through immunohistochemistry, we found that DDX59 protein expression correlated with Ras and EGFR mutation status in human lung adenocarcinoma. Finally, through a xenograft nude mice model, we demonstrated that DDX59 is pivotal for EGFR mutated lung cancer cell growth in vivo. Our study identified a novel protein downstream of Ras and EGFR, which may serve as a potential therapeutic drug target for lung cancer patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Combined EGFR/MEK Inhibition Prevents the Emergence of Resistance in EGFR mutant Lung Cancer

    PubMed Central

    Uddin, Sharmeen; Capelletti, Marzia; Ercan, Dalia; Ogino, Atsuko; Pratilas, Christine A.; Rosen, Neal; Gray, Nathanael S.; Wong, Kwok-Kin; Jänne, Pasi A.

    2016-01-01

    Irreversible pyrimidine based EGFR inhibitors, including WZ4002, selectively inhibit both EGFR activating and EGFR inhibitor resistant T790M mutations more potently than wild type EGFR. While this class of mutant selective EGFR inhibitors is effective clinically in lung cancer patients harboring EGFR T790M, prior preclinical studies demonstrate that acquired resistance can occur through genomic alterations that activate ERK1/2 signaling. Here we find that ERK1/2 reactivation occurs rapidly following WZ4002 treatment. Concomitant inhibition of ERK1/2 by the MEK inhibitor trametinib prevents ERK1/2 reactivation, enhances WZ4002 induced apoptosis and inhibits the emergence of resistance in WZ4002 sensitive models known to acquire resistance via both T790M dependent and independent mechanisms. Resistance to WZ4002 in combination with trametinib eventually emerges due to AKT/mTOR reactivation. These data suggest that initial co-targeting of EGFR and MEK could significantly impede the development of acquired resistance in mutant EGFR lung cancer. PMID:26036643

  16. Nexus of signaling and endocytosis in oncogenesis driven by non-small cell lung cancer-associated epidermal growth factor receptor mutants

    PubMed Central

    Chung, Byung Min; Tom, Eric; Zutshi, Neha; Bielecki, Timothy Alan; Band, Vimla; Band, Hamid

    2014-01-01

    Epidermal growth factor receptor (EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non-small cell lung cancer (NSCLC) patients that harbor EGFR kinase domain mutations exhibit oncogene addiction to mutant EGFR, which confers high sensitivity to tyrosine kinase inhibitors (TKIs). As patients invariably develop resistance to TKIs, it is important to delineate the cell biological basis of mutant EGFR-induced cellular transformation since components of these pathways can serve as alternate therapeutic targets to preempt or overcome resistance. NSCLC-associated EGFR mutants are constitutively-active and induce ligand-independent transformation in nonmalignant cell lines. Emerging data suggest that a number of factors are critical for the mutant EGFR-dependent tumorigenicity, and bypassing the effects of TKIs on these pathways promotes drug resistance. For example, activation of downstream pathways such as Akt, Erk, STAT3 and Src is critical for mutant EGFR-mediated biological processes. It is now well-established that the potency and spatiotemporal features of cellular signaling by receptor tyrosine kinases such as EGFR, as well as the specific pathways activated, is determined by the nature of endocytic traffic pathways through which the active receptors traverse. Recent evidence indicates that NSCLC-associated mutant EGFRs exhibit altered endocytic trafficking and they exhibit reduced Cbl ubiquitin ligase-mediated lysosomal downregulation. More recent work has shown that mutant EGFRs undergo ligand-independent traffic into the endocytic recycling compartment, a behavior that plays a key role in Src pathway activation and oncogenesis. These studies are beginning to delineate the close nexus between signaling and endocytic traffic of EGFR mutants as a key driver of oncogenic processes. Therefore, in this review, we will discuss the links between mutant EGFR signaling and endocytic properties, and introduce potential mechanisms by which altered endocytic properties of mutant EGFRs may alter signaling and vice versa as well as their implications for NSCLC therapy. PMID:25493220

  17. Ligand-activated epidermal growth factor receptor (EGFR) signaling governs endocytic trafficking of unliganded receptor monomers by non-canonical phosphorylation.

    PubMed

    Tanaka, Tomohiro; Zhou, Yue; Ozawa, Tatsuhiko; Okizono, Ryuya; Banba, Ayako; Yamamura, Tomohiro; Oga, Eiji; Muraguchi, Atsushi; Sakurai, Hiroaki

    2018-02-16

    The canonical description of transmembrane receptor function is initial binding of ligand, followed by initiation of intracellular signaling and then internalization en route to degradation or recycling to the cell surface. It is known that low concentrations of extracellular ligand lead to a higher proportion of receptor that is recycled and that non-canonical mechanisms of receptor activation, including phosphorylation by the kinase p38, can induce internalization and recycling. However, no connections have been made between these pathways; i.e. it has yet to be established what happens to unbound receptors following stimulation with ligand. Here we demonstrate that a minimal level of activation of epidermal growth factor receptor (EGFR) tyrosine kinase by low levels of ligand is sufficient to fully activate downstream mitogen-activated protein kinase (MAPK) pathways, with most of the remaining unbound EGFR molecules being efficiently phosphorylated at intracellular serine/threonine residues by activated mitogen-activated protein kinase. This non-canonical, p38-mediated phosphorylation of the C-tail of EGFR, near Ser-1015, induces the clathrin-mediated endocytosis of the unliganded EGFR monomers, which occurs slightly later than the canonical endocytosis of ligand-bound EGFR dimers via tyrosine autophosphorylation. EGFR endocytosed via the non-canonical pathway is largely recycled back to the plasma membrane as functional receptors, whereas p38-independent populations are mainly sorted for lysosomal degradation. Moreover, ligand concentrations balance these endocytic trafficking pathways. These results demonstrate that ligand-activated EGFR signaling controls unliganded receptors through feedback phosphorylation, identifying a dual-mode regulation of the endocytic trafficking dynamics of EGFR. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Protein-tyrosine-phosphatase-mediated epidermal growth factor (EGF) receptor transinactivation and EGF receptor-independent stimulation of mitogen-activated protein kinase by bradykinin in A431 cells.

    PubMed Central

    Graness, A; Hanke, S; Boehmer, F D; Presek, P; Liebmann, C

    2000-01-01

    Transactivation of the epidermal growth factor (EGF) receptor (EGFR) has been proposed to represent an essential link between G-protein-coupled receptors and the mitogen-activated protein kinase (MAPK) pathway in various cell types. In the present work we report, in contrast, that in A431 cells bradykinin transinactivates the EGFR and stimulates MAPK activity independently of EGFR tyrosine phosphorylation. Both effects of bradykinin are mediated by a pertussis-toxin-insensitive G-protein. Three lines of evidence suggest the activation of a protein tyrosine phosphatase (PTP) by bradykinin: (i) treatment of A431 cells with bradykinin decreases both basal and EGF-induced EGFR tyrosine phosphorylation, (ii) this effect of bradykinin can be blocked by two different PTP inhibitors, and (iii) bradykinin significantly increased the PTP activity in total A431 cell lysates when measured in vitro. The transmembrane receptor PTP sigma was identified as a putative mediator of bradykinin-induced downregulation of EGFR autophosphorylation. Activation of MAPK in response to bradykinin was insensitive towards AG 1478, a specific inhibitor of EGFR tyrosine kinase, but was blocked by wortmannin or bisindolylmaleimide, inhibitors of phosphatidylinositol 3-kinase (PI3-K) and protein kinase C (PKC) respectively. These results also suggest that the bradykinin-induced activation of MAPK is independent of EGFR and indicate a pathway involving PI3-K and PKC. In addition, bradykinin evokes a rapid and transient increase in Src kinase activity. Although Src does not participate in bradykinin-induced stimulation of PTP activity, inhibition of Src by 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine leads to an increase in MAPK activation by bradykinin. Our results suggest that in A431 cells the G(q/11)-protein-coupled bradykinin B(2) receptor may stimulate PTP activity and thereby transinactivate the EGFR, and may simultaneously activate MAPK by an alternative signalling pathway which can bypass EGFR. PMID:10749673

  19. Mutations in the Polybasic Juxtamembrane Sequence of Both Plasma Membrane- and Endoplasmic Reticulum-localized Epidermal Growth Factor Receptors Confer Ligand-independent Cell Transformation*

    PubMed Central

    Bryant, Kirsten L.; Antonyak, Marc A.; Cerione, Richard A.; Baird, Barbara; Holowka, David

    2013-01-01

    Deregulation of ErbB receptor-tyrosine kinases is a hallmark of many human cancers. Conserved in the ErbB family is a cluster of basic amino acid residues in the cytoplasmic juxtamembrane region. We found that charge-silencing mutagenesis within this juxtamembrane region of the epidermal growth factor receptor (EGFR) results in the generation of a mutant receptor (EGFR Mut R1-6) that spontaneously transforms NIH 3T3 cells in a ligand-independent manner. A similar mutant with one additional basic residue, EGFR Mut R1-5, fails to exhibit ligand-independent transformation. The capacity of EGFR Mut R1-6 to mediate this transformation is maintained when this mutant is retained in the endoplasmic reticulum via a single point mutation, L393H, which we describe. We show that EGFR Mut R1-6 with or without L393H exhibits enhanced basal tyrosine phosphorylation when ectopically expressed, and the ligand-independent transforming activity of EGFR Mut R1-6 is sensitive to inhibition of EGFR kinase activity and is particularly dependent on PI3K and mTOR activity. Similar to EGFR Mut R1-6/L393H in NIH 3T3 cells, EGFR variant type III, a highly oncogenic mutant form of EGFR linked to human brain cancers, confers transforming activity while it is wholly endoplasmic reticulum-retained in U87 cells. Our findings highlight the importance of the polybasic juxtamembrane sequence in regulating the oncogenic potential of EGFR signaling. PMID:24142702

  20. Dual silencing of EGFR and HER2 enhances the sensitivity of gastric cancer cells to gefitinib.

    PubMed

    Wang, Liying; Zhang, Hongfeng; Zheng, Jiaxin; Wei, Xiaoli; Du, Jingwen; Lu, Haibo; Sun, Qiuying; Zhou, Weiyu; Zhang, Rui; Han, Yu

    2018-04-10

    Gefitinib exhibits very limited efficacy in gastric cancer (GC). Indeed, the limited clinical results obtained with gefitinib alone justify investigation of additional therapeutic strategies. Here, we demonstrate the importance of EGFR and HER2 in GC malignancy using RNA interference (RNAi). Additionally, we explored the ability of RNAi targeting EGFR and HER2 to enhance the sensitivity of GC cells to gefitinib. Specific small interfering RNAs (siRNAs) significantly inhibited mRNA and protein expression of target genes. EGFR-specific siRNA, EGFR/HER2 siRNAs, and gefitinib inhibited growth and induced apoptosis in GC cell lines in a dose-dependent manner. In contrast, resistance to HER2-siRNA-induced growth inhibition and apoptosis was linked to compensatory activation of EGFR. Moreover, gefitinib dramatically reduced p-EGFR and p-HER2 levels in the cell lines tested, and sensitivity to gefitinib was enhanced through dual silencing of EGFR and HER2 via suppression of AKT and ERK activation. These findings are in agreement with the profound inhibitory effect of gefitinib on activation of both EGFR and HER2. Overall, EGFR/HER2 knockdown by siRNAs further decreased the growth of GC cells treated with gefitinib alone, confirming that single-agent drug targeting does not achieve a maximal biological effect. The combination of gefitinib with EGFR/HER2 siRNAs should be further investigated as a new strategy for the treatment of GC and other EGFR/HER2-dependent cancers. © 2018 Wiley Periodicals, Inc.

  1. Stress-specific p38 MAPK activation is sufficient to drive EGFR endocytosis but not its nuclear translocation.

    PubMed

    Tomas, Alejandra; Jones, Sylwia; Vaughan, Simon O; Hochhauser, Daniel; Futter, Clare E

    2017-08-01

    EGF receptor (EGFR) endocytosis is induced by stress in a manner dependent on the p38 MAPK family. Ligand and stresses such as X-rays, reportedly promote nuclear trafficking of endocytosed EGFR for regulation of gene transcription and DNA repair. We fail to detect EGFR endocytosis or nuclear transport following X-ray treatment of HeLa or head and neck cancer cells, despite extensive DNA damage induction. Apparent nuclear staining with EGFR extracellular domain antibody remained present despite reduced/absent EGFR expression, and so did not represent nuclear EGFR. UVB and UVC, but not X-ray or UVA, treatment induced p38 activation and EGFR endocytosis, although all of these stresses induced DNA damage, indicating that DNA damage alone is not sufficient to induce EGFR endocytosis. Increased reactive oxygen species (ROS) levels following UVB treatment, compared to that seen with X-rays, do not alone explain differences in p38 activation. UVB, like UVC, induced EGFR accumulation predominantly in perinuclear endosomes, rather than in the nucleus. Our morphological techniques identifying major changes in receptor distribution do not exclude the possibility that small but biologically relevant amounts of EGFR enter the nucleus. This study highlights the importance and limitations of morphological analyses of receptor distribution in understanding signaling outcome. © 2017. Published by The Company of Biologists Ltd.

  2. Osimertinib - effective treatment of NSCLC with activating EGFR mutations after progression on EGFR tyrosine kinase inhibitors.

    PubMed

    Skrzypski, Marcin; Szymanowska-Narloch, Amelia; Dziadziuszko, Rafał

    2017-01-01

    Non-small cell lung cancer (NSCLC) driven by activating mutations in epidermal growth factor receptor (EGFR) constitutes up to 10% of NSCLC cases. According to the NCCN recommendations, all patients (with the exception of smoking patients with squamous cell lung cancer) should be screened for the presence of activating EGFR mutations, i.e. deletion in exon 19 or point mutation L858R in exon 21, in order to select the group that benefits from EGFR tyrosine kinase inhibitors (EGFR TKIs) treatment. Among approved agents there are the 1 st generation reversible EGFR TKIs, erlotinib and gefitinib, and the 2 nd generation irreversible EGFR TKI, afatinib. The objective response rates to these drugs in randomised clinical trials were in the range of 56-74%, and median time to progression 9-13 months. The most common determinant of resistance to these drugs is the clonal expansion of cancer cells with T790M mutation (Thr790Met) in exon 20 of EGFR. Osimertinib (Tagrisso™), a 3 rd generation, irreversible EGFR tyrosine kinase inhibitor, constitutes a novel, highly efficacious treatment for NSCLC patients progressing on EGFR TKIs with T790M mutation confirmed as the resistance mechanism. Resistance mutation can be determined in tissue or liquid biopsy obtained after progression on EGFR TKIs. Osimertinib has a favourable toxicity profile, with mild rash and diarrhoea being the most common. In this article, we present three cases that were successfully treated with osimertinib after progression on 1st and 2nd generation EGFR TKIs.

  3. Active antitumor immunity elicited by vaccine based on recombinant form of epidermal growth factor receptor.

    PubMed

    Hu, Bing; Wei, Yuquan; Tian, Ling; Zhao, Xia; Lu, You; Wu, Yang; Yao, Bing; Liu, Jiyan; Niu, Ting; Wen, Yanjun; He, Qiuming; Su, Jingmei; Huang, Meijuan; Lou, Yanyan; Luo, Yan; Kan, Bing

    2005-01-01

    Active immunotherapy targeting epidermal growth factor receptor (EGFR) should be another attractive approach to the treatment of EGFR-positive tumors. To test this concept, the authors evaluated the potential immune responses and antitumor activities elicited by dendritic cells pulsed with recombinant ectodomain of mouse EGFR (DC-edMER). Spleen cells isolated from DC-edMER-vaccinated mice showed a high quantity of EGFR-specific antibody-producing cells. EGFR-reactive antibody in sera isolated from vaccinated mice was identified and shown to be effective against tumors in vitro and in vivo by adoptive transfer. DC-edMER vaccine also elicited cytotoxic T-lymphocyte responses that could mediate antitumor effects in vitro and adoptive transfer in vivo. In addition, EGFR-specific cytokines responses were elicited by DC-edMER vaccine. Immunization with DC-edMER resulted in tumor regression and prolonged survival in mice challenged with Lewis lung carcinomas and mammary cancer models. Depletion of CD4+ T lymphocytes could completely abrogate the antitumor activity and EGFR-specific antibody responses, whereas the depletion of CD8+ T lymphocytes showed partial abrogation of the antitumor activity but antibody was still detected. Furthermore, tumor-induced angiogenesis was suppressed in DC-edMER-vaccinated mice or mice treated with antibody adoptive transfer. Taken together, these findings suggest the antitumor immunity could be induced by DC-edMER, which may involve both humoral and cellular immunity, and may provide insight into the treatment of EGFR-positive tumors through the induction of active immunity against EGFR.

  4. Protein Kinase G facilitates EGFR-mediated cell death in MDA-MB-468 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Nicole M.; Ceresa, Brian P., E-mail: brian.ceresa@louisville.edu

    The Epidermal Growth Factor Receptor (EGFR) is a transmembrane receptor tyrosine kinase with critical implications in cell proliferation, migration, wound healing and the regulation of apoptosis. However, the EGFR has been shown to be hyper-expressed in a number of human malignancies. The MDA-MB-468 metastatic breast cell line is one example of this. This particular cell line hyper-expresses the EGFR and undergoes EGFR-mediated apoptosis in response to EGF ligand. The goal of this study was to identify the kinases that could be potential intermediates for the EGFR-mediated induction of apoptosis intracellularly. After identifying Cyclic GMP-dependent Protein Kinase G (PKG) as amore » plausible intermediate, we wanted to determine the temporal relationship of these two proteins in the induction of apoptosis. We observed a dose-dependent decrease in MDA-MB-468 cell viability, which was co-incident with increased PKG activity as measured by VASPSer239 phosphorylation. In addition, we observed a dose dependent decrease in cell viability, as well as an increase in apoptosis, in response to two different PKG agonists, 8-Bromo-cGMP and 8-pCPT-cGMP. MDA-MB-468 cells with reduced PKG activity had attenuated EGFR-mediated apoptosis. These findings indicate that PKG does not induce cell death via transphosphorylation of the EGFR. Instead, PKG activity occurs following EGFR activation. Together, these data indicate PKG as an intermediary in EGFR-mediated cell death, likely via apoptotic pathway.« less

  5. N-methyl-N'-nitro-N-nitrosoguanidine interferes with the epidermal growth factor receptor-mediated signaling pathway.

    PubMed

    Gao, Zhihua; Yang, Jun; Huang, Yun; Yu, Yingnian

    2005-03-01

    Many environmental factors, such as ultraviolet (UV) and arsenic, can induce the clustering of cell surface receptors, including epidermal growth factor receptor (EGFR). This is accompanied by the phosphorylation of the receptors and the activation of ensuing cellular signal transduction pathways, which are implicated in the various cellular responses caused by the exposure to these factors. In this study, we have shown that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), an alkylating agent, also induced the clustering of EGFR in human amnion FL cells, which was similar in morphology to that of epidermal growth factor treatment. However, MNNG treatment did not activate Ras, the downstream mediator in EGFR signaling pathway, as compared to EGF treatment. The autophosphorylation of tyrosine residues Y1068 and Y1173 at the intracellular domain of EGFR, which is related to Ras activation under EGF treatment, was also not observed by MNNG exposure. Interestingly, although MNNG did not affect the binding of EGF to EGFR, MNNG can interfere with EGF function. For instance, pre-incubating FL cells with MNNG inhibited the autophosphorylation of EGFR by EGF treatment, as well as the activation of Ras. In addition, the phosphorylation of Y845 on EGFR by EGF, which is mediated through c-Src or related kinases but not autophosphorylation, was also affected by MNNG. Therefore, MNNG may influence the tyrosine kinase activity as well as the phosphorylation of EGFR through its interaction with EGFR.

  6. Berberine Inhibits Proliferation and Down-Regulates Epidermal Growth Factor Receptor through Activation of Cbl in Colon Tumor Cells

    PubMed Central

    Wang, Lihong; Cao, Hailong; Lu, Ning; Liu, Liping; Wang, Bangmao; Hu, Tianhui; Israel, Dawn A.; Peek, Richard M.; Polk, D. Brent; Yan, Fang

    2013-01-01

    Berberine, an isoquinoline alkaloid, is an active component of Ranunculaceae and Papaveraceae plant families. Berberine has been found to suppress growth of several tumor cell lines in vitro through the cell-type-dependent mechanism. Expression and activation of epidermal growth factor receptor (EGFR) is increased in colonic precancerous lesions and tumours, thus EGFR is considered a tumour promoter. The aim of this study was to investigate the effects and mechanisms of berberine on regulation of EGFR activity and proliferation in colonic tumor cell lines and in vivo. We reported that berberine significantly inhibited basal level and EGF-stimulated EGFR activation and proliferation in the immorto Min mouse colonic epithelial (IMCE) cells carrying the APC min mutation and human colonic carcinoma cell line, HT-29 cells. Berberine acted to inhibit proliferation through inducing G1/S and G2/M cell cycle arrest, which correlated with regulation of the checkpoint protein expression. In this study, we also showed that berberine stimulated ubiquitin ligase Cbl activation and Cbl's interaction with EGFR, and EGFR ubiquitinylation and down-regulation in these two cell lines in the presence or absence of EGF treatment. Knock-down Cbl expression blocked the effects of berberine on down-regulation of EGFR and inhibition of proliferation. Furthermore, berberine suppressed tumor growth in the HT-29 cell xenograft model. Cell proliferation and EGFR expression level was decreased by berberine treatment in this xenograft model and in colon epithelial cells of APC min/+ mice. Taken together, these data indicate that berberine enhances Cbl activity, resulting in down-regulation of EGFR expression and inhibition of proliferation in colon tumor cells. PMID:23457600

  7. Photonic modulation of EGFR: 280nm low level light arrests cancer cell activation and migration

    NASA Astrophysics Data System (ADS)

    Botelho, Cláudia M.; Marques, Rogério; Viruthachalam, Thiagarajan; Gonçalves, Odete; Vorum, Henrik; Gomes, Andreia C.; Neves-Petersen, Maria Teresa

    2017-02-01

    Overexpression of the Epidermal Growth Factor Receptor (EGFR) by cancer cells is associated with a poor prognosis for the patient. For several decades, therapies targeting EGFR have been designed, including the use of monoclonal antibodies and small molecule tyrosine kinase inhibitors. The use of these molecules had good clinical results, although its efficiency (and specificity) is still far from being optimal. In this paper, we present a new approach for a possible new cancer therapy targeting EGFR and using low intensity 280nm light. The influence of 280nm UVB illumination on cancer cells stimulated with 2nM of EGF was followed by time-lapse confocal microscopy. The 280nm illumination of the cancer cells blocks EGFR activation, inhibiting EGFR internalization and cell migration thus inhibiting the transition to the metastatic phenotype. Exposure time is a very important factor. The higher the illumination time the more significant differences were observed: 280nm light delayed or completely halted EGFR activation in the cell membrane, mainly at the cell junction level, and delayed or halted EGFR endocytic internalization, filopodia formation and cell migration.

  8. Mechanisms and Clinical Activity of an EGFR and HER2 Exon 20-selective Kinase Inhibitor in Non-small Cell Lung Cancer

    PubMed Central

    Robichaux, Jacqulyne P.; Elamin, Yasir Y.; Tan, Zhi; Carter, Brett W.; Zhang, Shuxing; Liu, Shengwu; Li, Shuai; Chen, Ting; Poteete, Alissa; Estrada-Bernal, Adriana; Le, Anh T.; Truini, Anna; Nilsson, Monique B.; Sun, Huiying; Roarty, Emily; Goldberg, Sarah B.; Brahmer, Julie R.; Altan, Mehmet; Lu, Charles; Papadimitrakopoulou, Vassiliki; Politi6, Katerina; Doebele, Robert C.; Wong, Kwok-Kin; Heymach, John V.

    2018-01-01

    Although most activating mutations of epidermal growth factor receptor (EGFR)-mutant non–small cell lung cancers (NSCLCs) are sensitive to available EGFR tyrosine kinase inhibitors (TKIs), a subset with alterations in exon 20 of EGFR and HER2 are intrinsically resistant and lack an effective therapy. We used in silico, in vitro, and in vivo testing to model structural alterations induced by exon 20 mutations and to identify effective inhibitors. 3D modeling indicated alterations restricted the size of the drug-binding pocket, limiting the binding of large, rigid inhibitors. We found that poziotinib, owing to its small size and flexibility, can circumvent these steric changes and is a potent inhibitor of the most common EGFR and HER2 exon 20 mutants. Poziotinib demonstrated greater activity than approved EGFR TKIs in vitro and in patient-derived xenograft models of EGFR or HER2 exon 20 mutant NSCLC and in genetically engineered mouse models of NSCLC. In a phase 2 trial, the first 11 patients with NSCLC with EGFR exon 20 mutations receiving poziotinib had a confirmed objective response rate of 64%. These data identify poziotinib as a potent, clinically active inhibitor of EGFR and HER2 exon 20 mutations and illuminate the molecular features of TKIs that may circumvent steric changes induced by these mutations. PMID:29686424

  9. Acetylcholine-induced activation of M3 muscarinic receptors stimulates robust matrix metalloproteinase gene expression in human colon cancer cells.

    PubMed

    Xie, Guofeng; Cheng, Kunrong; Shant, Jasleen; Raufman, Jean-Pierre

    2009-04-01

    Previously, we showed that ACh-induced proliferation of human colon cancer cells is mediated by transactivation of epidermal growth factor (EGF) receptors (EGFRs). In the present study, we elucidate the molecular mechanism underlying this action. ACh-induced proliferation of H508 colon cancer cells, which express exclusively M3 muscarinic receptors (M3Rs), was attenuated by anti-EGFR ligand binding domain antibody, a broad-spectrum matrix metalloproteinase (MMP) inhibitor, anti-MMP7 antibody, a diphtheria toxin analog that blocks release of an EGFR ligand [heparin-binding EGF-like growth factor (HBEGF)], and anti-HBEGF antibody. Conditioned media from ACh-treated H508 cells induced proliferation of SNU-C4 colon cancer cells that express EGFR but not M3R. These actions were attenuated by an EGFR inhibitor and by anti-EGFR and anti-HBEGF antibodies. In H508, but not SNU-C4, colon cancer cells, ACh caused a striking dose- and time-dependent increase in levels of MMP7 mRNA and MMP7 protein. Similarly, ACh induced robust MMP1 and MMP10 gene transcription. ACh-induced MMP1, MMP7, and MMP10 gene transcription was attenuated by atropine, anti-EGFR antibody, and chemical inhibitors of EGFR and ERK activation. In contrast, inhibitors of phosphatidylinositol 3-kinase and NF-kappaB activation did not alter MMP gene transcription. Collectively, these findings indicate that MMP7-catalyzed release of HBEGF mediates ACh-induced transactivation of EGFR and consequent proliferation of colon cancer cells. ACh-induced activation of EGFR and downstream ERK signaling also regulates transcriptional activation of MMP7, thereby identifying a novel feed-forward mechanism for neoplastic cell proliferation.

  10. Acetylcholine-induced activation of M3 muscarinic receptors stimulates robust matrix metalloproteinase gene expression in human colon cancer cells

    PubMed Central

    Xie, Guofeng; Cheng, Kunrong; Shant, Jasleen; Raufman, Jean-Pierre

    2009-01-01

    Previously, we showed that ACh-induced proliferation of human colon cancer cells is mediated by transactivation of epidermal growth factor (EGF) receptors (EGFRs). In the present study, we elucidate the molecular mechanism underlying this action. ACh-induced proliferation of H508 colon cancer cells, which express exclusively M3 muscarinic receptors (M3Rs), was attenuated by anti-EGFR ligand binding domain antibody, a broad-spectrum matrix metalloproteinase (MMP) inhibitor, anti-MMP7 antibody, a diphtheria toxin analog that blocks release of an EGFR ligand [heparin-binding EGF-like growth factor (HBEGF)], and anti-HBEGF antibody. Conditioned media from ACh-treated H508 cells induced proliferation of SNU-C4 colon cancer cells that express EGFR but not M3R. These actions were attenuated by an EGFR inhibitor and by anti-EGFR and anti-HBEGF antibodies. In H508, but not SNU-C4, colon cancer cells, ACh caused a striking dose- and time-dependent increase in levels of MMP7 mRNA and MMP7 protein. Similarly, ACh induced robust MMP1 and MMP10 gene transcription. ACh-induced MMP1, MMP7, and MMP10 gene transcription was attenuated by atropine, anti-EGFR antibody, and chemical inhibitors of EGFR and ERK activation. In contrast, inhibitors of phosphatidylinositol 3-kinase and NF-κB activation did not alter MMP gene transcription. Collectively, these findings indicate that MMP7-catalyzed release of HBEGF mediates ACh-induced transactivation of EGFR and consequent proliferation of colon cancer cells. ACh-induced activation of EGFR and downstream ERK signaling also regulates transcriptional activation of MMP7, thereby identifying a novel feed-forward mechanism for neoplastic cell proliferation. PMID:19221016

  11. Epiregulin and EGFR interactions are involved in pain processing

    PubMed Central

    Martin, Loren J.; Smith, Shad B.; Khoutorsky, Arkady; Magnussen, Claire A.; Samoshkin, Alexander; Sorge, Robert E.; Cho, Chulmin; Yosefpour, Noosha; Sivaselvachandran, Sivaani; Tohyama, Sarasa; Cole, Tiffany; Khuong, Thang M.; Mir, Ellen; Gibson, Dustin G.; Wieskopf, Jeffrey S.; Sotocinal, Susana G.; Austin, Jean Sebastien; Meloto, Carolina B.; Gitt, Joseph H.; Sonenberg, Nahum; Greenspan, Joel D.; Fillingim, Roger B.; Slade, Gary D.; Knott, Charles; Dubner, Ronald; Nackley, Andrea G.; Ribeiro-da-Silva, Alfredo; Neely, G. Gregory; Maixner, William; Zaykin, Dmitri V.; Mogil, Jeffrey S.; Diatchenko, Luda

    2017-01-01

    The EGFR belongs to the well-studied ErbB family of receptor tyrosine kinases. EGFR is activated by numerous endogenous ligands that promote cellular growth, proliferation, and tissue regeneration. In the present study, we have demonstrated a role for EGFR and its natural ligand, epiregulin (EREG), in pain processing. We show that inhibition of EGFR with clinically available compounds strongly reduced nocifensive behavior in mouse models of inflammatory and chronic pain. EREG-mediated activation of EGFR enhanced nociception through a mechanism involving the PI3K/AKT/mTOR pathway and matrix metalloproteinase-9. Moreover, EREG application potentiated capsaicin-induced calcium influx in a subset of sensory neurons. Both the EGFR and EREG genes displayed a genetic association with the development of chronic pain in several clinical cohorts of temporomandibular disorder. Thus, EGFR and EREG may be suitable therapeutic targets for persistent pain conditions. PMID:28783046

  12. Role of EGFR transactivation in preventing apoptosis in Pseudomonas aeruginosa-infected human corneal epithelial cells.

    PubMed

    Zhang, Jing; Li, Hui; Wang, Jinzhao; Dong, Zheng; Mian, Shahzad; Yu, Fu-Shin X

    2004-08-01

    To determine the role of epidermal growth factor (EGF) receptor (EGFR)-mediated signaling pathways in preventing infection-induced apoptosis in human corneal epithelial cells (HCECs). Epithelial monolayers of a telomerase-immortalized HCEC line, HUCL, and primary culture of HCECs were infected with Pseudomonas aeruginosa in the presence of the EGFR inhibitor tyrphostin AG1478, the extracellular signal-regulated kinase (ERK) inhibitor U0126, the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, the heparin-binding EGF-like growth factor (HB-EGF) antagonist CRM197, the HB-EGF neutralizing antibody, or the matrix metalloproteinase inhibitor GM6001. The activation of EGFR was analyzed by immunoprecipitation using EGFR antibodies, followed by Western blot analysis with phosphotyrosine antibody. Phosphorylation of ERK and Akt, a major substrate of PI3K, and generation of cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) were determined by Western blot analysis. Apoptotic cells were characterized by positive staining of active caspase-3, loss of mitochondrial cytochrome c, and condensation of chromosomes. Apoptosis was also confirmed by measuring caspase-3 activity and assessing the generation of cleaved caspase-3 and PARP. P. aeruginosa infection of HUCL cells resulted in EGFR activation and EGFR-dependent ERK1/2 and PI3K phosphorylation. Inhibition of EGFR, ERK1/2, and PI3K activities with kinase-specific inhibitors (AG1478, U0126, and LY294002, respectively) resulted in an increase in the number of apoptotic cells, in elevated cellular caspase-3 activity, and/or in increased cleaved PARP in P. aeruginosa-infected HUCL cells or primary culture of HCECs. Blocking HB-EGF ectodomain shedding by inhibition of matrix metalloproteinase-mediated proteolysis, downregulation of HB-EGF, or neutralization of its activity retarded infection-induced EGFR transactivation and, as a consequence, increased infection-induced HUCL apoptosis. Bacterial infection of HCECs induces EGFR transactivation through HB-EGF ectodomain shedding. EGFR and its downstream ERK and PI3K signaling pathways play a role in preventing epithelial apoptosis in the early stage of bacterial infection.

  13. Role of EGFR Transactivation in Preventing Apoptosis in Pseudomonas aeruginosa–Infected Human Corneal Epithelial Cells

    PubMed Central

    Zhang, Jing; Li, Hui; Wang, Jinzhao; Dong, Zheng; Mian, Shahzad; Yu, Fu-Shin X.

    2009-01-01

    PURPOSE To determine the role of epidermal growth factor (EGF) receptor (EGFR)–mediated signaling pathways in preventing infection-induced apoptosis in human corneal epithelial cells (HCECs). METHODS Epithelial monolayers of a telomerase-immortalized HCEC line, HUCL, and primary culture of HCECs were infected with Pseudomonas aeruginosa in the presence of the EGFR inhibitor tyrphostin AG1478, the extracellular signal-regulated kinase (ERK) inhibitor U0126, the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, the heparin-binding EGF-like growth factor (HB-EGF) antagonist CRM197, the HB-EGF neutralizing antibody, or the matrix metalloproteinase inhibitor GM6001. The activation of EGFR was analyzed by immunoprecipitation using EGFR antibodies, followed by Western blot analysis with phosphotyrosine antibody. Phosphorylation of ERK and Akt, a major substrate of PI3K, and generation of cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) were determined by Western blot analysis. Apoptotic cells were characterized by positive staining of active caspase-3, loss of mitochondrial cytochrome c, and condensation of chromosomes. Apoptosis was also confirmed by measuring caspase-3 activity and assessing the generation of cleaved caspase-3 and PARP. RESULTS P. aeruginosa infection of HUCL cells resulted in EGFR activation and EGFR-dependent ERK1/2 and PI3K phosphorylation. Inhibition of EGFR, ERK1/2, and PI3K activities with kinase-specific inhibitors (AG1478, U0126, and LY294002, respectively) resulted in an increase in the number of apoptotic cells, in elevated cellular caspase-3 activity, and/or in increased cleaved PARP in P. aeruginosa–infected HUCL cells or primary culture of HCECs. Blocking HB-EGF ectodomain shedding by inhibition of matrix metalloproteinase–mediated proteolysis, downregulation of HB-EGF, or neutralization of its activity retarded infection-induced EGFR transactivation and, as a consequence, increased infection-induced HUCL apoptosis. CONCLUSIONS Bacterial infection of HCECs induces EGFR transactivation through HB-EGF ectodomain shedding. EGFR and its downstream ERK and PI3K signaling pathways play a role in preventing epithelial apoptosis in the early stage of bacterial infection. PMID:15277479

  14. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer

    PubMed Central

    Uchibori, Ken; Inase, Naohiko; Araki, Mitsugu; Kamada, Mayumi; Sato, Shigeo; Okuno, Yasushi; Fujita, Naoya; Katayama, Ryohei

    2017-01-01

    Osimertinib has been demonstrated to overcome the epidermal growth factor receptor (EGFR)-T790M, the most relevant acquired resistance to first-generation EGFR–tyrosine kinase inhibitors (EGFR–TKIs). However, the C797S mutation, which impairs the covalent binding between the cysteine residue at position 797 of EGFR and osimertinib, induces resistance to osimertinib. Currently, there are no effective therapeutic strategies to overcome the C797S/T790M/activating-mutation (triple-mutation)-mediated EGFR–TKI resistance. In the present study, we identify brigatinib to be effective against triple-mutation-harbouring cells in vitro and in vivo. Our original computational simulation demonstrates that brigatinib fits into the ATP-binding pocket of triple-mutant EGFR. The structure–activity relationship analysis reveals the key component in brigatinib to inhibit the triple-mutant EGFR. The efficacy of brigatinib is enhanced markedly by combination with anti-EGFR antibody because of the decrease of surface and total EGFR expression. Thus, the combination therapy of brigatinib with anti-EGFR antibody is a powerful candidate to overcome triple-mutant EGFR. PMID:28287083

  15. EGFR oligomerization organizes kinase-active dimers into competent signalling platforms

    PubMed Central

    Needham, Sarah R.; Roberts, Selene K.; Arkhipov, Anton; Mysore, Venkatesh P.; Tynan, Christopher J.; Zanetti-Domingues, Laura C.; Kim, Eric T.; Losasso, Valeria; Korovesis, Dimitrios; Hirsch, Michael; Rolfe, Daniel J.; Clarke, David T.; Winn, Martyn D.; Lajevardipour, Alireza; Clayton, Andrew H. A.; Pike, Linda J.; Perani, Michela; Parker, Peter J.; Shan, Yibing; Shaw, David E.; Martin-Fernandez, Marisa L.

    2016-01-01

    Epidermal growth factor receptor (EGFR) signalling is activated by ligand-induced receptor dimerization. Notably, ligand binding also induces EGFR oligomerization, but the structures and functions of the oligomers are poorly understood. Here, we use fluorophore localization imaging with photobleaching to probe the structure of EGFR oligomers. We find that at physiological epidermal growth factor (EGF) concentrations, EGFR assembles into oligomers, as indicated by pairwise distances of receptor-bound fluorophore-conjugated EGF ligands. The pairwise ligand distances correspond well with the predictions of our structural model of the oligomers constructed from molecular dynamics simulations. The model suggests that oligomerization is mediated extracellularly by unoccupied ligand-binding sites and that oligomerization organizes kinase-active dimers in ways optimal for auto-phosphorylation in trans between neighbouring dimers. We argue that ligand-induced oligomerization is essential to the regulation of EGFR signalling. PMID:27796308

  16. Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme.

    PubMed

    Jun, H J; Acquaviva, J; Chi, D; Lessard, J; Zhu, H; Woolfenden, S; Bronson, R T; Pfannl, R; White, F; Housman, D E; Iyer, L; Whittaker, C A; Boskovitz, A; Raval, A; Charest, A

    2012-06-21

    Glioblastoma multiforme (GBM) is an aggressive brain tumor for which there is no cure. Overexpression of wild-type epidermal growth factor receptor (EGFR) and loss of the tumor suppressor genes Ink4a/Arf and PTEN are salient features of this deadly cancer. Surprisingly, targeted inhibition of EGFR has been clinically disappointing, demonstrating an innate ability for GBM to develop resistance. Efforts at modeling GBM in mice using wild-type EGFR have proven unsuccessful to date, hampering endeavors at understanding molecular mechanisms of therapeutic resistance. Here, we describe a unique genetically engineered mouse model of EGFR-driven gliomagenesis that uses a somatic conditional overexpression and chronic activation of wild-type EGFR in cooperation with deletions in the Ink4a/Arf and PTEN genes in adult brains. Using this model, we establish that chronic activation of wild-type EGFR with a ligand is necessary for generating tumors with histopathological and molecular characteristics of GBMs. We show that these GBMs are resistant to EGFR kinase inhibition and we define this resistance molecularly. Inhibition of EGFR kinase activity using tyrosine kinase inhibitors in GBM tumor cells generates a cytostatic response characterized by a cell cycle arrest, which is accompanied by a substantial change in global gene expression levels. We demonstrate that an important component of this pattern is the transcriptional activation of the MET receptor tyrosine kinase and that pharmacological inhibition of MET overcomes the resistance to EGFR inhibition in these cells. These findings provide important new insights into mechanisms of resistance to EGFR inhibition and suggest that inhibition of multiple targets will be necessary to provide therapeutic benefit for GBM patients.

  17. The E3 ubiquitin ligase CHIP selectively regulates mutant epidermal growth factor receptor by ubiquitination and degradation.

    PubMed

    Chung, Chaeuk; Yoo, Geon; Kim, Tackhoon; Lee, Dahye; Lee, Choong-Sik; Cha, Hye Rim; Park, Yeon Hee; Moon, Jae Young; Jung, Sung Soo; Kim, Ju Ock; Lee, Jae Cheol; Kim, Sun Young; Park, Hee Sun; Park, Myoungrin; Park, Dong Il; Lim, Dae-Sik; Jang, Kang Won; Lee, Jeong Eun

    2016-10-14

    Somatic mutation in the tyrosine kinase domain of epidermal growth factor receptor (EGFR) is a decisive factor for the therapeutic response to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in lung adenocarcinoma. The stability of mutant EGFR is maintained by various regulators, including heat shock protein 90 (Hsp90). The C terminus of Hsc70-interacting protein (CHIP) is a Hsp70/Hsp90 co-chaperone and exhibits E3 ubiquitin ligase activity. The high-affinity Hsp90-CHIP complex recognizes and selectively regulates their client proteins. CHIP also works with its own E3 ligase activity independently of Hsp70/Hsp90. Here, we investigated the role of CHIP in regulating EGFR in lung adenocarcinoma and also evaluated the specificity of CHIP's effects on mutant EGFR. In HEK 293T cells transfected with either WT EGFR or EGFR mutants, the overexpression of CHIP selectively decreased the expression of certain EGFR mutants (G719S, L747_E749del A750P and L858R) but not WT EGFR. In a pull-down assay, CHIP selectively interacted with EGFR mutants and simultaneously induced their ubiquitination and proteasomal degradation. The expressions of mutant EGFR in PC9 and H1975 were diminished by CHIP, while the expression of WT EGFR in A549 was nearly not affected. In addition, CHIP overexpression inhibited cell proliferation and xenograft's tumor growth of EGFR mutant cell lines, but not WT EGFR cell lines. EGFR mutant specific ubiquitination by CHIP may provide a crucial regulating mechanism for EGFR in lung adenocarcinoma. Our results suggest that CHIP can be novel therapeutic target for overcoming the EGFR TKI resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor are associated with improved survival in gefitinib-treated chemorefractory lung adenocarcinomas.

    PubMed

    Taron, Miguel; Ichinose, Yukito; Rosell, Rafael; Mok, Tony; Massuti, Bartomeu; Zamora, Lurdes; Mate, Jose Luis; Manegold, Christian; Ono, Mayumi; Queralt, Cristina; Jahan, Thierry; Sanchez, Jose Javier; Sanchez-Ronco, Maria; Hsue, Victor; Jablons, David; Sanchez, Jose Miguel; Moran, Teresa

    2005-08-15

    Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) confer a strong sensitivity to gefitinib, a selective tyrosine kinase inhibitor of EGFR. We examined EGFR mutations at exons 18, 19, and 21 in tumor tissue from 68 gefitinib-treated, chemorefractory, advanced non-small cell lung cancer patients from the United States, Europe, and Asia and in a highly gefitinib-sensitive non-small cell lung cancer cell line and correlated their presence with response and survival. In addition, in a subgroup of 28 patients for whom the remaining tumor tissue was available, we examined the relationship among EGFR mutations, CA repeats in intron 1 of EGFR, EGFR and caveolin-1 mRNA levels, and increased EGFR gene copy numbers. Seventeen patients had EGFR mutations, all of which were in lung adenocarcinomas. Radiographic response was observed in 16 of 17 (94.1%) patients harboring EGFR mutations, in contrast with 6 of 51 (12.6%) with wild-type EGFR (P < 0.0001). Probability of response increased significantly in never smokers, patients receiving a greater number of prior chemotherapy regimens, Asians, and younger patients. Median survival was not reached for patients with EGFR mutations and was 9.9 months for those with wild-type EGFR (P = 0.001). EGFR mutations tended to be associated with increased numbers of CA repeats and increased EGFR gene copy numbers but not with EGFR and caveolin-1 mRNA overexpression (P = not significant). The presence of EGFR mutations is a major determinant of gefitinib response, and targeting EGFR should be considered in preference to chemotherapy as first-line treatment in lung adenocarcinomas that have demonstrable EGFR mutations.

  19. AXL mediates resistance to cetuximab therapy

    PubMed Central

    Brand, Toni M.; Iida, Mari; Stein, Andrew P.; Corrigan, Kelsey L.; Braverman, Cara; Luthar, Neha; Toulany, Mahmoud; Gill, Parkash S.; Salgia, Ravi; Kimple, Randall J.; Wheeler, Deric L.

    2014-01-01

    The EGFR antibody cetuximab is used to treat numerous cancers, but intrinsic and acquired resistance to this agent is a common clinical problem. In this study we show that overexpression of the oncogenic receptor kinase AXL is sufficient to mediate acquired resistance to cetuximab in models of non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC), where AXL was overexpressed, activated and tightly associated with EGFR expression in cells resistant to cetuximab (CtxR cells). Using RNAi methods and novel AXL targeting agents, we found that AXL activation stimulated cell proliferation, EGFR activation and MAPK signaling in CtxR cells. Notably, EGFR directly regulated the expression of AXL mRNA through MAPK signaling and the transcription factor c-Jun in CtxR cells, creating a positive feedback loop that maintained EGFR activation by AXL. Cetuximab-sensitive parental cells were rendered resistant to cetuximab by stable overexpression of AXL or stimulation with EGFR ligands, the latter of which increased AXL activity and association with the EGFR. In tumor xenograft assays, the development of resistance following prolonged treatment with cetuximab was associated with AXL hyperactivation and EGFR association. Furthermore, in an examination of patient-derived xenografts established from surgically resected HNSCCs, AXL was overexpressed and activated in tumors that displayed intrinsic resistance to cetuximab. Collectively, our results identify AXL as a key mediator of cetuximab resistance, providing a rationale for clinical evaluation of AXL targeting drugs to treat cetuximab-resistant cancers. PMID:25136066

  20. Conformationally constrained peptides target the allosteric kinase dimer interface and inhibit EGFR activation.

    PubMed

    Fulton, Melody D; Hanold, Laura E; Ruan, Zheng; Patel, Sneha; Beedle, Aaron M; Kannan, Natarajan; Kennedy, Eileen J

    2018-03-15

    Although EGFR is a highly sought-after drug target, inhibitor resistance remains a challenge. As an alternative strategy for kinase inhibition, we sought to explore whether allosteric activation mechanisms could effectively be disrupted. The kinase domain of EGFR forms an atypical asymmetric dimer via head-to-tail interactions and serves as a requisite for kinase activation. The kinase dimer interface is primarily formed by the H-helix derived from one kinase monomer and the small lobe of the second monomer. We hypothesized that a peptide designed to resemble the binding surface of the H-helix may serve as an effective disruptor of EGFR dimerization and activation. A library of constrained peptides was designed to mimic the H-helix of the kinase domain and interface side chains were optimized using molecular modeling. Peptides were constrained using peptide "stapling" to structurally reinforce an alpha-helical conformation. Peptide stapling was demonstrated to notably enhance cell permeation of an H-helix derived peptide termed EHBI2. Using cell-based assays, EHBI2 was further shown to significantly reduce EGFR activity as measured by EGFR phosphorylation and phosphorylation of the downstream signaling substrate Akt. To our knowledge, this is the first H-helix-based compound targeting the asymmetric interface of the kinase domain that can successfully inhibit EGFR activation and signaling. This study presents a novel, alternative targeting site for allosteric inhibition of EGFR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent anti-tumor activity

    PubMed Central

    Caruso, Hillary G.; Hurton, Lenka V.; Najjar, Amer; Rushworth, David; Ang, Sonny; Olivares, Simon; Mi, Tiejuan; Switzer, Kirsten; Singh, Harjeet; Huls, Helen; Lee, Dean A.; Heimberger, Amy B.; Champlin, Richard E.; Cooper, Laurence J. N.

    2015-01-01

    Many tumors over express tumor-associated antigens relative to normal tissue, such as epidermal growth factor receptor (EGFR). This limits targeting by human T cells modified to express chimeric antigen receptors (CARs) due to potential for deleterious recognition of normal cells. We sought to generate CAR+ T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies which differ in affinity. T cells with low affinity Nimo-CAR selectively targeted cells over-expressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high affinity Cetux-CAR was not impacted by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from non-malignant cells. PMID:26330164

  2. ROLE OF GRB2-ASSOCIATED BINDER 1 (GAB1) IN EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)-INDUCED SIGNALING IN HEAD AND NECK SQUAMOUS CELL CARCINOMA

    PubMed Central

    Hoeben, A.; Martin, D.; Clement, P. M.; Cools, J.; Gutkind, J. S.

    2012-01-01

    The Epidermal Growth Factor Receptor (EGFR) plays an important role in the pathogenesis of head and neck squamous cell carcinoma (HNSCC). Despite the high expression of EGFR in HNSCC, EGFR inhibitors have only limited success as monotherapy. The Grb2-associated binder (GAB) family of adaptor proteins acts as docking/scaffolding molecules downstream of tyrosine kinase receptors. We hypothesized that GAB1 may amplify EGFR-induced signaling in HNSCCs and therefore could play a role in the reduced sensitivity of HNSCC to EGFR inhibitors. We used representative human HNSCC cell lines overexpressing wild type EGFR, and expressing GAB1 but not GAB2. We demonstrated that baseline Akt and MAPK signaling were reduced in HNSCC cells in which GAB1 expression was reduced. Furthermore, the maximal EGF-induced activation of the Akt and MAPK pathway was reduced and delayed, and the duration of the EGF-induced activation of these pathways was reduced in cells with GAB1 knock-down. In agreement with this, HNSCC cells in which GAB1 levels were reduced showed an increased sensitivity to the EGFR inhibitor gefitinib. Our work demonstrates that GAB1 plays an important role as part of the mechanism of by which EGFR induces induced activation of the MAPK and AKT pathway. Our results identify GAB1 as an amplifier of the EGFR-initiated signaling, which may also interfere with EGFR degradation. These findings support the emerging notion that reducing GAB1 function may sensitize HNSCC to EGFR inhibitors, hence representing a new therapeutic target HNSCC treatment in combination with EGFR targeting agents. PMID:22865653

  3. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation--diversity, ductility, and destiny.

    PubMed

    Suda, Kenichi; Mizuuchi, Hiroshi; Maehara, Yoshihiko; Mitsudomi, Tetsuya

    2012-12-01

    Lung cancers that harbor somatic activating mutations in the gene for the epidermal growth factor receptor (EGFR) depend on mutant EGFR for their proliferation and survival; therefore, lung cancer patients with EGFR mutations often dramatically respond to orally available EGFR tyrosine kinase inhibitors (TKIs). However, emergence of acquired resistance is virtually inevitable, thus limiting improvement in patient outcomes. To elucidate and overcome this acquired resistance, multidisciplinary basic and clinical investigational approaches have been applied, using in vitro cell line models or samples obtained from lung cancer patients treated with EGFR-TKIs. These efforts have revealed several acquired resistance mechanisms and candidates, including EGFR secondary mutations (T790M and other rare mutations), MET amplification, PTEN downregulation, CRKL amplification, high-level HGF expression, FAS-NFκB pathway activation, epithelial-mesenchymal transition, and conversion to small cell lung cancer. Interestingly, cancer cells harbor potential destiny and ductility together in acquiring resistance to EGFR-TKIs, as shown in in vitro acquired resistance models. Molecular mechanisms of "reversible EGFR-TKI tolerance" that occur in early phase EGFR-TKI exposure have been identified in cell line models. Furthermore, others have reported molecular markers that can predict response to EGFR-TKIs in clinical settings. Deeper understanding of acquired resistance mechanisms to EGFR-TKIs, followed by the development of molecular target drugs that can overcome the resistance, might turn this fatal disease into a chronic disorder.

  4. Highly sensitive and quantitative evaluation of the EGFR T790M mutation by nanofluidic digital PCR.

    PubMed

    Iwama, Eiji; Takayama, Koichi; Harada, Taishi; Okamoto, Isamu; Ookubo, Fumihiko; Kishimoto, Junji; Baba, Eishi; Oda, Yoshinao; Nakanishi, Yoichi

    2015-08-21

    The mutation of T790M in EGFR is a major mechanism of resistance to treatment with EGFR-TKIs. Only qualitative detection (presence or absence) of T790M has been described to date, however. Digital PCR (dPCR) analysis has recently been applied to the quantitative detection of target molecules in cancer with high sensitivity. In the present study, 25 tumor samples (13 obtained before and 12 after EGFR-TKI treatment) from 18 NSCLC patients with activating EGFR mutations were evaluated for T790M with dPCR. The ratio of the number of T790M alleles to that of activating mutation alleles (T/A) was determined. dPCR detected T790M in all 25 samples. Although T790M was present in all pre-TKI samples from 13 patients, 10 of these patients had a low T/A ratio and manifested substantial tumor shrinkage during treatment with EGFR-TKIs. In six of seven patients for whom both pre- and post-TKI samples were available, the T/A ratio increased markedly during EGFR-TKI treatment. Highly sensitive dPCR thus detected T790M in all NSCLC patients harboring activating EGFR mutations whether or not they had received EGFR-TKI treatment. Not only highly sensitive but also quantitative detection of T790M is important for evaluation of the contribution of T790M to EGFR-TKI resistance.

  5. Impact of family history of cancer on the incidence of mutation in epidermal growth factor receptor gene in non-small cell lung cancer patients.

    PubMed

    He, Yayi; Li, Shuai; Ren, Shengxiang; Cai, Weijing; Li, Xuefei; Zhao, Chao; Li, Jiayu; Chen, Xiaoxia; Gao, Guanghui; Li, Wei; Zhou, Fei; Zhou, Caicun

    2013-08-01

    Epidermal growth factor receptor (EGFR) activating mutation is an important predictive biomarker of EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC), while family history of cancer also plays an important role in the neoplasia of lung cancer. This study aimed to investigate the association between family history of cancer and EGFR mutation status in NSCLC population. From February 2008 to May 2012, 538 consecutive NSCLC patients with known EGFR mutation status were included into this study. Amplification refractory mutation system (ARMS) method was used to detect EGFR mutation. The associations between EGFR mutation and family history of cancer were evaluated using logistic regression models. EGFR activating mutation was found in 220 patients and 117 patients had family cancer histories among first-degree relatives. EGFR mutation was more frequently detected in adenocarcinoma patients (p < 0.001), never-smoker (p < 0.001) and with family history of cancer (p = 0.031), especially who had family history of lung cancer (p = 0.008). In multivariate analysis, the association of EGFR mutation with family history of cancer also existed (p = 0.027). NSCLC patients with family history of cancer, especially family history of lung cancer, might have a significantly higher incidence of EGFR activating mutation. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Chronic activation of wild-type epidermal growth factor receptor and loss of Cdkn2a cause mouse glioblastoma formation.

    PubMed

    Acquaviva, Jaime; Jun, Hyun Jung; Lessard, Julie; Ruiz, Rolando; Zhu, Haihao; Donovan, Melissa; Woolfenden, Steve; Boskovitz, Abraham; Raval, Ami; Bronson, Roderick T; Pfannl, Rolf; Whittaker, Charles A; Housman, David E; Charest, Al

    2011-12-01

    Glioblastoma multiforme (GBM) is characterized by overexpression of epidermal growth factor receptor (EGFR) and loss of the tumor suppressors Ink4a/Arf. Efforts at modeling GBM using wild-type EGFR in mice have proven unsuccessful. Here, we present a unique mouse model of wild-type EGFR-driven gliomagenesis. We used a combination of somatic conditional overexpression and ligand-mediated chronic activation of EGFR in cooperation with Ink4a/Arf loss in the central nervous system of adult mice to generate tumors with the histopathologic and molecular characteristics of human GBMs. Sustained, ligand-mediated activation of EGFR was necessary for gliomagenesis, functionally substantiating the clinical observation that EGFR-positive GBMs from patients express EGFR ligands. To gain a better understanding of the clinically disappointing EGFR-targeted therapies for GBM, we investigated the molecular responses to EGFR tyrosine kinase inhibitor (TKI) treatment in this model. Gefitinib treatment of primary GBM cells resulted in a robust apoptotic response, partially conveyed by mitogen-activated protein kinase (MAPK) signaling attenuation and accompanied by BIM(EL) expression. In human GBMs, loss-of-function mutations in the tumor suppressor PTEN are a common occurrence. Elimination of PTEN expression in GBM cells posttumor formation did not confer resistance to TKI treatment, showing that PTEN status in our model is not predictive. Together, these findings offer important mechanistic insights into the genetic determinants of EGFR gliomagenesis and sensitivity to TKIs and provide a robust discovery platform to better understand the molecular events that are associated with predictive markers of TKI therapy.

  7. Single molecule force spectroscopy for in-situ probing oridonin inhibited ROS-mediated EGF-EGFR interactions in living KYSE-150 cells.

    PubMed

    Pi, Jiang; Jin, Hua; Jiang, Jinhuan; Yang, Fen; Cai, Huaihong; Yang, Peihui; Cai, Jiye; Chen, Zheng W

    2017-05-01

    As the active anticancer component of Rabdosia Rubescens, oridonin has been proved to show strong anticancer activity in cancer cells, which is also found to be closely related to its specific inhibition effects on the EGFR tyrosine kinase activity. In this study, atomic force microscopy based single molecule force spectroscopy (AFM-SMFS) was used for real-time and in-situ detection of EGF-EGFR interactions in living esophageal cancer KYSE-150 cells to evaluate the anticancer activity of oridonin for the first time. Oridonin was found to induce apoptosis and also reduce EGFR expression in KYSE-150 cells. AFM-SMFS results demonstrated that oridonin could inhibit the binding between EGF and EGFR in KYSE-150 cells by decreasing the unbinding force and binding probability for EGF-EGFR complexes, which was further proved to be closely associated with the intracellular ROS level. More precise mechanism studies based on AFM-SMFS demonstrated that oridonin treatment could decrease the energy barrier width, increase the dissociation off rate constant and decrease the activation energy of EGF-EGFR complexes in ROS dependent way, suggesting oridonin as a strong anticancer agent targeting EGF-EGFR interactions in cancer cells through ROS dependent mechanism. Our results not only suggested oridonin as a strong anticancer agent targeting EGF-EGFR interactions in ROS dependent mechanism, but also highlighted AFM-SMFS as a powerful technique for pharmacodynamic studies by detecting ligand-receptor interactions, which was also expected to be developed into a promising tool for the screening and mechanism studies of drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The Transmodulation of HER2 and EGFR by Substance P in Breast Cancer Cells Requires c-Src and Metalloproteinase Activation.

    PubMed

    Garcia-Recio, Susana; Pastor-Arroyo, Eva M; Marín-Aguilera, Mercedes; Almendro, Vanessa; Gascón, Pedro

    2015-01-01

    Substance P (SP) is a pleiotropic cytokine/neuropeptide that enhances breast cancer (BC) aggressiveness by transactivating tyrosine kinase receptors like EGFR and HER2. We previously showed that SP and its cognate receptor NK-1 (SP/NK1-R) signaling modulates the basal phosphorylation of HER2 and EGFR in BC, increasing aggressiveness and drug resistance. In order to elucidate the mechanisms responsible for NK-1R-mediated HER2 and EGFR transactivation, we investigated the involvement of c-Src (a ligand-independent mediator) and of metalloproteinases (ligand-dependent mediators) in HER2/EGFR activation. Overexpression of NK-1R in MDA-MB-231 and its chemical inhibition in SK-BR-3, BT-474 and MDA-MB-468 BC cells significantly modulated c-Src activation, suggesting that this protein is a mediator of NK-1R signaling. In addition, the c-Src inhibitor 4-(4'-phenoxyanilino)-6,7-dimethoxyquinazoline prevented SP-induced activation of HER2. On the other hand, SP-dependent phosphorylation of HER2 and EGFR decreased substantially in the presence of the MMP inhibitor 1-10, phenanthroline monohydrate, and the dual inhibition of both c-Src and MMP almost abolished the activation of HER2 and EGFR. Moreover, the use of these inhibitors demonstrated that this Src and MMP-dependent signaling is important to the cell viability and migration capacity of HER2+ and EGFR+ cell lines. Our results indicate that the transactivation of HER2 and EGFR by the pro-inflammatory cytokine/neuropeptide SP in BC cells is a c-Src and MMP-dependent process.

  9. Pharmacokinetic drug evaluation of osimertinib for the treatment of non-small cell lung cancer.

    PubMed

    Rossi, Antonio; Muscarella, Lucia Anna; Di Micco, Concetta; Carbonelli, Cristiano; D'alessandro, Vito; Notarangelo, Stefano; Palomba, Giuseppe; Sanpaolo, Gerardo; Taurchini, Marco; Graziano, Paolo; Maiello, Evaristo

    2017-12-01

    First- and second-generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib, erlotinib, icotinib, and afatinib are the standard-of-care for first-line therapy of non-small-cell lung cancer (NSCLC) harboring activating EGFR mutations. Unfortunately, after initial activity of an average 9-13 months, disease progression has been reported in the majority of patients. In about 50% of cases the progression is due to the onset of the T790M mutation in exon 20 of the EGFR gene. Third-generation EGFR-TKIs targeting this mutation were investigated, with osimertinib the only reaching clinical practice. Areas covered: A structured search of bibliographic databases for peer-reviewed research literature and of main meetings using a focused review question addressing osimertinib, was undertaken. Expert opinion: Osimertinib is the standard-of-care for EGFR-mutated patients progressing to first-line EGFR-TKIs due to the acquired EGFR T790M mutation. Results from the head-to-head first-line trial comparing osimertinib versus gefitinib or erlotinib in activating EGFR mutations might change the front-line approach. Osimertinib in combination regimens, such as immunotherapy, and in adjuvant setting are ongoing. Thus, the strategic approach for the management of EGFR-mutated NSCLC patients will change further in the next few years.

  10. Structural and energetic basis for the molecular recognition of dual synthetic vs. natural inhibitors of EGFR/HER2.

    PubMed

    Bello, Martiniano; Saldaña-Rivero, Lucia; Correa-Basurto, José; García, Benjamín; Sánchez-Espinosa, Victor Armando

    2018-05-01

    Activation of EGFR starts by ligand binding at the extracellular domain which results in homo and heterodimerization, leading to phosphorylation, activation of downstream signaling pathways which upregulate expression of genes, proliferation and angiogenesis. Abnormalities in the expression of EGFR play a critical role in the development of different types of cancer. HER2 is the preferred heterodimerization partner for EGFR; this biological characteristic together with the high percentage of structural homology has been exploited in the design of dual synthetic inhibitors against EGFR/HER2. Herein we combined structural data and molecular dynamics (MD) simulations coupled to an MMGBSA approach to provide insight into the binding mechanism between two dual synthetics (lapatinib and TAK-285) and one dual natural inhibitor (EGCG) which target EGFR/HER2. In addition, we proposed some EGCG derivatives which were filtered through in silico screening. Structural analysis demonstrated that the coupling of synthetic, natural or newly designed compounds impacts the conformational space of EGFR and HER2 differently. Energetic analysis points out that lapatinib and TAK-285 have better affinity for inactive EGFR than the active EGFR state or HER2, whereas some EGCG derivatives seem to form binding affinities similar to those observed for lapatinib or TAK-285. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Novel Mechanism for Regulation of Epidermal Growth Factor Receptor Endocytosis Revealed by Protein Kinase A Inhibition

    PubMed Central

    Salazar, Gloria; González, Alfonso

    2002-01-01

    Current models put forward that the epidermal growth factor receptor (EGFR) is efficiently internalized via clathrin-coated pits only in response to ligand-induced activation of its intrinsic tyrosine kinase and is subsequently directed into a lysosomal-proteasomal degradation pathway by mechanisms that include receptor tyrosine phosphorylation and ubiquitylation. Herein, we report a novel mechanism of EGFR internalization that does not require ligand binding, receptor kinase activity, or ubiquitylation and does not direct the receptor into a degradative pathway. Inhibition of basal protein kinase A (PKA) activity by H89 and the cell-permeable substrate peptide Myr-PKI induced internalization of 40–60% unoccupied, inactive EGFR, and its accumulation into early endosomes without affecting endocytosis of transferrin and μ-opioid receptors. This effect was abrogated by interfering with clathrin function. Thus, the predominant distribution of inactive EGFR at the plasma membrane is not simply by default but involves a PKA-dependent restrictive condition resulting in receptor avoidance of endocytosis until it is stimulated by ligand. Furthermore, PKA inhibition may contribute to ligand-induced EGFR endocytosis because epidermal growth factor inhibited 26% of PKA basal activity. On the other hand, H89 did not alter ligand-induced internalization of EGFR but doubled its half-time of down-regulation by retarding its segregation into degradative compartments, seemingly due to a delay in the receptor tyrosine phosphorylation and ubiquitylation. Our results reveal that PKA basal activity controls EGFR function at two levels: 1) residence time of inactive EGFR at the cell surface by a process of “endocytic evasion,” modulating the accessibility of receptors to stimuli; and 2) sorting events leading to the down-regulation pathway of ligand-activated EGFR, determining the length of its intracellular signaling. They add a new dimension to the fine-tuning of EGFR function in response to cellular demands and cross talk with other signaling receptors. PMID:12006662

  12. Bisphosphonates enhance EGFR-TKIs efficacy in advanced NSCLC patients with EGFR activating mutation: A retrospective study

    PubMed Central

    Cai, Xiao-Hong; Yao, Wen-Xiu; Xu, Yong; Liu, Xiao-Ke; Zhu, Wen-Jiang; Wang, Yan; Zhou, Jin; Lu, You; Wang, Yong-Sheng

    2016-01-01

    Background Bisphosphonates have exhibited anti-tumor activity in non-small cell lung cancer (NSCLC). We aimed to evaluate whether the combination of bisphosphonates with tyrosine kinase inhibitors of EGFR (EGFR-TKIs) could obtain a synergistic effect on advanced NSCLC patients with EGFR mutations. Methods Between January 2008 and October 2013, 114 advanced EGFR mutations NSCLC patients who received EGFR-TKIs as first-line therapy were recruited from two cancer centers. Patients were separated into EGFR-TKIs alone or EGFR-TKIs plus bisphosphonates (combination) group. Median progression free survival (mPFS), median overall survival (mOS) distributions and survival curves were analyzed. Results Among the 114 patients, 62 had bone metastases (19 patients treated with EGFR-TKIs, 43 patients treated with EGFR-TKIs + bisphosphonates). Median PFS and OS were significantly improved in combination group compared with EGFR-TKIs group (mPFS: 15.0 vs 7.3 months, P = 0.0017; mOS: 25.2 vs 10.4 months, P = 0.0015) in patients with bone metastases. Among the 71 patients (19 patients with bone metastases) treated with EGFR-TKIs alone, patients with bone metastases had poor survival prognosis (mPFS:7.3 vs 12.1 months, P = 0.0434; mOS:10.4 vs 22.0 months, P = 0.0036). The survival of patients with bone metastases who received EGFR-TKIs plus bisphosphonates therapy was non-inferior to patients without bone metastases treated with EGFR-TKIs alone (mPFS: 15.0 vs 12.1 months, p = 0.1871; mOS: 25.2 vs 22.0 months, p = 0.9798). Conclusions Concomitant use of bisphosphonates and EGFR-TKIs improves therapeutic efficacy and brings survival benefits to NSCLC patients with EGFR mutation and bone metastases. PMID:26624882

  13. EGFR trans-activation mediates pleiotrophin-induced activation of Akt and Erk in cultured osteoblasts.

    PubMed

    Fan, Jian-Bo; Liu, Wei; Yuan, Kun; Zhu, Xin-Hui; Xu, Da-Wei; Chen, Jia-Jia; Cui, Zhi-Ming

    2014-05-09

    Pleiotrophin (Ptn) plays an important role in bone growth through regulating osteoblasts' functions. The underlying signaling mechanisms are not fully understood. In the current study, we found that Ptn induced heparin-binding epidermal growth factor (HB-EGF) release to trans-activate EGF-receptor (EGFR) in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, Ptn activated Akt and Erk signalings in cultured osteoblasts. The EGFR inhibitor AG1478 as well as the monoclonal antibody against HB-EGF (anti-HB-EGF) significantly inhibited Ptn-induced EGFR activation and Akt and Erk phosphorylations in MC3T3-E1 cells and primary osteoblasts. Further, EGFR siRNA depletion or dominant negative mutation suppressed also Akt and Erk activation in MC3T3-E1 cells. Finally, we observed that Ptn increased alkaline phosphatase (ALP) activity and inhibited dexamethasone (Dex)-induced cell death in both MC3T3-E1 cells and primary osteoblasts, such effects were alleviated by AG1478 or anti-HB-EGF. Together, these results suggest that Ptn-induced Akt/Erk activation and some of its pleiotropic functions are mediated by EGFR trans-activation in cultured osteoblasts. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Antagonism of EGFR and HER3 Enhances the Response to Inhibitors of the PI3K-Akt Pathway in Triple-Negative Breast Cancer

    PubMed Central

    Tao, Jessica J.; Castel, Pau; Radosevic-Robin, Nina; Elkabets, Moshe; Auricchio, Neil; Aceto, Nicola; Weitsman, Gregory; Barber, Paul; Vojnovic, Borivoj; Ellis, Haley; Morse, Natasha; Viola-Villegas, Nerissa Therese; Bosch, Ana; Juric, Dejan; Hazra, Saswati; Singh, Sharat; Kim, Phillip; Bergamaschi, Anna; Maheswaran, Shyamala; Ng, Tony; Penault-Llorca, Frédérique; Lewis, Jason S.; Carey, Lisa A.; Perou, Charles M.; Baselga, José; Scaltriti, Maurizio

    2014-01-01

    Both abundant epidermal growth factor receptor (EGFR or ErbB1) and high activity of the phosphatidyl-inositol 3-kinase (PI3K)–Akt pathway are common and therapeutically targeted in triple-negative breast cancer (TNBC). However, activation of another EGFR family member [human epidermal growth factor receptor 3 (HER3) (or ErbB3)] may limit the antitumor effects of these drugs. We found that TNBC cell lines cultured with the EGFR or HER3 ligand EGF or heregulin, respectively, and treated with either an Akt inhibitor (GDC-0068) or a PI3K inhibitor (GDC-0941) had increased abundance and phosphorylation of HER3. The phosphorylation of HER3 and EGFR in response to these treatments was reduced by the addition of a dual EGFR and HER3 inhibitor (MEHD7945A). MEHD7945A also decreased the phosphorylation (and activation) of EGFR and HER3 and the phosphorylation of downstream targets that occurred in response to the combination of EGFR ligands and PI3K-Akt pathway inhibitors. In culture, inhibition of the PI3K-Akt pathway combined with either MEHD7945A or knockdown of HER3 decreased cell proliferation compared with inhibition of the PI3K-Akt pathway alone. Combining either GDC-0068 or GDC-0941 with MEHD7945A inhibited the growth of xenografts derived from TNBC cell lines or from TNBC patient tumors, and this combination treatment was also more effective than combining either GDC-0068 or GDC-0941 with cetuximab, an EGFR-targeted antibody. After therapy with EGFR-targeted antibodies, some patients had residual tumors with increased HER3 abundance and EGFR/HER3 dimerization (an activating interaction). Thus, we propose that concomitant blockade of EGFR, HER3, and the PI3K-Akt pathway in TNBC should be investigated in the clinical setting. PMID:24667376

  15. Antagonism of EGFR and HER3 enhances the response to inhibitors of the PI3K-Akt pathway in triple-negative breast cancer.

    PubMed

    Tao, Jessica J; Castel, Pau; Radosevic-Robin, Nina; Elkabets, Moshe; Auricchio, Neil; Aceto, Nicola; Weitsman, Gregory; Barber, Paul; Vojnovic, Borivoj; Ellis, Haley; Morse, Natasha; Viola-Villegas, Nerissa Therese; Bosch, Ana; Juric, Dejan; Hazra, Saswati; Singh, Sharat; Kim, Phillip; Bergamaschi, Anna; Maheswaran, Shyamala; Ng, Tony; Penault-Llorca, Frédérique; Lewis, Jason S; Carey, Lisa A; Perou, Charles M; Baselga, José; Scaltriti, Maurizio

    2014-03-25

    Both abundant epidermal growth factor receptor (EGFR or ErbB1) and high activity of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway are common and therapeutically targeted in triple-negative breast cancer (TNBC). However, activation of another EGFR family member [human epidermal growth factor receptor 3 (HER3) (or ErbB3)] may limit the antitumor effects of these drugs. We found that TNBC cell lines cultured with the EGFR or HER3 ligand EGF or heregulin, respectively, and treated with either an Akt inhibitor (GDC-0068) or a PI3K inhibitor (GDC-0941) had increased abundance and phosphorylation of HER3. The phosphorylation of HER3 and EGFR in response to these treatments was reduced by the addition of a dual EGFR and HER3 inhibitor (MEHD7945A). MEHD7945A also decreased the phosphorylation (and activation) of EGFR and HER3 and the phosphorylation of downstream targets that occurred in response to the combination of EGFR ligands and PI3K-Akt pathway inhibitors. In culture, inhibition of the PI3K-Akt pathway combined with either MEHD7945A or knockdown of HER3 decreased cell proliferation compared with inhibition of the PI3K-Akt pathway alone. Combining either GDC-0068 or GDC-0941 with MEHD7945A inhibited the growth of xenografts derived from TNBC cell lines or from TNBC patient tumors, and this combination treatment was also more effective than combining either GDC-0068 or GDC-0941 with cetuximab, an EGFR-targeted antibody. After therapy with EGFR-targeted antibodies, some patients had residual tumors with increased HER3 abundance and EGFR/HER3 dimerization (an activating interaction). Thus, we propose that concomitant blockade of EGFR, HER3, and the PI3K-Akt pathway in TNBC should be investigated in the clinical setting.

  16. Sapanisertib and Osimertinib in Treating Patients With Stage IV EGFR Mutation Positive Non-small Cell Lung Cancer After Progression on a Previous EGFR Tyrosine Kinase Inhibitor

    ClinicalTrials.gov

    2018-04-25

    EGFR Activating Mutation; EGFR Exon 19 Deletion Mutation; EGFR NP_005219.2:p.G719X; EGFR NP_005219.2:p.L858R; EGFR NP_005219.2:p.L861Q; EGFR T790M Mutation Negative; Recurrent Non-Small Cell Lung Carcinoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  17. 6,7-Dimorpholinoalkoxy quinazoline derivatives as potent EGFR inhibitors with enhanced antiproliferative activities against tumor cells.

    PubMed

    Zhang, Yaling; Chen, Li; Xu, Hongjiang; Li, Xiabing; Zhao, Lijun; Wang, Wei; Li, Baolin; Zhang, Xiquan

    2018-03-10

    A series of novel 6,7-dimorpholinoalkoxy quinazoline derivatives was designed, synthesized and evaluated as potent EGFR inhibitors. Most of synthesized derivatives exhibited moderate to excellent antiproliferative activities against five human tumor cell lines. Compound 8d displayed the most remarkable inhibitory activities against tumor cells expressing wild type (A431, A549 and SW480 cells) or mutant (HCC827 and NCI-H1975 cells) epidermal growth factor receptor (EGFR) (with IC 50 values in the range of 0.37-4.87 μM), as well as more potent inhibitory effects against recombinant EGFR tyrosine kinase (EGFR-TK, wt or T790M) (with the IC 50 values of 7.0 and 9.3 nM, respectively). Molecular docking showed that 8d can form four hydrogen bonds with EGFR, and two of them were located in the Asp855-Phe856-Gly857 (DFG) motif of EGFR. Meanwhile, 8d can significantly block EGF-induced EGFR activation and the phosphorylation of its downstream proteins such as Akt and Erk1/2 in human NSCLC cells. Also, 8d mediated cell apoptosis and the prolongation of cell cycle progression in G0/G1-phase in A549 cells. The work would have remarkable implications for further design and development of more potent EGFR tyrosine kinase inhibitors (TKIs). Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Induction of Tyrosine Phosphorylation of UV-Activated EGFR by the Beta-Human Papillomavirus Type 8 E6 Leads to Papillomatosis.

    PubMed

    Taute, Stefanie; Pfister, Herbert J; Steger, Gertrud

    2017-01-01

    Epidemiological evidence is accumulating that beta-human papillomaviruses (HPV) synergize with UV-light in the development of precancerous actinic keratosis, and cutaneous squamous cell carcinomas (cSCC), one of the most common cancers in the Caucasian population. We previously demonstrated the tumorigenic activity of beta-HPV type 8 (HPV8) in the skin of transgenic mice and its cooperation with UV-light. Analysis of underlying mechanisms now showed that in keratinocytes expressing the HPV8E6 protein a transient increase of tyrosine phosphorylated epidermal growth factor receptor (EGFR) in response to UV-irradiation occurred, while EGFR tyrosine phosphorylation, i.e., receptor tyrosine kinase (RTK)-activity was hardly affected in empty vector control cells. FACS and immunofluorescences revealed that the EGFR was internalized into early endosomes in response to UV-exposure in both, HPV8E6 positive and in control cells, yet with a higher rate in the presence of HPV8E6. Moreover, only in HPV8E6 expressing keratinocytes the EGFR was further sorted into CD63+ intraluminal vesicles, indicative for trafficking to late endosomes. The latter requires the ubiquitination of the EGFR, and in correlation, we could show that only in HPV8E6 positive keratinocytes the EGFR was ubiquitinated upon UV-exposure. HPV8E6 and tyrosine phosphorylated EGFR directly interacted which was enhanced by UV-irradiation. The treatment of K14-HPV8E6 transgenic mice with Canertinib, an inhibitor of the RTK-activity of the EGFR, suppressed skin papilloma growth in response to UV-irradiation. This confirms the crucial role of the RTK-activity of the EGFR in HPV8E6 and UV-mediated papillomatosis in transgenic mice. Taken together, our results demonstrate that HPV8E6 alters the signaling of the UV-activated EGFR and this is a critical step in papilloma formation in response to UV-light in transgenic mice. Our results provide a molecular basis how a beta-HPV type may support early steps of skin tumor formation in cooperation with UV-light.

  19. Induction of Tyrosine Phosphorylation of UV-Activated EGFR by the Beta-Human Papillomavirus Type 8 E6 Leads to Papillomatosis

    PubMed Central

    Taute, Stefanie; Pfister, Herbert J.; Steger, Gertrud

    2017-01-01

    Epidemiological evidence is accumulating that beta-human papillomaviruses (HPV) synergize with UV-light in the development of precancerous actinic keratosis, and cutaneous squamous cell carcinomas (cSCC), one of the most common cancers in the Caucasian population. We previously demonstrated the tumorigenic activity of beta-HPV type 8 (HPV8) in the skin of transgenic mice and its cooperation with UV-light. Analysis of underlying mechanisms now showed that in keratinocytes expressing the HPV8E6 protein a transient increase of tyrosine phosphorylated epidermal growth factor receptor (EGFR) in response to UV-irradiation occurred, while EGFR tyrosine phosphorylation, i.e., receptor tyrosine kinase (RTK)-activity was hardly affected in empty vector control cells. FACS and immunofluorescences revealed that the EGFR was internalized into early endosomes in response to UV-exposure in both, HPV8E6 positive and in control cells, yet with a higher rate in the presence of HPV8E6. Moreover, only in HPV8E6 expressing keratinocytes the EGFR was further sorted into CD63+ intraluminal vesicles, indicative for trafficking to late endosomes. The latter requires the ubiquitination of the EGFR, and in correlation, we could show that only in HPV8E6 positive keratinocytes the EGFR was ubiquitinated upon UV-exposure. HPV8E6 and tyrosine phosphorylated EGFR directly interacted which was enhanced by UV-irradiation. The treatment of K14-HPV8E6 transgenic mice with Canertinib, an inhibitor of the RTK-activity of the EGFR, suppressed skin papilloma growth in response to UV-irradiation. This confirms the crucial role of the RTK-activity of the EGFR in HPV8E6 and UV-mediated papillomatosis in transgenic mice. Taken together, our results demonstrate that HPV8E6 alters the signaling of the UV-activated EGFR and this is a critical step in papilloma formation in response to UV-light in transgenic mice. Our results provide a molecular basis how a beta-HPV type may support early steps of skin tumor formation in cooperation with UV-light. PMID:29176966

  20. Berberine inhibits EGFR signaling and enhances the antitumor effects of EGFR inhibitors in gastric cancer.

    PubMed

    Wang, Junxiong; Yang, Shuo; Cai, Xiqiang; Dong, Jiaqiang; Chen, Zhangqian; Wang, Rui; Zhang, Song; Cao, Haichao; Lu, Di; Jin, Tong; Nie, Yongzhan; Hao, Jianyu; Fan, Daiming

    2016-11-15

    Cetuximab plus chemotherapy for advanced gastric cancer (GC) shows an active result in phase 2 trials. Unfortunately, Combination of cetuximab does not provide enough benefit to chemotherapy alone in phase 3 trials. Studies have demonstrated that berberine can suppress the activation of EGFR in tumors. In this study, we evaluated whether berberine could enhance the effects of EGFR-TKIs in GC cell lines and xenograft models. Our data suggest that berberine could effectively enhance the activity of erlotinib and cetuximab in vitro and in vivo. Berberine was found to inhibit growth in GC cell lines and to induce apoptosis. These effects were linked to inhibition of EGFR signaling activation, including the phosphorylation of STAT3. The expressions of Bcl-xL and Cyclind1 proteins were decreased, whereas the levels of cleavage of poly-ADP ribose polymerase (PARP) were considerably increased in the cell lines in response to berberine treatment. These results suggest a potential role for berberine in the treatment of GC, particularly in combination with EGFR-TKIs therapy. Berberine may be a competent therapeutic agent in GC where it can enhance the effects of EGFR inhibitors.

  1. Berberine inhibits EGFR signaling and enhances the antitumor effects of EGFR inhibitors in gastric cancer

    PubMed Central

    Wang, Junxiong; Yang, Shuo; Cai, Xiqiang; Dong, Jiaqiang; Chen, Zhangqian; Wang, Rui; Zhang, Song; Cao, Haichao; Lu, Di; Jin, Tong; Nie, Yongzhan; Hao, Jianyu; Fan, Daiming

    2016-01-01

    Cetuximab plus chemotherapy for advanced gastric cancer (GC) shows an active result in phase 2 trials. Unfortunately, Combination of cetuximab does not provide enough benefit to chemotherapy alone in phase 3 trials. Studies have demonstrated that berberine can suppress the activation of EGFR in tumors. In this study, we evaluated whether berberine could enhance the effects of EGFR-TKIs in GC cell lines and xenograft models. Our data suggest that berberine could effectively enhance the activity of erlotinib and cetuximab in vitro and in vivo. Berberine was found to inhibit growth in GC cell lines and to induce apoptosis. These effects were linked to inhibition of EGFR signaling activation, including the phosphorylation of STAT3. The expressions of Bcl-xL and Cyclind1 proteins were decreased, whereas the levels of cleavage of poly-ADP ribose polymerase (PARP) were considerably increased in the cell lines in response to berberine treatment. These results suggest a potential role for berberine in the treatment of GC, particularly in combination with EGFR-TKIs therapy. Berberine may be a competent therapeutic agent in GC where it can enhance the effects of EGFR inhibitors. PMID:27738318

  2. Activation of EGFR and ERBB2 by Helicobacter pylori results in survival of gastric epithelial cells with DNA damage.

    PubMed

    Chaturvedi, Rupesh; Asim, Mohammad; Piazuelo, M Blanca; Yan, Fang; Barry, Daniel P; Sierra, Johanna Carolina; Delgado, Alberto G; Hill, Salisha; Casero, Robert A; Bravo, Luis E; Dominguez, Ricardo L; Correa, Pelayo; Polk, D Brent; Washington, M Kay; Rose, Kristie L; Schey, Kevin L; Morgan, Douglas R; Peek, Richard M; Wilson, Keith T

    2014-06-01

    The gastric cancer-causing pathogen Helicobacter pylori up-regulates spermine oxidase (SMOX) in gastric epithelial cells, causing oxidative stress-induced apoptosis and DNA damage. A subpopulation of SMOX(high) cells are resistant to apoptosis, despite their high levels of DNA damage. Because epidermal growth factor receptor (EGFR) activation can regulate apoptosis, we determined its role in SMOX-mediated effects. SMOX, apoptosis, and DNA damage were measured in gastric epithelial cells from H. pylori-infected Egfr(wa5) mice (which have attenuated EGFR activity), Egfr wild-type mice, or in infected cells incubated with EGFR inhibitors or deficient in EGFR. A phosphoproteomic analysis was performed. Two independent tissue microarrays containing each stage of disease, from gastritis to carcinoma, and gastric biopsy specimens from Colombian and Honduran cohorts were analyzed by immunohistochemistry. SMOX expression and DNA damage were decreased, and apoptosis increased in H. pylori-infected Egfr(wa5) mice. H. pylori-infected cells with deletion or inhibition of EGFR had reduced levels of SMOX, DNA damage, and DNA damage(high) apoptosis(low) cells. Phosphoproteomic analysis showed increased EGFR and erythroblastic leukemia-associated viral oncogene B (ERBB)2 signaling. Immunoblot analysis showed the presence of a phosphorylated (p)EGFR-ERBB2 heterodimer and pERBB2; knockdown of ErbB2 facilitated apoptosis of DNA damage(high) apoptosis(low) cells. SMOX was increased in all stages of gastric disease, peaking in tissues with intestinal metaplasia, whereas pEGFR, pEGFR-ERBB2, and pERBB2 were increased predominantly in tissues showing gastritis or atrophic gastritis. Principal component analysis separated gastritis tissues from patients with cancer vs those without cancer. pEGFR, pEGFR-ERBB2, pERBB2, and SMOX were increased in gastric samples from patients whose disease progressed to intestinal metaplasia or dysplasia, compared with patients whose disease did not progress. In an analysis of gastric tissues from mice and patients, we identified a molecular signature (based on levels of pEGFR, pERBB2, and SMOX) for the initiation of gastric carcinogenesis. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. αPIX Is a Trafficking Regulator that Balances Recycling and Degradation of the Epidermal Growth Factor Receptor

    PubMed Central

    Kortüm, Fanny; Harms, Frederike Leonie; Hennighausen, Natascha; Rosenberger, Georg

    2015-01-01

    Endosomal sorting is an essential control mechanism for signaling through the epidermal growth factor receptor (EGFR). We report here that the guanine nucleotide exchange factor αPIX, which modulates the activity of Rho-GTPases, is a potent bimodal regulator of EGFR trafficking. αPIX interacts with the E3 ubiquitin ligase c-Cbl, an enzyme that attaches ubiquitin to EGFR, thereby labelling this tyrosine kinase receptor for lysosomal degradation. We show that EGF stimulation induces αPIX::c-Cbl complex formation. Simultaneously, αPIX and c-Cbl protein levels decrease, which depends on both αPIX binding to c-Cbl and c-Cbl ubiquitin ligase activity. Through interaction αPIX sequesters c-Cbl from EGFR and this results in reduced EGFR ubiquitination and decreased EGFR degradation upon EGF treatment. However, quantitatively more decisive for cellular EGFR distribution than impaired EGFR degradation is a strong stimulating effect of αPIX on EGFR recycling to the cell surface. This function depends on the GIT binding domain of αPIX but not on interaction with c-Cbl or αPIX exchange activity. In summary, our data demonstrate a previously unappreciated function of αPIX as a strong promoter of EGFR recycling. We suggest that the novel recycling regulator αPIX and the degradation factor c-Cbl closely cooperate in the regulation of EGFR trafficking: uncomplexed αPIX and c-Cbl mediate a positive and a negative feedback on EGFR signaling, respectively; αPIX::c-Cbl complex formation, however, results in mutual inhibition, which may reflect a stable condition in the homeostasis of EGF-induced signal flow. PMID:26177020

  4. AXL mediates resistance to cetuximab therapy.

    PubMed

    Brand, Toni M; Iida, Mari; Stein, Andrew P; Corrigan, Kelsey L; Braverman, Cara M; Luthar, Neha; Toulany, Mahmoud; Gill, Parkash S; Salgia, Ravi; Kimple, Randall J; Wheeler, Deric L

    2014-09-15

    The EGFR antibody cetuximab is used to treat numerous cancers, but intrinsic and acquired resistance to this agent is a common clinical outcome. In this study, we show that overexpression of the oncogenic receptor tyrosine kinase AXL is sufficient to mediate acquired resistance to cetuximab in models of non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC), where AXL was overexpressed, activated, and tightly associated with EGFR expression in cells resistant to cetuximab (Ctx(R) cells). Using RNAi methods and novel AXL-targeting agents, we found that AXL activation stimulated cell proliferation, EGFR activation, and MAPK signaling in Ctx(R) cells. Notably, EGFR directly regulated the expression of AXL mRNA through MAPK signaling and the transcription factor c-Jun in Ctx(R) cells, creating a positive feedback loop that maintained EGFR activation by AXL. Cetuximab-sensitive parental cells were rendered resistant to cetuximab by stable overexpression of AXL or stimulation with EGFR ligands, the latter of which increased AXL activity and association with the EGFR. In tumor xenograft models, the development of resistance following prolonged treatment with cetuximab was associated with AXL hyperactivation and EGFR association. Furthermore, in an examination of patient-derived xenografts established from surgically resected HNSCCs, AXL was overexpressed and activated in tumors that displayed intrinsic resistance to cetuximab. Collectively, our results identify AXL as a key mediator of cetuximab resistance, providing a rationale for clinical evaluation of AXL-targeting drugs to treat cetuximab-resistant cancers. Cancer Res; 74(18); 5152-64. ©2014 AACR. ©2014 American Association for Cancer Research.

  5. Can EGFR-Tyrosine Kinase Inhibitors (TKI) Alone Without Talc Pleurodesis Prevent Recurrence of Malignant Pleural Effusion (MPE) in Lung Adenocarcinoma.

    PubMed

    Verma, Akash; Chopra, Akhil; Lee, Yeo W; Bharwani, Lavina D; Asmat, Atasha B; Aneez, Dokeu B A; Akbar, Fazuludeen A; Lim, Albert Y H; Chotirmall, Sanjay H; Abisheganaden, John

    2016-01-01

    Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors (EGFR-TKIs) are effective against lung adenocarcinoma. However, limited data is available assessing the effectiveness of EGFR-TKI use in preventing re-accumulation of MPE. To our knowledge, there is no literature on comparison of talc pleurodesis with EGFR-TKIs alone on re-accumulation of MPE in Asian population. We investigated if EGFR-TKI therapy for advanced lung adenocarcinoma with malignant pleural effusion (MPE) is also successful in preventing pleural fluid re-accumulation following initial drainage. An observational cohort study of patients with lung adenocarcinoma and MPE in the year 2012 was conducted. 70 patients presented with MPE from lung adenocarcinoma. Fifty six underwent EGFR mutation testing of which 39 (69.6%) had activating EGFR mutation and 34 (87.1%) received TKI. 20 were managed by pleural fluid drainage only whereas 14 underwent talc pleurodesis following pleural fluid drainage. Time taken for the pleural effusion to re-accumulate in those with and without pleurodesis was 9.9 vs. 11.7 months, p=0.59 respectively. More patients (n=10, 25.6%) with activating EGFR mutation presented with complete opacification (white-out) of the hemithorax compared to none without activating EGFR mutation (p=0.02). In TKI eligible patients, early talc pleurodesis may not confer additional benefit in preventing re-accumulation of pleural effusion and may be reserved for non-adenocarcinoma histology, or EGFR negative adenocarcinoma. Complete opacification of the hemithorax on presentation may serve as an early radiographic signal of positive EGFR mutation status.

  6. The phosphatase inhibitor menadione (vitamin K3) protects cells from EGFR inhibition by erlotinib and cetuximab.

    PubMed

    Perez-Soler, Roman; Zou, Yiyu; Li, Tianhong; Ling, Yi He

    2011-11-01

    Skin toxicity is the main side effect of epidermal growth factor receptor (EGFR) inhibitors, often leading to dose reduction or discontinuation. We hypothesized that phosphatase inhibition in the skin keratinocytes may prevent receptor dephosphorylation caused by EGFR inhibitors and be used as a new potential strategy for the prevention or treatment of this side effect. Menadione (Vitamin K3) was used as the prototype compound to test our hypothesis. HaCat human skin keratinocyte cells and A431 human squamous carcinoma cells were used. EGFR inhibition was measured by Western blotting and immunofluorescence. Phosphatase inhibition and reactive oxygen species (ROS) generation were measured by standard ELISA and fluorescence assays. Menadione caused significant and reversible EGFR activation in a dose-dependent manner starting at nontoxic concentrations. EGFR activation by menadione was associated with reversible protein tyrosine phosphatase inhibition, which seemed to be mediated by ROS generation as exposure to antioxidants prevented both menadione-induced ROS generation and phosphatase inhibition. Short-term coincubation of cells with nontoxic concentrations of menadione and the EGFR inhibitors erlotinib or cetuximab prevented EGFR dephosphorylation. Seventy-two-hour coincubation of cells with the highest nontoxic concentration of menadione and erlotinib provided for a fourfold cell growth inhibitory protection in HaCat human keratinocyte cells. Menadione at nontoxic concentrations causes EGFR activation and prevents EGFR dephosphorylation by erlotinib and cetuximab. This effect seems to be mediated by ROS generation and secondary phosphatase inhibition. Mild oxidative stress in skin keratinocytes by topical menadione may protect the skin from the toxicity secondary to EGFR inhibitors without causing cytotoxicity. ©2011 AACR

  7. WHSC1L1-mediated EGFR mono-methylation enhances the cytoplasmic and nuclear oncogenic activity of EGFR in head and neck cancer

    PubMed Central

    Saloura, Vassiliki; Vougiouklakis, Theodore; Zewde, Makda; Deng, Xiaolan; Kiyotani, Kazuma; Park, Jae-Hyun; Matsuo, Yo; Lingen, Mark; Suzuki, Takehiro; Dohmae, Naoshi; Hamamoto, Ryuji; Nakamura, Yusuke

    2017-01-01

    While multiple post-translational modifications have been reported to regulate the function of epidermal growth factor receptor (EGFR), the effect of protein methylation on its function has not been well characterized. In this study, we show that WHSC1L1 mono-methylates lysine 721 in the tyrosine kinase domain of EGFR, and that this methylation leads to enhanced activation of its downstream ERK cascade without EGF stimulation. We also show that EGFR K721 mono-methylation not only affects the function of cytoplasmic EGFR, but also that of nuclear EGFR. WHSC1L1-mediated methylation of EGFR in the nucleus enhanced its interaction with PCNA in squamous cell carcinoma of the head and neck (SCCHN) cells and resulted in enhanced DNA synthesis and cell cycle progression. Overall, our study demonstrates the multifaceted oncogenic function of the protein lysine methyltransferase WHSC1L1 in SCCHN, which is mediated through direct non-histone methylation of the EGFR protein with effects both in its cytoplasmic and nuclear functions. PMID:28102297

  8. Nonmuscle Myosin II Is Required for Internalization of the Epidermal Growth Factor Receptor and Modulation of Downstream Signaling*

    PubMed Central

    Kim, Jong Hyun; Wang, Aibing; Conti, Mary Anne; Adelstein, Robert S.

    2012-01-01

    Ligand-induced internalization of the epidermal growth factor receptor (EGFR) is an important process for regulating signal transduction, cellular dynamics, and cell-cell communication. Here, we demonstrate that nonmuscle myosin II (NM II) is required for the internalization of the EGFR and to trigger the EGFR-dependent activation of ERK and AKT. The EGFR was identified as a protein that interacts with NM II by co-immunoprecipitation and mass spectrometry analysis. This interaction requires both the regulatory light chain 20 (RLC20) of NM II and the kinase domain of the EGFR. Two paralogs of NM II, NM II-A, and NM II-B can act to internalize the EGFR, depending on the cell type and paralog content of the cell line. Loss (siRNA) or inhibition (25 μm blebbistatin) of NM II attenuates the internalization of the EGFR and impairs EGFR-dependent activation of ERK and AKT. Both internalization of the EGFR and downstream signaling to ERK and AKT can be partially restored in siRNA-treated cells by introduction of wild type (WT) GFP-NM II, but cannot be restored by motor mutant NM II. Taken together, these results suggest that NM II plays a role in the internalization of the EGFR and EGFR-mediated signaling pathways. PMID:22718763

  9. Local Epidermal Growth Factor Receptor Signaling Mediates the Systemic Pathogenic Effects of Staphylococcus aureus Toxic Shock Syndrome.

    PubMed

    Breshears, Laura M; Gillman, Aaron N; Stach, Christopher S; Schlievert, Patrick M; Peterson, Marnie L

    2016-01-01

    Secreted factors of Staphylococcus aureus can activate host signaling from the epidermal growth factor receptor (EGFR). The superantigen toxic shock syndrome toxin-1 (TSST-1) contributes to mucosal cytokine production through a disintegrin and metalloproteinase (ADAM)-mediated shedding of EGFR ligands and subsequent EGFR activation. The secreted hemolysin, α-toxin, can also induce EGFR signaling and directly interacts with ADAM10, a sheddase of EGFR ligands. The current work explores the role of EGFR signaling in menstrual toxic shock syndrome (mTSS), a disease mediated by TSST-1. The data presented show that TSST-1 and α-toxin induce ADAM- and EGFR-dependent cytokine production from human vaginal epithelial cells. TSST-1 and α-toxin also induce cytokine production from an ex vivo porcine vaginal mucosa (PVM) model. EGFR signaling is responsible for the majority of IL-8 production from PVM in response to secreted toxins and live S. aureus. Finally, data are presented demonstrating that inhibition of EGFR signaling with the EGFR-specific tyrosine kinase inhibitor AG1478 significantly increases survival in a rabbit model of mTSS. These data indicate that EGFR signaling is critical for progression of an S. aureus exotoxin-mediated disease and may represent an attractive host target for therapeutics.

  10. Highly sensitive and quantitative evaluation of the EGFR T790M mutation by nanofluidic digital PCR

    PubMed Central

    Iwama, Eiji; Takayama, Koichi; Harada, Taishi; Okamoto, Isamu; Ookubo, Fumihiko; Kishimoto, Junji; Baba, Eishi; Oda, Yoshinao; Nakanishi, Yoichi

    2015-01-01

    The mutation of T790M in EGFR is a major mechanism of resistance to treatment with EGFR-TKIs. Only qualitative detection (presence or absence) of T790M has been described to date, however. Digital PCR (dPCR) analysis has recently been applied to the quantitative detection of target molecules in cancer with high sensitivity. In the present study, 25 tumor samples (13 obtained before and 12 after EGFR-TKI treatment) from 18 NSCLC patients with activating EGFR mutations were evaluated for T790M with dPCR. The ratio of the number of T790M alleles to that of activating mutation alleles (T/A) was determined. dPCR detected T790M in all 25 samples. Although T790M was present in all pre-TKI samples from 13 patients, 10 of these patients had a low T/A ratio and manifested substantial tumor shrinkage during treatment with EGFR-TKIs. In six of seven patients for whom both pre- and post-TKI samples were available, the T/A ratio increased markedly during EGFR-TKI treatment. Highly sensitive dPCR thus detected T790M in all NSCLC patients harboring activating EGFR mutations whether or not they had received EGFR-TKI treatment. Not only highly sensitive but also quantitative detection of T790M is important for evaluation of the contribution of T790M to EGFR-TKI resistance. PMID:26015401

  11. K-RAS(V12) Induces Autocrine Production of EGFR Ligands and Mediates Radioresistance Through EGFR-Dependent Akt Signaling and Activation of DNA-PKcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minjgee, Minjmaa; Toulany, Mahmoud; Kehlbach, Rainer

    2011-12-01

    Purpose: It is known that postirradiation survival of tumor cells presenting mutated K-RAS is mediated through autocrine activation of epidermal growth factor receptor (EGFR). In this study the molecular mechanism of radioresistance of cells overexpressing mutated K-RAS(V12) was investigated. Methods and Materials: Head-and-neck cancer cells (FaDu) presenting wild-type K-RAS were transfected with empty vector or vector expressing mutated K-RAS(V12). The effect of K-RAS(V12) on autocrine production of EGFR ligands, activation of EGFR downstream pathways, DNA damage repair, and postirradiation survival was analyzed. Results: Conditioned medium collected from K-RAS(V12)-transfected cells enhanced activation of the phosphatidylinositol-3-kinase-Akt pathway and increased postirradiation survival ofmore » wild-type K-RAS parental cells when compared with controls. These effects were reversed by amphiregulin (AREG)-neutralizing antibody. In addition, secretion of the EGFR ligands AREG and transforming growth factor {alpha} was significantly increased upon overexpression of K-RAS(V12). Expression of mutated K-RAS(V12) resulted in an increase in radiation-induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation at S2056. This increase was accompanied by increased repair of DNA double-strand breaks. Abrogation of DNA-PKcs phosphorylation by serum depletion or AREG-neutralizing antibody underscored the role of autocrine production of EGFR ligands, namely, AREG, in regulating DNA-PKcs activation in K-RAS mutated cells. Conclusions: These data indicate that radioresistance of K-RAS mutated tumor cells is at least in part due to constitutive production of EGFR ligands, which mediate enhanced repair of DNA double-strand breaks through the EGFR-phosphatidylinositol-3-kinase-Akt cascade.« less

  12. Periodic mechanical stress activates EGFR-dependent Rac1 mitogenic signals in rat nucleus pulpous cells via ERK1/2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Gongming; Shen, Nan; Jiang, Xuefeng

    2016-01-15

    The mitogenic effects of periodic mechanical stress on nucleus pulpous cells have been studied extensively but the mechanisms whereby nucleus pulpous cells sense and respond to mechanical stimulation remain a matter of debate. We explored this question by performing cell culture experiments in our self-developed periodic stress field and perfusion culture system. Under periodic mechanical stress, rat nucleus pulpous cell proliferation was significantly increased (p < 0.05 for each) and was associated with increases in the phosphorylation and activation of EGFR, Rac1, and ERK1/2 (p < 0.05 for each). Pretreatment with the ERK1/2 selective inhibitor PD98059 reduced periodic mechanical stress-induced nucleus pulpous cell proliferationmore » (p < 0.05 for each), while the activation levels of EGFR and Rac1 were not inhibited. Proliferation and phosphorylation of ERK1/2 were inhibited after pretreatment with the Rac1 inhibitor NSC23766 in nucleus pulpous cells in response to periodic mechanical stress (p < 0.05 for each), while the phosphorylation site of EGFR was not affected. Inhibition of EGFR activity with AG1478 abrogated nucleus pulpous cell proliferation (p < 0.05 for each) and attenuated Rac1 and ERK1/2 activation in nucleus pulpous cells subjected to periodic mechanical stress (p < 0.05 for each). These findings suggest that periodic mechanical stress promotes nucleus pulpous cell proliferation in part through the EGFR-Rac1-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade. - Highlights: • The mechanism involved in nucleus pulpous cells to respond to mechanical stimuli. • Periodic mechanical stress can stimulate the phosphorylation of EGFR. • EGFR activates Rac1 and leads to rat nucleus pulpous cell proliferation. • EGFR and Rac1 activate ERK1/2 mitogenic signals in nucleus pulpous cells. • EGFR-Rac1-ERK1/2 is constitutes at least one critical signal transduction pathway.« less

  13. 2D-QSAR and 3D-QSAR Analyses for EGFR Inhibitors

    PubMed Central

    Zhao, Manman; Zheng, Linfeng; Qiu, Chun

    2017-01-01

    Epidermal growth factor receptor (EGFR) is an important target for cancer therapy. In this study, EGFR inhibitors were investigated to build a two-dimensional quantitative structure-activity relationship (2D-QSAR) model and a three-dimensional quantitative structure-activity relationship (3D-QSAR) model. In the 2D-QSAR model, the support vector machine (SVM) classifier combined with the feature selection method was applied to predict whether a compound was an EGFR inhibitor. As a result, the prediction accuracy of the 2D-QSAR model was 98.99% by using tenfold cross-validation test and 97.67% by using independent set test. Then, in the 3D-QSAR model, the model with q2 = 0.565 (cross-validated correlation coefficient) and r2 = 0.888 (non-cross-validated correlation coefficient) was built to predict the activity of EGFR inhibitors. The mean absolute error (MAE) of the training set and test set was 0.308 log units and 0.526 log units, respectively. In addition, molecular docking was also employed to investigate the interaction between EGFR inhibitors and EGFR. PMID:28630865

  14. Cancer stem cell-like population is preferentially suppressed by EGFR-TKIs in EGFR-mutated PC-9 tumor models.

    PubMed

    Yang, Fan; Li, Yang; Liu, Bin; You, Jiacong; Zhou, Qinghua

    2018-01-01

    Although the epidermal growth factor receptor (EGFR) and Wnt/β-catenin signaling systems synergistically regulate many essential developmental and regenerative processes in lung cancer, the mechanisms of their crosstalk remain poorly defined. Our study aimed to investigate an interaction between EGFR and the β-catenin signal. In this study, we described a potent activation of β-catenin by EGFR, which is dependent of the PtdIns3K/AKT pathway. We found EGF activated β-catenin signaling via phosphorylation of EGFR and AKT in EGFR-mutated PC-9 lung cancer cells. Meanwhile, EGFR tyrosine kinase inhibitors (EGFR-TKIs) regulated cancer stem-like cells (CSCs) by inhibiting autophosphorylation of EGFR and downstream signaling proteins, as well as β-catenin. Further, β-catenin depletion by RNA interference virtually eliminated cancer stem cell-like population in PC-9 cells in vitro. The nude mice transplantation model was also performed to confirm EGFR-TKIs strongly inhibited the β-catenin signal and decreased CSCs. Importantly, the reduction of CSCs that sorted out by side population (SP) cells significantly reduced the migration capability. Thus, our results improved the understanding of this process to provide insights into mechanisms of responding to EGFR-TKIs. Our discoveries raise an intriguing question of the role of β-catenin in EGFR-TKIs-treated cancer stem cell-like population(s) and its potential as a new therapeutic target for NSCLC in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. PGE2 mediates EGFR internalization and nuclear translocation via caveolin endocytosis promoting its transcriptional activity and proliferation in human NSCLC cells

    PubMed Central

    Bazzani, Lorenzo; Donnini, Sandra; Giachetti, Antonio; Christofori, Gerhard; Ziche, Marina

    2018-01-01

    Prostaglandin E2 (PGE2) contributes to tumor progression by promoting cancer cell growth, invasion and by creating a favorable pro-tumor microenvironment. PGE2 has been reported to transactivate and internalize into the nucleus receptor tyrosine kinases such as Epidermal growth factor receptor (EGFR), thereby supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, PGE2 induces EGFR nuclear translocation via different dynamin-dependent endocytic pathways, promotes the formation of an EGFR-STAT3 complex, affects nuclear EGFR target gene expression and mediates tumor cell proliferation. Indeed, we find that PGE2 induces EGFR internalization and consequent nuclear import through Clathrin- and Caveolin-mediated endocytosis and through the interaction of EGFR with Importin β1. Within the nucleus, EGFR forms a complex with STAT3, an event blocked by ablation of Clathrin Heavy Chain or Caveolin-1. The combination of EGF and PGE2 prolongs nuclear EGFR transcriptional activity manifested by the upregulation of CCND1, PTGS2, MYC and NOS2 mRNA levels and potentiates nuclear EGFR-induced NSCLC cell proliferation. Additionally, NSCLC patients with high expression of a nuclear EGFR gene signature display shorter survival times than those with low expression, thus showing a putative correlation between nuclear EGFR and poor prognosis in NSCLC. Together, our findings indicate a complex mechanism underlying PGE2-induced EGF/EGFR signaling and transcriptional control, which plays a key role in cancer progression. PMID:29599917

  16. PGE2 mediates EGFR internalization and nuclear translocation via caveolin endocytosis promoting its transcriptional activity and proliferation in human NSCLC cells.

    PubMed

    Bazzani, Lorenzo; Donnini, Sandra; Giachetti, Antonio; Christofori, Gerhard; Ziche, Marina

    2018-03-13

    Prostaglandin E 2 (PGE 2 ) contributes to tumor progression by promoting cancer cell growth, invasion and by creating a favorable pro-tumor microenvironment. PGE 2 has been reported to transactivate and internalize into the nucleus receptor tyrosine kinases such as Epidermal growth factor receptor (EGFR), thereby supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, PGE 2 induces EGFR nuclear translocation via different dynamin-dependent endocytic pathways, promotes the formation of an EGFR-STAT3 complex, affects nuclear EGFR target gene expression and mediates tumor cell proliferation. Indeed, we find that PGE 2 induces EGFR internalization and consequent nuclear import through Clathrin- and Caveolin-mediated endocytosis and through the interaction of EGFR with Importin β1. Within the nucleus, EGFR forms a complex with STAT3, an event blocked by ablation of Clathrin Heavy Chain or Caveolin-1. The combination of EGF and PGE 2 prolongs nuclear EGFR transcriptional activity manifested by the upregulation of CCND1 , PTGS2 , MYC and NOS2 mRNA levels and potentiates nuclear EGFR-induced NSCLC cell proliferation. Additionally, NSCLC patients with high expression of a nuclear EGFR gene signature display shorter survival times than those with low expression, thus showing a putative correlation between nuclear EGFR and poor prognosis in NSCLC. Together, our findings indicate a complex mechanism underlying PGE 2 -induced EGF/EGFR signaling and transcriptional control, which plays a key role in cancer progression.

  17. EGFR transactivation: mechanisms, pathophysiology and potential therapies in cardiovascular system

    PubMed Central

    Forrester, Steven J.; Kawai, Tatsuo; Elliott, Katherine J.; O’Brien, Shannon; Thomas, Walter; Harris, Raymond C.; Eguchi, Satoru

    2017-01-01

    Accumulating studies suggest that the epidermal growth factor receptor (EGFR) activation is associated with the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases, including hypertension, cardiac hypertrophy, renal fibrosis and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is well described – a process termed EGFR “transactivation” – yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight the recent advancement of the signaling cascades and downstream consequences of EGFR transactivation within the cardiovascular renal system in vitro and in vivo. We will also focus on linking EGFR transactivation to animal models of the disease as well as the potential therapeutic applications. PMID:26566153

  18. Conditional internalization of PEGylated nanomedicines by PEG engagers for triple negative breast cancer therapy

    NASA Astrophysics Data System (ADS)

    Su, Yu-Cheng; Burnouf, Pierre-Alain; Chuang, Kuo-Hsiang; Chen, Bing-Mae; Cheng, Tian-Lu; Roffler, Steve R.

    2017-06-01

    Triple-negative breast cancer (TNBC) lacks effective treatment options due to the absence of traditional therapeutic targets. The epidermal growth factor receptor (EGFR) has emerged as a promising target for TNBC therapy because it is overexpressed in about 50% of TNBC patients. Here we describe a PEG engager that simultaneously binds polyethylene glycol and EGFR to deliver PEGylated nanomedicines to EGFR+ TNBC. The PEG engager displays conditional internalization by remaining on the surface of TNBC cells until contact with PEGylated nanocarriers triggers rapid engulfment of nanocargos. PEG engager enhances the anti-proliferative activity of PEG-liposomal doxorubicin to EGFR+ TNBC cells by up to 100-fold with potency dependent on EGFR expression levels. The PEG engager significantly increases retention of fluorescent PEG probes and enhances the antitumour activity of PEGylated liposomal doxorubicin in human TNBC xenografts. PEG engagers with specificity for EGFR are promising for improved treatment of EGFR+ TNBC patients.

  19. EGFR TKI as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer

    PubMed Central

    Nan, Xueli; Xie, Chao; Yu, Xueyan; Liu, Jie

    2017-01-01

    After the discovery of activating mutations in EGFR, EGFR tyrosine kinase inhibitors (TKIs) have been introduced into the first-line treatment of non-small-cell lung cancer (NSCLC). A series of studies have shown that EGFR TKI monotherapy as first-line treatment can benefit NSCLC patients harbouring EGFR mutations. Besides, combination strategies based on EGFR TKIs in the first line treatment have also been proved to delay the occurrence of resistance. In this review, we summarize the scientific literature and evidence of EGFR TKIs as first-line therapy from the first-generation EGFR TKIs to conceptually proposed fourth-generation EGFR TKI, and also recommend the application of monotherapy and combination therapies of the EGFR-based targeted therapy with other agents such as chemotherapy, anti-angiogenic drugs and immunecheckpoint inhibitors. PMID:29088904

  20. Direct interaction between surface β1,4-galactosyltransferase 1 and epidermal growth factor receptor (EGFR) inhibits EGFR activation in hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Wenqing; Weng, Shuqiang; Zhang, Si

    2013-05-10

    Highlights: •β1,4GT1 interacts with EGFR both in vitro and in vivo. •β1,4GT1 co-localizes with EGFR on the cell surface. •β1,4GT1 inhibits {sup 125}I-EGF binding to EGFR. •β1,4GT1 inhibits EGF induced EGFR dimerization and phosphorylation. -- Abstract: Our previous studies showed that cell surface β1,4-galactosyltransferase 1 (β1,4GT1) negatively regulated cell survival through inhibition and modulation of the epidermal growth factor receptor (EGFR) signaling pathway in human hepatocellular carcinoma (HCC) SMMC-7721 cells. However, the underlying mechanism remains unclear. Here we demonstrated that β1,4-galactosyltransferase 1 (β1,4GT1) interacted with EGFR in vitro by GST pull-down analysis. Furthermore, we demonstrated that β1,4GT1 bound to EGFRmore » in vivo by co-immunoprecipitation and determined the co-localization of β1,4GT1 and EGFR on the cell surface via confocal laser scanning microscopy analysis. Finally, using {sup 125}I-EGF binding experiments and Western blot analysis, we found that overexpression of β1,4GT1 inhibited {sup 125}I-EGF binding to EGFR, and consequently reduced the levels of EGFR dimerization and phosphorylation. In contrast, RNAi-mediated knockdown of β1,4GT1 increased the levels of EGFR dimerization and phosphorylation. These data suggest that cell surface β1,4GT1 interacts with EGFR and inhibits EGFR activation.« less

  1. Nucleolin inhibitor GroA triggers reduction in epidermal growth factor receptor activation: Pharmacological implication for glial scarring after spinal cord injury.

    PubMed

    Goldshmit, Yona; Schokoroy Trangle, Sari; Afergan, Fabian; Iram, Tal; Pinkas-Kramarski, Ronit

    2016-09-01

    Glial scarring, formed by reactive astrocytes, is one of the major impediments for regeneration after spinal cord injury (SCI). Reactive astrocytes become hypertrophic, proliferate and secrete chondroitin sulphate proteoglycans into the extracellular matrix (ECM). Many studies have demonstrated that epidermal growth factor receptors (EGFR) can mediate astrocyte reactivity after neurotrauma. Previously we showed that there is crosstalk between nucleolin and EGFR that leads to increased EGFR activation followed by increased cell proliferation. Treatment with the nucleolin inhibitor GroA (AS1411) prevented these effects in vitro and in vivo. In this study, we hypothesized that similar interactions may mediate astrogliosis after SCI. Our results demonstrate that nucleolin and EGFR interaction may play a pivotal role in mediating astrocyte proliferation and reactivity after SCI. Moreover, we demonstrate that treatment with GroA reduces EGFR activation, astrocyte proliferation and chondroitin sulphate proteoglycans secretion, therefore promoting axonal regeneration and sprouting into the lesion site. Our results identify, for the first time, a role for the interaction between nucleolin and EGFR in astrocytes after SCI, indicating that nucleolin inhibitor GroA may be used as a novel treatment after neurotrauma. A major barrier for axonal regeneration after spinal cord injury is glial scar created by reactive and proliferating astrocytes. EGFR mediate astrocyte reactivity. We showed that inhibition of nucleolin by GroA, reduces EGFR activation, which results in attenuation of astrocyte reactivity and proliferation in vivo and in vitro. EGFR, epidermal growth factor receptor. © 2016 International Society for Neurochemistry.

  2. EGF-Receptor Phosphorylation and Downstream Signaling are Activated by Benzo[a]pyrene 3,6-quinone and Benzo[a]pyrene 1,6-quinone in Human Mammary Epithelial Cells

    PubMed Central

    Rodríguez-Fragoso, Lourdes; Melendez, Karla; Hudson, Laurie; Lauer, Fredine T.; Burchiel, Scott W.

    2013-01-01

    Benzo[a]pyrene (BaP) is activated by xenobiotic-metabolizing enzymes to highly mutagenic and carcinogenic metabolites. Previous studies in this laboratory have shown that benzo(a)pyrene quinones (BPQs), 1,6-BPQ and 3,6-BPQ, are able to induce epidermal growth factor receptor (EGFR) cell signaling through the production of reactive oxygen species. Recently, we have reported that BPQs have the potential to induce the expression of genes involved in numerous pathways associated with cell proliferation and survival in human mammary epithelial cells. In the present study we demonstrated that BPQs not only induced EGFR tyrosine autophosphorylation, but also induced EGFR-dependent tyrosine phosphorylation of phospholipase C-γ1 and several signal transducers and activators of transcription (STATs). The effects of BPQs were evaluated in a model of EGF withdrawal in MCF10-A cells. We found that BPQs (1 μM), induced EGFR tyrosine phosphorylation at positions Y845, Y992, Y1068, and Y1086. PLC-γ1 phosphorylation correlated with the phosphorylation of tyrosine-Y992, a proposed docking site for PLC-γ1 on the EGFR. Additionally, we found that BPQs induced the activation of STAT-1, STAT-3, STAT-5a and STAT-5b. STAT5 was shown to translocate to the nucleus following 3,6-BPQ and 1,6-BPQ exposures. Although the pattern of phosphorylation at EGFR, PLC-γ1 and STATs were quite similar to those induced by EGF, an important difference between BPQ-mediated signaling of the EGFR was observed. Signaling produced by EGF ligand produced a rapid disappearance of EGFR from the cell surface, whereas BPQ signaling maintained EGFR receptors on the cell membrane. Thus, the results of these studies show that 1,6-BPQ and 3,6-BPQ can produce early events as evidenced by EGFR expression, and a prolonged transactivation of EGFR leading to downstream cell signaling pathways. PMID:19166869

  3. EGF-receptor phosphorylation and downstream signaling are activated by benzo[a]pyrene 3,6-quinone and benzo[a]pyrene 1,6-quinone in human mammary epithelial cells.

    PubMed

    Rodríguez-Fragoso, Lourdes; Melendez, Karla; Hudson, Laurie G; Lauer, Fredine T; Burchiel, Scott W

    2009-03-15

    Benzo[a]pyrene (BaP) is activated by xenobiotic-metabolizing enzymes to highly mutagenic and carcinogenic metabolites. Previous studies in this laboratory have shown that benzo[a]pyrene quinones (BPQs), 1,6-BPQ and 3,6-BPQ, are able to induce epidermal growth factor receptor (EGFR) cell signaling through the production of reactive oxygen species. Recently, we have reported that BPQs have the potential to induce the expression of genes involved in numerous pathways associated with cell proliferation and survival in human mammary epithelial cells. In the present study we demonstrated that BPQs not only induced EGFR tyrosine autophosphorylation, but also induced EGFR-dependent tyrosine phosphorylation of phospholipase C-gamma1 and several signal transducers and activators of transcription (STATs). The effects of BPQs were evaluated in a model of EGF withdrawal in MCF10-A cells. We found that BPQs (1 muM), induced EGFR tyrosine phosphorylation at positions Y845, Y992, Y1068, and Y1086. PLC-gamma1 phosphorylation correlated with the phosphorylation of tyrosine-Y992, a proposed docking site for PLC-gamma1 on the EGFR. Additionally, we found that BPQs induced the activation of STAT-1, STAT-3, STAT-5a and STAT-5b. STAT5 was shown to translocate to the nucleus following 3,6-BPQ and 1,6-BPQ exposures. Although the patterns of phosphorylation at EGFR, PLC-gamma1 and STATs were quite similar to those induced by EGF, an important difference between BPQ-mediated signaling of the EGFR was observed. Signaling produced by EGF ligand produced a rapid disappearance of EGFR from the cell surface, whereas BPQ signaling maintained EGFR receptors on the cell membrane. Thus, the results of these studies show that 1,6-BPQ and 3,6-BPQ can produce early events as evidenced by EGFR expression, and a prolonged transactivation of EGFR leading to downstream cell signaling pathways.

  4. Epidermal Growth Factor Receptor activation promotes ADA3 acetylation through the AKT-p300 pathway

    PubMed Central

    Srivastava, Shashank; Mohibi, Shakur; Mirza, Sameer; Band, Hamid; Band, Vimla

    2017-01-01

    ABSTRACT The ADA3 (Alteration/Deficiency in Activation 3) protein is an essential adaptor component of several Lysine Acetyltransferase (KAT) complexes involved in chromatin modifications. Previously, we and others have demonstrated a crucial role of ADA3 in cell cycle progression and in maintenance of genomic stability. Recently, we have shown that acetylation of ADA3 is key to its role in cell cycle progression. Here, we demonstrate that AKT activation downstream of Epidermal Growth Factor Receptor (EGFR) family proteins stimulation leads to phosphorylation of p300, which in turn promotes the acetylation of ADA3. Inhibition of upstream receptor tyrosine kinases (RTKs), HER1 (EGFR)/HER2 by lapatinib and the accompanying reduction of phospho-AKT levels led to a decrease in p300 phosphorylation and ADA3 protein levels. The p300/PCAF inhibitor garcinol also destabilized the ADA3 protein in a proteasome-dependent manner and an ADA3 mutant with K→R mutations exhibited a marked increase in half-life, consistent with opposite role of acetylation and ubiquitination of ADA3 on shared lysine residues. ADA3 knockdown led to cell cycle inhibitory effects, as well as apoptosis similar to those induced by lapatinib treatment of HER2+ breast cancer cells, as seen by accumulation of CDK inhibitor p27, reduction in mitotic marker pH3(S10), and a decrease in the S-phase marker PCNA, as well as the appearance of cleaved PARP. Taken together our results reveal a novel RTK-AKT-p300-ADA3 signaling pathway involved in growth factor-induced cell cycle progression. PMID:28759294

  5. Occludin is regulated by epidermal growth factor receptor activation in brain endothelial cells and brains of mice with acute liver failure

    PubMed Central

    Chen, Feng; Hori, Tomohide; Ohashi, Norifumi; Baine, Ann-Marie; Eckman, Christopher B.; Nguyen, Justin H.

    2011-01-01

    Mechanisms of brain edema in acute liver failure (ALF) are not completely understood. We recently demonstrated that matrix metalloproteinase 9 (MMP-9) induces significant alterations to occludin in brain endothelial cells in vitro and in brains of mice with experimental ALF (Hepatology 50:1914, 2009). In this study, we show that MMP-9-induced transactivation of epidermal growth factor receptor (EGFR) and p38MAPK/NFκB signals participate in regulating brain endothelial occludin level. Mouse brain endothelial bEnd3 cells were exposed to MMP-9 or p38 MAPK upregulation in the presence and absence of EGFR inhibitor, p38 MAPK inhibitor, NFκB inhibitor, and/or appropriate small interfering RNA. RT-PCR and western blotting were used for mRNA and protein expression analyses. Immunohistochemical staining and confocal microscopy were used to demonstrate cellular EGFR activation. Intraperitoneal azoxymethane was use to induce ALF in mice. Brains of comatose ALF mice were processed for histological and biochemical analyses. When bEnd3 cells were exposed to MMP-9, EGFR was significantly transactivated, followed by p38 MAPK activation, IκBα degradation, NFκB activation, and suppression of occludin synthesis and expression. Similar EGFR activation and p38 MAPK/NFκB activation were found in the brains of ALF mice, and these changes were attenuated with GM6001 treatment. Conclusion EGFR activation with p38 MAPK/NFκB signaling contributes to the regulation of tight junction integrity in ALF. EGFR activation may thus play an important role in vasogenic brain edema in ALF. PMID:21480332

  6. 3,4-dihydroxyphenyl acetic acid and (+)-epoxydon isolated from marine algae-derived microorganisms induce down regulation of epidermal growth factor activated mitogenic signaling cascade in Hela cells.

    PubMed

    Jo, Mi Jeong; Bae, Seong Ja; Son, Byeng Wha; Kim, Chi Yeon; Kim, Gun Do

    2013-05-25

    Epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase (RTK) family. Epidermal growth factor induces its dimerization and stimulates phosphorylation of intracellular tyrosine residues. Phosphorylation of EGFR is studied for cancer therapy because EGFR regulates many cellular processes including cell proliferation, differentiation, and survival. Hence, down-regulation of EGFR kinase activity results in inhibition of signaling cascades amenable for proliferation and progression of cell cycle. In the study, we purified 3,4-dihydroxyphenyl acetic acid and (+)-epoxydon from Aspergillus sp. isolated from marine brown alga Ishige okamurae and Phoma herbarum isolated from marine red alga Hypnea saidana respectively and determined its anti-tumor activities against HeLa human cervical cancer cells. Two compounds suppressed EGFR activity in vitro with IC50 values for 3,4-dihydroxyphenyl acetic acid and (+)-epoxydon were 2.8 and 0.6 μg/mL respectively and reduced the viable numbers of HeLa cells. Immunoblotting analysis exhibited that the compounds induced inhibition of cell growth by causing downregulation of the mitogenic signaling cascade, inactivation of p90RSK, and release of cytochrome c from mitochondria. Results suggest that decreased expression of active EGFR and EGFR-related downstream molecules by treatment with the compounds may results in the inhibition of cell growth and inducement of apoptosis.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenei, Veronika; Andersson, Tommy; Jakus, Judit

    E3B1, a human homologue of the mouse gene product Abi-1, has been implicated in growth-factor-mediated regulation of the small GTPases p21{sup Ras} and Rac. E3b1 is a regulator of Rac because it can form a complex with Sos-1 and eps8, and such a Sos-1-e3B1-eps8 complex serves as a guanine nucleotide exchange factor for Rac. In the present study, we found that overexpression of e3B1 in NIH3T3/EGFR cells sensitized EGF-induced activation of Rac1, whereas it had no impact on EGF-induced activation of p21{sup Ras}. Remarkably, we found that EGF-induced activation of the p21{sup Ras}-related GTPase Rap1 was also sensitized in NIH3T3/EGFR-e3B1more » cells. Thus, in NIH3T3/EGFR-e3B1 cells, maximal EGF-induced activation of Rap1 occurs with a dose of EGF much lower than in NIH3T3/EGFR cells. We also report that overexpression of e3B1 in NIH3T3/EGFR cells renders EGF-induced activation of Rap1 completely dependent on Src tyrosine kinases but not on c-Abl. However, EGF-induced tyrosine phosphorylation of the Rap GEF C3G occurred regardless of whether e3B1 was overexpressed or not, and this did not involve Src tyrosine kinases. Accordingly, we propose that overexpression of e3B1 in NIH3T3/EGFR cells leads to mobilization of Src tyrosine kinases that participate in EGF-induced activation of Rap1 and inhibition of cell proliferation.« less

  8. Filamin A Modulates Kinase Activation and Intracellular Trafficking of Epidermal Growth Factor Receptors in Human Melanoma Cells

    PubMed Central

    Fiori, Jennifer L.; Zhu, Tie-Nian; O'Connell, Michael P.; Hoek, Keith S.; Indig, Fred E.; Frank, Brittany P.; Morris, Christa; Kole, Sutapa; Hasskamp, Joanne; Elias, George; Weeraratna, Ashani T.; Bernier, Michel

    2009-01-01

    The actin-binding protein filamin A (FLNa) affects the intracellular trafficking of various classes of receptors and has a potential role in oncogenesis. However, it is unclear whether FLNa regulates the signaling capacity and/or down-regulation of the activated epidermal growth factor receptor (EGFR). Here it is shown that partial knockdown of FLNa gene expression blocked ligand-induced EGFR responses in metastatic human melanomas. To gain greater insights into the role of FLNa in EGFR activation and intracellular sorting, we used M2 melanoma cells that lack endogenous FLNa and a subclone in which human FLNa cDNA has been stably reintroduced (M2A7 cells). Both tyrosine phosphorylation and ubiquitination of EGFR were significantly lower in epidermal growth factor (EGF)-stimulated M2 cells when compared with M2A7 cells. Moreover, the lack of FLNa interfered with EGFR interaction with the ubiquitin ligase c-Cbl. M2 cells exhibited marked resistance to EGF-induced receptor degradation, which was very active in M2A7 cells. Despite comparable rates of EGF-mediated receptor endocytosis, internalized EGFR colocalized with the lysosomal marker lysosome-associated membrane protein-1 in M2A7 cells but not M2 cells, in which EGFR was found to be sequestered in large vesicles and subsequently accumulated in punctated perinuclear structures after EGF stimulation. These results suggest the requirement of FLNa for efficient EGFR kinase activation and the sorting of endocytosed receptors into the degradation pathway. PMID:19213840

  9. Rutin inhibits B[a]PDE-induced cyclooxygenase-2 expression by targeting EGFR kinase activity.

    PubMed

    Choi, Seunghwan; Lim, Tae-Gyu; Hwang, Mun Kyung; Kim, Yoon-A; Kim, Jiyoung; Kang, Nam Joo; Jang, Tae Su; Park, Jun-Seong; Yeom, Myeong Hun; Lee, Ki Won

    2013-11-15

    Rutin is a well-known flavonoid that exists in various natural sources. Accumulative studies have represented the biological effects of rutin, such as anti-oxidative and anti-inflammatory effects. However, the underlying mechanisms of rutin and its direct targets are not understood. We investigated whether rutin reduced B[a]PDE-induced-COX-2 expression. The transactivation of AP-1 and NF-κB were inhibited by rutin. Rutin also attenuated B[a]PDE-induced Raf/MEK/ERK and Akt activation, but had no effect on the phosphorylation of EGFR. An in vitro kinase assay revealed rutin suppressed EGFR kinase activity. We also confirmed direct binding between rutin and EGFR, and found that the binding was regressed by ATP. The EGFR inhibitor also inhibited the B[a]PDE-induced MEK/ERK and Akt signaling pathways and subsequently, suppressed COX-2 expression and promoter activity, in addition to suppressing the transactivation of AP-1 and NF-κB. In EGFR(-/-)mouse embryonic fibroblast cells, B[a]PDE-induced COX-2 expression was also diminished. Collectively, rutin inhibits B[a]PDE-induced COX-2 expression by suppressing the Raf/MEK/ERK and Akt signaling pathways. EGFR appeared to be the direct target of rutin. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Common and Rare EGFR and KRAS Mutations in a Dutch Non-Small-Cell Lung Cancer Population and Their Clinical Outcome

    PubMed Central

    Kerner, Gerald S. M. A.; Schuuring, Ed; Sietsma, Johanna; Hiltermann, Thijo J. N.; Pieterman, Remge M.; de Leede, Gerard P. J.; van Putten, John W. G.; Liesker, Jeroen; Renkema, Tineke E. J.; van Hengel, Peter; Platteel, Inge; Timens, Wim; Groen, Harry J. M.

    2013-01-01

    Introduction In randomly assigned studies with EGFR TKI only a minor proportion of patients with NSCLC have genetically profiled biopsies. Guidelines provide evidence to perform EGFR and KRAS mutation analysis in non-squamous NSCLC. We explored tumor biopsy quality offered for mutation testing, different mutations distribution, and outcome with EGFR TKI. Patient and Methods Clinical data from 8 regional hospitals were studied for patient and tumor characteristics, treatment and overall survival. Biopsies sent to the central laboratory were evaluated for DNA quality and subsequently analyzed for mutations in exons 18–21 of EGFR and exon 2 of KRAS by bidirectional sequence analysis. Results Tumors from 442 subsequent patients were analyzed. For 74 patients (17%) tumors were unsuitable for mutation analysis. Thirty-eight patients (10.9%) had EGFR mutations with 79% known activating mutations. One hundred eight patients (30%) had functional KRAS mutations. The mutation spectrum was comparable to the Cosmic database. Following treatment in the first or second line with EGFR TKI median overall survival for patients with EGFR (n = 14), KRAS (n = 14) mutations and wild type EGFR/KRAS (n = 31) was not reached, 20 and 9 months, respectively. Conclusion One out of every 6 tumor samples was inadequate for mutation analysis. Patients with EGFR activating mutations treated with EGFR-TKI have the longest survival. PMID:23922984

  11. Transforming growth factor-{alpha} enhances corneal epithelial cell migration by promoting EGFR recycling.

    PubMed

    McClintock, Jennifer L; Ceresa, Brian P

    2010-07-01

    PURPOSE. The goal of this study was to determine the molecular mechanism by which transforming growth factor-alpha (TGF-alpha) is a more potent activator of epidermal growth factor receptor (EGFR)-mediated corneal wound healing than epidermal growth factor (EGF). METHODS. Telomerase immortalized human corneal epithelial (hTCEpi) cells and primary human corneal epithelial cells were tested for their ability to migrate in response to EGF and TGF-alpha. In parallel, the endocytic trafficking of the EGFR in response to these same ligands was examined using indirect immunofluorescence, immunoblots, and radioligand binding. RESULTS. TGF-alpha, compared with EGF, is a more potent activator of corneal epithelial cell migration. Although both TGF-alpha and EGF were able to induce EGFR internalization and phosphorylation, only those receptors that were stimulated with EGF progressed to lysosomal degradation. EGFRs stimulated with TGF-alpha recycled back to the plasma membrane, where they could be reactivated with ligand. CONCLUSIONS. This study reveals that EGFR-mediated cell migration is limited by ligand-stimulated downregulation of the EGFR. This limitation can be overcome by treating cells with TGF-alpha because TGF-alpha stimulates EGFR endocytosis, but not degradation. After internalization of the TGF-alpha/EGFR complex, EGFR recycles back to the plasma membrane, where it can be restimulated. This sequence of events provides the receptor multiple opportunities for stimulation. Thus, stimulation with TGF-alpha prolongs EGFR signaling compared with EGF.

  12. Co-targeting of EGFR and autophagy signaling is an emerging treatment strategy in metastatic colorectal cancer.

    PubMed

    Koustas, Evangelos; Karamouzis, Michalis V; Mihailidou, Chrysovalantou; Schizas, Dimitrios; Papavassiliou, Athanasios G

    2017-06-28

    The epidermal growth factor receptor (EGFR) and its associated pathway is a critical key regulator of CRC development and progression. The monoclonal antibodies (MoAbs) cetuximab and panitumumab, directed against EGFR, represent a major step forward in the treatment of metastatic colorectal cancer (mCRC), in terms of progression-free survival and overall survival in several clinical trials. However, the activity of anti-EGFR MoAbs appears to be limited to a subset of patients with mCRC. Studies have highlighted that acquired-resistance to anti-EGFR MoAbs biochemically converge into Ras/Raf/Mek/Erk and PI3K/Akt/mTOR pathways. Recent data also suggest that acquired-resistance to anti-EGFR MoAbs is accompanied by inhibition of EGFR internalization, ubiqutinization, degradation and prolonged downregulation. It is well established that autophagy, a self-cannibalization process, is considered to be associated with resistance to the anti-EGFR MoAbs therapy. Additionally, autophagy induced by anti-EGFR MoAbs acts as a protective response in cancer cells. Thus, inhibition of autophagy after treatment with EGFR MoAbs can result in autophagic cell death. A combination therapy comprising of anti-EGFR MoAbs and autophagy inhibitors would represent a multi-pronged approach that could be evolved into an active therapeutic strategy in mCRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effect of OPC-12759 on EGF receptor activation, p44/p42 MAPK activity, and secretion in conjunctival goblet cells.

    PubMed

    Ríos, J David; Shatos, Marie A; Urashima, Hiroki; Dartt, Darlene A

    2008-04-01

    The purpose of the study was to determine if OPC-12759 stimulates secretion from conjunctival goblet cells in culture and if it activates the EGF receptor (EGFR) and p44/p42 mitogen-activated protein kinase (MAPK) to cause mucin secretion. Conjunctival goblet cells were cultured from pieces of male rat conjunctiva. OPC-12759 was added at increasing concentrations and for varying times to the cultured cells. The cholinergic agonist carbachol was used as a positive control. In selected experiments an inhibitor of the EGFR, AG1478, or an inhibitor of the kinase that activates MAPK, U0126, were added before OPC-12759. Goblet cell secretion of high molecular weight glycoconjugates was measured by an enzyme-linked lectin assay using the lectin UEA-1. Activation of the EGFR and MAPK were determined with Western blotting analysis using antibodies specific to the phosphorylated and the total amounts of these proteins. We found that OPC-12759 induced goblet cell secretion in a time- and concentration-dependent manner. Inhibition of the EGFR with AG1478 blocked secretion stimulated by OPC-12759. Inhibition of MAPK with U0126 also blocked secretion stimulated by OPC-12759. OPC-12759 increased the phosphorylation of the EGFR and MAPK in a time-dependent manner. We concluded that OPC-12759 stimulates secretion from cultured conjunctival goblet cells by activating the EGFR, which then induces MAPK activity.

  14. Occludin is regulated by epidermal growth factor receptor activation in brain endothelial cells and brains of mice with acute liver failure.

    PubMed

    Chen, Feng; Hori, Tomohide; Ohashi, Norifumi; Baine, Ann-Marie; Eckman, Christopher B; Nguyen, Justin H

    2011-04-01

    Mechanisms of brain edema in acute liver failure (ALF) are not completely understood. We recently demonstrated that matrix metalloproteinase 9 (MMP-9) induces significant alterations to occludin in brain endothelial cells in vitro and in brains of mice with experimental ALF (Hepatology 2009;50:1914). In this study we show that MMP-9-induced transactivation of epidermal growth factor receptor (EGFR) and p38 MAPK/NFκB (mitogen-activated protein kinase/nuclear factor-kappa B) signals participate in regulating brain endothelial occludin level. Mouse brain endothelial bEnd3 cells were exposed to MMP-9 or p38 MAPK up-regulation in the presence and absence of EGFR inhibitor, p38 MAPK inhibitor, NFκB inhibitor, and/or appropriate small interfering RNA. Reverse-transcription polymerase chain reaction (RT-PCR) and western blotting were used for messenger RNA and protein expression analyses. Immunohistochemical staining and confocal microscopy were used to demonstrate cellular EGFR activation. Intraperitoneal azoxymethane was use to induce ALF in mice. Brains of comatose ALF mice were processed for histological and biochemical analyses. When bEnd3 cells were exposed to MMP-9, EGFR was significantly transactivated, followed by p38 MAPK activation, I-kappa B alpha (IκBα) degradation, NFκB activation, and suppression of occludin synthesis and expression. Similar EGFR activation and p38 MAPK/NFκB activation were found in the brains of ALF mice, and these changes were attenuated with GM6001 treatment. EGFR activation with p38 MAPK/NFκB signaling contributes to the regulation of tight junction integrity in ALF. EGFR activation may thus play an important role in vasogenic brain edema in ALF. 2011 American Association for the Study of Liver Diseases.

  15. 4-Hydroxynonenal activates Src through a non-canonical pathway that involves EGFR/PTP1B

    PubMed Central

    Zhang, Hongqiao; Forman, Henry Jay

    2015-01-01

    Src, a non-receptor protein tyrosine kinase involved in many biological processes, can be activated through both redox-dependent and independent mechanisms. 4-Hydroxy-2-nonenal (HNE) is a lipid peroxidation product that is increased in pathophysiological conditions associated with Src activation. This study examined how HNE activates human c-Src. In the canonical pathway Src activation is initiated by dephosphorylation of pTyr530 followed by conformational change that causes Src auto-phosphorylation at Tyr419 and its activation. HNE increased Src activation in both dose- and time-dependent manner, while it also increased Src phosphorylation at Tyr530 (pTyr530 Src), suggesting that HNE activated Src via a non-canonical mechanism. Protein tyrosine phosphatase 1B inhibitor (539741), at concentrations that increased basal pTyr530 Src, also increased basal Src activity and significantly reduced HNE-mediated Src activation. The EGFR inhibitor, AG1478, and EGFR silencing, abrogated HNE-mediated EGFR activation and inhibited basal and HNE-induced Src activity. In addition, AG1478 also eliminated the increase of basal Src activation by a PTP1B inhibitor. Taken together these data suggest that HNE can activate Src partly through a non-canonical pathway involving activation of EGFR and inhibition of PTP1B. PMID:26453921

  16. Targeting Epidermal Growth Factor Receptor-Related Signaling Pathways in Pancreatic Cancer.

    PubMed

    Philip, Philip A; Lutz, Manfred P

    2015-10-01

    Pancreatic cancer is aggressive, chemoresistant, and characterized by complex and poorly understood molecular biology. The epidermal growth factor receptor (EGFR) pathway is frequently activated in pancreatic cancer; therefore, it is a rational target for new treatments. However, the EGFR tyrosine kinase inhibitor erlotinib is currently the only targeted therapy to demonstrate a very modest survival benefit when added to gemcitabine in the treatment of patients with advanced pancreatic cancer. There is no molecular biomarker to predict the outcome of erlotinib treatment, although rash may be predictive of improved survival; EGFR expression does not predict the biologic activity of anti-EGFR drugs in pancreatic cancer, and no EGFR mutations are identified as enabling the selection of patients likely to benefit from treatment. Here, we review clinical studies of EGFR-targeted therapies in combination with conventional cytotoxic regimens or multitargeted strategies in advanced pancreatic cancer, as well as research directed at molecules downstream of EGFR as alternatives or adjuncts to receptor targeting. Limitations of preclinical models, patient selection, and trial design, as well as the complex mechanisms underlying resistance to EGFR-targeted agents, are discussed. Future clinical trials must incorporate translational research end points to aid patient selection and circumvent resistance to EGFR inhibitors.

  17. Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer

    DTIC Science & Technology

    2016-11-01

    available to the research community. Similarly, any cell lines generated in our studies will also be shared. The EGFR transgenic mouse models used in...Lines and Transgenic Mice Active Completed – May 31, 2015 NIH/NCI R01CA121210 Overcoming Acquired Resistance to EGFR Inhibitors in Lung Cancer...Active Active Labrecque Foundation Not Applicable A Translational Pilot Study on Serum Biomarkers of Lung Cancer Using Transgenic Mouse Models of

  18. Icariside II activates EGFR-Akt-Nrf2 signaling and protects osteoblasts from dexamethasone.

    PubMed

    Liu, Weidong; Mao, Li; Ji, Feng; Chen, Fengli; Wang, Shouguo; Xie, Yue

    2017-01-10

    The potential effect of icariside II on dexamethasone-induced osteoblast cell damages was evaluated here. In MC3T3-E1 osteoblastic cells and the primary murine osteoblasts, co-treatment with icariside II dramatically attenuated dexamethasone- induced cell death and apoptosis. Icariside II activated Akt signaling, which is required for its actions in osteoblasts. Akt inhibitors (LY294002, perifosine and MK-2206) almost abolished icariside II-induced osteoblast cytoprotection against dexamethasone. Further studies showed that icariside II activated Nrf2 signaling, downstream of Akt, to inhibit dexamethasone-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary osteoblasts. On the other hand, Nrf2 shRNA knockdown inhibited icariside II-induced anti-dexamethasone cytoprotection in MC3T3-E1 cells. Finally, we showed that icariside II induced heparin-binding EGF (HB-EGF) production and EGFR trans-activation in MC3T3-E1 cells. EGFR inhibition, via anti-HB-EGF antibody, EGFR inhibitor AG1478 or EGFR shRNA knockdown, almost blocked icariside II-induced Akt-Nrf2 activation in MC3T3-E1 cells. Collectively, we conclude that icariside II activates EGFR-Akt-Nrf2 signaling and protects osteoblasts from dexamethasone. Icariside II might have translational value for the treatment of dexamethasone-associated osteoporosis/osteonecrosis.

  19. Protein Phosphorylation Profiling Using an In Situ Proximity Ligation Assay: Phosphorylation of AURKA-Elicited EGFR-Thr654 and EGFR-Ser1046 in Lung Cancer Cells

    PubMed Central

    Chen, Tzu-Chi; Liu, Yu-Wen; Huang, Yei-Hsuan; Yeh, Yi-Chen; Chou, Teh-Ying; Wu, Yu-Chung; Wu, Chun-Chi; Chen, Yi-Rong; Cheng, Hui-Chuan; Lu, Pei-Jung; Lai, Jin-Mei; Huang, Chi-Ying F.

    2013-01-01

    The epidermal growth factor receptor (EGFR), which is up-regulated in lung cancer, involves the activation of mitogenic signals and triggers multiple signaling cascades. To dissect these EGFR cascades, we used 14 different phospho-EGFR antibodies to quantify protein phosphorylation using an in situ proximity ligation assay (in situ PLA). Phosphorylation at EGFR-Thr654 and -Ser1046 was EGF-dependent in the wild-type (WT) receptor but EGF-independent in a cell line carrying the EGFR-L858R mutation. Using a ProtoAarray™ containing ∼5000 recombinant proteins on the protein chip, we found that AURKA interacted with the EGFR-L861Q mutant. Moreover, overexpression of EGFR could form a complex with AURKA, and the inhibitors of AURKA and EGFR decreased EGFR-Thr654 and -Ser1046 phosphorylation. Immunohistochemical staining of stage I lung adenocarcinoma tissues demonstrated a positive correlation between AURKA expression and phosphorylation of EGFR at Thr654 and Ser1046 in EGFR-mutant specimens, but not in EGFR-WT specimens. The interplay between EGFR and AURKA provides an explanation for the difference in EGF dependency between EGFR-WT and EGFR-mutant cells and may provide a new therapeutic strategy for lung cancer patients carrying EGFR mutations. PMID:23520446

  20. SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells.

    PubMed

    Rybak, Adrian P; Tang, Damu

    2013-12-01

    SOX2 is an essential transcription factor for stem cells and plays a role in tumorigenesis, however its role in prostate cancer stem cells (PCSCs) remains unclear. We report here a significant upregulation of SOX2 at both mRNA and protein levels in DU145 PCSCs propagated as suspension spheres in vitro. The expression of SOX2 in DU145 PCSCs is positively regulated by epidermal growth factor receptor (EGFR) signaling. Activation of EGFR signaling, following the addition of epidermal growth factor (EGF) or ectopic expression of a constitutively-active EGFR mutant (EGFRvIII), increased SOX2 expression and the self-renewal of DU145 PCSCs. Conversely, a small molecule EGFR inhibitor (AG1478) blocked EGFR activation, reduced SOX2 expression and inhibited PCSC self-renewal activity, implicating SOX2 in mediating EGFR-dependent self-renewal of PCSCs. In line with this notion, ectopic SOX2 expression enhanced EGF-induced self-renewal of DU145 PCSCs, while SOX2 knockdown reduced PCSC self-renewal with EGF treatment no longer capable of enhancing their propagation. Furthermore, SOX2 knockdown reduced the capacity of DU145 PCSCs to grow under anchorage-independent conditions. Finally, DU145 PCSCs generated xenograft tumors more aggressively with elevated levels of SOX2 expression compared to xenograft tumors derived from non-PCSCs. Collectively, we provide evidence that SOX2 plays a critical role in EGFR-mediated self-renewal of DU145 PCSCs. © 2013.

  1. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop.

    PubMed

    Pirker, Robert; Herth, Felix J F; Kerr, Keith M; Filipits, Martin; Taron, Miquel; Gandara, David; Hirsch, Fred R; Grunenwald, Dominique; Popper, Helmut; Smit, Egbert; Dietel, Manfred; Marchetti, Antonio; Manegold, Christian; Schirmacher, Peter; Thomas, Michael; Rosell, Rafael; Cappuzzo, Federico; Stahel, Rolf

    2010-10-01

    Activating somatic mutations of the tyrosine kinase domain of epidermal growth factor receptor (EGFR) have recently been characterized in a subset of patients with advanced non-small cell lung cancer (NSCLC). Patients harboring these mutations in their tumors show excellent response to EGFR tyrosine kinase inhibitors (EGFR-TKIs). The EGFR-TKI gefitinib has been approved in Europe for the treatment of adult patients with locally advanced or metastatic NSCLC with activating mutations of the EGFR TK. Because EGFR mutation testing is not yet well established across Europe, biomarker-directed therapy only slowly emerges for the subset of NSCLC patients most likely to benefit: those with EGFR mutations. The "EGFR testing in NSCLC: from biology to clinical practice" International Association for the Study of Lung Cancer-European Thoracic Oncology Platform multidisciplinary workshop aimed at facilitating the implementation of EGFR mutation testing. Recommendations for high-quality EGFR mutation testing were formulated based on the opinion of the workshop expert group. Co-operation and communication flow between the various disciplines was considered to be of most importance. Participants agreed that the decision to request EGFR mutation testing should be made by the treating physician, and results should be available within 7 working days. There was agreement on the importance of appropriate sampling techniques and the necessity for the standardization of tumor specimen handling including fixation. Although there was no consensus on which laboratory test should be preferred for clinical decision making, all stressed the importance of standardization and validation of these tests. The recommendations of the workshop will help implement EGFR mutation testing in Europe and, thereby, optimize the use of EGFR-TKIs in clinical practice.

  2. Effect of verteporfin-PDT on epithelial growth factor receptor (EGFR) signaling pathway in cholangiocarcinoma cell lines

    NASA Astrophysics Data System (ADS)

    Andreola, Fausto; Cerec, Virginie; Pereira, Stephen P.

    2009-06-01

    EGFR, a member of the ERBB family, plays a pivotal role in carcinogenesis. EGFR overexpression is implicated in DNA repair and synergistic interactions between EGFR-targeting drugs and conventional chemo/radiotherapy have been reported in preclinical studies for different cancers but not cholangiocarcinoma (CCA). To date there are no in vitro data available on the cellular response and effect of either photodynamic therapy (PDT) or EGFR-targeting drugs on CCA. Therefore, we aimed to study the: (i) response to Verteporfin PDT and to EGFR-targeting drugs, as single agents; (ii) effect of PDT on ERBBs expression, phosporylation status and activation of its signaling pathways; (iii) response to combination of PDT and EGFR-targeting agents. We showed that two cholangiocarcinoma cell lines (HuCCT1 and TFK1 cells, intra- and extrahepatic, respectively) differentially respond to verteporfin-PDT treatment and are resistant to EGFR-targeting agents. A constitutive activation of EGFR in both cell lines was also observed, which could partly account for the observed resistance to EGFR-targeting drugs. In addition, verteporfin-PDT induced further phosphorylation of both EGFR and other Receptor Tyrosine Kinases. Mitochondria-independent apoptosis was induced by PDT in both CCA cell lines; in particular, PDT modulated the expression of members of the Inhibitor of Apoptosis (IAP) family of proteins. Interestingly, there was a PDT-induced EGFR nuclear translocation in both cell lines; co-treatment with either an EGFR-inhibitor (Cetuximab) or a nuclear import blocking agent (Wheat Germ Agglutinin) had an additive effect on PDT cell killing, thus implying a role of EGFR in repairing the potential PDT-induced DNA damage.

  3. NF-κB activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer

    PubMed Central

    Blakely, Collin M.; Pazarentzos, Evangelos; Olivas, Victor; Asthana, Saurabh; Yan, Jenny Jiacheng; Tan, Irena; Hrustanovic, Gorjan; Chan, Elton; Lin, Luping; Neel, Dana S.; Newton, William; Bobb, Kathryn; Fouts, Timothy; Meshulam, Jeffrey; Gubens, Matthew A.; Jablons, David M.; Johnson, Jeffrey R.; Bandyopadhyay, Sourav; Krogan, Nevan J.; Bivona, Trever G.

    2015-01-01

    Summary Although oncogene-targeted therapy often elicits profound initial tumor responses in patients, responses are generally incomplete because some tumor cells survive initial therapy as residual disease that enables eventual acquired resistance. The mechanisms underlying tumor cell adaptation and survival during initial therapy are incompletely understood. Here, through the study of EGFR-mutant lung adenocarcinoma we show that NF-κB signaling is rapidly engaged upon initial EGFR inhibitor treatment to promote tumor cell survival and residual disease. EGFR oncogene inhibition induced an EGFR-TRAF2-RIP1-IKK complex that stimulated an NF-κB-mediated transcriptional survival program. The direct NF-κB inhibitor PBS-1086 suppressed this adaptive survival program and increased the magnitude and duration of initial EGFR inhibitor response in multiple NSCLC models, including a patient-derived xenograft. These findings unveil NF-κB activation as a critical adaptive survival mechanism engaged by EGFR oncogene inhibition and provide rationale for EGFR and NF-κB co-inhibition to eliminate residual disease and enhance patient responses. PMID:25843712

  4. Benzo[g]quinazolin-based scaffold derivatives as dual EGFR/HER2 inhibitors.

    PubMed

    Ghorab, Mostafa M; Alsaid, Mansour S; Soliman, Aiten M; Al-Mishari, Abdullah A

    2018-12-01

    Targeting EGFR has proven to be beneficial in the treatment of several types of solid tumours. So, a series of novel 2-(4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydrobenzo[g]quinazolin-2-ylthio)-N-substituted acetamide 5-19 were synthesised from the starting material 4-(2-mercapto-4-oxobenzo[g]quinazolin-3(4H)-yl) benzenesulfonamide 4, to be evaluated as dual EGFR/HER2 inhibitors. The target compounds 5-19, were screened for their cytotoxic activity against A549 lung cancer cell line. The percentage inhibition of EGFR enzyme was measured and compared with erlotinib as the reference drug. Compounds 6, 8, 10, and 16 showed excellent EGFR inhibitory activity and were further selected for screening as dual EGFR/HER2 inhibitors. The four selected compounds showed IC 50 ranging from 0.009 to 0.026 µM for EGFR and 0.021 to 0.069 µM for the HER2 enzyme. Compound 8 was found to be the most potent in this study with IC 50 0.009 and 0.021 µM for EGFR and HER2, respectively.

  5. Hierarchical Modeling of Activation Mechanisms in the ABL and EGFR Kinase Domains: Thermodynamic and Mechanistic Catalysts of Kinase Activation by Cancer Mutations

    PubMed Central

    Dixit, Anshuman; Verkhivker, Gennady M.

    2009-01-01

    Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced stabilization of the active kinase form. The results of this study reconcile current experimental data with insights from theoretical approaches, pointing to general mechanistic aspects of activating transitions in protein kinases. PMID:19714203

  6. De novo activating epidermal growth factor mutations (EGFR) in small-cell lung cancer.

    PubMed

    Thai, Alesha; Chia, Puey L; Russell, Prudence A; Do, Hongdo; Dobrovic, Alex; Mitchell, Paul; John, Thomas

    2017-09-01

    In Australia, mutations in epidermal growth factor mutations (EGFR) occur in 15% of patients diagnosed with non-small-cell lung cancer and are found with higher frequency in female, non-smokers of Asian ethnicity. Activating mutations in the EGFR gene are rarely described in SCLC. We present two cases of de novo EGFR mutations in patients with SCLC detected in tissue and in plasma cell free DNA, both of whom were of Asian ethnicity and never-smokers. These two cases add to the growing body of evidence suggesting that screening for EGFR mutations in SCLC should be considered in patients with specific clinical features. © 2017 Royal Australasian College of Physicians.

  7. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib

    PubMed Central

    Kwak, Eunice L.; Sordella, Raffaella; Bell, Daphne W.; Godin-Heymann, Nadia; Okimoto, Ross A.; Brannigan, Brian W.; Harris, Patricia L.; Driscoll, David R.; Fidias, Panos; Lynch, Thomas J.; Rabindran, Sridhar K.; McGinnis, John P.; Wissner, Allan; Sharma, Sreenath V.; Isselbacher, Kurt J.; Settleman, Jeffrey; Haber, Daniel A.

    2005-01-01

    Non-small cell lung cancers (NSCLCs) with activating mutations in the kinase domain of the epidermal growth factor receptor (EGFR) demonstrate dramatic, but transient, responses to the reversible tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva). Some recurrent tumors have a common secondary mutation in the EGFR kinase domain, T790M, conferring drug resistance, but in other cases the mechanism underlying acquired resistance is unknown. In studying multiple sites of recurrent NSCLCs, we detected T790M in only a small percentage of tumor cells. To identify additional mechanisms of acquired resistance to gefitinib, we used NSCLC cells harboring an activating EGFR mutation to generate multiple resistant clones in vitro. These drug-resistant cells demonstrate continued dependence on EGFR and ERBB2 signaling for their viability and have not acquired secondary EGFR mutations. However, they display increased internalization of ligand-activated EGFR, consistent with altered receptor trafficking. Although gefitinib-resistant clones are cross-resistant to related anilinoquinazolines, they demonstrate sensitivity to a class of irreversible inhibitors of EGFR. These inhibitors also show effective inhibition of signaling by T790M-mutant EGFR and killing of NSCLC cells with the T790M mutation. Both mechanisms of gefitinib resistance are therefore circumvented by irreversible tyrosine kinase inhibitors. Our findings suggest that one of these, HKI-272, may prove highly effective in the treatment of EGFR-mutant NSCLCs, including tumors that have become resistant to gefitinib or erlotinib. PMID:15897464

  8. Identification of the zinc finger 216 (ZNF216) in human carcinoma cells: a potential regulator of EGFR activity

    PubMed Central

    Mincione, Gabriella; Di Marcantonio, Maria Carmela; Tarantelli, Chiara; Savino, Luca; Ponti, Donatella; Marchisio, Marco; Lanuti, Paola; Sancilio, Silvia; Calogero, Antonella; Di Pietro, Roberta; Muraro, Raffaella

    2016-01-01

    Epidermal Growth Factor Receptor (EGFR), a member of the ErbB family of receptor tyrosine kinase (RTK) proteins, is aberrantly expressed or deregulated in tumors and plays pivotal roles in cancer onset and metastatic progression. ZNF216 gene has been identified as one of Immediate Early Genes (IEGs) induced by RTKs. Overexpression of ZNF216 protein sensitizes 293 cell line to TNF-α induced apoptosis. However, ZNF216 overexpression has been reported in medulloblastomas and metastatic nasopharyngeal carcinomas. Thus, the role of this protein is still not clearly understood. In this study, the inverse correlation between EGFR and ZNF216 expression was confirmed in various human cancer cell lines differently expressing EGFR. EGF treatment of NIH3T3 cells overexpressing both EGFR and ZNF216 (NIH3T3-EGFR/ZNF216), induced a long lasting activation of EGFR in the cytosolic fraction and an accumulation of phosphorylated EGFR (pEGFR) more in the nuclear than in the cytosolic fraction compared to NIH3T3-EGFR cells. Moreover, EGF was able to stimulate an increased expression of ZNF216 in the cytosolic compartment and its nuclear translocation in a time-dependent manner in NIH3T3-EGFR/ZNF216. A similar trend was observed in A431 cells endogenously expressing the EGFR and transfected with Znf216. The increased levels of pEGFR and ZNF216 in the nuclear fraction of NIH3T3-EGFR/ZNF216 cells were paralleled by increased levels of phospho-MAPK and phospho-Akt. Surprisingly, EGF treatment of NIH3T3-EGFR/ZNF216 cells induced a significant increase of apoptosis thus indicating that ZNF216 could sensitize cells to EGF-induced apoptosis and suggesting that it may be involved in the regulation and effects of EGFR signaling. PMID:27732953

  9. Antitumor efficacy of triple monoclonal antibody inhibition of epidermal growth factor receptor (EGFR) with MM151 in EGFR-dependent and in cetuximab-resistant human colorectal cancer cells

    PubMed Central

    Napolitano, Stefania; Martini, Giulia; Martinelli, Erika; Della Corte, Carminia Maria; Morgillo, Floriana; Belli, Valentina; Cardone, Claudia; Matrone, Nunzia; Ciardiello, Fortunato; Troiani, Teresa

    2017-01-01

    Purpose We investigated the effect of triple monoclonal antibody inhibition of EGFR to overcome acquired resistance to first generation of anti-EGFR inhibitors. Experimental design MM151 is a mixture of three different monoclonal IgG1 antibodies directed toward three different, non-overlapping, epitopes of the EGFR. We performed an in vivo study by using human CRC cell lines (SW48, LIM 1215 and CACO2) which are sensitive to EGFR inhibitors, in order to evaluate the activity of MM151 as compared to standard anti-EGFR mAbs, such as cetuximab, as single agent or in a sequential strategy of combination MM151 with irinotecan (induction therapy) followed by MM151 with a selective MEK1/2 inhibitor (MEKi) (maintenance therapy). Furthermore, the ability of MM151 to overcome acquired resistance to cetuximab has been also evaluated in cetuximab-refractory CRC models. Results MM151 shown stronger antitumor activity as compared to cetuximab. The maintenance treatment with MM151 plus MEKi resulted the most effective therapeutic modality. In fact, this combination caused an almost complete suppression of tumor growth in SW48, LIM 1215 and CACO2 xenografts model at 30 week. Moreover, in this treatment group, mice with no evidence of tumor were more than double as compared to single agent treated mice. Its superior activity has also been demonstrated, in cetuximab-refractory CRC models. Conclusions These results provide experimental evidence that more efficient and complete EGFR blockade may determine better antitumor activity and could contribute to prevent and/or overcome acquired resistance to EGFR inhibitors. PMID:29137301

  10. EGFR transactivation is involved in TNF-α-induced expression of thymic stromal lymphopoietin in human keratinocyte cell line.

    PubMed

    Segawa, Ryosuke; Shigeeda, Kenichi; Hatayama, Takahiro; Dong, Jiangxu; Mizuno, Natsumi; Moriya, Takahiro; Hiratsuka, Masahiro; Hirasawa, Noriyasu

    2018-03-01

    Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine involved in the pathology of inflammatory skin diseases, such as atopic dermatitis and psoriasis. Tumor necrosis factor (TNF)-α, a key cytokine in inflammatory skin diseases, is a known TSLP inducer. TNF-α activates NF-κB and induces transactivation of epidermal growth factor receptor (EGFR) in epithelial cells. However, the detailed mechanism of TSLP induction by TNF-α has remained unclear. We investigated the involvement of TNF-α-induced EGFR transactivation in TSLP expression. HaCaT cells were stimulated with TNF-α or EGF in the presence or absence of an EGFR kinase inhibitor or other signaling inhibitors. The expression of TSLP mRNA was analyzed by RT-PCR and the phosphorylation level of signal proteins was analyzed by western blot. TSLP promoter and NF-κB transcription activities were analyzed by luciferase assay. TNF-α-induced TSLP expression was inhibited by the EGFR kinase inhibitor AG1478. While TSLP expression was induced by EGF, it was inhibited by the MEK inhibitor, U0126. Inhibitors of p38 and ADAM proteases suppressed the TNF-α-induced TSLP expression and EGFR phosphorylation, but not the EGF-induced expression. TNF-α-induced EGFR transactivation results in TSLP induction through ERK activation. The activation of p38 and ADAM proteases mediates TNF-α-induced EGFR phosphorylation. These findings suggested that the TNF-α-induced EGFR transactivation pathway could be a target for the treatment of inflammatory skin diseases. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  11. Blockade of epidermal growth factor receptor signaling in tumor cells and tumor-associated endothelial cells for therapy of androgen-independent human prostate cancer growing in the bone of nude mice.

    PubMed

    Kim, Sun-Jin; Uehara, Hisanori; Karashima, Takashi; Shepherd, David L; Killion, Jerald J; Fidler, Isaiah J

    2003-03-01

    We determined whether blockade of the epidermal growth factor receptor (EGF-R) signaling pathway by oral administration of the EGF-R tyrosine kinase inhibitor (PKI 166) alone or in combination with injectable Taxol inhibits the growth of PC-3MM2 human prostate cancer cells in the bone of nude mice. Male nude mice implanted with PC-3MM2 cells in the tibia were treated with oral administrations of PKI 166 or PKI 166 plus injectable Taxol beginning 3 days after implantation. The incidence and size of bone tumors and destruction of bone were determined by digitalized radiography. Expression of epidermal growth factor (EGF), EGF-R, and activated EGF-R in tumor cells and tumor-associated endothelial cells was determined by immunohistochemistry. Oral administration of PKI 166 or PKI 166 plus injectable Taxol reduced the incidence and size of bone tumors and destruction of bone. Immunohistochemical analysis revealed that PC-3MM2 cells growing adjacent to the bone expressed high levels of EGF and activated EGF-R, whereas tumor cells in the adjacent musculature did not. Moreover, endothelial cells within the bone tumor lesions, but not in uninvolved bone or tumors in the muscle, expressed high levels of activated EGF-R. Treatment with PKI 166 and more so with PKI 166 plus Taxol significantly inhibited phosphorylation of EGF-R on tumor and endothelial cells and induced significant apoptosis and endothelial cells within tumor lesions. These data indicate that endothelial cells exposed to EGF produced by tumor cells express activated EGF-R and that targeting EGF-R can produce significant therapeutic effects against prostate cancer bone metastasis.

  12. Short-Course Treatment With Gefitinib Enhances Curative Potential of Radiation Therapy in a Mouse Model of Human Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bokobza, Sivan M.; Jiang, Yanyan; Weber, Anika M.

    2014-03-15

    Purpose: To evaluate the combination of radiation and an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in preclinical models of human non-small cell lung cancer. Methods and Materials: Sensitivity to an EGFR TKI (gefitinib) or radiation was assessed using proliferation assays and clonogenic survival assays. Effects on receptor signal transduction pathways (pEGFR, pAKT, pMAPK) and apoptosis (percentage of cleaved PARP Poly (ADP-ribose) polymerase (PARP)) were assessed by Western blotting. Radiation-induced DNA damage was assessed by γH2AX immunofluorescence. Established (≥100 mm{sup 3}) EGFR-mutated (HCC287) or EGFR wild-type (A549) subcutaneous xenografts were treated with radiation (10 Gy, day 1) or gefitinib (50 mg/kg,more » orally, on days 1-3) or both. Results: In non-small cell lung cancer (NSCLC) cell lines with activating EGFR mutations (PC9 or HCC827), gefitinib treatment markedly reduced pEGFR, pAKT, and pMAPK levels and was associated with an increase in cleaved PARP but not in γH2AX foci. Radiation treatment increased the mean number of γH2AX foci per cell but did not significantly affect EGFR signaling. In contrast, NSCLC cell lines with EGFR T790M (H1975) or wild-type EGFR (A549) were insensitive to gefitinib treatment. The combination of gefitinib and radiation treatment in cell culture produced additive cell killing with no evidence of synergy. In xenograft models, a short course of gefitinib (3 days) did not significantly increase the activity of radiation treatment in wild-type EGFR (A549) tumors (P=.27), whereas this combination markedly increased the activity of radiation (P<.001) or gefitinib alone (P=.002) in EGFR-mutated HCC827 tumors, producing sustained tumor regressions. Conclusions: Gefitinib treatment increases clonogenic cell killing by radiation but only in cell lines sensitive to gefitinib alone. Our data suggest additive rather than synergistic interactions between gefitinib and radiation and that a combination of short-course gefitinib and high-dose/-fraction radiation may have the greatest potential against the subsets of lung cancers harboring activating mutations in the EGFR gene.« less

  13. Constitutively Activated STAT3 Frequently Coexpresses with Epidermal Growth Factor Receptor in High-Grade Gliomas and Targeting STAT3 Sensitizes Them to Iressa and Alkylators

    PubMed Central

    Lo, Hui-Wen; Cao, Xinyu; Zhu, Hu; Ali-Osman, Francis

    2009-01-01

    Purpose The goals of this study are to elucidate the relationship of the oncogenic transcription factor signal transducer and activator of transcription 3(STAT3) with glioma aggressiveness and to understand the role of high STAT3 activity in the resistance of malignant gliomas and medulloblastomas to chemotherapy. Experimental Design Immunohistochemical staining and biochemical methods were used to examine the extent of STAT3 activation and EGFR expression in primary specimens and cell lines, respectively. Cellular response to drug treatments was determined using cell cytotoxicity and clonogenic growth assays. Results We found STAT3 to be constitutively activated in 60% of primary high-grade/malignant gliomas and the extent of activation correlated positively with glioma grade. High levels of activated/phosphorylated STAT3 were also present in cultured human malignant glioma and medulloblastoma cells. Three STAT3-activating kinases, Janus-activated kinase 2 (JAK2), EGFR, and EGFRvIII, contributed to STAT3 activation. An inhibitor toJAK2/STAT3, JSI-124, significantly reduced expression of STAT3 target genes, suppressed cancer cell growth, and induced apoptosis. Furthermore, we found that STAT3 constitutive activation coexisted with EGFR expression in 27.2% of primary high-grade/malignant gliomas and such coexpression correlated positively with glioma grade. Combination of an anti-EGFR agent Iressa and a JAK2/STAT3 inhibitor synergistically suppressed STAT3 activation and potently killed glioblastoma cell lines that expressed EGFR or EGFRvIII. JSI-124 also sensitized malignant glioma and medulloblastoma cells to temozolomide, 1,3-bis(2-chloroethyl)-1-nitrosourea, and cisplatin in which a synergism existed between JSI-124 and cisplatin. Conclusion STAT3 constitutive activation, alone and in concurrence with EGFR expression, plays an important role in high-grade/malignant gliomas and targeting STAT3/JAK2 sensitizes these tumors to anti-EGFR and alkylating agents. PMID:18829483

  14. ErbB activation signatures as potential biomarkers for anti-ErbB3 treatment in HNSCC.

    PubMed

    Alvarado, Diego; Ligon, Gwenda F; Lillquist, Jay S; Seibel, Scott B; Wallweber, Gerald; Neumeister, Veronique M; Rimm, David L; McMahon, Gerald; LaVallee, Theresa M

    2017-01-01

    Head and neck squamous cell carcinoma (HNSCC) accounts for 3-5% of all tumor types and remains an unmet medical need with only two targeted therapies approved to date. ErbB3 (HER3), the kinase-impaired member of the EGFR/ErbB family, has been implicated as a disease driver in a number of solid tumors, including a subset of HNSCC. Here we show that the molecular components required for ErbB3 activation, including its ligand neuregulin-1 (NRG1), are highly prevalent in HNSCC and that HER2, but not EGFR, is the major activating ErbB3 kinase partner. We demonstrate that cetuximab treatment primarily inhibits the ERK signaling pathway and KTN3379, an anti-ErbB3 monoclonal antibody, inhibits the AKT signaling pathway, and that dual ErbB receptor inhibition results in enhanced anti-tumor activity in HNSCC models. Surprisingly, we found that while NRG1 is required for ErbB3 activation, it was not sufficient to fully predict for KTN3379 activity. An evaluation of HNSCC patient samples demonstrated that NRG1 expression was significantly associated with expression of the EGFR ligands amphiregulin (AREG) and transforming growth factor α (TGFα). Furthermore, NRG1-positive HNSCC cell lines that secreted high levels of AREG and TGFα or contained high levels of EGFR homodimers (H11D) demonstrated a better response to KTN3379. Although ErbB3 and EGFR activation are uncoupled at the receptor level, their respective signaling pathways are linked through co-expression of their respective ligands. We propose that NRG1 expression and EGFR activation signatures may enrich for improved efficacy of anti-ErbB3 therapeutic mAb approaches when combined with EGFR-targeting therapies in HNSCC.

  15. Physical Activity Is not Associated with Estimated Glomerular Filtration Rate among Young and Middle-Aged Adults: Results from the Population-Based Longitudinal Doetinchem Study

    PubMed Central

    Herber-Gast, Gerrie-Cor M.; Hulsegge, Gerben; Hartman, Linda; Verschuren, W. M. Monique; Stehouwer, Coen D. A.; Gansevoort, Ron T.; Bakker, Stephan J. L.; Spijkerman, Annemieke M. W.

    2015-01-01

    There is debate as to whether physical inactivity is associated with reduced kidney function. We studied the prospective association of (changes in) physical activity with estimated glomerular filtration rate (eGFR) in adult men and women. We included 3,935 participants aged 26 to 65 years from the Doetinchem Cohort study, examined every 5 years for 15 years. Physical activity was assessed at each round using the Cambridge Physical Activity Index. Using the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equation, GFR was estimated from routinely measured cystatin C concentrations, examining all available samples per participant in one assay run. We determined the association between 1) physical activity and eGFR and 2) 5-year changes in physical activity (becoming inactive, staying inactive, staying active, becoming active) and eGFR, using time-lagged generalized estimating equation analyses. At baseline, 3.6% of the participants were inactive, 18.5% moderately inactive, 26.0% moderately active, and 51.9% active. The mean (± SD) eGFR was 107.9 (± 14.5) mL/min per 1.73 m2. Neither physical activity nor 5-year changes in physical activity were associated with eGFR at the subsequent round. The multivariate adjusted βeGFR was 0.57 mL/min per 1.73 m2 (95% Confidence Interval (CI) -1.70, 0.56) for inactive compared to active participants. Studying changes in physical activity between rounds, the adjusted βeGFR was -1.10 mL/min per 1.73 m2 (95% CI -4.50, 2.30) for those who stayed inactive compared with participants who became active. Physical activity was not associated with eGFR in this population-based study of adults. PMID:26465150

  16. Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jie; Zeng, Li-Fan; Shen, Weihua

    Highlights: •SHP2 is required for EGFR inhibitor resistant NSCLC H1975 cell proliferation. •SHP2 inhibitor blocks EGF-stimulated ERK1/2 activation and proliferation. •SHP2 inhibitor exhibits marked anti-tumor activity in H1975 xenograft mice. •SHP2 inhibitor synergizes with PI3K inhibitor in suppressing cell growth. •Targeting SHP2 represents a novel strategy for EGFR inhibitor resistant NSCLCs. -- Abstract: Targeted therapy with inhibitors of epidermal growth factor receptor (EGFR) has produced a noticeable benefit to non-small cell lung cancer (NSCLC) patients whose tumors carry activating mutations (e.g. L858R) in EGFR. Unfortunately, these patients develop drug resistance after treatment, due to acquired secondary gatekeeper mutations in EGFRmore » (e.g. T790M). Given the critical role of SHP2 in growth factor receptor signaling, we sought to determine whether targeting SHP2 could have therapeutic value for EGFR inhibitor resistant NSCLC. We show that SHP2 is required for EGF-stimulated ERK1/2 phosphorylation and proliferation in EGFR inhibitor resistant NSCLC cell line H1975, which harbors the EGFR T790M/L858R double-mutant. We demonstrate that treatment of H1975 cells with II-B08, a specific SHP2 inhibitor, phenocopies the observed growth inhibition and reduced ERK1/2 activation seen in cells treated with SHP2 siRNA. Importantly, we also find that II-B08 exhibits marked anti-tumor activity in H1975 xenograft mice. Finally, we observe that combined inhibition of SHP2 and PI3K impairs both the ERK1/2 and PI3K/AKT signaling axes and produces significantly greater effects on repressing H1975 cell growth than inhibition of either protein individually. Collectively, these results suggest that targeting SHP2 may represent an effective strategy for treatment of EGFR inhibitor resistant NSCLCs.« less

  17. Cigarette smoke enhances oncogene addiction to c-MET and desensitizes EGFR-expressing non-small cell lung cancer to EGFR TKIs.

    PubMed

    Tu, Chih-Yen; Cheng, Fang-Ju; Chen, Chuan-Mu; Wang, Shu-Ling; Hsiao, Yu-Chun; Chen, Chia-Hung; Hsia, Te-Chun; He, Yu-Hao; Wang, Bo-Wei; Hsieh, I-Shan; Yeh, Yi-Lun; Tang, Chih-Hsin; Chen, Yun-Ju; Huang, Wei-Chien

    2018-05-01

    Cigarette smoking is one of the leading risks for lung cancer and is associated with the insensitivity of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). However, it remains undetermined whether and how cigarette smoke affects the therapeutic efficacy of EGFR TKIs. In this study, our data showed that chronic exposure to cigarette smoke extract (CSE) or tobacco smoke-derived carcinogen benzo[α]pyrene, B[α]P, but not nicotine-derived nitrosamine ketone (NNK), reduced the sensitivity of wild-type EGFR-expressing NSCLC cells to EGFR TKIs. Treatment with TKIs almost abolished EGFR tyrosine kinase activity but did not show an inhibitory effect on downstream Akt and ERK pathways in B[α]P-treated NSCLC cells. CSE and B[α]P transcriptionally upregulate c-MET and activate its downstream Akt pathway, which is not inhibited by EGFR TKIs. Silencing of c-MET reduces B[α]P-induced Akt activation. The CSE-treated NSCLC cells are sensitive to the c-MET inhibitor crizotinib. These findings suggest that cigarette smoke augments oncogene addiction to c-MET in NSCLC cells and that MET inhibitors may show clinical benefits for lung cancer patients with a smoking history. © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  18. EGFR blockade enriches for lung cancer stem-like cells through Notch3-dependent signaling

    PubMed Central

    Arasada, Rajeswara Rao; Amann, Joseph M.; Rahman, Mohammad A; Huppert, Stacey S.; Carbone, David P.

    2014-01-01

    Mutations in the epidermal growth factor receptor (EGFR) are the most common actionable genetic abnormalities yet discovered in lung cancer. However, targeting these mutations with kinase inhibitors is not curative in advanced disease and has yet to demonstrate an impact on potentially curable, early-stage disease, with some data suggesting adverse outcomes. Here, we report that treatment of EGFR-mutated lung cancer cell lines with erlotinib, while showing robust cell death, enriches the ALDH+ stem-like cells through EGFR-dependent activation of Notch3. Additionally, we demonstrate that erlotinib treatment increases the clonogenicity of lung cancer cells in a sphere-forming assay, suggesting increased stem-like cell potential. We demonstrate that inhibition of EGFR kinase activity leads to activation of Notch transcriptional targets in a gamma secretase inhibitor sensitive manner and causes Notch activation. leading to an increase in ALDH high+ cells. We also find a kinase-dependent physical association between the Notch3 and EGFR receptors and tyrosine phosphorylation of Notch3. This could explain the worsened survival observed in some studies of erlotinib treatment at early-stage disease, and suggests that specific dual targeting might overcome this adverse effect. PMID:25125655

  19. Triple Inhibition of EGFR, Met, and VEGF Suppresses Regrowth of HGF-Triggered, Erlotinib-Resistant Lung Cancer Harboring an EGFR Mutation

    PubMed Central

    Nakade, Junya; Takeuchi, Shinji; Nakagawa, Takayuki; Ishikawa, Daisuke; Sano, Takako; Nanjo, Shigeki; Yamada, Tadaaki; Ebi, Hiromichi; Zhao, Lu; Yasumoto, Kazuo; Matsumoto, Kunio; Yonekura, Kazuhiko

    2014-01-01

    Introduction: Met activation by gene amplification and its ligand, hepatocyte growth factor (HGF), imparts resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in EGFR-mutant lung cancer. We recently reported that Met activation by HGF stimulates the production of vascular endothelial growth factor (VEGF) and facilitates angiogenesis, which indicates that HGF induces EGFR-TKI resistance and angiogenesis. This study aimed to determine the effect of triple inhibition of EGFR, Met, and angiogenesis on HGF-triggered EGFR-TKI resistance in EGFR-mutant lung cancer. Methods: Three clinically approved drugs, erlotinib (an EGFR inhibitor), crizotinib (an inhibitor of anaplastic lymphoma kinase and Met), and bevacizumab (anti-VEGF antibody), and TAS-115, a novel dual TKI for Met and VEGF receptor 2, were used in this study. EGFR-mutant lung cancer cell lines PC-9, HCC827, and HGF-gene–transfected PC-9 (PC-9/HGF) cells were examined. Results: Crizotinib and TAS-115 inhibited Met phosphorylation and reversed erlotinib resistance and VEGF production triggered by HGF in PC-9 and HCC827 cells in vitro. Bevacizumab and TAS-115 inhibited angiogenesis in PC-9/HGF tumors in vivo. Moreover, the triplet erlotinib, crizotinib, and bevacizumab, or the doublet erlotinib and TAS-115 successfully inhibited PC-9/HGF tumor growth and delayed tumor regrowth associated with sustained tumor vasculature inhibition even after cessation of the treatment. Conclusion: These results suggest that triple inhibition of EGFR, HGF/Met, and VEGF/VEGF receptor 2, by either a triplet of clinical drugs or TAS-115 combined with erlotinib, may be useful for controlling progression of EGFR-mutant lung cancer by reversing EGFR-TKI resistance and for inhibiting angiogenesis. PMID:24828661

  20. Erlotinib for Patients with EGFR Wild-Type Metastatic NSCLC: a Retrospective Biomarkers Analysis.

    PubMed

    Inno, Alessandro; Di Noia, Vincenzo; Martini, Maurizio; D'Argento, Ettore; Di Salvatore, Mariantonietta; Arena, Vincenzo; Schinzari, Giovanni; Orlandi, Armando; Larocca, Luigi Maria; Cassano, Alessandra; Barone, Carlo

    2018-03-20

    Erlotinib is approved for the treatment of patients with EGFR mutation positive, metastatic NSCLC. It is also approved as second/third line therapy for EGFR mutation negative patients, but in this setting the benefit of erlotinib is modest and there is no validated biomarker for selecting EGFR wild-type patients who may benefit the most from the treatment. We retrospectively assessed EGFR and K-RAS mutational status, and EGFR, c-MET and IGF1-R expression in tumor samples of 72 patients with metastatic NSCLC treated with erlotinib after at least one prior line of chemotherapy, from 2008 to 2012. We analyzed the association between biomarkers and outcome (RR, PFS, and OS). EGFR mutated patients achieved a better RR (56% vs 8%, p = .002), PFS (10 vs 3 months, HR 0.53, p = 0.48) and OS (20 vs 6 months, HR 0.55, p = .07), compared to EGFR wild-type patients. Among 63 EGFR wild-type patients, those with EGFR high-expression had a better outcome in terms of RR (40% vs 2%, p = .002), PFS (7.5 vs 2 months, HR 0.45, p = .007) and OS (30 vs 5 months, HR 0.34, p < .001) compared to patients with EGFR intermediate or low/negative-expression. IGF1-R expression, c-MET expression and K-RAS mutational status did not significantly affect the outcome; however, no patients with K-RAS mutation or c-MET high-expression achieved an objective response. In patients with metastatic, chemo-refractory EGFR wild-type NSCLC, EGFR high-expression may represent a positive predictor of activity for erlotinib, whereas K-RAS mutation and c-MET high-expression may predict lack of activity. These findings deserve further prospective evaluation.

  1. Discovery and characterization of a novel irreversible EGFR mutants selective and potent kinase inhibitor CHMFL-EGFR-26 with a distinct binding mode

    PubMed Central

    Chen, Cheng; Yu, Kailin; Zou, Fengming; Wang, Wenchao; Wang, Wei; Wu, Jiaxin; Liu, Juan; Wang, Beilei; Wang, Li; Ren, Tao; Zhang, Shanchun; Yun, Cai-Hong; Liu, Jing; Liu, Qingsong

    2017-01-01

    EGFR T790M mutation accounts for about 40-55% drug resistance for the first generation EGFR kinase inhibitors in the NSCLC. Starting from ibrutinib, a highly potent irreversible BTK kinase inhibitor, which was also found to be moderately active to EGFR T790M mutant, we discovered a highly potent irreversible EGFR inhibitor CHMFL-EGFR-26, which is selectively potent against EGFR mutants including L858R, del19, and L858R/T790M. It displayed proper selectivity window between the EGFR mutants and the wide-type. CHMFL-EGFR-26 exhibited good selectivity profile among 468 kinases/mutants tested (S score (1)=0.02). In addition, X-ray crystallography revealed a distinct “DFG-in” and “cHelix-out” inactive binding mode between CHMFL-EGFR-26 and EGFR T790M protein. The compound showed highly potent anti-proliferative efficacy against EGFR mutant but not wide-type NSCLC cell lines through effective inhibition of the EGFR mediated signaling pathway, induction of apoptosis and arresting of cell cycle progression. CHMFL-EGFR-26 bore acceptable pharmacokinetic properties and demonstrated dose-dependent tumor growth suppression in the H1975 (EGFR L858R/T790M) and PC-9 (EGFR del19) inoculated xenograft mouse models. Currently CHMFL-EGFR-26 is undergoing extensive pre-clinical evaluation for the clinical trial purpose. PMID:28407693

  2. EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas

    PubMed Central

    Fukuoka, Hidenori; Cooper, Odelia; Ben-Shlomo, Anat; Mamelak, Adam; Ren, Song-Guang; Bruyette, Dave; Melmed, Shlomo

    2011-01-01

    Cushing disease is a condition in which the pituitary gland releases excessive adrenocorticotropic hormone (ACTH) as a result of an adenoma arising from the ACTH-secreting cells in the anterior pituitary. ACTH-secreting pituitary adenomas lead to hypercortisolemia and cause significant morbidity and mortality. Pituitary-directed medications are mostly ineffective, and new treatment options are needed. As these tumors express EGFR, we tested whether EGFR might provide a therapeutic target for Cushing disease. Here, we show that in surgically resected human and canine corticotroph cultured tumors, blocking EGFR suppressed expression of proopiomelanocortin (POMC), the ACTH precursor. In mouse corticotroph EGFR transfectants, ACTH secretion was enhanced, and EGF increased Pomc promoter activity, an effect that was dependent on MAPK. Blocking EGFR activity with gefitinib, an EGFR tyrosine kinase inhibitor, attenuated Pomc expression, inhibited corticotroph tumor cell proliferation, and induced apoptosis. As predominantly nuclear EGFR expression was observed in canine and human corticotroph tumors, we preferentially targeted EGFR to mouse corticotroph cell nuclei, which resulted in higher Pomc expression and ACTH secretion, both of which were inhibited by gefitinib. In athymic nude mice, EGFR overexpression enhanced the growth of explanted ACTH-secreting tumors and further elevated serum corticosterone levels. Gefitinib treatment decreased both tumor size and corticosterone levels; it also reversed signs of hypercortisolemia, including elevated glucose levels and excess omental fat. These results indicate that inhibiting EGFR signaling may be a novel strategy for treating Cushing disease. PMID:22105169

  3. Cellular uptake mediated by epidermal growth factor receptor facilitates the intracellular activity of phosphorothioate-modified antisense oligonucleotides

    PubMed Central

    Wang, Shiyu; Allen, Nickolas; Vickers, Timothy A; Revenko, Alexey S; Sun, Hong; Liang, Xue-hai; Crooke, Stanley T

    2018-01-01

    Abstract Chemically modified antisense oligonucleotides (ASOs) with phosphorothioate (PS) linkages have been extensively studied as research and therapeutic agents. PS-ASOs can enter the cell and trigger cleavage of complementary RNA by RNase H1 even in the absence of transfection reagent. A number of cell surface proteins have been identified that bind PS-ASOs and mediate their cellular uptake; however, the mechanisms that lead to productive internalization of PS-ASOs are not well understood. Here, we characterized the interaction between PS-ASOs and epidermal growth factor receptor (EGFR). We found that PS-ASOs trafficked together with EGF and EGFR into clathrin-coated pit structures. Their co-localization was also observed at early endosomes and inside enlarged late endosomes. Reduction of EGFR decreased PS-ASO activity without affecting EGF-mediated signaling pathways and overexpression of EGFR increased PS-ASO activity in cells. Furthermore, reduction of EGFR delays PS-ASO trafficking from early to late endosomes. Thus, EGFR binds to PS-ASOs at the cell surface and mediates essential steps for active (productive) cellular uptake of PS-ASOs through its cargo-dependent trafficking processes which migrate PS-ASOs from early to late endosomes. This EGFR-mediated process can also serve as an additional model to better understand the mechanism of intracellular uptake and endosomal release of PS-ASOs. PMID:29514240

  4. Irreversible Inhibition of EGFR: Modeling the Combined Pharmacokinetic-Pharmacodynamic Relationship of Osimertinib and Its Active Metabolite AZ5104.

    PubMed

    Yates, James W T; Ashton, Susan; Cross, Darren; Mellor, Martine J; Powell, Steve J; Ballard, Peter

    2016-10-01

    Osimertinib (AZD9291) is a potent, selective, irreversible inhibitor of EGFR-sensitizing (exon 19 and L858R) and T790M-resistant mutation. In vivo, in the mouse, it is metabolized to an active des-methyl metabolite, AZ5104. To understand the therapeutic potential in patients, this study aimed to assess the relationship between osimertinib pharmacokinetics, the pharmacokinetics of the active metabolite, the pharmacodynamics of phosphorylated EGFR reduction, and efficacy in mouse xenograft models of EGFR-driven cancers, including two NSCLC lines. Osimertinib was dosed in xenografted models of EGFR-driven cancers. In one set of experiments, changes in phosphorylated EGFR were measured to confirm target engagement. In a second set of efficacy studies, the resulting changes in tumor volume over time after repeat dosing of osimertinib were observed. To account for the contributions of both molecules, a mathematical modeling approach was taken to integrate the resulting datasets. The model was able to describe the pharmacokinetics, pharmacodynamics, and efficacy in A431, PC9, and NCI-H1975 xenografts, with the differences in sensitivity described by the varying potency against wild-type, sensitizing, and T790M-mutant EGFR and the phosphorylated EGFR reduction required to reduce tumor volume. It was inferred that recovery of pEGFR is slower after chronic dosing due to reduced resynthesis. It was predicted and further demonstrated that although inhibition is irreversible, the resynthesis of EGFR is such that infrequent intermittent dosing is not as efficacious as once daily dosing. Mol Cancer Ther; 15(10); 2378-87. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. Receptor tyrosine kinase inhibitors and cytotoxic drugs affect pleural mesothelioma cell proliferation: insight into EGFR and ERK1/2 as antitumor targets.

    PubMed

    Barbieri, Federica; Würth, Roberto; Favoni, Roberto E; Pattarozzi, Alessandra; Gatti, Monica; Ratto, Alessandra; Ferrari, Angelo; Bajetto, Adriana; Florio, Tullio

    2011-11-15

    Malignant pleural mesothelioma (MPM) is an aggressive chemotherapy-resistant cancer. Up-regulation of epidermal growth factor receptor (EGFR) plays an important role in MPM development and EGFR-tyrosine kinase inhibitors (TKIs) may represent novel therapeutic options. We tested the effects of the EGFR TKIs gefitinib and erlotinib and TKIs targeted to other growth factors (VEGFR and PDGFR), in comparison to standard antineoplastic agents, in two human MPM cell lines, IST-Mes2 and ZL55. All drugs showed IC(50) values in the micromolar range: TKIs induced cytostatic effects at concentrations up to the IC(50,) while conventional drug growth-inhibitory activity was mainly cytotoxic. Moreover, the treatment of IST-Mes2 with TKIs (gefitinib and imatinib mesylate) in combination with cisplatin and gemcitabine did not show additivity. Focusing on the molecular mechanisms underlying the antiproliferative and pro-apoptotic effects of EGFR-TKIs, we observed that gefitinib induced the formation and stabilization of inactive EGFR homodimers, even in absence of EGF, as demonstrated by EGFR B(max) and number of sites/cell. The analysis of downstream effectors of EGFR signaling demonstrated that EGF-induced proliferation, reverted by gefitinib, involved ERK1/2 activation, independently from Akt pathway. Gefitinib inhibits MPM cell growth and survival, preventing EGF-dependent activation of ERK1/2 pathway by blocking EGFR-TK phosphorylation and stabilizing inactive EGFR dimers. Along with the molecular definition of TKIs pharmacological efficacy in vitro, these results may contribute to delve deep into the promising but still controversial role for targeted and conventional drugs in the therapy of MPM. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. | Office of Cancer Genomics

    Cancer.gov

    Amplification of epidermal growth factor receptor (EGFR) and its active mutant EGFRvIII occurs frequently in glioblastoma (GBM). While EGFR and EGFRvIII play critical roles in pathogenesis, targeted therapy with EGFR-tyrosine kinase inhibitors (TKIs) or antibodies has only shown limited efficacy in patients. Here we discuss signaling pathways mediated by EGFR/EGFRvIII, current therapeutics, and novel strategies to target EGFR/EGFRvIII-amplified GBM.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanan, Emily J.; Eigenbrot, Charles; Bryan, Marian C.

    Activating mutations within the epidermal growth factor receptor (EGFR) kinase domain, commonly L858R or deletions within exon 19, increase EGFR-driven cell proliferation and survival and are correlated with impressive responses to the EGFR inhibitors erlotinib and gefitinib in nonsmall cell lung cancer patients. Approximately 60% of acquired resistance to these agents is driven by a single secondary mutation within the EGFR kinase domain, specifically substitution of the gatekeeper residue threonine-790 with methionine (T790M). Due to dose-limiting toxicities associated with inhibition of wild-type EGFR (wtEGFR), we sought inhibitors of T790M-containing EGFR mutants with selectivity over wtEGFR. Here in this paper, wemore » describe the evolution of HTS hits derived from Jak2/Tyk2 inhibitors into selective EGFR inhibitors. X-ray crystal structures revealed two distinct binding modes and enabled the design of a selective series of novel diaminopyrimidine-based inhibitors with good potency against T790M-containing mutants of EGFR, high selectivity over wtEGFR, broad kinase selectivity, and desirable physicochemical properties.« less

  8. Antibodies Specifically Targeting a Locally Misfolded Region of Tumor Associated EGFR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, T.; Burgess, A; Gan, H

    2009-01-01

    Epidermal Growth Factor Receptor (EGFR) is involved in stimulating the growth of many human tumors, but the success of therapeutic agents has been limited in part by interference from the EGFR on normal tissues. Previously, we reported an antibody (mab806) against a truncated form of EGFR found commonly in gliomas. Remarkably, it also recognizes full-length EGFR on tumor cells but not on normal cells. However, the mechanism for this activity was unclear. Crystallographic structures for Fab:EGFR{sub 287-302} complexes of mAb806 (and a second, related antibody, mAb175) show that this peptide epitope adopts conformations similar to those found in the wtEGFR.more » However, in both conformations observed for wtEGFR, tethered and untethered, antibody binding would be prohibited by significant steric clashes with the CR1 domain. Thus, these antibodies must recognize a cryptic epitope in EGFR. Structurally, it appeared that breaking the disulfide bond preceding the epitope might allow the CR1 domain to open up sufficiently for antibody binding. The EGFR{sub C271A/C283A} mutant not only binds mAb806, but binds with 1:1 stoichiometry, which is significantly greater than wtEGFR binding. Although mAb806 and mAb175 decrease tumor growth in xenografts displaying mutant, overexpressed, or autocrine stimulated EGFR, neither antibody inhibits the in vitro growth of cells expressing wtEGFR. In contrast, mAb806 completely inhibits the ligand-associated stimulation of cells expressing EGFR{sub C271A/C283A}. Clearly, the binding of mAb806 and mAb175 to the wtEGFR requires the epitope to be exposed either during receptor activation, mutation, or overexpression. This mechanism suggests the possibility of generating antibodies to target other wild-type receptors on tumor cells.« less

  9. Heterotrimeric G proteins directly regulate MMP14/membrane type-1 matrix metalloprotease: a novel mechanism for GPCR-EGFR transactivation.

    PubMed

    Overland, Aaron C; Insel, Paul A

    2015-04-17

    Agonist stimulation of G protein-coupled receptors (GPCRs) can transactivate epidermal growth factor receptors (EGFRs), but the precise mechanisms for this transactivation have not been defined. Key to this process is the protease-mediated "shedding" of membrane-tethered ligands, which then activate EGFRs. The specific proteases and the events involved in GPCR-EGFR transactivation are not fully understood. We have tested the hypothesis that transactivation can occur by a membrane-delimited process: direct increase in the activity of membrane type-1 matrix metalloprotease (MMP14, MT1-MMP) by heterotrimeric G proteins, and in turn, the generation of heparin-binding epidermal growth factor (HB-EGF) and activation of EGFR. Using membranes prepared from adult rat cardiac myocytes and fibroblasts, we found that MMP14 activity is increased by angiotensin II, phenylephrine, GTP, and guanosine 5'-O-[γ-thio]triphosphate (GTPγS). MMP14 activation by GTPγS occurs in a concentration- and time-dependent manner, does not occur in response to GMP or adenosine 5'-[γ-thio]triphosphate (ATPγS), and is not blunted by inhibitors of Src, PKC, phospholipase C (PLC), PI3K, or soluble MMPs. This activation is specific to MMP14 as it is inhibited by a specific MMP14 peptide inhibitor and siRNA knockdown. MMP14 activation by GTPγS is pertussis toxin-sensitive. A role for heterotrimeric G protein βγ subunits was shown by using the Gβγ inhibitor gallein and the direct activation of recombinant MMP14 by purified βγ subunits. GTPγS-stimulated activation of MMP14 also results in membrane release of HB-EGF and the activation of EGFR. These results define a previously unrecognized, membrane-delimited mechanism for EGFR transactivation via direct G protein activation of MMP14 and identify MMP14 as a heterotrimeric G protein-regulated effector. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. G protein-coupled receptor 30 expression is up-regulated by EGF and TGF alpha in estrogen receptor alpha-positive cancer cells.

    PubMed

    Vivacqua, Adele; Lappano, Rosamaria; De Marco, Paola; Sisci, Diego; Aquila, Saveria; De Amicis, Francesca; Fuqua, Suzanne A W; Andò, Sebastiano; Maggiolini, Marcello

    2009-11-01

    In the present study, we evaluated the regulation of G protein-coupled receptor (GPR)30 expression in estrogen receptor (ER)-positive endometrial, ovarian, and estrogen-sensitive, as well as tamoxifen-resistant breast cancer cells. We demonstrate that epidermal growth factor (EGF) and TGF alpha transactivate the GPR30 promoter and accordingly up-regulate GPR30 mRNA and protein levels only in endometrial and tamoxifen-resistant breast cancer cells. These effects exerted by EGF and TGF alpha were dependent on EGF receptor (EGFR) expression and activation and involved phosphorylation of the Tyr(1045) and Tyr(1173) EGFR sites. Using gene-silencing experiments and specific pharmacological inhibitors, we have ascertained that EGF and TGF alpha induce GPR30 expression through the EGFR/ERK transduction pathway, and the recruitment of c-fos to the activator protein-1 site located within GPR30 promoter sequence. Interestingly, we show that functional cross talk of GPR30 with both activated EGFR and ER alpha relies on a physical interaction among these receptors, further extending the potential of estrogen to trigger a complex stimulatory signaling network in hormone-sensitive tumors. Given that EGFR/HER2 overexpression is associated with tamoxifen resistance, our data may suggest that ligand-activated EGFR could contribute to the failure of tamoxifen therapy also by up-regulating GPR30, which in turn could facilitates the action of estrogen. In addition, important for resistance is the ability of tamoxifen to bind to and activate GPR30, the expression of which is up-regulated by EGFR activation. Our results emphasize the need for new endocrine agents able to block widespread actions of estrogen without exerting any stimulatory activity on transduction pathways shared by the steroid and growth factor-signaling networks.

  11. Anti-EGFR Targeted Monoclonal Antibody Isotype Influences Antitumor Cellular Immunity in Head and Neck Cancer Patients.

    PubMed

    Trivedi, Sumita; Srivastava, Raghvendra M; Concha-Benavente, Fernando; Ferrone, Soldano; Garcia-Bates, Tatiana M; Li, Jing; Ferris, Robert L

    2016-11-01

    EGF receptor (EGFR) is highly overexpressed on several cancers and two targeted anti-EGFR antibodies which differ by isotype are FDA-approved for clinical use. Cetuximab (IgG1 isotype) inhibits downstream signaling of EGFR and activates antitumor, cellular immune mechanisms. As panitumumab (IgG2 isotype) may inhibit downstream EGFR signaling similar to cetuximab, it might also induce adaptive immunity. We measured in vitro activation of cellular components of the innate and adaptive immune systems. We also studied the in vivo activation of components of the adaptive immune system in patient specimens from two recent clinical trials using cetuximab or panitumumab. Both monoclonal antibodies (mAb) primarily activate natural killer (NK) cells, although cetuximab is significantly more potent than panitumumab. Cetuximab-activated neutrophils mediate antibody-dependent cellular cytotoxicity (ADCC) against head and neck squamous cell carcinomas (HNSCC) tumor cells, and interestingly, this effect was FcγRIIa- and FcγRIIIa genotype-dependent. Panitumumab may activate monocytes through CD32 (FcγRIIa); however, monocytes activated by either mAb are not able to mediate ADCC. Cetuximab enhanced dendritic cell (DC) maturation to a greater extent than panitumumab, which was associated with improved tumor antigen cross-presentation by cetuximab compared with panitumumab. This correlated with increased EGFR-specific cytotoxic CD8 + T cells in patients treated with cetuximab compared with those treated with panitumumab. Although panitumumab effectively inhibits EGFR signaling to a similar extent as cetuximab, it is less effective at triggering antitumor, cellular immune mechanisms which may be crucial for effective therapy of HNSCC. Clin Cancer Res; 22(21); 5229-37. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. GH administration rescues fatty liver regeneration impairment by restoring GH/EGFR pathway deficiency.

    PubMed

    Collin de l'Hortet, A; Zerrad-Saadi, A; Prip-Buus, C; Fauveau, V; Helmy, N; Ziol, M; Vons, C; Billot, K; Baud, V; Gilgenkrantz, Hélène; Guidotti, Jacques-Emmanuel

    2014-07-01

    GH pathway has been shown to play a major role in liver regeneration through the control of epidermal growth factor receptor (EGFR) activation. This pathway is down-regulated in nonalcoholic fatty liver disease. Because regeneration is known to be impaired in fatty livers, we wondered whether a deregulation of the GH/EGFR pathway could explain this deficiency. Hepatic EGFR expression and triglyceride levels were quantified in liver biopsies of 32 obese patients with different degrees of steatosis. We showed a significant inverse correlation between liver EGFR expression and the level of hepatic steatosis. GH/EGFR down-regulation was also demonstrated in 2 steatosis mouse models, a genetic (ob/ob) and a methionine and choline-deficient diet mouse model, in correlation with liver regeneration defect. ob/ob mice exhibited a more severe liver regeneration defect after partial hepatectomy (PH) than methionine and choline-deficient diet-fed mice, a difference that could be explained by a decrease in signal transducer and activator of transcription 3 phosphorylation 32 hours after PH. Having checked that GH deficiency accounted for the GH signaling pathway down-regulation in the liver of ob/ob mice, we showed that GH administration in these mice led to a partial rescue in hepatocyte proliferation after PH associated with a concomitant restoration of liver EGFR expression and signal transducer and activator of trnascription 3 activation. In conclusion, we propose that the GH/EGFR pathway down-regulation is a general mechanism responsible for liver regeneration deficiency associated with steatosis, which could be partially rescued by GH administration.

  13. EGF-receptor phosphorylation and downstream signaling are activated by benzo[a]pyrene 3,6-quinone and benzo[a]pyrene 1,6-quinone in human mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Fragoso, Lourdes; Melendez, Karla; Hudson, Laurie G.

    2009-03-15

    Benzo[a]pyrene (BaP) is activated by xenobiotic-metabolizing enzymes to highly mutagenic and carcinogenic metabolites. Previous studies in this laboratory have shown that benzo[a]pyrene quinones (BPQs), 1,6-BPQ and 3,6-BPQ, are able to induce epidermal growth factor receptor (EGFR) cell signaling through the production of reactive oxygen species. Recently, we have reported that BPQs have the potential to induce the expression of genes involved in numerous pathways associated with cell proliferation and survival in human mammary epithelial cells. In the present study we demonstrated that BPQs not only induced EGFR tyrosine autophosphorylation, but also induced EGFR-dependent tyrosine phosphorylation of phospholipase C-{gamma}1 and severalmore » signal transducers and activators of transcription (STATs). The effects of BPQs were evaluated in a model of EGF withdrawal in MCF10-A cells. We found that BPQs (1 {mu}M), induced EGFR tyrosine phosphorylation at positions Y845, Y992, Y1068, and Y1086. PLC-{gamma}1 phosphorylation correlated with the phosphorylation of tyrosine-Y992, a proposed docking site for PLC-{gamma}1 on the EGFR. Additionally, we found that BPQs induced the activation of STAT-1, STAT-3, STAT-5a and STAT-5b. STAT5 was shown to translocate to the nucleus following 3,6-BPQ and 1,6-BPQ exposures. Although the patterns of phosphorylation at EGFR, PLC-{gamma}1 and STATs were quite similar to those induced by EGF, an important difference between BPQ-mediated signaling of the EGFR was observed. Signaling produced by EGF ligand produced a rapid disappearance of EGFR from the cell surface, whereas BPQ signaling maintained EGFR receptors on the cell membrane. Thus, the results of these studies show that 1,6-BPQ and 3,6-BPQ can produce early events as evidenced by EGFR expression, and a prolonged transactivation of EGFR leading to downstream cell signaling pathways.« less

  14. GBM heterogeneity as a function of variable epidermal growth factor receptor variant III activity.

    PubMed

    Lindberg, Olle R; McKinney, Andrew; Engler, Jane R; Koshkakaryan, Gayane; Gong, Henry; Robinson, Aaron E; Ewald, Andrew J; Huillard, Emmanuelle; David James, C; Molinaro, Annette M; Shieh, Joseph T; Phillips, Joanna J

    2016-11-29

    Abnormal activation of the epidermal growth factor receptor (EGFR) due to a deletion of exons 2-7 of EGFR (EGFRvIII) is a common alteration in glioblastoma (GBM). While this alteration can drive gliomagenesis, tumors harboring EGFRvIII are heterogeneous. To investigate the role for EGFRvIII activation in tumor phenotype we used a neural progenitor cell-based murine model of GBM driven by EGFR signaling and generated tumor progenitor cells with high and low EGFRvIII activation, pEGFRHi and pEGFRLo. In vivo, ex vivo, and in vitro studies suggested a direct association between EGFRvIII activity and increased tumor cell proliferation, decreased tumor cell adhesion to the extracellular matrix, and altered progenitor cell phenotype. Time-lapse confocal imaging of tumor cells in brain slice cultures demonstrated blood vessel co-option by tumor cells and highlighted differences in invasive pattern. Inhibition of EGFR signaling in pEGFRHi promoted cell differentiation and increased cell-matrix adhesion. Conversely, increased EGFRvIII activation in pEGFRLo reduced cell-matrix adhesion. Our study using a murine model for GBM driven by a single genetic driver, suggests differences in EGFR activation contribute to tumor heterogeneity and aggressiveness.

  15. Discovery of a series of novel phenylpiperazine derivatives as EGFR TK inhibitors

    NASA Astrophysics Data System (ADS)

    Sun, Juan; Wang, Xin-Yi; Lv, Peng-Cheng; Zhu, Hai-Liang

    2015-09-01

    Human epidermal growth factor receptor (EGFR) is an important drug target that plays a fundamental role in signal transduction pathways in oncology. We report herein the discovery of a novel class of phenylpiperazine derivatives with improved potency toward EGFR. The biological activity of compound 3p as inhibitor of EGFR was further investigated both in vitro and in vivo. Notably, compound 3p exhibited an IC50 in the nanomolar range in A549 cell cultures and induced a cessation of tumor growth with no toxicity, as determined by loss of body weight and death of treated mice. Compoutational docking studies also showed that compound 3p has interaction with EGFR key residues in the active site.

  16. EGFR Amplification as a Target in Gastroesophageal Adenocarcinoma: Do Anti-EGFR Therapies Deserve a Second Chance?

    PubMed

    Strickler, John H

    2018-06-01

    Anti-EGFR therapies have failed to improve survival for unselected patients with metastatic gastroesophageal cancer, but in a subset of patients, EGFR amplification may predict treatment benefit. Maron and colleagues report the clinical activity of anti-EGFR therapies in a cohort of patients with EGFR -amplified metastatic gastroesophageal cancer and utilize serial blood and tumor tissue collection to identify molecular drivers of treatment sensitivity and resistance. Their insights offer a path to overcome technical limitations associated with EGFR amplification and facilitate molecularly targeted therapeutic strategies. Cancer Discov; 8(6); 679-81. ©2018 AACR See related article by Maron et al., p. 696 . ©2018 American Association for Cancer Research.

  17. Development of the Third Generation EGFR Tyrosine Kinase Inhibitors for Anticancer Therapy.

    PubMed

    Cheng, Weiyan; Zhou, Jianhua; Tian, Xin; Zhang, Xiaojian

    2016-01-01

    Epidermal growth factor receptor (EGFR) is one of the most important targets in anticancer therapy. Till date, a large number of first and second generation EGFR tyrosine kinase inhibitors (TKIs) have been marketed or advanced into clinical studies. However, the occurrence of TKI-resistant mutations has led to the loss of efficacy of these inhibitors. In the purpose of overcoming resistant mutations and reducing side effects, lots of third generation EGFR inhibitors are explored with promising potencies against EGFR mutations while sparing wild-type EGFR. This review outlines the current landscape of the development of third generation EGFR inhibitors, mainly focusing on the biological properties, clinical status and structure-activity relationships.

  18. Stress-induced EGFR trafficking: mechanisms, functions, and therapeutic implications

    PubMed Central

    Tan, Xiaojun; Lambert, Paul F.; Rapraeger, Alan C.; Anderson, Richard A.

    2016-01-01

    Epidermal growth factor receptor (EGFR) has fundamental roles in normal physiology and in cancer, making it a rational target for cancer therapy. Surprisingly, however, inhibitors that target canonical, ligand-stimulated EGFR signaling have proven to be largely ineffective in treating many EGFR-dependent cancers. Recent evidence indicates that both intrinsic and therapy-induced cellular stress triggers robust, non-canonical pathways of ligand-independent EGFR trafficking and signaling, which provides cancer cells with a survival advantage and resistance to therapeutics. Here we review the mechanistic regulation of non-canonical EGFR trafficking and signaling, the pathological and therapeutic stresses that activate it, and discuss the implications of this pathway in clinical treatment of EGFR-overexpressing cancers. PMID:26827089

  19. The safety and efficacy of osimertinib for the treatment of EGFR T790M mutation positive non-small-cell lung cancer

    PubMed Central

    Gao, Xin; Le, Xiuning; Costa, Daniel B.

    2016-01-01

    First- and second-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the evidence-based first-line treatment for metastatic non-small-cell lung cancers (NSCLCs) that harbor sensitizing EGFR mutations (i.e., exon 19 deletions or L858R). However, acquired resistance to EGFR TKI monotherapy occurs invariably within a median time frame of one year. The most common form of biological resistance is through the selection of tumor clones harboring the EGFR T790M mutation, present in >50% of repeat biopsies. The presence of the EGFR T790M mutation negates the inhibitory activity of gefitinib, erlotinib, and afatinib. A novel class of third-generation EGFR TKIs has been identified by probing a series of covalent pyrimidine EGFR inhibitors that bind to amino-acid residue C797 of EGFR and preferentially inhibit mutant forms of EGFR versus the wild-type receptor. We review the rapid clinical development and approval of the third-generation EGFR TKI osimertinib for treatment of NSCLCs with EGFR-T790M. PMID:26943236

  20. Tissue kallikrein induces SH-SY5Y cell proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase1/2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhengyu; Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437; Yang, Qi

    2014-03-28

    Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depletedmore » of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.« less

  1. Comparative experimental/theoretical studies on the EGFR dimerization under the effect of EGF/EGF analogues binding: Highlighting the importance of EGF/EGFR interactions at site III interface.

    PubMed

    Mehrabi, Masomeh; Mahdiuni, Hamid; Rasouli, Hassan; Mansouri, Kamran; Shahlaei, Mohsen; Khodarahmi, Reza

    2018-04-14

    Epidermal growth factor receptors (EGFRs) and their cytoplasmic tyrosine kinases play significant roles in cell proliferation and signaling. All the members of the EGFR/ErbB family are primary goals for cancer therapy, particularly for tumors of breast, cervix, ovaries, kidney, esophagus, prostate and non-small-cell lung carcinoma and head and neck tumors. However, the therapeutic ability of accessible anti-ErbB agents is limited. Therefore, recognizing EGF analogues or small organic molecules with high affinity for the extracellular domain of the EGFR is a critical target on cancer research. An effective EGF analogue should have a comparable binding affinity for EGFR in order to create an effective ligand competitive inhibition against circulating wild EGF while fails to transduce appropriate downstream signaling into the cancer cell. In our earlier study we have developed a mutant form of human EGF (mEGF, lacking the four critical amino acid residues; Gln 43 , Tyr 44 , Arg 45 and Asp 46 at the C-terminal of the protein) and its binding properties and mitogenic activity were assessed. The mEGF showed high affinity for EGFR binding domains but caused poor EGFR dimerization and phosphorylation and especially, mEGF induced EGFR internalization. However, underlying mechanism of action of EGF analogues is still unclear and thus considered to be worthwhile for further study. With regard to different effects of the EGF analogue on EGFR activating process, computational analysis of wild EGF/EGFR and mEGF/EGFR complexes (along with EGFt/EGFR complex) were done. Results of the protein dissection identified several interactions within "ligand/EGFR" that are common among EGF and EGFt/mEGF. These results disclose that while several interactions are conserved within EGF/EGFR interfaces, EGF/EGFR interactions on site III interface controls the affinity, EGFR dimerization and subsequent downstream signaling through a heterogeneous set of non-covalent interactions. These findings not only represent the EGFR dynamics complexity but also smooth the path for structure-based design of therapeutics targeting C-terminal region of EGF (and the related domain within the receptor) or EGFR-based imaging probes. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Identification of Mutation Accumulation as Resistance Mechanism Emerging in First-Line Osimertinib Treatment.

    PubMed

    Uchibori, Ken; Inase, Naohiko; Nishio, Makoto; Fujita, Naoya; Katayama, Ryohei

    2018-04-24

    The survival of patients with EGFR mutation-positive lung cancer has dramatically improved since the introduction of EGFR tyrosine kinase inhibitors (EGFR-TKIs). Recently, osimertinib showed significantly prolonged progression-free survival than first-generation EGFR-TKI in first-line treatment, suggesting that a paradigm change that would move osimetinib to first-line treatment is indicated. We performed N-ethyl-N-nitrosourea (ENU) mutagenesis screening to uncover the resistant mechanism in first- and second-line osimertinib treatment. Ba/F3 cells harboring EGFR activating-mutation with or without secondary resistant mutation were exposed to ENU for 24 hours to introduce random mutations and selected with gefitinib, afatinib, or osimertinib. Mutations of emerging resistant cells were assessed. The resistance of T790M and C797S to gefitinib and osimertinib, respectively, was prevalent in the mutagenesis screening with the Ba/F3 cells harboring activating-mutation alone. From C797S/activating-mutation expressing Ba/F3, the additional T790M was a major resistant mechanism in gefitinib and afatinib selection and the additional T854A and L792H were minor resistance mechanisms only in afatinib selection. However, the additional T854A or L792H mediated resistance to all classes of EGFR-TKI. Surprisingly, no resistant clone due to secondary mutation emerged from activating-mutation alone in the gefitinib + osimertinib selection. We showed the resistance mechanism to EGFR-TKI focusing on first- and second-line osimertinib using ENU mutagenesis screening. Additional T854A and L792H on C797S/activating-mutation were found as afatinib resistance and not as gefitinib resistance. Thus, compared to afatinib, the first-generation EGFR-TKI might be preferable as second-line treatment to C797S/activating-mutation emerging after first-line osimertinib treatment. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  3. Diurnal suppression of EGFR signalling by glucocorticoids and implications for tumour progression and treatment.

    PubMed

    Lauriola, Mattia; Enuka, Yehoshua; Zeisel, Amit; D'Uva, Gabriele; Roth, Lee; Sharon-Sevilla, Michal; Lindzen, Moshit; Sharma, Kirti; Nevo, Nava; Feldman, Morris; Carvalho, Silvia; Cohen-Dvashi, Hadas; Kedmi, Merav; Ben-Chetrit, Nir; Chen, Alon; Solmi, Rossella; Wiemann, Stefan; Schmitt, Fernando; Domany, Eytan; Yarden, Yosef

    2014-10-03

    Signal transduction by receptor tyrosine kinases (RTKs) and nuclear receptors for steroid hormones is essential for body homeostasis, but the cross-talk between these receptor families is poorly understood. We observed that glucocorticoids inhibit signalling downstream of EGFR, an RTK. The underlying mechanism entails suppression of EGFR's positive feedback loops and simultaneous triggering of negative feedback loops that normally restrain EGFR. Our studies in mice reveal that the regulation of EGFR's feedback loops by glucocorticoids translates to circadian control of EGFR signalling: EGFR signals are suppressed by high glucocorticoids during the active phase (night-time in rodents), while EGFR signals are enhanced during the resting phase. Consistent with this pattern, treatment of animals bearing EGFR-driven tumours with a specific kinase inhibitor was more effective if administered during the resting phase of the day, when glucocorticoids are low. These findings support a circadian clock-based paradigm in cancer therapy.

  4. Development of Cu-64 labeled EGF for In Vivo PET Imaging of EGFR Expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backer, Joseph M.

    2009-07-12

    In this project we proposed to establish feasibility of the development of targeted tracers for radionuclide imaging of epidermal growth factor receptors (EGFR) in cancer patients. The significance and impact of the proposed radiotracers are determined by the crucial role that EGFR plays in many cancers and by the rapid entrance of EGFR-inhibiting drugs into clinic. Clinical experience, however, revealed that only 10-25% of patients that are defined as EGFR-positive by immunohistochemical analysis respond to EGFR-directed therapeutics and there is poor correlation between EGFR immunohistochemistry and treatment. Therefore, for more efficacious use of EGFR-targeting therapeutics, there is a need formore » information about EGFR activity in patients. We hypothesized that radionuclide imaging of functionally active EGFR will provide such information and would allow for 1) rational patient stratification, 2) rapid monitoring of responses to therapy, and 3) development of personalized treatment regimens. We hypothesized that tracers based epidermal growth factor (EGF), a natural EGFR ligand, as a targeting vector would be particularly advantageous. First, only functionally active and therefore critical for disease progression EGFRs will bind and internalize an EGF-based tracer. Second, continuous internalization of EGF-based tracers by recyclable EGFR would lead to intracellular accumulation of radionuclide and improved signal-to-background ratio. Third, small size of EGF relative to antibodies would facilitate tumor penetration with vastly better non-specific soft tissue and blood clearance rates. Fourth, as a human protein, EGF is not expected to be immunogenic. Finally, at the beginning of this project, we have already engineered and expressed functionally active EGF with an N-terminal Cys-tag for site-specific conjugation of various payloads, including radionuclide chelators. In the Phase I of this project, in collaboration with Dr. Blankenberg’s group at Stanford University, 1. To synthesize and validate in vitro EGF-PEG-DOTA conjugate. The key accomplishment in this part of the project is synthesis of functionally active EGF-PEG-DOTA, construction, expression, and purification of functionally active Cys-tagged dimeric EGF (dEGF) and synthesis of corresponding dEGF-PEG-DOTA, development of protocols for radiolabeling EGF-PEG-DOTA and dEGF-PEG-DOTA with 64Cu. 2. To establish clearance, biodistribution, and stability of EGF-based PET 64Cu radiotracer. These characteristics are established for both EGF-PEG-DOTA/64Cu and dEGF-PEG-DOTA/64Cu and found to be comparable with reported data on 64Cu-radiolabeled antibodies. 3. To evaluate PET tumor imaging with EGF-based 64Cu radiotracer in mouse tumor models. Tumor imaging was evaluated in orthotopic human MDA231luc breast carcinoma model in SCID mice. Tracers accumulated in tumor area, allowing for detection of as small as few millimeter tumors. The Technical Objectives of the projects are accomplished and the results are published in Bioconjugate Chem. 20, 742, 2009.« less

  5. Simultaneous screening of four epidermal growth factor receptor antagonists from Curcuma longa via cell membrane chromatography online coupled with HPLC-MS.

    PubMed

    Sun, Meng; Ma, Wei-na; Guo, Ying; Hu, Zhi-gang; He, Lang-chong

    2013-07-01

    The epidermal growth factor receptors (EGFRs) are significant targets for screening active compounds. In this work, an analytical method was established for rapid screening, separation, and identification of EGFRs antagonists from Curcuma longa. Human embryonic kidney 293 cells with a steadily high expression of EGFRs were used to prepare the cell membrane stationary phase in a cell membrane chromatography model for screening active compounds. Separation and identification of the retention chromatographic peaks was achieved by HPLC-MS. The active sites, docking extents and inhibitory effects of the active compounds were also demonstrated. The screening result found that ar-turmerone, curcumin, demethoxycurcumin, and bisdemethoxycurcumin from Curcuma longa could be active components in a similar manner to gefitinib. Biological trials showed that all of four compounds can inhibit EGFRs protein secretion and cell growth in a dose-dependent manner, and downregulate the phosphorylation of EGFRs. This analytical method demonstrated fast and effective characteristics for screening, separation and identification of the active compounds from a complex system and should be useful for drug discovery with natural medicinal herbs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Common Co-activation of AXL and CDCP1 in EGFR-mutation-positive Non-smallcell Lung Cancer Associated With Poor Prognosis.

    PubMed

    Karachaliou, Niki; Chaib, Imane; Cardona, Andres Felipe; Berenguer, Jordi; Bracht, Jillian Wilhelmina Paulina; Yang, Jie; Cai, Xueting; Wang, Zhigang; Hu, Chunping; Drozdowskyj, Ana; Servat, Carles Codony; Servat, Jordi Codony; Ito, Masaoki; Attili, Ilaria; Aldeguer, Erika; Capitan, Ana Gimenez; Rodriguez, July; Rojas, Leonardo; Viteri, Santiago; Molina-Vila, Miguel Angel; Ou, Sai-Hong Ignatius; Okada, Morihito; Mok, Tony S; Bivona, Trever G; Ono, Mayumi; Cui, Jean; Cajal, Santiago Ramón Y; Frias, Alex; Cao, Peng; Rosell, Rafael

    2018-03-01

    Epidermal growth factor receptor (EGFR)-mutation-positive non-smallcell lung cancer (NSCLC) is incurable, despite high rates of response to EGFR tyrosine kinase inhibitors (TKIs). We investigated receptor tyrosine kinases (RTKs), Src family kinases and focal adhesion kinase (FAK) as genetic modifiers of innate resistance in EGFR-mutation-positive NSCLC. We performed gene expression analysis in two cohorts (Cohort 1 and Cohort 2) of EGFR-mutation-positive NSCLC patients treated with EGFR TKI. We evaluated the efficacy of gefitinib or osimertinib with the Src/FAK/Janus kinase 2 (JAK2) inhibitor, TPX0005 in vitro and in vivo. In Cohort 1, CUB domain-containing protein-1 (CDCP1) was an independent negative prognostic factor for progression-free survival (hazard ratio of 1.79, p=0.0407) and overall survival (hazard ratio of 2.23, p=0.0192). A two-gene model based on AXL and CDCP1 expression was strongly associated with the clinical outcome to EGFR TKIs, in both cohorts of patients. Our preclinical experiments revealed that several RTKs and non-RTKs, were up-regulated at baseline or after treatment with gefitinib or osimertinib. TPX-0005 plus EGFR TKI suppressed expression and activation of RTKs and downstream signaling intermediates. Co-expression of CDCP1 and AXL is often observed in EGFR-mutation-positive tumors, limiting the efficacy of EGFR TKIs. Co-treatment with EGFR TKI and TPX-0005 warrants testing. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  7. CoGAPS matrix factorization algorithm identifies transcriptional changes in AP-2alpha target genes in feedback from therapeutic inhibition of the EGFR network

    PubMed Central

    Thakar, Manjusha; Howard, Jason D.; Kagohara, Luciane T.; Krigsfeld, Gabriel; Ranaweera, Ruchira S.; Hughes, Robert M.; Perez, Jimena; Jones, Siân; Favorov, Alexander V.; Carey, Jacob; Stein-O'Brien, Genevieve; Gaykalova, Daria A.; Ochs, Michael F.; Chung, Christine H.

    2016-01-01

    Patients with oncogene driven tumors are treated with targeted therapeutics including EGFR inhibitors. Genomic data from The Cancer Genome Atlas (TCGA) demonstrates molecular alterations to EGFR, MAPK, and PI3K pathways in previously untreated tumors. Therefore, this study uses bioinformatics algorithms to delineate interactions resulting from EGFR inhibitor use in cancer cells with these genetic alterations. We modify the HaCaT keratinocyte cell line model to simulate cancer cells with constitutive activation of EGFR, HRAS, and PI3K in a controlled genetic background. We then measure gene expression after treating modified HaCaT cells with gefitinib, afatinib, and cetuximab. The CoGAPS algorithm distinguishes a gene expression signature associated with the anticipated silencing of the EGFR network. It also infers a feedback signature with EGFR gene expression itself increasing in cells that are responsive to EGFR inhibitors. This feedback signature has increased expression of several growth factor receptors regulated by the AP-2 family of transcription factors. The gene expression signatures for AP-2alpha are further correlated with sensitivity to cetuximab treatment in HNSCC cell lines and changes in EGFR expression in HNSCC tumors with low CDKN2A gene expression. In addition, the AP-2alpha gene expression signatures are also associated with inhibition of MEK, PI3K, and mTOR pathways in the Library of Integrated Network-Based Cellular Signatures (LINCS) data. These results suggest that AP-2 transcription factors are activated as feedback from EGFR network inhibition and may mediate EGFR inhibitor resistance. PMID:27650546

  8. Growth differentiation factor 9 signaling requires ERK1/2 activity in mouse granulosa and cumulus cells.

    PubMed

    Sasseville, Maxime; Ritter, Lesley J; Nguyen, Thao M; Liu, Fang; Mottershead, David G; Russell, Darryl L; Gilchrist, Robert B

    2010-09-15

    Ovarian folliculogenesis is driven by the combined action of endocrine cues and paracrine factors. The oocyte secretes powerful mitogens, such as growth differentiation factor 9 (GDF9), that regulate granulosa cell proliferation, metabolism, steroidogenesis and differentiation. This study investigated the role of the epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinase 1 and 2 (ERK1/2; also known as MAPK3/1) signaling pathway on GDF9 action on granulosa cells. Results show that mitogenic action of the oocyte is prevented by pharmacological inhibition of the EGFR-ERK1/2 pathway. Importantly, EGFR-ERK1/2 activity as well as rous sarcoma oncogene family kinases (SFK) are required for signaling through SMADs, mediating GDF9, activin A and TGFbeta1 mitogenic action in granulosa cells. GDF9 could not activate ERK1/2 or affect EGF-stimulated ERK1/2 in granulosa cells. However, induction of the SMAD3-specific CAGA reporter by GDF9 in granulosa cells required active EGFR, SFKs and ERK1/2 as did GDF9-responsive gene expression. Finally, the EGFR-SFKs-ERK1/2 pathway was shown to be required for the maintenance of phosphorylation of the SMAD3 linker region. Together our results suggest that receptivity of granulosa cells to oocyte-secreted factors, including GDF9, is regulated by the level of activation of the EGFR and resulting ERK1/2 activity, through the requisite permissive phosphorylation of SMAD3 in the linker region. Our results indicate that oocyte-secreted TGFbeta-like ligands and EGFR-ERK1/2 signaling are cooperatively required for the unique granulosa cell response to the signal from oocytes mediating granulosa cell survival and proliferation and hence the promotion of follicle growth and ovulation.

  9. Inhibitory effects of omega-3 fatty acids on injury-induced epidermal growth factor receptor transactivation contribute to delayed wound healing

    PubMed Central

    Turk, Harmony F.; Monk, Jennifer M.; Fan, Yang-Yi; Callaway, Evelyn S.; Weeks, Brad

    2013-01-01

    Epidermal growth factor receptor (EGFR)-mediated signaling is required for optimal intestinal wound healing. Since n-3 polyunsaturated fatty acids (PUFA), specifically docosahexaenoic acid (DHA), alter EGFR signaling and suppress downstream activation of key signaling pathways, we hypothesized that DHA would be detrimental to the process of intestinal wound healing. Using a mouse immortalized colonocyte model, DHA uniquely reduced EGFR ligand-induced receptor activation, whereas DHA and its metabolic precursor eicosapentaenoic acid (EPA) reduced wound-induced EGFR transactivation compared with control (no fatty acid or linoleic acid). Under wounding conditions, the suppression of EGFR activation was associated with a reduction in downstream activation of cytoskeletal remodeling proteins (PLCγ1, Rac1, and Cdc42). Subsequently, DHA and EPA reduced cell migration in response to wounding. Mice were fed a corn oil-, DHA-, or EPA-enriched diet prior to intestinal wounding (2.5% dextran sodium sulfate for 5 days followed by termination after 0, 3, or 6 days of recovery). Mortality was increased in EPA-fed mice and colonic histological injury scores were increased in EPA- and DHA-fed mice compared with corn oil-fed (control) mice. Although kinetics of colonic EGFR activation and downstream signaling (PLCγ1, Rac1, and Cdc42) were delayed by both n-3 PUFA, colonic repair was increased in EPA- relative to DHA-fed mice. These results indicate that, during the early response to intestinal wounding, DHA and EPA uniquely delay the activation of key wound-healing processes in the colon. This effect is mediated, at least in part, via suppression of EGFR-mediated signaling and downstream cytoskeletal remodeling. PMID:23426968

  10. Therapeutic value of EGFR inhibition in CRC and NSCLC: 15 years of clinical evidence.

    PubMed

    Troiani, Teresa; Napolitano, Stefania; Della Corte, Carminia Maria; Martini, Giulia; Martinelli, Erika; Morgillo, Floriana; Ciardiello, Fortunato

    2016-01-01

    Epidermal growth factor receptor (EGFR) plays a key role in tumour evolution, proliferation and immune evasion, and is one of the most important targets for biological therapy, especially for non-small-cell lung cancer (NSCLC) and colorectal cancer (CRC). In the past 15 years, several EGFR antagonists have been approved for the treatment of NSCLC and metastatic CRC (mCRC). To optimise the use of anti-EGFR agents in clinical practice, various clinical and molecular biomarkers have been investigated, thus moving their indication from unselected to selected populations. Nowadays, anti-EGFR drugs represent a gold-standard therapy for metastatic NSCLC harbouring EGFR activating mutation and for RAS wild-type mCRC. Their clinical efficacy is limited by the presence of intrinsic resistance or the onset of acquired resistance. In this review, we provide an overview of the antitumour activity of EGFR inhibitors in NSCLC and CRC and of mechanisms of resistance, focusing on the development of a personalised approach through 15 years of preclinical and clinical research.

  11. EGFR mediates astragaloside IV-induced Nrf2 activation to protect cortical neurons against in vitro ischemia/reperfusion damages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Da-min; Lu, Pei-Hua, E-mail: lphty1_1@163.com; Zhang, Ke

    In this study, we tested the potential role of astragaloside IV (AS-IV) against oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced damages in murine cortical neurons, and studied the associated signaling mechanisms. AS-IV exerted significant neuroprotective effects against OGD/R by reducing reactive oxygen species (ROS) accumulation, thereby attenuating oxidative stress and neuronal cell death. We found that AS-IV treatment in cortical neurons resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by Nrf2 Ser-40 phosphorylation, and its nuclear localization, as well as transcription of antioxidant-responsive element (ARE)-regulated genes: heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1) and sulphiredoxin 1 (SRXN-1). Knockdown of Nrf2 throughmore » lentiviral shRNAs prevented AS-IV-induced ARE genes transcription, and abolished its anti-oxidant and neuroprotective activities. Further, we discovered that AS-IV stimulated heparin-binding-epidermal growth factor (HB-EGF) release to trans-activate epidermal growth factor receptor (EGFR) in cortical neurons. Blockage or silencing EGFR prevented Nrf2 activation by AS-IV, thus inhibiting AS-IV-mediated anti-oxidant and neuroprotective activities against OGD/R. In summary, AS-IV protects cortical neurons against OGD/R damages through activating of EGFR-Nrf2 signaling. - Highlights: • Pre-treatment of astragaloside IV (AS-IV) protects murine cortical neurons from OGD/R. • AS-IV activates Nrf2-ARE signaling in murine cortical neurons. • Nrf2 is required for AS-IV-mediated anti-oxidant and neuroprotective activities. • AS-IV stimulates HB-EGF release to trans-activate EGFR in murine cortical neurons. • EGFR mediates AS-IV-induced Nrf2 activation and neuroprotection against OGD/R.« less

  12. MicroRNA-566 activates EGFR signaling and its inhibition sensitizes glioblastoma cells to nimotuzumab.

    PubMed

    Zhang, Kai-Liang; Zhou, Xuan; Han, Lei; Chen, Lu-Yue; Chen, Ling-Chao; Shi, Zhen-Dong; Yang, Ming; Ren, Yu; Yang, Jing-Xuan; Frank, Thomas S; Zhang, Chuan-Bao; Zhang, Jun-Xia; Pu, Pei-Yu; Zhang, Jian-Ning; Jiang, Tao; Wagner, Eric J; Li, Min; Kang, Chun-Sheng

    2014-03-20

    Epidermal growth factor receptor (EGFR) is amplified in 40% of human glioblastomas. However, most glioblastoma patients respond poorly to anti-EGFR therapy. MicroRNAs can function as either oncogenes or tumor suppressor genes, and have been shown to play an important role in cancer cell proliferation, invasion and apoptosis. Whether microRNAs can impact the therapeutic effects of EGFR inhibitors in glioblastoma is unknown. miR-566 expression levels were detected in glioma cell lines, using real-time quantitative RT-PCR (qRT-PCR). Luciferase reporter assays and Western blots were used to validate VHL as a direct target gene of miR-566. Cell proliferation, invasion, cell cycle distribution and apoptosis were also examined to confirm whether miR-566 inhibition could sensitize anti-EGFR therapy. In this study, we demonstrated that miR-566 is up-regulated in human glioma cell lines and inhibition of miR-566 decreased the activity of the EGFR pathway. Lentiviral mediated inhibition of miR-566 in glioblastoma cell lines significantly inhibited cell proliferation and invasion and led to cell cycle arrest in the G0/G1 phase. In addition, we identified von Hippel-Lindau (VHL) as a novel functional target of miR-566. VHL regulates the formation of the β-catenin/hypoxia-inducible factors-1α complex under miR-566 regulation. miR-566 activated EGFR signaling and its inhibition sensitized glioblastoma cells to anti-EGFR therapy.

  13. Prognostic significance of epidermal growth factor receptor in surgically treated squamous cell lung cancer patients.

    PubMed

    Niemiec, Joanna; Kołodziejski, Leszek; Dyczek, Sonia; Gasińska, Anna

    2004-01-01

    Epidermal growth factor receptor (EGFR) is one of signalling pathways activated during premalignant proliferative changes in the airway epithelium. However there is no agreement about prognostic significance of EGFR expression in non-small cell lung cancer (NSCLC). Facts mentioned above prompted us to study EGFR expression in the group of 78 surgically treated squamous cell lung cancer (SqCLC) patients. The EGFR expression was visualized in formalin-fixed, paraffin-embedded sections, using immunohistochemistry. Three methods of assessment of EGFR expression were applied: percentage of cells with membranous EGFR expression--EGFR labellig index (EGFR LI), percentage of fields with membranous EGFR staining (PS%) and staining intensity (absent, weak or strong) in the whole specimen (SI). Mean EGFR LI and PS% values were 30.4 +/- 3.5% and 51.6 +/- 3.9%, respectively. Patients with higher EGFR expression (EGFR LI, PS%, SI) were significantly younger than those with low EGFR expression. EGFR LI was higher in pT3 tumours than in pT1+pT2 tumours, moreover, EGFR expression (EGFR LI, PS%, SI) was significantly higher in G1+G2 tumours than in G3 tumours. There were significant correlations between parameters used for assessment of EGFR expression. PS% < or = 50 indicated shorter disease-specific survival than PS% > 50. However, patients with tumours with both very low and very high EGFR LI (13% > or = EGFR LI > 80%) showed significantly shorter survival than those with medium EGFR LI (13% < GFR LI < or = 80%). Additionally, pTNM and pN significantly influenced patients' survival. In multivariate analysis, EGFR LI and pTNM were independent prognostic parameters influencing disease-specific survival of patients.

  14. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism

    PubMed Central

    Yan, Fang; Cao, Hanwei; Cover, Timothy L.; Washington, M. Kay; Shi, Yan; Liu, LinShu; Chaturvedi, Rupesh; Peek, Richard M.; Wilson, Keith T.; Polk, D. Brent

    2011-01-01

    Probiotic bacteria can potentially have beneficial effects on the clinical course of several intestinal disorders, but our understanding of probiotic action is limited. We have identified a probiotic bacteria–derived soluble protein, p40, from Lactobacillus rhamnosus GG (LGG), which prevents cytokine-induced apoptosis in intestinal epithelial cells. In the current study, we analyzed the mechanisms by which p40 regulates cellular responses in intestinal epithelial cells and p40’s effects on experimental colitis using mouse models. We show that the recombinant p40 protein activated EGFR, leading to Akt activation. Activation of EGFR by p40 was required for inhibition of cytokine-induced apoptosis in intestinal epithelial cells in vitro and ex vivo. Furthermore, we developed a pectin/zein hydrogel bead system to specifically deliver p40 to the mouse colon, which activated EGFR in colon epithelial cells. Administration of p40-containing beads reduced intestinal epithelial apoptosis and disruption of barrier function in the colon epithelium in an EGFR-dependent manner, thereby preventing and treating DSS-induced intestinal injury and acute colitis. Furthermore, p40 activation of EGFR was required for ameliorating colon epithelial cell apoptosis and chronic inflammation in oxazolone-induced colitis. These data define what we believe to be a previously unrecognized mechanism of probiotic-derived soluble proteins in protecting the intestine from injury and inflammation. PMID:21606592

  15. Discovery of Selective and Noncovalent Diaminopyrimidine-Based Inhibitors of Epidermal Growth Factor Receptor Containing the T790M Resistance Mutation

    PubMed Central

    2015-01-01

    Activating mutations within the epidermal growth factor receptor (EGFR) kinase domain, commonly L858R or deletions within exon 19, increase EGFR-driven cell proliferation and survival and are correlated with impressive responses to the EGFR inhibitors erlotinib and gefitinib in nonsmall cell lung cancer patients. Approximately 60% of acquired resistance to these agents is driven by a single secondary mutation within the EGFR kinase domain, specifically substitution of the gatekeeper residue threonine-790 with methionine (T790M). Due to dose-limiting toxicities associated with inhibition of wild-type EGFR (wtEGFR), we sought inhibitors of T790M-containing EGFR mutants with selectivity over wtEGFR. We describe the evolution of HTS hits derived from Jak2/Tyk2 inhibitors into selective EGFR inhibitors. X-ray crystal structures revealed two distinct binding modes and enabled the design of a selective series of novel diaminopyrimidine-based inhibitors with good potency against T790M-containing mutants of EGFR, high selectivity over wtEGFR, broad kinase selectivity, and desirable physicochemical properties. PMID:25383627

  16. Mechanisms of resistance to irreversible epidermal growth factor receptor tyrosine kinase inhibitors and therapeutic strategies in non-small cell lung cancer

    PubMed Central

    Xu, Jing; Wang, Jinghui; Zhang, Shucai

    2017-01-01

    Epidermal growth factor receptor (EGFR) T790M mutation is the most frequent mechanism which accounts for about 60% of acquired resistance to first-generation EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) patients harboring EGFR activating mutations. Irreversible EGFR-TKIs which include the second-generation and third-generation EGFR-TKIs are developed to overcome T790M mediated resistance. The second-generation EGFR-TKIs inhibit the wide type (WT) EGFR combined with dose-limiting toxicity which limits its application in clinics, while the development of third-generation EGFR-TKIs brings inspiring efficacy either in vitro or in vivo. The acquired resistance, however, will also occur and limit their response. Understanding the mechanisms of resistance to irreversible EGFR-TKIs plays an important role in the choice of subsequent treatment. In this review, we show the currently known mechanisms of resistance which can be summarized as EGFR dependent and independent mechanisms and potential therapeutic strategies to irreversible EGFR-TKIs. PMID:29163853

  17. Cellular Response to Titanium Dioxide Nanoparticles in Intestinal Epithelial Caco-2 Cells is Dependent on Endocytosis-Associated Structures and Mediated by EGFR

    PubMed Central

    Krüger, Kristin; Schrader, Katrin; Klempt, Martin

    2017-01-01

    Titanium dioxide (TiO2) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO2 nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2nfkb-RE), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO2 NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO2 NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO2 NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO2 NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO2 particles. PMID:28387727

  18. Cellular Response to Titanium Dioxide Nanoparticles in Intestinal Epithelial Caco-2 Cells is Dependent on Endocytosis-Associated Structures and Mediated by EGFR.

    PubMed

    Krüger, Kristin; Schrader, Katrin; Klempt, Martin

    2017-04-07

    Titanium dioxide (TiO₂) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO₂ nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2 nfkb-RE ), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO₂ NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO₂ NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO₂ NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO₂ NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO₂ particles.

  19. Role of epidermal growth factor receptor and endoplasmic reticulum stress in vascular remodeling induced by angiotensin II.

    PubMed

    Takayanagi, Takehiko; Kawai, Tatsuo; Forrester, Steven J; Obama, Takashi; Tsuji, Toshiyuki; Fukuda, Yamato; Elliott, Katherine J; Tilley, Douglas G; Davisson, Robin L; Park, Joon-Young; Eguchi, Satoru

    2015-06-01

    The mechanisms by which angiotensin II (AngII) elevates blood pressure and enhances end-organ damage seem to be distinct. However, the signal transduction cascade by which AngII specifically mediates vascular remodeling such as medial hypertrophy and perivascular fibrosis remains incomplete. We have previously shown that AngII-induced epidermal growth factor receptor (EGFR) transactivation is mediated by disintegrin and metalloproteinase domain 17 (ADAM17), and that this signaling is required for vascular smooth muscle cell hypertrophy but not for contractile signaling in response to AngII. Recent studies have implicated endoplasmic reticulum (ER) stress in hypertension. Interestingly, EGFR is capable of inducing ER stress. The aim of this study was to test the hypothesis that activation of EGFR and ER stress are critical components required for vascular remodeling but not hypertension induced by AngII. Mice were infused with AngII for 2 weeks with or without treatment of EGFR inhibitor, erlotinib, or ER chaperone, 4-phenylbutyrate. AngII infusion induced vascular medial hypertrophy in the heart, kidney and aorta, and perivascular fibrosis in heart and kidney, cardiac hypertrophy, and hypertension. Treatment with erlotinib as well as 4-phenylbutyrate attenuated vascular remodeling and cardiac hypertrophy but not hypertension. In addition, AngII infusion enhanced ADAM17 expression, EGFR activation, and ER/oxidative stress in the vasculature, which were diminished in both erlotinib-treated and 4-phenylbutyrate-treated mice. ADAM17 induction and EGFR activation by AngII in vascular cells were also prevented by inhibition of EGFR or ER stress. In conclusion, AngII induces vascular remodeling by EGFR activation and ER stress via a signaling mechanism involving ADAM17 induction independent of hypertension. © 2015 American Heart Association, Inc.

  20. Optimization of Substituted 6-Salicyl-4-Anilinoquinazoline Derivatives as Dual EGFR/HER2 Tyrosine Kinase Inhibitors

    PubMed Central

    Sun, Jian; Li, Jing-Ran; Fang, Fei; Du, Qian-Ru; Qian, Yong; Gong, Hai-Bin; Zhu, Hai-Liang

    2013-01-01

    4-Anilinoquinazolines as an important class of protein kinase inhibitor are widely investigated for epidermal growth factor receptor (EGFR) tyrosine kinase or epidermal growth factor receptor 2 (HER2) inhibition. A series of novel 6-salicyl-4-anilinoquinazoline derivatives 9–27 were prepared and evaluated for their EGFR/HER2 tyrosine kinase inhibitory activity as well as their antiproliferative properties on three variant cancer cell lines (A431, MCF-7, and A549). The bioassay results showed most of the designed compounds exhibited moderate to potent in vitro inhibitory activity in the enzymatic and cellular assays, of which compound 21 revealed the most potent dual EGFR/HER2 inhibitory activity, with IC50 values of 0.12 µM and 0.096 µM, respectively, comparable to the control compounds Erlotinib and Lapatinib. Furthermore, the kinase selectivity profile of 21 was accessed and demonstrated its good selectivity over the majority of the close kinase targets. Docking simulation was performed to position compound 21 into the EGFR/HER2 active site to determine the probable binding pose. These new findings along with molecular docking observations could provide an important basis for further development of compound 21 as a potent EGFR/HER2 dual kinase inhibitor. PMID:23936329

  1. Effect of simvastatin on the resistance to EGFR tyrosine kinase inhibitors in a non-small cell lung cancer with the T790M mutation of EGFR.

    PubMed

    Hwang, Ki-Eun; Kwon, Su-Jin; Kim, Young-Suk; Park, Do-Sim; Kim, Byoung-Ryun; Yoon, Kwon-Ha; Jeong, Eun-Taik; Kim, Hak-Ryul

    2014-05-01

    Although non-small cell lung cancer (NSCLC) tumors with activating mutations in the epidermal growth factor receptor (EGFR) are highly responsive to EGFR tyrosine kinase inhibitors (TKIs) including gefitinib and erlotinib, development of acquired resistance is almost inevitable. Statins show antitumor activity, but it is unknown whether they can reverse EGFR-TKIs resistance in NSCLC with the T790M mutation of EGFR. This study investigated overcoming resistance to EGFR-TKI using simvastatin. We demonstrated that addition of simvastatin to gefitinib enhanced caspase-dependent apoptosis in T790M mutant NSCLC cells. Simvastatin also strongly inhibited AKT activation, leading to suppression of β-catenin activity and the expression of its targets, survivin and cyclin D1. Both insulin treatment and AKT overexpression markedly increased p-β-catenin and survivin levels, even in the presence of gefitinib and simvastatin. However, inhibition of AKT by siRNA or LY294002 treatment decreased p-β-catenin and survivin levels. To determine the role of survivin in simvastatin-induced apoptosis of gefitinib-resistant NSCLC, we showed that the proportion of apoptotic cells following treatment with survivin siRNA and the gefitinib-simvastatin combination was greater than the theoretical additive effects, whereas survivin up-regulation could confer protection against gefitinib and simvastatin-induced apoptosis. Similar results were obtained in erlotinib and simvastatin-treated HCC827/ER cells. These findings suggest that survivin is a key molecule that renders T790M mutant NSCLC cells resistant to apoptosis induced by EGFR-TKIs and simvastatin. Overall, these data indicate that simvastatin may overcome EGFR-TKI resistance in T790M mutant NSCLCs via an AKT/β-catenin signaling-dependent down-regulation of survivin and apoptosis induction. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Discovery of novel 4-anilinoquinazoline derivatives as potent inhibitors of epidermal growth factor receptor with antitumor activity.

    PubMed

    Xu, Yun-Yun; Li, Si-Ning; Yu, Gao-Jian; Hu, Qing-Hua; Li, Huan-Qiu

    2013-10-01

    Two new series of new compounds containing a 6-amino-substituted group or 6-acrylamide-substituted group linked to a 4-anilinoquinazoline nucleus have been discovered as potential EGFR inhibitors. These compounds proved efficient effects on antiproliferative activity and EGFR-TK inhibitory activity. Especially, N(6)-((5-bromothiophen-2-yl)methyl)-N(4)-(3-chlorophenyl)quinazoline-4,6-diamine (5e), showed the most potent inhibitory activity (IC50=3.11μM for Hep G2, IC50=0.82μM for A549). The EGFR molecular docking model suggested that the new compound is nicely bound to the region of EGFR, and cell morphology by Hoechst stain experiment suggested that these compounds efficiently induced apoptosis of A549 cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis

    PubMed Central

    de Jong, Petrus R.; Takahashi, Naoki; Harris, Alexandra R.; Lee, Jihyung; Bertin, Samuel; Jeffries, James; Jung, Michael; Duong, Jen; Triano, Amy I.; Lee, Jongdae; Niv, Yaron; Herdman, David S.; Taniguchi, Koji; Kim, Chang-Whan; Dong, Hui; Eckmann, Lars; Stanford, Stephanie M.; Bottini, Nunzio; Corr, Maripat; Raz, Eyal

    2014-01-01

    The intestinal epithelium has a high rate of turnover, and dysregulation of pathways that regulate regeneration can lead to tumor development; however, the negative regulators of oncogenic events in the intestinal epithelium are not fully understood. Here we identified a feedback loop between the epidermal growth factor receptor (EGFR), a known mediator of proliferation, and the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), in intestinal epithelial cells (IECs). We found that TRPV1 was expressed by IECs and was intrinsically activated upon EGFR stimulation. Subsequently, TRPV1 activation inhibited EGFR-induced epithelial cell proliferation via activation of Ca2+/calpain and resulting activation of protein tyrosine phosphatase 1B (PTP1B). In a murine model of multiple intestinal neoplasia (ApcMin/+ mice), TRPV1 deficiency increased adenoma formation, and treatment of these animals with an EGFR kinase inhibitor reversed protumorigenic phenotypes, supporting a functional association between TRPV1 and EGFR signaling in IECs. Administration of a TRPV1 agonist suppressed intestinal tumorigenesis in ApcMin/+ mice, similar to — as well as in conjunction with — a cyclooxygenase-2 (COX-2) inhibitor, which suggests that targeting both TRPV1 and COX-2 has potential as a therapeutic approach for tumor prevention. Our findings implicate TRPV1 as a regulator of growth factor signaling in the intestinal epithelium through activation of PTP1B and subsequent suppression of intestinal tumorigenesis. PMID:25083990

  4. Loss of EGFR confers acquired resistance to AZD9291 in an EGFR-mutant non-small cell lung cancer cell line with an epithelial-mesenchymal transition phenotype.

    PubMed

    Xu, Jing; Zhao, Xiaoting; He, Dengfeng; Wang, Jinghui; Li, Weiying; Liu, Yinghui; Ma, Li; Jiang, Mei; Teng, Yu; Wang, Ziyu; Gu, Meng; Wu, Jianbin; Wang, Yue; Yue, Wentao; Zhang, Shucai

    2018-05-24

    AZD9291 is an irreversible, small-molecule inhibitor which has potency against mutant EGFR- and T790M-resistant mutation. Despite the encouraging efficacy in clinical, the acquired resistance will finally occur. Further study will need to be done to identify the acquired resistance mechanisms and determine the next treatment. We established an AZD9291-resistant cell line (HCC827/AZDR) from parental HCC827 cell line through stepwise pulsed selection of AZD9291. The expression of EGFR and its downstream pathways were determined by western blot analysis or immunofluorescence assay. The sensitivity to indicated agents were evaluated by MTS. Compared with parental HCC827 cells, the HCC827/AZDR cells showed high resistance to AZD9291 and other EGFR-TKIs, and exhibited a mesenchymal-like phenotype. Almost complete loss of EGFR expression was observed in HCC827/AZDR cells. But the activation of downstream pathway, MAPK signaling, was found in HCC827/AZDR cells even in the presence of AZD9291. Inhibition of MAPK signaling had no effect on cell viability of HCC827/AZDR and could not reverse AZD9291 resistance because of the subsequent activation of AKT signaling. When treated with the combination of AKT and MAPK inhibitor, HCC827/AZDR showed remarkable growth inhibition. Loss of EGFR could be proposed as a potential acquired resistance mechanism of AZD9291 in EGFR-mutant NSCLC cells with an EMT phenotype. Despite the loss of EGFR, the activation of MAPK pathway which had crosstalk with AKT pathway could maintain the proliferation and survival of resistant cells. Blocking MAPK and AKT signaling may be a potential therapeutic strategy following AZD9291 resistance.

  5. Apatinib enhances antitumour activity of EGFR-TKIs in non-small cell lung cancer with EGFR-TKI resistance.

    PubMed

    Li, Fang; Zhu, Tengjiao; Cao, Baoshan; Wang, Jiadong; Liang, Li

    2017-10-01

    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs)-rechallenged therapy for EGFR-mutant non-small cell lung cancer (NSCLC) patients who acquired resistance showed moderate efficacy. Considering the high interrelation between EGFR and vascular endothelial growth factor/vascular endothelial growth factor receptor (VEGF/VEGFR) pathways, we firstly evaluated EGFR-TKI combined with apatinib (a highly selective VEGFR2 inhibitor) in EGFR-TKI-resistant model and patients. Effects of apatinib, gefitinib and gefitinib plus apatinib were assessed on four NSCLC cell lines (A549 with wild-type EGFR, H1975 harbouring L858R and T790M, H1650 and HCC827 harbouring E746_A750 deletion) and xenograft model of acquired resistance that was established by injecting H1975 cells. Furthermore, we retrospectively evaluated EGFR-TKI rechallenge with apatinib in 16 patients. Gefitinib plus apatinib strengthened the effect of gefitinib and apatinib alone on the four NSCLC cell lines, and H1975 was the most susceptible one. Co-administration delayed the tumour growth than mono-therapy in the xenograft model and had better effect on inhibiting the activation of EGFR and VEGFR2 and expression of CD31 (an angiogenesis marker) and vascular endothelial growth factor A (an important pro-angiogenesis factor in the tumour microenvironment). Changes in protein expression of protein kinase B/mammalian target of rapamycin and extracellular signal-regulated kinase pathways demonstrated the potent inhibitory effect on the pro-survival signalling pathways by combined therapy. EGFR-TKI rechallenge with apatinib achieved a median progression-free survival of 4.60 months (95% confidence interval, 2.23-12.52 months) in the patients. Apatinib significantly potentiated the antitumour effect of gefitinib in NSCLC with T790M-related EGFR-TKI resistance both in vivo and vitro. EGFR-TKI rechallenge with apatinib might represent a new option for NSCLC with T790M or unknown resistance mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Rapamycin prevents the development and progression of mutant epidermal growth factor receptor lung tumors with the acquired resistance mutation T790M.

    PubMed

    Kawabata, Shigeru; Mercado-Matos, José R; Hollander, M Christine; Donahue, Danielle; Wilson, Willie; Regales, Lucia; Butaney, Mohit; Pao, William; Wong, Kwok-Kin; Jänne, Pasi A; Dennis, Phillip A

    2014-06-26

    Lung cancer in never-smokers is an important disease often characterized by mutations in epidermal growth factor receptor (EGFR), yet risk reduction measures and effective chemopreventive strategies have not been established. We identify mammalian target of rapamycin (mTOR) as potentially valuable target for EGFR mutant lung cancer. mTOR is activated in human lung cancers with EGFR mutations, and this increases with acquisition of T790M mutation. In a mouse model of EGFR mutant lung cancer, mTOR activation is an early event. As a single agent, the mTOR inhibitor rapamycin prevents tumor development, prolongs overall survival, and improves outcomes after treatment with an irreversible EGFR tyrosine kinase inhibitor (TKI). These studies support clinical testing of mTOR inhibitors in order to prevent the development and progression of EGFR mutant lung cancers. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Redox Regulation of EGFR Signaling Through Cysteine Oxidation1

    PubMed Central

    Truong, Thu H.; Carroll, Kate S.

    2012-01-01

    Epidermal growth factor receptor (EGFR) exemplifies the family of receptor tyrosine kinases that mediate numerous cellular processes including growth, proliferation and differentiation. Moreover, gene amplification and EGFR mutations have been identified in a number of human malignancies, making this receptor an important target for the development of anticancer drugs. In addition to ligand-dependent activation and concomitant tyrosine phosphorylation, EGFR stimulation results in the localized generation of H2O2 by NADPH-dependent oxidases. In turn, H2O2 functions as a secondary messenger to regulate intracellular signaling cascades, largely through the modification of specific cysteine residues within redox-sensitive protein targets, including Cys797 in the EGFR active site. In this review, we highlight recent advances in our understanding of the mechanisms that underlie redox regulation of EGFR signaling and how these discoveries may form the basis for development of new therapeutic strategies to target this and other H2O2-modulated pathways. PMID:23186290

  8. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    NASA Astrophysics Data System (ADS)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  9. EGFR-dependent signalling reduced and p38 dependent apoptosis required by Gallic acid in Malignant Mesothelioma cells.

    PubMed

    Demiroglu-Zergeroglu, Asuman; Candemir, Gulsife; Turhanlar, Ebru; Sagir, Fatma; Ayvali, Nurettin

    2016-12-01

    The unrestrained EGFR signalling contributes to malignant phenotype in a number of cancers including Malignant Mesotheliomas. Present study was designed to evaluate EGFR-dependent anti-proliferative and apoptotic effects of Gallic acid in transformed Mesothelial (MeT-5A) and Malignant Mesothelioma (SPC212) cells. Gallic acid reduced the viability of Malignant Mesothelioma cells in a concentration and time-dependent manner. However, viability of mesothelial cells reduced only at high concentration and longer time periods. Gallic acid restrained the activation of EGFR, ERK1/2 and AKT proteins and down regulated expression of Cyclin D and Bcl-2 genes, but upregulated the expression of p21 gene in EGF-induced SPC212 cells. GA-induced transitory G1 arrest and triggered mitochondrial and death receptor mediated apoptosis, which requires p38MAPK activation. The data provided here indicate that GA is able to inhibit EGFR dependent proliferation and survival signals and induces p38 pathway dependent apoptosis in Malignant Mesothelioma cells. On the basis of these experimental findings it is worthwhile to investigate further the biological activity of Gallic acid on other Mesothelioma cell lines harbouring aberrant EGFR signals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Epidermal growth factor receptor and integrins control force-dependent vinculin recruitment to E-cadherin junctions.

    PubMed

    Sehgal, Poonam; Kong, Xinyu; Wu, Jun; Sunyer, Raimon; Trepat, Xavier; Leckband, Deborah

    2018-03-20

    This study reports novel findings that link E-cadherin (also known as CDH1)-mediated force-transduction signaling to vinculin targeting to intercellular junctions via epidermal growth factor receptor (EGFR) and integrins. These results build on previous findings that demonstrated that mechanically perturbed E-cadherin receptors activate phosphoinositide 3-kinase and downstream integrins in an EGFR-dependent manner. Results of this study show that this EGFR-mediated kinase cascade controls the force-dependent recruitment of vinculin to stressed E-cadherin complexes - a key early signature of cadherin-based mechanotransduction. Vinculin targeting requires its phosphorylation at tyrosine 822 by Abl family kinases (hereafter Abl), but the origin of force-dependent Abl activation had not been identified. We now present evidence that integrin activation, which is downstream of EGFR signaling, controls Abl activation, thus linking E-cadherin to Abl through a mechanosensitive signaling network. These findings place EGFR and integrins at the center of a positive-feedback loop, through which force-activated E-cadherin signals regulate vinculin recruitment to cadherin complexes in response to increased intercellular tension.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  11. Physical Activity and Change in Estimated GFR among Persons with CKD

    PubMed Central

    Littman, Alyson J.; Duncan, Glen E.; Weiss, Noel S.; Sachs, Michael C.; Ruzinski, John; Kundzins, John; Rock, Denise; de Boer, Ian H.; Ikizler, T. Alp; Himmelfarb, Jonathan; Kestenbaum, Bryan R.

    2014-01-01

    Physical activity may counteract metabolic disturbances that promote the progression of CKD. To address this concept, we performed a longitudinal cohort study of 256 participants in the Seattle Kidney Study, a clinic-based study of CKD. Participants with an estimated GFR (eGFR) of 15–59 ml/min per 1.73 m2 at baseline were eligible for the study. Physical activity was quantified using the Four-Week Physical Activity History Questionnaire. We used generalized estimating equations to test associations of physical activity with change in eGFR determined by longitudinal measurements of serum cystatin C. Mean baseline eGFR was 42 ml/min per 1.73 m2. During a median 3.7 years of follow-up, the mean change in eGFRcystatin C was −7.6% per year (interquartile range, −16.8%, 4.9% per year). Participants who reported >150 minutes of physical activity per week had the lowest rate of eGFRcystatin C loss (mean −6.2% per year compared with −9.6% per year among inactive participants). In adjusted analyses, each 60-minute increment in weekly physical activity duration associated with a 0.5% slower decline per year in eGFR (95% confidence interval, 0.02 to 0.98; P=0.04). Results were similar in sensitivity analyses restricted to participants without cardiovascular disease or diabetes, or to participants with moderate/high physical function. After adjustment for eGFR at the time of questionnaire completion, physical activity did not associate with the incidence of ESRD (n=34 events). In summary, higher physical activity levels associated with slower rates of eGFR loss in persons with established CKD. PMID:24335971

  12. Role of the epidermal growth factor receptor in signaling strain-dependent activation of the brain natriuretic peptide gene.

    PubMed

    Anderson, Hope D I; Wang, Feng; Gardner, David G

    2004-03-05

    The epidermal growth factor receptor (EGFR) and ectoshedding of heparin-binding epidermal growth factor (HBEGF), an EGFR ligand, have been linked to the development of cardiac myocyte hypertrophy. However, the precise role that the liganded EGFR plays in the transcriptional activation of the gene program that accompanies hypertrophy remains undefined. Utilizing the human (h) BNP gene as a model of hypertrophy-dependent gene activation, we show that activation of the EGFR plays an important role in mediating mechanical strain-dependent stimulation of the hBNP promoter. Strain promotes endothelin (ET) generation through NAD(P)H oxidase-dependent production of reactive oxygen species. ET in turn induces metalloproteinase-mediated cleavage of pro-HBEGF and ectoshedding of HBEGF, which activates the EGFR and stimulates hBNP promoter activity. HBEGF also stimulates other phenotypic markers of hypertrophy including protein synthesis and sarcomeric assembly. The antioxidant N-acetylcysteine or the NAD(P)H oxidase inhibitor, apocynin, inhibited strain-dependent activation of the ET-1 promoter, HBEGF shedding, and hBNP promoter activation. The metalloproteinase inhibitor, GM-6001, prevented the induction of HBEGF ectoshedding and the hBNP promoter response to strain, suggesting a critical role for the metalloproteinase-dependent cleavage event in signaling the strain response. These findings suggest that metalloproteinase activity as an essential step in this pathway may prove to be a relevant therapeutic target in the management of cardiac hypertrophy.

  13. Celecoxib induces proliferation and Amphiregulin production in colon subepithelial myofibroblasts, activating erk1-2 signaling in synergy with EGFR.

    PubMed

    Benelli, Roberto; Venè, Roberta; Minghelli, Simona; Carlone, Sebastiano; Gatteschi, Beatrice; Ferrari, Nicoletta

    2013-01-01

    The COX-2 inhibitor Celecoxib, tested in phase III trials for the prevention of sporadic colon adenomas, reduced the appearance of new adenomas, but was unable to affect the incidence of colon cancer. Moreover the 5years follow-up showed that patients discontinuing Celecoxib treatment had an increased incidence of adenomas as compared to the placebo arm. In the APC(min/+) mouse model short term treatment with Celecoxib reduced gut adenomas, but a prolonged administration of the drug induced fibroblast activation and intestinal fibrosis with a final tumor burden. The way Celecoxib could directly activate human colon myofibroblasts (MF) has not yet been investigated. We found that MF are activated by non toxic doses of Celecoxib. Celecoxib induces erk1-2 and Akt phosphorylation within 5'. This short term activation is apparently insufficient to cause phenotypic changes, but the contemporary triggering of EGFR causes an impressive synergic effect inducing MF proliferation and the neo-expression and release of Amphiregulin (AREG), a well known EGFR agonist involved in colon cancer progression. As a confirm to these observations, the erk inhibitor U0126 and the EGFR inhibitors Tyrphostin and Cetuximab were able to contrast AREG induction. Our data provide evidence that Celecoxib directly activates MF empowering EGFR signaling. According to these results the association with EGFR (or erk1-2) inhibitors could abolish the off-target activity of Celecoxib, possibly extending the potential of this drug for colon cancer prevention. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Molecular Determinants of Epidermal Growth Factor Binding: A Molecular Dynamics Study

    PubMed Central

    Sanders, Jeffrey M.; Wampole, Matthew E.; Thakur, Mathew L.; Wickstrom, Eric

    2013-01-01

    The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of therapeutics targeting EGF ligands or the receptor itself. PMID:23382875

  15. Cationic Polyamidoamine Dendrimers as Modulators of EGFR Signaling In Vitro and In Vivo

    PubMed Central

    Akhtar, Saghir; Al-Zaid, Bashayer; El-Hashim, Ahmed Z.; Chandrasekhar, Bindu; Attur, Sreeja; Yousif, Mariam H. M.; Benter, Ibrahim F.

    2015-01-01

    Cationic polyamidoamine (PAMAM) dendrimers are branch-like spherical polymers being investigated for a variety of applications in nanomedicine including nucleic acid drug delivery. Emerging evidence suggests they exhibit intrinsic biological and toxicological effects but little is known of their interactions with signal transduction pathways. We previously showed that the activated (fragmented) generation (G) 6 PAMAM dendrimer, Superfect (SF), stimulated epidermal growth factor receptor (EGFR) tyrosine kinase signaling—an important signaling cascade that regulates cell growth, survival and apoptosis- in cultured human embryonic kidney (HEK 293) cells. Here, we firstly studied the in vitro effects of Polyfect (PF), a non-activated (intact) G6 PAMAM dendrimer, on EGFR tyrosine kinase signaling via extracellular-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) in cultured HEK 293 cells and then compared the in vivo effects of a single administration (10mg/kg i.p) of PF or SF on EGFR signaling in the kidneys of normal and diabetic male Wistar rats. Polyfect exhibited a dose- and time-dependent inhibition of EGFR, ERK1/2 and p38 MAPK phosphorylation in HEK-293 cells similar to AG1478, a selective EGFR inhibitor. Administration of dendrimers to non-diabetic or diabetic animals for 24h showed that PF inhibited whereas SF stimulated EGFR phosphorylation in the kidneys of both sets of animals. PF-mediated inhibition of EGFR phosphorylation as well as SF or PF-mediated apoptosis in HEK 293 cells could be significantly reversed by co-treatment with antioxidants such as tempol implying that both these effects involved an oxidative stress-dependent mechanism. These results show for the first time that SF and PF PAMAM dendrimers can differentially modulate the important EGFR signal transduction pathway in vivo and may represent a novel class of EGFR modulators. These findings could have important clinical implications for the use of PAMAM dendrimers in nanomedicine. PMID:26167903

  16. Dual inhibition of Met kinase and angiogenesis to overcome HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer.

    PubMed

    Takeuchi, Shinji; Wang, Wei; Li, Qi; Yamada, Tadaaki; Kita, Kenji; Donev, Ivan S; Nakamura, Takahiro; Matsumoto, Kunio; Shimizu, Eiji; Nishioka, Yasuhiko; Sone, Saburo; Nakagawa, Takayuki; Uenaka, Toshimitsu; Yano, Seiji

    2012-09-01

    Acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is a serious problem in the management of EGFR mutant lung cancer. We recently reported that hepatocyte growth factor (HGF) induces resistance to EGFR-TKIs by activating the Met/PI3K pathway. HGF is also known to induce angiogenesis in cooperation with vascular endothelial growth factor (VEGF), which is an important therapeutic target in lung cancer. Therefore, we hypothesized that dual inhibition of HGF and VEGF may be therapeutically useful for controlling HGF-induced EGFR-TKI-resistant lung cancer. We found that a dual Met/VEGF receptor 2 kinase inhibitor, E7050, circumvented HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer cell lines by inhibiting the Met/Gab1/PI3K/Akt pathway in vitro. HGF stimulated VEGF production by activation of the Met/Gab1 signaling pathway in EGFR mutant lung cancer cell lines, and E7050 showed an inhibitory effect. In a xenograft model, tumors produced by HGF-transfected Ma-1 (Ma-1/HGF) cells were more angiogenic than vector control tumors and showed resistance to gefitinib. E7050 alone inhibited angiogenesis and retarded growth of Ma-1/HGF tumors. E7050 combined with gefitinib induced marked regression of tumor growth. Moreover, dual inhibition of HGF and VEGF by neutralizing antibodies combined with gefitinib also markedly regressed tumor growth. These results indicate the therapeutic rationale of dual targeting of HGF-Met and VEGF-VEGF receptor 2 for overcoming HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. In Vivo Evidence for Epidermal Growth Factor Receptor (EGFR)-mediated Release of Prolactin from the Pituitary Gland

    PubMed Central

    Dahlhoff, Maik; Blutke, Andreas; Wanke, Rüdiger; Wolf, Eckhard; Schneider, Marlon R.

    2011-01-01

    Members of the epidermal growth factor receptor (EGFR/ERBB) system are essential local regulators of mammary gland development and function. Emerging evidence suggests that EGFR signaling may also influence mammary gland activity indirectly by promoting the release of prolactin from the pituitary gland in a MAPK and estrogen receptor-α (ERα)-dependent manner. Here, we report that overexpression of the EGFR ligand betacellulin (BTC) causes a lactating-like phenotype in the mammary gland of virgin female mice including the major hallmarks of lactogenesis. BTC transgenic (BTC-tg) females showed reduced levels of prolactin in the pituitary gland and increased levels of the hormone in the circulation. Furthermore, treatment of BTC-tg females with bromocriptine, an inhibitor of prolactin secretion, blocked the development of the lactation-like phenotype, suggesting that it is caused by central release of prolactin rather than by local actions of BTC in the mammary gland. Introduction of the antimorphic Egfr allele Wa5 also blocked the appearance of the mammary gland alterations, revealing that the phenotype is EGFR-dependent. We detected an increase in MAPK activity, but unchanged phosphorylation of ERα in the pituitary gland of BTC-tg females as compared with control mice. These results provide the first functional evidence in vivo for a role of the EGFR system in regulating mammary gland activity by modulating prolactin release from the pituitary gland. PMID:21914800

  18. Design, Synthesis and Evaluation of Ribose-modified Anilinopyrimidine Derivatives as EGFR Tyrosine Kinase Inhibitors

    NASA Astrophysics Data System (ADS)

    Hu, Xiuqin; Wang, Disha; Tong, Yi; Tong, Linjiang; Wang, Xia; Zhu, Lili; Xie, Hua; Li, Shiliang; Yang, You; Xu, Yufang

    2017-11-01

    The synthesis of a series of ribose-modified anilinopyrimidine derivatives was efficiently achieved by utilizing DBU or tBuOLi-promoted coupling of ribosyl alcohols with 2,4,5-trichloropyrimidine as key step. Preliminary biological evaluation of this type of compounds as new EGFR tyrosine kinase inhibitors for combating EGFR L858R/T790M mutant associated with drug resistance in the treatment of non-small cell lung cancer revealed that 3-N-acryloyl-5-O-anilinopyrimidine ribose derivative 1a possessed potent and specific inhibitory activity against EGFR L858R/T790M over WT EGFR. Based upon molecular docking studies of the binding mode between compound 1a and EGFR, the distance between the Michael receptor and the pyrimidine scaffold is considered as an important factor for the inhibitory potency and future design of selective EGFR tyrosine kinase inhibitors against EGFR L858R/T790M mutants.

  19. Benzo(a)pyrene quinones increase cell proliferation, generate reactive oxygen species, and transactivate the epidermal growth factor receptor in breast epithelial cells.

    PubMed

    Burdick, Andrew D; Davis, John W; Liu, Ke Jian; Hudson, Laurie G; Shi, Honglian; Monske, Michael L; Burchiel, Scott W

    2003-11-15

    Polycyclic aromatic hydrocarbons, such as benzo(a)pyrene (BaP), are known mammary carcinogens in rodents and may be involved in human breast cancer. We have reported previously that BaP can mimic growth factor signaling and increase cell proliferation in primary human mammary epithelial cells and the human mammary epithelial cell line MCF-10A. BaP-quinones (BPQs) are important metabolites of BaP that have been associated with the production of reactive oxygen species. Using a model of epidermal growth factor (EGF) withdrawal in MCF-10A, we hypothesized that production of reactive oxygen species by BPQs could lead to the activation of the EGF receptor (EGFR). Here, we demonstrate through electron paramagnetic resonance spectroscopy and flow cytometry that 1,6-BPQ and 3,6-BPQ produce superoxide anion and hydrogen peroxide in MCF-10A cells. Furthermore, we show that BPQs increase EGFR, Akt, and extracellular signal-regulated kinase activity, leading to increased cell number in the absence of EGF. The BPQ-induced EGFR activity and associated cell proliferation were attenuated by the EGFR inhibitor AG1478, as well as by the antioxidant N-acetyl cysteine. Overexpression of catalase, but not Cu/Zn superoxide dismutase, reduced the extent of BPQ-dependent increased cell number and EGFR pathway activation. Moreover, the direct treatment of MCF-10A cells with hydrogen peroxide enhanced EGFR, Akt, and extracellular-regulated kinase phosphorylation that could be similarly inhibited by AG1478, N-acetyl cysteine, and catalase. Taken together, these data indicate that BPQs, through the generation of hydrogen peroxide, activate the EGFR in MCF-10A cells, leading to increased cell number under EGF-deficient conditions.

  20. Osimertinib making a breakthrough in lung cancer targeted therapy

    PubMed Central

    Zhang, Haijun

    2016-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the evidence-based first-line treatment for advanced non-small-cell lung cancer that harbors sensitizing EGFR mutations (EGFRm+) such as exon 19 deletions and L858R substitutions in exon 21. However, acquired resistance to EGFR TKIs is mostly driven by a second-site EGFR T790M mutation, which negates their inhibitory activity. Osimertinib (AZD9291, Tagrisso™), an oral, third-generation EGFR TKI, has been designed to target the EGFR T790M mutation, while sparing wild-type EGFR. In this up-to-date review, focus is not only on the structure, mechanisms, and pharmacokinetics of osimertinib but also on summarizing clinical trials and making recommendations of osimertinib for patients with non-small-cell lung cancer. PMID:27660466

  1. Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System.

    PubMed

    Forrester, Steven J; Kawai, Tatsuo; O'Brien, Shannon; Thomas, Walter; Harris, Raymond C; Eguchi, Satoru

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.

  2. EGFR-TKI-induced HSP70 degradation and BER suppression facilitate the occurrence of the EGFR T790 M resistant mutation in lung cancer cells.

    PubMed

    Cao, Xiang; Zhou, Yi; Sun, Hongfang; Xu, Miao; Bi, Xiaowen; Zhao, Zhihui; Shen, Binghui; Wan, Fengyi; Hong, Zhuan; Lan, Lei; Luo, Lan; Guo, Zhigang; Yin, Zhimin

    2018-06-28

    Non-small cell lung cancer (NSCLC) patients harboring EGFR-activating mutations initially respond to EGFR tyrosine kinase inhibitors (EGFR-TKIs) and have shown favorable outcomes. However, acquired drug resistance to EGFR-TKIs develops in almost all patients mainly due to the EGFR T790 M mutation. Here, we show that treatment with low-dose EGFR-TKI results in the emergence of the EGFR T790 M mutation and in the reduction of HSP70 protein levels in HCC827 cells. Erlotinib treatment inhibits HSP70 phosphorylation at tyrosine 41 and increases HSP70 ubiquitination, resulting in HSP70 degradation. We show that EGFR-TKI treatment causes increased DNA damage and enhanced gene mutation rates, which are secondary to the EGFR-TKI-induced reduction of HSP70 protein. Importantly, HSP70 overexpression delays the occurrence of Erlotinib-induced EGFR T790 M mutation. We further demonstrate that HSP70 interacts with multiple enzymes in the base excision repair (BER) pathway and promotes not only the efficiency but also the fidelity of BER. Collectively, our findings show that EGFR-TKI treatment facilitates gene mutation and the emergence of EGFR T790 M secondary mutation by the attenuation of BER via induction of HSP70 protein degradation. Copyright © 2018. Published by Elsevier B.V.

  3. Amplification of the EGFR gene can be maintained and modulated by variation of EGF concentrations in in vitro models of glioblastoma multiforme

    PubMed Central

    Mokri, Poroshista; Lamp, Nora; Linnebacher, Michael; Classen, Carl Friedrich; Erbersdobler, Andreas; Schneider, Björn

    2017-01-01

    Glioblastoma multiforme (GBM) is the most common and lethal brain tumor in adults. It is known that amplification of the epidermal growth factor receptor gene (EGFR) occurs in approximately 40% of GBM, leading to enhanced activation of the EGFR signaling pathway and promoting tumor growth. Although GBM mutations are stably maintained in GBM in vitro models, rapid loss of EGFR gene amplification is a common observation during cell culture. To maintain EGFR amplification in vitro, heterotopic GBM xenografts with elevated EGFR copy number were cultured under varying serum conditions and EGF concentrations. EGFR copy numbers were assessed over several passages by quantitative PCR and chromogenic in situ hybridization. As expected, in control assays with 10% FCS, cells lost EGFR amplification with increasing passage numbers. However, cells cultured under serum free conditions stably maintained elevated copy numbers. Furthermore, EGFR protein expression positively correlated with genomic amplification levels. Although elevated EGFR copy numbers could be maintained over several passages in vitro, levels of EGFR amplification were variable and dependent on the EGF concentration in the medium. In vitro cultures of GBM cells with elevated EGFR copy number and corresponding EGFR protein expression should prove valuable preclinical tools to gain a better understanding of EGFR driven glioblastoma and assist in the development of new improved therapies. PMID:28934307

  4. Fusion protein based on Grb2-SH2 domain for cancer therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Yuriko; Graduate School of Pharmaceutical Sciences, Chiba University; Furukawa, Takako, E-mail: tfuru@nirs.go.jp

    2010-08-20

    Research highlights: {yields} Grb2 mediates EGFR signaling through binding to phosphorylate EGFR with SH2 domain. {yields} We generated fusion proteins containing 1 or 2 SH2 domains of Grb2 added with TAT. {yields} The one with 2 SH2 domains (TSSF) interfered ERK phosphorylation. {yields} TSSF significantly delayed the growth of EGFR overexpressing tumor in a mouse model. -- Abstract: Epidermal growth factor receptor (EGFR) is one of the very attractive targets for cancer therapy. In this study, we generated fusion proteins containing one or two Src-homology 2 (SH2) domains of growth factor receptor bound protein 2 (Grb2), which bind to phosphorylatedmore » EGFR, added with HIV-1 transactivating transcription for cell membrane penetration (termed TSF and TSSF, respectively). We examined if they can interfere Grb2-mediated signaling pathway and suppress tumor growth as expected from the lack of SH3 domain, which is necessary to intermediate EGFR-Grb2 cell signaling, in the fusion proteins. The transduction efficiency of TSSF was similar to that of TSF, but the binding activity of TSSF to EGFR was higher than that of TSF. Treatment of EGFR-overexpressing cells showed that TSSF decreased p42-ERK phosphorylation, while TSF did not. Both the proteins delayed cell growth but did not induce cell death in culture. TSSF also significantly suppressed tumor growth in vivo under consecutive administration. In conclusion, TSSF showed an ability to inhibit EGFR-Grb2 signaling and could have a potential to treat EGFR-activated cancer.« less

  5. HER3 expression is enhanced during progression of lung adenocarcinoma without EGFR mutation from stage 0 to IA1.

    PubMed

    Kumagai, Toru; Tomita, Yasuhiko; Nakatsuka, Shin-Ichi; Kimura, Madoka; Kunimasa, Kei; Inoue, Takako; Tamiya, Motohiro; Nishino, Kazumi; Susaki, Yoshiyuki; Kusu, Takashi; Tokunaga, Toshiteru; Okami, Jiro; Higashiyama, Masahiko; Imamura, Fumio

    2018-04-01

    Activating EGFR mutations, HER2, and HER3 are implicated in lung cancer; however, with the exception of EGFR gene amplification in lung adenocarcinoma harboring EGFR mutations, their involvement in disease progression during the early stages is poorly understood. In this paper, we focused on which receptor is correlated with lung adenocarcinoma progression in the presence or absence of EGFR mutation from stage 0 to IA1. HER2 and HER3 expression and activating EGFR mutations in surgically resected lung adenocarcinoma exhibiting ground glass nodules on chest computed tomography and re-classified to stage 0 and IA1 were examined by immunohistochemistry and peptide nucleic acid-locked nucleic acid PCR clamp method, respectively. HER2 and HER3 expression was detected in 22.2% and 86.1% of samples, respectively. The frequency of EGFR mutation was 45.7% and was not significantly different between stage 0 and IA1 (40.0% and 48.0%, respectively), suggesting that EGFR mutation does not correlate with cancer progression from stage 0 to IA1. HER2 expression also did not correlate to progression. However, not only the frequency, but also the intensity of HER3 expression was increased in stage IA1 lung adenocarcinoma, particularly in lung adenocarcinoma without EGFR mutation. HER3 tends to be intensively expressed during the progression of lung adenocarcinoma without EGFR mutation from carcinoma in situ to invasive carcinoma. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  6. Disulfide bond disrupting agents activate the unfolded protein response in EGFR- and HER2-positive breast tumor cells

    PubMed Central

    Law, Mary E.; Davis, Bradley J.; Bartley, Ashton N.; Higgins, Paul J.; Kilberg, Michael S.; Santostefano, Katherine E.; Terada, Naohiro; Heldermon, Coy D.; Castellano, Ronald K.; Law, Brian K.

    2017-01-01

    Many breast cancer deaths result from tumors acquiring resistance to available therapies. Thus, new therapeutic agents are needed for targeting drug-resistant breast cancers. Drug-refractory breast cancers include HER2+ tumors that have acquired resistance to HER2-targeted antibodies and kinase inhibitors, and “Triple-Negative” Breast Cancers (TNBCs) that lack the therapeutic targets Estrogen Receptor, Progesterone Receptor, and HER2. A significant fraction of TNBCs overexpress the HER2 family member Epidermal Growth Factor Receptor (EGFR). Thus agents that selectively kill EGFR+ and HER2+ tumors would provide new options for breast cancer therapy. We previously identified a class of compounds we termed Disulfide bond Disrupting Agents (DDAs) that selectively kill EGFR+ and HER2+ breast cancer cells in vitro and blocked the growth of HER2+ breast tumors in an animal model. DDA-dependent cytotoxicity was found to correlate with downregulation of HER1-3 and Akt dephosphorylation. Here we demonstrate that DDAs activate the Unfolded Protein Response (UPR) and that this plays a role in their ability to kill EGFR+ and HER2+ cancer cells. The use of breast cancer cell lines ectopically expressing EGFR or HER2 and pharmacological probes of UPR revealed all three DDA responses: HER1-3 downregulation, Akt dephosphorylation, and UPR activation, contribute to DDA-mediated cytotoxicity. Significantly, EGFR overexpression potentiates each of these responses. Combination studies with DDAs suggest that they may be complementary with EGFR/HER2-specific receptor tyrosine kinase inhibitors and mTORC1 inhibitors to overcome drug resistance. PMID:28423644

  7. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells.

    PubMed

    Chen, Ying-Jung; Lin, Ku-Nan; Jhang, Li-Mei; Huang, Chia-Hui; Lee, Yuan-Chin; Chang, Long-Sen

    2016-05-25

    Several studies have revealed that natural compounds are valuable resources to develop novel agents against dysregulation of the EGF/EGFR-mediated matrix metalloproteinase-9 (MMP-9) expression in cancer cells. In view of the findings that EGF/EGFR-mediated MMP-9 expression is closely related to invasion and metastasis of breast cancer. To determine the beneficial effects of gallic acid on the suppression of breast cancer metastasis, we explored the effect of gallic acid on MMP-9 expression in EGF-treated MCF-7 breast cancer cells. Treatment with EGF up-regulated MMP-9 mRNA and protein levels in MCF-7 cells. EGF treatment induced phosphorylation of EGFR and elicited Src activation, subsequently promoting Akt/NFκB (p65) and ERK/c-Jun phosphorylation in MCF-7 cells. Activation of Akt/p65 and ERK/c-Jun was responsible for the MMP-9 up-regulation in EGF-treated cells. Gallic acid repressed the EGF-induced activation of EGFR and Src; furthermore, inactivation of Akt/p65 and ERK/c-Jun was a result of the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. Over-expression of constitutively active Akt and MEK1 or over-expression of constitutively active Src eradicated the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. A chromosome conformation capture assay showed that EGF induced a chromosomal loop formation in the MMP-9 promoter via NFκB/p65 and AP-1/c-Jun activation. Treatment with gallic acid, EGFR inhibitor, or Src inhibitor reduced DNA looping. Taken together, our data suggest that gallic acid inhibits the activation of EGFR/Src-mediated Akt and ERK, leading to reduced levels of p65/c-Jun-mediated DNA looping and thus inhibiting MMP-9 expression in EGF-treated MCF-7 cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Epidermal Growth Factor Receptor targeting in non-small cell lung cancer: revisiting different strategies against the same target.

    PubMed

    Castañón, Eduardo; Martín, Patricia; Rolfo, Christian; Fusco, Juan P; Ceniceros, Lucía; Legaspi, Jairo; Santisteban, Marta; Gil-Bazo, Ignacio

    2014-01-01

    Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) have changed the paradigm of treatment in non-small cell lung cancer (NSCLC). The molecular biology study of EGFR has led to clinical trials that select patients more accurately, regarding the presence of EGFR activating mutations. Nonetheless, a lack of response or a temporary condition of the response has been detected in patients on EGFR TKIs. This has urged to study potential resistance mechanisms underneath. The most important ones are the presence of secondary mutations in EGFR, such as T790M, or the overexpression of mesenchymal-epithelial transition factor (MET) that may explain why patients who initially respond to EGFR TKIs, may ultimately become refractory. Several approaches have been taken and new drugs both targeting EGFR resistance-mutation or MET are currently being developed. Here we review and update the EGFR biological pathway as well as the clinical data leading to approval of the EGFR TKIs currently in the market. New compounds under investigation targeting resistance mutations or dually targeting EGFR and other relevant receptors are also reviewed and discussed.

  9. β-catenin contributes to lung tumor development induced by EGFR mutations

    PubMed Central

    Nakayama, Sohei; Sng, Natasha; Carretero, Julian; Welner, Robert; Hayashi, Yuichiro; Yamamoto, Mihoko; Tan, Alistair J.; Yamaguchi, Norihiro; Yasuda, Hiroyuki; Li, Danan; Soejima, Kenzo; Soo, Ross A.; Costa, Daniel B.; Wong, Kwok-Kin; Kobayashi, Susumu S.

    2014-01-01

    The discovery of somatic mutations in epidermal growth factor receptor (EGFR) and development of EGFR tyrosine kinase inhibitors (TKIs) have revolutionized treatment for lung cancer. However, resistance to TKIs emerges in almost all patients and currently no effective treatment is available. Here we show that β-catenin is essential for development of EGFR mutated lung cancers. β-catenin was upregulated and activated in EGFR mutated cells. Mutant EGFR preferentially bound to and tyrosine-phosphorylated β-catenin, leading to increase in β-catenin-mediated transactivation, particularly in cells harboring the gefitinib/erlotinib-resistant gatekeeper EGFR-T790M mutation. Pharmacological inhibition of β-catenin suppressed EGFR-L858R-T790M mutated lung tumor growth and genetic deletion of the β-catenin gene dramatically reduced lung tumor formation in EGFR-L858R-T790M transgenic mice. These data suggest that β-catenin plays an essential role in lung tumorigenesis and that targeting the β-catenin pathway may provide novel strategies to prevent lung cancer development or overcome resistance to EGFR TKIs. PMID:25164010

  10. Activation of EGFR and ERBB2 by Helicobacter pylori Results in Survival of Gastric Epithelial Cells with DNA Damage

    PubMed Central

    Chaturvedi, Rupesh; Asim, Mohammad; Piazuelo, M. Blanca; Yan, Fang; Barry, Daniel P.; Sierra, Johanna Carolina; Delgado, Alberto G.; Hill, Salisha; Casero, Robert A.; Bravo, Luis E.; Dominguez, Ricardo L.; Correa, Pelayo; Polk, D. Brent; Washington, M. Kay; Rose, Kristie L.; Schey, Kevin L.; Morgan, Douglas R.; Peek, Richard M.; Wilson, Keith T.

    2014-01-01

    BACKGROUND & AIMS The gastric cancer-causing pathogen Helicobacter pylori upregulates spermine oxidase (SMOX) in gastric epithelial cells, causing oxidative stress-induced apoptosis and DNA damage. A subpopulation of SMOXhigh cells are resistant to apoptosis, despite their high levels of DNA damage. Because epidermal growth factor receptor (EGFR) activation can regulate apoptosis, we determined its role in SMOX-mediated effects. METHODS SMOX, apoptosis, and DNA damage were measured in gastric epithelial cells from H pylori-infected Egfrwa5 mice (which have attenuated EGFR activity), Egfr wild-type mice, or in infected cells incubated with EGFR inhibitors or deficient in EGFR. Phosphoproteomic analysis was performed. Two independent tissue microarrays containing each stage of disease, from gastritis to carcinoma, and gastric biopsies from Colombian and Honduran cohorts were analyzed by immunohistochemistry. RESULTS SMOX expression and DNA damage were decreased, and apoptosis increased in H pylori-infected Egfrwa5 mice. H pylori-infected cells with deletion or inhibition of EGFR had reduced levels of SMOX, DNA damage, and DNA damagehigh apoptosislow cells. Phosphoproteomic analysis revealed increased EGFR and ERBB2 signaling. Immunoblot analysis demonstrated the presence of a phosphorylated (p)EGFR–ERBB2 heterodimer and pERBB2; knockdown of ErbB2 facilitated apoptosis of DNA damagehigh apoptosislow cells. SMOX was increased in all stages of gastric disease, peaking in tissues with intestinal metaplasia, whereas pEGFR, pEGFR–ERBB2, and pERBB2 were increased predominantly in tissues demonstrating gastritis or atrophic gastritis. Principal component analysis separated gastritis tissues from patients with cancer vs those without cancer. pEGFR, pEGFR–ERBB2, pERBB2, and SMOX were increased in gastric samples from patients whose disease progressed to intestinal metaplasia or dysplasia, compared with patients whose disease did not progress. CONCLUSIONS In an analysis of gastric tissues from mice and patients, we identified a molecular signature (based on levels of pEGFR, pERBB2, and SMOX) for the initiation of gastric carcinogenesis. PMID:24530706

  11. Structural insights into drug development strategy targeting EGFR T790M/C797S.

    PubMed

    Zhu, Su-Jie; Zhao, Peng; Yang, Jiao; Ma, Rui; Yan, Xiao-E; Yang, Sheng-Yong; Yang, Jing-Wen; Yun, Cai-Hong

    2018-03-02

    Treatment of non-small-cell lung cancers (NSCLCs) harboring primary EGFR oncogenic mutations such as L858R and exon 19 deletion delE746_A750 (Del-19) using gefitinib/erlotinib ultimately fails due to the emergence of T790M mutation. Though WZ4002/CO-1686/AZD9291 are effective in overcoming EGFR T790M by targeting Cys797 via covalent bonding, their efficacy is again limited due to the emergence of C797S mutation. New agents effectively inhibiting EGFR T790M without covalent linkage through Cys 797 may solve this problem. We presented here crystal structures of EGFR activating/drug-resistant mutants in complex with a panel of reversible inhibitors along with mutagenesis and enzyme kinetic data. These data revealed a previously un-described hydrophobic clamp structure in the EGFR kinase which may be exploited to facilitate development of next generation drugs targeting EGFR T790M with or without concomitant C797S. Interestingly, mutations in the hydrophobic clamp that hinder drug binding often also weaken ATP binding and/or abolish kinase activity, thus do not readily result in resistance to the drugs.

  12. Althaea rosea Cavanil and Plantago major L. suppress neoplastic cell transformation through the inhibition of epidermal growth factor receptor kinase.

    PubMed

    Choi, Eun-Sun; Cho, Sung-Dae; Shin, Ji-Ae; Kwon, Ki Han; Cho, Nam-Pyo; Shim, Jung-Hyun

    2012-10-01

    For thousands of years in Asia, Althaea rosea Cavanil (ARC) and Plantago major L. (PML) have been used as powerful non-toxic therapeutic agents that inhibit inflammation. However, the anticancer mechanisms and molecular targets of ARC and PML are poorly understood, particularly in epidermal growth factor (EGF)-induced neoplastic cell transformation. The aim of this study was to evaluate the chemopreventive effects and mechanisms of the methanol extracts from ARC (MARC) and PML (MPML) in EGF-induced neoplastic cell transformation of JB6 P+ mouse epidermal cells using an MTS assay, anchorage-independent cell transformation assay and western blotting. Our results showed that MARC and MPML significantly suppressed neoplastic cell transformation by inhibiting the kinase activity of the EGF receptor (EGFR). The activation of EGFR by EGF was suppressed by MARC and MPML treatment in EGFR(+/+) cells, but not in EGFR(-/-) cells. In addition, MARC and MPML inhibited EGF-induced cell proliferation in EGFR-expressing murine embryonic fibroblasts (EGFR(+/+)). These results strongly indicate that EGFR targeting by MARC and MPML may be a good strategy for chemopreventive or chemotherapeutic applications.

  13. Detection of EGFR Gene Mutation by Mutation-oriented LAMP Method.

    PubMed

    Matsumoto, Naoyuki; Kumasaka, Akira; Ando, Tomohiro; Komiyama, Kazuo

    2018-04-01

    Epidermal growth factor receptor (EGFR) is a target of molecular therapeutics for non-small cell lung cancer. EGFR gene mutations at codons 746-753 promote constitutive EGFR activation and result in worst prognosis. However, these mutations augment the therapeutic effect of EGFR-tyrosine kinase inhibitor. Therefore, the detection of EGFR gene mutations is important for determining treatment planning. The aim of the study was to establish a method to detect EGFR gene mutations at codons 746-753. EGFR gene mutation at codons 746-753 in six cancer cell lines were investigated. A loop-mediated isothermal amplification (LAMP)-based procedure was developed, that employed peptide nucleic acid to suppress amplification of the wild-type allele. This mutation-oriented LAMP can amplify the DNA fragment of the EGFR gene with codons 746-753 mutations within 30 min. Moreover, boiled cells can work as template resources. Mutation oriented-LAMP assay for EGFR gene mutation is sensitive on extracted DNA. This procedure would be capable of detecting EGFR gene mutation in sputum, pleural effusion, broncho-alveolar lavage fluid or trans-bronchial lung biopsy by chair side. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Discovery of Selective and Noncovalent Diaminopyrimidine-Based Inhibitors of Epidermal Growth Factor Receptor Containing the T790M Resistance Mutation

    DOE PAGES

    Hanan, Emily J.; Eigenbrot, Charles; Bryan, Marian C.; ...

    2014-11-10

    Activating mutations within the epidermal growth factor receptor (EGFR) kinase domain, commonly L858R or deletions within exon 19, increase EGFR-driven cell proliferation and survival and are correlated with impressive responses to the EGFR inhibitors erlotinib and gefitinib in nonsmall cell lung cancer patients. Approximately 60% of acquired resistance to these agents is driven by a single secondary mutation within the EGFR kinase domain, specifically substitution of the gatekeeper residue threonine-790 with methionine (T790M). Due to dose-limiting toxicities associated with inhibition of wild-type EGFR (wtEGFR), we sought inhibitors of T790M-containing EGFR mutants with selectivity over wtEGFR. Here in this paper, wemore » describe the evolution of HTS hits derived from Jak2/Tyk2 inhibitors into selective EGFR inhibitors. X-ray crystal structures revealed two distinct binding modes and enabled the design of a selective series of novel diaminopyrimidine-based inhibitors with good potency against T790M-containing mutants of EGFR, high selectivity over wtEGFR, broad kinase selectivity, and desirable physicochemical properties.« less

  15. A positive feedback loop involving EGFR/Akt/mTORC1 and IKK/NF-κB regulates head and neck squamous cell carcinoma proliferation

    PubMed Central

    Li, Zhipeng; Yang, Zejia; Passaniti, Antonino; Lapidus, Rena G.; Liu, Xuefeng; Cullen, Kevin J.; Dan, Han C.

    2016-01-01

    The overexpression or mutation of epidermal growth factor receptor (EGFR) has been associated with a number of cancers, including head and neck squamous cell carcinoma (HNSCC). Increasing evidence indicates that both the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of Rapamycin (mTOR) and the nuclear factor-kappa B (NF-κB) are constitutively active and contribute to aggressive HNSCC downstream of EGFR. However, whether these two oncogenic signaling pathways exhibit molecular and functional crosstalk in HNSCC is unclear. Our results now reveal that mTORC1, not mTORC2, contributes to NF-κB activation downstream of EGFR/PI3K/Akt signaling. Mechanistically, mTORC1 enhances the inhibitor of nuclear factor kappa-B kinase (IKK) activity to accelerate NF-κB signaling. Concomitantly, activated NF-κB/IKK up-regulates EGFR expression through positive feedback regulation. Blockage of NF-κB/IKK activity by the novel IKKβ specific inhibitor, CmpdA, leads to significant inhibition of cell proliferation and induction of apoptosis. CmpdA also sensitizes intrinsic cisplatin-resistant HNSCC cells to cisplatin treatment. Our findings reveal a new mechanism by which EGFR/PI3K/Akt/mTOR signaling promotes head and neck cancer progression and underscores the need for developing a therapeutic strategy for targeting IKK/NF-κB either as a single agent or in combination with cisplatin in head and neck cancer. PMID:26895469

  16. DNA methylation down-regulates EGFR expression in chicken

    USDA-ARS?s Scientific Manuscript database

    The epidermal growth factor receptor (EGFR), a growth-factor-receptor tyrosine kinase, was found up-regulated in numerous tumors, which provides a good target for cancer therapy. Although it was documented that oncoviruses are responsible for the activation of EGFR in tumors, the impact of Marek’s d...

  17. Navigating into the binding pockets of the HER family protein kinases: discovery of novel EGFR inhibitor as antitumor agent.

    PubMed

    Liu, Wei; Ning, Jin-Feng; Meng, Qing-Wei; Hu, Jing; Zhao, Yan-Bin; Liu, Chao; Cai, Li

    2015-01-01

    The epidermal growth factor receptor (EGFR) family has been validated as a successful antitumor drug target for decades. Known EGFR inhibitors were exposed to distinct drug resistance against the various EGFR mutants within non-small-cell lung cancer (NSCLC), particularly the T790M mutation. Although so far a number of studies have been reported on the development of third-generation EGFR inhibitors for overcoming the resistance issue, the design procedure largely depends on the intuition of medicinal chemists. Here we retrospectively make a detailed analysis of the 42 EGFR family protein crystal complexes deposited in the Protein Data Bank (PDB). Based on the analysis of inhibitor binding modes in the kinase catalytic cleft, we identified a potent EGFR inhibitor (compound A-10) against drug-resistant EGFR through fragment-based drug design. This compound showed at least 30-fold more potency against EGFR T790M than the two control molecules erlotinib and gefitinib in vitro. Moreover, it could exhibit potent HER2 inhibitory activities as well as tumor growth inhibitory activity. Molecular docking studies revealed a structural basis for the increased potency and mutant selectivity of this compound. Compound A-10 may be selected as a promising candidate in further preclinical studies. In addition, our findings could provide a powerful strategy to identify novel selective kinase inhibitors on the basis of detailed kinase-ligand interaction space in the PDB.

  18. Blocking of the EGFR-STAT3 signaling pathway through afatinib treatment inhibited the intrahepatic cholangiocarcinoma

    PubMed Central

    Zhang, Changhe; Xu, Hong; Zhou, Zhenping; Tian, Ye; Cao, Xiaofei; Cheng, Guochang; Liu, Qinghong

    2018-01-01

    Epidermal growth factor receptor (EGFR) and downstream signal transducer and activator of transcription 3 (STAT3) signaling have been extensively implicated in various human neoplasms. Recently, a novel EGFR inhibitor, known as afatinib, has exhibited broad antitumor activities in a variety of tumors. Therefore, the present study attempted to investigate the impact of this agent on intrahepatic cholangiocarcinoma (ICC). Initially, immunohistochemical assays were performed on 15 human ICC specimens and their adjacent tissues in order to assess the protein levels of phosphorylated EGFR (pEGFR) and pSTAT3. Subsequently, the human ICC cell lines JCK and OZ were exposed to different doses of afatinib, and then cell viability and apoptosis were determined by MTT assay and flow cytometry, respectively. Furthermore, immunoblotting was applied to detect any variations in the phosphorylated protein levels of EGFR and STAT3 in afatinib-treated ICC cells. The results of the current study demonstrated that ICC specimens had evidently increased pEGFR and pSTAT3 protein levels as compared with the adjacent noncancerous tissues. Further in vitro experiments indicated that afatinib evidently blocked ICC cell growth and induced cell apoptosis. At the protein level, pEGFR and pSTAT3 were evidently attenuated by afatinib-administration. In conclusion, the present study clearly determined that afatinib exerts an antitumor effect on ICC cells by silencing the EGFR-STAT3 signaling pathway. This novel agent deserves further investigation as a potential therapeutic strategy for ICC. PMID:29805522

  19. Navigating into the binding pockets of the HER family protein kinases: discovery of novel EGFR inhibitor as antitumor agent

    PubMed Central

    Liu, Wei; Ning, Jin-Feng; Meng, Qing-Wei; Hu, Jing; Zhao, Yan-Bin; Liu, Chao; Cai, Li

    2015-01-01

    The epidermal growth factor receptor (EGFR) family has been validated as a successful antitumor drug target for decades. Known EGFR inhibitors were exposed to distinct drug resistance against the various EGFR mutants within non-small-cell lung cancer (NSCLC), particularly the T790M mutation. Although so far a number of studies have been reported on the development of third-generation EGFR inhibitors for overcoming the resistance issue, the design procedure largely depends on the intuition of medicinal chemists. Here we retrospectively make a detailed analysis of the 42 EGFR family protein crystal complexes deposited in the Protein Data Bank (PDB). Based on the analysis of inhibitor binding modes in the kinase catalytic cleft, we identified a potent EGFR inhibitor (compound A-10) against drug-resistant EGFR through fragment-based drug design. This compound showed at least 30-fold more potency against EGFR T790M than the two control molecules erlotinib and gefitinib in vitro. Moreover, it could exhibit potent HER2 inhibitory activities as well as tumor growth inhibitory activity. Molecular docking studies revealed a structural basis for the increased potency and mutant selectivity of this compound. Compound A-10 may be selected as a promising candidate in further preclinical studies. In addition, our findings could provide a powerful strategy to identify novel selective kinase inhibitors on the basis of detailed kinase–ligand interaction space in the PDB. PMID:26229444

  20. Activation of sperm EGFR by light irradiation is mediated by reactive oxygen species.

    PubMed

    Shahar, Shiran; Hillman, Pnina; Lubart, Rachel; Ickowicz, Debby; Breitbart, Haim

    2014-01-01

    To acquire fertilization competence, spermatozoa must undergo several biochemical and motility changes in the female reproductive tract, collectively called capacitation. Actin polymerization and the development of hyperactivated motility (HAM) are part of the capacitation process. In a recent study, we showed that irradiation of human sperm with visible light stimulates HAM through a mechanism involving reactive-oxygen-species (ROS), Ca(2+) influx, protein kinases A (PKA), and sarcoma protein kinase (Src). Here, we showed that this effect of light on HAM is mediated by ROS-dependent activation of the epidermal growth factor receptor (EGFR). Interestingly, ROS-mediated HAM even when the EGFR was activated by EGF, the physiological ligand of EGFR. Light irradiation stimulated ROS-dependent actin polymerization, and this effect was abrogated by PBP10, a peptide which activates the actin-severing protein, gelsolin, and causes actin-depolymerization in human sperm. Light-stimulated tyrosine phosphorylation of Src-dependent gelsolin, resulting in enhanced HAM. Thus, light irradiation stimulates HAM through a mechanism involving Src-mediated actin polymerization. Light-stimulated HAM and in vitro-fertilization (IVF) rate in mouse sperm, and these effects were mediated by ROS and EGFR. In conclusion, we show here that irradiation of sperm with visible light, enhances their fertilization capacity via a mechanism requiring ROS, EGFR and HAM. © 2014 The American Society of Photobiology.

  1. CD147, CD44, and the epidermal growth factor receptor (EGFR) signaling pathway cooperate to regulate breast epithelial cell invasiveness.

    PubMed

    Grass, G Daniel; Tolliver, Lauren B; Bratoeva, Momka; Toole, Bryan P

    2013-09-06

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777-788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer.

  2. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M.

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast,more » amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.« less

  3. Mig6 Puts the Brakes on Mutant EGFR-Driven Lung Cancer | Center for Cancer Research

    Cancer.gov

    Lung cancer is the most common cause of cancer-related death worldwide. These cancers are often induced by mutations in the epidermal growth factor receptor (EGFR), resulting in constitutive activation of the protein’s tyrosine kinase domain. Lung cancers expressing these EGFR mutants are initially sensitive to tyrosine kinase inhibitors (TKIs), such as erlotinib, but often become resistant by developing compensatory mutations in EGFR or other growth-promoting pathways. To better understand how mutant EGFR initiates and maintains tumor growth in the hopes of identifying novel targets for drug development, Udayan Guha, M.D., Ph.D., of CCR’s Thoracic and Gastrointestinal Oncology Branch, and his colleagues examined the landscape of proteins phosphorylated in EGFR wild type and mutant cells. One protein hyper-phosphorylated in mutant EGFR cells was Mig6, a putative tumor suppressor.

  4. Intratumoral heterogeneity in EGFR mutant NSCLC results in divergent resistance mechanisms in response to EGFR tyrosine kinase inhibition

    PubMed Central

    Soucheray, Margaret; Capelletti, Marzia; Pulido, Inés; Kuang, Yanan; Paweletz, Cloud P.; Becker, Jeffrey H.; Kikuchi, Eiki; Xu, Chunxiao; Patel, Tarun B.; Al-shahrour, Fatima; Carretero, Julián; Wong, Kwok-Kin; Jänne, Pasi A.; Shapiro, Geoffrey I.; Shimamura, Takeshi

    2015-01-01

    Non-small cell lung cancers (NSCLC) that have developed resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), including gefitinib and erlotinib, are clinically linked to an epithelial-to-mesenchymal transition (EMT) phenotype. Here we examined whether modulating EMT maintains the responsiveness of EGFR-mutated NSCLCs to EGFR TKI therapy. Using human NSCLC cell lines harboring mutated-EGFR and a transgenic mouse model of lung cancer driven by mutant EGFR (EGFR-Del19-T790M), we demonstrate that EGFR inhibition induces TGFβ secretion followed by SMAD pathway activation, an event that promotes EMT. Chronic exposure of EGFR-mutated NSCLC cells to TGFβ was sufficient to induce EMT and resistance to EGFR TKI treatment. Furthermore, NSCLC HCC4006 cells with acquired resistance to gefitinib were characterized by a mesenchymal phenotype and displayed a higher prevalence of the EGFR T790M mutated allele. Notably, combined inhibition of EGFR and the TGFβ receptor in HCC4006 cells prevented EMT, but was not sufficient to prevent acquired gefitinib resistance because of an increased emergence of the EGFR T790M allele compared to cells treated with gefitinib alone. Conversely, another independent NSCLC cell line, PC9, reproducibly develops EGFR T790M mutations as the primary mechanism underlying EGFR TKI resistance, even though the prevalence of the mutant allele is lower than that in HCC4006 cells. Thus, our findings underscore heterogeneity within NSCLC cells lines harboring EGFR kinase domain mutations that give rise to divergent resistance mechanisms in response to treatment and anticipate the complexity of EMT suppression as a therapeutic strategy. PMID:26282169

  5. S-nitrosylation of EGFR and Src activates an oncogenic signaling network in human basal-like breast cancer.

    PubMed

    Switzer, Christopher H; Glynn, Sharon A; Cheng, Robert Y-S; Ridnour, Lisa A; Green, Jeffrey E; Ambs, Stefan; Wink, David A

    2012-09-01

    Increased inducible nitric oxide synthase (NOS2) expression in breast tumors is associated with decreased survival of estrogen receptor negative (ER-) breast cancer patients. We recently communicated the preliminary observation that nitric oxide (NO) signaling results in epidermal growth factor receptor (EGFR) tyrosine phosphorylation. To further define the role of NO in the pathogenesis of ER- breast cancer, we examined the mechanism of NO-induced EGFR activation in human ER- breast cancer. NO was found to activate EGFR and Src by a mechanism that includes S-nitrosylation. NO, at physiologically relevant concentrations, induced an EGFR/Src-mediated activation of oncogenic signal transduction pathways (including c-Myc, Akt, and β-catenin) and the loss of PP2A tumor suppressor activity. In addition, NO signaling increased cellular EMT, expression and activity of COX-2, and chemoresistance to adriamycin and paclitaxel. When connected into a network, these concerted events link NO to the development of a stem cell-like phenotype, resulting in the upregulation of CD44 and STAT3 phosphorylation. Our observations are also consistent with the finding that NOS2 is associated with a basal-like transcription pattern in human breast tumors. These results indicate that the inhibition of NOS2 activity or NO signaling networks may have beneficial effects in treating basal-like breast cancer patients.

  6. Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells.

    PubMed

    Chahal, Manpreet S; Brauner, Daniel J; Meier, Kathryn E

    2010-07-02

    Phospholipase D2 (PLD2) generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR) can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells.

  7. Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells

    PubMed Central

    Chahal, Manpreet S.; Brauner, Daniel J.; Meier, Kathryn E.

    2010-01-01

    Phospholipase D2 (PLD2) generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR) can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells. PMID:27713341

  8. Smoking History as a Predictor of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients with Non-Small Cell Lung Cancer Harboring EGFR Mutations.

    PubMed

    Nishinarita, Noriko; Igawa, Satoshi; Kasajima, Masashi; Kusuhara, Seiichiro; Harada, Shinya; Okuma, Yuriko; Sugita, Keisuke; Ozawa, Takahiro; Fukui, Tomoya; Mitsufuji, Hisashi; Yokoba, Masanori; Katagiri, Masato; Kubota, Masaru; Sasaki, Jiichiro; Naoki, Katsuhiko

    2018-04-26

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKIs) therapy has been recognized as the standard treatment for patients with non-small cell lung cancer (NSCLC) harboring EGFR mutations. However, resistance to EGFR-TKIs has been observed in certain subpopulations of these patients. We aimed to evaluate the impact of smoking history on the efficacy of EGFR-TKIs. The records of patients (n = 248) with NSCLC harboring activating EGFR mutations who were treated with gefitinib or erlotinib at our institution between March 2010 and June 2016 were retrospectively reviewed, and the treatment outcomes were evaluated. The overall response rate and median progression-free survival (PFS) were 59.7% and 10.7 months, respectively. The overall response rate was significantly higher in the ex- and nonsmokers than in the current smokers (64.6 vs. 51.1%, p = 0.038). PFS also differed significantly between the current smokers and the ex- and nonsmokers (12.4 vs. 7.4 months, p = 0.016). Multivariate analysis identified smoking history as an independent predictor of PFS and overall survival. The clinical data obtained in this study provide a valuable rationale for considering smoking history as a predictor of the efficacy of EGFR-TKI in NSCLC patients harboring activating EGFR mutations. © 2018 S. Karger AG, Basel.

  9. The APPLE Trial: Feasibility and Activity of AZD9291 (Osimertinib) Treatment on Positive PLasma T790M in EGFR-mutant NSCLC Patients. EORTC 1613.

    PubMed

    Remon, Jordi; Menis, Jessica; Hasan, Baktiar; Peric, Aleksandra; De Maio, Eleonora; Novello, Silvia; Reck, Martin; Berghmans, Thierry; Wasag, Bartosz; Besse, Benjamin; Dziadziuszko, Rafal

    2017-09-01

    The AZD9291 (Osimertinib) Treatment on Positive PLasma T790M in EGFR-mutant NSCLC Patients (APPLE) trial is a randomized, open-label, multicenter, 3-arm, phase II study in advanced, epidermal growth factor receptor (EGFR)-mutant and EGFR tyrosine kinase inhibitor (TKI)-naive non-small-cell lung cancer (NSCLC) patients, to evaluate the best strategy for sequencing gefitinib and osimertinib treatment. Advanced EGFR-mutant NSCLC patients, with World Health Organization performance status 0-2 who are EGFR TKI treatment-naive and eligible to receive first-line treatment with EGFR TKI will be randomized to: In all arms, a plasmatic ctDNA T790M test will be performed by a central laboratory at the Medical University of Gdansk (Poland) but will be applied as a predictive marker for making treatment decisions only in arm B. The primary objective is to evaluate the best strategy for sequencing of treatment with gefitinib and osimertinib in advanced NSCLC patients with common EGFR mutations, and to understand the value of liquid biopsy for the decision-making process. The progression-free survival rate at 18 months is the primary end point of the trial. The activity of osimertinib versus gefitinib to prevent brain metastases will be evaluated. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. A comparison of ARMS-Plus and droplet digital PCR for detecting EGFR activating mutations in plasma

    PubMed Central

    Zhang, Xinxin; Chang, Ning; Yang, Guohua; Zhang, Yong; Ye, Mingxiang; Cao, Jing; Xiong, Jie; Han, Zhiping; Wu, Shuo; Shang, Lei; Zhang, Jian

    2017-01-01

    In this study, we introduce a novel amplification refractory mutation system (ARMS)-based assay, namely ARMS-Plus, for the detection of epidermal growth factor receptor (EGFR) mutations in plasma samples. We evaluated the performance of ARMS-Plus in comparison with droplet digital PCR (ddPCR) and assessed the significance of plasma EGFR mutations in predicting efficacy of EGFR-tyrosine kinase inhibitor (TKI) regimen. A total of 122 advanced non-small cell lung cancer (NSCLC) patients were enrolled in this study. The tumor tissue samples from these patients were evaluated by conventional ARMS PCR method to confirm their EGFR mutation status. For the 116 plasma samples analyzed by ARMS-Plus, the sensitivity, specificity, and concordance rate were 77.27% (34/44), 97.22% (70/72), and 89.66% (104/116; κ=0.77, P<0.0001), respectively. Among the 71 plasma samples analyzed by both ARMS-Plus and ddPCR, ARMS-Plus showed a higher sensitivity than ddPCR (83.33% versus 70.83%). The presence of EGFR activating mutations in plasma was not associated with the response to EGFR-TKI, although further validation with a larger cohort is required to confirm the correlation. Collectively, the performance of ARMS-Plus and ddPCR are comparable. ARMS-Plus could be a potential alternative to tissue genotyping for the detection of plasma EGFR mutations in NSCLC patients. PMID:29340107

  11. 17Beta-estradiol signaling and regulation of proliferation and apoptosis of rat Sertoli cells.

    PubMed

    Royer, Carine; Lucas, Thaís F G; Lazari, Maria F M; Porto, Catarina S

    2012-04-01

    The aim of the present study was to investigate the intracellular signaling events downstream of the classical estrogen receptors (ESRs) and G protein-coupled estrogen receptor 1 (GPER) involved in regulation of proliferation and apoptosis of rat Sertoli cells, in which we have previously described ESR1, ESR2, and GPER. ESRs play a role in Sertoli cell proliferation, and GPER, but not ESRs, plays a role modulating gene expression involved with apoptosis. The present study shows that 17beta-estradiol (E2) and the GPER-selective agonist G-1 rapidly activate phosphatidylinositol 3-kinase (PIK3)/serine threonine protein kinase (AKT) and cyclic AMP response element-binding (CREB) phosphorylation. E2 and the ESR1-selective agonist 4,4',4″-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol (PPT) increase the expression of cyclin D1 (CCND1), whereas the ESR2-selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) and G-1 do not change the expression of this protein, suggesting that ESR1 is the upstream receptor regulating Sertoli cell proliferation. E2- or PPT-ESR1, through activation of epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase 3/1 (MAPK3/1) and PIK3 pathways, induces upregulation of CCND1. KG-501, the compound that disrupts the phospho-CREB/CREB binding protein (CBP) complex, does not change E2- or PPT-ESR1-mediated CCND1 expression, suggesting that phospho-CREB/cyclic AMP response element/CBP is not involved in the expression of this protein. E2- or G-1-GPER, through activation of EGFR/MAPK3/1 and PIK3 pathways, may be involved in the upregulation of antiapoptotic proteins BCL2 and BCL2L2. E2- or G-1-GPER/EGFR/MAPK3/1/phospho-CREB decreases BAX expression. Taken together, these results show a differential effect of E2-GPER on the CREB-mediated transcription of proapoptotic and antiapoptotic genes of the same BCL2 gene family. ESR1 and GPER can mediate the rapid E2 actions in the Sertoli cells, which in turn can modulate nuclear transcriptional events important for Sertoli cell function and maintenance of normal testis development and homeostasis. Our findings are important to clarify the role of estrogen in a critical period of testicular development, and to direct further studies, which may contribute to better understanding of the causes of male infertility.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berndt, Alexander, E-mail: alexander.berndt@med.uni-jena.de; Büttner, Robert, E-mail: Robert-Buettner@gmx.net; Gühne, Stefanie, E-mail: stefanie_guehne@gmx.net

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM{sub TGF}, FCM{sub PDGF}) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared tomore » the effect of conditioned media of non-stimulated fibroblasts (FCM{sub B}). FCM{sub TGF} stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM{sub TGF}≫FCM{sub PDGF} induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM{sub TGF}>FCM{sub PDGF}) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin as sign of EMT. • Results qualify CAF as promising new therapeutic targets in OSCC.« less

  13. Synthesis and evaluation of osimertinib derivatives as potent EGFR inhibitors.

    PubMed

    Gao, Hongying; Yang, Zimo; Yang, Xinglin; Rao, Yu

    2017-09-01

    Osimertinib has been identified as a promising therapeutic drug targeting for EGFR T790M mutant non-small cell lung cancer (NSCLC). A new series of N-oxidized and fluorinated osimertinib derivatives were designed and synthesized. The cellular anti-proliferative activity, kinase inhibitory activity and the activation of EGFR signaling pathways of 1-6 in vitro were determined against L858R/T790M and wild-type EGFR, the antitumor efficacy in NCI-H1975 xenografts in vivo were further studied. Compound 2, the newly synthesized N-oxide metabolite in N,N,N'-trimethylethylenediamine side chain of osimertinib, showed a comparable kinase selectivity in vitro and a slightly better antitumor efficacy in vivo to osimertinib, making it valuable and suitable for the potential lung cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Phosphorylated Epidermal Growth Factor Receptor Expression Is Associated With Clinicopathologic Parameters and Patient Survival in Mobile Tongue Squamous Cell Carcinoma.

    PubMed

    Theocharis, Stamatios; Giaginis, Constantinos; Dana, Eugene; Thymara, Irene; Rodriguez, Jose; Patsouris, Efstratios; Klijanienko, Jerzy

    2017-03-01

    Phosphorylated epidermal growth factor receptor (pEGFR) activates several signaling pathways, resulting in tumor-promoting cellular activities, and has been implicated in malignant transformation and disease progression. The present study evaluated the clinical significance of pEGFR protein expression in mobile tongue squamous cell carcinoma (SCC). The present cohort study included 48 patients with mobile tongue SCC. We evaluated whether pEGFR immunohistochemical protein expression is associated with clinical variables and patient outcome. Of the 48 patients included in the present cohort study, 25 were men and 23 were women. The median patient age was 60 years (interquartile range 53 to 72). pEGFR protein expression was significantly increased in well-differentiated tumors compared with poorly differentiated tumors (P = .001). Elevated pEGFR protein expression was significantly more frequently observed in mobile tongue SCC cases with a well-defined tumor shape and an earlier disease stage (P = .010 and P = .019, respectively). Patients with mobile tongue SCC presenting with elevated pEGFR expression had longer overall and disease-free survival times compared with those with low pEGFR expression (P = .015 and P = .006, respectively; log-rank test). On multivariate analysis, pEGFR expression proved to be an independent prognostic factor of both overall and disease-free survival (P = .008 and P = .044, respectively; Cox regression analysis). The results of the present study support evidence that the pEGFR signaling pathway might be implicated in the malignant transformation of mobile tongue SCC. Additional studies are recommended to validate whether pEGFR could be used as a potential biomarker and therapeutic target in mobile tongue SCC. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Role of Epidermal Growth Factor Receptor (EGFR) Inhibitors and Radiation in the Management of Brain Metastases from EGFR Mutant Lung Cancers.

    PubMed

    Khandekar, Melin J; Piotrowska, Zofia; Willers, Henning; Sequist, Lecia V

    2018-04-27

    The growth of genotype-directed targeted therapies, such as inhibitors of the epidermal growth factor receptor (EGFR), has revolutionized treatment for some patients with oncogene-addicted lung cancer. However, as systemic control for these patients has improved, brain metastases remain an important source of morbidity and mortality. Traditional treatment for brain metastases has been radiotherapy, either whole-brain radiation or stereotactic radiosurgery. The growing availability of drugs that can cross the blood-brain barrier and have activity in the central nervous system (CNS) has led to many studies investigating whether targeted therapy can be used in combination with or in lieu of radiation. In this review, we summarize the key literature about the incidence and nature of EGFR-mutant brain metastases (EGFR BMs), the data about the activity of EGFR inhibitors in the CNS, and whether they can be used as front-line therapy for brain metastases. Although initial use of tyrosine kinase inhibitors for EGFR BMs can often be an effective treatment strategy, multidisciplinary evaluation is critical, and prospective studies are needed to clarify which patients may benefit from early radiotherapy. Management of brain metastases in epidermal growth factor receptor (EGFR) mutant lung cancer is a common clinical problem. The question of whether to start initial therapy with an EGFR inhibitor or radiotherapy (either whole-brain radiotherapy or stereotactic radiosurgery) is controversial. The development of novel EGFR inhibitors with enhanced central nervous system (CNS) penetration is an important advance in the treatment of CNS disease. Multidisciplinary evaluation and evaluation of extracranial disease status are critical to choosing the best treatment option for each patient. © AlphaMed Press 2018.

  16. NOTCH3 inactivation increases triple negative breast cancer sensitivity to gefitinib by promoting EGFR tyrosine dephosphorylation and its intracellular arrest.

    PubMed

    Diluvio, Giulia; Del Gaudio, Francesca; Giuli, Maria Valeria; Franciosa, Giulia; Giuliani, Eugenia; Palermo, Rocco; Besharat, Zein Mersini; Pignataro, Maria Gemma; Vacca, Alessandra; d'Amati, Giulia; Maroder, Marella; Talora, Claudio; Capalbo, Carlo; Bellavia, Diana; Checquolo, Saula

    2018-05-25

    Notch dysregulation has been implicated in numerous tumors, including triple-negative breast cancer (TNBC), which is the breast cancer subtype with the worst clinical outcome. However, the importance of individual receptors in TNBC and their specific mechanism of action remain to be elucidated, even if recent findings suggested a specific role of activated-Notch3 in a subset of TNBCs. Epidermal growth factor receptor (EGFR) is overexpressed in TNBCs but the use of anti-EGFR agents (including tyrosine kinase inhibitors, TKIs) has not been approved for the treatment of these patients, as clinical trials have shown disappointing results. Resistance to EGFR blockers is commonly reported. Here we show that Notch3-specific inhibition increases TNBC sensitivity to the TKI-gefitinib in TNBC-resistant cells. Mechanistically, we demonstrate that Notch3 is able to regulate the activated EGFR membrane localization into lipid rafts microdomains, as Notch3 inhibition, such as rafts depletion, induces the EGFR internalization and its intracellular arrest, without involving receptor degradation. Interestingly, these events are associated with the EGFR tyrosine dephosphorylation at Y1173 residue (but not at Y1068) by the protein tyrosine phosphatase H1 (PTPH1), thus suggesting its possible involvement in the observed Notch3-dependent TNBC sensitivity response to gefitinib. Consistent with this notion, a nuclear localization defect of phospho-EGFR is observed after combined blockade of EGFR and Notch3, which results in a decreased TNBC cell survival. Notably, we observed a significant correlation between EGFR and NOTCH3 expression levels by in silico gene expression and immunohistochemical analysis of human TNBC primary samples. Our findings strongly suggest that combined therapies of TKI-gefitinib with Notch3-specific suppression may be exploited as a drug combination advantage in TNBC treatment.

  17. Nrf2 but not autophagy inhibition is associated with the survival of wild-type epidermal growth factor receptor non-small cell lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yan

    Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. Icotinib and Gefitinib are two epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) that have been used to treat NSCLC. While it is well known that mutations of EGFR can affect the sensitivity of NSCLC to the EGFR-TKI, other mechanisms may also be adopted by lung cancer cells to develop resistance to EGFR-TKI treatment. Cancer cells can use multiple adaptive mechanisms such as activation of autophagy and Nrf2 to protect against various stresses and chemotherapeutic drugs. Whether autophagy or Nrf2 activation contributes to themore » resistance of NSCLC to EGFR-TKI treatment in wild-type EGFR NSCLC cells remains elusive. In the present study, we confirmed that Icotinib and Gefitinib induced apoptosis in EGFR mutant HCC827 but not in EGFR wild-type A549 NSCLC cells. Icotinib and Gefitinib did not induce autophagic flux or inhibit mTOR in A549 cells. Moreover, suppression of autophagy by chloroquine, a lysosomal inhibitor, did not affect Icotinib- or Gefitinib-induced cell death in A549 cells. In contrast, Brusatol, an Nrf2 inhibitor, significantly suppressed the cell survival of A549 cells. However, Brusatol did not further sensitize A549 cells to EGFR TKI-induced cell death. Results from this study suggest that inhibition of Nrf2 can decrease cell vitality of EGFR wild-type A549 cells independent of autophagy. - Highlights: • Cancer cells use adaptive mechanisms against chemotherapy. • Autophagy is not essential for the drug resistance of lung cancer A549 cells. • Inhibition of Nrf2 decreases cell survival of lung cancer A549 cells.« less

  18. Role of Pgrmc1 in estrogen maintenance of meiotic arrest in zebrafish oocytes through Gper/Egfr.

    PubMed

    Aizen, Joseph; Thomas, Peter

    2015-04-01

    The regulation of receptor trafficking to the cell surface and its effect on responses of target cells to growth factors and hormones remain poorly understood. Initial evidence has been recently obtained using cancer cells that surface expression of the epidermal growth factor receptor (EGFR) is dependent on its association with progesterone receptor membrane component 1 (PGRMC1). Estrogen inhibition of oocyte maturation (OM) in zebrafish is mediated through G-protein-coupled estrogen membrane receptor 1 (Gper1) and involves activation of Egfr. Therefore, in this study, the potential roles of Pgrmc1 in the cell surface expression and functions of Egfr in normal cells were investigated in this in vitro OM model of Egfr action using an inhibitor of PGMRC1 signaling, AG205. A single ∼60 kDa protein band, which corresponds to the size of the Pgrmc1 dimer, was detected on plasma membranes of fully grown oocytes by western blotting. Co-treatment with the PGRMC1 inhibitor AG205 (20 μM) blocked the inhibitory effects of 100 nM estradiol-17β and the GPER agonist, G-1, on spontaneous maturation of denuded zebrafish oocytes. Moreover, reversal of these estrogen effects on OM by the EGFR inhibitors AG1478 and AG825 (50 μM) was prevented by co-incubation with the PGRMC1 inhibitor. Inhibition of Pgrmc1 signaling with AG205 also caused a decrease in Egfr-dependent signaling and Egfr expression on oocyte cell membranes. These results indicate that maintenance of Pgrmc1 signaling is required for Egfr expression on zebrafish oocyte cell membranes and for conserving the functions of Egfr in maintaining meiotic arrest through estrogen activation of Gper. © 2015 Society for Endocrinology.

  19. The strange connection between epidermal growth factor receptor tyrosine kinase inhibitors and dapsone: from rash mitigation to the increase in anti-tumor activity.

    PubMed

    Boccellino, Mariarosaria; Quagliuolo, Lucio; Alaia, Concetta; Grimaldi, Anna; Addeo, Raffaele; Nicoletti, Giovanni Francesco; Kast, Richard Eric; Caraglia, Michele

    2016-11-01

    The presence of an aberrantly activated epidermal growth factor receptor (EGFR) in many epithelial tumors, due to its overexpression, activating mutations, gene amplification and/or overexpression of receptor ligands, represent the fundamental basis underlying the use of EGFR tyrosine kinase inhibitors (EGFR-TKIs). Drugs inhibiting the EGFR have different mechanisms of action; while erlotinib and gefitinib inhibit the intracellular tyrosine kinase, monoclonal antibodies like cetuximab and panitumumab bind the extracellular domain of the EGFR both activating immunomediated anti-cancer effect and inhibiting receptor function. On the other hand, interleukin-8 has tumor promoting as well as neo-angiogenesis enhancing effects and several attempts have been made to inhibit its activity. One of these is based on the use of the old sulfone antibiotic dapsone that has demonstrated several interleukin-8 system inhibiting actions. Erlotinib typically gives a rash that has recently been proven to come out via up-regulated keratinocyte interleukin-8 synthesis with histological features reminiscent of typical neutrophilic dermatoses. In this review, we report experimental evidence that shows the use of dapsone to improve quality of life in erlotinib-treated patients by ameliorating rash as well as short-circuiting a growth-enhancing aspect of erlotinib based on increased interleukin-8 secretion.

  20. Hinokitiol inhibits vasculogenic mimicry activity of breast cancer stem/progenitor cells through proteasome-mediated degradation of epidermal growth factor receptor

    PubMed Central

    TU, DOM-GENE; YU, YUN; LEE, CHE-HSIN; KUO, YU-LIANG; LU, YIN-CHE; TU, CHI-WEN; CHANG, WEN-WEI

    2016-01-01

    Hinokitiol, alternatively known as β-thujaplicin, is a tropolone-associated natural compound with antimicrobial, anti-inflammatory and antitumor activity. Breast cancer stem/progenitor cells (BCSCs) are a subpopulation of breast cancer cells associated with tumor initiation, chemoresistance and metastatic behavior, and may be enriched by mammosphere cultivation. Previous studies have demonstrated that BCSCs exhibit vasculogenic mimicry (VM) activity via the epidermal growth factor receptor (EGFR) signaling pathway. The present study investigated the anti-VM activity of hinokitiol in BCSCs. At a concentration below the half maximal inhibitory concentration, hinokitiol inhibited VM formation of mammosphere cells derived from two human breast cancer cell lines. Hinokitiol was additionally indicated to downregulate EGFR protein expression in mammosphere-forming BCSCs without affecting the expression of messenger RNA. The protein stability of EGFR in BCSCs was also decreased by hinokitiol. The EGFR protein expression and VM formation capability of hinokitiol-treated BCSCs were restored by co-treatment with MG132, a proteasome inhibitor. In conclusion, the present study indicated that hinokitiol may inhibit the VM activity of BCSCs through stimulating proteasome-mediated EGFR degradation. Hinokitiol may act as an anti-VM agent, and may be useful for the development of novel breast cancer therapeutic agents. PMID:27073579

  1. SMOC Binds to Pro-EGF, but Does Not Induce Erk Phosphorylation via the EGFR.

    PubMed

    Thomas, J Terrig; Chhuy-Hy, Lina; Andrykovich, Kristin R; Moos, Malcolm

    2016-01-01

    In an attempt to identify the cell-associated protein(s) through which SMOC (Secreted Modular Calcium binding protein) induces mitogen-activated protein kinase (MAPK) signaling, the epidermal growth factor receptor (EGFR) became a candidate. However, although in 32D/EGFR cells, the EGFR was phosphorylated in the presence of a commercially available human SMOC-1 (hSMOC-1), only minimal phosphorylation was observed in the presence of Xenopus SMOC-1 (XSMOC-1) or human SMOC-2. Analysis of the commercial hSMOC-1 product demonstrated the presence of pro-EGF as an impurity. When the pro-EGF was removed, only minimal EGFR activation was observed, indicating that SMOC does not signal primarily through EGFR and its receptor remains unidentified. Investigation of SMOC/pro-EGF binding affinity revealed a strong interaction that does not require the C-terminal extracellular calcium-binding (EC) domain of SMOC or the EGF domain of pro-EGF. SMOC does not appear to potentiate or inhibit MAPK signaling in response to pro-EGF, but the interaction could provide a mechanism for retaining soluble pro-EGF at the cell surface.

  2. Preclinical Comparison of Osimertinib with Other EGFR-TKIs in EGFR-Mutant NSCLC Brain Metastases Models, and Early Evidence of Clinical Brain Metastases Activity.

    PubMed

    Ballard, Peter; Yates, James W T; Yang, Zhenfan; Kim, Dong-Wan; Yang, James Chih-Hsin; Cantarini, Mireille; Pickup, Kathryn; Jordan, Angela; Hickey, Mike; Grist, Matthew; Box, Matthew; Johnström, Peter; Varnäs, Katarina; Malmquist, Jonas; Thress, Kenneth S; Jänne, Pasi A; Cross, Darren

    2016-10-15

    Approximately one-third of patients with non-small cell lung cancer (NSCLC) harboring tumors with EGFR-tyrosine kinase inhibitor (TKI)-sensitizing mutations (EGFRm) experience disease progression during treatment due to brain metastases. Despite anecdotal reports of EGFR-TKIs providing benefit in some patients with EGFRm NSCLC brain metastases, there is a clinical need for novel EGFR-TKIs with improved efficacy against brain lesions. We performed preclinical assessments of brain penetration and activity of osimertinib (AZD9291), an oral, potent, irreversible EGFR-TKI selective for EGFRm and T790M resistance mutations, and other EGFR-TKIs in various animal models of EGFR-mutant NSCLC brain metastases. We also present case reports of previously treated patients with EGFRm-advanced NSCLC and brain metastases who received osimertinib in the phase I/II AURA study (NCT01802632). Osimertinib demonstrated greater penetration of the mouse blood-brain barrier than gefitinib, rociletinib (CO-1686), or afatinib, and at clinically relevant doses induced sustained tumor regression in an EGFRm PC9 mouse brain metastases model; rociletinib did not achieve tumor regression. Under positron emission tomography micro-dosing conditions, [ 11 C]osimertinib showed markedly greater exposure in the cynomolgus monkey brain than [ 11 C]rociletinib and [ 11 C]gefitinib. Early clinical evidence of osimertinib activity in previously treated patients with EGFRm-advanced NSCLC and brain metastases is also reported. Osimertinib may represent a clinically significant treatment option for patients with EGFRm NSCLC and brain metastases. Further investigation of osimertinib in this patient population is ongoing. Clin Cancer Res; 22(20); 5130-40. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma

    NASA Astrophysics Data System (ADS)

    Sun, Chong; Wang, Liqin; Huang, Sidong; Heynen, Guus J. J. E.; Prahallad, Anirudh; Robert, Caroline; Haanen, John; Blank, Christian; Wesseling, Jelle; Willems, Stefan M.; Zecchin, Davide; Hobor, Sebastijan; Bajpe, Prashanth K.; Lieftink, Cor; Mateus, Christina; Vagner, Stephan; Grernrum, Wipawadee; Hofland, Ingrid; Schlicker, Andreas; Wessels, Lodewyk F. A.; Beijersbergen, Roderick L.; Bardelli, Alberto; di Nicolantonio, Federica; Eggermont, Alexander M. M.; Bernards, Rene

    2014-04-01

    Treatment of BRAF(V600E) mutant melanoma by small molecule drugs that target the BRAF or MEK kinases can be effective, but resistance develops invariably. In contrast, colon cancers that harbour the same BRAF(V600E) mutation are intrinsically resistant to BRAF inhibitors, due to feedback activation of the epidermal growth factor receptor (EGFR). Here we show that 6 out of 16 melanoma tumours analysed acquired EGFR expression after the development of resistance to BRAF or MEK inhibitors. Using a chromatin-regulator-focused short hairpin RNA (shRNA) library, we find that suppression of sex determining region Y-box 10 (SOX10) in melanoma causes activation of TGF-β signalling, thus leading to upregulation of EGFR and platelet-derived growth factor receptor-β (PDGFRB), which confer resistance to BRAF and MEK inhibitors. Expression of EGFR in melanoma or treatment with TGF-β results in a slow-growth phenotype with cells displaying hallmarks of oncogene-induced senescence. However, EGFR expression or exposure to TGF-β becomes beneficial for proliferation in the presence of BRAF or MEK inhibitors. In a heterogeneous population of melanoma cells having varying levels of SOX10 suppression, cells with low SOX10 and consequently high EGFR expression are rapidly enriched in the presence of drug, but this is reversed when the drug treatment is discontinued. We find evidence for SOX10 loss and/or activation of TGF-β signalling in 4 of the 6 EGFR-positive drug-resistant melanoma patient samples. Our findings provide a rationale for why some BRAF or MEK inhibitor-resistant melanoma patients may regain sensitivity to these drugs after a `drug holiday' and identify patients with EGFR-positive melanoma as a group that may benefit from re-treatment after a drug holiday.

  4. STAT1 Activation is Enhanced by Cisplatin and Variably Affected by EGFR Inhibition in HNSCC Cells

    PubMed Central

    Schmitt, Nicole C.; Trivedi, Sumita; Ferris, Robert L.

    2015-01-01

    Cisplatin is a cytotoxic chemotherapeutic drug frequently used to treat many solid tumors, including head and neck squamous cell carcinoma (HNSCC). EGFR inhibitors have also shown efficacy as alternatives to cisplatin in some situations. However, large clinical trials have shown no added survival benefit from the use of these two drugs in combination. Possible explanations for this include overlapping downstream signaling cascades. Using in vitro studies, we tested the hypothesis that cisplatin and EGFR inhibitors rely on the activation of the tumor suppressor STAT1, characterized by its phosphorylation at serine (S727) or tyrosine (Y701) residues. Cisplatin consistently increased the levels of p-S727-STAT1, and STAT1 siRNA knockdown attenuated cisplatin-induced cell death. EGFR stimulation also activated p-S727-STAT1 and p-Y701-STAT1 in a subset of cell lines, whereas EGFR inhibitors alone decreased levels of p-S727-STAT1 and p-Y701-STAT1 in these cells. Contrary to our hypothesis, EGFR inhibitors added to cisplatin treatment caused variable effects among cell lines, with attenuation of p-S727-STAT1 and enhancement of cisplatin-induced cell death in some cells and minimal effect in other cells. Using HNSCC tumor specimens from a clinical trial of adjuvant cisplatin plus the anti-EGFR antibody panitumumab, higher intratumoral p-S727-STAT1 appeared to correlate with worse survival. Together, these results suggest that cisplatin-induced cell death is associated with STAT1 phosphorylation, and the addition of anti-EGFR therapy to cisplatin has variable effects on STAT1 and cell death in HNSCC. PMID:26141950

  5. Prognostic impact of EGFR mutation in non-small-cell lung cancer patients with family history of lung cancer.

    PubMed

    Kim, Jung Soo; Cho, Min Seong; Nam, Jong Hyeon; Kim, Hyun-Jung; Choi, Kyeng-Won; Ryu, Jeong-Seon

    2017-01-01

    A family history can be a valuable tool in the era of precision medicine. Although a few studies have described an association of family history of lung cancer with EGFR activating mutation, their impact on survival of lung cancer patients is unclear. The study included consecutive 829 non-small-cell lung cancer patients who received analysis of EGFR mutation in a prospective lung cancer cohort. Family history of lung cancer was obtained by face-to-face interviews at the time of diagnosis. An association of EGFR activating mutation with a family history of lung cancer in first-degree relatives was evaluated with multivariate logistic regression analysis, and its association with survival was estimated with Cox's proportional hazards model. Seventy five (9.0%) patients had family history of lung cancer. The EGFR mutation was commonly observed in patients with positive family history compared to those with no family history (46.7% v 31.3%, χ2 p = 0.007). The family history was significantly associated with the EGFR mutation (aOR and 95% CI: 2.01 and 1.18-3.60, p = 0.011). Patients with the positive family history survived longer compared to those without (MST, 17.9 v 13.0 months, log-rank p = 0.037). The presence of the EGFR mutation was associated with better survival in patients without the family history (aHR and 95% CI: 0.72 and 0.57-0.90, p = 0.005). However, this prognostic impact was not observed in patients with the positive family history (aHR and 95% CI: 1.01 and 0.50-2.36, p = 0.832). In comparison to patients without the family history, EGFR activating mutation was common, and it did not affect prognosis in patients with positive family history.

  6. Anti-tumor activity of high-dose EGFR tyrosine kinase inhibitor and sequential docetaxel in wild type EGFR non-small cell lung cancer cell nude mouse xenografts

    PubMed Central

    Tang, Ning; Zhang, Qianqian; Fang, Shu; Han, Xiao; Wang, Zhehai

    2017-01-01

    Treatment of non-small-cell lung cancer (NSCLC) with wild-type epidermal growth factor receptor (EGFR) is still a challenge. This study explored antitumor activity of high-dose icotinib (an EGFR tyrosine kinase inhibitor) plus sequential docetaxel against wild-type EGFR NSCLC cells-generated nude mouse xenografts. Nude mice were subcutaneously injected with wild-type EGFR NSCLC A549 cells and divided into different groups for 3-week treatment. Tumor xenograft volumes were monitored and recorded, and at the end of experiments, tumor xenografts were removed for Western blot and immunohistochemical analyses. Compared to control groups (negative control, regular-dose icotinib [IcoR], high-dose icotinib [IcoH], and docetaxel [DTX]) and regular icotinib dose (60 mg/kg) with docetaxel, treatment of mice with a high-dose (1200 mg/kg) of icotinib plus sequential docetaxel for 3 weeks (IcoH-DTX) had an additive effect on suppression of tumor xenograft size and volume (P < 0.05). Icotinib-containing treatments markedly reduced phosphorylation of EGFR, mitogen activated protein kinase (MAPK), and protein kinase B (Akt), but only the high-dose icotinib-containing treatments showed an additive effect on CD34 inhibition (P < 0.05), an indication of reduced microvessel density in tumor xenografts. Moreover, high-dose icotinib plus docetaxel had a similar effect on mouse weight loss (a common way to measure adverse reactions in mice), compared to the other treatment combinations. The study indicate that the high dose of icotinib plus sequential docetaxel (IcoH-DTX) have an additive effect on suppressing the growth of wild-type EGFR NSCLC cell nude mouse xenografts, possibly through microvessel density reduction. Future clinical trials are needed to confirm the findings of this study. PMID:27852073

  7. Neurotensin stimulates mitogenesis of prostate cancer cells through a novel c-Src/Stat5b pathway.

    PubMed

    Amorino, G P; Deeble, P D; Parsons, S J

    2007-02-01

    Neuroendocrine (NE)-like cells are hypothesized to contribute to the progression of prostate cancer by producing factors that enhance the growth, survival or metastatic capabilities of surrounding tumor cells. Many of the factors known to be secreted by NE-like cells, such as neurotensin (NT), parathyroid hormone-related peptide, serotonin, bombesin, etc., are agonists for G-protein-coupled receptors, but the signaling pathways activated by these agonists in prostate tumor cells are not fully defined. Identification of such pathways could provide insights into novel methods of treating late-stage disease. Using conditioned culture medium (CM) from LNCaP-derived NE-like cells (as a source of these agonists) or NT (a prototypical component of CM) to treat PC3 cells, we found that the epidermal growth factor (EGF) receptor (EGFR) was transactivated and that such activation was required for maximal PC3 cell mitogenesis, as measured by 5-bromo-2'-deoxy-uridine incorporation or cell number. NT also induced a time-dependent increase in EGFR Tyr(845) phosphorylation and phosphorylation of c-Src and signal transducer and activator of transcription 5b (Stat5b) (a downstream effector of Tyr(845)), events that were blocked by specific inhibition of c-Src (which mediates Tyr(845) phosphorylation of EGFR) or of EGFR. Introduction of mutant forms of EGFR (Tyr(845)) or Stat5b in PC3 cells, or treatment with selective, catalytic inhibitors of EGFR, c-Src and matrix metalloproteinases (MMPs) resulted in the loss of NT-induced stimulation of DNA synthesis, relative to wild-type controls. These data indicate that the mitogenic effect of NT on prostate cancer cells requires transactivation of the EGFR by MMPs and a novel downstream pathway involving c-Src, phosphorylation of EGFR Tyr(845) and activation of Stat5b.

  8. Predictive biomarkers for response to EGFR-directed monoclonal antibodies for advanced squamous cell lung cancer.

    PubMed

    Bonomi, P D; Gandara, D; Hirsch, F R; Kerr, K M; Obasaju, C; Paz-Ares, L; Bellomo, C; Bradley, J D; Bunn, P A; Culligan, M; Jett, J R; Kim, E S; Langer, C J; Natale, R B; Novello, S; Pérol, M; Ramalingam, S S; Reck, M; Reynolds, C H; Smit, E F; Socinski, M A; Spigel, D R; Vansteenkiste, J F; Wakelee, H; Thatcher, N

    2018-06-14

    Upregulated expression and aberrant activation of the epidermal growth-factor receptor (EGFR) are found in lung cancer, making EGFR a relevant target for non-small-cell lung cancer (NSCLC). Treatment with anti-EGFR monoclonal antibodies (mAbs) is associated with modest improvement in overall survival in patients with squamous cell lung cancer (SqCLC) who have a significant unmet need for effective treatment options. While there is evidence that using EGFR gene copy number, EGFR mutation, and EGFR protein expression as biomarkers can help select patients who respond to treatment, it is important to consider biomarkers for response in patients treated with combination therapies that include EGFR mAbs. Randomized trials of EGFR-directed mAbs cetuximab and necitumumab in combination with chemotherapy, immunotherapy, or anti-angiogenic therapy in patients with advanced NSCLC, including SqCLC, were searched in the literature. Results of associations of potential biomarkers and outcomes were summarized. Results. Data from phase III clinical trials indicate that patients with NSCLC, including SqCLC, whose tumors express high levels of EGFR protein (H-score of ≥ 200) and/or gene copy numbers of EGFR (e.g., ≥40% cells with ≥4 EGFR copies as detected by fluorescence in situ hybridization; gene amplification in ≥ 10% of analyzed cells) derive greater therapeutic benefits from EGFR-directed mAbs. Biomarker data are limited for EGFR mAbs used in combination with immunotherapy and are absent when used in combination with anti-angiogenic agents. Therapy with EGFR-directed mAbs in combination with chemotherapy is associated with greater clinical benefits in patients with NSCLC, including SqCLC, whose tumors express high levels of EGFR protein and/or have increased EGFR gene copy number. These data support validating the role of these as biomarkers to identify those patients who derive the greatest clinical benefit from EGFR mAb therapy. However, data on biomarkers for EGFR-directed mAbs combined with immunotherapy or anti-angiogenic agents remain limited.

  9. Preselection of EGFR mutations in non-small-cell lung cancer patients by immunohistochemistry: comparison with DNA-sequencing, EGFR wild-type expression, gene copy number gain and clinicopathological data.

    PubMed

    Gaber, Rania; Watermann, Iris; Kugler, Christian; Vollmer, Ekkehard; Perner, Sven; Reck, Martin; Goldmann, Torsten

    2017-01-01

    Targeting epidermal growth factor receptor (EGFR) in patients with non-small-cell lung cancer (NSCLC) having EGFR mutations is associated with an improved overall survival. The aim of this study is to verify, if EGFR mutations detected by immunohistochemistry (IHC) is a convincing way to preselect patients for DNA-sequencing and to figure out, the statistical association between EGFR mutation, wild-type EGFR overexpression, gene copy number gain, which are the main factors inducing EGFR tumorigenic activity and the clinicopathological data. Two hundred sixteen tumor tissue samples of primarily chemotherapeutic naïve NSCLC patients were analyzed for EGFR mutations E746-A750del and L858R and correlated with DNA-sequencing. Two hundred six of which were assessed by IHC, using 6B6 and 43B2 specific antibodies followed by DNA-sequencing of positive cases and 10 already genotyped tumor tissues were also included to investigate debugging accuracy of IHC. In addition, EGFR wild-type overexpression was IHC evaluated and EGFR gene copy number determination was performed by fluorescence in situ hybridization (FISH). Forty-one÷206 (19.9%) cases were positive for mutated EGFR by IHC. Eight of them had EGFR mutations of exons 18-21 by DNA-sequencing. Hit rate of 10 already genotyped NSCLC mutated cases was 90% by IHC. Positive association was found between EGFR mutations determined by IHC and both EGFR overexpression and increased gene copy number (p=0.002 and p<0.001, respectively). Additionally, positive association was detected between EGFR mutations, high tumor grade and clinical stage (p<0.001). IHC staining with mutation specific antibodies was demonstrated as a possible useful screening test to preselect patients for DNA-sequencing.

  10. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebi, Masahide; Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp; Shimura, Takaya

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cellmore » growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGF{beta} enhanced gastric cancer cell growth and ADAM inhibitors suppressed this effect. EGFR phosphorylation, HB-EGF-CTF nuclear translocation, and cell growth were suppressed in ADAM17 knockdown cells. Conclusion: HB-EGF-CTF nuclear translocation and EGFR transactivation from proHB-EGF shedding mediated by ADAM17 activated by TGF{beta} might be an important pathway of gastric cancer cell proliferation by TGF{beta}.« less

  11. Anti-EGFR monoclonal antibody in cancer treatment: in vitro and in vivo evidence

    PubMed

    Quatrale, Anna Elisa; Petriella, Daniela; Porcelli, Letizia; Tommasi, Stefania; Silvestris, Nicola; Colucci, Giuseppe; Angelo, Angelo; Azzariti, Amalia

    2011-01-01

    The complexity of EGFR signaling network suggests that the receptor could be promising targets for new personalised therapy. In clinical practice two strategies targeting the receptor are available; they utilise monoclonal antibodies, directed towards the extracellular domain of EGFR, and small molecule tyrosine kinase inhibitors, which bind the catalytic kinase domain of the receptor. In this review, we summarise currently known pre-clinical data on the antitumor effects of monoclonal antibodies, which bind to EGFR in its inactive configuration, competing for ligand binding and thereby blocking ligand-induced EGFR tyrosine kinase activation. As a consequence of treatment, key EGFR-dependent intracellular signals in cancer cells are affected. Data explaining the mechanisms of action of anti-EGFR monoclonal antibodies, currently used in clinical setting and under development for the treatment of solid tumors, are revised with the aim to provide an overview of the most important preclinical studies showing the impact of this class of EGFR targeted agents on tumor biology.

  12. Interferon-γ alters downstream signaling originating from epidermal growth factor receptor in intestinal epithelial cells: functional consequences for ion transport.

    PubMed

    Paul, Gisela; Marchelletta, Ronald R; McCole, Declan F; Barrett, Kim E

    2012-01-13

    The epidermal growth factor receptor (EGFr) regulates many cellular functions, such as proliferation, apoptosis, and ion transport. Our aim was to investigate whether long term treatment with interferon-γ (IFN-γ) modulates EGF activation of downstream signaling pathways in intestinal epithelial cells and if this contributes to dysregulation of epithelial ion transport in inflammation. Polarized monolayers of T(84) and HT29/cl.19A colonocytes were preincubated with IFN-γ prior to stimulation with EGF. Basolateral potassium transport was studied in Ussing chambers. We also studied inflamed colonic mucosae from C57BL/6 mice treated with dextran sulfate sodium or mdr1a knock-out mice and controls. IFN-γ increased intestinal epithelial EGFr expression without increasing its phosphorylation. Conversely, IFN-γ caused a significant decrease in EGF-stimulated phosphorylation of specific EGFr tyrosine residues and activation of ERK but not Akt-1. In IFNγ-pretreated cells, the inhibitory effect of EGF on carbachol-stimulated K(+) channel activity was lost. In inflamed colonic tissues, EGFr expression was significantly increased, whereas ERK phosphorylation was reduced. Thus, although it up-regulates EGFr expression, IFN-γ causes defective EGFr activation in colonic epithelial cells via reduced phosphorylation of specific EGFr tyrosine residues. This probably accounts for altered downstream signaling consequences. These observations were corroborated in the setting of colitis. IFN-γ also abrogates the ability of EGF to inhibit carbachol-stimulated basolateral K(+) currents. Our data suggest that, in the setting of inflammation, the biological effect of EGF, including the inhibitory effect of EGF on Ca(2+)-dependent ion transport, is altered, perhaps contributing to diarrheal and other symptoms in vivo.

  13. Cadmium promotes the proliferation of triple-negative breast cancer cells through EGFR-mediated cell cycle regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Zhengxi, E-mail: weizhengxi@gmail.com; Song, Xiulong; Shaikh, Zahir A., E-mail: zshaikh@uri.edu

    Cadmium (Cd) is a carcinogenic metal which is implicated in breast cancer by epidemiological studies. It is reported to promote breast cancer cell growth in vitro through membrane receptors. The study described here examined Cd-mediated growth of non-metastatic human breast cancer derived cells that lack receptors for estrogen, progesterone, and HER2. Treatment of triple-negative HCC 1937 cells with 0.1–0.5 μM Cd increased cell growth by activation of AKT and ERK. Accelerated cell cycle progression was achieved by increasing the levels of cyclins A, B, and E, as well as those of CDKs 1 and 2. Although triple negative cells lackmore » estrogen receptor, they express high levels of EGFR. Therefore, further studies on HCC 1937 and another triple-negative cell line, HCC 38, were conducted using specific siRNA and an inhibitor of EGFR to determine whether EGFR was responsible for mediating the effect of Cd. The results revealed that in both cell types EGFR was not only activated upon Cd treatment, but was also essential for the downstream activation of AKT and ERK. Based on these observations, it is concluded that, in breast cancer cells lacking estrogen receptor, sub-micromolar concentration of Cd can promote cell proliferation. Furthermore, that EGFR plays a critical role in this process. - Highlights: • Sub-micromolar concentrations of Cd promote cell growth in breast cancer cells that lack ER, PR, and HER2. • The increase in cell number is not due to reduction in apoptosis. • Growth promotion involves AKT and ERK signaling and downstream stimulation of cell cycle progression. • Initiation of cell growth by Cd occurs at the cell membrane and requires the activation of EGFR.« less

  14. w09, a novel autophagy enhancer, induces autophagy-dependent cell apoptosis via activation of the EGFR-mediated RAS-RAF1-MAP2K-MAPK1/3 pathway.

    PubMed

    Zhang, Pinghu; Zheng, Zuguo; Ling, Li; Yang, Xiaohui; Zhang, Ni; Wang, Xue; Hu, Maozhi; Xia, Yu; Ma, Yiwen; Yang, Haoran; Wang, Yunyi; Liu, Hongqi

    2017-07-03

    The EGFR (epidermal growth factor receptor) signaling pathway is frequently deregulated in many malignancies. Therefore, targeting the EGFR pathway is regarded as a promising strategy for anticancer drug discovery. Herein, we identified a 2-amino-nicotinonitrile compound (w09) as a novel autophagy enhancer, which potently induced macroautophagy/autophagy and consequent apoptosis in gastric cancer cells. Mechanistic studies revealed that EGFR-mediated activation of the RAS-RAF1-MAP2K-MAPK1/3 signaling pathway played a critical role in w09-induced autophagy and apoptosis of gastric cancer cells. Inhibition of the MAPK1/3 pathway with U0126 or blockade of autophagy by specific chemical inhibitors markedly attenuated the effect of w09-mediated growth inhibition and caspase-dependent apoptosis. Furthermore, these conclusions were supported by knockdown of ATG5 or knockout of ATG5 and/or ATG7. Notably, w09 increased the expression of SQSTM1 by transcription, and knockout of SQSTM1 or deleting the LC3-interaction region domain of SQSTM1, significantly inhibited w09-induced PARP1 cleavage, suggesting the central role played by SQSTM1 in w09-induced apoptosis. In addition, in vivo administration of w09 effectively inhibited tumor growth of SGC-7901 xenografts. Hence, our findings not only suggested that activation of the EGFR-RAS-RAF1-MAP2K-MAPK1/3 signaling pathway may play a critical role in w09-induced autophagy and apoptosis, but also imply that induction of autophagic cancer cell death through activation of the EGFR pathway may be a potential therapeutic strategy for EGFR-disregulated gastric tumors.

  15. Aberrantly activated AREG-EGFR signaling is required for the growth and survival of CRTC1-MAML2 fusion-positive mucoepidermoid carcinoma cells.

    PubMed

    Chen, Z; Chen, J; Gu, Y; Hu, C; Li, J-L; Lin, S; Shen, H; Cao, C; Gao, R; Li, J; Ha, P K; Kaye, F J; Griffin, J D; Wu, L

    2014-07-17

    Salivary gland tumors (SGT) are a group of highly heterogeneous head and neck malignancies with widely varied clinical outcomes and no standard effective treatments. The CRTC1-MAML2 fusion oncogene, encoded by a recurring chromosomal translocation t(11;19)(q14-21;p12-13), is a frequent genetic alteration found in >50% of mucoepidermoid carcinomas (MEC), the most common malignant SGT. In this study, we aimed to define the role of the CRTC1-MAML2 oncogene in the maintenance of MEC tumor growth and to investigate critical downstream target genes and pathways for therapeutic targeting of MEC. By performing gene expression analyses and functional studies via RNA interference and pharmacological modulation, we determined the importance of the CRTC1-MAML2 fusion gene and its downstream AREG-EGFR signaling in human MEC cancer cell growth and survival in vitro and in vivo using human MEC xenograft models. We found that CRTC1-MAML2 fusion oncogene was required for the growth and survival of fusion-positive human MEC cancer cells in vitro and in vivo. The CRTC1-MAML2 oncoprotein induced the upregulation of the epidermal growth factor receptor (EGFR) ligand Amphiregulin (AREG) by co-activating the transcription factor CREB, and AREG subsequently activated EGFR signaling in an autocrine manner that promoted MEC cell growth and survival. Importantly, CRTC1-MAML2-positive MEC cells were highly sensitive to EGFR signaling inhibition. Therefore, our study revealed that aberrantly activated AREG-EGFR signaling is required for CRTC1-MAML2-positive MEC cell growth and survival, suggesting that EGFR-targeted therapies will benefit patients with advanced, unresectable CRTC1-MAML2-positive MEC.

  16. Ableson Kinases Negatively Regulate Invadopodia Function and Invasion in Head and Neck Squamous Cell Carcinoma by Inhibiting an HB-EGF Autocrine Loop

    PubMed Central

    Hayes, Karen E.; Walk, Elyse L.; Ammer, Amanda Gatesman; Kelley, Laura C.; Martin, Karen H.; Weed, Scott A.

    2014-01-01

    Head and neck squamous cell carcinoma (HNSCC) has a proclivity for locoregional invasion. HNSCC mediates invasion in part through invadopodia-based proteolysis of the extracellular matrix (ECM). Activation of Src, Erk1/2, Abl and Arg downstream of epidermal growth factor receptor (EGFR) modulates invadopodia activity through phosphorylation of the actin regulatory protein cortactin. In MDA-MB-231 breast cancer cells, Abl and Arg function downstream of Src to phosphorylate cortactin, promoting invadopodia ECM degradation activity and thus assigning a pro-invasive role for Ableson kinases. We report that Abl kinases have an opposite, negative regulatory role in HNSCC where they suppress invadopodia and tumor invasion. Impairment of Abl expression or Abl kinase activity with imatinib mesylate enhanced HNSCC matrix degradation and 3D collagen invasion, functions that were impaired in MDA-MB-231. HNSCC lines with elevated EGFR and Src activation did not contain increased Abl or Arg kinase activity, suggesting Src could bypass Abl/Arg to phosphorylate cortactin and promote invadopodia ECM degradation. Src transformed Abl−/−/Arg−/− fibroblasts produced ECM degrading invadopodia containing pY421 cortactin, indicating that Abl/Arg are dispensable for invadopodia function in this system. Imatinib treated HNSCC cells had increased EGFR, Erk1/2 and Src activation, enhancing cortactin pY421 and pS405/418 required for invadopodia function. Imatinib stimulated shedding of the EGFR ligand heparin-binding EGF-like growth factor (HB-EGF) from HNSCC cells, where soluble HB-EGF enhanced invadopodia ECM degradation in HNSCC but not in MDA-MB-231. HNSCC cells treated with inhibitors of the EGFR invadopodia pathway indicated that EGFR and Src are required for invadopodia function. Collectively our results indicate that Abl kinases negatively regulate HNSCC invasive processes through suppression of an HB-EGF autocrine loop responsible for activating a EGFR-Src-cortactin cascade, in contrast to the invasion promoting functions of Abl kinases in breast and other cancer types. Our results provide mechanistic support for recent failed HNSCC clinical trials utilizing imatinib. PMID:23146907

  17. A novel anti-EGFR monoclonal antibody inhibiting tumor cell growth by recognizing different epitopes from cetuximab.

    PubMed

    Hong, Kwang-Won; Kim, Chang-Goo; Lee, Seung-Hyun; Chang, Ki-Hwan; Shin, Yong Won; Ryoo, Kyung-Hwan; Kim, Se-Ho; Kim, Yong-Sung

    2010-01-01

    The epidermal growth factor receptor (EGFR) overexpressed in many epithelial tumors is an attractive target for tumor therapy since numerous blocking agents of EGFR signaling have proven their anti-tumor activity. Here we report a novel monoclonal antibody (mAb), A13, which was generated from mice immunized with human cervical carcinoma A431 cells. In addition to binding to soluble EGFR with affinity of K(D) approximately 5.8nM, mAb A13 specifically bound to a variety of tumor cells and human placenta tissues expressing EGFR. A13 efficiently inhibited both EGF-dependant EGFR tyrosine phosphorylation in cervical and breast tumor cells and also in vitro colony formation of EGFR-overexpressing lung tumors. Competition and sandwich ELISAs, competitive surface plasmon resonance, and domain-level epitope mapping analyses demonstrated that mAb A13 competitively bound to the domain III (amino acids 302-503) of EGFR with EGF, but recognized distinct epitopes from those of cetuximab (Erbitux). Our results demonstrated that anti-EGFR mAb A13 interfered with EGFR proliferation signaling by blocking EGF binding to EGFR with different epitopes from those of cetuximab, suggesting that combination therapies of mAb A13 with cetuximab may prove beneficial for anti-tumor therapy.

  18. Sulforaphane attenuates EGFR signaling in NSCLC cells.

    PubMed

    Chen, Chi-Yuan; Yu, Zhu-Yun; Chuang, Yen-Shu; Huang, Rui-Mei; Wang, Tzu-Chien V

    2015-06-03

    EGFR, a receptor tyrosine kinase (RTK), is frequently overexpressed and mutated in non-small cell lung cancer (NSCLC). Tyrosine kinase inhibitors (TKIs) have been widely used in the treatment of many cancers, including NSCLC. However, intrinsic and acquired resistance to TKI remains a common obstacle. One strategy that may help overcome EGFR-TKI resistance is to target EGFR for degradation. As EGFR is a client protein of heat-shock protein 90 (HSP90) and sulforaphane is known to functionally regulate HSP90, we hypothesized that sulforaphane could attenuate EGFR-related signaling and potentially be used to treat NSCLC. Our study revealed that sulforaphane displayed antitumor activity against NSCLC cells both in vitro and in vivo. The sensitivity of NSCLC cells to sulforaphane appeared to positively correlate with the inhibition of EGFR-related signaling, which was attributed to the increased proteasomal degradation of EGFR. Combined treatment of NSCLC cells with sulforaphane plus another HSP90 inhibitor (17-AAG) enhanced the inhibition of EGFR-related signaling both in vitro and in vivo. We have shown that sulforaphane is a novel inhibitory modulator of EGFR expression and is effective in inhibiting the tumor growth of EGFR-TKI-resistant NSCLC cells. Our findings suggest that sulforaphane should be further explored for its potential clinical applications against NSCLC.

  19. A basic peptide within the juxtamembrane region is required for EGF receptor dimerization.

    PubMed

    Aifa, Sami; Aydin, Jan; Nordvall, Gunnar; Lundström, Ingemar; Svensson, Samuel P S; Hermanson, Ola

    2005-01-01

    The epidermal growth factor receptor (EGFR) is fundamental for normal cell growth and organ development, but has also been implicated in various pathologies, notably tumors of epithelial origin. We have previously shown that the initial 13 amino acids (P13) within the intracellular juxtamembrane region (R645-R657) are involved in the interaction with calmodulin, thus indicating an important role for this region in EGFR function. Here we show that P13 is required for proper dimerization of the receptor. We expressed either the intracellular domain of EGFR (TKJM) or the intracellular domain lacking P13 (DeltaTKJM) in COS-7 cells that express endogenous EGFR. Only TKJM was immunoprecipitated with an antibody directed against the extracellular part of EGFR, and only TKJM was tyrosine phosphorylated by endogenous EGFR. Using SK-N-MC cells, which do not express endogenous EGFR, that were stably transfected with either wild-type EGFR or recombinant full-length EGFR lacking P13 demonstrated that P13 is required for appropriate receptor dimerization. Furthermore, mutant EGFR lacking P13 failed to be autophosphorylated. P13 is rich in basic amino acids and in silico modeling of the EGFR in conjunction with our results suggests a novel role for the juxtamembrane domain (JM) of EGFR in mediating intracellular dimerization and thus receptor kinase activation and function.

  20. A systematic profile of clinical inhibitors responsive to EGFR somatic amino acid mutations in lung cancer: implication for the molecular mechanism of drug resistance and sensitivity.

    PubMed

    Ai, Xinghao; Sun, Yingjia; Wang, Haidong; Lu, Shun

    2014-07-01

    Human epidermal growth factor receptor (EGFR) has become a well-established target for the treatment of patients with non-small cell lung cancer (NSCLC). However, a large number of somatic mutations in such protein have been observed to cause drug resistance or sensitivity during pathological progression, limiting the application of reversible EGFR tyrosine kinase inhibitor therapy in NSCLC. In the current work, we describe an integration of in silico analysis and in vitro assay to profile six representative EGFR inhibitors against a panel of 71 observed somatic mutations in EGFR tyrosine kinase domain. In the procedure, the changes in interaction free energy of inhibitors with EGFR upon various mutations were calculated one by one using a rigorous computational scheme, which was preoptimized based on a set of structure-solved, affinity-known samples to improve its performance in characterizing the EGFR-inhibitor system. This method was later demonstrated to be effective in inferring drug response to the classical L858R and G719S mutations that confer constitutive activation for the EGFR kinase. It is found that the Staurosporine, a natural product isolated from the bacterium Streptomyces staurosporeus, exhibits selective inhibitory activity on the T790M and T790M/L858R mutants. This finding was subsequently solidified by in vitro kinase assay experiment; the inhibitory IC50 values of Staurosporine against wild-type, T790M and T790M/L858R mutant EGFR were measured to be 937, 12 and 3 nM, respectively.

  1. INHIBITION OF PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZN2+

    EPA Science Inventory

    A number of studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden particulate matter inhibits protein tyrosine phosphatase activity in HAEC and leads to Src-dependent activation of EGFR sign...

  2. Targeted treatment of mutated EGFR-expressing non-small-cell lung cancer: focus on erlotinib with companion diagnostics

    PubMed Central

    Karachaliou, Niki; Rosell, Rafael

    2014-01-01

    Deeper understanding of the pathobiology of non-small-cell lung cancer (NSCLC) has led to the development of small molecules that target genetic mutations known to play critical roles in the progression to metastatic disease. The discovery of epidermal growth factor receptor (EGFR) mutations in 15%–20% of lung adenocarcinomas and the associated response to EGFR tyrosine kinase inhibitors have provided a successful avenue of attack in late-stage adenocarcinomas. Use of the EGFR tyrosine kinase inhibitors gefitinib, erlotinib, and afatinib is limited to patients who have adenocarcinomas with known activating EGFR mutations. However, the EGFR mutation testing landscape is varied and includes many screening and targeted methods, each with its own benefits and limitations. These tests can simplify the drug discovery process, make clinical trials more efficient and informative, and individualize cancer therapy. In practice, the choice of method should be determined by the nature of the sample to be tested, the testing laboratory’s expertise and access to equipment, and whether the detection of only known activating EGFR mutations, or of all possible mutations, is required. Development of companion diagnostic tests for this identification is advancing; nevertheless, the use of such tests merits greater attention. PMID:28210145

  3. The frequency of EGFR and KRAS mutations in non-small cell lung cancer (NSCLC): routine screening data for central Europe from a cohort study

    PubMed Central

    Boch, Christian; Kollmeier, Jens; Roth, Andreas; Stephan-Falkenau, Susann; Misch, Daniel; Grüning, Wolfram; Bauer, Torsten Thomas; Mairinger, Thomas

    2013-01-01

    Objectives Owing to novel therapy strategies in epidermal growth factor receptor (EGFR)-mutated patients, molecular analysis of the EGFR and KRAS genome has become crucial for routine diagnostics. Till date these data have been derived mostly from clinical trials, and thus collected in pre-selected populations. We therefore screened ‘allcomers’ with a newly diagnosed non-small cell lung carcinoma (NSCLC) for the frequencies of these mutations. Design A cohort study. Setting Lung cancer centre in a tertiary care hospital. Participants Within 15 months, a total of 552 cases with NSCLC were eligible for analysis. Primary and secondary outcome measures Frequency of scrutinising exons 18, 19 and 21 for the presence of activating EGFR mutation and secondary codon 12 and 13 for activating KRAS mutations. Results Of the 552 patients, 27 (4.9%) showed a mutation of EGFR. 19 of these patients (70%) had deletion E746-A750 in codon 19 or deletion L858R in codon 21. Adenocarcinoma (ACA) was the most frequent histology among patients with EGFR mutations (ACA, 22/254 (8.7%) vs non-ACA, 5/298 (1.7%); p<0.001). Regarding only ACA, the percentage of EGFR mutations was higher in women (16/116 (14%) women vs 6/138 (4.3%) men; p=0.008). Tumours with an activating EGFR mutation were more likely to be from non-smokers (18/27; 67%) rather than smoker (9/27; 33%). KRAS mutation was present in 85 (15%) of all cases. In 73 patients (86%), the mutation was found in exon 12 and in 12 cases (14%) in exon 13. Similarly, ACA had a higher frequency of KRAS mutations than non-ACA (67/254 (26%) vs 18/298 (6.0%); p<0.001). Conclusions We found a lower frequency for EGFR and KRAS mutations in an unselected Caucasian patient cohort as previously published. Taking our results into account, clinical trials may overestimate the mutation frequency for EGFR and KRAS in NSCLC due to important selection biases. PMID:23558737

  4. Zn2+-stimulation of sperm capacitation and of the acrosome reaction is mediated by EGFR activation.

    PubMed

    Michailov, Yulia; Ickowicz, Debbi; Breitbart, Haim

    2014-12-15

    Extracellular zinc regulates cell proliferation via the MAP1 kinase pathway in several cell types, and has been shown to act as a signaling molecule. The testis contains a relatively high concentration of Zn(2+), required in both the early and late stages of spermatogenesis. Despite the clinical significance of this ion, its role in mature sperm cells is poorly understood. In this study, we characterized the role of Zn(2+) in sperm capacitation and in the acrosome reaction. Western blot analysis revealed the presence of ZnR of the GPR39 type in sperm cells. We previously demonstrated the presence of active epidermal growth factor receptor (EGFR) in sperm, its possible transactivation by direct activation of G-protein coupled receptor (GPCR), and its involvement in sperm capacitation and in the acrosome reaction (AR). We show here that Zn(2+) activates the EGFR during sperm capacitation, which is mediated by activation of trans-membrane adenylyl cyclase (tmAC), protein kinase A (PKA), and the tyrosine kinase, Src. Moreover, the addition of Zn(2+) to capacitated sperm caused further stimulation of EGFR and phosphatydil-inositol-3-kinase (PI3K) phosphorylation, leading to the AR. The stimulation of the AR by Zn(2+) also occurred in the absence of Ca(2+) in the incubation medium, and required the tmAC, indicating that Zn(2+) activates a GPCR. The AR stimulated by Zn(2+) is mediated by GPR39 receptor, PKA, Src and the EGFR, as well as the EGFR down-stream effectors PI3K, phospholipase C (PLC) and protein kinase C (PKC). These data support a role for extracellular zinc, acting through the ZnR, in regulating multiple signaling pathways in sperm capacitation and the acrosome reaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. CD147, CD44, and the Epidermal Growth Factor Receptor (EGFR) Signaling Pathway Cooperate to Regulate Breast Epithelial Cell Invasiveness*

    PubMed Central

    Grass, G. Daniel; Tolliver, Lauren B.; Bratoeva, Momka; Toole, Bryan P.

    2013-01-01

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777–788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer. PMID:23888049

  6. Preclinical rationale for PI3K/Akt/mTOR pathway inhibitors as therapy for epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer.

    PubMed

    Gadgeel, Shirish M; Wozniak, Antoinette

    2013-07-01

    Mutations in the epidermal growth factor receptor gene (EGFR) are frequently observed in non-small-cell lung cancer (NSCLC), occurring in about 40% to 60% of never-smokers and in about 17% of patients with adenocarcinomas. EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib, have transformed therapy for patients with EGFR-mutant NSCLC and have proved superior to chemotherapy as first-line treatment for this patient group. Despite these benefits, there are currently 2 key challenges associated with EGFR inhibitor therapy for patients with NSCLC. First, only 85% to 90% of patients with the EGFR mutation derive clinical benefit from EGFR TKIs, with the remainder demonstrating innate resistance to therapy. Second, acquired resistance to EGFR TKIs inevitably occurs in patients who initially respond to therapy, with a median duration of response of about 10 months. Mutant EGFR activates various subcellular signaling cascades, including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, which demonstrates maintained activity in a variety of TKI-resistant cancers. Given the fundamental role of the PI3K/Akt/mTOR pathway in tumor oncogenesis, proliferation, and survival, PI3K pathway inhibitors have emerged as a possible solution to the problem of EGFR TKI resistance. However resistance to EGFR TKIs is associated with considerable heterogeneity and complexity. Preclinical experiments investigating these phenomena suggest that in some patients, PI3K inhibitors will have to be paired with other targeted agents if they are to be effective. This review discusses the preclinical data supporting PI3K/Akt/mTOR pathway inhibitor combinations in EGFR TKI-resistant NSCLC from the perspective of the various agents currently being investigated in clinical trials. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Association between physical activity and kidney function: National Health and Nutrition Examination Survey.

    PubMed

    Hawkins, Marquis S; Sevick, Mary Ann; Richardson, Caroline R; Fried, Linda F; Arena, Vincent C; Kriska, Andrea M

    2011-08-01

    Chronic kidney disease is a condition characterized by the deterioration of the kidney's ability to remove waste products from the body. Although treatments to slow the progression of the disease are available, chronic kidney disease may eventually lead to a complete loss of kidney function. Previous studies have shown that physical activities of moderate intensity may have renal benefits. Few studies have examined the effects of total movement on kidney function. The purpose of this study was to determine the association between time spent at all levels of physical activity intensity and sedentary behavior and kidney function. Data were obtained from the 2003-2004 and 2005-2006 National Health and Nutrition Examination Survey, a cross-sectional study of a complex, multistage probability sample of the US population. Physical activity was assessed using an accelerometer and questionnaire. Glomerular filtration rate (eGFR) was estimated using the Modification of Diet in Renal Disease study formula. To assess linear associations between levels of physical activity and sedentary behavior with log-transformed estimated GFR (eGFR), linear regression was used. In general, physical activity (light and total) was related to log eGFR in females and males. For females, the association between light and total physical activity with log eGFR was consistent regardless of diabetes status. For males, the association between light and total physical activity and log eGFR was only significant in males without diabetes. When examining the association between physical activity, measured objectively with an accelerometer, and kidney function, total and light physical activities were found to be positively associated with kidney function.

  8. Inhibition of non-small cell lung cancer (NSCLC) growth by a novel small molecular inhibitor of EGFR

    PubMed Central

    Fang, Yuanzhang; Vaughn, Amanda; Cai, Xiaopan; Xu, Leqin; Wan, Wei; Li, Zhenxi; Chen, Shijie; Yang, Xinghai; Wu, Song; Xiao, Jianru

    2015-01-01

    The epidermal growth factor receptor (EGFR) is a therapeutic target (oncotarget) in NSCLC. Using in vitro EGFR kinase activity system, we identified a novel small molecule, WB-308, as an inhibitor of EGFR. WB-308 decreased NSCLC cell proliferation and colony formation, by causing G2/M arrest and apoptosis. Furthermore, WB-308 inhibited the engraft tumor growths in two animal models in vivo (lung orthotopic transplantation model and patient-derived engraft mouse model). WB-308 impaired the phosphorylation of EGFR, AKT, and ERK1/2 protein. WB-308 was less cytotoxic than Gefitinib. Our study suggests that WB-308 is a novel EGFR-TKI and may be considered to substitute for Gefitinib in clinical therapy for NSCLC. PMID:25730907

  9. Neuroglian activates Echinoid to antagonize the Drosophila EGF receptor signaling pathway.

    PubMed

    Islam, Rafique; Wei, Shu-Yi; Chiu, Wei-Hsin; Hortsch, Michael; Hsu, Jui-Chou

    2003-05-01

    echinoid (ed) encodes an cell-adhesion molecule (CAM) that contains immunoglobulin domains and regulates the EGFR signaling pathway during Drosophila eye development. Based on our previous genetic mosaic and epistatic analysis, we proposed that Ed, via homotypic interactions, activates a novel, as yet unknown pathway that antagonizes EGFR signaling. In this report, we demonstrate that Ed functions as a homophilic adhesion molecule and also engages in a heterophilic trans-interaction with Drosophila Neuroglian (Nrg), an L1-type CAM. Co-expression of ed and nrg in the eye exhibits a strong genetic synergy in inhibiting EGFR signaling. This synergistic effect requires the intracellular domain of Ed, but not that of Nrg. In addition, Ed and Nrg colocalize in the Drosophila eye and are efficiently co-immunoprecipitated. Together, our results suggest a model in which Nrg acts as a heterophilic ligand and activator of Ed, which in turn antagonizes EGFR signaling.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagishita, Shigehiro; Horinouchi, Hidehito, E-mail: hhorinou@ncc.go.jp; Katsui Taniyama, Tomoko

    Purpose: To determine the frequency and clinical significance of epidermal growth factor receptor (EGFR) mutations in patients with potentially curable stage III non–small-cell lung cancer (NSCLC) who are eligible for definitive chemoradiotherapy (CRT). Patients and Methods: Between January 2001 and December 2010, we analyzed the EGFR mutational status in consecutive NSCLC patients who were treated by CRT. The response rate, relapse-free survival, 2-year relapse-free rate, initial relapse sites, and overall survival of the patients were investigated. Results: A total of 528 patients received CRT at our hospital during the study period. Of these, 274 were diagnosed as having nonsquamous NSCLC. Sufficientmore » specimens for mutational analyses could be obtained from 198 of these patients. The proportion of patients with EGFR activating mutations was 17%. In addition to the well-known characteristics of patients carrying EGFR mutations (female, adenocarcinoma, and never/light smoker), the proportion of cases with smaller primary lesions (T1/2) was found to be higher in patients with EGFR mutations than in those with wild-type EGFR. Patients with EGFR mutations showed similar response rate, relapse-free survival, and 2-year relapse-free rates as compared to patients with wild-type EGFR. Local relapses as the site of initial relapse occurred significantly less frequently in patients with EGFR mutation (4% vs 21%; P=.045). Patients with EGFR mutations showed longer local control (adjusted hazard ratio 0.49; P=.043). After disease progression, a majority of the patients with EGFR mutations received EGFR tyrosine kinase inhibitors (62%), and these patients showed longer postprogression survival than those with wild-type EGFR. Conclusions: Our study is the first to show radiosensitive biology of EGFR-mutated tumors in definitive CRT with curative intent. This finding could serve as a credible baseline estimate of EGFR-mutated population in stage III nonsquamous NSCLC.« less

  11. Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with activation of mTORC1

    PubMed Central

    Pirazzoli, Valentina; Nebhan, Caroline; Song, Xiaoling; Wurtz, Anna; Walther, Zenta; Cai, Guoping; Zhao, Zhongming; Jia, Peilin; de Stanchina, Elisa; Shapiro, Erik M.; Gale, Molly; Yin, Ruonan; Horn, Leora; Carbone, David P.; Stephens, Philip J; Miller, Vincent; Gettinger, Scott; Pao, William; Politi, Katerina

    2014-01-01

    SUMMARY Patients with EGFR-mutant lung adenocarcinomas (LUADs) who initially respond to first-generation TKIs develop resistance to these drugs. A combination of the irreversible TKI afatinib and the EGFR antibody cetuximab can be used to overcome resistance to first-generation TKIs; however, resistance to this drug combination eventually emerges. We identified activation of the mTORC1 signaling pathway as a mechanism of resistance to dual inhibition of EGFR in mouse models. Addition of rapamycin reversed resistance in vivo. Analysis of afatinib+cetuximab-resistant biopsy specimens revealed the presence of genomic alterations in genes that modulate mTORC1 signaling including NF2 and TSC1. These findings pinpoint enhanced mTORC1 activation as a mechanism of resistance to afatinib+cetuximab and identify genomic mechanisms that lead to activation of this pathway, revealing a potential therapeutic strategy for treating patients with resistance to these drugs. PMID:24813888

  12. Structure- and reactivity-based development of covalent inhibitors of the activating and gatekeeper mutant forms of the epidermal growth factor receptor (EGFR).

    PubMed

    Ward, Richard A; Anderton, Mark J; Ashton, Susan; Bethel, Paul A; Box, Matthew; Butterworth, Sam; Colclough, Nicola; Chorley, Christopher G; Chuaqui, Claudio; Cross, Darren A E; Dakin, Les A; Debreczeni, Judit É; Eberlein, Cath; Finlay, M Raymond V; Hill, George B; Grist, Matthew; Klinowska, Teresa C M; Lane, Clare; Martin, Scott; Orme, Jonathon P; Smith, Peter; Wang, Fengjiang; Waring, Michael J

    2013-09-12

    A novel series of small-molecule inhibitors has been developed to target the double mutant form of the epidermal growth factor receptor (EGFR) tyrosine kinase, which is resistant to treatment with gefitinib and erlotinib. Our reported compounds also show selectivity over wild-type EGFR. Guided by molecular modeling, this series was evolved to target a cysteine residue in the ATP binding site via covalent bond formation and demonstrates high levels of activity in cellular models of the double mutant form of EGFR. In addition, these compounds show significant activity against the activating mutations, which gefitinib and erlotinib target and inhibition of which gives rise to their observed clinical efficacy. A glutathione (GSH)-based assay was used to measure thiol reactivity toward the electrophilic functionality of the inhibitor series, enabling both the identification of a suitable reactivity window for their potency and the development of a reactivity quantitative structure-property relationship (QSPR) to support design.

  13. The induction of C/EBPβ contributes to vitamin D inhibition of ADAM17 expression and parathyroid hyperplasia in kidney disease.

    PubMed

    Arcidiacono, Maria Vittoria; Yang, Jing; Fernandez, Elvira; Dusso, Adriana

    2015-03-01

    In secondary hyperparathyroidism (SHPT), enhanced parathyroid levels of transforming growth factor-α (TGFα) increase EGF receptor (EGFR) activation causing parathyroid hyperplasia, high parathyroid hormone (PTH) and also reductions in vitamin D receptor (VDR) that limit vitamin D suppression of SHPT. Since anti-EGFR therapy is not an option in human SHPT, we evaluated ADAM17 as a therapeutic target to suppress parathyroid hyperplasia because ADAM17 is required to release mature TGFα, the most potent EGFR-activating ligand. Computer analysis of the ADAM17 promoter identified TGFα and C/EBPβ as potential regulators of the ADAM17 gene. Their regulation of ADAM17 expression, TGFα/EGFR-driven growth and parathyroid gland (PTG) enlargement were assessed in promoter-reporter assays in A431 cells and corroborated in rat and human SHPT, using erlotinib as anti-EGFR therapy to suppress TGFα signals, active vitamin D to induce C/EBPβ or the combination. While TGFα induced ADAM17-promoter activity by 2.2-fold exacerbating TGFα/EGFR-driven growth, ectopic C/EBPβ expression completely prevented this vicious synergy. Accordingly, in advanced human SHPT, parathyroid ADAM17 levels correlated directly with TGFα and inversely with C/EBPβ. Furthermore, combined erlotinib + calcitriol treatment suppressed TGFα/EGFR-cell growth and PTG enlargement more potently than erlotinib in part through calcitriol induction of C/EBPβ to inhibit ADAM17-promoter activity, mRNA and protein. Importantly, in rat SHPT, the correction of vitamin D deficiency effectively reversed the resistance to paricalcitol induction of C/EBPβ to suppress ADAM17 expression and PTG enlargement, reducing PTH by 50%. In SHPT, correction of vitamin D and calcitriol deficiency induces parathyroid C/EBPβ to efficaciously attenuate the severe ADAM17/TGFα synergy, which drives PTG enlargement and high PTH. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  14. ADAM17 and EGFR regulate IL-6 receptor and amphiregulin mRNA expression and release in cigarette smoke-exposed primary bronchial epithelial cells from patients with chronic obstructive pulmonary disease (COPD).

    PubMed

    Stolarczyk, Marta; Amatngalim, Gimano D; Yu, Xiao; Veltman, Mieke; Hiemstra, Pieter S; Scholte, Bob J

    2016-08-01

    Aberrant activity of a disintegrin and metalloprotease 17 (ADAM17), also known as TACE, and epidermal growth factor receptor (EGFR) has been suggested to contribute to chronic obstructive pulmonary disease (COPD) development and progression. The aim of this study was to investigate the role of these proteins in activation of primary bronchial epithelial cells differentiated at the air-liquid interface (ALI-PBEC) by whole cigarette smoke (CS), comparing cells from COPD patients with non-COPD CS exposure of ALI-PBEC enhanced ADAM17-mediated shedding of the IL-6 receptor (IL6R) and the EGFR agonist amphiregulin (AREG) toward the basolateral compartment, which was more pronounced in cells from COPD patients than in non-COPD controls. CS transiently increased IL6R and AREG mRNA in ALI-PBEC to a similar extent in cultures from both groups, suggesting that posttranslational events determine differential shedding between COPD and non-COPD cultures. We show for the first time by in situ proximity ligation (PLA) that CS strongly enhances interactions of phosphorylated ADAM17 with AREG and IL-6R in an intracellular compartment, suggesting that CS-induced intracellular trafficking events precede shedding to the extracellular compartment. Both EGFR and ADAM17 activity contribute to CS-induced IL-6R and AREG protein shedding and to mRNA expression, as demonstrated using selective inhibitors (AG1478 and TMI-2). Our data are consistent with an autocrine-positive feedback mechanism in which CS triggers shedding of EGFR agonists evoking EGFR activation, in ADAM17-dependent manner, and subsequently transduce paracrine signaling toward myeloid cells and connective tissue. Reducing ADAM17 and EGFR activity could therefore be a therapeutic approach for the tissue remodeling and inflammation observed in COPD. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  15. Internalization Mechanisms of the Epidermal Growth Factor Receptor after Activation with Different Ligands

    PubMed Central

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe; van Deurs, Bo; Grøvdal, Lene Melsæther

    2013-01-01

    The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown. PMID:23472148

  16. Combined targeting of PDK1 and EGFR triggers regression of glioblastoma by reversing the Warburg effect.

    PubMed

    Velpula, Kiran Kumar; Bhasin, Arnima; Asuthkar, Swapna; Tsung, Andrew J

    2013-12-15

    Glioblastoma multiforme is the most aggressive primary brain tumor in adults. Overexpression of the EGF receptor (EGFR) is recognized as a widespread oncogenic signature in glioblastoma multiforme, but the complexity of its contributions is not fully understood, nor the most effective ways to leverage anti-EGFR therapy in this setting. Hypoxia is known to drive the aggressive character of glioblastoma multiforme by promoting aerobic glycolysis rather than pyruvate oxidation carried out in mitochondria (OXPHOS), a phenomenon termed the Warburg effect, which is a general feature of oncogenesis. In this study, we report that hypoxia drives expression of the pyruvate dehydrogenase kinase (PDK1) and EGFR along with the hypoxia-inducing factor (HIF)-1α in human glioblastoma multiforme cells. PDK1 is a HIF-1-regulated gene and our findings indicated that hypoxia-induced PDK1 expression may promote EGFR activation, initiating a feed-forward loop that can sustain malignant progression. RNAi-mediated attenuation of PDK1 and EGFR lowered PDK1-EGFR activation and decreased HIF-1α expression, shifting the Warburg phenotype to OXPHOS and inhibiting glioblastoma multiforme growth and proliferation. In clinical specimens of glioblastoma multiforme, we found that immunohistochemical expression of PDK1, EGFR, and HIF-1α were elevated in glioblastoma multiforme specimens when compared with normal brain tissues. Collectively, our studies establish PDK1 as a key driver and candidate therapeutic target in glioblastoma multiforme. ©2013 AACR.

  17. Interstitial fibrosis scored on whole-slide digital imaging of kidney biopsies is a predictor of outcome in proteinuric glomerulopathies.

    PubMed

    Mariani, Laura H; Martini, Sebastian; Barisoni, Laura; Canetta, Pietro A; Troost, Jonathan P; Hodgin, Jeffrey B; Palmer, Matthew; Rosenberg, Avi Z; Lemley, Kevin V; Chien, Hui-Ping; Zee, Jarcy; Smith, Abigail; Appel, Gerald B; Trachtman, Howard; Hewitt, Stephen M; Kretzler, Matthias; Bagnasco, Serena M

    2018-02-01

    Interstitial fibrosis (IF), tubular atrophy (TA) and interstitial inflammation (II) are known determinants of progression of renal disease. Standardized quantification of these features could add value to current classification of glomerulopathies. We studied 315 participants in the Nephrotic Syndrome Study Network (NEPTUNE) study, including biopsy-proven minimal change disease (MCD = 98), focal segmental glomerulosclerosis (FSGS = 121), membranous nephropathy (MN = 59) and IgA nephropathy (IgAN = 37). Cortical IF, TA and II were quantified (%) on digitized whole-slide biopsy images, by five pathologists with high inter-reader agreement (intra-class correlation coefficient >0.8). Tubulointerstitial messenger RNA expression was measured in a subset of patients. Multivariable Cox proportional hazards models were fit to assess association of IF with the composite of 40% decline in estimated glomerular filtration rate (eGFR) and end-stage renal disease (ESRD) and separately as well, and with complete remission (CR) of proteinuria. IF was highly correlated with TA (P < 0.001) and II (P < 0.001). Median IF varied by diagnosis: FSGS 17, IgAN 21, MN 7, MCD 1 (P < 0.001). IF was strongly correlated with baseline eGFR (P < 0.001) and proteinuria (P = 0.002). After adjusting for clinical pathologic diagnosis, age, race, global glomerulosclerosis, baseline proteinuria, eGFR and medications, each 10% increase in IF was associated with a hazard ratio of 1.29 (P < 0.03) for ESRD/40% eGFR decline, but was not significantly associated with CR. A total of 981 genes were significantly correlated with IF (|r| > 0.4, false discovery rate (FDR) < 0.01), including upstream regulators such as tumor necrosis factor, interferon gamma (IFN-gamma), and transforming growth factor beta 1 (TGF-B1), and signaling pathways for antigen presentation and hepatic fibrosis. The degree of IF is associated with risk of eGFR decline across different types of proteinuric glomerulopathy, correlates with inflammatory and fibrotic gene expression, and may have predictive value in assessing risk of progression. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  18. Interchromosomal Associations that Alter Nf1 Gene Expression can Modify Clinical Manifestations of Neurofibromatosis 1

    DTIC Science & Technology

    2008-09-01

    intracellular portion of the EGFR and stimulates PLD2 activity. PLD2 catalyzes the hydrolysis of phosphatidylcholine (PC) to phosphatidic acid (PA) and...ARF4 can bind with EGFR and activate PLD2. The phosphatidic acid (PA) produced by PLD2 can recruit Sos, which can then colocalize and activate

  19. Epidermal ADAM17 maintains the skin barrier by regulating EGFR ligand–dependent terminal keratinocyte differentiation

    PubMed Central

    Cobzaru, Cristina; Triantafyllopoulou, Antigoni; Löffek, Stefanie; Horiuchi, Keisuke; Threadgill, David W.; Kurz, Thomas; van Rooijen, Nico; Bruckner-Tuderman, Leena

    2012-01-01

    ADAM17 (a disintegrin and metalloproteinase 17) is ubiquitously expressed and cleaves membrane proteins, such as epidermal growth factor receptor (EGFR) ligands, l-selectin, and TNF, from the cell surface, thus regulating responses to tissue injury and inflammation. However, little is currently known about its role in skin homeostasis. We show that mice lacking ADAM17 in keratinocytes (A17ΔKC) have a normal epidermal barrier and skin architecture at birth but develop pronounced defects in epidermal barrier integrity soon after birth and develop chronic dermatitis as adults. The dysregulated expression of epidermal differentiation proteins becomes evident 2 d after birth, followed by reduced transglutaminase (TGM) activity, transepidermal water loss, up-regulation of the proinflammatory cytokine IL-36α, and inflammatory immune cell infiltration. Activation of the EGFR was strongly reduced in A17ΔKC skin, and topical treatment of A17ΔKC mice with recombinant TGF-α significantly improved TGM activity and decreased skin inflammation. Finally, we show that mice lacking the EGFR in keratinocytes (EgfrΔKC) closely resembled A17ΔKC mice. Collectively, these results identify a previously unappreciated critical role of the ADAM17–EGFR signaling axis in maintaining the homeostasis of the postnatal epidermal barrier and suggest that this pathway could represent a good target for treatment of epidermal barrier defects. PMID:22565824

  20. Targeting the Golgi apparatus to overcome acquired resistance of non-small cell lung cancer cells to EGFR tyrosine kinase inhibitors

    PubMed Central

    Katayama, Ryohei; Fang, Siyang; Tsutsui, Saki; Akatsuka, Akinobu; Shan, Mingde; Choi, Hyeong-Wook; Fujita, Naoya; Yoshimatsu, Kentaro; Shiina, Isamu; Yamori, Takao; Dan, Shingo

    2018-01-01

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (EGFR-TKIs) were demonstrated to provide survival benefit in patients with non-small cell lung cancer (NSCLC) harboring activating mutations of EGFR; however, emergence of acquired resistance to EGFR-TKIs has been shown to cause poor outcome. To overcome the TKI resistance, drugs with different mode of action are required. We previously reported that M-COPA (2-methylcoprophilinamide), a Golgi disruptor, suppressed the growth of gastric cancers overexpressing receptor tyrosine kinases (RTKs) such as hepatocyte growth factor receptor (MET) via downregulating their cell surface expression. In this study, we examined the antitumor effect of M-COPA on NSCLC cells with TKI resistance. As a result, M-COPA effectively downregulated cell surface EGFR and its downstream signals, and finally exerted in vivo antitumor effect in NSCLC cells harboring secondary (T790M/del19) and tertiary (C797S/T790M/del19) mutated EGFR, which exhibit acquired resistance to first- and third generation EGFR-TKIs, respectively. M-COPA also downregulated MET expression potentially involved in the acquired resistance to EGFR-TKIs via bypassing the EGFR pathway blockade. These results provide the first evidence that targeting the Golgi apparatus might be a promising therapeutic strategy to overcome the vicious cycle of TKI resistance in EGFR-mutated NSCLC cells via downregulating cell surface RTK expression. PMID:29416720

  1. Phthalocyanine-Peptide Conjugates for Epidermal Growth Factor Receptor Targeting1

    PubMed Central

    Ongarora, Benson G.; Fontenot, Krystal R.; Hu, Xiaoke; Sehgal, Inder; Satyanarayana-Jois, Seetharama D.; Vicente, M. Graça H.

    2012-01-01

    Four phthalocyanine (Pc)-peptide conjugates designed to target the epidermal growth factor receptor (EGFR) were synthesized and evaluated in vitro using four cell lines: human carcinoma A431 and HEp2, human colorectal HT-29, and kidney Vero (negative control) cells. Two peptide ligands for EGFR were investigated: EGFR-L1 and -L2, bearing 6 and 13 amino acid residues, respectively. The peptides and Pc-conjugates were shown to bind to EGFR using both theoretical (Autodock) and experimental (SPR) investigations. The Pc-EGFR-L1 conjugates 5a and 5b efficiently targeted EGFR and were internalized, in part due to their cationic charge, whereas the uncharged Pc-EGFR-L2 conjugates 4b and 6a poorly targeted EGFR maybe due to their low aqueous solubility. All conjugates were non-toxic (IC50 > 100 µM) to HT-29 cells, both in the dark and upon light activation (1 J/cm2). Intravenous (iv) administration of conjugate 5b into nude mice bearing A431 and HT-29 human tumor xenografts resulted in a near-IR fluorescence signal at ca. 700 nm, 24 h after administration. Our studies show that Pc-EGFR-L1 conjugates are promising near-IR fluorescent contrast agents for CRC, and potentially other EGFR over-expressing cancers. PMID:22468711

  2. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future.

  3. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells

    PubMed Central

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future. PMID:27362942

  4. Modification of cytokine-induced killer cells with chimeric antigen receptors (CARs) enhances antitumor immunity to epidermal growth factor receptor (EGFR)-positive malignancies.

    PubMed

    Ren, Xuequn; Ma, Wanli; Lu, Hong; Yuan, Lei; An, Lei; Wang, Xicai; Cheng, Guanchang; Zuo, Shuguang

    2015-12-01

    Epidermal growth factor receptor (EGFR, ErbB1, Her-1) is a cell surface molecule overexpressing in a variety of human malignancies and, thus, is an excellent target for immunotherapy. Immunotherapy targeting EGFR-overexpressing malignancies using genetically modified immune effector cells is a novel and promising approach. In the present study, we have developed an adoptive cellular immunotherapy strategy based on the chimeric antigen receptor (CAR)-modified cytokine-induced killer (CAR-CIK) cells specific for the tumor cells expressing EGFR. To generate CAR-CIK cells, a lentiviral vector coding the EGFR-specific CAR was constructed and transduced into the CIK cells. The CAR-CIK cells showed significantly enhanced cytotoxicity and increased production of cytokines IFN-γ and IL-2 when co-cultured with EGFR-positive cancer cells. In tumor xenografts, adoptive immunotherapy of CAR-CIK cells could inhibit tumor growth and prolong the survival of EGFR-overexpressing human tumor xenografts. Moreover, tumor growth inhibition and prolonged survival in mice with EGFR(+) human cancer were associated with the increased persistence of CAR-CIK cells in vivo. Our study indicates that modification with EGFR-specific CAR strongly enhances the antitumor activity of the CIK cells against EGFR-positive malignancies.

  5. Elevated Src family kinase activity stabilizes E-cadherin-based junctions and collective movement of head and neck squamous cell carcinomas

    PubMed Central

    Veracini, Laurence; Grall, Dominique; Schaub, Sébastien; Divonne, Stéphanie Beghelli-de la Forest; Etienne-Grimaldi, Marie-Christine; Milano, Gérard; Bozec, Alexandre; Babin, Emmanuel; Sudaka, Anne; Thariat, Juliette; Van Obberghen-Schilling, Ellen

    2015-01-01

    EGF receptor (EGFR) overexpression is thought to drive head and neck carcinogenesis however clinical responses to EGFR-targeting agents have been modest and alternate targets are actively sought to improve results. Src family kinases (SFKs), reported to act downstream of EGFR are among the alternative targets for which increased expression or activity in epithelial tumors is commonly associated to the dissolution of E-cadherin-based junctions and acquisition of a mesenchymal-like phenotype. Robust expression of total and activated Src was observed in advanced stage head and neck tumors (N=60) and in head and neck squamous cell carcinoma lines. In cultured cancer cells Src co-localized with E-cadherin in cell-cell junctions and its phosphorylation on Y419 was both constitutive and independent of EGFR activation. Selective inhibition of SFKs with SU6656 delocalized E-cadherin and disrupted cellular junctions without affecting E-cadherin expression and this effect was phenocopied by knockdown of Src or Yes. These findings reveal an EGFR-independent role for SFKs in the maintenance of intercellular junctions, which likely contributes to the cohesive invasion E-cadherin-positive cells in advanced tumors. Further, they highlight the need for a deeper comprehension of molecular pathways that drive collective cell invasion, in absence of mesenchymal transition, in order to combat tumor spread. PMID:25779657

  6. Genomic Profiling on an Unselected Solid Tumor Population Reveals a Highly Mutated Wnt/β-Catenin Pathway Associated with Oncogenic EGFR Mutations.

    PubMed

    Jiang, Jingrui; Protopopov, Alexei; Sun, Ruobai; Lyle, Stephen; Russell, Meaghan

    2018-04-09

    Oncogenic epidermal growth factor receptors (EGFRs) can recruit key effectors in diverse cellular processes to propagate oncogenic signals. Targeted and combinational therapeutic strategies have been successfully applied for treating EGFR-driven cancers. However, a main challenge in EGFR therapies is drug resistance due to mutations, oncogenic shift, alternative signaling, and other potential mechanisms. To further understand the genetic alterations associated with oncogenic EGFRs and to provide further insight into optimal and personalized therapeutic strategies, we applied a proprietary comprehensive next-generation sequencing (NGS)-based assay of 435 genes to systematically study the genomic profiles of 1565 unselected solid cancer patient samples. We found that activating EGFR mutations were predominantly detected in lung cancer, particularly in non-small cell lung cancer (NSCLC). The mutational landscape of EGFR-driven tumors covered most key signaling pathways and biological processes. Strikingly, the Wnt/β-catenin pathway was highly mutated (48 variants detected in 46% of the EGFR-driven tumors), and its variant number topped that in the TP53/apoptosis and PI3K-AKT-mTOR pathways. Furthermore, an analysis of mutation distribution revealed a differential association pattern of gene mutations between EGFR exon 19del and EGFR L858R. Our results confirm the aggressive nature of the oncogenic EGFR-driven tumors and reassure that a combinational strategy should have advantages over an EGFR-targeted monotherapy and holds great promise for overcoming drug resistance.

  7. Loss of PHD3 allows tumours to overcome hypoxic growth inhibition and sustain proliferation through EGFR

    PubMed Central

    Henze, Anne-Theres; Garvalov, Boyan K.; Seidel, Sascha; Cuesta, Angel M.; Ritter, Mathias; Filatova, Alina; Foss, Franziska; Dopeso, Higinio; Essmann, Clara L.; Maxwell, Patrick H.; Reifenberger, Guido; Carmeliet, Peter; Acker-Palmer, Amparo; Acker, Till

    2014-01-01

    Solid tumours are exposed to microenvironmental factors such as hypoxia that normally inhibit cell growth. However, tumour cells are capable of counteracting these signals through mechanisms that are largely unknown. Here we show that the prolyl hydroxylase PHD3 restrains tumour growth in response to microenvironmental cues through the control of EGFR. PHD3 silencing in human gliomas or genetic deletion in a murine high-grade astrocytoma model markedly promotes tumour growth and the ability of tumours to continue growing under unfavourable conditions. The growth-suppressive function of PHD3 is independent of the established PHD3 targets HIF and NF-κB and its hydroxylase activity. Instead, loss of PHD3 results in hyperphosphorylation of epidermal growth factor receptor (EGFR). Importantly, epigenetic/genetic silencing of PHD3 preferentially occurs in gliomas without EGFR amplification. Our findings reveal that PHD3 inactivation provides an alternative route of EGFR activation through which tumour cells sustain proliferative signalling even under conditions of limited oxygen availability. PMID:25420773

  8. A Structural Perspective on the Regulation of the EGF Receptor

    PubMed Central

    Kovacs, Erika; Zorn, Julie Anne; Huang, Yongjian; Barros, Tiago; Kuriyan, John

    2015-01-01

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that plays a critical role in the pathogenesis of many cancers. EGFR is unique in that its ligand-induced dimerization is established solely by contacts between regions of the receptor that are occluded within the monomeric, unliganded state. Activation of EGFR depends on the formation of an asymmetric dimer of the intracellular module of two receptor molecules, a configuration observed in crystal structures of the EGFR kinase domain in the active state. Coupling between the extracellular and intracellular modules is achieved by a switch between alternative geometries of the transmembrane and juxtamembrane segments within the receptor dimer. As the structure of the full-length receptor is yet to be determined, here we review recent structural studies on isolated modules of EGFR and molecular dynamics simulations that have provided much of our current understanding of its signaling mechanism, including how its regulation is compromised by oncogenic mutations. PMID:25621509

  9. Cis-oriented solvent-front EGFR G796S mutation in tissue and ctDNA in a patient progressing on osimertinib: a case report and review of the literature.

    PubMed

    Klempner, Samuel J; Mehta, Pareen; Schrock, Alexa B; Ali, Siraj M; Ou, Sai-Hong Ignatius

    2017-01-01

    Acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) is a universal event and limits clinical efficacy. The third-generation EGFR inhibitor osimertinib is active in EGFR-mutant/T790M positive non-small-cell lung cancer. Mechanisms of acquired resistance are emerging, and here we describe a cis -oriented solvent-front EGFR G796S mutation as the resistance mechanism observed in a progression biopsy and circulating tumor DNA (ctDNA) from a patient with initial response followed by progression on osimertinib. This is one of the earliest reports of a sole solvent-front tertiary EGFR mutation as a resistance mechanism to osimertinib. Our case suggests a monoclonal resistance mechanism. We review the importance of the solvent-front residues across TKIs and describe known osimertinib resistance mechanisms. We observe that nearly all clinical osimertinib-resistant tertiary EGFR mutations are oriented in cis with EGFR T790M. This case highlights the importance of mutations affecting EGFR kinase domains and supports the feasibility of broad panel ctDNA assays for detection of novel acquired resistance and tumor heterogeneity in routine clinical care.

  10. Development of EMab-51, a Sensitive and Specific Anti-Epidermal Growth Factor Receptor Monoclonal Antibody in Flow Cytometry, Western Blot, and Immunohistochemistry.

    PubMed

    Itai, Shunsuke; Kaneko, Mika K; Fujii, Yuki; Yamada, Shinji; Nakamura, Takuro; Yanaka, Miyuki; Saidoh, Noriko; Handa, Saori; Chang, Yao-Wen; Suzuki, Hiroyoshi; Harada, Hiroyuki; Kato, Yukinari

    2017-10-01

    The epidermal growth factor receptor (EGFR) is a member of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases and is involved in cell growth and differentiation. EGFR homodimers or heterodimers with other HER members, such as HER2 and HER3, activate downstream signaling cascades in many cancers. In this study, we developed novel anti-EGFR monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. First, we expressed the full-length or ectodomain of EGFR in LN229 glioblastoma cells and then immunized mice with LN229/EGFR or ectodomain of EGFR, and performed the first screening using enzyme-linked immunosorbent assays. Subsequently, we selected mAbs according to their efficacy in flow cytometry (second screening), Western blot (third screening), and immunohistochemical (fourth screening) analyses. Among 100 mAbs, only one clone EMab-51 (IgG 1 , kappa) reacted with EGFR in Western blot analysis. Finally, immunohistochemical analyses with EMab-51 showed sensitive and specific reactions against oral cancer cells, warranting the use of EMab-51 to detect EGFR in pathological analyses of EGFR-expressing cancers.

  11. Epidermal growth factor expression in esophageal adenocarcinoma: a clinically relevant target?

    PubMed

    Harper, Nicholas; Li, Yan; Farmer, Russell; Martin, Robert C G

    2012-05-01

    There has been recent widespread enthusiasm in epidermal growth factor (EGFR) as a molecularly active target in esophageal adenocarcinoma (EAC). However, there is limited data on the extent of EGFR expression in EAC. Thus, the aim of this study was to evaluated EGFR, pErk1/2, and total Erk1/2 expression in malignant and benign specimens. Baseline expression of EGFR in the human normal squamous, Barrett's, and EAC cell lines were determined as well as after bile acid treatment and curcumin pretreatment. In addition, EGFR expression was also evaluated in 60 matched normal and malignant EAC resected specimens. The in vitro studies in the Het-1a, BarT, and OE19 cell lines failed to show any measurable expression of EGFR via Western blot technique. The marker serving as the positive control for the study, MnSOD, showed expression in each cell line for all three treatment regimens at approximately 24 kDa EGFR, showing moderate staining in the malignant tumor specimens and low staining in the benign tissue specimens. pErk1/2 showed low staining in the malignant tumor specimens and no staining in the benign tissue specimens. Total Erk1/2 showed high staining in both the malignant tumor specimens and benign tissue specimens. The differences in the mean staining scores for the malignant versus benign tissue specimens for pErk1/2 and total Erk1/2 are not statistically significant (p = 0.0726 and p = 0.7054, respectively). Thus, in conclusion, EGFR expression has been confirmed to be limited to non-existent in EAC and thus its use as a clinically active target is limited at best. Prior to the use of these expensive anti-EGFR therapies, confirmation of overexpression should be verified.

  12. Monitoring of Circulating Tumor Cells and Their Expression of EGFR/Phospho-EGFR During Combined Radiotherapy Regimens in Locally Advanced Squamous Cell Carcinoma of the Head and Neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tinhofer, Ingeborg, E-mail: ingeborg.tinhofer@charite.de; Hristozova, Tsvetana; Stromberger, Carmen

    2012-08-01

    Purpose: The numbers of circulating tumor cells (CTCs) and their expression/activation of epidermal growth factor receptor (EGFR) during the course of combined chemo- or bioradiotherapy regimens as potential biomarkers of treatment efficacy in squamous cell carcinoma of the head and neck (SCCHN) were determined. Methods and Materials: Peripheral blood samples from SCCHN patients with locally advanced stage IVA/B disease who were treated with concurrent radiochemotherapy or induction chemotherapy followed by bioradiation with cetuximab were included in this study. Using flow cytometry, the absolute number of CTCs per defined blood volume as well as their expression of EGFR and its phosphorylatedmore » form (pEGFR) during the course of treatment were assessed. Results: Before treatment, we detected {>=}1 CTC per 3.75 mL blood in 9 of 31 patients (29%). Basal expression of EGFR was detected in 100% and pEGFR in 55% of the CTC+ cases. The frequency of CTC detection was not influenced by induction chemotherapy. However, the number of CTC+ samples significantly increased after radiotherapy. This radiation-induced increase in CTC numbers was less pronounced when radiotherapy was combined with cetuximab compared to its combination with cisplatin/5-fluorouracil. The former treatment regimen was also more effective in reducing pEGFR expression in CTCs. Conclusions: Definitive radiotherapy regimens of locally advanced SCCHN can increase the number of CTCs and might thus contribute to a systemic spread of tumor cells. Further studies are needed to evaluate the predictive value of the radiation-induced increase in CTC numbers and the persistent activation of the EGFR signalling pathway in individual CTC+ cases.« less

  13. S100A9+ MDSC and TAM-mediated EGFR-TKI resistance in lung adenocarcinoma: the role of RELB.

    PubMed

    Feng, Po-Hao; Yu, Chih-Teng; Chen, Kuan-Yuan; Luo, Ching-Shan; Wu, Shen Ming; Liu, Chien-Ying; Kuo, Lu Wei; Chan, Yao-Fei; Chen, Tzu-Tao; Chang, Chih-Cheng; Lee, Chun-Nin; Chuang, Hsiao-Chi; Lin, Chiou-Feng; Han, Chia-Li; Lee, Wei-Hwa; Lee, Kang-Yun

    2018-01-26

    Monocytic myeloid-derived suppressor cells (MDSCs), particularly the S100A9+ subset, has been shown initial clinical relevance. However, its role in EGFR-mutated lung adenocarcinoma, especially to EGFR-tyrosine kinase inhibitor (EGFR-TKI) is not clear. In a clinical setting of EGFR mutated lung adenocarcinoma, a role of the MDSC apart from T cell suppression was also investigated. Blood monocytic S100A9 + MDSC counts were higher in lung cancer patients than healthy donors, and were associated with poor treatment response and shorter progression-free survival (PFS). S100A9 + MDSCs in PBMC were well correlated to tumor infiltrating CD68 + and S100A9 + cells, suggesting an origin of TAMs. Patient's MDMs, mostly from S100A9 + MDSC, similar to primary alveolar macrophages from patients, both expressed S100A9 and CD206, attenuated EGFR-TKI cytotoxicity. Microarray analysis identified up-regulation of the RELB signaling genes, confirmed by Western blotting and functionally by RELB knockdown. In conclusion, blood S100A9 + MDSC is a predictor of poor treatment response to EGFR-TKI, possibly via its derived TAMs through activation of the non-canonical NF-κB RELB pathway. Patients with activating EGFR mutation lung adenocarcinoma receiving first line EGFR TKIs were prospectively enrolled. Peripheral blood mononuclear cells (PBMCs) were collected for MDSCs analysis and for monocyte-derived macrophages (MDMs) and stored tissue for TAM analysis by IHC. A transwell co-culture system of MDMs/macrophages and H827 cells was used to detect the effect of macrophages on H827 and microarray analysis to explore the underlying molecular mechanisms, functionally confirmed by RNA interference.

  14. Mig6 Puts the Brakes on Mutant EGFR-Driven Lung Cancer | Center for Cancer Research

    Cancer.gov

    Lung cancer is the most common cause of cancer-related death worldwide. These cancers are often induced by mutations in the epidermal growth factor receptor (EGFR), resulting in constitutive activation of the protein’s tyrosine kinase domain. Lung cancers expressing these EGFR mutants are initially sensitive to tyrosine kinase inhibitors (TKIs), such as erlotinib, but often

  15. Osimertinib and Navitoclax in Treating Patients With EGFR-Positive Previously Treated Advanced or Metastatic Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-05-23

    EGFR Activating Mutation; EGFR NP_005219.2:p.T790M; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  16. Osimertinib in the treatment of patients with epidermal growth factor receptor T790M mutation-positive metastatic non-small cell lung cancer: clinical trial evidence and experience.

    PubMed

    Sullivan, Ivana; Planchard, David

    2016-12-01

    Patients with advanced epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) are particularly sensitive to treatment with first- or second-generation EGFR tyrosine kinase inhibitors such as gefitinib, erlotinib and afatinib, which block the cell-signaling pathways that drive the growth of tumor cells. Unfortunately, the majority of patients develop resistance to them after a median duration of response of around 10 months, and in over half of these patients the emergence of the EGFR T790M resistance mutation is detected. Osimertinib is an oral, highly selective, irreversible inhibitor of both EGFR-activating mutations and the T790M-resistance mutation, while sparing the activity of wild-type EGFR This article reviews clinical trial development of osimertinib in patients with NSCLC, presenting efficacy and safety evidence for its value in the EGFR T790M mutation-positive population and in different settings, including patients with metastatic disease. The preclinical background of clinically acquired resistance to osimertinib is presented and the combination tactics being investigated in an attempt to circumvent this are addressed. © The Author(s), 2016.

  17. Osimertinib in the treatment of patients with epidermal growth factor receptor T790M mutation-positive metastatic non-small cell lung cancer: clinical trial evidence and experience

    PubMed Central

    Sullivan, Ivana; Planchard, David

    2016-01-01

    Patients with advanced epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) are particularly sensitive to treatment with first- or second-generation EGFR tyrosine kinase inhibitors such as gefitinib, erlotinib and afatinib, which block the cell-signaling pathways that drive the growth of tumor cells. Unfortunately, the majority of patients develop resistance to them after a median duration of response of around 10 months, and in over half of these patients the emergence of the EGFR T790M resistance mutation is detected. Osimertinib is an oral, highly selective, irreversible inhibitor of both EGFR-activating mutations and the T790M-resistance mutation, while sparing the activity of wild-type EGFR. This article reviews clinical trial development of osimertinib in patients with NSCLC, presenting efficacy and safety evidence for its value in the EGFR T790M mutation-positive population and in different settings, including patients with metastatic disease. The preclinical background of clinically acquired resistance to osimertinib is presented and the combination tactics being investigated in an attempt to circumvent this are addressed. PMID:27784815

  18. Epidermal growth factor receptor as a novel molecular target for aggressive papillary tumors in the middle ear and temporal bone

    PubMed Central

    Kawabata, Shigeru; Christine Hollander, M; Munasinghe, Jeeva P.; Brinster, Lauren R.; Mercado-Matos, José R.; Li, Jie; Regales, Lucia; Pao, William; Jänne, Pasi A.; Wong, Kwok-Kin; Butman, John A.; Lonser, Russell R.; Hansen, Marlan R.; Gurgel, Richard K.; Vortmeyer, Alexander O.; Dennis, Phillip A.

    2015-01-01

    Adenomatous tumors in the middle ear and temporal bone are rare but highly morbid because they are difficult to detect prior to the development of audiovestibular dysfunction. Complete resection is often disfiguring and difficult because of location and the late stage at diagnosis, so identification of molecular targets and effective therapies is needed. Here, we describe a new mouse model of aggressive papillary ear tumor that was serendipitously discovered during the generation of a mouse model for mutant EGFR-driven lung cancer. Although these mice did not develop lung tumors, 43% developed head tilt and circling behavior. Magnetic resonance imaging (MRI) scans showed bilateral ear tumors located in the tympanic cavity. These tumors expressed mutant EGFR as well as active downstream targets such as Akt, mTOR and ERK1/2. EGFR-directed therapies were highly effective in eradicating the tumors and correcting the vestibular defects, suggesting these tumors are addicted to EGFR. EGFR activation was also observed in human ear neoplasms, which provides clinical relevance for this mouse model and rationale to test EGFR-targeted therapies in these rare neoplasms. PMID:26027747

  19. Phosphorylation of TNF-alpha converting enzyme by gastrin-releasing peptide induces amphiregulin release and EGF receptor activation.

    PubMed

    Zhang, Qing; Thomas, Sufi M; Lui, Vivian Wai Yan; Xi, Sichuan; Siegfried, Jill M; Fan, Huizhou; Smithgall, Thomas E; Mills, Gordon B; Grandis, Jennifer Rubin

    2006-05-02

    G protein-coupled receptors induce EGF receptor (EGFR) signaling, leading to the proliferation and invasion of cancer cells. Elucidation of the mechanism of EGFR activation by G protein-coupled receptors may identify new signaling paradigms. A gastrin-releasing peptide (GRP)/GRP receptor-mediated autocrine pathway was previously described in squamous cell carcinoma of head and neck. In the present study, we demonstrate that TNF-alpha converting enzyme (TACE), a disintegrin and metalloproteinse-17, undergoes a Src-dependent phosphorylation that regulates release of the EGFR ligand amphiregulin upon GRP treatment. Further investigation reveals the phosphatidylinositol 3-kinase (PI3-K) as the intermediate of c-Src and TACE, contributing to their association and TACE phosphorylation. Phosphoinositide-dependent kinase 1 (PDK1), a downstream target of PI3-K, has been identified as the previously undescribed kinase to directly phosphorylate TACE upon GRP treatment. These findings suggest a signaling cascade of GRP-Src-PI3-K-PDK1-TACE-amphiregulin-EGFR with multiple points of interaction, translocation, and phosphorylation. Furthermore, knockdown of PDK1 augmented the antitumor effects of the EGFR inhibitor erlotinib, indicating PDK1 as a therapeutic target to improve the clinical response to EGFR inhibitors.

  20. TACE/ADAM17 is essential for oligodendrocyte development and CNS myelination.

    PubMed

    Palazuelos, Javier; Crawford, Howard C; Klingener, Michael; Sun, Bingru; Karelis, Jason; Raines, Elaine W; Aguirre, Adan

    2014-09-03

    Several studies have elucidated the significance of a disintegrin and metalloproteinase proteins (ADAMs) in PNS myelination, but there is no evidence if they also play a role in oligodendrogenesis and CNS myelination. Our study identifies ADAM17, also called tumor necrosis factor-α converting enzyme (TACE), as a novel key modulator of oligodendrocyte (OL) development and CNS myelination. Genetic deletion of TACE in oligodendrocyte progenitor cells (OPs) induces premature cell cycle exit and reduces OL cell survival during postnatal myelination of the subcortical white matter (SCWM). These cellular and molecular changes lead to deficits in SCWM myelination and motor behavior. Mechanistically, TACE regulates oligodendrogenesis by modulating the shedding of EGFR ligands TGFα and HB-EGF and, consequently, EGFR signaling activation in OL lineage cells. Constitutive TACE depletion in OPs in vivo leads to similar alterations in CNS myelination and motor behavior as to what is observed in the EGFR hypofunctional mouse line EgfrWa2. EGFR overexpression in TACE-deficient OPs restores OL survival and development. Our study reveals an essential function of TACE in oligodendrogenesis, and demonstrates how this molecule modulates EGFR signaling activation to regulate postnatal CNS myelination. Copyright © 2014 the authors 0270-6474/14/3411884-13$15.00/0.

  1. Epidermal growth factor receptor as a novel molecular target for aggressive papillary tumors in the middle ear and temporal bone.

    PubMed

    Kawabata, Shigeru; Hollander, M Christine; Munasinghe, Jeeva P; Brinster, Lauren R; Mercado-Matos, José R; Li, Jie; Regales, Lucia; Pao, William; Jänne, Pasi A; Wong, Kwok-Kin; Butman, John A; Lonser, Russell R; Hansen, Marlan R; Gurgel, Richard K; Vortmeyer, Alexander O; Dennis, Phillip A

    2015-05-10

    Adenomatous tumors in the middle ear and temporal bone are rare but highly morbid because they are difficult to detect prior to the development of audiovestibular dysfunction. Complete resection is often disfiguring and difficult because of location and the late stage at diagnosis, so identification of molecular targets and effective therapies is needed. Here, we describe a new mouse model of aggressive papillary ear tumor that was serendipitously discovered during the generation of a mouse model for mutant EGFR-driven lung cancer. Although these mice did not develop lung tumors, 43% developed head tilt and circling behavior. Magnetic resonance imaging (MRI) scans showed bilateral ear tumors located in the tympanic cavity. These tumors expressed mutant EGFR as well as active downstream targets such as Akt, mTOR and ERK1/2. EGFR-directed therapies were highly effective in eradicating the tumors and correcting the vestibular defects, suggesting these tumors are addicted to EGFR. EGFR activation was also observed in human ear neoplasms, which provides clinical relevance for this mouse model and rationale to test EGFR-targeted therapies in these rare neoplasms.

  2. C. elegans Vulva Induction: An In Vivo Model to Study Epidermal Growth Factor Receptor Signaling and Trafficking.

    PubMed

    Gauthier, Kimberley; Rocheleau, Christian E

    2017-01-01

    Epidermal growth factor receptor (EGFR)-mediated activation of the canonical Ras/MAPK signaling cascade is responsible for cell proliferation and cell growth. This signaling pathway is frequently overactivated in epithelial cancers; therefore, studying regulation of this pathway is crucial not only for our fundamental understanding of cell biology but also for our ability to treat EGFR-related disease. Genetic model organisms such as Caenorhabditis elegans, a hermaphroditic nematode, played a vital role in identifying components of the EGFR/Ras/MAPK pathway and delineating their order of function, and continues to play a role in identifying novel regulators of the pathway. Polarized activation of LET-23, the C. elegans homolog of EGFR, is responsible for induction of the vulval cell fate; perturbations in this signaling pathway produce either a vulvaless or multivulva phenotype. The translucent cuticle of the nematode facilitates in vivo visualization of the receptor, revealing that localization of LET-23 EGFR is tightly regulated and linked to its function. In this chapter, we review the methods used to harness vulva development as a tool for studying EGFR signaling and trafficking in C. elegans.

  3. Epidermal growth factor receptor is required for estradiol-stimulated bovine satellite cell proliferation.

    PubMed

    Reiter, B C; Kamanga-Sollo, E; Pampusch, M S; White, M E; Dayton, W R

    2014-07-01

    The objective of this study was to assess the role of the epidermal growth factor receptor (EGFR) in estradiol-17β (E2)-stimulated proliferation of cultured bovine satellite cells (BSCs). Treatment of BSC cultures with AG1478 (a specific inhibitor of EGFR tyrosine kinase activity) suppresses E2-stimulated BSC proliferation (P < 0.05). In addition, E2-stimulated proliferation is completely suppressed (P < 0.05) in BSCs in which EGFR expression is silenced by treatment with EGFR small interfering RNA (siRNA). These results indicate that EGFR is required for E2 to stimulate proliferation in BSC cultures. Both AG1478 treatment and EGFR silencing also suppress proliferation stimulated by LR3-IGF-1 (an IGF1 analogue that binds normally to the insulin-like growth factor receptor (IGFR)-1 but has little or no affinity for IGF binding proteins) in cultured BSCs (P < 0.05). Even though EGFR siRNA treatment has no effect on IGFR-1β mRNA expression in cultured BSCs, IGFR-1β protein level is substantially reduced in BSCs treated with EGFR siRNA. These data suggest that EGFR silencing results in post-transcriptional modifications that result in decreased IGFR-1β protein levels. Although it is clear that functional EGFR is necessary for E2-stimulated proliferation of BSCs, the role of EGFR is not clear. Transactivation of EGFR may directly stimulate proliferation, or EGFR may function to maintain the level of IGFR-1β which is necessary for E2-stimulated proliferation. It also is possible that the role of EGFR in E2-stimulated BSC proliferation may involve both of these mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco-Garcia, Estefania; Saceda, Miguel; Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cellmore » lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.« less

  5. Integrated experimental and model-based analysis reveals the spatial aspects of EGFR activation dynamics

    PubMed Central

    Shankaran, Harish; Zhang, Yi; Chrisler, William B.; Ewald, Jonathan A.; Wiley, H. Steven; Resat, Haluk

    2012-01-01

    The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models to determine the contributions of receptor dimerization and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor phosphorylation kinetics at the cell surface and early endosomes are comparable. We validated the last finding by measuring the EGFR dephosphorylation rates at various times following ligand addition both in whole cells and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. This study demonstrates that an iterative cycle of experiments and modeling can be used to gain mechanistic insight regarding complex cell signaling networks. PMID:22952062

  6. Chemotherapeutic Potential of 2-[Piperidinoethoxyphenyl]-3-Phenyl-2H-Benzo(b)pyran in Estrogen Receptor- Negative Breast Cancer Cells: Action via Prevention of EGFR Activation and Combined Inhibition of PI-3-K/Akt/FOXO and MEK/Erk/AP-1 Pathways

    PubMed Central

    Saxena, Ruchi; Chandra, Vishal; Manohar, Murli; Hajela, Kanchan; Debnath, Utsab; Prabhakar, Yenamandra S.; Saini, Karan Singh; Konwar, Rituraj; Kumar, Sandeep; Megu, Kaling; Roy, Bal Gangadhar; Dwivedi, Anila

    2013-01-01

    Inhibition of epidermal growth factor receptor (EGFR) signaling is considered to be a promising treatment strategy for estrogen receptor (ER)-negative breast tumors. We have investigated here the anti-breast cancer properties of a novel anti-proliferative benzopyran compound namely, 2-[piperidinoethoxyphenyl]-3-phenyl-2H-benzo(b)pyran (CDRI-85/287) in ER- negative and EGFR- overexpressing breast cancer cells. The benzopyran compound selectively inhibited the EGF-induced growth of MDA-MB 231 cells and ER-negative primary breast cancer cell culture. The compound significantly reduced tumor growth in xenograft of MDA-MB 231 cells in nude mice. The compound displayed better binding affinity for EGFR than inhibitor AG1478 as demonstrated by molecular docking studies. CDRI-85/287 significantly inhibited the activation of EGFR and downstream effectors MEK/Erk and PI-3-K/Akt. Subsequent inhibition of AP-1 promoter activity resulted in decreased transcription activation and expression of c-fos and c-jun. Dephosphorylation of downstream effectors FOXO-3a and NF-κB led to increased expression of p27 and decreased expression of cyclin D1 which was responsible for decreased phosphorylation of Rb and prevented the transcription of E2F- dependent genes involved in cell cycle progression from G1/S phase. The compound induced apoptosis via mitochondrial pathway and it also inhibited EGF-induced invasion of MDA-MB 231 cells as evidenced by decreased activity of MMP-9 and expression of CTGF. These results indicate that benzopyran compound CDRI-85/287 could constitute a powerful new chemotherapeutic agent against ER-negative and EGFR over-expressing breast tumors. PMID:23840429

  7. A peptidomimetic with a chiral switch is an inhibitor of epidermal growth factor receptor heterodimerization

    PubMed Central

    Kanthala, Shanthi P.; Liu, Yong-Yu; Singh, Sitanshu; Sable, Rushikesh; Pallerla, Sandeep; Jois, Seetharama D.

    2017-01-01

    Among different types of EGFR dimers, EGFR-HER2 and HER2-HER3 are well known in different types of cancers. Targeting dimerization of EGFR will have a significant impact on cancer therapies. A symmetric peptidomimetic was designed to inhibit the protein-protein interaction of EGFR. The peptidomimetic (Cyclo(1,10)PpR (R) Anapa-FDDF-(R)-Anapa)R, compound 18) was shown to exhibit antiproliferative activity with an IC50 of 194 nM in HER2-expressing breast cancer cell lines and 18 nM in lung cancer cell lines. The peptidomimetic has a Pro-Pro sequence in the structure to stabilize the β-turn and a β-amino acid, amino napthyl propionic acid. To investigate the effect of the chirality of β-amino acid on the structure of the peptide and its antiproliferative activity, diastereoisomers of compound 18 were designed and synthesized. Structure-activity relationships of these compounds indicated that there is a chiral switch at β-amino acid in the designed compound. The peptidomimetic with R configuration at β-amino acid and with a L-Pro-D-Pro sequence was the most active compound (18). Using enzyme complement fragmentation assay and proximity ligation assay, we show that compound 18 inhibits HER2:HER3 and EGFR:HER2 dimerization. Surface plasmon resonance studies suggested that compound 18 binds to the HER2 extracellular domain and in particular to domain IV. The anticancer activity of compound 18 was evaluated using a xenograft model of breast cancer in mice; compound 18 suppressed the tumor growth in mice compared to control. Compound 18 was also shown to have a synergistic effect with erlotinib on EGFR mutated lung cancer cell lines. PMID:29088782

  8. ROS mediated EGFR/MEK/ERK/HIF-1α Loop Regulates Glucose metabolism in pancreatic cancer.

    PubMed

    Wang, Gang; Li, Yifeng; Yang, Zeyu; Xu, Weina; Yang, Yifan; Tan, Xiaodong

    2018-06-12

    To investigate the glycometabolism associated mechanism in invasion and metastasis of pancreatic cancer, We screened out genes involved in anaerobic glycolysis headed by HIF-1α,using pre-established a pair of pancreatic cancer cell lines. In this study, we further detected the glucose metabolism state not only in the cells but all also in two groups of patients with different SUVmax on 18 F-FDG PET/CT. The data suggests that ROS mediated EGFR/MEK/ERK/HIF-1α loop is activated in high glucose metabolic samples both in vitro and in vivo: The increasing of HIF-1α expression is controlled by activation of EGFR/MEK/ERK pathway in hypoxia condition, HIF-1α inhibits excessive release of ROS, the reduction of ROS further activates EGFR to form a positive feedback loop. This difference is closely related to invasion and metastasis capacity of pancreatic cancer, and can be rescued by separate or combined inhibition of EGFR or HIF-1α in various degree. These results indicate a new clue to develop therapy of pancreatic cancer by regulating the glucose metabolism. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Clinical outcomes of advanced non-small-cell lung cancer patients with EGFR mutation, ALK rearrangement and EGFR/ALK co-alterations.

    PubMed

    Lou, Na-Na; Zhang, Xu-Chao; Chen, Hua-Jun; Zhou, Qing; Yan, Li-Xu; Xie, Zhi; Su, Jian; Chen, Zhi-Hong; Tu, Hai-Yan; Yan, Hong-Hong; Wang, Zhen; Xu, Chong-Rui; Jiang, Ben-Yuan; Wang, Bin-Chao; Bai, Xiao-Yan; Zhong, Wen-Zhao; Wu, Yi-Long; Yang, Jin-Ji

    2016-10-04

    The co-occurrence of epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements constitutes a rare molecular subtype of non-small-cell lung cancer (NSCLC). Herein, we assessed the clinical outcomes and incidence of acquired resistance to tyrosine kinase inhibitors (TKIs) in this subtype. So we enrolled 118 advanced NSCLC treated with TKIs. EGFR mutations and ALK rearrangements were detected by DNA sequencing or Scorpion amplification refractory mutation system and fluorescence in situ hybridization respectively. Immunohistochemistry was used to evaluate the activation of associated proteins. We found that nine in ten patients with EGFR/ALK co-alterations had good response with first-line EGFR TKI, and the objective response rate (ORR) of EGFR TKIs was 80% (8/10) for EGFR/ALK co-altered and 65.5% (55/84) for EGFR-mutant (P = 0.57), with a median progression-free survival (PFS) of 11.2 and 13.2 months, (hazard ratio [HR]=0.95, 95% [CI], 0.49-1.84, P= 0.87). ORR of crizotinib was 40% (2/5) for EGFR/ALK co-altered and 73.9% (17/23) for ALK-rearranged (P= 0.29), with a median PFS of 1.9 and 6.9 months (hazard ratio [HR], 0.40; 95% [CI] 0.15-1.10, P = 0.08). The median overall survival (OS) was 21.3, 23.7, and 18.5 months in EGFR-mutant, ALK-rearranged, and EGFR/ALK co-altered (P= 0.06), and there existed a statistically significant difference in OS between ALK-rearranged and EGFR/ALK co-altered (P=0.03). Taken together, the first-line EGFR-TKI might be the reasonable care for advanced NSCLC harbouring EGFR/ALK co-alterations, whether or nor to use sequential crizotinib should be guided by the status of ALK rearrangement and the relative level of phospho-EGFR and phospho-ALK.

  10. The E3 ubiquitin ligase NEDD4 mediates cell migration signaling of EGFR in lung cancer cells.

    PubMed

    Shao, Genbao; Wang, Ranran; Sun, Aiqin; Wei, Jing; Peng, Ke; Dai, Qian; Yang, Wannian; Lin, Qiong

    2018-02-19

    EGFR-dependent cell migration plays an important role in lung cancer progression. Our previous study observed that the HECT E3 ubiquitin ligase NEDD4 is significantly correlated with tumor metastasis and required for migration and invasion signaling of EGFR in gastric cancer cells. However, how NEDD4 promotes the EGFR-dependent lung cancer cell migration is unknown. This study is to elucidate the mechanism by which NEDD4 mediates the EGFR lung cancer migration signaling. Lentiviral vector-loaded NEDD4 shRNA was used to deplete endogenous NEDD4 in lung cancer cell lines. Effects of the NEDD4 knockdown on the EGFR-dependent or independent lung cancer cell migration were determined using the wound-healing and transwell assays. Association of NEDD4 with activated EGFR was assayed by co-immunoprecipitation. Co-expression of NEDD4 with EGFR or PTEN was determined by immunohistochemical (IHC) staining in 63 lung adenocarcinoma tissue samples. Effects of NEDD4 ectopic expression or knockdown on PTEN ubiquitination and down-regulation, AKT activation and lysosomal secretion were examined using the GST-Uba pulldown assay, immunoblotting, immunofluorescent staining and a human cathepsin B ELISA assay respectively. The specific cathepsin B inhibitor CA-074Me was used for assessing the role of cathepsin B in lung cancer cell migration. Knockdown of NEDD4 significantly reduced EGF-stimulated cell migration in non-small cell lung carcinoma (NSCLC) cells. Co-immunoprecipitation assay found that NEDD4 is associated with EGFR complex upon EGF stimulation, and IHC staining indicates that NEDD4 is co-expressed with EGFR in lung adenocarcinoma tumor tissues, suggesting that NEDD4 might mediate lung cancer cell migration by interaction with the EGFR signaling complex. Interestingly, NEDD4 promotes the EGF-induced cathepsin B secretion, possibly through lysosomal exocytosis, as overexpression of the ligase-dead mutant of NEDD4 impedes lysosomal secretion, and knockdown of NEDD4 significantly reduced extracellular amount of cathepsin B induced by EGF. Consistent with the role of NEDD4, cathepsin B is pivotal for both basal and the EGF-stimulated lung cancer cell migration. Our studies propose a novel mechanism underlying the EGFR-promoted lung cancer cell migration that is mediated by NEDD4 through regulation of cathepsin B secretion. NEDD4 mediates the EGFR lung cancer cell migration signaling through promoting lysosomal secretion of cathepsin B.

  11. Ubiquitin Ligase Cbl-b Is Involved in Icotinib (BPI-2009H)-Induced Apoptosis and G1 Phase Arrest of EGFR Mutation-Positive Non-Small-Cell Lung Cancer

    PubMed Central

    Mu, Xiaodong; Zhang, Ye; Qu, Xiujuan; Hou, Kezuo; Kang, Jian; Hu, Xuejun; Liu, Yunpeng

    2013-01-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small-cell lung cancer (NSCLC). Icotinib, a highly selective EGFR tyrosine kinase inhibitor (EGFR-TKI), has shown promising clinical efficacy and safety in patients with NSCLC. The exact molecular mechanism of icotinib remains unclear. In this study, we first investigated the antiproliferative effect of icotinib on NSCLC cells. Icotinib significantly inhibited proliferation of the EGFR-mutated lung cancer HCC827 cells. The IC50 values at 48 and 72 h were 0.67 and 0.07 μM, respectively. Flow cytometric analysis showed that icotinib caused the G1 phase arrest and increased the rate of apoptosis in HCC827 cells. The levels of cyclin D1 and cyclin A2 were decreased. The apoptotic process was associated with activation of caspase-3, -8, and poly(ADP-ribose) polymerase (PARP). Further study revealed that icotinib inhibited phosphorylation of EGFR, Akt, and extracellular signal-regulated kinase. In addition, icotinib upregulated ubiquitin ligase Cbl-b expression. These observations suggest that icotinib-induced upregulation of Cbl-b is responsible, at least in part, for the antitumor effect of icotinib via the inhibition of phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase pathways in EGFR-mutated NSCLC cells. PMID:23586056

  12. Ubiquitin ligase Cbl-b is involved in icotinib (BPI-2009H)-induced apoptosis and G1 phase arrest of EGFR mutation-positive non-small-cell lung cancer.

    PubMed

    Mu, Xiaodong; Zhang, Ye; Qu, Xiujuan; Hou, Kezuo; Kang, Jian; Hu, Xuejun; Liu, Yunpeng

    2013-01-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small-cell lung cancer (NSCLC). Icotinib, a highly selective EGFR tyrosine kinase inhibitor (EGFR-TKI), has shown promising clinical efficacy and safety in patients with NSCLC. The exact molecular mechanism of icotinib remains unclear. In this study, we first investigated the antiproliferative effect of icotinib on NSCLC cells. Icotinib significantly inhibited proliferation of the EGFR-mutated lung cancer HCC827 cells. The IC50 values at 48 and 72 h were 0.67 and 0.07 μ M, respectively. Flow cytometric analysis showed that icotinib caused the G1 phase arrest and increased the rate of apoptosis in HCC827 cells. The levels of cyclin D1 and cyclin A2 were decreased. The apoptotic process was associated with activation of caspase-3, -8, and poly(ADP-ribose) polymerase (PARP). Further study revealed that icotinib inhibited phosphorylation of EGFR, Akt, and extracellular signal-regulated kinase. In addition, icotinib upregulated ubiquitin ligase Cbl-b expression. These observations suggest that icotinib-induced upregulation of Cbl-b is responsible, at least in part, for the antitumor effect of icotinib via the inhibition of phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase pathways in EGFR-mutated NSCLC cells.

  13. P2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway.

    PubMed

    Li, Wei-Hua; Qiu, Ying; Zhang, Hong-Quan; Tian, Xin-Xia; Fang, Wei-Gang

    2015-01-01

    As one member of G protein-coupled P2Y receptors, P2Y2 receptor can be equally activated by extracellular ATP and UTP. Our previous studies have proved that activation of P2Y2 receptor by extracellular ATP could promote prostate cancer cell invasion and metastasis in vitro and in vivo via regulating the expressions of some epithelial-mesenchymal transition/invasion-related genes (including IL-8, E-cadherin, Snail and Claudin-1), and the most significant change in expression of IL-8 was observed after P2Y2 receptor activation. However, the signaling pathway downstream of P2Y2 receptor and the role of IL-8 in P2Y2-mediated prostate cancer cell invasion remain unclear. Here, we found that extracellular ATP/UTP induced activation of EGFR and ERK1/2. After knockdown of P2Y2 receptor, the ATP -stimulated phosphorylation of EGFR and ERK1/2 was significantly suppressed. Further experiments showed that inactivation of EGFR and ERK1/2 attenuated ATP-induced invasion and migration, and suppressed ATP-mediated IL-8 production. In addition, knockdown of IL-8 inhibited ATP-mediated invasion and migration of prostate cancer cells. These findings suggest that P2Y2 receptor and EGFR cooperate to upregulate IL-8 production via ERK1/2 pathway, thereby promoting prostate cancer cell invasion and migration. Thus blocking of the P2Y2-EGFR-ERK1/2 pathway may provide effective therapeutic interventions for prostate cancer.

  14. Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice.

    PubMed

    Li, He; Huang, Yao; Jiang, Du-Qing; Cui, Lian-Zhen; He, Zhou; Wang, Chao; Zhang, Zhi-Wei; Zhu, Hai-Li; Ding, Yong-Mei; Li, Lin-Fang; Li, Qiang; Jin, Hua-Jun; Qian, Qi-Jun

    2018-02-07

    Effective control of non-small-cell lung cancer (NSCLC) remains clinically challenging, especially during advanced stages of the disease. This study developed an adoptive T-cell treatment through expression of a chimeric antigen receptor (CAR) to target human epidermal growth factor receptor (EGFR) in NSCLC. We optimized the non-viral piggyBac transposon system to engineer human T cells for the expression of EGFR-CAR, consisting of EGFR scFv, transmembrane domain, and intracellular 4-1BB-CD3ζ signaling domains. The modified CAR T cells exhibited expansion capability and anticancer efficacy in a time- and antigen-dependent manner in vitro as well as regression of EGFR-positive human lung cancer xenografts in vivo. EGFR-CAR T therapy is a promising strategy to improve the efficacy and potency of the adoptive immunotherapy in NSCLC. Moreover, EGFR-CAR T therapy could become a clinical application for NSCLC patients in the future.

  15. EGF receptor uses SOS1 to drive constitutive activation of NFκB in cancer cells

    PubMed Central

    De, Sarmishtha; Dermawan, Josephine Kam Tai; Stark, George R.

    2014-01-01

    Activation of nuclear factor κB (NFκB) is a central event in the responses of normal cells to inflammatory signals, and the abnormal constitutive activation of NFκB is important for the survival of most cancer cells. In nonmalignant human cells, EGF stimulates robust activation of NFκB. The kinase activity of the EGF receptor (EGFR) is required, because the potent and specific inhibitor erlotinib blocks the response. Down-regulating EGFR expression or inhibiting EGFR with erlotinib impairs constitutive NFκB activation in several different types of cancer cells and, conversely, increased activation of NFκB leads to erlotinib resistance in these cells. We conclude that EGF is an important mediator of NFκB activation in cancer cells. To explore the mechanism, we selected an erlotinib-resistant cell line in which the guanine nucleotide exchange factor Son of Sevenless 1 (SOS1), well known to be important for EGF-dependent signaling to MAP kinases, is overexpressed. Increased expression of SOS1 increases NFκB activation in several different types of cancer cells, and ablation of SOS1 inhibits EGF-induced NFκB activation in these cells, indicating that SOS1 is a functional component of the pathway connecting EGFR to NFκB activation. Importantly, the guanine nucleotide exchange activity of SOS1 is not required for NFκB activation. PMID:25071181

  16. Effects of oncogenic mutations on the conformational free-energy landscape of EGFR kinase

    PubMed Central

    Sutto, Ludovico; Gervasio, Francesco Luigi

    2013-01-01

    Activating mutations in the epidermal growth factor receptor (EGFR) tyrosine kinase are frequently found in many cancers. It has been suggested that changes in the equilibrium between its active and inactive conformations are linked to its oncogenic potential. Here, we quantify the effects of some of the most common single (L858R and T790M) and double (T790M-L858R) oncogenic mutations on the conformational free-energy landscape of the EGFR kinase domain by using massive molecular dynamics simulations together with parallel tempering, metadynamics, and one of the best force-fields available. Whereas the wild-type EGFR catalytic domain monomer is mostly found in an inactive conformation, our results show a clear shift toward the active conformation for all of the mutants. The L858R mutation stabilizes the active conformation at the expense of the inactive conformation and rigidifies the αC-helix. The T790M gatekeeper mutant favors activation by stabilizing a hydrophobic cluster. Finally, T790M with L858R shows a significant positive epistasis effect. This combination not only stabilizes the active conformation, but in nontrivial ways changes the free-energy landscape lowering the transition barriers. PMID:23754386

  17. Effects of oncogenic mutations on the conformational free-energy landscape of EGFR kinase.

    PubMed

    Sutto, Ludovico; Gervasio, Francesco Luigi

    2013-06-25

    Activating mutations in the epidermal growth factor receptor (EGFR) tyrosine kinase are frequently found in many cancers. It has been suggested that changes in the equilibrium between its active and inactive conformations are linked to its oncogenic potential. Here, we quantify the effects of some of the most common single (L858R and T790M) and double (T790M-L858R) oncogenic mutations on the conformational free-energy landscape of the EGFR kinase domain by using massive molecular dynamics simulations together with parallel tempering, metadynamics, and one of the best force-fields available. Whereas the wild-type EGFR catalytic domain monomer is mostly found in an inactive conformation, our results show a clear shift toward the active conformation for all of the mutants. The L858R mutation stabilizes the active conformation at the expense of the inactive conformation and rigidifies the αC-helix. The T790M gatekeeper mutant favors activation by stabilizing a hydrophobic cluster. Finally, T790M with L858R shows a significant positive epistasis effect. This combination not only stabilizes the active conformation, but in nontrivial ways changes the free-energy landscape lowering the transition barriers.

  18. Combinatorial Effects of Lapatinib and Rapamycin in Triple-Negative Breast Cancer Cells

    PubMed Central

    Liu, Tongrui; Yacoub, Rami; Taliaferro-Smith, LaTonia D.; Sun, Shi-Yong; Graham, Tisheeka R.; Dolan, Ryan; Lobo, Christine; Tighiouart, Mourad; Yang, Lily; Adams, Amy; O'Regan, Ruth M.

    2016-01-01

    Triple-negative breast cancers, which lack estrogen receptor, progesterone receptor, and HER2/neu overexpression, account for approximately 15% of breast cancers, but occur more commonly in African Americans. The poor survival outcomes seen with triple-negative breast cancers patients are, in part, due to a lack of therapeutic targets. Epidermal growth factor receptor (EGFR) is overexpressed in 50% of triple-negative breast cancers, but EGFR inhibitors have not been effective in patients with metastatic breast cancers. However, mTOR inhibition has been shown to reverse resistance to EGFR inhibitors. We examined the combination effects of mTOR inhibition with EGFR inhibition in triple-negative breast cancer in vitro and in vivo. The combination of EGFR inhibition by using lapatinib and mTOR inhibition with rapamycin resulted in significantly greater cytotoxicity than the single agents alone and these effects were synergistic in vitro. The combination of rapamycin and lapatinib significantly decreased growth of triple-negative breast cancers in vivo compared with either agent alone. EGFR inhibition abrogated the expression of rapamycin-induced activated Akt in triple-negative breast cancer cells in vitro. The combination of EGFR and mTOR inhibition resulted in increased apoptosis in some, but not all, triple-negative cell lines, and these apoptotic effects correlated with a decrease in activated eukaryotic translation initiation factor (eIF4E). These results suggest that mTOR inhibitors could sensitize a subset of triple-negative breast cancers to EGFR inhibitors. Given the paucity of effective targeted agents in triple-negative breast cancers, these results warrant further evaluation. PMID:21690228

  19. Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation

    PubMed Central

    Wang, Wenchao; Li, Zhiyuan; Liu, Juanjuan; Yang, Xingxing; Ji, Xinmiao; Luo, Yan; Hu, Chen; Hou, Yubin; He, Qianqian; Fang, Jun; Wang, Junfeng; Liu, Qingsong; Li, Guohui; Lu, Qingyou; Zhang, Xin

    2016-01-01

    Static magnetic fields (SMFs) can affect cell proliferation in a cell-type and intensity-dependent way but the mechanism remains unclear. At the same time, although the diamagnetic anisotropy of proteins has been proposed decades ago, the behavior of isolated proteins in magnetic fields has not been directly observed. Here we show that SMFs can affect isolated proteins at the single molecular level in an intensity-dependent manner. We found that Epidermal Growth Factor Receptor (EGFR), a protein that is overexpressed and highly activated in multiple cancers, can be directly inhibited by SMFs. Using Liquid-phase Scanning Tunneling Microscopy (STM) to examine pure EGFR kinase domain proteins at the single molecule level in solution, we observed orientation changes of these proteins in response to SMFs. This may interrupt inter-molecular interactions between EGFR monomers, which are critical for their activation. In molecular dynamics (MD) simulations, 1-9T SMFs caused increased probability of EGFR in parallel with the magnetic field direction in an intensity-dependent manner. A superconducting ultrastrong 9T magnet reduced proliferation of CHO-EGFR cells (Chinese Hamster Ovary cells with EGFR overexpression) and EGFR-expressing cancer cell lines by ~35%, but minimally affected CHO cells. We predict that similar effects of magnetic fields can also be applied to some other proteins such as ion channels. Our paper will help clarify some dilemmas in this field and encourage further investigations in order to achieve a better understanding of the biological effects of SMFs. PMID:27223425

  20. Activation of the EGFR/p38/JNK Pathway by Mitochondrial-Derived Hydrogen Peroxide Contributes To Oxygen-induced Contraction Of Ductus Arteriosus

    PubMed Central

    Hong, Zhigang; Cabrera, Jésus A; Mahapatra, Saswati; Kutty, Shelby; Weir, E. Kenneth; Archer, Stephen L.

    2014-01-01

    Oxygen-induced contraction of the ductus arteriosus (DA) involves a mitochondrial oxygen-sensor, which signals pO2 in the DA smooth muscle cell (DASMC) by increasing production of diffusible hydrogen peroxide (H2O2). H2O2 stimulates vasoconstriction by regulating ion channels and rho kinase, leading to calcium influx and calcium sensitization. Because epidermal growth factor receptor (EGFR) signaling is also redox regulated and participates in oxygen sensing and vasoconstriction in other systems, we explored the role of the EGFR and its signaling cascade (p38 and JNK) in DA contraction. Experiments were performed in DA rings isolated from full-term New Zealand White rabbits and human DASMC. In human DASMCs increasing pO2 from hypoxia to normoxia (40 to 100 mmHg) significantly increased cytosolic calcium, p<0.01. This normoxic rise in intracellular calcium was mimicked by EGF and inhibited by EGFR siRNA. In DA rings, EGF caused contraction whilst the specific EGFR inhibitor (AG1478) and the tyrosine kinase inhibitors (genistein or tyrphostin A23) selectively attenuated oxygen-induced contraction (p <0.01). Conversely, orthovanadate, a tyrosine phosphatase inhibitor known to activate EGFR signaling, caused dose-dependent contraction of hypoxic DA and superimposed increases in oxygen caused minimal additional contraction. Ansomycin, an activator of EGFR’s downstream kinases, p38 and JNK, caused DA contraction; conversely, oxygen-induced DA contraction was blocked by inhibitors of p38 MAPK (SB203580) or JNK (JNK inhibitor II). O2-induced phosphorylation of EGFR occurred within 5-minutes of increasing pO2 and was inhibited by mitochondrial-targeted overexpression of catalase. AG1478 prevented the oxygen-induced p38 and JNK phosphorylation. In conclusion, O2-induced EGFR transactivation initiates p38/JNK-mediated increases in cytosolic calcium and contributes to DA contraction. The EGFR/p38/JNK pathway is regulated by mitochondrial redox signaling and is a promising therapeutic target for modulation of the patent ductus arteriosus. PMID:24906456

  1. Novel EGFR-specific immunotoxins based on panitumumab and cetuximab show in vitro and ex vivo activity against different tumor entities.

    PubMed

    Niesen, Judith; Stein, Christoph; Brehm, Hannes; Hehmann-Titt, Grit; Fendel, Rolf; Melmer, Georg; Fischer, Rainer; Barth, Stefan

    2015-12-01

    The epidermal growth factor receptor (EGFR) is overexpressed in many solid tumors. EGFR-specific monoclonal antibodies (mAbs), such as cetuximab and panitumumab, have been approved for the treatment of colorectal and head and neck cancer. To increase tissue penetration, we constructed single-chain fragment variable (scFv) antibodies derived from these mAbs and evaluated their potential for targeted cancer therapy. The resulting scFv-based EGFR-specific immunotoxins (ITs) combine target specificity of the full-size mAb with the cell-killing activity of a toxic effector domain, a truncated version of Pseudomonas exotoxin A (ETA'). The ITs and corresponding imaging probes were tested in vitro against four solid tumor entities (rhabdomyosarcoma, breast, prostate and pancreatic cancer). Specific binding and internalization of the ITs scFv2112-ETA' (from cetuximab) and scFv1711-ETA' (from panitumumab) were demonstrated by flow cytometry and for the scFv-SNAP-tag imaging probes by live cell imaging. Cytotoxic potential of the ITs was analyzed in cell viability and apoptosis assays. Binding of the ITs was proofed ex vivo on rhabdomyosarcoma, prostate and breast cancer formalin-fixed paraffin-embedded biopsies. Both novel ITs showed significant pro-apoptotic and anti-proliferative effects toward the target cells, achieving IC50 values of 4 pM (high EGFR expression) to 460 pM (moderate EGFR expression). Additionally, rapid internalization and specific in vitro and ex vivo binding on patient tissue were confirmed. These data demonstrate the potent therapeutic activity of two novel EGFR-specific ETA'-based ITs. Both molecules are promising candidates for further development toward clinical use in the treatment of various solid tumors to supplement the existing therapeutic regimes.

  2. α-Lipoic acid inhibits human lung cancer cell proliferation through Grb2-mediated EGFR downregulation.

    PubMed

    Yang, Lan; Wen, Ya; Lv, Guoqing; Lin, Yuntao; Tang, Junlong; Lu, Jingxiao; Zhang, Manqiao; Liu, Wen; Sun, Xiaojuan

    2017-12-09

    Alpha lipoic acid (α -LA) is a naturally occurring antioxidant and metabolic enzyme co-factor. Recently, α -LA has been reported to inhibit the growth of various cancer cells, but the precise signaling pathways that mediate the effects of α -LA on non-small cell lung cancer (NSCLC) development remain unclear. The CCK-8 assay was used to assess cell proliferation in NSCLC cell lines after α -LA treatment. The expression of growth factor receptor-bound protein 2 (Grb2), cyclin-dependent kinase (CDK)-2, CDK4, CDK6, Cyclin D3, Cyclin E1, Ras, c-Raf, epidermal growth factor receptor (EGFR), ERK1/2 and activated EGFR and ERK1/2 was evaluated by western blotting. Grb2 levels were restored in α-LA-treated cells by transfection of a plasmid carrying Grb2 and were reduced in NSCLC cells via specific siRNA-mediated knockdown. α -LA dramatically decreased NSCLC cell proliferation by downregulating Grb2; in contrast, Grb2 overexpression significantly prevented α-LA-induced decrease in cell growth in vitro. Western blot analysis indicated that α-LA decreased the levels of phospho-EGFR, CDK2/4/6, Cyclins D3 and E1, which are associated with the inhibition of G1/S-phase transition. Additional experiments indicated that Grb2 inhibition partially abolished EGF-induced phospho-EGFR and phospho-ERK1/2 activity. In addition, α-LA exerted greater inhibitory effects than gefitinib on NSCLC cells by preventing EGF-induced EGFR activation. For the first time, these findings provide the first evidence that α-LA inhibits cell proliferation through Grb2 by suppressing EGFR phosphorylation and that MAPK/ERK is involved in this pathway. Copyright © 2017. Published by Elsevier Inc.

  3. Antiglioma effects of N6-isopentenyladenosine, an endogenous isoprenoid end product, through the downregulation of epidermal growth factor receptor.

    PubMed

    Ciaglia, Elena; Abate, Mario; Laezza, Chiara; Pisanti, Simona; Vitale, Mario; Seneca, Vincenzo; Torelli, Giovanni; Franceschelli, Silvia; Catapano, Giuseppe; Gazzerro, Patrizia; Bifulco, Maurizio

    2017-02-15

    Malignant gliomas are highly dependent on the isoprenoid pathway for the synthesis of lipid moieties critical for cell proliferation. The isoprenoid derivative N6-isopentenyladenosine (iPA) displays pleiotropic biological effects, including a direct anti-tumor activity in several tumor models. The antiglioma effects of iPA was then explored in U87MG cells both in vitro and grafted in mice and the related molecular mechanism confirmed in primary derived patients' glioma cells. iPA powerfully inhibited tumor cell growth and induced caspase-dependent apoptosis through a mechanism involving a marked accumulation of the pro-apoptotic BIM protein and inhibition of EGFR. Indeed, activating AMPK following conversion into its iPAMP active form, iPA stimulated EGFR phosphorylation and ubiquitination along a proteasome-mediated pathway which was responsible for receptor degradation and its downstream signaling pathways inhibition, including the STAT3, ERK and AKT cascade. The inhibition of AMPK by compound C prevented iPA-mediated phosphorylation of EGFR, known to precede receptor loss. As expected the block of EGFR degradation, by exposure to the proteasome inhibitor MG132, significantly reduced iPA-induced cell death. Given the importance of receptor degradation in iPA-mediated cytotoxicity, we also documented that the EGFR expression levels in a panel of primary glioma cells confers them a high sensitivity to iPA treatment. In conclusion our study provides the first evidence of iPA antiglioma effect. Indeed, as glioma is driven by aberrant signaling of growth factor receptors, particularly the EGFR, iPA, alone or in association with EGFR targeted therapies, might be a promising therapeutic tool to achieve a potent anti-tumoral effect. © 2016 UICC.

  4. Compounds identified by virtual docking to a tetrameric EGFR extracellular domain can modulate Grb2 internalization.

    PubMed

    Ramirez, Ursula D; Nikonova, Anna S; Liu, Hanqing; Pecherskaya, Anna; Lawrence, Sarah H; Serebriiskii, Ilya G; Zhou, Yan; Robinson, Matthew K; Einarson, Margret B; Golemis, Erica A; Jaffe, Eileen K

    2015-05-28

    Overexpression or mutation of the epidermal growth factor receptor (EGFR) potently enhances the growth of many solid tumors. Tumor cells frequently display resistance to mechanistically-distinct EGFR-directed therapeutic agents, making it valuable to develop therapeutics that work by additional mechanisms. Current EGFR-targeting therapeutics include antibodies targeting the extracellular domains, and small molecules inhibiting the intracellular kinase domain. Recent studies have identified a novel prone extracellular tetrameric EGFR configuration, which we identify as a potential target for drug discovery. Our focus is on the prone EGFR tetramer, which contains a novel protein-protein interface involving extracellular domain III. This EGFR tetramer is computationally targeted for stabilization by small molecule ligand binding. This study performed virtual screening of a Life Chemicals, Inc. small molecule library of 345,232 drug-like compounds against a molecular dynamics simulation of protein-protein interfaces distinct to the novel tetramer. One hundred nine chemically diverse candidate molecules were selected and evaluated using a cell-based high-content imaging screen that directly assessed induced internalization of the EGFR effector protein Grb2. Positive hits were further evaluated for influence on phosphorylation of EGFR and its effector ERK1/2. Fourteen hit compounds affected internalization of Grb2, an adaptor responsive to EGFR activation. Most hits had limited effect on cell viability, and minimally influenced EGFR and ERK1/2 phosphorylation. Docked hit compound poses generally include Arg270 or neighboring residues, which are also involved in binding the effective therapeutic cetuximab, guiding further chemical optimization. These data suggest that the EGFR tetrameric configuration offers a novel cancer drug target.

  5. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT

    PubMed Central

    Choudhary, Kumari Sonal; Rohatgi, Neha; Briem, Eirikur; Gudjonsson, Thorarinn; Gudmundsson, Steinn; Rolfsson, Ottar

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E) and mesenchymal (EGFR_M) networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend. PMID:27253373

  6. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT.

    PubMed

    Choudhary, Kumari Sonal; Rohatgi, Neha; Halldorsson, Skarphedinn; Briem, Eirikur; Gudjonsson, Thorarinn; Gudmundsson, Steinn; Rolfsson, Ottar

    2016-06-01

    Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E) and mesenchymal (EGFR_M) networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.

  7. EGFR Is Regulated by TFAP2C in Luminal Breast Cancer and Is a Target for Vandetanib.

    PubMed

    De Andrade, James P; Park, Jung M; Gu, Vivian W; Woodfield, George W; Kulak, Mikhail V; Lorenzen, Allison W; Wu, Vincent T; Van Dorin, Sarah E; Spanheimer, Philip M; Weigel, Ronald J

    2016-03-01

    Expression of TFAP2C in luminal breast cancer is associated with reduced survival and hormone resistance, partially explained through regulation of RET. TFAP2C also regulates EGFR in HER2 breast cancer. We sought to elucidate the regulation and functional role of EGFR in luminal breast cancer. We used gene knockdown (KD) and treatment with a tyrosine kinase inhibitor (TKI) in cell lines and primary cancer isolates to determine the role of RET and EGFR in regulation of p-ERK and tumorigenesis. KD of TFAP2C decreased expression of EGFR in a panel of luminal breast cancers, and chromatin immunoprecipitation sequencing (ChIP-seq) confirmed that TFAP2C targets the EGFR gene. Stable KD of TFAP2C significantly decreased cell proliferation and tumor growth, mediated in part through EGFR. While KD of RET or EGFR reduced proliferation (31% and 34%, P < 0.01), combined KD reduced proliferation greater than either alone (52% reduction, P < 0.01). The effect of the TKI vandetanib on proliferation and tumor growth response of MCF-7 cells was dependent upon expression of TFAP2C, and dual KD of RET and EGFR eliminated the effects of vandetanib. The response of primary luminal breast cancers to TKIs assessed by ERK activation established a correlation with expression of RET and EGFR. We conclude that TFAP2C regulates EGFR in luminal breast cancer. Response to vandetanib was mediated through the TFAP2C target genes EGFR and RET. Vandetanib may provide a therapeutic effect in luminal breast cancer, and RET and EGFR can serve as molecular markers for response. ©2016 American Association for Cancer Research.

  8. EGFR Is Regulated by TFAP2C in Luminal Breast Cancer and Is a Target for Vandetanib

    PubMed Central

    De Andrade, James P.; Park, Jung M.; Gu, Vivian W.; Woodfield, George W.; Kulak, Mikhail V.; Lorenzen, Allison W.; Wu, Vincent T.; Van Dorin, Sarah E.; Spanheimer, Philip M.; Weigel, Ronald J.

    2016-01-01

    Expression of TFAP2C in luminal breast cancer is associated with reduced survival and hormone resistance, partially explained through regulation of RET. TFAP2C also regulates EGFR in HER2 breast cancer. We sought to elucidate the regulation and functional role of EGFR in luminal breast cancer. We used gene knockdown (KD) and treatment with a tyrosine kinase inhibitor (TKI) in cell lines and primary cancer isolates to determine the role of RET and EGFR in regulation of p-ERK and tumorigenesis. KD of TFAP2C decreased expression of EGFR in a panel of luminal breast cancers and ChIP-seq confirmed that TFAP2C targets the EGFR gene. Stable KD of TFAP2C significantly decreased cell proliferation and tumor growth, mediated in part through EGFR. While KD of RET or EGFR reduced proliferation (31% and 34%, p < 0.01), combined KD reduced proliferation greater than either alone (52% reduction, p < 0.01). The effect of the TKI vandetanib on proliferation and tumor growth response of MCF-7 cells was dependent upon expression of TFAP2C and dual KD of RET and EGFR eliminated the effects of vandetanib. The response of primary luminal breast cancers to TKIs assessed by ERK activation established a correlation with expression of RET and EGFR. We conclude that TFAP2C regulates EGFR in luminal breast cancer. Response to vandetanib was mediated though the TFAP2C target genes EGFR and RET. Vandetanib may provide a therapeutic effect in luminal breast cancer, and RET and EGFR can serve as molecular markers for response. PMID:26832794

  9. Temporal Resolution of Autophosphorylation for Normal and Oncogenic Forms of EGFR and Differential Effects of Gefitinib†

    PubMed Central

    Kim, Youngjoo; Li, Zhimin; Apetri, Mihaela; Luo, BeiBei; Settleman, Jeffrey E.; Anderson, Karen S.

    2012-01-01

    Epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases (RTK). EGFR overexpression or mutation in many different forms of cancers has highlighted its role as an important therapeutic target. Gefitinib, the first small molecule inhibitor of EGFR kinase function to be approved for the treatment of non-small cell lung cancer (NSCLC) by the FDA, demonstrates clinical activity primarily in patients with tumors that harbor somatic kinase domain mutations in EGFR. Here, we compare wild-type EGFR autophosphorylation kinetics to the L834R (also called L858R) EGFR form, one of the most common mutations in lung cancer patients. Using rapid chemical quench, time resolved electrospray mass spectrometry (ESI-MS) and western blot analyses, we examined the order of autophosphorylation in wild-type (WT) and L834R EGFR and the effect of gefitinib (Iressa ™) on the phosphorylation of individual tyrosines. These studies establish that there is a temporal order of autophosphorylation of key tyrosines involved in downstream signaling for WT EGFR and a loss of order for the oncogenic L834R mutant. These studies also reveal unique signature patterns of drug sensitivity for inhibition of tyrosine autophosphorylation by gefitinib; distinct for WT and oncogenic L834R mutant forms of EGFR. Fluorescence studies show that for WT EGFR, the binding affinity for gefitinib is weaker for the phosphorylated protein while for the oncogenic mutant, L834R EGFR, the binding affinity of gefitinib is substantially enhanced and likely contributes to the efficacy observed clinically. This mechanistic information is important in understanding the molecular details underpinning clinical observations as well as to aid in the design of more potent and selective EGFR inhibitors. PMID:22657099

  10. Understanding Mechanisms of Resistance in the Epithelial Growth Factor Receptor in Non‐Small Cell Lung Cancer and the Role of Biopsy at Progression

    PubMed Central

    Villaruz, Liza C.; Ross, Jeffrey

    2016-01-01

    Abstract Molecular profiling and the discovery of drugs that target specific activating mutations have allowed the personalization of treatment for non‐small cell lung cancer (NSCLC). The epithelial growth factor receptor (EGFR) is frequently over‐expressed and/or aberrantly activated in different cancers, including NSCLC. The most common activating mutations of EGFR in NSCLC fall within the tyrosine kinase‐binding domain. Three oral EGFR tyrosine kinase inhibitors (TKIs) have been approved by the U.S. Food and Drug Administration (FDA) for first‐line use in patients with EGFR mutation‐positive NSCLC (exon 19 deletions or exon 21 [L858R] substitution mutations), as detected by an FDA‐approved test. However, disease progression is common and is often the result of secondary mutations, of which the EGFR T790M mutation is the most prevalent. Few options were available upon progression until the introduction of osimertinib, a kinase inhibitor that targets the T790M mutation, which was recently approved for use in patients with metastatic EGFR T790M mutation‐positive NSCLC, as detected by an FDA‐approved test, who progressed on or after EGFR TKI therapy. With the introduction of osimertinib, outcomes can now be improved in select patients. Therefore, performing a biopsy at progression to determine the underlying molecular cause of the acquired resistance is important for the enabling of individualized options that may provide the greatest opportunity for improved outcomes. This review discusses the latest updates in molecular testing at progression and outlines treatment options for this difficult‐to‐treat population. Implications for Practice. Although the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs)—gefitinib, erlotinib, and afatinib—have changed the treatment paradigm for non‐small cell lung cancer among those with EGFR mutation positive disease, most patients experience progression after approximately 12 months of treatment. Until recently, options were limited for patients who progressed, but improvements in molecular profiling and the approval of osimertinib, which targets the resistance mutation T790M, afford the opportunity for improved outcomes in many patients with this mutation. This article explains the options available after progression on initial EGFR TKI therapy and the importance of molecular testing at progression in making treatment decisions. PMID:27821794

  11. Lipopolysaccharide induces VCAM-1 expression and neutrophil adhesion to human tracheal smooth muscle cells: Involvement of Src/EGFR/PI3-K/Akt pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, W.-N.; Luo, S.-F.; Wu, C.-B.

    2008-04-15

    In our previous study, LPS has been shown to induce vascular cell adhesion molecule-1(VCAM-1) expression through MAPKs and NF-{kappa}B in human tracheal smooth muscle cells (HTSMCs). In addition to these pathways, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3K) have been shown to be implicated in the expression of several inflammatory target proteins. Here, we reported that LPS-induced up-regulation of VCAM-1 enhanced the adhesion of neutrophils onto HTSMC monolayer, which was inhibited by LY294002 and wortmannin. LPS stimulated phosphorylation of protein tyrosine kinases including Src, PYK2, and EGFR, which were further confirmed using specific anti-phospho-Src, PYK2,more » or EGFR Ab, respectively, revealed by Western blotting. LPS-stimulated Src, PYK2, EGFR, and Akt phosphorylation and VCAM-1 expression were attenuated by the inhibitors of Src (PP1), EGFR (AG1478), PI3-K (LY294002 and wortmannin), and Akt (SH-5), respectively, or transfection with siRNAs of Src or Akt and shRNA of p110. LPS-induced VCAM-1 expression was also blocked by pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA. LPS-stimulated Akt activation translocated into nucleus and associated with p300 and VCAM-1 promoter region was further confirmed by immunofluorescence, immunoprecipitation, and chromatin immunoprecipitation assays. This association of Akt and p300 to VCAM-1 promoter was inhibited by pretreatment with PP1, AG1478, wortmannin, and SH-5. LPS-induced p300 activation enhanced VCAM-1 promoter activity and VCAM-1 mRNA expression. These results suggested that in HTSMCs, Akt phosphorylation mediated through transactivation of Src/PYK2/EGFR promoted the transcriptional p300 activity and eventually led to VCAM-1 expression induced by LPS.« less

  12. Osimertinib for EGFR T790M mutation-positive non-small cell lung cancer.

    PubMed

    Soejima, Kenzo; Yasuda, Hiroyuki; Hirano, Toshiyuki

    2017-01-01

    Significant advances have been made since the development of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) targeting EGFR mutations in non-small-cell lung cancer (NSCLC), however, lung cancer cells eventually acquire resistance to those agents. Osimertinib (AZD9291) has been developed as 3 rd generation EGFR-TKI with activities against sensitizing mutations and T790 M resistance mutation, which account for about 50% of the mechanisms of acquired resistance to 1 st or 2 nd generation EGFR-TKIs. A recent phase I/II clinical trial with osimertinib for advanced NSCLC patients with known sensitizing EGFR mutations and documented disease progression on prior EGFR-TKIs revealed promising effect with acceptable toxicities. Areas covered: This article summarizes current understanding and available preclinical and clinical data on osimertinib and also discusses future directions. The literature search included PubMed and the latest articles from international conferences. Expert commentary: The development of osimertinib has provided new therapeutic options for NSCLC patients harboring T790 M. Compared with other EGFR-TKIs including rociletinib, osimertinib seems to possess an advantage with respect to the effect and safety profile among existing EGFR-TKIs. However, tumor progression still occurs even when treating with osimertinib. A further understanding of the mechanisms of resistance is eagerly anticipated in order to develop next generation EGFR-TKIs.

  13. BIM and mTOR expression levels predict outcome to erlotinib in EGFR-mutant non-small-cell lung cancer.

    PubMed

    Karachaliou, Niki; Codony-Servat, Jordi; Teixidó, Cristina; Pilotto, Sara; Drozdowskyj, Ana; Codony-Servat, Carles; Giménez-Capitán, Ana; Molina-Vila, Miguel Angel; Bertrán-Alamillo, Jordi; Gervais, Radj; Massuti, Bartomeu; Morán, Teresa; Majem, Margarita; Felip, Enriqueta; Carcereny, Enric; García-Campelo, Rosario; Viteri, Santiago; González-Cao, María; Morales-Espinosa, Daniela; Verlicchi, Alberto; Crisetti, Elisabetta; Chaib, Imane; Santarpia, Mariacarmela; Luis Ramírez, José; Bosch-Barrera, Joaquim; Felipe Cardona, Andrés; de Marinis, Filippo; López-Vivanco, Guillermo; Miguel Sánchez, José; Vergnenegre, Alain; Sánchez Hernández, José Javier; Sperduti, Isabella; Bria, Emilio; Rosell, Rafael

    2015-12-07

    BIM is a proapoptotic protein that initiates apoptosis triggered by EGFR tyrosine kinase inhibitors (TKI). mTOR negatively regulates apoptosis and may influence response to EGFR TKI. We examined mRNA expression of BIM and MTOR in 57 patients with EGFR-mutant NSCLC from the EURTAC trial. Risk of mortality and disease progression was lower in patients with high BIM compared with low/intermediate BIM mRNA levels. Analysis of MTOR further divided patients with high BIM expression into two groups, with those having both high BIM and MTOR experiencing shorter overall and progression-free survival to erlotinib. Validation of our results was performed in an independent cohort of 19 patients with EGFR-mutant NSCLC treated with EGFR TKIs. In EGFR-mutant lung adenocarcinoma cell lines with high BIM expression, concomitant high mTOR expression increased IC50 of gefitinib for cell proliferation. We next sought to analyse the signalling pattern in cell lines with strong activation of mTOR and its substrate P-S6. We showed that mTOR and phosphodiesterase 4D (PDE4D) strongly correlate in resistant EGFR-mutant cancer cell lines. These data suggest that the combination of EGFR TKI with mTOR or PDE4 inhibitors could be adequate therapy for EGFR-mutant NSCLC patients with high pretreatment levels of BIM and mTOR.

  14. Cetuximab Resistance in Head and Neck Cancer Is Mediated by EGFR-K521 Polymorphism.

    PubMed

    Braig, Friederike; Kriegs, Malte; Voigtlaender, Minna; Habel, Beate; Grob, Tobias; Biskup, Karina; Blanchard, Veronique; Sack, Markus; Thalhammer, Anja; Ben Batalla, Isabel; Braren, Ingke; Laban, Simon; Danielczyk, Antje; Goletz, Steffen; Jakubowicz, Elzbieta; Märkl, Bruno; Trepel, Martin; Knecht, Rainald; Riecken, Kristoffer; Fehse, Boris; Loges, Sonja; Bokemeyer, Carsten; Binder, Mascha

    2017-03-01

    Head and neck squamous cell carcinomas (HNSCC) exhibiting resistance to the EGFR-targeting drug cetuximab poses a challenge to their effective clinical management. Here, we report a specific mechanism of resistance in this setting based upon the presence of a single nucleotide polymorphism encoding EGFR-K 521 (K-allele), which is expressed in >40% of HNSCC cases. Patients expressing the K-allele showed significantly shorter progression-free survival upon palliative treatment with cetuximab plus chemotherapy or radiation. In several EGFR-mediated cancer models, cetuximab failed to inhibit downstream signaling or to kill cells harboring a high K-allele frequency. Cetuximab affinity for EGFR-K 521 was reduced slightly, but ligand-mediated EGFR activation was intact. We found a lack of glycan sialyation on EGFR-K 521 that associated with reduced protein stability, suggesting a structural basis for reduced cetuximab efficacy. CetuGEX, an antibody with optimized Fc glycosylation targeting the same epitope as cetuximab, restored HNSCC sensitivity in a manner associated with antibody-dependent cellular cytotoxicity rather than EGFR pathway inhibition. Overall, our results highlight EGFR-K 521 expression as a key mechanism of cetuximab resistance to evaluate prospectively as a predictive biomarker in HNSCC patients. Further, they offer a preclinical rationale for the use of ADCC-optimized antibodies to treat tumors harboring this EGFR isoform. Cancer Res; 77(5); 1188-99. ©2016 AACR . ©2016 American Association for Cancer Research.

  15. Conformational Transition Pathways of Epidermal Growth Factor Receptor Kinase Domain from Multiple Molecular Dynamics Simulations and Bayesian Clustering.

    PubMed

    Li, Yan; Li, Xiang; Ma, Weiya; Dong, Zigang

    2014-08-12

    The epidermal growth factor receptor (EGFR) is aberrantly activated in various cancer cells and an important target for cancer treatment. Deep understanding of EGFR conformational changes between the active and inactive states is of pharmaceutical interest. Here we present a strategy combining multiply targeted molecular dynamics simulations, unbiased molecular dynamics simulations, and Bayesian clustering to investigate transition pathways during the activation/inactivation process of EGFR kinase domain. Two distinct pathways between the active and inactive forms are designed, explored, and compared. Based on Bayesian clustering and rough two-dimensional free energy surfaces, the energy-favorable pathway is recognized, though DFG-flip happens in both pathways. In addition, another pathway with different intermediate states appears in our simulations. Comparison of distinct pathways also indicates that disruption of the Lys745-Glu762 interaction is critically important in DFG-flip while movement of the A-loop significantly facilitates the conformational change. Our simulations yield new insights into EGFR conformational transitions. Moreover, our results verify that this approach is valid and efficient in sampling of protein conformational changes and comparison of distinct pathways.

  16. The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells.

    PubMed

    Eierhoff, Thorsten; Hrincius, Eike R; Rescher, Ursula; Ludwig, Stephan; Ehrhardt, Christina

    2010-09-09

    Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake.

  17. Fast-forwarding hit to lead: aurora and epidermal growth factor receptor kinase inhibitor lead identification.

    PubMed

    Coumar, Mohane Selvaraj; Chu, Chang-Ying; Lin, Cheng-Wei; Shiao, Hui-Yi; Ho, Yun-Lung; Reddy, Randheer; Lin, Wen-Hsing; Chen, Chun-Hwa; Peng, Yi-Hui; Leou, Jiun-Shyang; Lien, Tzu-Wen; Huang, Chin-Ting; Fang, Ming-Yu; Wu, Szu-Huei; Wu, Jian-Sung; Chittimalla, Santhosh Kumar; Song, Jen-Shin; Hsu, John T-A; Wu, Su-Ying; Liao, Chun-Chen; Chao, Yu-Sheng; Hsieh, Hsing-Pang

    2010-07-08

    A focused library of furanopyrimidine (350 compounds) was rapidly synthesized in parallel reactors and in situ screened for Aurora and epidermal growth factor receptor (EGFR) kinase activity, leading to the identification of some interesting hits. On the basis of structural biology observations, the hit 1a was modified to better fit the back pocket, producing the potent Aurora inhibitor 3 with submicromolar antiproliferative activity in HCT-116 colon cancer cell line. On the basis of docking studies with EGFR hit 1s, introduction of acrylamide Michael acceptor group led to 8, which inhibited both the wild and mutant EGFR kinase and also showed antiproliferative activity in HCC827 lung cancer cell line. Furthermore, the X-ray cocrystal study of 3 and 8 in complex with Aurora and EGFR, respectively, confirmed their hypothesized binding modes. Library construction, in situ screening, and structure-based drug design (SBDD) strategy described here could be applied for the lead identification of other kinases.

  18. Receptor ligand-triggered resistance to alectinib and its circumvention by Hsp90 inhibition in EML4-ALK lung cancer cells.

    PubMed

    Tanimoto, Azusa; Yamada, Tadaaki; Nanjo, Shigeki; Takeuchi, Shinji; Ebi, Hiromichi; Kita, Kenji; Matsumoto, Kunio; Yano, Seiji

    2014-07-15

    Alectinib is a new generation ALK inhibitor with activity against the gatekeeper L1196M mutation that showed remarkable activity in a phase I/II study with echinoderm microtubule associated protein-like 4 (EML4)--anaplastic lymphoma kinase (ALK) non-small cell lung cancer (NSCLC) patients. However, alectinib resistance may eventually develop. Here, we found that EGFR ligands and HGF, a ligand of the MET receptor, activate EGFR and MET, respectively, as alternative pathways, and thereby induce resistance to alectinib. Additionally, the heat shock protein 90 (Hsp90) inhibitor suppressed protein expression of ALK, MET, EGFR, and AKT, and thereby induced apoptosis in EML4-ALK NSCLC cells, even in the presence of EGFR ligands or HGF. These results suggest that Hsp90 inhibitors may overcome ligand-triggered resistance to new generation ALK inhibitors and may result in more successful treatment of NSCLC patients with EML4-ALK.

  19. Receptor ligand-triggered resistance to alectinib and its circumvention by Hsp90 inhibition in EML4-ALK lung cancer cells

    PubMed Central

    Tanimoto, Azusa; Yamada, Tadaaki; Nanjo, Shigeki; Takeuchi, Shinji; Ebi, Hiromichi; Kita, Kenji; Matsumoto, Kunio; Yano, Seiji

    2014-01-01

    Alectinib is a new generation ALK inhibitor with activity against the gatekeeper L1196M mutation that showed remarkable activity in a phase I/II study with echinoderm microtubule associated protein-like 4 (EML4) - anaplastic lymphoma kinase (ALK) non-small cell lung cancer (NSCLC) patients. However, alectinib resistance may eventually develop. Here, we found that EGFR ligands and HGF, a ligand of the MET receptor, activate EGFR and MET, respectively, as alternative pathways, and thereby induce resistance to alectinib. Additionally, the heat shock protein 90 (Hsp90) inhibitor suppressed protein expression of ALK, MET, EGFR, and AKT, and thereby induced apoptosis in EML4-ALK NSCLC cells, even in the presence of EGFR ligands or HGF. These results suggest that Hsp90 inhibitors may overcome ligand-triggered resistance to new generation ALK inhibitors and may result in more successful treatment of NSCLC patients with EML4-ALK. PMID:24952482

  20. A combined A431 cell membrane chromatography and online high performance liquid chromatography/mass spectrometry method for screening compounds from total alkaloid of Radix Caulophylli acting on the human EGFR.

    PubMed

    Sun, Meng; Ren, Jing; Du, Hui; Zhang, Yanmin; Zhang, Jie; Wang, Sicen; He, Langchong

    2010-10-15

    We have developed an online analytical method that combines A431 cell membrane chromatography (A431/CMC) with high performance liquid chromatography and mass spectrometry (LC/MS) for identifying active components from Radix Caulophylli acting on human EGFR. Retention fractions on A431/CMC model were captured onto an enrichment column and the components were directly analyzed by combining a 10-port column switcher with an LC/MS system for separation and preliminary identification. Using Sorafenib tosylate as a positive control, taspine and caulophine from Radix Caulophylli were identified as the active molecules which could act on the EGFR. This A431/CMC-online-LC/MS method can be applied for screening active components acting on EGFR from traditional Chinese medicines exemplified by Radix Caulophylli and will be of great utility in drug discovery using natural medicinal herbs as a source of novel compounds. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. The Epidermal Growth Factor Receptor (EGFR) Promotes Uptake of Influenza A Viruses (IAV) into Host Cells

    PubMed Central

    Eierhoff, Thorsten; Hrincius, Eike R.; Rescher, Ursula; Ludwig, Stephan; Ehrhardt, Christina

    2010-01-01

    Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake. PMID:20844577

  2. An EGFR autocrine loop encodes a slow-reacting but dominant mode of mechanotransduction in a polarized epithelium

    PubMed Central

    Kojic, Nikola; Chung, Euiheon; Kho, Alvin T.; Park, Jin-Ah; Huang, Austin; So, Peter T. C.; Tschumperlin, Daniel J.

    2010-01-01

    The mechanical landscape in biological systems can be complex and dynamic, with contrasting sustained and fluctuating loads regularly superposed within the same tissue. How resident cells discriminate between these scenarios to respond accordingly remains largely unknown. Here, we show that a step increase in compressive stress of physiological magnitude shrinks the lateral intercellular space between bronchial epithelial cells, but does so with strikingly slow exponential kinetics (time constant ∼110 s). We confirm that epidermal growth factor (EGF)-family ligands are constitutively shed into the intercellular space and demonstrate that a step increase in compressive stress enhances EGF receptor (EGFR) phosphorylation with magnitude and onset kinetics closely matching those predicted by constant-rate ligand shedding in a slowly shrinking intercellular geometry. Despite the modest degree and slow nature of EGFR activation evoked by compressive stress, we find that the majority of transcriptomic responses to sustained mechanical loading require ongoing activity of this autocrine loop, indicating a dominant role for mechanotransduction through autocrine EGFR signaling in this context. A slow deformation response to a step increase in loading, accompanied by synchronous increases in ligand concentration and EGFR activation, provides one means for cells to mount a selective and context-appropriate response to a sustained change in mechanical environment.—Kojic, N., Chung, E., Kho, A. T., Park, J.-A., Huang, A., So, P. T. C., Tschumperlin, D. J. An EGFR autocrine loop encodes a slow-reacting but dominant mode of mechanotransduction in a polarized epithelium. PMID:20056713

  3. SFK/FAK Signaling Attenuates Osimertinib Efficacy in Both Drug-Sensitive and Drug-Resistant Models of EGFR-Mutant Lung Cancer.

    PubMed

    Ichihara, Eiki; Westover, David; Meador, Catherine B; Yan, Yingjun; Bauer, Joshua A; Lu, Pengcheng; Ye, Fei; Kulick, Amanda; de Stanchina, Elisa; McEwen, Robert; Ladanyi, Marc; Cross, Darren; Pao, William; Lovly, Christine M

    2017-06-01

    Mutant-selective EGFR tyrosine kinase inhibitors (TKI), such as osimertinib, are active agents for the treatment of EGFR -mutant lung cancer. Specifically, these agents can overcome the effects of the T790M mutation, which mediates resistance to first- and second-generation EGFR TKI, and recent clinical trials have documented their efficacy in patients with EGFR -mutant lung cancer. Despite promising results, therapeutic efficacy is limited by the development of acquired resistance. Here we report that Src family kinases (SFK) and focal adhesion kinase (FAK) sustain AKT and MAPK pathway signaling under continuous EGFR inhibition in osimertinib-sensitive cells. Inhibiting either the MAPK pathway or the AKT pathway enhanced the effects of osimertinib. Combined SFK/FAK inhibition exhibited the most potent effects on growth inhibition, induction of apoptosis, and delay of acquired resistance. SFK family member YES1 was amplified in osimertinib-resistant EGFR -mutant tumor cells, the effects of which were overcome by combined treatment with osimertinib and SFK inhibitors. In conclusion, our data suggest that the concomitant inhibition of both SFK/FAK and EGFR may be a promising therapeutic strategy for EGFR -mutant lung cancer. Cancer Res; 77(11); 2990-3000. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Emerging functions of the EGFR in cancer.

    PubMed

    Sigismund, Sara; Avanzato, Daniele; Lanzetti, Letizia

    2018-01-01

    The physiological function of the epidermal growth factor receptor (EGFR) is to regulate epithelial tissue development and homeostasis. In pathological settings, mostly in lung and breast cancer and in glioblastoma, the EGFR is a driver of tumorigenesis. Inappropriate activation of the EGFR in cancer mainly results from amplification and point mutations at the genomic locus, but transcriptional upregulation or ligand overproduction due to autocrine/paracrine mechanisms has also been described. Moreover, the EGFR is increasingly recognized as a biomarker of resistance in tumors, as its amplification or secondary mutations have been found to arise under drug pressure. This evidence, in addition to the prominent function that this receptor plays in normal epithelia, has prompted intense investigations into the role of the EGFR both at physiological and at pathological level. Despite the large body of knowledge obtained over the last two decades, previously unrecognized (herein defined as 'noncanonical') functions of the EGFR are currently emerging. Here, we will initially review the canonical ligand-induced EGFR signaling pathway, with particular emphasis to its regulation by endocytosis and subversion in human tumors. We will then focus on the most recent advances in uncovering noncanonical EGFR functions in stress-induced trafficking, autophagy, and energy metabolism, with a perspective on future therapeutic applications. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  5. The Significance of MMP-1 in EGFR-TKI-Resistant Lung Adenocarcinoma: Potential for Therapeutic Targeting.

    PubMed

    Saito, Ryoko; Miki, Yasuhiro; Ishida, Naoya; Inoue, Chihiro; Kobayashi, Masayuki; Hata, Shuko; Yamada-Okabe, Hisafumi; Okada, Yoshinori; Sasano, Hironobu

    2018-02-18

    Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) resistance is one of the most important problems in lung cancer therapy. Lung adenocarcinoma with EGFR-TKI resistance was reported to have higher abilities of invasion and migration than cancers sensitive to EGFR-TKI, but the function of matrix metalloproteinases (MMPs) has not been explored in EGFR-TKI-resistant lung adenocarcinoma. This study aims to clarify the significance of MMP-1 in EGFR-TKI-resistant lung adenocarcinoma. From the results of in vitro studies of migration and invasion assays using EGFR-TKI-sensitive and -resistant cell lines and phosphorylation antibody arrays using EGF and rapamycin, we first demonstrate that overexpression of MMP-1, which might follow activation of a mammalian target of rapamycin (mTOR) pathway, plays an important role in the migration and invasion abilities of EGFR-TKI-resistant lung adenocarcinoma. Additionally, immunohistochemical studies using 89 cases of lung adenocarcinoma demonstrate that high expression of MMP-1 is significantly correlated with poor prognosis and factors such as smoking history and the subtype of invasive mucinous adenocarcinoma. These are consistent with the results of this in vitro study. To conclude, this study provides insights into the development of a possible alternative therapy manipulating MMP-1 and the mTOR signaling pathway in EGFR-TKI-resistant lung adenocarcinoma.

  6. Sequential treatment of icotinib after first-line pemetrexed in advanced lung adenocarcinoma with unknown EGFR gene status.

    PubMed

    Zheng, Yulong; Fang, Weijia; Deng, Jing; Zhao, Peng; Xu, Nong; Zhou, Jianying

    2014-07-01

    In non-small cell lung cancer (NSCLC), the well-developed epidermal growth factor receptor (EGFR) is an important therapeutic target. EGFR activating gene mutations have been proved strongly predictive of response to EGFR-tyrosine kinase inhibitors (TKI) in NSCLC. However, both in daily clinical practice and clinical trials, patients with unknown EGFR gene status (UN-EGFR-GS) are very common. In this study, we assessed efficacy and tolerability of sequential treatment of first-line pemetrexed followed by icotinib in Chinese advanced lung adenocarcinoma with UN-EGFR-GS. We analyzed 38 patients with advanced lung adenocarcinoma with UN-EGFR-GS treated with first-line pemetrexed-based chemotherapy followed by icotinib as maintenance or second-line therapy. The response rates to pemetrexed and icotinib were 21.1% and 42.1%, respectively. The median overall survival was 27.0 months (95% CI, 19.7-34.2 months). The 12-month overall survival probability was 68.4%. The most common toxicities observed in icotinib phase were rashes, diarrheas, and elevated aminotransferase. Subgroup analysis indicated that the overall survival is correlated with response to icotinib. The sequence of first-line pemetrexed-based chemotherapy followed by icotinib treatment is a promising option for advanced lung adenocarcinoma with UN-EGFR-GS in China.

  7. Old dance with a new partner: EGF receptor as the phenobarbital receptor mediating Cyp2B expression.

    PubMed

    Meyer, Sharon A; Jirtle, Randy L

    2013-05-07

    The decades-long quest for the phenobarbital (PhB) receptor that mediates activation of Cyp2B would appear fulfilled with the discovery by Mutoh et al., who found that PhB binds with pharmacological affinity to the epidermal growth factor receptor (EGFR). This finding provides a molecular basis for the suppression of hepatocyte EGFR signaling observed with PhB treatment, as previously noted in the context of tumor promotion. Although the PhB-mediated induction of Cyp2B expression through the association of a canonical nuclear receptor with the 5'-enhancer PBREM of Cyp2B is well known, direct binding of PhB to constitutive active androstane receptor (CAR, also known as NR1I3) typical of other xenobiotic-activated nuclear receptors has eluded detection. One EGF-activated pathway affected by the PhB-EGFR interaction is the loss of tyrosine phosphorylation of the scaffold protein RACK1. Dephosphorylated RACK1 provides the mechanistic link between the binding of PhB to EGFR and its effects on CAR by facilitating the interaction of serine/threonine phosphatase PP2A with inactive phosphorylated CAR. The dephosphorylation of CAR enables its translocation to the nucleus and activation of Cyp2B expression. Because EGFR and transducers RACK1, PP2A, and other partners are highly networked in numerous cellular pathways, this newly discovered partnership will surely reveal new fundamental roles for PhB beyond the regulation of drug metabolism.

  8. G protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17beta-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells.

    PubMed

    Albanito, Lidia; Madeo, Antonio; Lappano, Rosamaria; Vivacqua, Adele; Rago, Vittoria; Carpino, Amalia; Oprea, Tudor I; Prossnitz, Eric R; Musti, Anna Maria; Andò, Sebastiano; Maggiolini, Marcello

    2007-02-15

    Estrogens play a crucial role in the development of ovarian tumors; however, the signal transduction pathways involved in hormone action are still poorly defined. The orphan G protein-coupled receptor 30 (GPR30) mediates the nongenomic signaling of 17beta-estradiol (E2) in a variety of estrogen-sensitive cancer cells through activation of the epidermal growth factor receptor (EGFR) pathway. Whether estrogen receptor alpha (ERalpha) also contributes to GPR30/EGFR signaling is less understood. Here, we show that, in ERalpha-positive BG-1 ovarian cancer cells, both E2 and the GPR30-selective ligand G-1 induced c-fos expression and estrogen-responsive element (ERE)-independent activity of a c-fos reporter gene, whereas only E2 stimulated an ERE-responsive reporter gene, indicating that GPR30 signaling does not activate ERalpha-mediated transcription. Similarly, both ligands up-regulated cyclin D1, cyclin E, and cyclin A, whereas only E2 enhanced progesterone receptor expression. Moreover, both GPR30 and ERalpha expression are required for c-fos stimulation and extracellular signal-regulated kinase (ERK) activation in response to either E2 or G-1. Inhibition of the EGFR transduction pathway inhibited c-fos stimulation and ERK activation by either ligand, suggesting that in ovarian cancer cells GPR30/EGFR signaling relays on ERalpha expression. Interestingly, we show that both GPR30 and ERalpha expression along with active EGFR signaling are required for E2-stimulated and G-1-stimulated proliferation of ovarian cancer cells. Because G-1 was able to induce both c-fos expression and proliferation in the ERalpha-negative/GPR30-positive SKBR3 breast cancer cells, the requirement for ERalpha expression in GPR30/EGFR signaling may depend on the specific cellular context of different tumor types.

  9. Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib

    PubMed Central

    Lupo, Audrey Mansuet; Mourra, Najat; Takahashi, Takashi; Fléjou, Jean François; Trédaniel, Jean; Régnard, Jean François; Damotte, Diane; Alifano, Marco; Forgez, Patricia

    2014-01-01

    Alterations in the signaling pathways of epidermal growth factor receptors (HERs) are associated with tumor aggressiveness. Neurotensin (NTS) and its high affinity receptor (NTSR1) are up regulated in 60% of lung cancers. In a previous clinical study, NTSR1 overexpression was shown to predict a poor prognosis for 5 year overall survival in a selected population of stage I lung adenocarcinomas treated by surgery alone. In a second study, shown here, the frequent and high expression of NTSR1 was correlated with a pejorative prognosis in 389 patients with stage I to III lung adenocarcinoma, and was an independent prognosis marker. Interactions between NTS and NTSR1 induce pro-oncogenic biological effects associated with neoplastic processes and tumor progression. Here we highlight the cellular mechanisms activated by Neurotensin (NTS) and its high affinity receptor (NTSR1) contributing to lung cancer cell aggressiveness. We show that the NTS autocrine and/or paracrine regulation causes EGFR, HER2, and HER3 over-expression and activation in lung tumor cells. The EGFR and HER3 autocrine activation is mediated by MMP1 activation and EGF “like” ligands (HB-EGF, Neuregulin 1) release. By establishing autocrine and/or paracrine NTS regulation, we show that tumor growth is modulated according to NTS expression, with a low growth rate in those tumors that do not express NTS. Accordingly, xenografted tumors expressing NTS and NTSR1 showed a positive response to erlotinib, whereas tumors void of NTSR1 expression had no detectable response. This is consistent with the presence of a NTS autocrine loop, leading to the sustained activation of EGFR and responsible for cancer aggressiveness. We propose the use of NTS/NTSR1 tumor expression, as a biomarker for the use of EGFR tyrosine kinase inhibitors in patients lacking EGFR mutation. PMID:25249545

  10. Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib.

    PubMed

    Younes, Mohamad; Wu, Zherui; Dupouy, Sandra; Lupo, Audrey Mansuet; Mourra, Najat; Takahashi, Takashi; Fléjou, Jean François; Trédaniel, Jean; Régnard, Jean François; Damotte, Diane; Alifano, Marco; Forgez, Patricia

    2014-09-30

    Alterations in the signaling pathways of epidermal growth factor receptors (HERs) are associated with tumor aggressiveness. Neurotensin (NTS) and its high affinity receptor (NTSR1) are up regulated in 60% of lung cancers. In a previous clinical study, NTSR1 overexpression was shown to predict a poor prognosis for 5 year overall survival in a selected population of stage I lung adenocarcinomas treated by surgery alone. In a second study, shown here, the frequent and high expression of NTSR1 was correlated with a pejorative prognosis in 389 patients with stage I to III lung adenocarcinoma, and was an independent prognosis marker. Interactions between NTS and NTSR1 induce pro-oncogenic biological effects associated with neoplastic processes and tumor progression. Here we highlight the cellular mechanisms activated by Neurotensin (NTS) and its high affinity receptor (NTSR1) contributing to lung cancer cell aggressiveness. We show that the NTS autocrine and/or paracrine regulation causes EGFR, HER2, and HER3 over-expression and activation in lung tumor cells. The EGFR and HER3 autocrine activation is mediated by MMP1 activation and EGF "like" ligands (HB-EGF, Neuregulin 1) release. By establishing autocrine and/or paracrine NTS regulation, we show that tumor growth is modulated according to NTS expression, with a low growth rate in those tumors that do not express NTS. Accordingly, xenografted tumors expressing NTS and NTSR1 showed a positive response to erlotinib, whereas tumors void of NTSR1 expression had no detectable response. This is consistent with the presence of a NTS autocrine loop, leading to the sustained activation of EGFR and responsible for cancer aggressiveness. We propose the use of NTS/NTSR1 tumor expression, as a biomarker for the use of EGFR tyrosine kinase inhibitors in patients lacking EGFR mutation.

  11. ALG-2 activates the MVB sorting function of ALIX through relieving its intramolecular interaction

    PubMed Central

    Sun, Sheng; Zhou, Xi; Corvera, Joe; Gallick, Gary E; Lin, Sue-Hwa; Kuang, Jian

    2015-01-01

    The modular adaptor protein ALIX is critically involved in endosomal sorting complexes required for transport (ESCRT)-mediated multivesicular body (MVB) sorting of activated epidermal growth factor receptor (EGFR); however, ALIX contains a default intramolecular interaction that renders ALIX unable to perform this ESCRT function. The ALIX partner protein ALG-2 is a calcium-binding protein that belongs to the calmodulin superfamily. Prompted by a defined biological function of calmodulin, we determined the role of ALG-2 in regulating ALIX involvement in MVB sorting of activated EGFR. Our results show that calcium-dependent ALG-2 interaction with ALIX completely relieves the intramolecular interaction of ALIX and promotes CHMP4-dependent ALIX association with the membrane. EGFR activation induces increased ALG-2 interaction with ALIX, and this increased interaction is responsible for increased ALIX association with the membrane. Functionally, inhibition of ALIX activation by ALG-2 inhibits MVB sorting of activated EGFR as effectively as inhibition of ALIX interaction with CHMP4 does; however, inhibition of ALIX activation by ALG-2 does not affect cytokinetic abscission or equine infectious anemia virus (EIAV) budding. These findings indicate that calcium-dependent ALG-2 interaction with ALIX is specifically responsible for generating functional ALIX that supports MVB sorting of ubiquitinated membrane receptors. PMID:27462417

  12. HER2 and EGFR overexpression support metastatic progression of prostate cancer to bone

    PubMed Central

    Day, Kathleen C.; Hiles, Guadalupe Lorenzatti; Kozminsky, Molly; Dawsey, Scott J.; Paul, Alyssa; Broses, Luke J.; Shah, Rajal; Kunja, Lakshmi P.; Hall, Christopher; Palanisamy, Nallasivam; Daignault-Newton, Stephanie; El-Sawy, Layla; Wilson, Steven James; Chou, Andrew; Ignatoski, Kathleen Woods; Keller, Evan; Thomas, Dafydd; Nagrath, Sunitha; Morgan, Todd; Day, Mark L.

    2016-01-01

    Activation of the epidermal growth factor receptors EGFR (ErbB1) and HER2 (ErbB2) drive the progression of multiple cancer types through complex mechanisms that are still not fully understood. In this study, we report that HER2 expression is elevated in bone metastases of prostate cancer independently of gene amplification. An examination of HER2 and NF-κB receptor (RANK) coexpression revealed increased levels of both proteins in aggressive prostate tumors and metastatic deposits. Inhibiting HER2 expression in bone tumor xenografts reduced proliferation and RANK expression while maintaining EGFR expression. In examining the role of EGFR in tumor-initiating cells (TIC), we found that EGFR expression was required for primary and secondary sphere formation of prostate cancer cells. EGFR expression was also observed in circulating tumor cells (CTC) during prostate cancer metastasis. Dual inhibition of HER2 and EGFR resulted in significant inhibition of tumor xenograft growth, further supporting the significance of these receptors in prostate cancer progression. Overall, our results indicate that EGFR promotes survival of prostate TIC and CTC that metastasize to bone, whereas HER2 supports the growth of prostate cancer cells once they are established at metastatic sites. PMID:27793843

  13. Effect of the anti-receptor ligand-blocking 225 monoclonal antibody on EGF receptor endocytosis and sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaramillo, Maria L.; Leon, Zully; Grothe, Suzanne

    The anti-receptor antibody, 225 mAb, is known to block binding of ligand to the epidermal growth factor receptor (EGFR). However, the effect of this neutralizing antibody on EGFR endocytosis, trafficking and degradation remains unclear. Here, we demonstrate that endocytosis of {sup 125}I-225 mAb occurs, albeit with a slower rate than that of EGF. Using pulse chase assays, we show that internalized {sup 125}I-225 mAb is recycled to the surface much more efficiently than internalized {sup 125}I-EGF. Also, we found that internalization of {sup 125}I-225 mAb, in contrast to that of EGF, is independent of receptor tyrosine kinase activity, as evidencedmore » by its insensitivity to AG1478, a specific EGFR tyrosine kinase inhibitor. Analysis of the levels of cell surface and total EGFR showed that treatment with 225 mAb results in a 30-40% decrease in surface EGFR and a relatively slow downregulation of total EGFR. Taken together, these data indicate that 225 mAb induces internalization and downregulation of EGFR via a mechanism distinct from that underlying EGF-induced EGFR internalization and downregulation.« less

  14. Inhibitors of the epidermal growth factor receptor in apple juice extract.

    PubMed

    Kern, Melanie; Tjaden, Zeina; Ngiewih, Yufanyi; Puppel, Nicole; Will, Frank; Dietrich, Helmut; Pahlke, Gudrun; Marko, Doris

    2005-04-01

    The polyphenol-rich extract of a consumer-relevant apple juice blend was found to potently inhibit the growth of the human colon cancer cell line HT29 in vitro. The epidermal growth factor receptor (EGFR) and its subsequent signaling cascade play an important role in the regulation of cell proliferation in HT29 cells. The protein tyrosine kinase activity of an EGFR preparation was effectively inhibited by the polyphenol-rich apple juice extract. Treatment of intact cells with this extract resulted in the suppression of the subsequent mitogen-activated protein kinase cascade. Amongst the so far identified apple juice constituents, the proanthocyanidins B1 and B2 as well as quercetin-3-glc (isoquercitrin) and quercetin-3-gal (hyperoside) were found to possess substantial EGFR-inhibitory properties. However, as to be expected from the final concentration of these potential EGFR inhibitors in the original polyphenol-rich extract, a synthetic mixture of the apple juice constituents identified and available so far, including both proanthocyanidins and the quercetin glycosides, showed only marginal inhibitory effects on the EGFR. These results permit the assumption that yet unknown constituents contribute substantially to the potent EGFR-inhibitory properties of polyphenol-rich apple juice extract. In summary, the polyphenol composition of apple juice possesses promising growth-inhibitory properties, affecting proliferation-associated signaling cascades in colon tumor cells.

  15. Free Fatty Acids Shift Insulin-induced Hepatocyte Proliferation towards CD95-dependent Apoptosis*

    PubMed Central

    Sommerfeld, Annika; Reinehr, Roland; Häussinger, Dieter

    2015-01-01

    Insulin is known to induce hepatocyte swelling, which triggers via integrins and c-Src kinase an activation of the epidermal growth factor receptor (EGFR) and subsequent cell proliferation (1). Free fatty acids (FFAs) are known to induce lipoapoptosis in liver cells in a c-Jun-NH2-terminal kinase (JNK)-dependent, but death receptor-independent way (2). As non-alcoholic steatohepatitis (NASH) is associated with hyperinsulinemia and increased FFA-blood levels, the interplay between insulin and FFA was studied with regard to hepatocyte proliferation and apoptosis in isolated rat and mouse hepatocytes. Saturated long chain FFAs induced apoptosis and JNK activation in primary rat hepatocytes, but did not activate the CD95 (Fas, APO-1) system, whereas insulin triggered EGFR activation and hepatocyte proliferation. Coadministration of insulin and FFAs, however, abolished hepatocyte proliferation and triggered CD95-dependent apoptosis due to a JNK-dependent association of the activated EGFR with CD95, subsequent CD95 tyrosine phosphorylation and formation of the death-inducing signaling complex (DISC). JNK inhibition restored the proliferative insulin effect in presence of FFAs and prevented EGFR/CD95 association, CD95 tyrosine phosphorylation and DISC formation. Likewise, in presence of FFAs insulin increased apoptosis in hepatocytes from wild type but not from Alb-Cre-FASfl/fl mice, which lack functional CD95. It is concluded that FFAs can shift insulin-induced hepatocyte proliferation toward hepatocyte apoptosis by triggering a JNK signal, which allows activated EGFR to associate with CD95 and to trigger CD95-dependent apoptosis. Such phenomena may contribute to the pathogenesis of NASH. PMID:25548285

  16. Ofloxacin induces apoptosis via β1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Zhi-Guo; Huang, Wei; Liu, Yu-Xiang

    2013-02-15

    Quinolones (QNs)-induced arthropathy is an important toxic side-effect in immature animals leading to the restriction of their therapeutic use in pediatrics. Ofloxacin, a typical QN, was found to induce the chondrocytes apoptosis in the early phase (12–48 h) of arthropathy in our previous study. However, the exact mechanism(s) is unclear. Microencapsulated juvenile rabbit joint chondrocytes, a three-dimensional culture system, is utilized to perform the present study. Ofloxacin, at a therapeutically relevant concentration (10 μg/ml), disturbs the interaction between β1 integrin and activated intracellular signaling proteins at 12 h, which is inhibited when supplementing Mg{sup 2+}. Intracellular reactive oxygen species (ROS)more » significantly increases in a time-dependent manner after exposure to ofloxacin for 12–48 h. Furthermore, ofloxacin markedly enhances the level of activated Rac1 and epidermal growth factor receptor (EGFR) phosphorylation, and its inhibition in turn reduces the ROS production, apoptosis and Rac1 activation. Silencing Nox2, Rac1 or supplementing Mg{sup 2+} inhibits ROS accumulation, apoptosis occurrence and EGFR phosphorylation induced by ofloxacin. However, depletion of Nox2, Rac1 and inhibition of EGFR do not affect ofloxacin-mediated loss of interaction between β1 integrin and activated intracellular signaling proteins. In addition, ofloxacin also induces Vav2 phosphorylation, which is markedly suppressed after inactivating EGFR or supplementing Mg{sup 2+}. These results suggest that ofloxacin causes Nox2-mediated intracellular ROS production by disrupting the β1 integrin function and then activating the EGFR-Vav2-Rac1 pathway, finally resulting in apoptosis within 12–48 h exposure. The present study provides a novel insight regarding the potential role of Nox-driven ROS in QNs-induced arthropathy. - Highlights: ► Ofloxacin induces Nox2-driven ROS in encapsulated chondrocyte at 12–48 h. ► Ofloxacin stimulates ROS production via the β1 integrin-EGFR-Vav2-Rac1 pathway. ► Ofloxacin induces ROS-dependent apoptosis in encapsulated chondrocyte at 12–48 h.« less

  17. [Osimertinib (Tagrisso®): Activity, indication and modality of use in non-small cell lung cancer].

    PubMed

    Giroux Leprieur, Etienne; Cortot, Alexis B; Cadranel, Jacques; Wislez, Marie

    2016-10-01

    The acquisition of a resistance EGFR mutation in exon 20 (T790M) occurs in half of the cases of secondary resistance to EGFR tyrosine kinase inhibitors (TKI), given in first-line treatment in advanced EGFR-mutated non-small cell lung cancers (NSCLC). Osimertinib (AZD9291, Tagrisso ® ) is a third-generation, irreversible EGFR TKI, active in case of T790M mutation. A large phase I trial showed the efficacy of osimertinib after failure of first-generation EGFR TKI (erlotinib, gefitinib), with response rate at 51% and up to 61% in case of T790M mutation. Progression-free survival was 9.6 months in case of T790M. Toxicity profile was acceptable, with mainly digestive (diarrhea) and skin (rash) side effects. Preliminary data from a phase II trial confirmed these efficacy and safety data. Screening of T790M mutation at the time of progression with TKI can be performed in circulating tumor DNA in plasma, with good diagnostic performances. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  18. HBEGF promotes gliomagenesis in the context of Ink4a/Arf and Pten loss.

    PubMed

    Shin, C H; Robinson, J P; Sonnen, J A; Welker, A E; Yu, D X; VanBrocklin, M W; Holmen, S L

    2017-08-10

    Heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF) is a ligand for the EGF receptor (EGFR), one of the most commonly amplified receptor tyrosine kinases (RTKs) in glioblastoma (GBM). While HBEGF has been found to be expressed in a subset of malignant gliomas, its sufficiency for glioma initiation has not been evaluated. In this study, we demonstrate that HBEGF can initiate GBM in mice in the context of Ink4a/Arf and Pten loss, and that these tumors are similar to the classical GBM subtype observed in patients. Isogenic astrocytes from these mice showed activation not only of Egfr but also the RTK Axl in response to HBEGF stimulation. Deletion of either Egfr or Axl decreased the tumorigenic properties of HBEGF-transformed cells; however, only EGFR was able to rescue the phenotype in cells lacking both RTKs indicating that Egfr is required for activation of Axl in this context. Silencing of HBEGF in vivo resulted in tumor regression and significantly increased survival, suggesting that HBEGF may be a clinically relevant target.

  19. HBEGF promotes gliomagenesis in the context of Ink4a/Arf and Pten loss

    PubMed Central

    Shin, Clifford H.; Robinson, James P.; Sonnen, Joshua A.; Welker, Adam E.; Yu, Diana X.; VanBrocklin, Matthew W.; Holmen, Sheri L.

    2017-01-01

    Heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF) is a ligand for the epidermal growth factor receptor (EGFR), one of the most commonly amplified receptor tyrosine kinases (RTK) in glioblastoma. While HBEGF has been found to be expressed in a subset of malignant gliomas, its sufficiency for glioma initiation has not been evaluated. In this study, we demonstrate that HBEGF can initiate glioblastoma (GBM) in mice in the context of Ink4a/Arf and Pten loss, and that these tumors are similar to the classical GBM subtype observed in patients. Isogenic astrocytes from these mice showed activation not only of Egfr but also the RTK Axl in response to HBEGF stimulation. Deletion of either Egfr or Axl decreased the tumorigenic properties of HBEGF transformed cells; however only EGFR was able to rescue the phenotype in cells lacking both RTKs indicating that Egfr is required for activation of Axl in this context. Silencing of HBEGF in vivo resulted in tumor regression and significantly increased survival suggesting that HBEGF may be a clinically relevant target. PMID:28368403

  20. EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration.

    PubMed

    Xiang, Jinyi; Bandura, Jennifer; Zhang, Peng; Jin, Yinhua; Reuter, Hanna; Edgar, Bruce A

    2017-05-09

    Following gut epithelial damage, epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) signalling triggers Drosophila intestinal stem cells to produce enteroblasts (EBs) and enterocytes (ECs) that regenerate the gut. As EBs differentiate into ECs, they become postmitotic, but undergo extensive growth and DNA endoreplication. Here we report that EGFR/RAS/MAPK signalling is required and sufficient to drive damage-induced EB/EC growth. Endoreplication occurs exclusively in EBs and newborn ECs that inherit EGFR and active MAPK from fast-dividing progenitors. Mature ECs lack EGF receptors and are refractory to growth signalling. Genetic tests indicated that stress-dependent EGFR/MAPK promotes gut regeneration via a novel mechanism that operates independently of Insulin/Pi3K/TOR signalling, which is nevertheless required in nonstressed conditions. The E2f1 transcription factor is required for and sufficient to drive EC endoreplication, and Ras/Raf signalling upregulates E2f1 levels posttranscriptionally. We illustrate how distinct signalling mechanisms direct stress-dependent versus homeostatic regeneration, and highlight the importance of postmitotic cell growth in gut epithelial repair.

  1. EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration

    PubMed Central

    Xiang, Jinyi; Bandura, Jennifer; Zhang, Peng; Jin, Yinhua; Reuter, Hanna; Edgar, Bruce A.

    2017-01-01

    Following gut epithelial damage, epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) signalling triggers Drosophila intestinal stem cells to produce enteroblasts (EBs) and enterocytes (ECs) that regenerate the gut. As EBs differentiate into ECs, they become postmitotic, but undergo extensive growth and DNA endoreplication. Here we report that EGFR/RAS/MAPK signalling is required and sufficient to drive damage-induced EB/EC growth. Endoreplication occurs exclusively in EBs and newborn ECs that inherit EGFR and active MAPK from fast-dividing progenitors. Mature ECs lack EGF receptors and are refractory to growth signalling. Genetic tests indicated that stress-dependent EGFR/MAPK promotes gut regeneration via a novel mechanism that operates independently of Insulin/Pi3K/TOR signalling, which is nevertheless required in nonstressed conditions. The E2f1 transcription factor is required for and sufficient to drive EC endoreplication, and Ras/Raf signalling upregulates E2f1 levels posttranscriptionally. We illustrate how distinct signalling mechanisms direct stress-dependent versus homeostatic regeneration, and highlight the importance of postmitotic cell growth in gut epithelial repair. PMID:28485389

  2. Normalization of TAM post-receptor signaling reveals a cell invasive signature for Axl tyrosine kinase.

    PubMed

    Kimani, Stanley G; Kumar, Sushil; Davra, Viralkumar; Chang, Yun-Juan; Kasikara, Canan; Geng, Ke; Tsou, Wen-I; Wang, Shenyan; Hoque, Mainul; Boháč, Andrej; Lewis-Antes, Anita; De Lorenzo, Mariana S; Kotenko, Sergei V; Birge, Raymond B

    2016-09-06

    Tyro3, Axl, and Mertk (TAMs) are a family of three conserved receptor tyrosine kinases that have pleiotropic roles in innate immunity and homeostasis and when overexpressed in cancer cells can drive tumorigenesis. In the present study, we engineered EGFR/TAM chimeric receptors (EGFR/Tyro3, EGFR/Axl, and EGF/Mertk) with the goals to interrogate post-receptor functions of TAMs, and query whether TAMs have unique or overlapping post-receptor activation profiles. Stable expression of EGFR/TAMs in EGFR-deficient CHO cells afforded robust EGF inducible TAM receptor phosphorylation and activation of downstream signaling. Using a series of unbiased screening approaches, that include kinome-view analysis, phosphor-arrays, RNAseq/GSEA analysis, as well as cell biological and in vivo readouts, we provide evidence that each TAM has unique post-receptor signaling platforms and identify an intrinsic role for Axl that impinges on cell motility and invasion compared to Tyro3 and Mertk. These studies demonstrate that TAM show unique post-receptor signatures that impinge on distinct gene expression profiles and tumorigenic outcomes.

  3. EGFR-L858R mutant enhances lung adenocarcinoma cell invasive ability and promotes malignant pleural effusion formation through activation of the CXCL12-CXCR4 pathway

    PubMed Central

    Tsai, Meng-Feng; Chang, Tzu-Hua; Wu, Shang-Gin; Yang, Hsiao-Yin; Hsu, Yi-Chiung; Yang, Pan-Chyr; Shih, Jin-Yuan

    2015-01-01

    Malignant pleural effusion (MPE) is a common clinical problem in non-small cell lung carcinoma (NSCLC) patients; however, the underlying mechanisms are still largely unknown. Recent studies indicate that the frequency of the L858R mutant form of the epidermal growth factor receptor (EGFR-L858R) is higher in lung adenocarcinoma with MPE than in surgically resected specimens, suggesting that lung adenocarcinoma cells harboring this mutation tend to invade the adjacent pleural cavity. The purpose of this study was to clarify the relationship between the EGFR-L858R mutation and cancer cell invasion ability and to investigate the molecular mechanisms involved in the formation of MPE. We found that expression of EGFR-L858R in lung cancer cells resulted in up-regulation of the CXCR4 in association with increased cancer cell invasive ability and MPE formation. Ectopic expression of EGFR-L858R in lung cancer cells acted through activation of ERK signaling pathways to induce the expression of CXCR4. We also indicated that Inhibition of CXCR4 with small interfering RNA, neutralizing antibody, or receptor antagonist significantly suppressed the EGFR-L858R–dependent cell invasion. These results suggest that targeting the production of CXCR4 and blocking the CXCL12-CXCR4 pathway might be effective strategies for treating NSCLCs harboring a specific type of EGFR mutation. PMID:26338423

  4. The SRC homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis.

    PubMed

    Barbieri, M Alejandro; Kong, Chen; Chen, Pin-I; Horazdovsky, Bruce F; Stahl, Philip D

    2003-08-22

    Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.

  5. COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ying-Nai; Wang, Hongmei; Yamaguchi, Hirohito

    2010-09-03

    Research highlights: {yields} ARF1 activation is involved in the EGFR transport to the ER and the nucleus. {yields} Assembly of {gamma}-COP coatomer mediates EGFR transport to the ER and the nucleus. {yields} Golgi-to-ER retrograde trafficking regulates nuclear transport of EGFR. -- Abstract: Emerging evidence indicates that cell surface receptors, such as the entire epidermal growth factor receptor (EGFR) family, have been shown to localize in the nucleus. A retrograde route from the Golgi to the endoplasmic reticulum (ER) is postulated to be involved in the EGFR trafficking to the nucleus; however, the molecular mechanism in this proposed model remains unexplored.more » Here, we demonstrate that membrane-embedded vesicular trafficking is involved in the nuclear transport of EGFR. Confocal immunofluorescence reveals that in response to EGF, a portion of EGFR redistributes to the Golgi and the ER, where its NH{sub 2}-terminus resides within the lumen of Golgi/ER and COOH-terminus is exposed to the cytoplasm. Blockage of the Golgi-to-ER retrograde trafficking by brefeldin A or dominant mutants of the small GTPase ADP-ribosylation factor, which both resulted in the disassembly of the coat protein complex I (COPI) coat to the Golgi, inhibit EGFR transport to the ER and the nucleus. We further find that EGF-dependent nuclear transport of EGFR is regulated by retrograde trafficking from the Golgi to the ER involving an association of EGFR with {gamma}-COP, one of the subunits of the COPI coatomer. Our findings experimentally provide a comprehensive pathway that nuclear transport of EGFR is regulated by COPI-mediated vesicular trafficking from the Golgi to the ER, and may serve as a general mechanism in regulating the nuclear transport of other cell surface receptors.« less

  6. Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer

    PubMed Central

    2011-01-01

    Background Activating mutations of the epidermal growth factor receptor (EGFR) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease. Methods Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples. Results EGFR protein overexpression (EGFRhigh) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFRhigh tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFRlow). Microarray analysis did not reveal any differences in gene expression between EGFRhigh and EGFRlow tumours. Conversely, in EGFRhigh tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFRhigh (n=3) and mutated/EGFRlow tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression. Conclusions Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series. PMID:21266046

  7. Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer.

    PubMed

    Peraldo-Neia, Caterina; Migliardi, Giorgia; Mello-Grand, Maurizia; Montemurro, Filippo; Segir, Raffaella; Pignochino, Ymera; Cavalloni, Giuliana; Torchio, Bruno; Mosso, Luciano; Chiorino, Giovanna; Aglietta, Massimo

    2011-01-25

    Activating mutations of the epidermal growth factor receptor (EGFR) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease. Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples. EGFR protein overexpression (EGFRhigh) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFRhigh tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFRlow). Microarray analysis did not reveal any differences in gene expression between EGFRhigh and EGFRlow tumours. Conversely, in EGFRhigh tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFRhigh (n=3) and mutated/EGFRlow tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression. Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series.

  8. Selective gene amplification to detect the T790M mutation in plasma from patients with advanced non-small cell lung cancer (NSCLC) who have developed epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) resistance.

    PubMed

    Nishikawa, Shingo; Kimura, Hideharu; Koba, Hayato; Yoneda, Taro; Watanabe, Satoshi; Sakai, Tamami; Hara, Johsuke; Sone, Takashi; Kasahara, Kazuo; Nakao, Shinji

    2018-03-01

    The epidermal growth factor receptor (EGFR) T790M mutation is associated with resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC). However, tissues for the genotyping of the EGFR T790M mutation can be difficult to obtain in a clinical setting. The aims of this study were to evaluate a blood-based, non-invasive approach to detecting the EGFR T790M mutation in advanced NSCLC patients using the PointMan™ EGFR DNA enrichment kit, which is a novel method for the selective amplification of specific genotype sequences. Blood samples were collected from NSCLC patients who had activating EGFR mutations and who were resistant to EGFR-TKI treatment. Using cell-free DNA (cfDNA) from plasma, EGFR T790M mutations were amplified using the PointMan™ enrichment kit, and all the reaction products were confirmed using direct sequencing. The concentrations of plasma DNA were then determined using quantitative real-time PCR. Nineteen patients were enrolled, and 12 patients (63.2%) were found to contain EGFR T790M mutations in their cfDNA, as detected by the kit. T790M mutations were detected in tumor tissues in 12 cases, and 11 of these cases (91.7%) also exhibited the T790M mutation in cfDNA samples. The concentrations of cfDNA were similar between patients with the T790M mutation and those without the mutation. The PointMan™ kit provides a useful method for determining the EGFR T790M mutation status in cfDNA.

  9. Comprehensive Genomic Profiling Identifies Frequent Drug-Sensitive EGFR Exon 19 Deletions in NSCLC not Identified by Prior Molecular Testing.

    PubMed

    Schrock, Alexa B; Frampton, Garrett M; Herndon, Dana; Greenbowe, Joel R; Wang, Kai; Lipson, Doron; Yelensky, Roman; Chalmers, Zachary R; Chmielecki, Juliann; Elvin, Julia A; Wollner, Mira; Dvir, Addie; -Gutman, Lior Soussan; Bordoni, Rodolfo; Peled, Nir; Braiteh, Fadi; Raez, Luis; Erlich, Rachel; Ou, Sai-Hong Ignatius; Mohamed, Mohamed; Ross, Jeffrey S; Stephens, Philip J; Ali, Siraj M; Miller, Vincent A

    2016-07-01

    Reliable detection of drug-sensitive activating EGFR mutations is critical in the care of advanced non-small cell lung cancer (NSCLC), but such testing is commonly performed using a wide variety of platforms, many of which lack rigorous analytic validation. A large pool of NSCLC cases was assayed with well-validated, hybrid capture-based comprehensive genomic profiling (CGP) at the request of the individual treating physicians in the course of clinical care for the purpose of making therapy decisions. From these, 400 cases harboring EGFR exon 19 deletions (Δex19) were identified, and available clinical history was reviewed. Pathology reports were available for 250 consecutive cases with classical EGFR Δex19 (amino acids 743-754) and were reviewed to assess previous non-hybrid capture-based EGFR testing. Twelve of 71 (17%) cases with EGFR testing results available were negative by previous testing, including 8 of 46 (17%) cases for which the same biopsy was analyzed. Independently, five of six (83%) cases harboring C-helical EGFR Δex19 were previously negative. In a subset of these patients with available clinical outcome information, robust benefit from treatment with EGFR inhibitors was observed. CGP identifies drug-sensitive EGFR Δex19 in NSCLC cases that have undergone prior EGFR testing and returned negative results. Given the proven benefit in progression-free survival conferred by EGFR tyrosine kinase inhibitors in patients with these alterations, CGP should be considered in the initial presentation of advanced NSCLC and when previous testing for EGFR mutations or other driver alterations is negative. Clin Cancer Res; 22(13); 3281-5. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. Potential influence of interleukin-6 on the therapeutic effect of gefitinib in patients with advanced non-small cell lung cancer harbouring EGFR mutations.

    PubMed

    Tamura, Tomoki; Kato, Yuka; Ohashi, Kadoaki; Ninomiya, Kiichiro; Makimoto, Go; Gotoda, Hiroko; Kubo, Toshio; Ichihara, Eiki; Tanaka, Takehiro; Ichimura, Koichi; Maeda, Yoshinobu; Hotta, Katsuyuki; Kiura, Katsuyuki

    2018-01-01

    Although epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are a key therapy used for patients with EGFR-mutant non-small cell lung cancer (NSCLC), some of whom do not respond well to its therapy. Cytokine including IL-6 secreted by tumour cells is postulated as a potential mechanism for the primary resistance or low sensitivity to EGFR-TKIs. Fifty-two patients with advanced EGFR-mutant NSCLC who had received gefitinib were assessed retrospectively. The protein expression of IL-6 in the tumour cells was assessed by immunostaining and judged as positive if ≥ 50 of 100 tumour cells stained positively. Of the 52 patients, 24 (46%) and 28 (54%) were defined as IL-6-postitive (group P) and IL-6-negative (group N), respectively. Group P had worse progression-free survival (PFS) than that of group N, which was retained in the multivariate analysis (hazard ratio: 2.39; 95 %CI: 1.00-5.68; p < 0.05). By contrast, the PFS after platinum-based chemotherapy did not differ between groups P and N (p = 0.47). In cell line-based model, the impact of IL-6 on the effect of EGFR-TKIs was assessed. The combination of EGFR-TKI and anti-IL-6 antibody moderately improved the sensitivity of EGFR-TKI in lung cancer cell with EGFR mutation. Interestingly, suppression of EGFR with EGFR-TKI accelerated the activation of STAT3 induced by IL-6. Taken together, tumour IL-6 levels might indicate a subpopulation of EGFR-mutant NSCLC that benefits less from gefitinib monotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Phosphorylation of Glutathione S-Transferase P1 (GSTP1) by Epidermal Growth Factor Receptor (EGFR) Promotes Formation of the GSTP1-c-Jun N-terminal kinase (JNK) Complex and Suppresses JNK Downstream Signaling and Apoptosis in Brain Tumor Cells*

    PubMed Central

    Okamura, Tatsunori; Antoun, Gamil; Keir, Stephen T.; Friedman, Henry; Bigner, Darell D.; Ali-Osman, Francis

    2015-01-01

    Under normal physiologic conditions, the glutathione S-transferase P1 (GSTP1) protein exists intracellularly as a dimer in reversible equilibrium with its monomeric subunits. In the latter form, GSTP1 binds to the mitogen-activated protein kinase, JNK, and inhibits JNK downstream signaling. In tumor cells, which frequently are characterized by constitutively high GSTP1 expression, GSTP1 undergoes phosphorylation by epidermal growth factor receptor (EGFR) at tyrosine residues 3, 7, and 198. Here we report on the effect of this EGFR-dependent GSTP1 tyrosine phosphorylation on the interaction of GSTP1 with JNK, on the regulation of JNK downstream signaling by GSTP1, and on tumor cell survival. Using in vitro and in vivo growing human brain tumors, we show that tyrosine phosphorylation shifts the GSTP1 dimer-monomer equilibrium to the monomeric state and facilitates the formation of the GSTP1-JNK complex, in which JNK is functionally inhibited. Targeted mutagenesis and functional analysis demonstrated that the increased GSTP1 binding to JNK results from phosphorylation of the GSTP1 C-terminal Tyr-198 by EGFR and is associated with a >2.5-fold decrease in JNK downstream signaling and a significant suppression of both spontaneous and drug-induced apoptosis in the tumor cells. The findings define a novel mechanism of regulatory control of JNK signaling that is mediated by the EGFR/GSTP1 cross-talk and provides a survival advantage for tumors with activated EGFR and high GSTP1 expression. The results lay the foundation for a novel strategy of dual EGFR/GSTP1 for treating EGFR+ve, GSTP1 expressing GBMs. PMID:26429914

  12. Association Between Environmental Tobacco Smoke Exposure and the Occurrence of EGFR Mutations and ALK Rearrangements in Never-smokers With Non-Small-cell Lung Cancer: Analyses From a Prospective Multinational ETS Registry.

    PubMed

    Soo, Ross A; Kubo, Akihito; Ando, Masahiko; Kawaguchi, Tomoya; Ahn, Myung-Ju; Ou, Sai-Hong Ignatius

    2017-09-01

    Molecular studies have demonstrated actionable driver oncogene alterations are more frequent in never-smokers with non-small-cell lung cancer (NSCLC). The etiology of these driver oncogenes in patients with NSCLC remains unknown, and environmental tobacco smoke (ETS) is a potential cause in these cases. We assembled clinical and genetic information for never-smoker patients with NSCLC accrued in Japan, Korea, Singapore, and the United States. To determine an association between cumulative ETS and activating EGFR mutations or ALK rearrangements, the Mantel extension test was used. Multivariate analysis on activating EGFR and ALK gene rearrangements was performed using the generalized linear mixed model with nations as a random effect. From July 2007 to December 2012, 498 never-smokers with pathologically proven NSCLC were registered and tested for the association between ETS and EGFR and ALK status. EGFR mutations were more frequent in the ever-ETS cohort (58.4%) compared with the never-ETS cohort (39.6%), and the incidence of EGFR mutations was significantly associated with the increment of cumulative ETS (cETS) in female never-smokers (P = .033), whereas the incidence of ALK rearrangements was not significantly different between the ever-ETS and never-ETS cohorts. Odds ratio for EGFR mutations for each 10-year increment in cETS was 1.091 and 0.89 for female and male never-smokers (P = .031 and P = .263, respectively). Increased ETS exposure was closely associated with EGFR mutations in female never-smokers with NSCLC in the expanded multinational cohort. However, the association of ETS and ALK rearrangements in never-smokers with NSCLC was not significant. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. STAT1-Induced HLA class I Upregulation Enhances Immunogenicity and Clinical Response to anti-EGFR mAb Cetuximab Therapy in HNC Patients

    PubMed Central

    Srivastava, Raghvendra M.; Trivedi, Sumita; Concha-Benavente, Fernando; Hyun-bae, Jie; Wang, Lin; Seethala, Raja R.; Branstetter, Barton F.; Ferrone, Soldano; Ferris, Robert L.

    2015-01-01

    The goal of this study was to characterize the molecular mechanisms underlying cetuximab-mediated upregulation of HLA class I antigen-processing machinery components in head and neck cancer (HNC) cells and to determine the clinical significance of these changes in cetuximab-treated HNC patients. Flow cytometry, signaling studies and chromatin immunoprecipitation (ChIP) assays were performed using HNC cells treated with cetuximab alone or with Fcγ receptor (FcγR)-bearing lymphocytes to establish the mechanism of EGFR-dependent regulation of HLA APM expression. A prospective phase II clinical trial of neoadjuvant cetuximab was utilized to correlate HLA class I expression with clinical response in HNC patients. EGFR blockade triggered STAT1 activation and HLA upregulation, in a src homology-containing protein (SHP)-2-dependent fashion, more prominently in HLA-B/C than in HLA-A alleles. EGFR signaling blockade also enhanced IFNγ receptor 1 (IFNAR) expression, augmenting induction of HLA class I and TAP1/2 expression by IFNγ, which was abrogated in STAT1−/− cells. Cetuximab enhanced HNC cell recognition by EGFR853–861-specific CTLs, and notably enhanced surface presentation of a non-EGFR peptide (MAGE-3271–279). HLA class I upregulation was significantly associated with clinical response in cetuximab-treated HNC patients. EGFR induces HLA downregulation through SHP-2/STAT1 suppression. Reversal of HLA class I downregulation was more prominent in clinical responders to cetuximab therapy, supporting an important role for adaptive immunity in cetuximab antitumor activity. Abrogating EGFR-induced immune escape mechanisms and restoring STAT1 signaling to reverse HLA downregulation using cetuximab should be combined with strategies to enhance adaptive cellular immunity. PMID:25972070

  14. Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia.

    PubMed

    Chen, Yongqiang; Henson, Elizabeth S; Xiao, Wenyan; Huang, Daniel; McMillan-Ward, Eileen M; Israels, Sara J; Gibson, Spencer B

    2016-06-02

    Autophagy is an intracellular lysosomal degradation pathway where its primary function is to allow cells to survive under stressful conditions. Autophagy is, however, a double-edge sword that can either promote cell survival or cell death. In cancer, hypoxic regions contribute to poor prognosis due to the ability of cancer cells to adapt to hypoxia in part through autophagy. In contrast, autophagy could contribute to hypoxia induced cell death in cancer cells. In this study, we showed that autophagy increased during hypoxia. At 4 h of hypoxia, autophagy promoted cell survival whereas, after 48 h of hypoxia, autophagy increased cell death. Furthermore, we found that the tyrosine phosphorylation of EGFR (epidermal growth factor receptor) decreased after 16 h in hypoxia. Furthermore, EGFR binding to BECN1 in hypoxia was significantly higher at 4 h compared to 72 h. Knocking down or inhibiting EGFR resulted in an increase in autophagy contributing to increased cell death under hypoxia. In contrast, when EGFR was reactivated by the addition of EGF, the level of autophagy was reduced which led to decreased cell death. Hypoxia led to autophagic degradation of the lipid raft protein CAV1 (caveolin 1) that is known to bind and activate EGFR in a ligand-independent manner during hypoxia. By knocking down CAV1, the amount of EGFR phosphorylation was decreased in hypoxia and amount of autophagy and cell death increased. This indicates that the activation of EGFR plays a critical role in the switch between cell survival and cell death induced by autophagy in hypoxia.

  15. Regulation of the catalytic activity of the EGF receptor

    PubMed Central

    Endres, Nicholas F.; Engel, Kate; Das, Rahul; Kovacs, Erika; Kuriyan, John

    2011-01-01

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase involved in cell growth that is often misregulated in cancer. Several recent studies highlight the unique structural mechanisms involved in its regulation. Some elucidate the important role that the juxtamembrane segment and the transmembrane helix play in stabilizing the activating asymmetric kinase dimer, and suggest that its activation mechanism is likely to be conserved amongst the other human EGFR-related receptors. Other studies provide new explanations for two long observed, but poorly understood phenomena, the apparent heterogeneity in ligand binding and the formation of ligand-independent dimers. New insights into the allosteric mechanisms utilized by intracellular regulators of EGFR provide hope that allosteric sites could be used as targets for drug development. PMID:21868214

  16. Continued EGFR-TKI with concurrent radiotherapy to improve time to progression (TTP) in patients with locally progressive non-small cell lung cancer (NSCLC) after front-line EGFR-TKI treatment.

    PubMed

    Wang, Y; Li, Y; Xia, L; Niu, K; Chen, X; Lu, D; Kong, R; Chen, Z; Sun, J

    2018-03-01

    Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) is the optimal treatment for EGFR-mutant advanced non-small cell lung cancer (NSCLC). However, most patients developed systemic or local progression due to acquired EGFR-TKI resistance. This retrospective study aimed to evaluate the feasibility of continued EGFR-TKI with concurrent radiotherapy (CTCRT) in patients with local progression after front-line EGFR-TKI treatment. Advanced NSCLC patients with active EGFR mutation who received EGFR-TKI were treated with CTCRT after local progression. Medical data were analyzed for time to progression (TTP), progression-free survival (PFS), tumor response rate, overall survival (OS) and adverse events. A total of 50 irradiated lesions from 44 patients were included. Median TTP and PFS of measurable lesions (n = 31) were both significantly prolonged after local radiotherapy (TTP1 + TTP2 vs. TTP1: 21.7 vs. 16.0 months, P = 0.010; PFS1 + PFS2 vs. PFS1: 21.3 vs. 16.0 months, P = 0.027). For all lesions (n = 50), objective response rate (ORR) and local tumor control rate (LCR) were 54.0 and 84.0%, respectively. Median OS was 26.6 months. There were no serious adverse events before or after radiotherapy. The treatment modality of CTCRT is considerable and effective for EGFR-mutant NSCLC patients even with local failure from front-line EGFR-TKI treatment.

  17. Surmounting the resistance against EGFR inhibitors through the development of thieno[2,3-d]pyrimidine-based dual EGFR/HER2 inhibitors.

    PubMed

    Milik, Sandra N; Abdel-Aziz, Amal Kamal; Lasheen, Deena S; Serya, Rabah A T; Minucci, Saverio; Abouzid, Khaled A M

    2018-06-06

    In light of the emergence of resistance against the currently available EGFR inhibitors, our study focuses on tackling this problem through the development of dual EGFR/HER2 inhibitors with improved enzymatic affinities. Guided by the binding mode of the marketed dual EGFR/HER2 inhibitor, Lapatinib, we proposed the design of dual EGFR/HER2 inhibitors based on the 6-phenylthieno[2,3-d]pyrimidine as a core scaffold and hinge binder. After two cycles of screening aiming to identify the optimum aniline headgroup and solubilizing group, we eventually identified 27b as a dual EGFR/HER2 inhibitor with IC 50 values of 91.7 nM and 1.2 μM, respectively. Notably, 27b dramatically reduced the viability of various patient-derived cancer cells preferentially overexpressing EGFR/HER2 (A431, MDA-MBA-361 and SKBr3 with IC 50 values of 1.45, 3.5 and 4.83 μM, respectively). Additionally, 27b efficiently thwarted the proliferation of lapatinib-resistant human non-small lung carcinoma (NCI-H1975) cells, harboring T790 M mutation, with IC 50 of 4.2 μM. Consistently, 27b significantly blocked EGF-induced EGFR activation and inactivated its downstream AKT/mTOR/S6 signalling pathway triggering apoptotic cell death in NCI-H1975 cells. The present study presents a promising candidate for further design and development of novel EGFR/HER2 inhibitors capable of overcoming EGFR TKIs resistance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Angiogenin/Ribonuclease 5 Is an EGFR Ligand and a Serum Biomarker for Erlotinib Sensitivity in Pancreatic Cancer.

    PubMed

    Wang, Ying-Nai; Lee, Heng-Huan; Chou, Chao-Kai; Yang, Wen-Hao; Wei, Yongkun; Chen, Chun-Te; Yao, Jun; Hsu, Jennifer L; Zhu, Cihui; Ying, Haoqiang; Ye, Yuanqing; Wang, Wei-Jan; Lim, Seung-Oe; Xia, Weiya; Ko, How-Wen; Liu, Xiuping; Liu, Chang-Gong; Wu, Xifeng; Wang, Huamin; Li, Donghui; Prakash, Laura R; Katz, Matthew H; Kang, Yaan; Kim, Michael; Fleming, Jason B; Fogelman, David; Javle, Milind; Maitra, Anirban; Hung, Mien-Chie

    2018-04-09

    Pancreatic ribonuclease (RNase) is a secreted enzyme critical for host defense. We discover an intrinsic RNase function, serving as a ligand for epidermal growth factor receptor (EGFR), a member of receptor tyrosine kinase (RTK), in pancreatic ductal adenocarcinoma (PDAC). The closely related bovine RNase A and human RNase 5 (angiogenin [ANG]) can trigger oncogenic transformation independently of their catalytic activities via direct association with EGFR. Notably, high plasma ANG level in PDAC patients is positively associated with response to EGFR inhibitor erlotinib treatment. These results identify a role of ANG as a serum biomarker that may be used to stratify patients for EGFR-targeted therapies, and offer insights into the ligand-receptor relationship between RNase and RTK families. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Third-generation epidermal growth factor receptor-tyrosine kinase inhibitors in T790M-positive non-small cell lung cancer: review on emerged mechanisms of resistance

    PubMed Central

    Minari, Roberta; Bordi, Paola

    2016-01-01

    Osimertinib, third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), has been approved in the US and EU for the treatment of EGFR mutant T790M-positive non-small cell lung cancer (NSCLC) patients resistant to first- or second-generation EGFR-TKIs, such as gefitinib, erlotinib and afatinib. Although exciting survival data and response rates have been registered in patients treated with this and other third-generation EGFR-TKIs, unfortunately acquired resistance still occurs after approximately 10 months. Mechanisms determining progression of disease are heterogeneous and not fully understood. EGFR-dependent resistance mechanisms (such as new EGFR mutations), bypass pathway activation [as erb-b2 receptor tyrosine kinase 2 (HER2) or MET amplification] and histological transformation [in small cell lung cancer (SCLC)] have been reported, similarly to previous generation TKIs. Here, we review principle mechanisms of innate and acquired resistance described in literature both in clinical and preclinical settings during NSCLC treatment with third-generation EGFR-TKIs. PMID:28149764

  20. Maintenance of Glia in the Optic Lamina Is Mediated by EGFR Signaling by Photoreceptors in Adult Drosophila

    PubMed Central

    Lee, Yuan-Ming; Sun, Y. Henry

    2015-01-01

    The late onset of neurodegeneration in humans indicates that the survival and function of cells in the nervous system must be maintained throughout adulthood. In the optic lamina of the adult Drosophila, the photoreceptor axons are surrounded by multiple types of glia. We demonstrated that the adult photoreceptors actively contribute to glia maintenance in their target field within the optic lamina. This effect is dependent on the epidermal growth factor receptor (EGFR) ligands produced by the R1-6 photoreceptors and transported to the optic lamina to act on EGFR in the lamina glia. EGFR signaling is necessary and sufficient to act in a cell-autonomous manner in the lamina glia. Our results suggest that EGFR signaling is required for the trafficking of the autophagosome/endosome to the lysosome. The loss of EGFR signaling results in cell degeneration most likely because of the accumulation of autophagosomes. Our findings provide in vivo evidence for the role of adult neurons in the maintenance of glia and a novel role for EGFR signaling in the autophagic flux. PMID:25909451

  1. Biodistribution and Pharmacokinetics of EGFR-Targeted Thiolated Gelatin Nanoparticles Following Systemic Administration in Pancreatic Tumor-Bearing Mice

    PubMed Central

    Xu, Jing; Gattacceca, Florence; Amiji, Mansoor

    2013-01-01

    The objective of this study was to evaluate qualitative and quantitative biodistribution of epidermal growth factor receptor (EGFR)-targeted thiolated type B gelatin nanoparticles in vivo in a subcutaneous human pancreatic adenocarcinoma (Panc-1) bearing female SCID Beige mice. EGFR-targeted nanoparticles showed preferential and sustained accumulation in the tumor mass, especially at early time points. Higher blood concentrations and higher tumor accumulations were observed with PEG-modified and EGFR-targeted nanoparticles during the study (AUClast: 17.38 and 19.56 %ID/mL*h in blood, 187 and 322 %ID/g*h in tumor for PEG-modified and EGFR-targeted nanoparticles, respectively), as compared to control, unmodified particles (AUClast: 10.71 %ID/mL*h in blood and 138 %ID/g*h in tumor). EGFR-targeted nanoparticles displayed almost twice tumor targeting efficiency than either PEG-modified or the unmodified nanoparticles, highlighting the efficacy of the active targeting strategy. In conclusion, this study shows that EGFR-targeted and PEG-modified nanoparticles were suitable vehicles for specific systemic delivery in subcutaneous Panc-1 tumor xenograft models. PMID:23544877

  2. Biodistribution and pharmacokinetics of EGFR-targeted thiolated gelatin nanoparticles following systemic administration in pancreatic tumor-bearing mice.

    PubMed

    Xu, Jing; Gattacceca, Florence; Amiji, Mansoor

    2013-05-06

    The objective of this study was to evaluate qualitative and quantitative biodistribution of epidermal growth factor receptor (EGFR)-targeted thiolated type B gelatin nanoparticles in vivo in subcutaneous human pancreatic adenocarcinoma (Panc-1) bearing female SCID Beige mice. EGFR-targeted nanoparticles showed preferential and sustained accumulation in the tumor mass, especially at early time points. Higher blood concentrations and higher tumor accumulations were observed with PEG-modified and EGFR-targeted nanoparticles during the study (AUClast: 17.38 and 19.56%ID/mL·h in blood, 187 and 322%ID/g·h in tumor for PEG-modified and EGFR-targeted nanoparticles, respectively), as compared to control, unmodified particles (AUClast: 10.71%ID/mL·h in blood and 138%ID/g·h in tumor). EGFR-targeted nanoparticles displayed almost twice tumor targeting efficiency than either PEG-modified or the unmodified nanoparticles, highlighting the efficacy of the active targeting strategy. In conclusion, this study shows that EGFR-targeted and PEG-modified nanoparticles were suitable vehicles for specific systemic delivery in subcutaneous Panc-1 tumor xenograft models.

  3. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma

    PubMed Central

    Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187

  4. Outcomes in patients with non-small-cell lung cancer and acquired Thr790Met mutation treated with osimertinib: a genomic study.

    PubMed

    Lin, Chia-Chi; Shih, Jin-Yuan; Yu, Chong-Jen; Ho, Chao-Chi; Liao, Wei-Yu; Lee, Jih-Hsing; Tsai, Tzu-Hsiu; Su, Kang-Yi; Hsieh, Min-Shu; Chang, Yih-Leong; Bai, Ya-Ying; Huang, Derek De-Rui; Thress, Kenneth S; Yang, James Chih-Hsin

    2018-02-01

    Osimertinib is approved for the treatment of non-small-cell lung cancer in patients who develop the EGFR Thr790Met mutation after treatment with epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitors (TKIs). We assessed outcomes in patients with non-small-cell lung cancer and the EGFR Thr790Met mutation who were treated with osimertinib, a third-generation EGFR TKI, after previous treatment failure with one or more other EGFR TKIs. Eligible patients had been enrolled at one centre in the AURA study, had shown resistance to a previous EGFR TKI, and had EGFR-activating mutations and acquired Thr790Met mutation detectable in tumour tissue or plasma. Patients took 20-240 mg osimertinib per day until disease progression or development of intolerable side-effects. Plasma samples were collected every 6 weeks and tumour tissue biopsy was done at study entry and was optional after disease progression. We tested samples for resistance mechanisms, including EGFR-activating, Thr790Met, and Cys797Ser mutations, and assessed associations with overall survival, progression-free survival, and survival after disease progression. Of 71 patients enrolled in AURA, 53 were eligible for this analysis. Median progression-free survival was 11·1 months (95% CI 8·4-13·9) and overall survival was 16·9 months (11·7-29·1). 47 patients had disease progression. Median overall survival after osimertinib progression was 5·4 months (95% CI 4·1-10·0). Plasma samples were available for 40 patients after disease progression. 12 (30%) of these had the Thr790Met mutation (four of whom also had Cys797Ser mutations). Patients without detectable EGFR-activating mutations in plasma before treatment had the best overall and post-progression survival (22·4 months, 95% CI 15·6-not reached, and 10·8 months, 7·2-not reached, respectively). Loss of the Thr790Met mutation but presence of EGFR-activating mutations in plasma were associated with the shortest progression-free survival (median 2·6 months, 95% CI 1·3-not reached). In 22 post-progression tumour samples, we found one squamous cell and two small-cell transformations. We detected Thr790Met in nine (50%) of 18 samples, Cys797Ser in two (17%) of 12, cMET amplification in five (50%) of ten, BRAF mutation in one (8%) of 13, and KRAS mutation in one (8%) of 13. Heterogeneous resistance mechanisms developed in patients receiving osimertinib. Differences in resistance mechanisms might dictate future development strategies for osimertinib in clinical trials. AstraZeneca, Taiwan Ministry of Science and Technology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Multiplex Ultrasensitive Genotyping of Patients with Non-Small Cell Lung Cancer for Epidermal Growth Factor Receptor (EGFR) Mutations by Means of Picodroplet Digital PCR.

    PubMed

    Watanabe, Masaru; Kawaguchi, Tomoya; Isa, Shun-Ichi; Ando, Masahiko; Tamiya, Akihiro; Kubo, Akihito; Saka, Hideo; Takeo, Sadanori; Adachi, Hirofumi; Tagawa, Tsutomu; Kawashima, Osamu; Yamashita, Motohiro; Kataoka, Kazuhiko; Ichinose, Yukito; Takeuchi, Yukiyasu; Watanabe, Katsuya; Matsumura, Akihide; Koh, Yasuhiro

    2017-07-01

    Epidermal growth factor receptor (EGFR) mutations have been used as the strongest predictor of effectiveness of treatment with EGFR tyrosine kinase inhibitors (TKIs). Three most common EGFR mutations (L858R, exon 19 deletion, and T790M) are known to be major selection markers for EGFR-TKIs therapy. Here, we developed a multiplex picodroplet digital PCR (ddPCR) assay to detect 3 common EGFR mutations in 1 reaction. Serial-dilution experiments with genomic DNA harboring EGFR mutations revealed linear performance, with analytical sensitivity ~0.01% for each mutation. All 33 EGFR-activating mutations detected in formalin-fixed paraffin-embedded (FFPE) tissue samples by the conventional method were also detected by this multiplex assay. Owing to the higher sensitivity, an additional mutation (T790M; including an ultra-low-level mutation, <0.1%) was detected in the same reaction. Regression analysis of the duplex assay and multiplex assay showed a correlation coefficient (R 2 ) of 0.9986 for L858R, 0.9844 for an exon 19 deletion, and 0.9959 for T790M. Using ddPCR, we designed a multiplex ultrasensitive genotyping platform for 3 common EGFR mutations. Results of this proof-of-principle study on clinical samples indicate clinical utility of multiplex ddPCR for screening for multiple EGFR mutations concurrently with an ultra-rare pretreatment mutation (T790M). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Epigenetic suppression of EGFR signaling in G-CIMP+ glioblastomas

    PubMed Central

    Goyal, Amit; Gonda, David; Akers, Johnny; Adhikari, Bandita; Patel, Kunal; Vandenberg, Scott; Yan, Wei; Bao, Zhaoshi; Carter, Bob S.; Wang, Renzhi; Mao, Ying; Jiang, Tao; Chen, Clark C.

    2014-01-01

    The intrinsic signaling cascades and cell states associated with the Glioma CpG Island Methylator Phenotype (G-CIMP) remain poorly understood. Using published mRNA signatures associated with EGFR activation, we demonstrate that G-CIMP+ tumors harbor decreased EGFR signaling using three independent datasets, including the Chinese Glioma Genome Atlas(CGGA; n=155), the REMBRANDT dataset (n=288), and The Cancer Genome Atlas (TCGA; n=406). Additionally, an independent collection of 25 fresh-frozen glioblastomas confirmed lowered pERK levels in G-CIMP+ specimens (p<0.001), indicating suppressed EGFR signaling. Analysis of TCGA glioblastomas revealed that G-CIMP+ glioblastomas harbored lowered mRNA levels for EGFR and H-Ras. Induction of G-CIMP+ state by exogenous expression of a mutated isocitrate dehydrogenase 1, IDH1-R132H, suppressed EGFR and H-Ras protein expression as well as pERK accumulation in independent glioblastoma models. These suppressions were associated with increased deposition of the repressive histone markers, H3K9me3 and H3K27me3, in the EGFR and H-Ras promoter regions. The IDH1-R132H expression-induced pERK suppression can be reversed by exogenous expression of H-RasG12V. Finally, the G-CIMP+ Ink4a-Arf−/− EGFRvIII glioblastoma line was more resistant to the EGFR inhibitor, Gefitinib, relative to its isogenic G-CIMP- counterpart. These results suggest that G-CIMP epigenetically regulates EGFR signaling and serves as a predictive biomarker for EGFR inhibitors in glioblastoma patients. PMID:25277177

  7. Epigenetic suppression of EGFR signaling in G-CIMP+ glioblastomas.

    PubMed

    Li, Jie; Taich, Zachary J; Goyal, Amit; Gonda, David; Akers, Johnny; Adhikari, Bandita; Patel, Kunal; Vandenberg, Scott; Yan, Wei; Bao, Zhaoshi; Carter, Bob S; Wang, Renzhi; Mao, Ying; Jiang, Tao; Chen, Clark C

    2014-09-15

    The intrinsic signaling cascades and cell states associated with the Glioma CpG Island Methylator Phenotype (G-CIMP) remain poorly understood. Using published mRNA signatures associated with EGFR activation, we demonstrate that G-CIMP+ tumors harbor decreased EGFR signaling using three independent datasets, including the Chinese Glioma Genome Atlas(CGGA; n=155), the REMBRANDT dataset (n=288), and The Cancer Genome Atlas (TCGA; n=406). Additionally, an independent collection of 25 fresh-frozen glioblastomas confirmed lowered pERK levels in G-CIMP+ specimens (p<0.001), indicating suppressed EGFR signaling. Analysis of TCGA glioblastomas revealed that G-CIMP+ glioblastomas harbored lowered mRNA levels for EGFR and H-Ras. Induction of G-CIMP+ state by exogenous expression of a mutated isocitrate dehydrogenase 1, IDH1-R132H, suppressed EGFR and H-Ras protein expression as well as pERK accumulation in independent glioblastoma models. These suppressions were associated with increased deposition of the repressive histone markers, H3K9me3 and H3K27me3, in the EGFR and H-Ras promoter regions. The IDH1-R132H expression-induced pERK suppression can be reversed by exogenous expression of H-RasG12V. Finally, the G-CIMP+ Ink4a-Arf-/- EGFRvIII glioblastoma line was more resistant to the EGFR inhibitor, Gefitinib, relative to its isogenic G-CIMP- counterpart. These results suggest that G-CIMP epigenetically regulates EGFR signaling and serves as a predictive biomarker for EGFR inhibitors in glioblastoma patients.

  8. Renal toxicity of anticancer agents targeting HER2 and EGFR.

    PubMed

    Cosmai, Laura; Gallieni, Maurizio; Porta, Camillo

    2015-12-01

    EGFR and HER2 are found overexpressed and/or activated in many different human malignancies (e.g. breast and colon cancer), and a number of drugs specifically targeting these two tyrosine kinases have been developed over the years as anticancer agents. In the present review, the renal safety profile of presently available agents targeting either HER2 or EGFR will be discussed, together with the peculiarities related to their clinical use in patients with impaired renal function, or even in dialysis. Indeed, even though renal toxicity is not so common with these agents, it may nevertheless happen, especially when these agents are combined with traditional chemotherapeutic agents. As a whole, kidney impairment or dialysis should not be regarded per se as reasons not to administer or to stop an active anti-HER or anti-EGFR anticancer treatment, especially given the possibility of significantly improving the life expectancy of many cancer patients with the use of these agents.

  9. [Efficacy of icotinib for advanced non-small cell lung cancer patients with EGFR status identified].

    PubMed

    Song, Zhengbo; Yu, Xinmin; Cai, Jufen; Shao, Lan; Lin, Baochai; He, Chunxiao; Zhang, Beibei; Zhang, Yiping

    2013-03-01

    As the first epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) in China, icotinib shows promising anticancer activity in vitro and vivo. The phase III clinical study (ICOGEN) showed that icotinib has a good efficacy and tolerability in Chinese patients with advanced non-small cell lung cancer (NSCLC) compared with gefitinib. This retrospective study aims to evaluate the efficacy and tolerability of icotinib monotherapy for advanced NSCLC patients with EGFR mutation and wild-type patients in our hospital. Patients with advanced NSCLC who were treated with icotinib in Zhejiang Cancer Hospital were retrospectively analyzed from August, 2011 to August, 2012. Survival was estimated using Kaplan-Meier analysis and Log-rank tests. The clinical data of 49 patients (13 with wild-type and 36 with EGFR mutation) with NSCLC were enrolled in the current study. The patients' overall objective response rate (ORR) was 58.3% and the disease control rate (DCR) in 36 EGFR mutation patients was 88.9%. The ORR was 7.7% and DCR was 53.8% in the wild-type patients. Median progression-free survival (PFS) with icotinib treatment in EGFR mutation patients was 9.5 months and 2.2 months in wild-type patients (P<0.001). Nineteen patients with EGFR mutation received icotinib as first-line and 17 in further-line treatment. The PFS was 9.5 months in the first-line and 8.5 months for second-line or further-line patients (P=0.41). Median overall survival (OS) in EGFR mutation patients was not reached, but was 12.6 months in wild-type patients. Most of the drug-related adverse events were mild (grade I or II) and reversible with no grade IV toxicity. Icotinib monotherapy showed significant antitumor activity in advanced NSCLC EGFR mutation patients. The toxicity was well tolerated and acceptable.

  10. The 3p14.2 tumour suppressor ADAMTS9 is inactivated by promoter CpG methylation and inhibits tumour cell growth in breast cancer.

    PubMed

    Shao, Bianfei; Feng, Yixiao; Zhang, Hongbin; Yu, Fang; Li, Qianqian; Tan, Cui; Xu, Hongying; Ying, Jianming; Li, Lili; Yang, Dejuan; Peng, Weiyan; Tang, Jun; Li, Shuman; Ren, Guosheng; Tao, Qian; Xiang, Tingxiu

    2018-02-01

    Chromosome region 3p12-14 is an important tumour suppressor gene (TSG) locus for multiple cancers. ADAMTS9, a member of the metalloprotease large family, has been identified as a candidate 3p14.2 TSG inactivated by aberrant promoter CpG methylation in several carcinomas, but little known about its expression and function in breast cancer. In this report, ADAMTS9 expression and methylation was analysed in breast cancer cell lines and tissue samples. ADAMTS9 RNA was significantly down-regulated in breast cancer cell lines (6/8). After treating the cells with demethylation agent Aza and TSA, ADAMTS9 expression was dramatically increased. Bisulphite genomic sequencing and methylation-specific PCR detected promoter methylation, which was associated with decreased ADAMTS9 expression. Hypermethylation was also detected in 130/219 (59.4%) of primary tumours but only in 4.5% (2/44) of paired surgical margin tissues. Ectopic expression of ADAMTS9 in tumor cells induced significant growth suppression, cell cycle arrest at the G0/G1 phase, enhanced apoptosis and reduced cell migration and invasion. Conditioned culture medium from ADAMTS9-transfected BT549 cells markedly disrupted tube formation ability of human umbilical vein endothelial cell (HUVEC) in Matrigel. Furthermore, ADAMTS9 inhibited AKT signaling and its downstream targets (MDM2, p53, p21, p27, E-cadherin, VIM, SNAIL, VEGFA, NFκB-p65 and MMP2). In addition, we demonstrated, for the first time, that ADAMTS9 inhibits AKT signaling, through suppressing its upstream activators EGFR and TGFβ1/TβR(I/II) in breast cancer cells. Our results suggest that ADAMTS9 is a TSG epigenetically inactivated in breast cancer, which functions through blocking EGFR- and TGFβ1/TβR(I/II)-activated AKT signaling. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. 2-Triazenoazaindoles: A novel class of triazenes inducing transcriptional down-regulation of EGFR and HER-2 in human pancreatic cancer cells

    PubMed Central

    KREUTZER, JAN N.; SALVADOR, ALESSIA; DIANA, PATRIZIA; CIRRINCIONE, GIROLAMO; VEDALDI, DANIELA; LITCHFIELD, DAVID W.; ISSINGER, OLAF-GEORG; GUERRA, BARBARA

    2012-01-01

    Pancreatic cancer is a complex malignancy arising from the accumulation of genetic and epigenetic defects in the affected cells. Standard chemotherapy for patients with advanced disease shows only modest effects and is associated with considerable toxicity. Overexpression or aberrant activation of members of the epidermal growth factor receptor tyrosine kinase family, which includes EGFR and HER-2, occurs frequently and is associated with multiple drug resistance and decreased patient survival. In this study, we have investigated the therapeutic potential of AS104, a novel compound of the triazene class, with potential inhibitory effects on EGFR. We found that treatment of cells with AS104 causes significant reduction of cell growth and metabolic activity in four human pancreatic cancer cell lines. Furthermore, we show that the AS104-mediated induction of apoptotic cell death is associated with stimulation of autophagy in a dose-dependent manner. Treatment of cells with AS104 results in significant down-regulation of EGFR and HER-2 expression and activity and subsequent inhibition of downstream signaling proteins. Quantitative RT-PCR analysis and assays with proteasome inhibitors revealed that AS104 regulates the expression of EGFR and HER-2 at the transcriptional level. These findings provide for the first time experimental evidence for efficacy of AS104 in the simultaneous transcriptional repression of EGFR and HER-2 genes and suggest that AS104 may have therapeutic potential in the treatment of pancreatic cancers that express high levels of the aforementioned receptor tyrosine kinases. PMID:22134789

  12. 2-Triazenoazaindoles: α novel class of triazenes inducing transcriptional down-regulation of EGFR and HER-2 in human pancreatic cancer cells.

    PubMed

    Kreutzer, Jan N; Salvador, Alessia; Diana, Patrizia; Cirrincione, Girolamo; Vedaldi, Daniela; Litchfield, David W; Issinger, Olaf-Georg; Guerra, Barbara

    2012-04-01

    Pancreatic cancer is a complex malignancy arising from the accumulation of genetic and epigenetic defects in the affected cells. Standard chemotherapy for patients with advanced disease shows only modest effects and is associated with considerable toxicity. Overexpression or aberrant activation of members of the epidermal growth factor receptor tyrosine kinase family, which includes EGFR and HER-2, occurs frequently and is associated with multiple drug resistance and decreased patient survival. In this study, we have investigated the therapeutic potential of AS104, a novel compound of the triazene class, with potential inhibitory effects on EGFR. We found that treatment of cells with AS104 causes significant reduction of cell growth and metabolic activity in four human pancreatic cancer cell lines. Furthermore, we show that the AS104-mediated induction of apoptotic cell death is associated with stimulation of autophagy in a dose-dependent manner. Treatment of cells with AS104 results in significant down-regulation of EGFR and HER-2 expression and activity and subsequent inhibition of downstream signaling proteins. Quantitative RT-PCR analysis and assays with proteasome inhibitors revealed that AS104 regulates the expression of EGFR and HER-2 at the transcriptional level. These findings provide for the first time experimental evidence for efficacy of AS104 in the simultaneous transcriptional repression of EGFR and HER-2 genes and suggest that AS104 may have therapeutic potential in the treatment of pancreatic cancers that express high levels of the aforementioned receptor tyrosine kinases.

  13. Epidermal growth factor receptor signaling pathway is frequently altered in ampullary carcinoma at protein and genetic levels.

    PubMed

    Mikhitarian, Kaidi; Pollen, Maressa; Zhao, Zhiguo; Shyr, Yu; Merchant, Nipun B; Parikh, Alexander; Revetta, Frank; Washington, M Kay; Vnencak-Jones, Cindy; Shi, Chanjuan

    2014-05-01

    Our objective was to explore alteration of the epidermal growth factor receptor (EGFR) signaling pathway in ampullary carcinoma. Immunohistochemical studies were employed to evaluate expression of amphiregulin as well as expression and activation of EGFR. A lab-developed assay was used to identify mutations in the EGFR pathway genes, including KRAS, BRAF, PIK3CA, PTEN, and AKT1. A total of 52 ampullary carcinomas were identified, including 25 intestinal-type and 24 pancreatobiliary-type tumors, with the intestinal type being associated with a younger age at diagnosis (P=0.03) and a better prognosis (P<0.01). Expression of amphiregulin correlated with better differentiation (P<0.01), but no difference was observed between two major histologic types. Expression and activation of EGFR was more commonly seen in the pancreatobiliary type (P<0.01). Mutations were detected in 50% of the pancreatobiliary type and 60% of the intestinal type. KRAS was the most common gene mutated in the pancreatobiliary type (42%) as well as the intestinal type (52%). Other mutations detected included PIK3CA, SMAD4 and BRAF. KRAS mutations at codons 12 and 13 did not adversely affect overall survival. In conclusion, EGFR expression and activation were different between intestinal- and pancreatobiliary-type ampullary carcinoma. KRAS mutation was common in both histologic types; however, the incidence appeared to be lower in the pancreatobiliary type compared with its pancreatic counterpart, pancreatic ductal adenocarcinoma. Mutational analysis of the EGFR pathway genes may provide important insights into personalized treatment for patients with ampullary carcinoma.

  14. Could occupational physical activity mitigate the link between moderate kidney dysfunction and coronary heart disease?

    PubMed

    Esquirol, Yolande; Tully, Mark; Ruidavets, Jean-Bernard; Fogarty, Damian; Ferrieres, Jean; Quinn, Michael; Hughes, Maria; Kee, Frank

    2014-12-20

    Chronic kidney disease is now regarded as a risk factor for cardiovascular disease. The impact of occupational or non-occupational physical activity (PA) on moderate decreases of renal function is uncertain. We aimed to identify the potential association of PA (occupational and leisure-time) on early decline of estimated glomerular filtration rate (eGFR) and to determine the potential mediating effect of PA on the relationship between eGFR and heart disease. From the PRIME study analyses were conducted in 1058 employed men. Energy expended during leisure, work and commuting was calculated. Linear regression analyses were used to determine the link between types of PA and moderate decrements of eGFR determined with the KDIGO guideline at the baseline assessment. Cox proportional hazards analyses were used to explore the potential effect of PA on the relationship between eGFR and heart disease, ascertained during follow-up over 10 years. For these employed men, and after adjustment for known confounders of GFR change, more time spent sitting at work was associated with increased risk of moderate decline in kidney function, while carrying objects or being active at work was associated with decreased risk. In contrast, no significant link with leisure PA was apparent. No potential mediating effect of occupational PA was found for the relationship between eGFR and coronary heart disease. Occupational PA (potential modifiable factors) could provide a dual role on early impairment of renal function, without influence on the relationship between early decrease of e-GFR and CHD risk. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Epiregulin (EREG) is upregulated through an IL-1β autocrine loop in Caco-2 epithelial cells with reduced CFTR function.

    PubMed

    Massip-Copiz, Macarena; Clauzure, Mariángeles; Valdivieso, Ángel G; Santa-Coloma, Tomás A

    2018-03-01

    CFTR is a cAMP-regulated chloride channel, whose mutations produce cystic fibrosis. The impairment of CFTR activity increases the intracellular Cl - concentration, which in turn produces an increased interleukin-1β (IL-1β) secretion. The secreted IL-1β then induces an autocrine positive feedback loop, further stimulating IL-1β priming and secretion. Since IL-1β can transactivate the epidermal growth factor receptor (EGFR), we study here the levels of expression for different EGFR ligands in Caco-2/pRS26 cells (expressing shRNA against CFTR resulting in a reduced CFTR expression and activity). The epiregulin (EREG), amphiregulin (AREG), and heparin binding EGF like growth factor (HBEGF) mRNAs, were found overexpressed in Caco-2/pRS26 cells. The EREG mRNA had the highest differential expression and was further characterized. In agreement with its mRNA levels, Western blots (WB) showed increased EREG levels in CFTR-impaired cells. In addition, EREG mRNA and protein levels were stimulated by incubation with exogenous IL-1β and inhibited by the Interleukin 1 receptor type I (IL1R1) antagonist IL1RN, suggesting that the overexpression of EREG is a consequence of the autocrine IL-1β loop previously described for these cells. In addition, the JNK inhibitor SP600125, and the EGFR inhibitors AG1478 and PD168393, also had an inhibitory effect on EREG expression, suggesting that EGFR, activated in Caco-2/pRS26 cells, is involved in the observed EREG upregulation. In conclusion, in Caco-2 CFTR-shRNA cells, the EGFR ligand EREG is overexpressed due to an active IL-1β autocrine loop that indirectly activates EGFR, constituting new signaling effectors for the CFTR signaling pathway, downstream of CFTR, Cl - , and IL-1β. © 2017 Wiley Periodicals, Inc.

  16. Integrated Experimental and Model-based Analysis Reveals the Spatial Aspects of EGFR Activation Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankaran, Harish; Zhang, Yi; Chrisler, William B.

    2012-10-02

    The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models for deconvolving the contributions of receptor dimerizationmore » and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor dephosphorylation rates at the cell surface and early endosomes are comparable. We validated the last finding by measuring EGFR dephosphorylation rates at various times following ligand addition both in whole cells, and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. Further, the mathematical model described here can be extended to determine receptor dimer abundances in cells co-expressing various levels of ErbB receptors. This study demonstrates that an iterative cycle of experiments and modeling can be used to gain mechanistic insight regarding complex cell signaling networks.« less

  17. Concurrent Autophagy Inhibition Overcomes the Resistance of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Human Bladder Cancer Cells.

    PubMed

    Kang, Minyong; Lee, Kyoung-Hwa; Lee, Hye Sun; Jeong, Chang Wook; Kwak, Cheol; Kim, Hyeon Hoe; Ku, Ja Hyeon

    2017-02-04

    Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR) inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1), chloroquine (CQ) and 3-methyladenine (3-MA) were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8) assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI) was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA) remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating a novel therapeutic strategy to treat advanced bladder cancer.

  18. EGFR molecular profiling in advanced NSCLC: a prospective phase II study in molecularly/clinically selected patients pretreated with chemotherapy.

    PubMed

    Milella, Michele; Nuzzo, Carmen; Bria, Emilio; Sperduti, Isabella; Visca, Paolo; Buttitta, Fiamma; Antoniani, Barbara; Merola, Roberta; Gelibter, Alain; Cuppone, Federica; D'Alicandro, Valerio; Ceribelli, Anna; Rinaldi, Massimo; Cianciulli, Anna; Felicioni, Lara; Malatesta, Sara; Marchetti, Antonio; Mottolese, Marcella; Cognetti, Francesco

    2012-04-01

    The optimal use of epidermal growth factor receptor (EGFR)-related molecular markers to prospectively identify tyrosine kinase inhibitor (TKI)-sensitive patients, particularly after a previous chemotherapy treatment, is currently under debate. We designed a prospective phase II study to evaluate the activity of EGFR-TKI in four different patient groups, according to the combination of molecular (EGFR gene mutations, EGFR gene copy number and protein expression, and phosphorylated AKT expression, pAKT) and clinicopathological (histology and smoking habits) factors. Correlations between molecular alterations and clinical outcome were also explored retrospectively for first-line chemotherapy and EGFR-TKI treatment. Patients who had progressed during or after first-line chemotherapy were prospectively assigned to EGFR-TKI treatment as follows: (G1) EGFR mutation (n = 12); (G2) highly polysomic/amplified EGFR (n = 18); (G3) EGFR and/or pAKT positive (n = 41); (G4) adenocarcinoma/bronchoalveolar carcinoma and no smoking history (n = 15). G1 and G4 had the best and second-best overall response rate (25% and 20%, respectively), whereas the worst outcome was observed in G2 (ORR, 6%; p = 0.05). Disease control was highest in G1 and G4 (>50%) and lowest in G3 (<20%) (p = 0.02). Patients selected by EGFR mutation or clinical parameters (G1 and G4) also had significantly better progression-free survival and overall survival (p = 0.02 and p = 0.01, respectively). Multivariate analysis confirmed the impact of sex, smoking history, EGFR/KRAS mutation, and pAKT on outcomes and allowed us to derive an efficient predictive model. Histology, EGFR mutations, and pAKT were independent predictors of response to first-line chemotherapy at retrospective analysis, whereas pAKT and human epidermal growth factor receptor 2 expression were the only independent predictors of progression-free survival and overall survival. Selection of patients based on either EGFR mutation or clinical characteristics seems an effective approach to optimize EGFR-TKI treatment in chemotherapy-pretreated non-small-cell lung cancer patients.

  19. Activity of IPI-504, a Novel Heat-Shock Protein 90 Inhibitor, in Patients With Molecularly Defined Non–Small-Cell Lung Cancer

    PubMed Central

    Sequist, Lecia V.; Gettinger, Scott; Senzer, Neil N.; Martins, Renato G.; Jänne, Pasi A.; Lilenbaum, Rogerio; Gray, Jhanelle E.; Iafrate, A. John; Katayama, Ryohei; Hafeez, Nafeeza; Sweeney, Jennifer; Walker, John R.; Fritz, Christian; Ross, Robert W.; Grayzel, David; Engelman, Jeffrey A.; Borger, Darrell R.; Paez, Guillermo; Natale, Ronald

    2010-01-01

    Purpose IPI-504 is a novel, water-soluble, potent inhibitor of heat-shock protein 90 (Hsp90). Its potential anticancer activity has been validated in preclinical in vitro and in vivo models. We studied the activity of IPI-504 after epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapy in patients with advanced, molecularly defined non–small-cell lung cancer (NSCLC). Patients and Methods Patients with advanced NSCLC, prior treatment with EGFR TKIs, and tumor tissue available for molecular genotyping were enrolled in this prospective, nonrandomized, multicenter, phase II study of IPI-504 monotherapy. The primary outcome was objective response rate (ORR). Secondary aims included safety, progression-free survival (PFS), and analysis of activity by molecular subtypes. Results Seventy-six patients were enrolled between December 2007 and May 2009 from 10 United States cancer centers. An ORR of 7% (five of 76) was observed in the overall study population, 10% (four of 40) in patients who were EGFR wild-type, and 4% (one of 28) in those with EGFR mutations. Although both EGFR groups were below the target ORR of 20%, among the three patients with an ALK gene rearrangement, two had partial responses and the third had prolonged stable disease (7.2 months, 24% reduction in tumor size). The most common adverse events included grades 1 and 2 fatigue, nausea, and diarrhea. Grade 3 or higher liver function abnormalities were observed in nine patients (11.8%). Conclusion IPI-504 has clinical activity in patients with NSCLC, particularly among patients with ALK rearrangements. PMID:20940188

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Keng-Hsueh; Shih, Yi-Sheng; Chang, Cheng Allen

    Highlights: Black-Right-Pointing-Pointer EGFR-expressing epithelial cancers account for significant portion of cancer deaths. Black-Right-Pointing-Pointer EGF-EGFR signaling pathway is validated as an important anticancer drug target. Black-Right-Pointing-Pointer EGF and Fcy fusion protein (Fcy-hEGF) can bind to EGFR and convert 5-FC to 5-FU. Black-Right-Pointing-Pointer Fcy-hEGF combined with 5-FC preferentially inhibits EGFR-expressing cells viability. -- Abstract: Human epithelial cancers account for approximately 50% of all cancer deaths. This type of cancer is characterized by excessive activation and expression of the epidermal growth factor receptor (EGFR). The EGFR pathway is critical for cancer cell proliferation, survival, metastasis and angiogenesis. The EGF-EGFR signaling pathway has beenmore » validated as an important anticancer drug target. Increasing numbers of targeted therapies against this pathway have been either approved or are currently under development. Here, we adopted a prodrug system that uses 5-fluorocytosine (5-FC) and human EGF (hEGF) fused with yeast cytosine deaminase (Fcy) to target EGFR-overexpressing cancer cells and to convert 5-FC to a significantly more toxic chemotherapeutic, 5-fluorouracil (5-FU). We cloned and purified the Fcy-hEGF fusion protein from Pichia pastoris yeast. This fusion protein specifically binds to EGFR with a similar affinity as hEGF, approximately 10 nM. Fcy-hEGF binds tightly to A431 and MDA-MB-468 cells, which overexpress EGFR, but it binds with a lower affinity to MDA-MB-231 and MCF-7, which express lower levels of EGFR. Similarly, the viability of EGFR-expressing cells was suppressed by Fcy-hEGF in the presence of increasing concentrations of 5-FC, and the IC{sub 50} values for A431 and MDA-MB-468 were approximately 10-fold lower than those of MDA-MB-231 and MCF-7. This novel prodrug system, Fcy-hEGF/5-FC, might represent a promising addition to the available class of inhibitors that specifically target EGFR-expressing cancers.« less

  1. Epidermal hyperproliferation in mice lacking fatty acid transport protein 4 (FATP4) involves ectopic EGF receptor and STAT3 signaling

    PubMed Central

    Lin, Meei-Hua; Chang, Kuo-Wei; Lin, Shu-Chun; Miner, Jeffrey H.

    2010-01-01

    Fatty acid transport protein (FATP) 4 is one of a family of six FATPs that facilitate long- and very long-chain fatty acid uptake. Mice lacking FATP4 are born with tight, thick skin and a defective epidermal barrier; they die neonatally due to dehydration and restricted movements. Both the skin phenotype and the lethality are rescued by transgene-driven expression of FATP4 solely in suprabasal keratinocytes. Here we show that Fatp4 mutants exhibit epidermal hyperplasia resulting from an increased number of proliferating suprabasal cells. In addition, barrier formation initiates precociously but never progresses to completion. To investigate possible mechanisms whereby Fatp4 influences skin development, we identified misregulated genes in Fatp4 mutants. Remarkably, three members of the epidermal growth factor (EGF) family (Ereg, Areg, and Epgn) showed increased expression that was associated with elevated epidermal activation of the EGF receptor (EGFR) and STAT3, a downstream effector of EGFR signaling. Both Tyrphostin AG1478, an EGFR tyrosine kinase inhibitor, and curcumin, an inhibitor of both STAT3 and EGFR, attenuated STAT3 activation/nuclear translocation, reduced skin thickening, and partially suppressed the barrier abnormalities. These data identify FATP4 activity as negatively influencing EGFR activation and the resulting STAT3 signaling during normal skin development. These findings have important implications for understanding the pathogenesis of ichthyosis prematurity syndrome, a disease recently shown to be caused by FATP4 mutations. PMID:20513444

  2. Genetic deletion of the EGFR ligand epigen does not affect mouse embryonic development and tissue homeostasis.

    PubMed

    Dahlhoff, Maik; Schäfer, Matthias; Wolf, Eckhard; Schneider, Marlon R

    2013-02-15

    The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor with manifold functions during development, tissue homeostasis and disease. EGFR activation, the formation of homodimers or heterodimers (with the related ERBB2-4 receptors) and downstream signaling is initiated by the binding of a family of structurally related growth factors, the EGFR ligands. Genetic deletion experiments clarified the biological function of all family members except for the last characterized ligand, epigen. We employed gene targeting in mouse embryonic stem cells to generate mice lacking epigen expression. Loss of epigen did not affect mouse development, fertility, or organ physiology. Quantitative RT-PCR analysis revealed increased expression of betacellulin and EGF in a few organs of epigen-deficient mice, suggesting a functional compensation by these ligands. In conclusion, we completed the genetic analysis of EGFR ligands and show that epigen has non-essential functions or functions that can be compensated by other EGFR ligands during growth and tissue homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Elucidation of the critical epitope of an anti-EGFR monoclonal antibody EMab-134.

    PubMed

    Kaneko, Mika K; Yamada, Shinji; Itai, Shunsuke; Chang, Yao-Wen; Nakamura, Takuro; Yanaka, Miyuki; Kato, Yukinari

    2018-07-01

    The epidermal growth factor receptor (EGFR) is a type-1 transmembrane receptor tyrosine kinase, which activates the downstream signaling cascades in many tumors, such as oral and lung cancers. We previously developed EMab-134, a novel anti-EGFR monoclonal antibody (mAb), which reacts with endogenous EGFR-expressing cancer cell lines and normal cells independent of glycosylation in Western blotting, flow cytometry, and immunohistochemical analysis. EMab-134 showed very high sensitivity (94.7%) to oral squamous cell carcinomas in immunohistochemical analysis. In this study, we performed enzyme-linked immunosorbent assay (ELISA), flow cytometry, and immunohistochemical analysis to determine the epitope of EMab-134. A blocking peptide (375-394 amino acids of EGFR) neutralized the EMab-134 reaction against oral cancer cells in flow cytometry and immunohistochemistry. The minimum epitope of EMab-134 was found to be the 377- RGDSFTHTPP -386 sequence. Our findings can be applied for the production of more functional anti-EGFR mAbs that in turn can be used for antitumor treatments.

  4. Ras1 interacts with multiple new signaling and cytoskeletal loci in Drosophila eggshell patterning and morphogenesis.

    PubMed Central

    Schnorr, J D; Holdcraft, R; Chevalier, B; Berg, C A

    2001-01-01

    Little is known about the genes that interact with Ras signaling pathways to regulate morphogenesis. The synthesis of dorsal eggshell structures in Drosophila melanogaster requires multiple rounds of Ras signaling followed by dramatic epithelial sheet movements. We took advantage of this process to identify genes that link patterning and morphogenesis; we screened lethal mutations on the second chromosome for those that could enhance a weak Ras1 eggshell phenotype. Of 1618 lethal P-element mutations tested, 13 showed significant enhancement, resulting in forked and fused dorsal appendages. Our genetic and molecular analyses together with information from the Berkeley Drosophila Genome Project reveal that 11 of these lines carry mutations in previously characterized genes. Three mutations disrupt the known Ras1 cell signaling components Star, Egfr, and Blistered, while one mutation disrupts Sec61beta, implicated in ligand secretion. Seven lines represent cell signaling and cytoskeletal components that are new to the Ras1 pathway; these are Chickadee (Profilin), Tec29, Dreadlocks, POSH, Peanut, Smt3, and MESK2, a suppressor of dominant-negative Ksr. A twelfth insertion disrupts two genes, Nrk, a "neurospecific" receptor tyrosine kinase, and Tpp, which encodes a neuropeptidase. These results suggest that Ras1 signaling during oogenesis involves novel components that may be intimately associated with additional signaling processes and with the reorganization of the cytoskeleton. To determine whether these Ras1 Enhancers function upstream or downstream of the Egf receptor, four mutations were tested for their ability to suppress an activated Egfr construct (lambdatop) expressed in oogenesis exclusively in the follicle cells. Mutations in Star and l(2)43Bb had no significant effect upon the lambdatop eggshell defect whereas smt3 and dock alleles significantly suppressed the lambdatop phenotype. PMID:11606538

  5. Ras1 interacts with multiple new signaling and cytoskeletal loci in Drosophila eggshell patterning and morphogenesis.

    PubMed

    Schnorr, J D; Holdcraft, R; Chevalier, B; Berg, C A

    2001-10-01

    Little is known about the genes that interact with Ras signaling pathways to regulate morphogenesis. The synthesis of dorsal eggshell structures in Drosophila melanogaster requires multiple rounds of Ras signaling followed by dramatic epithelial sheet movements. We took advantage of this process to identify genes that link patterning and morphogenesis; we screened lethal mutations on the second chromosome for those that could enhance a weak Ras1 eggshell phenotype. Of 1618 lethal P-element mutations tested, 13 showed significant enhancement, resulting in forked and fused dorsal appendages. Our genetic and molecular analyses together with information from the Berkeley Drosophila Genome Project reveal that 11 of these lines carry mutations in previously characterized genes. Three mutations disrupt the known Ras1 cell signaling components Star, Egfr, and Blistered, while one mutation disrupts Sec61beta, implicated in ligand secretion. Seven lines represent cell signaling and cytoskeletal components that are new to the Ras1 pathway; these are Chickadee (Profilin), Tec29, Dreadlocks, POSH, Peanut, Smt3, and MESK2, a suppressor of dominant-negative Ksr. A twelfth insertion disrupts two genes, Nrk, a "neurospecific" receptor tyrosine kinase, and Tpp, which encodes a neuropeptidase. These results suggest that Ras1 signaling during oogenesis involves novel components that may be intimately associated with additional signaling processes and with the reorganization of the cytoskeleton. To determine whether these Ras1 Enhancers function upstream or downstream of the Egf receptor, four mutations were tested for their ability to suppress an activated Egfr construct (lambdatop) expressed in oogenesis exclusively in the follicle cells. Mutations in Star and l(2)43Bb had no significant effect upon the lambdatop eggshell defect whereas smt3 and dock alleles significantly suppressed the lambdatop phenotype.

  6. Increased EGFR expression induced by a novel oncogene, CUG2, confers resistance to doxorubicin through Stat1-HDAC4 signaling.

    PubMed

    Kaowinn, Sirichat; Jun, Seung Won; Kim, Chang Seok; Shin, Dong-Myeong; Hwang, Yoon-Hwae; Kim, Kyujung; Shin, Bosung; Kaewpiboon, Chutima; Jeong, Hyeon Hee; Koh, Sang Seok; Krämer, Oliver H; Johnston, Randal N; Chung, Young-Hwa

    2017-12-01

    Previously, it has been found that the cancer upregulated gene 2 (CUG2) and the epidermal growth factor receptor (EGFR) both contribute to drug resistance of cancer cells. Here, we explored whether CUG2 may exert its anticancer drug resistance by increasing the expression of EGFR. EGFR expression was assessed using Western blotting, immunofluorescence and capacitance assays in A549 lung cancer and immortalized bronchial BEAS-2B cells, respectively, stably transfected with a CUG2 expression vector (A549-CUG2; BEAS-CUG2) or an empty control vector (A549-Vec; BEAS-Vec). After siRNA-mediated EGFR, Stat1 and HDAC4 silencing, antioxidant and multidrug resistance protein and mRNA levels were assessed using Western blotting and RT-PCR. In addition, the respective cells were treated with doxorubicin after which apoptosis and reactive oxygen species (ROS) levels were measured. Stat1 acetylation was assessed by immunoprecipitation. We found that exogenous CUG2 overexpression induced EGFR upregulation in A549 and BEAS-2B cells, whereas EGFR silencing sensitized these cells to doxorubicin-induced apoptosis. In addition, we found that exogenous CUG2 overexpression reduced the formation of ROS during doxorubicin treatment by enhancing the expression of antioxidant and multidrug resistant proteins such as MnSOD, Foxo1, Foxo4, MRP2 and BCRP, whereas EGFR silencing congruently increased the levels of ROS by decreasing the expression of these proteins. We also found that EGFR silencing and its concomitant Akt, ERK, JNK and p38 MAPK inhibition resulted in a decreased Stat1 phosphorylation and, thus, a decreased activation. Since also acetylation can affect Stat1 activation via a phospho-acetyl switch, HDAC inhibition may sensitize cells to doxorubicin-induced apoptosis. Interestingly, we found that exogenous CUG2 overexpression upregulated HDAC4, but not HDAC2 or HDAC3. Conversely, we found that HDAC4 silencing sensitized the cells to doxorubicin resistance by decreasing Stat1 phosphorylation and EGFR expression, thus indicating an interplay between HDAC4, Stat1 and EGFR. Taken together, we conclude that CUG2-induced EGFR upregulation confers doxorubicin resistance to lung (cancer) cells through Stat1-HDAC4 signaling.

  7. Hypercapnia attenuates ventilator-induced lung injury via a disintegrin and metalloprotease-17

    PubMed Central

    Otulakowski, Gail; Engelberts, Doreen; Gusarova, Galina A; Bhattacharya, Jahar; Post, Martin; Kavanagh, Brian P

    2014-01-01

    Hypercapnic acidosis, common in mechanically ventilated patients, has been reported to exert both beneficial and harmful effects in models of lung injury. Understanding its effects at the molecular level may provide insight into mechanisms of injury and protection. The aim of this study was to establish the effects of hypercapnic acidosis on mitogen-activated protein kinase (MAPK) activation, and determine the relevant signalling pathways. p44/42 MAPK activation in a murine model of ventilator-induced lung injury (VILI) correlated with injury and was reduced in hypercapnia. When cultured rat alveolar epithelial cells were subjected to cyclic stretch, activation of p44/42 MAPK was dependent on epidermal growth factor receptor (EGFR) activity and on shedding of EGFR ligands; exposure to 12% CO2 without additional buffering blocked ligand shedding, as well as EGFR and p44/42 MAPK activation. The EGFR ligands are known substrates of the matrix metalloprotease ADAM17, suggesting stretch activates and hypercapnic acidosis blocks stretch-mediated activation of ADAM17. This was corroborated in the isolated perfused mouse lung, where elevated CO2 also inhibited stretch-activated shedding of the ADAM17 substrate TNFR1 from airway epithelial cells. Finally, in vivo confirmation was obtained in a two-hit murine model of VILI where pharmacological inhibition of ADAM17 reduced both injury and p44/42 MAPK activation. Thus, ADAM17 is an important proximal mediator of VILI; its inhibition is one mechanism of hypercapnic protection and may be a target for clinical therapy. PMID:25085885

  8. Profile of the Roche cobas® EGFR mutation test v2 for non-small cell lung cancer.

    PubMed

    Malapelle, Umberto; Sirera, Rafael; Jantus-Lewintre, Eloísa; Reclusa, Pablo; Calabuig-Fariñas, Silvia; Blasco, Ana; Pisapia, Pasquale; Rolfo, Christian; Camps, Carlos

    2017-03-01

    The discovery of driver mutations in non-small cell lung cancer (NSCLC) has led to the development of genome-based personalized medicine. Fifteen to 20% of adenocarcinomas harbor an epidermal growth factor receptor (EGFR) activating mutation associated with responses to EGFR tyrosine kinase inhibitors (TKIs). Individual laboratories' expertise and the availability of appropriate equipment are valuable assets in predictive molecular pathology, although the choice of methods should be determined by the nature of the samples to be tested and whether the detection of only well-characterized EGFR mutations or rather, of all detectable mutations, is required. Areas covered: The EGFR mutation testing landscape is manifold and includes both screening and targeted methods, each with their own pros and cons. Here we review one of these companion tests, the Roche cobas® EGFR mutation test v2, from a methodological point of view, also exploring its liquid-biopsy applications. Expert commentary: The Roche cobas® EGFR mutation test v2, based on real time RT-PCR, is a reliable option for testing EGFR mutations in clinical practice, either using tissue-derived DNA or plasma-derived cfDNA. This application will be valuable for laboratories with whose purpose is purely diagnostic and lacking high-throughput technologies.

  9. Interrogation of EGFR Targeted Uptake of TiO2 Nanoconjugates by X-ray Fluorescence Microscopy.

    PubMed

    Yuan, Ye; Paunesku, Tatjana; Arora, Hans; Ward, Jesse; Vogt, Stefan; Woloschak, Gayle

    2011-09-01

    We are developing TiO 2 nanoconjugates that can be used as therapeutic and diagnostic agents. Nanoscale TiO 2 can be surface conjugated with various molecules and has the unique ability to induce the production of reactive oxygen species after radiation activation. One way to improve the potential clinical usefulness of TiO 2 nanoparticles is to control their delivery to malignant cells by targeting them to cancer cell specific antigens. Epidermal Growth Factor Receptor is one potential target that is enriched in epithelial cancers and is rapidly internalized after ligand binding. Hence, we have synthesized TiO 2 nanoparticles and functionalized them with a short EGFR binding peptide to create EGFR-targeted NCs. X-ray Fluorescence Microscopy was used to image nanoconjugates within EGFR positive HeLa cells. Further labeling of fixed cells with antibodies against EGFR and Protein A nanogold showed that TiO 2 nanoconjugates can colocalize with receptors at the cell's plasma membrane. Interestingly, with increased incubation times, EGFR targeted nanoconjugates could also be found colocalized with EGFR within the cell nucleus. This suggests that EGFR-targeted nanoconjugates can bind the receptor at the cell membrane, which leads to the internalization of NC-receptor complexes and the subsequent transport of nanoconjugates into the nucleus.

  10. A marked response to icotinib in a patient with large cell neuroendocrine carcinoma harboring an EGFR mutation: A case report.

    PubMed

    Wang, Yuehong; Shen, Yi Hong; Ma, Shanni; Zhou, Jianying

    2015-09-01

    The present study reports the case of an 84-year-old male with primary pulmonary large cell neuroendocrine carcinoma (LCNEC) harboring an epidermal growth factor receptor (EGFR) gene mutation that exhibited a long-lasting response to the EGFR-tyrosine kinase inhibitor (EGFR-TKI) icotinib. The patient had an extensive smoking history, a poor performance status, and presented with an irregular mass in the middle lobe of the right lung on computed tomography (CT) and an enlarged left supraclavicular lymph node on physical examination. Right middle lobe bronchial brushing during fiberoptic bronchoscopy identified poorly-differentiated cancer cells. The left supraclavicular lymph node was biopsied and a diagnosis of metastatic LCNEC was determined. Furthermore, an EGFR exon 19 deletion was identified by DNA sequencing. Following diagnosis, icotinib was administered at a dose of 125 mg three times a day. Chest CT scans were performed after 1 month of treatment, which indicated that the tumor was in partial remission. This marked response to icotinib lasted for 8 months. Thus, the present case illustrates the possibility of identifying EGFR mutations in LCNEC and indicates that EGFR-tyrosine kinase inhibitors may be an alternative treatment strategy for patients with LCNEC harboring activating EGFR mutations.

  11. Cetuximab intensifies the ADCC activity of adoptive NK cells in a nude mouse colorectal cancer xenograft model.

    PubMed

    Chen, Shanshan; Li, Xuechun; Chen, Rongming; Yin, Mingang; Zheng, Qiuhong

    2016-09-01

    Natural killer (NK) cells, discovered ~40 years ago, are believed to be the most effective cytotoxic lymphocytes to counteract cancer; however, adoptive NK cell therapy in vivo has encountered certain limitations, including a lack of specificity. The drug cetuximab can mediate antibody dependent cell mediated cytotoxicity (ADCC) activity through NK cells in vivo , and has been approved for the first-line treatment of epidermal growth factor receptor (EGFR)-positive metastatic colorectal cancer (CRC). However, the ADCC activity of adoptive NK cells, induced by cetuximab in a nude mouse CRC xenograft model, has not been previously reported. The aim of the present study was to explore the ADCC activity of cetuximab combined with adoptive NK cells in CRC xenograft models with various EGFR expressions. The nude mouse xenograft models were established by subcutaneously injecting LOVO or SW620 cells. The mice were then randomly divided into 6 groups: Phosphate-buffered saline, cetuximab, human immunoglobulin G (hIgG), NK cells, hIgG plus NK cells and cetuximab plus NK cells. The ADCC antitumor activity was evaluated in these CRC models. The results indicated that the cetuximab plus NK cells group showed the greatest tumor inhibition effect compared with the NK cells group in LOVO xenograft tumor models with positive EGFR expression. However, the combination of cetuximab and NK cells did not show a stronger tumor inhibitory effect against the SW620 xenograft tumor models compared with the efficiency of NK cells. In conclusion, cetuximab could intensify the ADCC antitumor activity of adoptive NK cells towards CRC with an increased EGFR expression. The combination of cetuximab and NK cells may be a potential immunotherapy for metastatic CRC patients with positive EGFR expression.

  12. EGFR, HER2 and VEGF pathways: validated targets for cancer treatment.

    PubMed

    Press, Michael F; Lenz, Heinz-Josef

    2007-01-01

    Targeted therapies are rationally designed to interfere with specific molecular events that are important in tumour growth, progression or survival. Several targeted therapies with anti-tumour activity in human cancer cell lines and xenograft models have now been shown to produce objective responses, delay disease progression and, in some cases, improve survival of patients with advanced malignancies. These targeted therapies include cetuximab, an anti-epidermal growth factor receptor (EGFR) monoclonal antibody; gefitinib and erlotinib, EGFR-specific tyrosine kinase inhibitors; trastuzumab, an anti-human EGFR type 2 (HER2)-related monoclonal antibody; lapatinib, a dual inhibitor of both EGFR- and HER2-associated tyrosine kinases; and bevacizumab, an anti-vascular endothelial growth factor (VEGF) monoclonal antibody. On the basis of preclinical and clinical evidence, EGFR, HER2 and VEGF represent validated targets for cancer therapy and remain the subject of intensive investigation. Both EGFR and HER2 are targets found on cancer cells, whereas VEGF is a target that acts in the tumour microenvironment. Clinical studies are focusing on how to best incorporate targeted therapy into current treatment regimens and other studies are exploring whether different strategies for inhibiting these targets will offer greater benefit. It is clear that optimal use of targeted therapy will depend on understanding how these drugs work mechanistically, and recognising that their activities may differ across patient populations, tumour types and disease stages, as well as when and how they are used in cancer treatment. The results achieved with targeted therapies to date are promising, although they illustrate the need for additional preclinical and clinical study.

  13. Thrombin increases hyposmotic taurine efflux and accelerates ICI-swell and RVD in 3T3 fibroblasts by a src-dependent EGFR transactivation.

    PubMed

    Vázquez-Juárez, E; Ramos-Mandujano, G; Lezama, R A; Cruz-Rangel, S; Islas, L D; Pasantes-Morales, H

    2008-02-01

    The present study in Swiss3T3 fibroblasts examines the effect of thrombin on hyposmolarity-induced osmolyte fluxes and RVD, and the contribution of the src/EGFR pathway. Thrombin (5 U/ml) added to a 30% hyposmotic medium markedly increased hyposmotic 3H-taurine efflux (285%), accelerated the volume-sensitive Cl- current (ICI-swell) and increased RVD rate. These effects were reduced (50-65%) by preventing the thrombin-induced intracellular Ca2+ [Ca2+]i rise with EGTA-AM, or with the phospholipase C (PLC) blocker U73122. Ca2+calmodulin (CaM) and calmodulin kinase II (CaMKII) also participate in this Ca2+-dependent pathway. Thrombin plus hyposmolarity increased src and EGFR phosphorylation, whose blockade by PP2 and AG1478, decreased by 30-50%, respectively, the thrombin effects on hyposmotic taurine efflux, ICI-swell and RVD. Ca2+- and src/EGFR-mediated pathways operate independently as shown by (1) the persistence of src and EGFR activation when [Ca2+]i rise is prevented and (2) the additive effect on taurine efflux, ICI-swell or RVD by simultaneous inhibition of the two pathways, which essentially suppressed these events. PLC-Ca2+- and src/EGFR-signaling pathways operate in the hyposmotic condition and because thrombin per se failed to increase taurine efflux and ICI-swell under isosmotic condition it seems that it is merely amplifying these previously activated mechanisms. The study shows that thrombin potentiates hyposmolarity-induced osmolyte fluxes and RVD by increasing src/EGFR-dependent signaling, in addition to the Ca2+-dependent pathway.

  14. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma*

    PubMed Central

    Makinoshima, Hideki; Takita, Masahiro; Saruwatari, Koichi; Umemura, Shigeki; Obata, Yuuki; Ishii, Genichiro; Matsumoto, Shingo; Sugiyama, Eri; Ochiai, Atsushi; Abe, Ryo; Goto, Koichi; Esumi, Hiroyasu; Tsuchihara, Katsuya

    2015-01-01

    Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells. PMID:26023239

  15. EGFR targeted PLGA nanoparticles using gemcitabine for treatment of pancreatic cancer.

    PubMed

    Aggarwal, Sahil; Yadav, Sachin; Gupta, Swati

    2011-02-01

    The present study aimed to prepare and characterize anti EGFR monoclonal antibody (mab) conjugated Gemcitabine loaded PLGA nanoparticles for their selective delivery to pancreatic cells and evaluation of the systems in vitro. It was observed that direct covalent coupling of antibodies to glutaraldehyde activated nanoparticles is an appropriate method to achieve cell-type specific drug carrier systems based on polymeric nanoparticles that have potential to be applied for targeted chemotherapy in EGFR positive cancer.

  16. Monitoring of treatment responses and clonal evolution of tumor cells by circulating tumor DNA of heterogeneous mutant EGFR genes in lung cancer.

    PubMed

    Imamura, Fumio; Uchida, Junji; Kukita, Yoji; Kumagai, Toru; Nishino, Kazumi; Inoue, Takako; Kimura, Madoka; Oba, Shigeyuki; Kato, Kikuya

    2016-04-01

    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have dramatic effects on EGFR-mutant non-small-cell lung cancer (NSCLC). However, most patients experience disease recurrences, approximately half of which are T790M-mediated. Monitoring EGFR status with re-biopsy has spatiotemporal limitations. EGFR circulating tumor DNA (ctDNA) in serial plasma samples was amplified and 10(5) of them were sequenced with a next-generation sequencer. Plasma mutation (PM) score was defined as the number of reads containing deletions/substitutions in 10(5)EGFR cell free DNA (cfDNA). PM scores of various EGFR mutations showed dynamic, case-specific changes during EGFR-TKI treatments in 52 patients. The effects of the treatment on EGFR ctDNA were evaluated in 38 patients with elevated pre-treatment PM scores. The ctDNA responses correlated well with radiologic responses in radiologic good responders, whereas correlation was poor in non-responders. In addition to the peaks for the most prevalent ctDNA, small peaks of ctDNA with different types of activating EGFR mutations or the T790M mutation (early T790M ctDNA) appeared transiently in 10.5% and 26.3%, respectively. Early T790M ctDNA disappeared in all patients, including 7 who eventually developed acquired resistance accompanied by elevated levels of T790M ctDNA. Monitoring ctDNA is useful in evaluating treatment responses and monitoring driver oncogene status in NSCLC. ctDNA revealed clonal heterogeneity and genetic processes of cancer evolution in individual patients. The simple presence of the T790M mutation may be insufficient to confer EGFR-TKI resistance to tumor cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Characterization of In Vivo Resistance to Osimertinib and JNJ-61186372, an EGFR/Met Bispecific Antibody, Reveals Unique and Consensus Mechanisms of Resistance.

    PubMed

    Emdal, Kristina B; Dittmann, Antje; Reddy, Raven J; Lescarbeau, Rebecca S; Moores, Sheri L; Laquerre, Sylvie; White, Forest M

    2017-11-01

    Approximately 10% of non-small cell lung cancer (NSCLC) patients in the United States and 40% of NSCLC patients in Asia have activating epidermal growth factor receptor (EGFR) mutations and are eligible to receive targeted anti-EGFR therapy. Despite an extension of life expectancy associated with this treatment, resistance to EGFR tyrosine kinase inhibitors and anti-EGFR antibodies is almost inevitable. To identify additional signaling routes that can be cotargeted to overcome resistance, we quantified tumor-specific molecular changes that govern resistant cancer cell growth and survival. Mass spectrometry-based quantitative proteomics was used to profile in vivo signaling changes in 41 therapy-resistant tumors from four xenograft NSCLC models. We identified unique and tumor-specific tyrosine phosphorylation rewiring in tumors resistant to treatment with the irreversible third-generation EGFR-inhibitor, osimertinib, or the novel dual-targeting EGFR/Met antibody, JNJ-61186372. Tumor-specific increases in tyrosine-phosphorylated peptides from EGFR family members, Shc1 and Gab1 or Src family kinase (SFK) substrates were observed, underscoring a differential ability of tumors to uniquely escape EGFR inhibition. Although most resistant tumors within each treatment group displayed a marked inhibition of EGFR as well as SFK signaling, the combination of EGFR inhibition (osimertinib) and SFK inhibition (saracatinib or dasatinib) led to further decrease in cell growth in vitro This result suggests that residual SFK signaling mediates therapeutic resistance and that elimination of this signal through combination therapy may delay onset of resistance. Overall, analysis of individual resistant tumors captured unique in vivo signaling rewiring that would have been masked by analysis of in vitro cell population averages. Mol Cancer Ther; 16(11); 2572-85. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. Anterior Gradient 2 (AGR2) Induced Epidermal Growth Factor Receptor (EGFR) Signaling Is Essential for Murine Pancreatitis-Associated Tissue Regeneration

    PubMed Central

    Wodziak, Dariusz; Dong, Aiwen; Basin, Michael F.; Lowe, Anson W.

    2016-01-01

    A recently published study identified Anterior Gradient 2 (AGR2) as a regulator of EGFR signaling by promoting receptor presentation from the endoplasmic reticulum to the cell surface. AGR2 also promotes tissue regeneration in amphibians and fish. Whether AGR2-induced EGFR signaling is essential for tissue regeneration in higher vertebrates was evaluated using a well-characterized murine model for pancreatitis. The impact of AGR2 expression and EGFR signaling on tissue regeneration was evaluated using the caerulein-induced pancreatitis mouse model. EGFR signaling and cell proliferation were examined in the context of the AGR2-/- null mouse or with the EGFR-specific tyrosine kinase inhibitor, AG1478. In addition, the Hippo signaling coactivator YAP1 was evaluated in the context of AGR2 expression during pancreatitis. Pancreatitis-induced AGR2 expression enabled EGFR translocation to the plasma membrane, the initiation of cell signaling, and cell proliferation. EGFR signaling and tissue regeneration were partially inhibited by the tyrosine kinase inhibitor AG1478, but absent in the AGR2-/- null mouse. AG1478-treated and AGR2-/- null mice with pancreatitis died whereas all wild-type controls recovered. YAP1 activation was also dependent on pancreatitis-induced AGR2 expression. AGR2-induced EGFR signaling was essential for tissue regeneration and recovery from pancreatitis. The results establish tissue regeneration as a major function of AGR2-induced EGFR signaling in adult higher vertebrates. Enhanced AGR2 expression and EGFR signaling are also universally present in human pancreatic cancer, which support a linkage between tissue injury, regeneration, and cancer pathogenesis. PMID:27764193

  19. Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model

    NASA Astrophysics Data System (ADS)

    Kao, Hao-Wen; Lin, Yi-Yu; Chen, Chao-Cheng; Chi, Kwan-Hwa; Tien, Der-Chi; Hsia, Chien-Chung; Lin, Wuu-Jyh; Chen, Fu-Du; Lin, Ming-Hsien; Wang, Hsin-Ell

    2014-07-01

    Gold nanoparticles (AuNPs) are widely applied to the diagnosis and treatment of cancer and can be modified to contain target-specific ligands via gold-thiolate bonding. This study investigated the pharmacokinetics and microdistribution of antibody-mediated active targeting gold nanoparticles in mice with subcutaneous lung carcinoma. We conjugated AuNPs with cetuximab (C225), an antibody-targeting epidermal growth factor receptor (EGFR), and then labeled with In-111, which created EGFR-targeted AuNPs. In vitro studies showed that after a 2 h incubation, the uptake of C225-conjugated AuNPs in high EGFR-expression A549 cells was 14.9-fold higher than that of PEGylated AuNPs; furthermore, uptake was also higher at 3.8-fold when MCF7 cells with lower EGFR-expression were used. MicroSPECT/CT imaging and a biodistribution study conducted by using a A549 tumor xenograft mouse model provided evidence of elevated uptake of the C225-conjugated AuNPs into the tumor cells as a result of active targeting. Moreover, the microdistribution of PEGylated AuNPs revealed that a large portion of AuNPs remained in the tumor interstitium, whereas the C225-conjugated AuNPs displayed enhanced internalization via antibody-mediated endocytosis. Our findings suggest that the anti-EGFR antibody-conjugated AuNPs are likely to be a plausible nano-sized vehicle for drug delivery to EGFR-expressing tumors.

  20. LRIG1 modulates aggressiveness of head and neck cancers by regulating EGFR-MAPK-SPHK1 signaling and extracellular matrix remodeling.

    PubMed

    Sheu, J J-C; Lee, C-C; Hua, C-H; Li, C-I; Lai, M-T; Lee, S-C; Cheng, J; Chen, C-M; Chan, C; Chao, S C-C; Chen, J-Y; Chang, J-Y; Lee, C-H

    2014-03-13

    EGFR overexpression and chromosome 3p deletion are two frequent events in head and neck cancers. We previously mapped the smallest region of recurrent copy-number loss at 3p12.2-p14.1. LRIG1, a negative regulator of EGFR, was found at 3p14, and its copy-number loss correlated with poor clinical outcome. Inducible expression of LRIG1 in head and neck cancer TW01 cells, a line with low LRIG1 levels, suppressed cell proliferation in vitro and tumor growth in vivo. Gene expression profiling, quantitative RT-PCR, chromatin immunoprecipitation, and western blot analysis demonstrated that LRIG1 modulated extracellular matrix (ECM) remodeling and EGFR-MAPK-SPHK1 transduction pathway by suppressing expression of EGFR ligands/activators, MMPs and SPHK1. In addition, LRIG1 induction triggered cell morphology changes and integrin inactivation, which coupled with reduced SNAI2 expression. By contrast, knockdown of endogenous LRIG1 in TW06 cells, a line with normal LRIG1 levels, significantly enhanced cell proliferation, migration and invasiveness. Such tumor-promoting effects could be abolished by specific MAPK or SPHK1 inhibitors. Our data suggest LRIG1 as a tumor suppressor for head and neck cancers; LRIG1 downregulation in cancer cells enhances EGFR-MAPK-SPHK1 signaling and ECM remodeling activity, leading to malignant phenotypes of head and neck cancers.

Top