Science.gov

Sample records for egfr monoclonal antibody

  1. Epitope mapping of epidermal growth factor receptor (EGFR) monoclonal antibody and induction of growth-inhibitory polyclonal antibodies by vaccination with EGFR mimotope.

    PubMed

    Navari, Mohsen; Zare, Mehrak; Javanmardi, Masoud; Asadi-Ghalehni, Majid; Modjtahedi, Helmout; Rasaee, Mohammad Javed

    2014-10-01

    One of the proposed approaches in cancer therapy is to induce and direct the patient's own immune system against cancer cells. In this study, we determined the epitope mapping of the rat anti-human epidermal growth factor receptor (EGFR) monoclonal antibody ICR-62 using a phage display of random peptide library and identified a 12 amino acids peptide, which was recognized as a mimotope. The peptide was synthesized and conjugated to bovine serum albumin (BSA) as carrier protein (P-BSA). We have shown that ICR-62 can react specifically with P-BSA as well as native EGFR. Two rabbits were immunized either by BSA or P-BSA and the rabbits IgGs were purified and examined for binding to the antigens, mimotope and the EGFR protein purified from the EGFR overexpressing A431 cell line. We showed that the rabbit IgG generated against the mimotope is capable of inhibiting the growth of A431 cells by 15%, but does not have any effect on the growth of EGFR-negative MDA-MB-453 cell line in vitro. Our results support the need for further investigations on the potential of vaccination with either mimotope of the EGFR or epitope displayed on the surface of phage particles for use in active immunotherapy of cancer.

  2. Monoclonal Antibodies.

    ERIC Educational Resources Information Center

    Killington, R. A.; Powell, K. L.

    1984-01-01

    Monoclonal antibodies have provided an exciting addition to the "armory" of the molecular biologist and immunologist. This article discusses briefly the concept of, techniques available for, production of, and possible uses of monoclonal antibodies. (Author)

  3. Systematic review and meta-analysis of the risk of severe and life-threatening thromboembolism in cancer patients receiving anti-EGFR monoclonal antibodies (cetuximab or panitumumab).

    PubMed

    Miroddi, Marco; Sterrantino, Carmelo; Simmonds, Mark; Caridi, Luigi; Calapai, Gioacchino; Phillips, Robert S; Stewart, Lesley A

    2016-11-15

    Cancer-associated thromboembolism is a substantial problem in clinical practice. An increase in the level of fibrinopeptide A (a substance associated with hypercoagulable states) has been observed in humans exposed to fluorouracil. Anti-EGFR monoclonal antibodies cetuximab and panitumumab, which are now widely used in patients with metastatic colorectal cancer, could prolong the uncovering of endothelial structures resulting from flouorouracil or other co-administered agents, thus favouring several factors leading to thromboembolism. We performed a systematic review and meta-analysis of randomised, controlled trials assessing whether cancer patients receiving anti-EGFR monoclonal antibodies cetuximab and panitumumab are at increased risk of thromboembolic events. We searched electronic databases (Medline, Embase, Web of Science, Central) and reference lists. Phase II/III randomised, controlled trials comparing standard anti-cancer regimens with or without anti-EGFR monoclonal antibodies and reporting serious venous thromboembolic events were included in the analysis. Seventeen studies (12,870 patients) were considered for quantitative analysis. The relative risk (RR) for venous thromboembolism (18 comparisons) was 1.46 (95% CI 1.26 to 1.69); the RR of pulmonary embolism, on the basis of eight studies providing nine comparisons, was 1.55 (1.20 to 2.00). Cancer patients receiving anti-EGFR monoclonal antibodies-containing regimens are approximately 1.5 times more likely to experience venous or pulmonary embolism, compared to those treated with the same regimens without anti-EGFR monoclonal antibodies. Clinicians should consider patient's baseline thromboembolic risk when selecting regimens that include cetuximab or panitumumab. Potential non-reporting of these important adverse events remains a concern. PROSPERO registration number is CRD42014009165. PMID:27450994

  4. Monoclonal antibodies.

    PubMed

    2009-01-01

    The ability to produce and exploit monoclonal antibodies (mAbs) has revolutionized many areas of biological sciences. The unique property of an mAb is that it is a single species of immunoglobulin (IG) molecule. This means that the specificity of the interaction of the paratopes on the IG, with the epitopes on an antigenic target, is the same on every molecule. This property can be used to great benefit in immunoassays to provide tests of defined specificity and sensitivity, which improve the possibilities of standardization. The performance of assays can often be determined relating the actual weight of antibody (hence the number of molecules) to the activity. Often the production of an mAb against a specific epitope is the only way that biological entities can be differentiated. This chapter outlines the areas involving the development of assays based on mAbs. The problems involved address include the physical aspects of mAbs and how they may affect assay design and also the implications of results based on monospecific reagents. Often these are not fully understood, leading to assays that are less than satisfactory, which does not justify the relatively high cost of preparing and screening of mAbs. There are many textbooks and reviews dealing with the preparation of mAbs, the principles involved, and various purification and manipulative methods for the preparation of fragments and conjugation. There has been little general information attempting to summarize the best approaches to assay design using mAbs. Much time can be wasted through bad planning, and this is particularly relevant to mAbs. A proper understanding of some basic principles is essential. It is beyond the scope of this chapter to discuss all aspects, but major areas are highlighted. PMID:19219589

  5. Phase I trial and tumour localisation of the anti-EGFR monoclonal antibody ICR62 in head and neck or lung cancer.

    PubMed Central

    Modjtahedi, H.; Hickish, T.; Nicolson, M.; Moore, J.; Styles, J.; Eccles, S.; Jackson, E.; Salter, J.; Sloane, J.; Spencer, L.; Priest, K.; Smith, I.; Dean, C.; Gore, M.

    1996-01-01

    The purpose of this study was to determine the effect of the first rat monoclonal antibody (MAb ICR62) to the epidermal growth factor receptor (EGFR) in a phase I clinical trial in patients with unresectable squamous cell carcinomas. This antibody effectively blocks the binding of EGF, transforming growth factor (TGF)-alpha and HB-EGF to the EGFR, inhibits the growth in vitro of tumour cell lines which overexpress the EGFR and eradicates such tumours when grown as xenografts in athymic mice. Eleven patients with squamous cell carcinoma of the head and neck and nine patients with squamous cell carcinoma of the lung, whose tumours expressed EGFR, were recruited. Groups of three patients were treated with 2.5 mg, 10 mg, 20 mg or 40 mg of ICR62 and a further eight patients received 100 mg. All patients were evaluated for toxicity using WHO criteria. Patients' sera were tested for the clearance of MAb ICR62 and the development of human anti-rat antibodies (HARA). No serious (WHO Grade III-IV) toxicity was observed in patients treated with up to 100 mg of antibody ICR62. Antibody ICR62 could be detected at 4 h and 24 h in the sera of patients treated with 40 mg or 100 mg of ICR62. Only 4/20 patients showed HARA responses (one at 20 mg, one at 40 mg and two at 100 mg doses) and of these only the former two were anti-idiotypic responses. In four patients receiving doses of ICR62 at 40 mg or greater, biopsies were obtained from metastatic lesions 24 h later and examined for the localisation of ICR62 using anti-rat antibody reagent. In these patients we showed the localisation of MAb ICR62 to the membranes of tumour cells; this appeared to be more prominent at the higher dose of 100 mg. On the basis of these data we conclude that MAb ICR62 can be administered safely to patients with squamous cell carcinomas and that it can localise efficiently to metastases even at relatively low doses. Images Figure 2 Figure 3 PMID:8546911

  6. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  7. BRAF V600E mutation and resistance to anti-EGFR monoclonal antibodies in patients with metastatic colorectal cancer: a meta-analysis.

    PubMed

    Mao, Chen; Liao, Ru-Yan; Qiu, Li-Xin; Wang, Xi-Wen; Ding, Hong; Chen, Qing

    2011-04-01

    Epidemiologic studies have evaluated the association between BRAF mutations and resistance to the treatment of anti-EGFR monoclonal antibodies (MoAb) in patients with metastatic colorectal cancer (mCRC). However, the results are still inconclusive. To derive a more precise estimation of the relationship, we performed this meta-analysis. A total of 11 studies were included in the final meta-analysis. There were seven studies for unselected mCRC patients and four studies for patients with wild type KRAS mCRC. Among unselected mCRC patients, BRAF V600E mutation was detected in 48 of 546 primary tumors (8.8%). The objective response rate (ORR) of patients with mutant BRAF was 29.2% (14/48), whereas the ORR of patients with wild-type BRAF was 33.5% (158/472).The overall RR for ORR of mutant BRAF patients over wild-type BRAF patients was 0.86 (95% CI=0.57-1.30; P=0.48). For patients with KRAS wild-type mCRC, BRAF V600E mutation was detected in 40 of 376 primary tumors (10.6%). The ORR of patients with mutant BRAF was 0.0% (0/40), whereas the ORR of patients with wild-type BRAF was 36.3% (122/336). The pooled RR of mutant BRAF patients over wild-type BRAF patients was 0.14 (95% CI=0.04-0.53; P=0.004). In conclusion, this meta-analysis provides evidence that BRAF V600E mutation is associated with lack of response in wild-type KRAS mCRC treated with anti-EGFR MoAbs. BRAF mutation may be used as an additional biomarker for the selection of mCRC patients who might benefit from anti-EGFR MoAbs therapy.

  8. Monoclonal antibodies and cancer therapy

    SciTech Connect

    Reisfeld, R.A.; Sell, S.

    1985-01-01

    These proceedings collect papers on the subject of monoclonal antibodies. Topics include: Monoclonal antibody, biochemical effects and cancer therapeutic potential of tunicamycin, use of monoclonal antibodies for detection of lymph node metastases, active specific immunotherapy, and applications of monoclonal antibodies to investigations of growth factors.

  9. Systems approach for the selection of micro-RNAs as therapeutic biomarkers of anti-EGFR monoclonal antibody treatment in colorectal cancer

    NASA Astrophysics Data System (ADS)

    Deyati, Avisek; Bagewadi, Shweta; Senger, Philipp; Hofmann-Apitius, Martin; Novac, Natalia

    2015-01-01

    miRNA plays an important role in tumourgenesis by regulating expression of oncogenes and tumour suppressors. Thus affects cell proliferation and differentiation, apoptosis, invasion and angiogenesis. miRNAs are potential biomarkers for diagnosis, prognosis and therapies of different forms of cancer. However, relationship between response of cancer patients towards targeted therapy and the resulting modifications of the miRNA transcriptome in the context of pathway regulation is poorly understood. With ever-increasing pathways and miRNA-mRNA interaction databases, freely available mRNA and miRNA expression data in multiple cancer therapy have produced an unprecedented opportunity to decipher the role of miRNAs in early prediction of therapeutic efficacy in diseases. Efficient translation of -omics data and accumulated knowledge to clinical decision-making are of paramount scientific and public health interest. Well-structured translational algorithms are needed to bridge the gap from databases to decisions. Herein, we present a novel SMARTmiR algorithm to prospectively predict the role of miRNA as therapeutic biomarker for an anti-EGFR monoclonal antibody i.e. cetuximab treatment in colorectal cancer.

  10. Monoclonal antibodies to Actinobacillus actinomycetemcomitans.

    PubMed Central

    Place, D A; Scidmore, N C; McArthur, W P

    1988-01-01

    Murine hybridoma cell lines were developed which synthesized monoclonal antibodies against Actinobacillus actinomycetemcomitans-associated antigens. Monoclonal antibodies specific for an antigen(s) common to all A. actinomycetemcomitans isolates tested but not detected on other gram-negative oral plaque microorganisms or other Actinobacillus species were identified. Monoclonal antibodies specific for each serotype group of A. actinomycetemcomitans which did not bind to other Actinobacillus species or oral plaque microorganisms were also identified. PMID:3356470

  11. [Targeted therapy by monoclonal antibodies].

    PubMed

    Ohnuma, Kei; Morimoto, Chikao

    2010-10-01

    Human monoclonal antibodies are virtually indispensable for immunotherapy of cancer, infectious diseases, autoimmune diseases, or organ transplantation. The hybridoma technique, developed by Georges Köhler and César Milstein in 1975, has been shown to be most and highly producible method for generating murine monoclonal antibodies. However, poor results were obtained when it was administered in human bodies. With development of biotechnology, human monoclonal antibodies have been manufactured with higher efficiency. A major hindrance of producing therapeutic human monoclonal antibodies is the lack of an appropriate strategy for determining and selecting the antibodies that would be effective in vivo. In this review, we give an overview of the present techniques on therapeutic monoclonal antibodies. PMID:20954327

  12. [Targeted therapy by monoclonal antibodies].

    PubMed

    Ohnuma, Kei; Morimoto, Chikao

    2010-10-01

    Human monoclonal antibodies are virtually indispensable for immunotherapy of cancer, infectious diseases, autoimmune diseases, or organ transplantation. The hybridoma technique, developed by Georges Köhler and César Milstein in 1975, has been shown to be most and highly producible method for generating murine monoclonal antibodies. However, poor results were obtained when it was administered in human bodies. With development of biotechnology, human monoclonal antibodies have been manufactured with higher efficiency. A major hindrance of producing therapeutic human monoclonal antibodies is the lack of an appropriate strategy for determining and selecting the antibodies that would be effective in vivo. In this review, we give an overview of the present techniques on therapeutic monoclonal antibodies.

  13. Production of monoclonal antibodies.

    PubMed

    Freysd'ottir, J

    2000-01-01

    The discovery of monoclonal antibodies (mAbs) produced by "hybridoma technology" by George Köhler and Cesar Milstein in 1975 has had a great impact both on basic biological research and on clinical medicine. However, this impact was not immediately recognized. It took around 10 years to appreciate the importance of using these mAbs in various fields of science other than immunology, such as cell biology, biochemistry, microbiology, virology, para-sitology, physiology, genetics, and molecular biology; and also in areas of clinical medicine, such as pathology, hematology, oncology, and infectious disease. The contribution of mAbs to science and clinical medicine was recognized in 1984 by the award of the Nobel Prize for Medicine to Köhler and Milstein.

  14. Effect of BRAF V600E mutation on tumor response of anti-EGFR monoclonal antibodies for first-line metastatic colorectal cancer treatment: a meta-analysis of randomized studies.

    PubMed

    Cui, Dandan; Cao, Dan; Yang, Yu; Qiu, Meng; Huang, Ying; Yi, Cheng

    2014-03-01

    Anti-EGFR monoclonal antibodies (anti-EGFR MoAbs) in metastatic colorectal cancer (mCRC) treatment are still not effective in all patients. This study aimed to evaluate the relationship between BRAF V600E mutation and the tumor response of anti-EGFR MoAbs for first-line treatment in mCRC patients. We searched the MEDLINE and EMBASE databases, using the key words that included colorectal cancer, cetuximab, panitumumab, and BRAF mutation and retrieved 445 articles. Among them four were included in the systematic review. Relative risks (RRs) with 95% confidence intervals (CI) for response rate were calculated. BRAF mutation carriers had worse ORR than non-carriers in mCRC patients with KRAS wild-type in first-line treatment whether adding anti-EGFR MoAb to chemotherapy or not (RR = 0.43, [95% CI 0.16-0.75]; RR = 0.38, [95% CI 0.20-0.73]). But in the unselected patients whose KRAS mutation were unknown, BRAF mutation carriers had similar ORR whether adding cetuximab to chemotherapy or not (RR = 0.45, [95% CI 0.18-1.09]; RR = 0.57, [95% CI 0.15-2.23]). In BRAF mutation carriers adding anti-EGFR MoAb to chemotherapy was similar to chemotherapy alone whether in patients with wild-type KRAS or unselected patients (RR = 1.61, [95% CI 0.57-4.47]; RR = 0.71, [95% CI 0.18-2.77]). But in the BRAF mutation non-carriers, adding anti-EGFR MoAb produced a clear benefit in response rate than chemotherapy alone and this advantage was restricted to KRAS wild-type patients (RR = 1.48, [95% CI 1.28-1.71]). BRAF mutation decreases tumor response in first-line treatment whether cetuximab was given or not in patients with KRAS wild-type, and anti-EGFR MoAb produces a clear benefit in response rate in patients with BRAF and KRAS wild-type.

  15. Monoclonal antibodies and neuroblastoma

    SciTech Connect

    Miraldi, F. )

    1989-10-01

    Several antineuroblastoma monoclonal antibodies (MoAbs) have been described and two have been used in radioimmunoimaging and radioimmunotherapy in patients. MoAb 3F8 is a murine IgG3 antibody specific for the ganglioside GD2. Radioiodine-labeled 3F8 has been shown to specifically target human neuroblastoma in patients, and radioimmunoimaging with this agent has provided consistently high uptakes with tumor-to-background ratios of greater than or equal to 10:1. Radioimmunotherapy has been attempted with both MoAb 3F8 and MoAb UJ13A, and although encouraging results have been obtained, dosimetry data and tissue dose response information for these agents is lacking, which impedes the development of such therapy. 124I, a positron emitter, can be used with 3F8 in positron emission tomography (PET) scanning to provide dosimetry information for radioimmunotherapy. The tumor radiation dose response from radiolabeled MoAb also can be followed with PET images with fluorodeoxyglucose (FDG) scanning of neuroblastoma tumors. Results to date indicate that radioimmunoimaging has clinical use in the diagnosis of neuroblastoma and the potential for radioimmunotherapy for this cancer remains high.48 references.

  16. Monoclonal antibodies and neuroblastoma.

    PubMed

    Miraldi, F

    1989-10-01

    Several antineuroblastoma monoclonal antibodies (MoAbs) have been described and two have been used in radioimmunoimaging and radioimmunotherapy in patients. MoAb 3F8 is a murine IgG3 antibody specific for the ganglioside GD2. Radioiodine-labeled 3F8 has been shown to specifically target human neuroblastoma in patients, and radioimmunoimaging with this agent has provided consistently high uptakes with tumor-to-background ratios of greater than or equal to 10:1. Radioimmunotherapy has been attempted with both MoAb 3F8 and MoAb UJ13A, and although encouraging results have been obtained, dosimetry data and tissue dose response information for these agents is lacking, which impedes the development of such therapy. 124I, a positron emitter, can be used with 3F8 in positron emission tomography (PET) scanning to provide dosimetry information for radioimmunotherapy. The tumor radiation dose response from radiolabeled MoAb also can be followed with PET images with fluorodeoxyglucose (FDG) scanning of neuroblastoma tumors. Results to date indicate that radioimmunoimaging has clinical use in the diagnosis of neuroblastoma and the potential for radioimmunotherapy for this cancer remains high.

  17. The therapeutic monoclonal antibody market

    PubMed Central

    Ecker, Dawn M; Jones, Susan Dana; Levine, Howard L

    2015-01-01

    Since the commercialization of the first therapeutic monoclonal antibody product in 1986, this class of biopharmaceutical products has grown significantly so that, as of November 10, 2014, forty-seven monoclonal antibody products have been approved in the US or Europe for the treatment of a variety of diseases, and many of these products have also been approved for other global markets. At the current approval rate of ∼ four new products per year, ∼70 monoclonal antibody products will be on the market by 2020, and combined world-wide sales will be nearly $125 billion. PMID:25529996

  18. The therapeutic monoclonal antibody market.

    PubMed

    Ecker, Dawn M; Jones, Susan Dana; Levine, Howard L

    2015-01-01

    Since the commercialization of the first therapeutic monoclonal antibody product in 1986, this class of biopharmaceutical products has grown significantly so that, as of November 10, 2014, forty-seven monoclonal antibody products have been approved in the US or Europe for the treatment of a variety of diseases, and many of these products have also been approved for other global markets. At the current approval rate of ∼ four new products per year, ∼ 70 monoclonal antibody products will be on the market by 2020, and combined world-wide sales will be nearly $125 billion.

  19. The Use of Epidermal Growth Factor Receptor Monoclonal Antibodies in Squamous Cell Carcinoma of the Head and Neck

    PubMed Central

    Russell, Jeffery S.; Colevas, A. Dimitrios

    2012-01-01

    Targeting of the EGF receptor (EGFR) has become a standard of care in several tumor types. In squamous cell carcinoma of the head and neck, monoclonal antibodies directed against EGFR have become a regular component of therapy for curative as well as palliative treatment strategies. These agents have anti-tumor efficacy as a single modality and have demonstrated synergistic tumor killing when combined with radiation and/or chemotherapy. While cetuximab has been the primary anti-EGFR monoclonal antibody used in the US, variant anti-EGFR monoclonal antibodies have been used in several clinical studies and shown benefit with improved toxicity profiles. Next generation anti-EGFR monoclonal antibodies may demonstrate multi-target epitope recognition, enhanced immune cell stimulation, or conjugation with radioisotopes in order to improve clinical outcomes. Identification of the specific patient subset that would optimally benefit from anti-EGFR monoclonal antibodies remains an elusive goal. PMID:23150825

  20. Clinical experience with monoclonal antibodies to epidermal growth factor receptor.

    PubMed

    Calvo, Emiliano; Rowinsky, Eric K

    2005-03-01

    Recent knowledge about the intermediate steps and final consequences of ligand-dependent epidermal growth factor receptor (EGFR) activation has clearly supported the notion that EGFR plays a fundamental role in regulating the proliferation and survival of malignant neoplasms. Among the rationally designed target-based therapeutics that are being assessed, those targeting EGFR appear to be some of the most clinically relevant. The strategy of using monoclonal antibodies (mAbs) to block ligand binding to the extracellular domain of the EGFR has led to the development of therapeutics that robustly arrest malignant cell proliferation and, in some cases, induce profound tumor regression. The chimeric mAb against EGFR, cetuximab, has already been approved by regulatory agencies worldwide to treat patients with advanced colorectal cancer. Other mAbs against EGFR, particularly panitumumab (ABX-EGF), h-R3, and EMD72000, are in advanced stages of clinical development. PMID:15717942

  1. Uses of monoclonal antibody 8H9

    DOEpatents

    Cheung, Nai-Kong V.

    2010-06-22

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides different uses of the monoclonal antibody 8H9 or its derivative.

  2. Uses of monoclonal antibody 8H9

    DOEpatents

    Cheung, Nai-Kong V.

    2013-04-09

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides different uses of the monoclonal antibody 8H9 or its derivative.

  3. Inhibition of triple-negative breast cancer models by combinations of antibodies to EGFR

    PubMed Central

    Ferraro, Daniela A.; Gaborit, Nadège; Maron, Ruth; Cohen-Dvashi, Hadas; Porat, Ziv; Pareja, Fresia; Lavi, Sara; Lindzen, Moshit; Ben-Chetrit, Nir; Sela, Michael; Yarden, Yosef

    2013-01-01

    Breast tumors lacking expression of human epidermal growth factor receptor 2 (HER2) and the estrogen and the progesterone receptors (triple negative; TNBC) are more aggressive than other disease subtypes, and no molecular targeted agents are currently available for their treatment. Because TNBC commonly displays EGF receptor (EGFR) expression, and combinations of monoclonal antibodies to EGFR effectively inhibit other tumor models, we addressed the relevance of this strategy to treatment of TNBC. Unlike a combination of the clinically approved monoclonal antibodies, cetuximab and panitumumab, which displaced each other and displayed no cooperative effects, several other combinations resulted in enhanced inhibition of TNBC’s cell growth both in vitro and in animals. The ability of certain antibody mixtures to remove EGFR from the cell surface and to promote its intracellular degradation correlated with the inhibitory potential. However, unlike EGF-induced sorting of EGFR to lysosomal degradation, the antibody-induced pathway displayed independence from the intrinsic kinase activity and dimer formation ability of EGFR, and it largely avoided the recycling route. In conclusion, although TNBC clinical trials testing EGFR inhibitors reported lack of benefit, our results offer an alternative strategy that combines noncompetitive antibodies to achieve robust degradation of EGFR and tumor inhibition. PMID:23319610

  4. Detection of Campylobacter species using monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Young, Colin R.; Lee, Alice; Stanker, Larry H.

    1999-01-01

    A panel of species specific monoclonal antibodies were raised to Campylobacter coli, Campylobacter jejuni and Campylobacter lari. The isotypes, and cross-reactivity profiles of each monoclonal antibody against an extensive panel of micro- organisms, were determined.

  5. Co-targeting the EGFR and IGF-IR with anti-EGFR monoclonal antibody ICR62 and the IGF-IR tyrosine kinase inhibitor NVP-AEW541 in colorectal cancer cells.

    PubMed

    Cunningham, Matthew P; Thomas, Hilary; Marks, Christopher; Green, Margaret; Fan, Zhen; Modjtahedi, Helmout

    2008-11-01

    The aberrant expression of the epidermal growth factor receptor (EGFR) has been reported in a wide range of epithelial tumours. In some studies, co-expression of insulin-like growth factor receptor-I (IGF-IR) have been associated with resistance to the EGFR inhibitors. Here, we investigated the sensitivity of a panel of human colorectal tumour cell lines, including two newly established lines Colo2 and Colo13, to treatment with anti-EGFR mAb ICR62 and IGF-IR tyrosine kinase inhibitor NVP-AEW541 alone and in combination. We also determined the association between the expression levels of EGFR and IGF-IR with their responses to ICR62 and/or NVP-AEW541. In contrast to DiFi cells, which contained high levels of EGFR but lower level of IGF-IR, the remaining 11 colorectal tumour cells expressed low levels of both EGFR and IGF-IR and such cells were relatively resistant to ICR62 or NVP-AEW-541 when used alone. Interestingly, compared to the results with the single agent, the effect of combination of NVP-AEW541 and ICR62 was found to be additive on inhibiting the growth of Colo13, CCL235, CCL244 cells but antagonistic in other (CCL218) cells. While overexpression of the EGFR seems to be associated with response to ICR62, no clear correlation was found between the expression levels of EGFR and IGF-IR, or the levels of phosphorylated EGFR and response to treatment with NVP-AEW541, in single or combination setting with ICR62. Our results suggest that combining EGFR and IGF-IR inhibitors may enhance antitumour response in a fraction of colorectal cancer cells and warrants further study in colorectal cancer.

  6. Monoclonal Antibodies in Diagnosis and Therapy

    NASA Astrophysics Data System (ADS)

    Waldmann, Thomas A.

    1991-06-01

    Monoclonal antibodies have been applied clinically to the diagnosis and therapy of an array of human disorders, including cancer and infectious diseases, and have been used for the modulation of immune responses. Effective therapy using unmodified monoclonal antibodies has, however, been elusive. Recently, monoclonal antibody-mediated therapy has been revolutionized by advances such as the definition of cell-surface structures on abnormal cells as targets for effective monoclonal antibody action, genetic engineering to create less immunogenic and more effective monoclonal antibodies, and the arming of such antibodies with toxins or radionuclides to enhance their effector function.

  7. [Industrial production of monoclonal antibodies].

    PubMed

    Baron, D

    1990-10-01

    Murine monoclonal antibodies (mabs) are produced in either mouse ascites or bioreactors (spinner culture, stirred-tank reactor, airlift reactor, hollow-fiber reactor). Human mabs are produced solely in bioreactors. Encapsulation represents a special technology. Hybridoma cells have to be adapted prior to growth in bioreactors. Of crucial importance is the construction of over-producing cell lines by cell- and gene-technological methods. Manipulated cell lines often produce modified mabs.

  8. Pulmonary monoclonal antibody delivery via a portable microfluidic nebulization platform

    PubMed Central

    Cortez-Jugo, Christina; Qi, Aisha; Rajapaksa, Anushi; Friend, James R.

    2015-01-01

    Nebulizers have considerable advantages over conventional inhalers for pulmonary drug administration, particularly because they do not require coordinated breath actuation to generate and deliver the aerosols. Nevertheless, besides being less amenable to miniaturization and hence portability, some nebulizers are prone to denature macromolecular drugs due to the large forces generated during aerosolization. Here, we demonstrate a novel portable acoustomicrofluidic device capable of nebulizing epidermal growth factor receptor (EGFR) monoclonal antibodies into a fine aerosol mist with a mass median aerodynamic diameter of approximately 1.1 μm, optimal for deep lung deposition via inhalation. The nebulized monoclonal antibodies were tested for their stability, immunoactivity, and pharmacological properties, which confirmed that nebulization did not cause significant degradation of the antibody. In particular, flow cytometry demonstrated that the antigen binding capability of the antibody is retained and able to reduce phosphorylation in cells overexpressing the EGFR, indicating that the aerosols generated by the device were loaded with stable and active monoclonal antibodies. The delivery of antibodies via inhalation, particularly for the treatment of lung cancer, is thus expected to enhance the efficacy of this protein therapeutic by increasing the local concentration where they are needed. PMID:25945147

  9. Natural monoclonal antibodies and cancer.

    PubMed

    Vollmers, Peter H; Brändlein, Stephanie

    2008-06-01

    Immunity is responsible for recognition and elimination of infectious particles and for removal of cellular waste, modified self structures and transformed cells. Innate or natural immunity acts as a first line defense and is also the link to acquired immunity and memory. By using the human hybridoma technology, a series of monoclonal antibodies and several new tumor-specific targets could be identified. A striking phenomenon of immunity against malignant cells is that all so far isolated tumor-specific antibodies were germ-line coded natural IgM antibodies. And neither in animals nor in humans affinity-maturated tumor-specific IgG antibodies have been detected so far. These IgM's preferentially bind to carbohydrate epitopes on post-transcriptionally modified surface receptors, which are recently patented and preferentially remove malignant cells by inducing apoptosis to avoid inflammatory processes. Our "biology-" or "function-driven" method represents a unique yet powerful approach compared to the typical approaches on screening compounds or antibodies against non-validated targets (mostly differentially expressed). Moreover, the approach creates a competitive patenting strategy of creating proprietary antibodies and validated targets at the same time, which has the potential of further streamlining the discovery of new cancer therapies. PMID:18537750

  10. Uses of monoclonal antibody 8H9

    DOEpatents

    Cheung, Nai-Kong V.

    2010-06-15

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides a method of inhibiting the growth of tumor cells comprising contacting said tumor cells with an appropriate amount of monoclonal antibody 8H9 or a derivative thereof.

  11. Uses of monoclonal antibody 8H9

    DOEpatents

    Cheung, Nai-Kong V

    2013-08-06

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides a method of inhibiting the growth of tumor cells comprising contacting said tumor cells with an appropriate amount of monoclonal antibody 8H9 or a derivative thereof.

  12. Pharmacokinetics interactions of monoclonal antibodies.

    PubMed

    Ferri, Nicola; Bellosta, Stefano; Baldessin, Ludovico; Boccia, Donatella; Racagni, Giorgi; Corsini, Alberto

    2016-09-01

    The clearance of therapeutic monoclonal antibodies (mAbs) typically does not involve cytochrome P450 (CYP450)-mediated metabolism or interaction with cell membrane transporters, therefore the pharmacokinetics interactions of mAbs and small molecule drugs are limited. However, a drug may affect the clearance of mAbs through the modulation of immune response (e.g., methotrexate reduces the clearance of infliximab, adalimumab, and golimumab, possibly due to methotrexate's inhibitory effect on the formation of antibodies against the mAbs). In addition, mAbs that are cytokine modulators may modify the metabolism of drugs through their effects on P450 enzymes expression. For example, cytokine modulators such as tocilizumab (anti-IL-6 receptor antibody) may reverse the "inhibitory" effect of IL-6 on CYP substrates, resulting in a "normalization" of CYP activities. Finally, a drug may alter the clearance of mAbs by either increasing or reducing the levels of expression of targets of mAbs on the cell surface. For instance, statins and fibrates induce PCSK9 expression and therefore increase cellular uptake and clearance of alirocumab and evolocumab, anti-PCSK9 antibodies. In the present review, we will provide an overview on the pharmacokinetics properties of mAbs as related to the most relevant examples of mAbs-small molecule drug interaction. PMID:27438459

  13. Pharmacokinetics interactions of monoclonal antibodies.

    PubMed

    Ferri, Nicola; Bellosta, Stefano; Baldessin, Ludovico; Boccia, Donatella; Racagni, Giorgi; Corsini, Alberto

    2016-09-01

    The clearance of therapeutic monoclonal antibodies (mAbs) typically does not involve cytochrome P450 (CYP450)-mediated metabolism or interaction with cell membrane transporters, therefore the pharmacokinetics interactions of mAbs and small molecule drugs are limited. However, a drug may affect the clearance of mAbs through the modulation of immune response (e.g., methotrexate reduces the clearance of infliximab, adalimumab, and golimumab, possibly due to methotrexate's inhibitory effect on the formation of antibodies against the mAbs). In addition, mAbs that are cytokine modulators may modify the metabolism of drugs through their effects on P450 enzymes expression. For example, cytokine modulators such as tocilizumab (anti-IL-6 receptor antibody) may reverse the "inhibitory" effect of IL-6 on CYP substrates, resulting in a "normalization" of CYP activities. Finally, a drug may alter the clearance of mAbs by either increasing or reducing the levels of expression of targets of mAbs on the cell surface. For instance, statins and fibrates induce PCSK9 expression and therefore increase cellular uptake and clearance of alirocumab and evolocumab, anti-PCSK9 antibodies. In the present review, we will provide an overview on the pharmacokinetics properties of mAbs as related to the most relevant examples of mAbs-small molecule drug interaction.

  14. Production and Screening of Monoclonal Peptide Antibodies.

    PubMed

    Trier, Nicole Hartwig; Mortensen, Anne; Schiolborg, Annette; Friis, Tina

    2015-01-01

    Hybridoma technology is a remarkable and indispensable tool for generating high-quality monoclonal antibodies. Hybridoma-derived monoclonal antibodies not only serve as powerful research and diagnostic reagents, but have also emerged as the most rapidly expanding class of therapeutic biologicals. In this chapter, an overview of hybridoma technology and the laboratory procedures used routinely for hybridoma production and antibody screening are presented, including characterization of peptide antibodies.

  15. Improved monoclonal antibodies to halodeoxyuridine

    DOEpatents

    Vanderlaan, M.; Dolbeare, F.A.; Gray, J.W.; Thomas, C.B.

    1983-10-18

    The development, method of production, characterization and methods of use of two hybridomas, CIdU-1 (ATCC Accession No. HB-8321) and CIdU-2 (ATCC Accession No. HB-8320), are described. These secrete IgG/sub 1/(K) immunoglobulins that react with halodeoxyuridine (HdU or halodU) such as bromo, chloro, fluoro and iodo deoxyuridine (BrdU, CldU, FdU and IdU), whether these are free in solution or incorporated into single stranded DNA in whole cells. The antibodies do not react with naturally occurring free nucleic acids or with deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) polymers. These antibodies are suitable for use in enzyme immunoassays for free CldU, FdU, IdU and BrdU and for detecting cells with these nucleotides incorporated into them. The monoclonal antibodies are useful in the detection of the sensitivity of tumor cells to specific chemotherapeutic agents, in the measurement of the rate of cellular DNA synthesis, in the measurement of the rate of proliferation of normal and malignant cells and in the detection of HPRT deficiency in cells. 1 tab.

  16. Monoclonal antibodies: their importance to surgeons.

    PubMed

    Estabrook, A; Mesa-Tejada, R

    1989-01-01

    A tremendous technological advance occurred in 1975 when a method was developed to fuse two cells producing a "hybridoma" which secretes a single clone of antibody, having one immunoglobulin (Ig) class, one structure, one affinity, and one specificity for an antigenic determinant. Because monoclonal antibodies are more precise reagents than conventional antisera they open new doors to diagnosis and therapy of disease, and they are useful tools in research. The pathologist uses monoclonals in immunocytochemistry to determine tumor type; the surgeon uses monoclonals for immunosuppression in renal transplantation; the immunologist uses monoclonals to decipher cellular and humoral interactions that could not be appreciated with polyclonal reagents. This review outlines the background of monoclonal antibodies and some of their clinically important uses, both in vitro and in vivo. We also project into the future and describe chimeric antibodies and their possible uses.

  17. Monoclonal antibodies in the treatment of cancer

    SciTech Connect

    Dillman, R.O.

    1984-01-01

    Potential uses of monoclonal antibodies in anti-cancer treatment include passive serotherapy, radioisotope conjugates, toxin-linked conjugates, and chemotherapy-monoclonal antibody conjugates. The bases for these applications have been founded in research with heterologous antisera, and in some cases with monoclonal antibodies in animal tumor models. Human trials with passive serotherapy have already begun in both hematopoietic and solid tumor malignancies. Promising results have been reported in cutaneous T cell lymphoma with anti-T cell monoclonal antibody, and in nodular lymphoma with anti-idiotype monoclonal antibody. Radioisotope conjugate work appears promising for imaging in both animals and humans, and this work will lay the foundation for possible therapeutic application of radio-immunotherapy. Toxin-linked conjugates are promising in vitro and may have application in autologous bone marrow transplantation. Research with chemotherapy conjugates is also underway. Preliminary results suggest that murine monoclonal antibodies will be well tolerated clinically except in the setting of circulating cells which bear the target antigen, where rapid infusions may be associated with intolerable side effects. In certain diseases, production of endogenous anti-mouse antibodies may also limit application. Advances in the technology for human-human hybridoma production may help solve some of these problems. 132 references.

  18. Preparation of astatine-labeled monoclonal antibodies

    SciTech Connect

    Milesz, S.; Norseev, Yu.V.; Szucs, Z. |

    1995-07-01

    In the cationic state astatine forms a stable complex with diethylenetriaminepentaacetic acid. Thanks to this complex, astatine can be bound to monoclonal antibodies of the RYa{sub 1} type. The most favorable conditions for preparing astatine-labeled antibodies are established. The chromatographic analysis and electromigration experiments showed that astatine is firmly linked to a biomolecule in vitro and it did not escape from labeled monoclonal antibodies even under treatment with such highly effective astatine-complexing agent as thiourea. The immune activity of astatine-labeled antibodies did not change even after 20 h.

  19. Monoclonal Antibody That Defines Human Myoepithelium

    NASA Astrophysics Data System (ADS)

    Dairkee, Shahnaz Hashmi; Blayney, Carlene; Smith, Helene S.; Hackett, Adeline J.

    1985-11-01

    We have isolated a mouse monoclonal antibody that, upon immunohistochemical localization in frozen sections, displays specificity for human myoepithelial cells in the resting mammary gland, sweat glands, and salivary glands. Furthermore, this antibody was strongly and homogeneously reactive with frozen sections of 3 of 60 breast carcinoma specimens. Using immunolocalization techniques in conjunction with polyacrylamide gel electrophoresis, we have determined that the reactivity of this monoclonal antibody is directed toward a 51,000-dalton keratin polypeptide. The potential uses of this antibody in the prognosis of human mammary carcinoma and in understanding the role of the myoepithelium in development and differentiation are discussed.

  20. Cold denaturation of monoclonal antibodies

    PubMed Central

    Lazar, Kristi L; Patapoff, Thomas W

    2010-01-01

    The susceptibility of monoclonal antibodies (mAbs) to undergo cold denaturation remains unexplored. In this study, the phenomenon of cold denaturation was investigated for a mAb, mAb1, through thermodynamic and spectroscopic analyses. tryptophan fluorescence and circular dichroism (CD) spectra were recorded for the guanidine hydrochloride (GuHCl)-induced unfolding of mAb1 at pH 6.3 at temperatures ranging from −5 to 50°C. A three-state unfolding model incorporating the linear extrapolation method was fit to the fluorescence data to obtain an apparent free energy of unfolding, ΔGu, at each temperature. CD studies revealed that mAb1 exhibited polyproline II helical structure at low temperatures and at high GuHCl concentrations. the Gibbs-Helmholtz expression fit to the ΔGu versus temperature data from fluorescence gave a ΔCp of 8.0 kcal mol−1 K−1, a maximum apparent stability of 23.7 kcal mol−1 at 18°C, and an apparent cold denaturation temperature (TCD) of −23°C. ΔGu values for another mAb (mAb2) with a similar framework exhibited less stability at low temperatures, suggesting a depressed protein stability curve and a higher relative TCD. Direct experimental evidence of the susceptibility of mAb1 and mAb2 to undergo cold denaturation in the absence of denaturant was confirmed at pH 2.5. thus, mAbs have a potential to undergo cold denaturation at storage temperatures near −20°C (pH 6.3), and this potential needs to be evaluated independently for individual mAbs. PMID:20093856

  1. Monoclonal Antibody Therapy for Advanced Neuroblastoma

    Cancer.gov

    NCI is sponsoring two clinical trials of a monoclonal antibody called ch14.18, in combination with other drugs, to see if the antibody may be helpful for children or young adults (up to age 21) with relapsed or refractory neuroblastoma.

  2. Combined use of anti-ErbB monoclonal antibodies and erlotinib enhances antibody-dependent cellular cytotoxicity of wild-type erlotinib-sensitive NSCLC cell lines

    PubMed Central

    2012-01-01

    Background The epidermal growth factor receptor (EGFR) is an established target for anti-cancer treatment in different tumour types. Two different strategies have been explored to inhibit this pivotal molecule in epithelial cancer development: small molecules TKIs and monoclonal antibodies. ErbB/HER-targeting by monoclonal antibodies such as cetuximab and trastuzumab or tyrosine-kinase inhibitors as gefitinib or erlotinib has been proven effective in the treatment of advanced NSCLC. Results In this study we explored the potential of combining either erlotinib with cetuximab or trastuzumab to improve the efficacy of EGFR targeted therapy in EGFR wild-type NSCLC cell lines. Erlotinib treatment was observed to increase EGFR and/or HER2 expression at the plasma membrane level only in NSCLC cell lines sensitive to the drug inducing protein stabilization. The combined treatment had marginal effect on cell proliferation but markedly increased antibody-dependent, NK mediated, cytotoxicity in vitro. Moreover, in the Calu-3 xenograft model, the combination significantly inhibited tumour growth when compared with erlotinib and cetuximab alone. Conclusion Our results indicate that erlotinib increases surface expression of EGFR and/or HER2 only in EGFR-TKI sensitive NSCLC cell lines and, in turns, leads to increased susceptibility to ADCC both in vitro and in a xenograft models. The combination of erlotinib with monoclonal antibodies represents a potential strategy to improve the treatment of wild-type EGFR NSCLC patients sensitive to erlotinib. PMID:23234355

  3. 5th Annual Monoclonal Antibodies Conference

    PubMed Central

    2009-01-01

    The conference, which was organized by Visiongain and held at the BSG Conference Center in London, provided an excellent opportunity for participants to exchange views on the development, production and marketing of therapeutic antibodies, and discuss the current business environment. The conference included numerous interactive panel and group discussions on topics such as isotyping for therapeutic antibodies (panel chair: Nick Pullen, Pfizer), prospects for fully human monoclonal antibodies (chair: Christian Rohlff, Oxford BioTherapeutics), perspectives on antibody manufacturing and development (chair: Bo Kara, Avecia), market impact and post-marketing issues (chair: Keith Rodgers, Bodiam Consulting) and angiogenesis inhibitors (chair: David Blakey, AstraZeneca). PMID:20073132

  4. [Current situations and the future prospect of monoclonal antibody products].

    PubMed

    Yamaguchi, Teruhide

    2014-01-01

    Monoclonal antibody products and monoclonal antibody-based biopharmaceuticals have shown considerable effectiveness in the treatment for variety of diseases; cancer, auto-immune/auto-inflammation diseases and so on. Significant advance in monoclonal antibody products for cancer treatments was made with antibody-drug conjugates (ADC), and antibodies for blockade of immune checkpoints. Already 3 ADCs and 2 anti-immune-checkpoint antibodies products have been approved, and these monoclonal antibody-related product pipelines reach over 30. On the other hand, EU approved first monoclonal-antibody biosimilar, RemsimaTM (infliximab), suggesting that other monoclonal-antibody biosmilars will follow to the market. In this paper, several new issues about monoclonal antibody products will be discussed. PMID:25707201

  5. Monoclonal antibody technologies and rapid detection assays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel methodologies and screening strategies will be outlined on the use of hybridoma technology for the selection of antigen specific monoclonal antibodies. The development of immunoassays used for diagnostic detection of prions and bacterial toxins will be discussed and examples provided demonstr...

  6. Phase Separation in Solutions of Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Benedek, George; Wang, Ying; Lomakin, Aleksey; Latypov, Ramil

    2012-02-01

    We report the observation of liquid-liquid phase separation (LLPS) in a solution of humanized monoclonal antibodies, IgG2, and the effects of human serum albumin, a major blood protein, on this phase separation. We find a significant reduction of phase separation temperature in the presence of albumin, and a preferential partitioning of the albumin into the antibody-rich phase. We provide a general thermodynamic analysis of the antibody-albumin mixture phase diagram and relate its features to the magnitude of the effective inter-protein interactions. Our analysis suggests that additives (HSA in this report), which have moderate attraction with antibody molecules, may be used to forestall undesirable protein condensation in antibody solutions. Our findings are relevant to understanding the stability of pharmaceutical solutions of antibodies and the mechanisms of cryoglobulinemia.

  7. SPECT assay of radiolabeled monoclonal antibodies

    SciTech Connect

    Jaszczak, R.J.

    1992-02-01

    The accurate determination of the biodistribution of radiolabeled monoclonal antibodies (MoAbs) is important for calculation of dosimetry and evaluation of pharmacokinetic variables such as antibody dose and route of administration. The hypothesis of this application is that the biodistribution of radiolabeled monoclonal antibodies (MoAbs) can be quantitatively determined using single photon emission computed tomography (SPECT). The major thrusts during the third year include the continued development and evaluation of improved 3D SPECT acquisition and reconstruction approaches to improve quantitative imaging of radiolabeled monoclonal antibodies (MoAbs), and the implementation and evaluation of algorithms to register serial SPECT image data sets, or to register 3D SPECT images with 3D image data sets acquired from positron emission tomography (PEI) and magnetic resonance images (MRI). The research has involved the investigation of statistical models and iterative reconstruction algorithms that accurately account for the physical characteristics of the SPECT acquisition system. It is our belief that SPECT quantification can be improved by accurately modeling the physical processes such as attenuation, scatter, geometric collimator response, and other factors that affect the measured projection data.

  8. Chemoenzymatic glyco-engineering of monoclonal antibodies

    PubMed Central

    Giddens, John P.; Wang, Lai-Xi

    2016-01-01

    Summary Monoclonal antibodies (mAbs) are an important class of therapeutic glycoproteins widely used for the treatment of cancer, inflammation, and infectious diseases. Compelling data have shown that the presence and fine structures of the conserved N-glycans at the Fc domain can profoundly affect the effector functions of antibodies. However, mAbs are usually produced as mixtures of Fc glycoforms and the control of glycosylation to a favorable, homogeneous status in various host expression systems is still a challenging task. In this chapter, we describe a detailed procedure of chemoenzymatic glyco-engineering of monoclonal antibodies, using rituximab (a therapeutic monoclonal antibody) as a model system. The protocol includes the deglycosylation of a mAb by an endoglycosidase (such as wild type EndoS) to remove the heterogeneous Fc N-glycans, leaving only the innermost GlcNAc or the core-fucosylated GlcNAc at the glycosylation site. Then the deglycosylated IgG serves as an acceptor for an endoglycosidase-catalyzed transglycosylation to add a desired N-glycan to the GlcNAc acceptor to reconstitute a defined, homogeneous natural glycoform of IgG, using a glycosynthase mutant as the enzyme and activated glycan oxazoline as the donor substrate. A semi-synthesis of sialylated and asialylated biantennary N-glycan oxazolines is also described. This detailed procedure can be used for the Fc glycosylation remodeling of other mAbs to provide homogeneous Fc glycoforms for various applications. PMID:26082235

  9. Monoclonal antibody therapeutics with up to five specificities

    PubMed Central

    LaFleur, David W.; Abramyan, Donara; Kanakaraj, Palanisamy; Smith, Rodger G.; Shah, Rutul R.; Wang, Geping; Yao, Xiao-Tao; Kankanala, Spandana; Boyd, Ernie; Zaritskaya, Liubov; Nam, Viktoriya; Puffer, Bridget A.; Buasen, Pete; Kaithamana, Shashi; Burnette, Andrew F.; Krishnamurthy, Rajesh; Patel, Dimki; Roschke, Viktor V.; Kiener, Peter A.; Hilbert, David M.; Barbas III, Carlos F.

    2013-01-01

    The recognition that few human diseases are thoroughly addressed by mono-specific, monoclonal antibodies (mAbs) continues to drive the development of antibody therapeutics with additional specificities and enhanced activity. Historically, efforts to engineer additional antigen recognition into molecules have relied predominantly on the reformatting of immunoglobulin domains. In this report we describe a series of fully functional mAbs to which additional specificities have been imparted through the recombinant fusion of relatively short polypeptides sequences. The sequences are selected for binding to a particular target from combinatorial libraries that express linear, disulfide-constrained, or domain-based structures. The potential for fusion of peptides to the N- and C- termini of both the heavy and light chains affords the bivalent expression of up to four different peptides. The resulting molecules, called zybodies, can gain up to four additional specificities, while retaining the original functionality and specificity of the scaffold antibody. We explore the use of two clinically significant oncology antibodies, trastuzumab and cetuximab, as zybody scaffolds and demonstrate functional enhancements in each case. The affect of fusion position on both peptide and scaffold function is explored, and penta-specific zybodies are demonstrated to simultaneously engage five targets (ErbB2, EGFR, IGF-1R, Ang2 and integrin αvβ3). Bispecific, trastuzumab-based zybodies targeting ErbB2 and Ang2 are shown to exhibit superior efficacy to trastuzumab in an angiogenesis-dependent xenograft tumor model. A cetuximab-based bispecific zybody that targeting EGFR and ErbB3 simultaneously disrupted multiple intracellular signaling pathways; inhibited tumor cell proliferation; and showed efficacy superior to that of cetuximab in a xenograft tumor model. PMID:23575268

  10. Monoclonal Antibodies to Plant Growth Regulators

    PubMed Central

    Eberle, Joachim; Arnscheidt, Angelika; Klix, Dieter; Weiler, Elmar W.

    1986-01-01

    Four high affinity monoclonal antibodies, which recognize two plant growth regulators from the cytokinin group, namely trans-zeatin riboside and dihydrozeatin riboside and their derivatives are reported. Six hybridomas were produced from three independent fusions of Balb/c spleen cells with P3-NS1-Ag 4-1 (abbreviated NS1) or X63-Ag 8.653 (X63) myeloma cells. The mice had been hyperimmunized with zeatin riboside-bovine serum albumin conjugate or dihydrozeatin riboside-bovine serum albumin conjugate for 3 months. The hybridomas secrete antibodies of the IgG 1 or IgG 2b subclass and allow the detection of femtomole amounts of the free cytokinins, their ribosides, and ribotides in plant extracts. The use of these monoclonals in radio- and enzyme-linked immunosorbent assay is also discussed. PMID:16664848

  11. Next generation and biosimilar monoclonal antibodies

    PubMed Central

    2011-01-01

    The Next Generation and Biosimilar Monoclonal Antibodies: Essential Considerations Towards Regulatory Acceptance in Europe workshop, organized by the European Centre of Regulatory Affairs Freiburg (EUCRAF), was held February 3–4, 2011 in Freiburg, Germany. The workshop attracted over 100 attendees from 15 countries, including regulators from 11 agencies, who interacted over the course of two days. The speakers presented their authoritative views on monoclonal antibodies (mAbs) as attractive targets for development, the experience to date with the regulatory process for biosimilar medicinal products, the European Medicines Agency draft guideline on biosimilar mAbs, as well as key elements in the development of mAbs. Participants engaged in many lively discussions, and much speculation on the nature of the quality, non-clinical and clinical requirements for authorization of biosimilar mAbs. PMID:21487235

  12. Innovative Monoclonal Antibody Therapies in Multiple Sclerosis

    PubMed Central

    Kieseier, Bernd C.

    2008-01-01

    The recent years have witnessed great efforts in establishing new therapeutic options for multiple sclerosis (MS), especially for relapsing–remitting disease courses. In particular, the application of monoclonal antibodies provide innovative approaches allowing for blocking or depleting specific molecular targets, which are of interest in the pathogenesis of MS. While natalizumab received approval by the US Food and Drug Administration and the European Medicines Agency in 2006 as the first monoclonal antibody in MS therapy, rituximab, alemtuzumab, and daclizumab were successfully tested for relapsing-remitting MS in small cohorts in the meantime. Here, we review the data available from these recent phase II trials and at the same time critically discuss possible pitfalls which may be relevant for clinical practice. The results of these studies may not only broaden our therapeutic options in the near future, but also provide new insights into disease pathogenesis. PMID:21180564

  13. Monoclonal antibodies as blood grouping reagents.

    PubMed

    Voak, D

    1990-04-01

    The large volume requirements for high quality ABO and Rh(D) typing reagents can now be supplied by selected monoclonal antibodies. Superior anti-A and anti-B monoclonal reagents can be prepared, from blends of at least two antibodies, to optimize the intensity of agglutination for slide tests and the potency for the detection of the weaker sub-groups, including Ax and Bw, by tube techniques. New quality control steps have been described for some highly sensitive anti-A/anti-B antibodies to avoid the detection of traces of A on B cells or traces of B on A1 cells, which results from the non-specific activity of A and B transferases. Excellent anti-A,B reagents may also be made by blends of at least two antibodies to optimize both A and B reactions, but the need for their continued use is now debatable. The development of high titre IgM monoclonal anti-D reagents offers simple rapid saline Rh(D) typing of both patients and donors, but they cannot reliably detect weak D (Du) and some D variants, e.g. the epitopes on D category VI cells. However, this can be achieved by blending an IgM anti-D with IgG (polyclonal) anti-D which can detect these types after conversion of negative saline tests to an antiglobulin phase. In addition, high grade Du, D categories and variants can be reliably detected (for typing donors) by selected monoclonal IgM and IgG anti-Ds by use of suitably enhanced tests without the use of an antiglobulin test.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Radiosensitisation of U87MG brain tumours by anti-epidermal growth factor receptor monoclonal antibodies

    PubMed Central

    Diaz Miqueli, A; Rolff, J; Lemm, M; Fichtner, I; Perez, R; Montero, E

    2009-01-01

    As epidermal growth factor receptor (EGFR) has been reported to be a radiation response modulator, HER inhibitors are regarded to act as potential radiosensitisers. Our study examined the role of nimotuzumab and cetuximab both, the two monoclonal antibodies (mAbs) to EGFR, as radiosensitisers in a murine glioma model in vivo. Co-administration of both the antibodies with radiation increased the radiosensitivity of U87MG, resulting in a significant delay of subcutaneous (s.c.) tumour growth. Furthermore, the addition of antibodies to the radiation decreased brain tumour sizes and is inhibited by 40–80% the increased tumour cell invasion provoked by radiotherapy, although promoted tumour cell apoptosis. Whereas nimotuzumab led to a reduction in the size of tumour blood vessels and proliferating cells in s.c. tumours, cetuximab had no significant antiangiogenic nor antiproliferative activity. In contrast, cetuximab induced a more marked inhibition of EGFR downstream signalling compared with nimotuzumab. Moreover, both antibodies reduced the total number of radioresistant CD133+ cancer stem cells (CSCs). These results were encouraging, and showed the superiority of combined treatment of mAbs to EGFR and radiation over each single therapy against glioblastoma multiforme (GBM), confirming the role of these drugs as radiosensitisers in human GBM. In addition, we first showed the ability of mAb specifics against EGFR to target radioresistant glioma CSC, supporting the potential use in patients. PMID:19293809

  15. Pan-HER-An antibody mixture targeting EGFR, HER2 and HER3 abrogates preformed and ligand-induced EGFR homo- and heterodimers.

    PubMed

    Ellebaek, Sofie; Brix, Susanne; Grandal, Michael; Lantto, Johan; Horak, Ivan D; Kragh, Michael; Poulsen, Thomas Tuxen

    2016-11-01

    The human epidermal growth factor receptor (HER)-family is involved in development of many epithelial cancers. Therefore, HER-family members constitute important targets for anti-cancer therapeutics such as monoclonal antibodies (mAbs). A limitation to the success of single HER-targeting mAbs is development of acquired resistance through mechanisms such as alterted receptor dimerization patterns and dependencies. Pan-HER is a mixture of six mAbs simultaneously targeting epidermal growth factor receptor (EGFR), HER2 and HER3 with two mAbs against each receptor. Pan-HER has previously demonstrated broader efficacy than targeting single or dual receptor combinations also in resistant settings. In light of this broad efficacy, we decided to investigate the effect of Pan-HER compared with single HER-targeting with single and dual mAbs on HER-family cross-talk and dimerization focusing on EGFR. The effect of Pan-HER on cell proliferation and HER-family receptor degradation was superior to treatment with single mAbs targeting either single receptor, and similar to targeting a single receptor with two non-overlapping antibodies. Furthermore, changes in EGFR-dimerization patterns after treatment with Pan-HER were investigated by in situ proximity ligation assay and co-immunoprecipitation, demonstrating that Pan-HER and the EGFR-targeting mAb mixture efficiently down-regulate basal EGFR homo- and heterodimerization in two tested cell lines, whereas single mAbs had limited effects. Pan-HER and the EGFR-targeting mAb mixture also blocked EGF-binding and thereby ligand-induced changes in EGFR-dimerization levels. These results suggest that Pan-HER reduces the cellular capability to switch HER-dependency and dimerization pattern in response to treatment and thus hold promise for future clinical development of Pan-HER in resistant settings.

  16. Therapeutic monoclonal antibody for sporotrichosis

    PubMed Central

    Almeida, Sandro R.

    2012-01-01

    Sporotrichosis is a chronic subcutaneous mycosis that affects both humans and animals worldwide. This subcutaneous mycosis had been attributed to a single etiological agent, Sporothrix schenckii. S. schenckii exhibits considerable genetic variability, and recently, it was suggested that this taxon consists of a complex of species. Sporotrichosis is caused by traumatic inoculation of the fungus, which is a ubiquitous environmental saprophyte that can be isolated from soil and plant debris. The infection is limited to cutaneous forms, but recently, more severe clinical forms of this mycosis have been described, especially among immunocompromised individuals. The immunological mechanisms involved in the prevention and control of sporotrichosis are not well understood. Some studies suggest that cell-mediated immunity plays an important role in protecting the host against S. schenckii. In contrast, the role of the humoral immune response in protection against this fungus has not been studied in detail. In a previous study, we showed that antigens secreted by S. schenckii induced a specific humoral response in infected animals, primarily against a 70-kDa molecule, indicating a possible role of specific antibodies against this molecule in infection control. In another study by our group, we produced a mAb against a 70-kDa glycoprotein of S. schenckii to better understand the effect of the passive immunization of mice infected with S. schenckii. The results showed a significant reduction in the number of CFUs in various mice organs when the mAb was injected before or during S. schenckii infection. Similar results were observed when T-cell-deficient mice were used. The drugs of choice in the treatment of sporotrichosis require long periods, and relapses are frequently observed, primarily in immunocompromised patients. The strong protection induced by the mAb against a 70-kDa glycoprotein makes it a strong candidate as a therapeutic vaccine against sporotrichosis. PMID

  17. Monoclonal antibodies specific for sickle cell hemoglobin

    SciTech Connect

    Jensen, R.H.; Vanderlaan, M.; Grabske, R.J.; Branscomb, E.W.; Bigbee, W.L.; Stanker, L.H.

    1985-01-01

    Two mouse hybridoma cell lines were isolated which produce monoclonal antibodies that bind hemoglobin S. The mice were immunized with peptide-protein conjugates to stimulate a response to the amino terminal peptide of the beta chain of hemoglobin S, where the single amino acid difference between A and S occurs. Immunocharacterization of the antibodies shows that they bind specifically to the immunogen peptide and to hemoglobin S. The specificity for S is high enough that one AS cell in a mixture with a million AA cells is labeled by antibody, and such cells can be analyzed by flow cytometry. Immunoblotting of electrophoretic gels allows definitive identification of hemoglobin S as compared with other hemoglobins with similar electrophoretic mobility. 12 references, 4 figures.

  18. Monoclonal antibodies and method for detecting dioxins and dibenzofurans

    DOEpatents

    Vanderlaan, Martin; Stanker, Larry H.; Watkins, Bruce E.; Bailey, Nina R.

    1989-01-01

    Compositions of matter are described which include five monoclonal antibodies that react with dioxins and dibenzofurans, and the five hybridomas that produce these monoclonal antibodies. In addition, a method for the use of these antibodies in a sensitive immunoassay for dioxins and dibenzofurans is given, which permits detection of these pollutants in samples at concentrations in the range of a few parts per billion.

  19. Labeling of monoclonal antibodies with radionuclides

    SciTech Connect

    Bhargava, K.K.; Acharya, S.A. )

    1989-07-01

    Antibodies, specifically monoclonal antibodies, are potentially very useful and powerful carriers of therapeutic agents to target tissues and diagnostic agents. The loading or charging of antibodies with agents, especially radiotracers, is reviewed here. The choice of radioisotope for immunodetection and/or immunotherapy is based on its availability, half-life, nature of the radiation emitted, and the metabolic pathways of the radionuclide in the body. Most important of all are the derivatization techniques available for labeling the antibody with the given radionuclide. Isotopes of iodine and divalent metal ions are the most commonly used radionuclides. Antibodies labeled with iodine at tyrosine residues are metabolized rapidly in vivo. This leads to the incorporation of metabolized radioactive iodine into various tissues, mainly the thyroid gland and stomach, and to the accumulation of high levels of circulating iodine in the blood, which masks tumor uptake considerably. To overcome these limitations, the use of iodohippurate as an iodine-anchoring molecule to the protein should be considered. When divalent or multivalent metal ions are used as the preferred radionuclide, bifunctional chelating reagents such as EDTA or DTPA are first coupled to the protein or antibody. These chelating molecules are attached to the protein by formation of an isopeptide linkage between the carboxylate of the chelating reagent and the amino group of the protein. Several procedures are available to generate the isopeptide linkage. When the anchoring of the chelating agent through isopeptide linkage results in the inactivation of the antibody, periodate oxidation of the carbohydrate moiety of the antibody, followed by reductive coupling of chelator, could be considered as an alternative. There is still a need for better, simpler, and more direct methods for labeling antibodies with radionuclides. 78 references.

  20. Taxonomic investigation of Legionella pneumophila using monoclonal antibodies.

    PubMed

    Brindle, R J; Bryant, T N; Draper, P W

    1989-03-01

    A panel of 19 monoclonal antibodies was used to produce patterns of immunofluorescent staining of 468 isolates of Legionella pneumophila. Twelve monoclonal antibodies were selected that divided L. pneumophila into 17 phenons which, in the majority of cases, conform to serogroup divisions. These phenons are more easily defined than the present serogroups, and isolates can be placed in them with little ambiguity. The standardized set of monoclonal antibodies was also used to define the subgroups of serogroup 1. PMID:2654183

  1. The Role of Monoclonal Antibodies in the Management of Leukemia

    PubMed Central

    Al-Ameri, Ali; Cherry, Mohamad; Al-Kali, Aref; Ferrajoli, Alessandra

    2010-01-01

    This article will review the monoclonal antibodies more commonly used in leukemias. In the last three decades, scientists have made considerable progress understanding the structure and the functions of various surface antigens, such as CD20, CD33. The introduction of rituximab, an anti CD20 monoclonal antibody, had a great impact in the treatment of lymphoproliferative disorders. Gemtuzumab, an anti CD 33 conjugated monoclonal antibody has activity in acute mylegenous leukemia (AML). As this field is undergoing a rapid growth, the years will see an increasing use of monoclonal antibodies in hematological malignancies.

  2. A novel monoclonal antibody specific for cocaine.

    PubMed

    Nakayama, Hiroshi; Kenjyou, Noriko; Shigetoh, Nobuyuki

    2013-08-01

    Detection systems for the illegal drug cocaine need to have a high sensitivity and specificity for cocaine and to be relatively easy to use. In the current study, a monoclonal antibody (MAb) with a high specificity for cocaine was produced. Enzyme-linked immunosorbent assay and fluorescence quenching immunoassay were used to screen the hybridomas. The MAb S27Y (IgG1) was shown to be sensitive and specific for cocaine and quenched fluorescence. Thus, S27Y has the potential to be used in screening assays for the rapid and sensitive detection of cocaine. PMID:23909419

  3. Anaphylaxis to chemotherapy and monoclonal antibodies.

    PubMed

    Castells, Mariana C

    2015-05-01

    Hypersensitivity reactions are increasingly prevalent, although underrecognized and underreported. Platins induce immunoglobulin E-mediated sensitization; taxenes and some monoclonal antibodies can induce reactions at first exposure. Severe hypersensitivity can preclude first-line therapy. Tryptase level at the time of a reaction is a useful diagnostic tool. Skin testing provides a specific diagnosis. Newer tests are promising diagnostic tools to help identify patients at risk before first exposure. Safe management includes rapid drug desensitization. This review provides information regarding the scope of hypersensitivity and anaphylactic reactions induced by chemotherapy and biological drugs, as well as diagnosis, management, and treatment options. PMID:25841555

  4. A Novel Bispecific Antibody Targeting EGFR and cMet Is Effective against EGFR Inhibitor-Resistant Lung Tumors.

    PubMed

    Moores, Sheri L; Chiu, Mark L; Bushey, Barbara S; Chevalier, Kristen; Luistro, Leopoldo; Dorn, Keri; Brezski, Randall J; Haytko, Peter; Kelly, Thomas; Wu, Sheng-Jiun; Martin, Pauline L; Neijssen, Joost; Parren, Paul W H I; Schuurman, Janine; Attar, Ricardo M; Laquerre, Sylvie; Lorenzi, Matthew V; Anderson, G Mark

    2016-07-01

    Non-small cell lung cancers (NSCLC) with activating EGFR mutations become resistant to tyrosine kinase inhibitors (TKI), often through second-site mutations in EGFR (T790M) and/or activation of the cMet pathway. We engineered a bispecific EGFR-cMet antibody (JNJ-61186372) with multiple mechanisms of action to inhibit primary/secondary EGFR mutations and the cMet pathway. JNJ-61186372 blocked ligand-induced phosphorylation of EGFR and cMet and inhibited phospho-ERK and phospho-AKT more potently than the combination of single receptor-binding antibodies. In NSCLC tumor models driven by EGFR and/or cMet, JNJ-61186372 treatment resulted in tumor regression through inhibition of signaling/receptor downmodulation and Fc-driven effector interactions. Complete and durable regression of human lung xenograft tumors was observed with the combination of JNJ-61186372 and a third-generation EGFR TKI. Interestingly, treatment of cynomolgus monkeys with JNJ-61186372 resulted in no major toxicities, including absence of skin rash observed with other EGFR-directed agents. These results highlight the differentiated potential of JNJ-61186372 to inhibit the spectrum of mutations driving EGFR TKI resistance in NSCLC. Cancer Res; 76(13); 3942-53. ©2016 AACR.

  5. Virotherapy, gene transfer and immunostimulatory monoclonal antibodies

    PubMed Central

    Quetglas, José I.; John, Liza B.; Kershaw, Michael H.; Álvarez-Vallina, Luis; Melero, Ignacio; Darcy, Phillip K.; Smerdou, Cristian

    2012-01-01

    Malignant cells are susceptible to viral infection and consequent cell death. Virus-induced cell death is endowed with features that are known to stimulate innate and adaptive immune responses. Thus danger signals emitted by cells succumbing to viral infection as well as viral nucleic acids are detected by specific receptors, and tumor cell antigens can be routed to professional antigen-presenting cells. The anticancer immune response triggered by viral infection is frequently insufficient to eradicate malignancy but may be further amplified. For this purpose, transgenes encoding cytokines as co-stimulatory molecules can be genetically engineered into viral vectors. Alternatively, or in addition, it is possible to use monoclonal antibodies that either block inhibitory receptors of immune effector cells, or act as agonists for co-stimulatory receptors. Combined strategies are based on the ignition of a local immune response at the malignant site plus systemic immune boosting. We have recently reported examples of this approach involving the Vaccinia virus or Semliki Forest virus, interleukin-12 and anti-CD137 monoclonal antibodies. PMID:23243597

  6. Kinetics of intralymphatically delivered monoclonal antibodies

    SciTech Connect

    Wahl, R.L.; Geatti, O.; Liebert, M.; Beers, B.; Jackson, G.; Laino, L.; Kronberg, S.; Wilson, B.S.; Beierwaltes, W.H.

    1985-05-01

    Radiolabeled monoclonal antibody (MoAb) administration subcutaneously (sq), so that preferential uptake is to the lymphatics, holds significant promise for the detection of lymph node metastases. Only limited information is available about clearance rates of intralymphatically administered MoAbs. I-131 labeled intact IgG (225.28S), F(ab's)2 (225.28S) or IgM (FT162) were administered sq to anesthetized Balb/C mice. Eight mice were studied with each MoAb, 4 with a foot-pad injection, 4 with an anterior abdominal injection. Gamma camera images were collected into a computer, over the first 6 hrs after injection with the animals anesthetized and immobile. Animals were then allowed to move about freely. Additional images were then acquired out to 48 hrs. Regions of interest wre selected over the injection site and the kinetics of antibody egress determined. Clearance rates from local sq injection sites are influenced by motion and somewhat by location. The class and fragment status of the MoAb appear relatively less important in determining clearance rates from sq injections than they are in determining whole-body clearance after iv injections. Additional studies using Fab fragments and additional monoclonals will be useful in extending these observations.

  7. Monoclonal antibody-tagged receptor-targeted contrast agents for detection of cancers

    NASA Astrophysics Data System (ADS)

    Soukos, N. S.; Hamblin, Michael R.; Deutsch, Thomas F.; Hasan, Tayyaba

    2001-07-01

    Oral cancer and precancer overexpress the epidermal growth factor receptor (EGFR) and monoclonal antibodies against EGFR coupled to photoactive dyes may have a potential both as a diagnostic and treatment modalities for oral premalignancy. We asked whether an anti-EGFR mab (C225) conjugated with the fluorescence dye indocyanine Cy5.5 could detect dysplastic changes in the hamster cheek pouch carcinogenesis model. Secondly, we tested whether the same antibody conjugated with the photosensitizer chlorin (e6) could be used together with illumination to reduce levels of expression of EGFR as evaluated by the immunophotodetection procedure. Increased fluorescence appeared to correlate with development of premalignancy when the C225-Cy5.5 conjugate was used. Areas with increased fluorescence signal were found in carcinogen-treated but clinically normal cheek pouches, that revealed dysplastsic changes by histology. The immunophotodetection procedure was carried out after photoummunotherapy with the C225-ce6 conjugate, and showed a significant reduction in fluorescence in the illuminated compared to the non-illuminated areas in the carcinogen- treated but not the normal cheek pouch. The results demonstrate that the use of anti-EGFR Mab targeted photoactive dyes may serve as a feedback controlled optical diagnosis and therapy procedure for oral premalignant lesions.

  8. Monoclonal antibody-based therapy for neuroblastoma.

    PubMed

    Cheung, N K

    2000-11-01

    Dose-intensive combination chemotherapy can improve the clinical response of many pediatric solid tumors. However, cure remains elusive. Stage 4 neuroblastoma stands out as an exception. Part of this success is a result of antibody-based strategies, which include immunomagnetic purging of autologous marrow prior to autologous marrow transplantation and immunotherapy directed at minimal residual disease. It is striking that treatment with monoclonal antibodies, even when targeted at a single antigen, namely, ganglioside G(D2), can affect long-term progression-free survival among these patients. The potential role of the idiotype network in tumor control can be exploited clinically. The genetic engineering of these antibodies into novel forms holds great promise for more specific and effective targeting possibilities, including the delivery of cytokines and cells. Preclinical results are also promising. It is expected that the availability of novel antibodies directed at a broader spectrum of pediatric solid tumors will facilitate the successful application of this approach to more patients. Experience with metastatic neuroblastoma has provided proof of this principle. It is likely that other tumors will fall.

  9. Characterization of monoclonal antibodies against human lactoferrin.

    PubMed

    van Berkel, Patrick H C; van Veen, Harrie A; Geerts, Marlieke E J; Nuijens, Jan H

    2002-09-15

    The iron-binding glycoprotein human lactoferrin (hLF) is involved in the host defense against infection and is a modulator of inflammatory reactions. We generated monoclonal antibodies (mAbs) to hLF as tools to assist both structure-function studies and the development of recombinant human lactoferrin for applications in human health care. Binding experiments with ten distinct anti-hLF mAbs to tryptic and recombinant hLF fragments in ELISA and/or on immunoblots revealed that five mAbs bound to conformational epitopes residing in the N-lobe (residues 1 to 334), whereas the other five bound to C-lobe conformational epitopes (residues 335 to 692). None of the mAbs bound to hLF denatured upon reduction. Monoclonal antibody E11 appeared to bind to the arginine-rich N-terminus of hLF, which is the binding site for heparin, bacterial lipopolysaccharide, human lysozyme, DNA and receptors. The dissociation constant of the distinct mAbs for hLF ranged from 0.5 to 18 nM, without differences in affinity for unsaturated or iron-saturated hLF, indicating that the conformational changes subject to incorporation of iron do not seem to affect the exposure and/or conformation of the antibody epitopes. The mAbs did not bind to human transferrin, a protein closely related to hLF in size, primary amino acid sequence and structure. Two C-lobe specific mAbs, E2 and E8, cross-reacted with bovine and/or porcine lactoferrin, indicating that human, bovine and porcine lactoferrin share antigenic determinants. This panel of mAbs will be used to develop quantitative and qualitative immunoassays for hLF and to delineate which regions of hLF are relevant to its anti-infective and anti-inflammatory properties. PMID:12165435

  10. Molecular Insights into Fully Human and Humanized Monoclonal Antibodies

    PubMed Central

    Davies, Julian; Glasebrook, Andrew; Tang, Ying; Glaesner, Wolfgang; Nickoloff, Brian J.

    2016-01-01

    In recent years, a large number of therapeutic monoclonal antibodies have come to market to treat a variety of conditions including patients with immune-mediated chronic inflammation. Distinguishing the relative clinical efficacy and safety profiles of one monoclonal antibody relative to another can be difficult and complex due to different clinical designs and paucity of head-to-head comparator studies. One distinguishing feature in interpreting clinical trial data by dermatologists may begin by determining whether a monoclonal antibody is fully human or humanized, which can be discerned by the generic name of the drug. Herein, this commentary highlights the distinctions and similarities of fully human and humanized monoclonal antibodies in their nomenclature, engineering, and clinical profiles. While there are a number of differences between these types of monoclonal antibodies, current evidence indicates that this designation does not impart any measurable impact on overall clinical efficacy and safety profiles of a given drug. Based on molecular insights provided in this commentary, it is clear that each monoclonal antibody, irrespective of being fully human or humanized, should be individually assessed for its clinical impact regarding safety and efficacy. Going beyond the type of generic name ascribed to a monoclonal antibody will be an ever-increasing theme for dermatologists as more therapeutic monoclonal antibodies emerge to potentially treat a wider scope of diseases with cutaneous manifestations. PMID:27672407

  11. Generation of a Canine Anti-EGFR (ErbB-1) Antibody for Passive Immunotherapy in Dog Cancer Patients

    PubMed Central

    Wang, Wei; Weichselbaumer, Marlene; Matz, Miroslawa; Mader, Alexander; Steinfellner, Willibald; Meitz, Sarah; Mechtcheriakova, Diana; Sobanov, Yuri; Willmann, Michael; Stockner, Thomas; Spillner, Edzard; Kunert, Renate; Jensen-Jarolim, Erika

    2014-01-01

    Passive immunotherapy with monoclonal antibodies represents a cornerstone of human anticancer therapies, but has not been established in veterinary medicine yet. As the tumor-associated antigen EGFR (ErbB-1) is highly conserved between humans and dogs, and considering the effectiveness of the anti-EGFR antibody cetuximab in human clinical oncology, we present here a “caninized” version of this antibody, can225IgG, for comparative oncology studies. Variable region genes of 225, the murine precursor of cetuximab, were fused with canine constant heavy gamma and kappa chain genes, respectively, and transfected into Chinese hamster ovary (CHO) DUKX-B11 cells. Of note, 480 clones were screened and the best clones were selected according to productivity and highest specificity in EGFR-coated ELISA. Upon purification with Protein G, the recombinant cetuximab-like canine IgG was tested for integrity, correct assembly, and functionality. Specific binding to the surface of EGFR-overexpressing cells was assessed by flow cytometry and immunofluorescence; moreover, binding to canine mammary tissue was demonstrated by immunohistochemistry. In cell viability and proliferation assays, incubation with can225IgG led to significant tumor cell growth inhibition. Moreover, this antibody mediated significant tumor cell killing via phagocytosis in vitro. We thus present here, for the first time, the generation of a canine IgG antibody and its hypothetical structure. On the basis of its cetuximab-like binding site, on the one hand, and the expression of a 91% homologous EGFR molecule in canine cancer, on the other hand, this antibody may be a promising research compound to establish passive immunotherapy in dog patients with cancer. PMID:24755200

  12. A new tool for monoclonal antibody analysis

    PubMed Central

    An, Yan; Zhang, Ying; Mueller, Hans-Martin; Shameem, Mohammed; Chen, Xiaoyu

    2014-01-01

    Monoclonal antibody (mAb) products are extraordinarily heterogeneous due to the presence of a variety of enzymatic and chemical modifications, such as deamidation, isomerization, oxidation, glycosylation, glycation, and terminal cyclization. The modifications in different domains of the antibody molecule can result in different biological consequences. Therefore, characterization and routine monitoring of domain-specific modifications are essential to ensure the quality of the therapeutic antibody products. For this purpose, a rapid and informative methodology was developed to examine the heterogeneity of individual domains in mAb products. A recently discovered endopeptidase, IdeS, cleaves heavy chains below the hinge region, producing F(ab')2 and Fc fragments. Following reduction of disulfide bonds, three antibody domains (LC, Fd, and Fc/2) can be released for further characterization. Subsequent analyses by liquid chromatography/mass spectrometry, capillary isoelectric focusing, and glycan mapping enable domain-specific profiling of oxidation, charge heterogeneity, and glycoform distribution. When coupled with reversed phase chromatography, the unique chromatographic profile of each molecule offers a simple strategy for an identity test, which is an important formal test for biopharmaceutical quality control purposes. This methodology is demonstrated for a number of IgGs of different subclasses (IgG1, IgG2, IgG4), as well as an Fc fusion protein. The presented technique provides a convenient platform approach for scientific and formal therapeutic mAb product characterization. It can also be applied in regulated drug substance batch release and stability testing of antibody and Fc fusion protein products, in particular for identity and routine monitoring of domain-specific modifications. PMID:24927271

  13. Antibodies Specifically Targeting a Locally Misfolded Region of Tumor Associated EGFR

    SciTech Connect

    Garrett, T.; Burgess, A; Gan, H; Luwor, R; Cartwright, G; Walker, F; Orchard, S; Clayton, A; Nice, E; et. al.

    2009-01-01

    Epidermal Growth Factor Receptor (EGFR) is involved in stimulating the growth of many human tumors, but the success of therapeutic agents has been limited in part by interference from the EGFR on normal tissues. Previously, we reported an antibody (mab806) against a truncated form of EGFR found commonly in gliomas. Remarkably, it also recognizes full-length EGFR on tumor cells but not on normal cells. However, the mechanism for this activity was unclear. Crystallographic structures for Fab:EGFR{sub 287-302} complexes of mAb806 (and a second, related antibody, mAb175) show that this peptide epitope adopts conformations similar to those found in the wtEGFR. However, in both conformations observed for wtEGFR, tethered and untethered, antibody binding would be prohibited by significant steric clashes with the CR1 domain. Thus, these antibodies must recognize a cryptic epitope in EGFR. Structurally, it appeared that breaking the disulfide bond preceding the epitope might allow the CR1 domain to open up sufficiently for antibody binding. The EGFR{sub C271A/C283A} mutant not only binds mAb806, but binds with 1:1 stoichiometry, which is significantly greater than wtEGFR binding. Although mAb806 and mAb175 decrease tumor growth in xenografts displaying mutant, overexpressed, or autocrine stimulated EGFR, neither antibody inhibits the in vitro growth of cells expressing wtEGFR. In contrast, mAb806 completely inhibits the ligand-associated stimulation of cells expressing EGFR{sub C271A/C283A}. Clearly, the binding of mAb806 and mAb175 to the wtEGFR requires the epitope to be exposed either during receptor activation, mutation, or overexpression. This mechanism suggests the possibility of generating antibodies to target other wild-type receptors on tumor cells.

  14. In situ production of therapeutic monoclonal antibodies.

    PubMed

    Suscovich, Todd J; Alter, Galit

    2015-02-01

    The use of antibodies as a treatment for disease has it origins in experiments performed in the 1890s, and since these initial experiments, monoclonal antibodies (mAbs) have become one of the fastest growing therapeutic classes for the treatment of cancer, autoimmune disease, and infectious diseases. However, treatment with therapeutic mAbs often requires high doses given via long infusions or multiple injections, which, coupled with the prohibitively high cost associated with the production of clinical-grade proteins and the transient serum half-lives that necessitate multiple administrations to gain therapeutic benefits, makes large-scale treatment of patients, especially patients in the developing world, difficult. Due to their low-cost and rapid scalability, nucleic acid-based approaches to deliver antibody gene sequences for in situ mAb production have gained substantial traction. In this review, we discuss new approaches to produce therapeutic mAbs in situ to overcome the need for the passive infusion of purified protein.

  15. Complement in monoclonal antibody therapy of cancer.

    PubMed

    Rogers, Laura M; Veeramani, Suresh; Weiner, George J

    2014-08-01

    Monoclonal antibodies (mAb) have been used as targeted treatments against cancer for more than a decade, with mixed results. Research is needed to understand mAb mechanisms of action with the goal of improving the efficacy of currently used mAbs and guiding the design of novel mAbs. While some mAb-induced tumor cell killing is a result of direct effects on tumor cell signaling, mAb opsonization of tumor cells also triggers activation of immune responses due to complement activation and engagement of antibody receptors on immune effector cells. In fact, complement has been shown to play an important role in modulating the anti-tumor activity of many mAb through complement-dependent cytotoxicity, antibody-dependent cytotoxicity, and through indirect effects by modulating the tumor microenvironment. Complement activity can have both agonistic and antagonistic effects on these processes. How the balance of such effects impacts on the clinical efficacy of mAb therapy remains unclear. In this review, we discuss the mAbs currently approved for cancer treatment and examine how complement can impact their efficacy with a focus on how this information might be used to improve the clinical efficacy of mAb treatment.

  16. Monoclonal antibodies based on hybridoma technology.

    PubMed

    Yagami, Hisanori; Kato, Hiroshi; Tsumoto, Kanta; Tomita, Masahiro

    2013-03-01

    Based on the size and scope of the present global market for medicine, monoclonal antibodies (mAbs) have a very promising future, with applications for cancers through autoimmune ailments to infectious disease. Since mAbs recognize only their target antigens and not other unrelated proteins, pinpoint medical treatment is possible. Global demand is dramatically expanding. Hybridoma technology, which allows production of mAbs directed against antigens of interest is therefore privileged. However, there are some pivotal points for further development to generate therapeutic antibodies. One is selective generation of human mAbs. Employment of transgenic mice producing human antibodies would overcome this problem. Another focus is recognition sites and conformational epitopes in antigens may be just as important as linear epitopes, especially when membrane proteins such as receptors are targeted. Recognition of intact structures is of critical importance for medical purposes. In this review, we describe patent related information for therapeutic mAbs based on hybridoma technology and also discuss new advances in hybridoma technology that facilitate selective production of stereospecific mAbs. PMID:24237029

  17. Building better monoclonal antibody-based therapeutics

    PubMed Central

    Weiner, George J.

    2015-01-01

    For 20 years, monoclonal antibodies (mAbs) have been a standard component of cancer therapy, yet there is still much room for improvement. Efforts continue to build better cancer therapeutics based on mAbs. Anti-cancer mAbs function via a variety of mechanisms including directly targeting the malignant cells, modifying the host response to the malignant cells, delivering cytotoxic moieties to the malignant cells or retargeting cellular immunity towards the malignant cells. Characteristics of mAbs that affect their efficacy include antigen specificity, overall structure, affinity for the target antigen and how a mAb component is incorporated into a construct that can trigger target cell death. This article reviews the various approaches to using mAb-based therapeutics to treat cancer, the strategies used to take advantage of the unique potential of each approach, and provides examples of current mAb-based treatments. PMID:25998715

  18. The birth pangs of monoclonal antibody therapeutics

    PubMed Central

    2012-01-01

    This paper examines the development and termination of nebacumab (Centoxin®), a human IgM monoclonal antibody (mAb) drug frequently cited as one of the notable failures of the early biopharmaceutical industry. The non-approval of Centoxin in the United States in 1992 generated major concerns at the time about the future viability of any mAb therapeutics. For Centocor, the biotechnology company that developed Centoxin, the drug posed formidable challenges in terms of safety, clinical efficacy, patient selection, the overall economic costs of health care, as well as financial backing. Indeed, Centocor's development of the drug brought it to the brink of bankruptcy. This article shows how many of the experiences learned with Centoxin paved the way for the current successes in therapeutic mAb development. PMID:22531443

  19. A humanized monoclonal antibody targeting Staphylococcus aureus.

    PubMed

    Patti, Joseph M

    2004-12-01

    This current presentation describes the in vitro and in vivo characterization of Aurexis (tefibazumab), a humanized monoclonal antibody that exhibits a high affinity and specificity and for the Staphylococcus aureus MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules) protein ClfA. Aurexis inhibited ClfA binding to human fibrinogen, and enhanced the opsonophagocytic uptake of ClfA-coated beads. Preclinical in vivo testing revealed that a single administration of Aurexis significantly protected against an IV challenge with a methicillin resistant S. aureus (MRSA) strain in murine septicemia and rabbit infective endocarditis (IE) models. Safety and pharmacokinetic data from a 19-patient phase I study support continued evaluation of Aurexis in phase II studies. PMID:15576200

  20. SPECT assay of radiolabeled monoclonal antibodies

    SciTech Connect

    Jaszczak, R.J.

    1992-02-01

    The long-term goal of this research project is to develop methods to improve the utility of single photon emission computed tomography (SPECI) to quantify the biodistribution of monoclonal antibodies (MoAbs) labeled with clinically relevant radionuclides ({sup 123}I, {sup 131}I, and {sup 111}In) and with another radionuclide,{sup 211}At, recently used in therapy. We describe here our progress in developing quantitative SPECT methodology for {sup 111}In and {sup 123}I. We have focused our recent research thrusts on the following aspects of SPECT: (1) The development of improved SPECT hardware, such as improved acquisition geometries. (2) The development of better reconstruction methods that provide accurate compensation for the physical factors that affect SPECT quantification. (3) The application of carefully designed simulations and experiments to validate our hardware and software approaches.

  1. Adverse events to monoclonal antibodies used for cancer therapy

    PubMed Central

    Baldo, Brian A

    2013-01-01

    Fifteen monoclonal antibodies (mAbs) are currently registered and approved for the treatment of a range of different cancers. These mAbs are specific for a limited number of targets (9 in all). Four of these molecules are indeed directed against the B-lymphocyte antigen CD20; 3 against human epidermal growth factor receptor 2 (HER2 or ErbB2), 2 against the epidermal growth factor receptor (EGFR), and 1 each against epithelial cell adhesion molecule (EpCAM), CD30, CD52, vascular endothelial growth factor (VEGF), tumor necrosis factor (ligand) superfamily, member 11 (TNFSF11, best known as RANKL), and cytotoxic T lymphocyte-associated protein 4 (CTLA4). Collectively, the mAbs provoke a wide variety of systemic and cutaneous adverse events including the full range of true hypersensitivities: Type I immediate reactions (anaphylaxis, urticaria); Type II reactions (immune thrombocytopenia, neutopenia, hemolytic anemia); Type III responses (vasculitis, serum sickness; some pulmonary adverse events); and Type IV delayed mucocutaneous reactions as well as infusion reactions/cytokine release syndrome (IRs/CRS), tumor lysis syndrome (TLS), progressive multifocal leukoencephalopathy (PML) and cardiac events. Although the term “hypersensitivity” is widely used, no common definition has been adopted within and between disciplines and the requirement of an immunological basis for a true hypersensitivity reaction is sometimes overlooked. Consequently, some drug-induced adverse events are sometimes incorrectly described as “hypersensitivities” while others that should be described are not. PMID:24251081

  2. Monoclonal antibody therapy for Junin virus infection.

    PubMed

    Zeitlin, Larry; Geisbert, Joan B; Deer, Daniel J; Fenton, Karla A; Bohorov, Ognian; Bohorova, Natasha; Goodman, Charles; Kim, Do; Hiatt, Andrew; Pauly, Michael H; Velasco, Jesus; Whaley, Kevin J; Altmann, Friedrich; Gruber, Clemens; Steinkellner, Herta; Honko, Anna N; Kuehne, Ana I; Aman, M Javad; Sahandi, Sara; Enterlein, Sven; Zhan, Xiaoguo; Enria, Delia; Geisbert, Thomas W

    2016-04-19

    Countermeasures against potential biothreat agents remain important to US Homeland Security, and many of these pharmaceuticals could have dual use in the improvement of global public health. Junin virus, the causative agent of Argentine hemorrhagic fever (AHF), is an arenavirus identified as a category A high-priority agent. There are no Food and Drug Administration (FDA) approved drugs available for preventing or treating AHF, and the current treatment option is limited to administration of immune plasma. Whereas immune plasma demonstrates the feasibility of passive immunotherapy, it is limited in quantity, variable in quality, and poses safety risks such as transmission of transfusion-borne diseases. In an effort to develop a monoclonal antibody (mAb)-based alternative to plasma, three previously described neutralizing murine mAbs were expressed as mouse-human chimeric antibodies and evaluated in the guinea pig model of AHF. These mAbs provided 100% protection against lethal challenge when administered 2 d after infection (dpi), and one of them (J199) was capable of providing 100% protection when treatment was initiated 6 dpi and 92% protection when initiated 7 dpi. The efficacy of J199 is superior to that previously described for all other evaluated drugs, and its high potency suggests that mAbs like J199 offer an economical alternative to immune plasma and an effective dual use (bioterrorism/public health) therapeutic. PMID:27044104

  3. Licensed monoclonal antibodies and associated challenges.

    PubMed

    Khan, Amjad Hayat; Sadroddiny, Esmaeil

    2015-12-23

    Monoclonal antibodies (mAbs) are the leading class of targeted therapeutics and remarkably effective in addressing autoimmune diseases, inflammations, infections, and various types of cancer. Several mAbs approved by US food and drug administration (FDA), are available on the market and a number are pending for approval. Luckily, FDA approved mAbs have played a pivotal role in the treatment and prevention of lethal diseases. However, claiming that licensed mAbs are 100% safe is still debatable, because infections, malignancies, anaphylactoid, and anaphylactic reactions are the more frequently associated adverse events. To evaluate benefit to risk ratio of mAbs, it is important for the clinical research staff or physicians to monitor and follow-up the patients who are receiving mAbs dozes. It is recommended that patients, physicians, biopharmaceutical companies, and researchers should keep in touch to highlight and resolve antibody-based adverse events. In this review we underscore the associated challenges of mAbs, approved by FDA from 2007-2014. PMID:27472864

  4. Localization of malignant melanoma using monoclonal antibodies

    SciTech Connect

    Wasselle, J.; Becker, J.; Cruse, W.; Espinosa, C.; Cox, C.; Reintgen, D. )

    1991-04-01

    Finding a screening test to evaluate patients with cancer for occult metastatic disease, as well as imaging all known disease, is a goal of research efforts. Twenty-nine evaluable patients with deeply invasive (stage I), regional nodal (stage II), or systemic (stage III) melanoma underwent imaging by administration of a preparation of the antimelanoma antibody labeled with technetium 99m. Scan results indicated that 28 of 32 confirmed metastatic sites were imaged with this technique (88% sensitivity). Analysis of the individual positive sites revealed that nodal basins and visceral metastases accounted for the highest percentage of metastatic sites imaged, with 14 (88%) of 16 nodal basin metastases and all four visceral metastases being detected through imaging. Occult nodal disease was detected in the iliac nodal chain in two of the 29 patients. The imaging of benign tumors and nodal basins not containing disease accounted for a confirmed false-positive rate of 21%. Three (10%) of the 29 scan results were confirmed to be false-negative. In vivo tumor localization with monoclonal antibodies showed a sensitivity similar to that of other roentgenographic procedures for identifying metastatic disease and was useful in two of three patients in identifying occult iliac nodal disease, a region that is difficult to evaluate with physical examination and other imaging modalities.

  5. Clinical laboratory applications of monoclonal antibodies.

    PubMed Central

    Payne, W J; Marshall, D L; Shockley, R K; Martin, W J

    1988-01-01

    Monoclonal antibody (MAb) technology is well recognized as a significant development for producing specific serologic reagents to a wide variety of antigens in unlimited amounts. These reagents have provided the means for developing a number of highly specific and reproducible immunological assays for rapid and accurate diagnosis of an extensive list of diseases, including infectious diseases. The impact that MAbs have had in characterizing infectious disease pathogens, as well as their current and future applications for use in clinical microbiology laboratories, is reviewed. In addition, the advantages (and disadvantages) of the use of MAbs in a number of immunoassays, such as particle agglutination, radioimmunoassays, enzyme-linked immunosorbent assays, immunofluorescent-antibody assays, and immunohistology, are explored, including the use of these reagents in novel test system assays. Also, nucleic acid probe technology is compared with the use of MAbs from the perspective of their respective applications in the diagnosis of infectious disease agents. There is no question that hybridoma technology has the potential to alter significantly the methods currently used in most clinical microbiology laboratories. PMID:3058298

  6. Drug Development of Therapeutic Monoclonal Antibodies.

    PubMed

    Mould, Diane R; Meibohm, Bernd

    2016-08-01

    Monoclonal antibodies (MAbs) have become a substantial part of many pharmaceutical company portfolios. However, the development process of MAbs for clinical use is quite different than for small-molecule drugs. MAb development programs require careful interdisciplinary evaluations to ensure the pharmacology of both the MAb and the target antigen are well-understood. Selection of appropriate preclinical species must be carefully considered and the potential development of anti-drug antibodies (ADA) during these early studies can limit the value and complicate the performance and possible duration of preclinical studies. In human studies, many of the typical pharmacology studies such as renal or hepatic impairment evaluations may not be needed but the pharmacokinetics and pharmacodynamics of these agents is complex, often necessitating more comprehensive evaluation of clinical data and more complex bioanalytical assays than might be used for small molecules. This paper outlines concerns and strategies for development of MAbs from the early in vitro assessments needed through preclinical and clinical development. This review focuses on how to develop, submit, and comply with regulatory requirements for MAb therapeutics. PMID:27342605

  7. Monoclonal antibody therapy for Junin virus infection

    PubMed Central

    Zeitlin, Larry; Geisbert, Joan B.; Deer, Daniel J.; Fenton, Karla A.; Bohorov, Ognian; Bohorova, Natasha; Goodman, Charles; Kim, Do; Hiatt, Andrew; Pauly, Michael H.; Velasco, Jesus; Whaley, Kevin J.; Altmann, Friedrich; Gruber, Clemens; Steinkellner, Herta; Honko, Anna N.; Kuehne, Ana I.; Aman, M. Javad; Sahandi, Sara; Enterlein, Sven; Zhan, Xiaoguo; Enria, Delia; Geisbert, Thomas W.

    2016-01-01

    Countermeasures against potential biothreat agents remain important to US Homeland Security, and many of these pharmaceuticals could have dual use in the improvement of global public health. Junin virus, the causative agent of Argentine hemorrhagic fever (AHF), is an arenavirus identified as a category A high-priority agent. There are no Food and Drug Administration (FDA) approved drugs available for preventing or treating AHF, and the current treatment option is limited to administration of immune plasma. Whereas immune plasma demonstrates the feasibility of passive immunotherapy, it is limited in quantity, variable in quality, and poses safety risks such as transmission of transfusion-borne diseases. In an effort to develop a monoclonal antibody (mAb)-based alternative to plasma, three previously described neutralizing murine mAbs were expressed as mouse-human chimeric antibodies and evaluated in the guinea pig model of AHF. These mAbs provided 100% protection against lethal challenge when administered 2 d after infection (dpi), and one of them (J199) was capable of providing 100% protection when treatment was initiated 6 dpi and 92% protection when initiated 7 dpi. The efficacy of J199 is superior to that previously described for all other evaluated drugs, and its high potency suggests that mAbs like J199 offer an economical alternative to immune plasma and an effective dual use (bioterrorism/public health) therapeutic. PMID:27044104

  8. Sub-Nanogram Detection of RDX Explosive by Monoclonal Antibodies

    PubMed Central

    Hutchinson, Alistair P.; Nicklin, Stephen

    2015-01-01

    Polyclonal and monoclonal antibodies were raised to protein carrier molecules haptenized with RDX, a major component of many plastic explosives including Semtex. Sera from immunized mice detected RDX protein conjugates in standard ELISA. Clonally purified monoclonal antibodies had detection limits in the sub-ng/mL range for underivatized RDX in competition ELISA. The monoclonal antibodies are not dependent on the presence of taggants added during the manufacturing process, and are likely to have utility in the detection of any explosive containing RDX, or RDX contamination of environmental sites. PMID:26252765

  9. Aged venous thrombi: radioimmunoimaging with fibrin-specific monoclonal antibody

    SciTech Connect

    Rosebrough, S.F.; Grossman, Z.D.; McAfee, J.G.; Kudryk, B.J.; Subramanian, G.; Ritter-Hrncirik, C.A.; Witanowski, L.S.; Tillapaugh-Fay, G.; Urrutia, E.

    1987-02-01

    Radioimmunoimaging of fresh canine venous thrombi with a murine monoclonal antibody specific for human and dog fibrin has been reported. Successful imaging of canine deep venous thrombi 1, 3, and 5 days old at the time of antibody injection is reported. Images were positive in all dogs, and the uptake of fibrin-specific antibody was equivalent to that of fresh thrombi.

  10. Viral Epitopes and Monoclonal Antibodies: Isolation of Blocking Antibodies that Inhibit Virus Neutralization

    NASA Astrophysics Data System (ADS)

    Massey, Richard J.; Schochetman, Gerald

    1981-07-01

    The inability of pathogenic animal viruses to be completely neutralized by antibodies can lead to chronic viral infections in which infectious virus persists even in the presence of excess neutralizing antibody. A mechanism that results in this nonneutralized fraction of virus was defined by the topographical relationships of viral epitopes identified with monoclonal antibodies wherein monoclonal antibodies bind to virus and sterically block the binding of neutralizing antibodies.

  11. Cation-exchange chromatography of monoclonal antibodies

    PubMed Central

    Urmann, Marina; Graalfs, Heiner; Joehnck, Matthias; Jacob, Lothar R

    2010-01-01

    A novel cation-exchange resin, Eshmuno™ S, was compared to Fractogel® SO3− (M) and Toyopearl GigaCap S-650M. The stationary phases have different base matrices and carry specific types of polymeric surface modifications. Three monoclonal antibodies (mAbs) were used as model proteins to characterize these chromatographic resins. Results from gradient elutions, stirred batch adsorptions and confocal laser scanning microscopic investigations were used to elucidate binding behavior of mAbs onto Eshmuno™ S and Fractogel® SO3− and the corresponding transport mechanisms on these two resins. The number of charges involved in mAb binding for Eshmuno™ S is lower than for Fractogel® SO3−, indicating a slightly weaker electrostatic interaction. Kinetics from batch uptake experiments are compared to kinetic data obtained from confocal laser scanning microscopy images. Both experimental approaches show an accelerated protein adsorption for the novel stationary phase. The influence of pH, salt concentrations and residence times on dynamic binding capacities was determined. A higher dynamic binding capacity for Eshmuno™ S over a wider range of pH values and residence times was found compared to Fractogel® SO3− and Toyopearl GigaCap S-650M. The capture of antibodies from cell culture supernatant, as well as post-protein A eluates, were analyzed with respect to their host cell protein (hcp) removal capabilities. Comparable or even better hcp clearance was observed at much higher protein loading for Eshmuno™ S than Fractogel® SO3− or Toyopearl GigaCap S-650M. PMID:20559022

  12. Monoclonal Antibodies Targeting Tumor Growth | NCI Technology Transfer Center | TTC

    Cancer.gov

    The NCI Nanobiology Program, Protein Interaction Group is seeking parties to license or co-develop, evaluate, or commercialize monoclonal antibodies against the insulin-like growth factor for the treatment of cancer.

  13. DEVELOPMENT OF MONOCLONAL ANTIBODIES AGAINST FATHEAD MINNOW (PIMEPHALES PROMELAS) VITELLOGENIN

    EPA Science Inventory

    We have obtained a panel of monoclonal antibodies directed against fathead minnow vitellogenin (Vtg) for use in sensitive ELISAs to quantify the response of exposure in vivo to estrogen or estrogen mimics.

  14. [Monoclonal antibody therapy for allergic asthma].

    PubMed

    Nishikawa, Masanori; Matsuse, Takeshi

    2002-03-01

    Allergic responses at the level of the respiratory system are mostly mediated by IgE-dependent mechanisms. The first selective anti-IgE therapy, a recombinant humanized monoclonal anti-IgE antibody(rhuMAb-E25), binds with high affinity to the Fc epsilon RI receptor binding site on IgE, thereby reducing the amount of free IgE available to bind to Fc epsilon RI receptors on mast cells and basophils. In addition, administration of rhuMAb-E25 indirectly reduces Fc epsilon RI receptor density on cells involved in allergic responses. rhuMAb-E25 has been shown to reduce allergic responses in atopic individuals and to improve symptoms and reduce rescue medication and corticosteroid use in patient with allergic asthma. The clinical effectiveness of rhuMAb-E25 supports the central role of IgE in allergic reaction and the viability of anti-IgE therapy as an effective immunological intervention for allergic asthma.

  15. Preparation of Monoclonal Antibodies Against Bovine Haptoglobin

    PubMed Central

    Wang, Caihong; Gu, Cheng; Guo, Donghua; Gao, Jing; Li, Chunqiu; Liu, Na; Geng, Yufei; Su, Mingjun; Wang, Xinyu

    2014-01-01

    Female, 8-week-old BALB/c mice were immunized with purified recombinant proteins of the predicted immunodominant region of bovine haptoglobin (pirBoHp). Two monoclonal antibodies (MAbs), named 1B3 and 6D6, were prepared by conventional B lymphocyte hybridoma technique. Titers of ascitic fluid and cell culture supernatant of MAb 1B3 were 1:9.6×108 and 1:8.2×104, respectively, and that of MAb 6D6 were 1:4.4×105 and 1:1.0×104, respectively. The subtype of MAbs 1B3 and 6D6 was IgG1κ. In Western blot analysis, MAbs 1B3 and 6D6 could recognize the α-chain of native BoHp from plasma of dairy cows. These data indicated that MAbs 1B3 and 6D6 have a potential use for developing diagnostic reagents of BoHp. PMID:25358005

  16. [Monoclonal antibodies from neurological and neuropsychological perspective].

    PubMed

    Piusińska-Macoch, Renata

    2013-05-01

    The role of monoclonal antibodies and other proinflammatory cytokines in the regulatory processes of the central and peripheral nervous system is not yet fully understood. Clinical studies show that they are involved in the pathogenesis of Alzheimer's disease, Parkinson's disease or other neurodegenerative disabilities with cognitive impairments. Genetic basis of these disorders is still in research. In the past few years it has been shown that increased levels of TNF-alpha and IL-6 in plasma play role in patients with ischemic stroke in the acute phase as well as transient ischemic episodes. Also the negative impact of TNF-alpha has been demonstrated on neck and coronary vessels, including the composition of plaques in the carotid arteries. A few reports indicate the involvement of tumor necrosis factor in such complex processes such as emotions, behavior or personality. Recent studies point to the important role of proinflammatory cytokines in the pathogenesis of sleep disorders such as narcolepsy, cataplexy and sleep paralysis. TNF-alpha can also activate nociceptive pathways, causing the intensity of neuropathic pain. However discloses asymmetric subtypes share TNF-1, TNF-2 in the induction and the maintenance of pain. The phenomenon of complex neurohormonal control mechanism support the proinflammatory cytokines is not fully understood and needs further empirical verification. PMID:23894773

  17. Monoclonal antibodies against plant cell wall polysaccharides

    SciTech Connect

    Hahn, M.G.; Bucheli, E.; Darvill, A.; Albersheim, P. )

    1989-04-01

    Monoclonal antibodies (McAbs) are useful tools to probe the structure of plant cell wall polysaccharides and to localize these polysaccharides in plant cells and tissues. Murine McAbs were generated against the pectic polysaccharide, rhamnogalacturonan I (RG-I), isolated from suspension-cultured sycamore cells. The McAbs that were obtained were grouped into three classes based upon their reactivities with a variety of plant polysaccharides and membrane glycoproteins. Eleven McAbs (Class I) recognize epitope(s) that appear to be immunodominant and are found in RG-I from sycamore and maize, citrus pectin, polygalacturonic acid, and membrane glycoproteins from suspension-cultured cells of sycamore, maize, tobacco, parsley, and soybean. A second group of five McAbs (Class II) recognize epitope(s) present in sycamore RG-I, but do not bind to any of the other polysaccharides or glycoproteins recognized by Class I. Lastly, one McAb (Class III) reacts with sycamore RG-I, sycamore and tamarind xyloglucan, and sycamore and rice glucuronoarabinoxylan, but does not bind to maize RG-I, polygalacturonic acid or the plant membrane glycoproteins recognized by Class I. McAbs in Classes II and III are likely to be useful in studies of the structure, biosynthesis and localization of plant cell wall polysaccharides.

  18. Monoclonal antibodies against the rat liver glucocorticoid receptor.

    PubMed Central

    Okret, S; Wikström, A C; Wrange, O; Andersson, B; Gustafsson, J A

    1984-01-01

    Splenic cells from one BALB/c mouse and one C57/BL mouse, immunized with purified rat liver glucocorticoid receptor (GR), were fused with the mouse myeloma cell line Sp 2/0-Ag 14. Screening for production of anti-GR-antibodies by the hybridomas was carried out with an enzyme-linked immunosorbent assay, using partially purified rat liver GR as antigen. Further screening was by a second-antibody immunoprecipitation assay using [3H]triamcinolone acetonide-GR complex from rat liver cytosol as tracer. Hybridomas from 10 different microplate wells, positive in both assays, were successfully cloned by the limiting dilution method to monoclonality. The different origins of the monoclonal antibodies were confirmed by their various isoelectric points when analyzed by isoelectric focusing. Four of the monoclonal hybridoma cell lines secreted IgM antibodies; two, IgG1; three, IgG2a; and one, IgG2b. The GR-antibody complex was identified in glycerol density gradients by a shift of the 4S GR to an 8.5S or 19S GR-antibody complex when incubated with monoclonal IgG or IgM antibody, respectively. The 10 monoclonal antibodies recognized different determinants on the GR, all situated on that domain of the receptor that is separate from the ligand and DNA-binding domains. Also, the cross-reactivity to the mouse liver GR varied among the monoclonal antibodies. No cross-reactivity was observed to the human lymphocytic GR. NaDodSO4 electrophoresis of a 0.5% pure GR preparation followed by immunoblotting using one of the monoclonal antibodies identified a single peptide with a molecular weight of 94,000, identical to the purified rat liver GR. Images PMID:6200880

  19. Use of monoclonal antibodies to detect specific mutations in formalin-fixed, paraffin-embedded tissue sections.

    PubMed

    Guo, Zhenying; Lloyd, Ricardo V

    2016-07-01

    Treatment options for cancer patients have changed considerably in recent years with the introduction of variable gene mutation and targeted therapy. Although molecular testing for gene mutations remains the gold standard in assessing biopsy tissues for specific mutations and for subsequent therapy, recent developments have led to the use of highly specific monoclonal antibodies to detect mutated genes in tissue sections. Some of the early developments included antibodies against EGFR, but have expanded to include antibodies detecting mutated RAS, BRAF, and SDHx. Immunohistochemical detection of gene mutations using mutation-specific antibodies has the advantage of allowing the detailed visualization of protein distributions in situ and provides direct visualization of the heterogeneity in the distribution of targeted proteins. This review will discuss the use of selected mainly monoclonal antibodies targeting specific mutated molecules and indicate how the detection of these proteins can be used for chemotherapeutic purposes in targeting mutated genes. PMID:27083401

  20. Use of Human Hybridoma Technology To Isolate Human Monoclonal Antibodies.

    PubMed

    Smith, Scott A; Crowe, James E

    2015-02-01

    The human hybridoma technique offers an important approach for isolation of human monoclonal antibodies. A diversity of approaches can be used with varying success. Recent technical advances in expanding the starting number of human antigen-specific B cells, improving fusion efficiency, and isolating new myeloma partners and new cell cloning methods have enabled the development of protocols that make the isolation of human monoclonal antibodies from blood samples feasible. Undoubtedly, additional innovations that could improve efficiency are possible.

  1. Considerations for the development of therapeutic monoclonal antibodies.

    PubMed

    Swann, Patrick G; Tolnay, Mate; Muthukkumar, Subramanian; Shapiro, Marjorie A; Rellahan, Barbara L; Clouse, Kathleen A

    2008-08-01

    An increasing number of Investigational New Drug (IND) applications for therapeutic monoclonal antibodies (mAbs) have been submitted to US FDA over the past several years. Monoclonal antibodies and related products are under development for a wide range of indications. In addition, the diversity of antibody-related products is increasing including IgG2/IgG4 subclasses and engineered Fc regions to enhance or reduce antibody effector functionality. Recent findings highlight the need to more fully characterize these products and their activity. Advances in product characterization tools, immunogenicity assessments, and other bioanalytical assays can be used to better understand product performance and facilitate development. PMID:18586093

  2. Monoclonal antibodies: new agents for cancer detection and targeted therapy

    SciTech Connect

    Baldwin, R.W.; Byers, V.S. )

    1991-01-01

    Antibodies directed against markers on cancer cells are gaining in importance for the purpose of targeting diagnostic and therapeutic agents. In the past, this approach has had very limited success principally because the classical methods for producing antibodies from blood serum of animals immunized with cancer cells or extracts were unsatisfactory. The situation has changed dramatically since 1975 following the design of procedures for 'immortalizing' antibody-producing cells (lymphocytes) by fusing them with cultured myeloma cells to form hybridomas which continuously secrete antibodies. Since these hybridomas produce antibodies coded for by a single antibody-producing cell, the antibodies are called monoclonal. Building on these advances in biomedical research, it is now possible to reproducibly manufacture monoclonal antibodies on a scale suitable for use in cancer detection and therapy.

  3. Boronated monoclonal antibody conjugates for neutron capture therapy

    SciTech Connect

    Borg, D.C.; Elmore, J.J. Jr.; Ferrone, S.

    1986-01-01

    This paper describes the effectiveness of /sup 10/B-labeled monoclonal antibodies against Colo-38 human melanoma in vitro. The authors obtained high boron to antibody ratios while maintaining antibody activity by using dextran intermediate carriers to link /sup 10/B to the antibody. They developed a double cell quasi-competitive binding bioassay to minimize the effects of nonspecific binding of boronated complexes to cells. 1 fig., 2 tabs.

  4. Characterization and utilization of a monoclonal antibody against pancreatic carcinoma

    SciTech Connect

    Kurtzman, S.H.; Sindelar, W.F.; Atcher, R.W.; Mitchell, J.B.; DeGraff, W.G.; Gamson, J.; Russo, A.; Friedman, A.M.; Hines, J.J.

    1994-10-01

    A monoclonal antibody was produced against a human pancreatic adenocarcinoma line and was found to react with several different human carcinomas by immunoperoxidase staining of fixed tissues. The original cells used to generate the monoclonal antibody were treated with detergent to lyse the cell membrane. A membrane associated protein of molecular weight 35kD was isolated from this detergent lysed preparation and found to be recognized by the monoclonal antibody. The binding constant of the antigen antibody reaction on the cells is 5 x 10{sup {minus}5}. It was further determined that there are 700,000 binding sites per cell. Kinetics of the antigen-antibody reaction under several conditions were also explored.

  5. Characterization of monoclonal antibodies against Gnathostoma nipponicum.

    PubMed

    Ikadai, H; Fujii, T; Nagai, T; Yoshioka, K; Nagasao, J; Kudo, N; Oyamada, T

    2003-02-01

    Monoclonal antibodies (mAbs) were produced against the proteins of advanced third-stage larvae (AdL3) of Gnathostoma nipponicum. Six mAbs (Gn2C3, Gn2H3, Gn4C3, Gn4E9, GnSH1, and Gn10B7) were obtained as determined by enzyme-linked immunosorbent assay (ELISA). Gn4E9 and GnSH1 seemed to be genus-specific, as they did not cross-react with Anisakis sp., Dirofilaria immitis, Gongylonema pulchrum, Toxocara canis, Trichinella sp., Trichuris vulpis, Metagonimus sp., or Spirometra erinaceieuropaei by ELISA. Immunohistochemistry showed that Gn2C3, Gn4E9, and Gn5H1 reacted strongly with the central esophagus; Gn2H3 reacted with cuticle,muscle, intestine, and the cervical sac; and Gn4C3 and Gn10B7 reacted with cuticle, muscle, esophagus, intestine, and the cervical sac of AdL3. In Western blotting analysis, Gn2C3, Gn4E9, and Gn5H1 reacted to 60-, 53-, 46-, and 41-kDa proteins; Gn4C3 reacted to the AdL3 protein of G. nipponicum (>42 kDa). Moreover, proteins purified using a mAb Gn4E9 immunoprecipitation method (sizes 60-, 53-, 46-, and 41-kDa) were used as antigens in ELISAs. A significant difference (P < 0.01) was shown between mouse sera infected with G. nipponicum and sera infected with Trichnella sp. or not infected. These results provide a rationale for evaluating esophageal proteins for the development of diagnostic methods for detecting G. nipponicum or Gnathostoma sp. infections.

  6. Plasmodium falciparum: characterization of defined antigens by monoclonal antibodies.

    PubMed Central

    Perrin, L H; Ramirez, E; Er-Hsiang, L; Lambert, P H

    1980-01-01

    Monoclonal antibodies directed against Plasmodium falciparum detect stage-specific, species-specific and common antigenic determinants of Plasmodia. These antibodies provide new tools for purification and characterization of Plasmodium falciparum antigens in relation to future procedures for immunoprophylaxis. Images Fig. 2 PMID:6160002

  7. Palladium-109 labeled anti-melanoma monoclonal antibodies

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.

    1984-04-30

    The invention consists of new monoclonal antibodies labelled with Palladium 109, a beta-emitting radionuclide, the method of preparing this material, and its use in the radiotherapy of melanoma. The antibodies are chelate-conjugated and demonstrate a high uptake in melanomas. (ACR)

  8. Complete De Novo Assembly of Monoclonal Antibody Sequences

    PubMed Central

    Tran, Ngoc Hieu; Rahman, M. Ziaur; He, Lin; Xin, Lei; Shan, Baozhen; Li, Ming

    2016-01-01

    De novo protein sequencing is one of the key problems in mass spectrometry-based proteomics, especially for novel proteins such as monoclonal antibodies for which genome information is often limited or not available. However, due to limitations in peptides fragmentation and coverage, as well as ambiguities in spectra interpretation, complete de novo assembly of unknown protein sequences still remains challenging. To address this problem, we propose an integrated system, ALPS, which for the first time can automatically assemble full-length monoclonal antibody sequences. Our system integrates de novo sequencing peptides, their quality scores and error-correction information from databases into a weighted de Bruijn graph to assemble protein sequences. We evaluated ALPS performance on two antibody data sets, each including a heavy chain and a light chain. The results show that ALPS was able to assemble three complete monoclonal antibody sequences of length 216–441 AA, at 100% coverage, and 96.64–100% accuracy. PMID:27562653

  9. A perspective of monoclonal antibodies: Past, present, and future

    SciTech Connect

    DeLand, F.H. )

    1989-07-01

    In 1975, the development of the technique to produce monoclonal antibodies revolutionized the approach to cancer detection and therapy. Hundreds of monoclonal antibodies to the epitopes of tumor cells have been produced, providing more specific tools for probing the cellular elements of cancer. At the same time, these tools have disclosed greater complexity in the character of these cells and stimulated further investigation. Although there are antibodies to specific epitopes of neoplastic cells, this purity has not provided the improved detection and therapy of cancer first expected. Technical manipulations have provided limited improvement in results, but more sophisticated techniques, such as biologic response modifiers, may be required to attain clinical results that can be universally applied. The intense research in monoclonal antibodies and their application does offer promise that the goal of improved cancer detection and therapy will be forthcoming. 58 references.

  10. Complete De Novo Assembly of Monoclonal Antibody Sequences.

    PubMed

    Tran, Ngoc Hieu; Rahman, M Ziaur; He, Lin; Xin, Lei; Shan, Baozhen; Li, Ming

    2016-01-01

    De novo protein sequencing is one of the key problems in mass spectrometry-based proteomics, especially for novel proteins such as monoclonal antibodies for which genome information is often limited or not available. However, due to limitations in peptides fragmentation and coverage, as well as ambiguities in spectra interpretation, complete de novo assembly of unknown protein sequences still remains challenging. To address this problem, we propose an integrated system, ALPS, which for the first time can automatically assemble full-length monoclonal antibody sequences. Our system integrates de novo sequencing peptides, their quality scores and error-correction information from databases into a weighted de Bruijn graph to assemble protein sequences. We evaluated ALPS performance on two antibody data sets, each including a heavy chain and a light chain. The results show that ALPS was able to assemble three complete monoclonal antibody sequences of length 216-441 AA, at 100% coverage, and 96.64-100% accuracy. PMID:27562653

  11. Coarse grained modeling of transport properties in monoclonal antibody solution

    NASA Astrophysics Data System (ADS)

    Swan, James; Wang, Gang

    Monoclonal antibodies and their derivatives represent the fastest growing segment of the bio pharmaceutical industry. For many applications such as novel cancer therapies, high concentration, sub-cutaneous injections of these protein solutions are desired. However, depending on the peptide sequence within the antibody, such high concentration formulations can be too viscous to inject via human derived force alone. Understanding how heterogenous charge distribution and hydrophobicity within the antibodies leads to high viscosities is crucial to their future application. In this talk, we explore a coarse grained computational model of therapeutically relevant monoclonal antibodies that accounts for electrostatic, dispersion and hydrodynamic interactions between suspended antibodies to predict assembly and transport properties in concentrated antibody solutions. We explain the high viscosities observed in many experimental studies of the same biologics.

  12. Serological classification of Neisseria gonorrhoeae with monoclonal antibodies.

    PubMed Central

    Tam, M R; Buchanan, T M; Sandström, E G; Holmes, K K; Knapp, J S; Siadak, A W; Nowinski, R C

    1982-01-01

    Hybrid cells producing monoclonal antibodies against antigens of Neisseria gonorrhoeae were obtained by the polyethylene glycol-mediated fusion of mouse myeloma cells and lymphocytes from mice immunized with gonococcal protein I or outer membrane proteins. From four fusions, 16 phenotypically stable, independently cloned hybrid cell lines were selected for continued study. Each of the cell lines produced a characteristically different monoclonal antibody which reacted in immunoprecipitation assays with a unique antigenic determinant on protein I of the outer membrane complex of the bacteria. In antibody binding, immunofluorescence, and coagglutination assays these antibodies each reacted with a restricted group of N. gonorrhoeae strains. None of the monoclonal antibodies reacted with 17 other different species of Neisseria or with Branhamella catarrhalis. When tested on 34 N. gonorrhoeae reference serotyping strains, the monoclonal antibodies demonstrated serological relationships between the strains which paralleled those observed with conventional polyvalent antisera. These antibodies now provide standardized reagents for the rapid and precise serological characterization of many strains of N. gonorrhoeae. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 FIG. 5 PMID:6807844

  13. Mouse monoclonal antibodies against Phytolacca americana antiviral protein PAP I.

    PubMed

    Kaloyanova, D; Kyurkchiev, S; Xu, J; Abouhaidar, M; Ivanov, I

    1999-08-01

    Four hybridoma lines are constructed producing monoclonal antibodies against the pokeweed (Phytolacca americana) antiviral protein PAP I. Two of the antibodies, 4E8 and 5D3, are characterized in more detail. They recognize amino acid sequences rather than conformational changes and their epitopes are 65% distinct. One of these antibodies (5D3) is used to study localization of recombinant PAP I in Escherichia coli cells by immuno-gold electron microscopy.

  14. Monoclonal antibodies against plant proteins recognise animal intermediate filaments.

    PubMed

    Parke, J M; Miller, C C; Cowell, I; Dodson, A; Dowding, A; Downes, M; Duckett, J G; Anderton, B J

    1987-01-01

    Four monoclonal antibodies were raised against polypeptides present in a high-salt detergent-insoluble fraction from cells of Chlamydomonas reinhardtii. Indirect immunofluorescence microscopy of fibroblasts and epithelial cells grown in culture using these plant antibodies revealed staining arrays identical to those obtained with well characterised antibodies to animal intermediate filaments. Immunofluorescence microscopy of Chlamydomonas with these monoclonal antibodies and a monoclonal antibody that recognises all animal intermediate filaments (anti-IFA) gave a diffuse, patchy cytoplasmic staining pattern. Both the plant antibodies and anti-IFA stained interphase onion root tip cells in a diffuse perinuclear pattern. In metaphase through to telophase, the labelling patterns colocalised with those of microtubules. Labelling of the phragmoplast was also detected but not staining of the preprophase band. On Western blots of various animal cell lines and tissues, all the antibodies labelled known intermediate filament proteins. On Western blots of whole Chlamydomonas proteins, all the antibodies labelled a broad band in the 57,000 Mr range, and three antibodies labelled bands around 66,000 and 140,000 Mr but with variable intensities. On Western blots of whole onion root tip proteins, all the antibodies labelled 50,000 Mr (two to three bands) polypeptides and a diffuse band around 60,000 Mr and three of the antibodies also labelled several polypeptides in the 90,000-200,000 Mr range. The consistent labelling of these different bands by several different monoclonal antibodies recognising animal intermediate filaments makes these polypeptides putative plant intermediate filament proteins. PMID:2446785

  15. Monoclonal antibody to an integral membrane protein, the lactose permease.

    PubMed

    Eash, J; Villarejo, M R

    1983-02-01

    A monoclonal IgG antibody directed against the lactose permease was produced from animals inoculated with membranes of a lac Y plasmid strain. The appropriate antibody was selected by a series of ELISA assays in which membranes, purified permease, or a lac Y-Z chimeric protein was the immobilized antigen. The antibody recognizes a portion of the permease exposed on the surface of membrane vesicles but does not inhibit lactose transport.

  16. Impact of genetic profiles on the efficacy of anti-EGFR antibodies in metastatic colorectal cancer with KRAS mutation.

    PubMed

    Kishiki, Tomokazu; Ohnishi, Hiroaki; Masaki, Tadahiko; Ohtsuka, Kouki; Ohkura, Yasuo; Furuse, Jyunji; Sugiyama, Masanori; Watanabe, Takashi

    2014-07-01

    Reports indicate that, even in KRAS-mutated colon cancer, there are subsets of patients who benefit from anti-EGFR monoclonal antibody (MoAb) treatment. The aim of the present study was to identify genetic profiles that contribute to the responsiveness of metastatic colorectal cancer (mCRC) to anti-EGFR MoAb. We retrospectively evaluated the efficacy of anti-EGFR MoAb in mCRC patients with KRAS mutations according to KRAS mutational subtypes, BRAF and PIK3CA mutational status and PTEN and MET expression. Among 21 patients with KRAS-mutant tumors, 8 (38%) harbored p.G13D, 7 (33%) harbored p.G12V, 5 (24%) harbored p.G12D, and 1 (5%) harbored p.G12C mutation. Patients with the p.G13D mutation exhibited a significantly higher disease control rate than patients with other KRAS mutations (P=0.042), and tended to show a longer progression-free survival (PFS) than patients with other KRAS mutations with marginal significance (P=0.074). Patients with loss of PTEN had significantly shorter PFS than those with normal PTEN expression in patients with KRAS mutations (P=0.044). MET overexpression was significantly associated with shorter PFS compared to normal MET expression in patients with KRAS mutations (P=0.016). Our data demonstrated the potential utility of alterations in PTEN and MET expression as predictive markers for response to anti-EGFR MoAbs in mCRC patients with KRAS mutations. In addition, we confirmed the predictive value of the KRAS p.G13D mutation for better response to anti-EGFR therapies in comparison with other KRAS mutations. PMID:24839940

  17. Clinical utility of radiolabeled monoclonal antibodies in prostate cancer.

    PubMed

    David, Kevin A; Milowsky, Matthew I; Kostakoglu, Lale; Vallabhajosula, Shankar; Goldsmith, Stanley J; Nanus, David M; Bander, Neil H

    2006-03-01

    Prostate cancer represents an ideal target for radioimmunotherapy based on the pattern of spread, including bone marrow and lymph nodes, sites that typically receive high levels of circulating antibody, and the small volume of disease, ideally suited for antibody delivery and antigen access. This review explores possible antibody targets in prostate cancer and focuses on the potential role for radioimmunotherapy by highlighting several clinical trials involving radiolabeled anti-prostate-specific membrane antigen monoclonal antibody J591. Prostate-specific membrane antigen, a highly prostate-restricted transmembrane glycoprotein with increased expression in high-grade, metastatic, and hormone-refractory disease, represents an ideal target for monoclonal antibody therapy in prostate cancer. Radiolabeled anti-prostate-specific membrane antigen monoclonal antibody J591 trials using the radiometals yttrium-90 and lutetium-177 have demonstrated manageable myelotoxicity, no significant nonhematologic toxicity, excellent targeting of soft-tissue and bone metastases, and preliminary efficacy including prostate-specific antigen and measurable disease responses. Additional studies are under way to better define the activity of radiolabeled antibody therapy as well as the role for fractionated therapy and combination approaches with taxane-based chemotherapy.

  18. Patterns of practice with third-line anti-EGFR antibody for metastatic colorectal cancer

    PubMed Central

    Ho, M.Y.; Renouf, D.J.; Cheung, W.Y.; Lim, H.J.; Speers, C.H.; Zhou, C.; Kennecke, H.F.

    2016-01-01

    Background Therapy with anti-epidermal growth factor receptor (egfr) monoclonal antibody improves outcomes for patients with metastatic colorectal cancer (mcrc) in the first-, second-, and third-line trial settings. In British Columbia, the use of egfr inhibitors (egfris) is confined to third-line therapy, which might lower the proportion of patients who receive this therapy. The objective of the present study was to describe egfri treatment patterns when those agents are limited to the third-line setting. The results will inform decisions about optimal use of egfri agents, including earlier in the course of therapy for metastatic disease. Methods All patients with newly diagnosed mcrc who were referred to BC Cancer Agency clinics in 2009 were included in the study. Prognostic and treatment information was prospectively collected; KRAS test results were determined by chart review. Results The study included 443 patients with a median age of 66 years. For the 321 patients who received systemic therapy, median survival was 22.3 months. Of the 117 patients who were treated with 5-fluorouracil, oxaliplatin, and irinotecan, and who were potentially eligible for egfri therapy, 90% (105 patients) were tested for KRAS status. Of the 60 patients with KRAS wild-type tumours, 82% (49 patients) received egfri therapy. Conclusions When egfri therapy is limited to the third-line setting, only a small proportion of patients receive such therapy, with death and poor performance status preventing its use in the rest. Availability of egfri in earlier lines of therapy could increase the proportion of patients treated with all active systemic agents. PMID:27803597

  19. EGF-R small inhibitors and anti-EGF-R antibodies: advantages and limits of a new avenue in anticancer therapy.

    PubMed

    Caraglia, Michele; Marra, Monica; Meo, Giuseppina; Addeo, Santolo R; Tagliaferri, Pierosandro; Budillon, Alfredo

    2006-06-01

    Cellular receptors for the Epidermal Growth Factor (EGF-R) are members of the ErbB receptor family and are considered important targets for the experimental treatment of human cancer. Monoclonal antibodies as well as small tyrosine kinase inhibitors (TKIs) have been developed and have undergone extensive evaluation in preclinical and clinical studies based on the general idea that EGF-R plays a critical role on the growth and survival of human tumors. This assumption has been derived by the successful development of BCR/ABL tyrosine kinase inhibitors in human chronic myeloid leukemia as well as on the activity of therapy with monoclonal antibodies (mAb) in breast cancer and lymphoproliferative diseases. It is now becoming clear that factors regulating sensitivity to kinase inhibitors may differ from monoclonal antibodies and that the molecules targeted by interfering drugs must be prioritaire for growth and survival of those specific tumors in order to achieve valuable results. In this article, we will describe the signal transduction pathways regulated by EGF-R and the principal pharmacological and biotechnological agents directed against EGF-R. We will discuss the significance of targeting the EGF-R driven survival pathways and the compensatory intracellular survival mechanisms that counteract the specific EGF-R inhibition and are the cause of the poor clinical results derived from study based on the use of these agents. We will describe new multipotent TKIs that target also other members of ErbB family (i.e. ErbB2) blocking one of the compensatory mechanism that can be triggered in cancer cells. Moreover, we will report new patent on bispecific mAbs that bind EGF-R and immune effectors in order to increase the immunological function of this agent that could be the basis of the different clinical results achieved with the use of TKI and mAbs. Finally, we will propose a pharmacological model able to make cancer cells dependent on EGF-R for their survival and

  20. Epithelial junction opener JO-1 improves monoclonal antibody therapy of cancer.

    PubMed

    Beyer, Ines; van Rensburg, Ruan; Strauss, Robert; Li, ZongYi; Wang, Hongjie; Persson, Jonas; Yumul, Roma; Feng, Qinghua; Song, Hui; Bartek, Jiri; Fender, Pascal; Lieber, André

    2011-11-15

    The efficacy of monoclonal antibodies (mAb) used to treat solid tumors is limited by intercellular junctions which tightly link epithelial tumor cells to each another. In this study, we define a small, recombinant adenovirus serotype 3-derived protein, termed junction opener 1 (JO-1), which binds to the epithelial junction protein desmoglein 2 (DSG2). In mouse xenograft models employing Her2/neu- and EGFR-positive human cancer cell lines, JO-1 mediated cleavage of DSG2 dimers and activated intracellular signaling pathways which reduced E-cadherin expression in tight junctions. Notably, JO-1-triggered changes allowed for increased intratumoral penetration of the anti-Her2/neu mAb trastuzumab (Herceptin) and improved access to its target receptor, Her2/neu, which is partly trapped in tight junctions. This effect translated directly into increased therapeutic efficacy of trastuzumab in mouse xenograft models using breast, gastric, and ovarian cancer cells that were Her2/neu-positive. Furthermore, combining JO-1 with the EGFR-targeting mAb cetuximab (Erbitux) greatly improved therapeutic outcomes in a metastatic model of EGFR-positive lung cancer. A combination of JO-1 with an approach that triggered transient degradation of tumor stroma proteins elicited eradication of tumors. Taken together, our findings offer preclinical proof of concept to employ JO-1 in combination with mAb therapy.

  1. Monoclonal Antibodies Attached to Carbon Nanotube Transistors for Paclitaxel Detection

    NASA Astrophysics Data System (ADS)

    Lee, Wonbae; Lau, Calvin; Richardson, Mark; Rajapakse, Arith; Weiss, Gregory; Collins, Philip; UCI, Molecular Biology; Biochemistry Collaboration; UCI, Departments of Physics; Astronomy Collaboration

    Paclitaxel is a naturally-occurring pharmaceutical used in numerous cancer treatments, despite its toxic side effects. Partial inhibition of this toxicity has been demonstrated using weakly interacting monoclonal antibodies (3C6 and 8A10), but accurate monitoring of antibody and paclitaxel concentrations remains challenging. Here, single-molecule studies of the kinetics of antibody-paclitaxel interactions have been performed using single-walled carbon nanotube field-effect transistors. The devices were sensitized with single antibody attachments to record the single-molecule binding dynamics of paclitaxel. This label-free technique recorded a range of dynamic interactions between the antibody and paclitaxel, and it provided sensitive paclitaxel detection for pM to nM concentrations. Measurements with two different antibodies suggest ways of extending this working range and uncovering the mechanistic differences among different antibodies.

  2. Generation of monoclonal antibodies to recombinant vascular endothelial growth factor.

    PubMed

    Shein, S A; Gurina, O I; Leopol'd, A V; Baklaushev, V P; Korchagina, A A; Grinenko, N F; Ivanova, N V; Volgina, N E; Ryabukhin, I A; Chekhonin, V P

    2012-05-01

    Female BALB/c mice were subcutaneously immunized with recombinant VEGF-164. After 3 immunization cycles, splenic B cells from immunized mouse were fused with immortalized myeloma culture SP2/0-Ag14 cells. Screening of hybrid cells producing anti-VEGF antibodies was performed by ELISA and immunocytochemical analysis on cultured C6 glioma cells. Subsequent cloning yielded hybridoma stably expressing monoclonal anti-VEGF antibodies recognizing recombinant and native VEGF. PMID:22808513

  3. Cooperative Immunoassays: Ultrasensitive Assays with Mixed Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Ehrlich, Paul H.; Moyle, William R.

    1983-07-01

    Mixtures of certain monoclonal antibodies appear to bind human chorionic gonadotropin in a ``cooperative'' fashion because they form circular complexes with the hormone. Experiments illustrate how this property might be exploited to develop very sensitive immunoassays for human chorionic gonadotropin or any other antigen. Since the assays are not based on competitive inhibition between radiolabeled and unlabeled antigen, they are much more sensitive than a traditional radioimmunoassay in which either one of the same antibodies is used alone.

  4. Mechanisms of monoclonal antibody stabilization and release from silk biomaterials

    PubMed Central

    Guziewicz, Nicholas A.; Massetti, Andrew J.; Perez-Ramirez, Bernardo J.; Kaplan, David L.

    2013-01-01

    The availability of stabilization and sustained delivery systems for antibody therapeutics remains a major clinical challenge, despite the growing development of antibodies for a wide range of therapeutic applications due to their specificity and efficacy. A mechanistic understanding of protein-matrix interactions is critical for the development of such systems and is currently lacking as a mode to guide the field. We report mechanistic insight to address this need by using well-defined matrices based on silk gels, in combination with a monoclonal antibody. Variables including antibody loading, matrix density, charge interactions, hydrophobicity and water access were assessed to clarify mechanisms involved in the release of antibody from the biomaterial matrix. The results indicate that antibody release is primarily governed by hydrophobic interactions and hydration resistance, which are controlled by silk matrix chemistry, peptide domain distribution and protein density. Secondary ionic repulsions are also critical in antibody stabilization and release. Matrix modification by free methionine incorporation was found to be an effective strategy for mitigating encapsulation induced antibody oxidation. Additionally, these studies highlight a characterization approach to improve the understanding and development of other protein sustained delivery systems, with broad applicability to the rapidly developing monoclonal antibody field. PMID:23859659

  5. Immunoelectron microscopy of rabbit haemorrhagic disease virus using monoclonal antibodies.

    PubMed

    Valícek, L; Smíd, B; Rodák, L

    1992-12-01

    Five monoclonal antibodies (MoAbs) to rabbit haemorrhagic disease virus (RHDV), prepared and tested in ELISA, immunoperoxidase (IP) and immunofluorescence (IF) test previously, reacted specifically in immunoelectron microscopy (IEM), too. No differences in binding of individual MoAbs with full or empty RHDV particles were found by IEM.

  6. Indium-111 labeled anti-melanoma monoclonal antibodies

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.

    1984-04-30

    A monoclonal antibody to a high molecular weight melanoma-associated antigen was chelated and radiolabeled with indium-111. This material shows high affinity for melanoma and thus can be used in the detection, localization and imaging of melanoma. 1 figure.

  7. Bacterial surface antigens defined by monoclonal antibodies: the methanogens

    SciTech Connect

    Conway de Macario, E.; Macario, A.J.L.; Magarinos, M.C.; Jovell, R.J.; Kandler, O.

    1982-01-01

    The methanogens (MB) are unique microbes of great evolutionary interest with applications in biotechnology-bioengineerings and are important in digestive processes. Their cell-wall composition is distinctively different from that of Eubacteria, e.g. the Methanobacteriaceae possess the peptidoglycan pseudomurein rather than murein. The range of cell-wall compositions among MB and their evolutionary and functional significance is not well known. The authors undertook a systematic study of the MB's surface structure using monoclonal antibodies through the following steps: (1) generation of hybridomas that produce antibody to several MB from 3 of their 4 families; (2) development of immunoenzymatic assays for MB's antigens and antibodies; (3) determination of the fine specificity of monoclonal antibodies by inhibition-blocking tests using cell-wall extracts and compounds of known structure; thus a set of monoclonal probes of predetermined specificity was assembled; and (4) resolution of surface determinants of MB representative of the Methanobacteriaceae using the monoclonal probes. Specific markers of MB strains were characterized. Two epitopes were identified within the pseudomurein molecule.

  8. Development and evaluation of monoclonal antibodies for paxilline

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Paxilline (PAX) is a tremorgenic mycotoxin that has been found in perennial ryegrass infected with Acremonium lolii. To facilitate screening for this toxin, four murine monoclonal antibodies (mAbs) were developed. In competitive indirect enzyme-linked immunosorbent assays (CI-ELISAs) the concentrati...

  9. A mouse monoclonal antibody against Alexa Fluor 647.

    PubMed

    Wuethrich, Irene; Guillen, Eduardo; Ploegh, Hidde L

    2014-04-01

    Fluorophores are essential tools in molecular and cell biology. However, their application is mostly confined to the singular exploitation of their fluorescent properties. To enhance the versatility and expand the use of the fluorophore Alexa Fluor 647 (AF647), we generated a mouse monoclonal antibody against it. We demonstrate its use of AF647 for immunoblot, immunoprecipitation, and cytofluorimetry.

  10. Development of biodegradable nanocarriers loaded with a monoclonal antibody.

    PubMed

    Gdowski, Andrew; Ranjan, Amalendu; Mukerjee, Anindita; Vishwanatha, Jamboor

    2015-02-12

    Treatments utilizing monoclonal antibody therapeutics against intracellular protein-protein interactions in cancer cells have been hampered by several factors, including poor intracellular uptake and rapid lysosomal degradation. Our current work examines the feasibility of encapsulating monoclonal antibodies within poly(lactic-co-glycolic acid) (PLGA) nanoparticles using a water/oil/water double emulsion solvent evaporation technique. This method can be used to prepare protective polymeric nanoparticles for transporting functional antibodies to the cytoplasmic compartment of cancer cells. Nanoparticles were formulated and then characterized using a number of physical and biological parameters. The average nanoparticle size ranged from 221 to 252 nm with a low polydispersity index. Encapsulation efficiency of 16%-22% and antibody loading of 0.3%-1.12% were observed. The antibody molecules were released from the nanoparticles in a sustained manner and upon release maintained functionality. Our studies achieved successful formulation of antibody loaded polymeric nanoparticles, thus indicating that a PLGA-based antibody nanoformulation is a promising intracellular delivery vehicle for a large number of new intracellular antibody targets in cancer cells.

  11. Anti-epidermal growth factor receptor (anti-EGFR) antibody conjugated fluorescent nanoparticles probe for breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Hun, Xu; Zhang, Zhujun

    2009-10-01

    Fluorescent nanoparticles (FNs) with unique optical properties may be useful as biosensors in living cancer cell imaging and cancer targeting. In this study, anti-EGFR antibody conjugated fluorescent nanoparticles (FNs) (anti-EGFR antibody conjugated FNs) probe was used to detect breast cancer cells. FNs with excellent character such as non-toxicity and photostability were first synthesized with a simple, cost-effective and environmentally friendly modified Stőber synthesis method, and then successfully modified with anti-EGFR antibody. This kind of fluorescence probe based on the anti-EGFR antibody conjugated FNs has been used to detect breast cancer cells with fluorescence microscopy imaging technology. The experimental results demonstrate that the anti-EGFR antibody conjugated FNs can effectively recognize breast cancer cells and exhibited good sensitivity and exceptional photostability, which would provide a novel way for the diagnosis and curative effect observation of breast cancer cells and offer a new method in detecting EGFR.

  12. The use of combinations of monoclonal antibodies in clinical oncology.

    PubMed

    Henricks, Linda M; Schellens, Jan H M; Huitema, Alwin D R; Beijnen, Jos H

    2015-12-01

    Treatment with monoclonal antibodies is becoming increasingly important in clinical oncology. These antibodies specifically inhibit signaling pathways in tumor growth and/or induce immunological responses against tumor cells. By combining monoclonal antibodies several pathways may be targeted simultaneously, potentially leading to additive or synergistic effects. Theoretically, antibodies are very suitable for use in combination therapy, because of limited overlapping toxicity and lack of pharmacokinetic interactions. In this article an overview is given of preclinical and clinical data on twenty-five different combinations of antibodies in oncology. Some of these combinations have proven clinical benefit, for example the combination of trastuzumab and pertuzumab in HER2-positive breast cancer, which exemplifies an additive or synergistic effect on antitumor activity in clinical studies and the combination of nivolumab and ipilimumab, which results in significant increases in progression-free and overall survival in patients with advanced melanoma. However, other combinations may lead to unfavorable results, such as bevacizumab with cetuximab or panitumumab in advanced colorectal cancer. These combinations result in shorter progression-free survival and increased toxicity compared to therapy with a single antibody. In summary, the different published studies showed widely varying results, depending on the combination of antibodies, indication and patient population. More preclinical and clinical studies are necessary to unravel the mechanisms behind synergistic or antagonistic effects of combining monoclonal antibodies. Most research on combination therapies is still in an early stage, but it is expected that for several tumor types the use of combination therapy of antibodies will become standard of care in the near future.

  13. Monoclonal antibodies as probes of epithelial membrane polarization

    PubMed Central

    1985-01-01

    Monoclonal antibodies directed against antigens in the apical plasma membrane of the toad kidney epithelial cell line A6 were produced to probe the phenomena that underlie the genesis and maintenance of epithelial polarity. Two of these antibodies, 17D7 and 18C3, were selected for detailed study here. 17D7 is directed against a 23-kD peptide found on both the apical and basolateral surfaces of the A6 epithelium whereas 18C3 recognizes a lipid localized to the apical membrane only. This novel observation of an apically localized epithelial lipid species indicates the existence of a specific sorting and insertion process for this, and perhaps other, epithelial plasma membrane lipids. The antibody-antigen complexes formed by both these monoclonal antibodies are rapidly internalized by the A6 cells, but only the 18C3-antigen complex is recycled to the plasma membrane. In contrast to the apical localization of the free antigen, however, the 18C3-antigen complex is recycled to both the apical and basolateral surface of the epithelium, which indicates that monoclonal antibody binding interferes in some way with the normal sorting process for this apical lipid antigen. PMID:4066753

  14. Monoclonal antibodies to hepatitis B surface antigen: production and characterization.

    PubMed

    Hlozánek, I; Dostálová, V; Korec, E; Zelený, V; König, J; Nĕmecek, V

    1986-01-01

    Hybridomas secreting anti-HBsAg antibodies were produced by fusion of the mouse myeloma cell line SP2/0 with lymphocytes from mice immunized with purified HBsAg. All clones produced antibodies of the IgG1 idiotype that react with the subtype a determinant of HBsAg. An enzyme immunoassay for detection of HBsAg in human sera using monoclonal antibodies was developed and compared with commercial Sevatest ELISA HBsAg/micro I kit for detection of HBsAg in clinical serum samples. PMID:3527770

  15. Treatment of leukemia with radiolabeled monoclonal antibodies.

    PubMed

    Sgouros, G; Scheinberg, D A

    1993-01-01

    In contrast to radioimmunotherapy of solid disease, wherein the primary obstacle to success is access of radiolabeled antibody to antigen-positive cells, in the treatment of leukemia delivering a lethal absorbed dose to the isolated cell appears to be the primary obstacle. The isolated cell is defined as one that is exposed only to self-irradiation (from internalized or surface-bound radiolabeled antibody) and to irradiation from free antibody in the blood. It is isolated in the sense that the particulate (beta, electron, alpha) emissions from its nearest neighboring antigen-positive cell do not contribute to its absorbed dose. Disease in the bone marrow and other tissues, since it is confined to a smaller volume, is more easily eradicated because the absorbed dose to a given cell nucleus is enhanced by emissions from adjacent cells (a smaller fraction of the emission energy is 'wasted'). The optimization simulations presented above for the M195 antibody suggest that the optimum dose of antibody that should be administered is that required to yield a concentration within the distribution volume of the antibody that is approximately equal to the concentration of antigen sites as determined by the tumor burden. Although not specifically considered in the modeling example presented above, antibody internalization and catabolism may be expected to play an important role in radioimmunotherapy treatment planning of leukemia. Depending upon the kinetics of internalization and catabolism, the absorbed dose to the red marrow and to antigen-positive cells may be reduced considerably, since catabolism, assuming that it is followed by rapid extrusion of the radioactive label, would decrease the cells' exposure time considerably. The recently demonstrated effectiveness of radioimmunotherapy in certain cases of B-cell lymphoma and in reducing tumor burden in acute myelogenous leukemia suggests that radioimmunotherapy is beginning to fulfill the promise held when it was initially

  16. Construction of an immunotoxin by linking a monoclonal antibody against the human epidermal growth factor receptor and a hemolytic toxin.

    PubMed

    Avila, Ana D; Calderón, Carlos F; Pérez, Rita M; Pons, Carmen; Pereda, Celia M; Ortiz, Ana R

    2007-01-01

    Hybrid molecules obtained through conjugation of monoclonal antibodies and toxins constitute an approach under exploration to generate potential agents for the treatment of cancer and other diseases. A frequently employed toxic component in the construction of such immunotoxins is ricin, a plant toxin which inhibits protein synthesis at ribosomal level and so requires to be internalized by the cell. A hemolytic toxin isolated from the sea anemone Stichodactyla helianthus, which is active at the cell membrane level, was linked through a disulfide bond to the anti-epidermal growth factor receptor monoclonal antibody ior egf/r3. The resulting immunotoxin did not exhibit hemolytic activity except under reducing conditions. It was toxic for H125 cells that express the human epidermal growth factor receptor, but non-toxic for U1906 cells that do not express this receptor. PMID:18064354

  17. Monoclonal IgA Antibodies for Aflatoxin Immunoassays.

    PubMed

    Ertekin, Özlem; Pirinçci, Şerife Şeyda; Öztürk, Selma

    2016-01-01

    Antibody based techniques are widely used for the detection of aflatoxins which are potent toxins with a high rate of occurrence in many crops. We developed a murine monoclonal antibody of immunoglobulin A (IgA) isotype with a strong binding affinity to aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2) and aflatoxin M1 (AFM1). The antibody was effectively used in immunoaffinity column (IAC) and ELISA kit development. The performance of the IACs was compatible with AOAC performance standards for affinity columns (Test Method: AOAC 991.31). The total binding capacity of the IACs containing our antibody was 111 ng, 70 ng, 114 ng and 73 ng for AFB1, AFB2, and AFG1 andAFG2, respectively. Furthermore, the recovery rates of 5 ng of each AF derivative loaded to the IACs were determined as 104.9%, 82.4%, 85.5% and 70.7% for AFB1, AFB2, AFG1 and AFG2, respectively. As for the ELISA kit developed using non-oriented, purified IgA antibody, we observed a detection range of 2-50 µg/L with 40 min total test time. The monoclonal antibody developed in this research is hitherto the first presentation of quadruple antigen binding IgA monoclonal antibodies in mycotoxin analysis and also the first study of their utilization in ELISA and IACs. IgA antibodies are valuable alternatives for immunoassay development, in terms of both sensitivity and ease of preparation, since they do not require any orientation effort. PMID:27187470

  18. Monoclonal IgA Antibodies for Aflatoxin Immunoassays

    PubMed Central

    Ertekin, Özlem; Pirinçci, Şerife Şeyda; Öztürk, Selma

    2016-01-01

    Antibody based techniques are widely used for the detection of aflatoxins which are potent toxins with a high rate of occurrence in many crops. We developed a murine monoclonal antibody of immunoglobulin A (IgA) isotype with a strong binding affinity to aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2) and aflatoxin M1 (AFM1). The antibody was effectively used in immunoaffinity column (IAC) and ELISA kit development. The performance of the IACs was compatible with AOAC performance standards for affinity columns (Test Method: AOAC 991.31). The total binding capacity of the IACs containing our antibody was 111 ng, 70 ng, 114 ng and 73 ng for AFB1, AFB2, and AFG1 andAFG2, respectively. Furthermore, the recovery rates of 5 ng of each AF derivative loaded to the IACs were determined as 104.9%, 82.4%, 85.5% and 70.7% for AFB1, AFB2, AFG1 and AFG2, respectively. As for the ELISA kit developed using non-oriented, purified IgA antibody, we observed a detection range of 2–50 µg/L with 40 min total test time. The monoclonal antibody developed in this research is hitherto the first presentation of quadruple antigen binding IgA monoclonal antibodies in mycotoxin analysis and also the first study of their utilization in ELISA and IACs. IgA antibodies are valuable alternatives for immunoassay development, in terms of both sensitivity and ease of preparation, since they do not require any orientation effort. PMID:27187470

  19. Structure of the Fab fragment of the anti-murine EGFR antibody 7A7 and exploration of its receptor binding site.

    PubMed

    Talavera, Ariel; Mackenzie, Jenny; Garrido, Greta; Friemann, Rosmarie; López-Requena, Alejandro; Moreno, Ernesto; Krengel, Ute

    2011-07-01

    The EGF receptor is an important target of cancer immunotherapies. The 7A7 monoclonal antibody has been raised against the murine EGFR, but it cross-reacts with the human receptor. The results from experiments using immune-competent mice can therefore, in principle, be extrapolated to the corresponding scenario in humans. In this work we report the crystal structure of the 7A7 Fab at an effective resolution of 1.4Å. The antibody binding site comprises a deep pocket, located at the interface between the light and heavy chains, with major contributions from CDR loops H1, H2, H3 and L1. Binding experiments show that 7A7 recognizes a site on the EGFR extracellular domain that is not accessible in its most stable conformations, but that becomes exposed upon treatment with a tyrosine kinase inhibitor. This suggests a recognition mechanism similar to that proposed for mAb 806. PMID:21592580

  20. The Use of Monoclonal Antibodies in Human Prion Disease

    NASA Astrophysics Data System (ADS)

    Bodemer, Walter

    Detection of PrP and its pathological isoform(s) is the key to understanding the etiology and pathogenesis of transmissible spongiform encephalopathy. There is ample evidence that PrP isoforms constitute a major component of an unknown and perhaps unconventional infectious agent. An etiological relationship between human and zoonotic transmissible spongiform encephalopathies may be revealed with monoclonal antibodies. Knowledge of the conformational transition rendering a nonpathogenic, almost ubiquitous cellular protein into a pathogenic one is crucial to defining pathomechanisms. The stepwise or even continuous formation of pathogenic molecules can be monitored. Any improvement in the early diagnosis could help to conceive new therapeutic measures which are not currently available. Determination of PrP isoforms in tissue, cells, or body fluids may be of prognostic value. Many experimental approaches in molecular medicine and molecular biology of the prion protein already rely on monoclonal antibodies. Recombinant antibodies such as the single-chain Fv may soon replace traditional hybridoma techniques. Binding affinity can easily be manipulated by a number of techniques, including in vitro mutagenesis - a step which could never be carried out using the traditional hybridoma technology. Monoclonal antibodies are and will remain an essential support for ongoing research on the prion protein in general and on the unconventional infectious prions.

  1. Recent Progress toward Engineering HIV-1-Specific Neutralizing Monoclonal Antibodies

    PubMed Central

    Sun, Ming; Li, Yue; Zheng, Huiwen; Shao, Yiming

    2016-01-01

    The recent discoveries of broadly potent neutralizing human monoclonal antibodies represent a new generation of antiretrovirals for the treatment and prophylaxis. Antibodies are generally considered more effective and safer and have been proved to provide passive protection against mucosal challenge in humanized mice and macaques. Several neutralizing Abs could protect animals against HIV-1 but are not effective when used in an established infected model for therapy. In order to overcome the limitation of antiviral activities, multiple antibody-engineering technologies have been explored to generate “the better” neutralizing antibodies against HIV-1 since bNAbs attack viral entry by various mechanisms. Thus, a promising direction of research is to discover and exploit rational antibody combination or engineered antibodies (eAbs) as potential candidate therapeutics against HIV-1. It has been reported that inclusion of fusion-neutralizing antibodies in a set of bNAbs could improve their overall activities and neutralizing spectrum. Here, we review several routes for engineering bNAbs, such as design and generation of bispecific antibodies, specific glycosylation of antibodies to enhance antiviral activity, and variable region-specific modification guided by structure and computer, as well as reviewing antibody-delivery technologies by non-viral vector, viral vector, and human hematopoietic stem/progenitor cells transduced with a lentiviral construct. We also discuss the optimized antiviral activities and benefits of these strategy and potential mechanisms. PMID:27746780

  2. Modification of monoclonal antibody carbohydrates by oxidation, conjugation, or deoxymannojirimycin does not interfere with antibody effector functions.

    PubMed

    Awwad, M; Strome, P G; Gilman, S C; Axelrod, H R

    1994-01-01

    Site-specific attachment of metal chelators or cytotoxic agents to the carbohydrate region of monoclonal antibodies results in clinically useful immunoconjugates [Doerr et al. (1991) Ann Surg 214: 118, Wynant et al. (1991) Prostate 18: 229]. Since the capacity of monoclonal antibodies (mAb) to mediate tumor cell lysis via antibody-dependent cellular cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC) may accentuate the therapeutic effectiveness of immunoconjugates, we determined whether site-specific modification of mAb carbohydrates interfered with these functions. The chemical modifications examined consisted of periodate oxidation and subsequent conjugation to either a peptide linker/chelator (GYK-DTPA) or a cytotoxic drug (doxorubicin adipic dihydrazide). mAb-associated carbohydrates were also modified metabolically by incubating hybridoma cells in the presence of a glucosidase inhibitor deoxymannojirimycin to produce high-mannose antibody. All four forms (unaltered, oxidized, conjugated and high-mannose) of murine mAb OVB-3 mediated tumor cell lysis via CDC. Similarly, equivalent ADCC was observed with native and conjugated forms of mAb OVB-3 and EGFR.1. ADCC was achieved with different murine effector cells such as naive (NS), poly (I*C)- and lipopolysaccharide-stimulated (SS) spleen cells, or Corynebacterium-parvum-elicited peritoneal cells (PEC). All murine effector cell types mediated tumor cell lysis but differed in potency such that PEC > SS > NS. Excellent ADCC activity was also demonstrable by human peripheral blood mononuclear cells with OVB-3-GYK-DTPA and high-mannose OVB-3 mAb. ADCC activity was detectable in vivo: both native and conjugated OVB-3 inhibited growth of OVCAR-3 xenografts in nude mice primed with C. parvum. In conclusion, modification of mAb carbohydrates did not compromise their in vivo or in vitro biological functions. Therefore, combination therapy using immunomodulators to enhance the effector functions of site

  3. Analysis of monoclonal antibody oxidation by simple mixed mode chromatography.

    PubMed

    Pavon, Jorge Alexander; Li, Xiaojuan; Chico, Steven; Kishnani, Umesh; Soundararajan, Soundara; Cheung, Jason; Li, Huijuan; Richardson, Daisy; Shameem, Mohammed; Yang, Xiaoyu

    2016-01-29

    Analysis of oxidation of monoclonal antibodies (mAbs) in most cases relies on peptide mapping and LC-MS, which is time consuming and labor-intensive. A robust chromatography based method that is able to resolve and quantitate mAb oxidation variants due to oxidized methionine or tryptophan is highly desired. Here we developed a novel mixed mode chromatography method using the unique property of Sepax Zenix SEC-300MK column to analyze mAb oxidation levels. The separation of oxidized species relied upon the mixed mode of size exclusion and hydrophobic interaction between the resin and antibodies. The chromatography was performed in a regular SEC mobile phase, PBS, containing NaCl at a concentration (0-2.4M) specific for individual antibodies. This method was able to resolve and quantitate the oxidized antibodies as prepeaks, of either methionine-oxidized species induced by the common oxidants TBHP, tryptophan-oxidized species triggered by AAPH, or oxidized species by UV photo-irradiation. The prepeaks were further characterized by SEC-MALLS as monomers and confirmed by LC-MS as oxidized antibody variants with a mass increase of 16 or 32Da. This method has been successfully applied to monitor multiple monoclonal antibodies of IgG1, IgG2, and IgG4 subclasses. PMID:26774436

  4. Current status of cancer immunodetection with radiolabeled human monoclonal antibodies.

    PubMed

    De Jager, R; Abdel-Nabi, H; Serafini, A; Pecking, A; Klein, J L; Hanna, M G

    1993-04-01

    The use of radiolabeled murine monoclonal antibodies (MoAbs) for cancer immunodetection has been limited by the development of human antimouse antibodies (HAMA). Human monoclonal antibodies do not elicit a significant human antihuman (HAHA) response. The generation and production of human monoclonal antibodies met with technical difficulties that resulted in delaying their clinical testing. Human monoclonal antibodies of all isotypes have been obtained. Most were immunoglobulin (Ig) M directed against intracellular antigens. Two antibodies, 16.88 (IgM) and 88BV59 (IgG3k), recognize different epitopes on a tumor-associated antigen, CTA 16.88, homologous to cytokeratins 8, 18, and 19. CTA 16.88 is expressed by most epithelial-derived tumors including carcinomas of the colon, pancreas, breast, ovary, and lung. The in vivo targeting by these antibodies is related to their localization in nonnecrotic areas of tumors. Repeated administration of 16.88 over 5 weeks to a cumulative dose of 1,000 mg did not elicit a HAHA response. Two of 53 patients developed a low titer of HAHA 1 to 3 months after a single administration of 88BV59. Planar imaging of colorectal cancer with Iodine-131 (131I)-16.88 was positive in two studies in 9 of 12 and 16 of 20 patients preselected by immunohistochemistry. Tumors less than 2 cm in diameter are usually not detected. The lack of immunogenicity and long tumor residence time (average = 17 days) makes 16.88 a good candidate for therapy. Radioimmunlymphoscintigraphy with indium-111 (111In)-LiLo-16.88 administered by an intramammary route was used in the presurgical staging of primary breast cancer. The negative predictive value of lymph node metastases for tumors less than 3 cm was 90.5%. Planar and single photon emission computed tomography imaging of colorectal carcinoma with technetium-99m (99mTc) 88BV59 was compared with computed tomography (CT) scan in 36 surgical patients. The antibody scan was more sensitive than the CT scan in detecting

  5. [Increases in pharmaceutical expenditures of PHI by monoclonal antibodies].

    PubMed

    Wild, F

    2013-06-01

    The dynamics of one of the most innovative segments of health care and its impact on pharmaceutical expenditure of private health insurance (PHI) is examined on the basis of drug prescription data from private health insurance companies. The study shows that the increase in pharmaceutical expenditure can be explained partly by the new treatment possibilities available with monoclonal antibodies. The per capita expenditure on drugs with monoclonal antibodies increased by 255% from 2006 to 2010 in private health insurance, while the corresponding expenditure of all pharmaceuticals has risen by only 19% in the same period. In the coming years, growth on this scale will be a challenge for all payers in the health system. PMID:23926705

  6. Biosimilar monoclonal antibodies in lymphoma: a critical appraisal.

    PubMed

    Rioufol, Catherine; Salles, Gilles

    2015-05-01

    Rituximab, an anti-CD20 monoclonal antibody, revolutionized the treatment of lymphoma. Although newer generation anti-CD20 monoclonal antibodies are being examined, patent expiries and patient demand have fueled the development of rituximab biosimilars. The development of such agents is both an important and difficult undertaking. By definition, although they aim to have safety and efficacy comparable with their reference agents, biosimilars are not exact replicas of those agents, and small changes in nonclinical and preclinical properties may ultimately affect in vivo activity. Consideration must be given to the complex mechanisms of action, sensitive patient populations that may be treated, and appropriate clinical trial endpoints. Furthermore, extrapolation of indications is multifaceted, deserving close examination. This review represents a critical look at biosimilars in lymphoma and their safety, efficacy and long-term effects on patient outcomes. PMID:25818308

  7. Adverse events of monoclonal antibodies used for cancer therapy.

    PubMed

    Guan, Mei; Zhou, Yan-Ping; Sun, Jin-Lu; Chen, Shu-Chang

    2015-01-01

    In 1997, the first monoclonal antibody (MoAb), the chimeric anti-CD20 molecule rituximab, was approved by the US Food and Drug administration for use in cancer patients. Since then, the panel of MoAbs that are approved by international regulatory agencies for the treatment of hematopoietic and solid malignancies has continued to expand, currently encompassing a stunning amount of 20 distinct molecules for 11 targets. We provide a brief scientific background on the use of MoAbs in cancer therapy, review all types of monoclonal antibodies-related adverse events (e.g., allergy, immune-related adverse events, cardiovascular adverse events, and pulmonary adverse events), and discuss the mechanism and treatment of adverse events. PMID:26075239

  8. Adverse Events of Monoclonal Antibodies Used for Cancer Therapy

    PubMed Central

    Guan, Mei; Zhou, Yan-Ping; Sun, Jin-Lu; Chen, Shu-Chang

    2015-01-01

    In 1997, the first monoclonal antibody (MoAb), the chimeric anti-CD20 molecule rituximab, was approved by the US Food and Drug administration for use in cancer patients. Since then, the panel of MoAbs that are approved by international regulatory agencies for the treatment of hematopoietic and solid malignancies has continued to expand, currently encompassing a stunning amount of 20 distinct molecules for 11 targets. We provide a brief scientific background on the use of MoAbs in cancer therapy, review all types of monoclonal antibodies-related adverse events (e.g., allergy, immune-related adverse events, cardiovascular adverse events, and pulmonary adverse events), and discuss the mechanism and treatment of adverse events. PMID:26075239

  9. [Monoclonal antibodies, overview and outlook of a promising therapeutic option].

    PubMed

    Herschel, Tom; El-Armouche, Ali; Weber, Silvio

    2016-09-01

    Rising numbers of approved monoclonal antibodies for cancer, autoimmune and cardiovascular disease treatment underline the growing importance of this therapeutic option which has been discovered in the late 19th century. However, clinical trials and commercial use started in the late 20th century. The specific mode of action and clinical advantages over standard strategies signify a big step forward not only in terms of treating cancer but various other diseases like psoriasis and multiple sclerosis. New developments in the field of biologicals raise hope for an even broader scope of applications and options for currently untreatable diseases. The following article summarizes the historical development, the status-quo of clinical approvement and current development of monoclonal antibody therapy. PMID:27642741

  10. Positron emission tomographic imaging of tumors using monoclonal antibodies

    SciTech Connect

    Zalutsky, M.R.

    1992-08-01

    This research project is developing methods for utilizing positron emission tomography (PET) to increase the clinical potential of radiolabeled monoclonal antibodies (MAbs). This report describes the development of methods for labeling MAbs and their fragments with positron-emitting halogen nuclides, fluorine-18 and iodine-124. These nulides were selected because of the widespread availability of F-18 and because of our extensive experience in the development of new protein radiohalogenation methods.

  11. Monoclonal antibodies directed against surface molecules of multicell spheroids

    NASA Technical Reports Server (NTRS)

    Martinez, Andrew O.

    1993-01-01

    The objective of this project is to generate a library of monoclonal antibodies (MAbs) to surface molecules of mammalian tumor and transformed cells grown as multicell spheroids (MCS). These MCS are highly organized, three dimensional multicellular structures which exhibit many characteristics of in vivo organized tissues not found in conventional monolayer or suspension culture; therefore, MCS make better in vitro model systems to study the interactions of mammalian cells. Additionally, they provide a functional assay for surface adhesion molecules.

  12. Production of Monoclonal Antibodies in Plants for Cancer Immunotherapy

    PubMed Central

    Moussavou, Ghislain; Ko, Kisung; Lee, Jeong-Hwan; Choo, Young-Kug

    2015-01-01

    Plants are considered as an alternative platform for recombinant monoclonal antibody (mAb) production due to the improvement and diversification of transgenic techniques. The diversity of plant species offers a multitude of possibilities for the valorization of genetic resources. Moreover, plants can be propagated indefinitely, providing cheap biomass production on a large scale in controlled conditions. Thus, recent studies have shown the successful development of plant systems for the production of mAbs for cancer immunotherapy. However, their several limitations have to be resolved for efficient antibody production in plants. PMID:26550566

  13. Recovery and purification process development for monoclonal antibody production

    PubMed Central

    Ma, Junfen; Winter, Charles; Bayer, Robert

    2010-01-01

    Hundreds of therapeutic monoclonal antibodies (mAbs) are currently in development, and many companies have multiple antibodies in their pipelines. Current methodology used in recovery processes for these molecules are reviewed here. Basic unit operations such as harvest, Protein A affinity chromatography and additional polishing steps are surveyed. Alternative processes such as flocculation, precipitation and membrane chromatography are discussed. We also cover platform approaches to purification methods development, use of high throughput screening methods, and offer a view on future developments in purification methodology as applied to mAbs. PMID:20647768

  14. A monoclonal antibody distinguishes two types of phosphatidylinositol 4-kinase.

    PubMed Central

    Endemann, G C; Graziani, A; Cantley, L C

    1991-01-01

    A monoclonal antibody has been developed against the type II PtdIns 4-kinase from bovine brain. This antibody, 4C5G, causes greater than 90% inhibition of the type II PtdIns 4-kinase from bovine brain, rat brain and human erythrocytes. However, it fails to inhibit type III PtdIns 4-kinase from bovine brain or PtdIns 3-kinase from rat liver. These results suggest that type II and type III PtdIns 4-kinases are distinct gene products, and that 4C5G will be useful in studying the function of the type II PtdIns 4-kinase. PMID:1846531

  15. Current status of tumor imaging with monoclonal antibodies.

    PubMed

    Blend, M J

    1991-12-01

    Although the full potential of MoAb imaging has yet to be realized, technologic advances continue with great intensity at a number of academic and industrial research institutions. Continuous production of MoAbs will eventually yield a variety of highly specific antibodies and novel approaches for improving cancer detection. As new diagnostic and therapeutic methods continue to be developed, MoAbs will begin to play a major role as targeted carriers, provided adequate funding from industry and government can be readily obtained. At present, the future of monoclonal antibodies in diagnosis and therapy for cancer patients appears promising. PMID:1790666

  16. Characterization of rabbit cells by monoclonal and polyclonal antibodies.

    PubMed Central

    Ponsard, D C; Cinader, B; Chou, C T; Dubiski, S

    1986-01-01

    Reagents for the identification of rabbit cell markers have been developed at a relatively slow rate. In this paper, rabbit cells are being characterized by polyclonal antibodies against a T-cell antigen (RTLA), a B-cell antigen (RABELA) and an analogue of murine Ia antigen. A number of monoclonal antibodies, specific for lymphocytes and/or bone marrow and/or polymorphonuclear leucocytes, have been used for the analysis of cells with identifiable membrane antigens. Populations that have cells with two of the above antigens in the membranes were identified. To these ends, complement-mediated cell kill by antisera alone and in mixtures was employed. PMID:3489667

  17. ABT-414, an Antibody-Drug Conjugate Targeting a Tumor-Selective EGFR Epitope.

    PubMed

    Phillips, Andrew C; Boghaert, Erwin R; Vaidya, Kedar S; Mitten, Michael J; Norvell, Suzanne; Falls, Hugh D; DeVries, Peter J; Cheng, Dong; Meulbroek, Jonathan A; Buchanan, Fritz G; McKay, Laura M; Goodwin, Neal C; Reilly, Edward B

    2016-04-01

    Targeting tumor-overexpressed EGFR with an antibody-drug conjugate (ADC) is an attractive therapeutic strategy; however, normal tissue expression represents a significant toxicity risk. The anti-EGFR antibody ABT-806 targets a unique tumor-specific epitope and exhibits minimal reactivity to EGFR in normal tissue, suggesting its suitability for the development of an ADC. We describe the binding properties and preclinical activity of ABT-414, an ABT-806 monomethyl auristatin F conjugate. In vitro, ABT-414 selectively kills tumor cells overexpressing wild-type or mutant forms of EGFR. ABT-414 inhibits the growth of xenograft tumors with high EGFR expression and causes complete regressions and cures in the most sensitive models. Tumor growth inhibition is also observed in tumor models with EGFR mutations, including activating mutations and those with the exon 2-7 deletion [EGFR variant III (EGFRvIII)], commonly found in glioblastoma multiforme. ABT-414 exhibits potent cytotoxicity against glioblastoma multiforme patient-derived xenograft models expressing either wild-type EGFR or EGFRvIII, with sustained regressions and cures observed at clinically relevant doses. ABT-414 also combines with standard-of-care treatment of radiation and temozolomide, providing significant therapeutic benefit in a glioblastoma multiforme xenograft model. On the basis of these results, ABT-414 has advanced to phase I/II clinical trials, and objective responses have been observed in patients with both amplified wild-type and EGFRvIII-expressing tumors. Mol Cancer Ther; 15(4); 661-9. ©2016 AACR. PMID:26846818

  18. Monoclonal Antibodies to Shigella Lipopolysaccharide Are Useful for Vaccine Production.

    PubMed

    Lin, Jisheng; Smith, Mark A; Benjamin, William H; Kaminski, Robert W; Wenzel, Heather; Nahm, Moon H

    2016-08-01

    There is a significant need for an effective multivalent Shigella vaccine that targets the most prevalent serotypes. Most Shigella vaccines under development utilize serotype-specific lipopolysaccharides (LPSs) as a major component based on protection and epidemiological data. As vaccine formulations advance from monovalent to multivalent, assays and reagents need to be developed to accurately and reproducibly quantitate the amount of LPSs from multiple serotypes in the final product. To facilitate this effort, we produced 36 hybridomas that secrete monoclonal antibodies (MAbs) against the O antigen on the LPS from Shigella flexneri 2a, Shigella flexneri 3a, and Shigella sonnei We used six of these monoclonal antibodies for an inhibition enzyme-linked immunosorbent assay (iELISA), measuring LPSs with high sensitivity and specificity. It was also demonstrated that the Shigella serotype-specific MAbs were useful for bacterial surface staining detected by flow cytometry. These MAbs are also useful for standardizing the serum bactericidal assay (SBA) for Shigella Functional assays, such as the in vitro bactericidal assay, are necessary for vaccine evaluation and may serve as immunological correlates of immunity. An S. flexneri 2a-specific monoclonal antibody killed S. flexneri 2b isolates, suggesting that S. flexneri 2a LPS may induce cross-protection against S. flexneri 2b. Overall, the Shigella LPS-specific MAbs described have potential utility to the vaccine development community for assessing multivalent vaccine composition and as a reliable control for multiple immunoassays used to assess vaccine potency.

  19. A novel strategy for generating monoclonal antibodies from single, isolated lymphocytes producing antibodies of defined specificities.

    PubMed Central

    Babcook, J S; Leslie, K B; Olsen, O A; Salmon, R A; Schrader, J W

    1996-01-01

    We report a novel approach to the generation of monoclonal antibodies based on the molecular cloning and expression of immunoglobulin variable region cDNAs generated from single rabbit or murine lymphocytes that were selected for the production of specific antibodies. Single cells secreting antibodies for a specific peptide either from gp116 of the human cytomegalovirus or from gp120 of HIV-1 or for sheep red blood cells were selected using antigen-specific hemolytic plaque assays. Sheep red blood cells were coated with specific peptides in a procedure applicable to any antigen that can be biotinylated. Heavy- and light-chain variable region cDNAs were rescued from single cells by reverse transcription-PCR and expressed in the context of human immunoglobulin constant regions. These chimeric murine and rabbit monoclonal antibodies replicated the target specificities of the original antibody-forming cells. The selected lymphocyte antibody method exploits the in vivo mechanisms that generate high-affinity antibodies. This method can use lymphocytes from peripheral blood, can exploit a variety of procedures that identify individual lymphocytes producing a particular antibody, and is applicable to the generation of monoclonal antibodies from many species, including humans. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8755564

  20. Monoclonal antibodies against the human leukemia cell line K 562.

    PubMed

    Böttger, V; Hering, S; Jantscheff, P; Micheel, B

    1985-01-01

    Three monoclonal antibodies raised against K 562, a cell line originally established from a patient with chronic myeloid leukemia (CML) in terminal blast crisis, were selected according to their distinct reaction pattern. Whereas two antibodies (ZIK-C1-A/C5 and ZIK-C1-A/H5 also designated C and H) recognized antigens, present on K 562 cells and other immature and mature hematopoietic cells (cell lines and normal blood and bone marrow cells), antibody ZIK-C1-A/D9 also designated Y showed an exclusive binding to K 562 cells. The results obtained (here and in the following paper) indicate, that antibody ZIK-C1-A/D9 defines an early differentiation antigen of hematopoiesis or a leukemia-associated antigen.

  1. EGFR protein expression using a specific intracellular domain antibody and PTEN and clinical outcomes in squamous cell lung cancer patients with EGFR-tyrosine kinase inhibitor therapy

    PubMed Central

    Chang, Hyun; Oh, Jisu; Zhang, Xianglan; Kim, Yu Jung; Lee, Jae Ho; Lee, Choon-Taek; Chung, Jin-haeng; Lee, Jong-Seok

    2016-01-01

    Purpose The aim of this research was to examine the molecular and clinical features that are related with EGFR-tyrosine kinase inhibitor (EGFR-TKI) efficacy in previously treated patients with squamous cell carcinoma of the lung (SCCL). Materials and methods This retrospective study included 67 SCCL patients with obtainable lung cancer tissue and records on EGFR-TKI treatment response and survival. EGFR protein expression in lung cancer tissue was measured by immunohistochemistry with a specific antibody that recognizes the intracellular domain (ID) of EGFR. PTEN expression in lung cancer tissue was also evaluated with immunohistochemistry. PI3KCA gene amplification was detected by quantitative real-time polymerase chain reaction, and FGFR1 amplification was assessed by fluorescent in situ hybridization. Results EGFR ID expression (hazard ratio [HR] 0.53, P=0.022) and Eastern Cooperative Oncology Group (ECOG) performance status (PS) (HR 0.43, P=0.022) were significantly related with progression-free survival following EGFR-TKIs treatment. PTEN expression (HR 0.52, P=0.025) was significantly related to overall survival. The group of EGFR-positive or PTEN-positive patients with ECOG PS of 0 or 1 had better clinical outcomes than patients who were EGFR-negative and PTEN-negative or who had poor ECOG PS with longer median progression-free survival (2.1 vs 1.0 months, P=0.05) and overall survival (6.2 vs 2.1 months, P=0.05). Conclusion EGFR expression using an ID-specific antibody and PTEN protein expression may be used to identify SCCL patients who might benefit from EGFR-TKI treatment. PMID:27578983

  2. Measurement of affinity of viral monoclonal antibodies by ELISA titration of free antibody in equilibrium mixtures.

    PubMed

    Azimzadeh, A; Van Regenmortel, M H

    1991-08-01

    The binding affinity of a monoclonal antibody (Mab) to tobacco mosaic virus (TMV) was determined by measuring, in an enzyme-linked immunosorbent assay, the amount of free antibody present after ultracentrifugation of virus-antibody complexes at equilibrium. In antibody excess, univalent binding of Mabs was observed and the affinity constant was K = 3.2 +/- 0.4 10(8) l/mol; in antigen excess, bivalent antibody binding was observed and the antibody avidity was about 15 times higher. In antigen excess, it was imperative to correct experimental data for the presence of 0.55% inactive molecules in the immunopurified antibody preparation. Modelling studies suggest that in the case of antibodies of increasing affinity, it becomes increasingly important to correct for the presence of inactive antibody in the binding assay.

  3. Monoclonal antibodies to Alzheimer neurofibrillary tangles. 1. Identification of polypeptides.

    PubMed Central

    Yen, S. H.; Crowe, A.; Dickson, D. W.

    1985-01-01

    Ten monoclonal antibodies to Alzheimer neurofibrillary tangles (ANTs) were produced by immunizing mice with a brain homogenate from senile dementia of the Alzheimer type (SDAT). In methanol-fixed isolated neuronal perikarya, six of these antibodies reacted with nearly every ANT, three recognized 70-88% of ANTs, and one bound to less than 30% of ANT. In paraffin sections, three of the antibodies did not bind to tangles that had been fixed in formalin, three stained weekly, and four reacted with tangles in tissues that had been in formalin for more than a decade. Immunoblotting of brain homogenates showed that all but one antibody reacted with proteins from SDAT samples insoluble in SDS and too large to enter even the 3% polyacrylamide stacking gel. Polypeptides extractable by Tris buffer of molecular weight 58, 66, and 70 kd were detected in both normal and SDAT brains by two antibodies and only in SDAT brain by two other antibodies. One antibody did not show any reaction on the immunoblot. The results demonstrate that the epitopes recognized by these antibodies are not identical and that ANTs contain unique antigenic determinants as well as determinants in common with normal brain. Whether the unique determinants are acquired during tangle development or are essential in tangle formation remains to be investigated. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 PMID:2411142

  4. Engineering anti-GD2 monoclonal antibodies for cancer immunotherapy.

    PubMed

    Ahmed, Mahiuddin; Cheung, Nai-Kong V

    2014-01-21

    Ganglioside GD2 is highly expressed on neuroectoderm-derived tumors and sarcomas, including neuroblastoma, retinoblastoma, melanoma, small cell lung cancer, brain tumors, osteosarcoma, rhabdomyosarcoma, Ewing's sarcoma in children and adolescents, as well as liposarcoma, fibrosarcoma, leiomyosarcoma and other soft tissue sarcomas in adults. Since GD2 expression in normal tissues is restricted to the brain, which is inaccessible to circulating antibodies, and in selected peripheral nerves and melanocytes, it was deemed a suitable target for systemic tumor immunotherapy. Anti-GD2 antibodies have been actively tested in clinical trials for neuroblastoma for over the past two decades, with proven safety and efficacy. The main limitations have been acute pain toxicity associated with GD2 expression on peripheral nerve fibers and the inability of antibodies to treat bulky tumor. Several strategies have been developed to reduce pain toxicity, including bypassing complement activation, using blocking antibodies, or targeting of O-acetyl-GD2 derivative that is not expressed on peripheral nerves. To enhance anti-tumor efficacy, anti-GD2 monoclonal antibodies and fragments have been engineered into immunocytokines, immunotoxins, antibody drug conjugates, radiolabeled antibodies, targeted nanoparticles, T-cell engaging bispecific antibodies, and chimeric antigen receptors. The challenges of these approaches will be reviewed to build a perspective for next generation anti-GD2 therapeutics in cancer therapy.

  5. Immunoscintigraphy and radioimmunotherapy in Cuba: experiences with labeled monoclonal antibodies for cancer diagnosis and treatment (1993-2013).

    PubMed

    Peña, Yamilé; Perera, Alejandro; Batista, Juan F

    2014-01-01

    INTRODUCTION The availability of monoclonal antibodies in Cuba has facilitated development and application of innovative techniques (immunoscintigraphy and radioimmunotherapy) for cancer diagnosis and treatment. Objective Review immunoscintigraphy and radioimmunotherapy techniques and analyze their use in Cuba, based on the published literature. In this context, we describe the experience of Havana's Clinical Research Center with labeled monoclonal antibodies for cancer diagnosis and treatment during the period 1993-2013. EVIDENCE ACQUISITION Basic concepts concerning cancer and monoclonal antibodies were reviewed, as well as relevant international and Cuban data. Forty-nine documents were reviewed, among them 2 textbooks, 34 articles by Cuban authors and 13 by international authors. All works published by the Clinical Research Center from 1993 through 2013 were included. Bibliography was obtained from the library of the Clinical Research Center and Infomed, Cuba's national health telematics network, using the following keywords: monoclonal antibodies, immunoscintigraphy and radioimmunotherapy. RESULTS Labeling the antibodies (ior t3, ior t1, ior cea 1, ior egf/r3, ior c5, h-R3, 14F7 and rituximab) with radioactive isotopes was a basic line of research in Cuba and has fostered their use as diagnostic and therapeutic tools. The studies conducted demonstrated the good sensitivity and diagnostic precision of immunoscintigraphy for detecting various types of tumors (head and neck, ovarian, colon, breast, lymphoma, brain). Obtaining different radioimmune conjugates with radioactive isotopes such as 99mTc and 188Re made it possible to administer radioimmunotherapy to patients with several types of cancer (brain, lymphoma, breast). The objective of 60% of the clinical trials was to determine pharmacokinetics, internal dosimetry and adverse effects of monoclonal antibodies, as well as tumor response; there were few adverse effects, no damage to vital organs, and a positive

  6. Investigational EGFR-targeted therapies in HNSCC

    PubMed Central

    Cassell, Andre; Grandis, Jennifer R.

    2010-01-01

    Importance of the Field The epidermal growth factor receptor (EGFR) is an established therapeutic target in head and neck squamous cell carcinoma (HNSCC). The EGFR-targeting monoclonal antibody cetuximab (™Erbitux) was FDA-approved for use in HNSCC in 2006. The molecular basis for the efficacy of an antibody approach compared with inhibition of EGFR tyrosine kinase function using small molecule inhibitors, or downregulation of protein expression via antisense strategies remains incompletely understood. Areas covered in this review A literature search was performed to identify studies elucidating mechanisms of action of several approaches to targeting EGFR in HNSCC (monoclonal antibodies, tyrosine kinase inhibitors, antisense approaches, and ligand toxin conjugates). What the reader will gain Monoclonal antibodies decrease tumor growth via receptor endocytosis and recruitment of host immune defenses. Tyrosine kinase inhibitors bind to the ATP binding pocket of the tyrosine kinase domain, inhibiting signaling. Antisense approaches decrease EGFR expression with high specificity although drug delivery remains problematic. Ligand-toxin conjugates facilitate the entry of toxin and the ADP-ribosylation of the ribosome, thereby inhibiting translation. Take home message Elucidation mechanisms by which these different strategies inhibit EGFR function may enhance the development of more effective treatments for HNSCC and enable prospective identification of individuals who will benefit from EGFR inhibition. PMID:20415598

  7. Efficient generation of human IgA monoclonal antibodies.

    PubMed

    Lorin, Valérie; Mouquet, Hugo

    2015-07-01

    Immunoglobulin A (IgA) is the most abundant antibody isotype produced in humans. IgA antibodies primarily ensure immune protection of mucosal surfaces against invading pathogens, but also circulate and are present in large quantities in blood. IgAs are heterogeneous at a molecular level, with two IgA subtypes and the capacity to form multimers by interacting with the joining (J) chain. Here, we have developed an efficient strategy to rapidly generate human IgA1 and IgA2 monoclonal antibodies in their monomeric and dimeric forms. Recombinant monomeric and dimeric IgA1/IgA2 counterparts of a prototypical IgG1 monoclonal antibody, 10-1074, targeting the HIV-1 envelope protein, were produced in large amounts after expression cloning and transient transfection of 293-F cells. 10-1074 IgAs were FPLC-purified using a novel affinity-based resin engrafted with anti-IgA chimeric Fabs, followed by a monomers/multimers separation using size exclusion-based FPLC. ELISA binding experiments confirmed that the artificial IgA class switching of 10-1074 did not alter its antigen recognition. In summary, our technical approach allows the very efficient production of various forms of purified recombinant human IgA molecules, which are precious tools in dissecting IgA B-cell responses in physiological and pathophysiological conditions, and studying the biology, function and therapeutic potential of IgAs.

  8. Monkey-derived monoclonal antibodies against Plasmodium falciparum

    SciTech Connect

    Stanley, H.A.; Reese, R.T.

    1985-09-01

    A system has been developed that allows efficient production of monkey monoclonal antibodies from owl monkeys. Splenocytes or peripheral blood lymphocytes from monkeys immune to the human malarial parasite, Plasmodium falciparum, were fused with P3X63 Ag8.653 mouse myelomas. The resulting hybridomas were screened by an indirect fluorescent antibody test for the production of monkey monoclonal antibodies (mAb) reactive with P. falciparum. Most of the mAb reacted with the P. falciparum merozoites and immunoprecipitated a parasite-derived glycoprotein having a relative molecular weight of 185,000. These mAb gave a minimum of five different immunoprecipitation patterns, thus demonstrating that a large number of polypeptides obtained when parasitized erythrocytes are solubilized share epitopes with this large glycoprotein. In addition, mAb were obtained that reacted with antigens associated with the infected erythrocyte membrane. One of these mAb bound a M/sub r/ 95,000 antigen. Radioimmunoprecipitation assays using /sup 125/T-antibodies were done.

  9. Transformation-Related Antigens Identified by Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Strand, Mette

    1980-06-01

    Tumor-cell proteins that were antigenic in a syngeneic animal were identified by immunoprecipitation with monoclonal antibodies. Spleen cells of BALB/c mice immunized with plasma membranes of Kirsten RNA sarcoma virus-transformed BALB/3T3 cells were fused with NS-l myeloma cells. Antibodies secreted into the culture fluid from these hybridomas were distinguished by their reactivity against proteins of different target cells. A total of 191 cultures were established; 143 produced antibodies that bound to BALB/3T3 cells transformed by the RNA sarcoma virus, of which antibodies from 82 bound to BALB/3T3 transformed with simian virus 40, and antibodies from 56 bound to BALB/3T3 cells. Thus, more than 50% of the cultures produced antibodies that possibly were specific to antigens of the transformed cell. Twenty different hybridomas have been cloned, and antibodies from eight of these were found to immunoprecipitate five different proteins. A protein of approximately 32,000 daltons was precipitated from BALB/3T3 cells transformed by the RNA sarcoma virus, simian virus 40, or methylcholanthrene but not from untransformed BALB/3T3 cells. A protein of about 300,000 daltons was precipitated from all four cell lines; precipitation was enhanced in the viral transformed cells. Proteins of approximately 57,000, 54,000, and 8500 daltons were immunoprecipitated from all four cell lines.

  10. Triepitopic antibody fusions inhibit cetuximab-resistant BRAF- and KRAS-mutant tumors via EGFR signal repression

    PubMed Central

    Spangler, Jamie B.; Manzari, Mandana T.; Rosalia, Elizabeth K.; Chen, Tiffany F.; Wittrup, K. Dane

    2014-01-01

    Dysregulation of epidermal growth factor receptor (EGFR) is a hallmark of many epithelial cancers, rendering this receptor an attractive target for cancer therapy. Much effort has been focused on the development of EGFR-directed antibody-based therapeutics, culminating in the clinical approval of the drugs cetuximab and panitumumab. Unfortunately, the clinical efficacy of these drugs has been disappointingly low and a particular challenge to targeting EGFR with antibody therapeutics has been resistance resulting from mutations in the downstream raf and ras effector proteins. Recent work demonstrating antibody cocktail-induced synergistic downregulation of EGFR motivated our design of cetuximab-based antibody-fibronectin domain fusion proteins that exploit downregulation-based EGFR inhibition by simultaneously targeting multiple receptor epitopes. We establish that amongst our engineered multiepitopic formats, trans-triepitopic antibody fusions demonstrate optimal efficacy, inducing rapid EGFR clustering and internalization, and consequently ablating downstream signaling. The combined effects of EGFR downregulation, ligand competition, and immune effector function conspire to inhibit tumor growth in xenograft models of cetuximab-resistant BRAF- and KRAS-mutant cancers. Our designed triepitopic constructs have the potential to enhance the efficacy and expand the scope of EGFR-directed therapies and our multiepitopic may be readily applied to other receptor targets to formulate a new class of antibody-based therapeutics. PMID:22706026

  11. Efficient generation of monoclonal antibodies from single rhesus macaque antibody secreting cells.

    PubMed

    Meng, Weixu; Li, Leike; Xiong, Wei; Fan, Xuejun; Deng, Hui; Bett, Andrew J; Chen, Zhifeng; Tang, Aimin; Cox, Kara S; Joyce, Joseph G; Freed, Daniel C; Thoryk, Elizabeth; Fu, Tong-Ming; Casimiro, Danilo R; Zhang, Ningyan; A Vora, Kalpit; An, Zhiqiang

    2015-01-01

    Nonhuman primates (NHPs) are used as a preclinical model for vaccine development, and the antibody profiles to experimental vaccines in NHPs can provide critical information for both vaccine design and translation to clinical efficacy. However, an efficient protocol for generating monoclonal antibodies from single antibody secreting cells of NHPs is currently lacking. In this study we established a robust protocol for cloning immunoglobulin (IG) variable domain genes from single rhesus macaque (Macaca mulatta) antibody secreting cells. A sorting strategy was developed using a panel of molecular markers (CD3, CD19, CD20, surface IgG, intracellular IgG, CD27, Ki67 and CD38) to identify the kinetics of B cell response after vaccination. Specific primers for the rhesus macaque IG genes were designed and validated using cDNA isolated from macaque peripheral blood mononuclear cells. Cloning efficiency was averaged at 90% for variable heavy (VH) and light (VL) domains, and 78.5% of the clones (n = 335) were matched VH and VL pairs. Sequence analysis revealed that diverse IGHV subgroups (for VH) and IGKV and IGLV subgroups (for VL) were represented in the cloned antibodies. The protocol was tested in a study using an experimental dengue vaccine candidate. About 26.6% of the monoclonal antibodies cloned from the vaccinated rhesus macaques react with the dengue vaccine antigens. These results validate the protocol for cloning monoclonal antibodies in response to vaccination from single macaque antibody secreting cells, which have general applicability for determining monoclonal antibody profiles in response to other immunogens or vaccine studies of interest in NHPs.

  12. Efficient generation of monoclonal antibodies from single rhesus macaque antibody secreting cells.

    PubMed

    Meng, Weixu; Li, Leike; Xiong, Wei; Fan, Xuejun; Deng, Hui; Bett, Andrew J; Chen, Zhifeng; Tang, Aimin; Cox, Kara S; Joyce, Joseph G; Freed, Daniel C; Thoryk, Elizabeth; Fu, Tong-Ming; Casimiro, Danilo R; Zhang, Ningyan; A Vora, Kalpit; An, Zhiqiang

    2015-01-01

    Nonhuman primates (NHPs) are used as a preclinical model for vaccine development, and the antibody profiles to experimental vaccines in NHPs can provide critical information for both vaccine design and translation to clinical efficacy. However, an efficient protocol for generating monoclonal antibodies from single antibody secreting cells of NHPs is currently lacking. In this study we established a robust protocol for cloning immunoglobulin (IG) variable domain genes from single rhesus macaque (Macaca mulatta) antibody secreting cells. A sorting strategy was developed using a panel of molecular markers (CD3, CD19, CD20, surface IgG, intracellular IgG, CD27, Ki67 and CD38) to identify the kinetics of B cell response after vaccination. Specific primers for the rhesus macaque IG genes were designed and validated using cDNA isolated from macaque peripheral blood mononuclear cells. Cloning efficiency was averaged at 90% for variable heavy (VH) and light (VL) domains, and 78.5% of the clones (n = 335) were matched VH and VL pairs. Sequence analysis revealed that diverse IGHV subgroups (for VH) and IGKV and IGLV subgroups (for VL) were represented in the cloned antibodies. The protocol was tested in a study using an experimental dengue vaccine candidate. About 26.6% of the monoclonal antibodies cloned from the vaccinated rhesus macaques react with the dengue vaccine antigens. These results validate the protocol for cloning monoclonal antibodies in response to vaccination from single macaque antibody secreting cells, which have general applicability for determining monoclonal antibody profiles in response to other immunogens or vaccine studies of interest in NHPs. PMID:25996084

  13. Efficient generation of monoclonal antibodies from single rhesus macaque antibody secreting cells

    PubMed Central

    Meng, Weixu; Li, Leike; Xiong, Wei; Fan, Xuejun; Deng, Hui; Bett, Andrew J; Chen, Zhifeng; Tang, Aimin; Cox, Kara S; Joyce, Joseph G; Freed, Daniel C; Thoryk, Elizabeth; Fu, Tong-Ming; Casimiro, Danilo R; Zhang, Ningyan; A Vora, Kalpit; An, Zhiqiang

    2015-01-01

    Nonhuman primates (NHPs) are used as a preclinical model for vaccine development, and the antibody profiles to experimental vaccines in NHPs can provide critical information for both vaccine design and translation to clinical efficacy. However, an efficient protocol for generating monoclonal antibodies from single antibody secreting cells of NHPs is currently lacking. In this study we established a robust protocol for cloning immunoglobulin (IG) variable domain genes from single rhesus macaque (Macaca mulatta) antibody secreting cells. A sorting strategy was developed using a panel of molecular markers (CD3, CD19, CD20, surface IgG, intracellular IgG, CD27, Ki67 and CD38) to identify the kinetics of B cell response after vaccination. Specific primers for the rhesus macaque IG genes were designed and validated using cDNA isolated from macaque peripheral blood mononuclear cells. Cloning efficiency was averaged at 90% for variable heavy (VH) and light (VL) domains, and 78.5% of the clones (n = 335) were matched VH and VL pairs. Sequence analysis revealed that diverse IGHV subgroups (for VH) and IGKV and IGLV subgroups (for VL) were represented in the cloned antibodies. The protocol was tested in a study using an experimental dengue vaccine candidate. About 26.6% of the monoclonal antibodies cloned from the vaccinated rhesus macaques react with the dengue vaccine antigens. These results validate the protocol for cloning monoclonal antibodies in response to vaccination from single macaque antibody secreting cells, which have general applicability for determining monoclonal antibody profiles in response to other immunogens or vaccine studies of interest in NHPs. PMID:25996084

  14. Characterization of human sperm surface antigens with monoclonal antibodies.

    PubMed

    Wolf, D P; Sokoloski, J E; Dandekar, P; Bechtol, K B

    1983-10-01

    Monoclonal antibodies (McAb) against human ejaculated sperm were developed from mice immunized with sperm membrane preparations. A solid-phase radioimmunoassay, with dried sperm as antigen, was employed in McAb screening. The tissue and species specificity of monoclonal antibodies HS 2, 4 and 6 were evaluated after absorption of antibody preparations with heterologous sperm, human serum or seminal plasma or cells from other human organs. The sensitivity of HS 2, 4 and 6 antigens to trypsin exposure was determined: HS 4 antigen was highly sensitive while HS 2 and 6 were not. The regional distribution of McAb 4 on intact sperm cells was determined by immunofluorescence staining. HS 4 may be a sperm-coating antigen based on its presence on sperm and in seminal plasma. This possibility led to an investigation of its role in sperm capacitation. HS 4 antibody binding was reduced when capacitated sperm were compared with noncapacitated cells. HS 4 antibody, when present during capacitation and insemination, was without effect on sperm motility or fusion with zona-free hamster eggs. Trypsin removal of as much as 60% of HS 4 antigen from the cell population also did not impact on sperm function. To identify the molecular correlate of HS 4 antigen, membrane components were extracted from washed sperm with Nonidet P-40, concentrated by acetone precipitation and analyzed electrophoretically in SDS-urea on 10% polyacrylamide slab gels. Immunoassays on protein blots with peroxidase-coupled second antibody identified a single reactive species in the molecular weight range of 130,000. Multiple reactive components were detected in blot transfers of seminal plasma.

  15. Immunostaining with EGFR mutation-specific antibodies: a reliable screening method for lung adenocarcinomas harboring EGFR mutation in biopsy and resection samples.

    PubMed

    Fan, Xiangshan; Liu, Biao; Xu, Haodong; Yu, Bo; Shi, Shanshan; Zhang, Jin; Wang, Xuan; Wang, Jiandong; Lu, Zhenfeng; Ma, Henghui; Zhou, Xiaojun

    2013-08-01

    Mutation analysis of epidermal growth factor receptor (EGFR) is essential in determining the therapeutic strategy for lung adenocarcinoma. Immunohistochemical (IHC) staining with EGFR mutation-specific antibodies of del E746-A750 in exon 19 and L858R in exon 21 has been evaluated in resection specimens in a few studies but rarely in biopsy samples. A total of 169 cases (78 biopsies and 91 resected specimens) of lung adenocarcinoma with EGFR mutation status predefined by direct DNA sequencing were histologically examined, and IHC was performed using EGFR mutation-specific antibodies of del E746-A750 and L858R. The cases with positive results by IHC but negative results by direct DNA sequencing were examined by amplified refractory mutation system. Our results showed that the frequency of EGFR mutations for both E746-A750 deletion and L858R mutation was 38.5% (65/169) by DNA sequencing or amplified refractory mutation system and 34.3% (58/169) by IHC in lung adenocarcinomas. Based on molecular test results, the overall sensitivity, specificity, positive predictive value, and negative predictive value of IHC using these 2 antibodies in all (biopsy/resection) cases were 87.7% (80%/94.3%), 99.0% (97.9%/100%), 98.3% (96%/100%), and 92.8% (88.7%/96.6%), respectively. Lung adenocarcinomas with a predominant acinar, papillary, lepidic, or solid growth pattern more often harbor EGFR mutation of del E746-A750 or L858R. In conclusion, the immunostaining with EGFR del E746-A750 and L858R mutation antibodies is a reliable screening method with high specificity and sensitivity for identifying the EGFR mutation in both resected and biopsied lung adenocarcinomas.

  16. [Progress in preparation of small monoclonal antibodies of knock out technique].

    PubMed

    Liu, Jing; Mao, Xin-min; Li, Lin-lin; Li, Xin-xia; Wang, Ye; Lan, Yi

    2015-10-01

    With the application of monoclonal antibody technology more and more widely, its production technology is becoming more and more perfect. Small molecule monoclonal antibody technology is becoming a hot research topic for people. The application of traditional Chinese medicine small molecule monoclonal antibody technology has been more and more widely, the technology for effective Chinese medicine component knockout provide strong technical support. The preparation of monoclonal antibodies and small molecule knockout technology are reviewed in this paper. The preparation of several steps, such as: in the process of preparation of antigen, hapten carrier coupling, coupling ratio determination and identification of artificial antigen and establishment of animal immunization and hybridoma cell lines of monoclonal antibody, the large-scale preparation; small molecule monoclonal antibody on Immune in affinity chromatography column method is discussed in detail. The author believes that this technology will make the traditional Chinese medicine research on a higher level, and improve the level of internationalization of Chinese medicine research. PMID:26975094

  17. Macaque Monoclonal Antibodies Targeting Novel Conserved Epitopes within Filovirus Glycoprotein

    PubMed Central

    Keck, Zhen-Yong; Enterlein, Sven G.; Howell, Katie A.; Vu, Hong; Shulenin, Sergey; Warfield, Kelly L.; Froude, Jeffrey W.; Araghi, Nazli; Douglas, Robin; Biggins, Julia; Lear-Rooney, Calli M.; Wirchnianski, Ariel S.; Lau, Patrick; Wang, Yong; Herbert, Andrew S.; Dye, John M.; Glass, Pamela J.; Holtsberg, Frederick W.; Foung, Steven K. H.

    2015-01-01

    ABSTRACT Filoviruses cause highly lethal viral hemorrhagic fever in humans and nonhuman primates. Current immunotherapeutic options for filoviruses are mostly specific to Ebola virus (EBOV), although other members of Filoviridae such as Sudan virus (SUDV), Bundibugyo virus (BDBV), and Marburg virus (MARV) have also caused sizeable human outbreaks. Here we report a set of pan-ebolavirus and pan-filovirus monoclonal antibodies (MAbs) derived from cynomolgus macaques immunized repeatedly with a mixture of engineered glycoproteins (GPs) and virus-like particles (VLPs) for three different filovirus species. The antibodies recognize novel neutralizing and nonneutralizing epitopes on the filovirus glycoprotein, including conserved conformational epitopes within the core regions of the GP1 subunit and a novel linear epitope within the glycan cap. We further report the first filovirus antibody binding to a highly conserved epitope within the fusion loop of ebolavirus and marburgvirus species. One of the antibodies binding to the core GP1 region of all ebolavirus species and with lower affinity to MARV GP cross neutralized both SUDV and EBOV, the most divergent ebolavirus species. In a mouse model of EBOV infection, this antibody provided 100% protection when administered in two doses and partial, but significant, protection when given once at the peak of viremia 3 days postinfection. Furthermore, we describe novel cocktails of antibodies with enhanced protective efficacy compared to individual MAbs. In summary, the present work describes multiple novel, cross-reactive filovirus epitopes and innovative combination concepts that challenge the current therapeutic models. IMPORTANCE Filoviruses are among the most deadly human pathogens. The 2014-2015 outbreak of Ebola virus disease (EVD) led to more than 27,000 cases and 11,000 fatalities. While there are five species of Ebolavirus and several strains of marburgvirus, the current immunotherapeutics primarily target Ebola virus

  18. A monoclonal antibody against the plant growth regulator, abscisic acid.

    PubMed

    Banowetz, G M; Hess, J R; Carman, J G

    1994-12-01

    Monoclonal antibodies were prepared against the plant growth regulator abscisic acid (ABA) conjugated to keyhole limpet hemocyanin through C-4. One of these antibodies was characterized for use in a competition fluorescence enzyme-linked immunosorbent assay (F-ELISA). The antibody detected femtomole quantities of ABA when used in the F-ELISA and showed minimal cross-reactivity with ABA metabolites and structural analogs. Dilution analysis suggested that the F-ELISA could be used to determine the ABA content of methanolic extracts of crude samples of wheat seeds without further purification. The F-ELISA was used to determine the effect of seed priming on ABA levels in wheat seeds. The antibody also was used in a modified noncompetitive indirect ELISA to measure ABA content of wheat caryopses. The noncompetitive ELISA was more sensitive than the F-ELISA, although the F-ELISA had a broader measuring range. When our anti-ABA antibody and a commercially available anti-ABA antibody were compared by indirect ELISA, there were no significant differences between the ABA estimates.

  19. Monoclonal antibodies against type II rat brain protein kinase

    SciTech Connect

    Nakabayashi, C.H.; Huang, K.P.

    1987-05-01

    Three monoclonal antibodies (8/1, 10/10, and 25/3) against rat brain type II protein kinase C (PKC) were used to carry out the immunochemical characterization of this kinase. These antibodies immunoprecipitated the type II PKC in a dose-dependent manner but did neither to type I nor type III isozyme. Purified type II PKC has a molecular weight of 82,000 and consists of heterogeneous isoelectric point species, all of which are cross reactive with these antibodies. Immunoblot analysis of the tryptic fragments from PKC revealed that all three antibodies recognized the 33-38-KDa fragments, the phospholipid/phorbol ester-binding domain, but not the 45-48-KDa fragments, the kinase catalytic domain. The immune complexes of the kinase and the antibodies retained the kinase activity which was dependent on Ca/sup 2 +/ and phosphatidylserine (PS) and further activated by diacylglycerol. With antibody 8/1, the apparent Km values of the kinase for Ca/sup 2 +/ and PS were not influenced. The initial rate and final extent of autophosphorylation were reduced. The concentration of PS required for half-maximal (/sup 3/H)phorbol 12,13-dibutyrate (PDBu) binding was increased and the total PDBu binding was reduced. In the presence of optimum concentrations of Ca/sup 2 +/ and PS, the Kd of PDBu was unaffected by the antibody but the total binding was reduced. These results demonstrate that the PS/PDBu-binding domain contains the major epitope for the antibodies and the antibody mainly influences the PS/PDBu binding to the kinase.

  20. Evaluation of oriented lysozyme immobilized with monoclonal antibody

    NASA Astrophysics Data System (ADS)

    Aoyagi, Satoka; Okada, Keigo; Shigyo, Ayako; Man, Naoki; Karen, Akiya

    2008-12-01

    The orientation of a lysozyme immobilized with a monoclonal antibody was evaluated based on determination of the uppermost surface structure using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Specific peaks of the oriented lysozyme immobilized with monoclonal anti-lysozyme antibody were obtained in comparison with reference samples, non-oriented immobilized lysozyme and immobilized anti-lysozyme antibody. All samples were freeze-dried before TOF-SIMS measurement, and then each sample was measured using TOF-SIMS with a bismuth cluster ion source. TOF-SIMS spectra were analyzed to select peaks specific to the oriented immobilized lysozyme as well as to identify their chemical formula and ensemble of amino acids. The possible chemical formulae of the lysozyme fragments were then investigated with an element matching program and a residue matching program. The results from TOF-SIMS spectra analysis were compared to the amino acid sequence of the lysozyme and its three-dimensional structure registered in the protein data bank. Finally, the fragment-ion-generating regions of the oriented immobilized lysozyme were determined based on the suggested residues and the three-dimensional structure.

  1. Labeling of cerebral amyloid in vivo with a monoclonal antibody.

    PubMed

    Walker, L C; Price, D L; Voytko, M L; Schenk, D B

    1994-07-01

    We assessed the ability of a murine monoclonal antibody to bind selectively to beta-amyloid in the brains of living nonhuman primates. To circumvent the blood-brain barrier, we injected unlabeled antibody 10D5 (murine whole IgG1 and/or Fab fragments) into the cerebrospinal fluid of the cisterna magna in three aged monkeys. A control animal was given an intracisternal injection of nonimmune mouse whole IgG plus Fab. Twenty-four hours later, the animals were perfused and prepared for immunohistochemical detection of bound murine immunoglobulin in brain. All three experimental animals showed selective binding of 10D5 to approximately 5-15% of amyloid deposits in cerebral cortex, primarily near the cortical surface. There was no labeling in the control animal. In vivo-labeled deposits were confirmed to be beta-amyloid by electron microscopy and by in vitro immunohistochemistry in adjacent sections. The animals tolerated the injection well, although some polymorphonuclear leukocytes infiltrated portions of the subarachnoid space and superficial neocortex. These results provide the first demonstration that it may be feasible to selectively direct a tagged monoclonal antibody to beta-amyloid in the brain for therapeutic or diagnostic purposes. With enhancement of labeling efficiency, the method also may be useful for studying the progression of beta-amyloidosis in experimental animals using emission tomography. PMID:8021711

  2. Practical considerations for nonclinical safety evaluation of therapeutic monoclonal antibodies

    PubMed Central

    Lynch, Carmel M; Hart, Bruce W

    2009-01-01

    Monoclonal antibodies (mAbs) are a well established class of therapeutics as evidenced by a large number of FDA approved mAbs for the treatment of cancers and autoimmune diseases. Monoclonal antibodies that are molecularly engineered for enhanced functions and pharmacokinetic properties are routinely being considered for development by many biotechnology companies. Safety evaluation of current generation of mAbs poses new challenges due to the highly complex nature of engineering aspects and variability induced by the diverse recombinant cell systems to generate them. This review provides a basic outline for nonclinical safety evaluation of therapeutic antibodies. Important considerations for planning a preclinical program, the types of nonclinical safety studies, and a general timeline for their conduct in relation to clinical trials are described. A list of relevant regulatory documents issued by government agencies is also provided. Adoption of these principles will greatly enhance the quality and relevance of the nonclinical safety data generated and will facilitate future development of mAb therapeutics. PMID:20046568

  3. Characterization of group II avian adenoviruses with a panel of monoclonal antibodies.

    PubMed Central

    van den Hurk, J V; van Drunen Littel-van den Hurk, S

    1988-01-01

    The interaction between a panel of ten monoclonal antibodies and hemorrhagic enteritis virus, a group II avian adenovirus, was determined. The monoclonal antibodies reacted with all nine isolates of group II avian adenoviruses, but not with any of five types of group I avian adenoviruses. All ten monoclonal antibodies recognized antigenic determinants on the hexon protein of hemorrhagic enteritis virus when analyzed by immunoprecipitation and immunoblotting. They reacted only with the native hexon protein and not with protein denatured by sodium dodecyl sulfate or guanidine-HCl/urea treatment combined with reduction and carboxymethylation. Based on the results of competitive binding assays, the panel of monoclonal antibodies could be subdivided into two groups, which recognized different antigenic domains of the hemorrhagic enteritis virus hexon protein. The monoclonal antibodies in group 1 neutralized hemorrhagic enteritis virus infectivity while the monoclonal antibodies of group 2 did not. Group 1 consisted of eight monoclonal antibodies which could be further subdivided into subgroups 1A, 1B, 1C and 1D. The subdivision of the monoclonal antibodies was based on the degree of blocking in the competitive binding assays and differences in their ability to induce enhancement. In general, the monoclonal antibodies had a higher avidity for the virulent isolate of hemorrhagic enteritis virus than for the avirulent hemorrhagic enteritis virus isolate. Images Fig. 1. Fig. 2. Fig. 4. PMID:2461793

  4. Comparison of type 2 and type 6 fimbriae of Bordetella pertussis by using agglutinating monoclonal antibodies.

    PubMed Central

    Li, Z M; Brennan, M J; David, J L; Carter, P H; Cowell, J L; Manclark, C R

    1988-01-01

    Two types of fimbriae have been identified on the pathogenic gram-negative organism Bordetella pertussis. Monoclonal antibodies to these fimbriae were produced to better understand the role of fimbriae as serotype-specific agglutinogens and to investigate the antigenic relationship between these fimbriae. Three monoclonal antibodies were identified that specifically agglutinated B. pertussis cells containing the U.S. Reference Factor 2 agglutinogen, and six monoclonal antibodies were produced that agglutinated only those strains containing the U.S. Reference Factor 6 agglutinogen. Indirect immunofluorescence studies and immunogold electron microscopy demonstrated that these monoclonal antibodies bind to an outer membrane component on serotype-specific strains of B. pertussis. All of the monoclonal antibodies reacted with native or partially assembled type-specific fimbriae but not with monomeric fimbrial subunits as indicated by Western blot (immunoblot) analysis. The fimbrial agglutinogens recognized by the monoclonal antibodies were also uniquely reactive with either U.S. Reference Factor 2 or 6 antiserum (Eldering agglutinogen 2 or 6 polyclonal antiserum) in an indirect ELISA. No cross-reactivity of the monoclonal antibodies with the unrelated fimbriae was observed in any of the comparative immunological studies. Some of the monoclonal antibodies agglutinated certain strains of B. bronchiseptica, suggesting that this closely related species can contain antigenically similar fimbriae. These monoclonal antibodies should prove useful for further structural and functional analysis of Bordetella fimbriae and for studies on the role that these antigens play in prevention of infection and disease. Images PMID:2903125

  5. Comparison of type 2 and type 6 fimbriae of Bordetella pertussis by using agglutinating monoclonal antibodies.

    PubMed

    Li, Z M; Brennan, M J; David, J L; Carter, P H; Cowell, J L; Manclark, C R

    1988-12-01

    Two types of fimbriae have been identified on the pathogenic gram-negative organism Bordetella pertussis. Monoclonal antibodies to these fimbriae were produced to better understand the role of fimbriae as serotype-specific agglutinogens and to investigate the antigenic relationship between these fimbriae. Three monoclonal antibodies were identified that specifically agglutinated B. pertussis cells containing the U.S. Reference Factor 2 agglutinogen, and six monoclonal antibodies were produced that agglutinated only those strains containing the U.S. Reference Factor 6 agglutinogen. Indirect immunofluorescence studies and immunogold electron microscopy demonstrated that these monoclonal antibodies bind to an outer membrane component on serotype-specific strains of B. pertussis. All of the monoclonal antibodies reacted with native or partially assembled type-specific fimbriae but not with monomeric fimbrial subunits as indicated by Western blot (immunoblot) analysis. The fimbrial agglutinogens recognized by the monoclonal antibodies were also uniquely reactive with either U.S. Reference Factor 2 or 6 antiserum (Eldering agglutinogen 2 or 6 polyclonal antiserum) in an indirect ELISA. No cross-reactivity of the monoclonal antibodies with the unrelated fimbriae was observed in any of the comparative immunological studies. Some of the monoclonal antibodies agglutinated certain strains of B. bronchiseptica, suggesting that this closely related species can contain antigenically similar fimbriae. These monoclonal antibodies should prove useful for further structural and functional analysis of Bordetella fimbriae and for studies on the role that these antigens play in prevention of infection and disease. PMID:2903125

  6. Jet injection of a monoclonal antibody: A preliminary study.

    PubMed

    Hogan, N Catherine; Cloutier, A M; Hunter, I W

    2015-01-01

    Monoclonal antibodies (mAbs) represent a major group of biotherapeutics. The high concentration and volume of drug administered together with a shift to administration via the subcutaneous route have generated interest in alternative delivery technologies. The feasibility of using a novel, highly controllable jet injection technology to deliver a mAb is presented. The effect of delivery parameters on protein structure were evaluated and compared with delivery using a conventional needle and syringe. Injection of mAb into a rat model showed that jet injection using the device resulted in more rapid absorption and longer duration of exposure.

  7. Monoclonal Antibody Shows Promise as Potential Therapeutic for MERS | Poster

    Cancer.gov

    A monoclonal antibody has proven effective in preventing Middle Eastern Respiratory Syndrome (MERS) in lab animals, suggesting further development as a potential intervention for the deadly disease in humans, according to new research. MERS is a newly emerged coronavirus first detected in humans in 2012. Most cases have occurred in the Middle East, but the disease has appeared elsewhere. In all, MERS has infected more than 1,700 individuals and killed more than 600, according to the World Health Organization. No vaccines or antiviral therapies currently exist. Several candidate vaccines are being developed, and some have been tested in animal models, a prerequisite to human clinical trials.

  8. Therapeutic monoclonal antibodies and derivatives: Historical perspectives and future directions.

    PubMed

    Rodgers, Kyla R; Chou, Richard C

    2016-11-01

    Biologics, both monoclonal antibodies (mAbs) and fusion proteins, have revolutionized the practice of medicine. This year marks the 30th anniversary of the Food and Drug Administration approval of the first mAb for human use. In this review, we examine the biotechnological breakthroughs that spurred the explosive development of the biopharmaceutical mAb industry, as well as how critical lessons learned about human immunology informed the development of improved biologics. We also discuss the most common mechanisms of action of currently approved biologics and the indications for which they have been approved to date. PMID:27460206

  9. Development of monoclonal antibodies in China: overview and prospects.

    PubMed

    Zhang, Mao-Yu; Lu, Jin-Jian; Wang, Liang; Gao, Zi-Chao; Hu, Hao; Ung, Carolina Oi Lam; Wang, Yi-Tao

    2015-01-01

    Monoclonal antibodies (mAbs) have become increasingly important as human therapeutic agents. Yet, current research concentrates on technology itself and pays attention to developed countries. This paper aims to provide a comprehensive review of mAbs development in China through systematic analysis of drug registry, patent applications, clinical trials, academic publication, and ongoing R&D projects. The trends in therapeutic areas and industrialization process are also highlighted. Development and research trends of mAbs are analyzed to provide a future perspective of mAbs as therapeutic agents in China. PMID:25811022

  10. Development of Monoclonal Antibodies in China: Overview and Prospects

    PubMed Central

    Zhang, Mao-Yu; Lu, Jin-Jian; Wang, Liang; Gao, Zi-Chao; Ung, Carolina Oi Lam; Wang, Yi-Tao

    2015-01-01

    Monoclonal antibodies (mAbs) have become increasingly important as human therapeutic agents. Yet, current research concentrates on technology itself and pays attention to developed countries. This paper aims to provide a comprehensive review of mAbs development in China through systematic analysis of drug registry, patent applications, clinical trials, academic publication, and ongoing R&D projects. The trends in therapeutic areas and industrialization process are also highlighted. Development and research trends of mAbs are analyzed to provide a future perspective of mAbs as therapeutic agents in China. PMID:25811022

  11. Monoclonal antibodies directed against surface molecules of multicell spheroids

    NASA Technical Reports Server (NTRS)

    Martinez, Andrew O.

    1993-01-01

    The objective of this project is to generate a library of monoclonal antibodies (MAb's) to surface molecules involved in the cell-cell interactions of mammalian cells grown as multicell spheroids (MCS). MCS are highly organized 3-dimensional multicellular structures which exhibit many characteristics in vivo tissues not found in conventional monolayer or suspension culture. They also provide a functional assay for surface adhesion molecules. In brief, MCS combine the relevance of organized tissues with the accuracy of in vitro methodology. Further, one can manipulate these MCS experimentally to discern important information about their biology.

  12. Large-scale production of monoclonal antibodies in suspension culture.

    PubMed

    Backer, M P; Metzger, L S; Slaber, P L; Nevitt, K L; Boder, G B

    1988-10-01

    Monoclonal antibodies are being manufactured for clinical trials in suspension culture at the 1300-L scale. Suspension culture offers some advantages relative to high-density mammalian cell culture methods; in particular, the ability to closely monitor the behavior of cells in a homogeneous environment. Computer control and on-line mass spectrography of exit gases provide instantaneous information about the culture metabolic activity. Air sparging and agitation by marine impeller provide aeration sufficient to maintain a constant dissolved oxygen tension at cell concentrations up to 5.0 x 10(6) cells/mL without causing apparent cell damage.

  13. Positron emission tomographic imaging of tumors using monoclonal antibodies

    SciTech Connect

    Zalutsky, M.R. . Dept. of Radiology)

    1989-12-01

    The overall objective of this research project is to develop methods for utilizing positron emission tomography (PET) to increase the clinical potential of radiolabeled monoclonal antibodies (MAbs). Both diagnostic and therapeutic applications of labeled MAbs could be improved as a result of knowledge obtained through the exploitation of the advantageous imaging characteristics associated with PET. By labeling MAbs with positron-emitting nuclides, it should be possible to quantitate the dynamics of their three-dimensional distribution in vivo. Our long-term goals are to apply this approach. 3 tabs.

  14. Disialoganglioside GD2 anti-idiotypic monoclonal antibodies.

    PubMed

    Cheung, N K; Canete, A; Cheung, I Y; Ye, J N; Liu, C

    1993-05-28

    Disialoganglioside GD2 is widely expressed among neuroblastomas, melanomas, small-cell lung carcinoma, sarcomas and brain tumors. Immunity directed against this antigen may have anti-tumor utility. Since GD2 is poorly immunogenic, anti-idiotypic antibodies may serve as alternative tumor vaccines. Monoclonal antibody 3F8, a murine IgG3 specific for GD2, has shown excellent tumor-targeting ability in vitro and in vivo. LOU/CN rats were immunized with 3F8 and their spleens were used in somatic-cell hybridization, using SP2/0, P3 and Y3 as fusion partners. Six anti-idiotypic (anti-id) MAbs (C2D8, Idio-2, AIG4, C2H7, C4E4, A2A6) were selected based on their reactivity with 3F8 and non-reactivity with murine IgG3 myelomas. Specificity of each anti-id was demonstrated by using various ELISA: (i) lack of direct binding to solid phase myelomas and serum proteins; (ii) inability of other myelomas to inhibit anti-id binding to 3F8; (iii) absence of cross-reactivity of other myelomas to solid-phase anti-id; (iv) lack of inhibition by anti-id of binding of other ganglioside antibodies to their antigens. Antigen specificity was further examined by inhibition of binding of 3F8 to GD2 on immuno-thin-layer chromatography, and by inhibition of 3F8 immunostaining of neuroblastoma cell lines. These 6 antibodies were demonstrated to be distinct, in view of their cross-reactivity, fusion partners and relative strength of binding to 3F8. Anti-GD2 antibodies were induced after immunization with these anti-id antibodies in C57Bl/6 mice. These rat anti-3F8-idiotypic antibodies with exquisite specificity for anti-GD2 antibodies may be useful in vaccine construction.

  15. Specificity of monoclonal antibodies to Campylobacter jejuni lipopolysaccharide antigens.

    PubMed

    Brooks, B W; Mihowich, J G; Blais, B W; Yamazaki, H

    1998-01-01

    Monoclonal antibodies (Mabs) were produced to the lipopolysaccharide antigens of Campylobacter jejuni strain 1249 (Penner serotype O:2/63). A polymyxin-cloth based enzyme immunoassay (pCEIA) was used for initial screening and for evaluating the specificity of these antibodies. Seven Mabs reacted with at least 11 and as many as 14 of 15 C. jejuni strains (representing 8 different Penner serotypes). These seven Mabs did not cross-react with any of 16 non-Campylobacter bacteria commonly encountered in food, with only two exceptions. Several combinations of these Mabs in pairs reacted with all 15 C. jejuni strains. These results suggest that pCEIA employing two of these Mabs in combination is potentially useful for detection of Campylobacter jejuni in foods and other samples.

  16. Internal radiation dosimetry for clinical testing of radiolabeled monoclonal antibodies

    SciTech Connect

    Fisher, D.R.; Durham, J.S.; Hui, T.E.; Hill, R.L.

    1990-11-01

    In gauging the efficacy of radiolabeled monoclonal antibodies in cancer treatment, it is important to know the amount of radiation energy absorbed by tumors and normal tissue per unit administered activity. This paper describes methods for estimating absorbed doses to human tumors and normal tissues, including intraperitoneal tissue surfaces, red marrow, and the intestinal tract from incorporated radionuclides. These methods use the Medical Internal Radiation Dose (MIRD) scheme; however, they also incorporate enhancements designed to solve specific dosimetry problems encountered during clinical studies, such as patient-specific organ masses obtained from computerized tomography (CT) volumetrics, estimates of the dose to tumor masses within normal organs, and multicellular dosimetry for studying dose inhomogeneities in solid tumors. Realistic estimates of absorbed dose are provided within the short time requirements of physicians so that decisions can be made with regard to patient treatment and procurement of radiolabeled antibodies. Some areas in which further research could improve dose assessment are also discussed. 16 refs., 3 figs.

  17. [Systemic radiotherapy using monoclonal antibodies. Options and problems].

    PubMed

    Sautter-Bihl, M L; Wannenmacher, M; Bihl, H

    1993-06-01

    Radiolabeled monoclonal antibodies (MAbs), by virtue of their tumor specificity, offer the prospect of localized, highly targeted radiation treatment of malignant tumors. To date, a large number of radioimmunotherapy (RIT) studies have been reported in experimental and clinical settings showing the potential of this therapeutic strategy. This includes RIT-trials in hepatoma, cholangiocarcinoma, ovarian carcinoma, brain tumors, melanoma, neuroblastoma and especially Hodgkin's and non-Hodgkin's lymphomas. Despite very promising results in some of these studies, radioimmunotherapy is currently still in a developmental status. Selective accumulation of MAbs at tumor sites-a prerequisite for effective radioimmunotherapy-is a complex process. Many factors such as antigen heterogeneity, distinct antibody features (affinity, subclass, fragment size, etc.), labeling techniques, tumor physiology and competing antigens were identified in the last years using theoretical and experimental tumor models. Strategies to improve these critical parameters are currently under investigation in order to increase the efficacy of radioimmunotherapy.

  18. A review of monoclonal antibody therapies in lymphoma.

    PubMed

    Teo, Esmeralda Chi-yuan; Chew, Yveline; Phipps, Colin

    2016-01-01

    Monoclonal antibodies (moAb) represent a novel way of delivering therapy through specific target antigens expressed on lymphoma cells and minimizes the collateral damage that is common with conventional chemotherapy. The paradigm of this approach is the targeting of CD20 by rituximab. Since its FDA approval in 1997, rituximab has become the standard of care in almost every line of therapy in most B-cell lymphomas. This review will briefly highlight some of the key rituximab trials while looking more closely at the evidence that is bringing other antibodies, including next generation anti-CD20 moAbs, and anti-CD30 moAbs, among others to the forefront of lymphoma therapy. PMID:26318093

  19. Mass Spectrometry for the Biophysical Characterization of Therapeutic Monoclonal Antibodies

    PubMed Central

    Zhang, Hao; Cui, Weidong; Gross, Michael L.

    2014-01-01

    Monoclonal antibodies (mAbs) are powerful therapeutics, and their characterization has drawn considerable attention and urgency. Unlike small-molecular drugs (150-600 Da) that have rigid structures, mAbs (~150 kDa) are engineered proteins that undergo complicated folding and can exist in a number of low-energy structures, posing a challenge for traditional methods in structural biology. Mass spectrometry (MS)-based biophysical characterization approaches can provide structural information, bringing high sensitivity, fast turnaround, and small sample consumption. This review outlines various MS-based strategies for protein biophysical characterization and then reviews how these strategies provide structural information of mAbs at the protein level (intact or top-down approaches), peptide, and residue level (bottom-up approaches), affording information on higher order structure, aggregation, and the nature of antibody complexes. PMID:24291257

  20. Monoclonal Antibodies Directed to Fucoidan Preparations from Brown Algae

    PubMed Central

    Torode, Thomas A.; Marcus, Susan E.; Jam, Murielle; Tonon, Thierry; Blackburn, Richard S.; Hervé, Cécile; Knox, J. Paul

    2015-01-01

    Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance. PMID:25692870

  1. Quantitation of residual mouse DNA in monoclonal antibody based products.

    PubMed

    Per, S R; Aversa, C R; Sito, A F

    1990-01-01

    The identification and characterization of cell substrates and testing of bulk and final products is an important issue which must be addressed by manufacturers. In view of the fact that hundreds of applications for Investigational New Drugs (IND) have been submitted over the past few years, there is an obvious need for testing of these products. Detection of DNA by molecular hybridization has been used for various applications including the quantitation and characterization of DNA in biological products. We have developed a precise assay based on hybridization for the detection and quantitation of residual genomic DNA. In order to reduce protein interference, a specific pretreatment method for isolation of DNA in monoclonal antibody based products was implemented. We have used the assay to evaluate levels of contaminating DNA in prepared lots of monoclonal antibodies. Validation experiments demonstrated a sensitivity below 10 pg DNA using nick-translated 32P-labelled genomic DNA probes. The assay allows accurate quantitation of residual DNA in biologics.

  2. Bothropic antivenom based on monoclonal antibodies, is it possible?

    PubMed

    Frauches, Thiago S; Petretski, Jorge H; Arnholdt, Andrea C V; Lasunskaia, Elena B; de Carvalho, Eulógio C Q; Kipnis, Thereza L; da Silva, Wilmar D; Kanashiro, Milton M

    2013-09-01

    Neutralizing monoclonal antibodies against three major toxic components of Bothrops atrox venom were produced and tested. The mAbs against phospholipase A2, hemorrhagic metalloprotease, and thrombin-like enzymes were produced in large amounts and purified with caprylic acid followed by ammonium sulfate precipitation. Purified mAbs were analyzed by SDS-PAGE and their ability to neutralize the respective toxins was tested. Five Swiss mice were injected i.p. with 13.5 mg of pooled mAbs and challenged via s.c. route with venom. Survival rate was recorded for the next 48 h. All mice treated and challenged with venom survived, whereas only one mouse in the control group survived. Bleeding time in mice treated with mAbs was similar to that observed in control mice. Our results show that monoclonal antibodies neutralized the lethal toxicity of Bothrops venom and indicate that there is a reasonable possibility of developing antivenoms based on humanized mAbs to treat victims of venomous animals in the future. PMID:23732123

  3. Serological classification of Neisseria gonorrhoeae with monoclonal antibody coagglutination reagents.

    PubMed Central

    Coghill, D V; Young, H

    1987-01-01

    A total of 357 clinical isolates of Neisseria gonorrhoeae from 286 patients were classified serologically using two independently developed panels of monoclonal coagglutination reagents. The Pharmacia (Ph) Diagnostics panel comprised 14 reagents, five specific for serogroup WI strains and nine specific for serogroup WII/III strains, whereas the Genetic Systems (GS) panel comprised 14 reagents, seven specific for serogroup WI strains and seven specific for serogroup WII/III strains. Serogroup WI represented 45% and WII/III represented 55% of the patients. Using the monoclonal antibody reagents, the serogroups could be further subdivided into so-called serovars. The Ph reagents identified four WI serovars and 21 WII/III serovars, whereas the GS reagents identified 10 WI serovars and 18 WII/III serovars. By combining the results obtained with each panel, 15 Ph/GS WI serovars and 33 Ph/GS WII/III serovars were recognised. In the WI isolates, one predominating serovar was recognised, whereas in the WII/III isolates, no single serovar predominated and a much greater variety of serovars was identified. The serovar patterns for men and women patients were very similar, except for one WII/III serovar that was 10 times more common in isolates from men than from women. Most isolates from different anatomical sites in the same patient were of the same serogroup and serovar. Two double infections were found. One patient had a genital infection with serogroup WII/III and a rectal infection with serogroup WI. Another patient with genital, rectal, and throat infections with serogroup WI was found to have gonococci of different GS serovars at each site. It was concluded that the level of discrimination achieved with the monoclonal antibody reagents should prove to be valuable in studying the micro epidemiology of gonococcal infection. PMID:3115886

  4. In vivo photoacoustic imaging of cancer using indocyanine green-labeled monoclonal antibody targeting the epidermal growth factor receptor.

    PubMed

    Sano, Kohei; Ohashi, Manami; Kanazaki, Kengo; Ding, Ning; Deguchi, Jun; Kanada, Yuko; Ono, Masahiro; Saji, Hideo

    2015-08-28

    Photoacoustic (PA) imaging is an attractive imaging modality for sensitive and depth imaging of biomolecules with high resolution in vivo. The aim of this study was to evaluate the effectiveness of an anti-epidermal growth factor receptor (EGFR) monoclonal antibody (panitumumab; Pan) labeled with indocyanine green derivative (ICG-EG4-Sulfo-OSu), Pan-EG4-ICG, as a PA imaging probe to target cancer-associated EGFR. In vitro PA imaging studies demonstrated that Pan-EG4-ICG yielded high EGFR-specific PA signals in EGFR-positive cells. To determine the optimal injection dose and scan timing, we investigated the biodistribution of radiolabeled Pan-EG4-ICG (200-400 μg) in A431 tumor (EGFR++)-bearing mice. The highest tumor accumulation (29.4% injected dose/g) and high tumor-to-blood ratio (2.1) was observed 7 days after injection of Pan-EG4-ICG (400 μg). In in vivo PA imaging studies using Pan-EG4-ICG (400 μg), the increase in PA signal (114%) was observed in A431 tumors inoculated in the mammary glands 7 days post-injection. Co-injection of excess Pan resulted in a 35% inhibition of this PA signal, indicating the EGFR-specific accumulation. In conclusion, the ICG-labeled monoclonal antibody (i.e., panitumumab) has the potential to enhance target-specific PA signal, leading to the discrimination of aggressiveness and metastatic potential of tumors and the selection of effective therapeutic strategies.

  5. NCI Requests Targets for Monoclonal Antibody Production and Characterization - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In an effort to provide well-characterized monoclonal antibodies to the scientific community, NCI's Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution.

  6. Neutralizing determinants defined by monoclonal antibodies on polypeptides specified by bovine herpesvirus 1.

    PubMed Central

    Collins, J K; Butcher, A C; Riegel, C A; McGrane, V; Blair, C D; Teramoto, Y A; Winston, S

    1984-01-01

    Monoclonal antibodies were used to study neutralizing determinants on polypeptides of bovine herpesvirus 1. Two of three monoclonal antibodies which recognized nonoverlapping epitopes on a glycoprotein of 82,000 daltons were found to neutralize. A second group of monoclonal antibodies that individually precipitated five viral glycopolypeptides ranging in size from 102,000 to 55,000 daltons also neutralized. Two monoclonal antibodies which were the most efficient in neutralization recognized a non-glycosylated protein of 115,000 daltons which was the major polypeptide on the virus. A fourth group of monoclonal antibodies precipitated a non-glycosylated polypeptide of 91,000 daltons and several smaller polypeptides, but these antibodies demonstrated only limited neutralizing activity. Images PMID:6208375

  7. Small sized EGFR1 and HER2 specific bifunctional antibody for targeted cancer therapy.

    PubMed

    Ding, Li; Tian, Caiping; Feng, Song; Fida, Guissi; Zhang, Congying; Ma, Yuxiang; Ai, Guanhua; Achilefu, Samuel; Gu, Yueqing

    2015-01-01

    Targeting tumors using miniature antibodies is a novel and attractive therapeutic approach, as these biomolecules exhibit low immunogenicity, rapid clearance, and high targeting specificity. However, most of the small-sized antibodies in existence do not exhibit marked anti-tumor effects, which limit their use in targeted cancer immunotherapy. To overcome this difficulty in targeting multiple biomarkers by combination therapies, we designed a new bifunctional antibody, named MaAbNA (multivalent antibody comprised of nanobody and affibody moieties), capable of targeting EGFR1 and HER2, which are widely overexpressed in a variety of tumor types. The small-sized (29 kDa) MaAbNA, which was expressed in E.coli, consists of one anti-EGFR1 nanobody and two anti-HER2 affibodies, and possesses high affinity (KD) for EGFR1 (~4.1 nM) and HER2 (~4.7 nM). In order to enhance its anti-tumor activity, MaAbNA was conjugated with adriamycin (ADM) using a PEG2000 linker, forming a new complex anticancer drug, MaAbNA-PEG2000-ADM. MaAbNA exhibited high inhibitory effects on tumor cells over-expressing both EGFR1 and HER2, but displayed minimal cytotoxicity in cells expressing low levels of EGFR1 and HER2. Moreover, MaAbNA-PEG2000-ADM displayed increased tumoricidal effects than ADM or MaAbNA alone, as well exhibited greater antitumor efficacy than EGFR1 (Cetuximab) and HER2 (Herceptin) antibody drugs. The ability of MaAbNA to regulate expression of downstream oncogenes c-jun, c-fos, c-myc, as well as AEG-1 for therapeutic potential was evaluated by qPCR and western-blot analyses. The antitumor efficacy of MaAbNA and its derivative MaAbNA-PEG2000-ADM were validated in vivo, highlighting the potential for use of MaAbNA as a highly tumor-specific dual molecular imaging probe and targeted cancer therapeutic. PMID:25699098

  8. Small Sized EGFR1 and HER2 Specific Bifunctional Antibody for Targeted Cancer Therapy

    PubMed Central

    Ding, Li; Tian, Caiping; Feng, Song; Fida, Guissi; Zhang, Congying; Ma, Yuxiang; Ai, Guanhua; Achilefu, Samuel; Gu, Yueqing

    2015-01-01

    Targeting tumors using miniature antibodies is a novel and attractive therapeutic approach, as these biomolecules exhibit low immunogenicity, rapid clearance, and high targeting specificity. However, most of the small-sized antibodies in existence do not exhibit marked anti-tumor effects, which limit their use in targeted cancer immunotherapy. To overcome this difficulty in targeting multiple biomarkers by combination therapies, we designed a new bifunctional antibody, named MaAbNA (multivalent antibody comprised of nanobody and affibody moieties), capable of targeting EGFR1 and HER2, which are widely overexpressed in a variety of tumor types. The small-sized (29 kDa) MaAbNA, which was expressed in E.coli, consists of one anti-EGFR1 nanobody and two anti-HER2 affibodies, and possesses high affinity (KD) for EGFR1 (~4.1 nM) and HER2 (~4.7 nM). In order to enhance its anti-tumor activity, MaAbNA was conjugated with adriamycin (ADM) using a PEG2000 linker, forming a new complex anticancer drug, MaAbNA-PEG2000-ADM. MaAbNA exhibited high inhibitory effects on tumor cells over-expressing both EGFR1 and HER2, but displayed minimal cytotoxicity in cells expressing low levels of EGFR1 and HER2. Moreover, MaAbNA-PEG2000-ADM displayed increased tumoricidal effects than ADM or MaAbNA alone, as well exhibited greater antitumor efficacy than EGFR1 (Cetuximab) and HER2 (Herceptin) antibody drugs. The ability of MaAbNA to regulate expression of downstream oncogenes c-jun, c-fos, c-myc, as well as AEG-1 for therapeutic potential was evaluated by qPCR and western-blot analyses. The antitumor efficacy of MaAbNA and its derivative MaAbNA-PEG2000-ADM were validated in vivo, highlighting the potential for use of MaAbNA as a highly tumor-specific dual molecular imaging probe and targeted cancer therapeutic. PMID:25699098

  9. Intracavitary use of two radiolabeled tumor-associated monoclonal antibodies

    SciTech Connect

    Malamitsi, J.; Skarlos, D.; Fotiou, S.; Papakostas, P.; Aravantinos, G.; Vassilarou, D.; Taylor-Papadimitriou, J.; Koutoulidis, K.; Hooker, G.; Snook, D.

    1988-12-01

    Six patients with metastatic breast cancer and malignant pleural effusions and 13 patients with known or suspected ovarian cancer, underwent immunoscintigraphy after intracavitary (intrapleural or intraperitoneal) administration of iodine-131-(131I) or indium-111-(111In) labeled tumor associated monoclonal antibodies HMFG2 and H17E2. This method proved to be sensitive and specific with a true-positive result in 13 out of 14 patients with tumor and a true-negative result in five out of five patients without tumor. At any one time, 65%-80% of the whole-body radioactivity was closely associated with the cavity into which the radiolabeled antibody was administered while the radioactivity in the blood was always low, (approximately 4 X 10(-3) of administered dose/ml of blood). Concentrations of radiolabeled antibody (per gram of tumor tissue) ranged from 0.02%-0.1% of the injected dose in intracavitary tumors, but only 0.002% in a retroperitoneal metastasis. The specificity of this approach was documented in four control patients with benign ovarian cysts and in two patients who were imaged using both specific and nonspecific radiolabeled antibody. We conclude that the intracavitary administration of 131I- or 111In-labeled HMFG2 and H17E2 is a favorable route of administration and offers significant advantages over previously reported intravenous administration for the localization of breast or ovarian metastases confined to the pleural or peritoneal cavities.

  10. Screening individual hybridomas by microengraving to discover monoclonal antibodies

    PubMed Central

    Ogunniyi, Adebola O; Story, Craig M; Papa, Eliseo; Guillen, Eduardo; Love, J Christopher

    2014-01-01

    The demand for monoclonal antibodies (mAbs) in biomedical research is significant, but the current methodologies used to discover them are both lengthy and costly. Consequently, the diversity of antibodies available for any particular antigen remains limited. Microengraving is a soft lithographic technique that provides a rapid and efficient alternative for discovering new mAbs. This protocol describes how to use microengraving to screen mouse hybridomas to establish new cell lines producing unique mAbs. Single cells from a polyclonal population are isolated into an array of microscale wells (~105 cells per screen). The array is then used to print a protein microarray, where each element contains the antibodies captured from individual wells. The antibodies on the microarray are screened with antigens of interest, and mapped to the corresponding cells, which are then recovered from their microwells by micromanipulation. Screening and retrieval require approximately 1–3 d (9–12 d including the steps for preparing arrays of microwells). PMID:19528952

  11. Intracavitary use of two radiolabeled tumor-associated monoclonal antibodies.

    PubMed

    Malamitsi, J; Skarlos, D; Fotiou, S; Papakostas, P; Aravantinos, G; Vassilarou, D; Taylor-Papadimitriou, J; Koutoulidis, K; Hooker, G; Snook, D

    1988-12-01

    Six patients with metastatic breast cancer and malignant pleural effusions and 13 patients with known or suspected ovarian cancer, underwent immunoscintigraphy after intracavitary (intrapleural or intraperitoneal) administration of iodine-131-(131I) or indium-111-(111In) labeled tumor associated monoclonal antibodies HMFG2 and H17E2. This method proved to be sensitive and specific with a true-positive result in 13 out of 14 patients with tumor and a true-negative result in five out of five patients without tumor. At any one time, 65%-80% of the whole-body radioactivity was closely associated with the cavity into which the radiolabeled antibody was administered while the radioactivity in the blood was always low, (approximately 4 X 10(-3) of administered dose/ml of blood). Concentrations of radiolabeled antibody (per gram of tumor tissue) ranged from 0.02%-0.1% of the injected dose in intracavitary tumors, but only 0.002% in a retroperitoneal metastasis. The specificity of this approach was documented in four control patients with benign ovarian cysts and in two patients who were imaged using both specific and nonspecific radiolabeled antibody. We conclude that the intracavitary administration of 131I- or 111In-labeled HMFG2 and H17E2 is a favorable route of administration and offers significant advantages over previously reported intravenous administration for the localization of breast or ovarian metastases confined to the pleural or peritoneal cavities.

  12. Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function

    PubMed Central

    Chung, Amy W.; Crispin, Max; Pritchard, Laura; Robinson, Hannah; Gorny, Miroslaw K.; Yu, Xiaojie; Bailey-Kellogg, Chris; Ackerman, Margaret E.; Scanlan, Chris; Zolla-Pazner, Susan; Alter, Galit

    2015-01-01

    Objective To determine monoclonal antibody (mAb) features that predict fragment crystalizable (Fc)-mediated effector functions against HIV. Design Monoclonal antibodies, derived from Chinese hamster ovary cells or Epstein–Barr virus-immortalized mouse heteromyelomas, with specificity to key regions of the HIV envelope including gp120-V2, gp120-V3 loop, gp120-CD4+ binding site, and gp41-specific antibodies, were functionally profiled to determine the relative contribution of the variable and constant domain features of the antibodies in driving robust Fc-effector functions. Methods Each mAb was assayed for antibody-binding affinity to gp140SF162, antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and for the ability to bind to FcgRIIa, FcgRIIb and FcgRIIIa receptors. Antibody glycan profiles were determined by HPLC. Results Neither the specificity nor the affinity of the mAbs determined the potency of Fc-effector function. FcgRIIIa binding strongly predicted ADCC and decreased galactose content inversely correlated with ADCP, whereas N-glycolylneuraminic acid-containing structures exhibited enhanced ADCP. Additionally, the bi-antenary glycan arm onto which galactose was added predicted enhanced binding to FcgRIIIa and ADCC activity, independent of the specificity of the mAb. Conclusions Our studies point to the specific Fc-glycan structures that can selectively promote Fc-effector functions independently of the antibody specificity. Furthermore, we demonstrated antibody glycan structures associated with enhanced ADCP activity, an emerging Fc-effector function that may aid in the control and clearance of HIV infection. PMID:25160934

  13. Method of rapid production of hybridomas expressing monoclonal antibodies on the cell surface

    DOEpatents

    Meagher, Richard B.; Laterza, Vince

    2006-12-12

    The present invention relates to genetically altered hybridomas, myelomas and B cells. The invention also relates to utilizing genetically altered hybridomas, myelomas and B cells in methods of making monoclonal antibodies. The present invention also provides populations of hybridomas and B cells that can be utilized to make a monoclonal antibody of interest.

  14. Agglutinating monoclonal antibodies that specifically recognize lipooligosaccharide A of Bordetella pertussis.

    PubMed Central

    Li, Z M; Cowell, J L; Brennan, M J; Burns, D L; Manclark, C R

    1988-01-01

    Monoclonal antibodies that specifically agglutinate strains of Bordetella pertussis having serotype 1 agglutinogen were uniquely reactive with the electrophoretically slow-migrating A form of lipooligosaccharide. These monoclonal antibodies should be useful for the structural analysis of B. pertussis lipooligosaccharide and for the establishment of a better-defined serogroup for Bordetella species. Images PMID:2893776

  15. Agglutinating monoclonal antibodies that specifically recognize lipooligosaccharide A of Bordetella pertussis.

    PubMed

    Li, Z M; Cowell, J L; Brennan, M J; Burns, D L; Manclark, C R

    1988-03-01

    Monoclonal antibodies that specifically agglutinate strains of Bordetella pertussis having serotype 1 agglutinogen were uniquely reactive with the electrophoretically slow-migrating A form of lipooligosaccharide. These monoclonal antibodies should be useful for the structural analysis of B. pertussis lipooligosaccharide and for the establishment of a better-defined serogroup for Bordetella species. PMID:2893776

  16. Monoclonal antibodies to cyclodiene insecticides and method for detecting the same

    DOEpatents

    Stanker, L.H.; Vanderlaan, M.; Watkins, B.E.

    1994-08-02

    Methods are described for making specific monoclonal antibodies useful for detection of cyclodienes in foods and environmental samples. Monoclonal antibodies specifically reactive with cyclodienes can detect accumulated pesticides in food, tissue or environmental samples. Extraction and preparation of organic samples for immunoassay in a polar-nonpolar reaction medium permits detection of halogenated organic ring structures at concentrations in samples. 13 figs.

  17. Monoclonal antibodies to cyclodiene insecticides and method for detecting the same

    DOEpatents

    Stanker, Larry H.; Vanderlaan, Martin; Watkins, Bruce E.

    1994-01-01

    Methods are described for making specific monoclonal antibodies useful for detection of cyclodienes in foods and environmental samples. Monoclonal antibodies specifically reactive with cyclodienes can detect accumulated pesticides in food, tissue or environmental samples. Extraction and preparation of organic samples for immunoassay in a polar-nonpolar reaction medium permits detection of halogenated organic ring structures at concentrations in samples.

  18. Immunological properties and biological function of monoclonal antibodies to tobacco mosaic virus.

    PubMed

    Dietzgen, R G

    1986-01-01

    Monoclonal antibodies to TMV vulgare produced in hybridoma cultures as well as in ascitic fluid were characterized according to their reactivity with the virion and/or the coat protein monomer thus revealing specificity for epitopes, cryptotopes or neotopes. Different patterns of crossreactivity of these monoclonal antibodies with TMV strains dahlemense and Holmes' Ribgrass occurred. Some monoclonal antibodies showed stronger reactivity with these strains than with the immunizing strain. The monoclonal antibodies were TMV-specific as they did not react with ArMV and PLRV and proteins of healthy tobacco plants. The monoclonal antibodies were of the IgG2a or IgM isotype. The specific activity (Ext405nm/hour/100 micrograms MCA) with the immunizing virus and its coat protein monomers was determined as characteristic property of each monoclonal antibody. A monoclonal antibody specific for the C-terminal epitope of TMV coat protein was selected by means of the corresponding chemically synthesized tetrapeptide. With this monoclonal antibody infectivity of TMV was neutralized.

  19. Scintigraphy of normal mouse ovaries with monoclonal antibodies to ZP-2, the major zona pellucida protein

    SciTech Connect

    East, I.J.; Keenan, A.M.; Larson, S.M.; Dean, J.

    1984-08-31

    The zona pellucida is an extracellular glycocalyx, made of three sulfated glycoproteins, that surrounds mammalian oocytes. Parenterally administered monoclonal antibodies specific for ZP-2, the most abundant zona protein, localize in the zona pellucida. When labeled with iodine-125, these monoclonal antibodies demonstrate a remarkably high target-to-nontarget tissue ratio and provide clear external radioimaging of ovarian tissue.

  20. Development and characterization of mouse monoclonal antibodies specific for chicken interleukin 18

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four mouse monoclonal antibodies (mAbs) which are specific for chicken interleukin 18 (chIL18) were produced and characterized by enzyme-linked immunosorbent assay (ELISA), Western blotting, quantitative real-time PCR and neutralization assays. Monoclonal antibodies specific for chIL18 identified a ...

  1. Immunohistochemical staining with EGFR mutation-specific antibodies: high specificity as a diagnostic marker for lung adenocarcinoma.

    PubMed

    Wen, Yong Hannah; Brogi, Edi; Hasanovic, Adnan; Ladanyi, Marc; Soslow, Robert A; Chitale, Dhananjay; Shia, Jinru; Moreira, Andre L

    2013-09-01

    We previously demonstrated a high specificity of immunohistochemistry using epidermal growth factor receptor (EGFR) mutation-specific antibodies in lung adenocarcinoma and correlation with EGFR mutation analysis. In this study, we assessed EGFR mutation status by immunohistochemistry in a variety of extrapulmonary malignancies, especially those that frequently show EGFR overexpression. Tissue microarrays containing triplicate cores of breast carcinomas (n=300), colorectal carcinomas (n=65), pancreatic adenocarcinoma (n=145), and uterine carcinosarcoma or malignant mixed müllerian tumors (n=25) were included in the study. Tissue microarray of lung adenocarcinoma with known EGFR mutation status was used as reference. Immunohistochemistry was performed using antibodies specific for the E746-A750del and L858R mutations. In pulmonary adenocarcinoma, a staining intensity of 2+ or 3+ correlates with mutation status and is therefore considered as positive. Out of 300 breast carcinomas, 293 (98%) scored 0, 5 (2%) had 1+ staining, 2 (1%) were 2+ for the L858R antibody. All breast carcinomas scored 0 with the E746-A750 antibody. All the colorectal, pancreatic carcinomas and malignant mixed müllerian tumors were negative (0) for both antibodies. Molecular analysis of the breast carcinomas that scored 2+ for L858R showed no mutation. Our results show that EGFR mutation-specific antibodies could be an additional tool distinguishing primary versus metastatic carcinomas in the lung. False-positivity can be seen in breast carcinoma but is extremely rare (1%).

  2. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    PubMed

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. PMID:27284048

  3. Therapy of a murine sarcoma using syngeneic monoclonal antibody

    SciTech Connect

    Kennel, S.J.; Lankford, T.; Flynn, K.M.

    1983-01-01

    Syngeneic monoclonal antibodies (MoAb) to Moloney sarcoma cells were produced by fusion of spleen cells from MSC regressor mice to myeloma SP2/0. MoAb 244-19A, an immunoglobulin G2b, bound to MSC cells and did not bind to two other sarcomas (K-BALB and Ha2), a carcinoma (Line 1), a fibroblast (A31) or a fibroblast infected with C-type virus (A31) or a fibroblast infected with C-type virus (A31-Moloney leukemia virus). In contrast, MoAb 271-1A bound to the MSC and Ha2 sarcoma and line 1 carcinoma as well as to the normal and infected fibroblast cultures. Antibodies were tested for therapeutic effect using three schedules of antibody injection. Injection i.p. of ascites fluid containing 244-19A MoAb given on Days -1, 0, and +1 relative to tumor cell injection increased life span significantly over that of control animals given injections (P3, immunoglobulin G, or MoAb 271-1A) and produced some seven of 19, one of five, and one of five long-term survivors in three separate experiments. Antibody given to animals with established tumors (4 days after implantation) also prolonged life span significantly and produced three of nine long-term survivors. Antibody given to animals with very large tumor burdens (10 days after implantation) did not prolong life span significantly. Optimal dose, schedule, and mechanism studies concerning this therapy are in progress.

  4. Production and characterization of monoclonal antibodies to Newcastle Disease Virus.

    PubMed

    Kumar, G Ravi; Saxena, Shikha; Sahoo, A P; Chaturvedi, Uttara; Kumar, Satish; Santra, Lakshman; Desai, G S; Singh, Lakshyaveer; Tiwari, Ashok K

    2016-03-01

    Newcastle Disease (ND) is one of the major causes of economic loss in the poultry industry. Newcastle Disease Virus (NDV) is a single-stranded, negative-sense enveloped RNA virus (Fam. Paramyxoviridae; Order Mononegavirales). In the present study three monoclonal antibodies (MAbs) were produced by polyethyleneglycol (PEG)-mediated fusion of lymphocytes sensitized to NDV Bareilly strain and myeloma cells. NDV possesses ability to agglutinate erythrocytes of avian species. All the three MAbs designated as 2H7, 3E9 and 3G6 caused hemagglutination inhibition of NDV by specifically binding to NDV. The reactivity for all the 3 MAbs on indirect ELISA was found to be significantly higher than the antibody and antigen controls. On flowcytometry of HeLa cells infected with NDV using the MAbs as primary antibodies, there was a significant difference in the percentage of cells showing positive fluorescence compared to the mock control. One of the MAbs (3E9) was found to react with hemagglutinin-neuraminidase (HN) protein on western blot. PMID:27145631

  5. Removal of drugs from the circulation using immobilized monoclonal antibodies

    SciTech Connect

    Brizgys, M.V.

    1987-01-01

    High-affinity monoclonal antidigoxin antibodies (dig-Ab) were immobilized to a pellicular microbead and characterized in terms of antibody affinity, specificity for other glycosides, and binding capacity. Determination of digoxin binding revealed that the binding capacity decreased to 25% of theoretical capacity. Attempts to improve the binding capacity were ineffective. A guinea pig animal model was developed to determine the efficacy of removing digoxin in vivo from the circulation using an antibody column. Male guinea pigs were hemoperfused with either a dig-Ab or bovine Y-globulin control column 16 h after a single i.v. injection of digoxin. Pre- and postcolumn plasma concentrations were obtained to evaluate the extraction efficiency. Hemoperfusion continued for 3 h at flow rates of 1.0-2.0 mL/min. Bound digoxin was eluted as described earlier and concentrations determined by (/sup 125/I) digoxin RIA. Amounts of digoxin removed represented less than 1% of the total body content. After several studies with the same column, the dig-Ab had lost most of its activity. A freshly prepared dig-Ab column removed approximately 20% of the total body content. Most of the measured constituents of the blood were unaffected by the procedure.

  6. Selection of Ceratitis capitata (Diptera: Tephritidae) Specific Recombinant Monoclonal Phage Display Antibodies for Prey Detection Analysis

    PubMed Central

    Monzó, César; Urbaneja, Alberto; Ximénez-Embún, Miguel; García-Fernández, Julia; García, José Luis; Castañera, Pedro

    2012-01-01

    Several recombinant antibodies against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), one of the most important pests in agriculture worldwide, were selected for the first time from a commercial phage display library of human scFv antibodies. The specificity and sensitivity of the selected recombinant antibodies were compared with that of a rabbit polyclonal serum raised in parallel using a wide range of arthropod species as controls. The selected recombinant monoclonal antibodies had a similar or greater specificity when compared with classical monoclonal antibodies. The selected recombinant antibodies were successfully used to detect the target antigen in the gut of predators and the scFv antibodies were sequenced and compared. These results demonstrate the potential for recombinant scFv antibodies to be used as an alternative to the classical monoclonal antibodies or even molecular probes in the post-mortem analysis studies of generalist predators. PMID:23272105

  7. Protective activities in mice of monoclonal antibodies against pertussis toxin.

    PubMed

    Sato, H; Sato, Y

    1990-10-01

    Pertussis toxin (PT) protein, which is the most important protective antigen of Bordetella pertussis, has a hexameric structure composed of five subunits, designated S1 through S5. Immunoprotective activity of 20 different mouse monoclonal antibodies (MAbs) against pertussis toxin, 10 anti-S1, 1 anti-S2, 2 anti-S3, 4 anti-S23, and 3 anti-S4 antibodies, were investigated by aerosol and intracerebral challenges with virulent B. pertussis organisms in mice. Four anti-S1, named 1B7, 1D7, 3F11, and 10D6, and three anti-S23 antibodies, named 11E6, 10B5, and 10C9, showed the highest, and almost complete, protectivity against the aerosol challenge. Mouse protectivity against the intracerebral challenge was significant for these four anti-S1 MAbs but not for any of the three anti-S23 MAbs. Four anti-S1 and two anti-S4 MAbs did not protect the mice against either challenge. The other seven MAbs also showed dose-dependent moderate but significant protection against the aerosol challenge. In the aerosol challenge system, bacterial numbers and amounts of PT detected in the lung and the number of peripheral leukocytes were lower in the mice given the protective MAbs. All mice surviving 5 weeks after the infection produced high titers of antibodies against PT, filamentous hemagglutinin (FHA), and agglutinogens from the challenge organisms. A combination of the protective MAbs 1B7 and 11E6 strongly suppressed the disease and mortality of the mice at smaller amounts than with the anti-PT polyclonal antibody. Although combinations of one of the protective MAb and anti-FHA or anti-agglutinogen 2 also showed extremely high mouse protection without development of symptoms of the disease, antibody titers of the survivors against PT, FHA, and agglutinogens were significantly low. The foregoing results suggest that some important protective epitopes should be in S1 and S2 and/or S3, although there are both differences and similarities in the protective roles between anti-S1 and anti-S23

  8. Protective activities in mice of monoclonal antibodies against pertussis toxin.

    PubMed Central

    Sato, H; Sato, Y

    1990-01-01

    Pertussis toxin (PT) protein, which is the most important protective antigen of Bordetella pertussis, has a hexameric structure composed of five subunits, designated S1 through S5. Immunoprotective activity of 20 different mouse monoclonal antibodies (MAbs) against pertussis toxin, 10 anti-S1, 1 anti-S2, 2 anti-S3, 4 anti-S23, and 3 anti-S4 antibodies, were investigated by aerosol and intracerebral challenges with virulent B. pertussis organisms in mice. Four anti-S1, named 1B7, 1D7, 3F11, and 10D6, and three anti-S23 antibodies, named 11E6, 10B5, and 10C9, showed the highest, and almost complete, protectivity against the aerosol challenge. Mouse protectivity against the intracerebral challenge was significant for these four anti-S1 MAbs but not for any of the three anti-S23 MAbs. Four anti-S1 and two anti-S4 MAbs did not protect the mice against either challenge. The other seven MAbs also showed dose-dependent moderate but significant protection against the aerosol challenge. In the aerosol challenge system, bacterial numbers and amounts of PT detected in the lung and the number of peripheral leukocytes were lower in the mice given the protective MAbs. All mice surviving 5 weeks after the infection produced high titers of antibodies against PT, filamentous hemagglutinin (FHA), and agglutinogens from the challenge organisms. A combination of the protective MAbs 1B7 and 11E6 strongly suppressed the disease and mortality of the mice at smaller amounts than with the anti-PT polyclonal antibody. Although combinations of one of the protective MAb and anti-FHA or anti-agglutinogen 2 also showed extremely high mouse protection without development of symptoms of the disease, antibody titers of the survivors against PT, FHA, and agglutinogens were significantly low. The foregoing results suggest that some important protective epitopes should be in S1 and S2 and/or S3, although there are both differences and similarities in the protective roles between anti-S1 and anti-S23

  9. Legionella micdadei and Legionella dumoffii monoclonal antibodies for laboratory diagnosis of Legionella infections.

    PubMed Central

    Cercenado, E; Edelstein, P H; Gosting, L H; Sturge, J C

    1987-01-01

    Two different monoclonal antibodies directed against Legionella micdadei and L. dumoffii (Genetic Systems Corp., Seattle, Wash.) were evaluated for their specificity and ability to detect L. micdadei and L. dumoffii in human and animal clinical samples and bacterial isolates in an indirect immunofluorescence assay. All three frozen sputum samples and all three Formalin-fixed sputum and liver samples from patients with culture-documented L. micdadei pneumonia were positive when tested with the L. micdadei monoclonal antibody. A Formalin-preserved lung sample from a patient with culture-documented L. dumoffii pneumonia was positive with its homologous monoclonal antibody. No cross-staining reactions were found with either monoclonal antibody on any of 25 human sputum samples tested from patients without Legionella infections. A total of 66 Legionella strains and 56 non-Legionella strains including 22 Pseudomonas strains and 34 other bacterial strains were studied. No cross-staining reactions were found except in Staphylococcus aureus Cowan 1 ATCC 12598. The lower limit of detection in seeded sputum samples was about 7 X 10(4) cells per ml for both monoclonal antibodies. Lung and tracheal lavage specimens from L. micdadei- or L. dumoffii-infected guinea pigs showed specific staining only with their respective monoclonal antibodies. The monoclonal antibodies stained homologous bacteria slightly less intensely than did the polyclonal antisera, but the signal-to-noise ratio was considerably higher for the monoclonal antibodies. No differences in sensitivity of staining of clinical specimens or bacterial isolates were noted between the monoclonal antibodies and the polyclonal reagents for L. micdadei and L. dumoffii (Centers for Disease Control, Atlanta, Ga., and BioDx, Denville, N.J. These monoclonal antibodies ae sensitive and specific, making them good candidates for laboratory diagnostic purposes. PMID:3320084

  10. Development of Human Monoclonal Antibodies Against Respiratory Syncytial Virus Using a High Efficiency Human Hybridoma Technique.

    PubMed

    Alvarado, Gabriela; Crowe, James E

    2016-01-01

    Human monoclonal antibodies against RSV have high potential for use as prophylaxis or therapeutic molecules, and they also can be used to define the structure of protective epitopes for rational vaccine design. In the past, however, isolation of human monoclonal antibodies was difficult and inefficient. Here, we describe contemporary methods for activation and proliferation of primary human memory B cells followed by cytofusion to non-secreting myeloma cells by dielectrophoresis to generate human hybridomas secreting RSV-specific monoclonal antibodies. We also provide experimental methods for screening human B cell lines to obtain RSV-specific lines, especially lines secreting neutralizing antibodies. PMID:27464688

  11. Potential of palladium-109-labeled antimelanoma monoclonal antibody for tumor therapy

    SciTech Connect

    Fawwaz, R.A.; Wang, T.S.T.; Srivastava, S.C.; Rosen, J.M.; Ferrone, S.; Hardy, M.A.; Alderson, P.O.

    1984-07-01

    Palladium-109, a beta-emitting radionuclide, was chelated to the monoclonal antibody 225.28S to the high molecular weight antigen associated with human melanoma. Injection of the radiolabeled monoclonal antibody into nude mice bearing human melanoma resulted in significant accumulation of the radiolabel in the tumors: 19% injected dose/g; 38:1 and 61:1 tumor-to-blood ratios at 24 and 48 hr, respectively. The localization of the radiolabeled antibody in liver and kidney also was high, but appreciably lower than that achieved in tumor. These results suggest Pd-109-labeled monoclonal antibody to tumor-associated antigens may have potential applications in tumor immunotherapy.

  12. Effect of polyol sugars on the stabilization of monoclonal antibodies.

    PubMed

    Nicoud, Lucrèce; Cohrs, Nicholas; Arosio, Paolo; Norrant, Edith; Morbidelli, Massimo

    2015-02-01

    We investigate the impact of sugars and polyols on the heat-induced aggregation of a model monoclonal antibody whose monomer depletion is rate-limited by protein unfolding. We follow the kinetics of monomer consumption by size exclusion chromatography, and we interpret the results in the frame of two mechanistic schemes describing the enhanced protein stability in the presence of polyols. It is found that the stabilization effect increases with increasing polyol concentration with a comparable trend for all of the tested polyols. However, the stabilization effect at a given polyol concentration is polyol specific. In particular, the stabilization effect increases as a function of polyol size until a plateau is reached above a critical polyol size corresponding to six carbon atoms. Our results show that the stabilization by polyols does not depend solely on the volume fraction filled by the polyol molecules, but is also affected by the polyol chemistry. PMID:25645712

  13. Monoclonal antibody-defined human pancreatic cancer-associated antigens.

    PubMed

    Schmiegel, W H; Kalthoff, H; Arndt, R; Gieseking, J; Greten, H; Klöppel, G; Kreiker, C; Ladak, A; Lampe, V; Ulrich, S

    1985-03-01

    Three pancreatic cancer-associated antigens were characterized by use of monoclonal antibodies in immunobinding studies with various cellular and soluble target antigens, in immunoprecipitation, and in immunoperoxidase staining. C54-0 represents a tumor-associated Mr 122,000 antigen, which appears to be widely distributed on various epithelial tumors and to a lower extent on normal tissue. C1-N3 antigen exhibited a more restricted distribution, reacting with pancreatic and various gastrointestinal tract tumors as well as with chronically inflamed pancreatic tissue. The most specific antigen expression was observed for C1-P83 antigen, found on all exocrine tumors of the pancreas, but not on normal or chronically inflamed pancreatic tissue.

  14. Target Therapy in Hematological Malignances: New Monoclonal Antibodies

    PubMed Central

    Szymczyk, Agnieszka; Pawlowski, Johannes

    2014-01-01

    Apart from radio- and chemotherapy, monoclonal antibodies (MoAbs) represent a new, more selective tool in the treatment of hematological malignancies. MoAbs bind with the specific antigens of the tumors. This interaction is a basis for targeted therapies which exhibit few side effects and significant antitumor activity. This review provides an overview of the functional characteristics of MoAbs, with some examples of their clinical application. The promising results in the treatment of hematological malignancies have led to the more frequent usage of MoAbs in the therapy. Development of MoAbs is a subject of extensive research. They are a promising method of cancer treatment in the future. PMID:27433507

  15. Diagnostic use of anti-modified nucleoside monoclonal antibody.

    PubMed

    Itoh, K; Ishiwata, S; Ishida, N; Mizugaki, M

    1992-10-01

    By use of monoclonal antibodies (MoAbs) termed APU-6 and AMA-2, we determined the usefulness of urinary modified nucleosides, pseudouridine and 1-methyladenosine, as markers for malignancy. In patients with leukemia and other forms of cancer, these nucleosides elevated significantly and reflected the disease status of patients. The immunohistochemical analysis showed that cancer cells were specifically stained with the MoAbs. Chemical identification of the cellular components reactive with the MoAbs revealed that APU-6-associated antigens were mainly rRNA and AMA-2-associated antigens were mainly tRNA. These results suggest that APU-6 and AMA-2 would be useful tools for clinical and biological studies of cancer.

  16. [Monoclonal antibodies for the treatment of multiple sclerosis].

    PubMed

    Sánchez-Seco, Victoria Galán; Casanova Peño, Ignacio; Arroyo González, Rafael

    2014-12-01

    Until the mid 1990s, with the appearance of interferon beta and glatiramer acetate, there was no treatment for multiple sclerosis (MS). However, due to their moderate therapeutic potential in some patients, a broad search was continued to find new and more effective treatment strategies, largely concentrated on monoclonal antibodies (MOAB). Natalizumab, the first MOAB for the treatment of MS, was approved at the end of 2004, representing a major advance in the field of neuroimmunology. Today, there is broad experience with natalizumab and other MOAB (alemtuzumab, daclizumab, rituximab, ocrelizumab, ofatumumab and anti-lingo-1) that are pending commercialization or are under phase II or III of development with promising results. The present review analyzes the efficacy and safety results of all these drugs. PMID:25732947

  17. Monoclonal antibodies and the transformation of blood typing

    PubMed Central

    Marks, Lara

    2014-01-01

    Today, when monoclonal antibodies (mAbs) have become one of the most important classes of therapeutic drugs, it is easy to forget how much they have transformed our healthcare in other ways. One of the first clinical areas, as this paper shows, where mAbs made their mark was in the field of blood typing. The adoption of mAbs for this purpose was done with little public fanfare or funding. Nonetheless, it radically transformed the accuracy and cost of blood typing and shifted the procedure away from a dependence on reagents made from human blood donated by volunteers. This paper argues that the development of mAbs as reagents for blood typing laid the foundation for the first large-scale production of mAbs thereby paving the way to the advent of mAb diagnostics and therapeutics. PMID:25484059

  18. Monoclonal Antibodies Against NS2B of Japanese Encephalitis Virus.

    PubMed

    Dong, Qian; Xu, Qiuping; Ruan, Xindi; Huang, Shaomei; Cao, Shengbo

    2015-04-01

    Japanese encephalitis (JE) is one of the most important viral encephalitis, caused by the Japanese encephalitis virus (JEV). The function of non-structural protein 2B (NS2B) mostly remains unclear. In our study, NS2B of Japanese encephalitis virus (JEV) was expressed in Escherichia coli and purified by dialysis. After fusing mouse myeloma cell line SP2/0 with spleen lymphocytes from NS2B protein immunized mice, three clones of monoclonal antibodies (MAbs), named 1B9, 3E12, and 4E6, were generated. The specificity and sensitivity of MAbs were demonstrated by ELISA, indirect immunofluorescence assay, and Western blot. These MAbs will be useful in further exploration of the functions of NS2B and the pathogenesis of Japanese encephalitis virus. PMID:25897607

  19. Infectious Complications Associated with Monoclonal Antibodies and Related Small Molecules

    PubMed Central

    Salvana, Edsel Maurice T.; Salata, Robert A.

    2009-01-01

    Summary: Biologics are increasingly becoming part of routine disease management. As more agents are developed, the challenge of keeping track of indications and side effects is growing. While biologics represent a milestone in targeted and specific therapy, they are not without drawbacks, and the judicious use of these “magic bullets” is essential if their full potential is to be realized. Infectious complications in particular are not an uncommon side effect of therapy, whether as a direct consequence of the agent or because of the underlying disease process. With this in mind, we have reviewed and summarized the risks of infection and the infectious disease-related complications for all FDA-approved monoclonal antibodies and some related small molecules, and we discuss the probable mechanisms involved in immunosuppression as well as recommendations for prophylaxis and treatment of specific disease entities. PMID:19366915

  20. Identification and Characterization of MEDI4736, an Antagonistic Anti-PD-L1 Monoclonal Antibody.

    PubMed

    Stewart, Ross; Morrow, Michelle; Hammond, Scott A; Mulgrew, Kathy; Marcus, Danielle; Poon, Edmund; Watkins, Amanda; Mullins, Stefanie; Chodorge, Matthieu; Andrews, John; Bannister, David; Dick, Emily; Crawford, Nicola; Parmentier, Julie; Alimzhanov, Marat; Babcook, John S; Foltz, Ian N; Buchanan, Andrew; Bedian, Vahe; Wilkinson, Robert W; McCourt, Matthew

    2015-09-01

    Programmed cell-death 1 ligand 1 (PD-L1) is a member of the B7/CD28 family of proteins that control T-cell activation. Many tumors can upregulate expression of PD-L1, inhibiting antitumor T-cell responses and avoiding immune surveillance and elimination. We have identified and characterized MEDI4736, a human IgG1 monoclonal antibody that binds with high affinity and specificity to PD-L1 and is uniquely engineered to prevent antibody-dependent cell-mediated cytotoxicity. In vitro assays demonstrate that MEDI4736 is a potent antagonist of PD-L1 function, blocking interaction with PD-1 and CD80 to overcome inhibition of primary human T-cell activation. In vivo MEDI4736 significantly inhibits the growth of human tumors in a novel xenograft model containing coimplanted human T cells. This activity is entirely dependent on the presence of transplanted T cells, supporting the immunological mechanism of action for MEDI4736. To further determine the utility of PD-L1 blockade, an anti-mouse PD-L1 antibody was investigated in immunocompetent mice. Here, anti-mouse PD-L1 significantly improved survival of mice implanted with CT26 colorectal cancer cells. The antitumor activity of anti-PD-L1 was enhanced by combination with oxaliplatin, which resulted in increased release of HMGB1 within CT26 tumors. Taken together, our results demonstrate that inhibition of PD-L1 function can have potent antitumor activity when used as monotherapy or in combination in preclinical models, and suggest it may be a promising therapeutic approach for the treatment of cancer. MEDI4736 is currently in several clinical trials both alone and in combination with other agents, including anti-CTLA-4, anti-PD-1, and inhibitors of IDO, MEK, BRAF, and EGFR.

  1. Probing Functional Changes in Exocyst Configuration with Monoclonal Antibodies

    PubMed Central

    Inamdar, Shivangi M.; Hsu, Shu-Chan; Yeaman, Charles

    2016-01-01

    Spatial regulation of exocytosis relies on the exocyst, a hetero-octameric protein complex that tethers vesicles to fusion sites at the plasma membrane. Nevertheless, our understanding of mechanisms regulating exocyst assembly/disassembly, localization, and function are incomplete. Here, we have exploited a panel of anti-Sec6 monoclonal antibodies (mAbs) to probe possible configurational changes accompanying transitions in exocyst function in epithelial MDCK cells. Sec6 is quantitatively associated with Sec8 in high molecular weight complexes, as shown by gel filtration and co-immunoprecipitation studies. We mapped epitopes recognized by more than 20 distinct mAbs to one of six Sec6 segments. Surprisingly, mAbs that bound epitopes in each segment labeled distinct subcellular structures. In general, antibodies to epitopes in N-terminal domains labeled Sec6 in either cytosolic or nuclear pools, whereas those that bound epitopes in C-terminal domains labeled membrane-associated Sec6. In this latter group, we identified antibodies that labeled distinct Sec6 populations at the apical junctional complex, desmosomes, endoplasmic reticulum and vimentin-type intermediate filaments. That each antibody was specific was verified by both Sec6 RNAi and competition with fusion proteins containing each domain. Comparison of non-polarized and polarized cells revealed that many Sec6 epitopes either redistribute or become concealed during epithelial polarization. Transitions in exocyst configurations may be regulated in part by the actions of Ral GTPases, because the exposure of Sec6 C-terminal domain epitopes at the plasma membrane is significantly reduced upon RalA RNAi. To determine whether spatio-temporal changes in epitope accessibility was correlated with differential stability of interactions between Sec6 and other exocyst subunits, we quantified relative amounts of each subunit that co-immunoprecipitated with Sec6 when antibodies to N-terminal or C-terminal epitopes were used

  2. Probing Functional Changes in Exocyst Configuration with Monoclonal Antibodies.

    PubMed

    Inamdar, Shivangi M; Hsu, Shu-Chan; Yeaman, Charles

    2016-01-01

    Spatial regulation of exocytosis relies on the exocyst, a hetero-octameric protein complex that tethers vesicles to fusion sites at the plasma membrane. Nevertheless, our understanding of mechanisms regulating exocyst assembly/disassembly, localization, and function are incomplete. Here, we have exploited a panel of anti-Sec6 monoclonal antibodies (mAbs) to probe possible configurational changes accompanying transitions in exocyst function in epithelial MDCK cells. Sec6 is quantitatively associated with Sec8 in high molecular weight complexes, as shown by gel filtration and co-immunoprecipitation studies. We mapped epitopes recognized by more than 20 distinct mAbs to one of six Sec6 segments. Surprisingly, mAbs that bound epitopes in each segment labeled distinct subcellular structures. In general, antibodies to epitopes in N-terminal domains labeled Sec6 in either cytosolic or nuclear pools, whereas those that bound epitopes in C-terminal domains labeled membrane-associated Sec6. In this latter group, we identified antibodies that labeled distinct Sec6 populations at the apical junctional complex, desmosomes, endoplasmic reticulum and vimentin-type intermediate filaments. That each antibody was specific was verified by both Sec6 RNAi and competition with fusion proteins containing each domain. Comparison of non-polarized and polarized cells revealed that many Sec6 epitopes either redistribute or become concealed during epithelial polarization. Transitions in exocyst configurations may be regulated in part by the actions of Ral GTPases, because the exposure of Sec6 C-terminal domain epitopes at the plasma membrane is significantly reduced upon RalA RNAi. To determine whether spatio-temporal changes in epitope accessibility was correlated with differential stability of interactions between Sec6 and other exocyst subunits, we quantified relative amounts of each subunit that co-immunoprecipitated with Sec6 when antibodies to N-terminal or C-terminal epitopes were used

  3. Monoclonal antibodies specific for human monocytes, granulocytes and endothelium.

    PubMed Central

    Hogg, N; MacDonald, S; Slusarenko, M; Beverley, P C

    1984-01-01

    Four monoclonal antibodies against antigens of human myeloid cells have been produced and thoroughly characterized in terms of their reactions with peripheral blood cells, cell lines, nine lymphoid and non-lymphoid tissues and the polypeptides with which they react. UCHM1 and SmO identify antigens present on the majority of blood monocytes and a variable, but lower, proportion of tissue macrophages. From their morphology and location in tissues, these cells appear to be recirculating monocytes. SMO antigen is also present on platelets. In addition, both antibodies stained endothelial cells, SMO in all tissues examined and UCHM1 variably. Biochemical investigation indicated that the UCHM1 antigen is a protein of 52,000 MW while the SMO antigen could not be indentified. The antibodies TG1 and 28 identify antigens mainly present on granulocytes. While mAb 28 reacted with neutrophils, TG1 also stained eosinophils and stained strongly a proportion of monocytes. TG1 also reacted variably with some non-haemopoietic cell lines. Both antibodies reacted predominantly with granulocytes in tissue sections. MAb TG1 precipitated a single polypeptide of 156,000 MW from monocytes and granulocytes, while mAb 28 precipitated non-convalently associated polypeptides of 83,000 and 155,000 MW from granulocytes but only a single molecule from monocytes, corresponding to the lower MW chain of 83,000. The epitope with which mAb 28 reacts appears not to be exposed on the surface of intact monocytes. This suggests that a similar or identical 83,000 MW molecule is made by both neutrophils and monocytes, but that its expression differs according to cell type. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:6389324

  4. Monoclonal Antibody Analysis of Keratin Expression in the Central Nervous System

    NASA Astrophysics Data System (ADS)

    Franko, Maryellen C.; Gibbs, Clarence J.; Rhoades, Dorothy A.; Carleton Gajdusek, D.

    1987-05-01

    A monoclonal antibody directed against a 65-kDa brain protein demonstrates an epitope found in keratin from human epidermis. By indirect immunofluorescence, the antibody decorates intracytoplasmic filaments in a subclass of astrocytes and Purkinje cells of adult hamster brain. Double-label immunofluorescence study using antibody to glial fibrillary acidic protein and this antibody reveals the 65-kDa protein to be closely associated with glial filaments in astrocytes of fetal mouse brain cultures. Immunoblot analysis of purified human epidermal keratin and hamster brain homogenate confirms the reactivity of this antibody to epidermal keratin polypeptides. All the major epidermal keratins were recognized by this antibody. It did not bind to the remaining major intermediate filament proteins. These findings suggest that monoclonal antibody 34C9 recognizes a cytoskeletal structure connected with intermediate filaments. In addition, the monoclonal antibody demonstrates that epidermal keratins share an epitope not only among themselves but also with a ``neural keratin.''

  5. Monoclonal Antibody-Directed Effector Cells Selectively Lyse Human Melanoma Cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Schulz, Gregor; Bumol, Thomas F.; Reisfeld, Ralph A.

    1983-09-01

    Monoclonal antibody 9.2.27 (mAb 9.2.27) directed to a chondroitin sulfate proteoglycan on human melanoma cells was able to suppress tumor growth in athymic (nu/nu) mice more effectively when bound with polyethylene glycol to murine effector cells than when injected alone. These ``armed'' effector cells also proved more effective than the monoclonal antibody in eliciting antibody-dependent cellular cytotoxicity against human melanoma target cells in vitro.

  6. Influence of unlabeled monoclonal anti-mouse antibody on the clearance rate of radiolabeled mouse monoclonal antibody

    SciTech Connect

    Wahl, R.L.; Laino, L.; Jackson, G.; Fisher, S.; Beierwaltes, W.H.

    1985-05-01

    High blood background levels of intact radiolabeled monoclonal antibody (MoAb) after intravenous (iv) injection are problematic. The injection of unlabeled polyclonal antimouse Abs following injection with labeled MoAbs produces accelerated MoAb clearance. This study evaluates a Mo antimouse Ab for efficacy of accelerating radio MoAb clearance. HB-58 is a rat/mouse MoAb which binds strongly to mouse kappa light chains present in 95% of murine monoclonals. It is unreactive with rat, rabbit or human kappa chains. Six rats were injected iv with 30 ..mu..Ci (approximately 6 ..mu..g) of I-125 UPC-10, a non-specific IgG2ak MoAb that is bound to well by HB-58. No alteration was seen in the clearance of UPC-10 in any of the animals, regardless of the injection type or amount on the second day. In addition, no increase in liver or spleen activity was seen in those rats that received HB-58. The lack of change in rate of clearance and biodistribution of UPC-10 after the iv injection of a purified, specific, anti-mouse MoAb is in marked contrast to the accelerated clearance reported following polyclonal anti-mouse antibody administration. This may be due to the inability of MoAbs to cross link. These preliminary studies suggest that Mo anti-mouse Abs, at these dose levels, are not useful in achieving increased rates of radiolabeled murine MoAb clearance.

  7. Production of human anti-HLA monoclonal antibodies

    SciTech Connect

    Walker, M.C.; Mercier, F.; Roger, J.; Varin, M.

    1986-03-01

    Only 40% of the several hundred anti-HLA murine monoclonal antibodies (MAbs) that have been made detect HLA-A,B,C or DR specificities previously defined by human alloantisera, the range of recognized specificities is very narrow, and few of the MAbs have proven useful as tissue typing reagents. In hopes of obtaining HLA typing reagents, the authors are developing a protocol for the production of human anti-HLA MAbs from HLA-antigen (Ag) immunized peripheral blood B cells of volunteering renal patients, immunized to one or more HLA Ags through therapeutic blood transfusions. A simple enrichment of the donor B cells has not been sufficient for anti-HLA MAb production, the authors are currently delineating the conditions necessary for increasing the number of HLA-specific donor B cells by in vitro stimulation with cells expressing the HLA Ag to which the B cell donor is immunized. For the production of MAbs, the stimulated B cells are transformed with Epstein-Barr virus and subsequently fused with KR-4 lymphoblastoid cells. Hybridomas are selected by HAT and Ouabain. Supernatants are screened for anti-HLA activity against lymphocyte targets expressing the original immunizing HLA Ag by complement mediated /sup 51/Cr release assay. Antibody specificity is determined by the complement-dependent microcytotoxicity test used for HLA typing.

  8. Monoclonal antibody-based therapies for microbial diseases

    PubMed Central

    Saylor, Carolyn; Dadachova, Ekaterina; Casadevall, Arturo

    2009-01-01

    The monoclonal antibody (mAb) revolution that currently provides many new options for the treatment of neoplastic and inflammatory diseases has largely bypassed the field of infectious diseases. Only one mAb is licensed for use against an infectious disease, although there are many in various stages of development. This situation is peculiar given that serum therapy was one of the first effective treatments for microbial diseases and that specific antibodies have numerous antimicrobial properties. The underdevelopment and underutilization of mAb therapies for microbial diseases has various complex explanations that include the current availability of antimicrobial drugs, small markets, high costs and microbial antigenic variation. However, there are signs that the climate for mAb therapeutics in infectious diseases is changing given increasing antibiotic drug resistance, the emergence of new pathogenic microbes for which no therapy is available, and development of mAb cocktail formulations. Currently, the major hurdle for the widespread introduction of mAb therapies for microbial diseases is economic, given the high costs of immunoglobulin preparations and relatively small markets. Despite these obstacles there are numerous opportunities for mAb development against microbial diseases and the development of radioimmunotherapy provides new options for enhancing the magic bullet. Hence, there is cautious optimism that the years ahead will see more mAbs in clinical use against microbial diseases. PMID:20006139

  9. Analysis of viral clearance unit operations for monoclonal antibodies.

    PubMed

    Miesegaes, George; Lute, Scott; Brorson, Kurt

    2010-06-01

    Demonstration of viral clearance is a critical step in assuring the safety of biotechnology products. We generated a viral clearance database that contains product information, unit operation process parameters, and viral clearance data from monoclonal antibody and antibody-related regulatory submissions to FDA. Here we present a broad overview of the database and resulting analyses. We report that the diversity of model viruses tested expands as products transition to late-phase. We also present averages and ranges of viral clearance results by Protein A and ion exchange chromatography steps, low pH chemical inactivation, and virus filtration, focusing on retro- and parvoviruses. For most unit operations, an average log reduction value (LRV, a measure of clearance power) for retrovirus of >4 log(10) were measured. Cases where clearance data fell outside of the anticipated range (i.e., outliers) were rationally explained. Lastly, a historical analysis did not find evidence of any improvement trend in viral clearance over time. The data collectively suggest that many unit operations in general can reliably clear viruses.

  10. Characterization of novel neutralizing monoclonal antibodies specific to human neurturin.

    PubMed

    Hongo, J A; Tsai, S P; Moffat, B; Schroeder, K A; Jung, C; Chuntharapai, A; Lampe, P A; Johnson, E M; de Sauvage, F J; Armanini, M; Phillips, H; Devaux, B

    2000-08-01

    Neurturin (NTN) a structural and functional relative of glial cell line-derived neurotrophic factor, was originally identified based on its ability to support the survival of sympathetic neurons in culture. Similar to glial cell line-derived neurotrophic factor (GDNF), Neurturin has been shown to bind to a high affinity glycosylphosphatidylinositol (GPI)-linked receptor (GFRalpha2) and induce phosphorylation of the tyrosine kinase receptor Ret, resulting in the activation of the mitogen activated protein kinase (MAPK) signalling pathway. A panel of six novel murine monoclonal antibodies (MAbs) specific to human Neurturin has been developed and characterized. Four of the MAbs tested inhibit, to varying degrees, binding of NTN to the GPI-linked GFRalpha2 receptor. Three MAbs cross-react with the murine homolog. These antibodies have been shown to be useful reagents for Western blotting, immunohistochemistry, and also for the development of a sensitive, quantitative enzyme-linked immunosorbent assay (ELISA) for human NTN. Novel, specific MAbs with varying epitope specificities and blocking activity will be valuable tools for both the in vitro and in vivo characterization of NTN and its relationship to the GFRalpha2 and Ret receptors.

  11. Trimerization Dictates Solution Opalescence of a Monoclonal Antibody.

    PubMed

    Yang, Teng-Chieh; Langford, Alex Jacob; Kumar, Sandeep; Ruesch, John Carl; Wang, Wei

    2016-08-01

    Opalescence, sometimes observed in antibody solutions, is thought to be mediated by light scattering of soluble oligomers or insoluble particulates. However, mechanistic features, such as stoichiometry and self-association affinity of oligomeric species related to opalescence, are poorly understood. Here, opalescence behavior of a monoclonal antibody (mAb-1) solution was studied over a wide range of solution conditions including different protein concentrations, pH, and in the presence or absence of salt. Hydrodynamic and thermodynamic properties of mAb-1 solutions were studied by analytical ultracentrifugation and dynamic light scattering. Opalescence in mAb-1 solutions is pH and concentration dependent. The degree of opalescence correlates with reversible monomer-trimer equilibrium detected by analytical ultracentrifugation. Increased trimer formation corresponds to increased opalescence in mAb-1 solutions at higher pH and protein concentrations. Addition of NaCl shifts this equilibrium toward monomer and reduces solution opalescence. This study demonstrates that opalescence in mAb-1 solutions does not arise from the light scattering of monomer or random molecular self-associations but is strongly correlated with a specific self-association stoichiometry and affinity. Importantly, at pH 5.5 (far below isoelectric point of mAb-1), the solution is not opalescent and with nonideal behavior. This study also dissects several parameters to describe the hydrodynamic and thermodynamic nonideality.

  12. Tregalizumab – A Monoclonal Antibody to Target Regulatory T Cells

    PubMed Central

    König, Martin; Rharbaoui, Faiza; Aigner, Silke; Dälken, Benjamin; Schüttrumpf, Jörg

    2016-01-01

    Regulatory T cells (Tregs) represent a subpopulation of CD4+ T cells, which are essential for the maintenance of immunological tolerance. The absence or dysfunction of Tregs can lead to autoimmunity and allergies. The restoration of functional Tregs and/or Treg cell numbers represents a novel and attractive approach for the treatment of autoimmune diseases, e.g., rheumatoid arthritis (RA). The CD4 cell surface receptor is a target for modulation of T cell function. Monoclonal antibodies (mAbs) against CD4 have previously been tested for the treatment of autoimmune diseases, including RA. Furthermore, in model systems, anti-CD4 antibodies are able to induce tolerance and mediate immunomodulatory effects through a variety of mechanisms. Despite the availability of innovative and effective therapies for RA, many patients still have persistently active disease or experience adverse events that can limit use. A growing body of evidence suggests that Treg modulation could offer a new therapeutic strategy in RA and other autoimmune disorders. Here, we describe tregalizumab (BT-061), which is a novel, non-depleting IgG1 mAb that binds to a unique epitope of CD4. Tregalizumab represents the first humanized anti-CD4 mAb that selectively induces Treg activation. PMID:26834751

  13. Characterization of novel neutralizing monoclonal antibodies specific to human neurturin.

    PubMed

    Hongo, J A; Tsai, S P; Moffat, B; Schroeder, K A; Jung, C; Chuntharapai, A; Lampe, P A; Johnson, E M; de Sauvage, F J; Armanini, M; Phillips, H; Devaux, B

    2000-08-01

    Neurturin (NTN) a structural and functional relative of glial cell line-derived neurotrophic factor, was originally identified based on its ability to support the survival of sympathetic neurons in culture. Similar to glial cell line-derived neurotrophic factor (GDNF), Neurturin has been shown to bind to a high affinity glycosylphosphatidylinositol (GPI)-linked receptor (GFRalpha2) and induce phosphorylation of the tyrosine kinase receptor Ret, resulting in the activation of the mitogen activated protein kinase (MAPK) signalling pathway. A panel of six novel murine monoclonal antibodies (MAbs) specific to human Neurturin has been developed and characterized. Four of the MAbs tested inhibit, to varying degrees, binding of NTN to the GPI-linked GFRalpha2 receptor. Three MAbs cross-react with the murine homolog. These antibodies have been shown to be useful reagents for Western blotting, immunohistochemistry, and also for the development of a sensitive, quantitative enzyme-linked immunosorbent assay (ELISA) for human NTN. Novel, specific MAbs with varying epitope specificities and blocking activity will be valuable tools for both the in vitro and in vivo characterization of NTN and its relationship to the GFRalpha2 and Ret receptors. PMID:11001403

  14. Hierarchical Cluster Formation in Concentrated Monoclonal Antibody Formulations

    NASA Astrophysics Data System (ADS)

    Godfrin, P. Douglas; Zarzar, Jonathan; Zarraga, Isidro Dan; Porcar, Lionel; Falus, Peter; Wagner, Norman; Liu, Yun

    Reversible cluster formation has been identified as an underlying cause of large solution viscosities observed in some concentrated monoclonal antibody (mAb) formulations. As high solution viscosity prevents the use of subcutaneous injection as a delivery method for some mAbs, a fundamental understanding of the interactions responsible for high viscosities in concentrated mAb solutions is of significant relevance to mAb applications in human health care as well as of intellectual interest. Here, we present a detailed investigation of a well-studied IgG1 based mAb to relate the short time dynamics and microstructure to significant viscosity changes over a range of pharmaceutically relevant physiochemical conditions. Using a combination of experimental techniques, it is found that upon adding Na2SO4, these antibodies dimerize in solution. Proteins form strongly bounded reversible dimers at dilute concentrations that, when concentrated, interact with each other to form loosely bounded, large, transient clusters. The combined effect of forming strongly bounded dimers and a large transient network is a significant increase in the solution viscosity. Strongly bounded, reversible dimers may exist in many IgG1 based mAb systems such that these results contribute to a more comprehensive understanding of the physical mechanisms producing high viscosities in concentrated protein solutions.

  15. Tumor size: effect on monoclonal antibody uptake in tumor models

    SciTech Connect

    Hagan, P.L.; Halpern, S.E.; Dillman, R.O.; Shawler, D.L.; Johnson, D.E.; Chen, A.; Krishnan, L.; Frincke, J.; Bartholomew, R.M.; David, G.S.

    1986-03-01

    Studies were performed to determine the effect of tumor size on the incorporation of radiolabeled monoclonal antitumor antibodies (MoAbs) into human tumors growing in nude mice. The colon tumors ranged in size from 0.03-1.6 g, the melanoma from 0.1 to 6.7 g, and the lymphoma from 0.06 to 10.2 g. Indium-111 was primarily used as the radiolabel, however, both 125I and 111In were used as tracers for the MoAb in one experiment. The per g radiopharmaceutical uptake by tumors was inversely proportional to tumor size when tumor specific MoAb was administered. This finding was independent of the radiolabel and was demonstrable when the mice bore two tumors of differing size. When the MoAb was not specific for the tumor, the data were less well defined and a statistically significant correlation with size did not occur. These data are strong evidence for a decrease in per g uptake of labeled tumor specific antibodies as tumors increase in size.

  16. Evaluating the treatment of metastatic colorectal cancer with monoclonal antibodies

    PubMed Central

    Popa, C; Ionescu, S; Mihăilă, D; Gal, I; Potecă, T; Simion, S

    2012-01-01

    The ability to tailor biologic therapy based on the status of tumor biomarkers and monoclonal antibodies has become very important in the last years. The role of tumor biomarkers in treating colorectal cancer, specifically the K-RAS gene, was identified. K-RAS had a higher interest after Lievre and colleagues reported at the 2008 American Society of Clinical Oncology (ASCO) meeting, their analysis of K-RAS mutations in tumors from patients who did not appear to benefit from cetuximab therapy, providing additional data involving K-RAS mutant tumors and their lack of response to cetuximab, as part of first-line therapy for metastatic colorectal cancer. Furthermore, other trials evaluated the K-RAS status and the first-line treatment of metastatic colorectal cancer, the treatment of refractory metastatic cancer and dual-antibody therapy in the first-line treatment of colorectal cancer. Patients with mutant K-RAS colorectal tumors have no benefit from cetuximab, no matter the type of chemotherapy regimen. PMID:22802884

  17. Natalizumab: AN 100226, anti-4alpha integrin monoclonal antibody.

    PubMed

    2004-01-01

    Natalizumab [AN 100226, anti-alpha4 integrin monoclonal antibody, Antegren] is a humanised monoclonal antibody that blocks alpha4beta1 integrin-mediated leukocyte migration. Natalizumab is in phase III trials for the treatment of multiple sclerosis in North America and the UK, and for the treatment of Crohn's disease also in the UK. It may have potential in the treatment of other immune-related inflammatory disease. Elan Corporation intends to examine the potential of natalizumab in rheumatoid arthritis and ulcerative colitis. 4beta1 integrin on circulating leukocytes binds to vascular cell adhesion molecule-1, which is expressed at high levels in the blood vessels in the CNS during exacerbations of multiple sclerosis. This allows leukocytes expressing alpha4beta1 integrin (very late antigen-4) to move from the peripheral blood into the CNS. Inflammatory proteins and other factors released from lymphocytes in the brain lead to the progression of symptoms. A limitation of natalizumab is that it must be injected and cannot be administered orally. Scientists have transformed the large anti-alpha4 monoclonal antibody into much smaller, drug-like molecules suitable for oral administration. Protein Design Labs has granted a worldwide nonexclusive licence under its antibody humanisation patents to Elan Pharmaceuticals for natalizumab. Biogen Inc. has entered into an agreement with Elan for a worldwide exclusive collaboration to develop, manufacture and commercialise natalizumab for multiple sclerosis and Crohn's disease and rheumatoid arthritis. Development of natalizumab is also being funded, in part, by Axogen (acquired by Elan in 1999). In November 2003, Biogen and IDEC Pharmaceuticals merged to form Biogen Idec. Elan repurchased royalty rights on a package of products, including natalizumab, from Autoimmune Disease Research Company. Elan and Genzyme Transgenics Corporation signed an agreement to produce natalizumab in GTC's genetically engineered goats, which will

  18. IMC-C225, an anti-epidermal growth factor receptor monoclonal antibody, for treatment of head and neck cancer.

    PubMed

    Herbst, R S; Kim, E S; Harari, P M

    2001-07-01

    Squamous cell carcinoma (SCC) of the head and neck (H&N) remains a clinical challenge due to its high rate of locoregional disease recurrence. The importance of the epidermal growth factor receptor (EGFR) in the development and progression of many solid tumours (including SCC of the H&N) is well understood; increased expression is associated with enhanced tumour invasion, resistance to chemotherapy and decreased patient survival. Several approaches have been developed to achieve EGFR blockade as an anticancer treatment strategy, including an anti-EGFR monoclonal antibody (mAb), IMC-C225, which competitively binds to the extracellular receptor site to prevent binding by natural EGFR ligands (EGF and TGF-alpha). Preclinical studies evaluating this chimeric mAb in human cancer cell lines in vitro and human tumour xenografts in vivo have demonstrated its potent antitumour activity. The clinical efficacy of IMC-C225 appears to involve multiple anticancer mechanisms, including inhibition of cell cycle progression, induction of apoptosis, anti-angiogenesis, inhibition of metastasis and its ability to enhance the response to chemotherapy and radiation therapy. Phase I studies of IMC-C225 combined with chemotherapy or radiation for SCC of the H&N demonstrate excellent response rates in patients with recurrent or refractory disease. Phase II and III trials examining the efficacy and safety of these combinations are currently underway. To date, IMC-C225 has been well-tolerated, with skin rashes and allergic reactions being the most clinically important adverse events reported. IMC-C225 displays dose-dependent elimination characteristics and a half-life of approximately 7 days. Current recommendations for dosing include a 400 mg/m2 loading dose, followed by weekly infusions of 250 mg/m2.

  19. IMC-C225, an anti-epidermal growth factor receptor monoclonal antibody for treatment of head and neck cancer.

    PubMed

    Herbst, Roy S; Hong, Waun Ki

    2002-10-01

    Squamous cell carcinoma of the head and neck remains a clinical challenge because of the high rate of locoregional disease recurrence. The importance of the epidermal growth factor receptor (EGFR) in the development and progression of many solid tumors, including squamous cell carcinoma of the head and neck, is well understood; increased expression is associated with enhanced tumor invasiveness, resistance to chemotherapy, and a lower patient survival rate. Several approaches have been developed to achieve EGFR blockade as an anticancer treatment strategy, including the anti-EGFR monoclonal antibody IMC-C225, which competitively binds to the extracellular receptor site and prevents binding by the natural EGFR ligands EGF and transforming growth factor-alpha. Preclinical studies to evaluate IMC-225 in human cancer cell lines in vitro and human tumor xenografts in vivo have shown its potent antitumor activity. Clinical efficacy of IMC-C225 appears to involve multiple mechanisms, including inhibition of cell cycle progression, induction of apoptosis, inhibition of angiogenesis, inhibition of metastasis, and enhancement of the response to chemotherapy and radiation therapy. Phase I studies of IMC-C225 combined with chemotherapy or radiation showed promising response rates in patients with recurrent or refractory squamous cell carcinoma of the head and neck. Phase II and III trials to examine the efficacy and safety of these combinations are currently underway. To date, IMC-C225 has been well tolerated, with skin rashes and allergic reactions being the most clinically important adverse events reported. IMC-C225 displays dose-dependent elimination characteristics and a half-life of approximately 7 days. Current recommendations for dosing include a 400 mg/m(2) loading dose, followed by weekly infusions at 250 mg/m(2).

  20. High specificity but low sensitivity of mutation-specific antibodies against EGFR mutations in non-small-cell lung cancer.

    PubMed

    Bondgaard, Anna-Louise; Høgdall, Estrid; Mellemgaard, Anders; Skov, Birgit G

    2014-12-01

    Determination of epidermal growth factor receptor (EGFR) mutations has a pivotal impact on treatment of non-small-cell lung cancer (NSCLC). A standardized test has not yet been approved. So far, Sanger DNA sequencing has been widely used. Its rather low sensitivity has led to the development of more sensitive methods including real-time PCR (RT-PCR). Immunohistochemistry with mutation-specific antibodies might be a promising detection method. We evaluated 210 samples with NSCLC from an unselected Caucasian population. Extracted DNA was analyzed for EGFR mutations by RT-PCR (Therascreen EGFR PCR kit, Qiagen, UK; reference method). For immunohistochemistry, antibodies against exon19 deletions (clone 6B6), exon21 mutations (clone 43B2) from Cell Signaling Technology (Boston, USA) and EGFR variantIII (clone 218C9) from Dako (Copenhagen, DK) were applied. Protein expression was evaluated, and staining score (multipum of intensity (graded 0-3) and percentages (0-100%) of stained tumor cells) was calculated. Positivity was defined as staining score >0. Specificity of exon19 antibody was 98.8% (95% confidence interval=95.9-99.9%) and of exon21 antibody 97.8% (95% confidence interval=94.4-99.4%). Sensitivity of exon19 antibody was 63.2% (95% confidence interval=38.4-83.7%) and of exon21 antibody was 80.0% (95% confidence interval=44.4-97.5%). Seven exon19 and four exon21 mutations were false negatives (immunohistochemistry negative, RT-PCR positive). Two exon19 and three exon21 mutations were false positive (immunohistochemistry positive, RT-PCR negative). One false positive exon21 mutation had staining score 300. The EGFR variantIII antibody showed no correlation to EGFR mutation status determined by RT-PCR or to EGFR immunohistochemistry. High specificity of the mutation-specific antibodies was demonstrated. However, sensitivity was low, especially for exon19 deletions, and thus these antibodies cannot yet be used as screening method for EGFR mutations in NSCLC

  1. Monoclonal antibodies in the treatment of systemic lupus erythematosus.

    PubMed

    Robak, Ewa; Robak, Tadeusz

    2009-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by B cell hyperactivity and defective T-cell function, with production of high titer autoantibodies. In the recent years, conceptual advances and the introduction of new therapies are yielding improvements in the management of this disease. In recent years, clinical studies have been undertaken with selected monoclonal antibodies (mAbs) in the treatment of SLE. The important role of B cells in the pathogenesis of autoimmune disorders has provided a strong rationale to target B cells in SLE. Selective therapeutic depletion of B-cells became possible with the availability of the anti-CD20 antibody rituximab and anti-CD22 antibody epratuzumab. Several clinical studies confirm high activity of rituximab in SLE patients especially with lupus nephritis and neuropsychiatric involvement. Recently, several new mAbs reacting with CD20 have been developed. New mAbs directed against CD20 include fully human mAb ofatumumab (HuMax CD20), IMMU-106 (hA20) which has a >90% humanized framework and GA-101, a novel third-generation fully humanized and optimized mAb. These agents are highly cytotoxic against B-cell lymphoid cells. Proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and iterleukin-6 (IL-6) play an important role in propagating the inflammatory process responsible for tissue damage. Blocking of these cytokines by mAbs can be also a successful therapy for patients with SLE. Finally, mAb eculizumab that specifically inhibits terminal complement activation has been recently developed and investigated in the phase I single dose study in SLE. In this review, new mAbs, potentially useful in SLE are presented.

  2. Generation and applications of monoclonal antibodies for livestock production.

    PubMed

    Van Der Lende, T

    1994-01-01

    Monoclonal antibodies (MCAs) have found widespread applications in livestock production. Although the generation of murine MCAs is at present a routine, the production of homologous MCAs, especially important for in vivo applications, is still hampered by the lack of efficient homologous fusion partners for immortalization of antibody producing lymphocytes of livestock species. At present, MCAs are used in immunodiagnostic tests e.g. to monitor livestock reproduction and quality of livestock products. In the future MCAs will also be used in immunosensors for real-time and on-site applications in the same areas. The commercial application of MCAs for the immunomodulation of (pharmacologically induced) physiological processes underlying important (re)production traits is at present limited to the use of anti-PMSG MCAs in PMSG-induced superovulation. However, many potentially interesting applications are under investigation (e.g. immunopotentiation of growth hormone to enhance growth; immunocytolysis of adipocytes to increase lean meat production; immunoneutralization of GnRH for immunocastration; immunoimitation of hormone activity with anti-idiotype antibodies). Attempts to use specific MCAs for the sexing of embryos have been disappointing, mainly because of the relatively low accuracy. In the future, MCAs against membrane proteins which are specific for X- or Y-chromosome bearing spermatozoa might be used for bulk separation of livestock sperm. In general, it is expected that engineered (homologous) recombinant MCAs will largely contribute to the development of a new generation of rapid immunodiagnostic tests and effective immunomodulation applications. They will further increase the use of MCAs in livestock production.

  3. Monoclonal antibodies that inhibit mitogenic activity of Mycoplasma pulmonis.

    PubMed Central

    Lapidot, Z; Siman-Tov, R; Naot, Y

    1995-01-01

    Previous studies have suggested a correlation between mitogenic, polyclonal activation of host lymphocytes and the respiratory tract inflammatory diseases induced by Mycoplasma pulmonis. This study describes the generation of monoclonal antibodies (MAbs) to M. pulmonis membrane antigens with different capacities to inhibit stimulation of cultured rat lymphocytes by mycoplasmal membranes and with variable effects on M. pulmonis growth. We show that the inhibitory effects exerted on mitogenesis by purified MAbs are inversely related to the effects of MAbs on M. pulmonis growth. Immunoblotting of electrophoretically separated membrane proteins, with both growth- and mitogenesis-inhibiting antibodies, revealed significant changes in the reactions obtained with both types of MAb following short exposure of membranes to heat. Growth-inhibiting MAbs strongly react with heat-labile antigenic complexes with molecular weights of 65,000 to 75,000. Inhibition of mitogenesis is mainly associated with recognition of membrane complexes of 84 to 113 kDa that exhibit disperse smears and variable heat sensitivities. Following brief heating of membranes, more distinct bands of 103, 90, and 84 kDa are obtained with MAbs that inhibit mitogenesis. Experiments with other mitogenic mycoplasma species and MAb 3.3.10.2, a potent inhibitor of mitogenesis reveal that whereas the antigenic epitope recognized by this antibody is present on unheated membranes from different mycoplasmas, with heated membranes the MAb yields reactions only with M. pulmonis and M. arthritidis. Our studies suggest that M. pulmonis mitogens are unique membrane complexes of variable molecular weights, highly susceptible to heat and less sensitive to reducing agents. PMID:7806349

  4. Efficient generation of monoclonal antibodies against peptide in the context of MHCII using magnetic enrichment.

    PubMed

    Spanier, Justin A; Frederick, Daniel R; Taylor, Justin J; Heffernan, James R; Kotov, Dmitri I; Martinov, Tijana; Osum, Kevin C; Ruggiero, Jenna L; Rust, Blake J; Landry, Samuel J; Jenkins, Marc K; McLachlan, James B; Fife, Brian T

    2016-01-01

    Monoclonal antibodies specific for foreign antigens, auto-antigens, allogeneic antigens and tumour neo-antigens in the context of major histocompatibility complex II (MHCII) are highly desirable as novel immunotherapeutics. However, there is no standard protocol for the efficient generation of monoclonal antibodies that recognize peptide in the context of MHCII, and only a limited number of such reagents exist. In this report, we describe an approach for the generation and screening of monoclonal antibodies specific for peptide bound to MHCII. This approach exploits the use of recombinant peptide:MHC monomers as immunogens, and subsequently relies on multimers to pre-screen and magnetically enrich the responding antigen-specific B cells before fusion and validation, thus saving significant time and reagents. Using this method, we have generated two antibodies enabling us to interrogate antigen presentation and T-cell activation. This methodology sets the standard to generate monoclonal antibodies against the peptide-MHCII complexes. PMID:27292946

  5. Efficient generation of monoclonal antibodies against peptide in the context of MHCII using magnetic enrichment

    PubMed Central

    Spanier, Justin A.; Frederick, Daniel R.; Taylor, Justin J.; Heffernan, James R.; Kotov, Dmitri I.; Martinov, Tijana; Osum, Kevin C.; Ruggiero, Jenna L.; Rust, Blake J.; Landry, Samuel J.; Jenkins, Marc K.; McLachlan, James B.; Fife, Brian T.

    2016-01-01

    Monoclonal antibodies specific for foreign antigens, auto-antigens, allogeneic antigens and tumour neo-antigens in the context of major histocompatibility complex II (MHCII) are highly desirable as novel immunotherapeutics. However, there is no standard protocol for the efficient generation of monoclonal antibodies that recognize peptide in the context of MHCII, and only a limited number of such reagents exist. In this report, we describe an approach for the generation and screening of monoclonal antibodies specific for peptide bound to MHCII. This approach exploits the use of recombinant peptide:MHC monomers as immunogens, and subsequently relies on multimers to pre-screen and magnetically enrich the responding antigen-specific B cells before fusion and validation, thus saving significant time and reagents. Using this method, we have generated two antibodies enabling us to interrogate antigen presentation and T-cell activation. This methodology sets the standard to generate monoclonal antibodies against the peptide–MHCII complexes. PMID:27292946

  6. Immunohistochemical Characterization of Three Monoclonal Antibodies Raised against the Epidermal Growth Factor and Its Receptor in Non-Small-Cell Lung Cancer: Their Potential Use in the Selection of Patients for Immunotherapy

    PubMed Central

    Rengifo, Charles E.; Blanco, Rancés; Blanco, Damián; Cedeño, Mercedes; Frómeta, Milagros; Calzado, Enrique Rengifo

    2013-01-01

    Adequate methods to identify which lung cancer patients are most likely to benefit from the targeted drugs against both epidermal growth factor receptor/epidermal growth factor (EGFR/EGF) are needed. For this reason, we evaluated both the tissue reactivity of ior egf/r3 monoclonal antibody (Mab) in human lung carcinomas and its biological activity in NCI-H125 cells. Additionally, we assessed the tissue expression of EGF using two Mabs, CB-EGF1 and CB-EGF2. The overexpression of EGFR was detected in 33.33% and 62.71% of small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC), respectively. The ability of ior egf/r3 Mab to bind the extracellular domain of EGFR inhibiting cell proliferation and inducing apoptosis in NCI-H125 cells was also demonstrated. The EGF expression was observed in about 17% and 70% of SCLC and NSCLC, respectively. However, differences in the reactivity of CB-EGF1 and CB-EGF2 were evidenced. A dual expression of EGFR and EGF was observed in 16.67% and 57.63% of SCLC and NSCLC patients, respectively. But, a correlation between them was only obtained in NSCLC. Our results permit to recommend the development of diagnostic kits using ior egf/r3 and/or CB-EGF1 Mabs in order to achieve a better selection of patients to EGFR/EGF-targeting treatment. PMID:26317020

  7. Immunohistochemical Characterization of Three Monoclonal Antibodies Raised against the Epidermal Growth Factor and Its Receptor in Non-Small-Cell Lung Cancer: Their Potential Use in the Selection of Patients for Immunotherapy.

    PubMed

    Rengifo, Charles E; Blanco, Rancés; Blanco, Damián; Cedeño, Mercedes; Frómeta, Milagros; Calzado, Enrique Rengifo

    2013-01-01

    Adequate methods to identify which lung cancer patients are most likely to benefit from the targeted drugs against both epidermal growth factor receptor/epidermal growth factor (EGFR/EGF) are needed. For this reason, we evaluated both the tissue reactivity of ior egf/r3 monoclonal antibody (Mab) in human lung carcinomas and its biological activity in NCI-H125 cells. Additionally, we assessed the tissue expression of EGF using two Mabs, CB-EGF1 and CB-EGF2. The overexpression of EGFR was detected in 33.33% and 62.71% of small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC), respectively. The ability of ior egf/r3 Mab to bind the extracellular domain of EGFR inhibiting cell proliferation and inducing apoptosis in NCI-H125 cells was also demonstrated. The EGF expression was observed in about 17% and 70% of SCLC and NSCLC, respectively. However, differences in the reactivity of CB-EGF1 and CB-EGF2 were evidenced. A dual expression of EGFR and EGF was observed in 16.67% and 57.63% of SCLC and NSCLC patients, respectively. But, a correlation between them was only obtained in NSCLC. Our results permit to recommend the development of diagnostic kits using ior egf/r3 and/or CB-EGF1 Mabs in order to achieve a better selection of patients to EGFR/EGF-targeting treatment.

  8. Radiolabeled monoclonal antibodies for imaging and therapy: Potential, problems, and prospects: Scientific highlights

    SciTech Connect

    Srivastava, S.C.; Buraggi, G.L.

    1986-01-01

    This meeting focused on areas of research on radiolabeled monoclonal antibodies. Topics covered included the production, purification, and fragmentation of monoclonal antibodies and immunochemistry of hybridomas; the production and the chemistry of radionuclides; the radiohalogenation and radiometal labeling techniques; the in-vivo pharmacokinetics of radiolabeled antibodies; the considerations of immunoreactivity of radiolabeled preparations; the instrumentation and imaging techniques as applied to radioimmunodetection; the radiation dosimetry in diagnostic and therapeutic use of labeled antibodies; the radioimmunoscintigraphy and radioimmunotherapy studies; and perspectives and directions for future research. Tutorial as well as scientific lectures describing the latest research data on the above topics were presented. Three workshop panels were convened on ''Methods for Determining Immunoreactivity of Radiolabeled Monoclonal Antibodies - Problems and Pitfalls,'' Radiobiological and Dosimetric Considerations for Immunotherapy with Labeled Antibodies,'' and ''The Human Anti-Mouse Antibody Response in Patients.''

  9. Structure of solid tumors and their vasculature: Implications for therapy with monoclonal antibodies

    SciTech Connect

    Dvorak, H.F.; Nagy, J.A.; Dvorak, A.M. )

    1991-03-01

    Delivery of monoclonal antibodies to solid tumors is a vexing problem that must be solved if these antibodies are to realize their promise in therapy. Such success as has been achieved with monoclonal antibodies is attributable to the local hyperpermeability of the tumor vasculature, a property that favors antibody extravasation at tumor sites and that is mediated by a tumor-secreted vascular permeability factor. However, leaky tumor blood vessels are generally some distance removed from target tumor cells, separated by stroma and by other tumor cells that together represent significant barriers to penetration by extravasated monoclonal antibodies. For this reason, alternative approaches may be attractive. These include the use of antibody-linked cytotoxins, which are able to kill tumor cells without immediate contact, and direction of antibodies against nontumor cell targets, for example, antigens unique to the tumor vascular endothelium or to tumor stroma. 50 refs.

  10. Chimeric Filoviruses for Identification and Characterization of Monoclonal Antibodies

    PubMed Central

    Ilinykh, Philipp A.; Shen, Xiaoli; Flyak, Andrew I.; Kuzmina, Natalia; Ksiazek, Thomas G.; Crowe, James E.

    2016-01-01

    ABSTRACT Recent experiments suggest that some glycoprotein (GP)-specific monoclonal antibodies (MAbs) can protect experimental animals against the filovirus Ebola virus (EBOV). There is a need for isolation of MAbs capable of neutralizing multiple filoviruses. Antibody neutralization assays for filoviruses frequently use surrogate systems such as the rhabdovirus vesicular stomatitis Indiana virus (VSV), lentiviruses or gammaretroviruses with their envelope proteins replaced with EBOV GP or pseudotyped with EBOV GP. It is optimal for both screening and in-depth characterization of newly identified neutralizing MAbs to generate recombinant filoviruses that express a reporter fluorescent protein in order to more easily monitor and quantify the infection. Our study showed that unlike neutralization-sensitive chimeric VSV, authentic filoviruses are highly resistant to neutralization by MAbs. We used reverse genetics techniques to replace EBOV GP with its counterpart from the heterologous filoviruses Bundibugyo virus (BDBV), Sudan virus, and even Marburg virus and Lloviu virus, which belong to the heterologous genera in the filovirus family. This work resulted in generation of multiple chimeric filoviruses, demonstrating the ability of filoviruses to tolerate swapping of the envelope protein. The sensitivity of chimeric filoviruses to neutralizing MAbs was similar to that of authentic biologically derived filoviruses with the same GP. Moreover, disabling the expression of the secreted GP (sGP) resulted in an increased susceptibility of an engineered virus to the BDBV52 MAb isolated from a BDBV survivor, suggesting a role for sGP in evasion of antibody neutralization in the context of a human filovirus infection. IMPORTANCE The study demonstrated that chimeric rhabdoviruses in which G protein is replaced with filovirus GP, widely used as surrogate targets for characterization of filovirus neutralizing antibodies, do not accurately predict the ability of antibodies to

  11. The Use of Humanized Monoclonal Antibodies for the Prevention of Respiratory Syncytial Virus Infection

    PubMed Central

    Arcuri, Santo; Galletti, Silvia; Faldella, Giacomo

    2013-01-01

    Monoclonal antibodies are widely used both in infants and in adults for several indications. Humanized monoclonal antibodies (palivizumab) have been used for many years for the prevention of respiratory syncytial virus infection in pediatric populations (preterm infants, infants with chronic lung disease or congenital heart disease) at high risk of severe and potentially lethal course of the infection. This drug was reported to be safe, well tolerated and effective to decrease the hospitalization rate and mortality in these groups of infants by several clinical trials. In the present paper we report the development and the current use of monoclonal antibodies for prophylaxis against respiratory syncytial virus. PMID:23840240

  12. Reactivities of serotyping monoclonal antibodies with culture-adapted human rotaviruses.

    PubMed Central

    Ward, R L; McNeal, M M; Clemens, J D; Sack, D A; Rao, M; Huda, N; Green, K Y; Kapikian, A Z; Coulson, B S; Bishop, R F

    1991-01-01

    Rotaviruses collected in Bangladesh during 1985 to 1986 were culture adapted and used in a comparative serotyping study with three groups of monoclonal antibodies, all of which reacted with the major neutralization protein (VP7) of serotype 1, 2, 3, or 4. The goals were to determine which monoclonal antibodies most accurately predicted the serotype and why large variations in serotyping efficiencies have occurred with these monoclonal antibodies in previous studies. The 143 rotavirus isolates used in this study belonged to 69 different electropherotypes; and 44, 23, 21, and 55 isolates were identified as serotype 1 through 4, respectively, by neutralization with serotype-specific hyperimmune antisera. Serotyping specificity by enzyme-linked immunosorbent assay with monoclonal antibodies was 100% consistent with results found by neutralization with polyclonal antisera, but large differences were observed in the sensitivities of the different monoclonal antibodies. Monoclonal antibodies 5E8 (serotype 1), 1C10 (serotype 2), 159 (serotype 3), RV3:1 (serotype 3), ST-3:1 (serotype 4), and ST-2G7 (serotype 4) reacted with all the isolates of the corresponding serotype for which there were sufficient infectious particles. Monoclonal antibody 2F1 (serotype 2) was much less sensitive and reacted with only five serotype 2 isolates, but these were among those with the highest titers. Monoclonal antibodies RV4:2 (serotype 1), KU6BG (serotype 1), RV5:3 (serotype 2), and S2-2G10 (serotype 2), on the other hand, failed to react with between one and three isolates of the corresponding serotypes which had high titers, apparently because of epitope changes in these isolates. Effects of epitope variation were, however, most apparent with monoclonal antibodies 2C9 (serotype 1) and YO-1E2 (serotype 3), which reacted with one and no isolates of the corresponding serotypes, respectively. Cross-neutralization of escape mutants indicated that the serotype 1 monoclonal antibodies 5E8, 2C9

  13. Identification of antigen-specific human monoclonal antibodies using high-throughput sequencing of the antibody repertoire.

    PubMed

    Liu, Ju; Li, Ruihua; Liu, Kun; Li, Liangliang; Zai, Xiaodong; Chi, Xiangyang; Fu, Ling; Xu, Junjie; Chen, Wei

    2016-04-22

    High-throughput sequencing of the antibody repertoire provides a large number of antibody variable region sequences that can be used to generate human monoclonal antibodies. However, current screening methods for identifying antigen-specific antibodies are inefficient. In the present study, we developed an antibody clone screening strategy based on clone dynamics and relative frequency, and used it to identify antigen-specific human monoclonal antibodies. Enzyme-linked immunosorbent assay showed that at least 52% of putative positive immunoglobulin heavy chains composed antigen-specific antibodies. Combining information on dynamics and relative frequency improved identification of positive clones and elimination of negative clones. and increase the credibility of putative positive clones. Therefore the screening strategy could simplify the subsequent experimental screening and may facilitate the generation of antigen-specific antibodies.

  14. Use of AN Eosinophil Specific Monoclonal Antibody in Assessing Eosinophil Function.

    NASA Astrophysics Data System (ADS)

    Minkoff, Marjorie Sue

    A monoclonal antibody to an eosinophil specific determinant is very important in assessing eosinophil function during helminthic infection. Eosinophils induced by Schistosoma mansoni infection in BALB/c mice were used to induce C57B1/6 immunocytes for production of hybridomas secreting eosinophil monoclonal antibodies. These antibodies were shown to react with an eosinophil surface epitope but not with neutrophils or macrophages as determined by ELISA, immunodiffusion, immunofluorescence, and immunoblot assay. Affinity chromatography with eosinophil chemotactic factor-sepharose consistently selected out a { rm M_ R} 67,000 protein from solubilized eosinophil membrane antigens but not from neutrophil and macrophage antigens. In vitro studies showed that the eosinophil-specific monoclonal antibodies abrogated antibody-dependent eosinophil -mediated killing of S. mansoni schistosomula using mouse, rat or human eosinophils. Neutrophil and macrophage killing activities were unaffected. The monoclonal antibodies effected complement-dependent lysis of mouse and rat eosinophils but not of human eosinophils. ECF-treated eosinophils showed enhanced killing of schistosomula which was blocked by the monoclonal antibody. Murine and human eosinophils preincubated with monoclonal antibody exhibited decreased chemotaxis to ECF at optimal chemotactic concentrations. The monoclonal antibody also blocked eosinophil binding to ECF- sepharose beads. In vivo induction of peripheral blood eosinophilia by injection of S. mansoni eggs was suppressed by injections of monoclonal antibodies 2CD13 and 2QD45 in mouse and rat experimental models. Eosinophilia induced by keyhole limpet hemocyanin- cyclophosphamide treatment was also suppressed by monoclonal antibody in both murine and rat systems. Pulmonary granulomas in mice given egg injection and monoclonal antibody were smaller and contained fewer eosinophils than those granulomas from mice given eggs only. In immuno-biochemical studies, the

  15. Development of monoclonal antibodies suitable for rabies virus antibody and antigen detection.

    PubMed

    Chander, Vishal; Singh, R P; Verma, P C

    2012-12-01

    The control of an infectious viral disease as rabies is made easier by rapid and accurate diagnosis. Successful rabies prophylaxis is dependent upon the active immunization with vaccine along with passive administration of rabies virus neutralizing antibodies which together clear the virus before widespread infection of central nervous system occurs. The present study aimed at the development of monoclonal antibodies (MAbs) suitable for rabies virus antibody and antigen detection. For the production of rabies specific MAbs, immunization of Swiss albino mice with a commercially available vaccine was done and Polyethylene glycol mediated fusion of spleenocytes with myeloma cells was performed. The positive clones were selected on the basis of distinct reactivity by cell Enzyme linked immunosorbent assay and fluorescence in Indirect Fluorescent antibody test. The positive clones obtained were subjected to single cell cloning by limiting dilution method. The reactive clones were further titrated and employed for virus titration and virus neutralization. The neutralizing activity was evaluated using Fluorescence Activated Cell Sorter technique. Three MAb clones showed a distinct percent inhibition in the presence of positive serum. One of the MAb clone No. 5C3 was relatively more specific in detecting rabies antibodies and also found suitable for competitive ELISA to assess the antibody level in vaccinated subjects.

  16. A monoclonal antibody that recognizes an antigenic determinant shared by HLA A2 and B17.

    PubMed

    McMichael, A J; Parham, P; Rust, N; Brodsky, F

    1980-09-01

    A hybridoma monoclonal anti-HLA antibody has been produced by the technique of Kohler and Milstein [1]. This antibody recognizes a new specificity common to HLA A2 and B17. It was shown to be a single antibody by isoelectric focusing and absorption experiments.

  17. Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system.

    PubMed

    Guilleminault, L; Azzopardi, N; Arnoult, C; Sobilo, J; Hervé, V; Montharu, J; Guillon, A; Andres, C; Herault, O; Le Pape, A; Diot, P; Lemarié, E; Paintaud, G; Gouilleux-Gruart, V; Heuzé-Vourc'h, N

    2014-12-28

    Monoclonal antibodies (mAbs) are usually delivered systemically, but only a small proportion of the drug reaches the lung after intravenous injection. The inhalation route is an attractive alternative for the local delivery of mAbs to treat lung diseases, potentially improving tissue concentration and exposure to the drug while limiting passage into the bloodstream and adverse effects. Several studies have shown that the delivery of mAbs or mAb-derived biopharmaceuticals via the airways is feasible and efficient, but little is known about the fate of inhaled mAbs after the deposition of aerosolized particles in the respiratory system. We used cetuximab, an anti-EGFR antibody, as our study model and showed that, after its delivery via the airways, this mAb accumulated rapidly in normal and cancerous tissues in the lung, at concentrations twice those achieved after intravenous delivery, for early time points. The spatial distribution of cetuximab within the tumor was heterogeneous, as reported after i.v. injection. Pharmacokinetic (PK) analyses were carried out in both mice and macaques and showed aerosolized cetuximab bioavailability to be lower and elimination times shorter in macaques than in mice. Using transgenic mice, we showed that FcRn, a key receptor involved in mAb distribution and PK, was likely to make a greater contribution to cetuximab recycling than to the transcytosis of this mAb in the airways. Our results indicate that the inhalation route is potentially useful for the treatment of both acute and chronic lung diseases, to boost and ensure the sustained accumulation of mAbs within the lungs, while limiting their passage into the bloodstream. PMID:25451545

  18. Localization of a tumor cell adhesion domain of laminin by a monoclonal antibody

    SciTech Connect

    Skubitz, A.P.N.; Charonis, A.S.; Tsilibary, E.C.; Furcht, L.T. )

    1987-12-01

    Monoclonal antibodies were prepared to localize the domain(s) of laminin to which tumor cells adhere. Rat Y3-Ag 1.2.3 myeloma cells were fused with spleen cells from a rat immunized with a purified 440-kDa fragment of chymotrypsin-digested laminin. Three monoclonal antibodies (AL-1 to AL-3) that bound to intact laminin in a solid-phase radioimmunoassay were chosen for further analysis. The epitopes recognized by these antibodies were characterized by radioimmunoassays, immunoblotting, radioimmunoprecipitation, and immunoaffinity chromatography. In cell adhesion assays, monoclonal antibody AL-2 inhibited the highly metastatic melanoma cell line, K-1735-M4, to both intact laminin and the 440-kDa fragment of laminin. Electron microscopic examination of laminin-monoclonal antibody interactions showed that monoclonal antibody AL-2 reacted with the long arm of laminin directly below the cross-region. Two monoclonal antibodies that failed to inhibit tumor cell adhesion to laminin reacted with epitopes on the lateral short arms or cross-region of laminin as seen by electron microscopy. These results suggest that a new tumor cell binding domain of laminin may be located close to the cross-region on the long arm of laminin.

  19. Reactivity of monoclonal antibodies to species-specific antigens of Entamoeba histolytica.

    PubMed

    Tachibana, H; Kobayashi, S; Nagakura, K; Kaneda, Y; Takeuchi, T

    1991-01-01

    Twenty monoclonal antibodies were produced against trophozoites of Entamoeba histolytica strains HK-9 and HM-1: IMSS. When reactivity to various enteric protozoa was examined by an indirect fluorescence antibody test, 15 of the monoclonal antibodies were strongly reactive with E. histolytica trophozoites. Species-specific antigens recognized by these monoclonal antibodies were located on the plasma membrane, nucleus, cytoplasm, and cytoskeletal structures of the trophozoites. Two of the remaining five monoclonals reacted strongly with trophozoites of the E. histolytica-like Laredo strain. The determinant antigen was located in the cytoplasm. The three remaining monoclonal antibodies were found to recognize cross-reactive antigens between E. histolytica and E. histolytica-like Laredo, E. hartmanni, E. coli, Dientamoeba fragilis, Giardia lamblia, and Trichomonas hominis. These three antibodies were also reactive with T. vaginalis and mammalian cells such as HeLa cells. Thus, the combined use of monoclonal antibodies seems capable of distinguishing E. histolytica and/or E. histolytica-like Laredo from other enteric protozoa. PMID:1724012

  20. Characterization of monoclonal antibodies against Naja naja oxiana neurotoxin I.

    PubMed

    Stiles, B G; Sexton, F W; Guest, S B; Olson, M A; Hack, D C

    1994-10-01

    Seven monoclonal antibodies (mAbs) were developed against neurotoxin I (NT-1), a protein from central Asian cobra (Naja naja oxiana) venom which binds specifically to nicotinic acetylcholine receptor (AchR). All of the mAbs cross-reacted with another long-chain post-synaptic neurotoxin, Bungarus multicinctus alpha-bungarotoxin (alpha-BT), but not Naja naja kaouthia alpha-cobratoxin, in an enzyme-linked immunosorbent assay (e.l.i.s.a.). Short-chain post-synaptic neurotoxins like Naja naja atra cobrotoxin, Laticauda semifasciata erabutoxin b, or N. n. oxiana neurotoxin II did not cross-react with the NT-1 mAbs, but an antigen(s) found in Dendroaspis polylepis, Acanthophis antarcticus and Pseudechis australis venoms was immunoreactive. The e.l.i.s.a. readings for dithiothreitol-reduced NT-1 and NT-1 mAbs ranged from 13 to 27% of those for native toxin but reduced alpha-BT was not immunoreactive. Synthetic NT-1 peptides were used in epitope-mapping studies and two, non-contiguous regions (Cys15-Tyr23 and Lys25-Gly33 or Pro17-Lys25 and Asp29-Lys37) were recognized by the NT-1 mAbs. The NT-1 mAbs individually inhibited 31-71% of alpha-BT binding to AchR in vitro and afforded a slight protective effect in vivo with a toxin: antibody mole ratio of 1:1.5. This report is the first to describe mAbs which recognize and protect against a heterologous, long-chain, post-synaptic neurotoxin from snake venom.

  1. Human Monoclonal Antibodies Broadly Neutralizing against Influenza B Virus

    PubMed Central

    Yasugi, Mayo; Kubota-Koketsu, Ritsuko; Yamashita, Akifumi; Kawashita, Norihito; Du, Anariwa; Sasaki, Tadahiro; Nishimura, Mitsuhiro; Misaki, Ryo; Kuhara, Motoki; Boonsathorn, Naphatsawan; Fujiyama, Kazuhito; Okuno, Yoshinobu; Nakaya, Takaaki; Ikuta, Kazuyoshi

    2013-01-01

    Influenza virus has the ability to evade host immune surveillance through rapid viral genetic drift and reassortment; therefore, it remains a continuous public health threat. The development of vaccines producing broadly reactive antibodies, as well as therapeutic strategies using human neutralizing monoclonal antibodies (HuMAbs) with global reactivity, has been gathering great interest recently. Here, three hybridoma clones producing HuMAbs against influenza B virus, designated 5A7, 3A2 and 10C4, were prepared using peripheral lymphocytes from vaccinated volunteers, and were investigated for broad cross-reactive neutralizing activity. Of these HuMAbs, 3A2 and 10C4, which recognize the readily mutable 190-helix region near the receptor binding site in the hemagglutinin (HA) protein, react only with the Yamagata lineage of influenza B virus. By contrast, HuMAb 5A7 broadly neutralizes influenza B strains that were isolated from 1985 to 2006, belonging to both Yamagata and Victoria lineages. Epitope mapping revealed that 5A7 recognizes 316G, 318C and 321W near the C terminal of HA1, a highly conserved region in influenza B virus. Indeed, no mutations in the amino acid residues of the epitope region were induced, even after the virus was passaged ten times in the presence of HuMAb 5A7. Moreover, 5A7 showed significant therapeutic efficacy in mice, even when it was administered 72 hours post-infection. These results indicate that 5A7 is a promising candidate for developing therapeutics, and provide insight for the development of a universal vaccine against influenza B virus. PMID:23408886

  2. Monoclonal antibodies recognizing single amino acid substitutions in hemoglobin

    SciTech Connect

    Stanker, L.H.; Branscomb, E.; Vanderlaan, M.; Jensen, R.H.

    1986-06-01

    Four monoclonal antibodies (mAb) to non-human primate hemoglobin referred to as Cap-4, Cap-5, Rh-2, and Rh-4, and two mAb to human hemoglobin, referred to as H-1 and H-3 were isolated and were partially characterized. Binding studies with these mAb on a panel of hemoglobins and isolated ..cap alpha.. and ..beta.. globin chains revealed a unique reactivity pattern for each mAb. Amino acid sequence analysis of the antigens used to generate the binding data suggests that the specific recognition of certain hemoglobin antigens by each mAb is controlled by the presence of a particular amino acid at a specific position within the epitope. The use of synthetic peptides as antigens confirmed this observation for five of the mAb. No synthetic peptides were tested with the sixth mAb, Rh-2. The amino acids required for binding of mAb Cap-4, Cap-5, Rh-4, and Rh-2 to hemoglobin are alanine at ..beta..5, threonine at ..beta..13, glutamine at ..beta..125, and leucine at ..cap alpha..68. The non-human primate hemoglobin antibodies require a specific amino acid that is not present in human hemoglobin. The amino acid required for binding of Cap-4, Cap-5, and Rh-4 could arise by a single base change in the ..beta.. globin gene, whereas the amino acid required for Rh-2 binding could only occur if two base changes occurred. Thus these mAb are candidate probes for a somatic cell mutation assay on the basis of the detection of peripheral blood red cells that possess single amino acid substituted hemoglobin as a result of single base substitutions in the globin genes of precursor cells.

  3. Heterobifunctional reagents: A new approach to radiolabeling of monoclonal antibodies

    SciTech Connect

    Wang, T.S.T.; Ng, A.K.; Fawwaz, R.A.; Liu, Z.; Alderson, P.O.

    1985-05-01

    The use of bifunctional chelate such as the cyclic anhydride of DTPA for radiolabeling antibodies (Abs) may lead to homopolymerization, and intra- or intermolecular cross-linking, with resulting denaturation and decrease immunoreactivity of Abs. The authors, therefore, investigated the use of heterobifunctional reagents, whereby one group selectively couples to the amino group of the Ab and the other group to the radiometal for Ab labeling. One such reagent, 2,6-Dioxo-N-(carboxymethyl)morphine (DCM) was synthesized by reacting nitrilotriacetic acid with acetic anhydride. The other agent tested was commercially available N-Succinimidyl-3-(2-pyridyldithio) propionate (SPDP). These agents were evaluated independently for their ability to label a monoclonal antibody (MoAb) to a melanoma associated antigen (Ag). Labeling proceeded at a 2mg/ml concentration of the Ab, at HEPES pH 8.2, and 7.0, respectively, at room temperature for 30 min. The conjugate subsequently was labeled with Tc-99m or In-111. For comparison, the same labeled Abs also were prepared by using the cyclic anhydride of DTPA. Binding of the Ab to melanoma cells and control cells then was assayed. The results of cell binding experiments (N=3 per agent) in the region of Ag excess (X+-SD) were as follows: 62.6 +- 2.83% for Tc-99m-DCM-MoAb and 41.3+-1.84% for Tc-99m-SPDP-MoAb vs. 28.6 +- 1.16% for Tc-99m-DTPA-MoAb (p<0.01); 56.2 +- 2.97% for In-111-DCM-MoAb vs. 28.6 +- 1.16% for In-111-DTPA-M0Ab. Binding of all agents to the control lymphoid cell line was less than 3%. These results suggest that heterobifunctional reagents can reduce the loss of immunoreactivity of labeled MoAbs.

  4. Enzymic oxidation of monoclonal antibodies by soluble and immobilized bifunctional enzyme complexes.

    PubMed

    Solomon, B; Koppel, R; Schwartz, F; Fleminger, G

    1990-06-27

    Site-specific modification of monoclonal antibodies was achieved by oxidation of the carbohydrate moieties of antibodies which are located remote from the antigen binding sites. Sialic acid and galactose are terminal sugars of these carbohydrate chains. Concomitant treatment of the antibodies with neuraminidase and galactose oxidase generated aldehyde groups in the oligosaccharide moieties of immunoglobulins which reacted selectively with amino or hydrazide groups of the matrix. Subsequent immobilization of neuraminidase and galactose oxidase on Eupergit C-adipic dihydrazide proved to be an efficient and selective system for the enzymic oxidation of the monoclonal antibodies without impairing their immunological activity. Oriented immobilization of enzymically oxidized monoclonal antibodies on hydrazide or amino Eupergit C derivatives thus leads to the formation of antibody matrix conjugates which possess high antigen-binding activities. PMID:2119387

  5. Will immunogenicity limit the use, efficacy, and future development of therapeutic monoclonal antibodies?

    PubMed Central

    Kuus-Reichel, K; Grauer, L S; Karavodin, L M; Knott, C; Krusemeier, M; Kay, N E

    1994-01-01

    While monoclonal antibodies show promise for use in the treatment of a variety of disease states, including cancer, autoimmune disease, and allograft rejection, generation of anti-antibody responses still remains a problem. For example, 50% of the patients who receive OKT3 produce blocking antibodies that interfere with its binding to T cells, thus decreasing the therapeutic effect (51). HAMA responses have also interfered with tumor imaging (39,40) and radioimmunotherapy (56). The generation of an anti-antibody response is dependent on many factors. These include the dose of antibody, the number of injections of antibody, the immunogenicity of the antibody, the form of the antibody, and the immunocompetence of the recipient. Predictably, both the number of injections of antibody and the dosage are influential in the generation of an anti-antibody response. It is apparent that human antibodies, chimeric antibodies, and mouse Fab fragments are much less likely to induce anti-antibody responses than intact mouse monoclonal antibodies or mouse F(ab')2 fragments when one injection is administered. Injections of human or chimeric antibodies appears to reduce immunogenicity, but the probability that anti-antibody responses can still be induced on multiple injections must be considered and appropriately evaluated. Several areas demand extensive investigation to enhance the clinical utility of monoclonal antibodies. First, results of thorough clinical trials with human or chimeric antibodies need to be evaluated for the induction of anti-antibodies after multiple injections of antibodies. Second, less immunogenic forms of antibodies (Fab, Fv) need to be studied for their clinical efficacies and for their abilities to induce anti-antibody responses. PMID:8556470

  6. Preparation of species-specific murine monoclonal antibodies against the yeast phase of Paracoccidioides brasiliensis.

    PubMed Central

    Figueroa, J I; Hamilton, A J; Bartholomew, M A; Harada, T; Fenelon, L; Hay, R J

    1990-01-01

    A panel of four murine monoclonal antibodies showing species specificity for the yeast phase of the pathogenic dimorphic fungus Paracoccidioides brasiliensis was produced by using a modification of the standard monoclonal antibody technology. This involved the use of the immunosuppressive drug cyclophosphamide to suppress the immune response of test animals to fungi showing cross-reactivity, i.e., to Histoplasma capsulatum. One monoclonal antibody, P4, which had a high titer by enzyme-linked immunosorbent assay, was shown to recognize a linear antigenic epitope of P. brasiliensis at a molecular size of 70,000 to 75,000 daltons by Western blot (immunoblot) analysis. The potential use of these monoclonal antibodies, which are the first species-specific probes to P. brasiliensis that have been produced, in the field of serodiagnosis is discussed. Images PMID:2394802

  7. Anti-Mesothelin Monoclonal Antibodies for the Treatment of Cancer | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute, Laboratory of Molecular Biology is seeking parties interested in collaborative research to further co-develop monoclonal antibodies for the treatment of mesothelin-expressing cancers.

  8. A simple method for the production of anti-C3d monoclonal antibody.

    PubMed

    Cruz, Carlos; León, Graciela

    2007-12-01

    Production of monoclonal antibodies to C3d usually involves the purification of protein. Our method does not require C3 purification; it relies on attachment of C3b to mouse erythrocytes by activation of alternative pathways and further conversion in C3d. We prepared human complement-coated mouse red cells and sensitized mice of the same strain with our own schedule of immunization and applied the classical methods to obtain a mouse monoclonal antibody. We obtained a clone called BMS-11 which produces a monoclonal antibody of IgM class, to C3d with a title of 1:500000. The monoclonal antibody obtained has shown that it is suitable for use as an antiglobulin reagent.

  9. Development and Evaluation of Monoclonal Antibodies for Paxilline

    PubMed Central

    Maragos, Chris M.

    2015-01-01

    Paxilline (PAX) is a tremorgenic mycotoxin that has been found in perennial ryegrass infected with Acremonium lolii. To facilitate screening for this toxin, four murine monoclonal antibodies (mAbs) were developed. In competitive indirect enzyme-linked immunosorbent assays (CI-ELISAs) the concentrations of PAX required to inhibit signal development by 50% (IC50s) ranged from 1.2 to 2.5 ng/mL. One mAb (2-9) was applied to the detection of PAX in maize silage. The assay was sensitive to the effects of solvents, with 5% acetonitrile or 20% methanol causing a two-fold or greater increase in IC50. For analysis of silage samples, extracts were cleaned up by adsorbing potential matrix interferences onto a solid phase extraction column. The non-retained extract was then diluted with buffer to reduce solvent content prior to assay. Using this method, the limit of detection for PAX in dried silage was 15 µg/kg and the limit of quantification was 90 µg/kg. Recovery from samples spiked over the range of 100 to 1000 µg/kg averaged 106% ± 18%. The assay was applied to 86 maize silage samples, with many having detectable, but none having quantifiable, levels of PAX. The results suggest the CI-ELISA can be applied as a sensitive technique for the screening of PAX in maize silage. PMID:26426046

  10. Elimination of alkaloids from plant-derived human monoclonal antibody.

    PubMed

    Ko, Kisung; Wei, Xiaochen; Crooks, Peter A; Koprowski, Hilary

    2004-03-01

    A human antiviral monoclonal antibody (mAb) expressed in transgenic tobacco plants was purified from the tobacco leaf by two different methods. In one method, total protein precipitated with ammonium sulfate was applied to a Hi-Trap protein A column (column method). In the second method, leaf supernatant obtained after liquid nitrogen leaf grinding was directly immunoprecipitated using protein A-agarose beads (immunoprecipitation method). The column and immunoprecipitation methods yielded 0.52 and 0.45 microg of plant-derived mAb (mAb(P))/g, respectively, from fresh leaf tissue. The product derived using the column method exhibited higher binding activity compared to immunoprecipitation-derived product against rabies virus strain CVS-11 in ELISA. Gas chromatography/mass spectrometry analysis, which has a detection limit of 5 pg revealed no detectable levels of nicotine or other related plant alkaloids in the purified mAb(P) from either purification procedure. Thus, both purification methodologies yield mAb(P) uncontaminated with nicotine from the tobacco leaves.

  11. Ontogeny of Rat Thymic Epithelium Defined by Monoclonal Anticytokeratin Antibodies

    PubMed Central

    Jovanović, Suzana; Vasiljevski, Milijana; Dujić, Aleksandar

    1990-01-01

    Ontogenetic study on the expression of cytokeratin (CK) polypeptides within particular subsets of rat thymic epithelial cells (TEC) has been performed by a large panel of anti-CK monoclonal antibodies (mAbs) using the streptavidin-biotin immunoperoxidase method. Simultaneous presence of two or more CK subunits in the same TEC has been demonstrated by double immunoflouorescence labeling. The obtained results showed that the expression of CK polypeptides in fetal and neonatal thymus differed from the adult patterns. The main difference was observed in expression of CK10, 18, and 19 polypeptides. During fetal ontogeny, CK10 and 18 are markers for most medullary TEC or a subset of medullary TEC, respectively, whereas CK19 is mainly a pan-TEC marker. In the adult animals, they are localized in the cortical and a subset of medullary TEC (CK18), subcapsular/perivascular and some medullary TEC (CK19), or in a subset of medullary TEC and Hasall’s corpuscles (HC) (CK10). The switch in their expression in the cortex was observed during the first two weeks of postnatal life. PMID:1726554

  12. Experiences with monoclonal antibody therapy for allergic asthma.

    PubMed

    Boushey, H A

    2001-08-01

    Identification of the central role IgE plays in the pathogenesis of allergic diseases made it a key target for therapy. The first selective anti-IgE therapy, a unique humanized monoclonal anti-IgE antibody (omalizumab), binds with high affinity to the Fc(epsilon)RI receptor binding site on IgE, thereby reducing the amount of free IgE available to bind to Fc(epsilon)RI receptors on mast calls, basophils, and other cells. In addition, administration of omalizumab indirectly reduces Fc(epsilon)RI receptor density on cells involved in allergic responses. In two bronchoprovocation trials involving patients with mild allergic asthma, omalizumab attenuated both early- and late-phase allergic responses. Omalizumab was subsequently evaluated as a treatment for asthma in large, multicenter, randomized, double-blind phase II and III trials involving patients with moderate to severe asthma who required corticosteroid therapy. When added to treatment with oral or inhaled corticosteroids, omalizumab reduced symptoms and exacerbations, improved lung function and quality of life, and reduced the need for rescue medications. These benefits persisted even in the "corticosteroid reduction" phase of these trials, when omalizumab treatment was shown to allow patients to reduce or discontinue their inhaled and/or oral corticosteroids. These effects of omalizu-mab in improving asthma control, as well as its excellent safety profile, may ultimately make this agent a useful addition to the physician's armamentarium of treatments for asthma.

  13. Monoclonal antibodies directed against surface molecules of multicell spheroids

    NASA Technical Reports Server (NTRS)

    Martinez, Andrew O.

    1994-01-01

    The objective of this project is to generate a library of monoclonal antibodies (MAbs) directed against surface molecules of tumor and transformed cells grown as multicell spheroids (MCS). These MCS are highly organized, 3-dimensional multicellular structures which exhibit many characteristics of in vivo organized tissues not found in conventional monolayer or suspension culture. Therefore MCS make better in vitro model systems to study the interactions of mammalian cells, and provide a functional assay for surface adhesion molecules. This project also involves investigations of cell-cell interactions in a gravity-based environment. It will provide a base of scientific information necessary to expand the focus of the project in future years to microgravity and hypergravity-based environments. This project also has the potential to yield important materials (e.g., cellular products) which may prove useful in the diagnosis and/or treatment of certain human diseases. Moreover, this project supports the training of both undergraduate and graduate students; thus, it will assist in developing a pool of future scientists with research experience in an area (gravitational biology) of interest to NASA.

  14. Reversible cluster formation in concentrated monoclonal antibody solutions

    NASA Astrophysics Data System (ADS)

    Godfrin, P. Douglas; Porcar, Lionel; Falus, Peter; Zarraga, Isidro; Wagner, Norm; Liu, Yun

    2015-03-01

    Protein cluster formation in solution is of fundamental interest for both academic research and industrial applications. Recently, industrial scientists are also exploring the effect of reversible cluster formation on biopharmaceutical processing and delivery. However, despite of its importance, the understanding of protein clusters at concentrated solutions remains scientifically very challenging. Using the neutron spin echo technique to study the short time dynamics of proteins in solutions, we have recently systematically studied cluster formation in a few monoclonal antibody (mAb) solutions and their relation with solution viscosity. We show that the existence of anisotropic attraction can cause the formation of finite sized clusters, which increases the solution viscosity. Interestingly, once clusters form at relatively low concentrations, the average size of clusters in solutions remains almost constant over a wide range of concentrations similar to that of micelle formation. For a different mAb we have also investigated, the attraction is mostly induced by hydrophobic patches. As a result, these mAbs form large clusters with loosely linked proteins. In both cases, the formation of clusters all increases the solution viscosity substantially. However, due to different physics origins of cluster formation, solutions viscosities for these two different types of mAbs need to be controlled by different ways.

  15. Trial Watch: Immunomodulatory monoclonal antibodies for oncological indications

    PubMed Central

    Buqué, Aitziber; Bloy, Norma; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Fridman, Wolf Hervé; Fucikova, Jitka; Galon, Jérôme; Marabelle, Aurélien; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-01-01

    Immunomodulatory monoclonal antibodies (mAbs) differ from their tumor-targeting counterparts because they exert therapeutic effects by directly interacting with soluble or (most often) cellular components of the immune system. Besides holding promise for the treatment of autoimmune and inflammatory disorders, immunomodulatory mAbs have recently been shown to constitute a potent therapeutic weapon against neoplastic conditions. One class of immunomodulatory mAbs operates by inhibiting safeguard systems that are frequently harnessed by cancer cells to establish immunological tolerance, the so-called “immune checkpoints.” No less than 3 checkpoint-blocking mAbs have been approved worldwide for use in oncological indications, 2 of which during the past 12 months. These molecules not only mediate single-agent clinical activity in patients affected by specific neoplasms, but also significantly boost the efficacy of several anticancer chemo-, radio- or immunotherapies. Here, we summarize recent advances in the development of checkpoint-blocking mAbs, as well as of immunomodulatory mAbs with distinct mechanisms of action. PMID:26137403

  16. Monoclonal antibodies against NS1 protein of Goose parvovirus.

    PubMed

    Qiu, Zheng; Tian, Wei; Yu, Tianfei; Li, Li; Ma, Bo; Wang, Junwei

    2012-04-01

    In the present study, monoclonal antibodies (MAbs) against NS1 protein of Goose parvovirus (GPV) were generated. The secreted MAbs were obtained by fusing mouse myeloma cells and spleen cells of BALB/c mice, which were immunized with the plasmid pcDNA3.1-GPV-NS1 and recombinant protein of GPV-NS1. With indirect ELISA, six hybridoma cell lines against GPV-NS1 were screened. The subtypes of the two MAbs were IgG2a; the others were IgM. The light chain was κ. Western blot analysis showed that six MAbs reacted with recombinant protein GPV-NS1. GPV-NS1 was dissected into 15 overlapping epitopes, which were used to react with MAbs in Western blot. Results showed that six MAbs recognized NS1 protein linear B-cell epitopes located at the C-terminus 453-514 aa, 485-542 aa, and 533-598 aa.

  17. Antigenic heterogeneity in Mycoplasma iowae demonstrated with monoclonal antibodies.

    PubMed

    Panangala, V S; Gresham, M M; Morsy, M A

    1992-01-01

    Western blots of proteins of 14 Mycoplasma iowae strains and isolates resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were probed with three monoclonal antibodies (MAbs), MI6, MI7, and MI8. MAb MI6 reacted with one or more antigens with apparent molecular weights of 60,000, 70,000, and 94,000. In three strains (N-PHN-D13, R-D2497, and K 1805), antigens located on a single peptide band were recognized, while in others additional epitopes at different molecular-weight positions were revealed. A similar pattern was observed with MAb MI7, although it reacted with fewer antigens than did MAb MI6 and failed to recognize antigens in strains N-PHN-D13 and R-D2497. MAb MI8 reacted with an antigen at an apparent molecular-weight position of 28,000 in four of the 14 strains and isolates. The diverse reaction patterns observed with the MAbs in the 14 M. iowae strains and isolates confirms the occurrence of antigenic variation within this species. Antigenic variation in M. iowae may be pivotal in determining host-parasite interactions, pathogenesis, and the outcome of disease. PMID:1373600

  18. DNA immunization as a technology platform for monoclonal antibody induction.

    PubMed

    Liu, Shuying; Wang, Shixia; Lu, Shan

    2016-01-01

    To combat the threat of many emerging infectious diseases, DNA immunization offers a unique and powerful approach to the production of high-quality monoclonal antibodies (mAbs) against various pathogens. Compared with traditional protein-based immunization approaches, DNA immunization is efficient for testing novel immunogen designs, does not require the production or purification of proteins from a pathogen or the use of recombinant protein technology and is effective at generating mAbs against conformation-sensitive targets. Although significant progress in the use of DNA immunization to generate mAbs has been made over the last two decades, the literature does not contain an updated summary of this experience. The current review provides a comprehensive analysis of the literature, including our own work, describing the use of DNA immunization to produce highly functional mAbs, in particular, those against emerging infectious diseases. Critical factors such as immunogen design, delivery approach, immunization schedule, use of immune modulators and the role of final boost immunization are discussed in detail. PMID:27048742

  19. Elotuzumab: the first approved monoclonal antibody for multiple myeloma treatment

    PubMed Central

    Magen, Hila; Muchtar, Eli

    2016-01-01

    Elotuzumab is a monoclonal antibody directed against the SLAMF7 receptor, expressed on normal and malignant plasma cells with a lower expression on other lymphoid cells such as natural killer (NK) cells. Elotuzumab has no significant antimyeloma activity when given as a single agent to patients with relapsed or refractory multiple myeloma (RRMM). However, when combined with other antimyeloma agents, it results in improved response and outcome. Owing to the results from the landmark ELOQUENT-2 phase III clinical trial, which compared lenalidomide and dexamethasone with or without elotuzumab in patients with RRMM, elotuzumab in combination with lenalidomide and dexamethasone was approved by the American Food and Drug Administration (FDA) in November 2015 for multiple myeloma (MM) patients who received one to three prior lines of therapy. This review will give a brief description of the signaling lymphocytic activation molecule (SLAM) family receptors, the unique SLAMF7 receptor and the mechanism of action of elotuzumab. Thereafter, we will give an overview on its antimyeloma activity in preclinical and clinical trials, including its toxicity profile and management thereof. PMID:27493709

  20. Production of a Chaetomium globosum Enolase Monoclonal Antibody

    PubMed Central

    Nayak, Ajay P.; Lemons, Angela R.; Rittenour, William R.; Hettick, Justin M.; Beezhold, Donald H.

    2014-01-01

    Chaetomium globosum is a hydrophilic fungal species and a contaminant of water-damaged building materials in North America. Methods to detect Chaetomium species include subjective identification of ascospores, viable culture, or molecular-based detection methods. In this study, we describe the production and initial characterization of a monoclonal antibody (MAb) for C. globosum enolase. MAb 1C7, a murine IgG1 isotype MAb, was produced and reacted with recombinant C. globosum enolase (rCgEno) in an enzyme-linked immunosorbent assay and with a putative C. globosum enolase in a Western blot. Epitope mapping showed MAb 1C7 specific reactivity to an enolase decapeptide, LTYEELANLY, that is highly conserved within the fungal class Sordariomycetes. Cross-reactivity studies showed MAb 1C7 reactivity to C. atrobrunneum but not C. indicum. MAb 1C7 did not react with enolase from Aspergillus fumigatus, which is divergent in only two amino acids within this epitope. The results of this study suggest potential utility of MAb 1C7 in Western blot applications for the detection of Chaetomium and other Sordariomycetes species. PMID:25495488

  1. Characterization of a new monoclonal antibody against mercury (II)

    SciTech Connect

    Marx, A.; Hock, B.

    1998-07-01

    Monoclonal antibodies (mabs) were produced against mercury (II) and an enzyme immunoassay was developed for the detection of mercury (II) in water. Since mercury (II) ions are too small to elicit an immune response, they were coupled via glutathione (GSH) to the immunogenic carrier protein keyhole limpet hemocyanin (KLH). Several mice were immunized with this KLH-GSH-Hg immunoconjugate. Spleen cells of immunized mice were fused with myeloma cells. The resulting hybridoma cells were screened for the production of specific anti-Hg mabs. Five positive cells were detected. The hybridoma cell line K3C6 was adjusted to protein free medium; it produced mabs with high selectivity and sensitivity. A detection limit of 2.8 {micro}g/L HgCl{sub 2} (= 2.1 {micro}g/L Hg{sup 2+}) was achieved with a non-competitive enzyme immunoassay (EIA). Cross-reactivities with other metals were below 1%. Measurement of spiked water samples with this EIA showed good correlation with results obtained by mass spectrometry with inductive coupled plasma (ICP-MS).

  2. Trial watch: Tumor-targeting monoclonal antibodies for oncological indications

    PubMed Central

    Vacchelli, Erika; Pol, Jonathan; Bloy, Norma; Eggermont, Alexander; Cremer, Isabelle; Fridman, Wolf Hervé; Galon, Jérôme; Marabelle, Aurélien; Kohrt, Holbrook; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-01-01

    An expanding panel of monoclonal antibodies (mAbs) that specifically target malignant cells or intercept trophic factors delivered by the tumor stroma is now available for cancer therapy. These mAbs can exert direct antiproliferative/cytotoxic effects as they inhibit pro-survival signal transduction cascades or activate lethal receptors at the plasma membrane of cancer cells, they can opsonize neoplastic cells to initiate a tumor-targeting immune response, or they can be harnessed to specifically deliver toxins or radionuclides to transformed cells. As an indication of the success of this immunotherapeutic paradigm, international regulatory agencies approve new tumor-targeting mAbs for use in cancer patients every year. Moreover, the list of indications for previously licensed molecules is frequently expanded to other neoplastic disorders as the results of large, randomized clinical trials become available. Here, we discuss recent advances in the preclinical and clinical development of tumor-targeting mAbs for oncological indications. PMID:25949870

  3. Production of radiolabeled monoclonal antibody conjugates by photoaffinity labeling

    SciTech Connect

    Volkert, W.A.; Ketring, A.R.; Kuntz, R.R.; Holmes, R.A.; Mitchell, E.P. ); Feldbush, T.L. )

    1990-06-01

    This report discusses activities and progress that has occurred since initiation of this project on September 1, 1989. We have synthesized ethyl N,N{prime}-bis(benzoylmercaptoacetyl)-2,3-diaminopropanoate, a ligand to be used as a bifunctional chelating agent (BFCA), to form {sup 186}Re or {sup 188}Re ({sup 186}Re/{sup 188}Re) complexes. {sup 186}Re/{sup 188}Re, in reducing media, reacts with this ligand to form {sup 186}Re/{sup 188}Re-CO{sub 2}DADS chelates that will be used to formulate new radiolabeled photoaffinity labels (RPALs). Initial steps have been taken to synthesize R-As-dithiol compounds. This approach will be used to produce {sup 77}As-RPALs or covalently link {sup 77}As directly to monoclonal antibodies (MAbs). The R group will contain a group that can be used for conjugation reactions. Spectral and photochemical properties of various types of photoaffinity labels (PALs) have been studied. Acrylo-azido compounds and 9-azido acridine have been studied as well as several other photoprobes. The binding characteristics of the azido-based PALs to HSA have been studied and progress has been made on developing techniques for efficiently separating of non-covalently sound PALs. The Nd-YAG laser was purchased and arrived in 1990. It has been assembled and tested and is now operational.

  4. Production and characterization of monoclonal antibodies against the antibiotic tilmicosin.

    PubMed

    Beier, Ross C; Creemer, Lawrence C; Ziprin, Richard L; Nisbet, David J

    2005-12-14

    Monoclonal antibodies (Mabs) were developed that specifically bind tilmicosin. Keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA) conjugates were used for the immunogen and plate coating antigen, respectively. The conjugates were synthesized by different methods, resulting in different linkages. Six hybridoma cell lines were isolated that produced Mabs that competed with tilmicosin, and have IgG1 isotype. The Til-1 and Til-5 Mabs had IC50 values for tilmicosin of 9.6 and 6.4 ng/well (48 and 32 ng/mL), respectively, and limits of detection at IC20 of 1.84 and 0.89 ng/well (9.2 and 4.45 ng/mL), respectively. The Mabs demonstrated high cross-reactivity to the macrolides containing 3,5-dimethylpiperidine at C20 and the amino sugar at C5. No cross-reactivity was observed for tylosin and other macrolides that did not contain 3,5-dimethylpiperidine. A competitive enzyme-linked immunosorbent assay (ELISA) was developed for the antibiotic tilmicosin by use of the developed Mabs. These Mabs may be excellent candidates for the determination and immunolocalization of tilmicosin.

  5. Colloidal interactions between monoclonal antibodies in aqueous solutions.

    PubMed

    Arzenšek, Dejan; Kuzman, Drago; Podgornik, Rudolf

    2012-10-15

    Colloidal interactions between proteins determine the behavior and stability of globular proteins such as monoclonal antibodies (mAbs) against their propensity to cluster formation in solution. We study interactions between these proteins through their dilute solution behavior. Experiments to quantify intermolecular interactions were done using Dynamic and Static Light Scattering (DLS and SLS) in a high-throughput manner in parallel with zeta potential measurements with Laser Doppler Electrophoresis method (M3-PALS). This approach offers a rapid indirect determination of colloidal interactions through their measured second virial coefficient. Electrostatic part of the DLVO interaction was conveniently parameterized via the corresponding surface charge and/or surface potential, while the van der Waals interactions were parameterized via their Hamaker coefficient, both as functions of ionic strength and pH of the bathing solution. This parametrization of protein-protein interactions improves our understanding of mAb assembly and provides a means for its control by solution parameter variation. Additionally, our results also provide a consistency check and validation of applicability of the DLVO theory in mAbs solution assembly processes.

  6. Potent neutralizing monoclonal antibodies against Ebola virus infection

    PubMed Central

    Zhang, Qi; Gui, Miao; Niu, Xuefeng; He, Shihua; Wang, Ruoke; Feng, Yupeng; Kroeker, Andrea; Zuo, Yanan; Wang, Hua; Wang, Ying; Li, Jiade; Li, Chufang; Shi, Yi; Shi, Xuanling; Gao, George F.; Xiang, Ye; Qiu, Xiangguo; Chen, Ling; Zhang, Linqi

    2016-01-01

    Ebola virus infections cause a deadly hemorrhagic disease for which no vaccines or therapeutics has received regulatory approval. Here we show isolation of three (Q206, Q314 and Q411) neutralizing monoclonal antibodies (mAbs) against the surface glycoprotein (GP) of Ebola virus identified in West Africa in 2014 through sequential immunization of Chinese rhesus macaques and antigen-specific single B cell sorting. These mAbs demonstrated potent neutralizing activities against both pseudo and live Ebola virus independent of complement. Biochemical, single particle EM, and mutagenesis analysis suggested Q206 and Q411 recognized novel epitopes in the head while Q314 targeted the glycan cap in the GP1 subunit. Q206 and Q411 appeared to influence GP binding to its receptor NPC1. Treatment with these mAbs provided partial but significant protection against disease in a mouse model of Ebola virus infection. These novel mAbs could serve as promising candidates for prophylactic and therapeutic interventions against Ebola virus infection. PMID:27181584

  7. Pharmacokinetics of biotech drugs: peptides, proteins and monoclonal antibodies.

    PubMed

    Lin, Jiunn H

    2009-09-01

    With the advances in recombinant DNA biotechnology, molecular biology and immunology, the number of biotech drugs, including peptides, proteins and monoclonal antibodies, available for clinical use has dramatically increased in recent years. Although pharmacokinetic principles are equally applicable to the large molecule drugs and conventional small molecule drugs, the underlying mechanisms for the processes of absorption, distribution, metabolism and excretion (ADME) of large molecule drugs are often very different from that of small molecule drugs. Therefore, a good understanding of the ADME processes of large molecule drugs is essential in support of the development of therapeutic biologics. The purpose of this article is to review the current knowledge of the ADME processes that govern the pharmacokinetics of biotech drugs. The challenges encountered by orally administered peptide and protein drugs, and the nature of lymphatic absorption after subcutaneous administration will be discussed. In addition, molecular mechanisms of biodistribution, metabolism and renal excretion of biotech drugs will also be discussed. Finally, approaches used for prediction of human pharmacokinetics of protein drugs will be briefly discussed.

  8. Monoclonal antibody: the corner stone of modern biotherapeutics.

    PubMed

    Xia, Zhi-nan; Cai, Xue-ting; Cao, Peng

    2012-10-01

    Worldwide sales of biologic drugs exceeded 100 billion USD in 2011. About 32% is from therapeutic monoclonal antibody (mAb). With many blockbuster biopharmaceutical patents expiring over the next decade, there is a great opportunity for biosimilar to enter the worldwide especially emerging market. Both European Medicines Agency (EMA) and Food and Drug Administration (FDA) have introduced regulatory frameworks for the potential approval of biosimilar mAb therapeutics. Rather than providing a highly abbreviated path, as in the case for small molecule chemical drug, approval for biosimilar mAb will require clinical trial and the details will be very much on a case-by-case basis. Since mAb is the dominant category of biologic drugs, mAb will be the focus of this review. First, the United States (US) and European Union (EU) approved mAb and those in phase 3 trials will be reviewed, then strategies on how to win biosimilar competition will be reviewed. PMID:23289138

  9. Development and Evaluation of Monoclonal Antibodies for Paxilline.

    PubMed

    Maragos, Chris M

    2015-10-01

    Paxilline (PAX) is a tremorgenic mycotoxin that has been found in perennial ryegrass infected with Acremonium lolii. To facilitate screening for this toxin, four murine monoclonal antibodies (mAbs) were developed. In competitive indirect enzyme-linked immunosorbent assays (CI-ELISAs) the concentrations of PAX required to inhibit signal development by 50% (IC50s) ranged from 1.2 to 2.5 ng/mL. One mAb (2-9) was applied to the detection of PAX in maize silage. The assay was sensitive to the effects of solvents, with 5% acetonitrile or 20% methanol causing a two-fold or greater increase in IC50. For analysis of silage samples, extracts were cleaned up by adsorbing potential matrix interferences onto a solid phase extraction column. The non-retained extract was then diluted with buffer to reduce solvent content prior to assay. Using this method, the limit of detection for PAX in dried silage was 15 µg/kg and the limit of quantification was 90 µg/kg. Recovery from samples spiked over the range of 100 to 1000 µg/kg averaged 106% ± 18%. The assay was applied to 86 maize silage samples, with many having detectable, but none having quantifiable, levels of PAX. The results suggest the CI-ELISA can be applied as a sensitive technique for the screening of PAX in maize silage. PMID:26426046

  10. Quantitative assessment of antibody internalization with novel monoclonal antibodies against Alexa fluorophores.

    PubMed

    Liao-Chan, Sindy; Daine-Matsuoka, Barbara; Heald, Nathan; Wong, Tiffany; Lin, Tracey; Cai, Allen G; Lai, Michelle; D'Alessio, Joseph A; Theunissen, Jan-Willem

    2015-01-01

    Antibodies against cell surface antigens may be internalized through their specific interactions with these proteins and in some cases may induce or perturb antigen internalization. The anti-cancer efficacy of antibody-drug conjugates is thought to rely on their uptake by cancer cells expressing the surface antigen. Numerous techniques, including microscopy and flow cytometry, have been used to identify antibodies with desired cellular uptake rates. To enable quantitative measurements of internalization of labeled antibodies, an assay based on internalized and quenched fluorescence was developed. For this approach, we generated novel anti-Alexa Fluor monoclonal antibodies (mAbs) that effectively and specifically quench cell surface-bound Alexa Fluor 488 or Alexa Fluor 594 fluorescence. Utilizing Alexa Fluor-labeled mAbs against the EphA2 receptor tyrosine kinase, we showed that the anti-Alexa Fluor reagents could be used to monitor internalization quantitatively over time. The anti-Alexa Fluor mAbs were also validated in a proof of concept dual-label internalization assay with simultaneous exposure of cells to two different mAbs. Importantly, the unique anti-Alexa Fluor mAbs described here may also enable other single- and dual-label experiments, including label detection and signal enhancement in macromolecules, trafficking of proteins and microorganisms, and cell migration and morphology.

  11. Thermodynamic basis for antibody binding to Z-DNA: comparison of a monoclonal antibody and its recombinant derivatives.

    PubMed

    Vaz de Andrade, Edmar; Freitas, Sonia Maria; Ventura, Manuel Mateus; Maranhão, Andréa Queiroz; Brigido, Marcelo Macedo

    2005-11-30

    Antibody engineering represents a promising area in biotechnology. Recombinant antibodies can be easily manipulated generating new ligand and effector activities that can be used as prototype magic bullets. On the other hand, an extensive knowledge of recombinant antibody binding and stability features are essential for an efficient substitution. In this study, we compared the stability and protein binding properties of two recombinant antibody fragments with their parental monoclonal antibody. The recombinant fragments were a monomeric scFv and a dimeric one, harboring human IgG1 CH2-CH3 domains. We have used fluorescence titration quenching to determine the thermodynamics of the interaction between an anti-Z-DNA monoclonal antibody and its recombinant antibody fragments with Z-DNA. All the antibody fragments seemed to bind DNA similarly, in peculiar two-affinity states. Enthalpy-entropy compensation was observed for both affinity states, but a marked entropy difference was observed for the monomeric scFv antibody fragment, mainly for the high affinity binding. In addition, we compared the stability of the dimeric antibody fragment and found differences favoring the monoclonal antibody. These differences seem to derive from the heterologous expression system used.

  12. Directed Selection of Recombinant Human Monoclonal Antibodies to Herpes Simplex Virus Glycoproteins from Phage Display Libraries

    NASA Astrophysics Data System (ADS)

    Sanna, Pietro Paolo; Williamson, R. Anthony; de Logu, Alessandro; Bloom, Floyd E.; Burton, Dennis R.

    1995-07-01

    Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.

  13. Standardization of Epidermal Growth Factor Receptor (EGFR) Measurement by Quantitative Immunofluorescence and Impact on Antibody-Based Mutation Detection in Non–Small Cell Lung Cancer

    PubMed Central

    Dimou, Anastasios; Agarwal, Seema; Anagnostou, Valsamo; Viray, Hollis; Christensen, Stephen; Gould Rothberg, Bonnie; Zolota, Vassiliki; Syrigos, Konstantinos; Rimm, David L.

    2011-01-01

    Challenges in measurement of epidermal growth factor receptor (EGFR) protein expression have led to conflicting data on its prognostic value and discontinuation of its use for prediction of response. Herein is described a quantitative standardized assay for EGFR and its use in a series of retrospective cohorts of patients with non–small cell lung cancer (NSCLC). The AQUA technology of quantitative immunofluorescence was used in conjunction with Western blot analysis to calculate the absolute concentration of EGFR in two independent NSCLC cohorts (170 from Yale New Haven Hospital and 335 from Sotiria and Patras Hospitals in Greece). EGFR and mutated EGFR were measured using D38B1 antibody and two mutation-specific antibodies. All patients positive or borderline for mutation-specific antibody were genotyped. A threshold for reproducible detection of EGFR was defined as 0.85 ng/μg total protein. EGFR expression demonstrated no prognostic value in either cohort. The mutation rate was 1.79% in the Yale cohort, and 1.52% in the Sotiria/Patras cohort, with no antibody detection–based false-positive cases. No mutations were detected for EGFR concentrations <1.46 ng/μg total protein. In summary, accurate measurement of EGFR still shows no prognostic value in NSCLC. In these two population-based cohorts, the antibody-based EGFR mutation rate was lower than has been frequently reported. PMID:21722621

  14. Quality control of murine monoclonal antibodies using isoelectric focusing affinity immunoblot analysis

    NASA Technical Reports Server (NTRS)

    Hamilton, Robert G.; Rodkey, L. Scott; Reimer, Charles B.

    1987-01-01

    The quality control of murine hybridoma secretory products has been performed using two approaches for isoelectric focusing affinity immunoblot analysis: (1) a method in which antigen-coated nitrocellulose is placed on top of an acrylamide gel containing isoelectrically focused ascites to bind the antigen specific monoclonal antibody; and (2) a method in which focused ascite proteins were passively blotted onto nitrocellulose and specific monoclonal antibodies were detected with enzyme-conjugated antigen. Analysis by both methods of batches of ascites containing antihuman IgG antibodies that were produced by six hybridomas permitted effective monitoring of immunoreactive antibodies for pI microheterogeneity.

  15. Development of a standardized subgrouping scheme for Legionella pneumophila serogroup 1 using monoclonal antibodies.

    PubMed Central

    Joly, J R; McKinney, R M; Tobin, J O; Bibb, W F; Watkins, I D; Ramsay, D

    1986-01-01

    A panel of monoclonal antibodies to Legionella pneumophila serogroup 1 and a subclassification scheme were developed in a collaborative project among three laboratories. The seven most useful monoclonal antibodies were selected from three previously developed panels on the basis of indirect fluorescent antibody patterns with 83 strains of L. pneumophila serogroup 1 that were obtained from widely distributed geographic locations. The isolates were divided into 10 major subgroups on the basis of reactivity patterns that can be readily reproduced in any laboratory and are not subject to major inconsistencies of interpretation of staining intensity. A standard protocol for the indirect fluorescent antibody procedure was also developed. PMID:3517064

  16. Novel method for the high-throughput production of phosphorylation site-specific monoclonal antibodies

    PubMed Central

    Kurosawa, Nobuyuki; Wakata, Yuka; Inobe, Tomonao; Kitamura, Haruki; Yoshioka, Megumi; Matsuzawa, Shun; Kishi, Yoshihiro; Isobe, Masaharu

    2016-01-01

    Threonine phosphorylation accounts for 10% of all phosphorylation sites compared with 0.05% for tyrosine and 90% for serine. Although monoclonal antibody generation for phospho-serine and -tyrosine proteins is progressing, there has been limited success regarding the production of monoclonal antibodies against phospho-threonine proteins. We developed a novel strategy for generating phosphorylation site-specific monoclonal antibodies by cloning immunoglobulin genes from single plasma cells that were fixed, intracellularly stained with fluorescently labeled peptides and sorted without causing RNA degradation. Our high-throughput fluorescence activated cell sorting-based strategy, which targets abundant intracellular immunoglobulin as a tag for fluorescently labeled antigens, greatly increases the sensitivity and specificity of antigen-specific plasma cell isolation, enabling the high-efficiency production of monoclonal antibodies with desired antigen specificity. This approach yielded yet-undescribed guinea pig monoclonal antibodies against threonine 18-phosphorylated p53 and threonine 68-phosphorylated CHK2 with high affinity and specificity. Our method has the potential to allow the generation of monoclonal antibodies against a variety of phosphorylated proteins. PMID:27125496

  17. A Double-Sandwich ELISA for Identification of Monoclonal Antibodies Suitable for Sandwich Immunoassays.

    PubMed

    Stanker, Larry H; Hnasko, Robert M

    2015-01-01

    The sandwich immunoassay (sELISA) is an invaluable technique for concentrating, detecting, and quantifying target antigens. The two critical components required are a capture antibody and a detection antibody, each binding a different epitope on the target antigen. The specific antibodies incorporated into the test define most of the performance parameters of any subsequent immunoassay regardless of the assay format: traditional ELISA, lateral-flow immunoassay, various bead-based assays, antibody-based biosensors, or the reporting label. Here we describe an approach for identifying monoclonal antibodies (mAbs) suitable for use as capture antibodies and detector antibodies in a sELISA targeting bacterial protein toxins. The approach was designed for early identification of monoclonal antibodies (mAbs), in the initial hybridoma screen.

  18. Short PEG-linkers improve the performance of targeted, activatable monoclonal antibody-indocyanine green optical imaging probes.

    PubMed

    Sano, Kohei; Nakajima, Takahito; Miyazaki, Kiminori; Ohuchi, Yuya; Ikegami, Takashi; Choyke, Peter L; Kobayashi, Hisataka

    2013-05-15

    The ability to switch optical imaging probes from the quenched (off) to the active state (on) has greatly improved target to background ratios. The optimal activation efficiency of an optical probe depends on complete quenching before activation and complete dequenching after activation. For instance, monoclonal antibody-indocyanine green (mAb-ICG) conjugates, which are promising agents for clinical translation, are normally quenched, but can be activated when bound to a cell surface receptor and internalized. However, the small fraction of commonly used ICG derivative (ICG-Sulfo-OSu) can bind noncovalently to its mAb and is, thus, gradually released from the mAb leading to relatively high background signal especially in the liver and the abdomen. In this study, we re-engineered a mAb-ICG conjugate, (Panitumumab-ICG) using bifunctional ICG derivatives (ICG-PEG4-Sulfo-OSu and ICG-PEG8-Sulfo-OSu) with short polyethylene glycol (PEG) linkers. Higher covalent binding (70-86%) was observed using the bifunctional ICG with short PEG linkers resulting in less in vivo noncovalent dissociation. Panitumumab-ICG conjugates with short PEG linkers were able to detect human epidermal growth factor receptor 1 (EGFR)-positive tumors with high tumor-to-background ratios (15.8 and 6.9 for EGFR positive tumor-to-negative tumor and tumor-to-liver ratios, respectively, at 3 d postinjection).

  19. Monoclonal Antibodies to the [alpha]- and [beta]-Subunits of the Plant Mitochondrial F1-ATPase.

    PubMed Central

    Luethy, M. H.; Horak, A.; Elthon, T. E.

    1993-01-01

    We have generated nine monoclonal antibodies against subunits of the maize (Zea mays L.) mitochondrial F1-ATPase. These monoclonal antibodies were generated by immunizing mice against maize mitochondrial fractions and randomly collecting useful hybridomas. To prove that these monoclonal antibodies were directed against ATPase subunits, we tested their cross-reactivity with purified F1-ATPase from pea cotyledon mitochondria. One of the antibodies ([alpha]-ATPaseD) cross-reacted with the pea F1-ATPase [alpha]-subunit and two ([beta]-ATPaseD and [beta]-ATPaseE) cross-reacted with the pea F1-ATPase [beta]-subunit. This established that, of the nine antibodies, four react with the maize [alpha]-ATPase subunit and the other five react with the maize [beta]-ATPase subunit. Most of the monoclonal antibodies cross-react with the F1-ATPase from a wide range of plant species. Each of the four monoclonal antibodies raised against the [alpha]-subunit recognizes a different epitope. Of the five [beta]-subunit antibodies, at least three different epitopes are recognized. Direct incubation of the monoclonal antibodies with the F1-ATPase failed to inhibit the ATPase activity. The monoclonal antibodies [alpha]-ATPaseD and [beta]-ATPaseD were bound to epoxide-glass QuantAffinity beads and incubated with a purified preparation of pea F1-ATPase. The ATPase activity was not inhibited when the antibodies bound the ATPase. The antibodies were used to help map the pea F1-ATPase subunits on a two-dimensional map of whole pea cotyledon mitochondrial protein. In addition, the antibodies have revealed antigenic similarities between various isoforms observed for the [alpha]- and [beta]-subunits of the purified F1-ATPase. The specificity of these monoclonal antibodies, along with their cross-species recognition and their ability to bind the F1-ATPase without inhibiting enzymic function, makes these antibodies useful and invaluable tools for the further purification and characterization of plant

  20. Demonstration of two distinct antigenic determinants on hepatitis B e antigen by monoclonal antibodies

    SciTech Connect

    Imai, M.; Nomura, M.; Gotanda, T.; Sano, T.; Tachibana, K.; Miyamoto, H.; Takahashi, K.; Toyama, S.; Miyakawa, Y.; Mayumi, M.

    1982-01-01

    Mice were immunized against hepatitis B e antigen (HBeAg) isolated from sera of asymptomatic carriers of hepatitis B virus. Their spleen cells were fused with mouse myeloma (NS-1) cells, and 5 clones of hybridoma cells secreting antibody against HBeAg (anti-HBe) were isolated. For the production of anti-HBe in large scale, cells were cultivated both in vitro and in the peritoneal cavity of ascitic mice. Although monoclonal antibodies produced by these clones showed a strong reactivity of anti-HBe in hemagglutination tests, individual monoclonal anti-HBe did not reveal any precipitin line in immunodiffusion. When 2 of the 5 monoclonal antibodies were mixed together, however, some combinations showed a precipitin line against HBeAg, whereas others did not. Utilizing solid-phase radioimmunoassay involving a number of combinations of monoclonal antibodies used for solid-phase and radiolabeling, the 5 antibodies were classified into 2 groups. Three of the anti-HBe antibodies were found to be directed to 1 determinant of HBeAg (determinant a); the remaining 2 to the other determinant (determinant b). Determinants a and b were detected on HBeAg in the serum, as well as on the polypeptide of 19,000 daltons (P19) derived from the nucleocapsid of hepatitis B virus. Monoclonal anti-HBe antibodies with different specificities may provide useful tools in delineating the antigenic structure of HBeAg and also in evaluating immune responses of the host directed to its subdeterminants.

  1. Development of an antigen microarray for high throughput monoclonal antibody selection

    PubMed Central

    Staudt, Nicole; Müller-Sienerth, Nicole; Wright, Gavin J.

    2014-01-01

    Monoclonal antibodies are valuable laboratory reagents and are increasingly being exploited as therapeutics to treat a range of diseases. Selecting new monoclonal antibodies that are validated to work in particular applications, despite the availability of several different techniques, can be resource intensive with uncertain outcomes. To address this, we have developed an approach that enables early screening of hybridoma supernatants generated from an animal immunised with up to five different antigens followed by cloning of the antibody into a single expression plasmid. While this approach relieved the cellular cloning bottleneck and had the desirable ability to screen antibody function prior to cloning, the small volume of hybridoma supernatant available for screening limited the number of antigens for pooled immunisation. Here, we report the development of an antigen microarray that significantly reduces the volume of supernatant required for functional screening. This approach permits a significant increase in the number of antigens for parallel monoclonal antibody selection from a single animal. Finally, we show the successful use of a convenient small-scale transfection method to rapidly identify plasmids that encode functional cloned antibodies, addressing another bottleneck in this approach. In summary, we show that a hybrid approach of combining established hybridoma antibody technology with refined screening and antibody cloning methods can be used to select monoclonal antibodies of desired functional properties against many different antigens from a single immunised host. PMID:24472540

  2. Radioimmunological imaging of metastatic prostatic cancer with 111indium-labeled monoclonal antibody PAY 276

    SciTech Connect

    Babaian, R.J.; Murray, J.L.; Lamki, L.M.; Haynie, T.P.; Hersh, E.M.; Rosenblum, M.G.; Glenn, H.J.; Unger, M.W.; Carlo, D.J.; von Eschenbach, A.C.

    1987-03-01

    A total of 25 patients with histologically proved adenocarcinoma of the prostate, whose disease was staged clinically as D2 by appropriate radiographic and nuclear medicine studies, received increasing doses of PAY 276, an antiprostatic acid phosphatase monoclonal antibody for radioimmunological imaging. The patients were divided into 5 groups of 5. Groups 1 through 5 received an infusion of 5, 10, 20, 40 or 80 mg. monoclonal antibody, respectively, 1 mg. of which was labeled to 5 mCi. of /sup 111/indium, while stable monoclonal antibody was added to achieve the desired antibody concentration. No patient had an allergic reaction, and no significant change in serial hemoglobin levels, platelet count, chemistry profile or results of urinalyses was noted. The monoclonal antibody scan visualized at least 1 lesion in 19 of 25 patients (76 per cent): 4 in groups 1 and 2, and all 15 in groups 3 to 5. With results of conventional radiography and bone scintigraphy considered definitive for metastases, monoclonal antibody scans detected 7 of 32 metastases (21.8 per cent) in group 3 (20 mg.), 31 of 58 (53.4 per cent) in group 4 (40 mg.) and 101 of 134 (75.4 per cent) in group 5 (80 mg). In group 5 the incidence of false positive and false negative scans was 2.3 per cent (3 of 132) and 24.6 per cent (33 of 134), respectively. The detection of metastatic lesions increased as the concentration of unlabeled monoclonal antibody increased. Radioimmunological imaging of prostatic cancer with antiprostatic acid phosphatase monoclonal antibody seems to be feasible.

  3. Cetuximab in combination with anti-human IgG antibodies efficiently down-regulates the EGF receptor by macropinocytosis

    SciTech Connect

    Berger, Christian; Madshus, Inger Helene; Stang, Espen

    2012-12-10

    The monoclonal antibody C225 (Cetuximab) blocks binding of ligand to the epidermal growth factor receptor (EGFR). In addition, it is known that incubation with C225 induces endocytosis of the EGFR. This endocytosis has previously been shown to be increased when C225 is combined with an additional monoclonal anti-EGFR antibody. However, the effects of antibody combinations on EGFR activation, endocytosis, trafficking and degradation have been unclear. By binding a secondary antibody to the C225-EGFR complex, we here demonstrate that a combination of antibodies can efficiently internalize and degrade the EGFR. Although the combination of antibodies activated the EGFR kinase and induced ubiquitination of the EGFR, the kinase activity was not required for internalization of the EGFR. In contrast to EGF-induced EGFR down-regulation, the antibody combination efficiently degraded the EGFR without initiating downstream proliferative signaling. The antibody-induced internalization of EGFR was found not to depend on clathrin and/or dynamin, but depended on actin polymerization, suggesting induction of macropinocytosis. Macropinocytosis may cause internalization of large membrane areas, and this could explain the highly efficient internalization of the EGFR induced by combination of antibodies. -- Highlight: Black-Right-Pointing-Pointer Cetuximab induced endocytosis of EGFR increases upon combination with anti-human IgG. Black-Right-Pointing-Pointer Antibody combination causes internalization of EGFR by macropinocytosis. Black-Right-Pointing-Pointer Antibody-induced internalization of EGFR is independent of EGFR kinase activity. Black-Right-Pointing-Pointer Antibody combination may have a zipper effect and cross-link EGFRs on neighboring cells.

  4. Two monoclonal antibodies raised against different epitopes of chloroplast fructose-1. 6-bisphosphatase (FBPase)

    SciTech Connect

    Hermoso, R.; Fonolla, J.; Lopez-Gorge, J. ); Ruiz-Cabello, F.; Garrido, F. )

    1990-05-01

    Two monoclonal antibodies (GR-BP5 and GR-BP8) were obtained by fusion of spleen cells of mice immunized against pea photosynthetic FBPase with cells of myeloma NSI. Both mAbs showed by double immunodiffusion a {chi} light chain, and the GR-BP8 secreted an IgM. By Western-blotting and immunoprecipitation of the in vivo labelled pea FBPase, GR-BP5 and GR-BP8 showed specificity for the chloroplast enzyme. Competition binding of the {sup 125}I-labelled mAbs against pea FBPase showed specific binding sites to different epitopes of the enzyme molecule. Cross reaction assays between both monoclonal antibodies and pea and spinach chloroplast FBPases showed a 90-100% homology in the corresponding epitopes of both enzymes. Preliminary assays showed a moderate inhibition of FBPase by GR-BP5 monoclonal antibody, but a weak enhancement by the GR-BP8 monoclonal one.

  5. Biotherapies in inflammatory ocular disorders: Interferons, immunoglobulins, monoclonal antibodies.

    PubMed

    Saadoun, D; Bodaghi, B; Bienvenu, B; Wechsler, B; Sene, D; Trad, S; Abad, S; Cacoub, P; Kodjikian, L; Sève, P

    2013-05-01

    Biotherapies used in clinical practice for the treatment of ophthalmologic manifestations of systemic diseases include interferons (IFN), intravenous immunoglobulins (IVIG) and monoclonal antibodies (anti-TNF, anakinra, tocilizumab and rituximab). Several open prospective studies have shown the effectiveness of IFN-α (78 to 98% complete remission) for the treatment of severe uveitis in Behcet's disease. IFN is capable of inducing prolonged remission and continued after his arrest, in 20-40% of patients. Side effects (flu-like, psychological effects) limit its use in practice. Anti-TNFα (infliximab and adalimumab) represents an attractive alternative therapeutic in severe uveitis refractory to immunosuppressants, especially in Behcet's disease. They are almost always (>90% of cases) and rapidly effective but their action is often suspensive. Anti-TNFα requires an extended prescription or takes over from another immunosuppressant once ocular inflammation has been controlled. IVIG are used for the treatment of Kawasaki disease and Birdshot disease. Several open or retrospective studies showed their effectiveness for the treatment of severe and refractory cicatricial pemphigoid. Tolerance of IVIG is good but their efficacy is transient. Rituximab showed an efficacy in few observations of various inflammatory eye diseases (uveitis, scleritis and idiopathic inflammatory pseudo-tumors or associated with granulomatosis with polyangiitis) and cicatricial pemphigoid. The risk of infection associated with this biotherapy limits its use in refractory diseases to conventional therapy. Anakinra (a soluble antagonist of IL-1R) showed interesting results in terms of efficiency in one small open study in Behcet's disease. Its safety profile is good and with a quick action that could be interesting for the treatment of severe uveitis.

  6. Mapping Broadly Reactive Norovirus Genogroup I and II Monoclonal Antibodies

    PubMed Central

    Crawford, Sue E.; Ajami, Nadim; Parker, Tracy Dewese; Kitamoto, Noritoshi; Natori, Katsuro; Takeda, Naokazu; Tanaka, Tomoyuki; Kou, Baijun; Atmar, Robert L.

    2014-01-01

    Noroviruses are responsible for most acute nonbacterial epidemic outbreaks of gastroenteritis worldwide. To develop cross-reactive monoclonal antibodies (MAbs) for rapid identification of genogroup I and II (GI and GII) noroviruses (NoVs) in field specimens, mice were immunized with baculovirus-expressed recombinant virus-like particles (VLPs) corresponding to NoVs. Nine MAbs against the capsid protein were identified that detected both GI and GII NoV VLPs. These MAbs were tested in competition enzyme-linked immunosorbent assays (ELISAs) to identify common epitope reactivities to GI and GII VLPs. Patterns of competitive reactivity placed these MAbs into two epitope groups (groups 1 and 2). Epitopes for MAbs NV23 and NS22 (group 1) and MAb F120 (group 2) were mapped to a continuous region in the C-terminal P1 subdomain of the capsid protein. This domain is within regions previously defined to contain cross-reactive epitopes in GI and GII viruses, suggesting that common epitopes are clustered within the P1 domain of the capsid protein. Further characterization in an accompanying paper (B. Kou et al., Clin Vaccine Immunol 22:160–167, 2015, http://dx.doi.org/10.1128/CVI.00519-14) revealed that MAb NV23 (epitope group 1) is able to detect GI and GII viruses in stool. Inclusion of the GI and GII cross-reactive MAb NV23 in antigen detection assays may facilitate the identification of GI and GII human noroviruses in stool samples as causative agents of outbreaks and sporadic cases of gastroenteritis worldwide. PMID:25428246

  7. Safety and immunotoxicity assessment of immunomodulatory monoclonal antibodies

    PubMed Central

    Morton, Laura Dill; Spindeldreher, Sebastian; Kiessling, Andrea; Allenspach, Roy; Hey, Adam; Muller, Patrick Y; Frings, Werner; Sims, Jennifer

    2010-01-01

    Most therapeutic monoclonal antibodies (mAbs) licensed for human use or in clinical development are indicated for treatment of patients with cancer and inflammatory/autoimmune disease and as such, are designed to directly interact with the immune system. A major hurdle for the development and early clinical investigation of many of these immunomodulatory mAbs is their inherent risk for adverse immune-mediated drug reactions in humans such as infusion reactions, cytokine storms, immunosuppression and autoimmunity. A thorough understanding of the immunopharmacology of a mAb in humans and animals is required to both anticipate the clinical risk of adverse immunotoxicological events and to select a safe starting dose for first-in-human (FIH) clinical studies. This review summarizes the most common adverse immunotoxicological events occurring in humans with immunomodulatory mAbs and outlines non-clinical strategies to define their immunopharmacology and assess their immunotoxic potential, as well as reduce the risk of immunotoxicity through rational mAb design. Tests to assess the relative risk of mAb candidates for cytokine release syndrome, innate immune system (dendritic cell) activation and immunogenicity in humans are also described. The importance of selecting a relevant and sensitive toxicity species for human safety assessment in which the immunopharmacology of the mAb is similar to that expected in humans is highlighted, as is the importance of understanding the limitations of the species selected for human safety assessment and supplementation of in vivo safety assessment with appropriate in vitro human assays. A tiered approach to assess effects on immune status, immune function and risk of infection and cancer, governed by the mechanism of action and structural features of the mAb, is described. Finally, the use of immunopharmacology and immunotoxicity data in determining a minimum anticipated biologic effect Level (MABEL) and in the selection of safe human

  8. Neutralizing monoclonal antibodies to an extracellular Pseudomonas cepacia protease.

    PubMed Central

    Kooi, C; Cox, A; Darling, P; Sokol, P A

    1994-01-01

    Pseudomonas cepacia produces at least two extracellular proteases with apparent molecular masses of 36,000 and 40,000 Da. The 36-kDa protease has high proteolytic activity and the 40-kDa protease has low proteolytic activity with hide powder azure as a substrate. Monoclonal antibodies (MAbs) were raised against the purified 36- and 40-kDa proteases. Several MAbs directed against the 36-kDa protease were found to recognize the 40-kDa protease by Western immunoblot analysis. Similarly, a MAb directed against the 40-kDa protease recognized the 36-kDa protease, suggesting that these two proteases may be immunologically related. A MAb directed against the 36-kDa protease, designated 36-6-8, and a MAb directed against the 40-kDa protease (MAb G-11) cross-reacted with other extracellular proteases, such as Pseudomonas aeruginosa elastase and alkaline protease, Pseudomonas pseudomallei protease, and the Vibrio cholerae hemagglutinin/protease. MAb 36-6-8 neutralized the P. cepacia 36-kDa protease, P. aeruginosa elastase, P. pseudomallei protease, and V. cholerae hemagglutinin/protease but did not affect P. aeruginosa alkaline protease activity. In contrast, MAb G-11 to the 40-kDa protease neutralized only the P. cepacia 36-kDa protease. This evidence suggests that the neutralizing MAb, 36-6-8, recognizes an epitope conserved among some metalloproteases. This epitope may lie at or near the active site of the P. cepacia 36-kDa protease and P. aeruginosa elastase. Images PMID:7516312

  9. Development of new versions of anti-human CD34 monoclonal antibodies with potentially reduced immunogenicity

    SciTech Connect

    Qian Weizhu; Wang Ling; Li Bohua; Wang Hao; Hou Sheng; Hong Xueyu; Zhang Dapeng; Guo Yajun

    2008-03-07

    Despite the widespread clinical use of CD34 antibodies for the purification of human hematopoietic stem/progenitor cells, all the current anti-human CD34 monoclonal antibodies (mAbs) are murine, which have the potential to elicit human antimouse antibody (HAMA) immune response. In the present study, we developed three new mouse anti-human CD34 mAbs which, respectively, belonged to class I, class II and class III CD34 epitope antibodies. In an attempt to reduce the immunogenicity of these three murine mAbs, their chimeric antibodies, which consisted of mouse antibody variable regions fused genetically to human antibody constant regions, were constructed and characterized. The anti-CD34 chimeric antibodies were shown to possess affinity and specificity similar to that of their respective parental murine antibodies. Due to the potentially better safety profiles, these chimeric antibodies might become alternatives to mouse anti-CD34 antibodies routinely used for clinical application.

  10. Human Monoclonal Antibodies Targeting Glypican-2 in Neuroblastoma | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute’s Laboratory of Molecular Biology (NCI LMB) have developed and isolated several single domain monoclonal human antibodies against GPC2. NCI seeks parties interested in licensing or co-developing GPC2 antibodies and/or conjugates.

  11. Development and Characterization of Monoclonal Antibodies and Aptamers Against Major Antigens of Mycobacterium avium subsp. paratuberculosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Specific antibodies, available in unlimited quantities, have not been produced against Mycobacterium avium subsp. paratuberculosis, the bacterium that causes Johne’s disease (JD). To fill this gap in JD research, monoclonal antibodies (mAbs) against M. avium subsp. paratuberculosis were produced fr...

  12. New Stx2e monoclonal antibodies for immunological detection and distinction of Stx2 subtypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Stx2e is a primary virulence factor in STEC strains that cause edema disease in neonatal piglets. Though Stx2a and Stx2e are similar, most antibody-based Stx detection kits are designed to detect Stx2a and do not recognize the Stx2e subtype. Methods and Findings Four monoclonal antibodie...

  13. Prophylaxis and therapy of influenza pneumonia in mice by intratracheal instillation of monoclonal antibody

    SciTech Connect

    Ratcliffe, D.R.

    1985-01-01

    This study on passive immunity dealt principally with the following topics: pathogenesis of the pneumonia produced by influenza virus (PR8) in CF-1 mice; the distribution and retention of monoclonal antibody instilled intratracheally (IT) into the lung; and prophylaxis and therapy of influenza pneumonia using specific monoclonal antibody (IgG 2a/k anti-HA). The fate of a single 50 ul bolus of antibody instilled IT was determined by monitoring the activity of /sup 125/I-labelled monoclonal IgG in the lungs and by lavage recovery of functional antibody.Antibody was demonstrated in high concentrations for the first 3 days and was present in the lungs for a period of 7 days. For prophylaxis several trials indicated that monoclonal antibody provided significant protection from lethal effects of the virus. Antibody given to clinically ill mice on day 3 produced a highly significant reduction in mortality (P < 0.001) when compared to control mice. The treatment reversed the weight loss and apparently arrested the development of lesions in most of the mice within 2 days following antibody administration.

  14. Serologic and topographic characterization of idiotopes on murine monoclonal anti-streptococcal group A carbohydrate antibodies.

    PubMed

    Greenspan, N S; Davie, J M

    1985-02-01

    We have employed five spectrotypically distinct monoclonal anti-variable region antibodies in the definition and characterization of a set of idiotopes expressed on murine monoclonal antibodies specific for streptococcal group A carbohydrate (GAC). By evaluating which of a panel of monoclonal anti-GAC antibodies were bound by the various anti-idiotopes, we observed four distinct reactivity profiles for the five anti-idiotopes ranging from highly restricted (binding of the homologous anti-GAC monoclonal antibody only) to broadly cross-reactive (binding of 18 of the 38 IgG3 anti-GAC antibodies). With N-acetyl-D-glucosamine and soluble GAC used as haptens, this spectrum of reactivity profiles was paralleled by a gradient of susceptibility to hapten inhibition of anti-idiotope binding to idiotope. The degree of cross-reactivity exhibited by a given anti-idiotope was found to be inversely related to its susceptibility to hapten inhibition. The topographic relationships among the idiotopes, defined by the results of competitive binding assays, were suggestive of a linear idiotope map spanning the variable region from the antigen-binding site to the vicinity of the constant region. Additional data from competitive inhibition assays with isolated and recombined H and L chains from a prototype monoclonal anti-GAC antibody (HGAC 39), and from isoelectric focusing of whole or reduced and alkylated HGAC 39, suggested that one of the idiotopes was located, at least primarily, on the VL domain.

  15. Immunodiagnosis of human cysticercosis (Taenia solium) with antigens purified by monoclonal antibodies.

    PubMed Central

    Nascimento, E; Tavares, C A; Lopes, J D

    1987-01-01

    Monoclonal antibodies were generated from mice immunized with scolex protein antigen of Cysticercus cellulosae. Three monoclonal antibodies specific for cysticercal antigens, which did not show any cross-reactivity with Taenia solium or Taenia saginata antigens, were selected. Each monoclonal antibody coupled to Sepharose could purify one antigen, which appeared as a single band on polyacrylamide gel electrophoresis. When antigens purified by monoclonal antibodies were used to detect antibody in serum samples taken from patients with cysticercosis, taeniasis, and other parasitic infections in an enzyme-linked immunosorbent assay, cross-reactivity was observed until a serum dilution of 1:128 was reached. Since serum samples from unexposed subjects showed positive reactions until a dilution of 1:64 was reached, we chose a discriminative dilution (1:128) above which no cross-reaction was observed. The percent positive serum samples from cysticercosis patients was 100% by the enzyme-linked immunosorbent assay with any of the antigens purified by monoclonal antibodies. Images PMID:3611310

  16. A Spectrum of Monoclonal Antibodies Reactive with Human Mammary Tumor Cells

    NASA Astrophysics Data System (ADS)

    Colcher, D.; Horan Hand, P.; Nuti, M.; Schlom, J.

    1981-05-01

    Splenic lymphocytes of mice, immunized with membrane-enriched fractions of metastatic human mammary carcinoma tissues, were fused with the NS-1 non-immunoglobulin-secreting murine myeloma cell line. This resulted in the generation of hybridoma cultures secreting immunoglobulins reactive in solid-phase radioimmunoassays with extracts of metastatic mammary carcinoma cells from involved livers, but not with extracts of apparently normal human liver. As a result of further screening of immunoglobulin reactivities and double cloning of cultures, 11 monoclonal antibodies were chosen that demonstrated reactivities with human mammary tumor cells and not with apparently normal human tissues. These monoclonal antibodies could be placed into at least five major groups on the basis of their differential binding to the surface of various live human mammary tumor cells in culture, to extracts of mammary tumor tissues, or to tissue sections of mammary tumor cells studied by the immunoperoxidase technique. Whereas a spectrum of reactivities to mammary tumors was observed with the 11 monoclonal antibodies, no reactivity was observed to apparently normal cells of the following human tissues: breast, lymph node, lung, skin, testis, kidney, thymus, bone marrow, spleen, uterus, thyroid, intestine, liver, bladder, tonsils, stomach, prostate, and salivary gland. Several of the antibodies also demonstrated a ``pancarcinoma'' reactivity, showing binding to selected non-breast carcinomas. None of the monoclonal antibodies showed binding to purified ferritin or carcinoembryonic antigen. Monoclonal antibodies of all five major groups, however, demonstrated binding to human metastatic mammary carcinoma cells both in axillary lymph nodes and at distal sites.

  17. Optimized Expression and Purification of Humbug in Pichia pastoris and Its Monoclonal Antibody Preparation

    PubMed Central

    HUYAN, Ting; TANG, Ruihua; LI, Jing; LI, Qi; XUE, Xiaoping; YANG, Hui

    2015-01-01

    Background: The humbug gene is a truncated isoform of Aspartyl β-hydroxylase (ASPH) gene that is overexpressed in many human malignancies. In recent years, since humbug has received increasing attention, it is considered as a potential therapeutic molecular target. Therefore, it is necessary for preparing humbug protein and its monoclonal antibody to investigate its structure and function. Method: The optimized humbug gene, synthesized by Genscript in Nanjing, China on December 21st 2013, was expressed in Pichia pastoris cells that were cultured in a 10-L bioreactor. The recombinant protein was further obtained and purified by using ion exchange chromatography and Sephadex G75. The humbug protein was used to immunize Balb/c mice to generate the monoclonal antibodies. The specificity and sensitivity of the monoclonal antibodies were assessed by indirect enzyme-linked immunosorbent assay. Finally, the humbug monoclonal antibodies were used to detect the expression of humbug in several tumor cell lines via indirect immunofluorescence. Results: Firstly, the recombinant humbug was expressed in P. pastoris successfully and efficiently by using a gene-optimized strategy. Secondly, the purification process of humbug was established via multiple chromatography methods. In addition, four monoclonal antibodies against humbug were obtained from the immunized Balb/c mice, and the result of indirect immunofluorescence was indicated that the humbug monoclonal antibody showed the high affinity with humbug protein, which expressed in several tumor cell lines. Conclusion: The over-expression of recombinant humbug provides adequate sources for its structural study and the preparation of the humbug-specific monoclonal antibody can potentially be used in tumor initial diagnosis and immunotherapy. PMID:26811814

  18. Rescue and expression of human immunoglobulin genes to generate functional human monoclonal antibodies.

    PubMed

    Lewis, A P; Parry, N; Peakman, T C; Crowe, J S

    1992-07-01

    Human monoclonal antibody production has been hampered for many years by the instability of cell lines and low levels of expression of the antibodies. We describe here the rescue of human immunoglobulin genes utilizing micro-mRNA preparation from a small number of human hybridoma cells and conventional cDNA cloning. This allows cloning and immediate high-level expression from full-length human heavy and light chain cDNA molecules and provides a mechanism to rescue whole human monoclonal antibodies of proven efficacy.

  19. Combining Phage and Yeast Cell Surface Antibody Display to Identify Novel Cell Type-Selective Internalizing Human Monoclonal Antibodies.

    PubMed

    Bidlingmaier, Scott; Su, Yang; Liu, Bin

    2015-01-01

    Using phage antibody display, large libraries can be generated and screened to identify monoclonal antibodies with affinity for target antigens. However, while library size and diversity is an advantage of the phage display method, there is limited ability to quantitatively enrich for specific binding properties such as affinity. One way of overcoming this limitation is to combine the scale of phage display selections with the flexibility and quantitativeness of FACS-based yeast surface display selections. In this chapter we describe protocols for generating yeast surface antibody display libraries using phage antibody display selection outputs as starting material and FACS-based enrichment of target antigen-binding clones from these libraries. These methods should be widely applicable for the identification of monoclonal antibodies with specific binding properties. PMID:26060069

  20. Virus mutation frequencies can be greatly underestimated by monoclonal antibody neutralization of virions.

    PubMed Central

    Holland, J J; de la Torre, J C; Steinhauer, D A; Clarke, D; Duarte, E; Domingo, E

    1989-01-01

    Monoclonal antibody-resistant mutants have been widely used to estimate virus mutation frequencies. We demonstrate that standard virion neutralization inevitably underestimates monoclonal antibody-resistant mutant genome frequencies of vesicular stomatitis virus, due to phenotypic masking-mixing when wild-type (wt) virions are present in thousandsfold greater numbers. We show that incorporation of antibody into the plaque overlay medium (after virus penetration at 37 degrees C) can provide accurate estimates of genome frequencies of neutral monoclonal antibody-resistant mutant viruses in wt clones. By using this method, we have observed two adjacent G----A base transition frequencies in the I3 epitope to be of the order of 10(-4) in a wt glycine codon. This appears to be slightly lower than the frequencies observed at other sites for total (viable and nonviable) virus genomes when using a direct sequence approach. Images PMID:2479770

  1. Monoclonal antibodies to Chlamydia psittaci guinea pig inclusion conjunctivitis (GPIC) strain.

    PubMed

    Cherian, P V; Magee, W E

    1990-03-01

    Monoclonal antibodies to a strain of Chlamydia psittaci isolated from guinea pig inclusion conjunctivitis (GPIC) were developed. Only five of the 15 hybridomas isolated produced antibodies specific for the GPIC strain, while seven others produced antibodies which cross reacted with other strains and another species. Strain-specific and species-specific monoclonal antibodies were isotyped as IgG2a and IgG3, respectively. It appears that the GPIC strain has at least two epitopes, one of which is specific for the strain and the other common to the species. These monoclonal reagents may be used to immunotype GPIC agents, better than available methods and may be of potential use in the development of vaccines against chlamydial infections.

  2. Diffusion and binding of monoclonal antibody TNT-1 in multicellular tumor spheroids

    SciTech Connect

    Cheng, F.M.; Hansen, E.B.; Taylor, C.R.; Epstein, A.L. )

    1991-02-06

    Tumor spheroids of HT-29 human colon adenocarcinoma and A375 melanoma were established to investigate the uptake and clearance kinetics of TNT-1, a monoclonal antibody that targets necrotic cells of tumors. Our data reveal that there was rapid uptake of TNT-1 and its F(ab')2 fragment in both spheroid models, whereas an antibody of irrelevant specificity, Lym-1, and its F(ab')2 fragment bound poorly to the spheroids. Unlike previously reported monoclonal antibodies to tumor cell-surface antigens, TNT-1 showed (1) a linear uptake that increased over time without saturation in tumor spheroids and (2) an unexpected uptake by a subpopulation of cells in the viable outer rim of the spheroids. These preclinical studies provide important information concerning the therapeutic potential of TNT monoclonal antibodies for the treatment of cancer and micrometastases.

  3. Radioimmunoassay for detecting antibodies against murine malarial parasite antigens: monoclonal antibodies recognizing Plasmodium yoelii antigens

    SciTech Connect

    Kim, K.J.; Taylor, D.W.; Evans, C.B.; Asofsky, R.

    1980-12-01

    A solid-phase radioimmunoassay (SPRIA) in microtiter wells was established for detecting antibodies against Plasmodium yoelii Ag. The SPRIA was found (1) to require as little as 5 ..mu..g of crude parasite Ag per well, (2) to be able to detect 0.5 ng of monoclonal Ab, and (3) to be 10/sup 4/ times more sensitive than the indirect fluorescent Ab staining technique. In a modification of the above assay using intact RBC as an Ag, hyperimmune serum showed significant binding to the surface of erythrocytes of mice infected with P. yoelii parasites but not to RBC of normal mice. Hybridomas were prepared by fusing infected mouse spleen cells with myeloma cells. Using the SPRIA, hybrids secreting Ab against P. yoelii 17XL Ag were detected.

  4. A monoclonal antibody to human immunodeficiency virus type 1 which mediates cellular cytotoxicity and neutralization.

    PubMed Central

    Broliden, P A; Ljunggren, K; Hinkula, J; Norrby, E; Akerblom, L; Wahren, B

    1990-01-01

    Monoclonal antibodies (MAbs) were raised against human immunodeficiency virus type 1 gp120. One MAb, P4/D10, was found to mediate highly efficient antibody-dependent cellular cytotoxicity and virus neutralization. The reactivity was located to a major neutralizing region (amino acids 304 to 323) on gp120. Five other MAbs with a similar epitopic reactivity did not show any antibody-dependent cellulan cytotoxicity activity but had a virus-neutralizing capacity. PMID:2296090

  5. Neutralization of diverse HIV-1 strains by monoclonal antibodies raised against a gp41 synthetic peptide.

    PubMed

    Dalgleish, A G; Chanh, T C; Kennedy, R C; Kanda, P; Clapham, P R; Weiss, R A

    1988-07-01

    Three IgM monoclonal antibodies raised against synthetic peptide analogs of a hydrophilic region of the gp41 transmembrane env protein of HIV-1 neutralize different HIV-1 isolates but not HIV-2 isolates, as determined by HIV titration and by syncytial inhibition assays. VSV (HIV-1) pseudotypes, however, were not neutralized, indicating that gp41 was not accessible to these antibodies on the pseudotype particles. The antibodies affect early steps in adsorption and penetration of HIV-1.

  6. Targeting Cancer Micrometastases with Monoclonal Antibodies: A Binding-Site Barrier

    NASA Astrophysics Data System (ADS)

    Saga, Tsuneo; Neumann, Ronald D.; Heya, Toshiro; Sato, Jun; Kinuya, Seigo; Le, Nhat; Paik, Chang H.; Weinstein, John N.

    1995-09-01

    Monoclonal antibodies penetrate bulky tumors poorly after intravenous administration, in part because of specific binding to the target antigen. Experiments presented here demonstrate an analogous phenomenon in micrometastases; poor antibody penetration, attributable to a "binding-site barrier" phenomenon, can be seen in guinea pig micrometastases as small as 300 μm in diameter. Increasing the dose of antibody can partially overcome this limitation, but at a cost in specificity.

  7. Evaluation of Ion Mobility-Mass Spectrometry for Comparative Analysis of Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Ferguson, Carly N.; Gucinski-Ruth, Ashley C.

    2016-05-01

    Analytical techniques capable of detecting changes in structure are necessary to monitor the quality of monoclonal antibody drug products. Ion mobility mass spectrometry offers an advanced mode of characterization of protein higher order structure. In this work, we evaluated the reproducibility of ion mobility mass spectrometry measurements and mobiligrams, as well as the suitability of this approach to differentiate between and/or characterize different monoclonal antibody drug products. Four mobiligram-derived metrics were identified to be reproducible across a multi-day window of analysis. These metrics were further applied to comparative studies of monoclonal antibody drug products representing different IgG subclasses, manufacturers, and lots. These comparisons resulted in some differences, based on the four metrics derived from ion mobility mass spectrometry mobiligrams. The use of collision-induced unfolding resulted in more observed differences. Use of summed charge state datasets and the analysis of metrics beyond drift time allowed for a more comprehensive comparative study between different monoclonal antibody drug products. Ion mobility mass spectrometry enabled detection of differences between monoclonal antibodies with the same target protein but different production techniques, as well as products with different targets. These differences were not always detectable by traditional collision cross section studies. Ion mobility mass spectrometry, and the added separation capability of collision-induced unfolding, was highly reproducible and remains a promising technique for advanced analytical characterization of protein therapeutics.

  8. Human peripheral blood monocytes display surface antigens recognized by monoclonal antinuclear antibodies

    SciTech Connect

    Holers, V.M.; Kotzin, B.L.

    1985-09-01

    The authors used monoclonal anti-nuclear autoantibodies and indirect immunofluorescence to examine normal human peripheral blood mononuclear leukocytes for the presence of cell surface nuclear antigens. Only one monoclonal anti-histone antibody (MH-2) was found to bind to freshly isolated PBL, staining approximately 10% of large cells. However, after cells were placed into culture for 16-24 h, a high percentage (up to 60%) of large-sized cells were recognized by an anti-DNA (BWD-1) and several different antihistone monoclonal antibodies (BWH-1, MH-1, and MH-2). These antibodies recognize separate antigenic determinants on chromatin and histones extracted from chromatin. The histone antigen-positive cells were viable, and the monoclonal antibodies could be shown to be binding to the cell surface and not to the nucleus. Using monoclonal antibodies specific for monocytes and T cells, and complement-mediated cytotoxicity, the cells bearing histone antigens were shown to be primarily monocytes. The appearance of histone and DNA antigen-positive cells was nearly completely inhibited by the addition of low concentrations of cycloheximide at initiation of the cultures. In contrast, little effect on the percentage of positive cells was detected if cells were exposed to high doses of gamma irradiation before culture. These data further support the existence of cell surface nuclear antigens on selected cell subsets, which may provide insight into the immunopathogenesis of systemic lupus erythematosus and related autoimmune diseases.

  9. Monoclonal antibody against Porphyromonas (Bacteroides) endodontalis lipopolysaccharide and application of the antibody for direct identification of the species.

    PubMed Central

    Hanazawa, S; Sagiya, T; Kitami, H; Ohta, K; Nishikawa, H; Kitano, S

    1991-01-01

    The aim of the present study was to develop a monoclonal antibody that recognizes the shared antigen of Porphyromonas endodontalis so that we could use the antibody in direct identification and detection of P. endodontalis in infectious material from apical periodontal patients. We established a hybridoma cell line producing monoclonal antibody (BEB5) specific for P. endodontalis. BEB5 antibody reacted with all of the P. endodontalis strains tested, but not with any of the other black-pigmented Porphyromonas and Bacteroides spp. The antibody reacted specifically with the lipopolysaccharide (LPS) of three P. endodontalis strains of different serotypes (O1K1, O1K2, and O1K-). Western blotting (immunoblotting) analysis confirmed the specificity of the antibody to these LPSs, because the antibody recognized the typical "repetitive ladder" pattern characteristic of LPS on sodium dodecyl sulfate-polyacrylamide electrophoretic gels. These observations demonstrate that P. endodontalis LPS is the shared antigen of this species. The antibody can specifically identify P. endodontalis on nitrocellulose membrane blots of bacterial colonies grown on agar. The antibody is also capable of directly detecting the presence of P. endodontalis in infectious material by immunoslot blot assay. These results indicate that LPS is the shared antigen of P. endodontalis and that BEB5 antibody against LPS is a useful one for direct identification and detection of the organisms in samples from apical periodontal patients. Images PMID:1774262

  10. Production of monoclonal antibodies recognizing cancer-associated antigens expressed on mucin-type sugar chains.

    PubMed

    Kurosaka, A; Ikeda, K; Sakuragi, N; Fujimoto, S

    1994-09-30

    To obtain monoclonal antibodies directed to mucin-type sugar chains, mice were immunized with bovine submaxillary mucin (BSM) that had been conjugated with ovalbumin. Conjugation of BSM with ovalbumin enhanced the antigenicity of BSM to about five to ten times that of intact BSM and resulted in the establishment of ten hybridomas, all of which secreted monoclonal antibodies toward BSM. Most of the antibodies secreted by these hybridomas did not react with glycolipids but did react with glycoproteins. Several antibodies lost their reactivity when sialic acid residues were removed from BSM, indicating that these antibodies recognize carbohydrate moieties of mucins. Immunohistochemical studies revealed that three of the antibodies recognized human ovarian cancer-associated carbohydrate antigens. In addition, one of these three antibodies reacted with a human cultured colonic cancer cell line. The protocol described in this paper was effective in producing monoclonal antibodies that recognize mucin-carbohydrates and some of the generated antibodies can be applied to the detection of cancers.

  11. Immunohistochemical characterization of 53 monoclonal antibodies to prostate-specific antigen.

    PubMed

    Nap, M; van der Kwast, T M

    1999-01-01

    Fifty-three antibodies submitted to the ISOBM TD-3 Workshop on the prostate specific antigen (PSA) were evaluated for their reactivity in frozen and formalin fixed tissue from benign hyperplastic prostate and salivary gland tissue. Only 13/53 antibodies showed clear reactivity in both frozen and paraffin sections, while some antibodies appeared to react only in formalin-fixed paraffin sections. Many antibodies showed extensive nonspecific reactivity in tissue sections. These results highlight the fact that the number of monoclonal antibodies suitable for immunohistochemical detection of PSA is still relatively limited.

  12. Human peripheral blood monocytes display surface antigens recognized by monoclonal antinuclear antibodies.

    PubMed Central

    Holers, V M; Kotzin, B L

    1985-01-01

    We used monoclonal anti-nuclear autoantibodies and indirect immunofluorescence to examine normal human peripheral blood mononuclear leukocytes for the presence of cell surface nuclear antigens. Only one monoclonal anti-histone antibody (MH-2) was found to bind to freshly isolated PBL, staining approximately 10% of large cells. However, after cells were placed into culture for 16-24 h, a high percentage (up to 60%) of large-sized cells were recognized by an anti-DNA (BWD-1) and several different antihistone monoclonal antibodies (BWH-1, MH-1, and MH-2). These antibodies recognize separate antigenic determinants on chromatin and histones extracted from chromatin. None of the monoclonal autoantibodies appeared to bind to a significant percentage of cells of relatively small cell size, either before or after culture. The histone antigen-positive cells were viable, and the monoclonal antibodies could be shown to be binding to the cell surface and not to the nucleus. Further experiments, including those using aggregated Ig to block antibody binding, strongly indicated that anti-histone antibody binding was not Fc receptor mediated. Using monoclonal antibodies specific for monocytes and T cells, and complement-mediated cytotoxicity, the cells bearing histone antigens were shown to be primarily monocytes. The appearance of histone and DNA antigen-positive cells was nearly completely inhibited by the addition of low concentrations (0.25 micrograms/ml) of cycloheximide at initiation of the cultures. In contrast, little effect on the percentage of positive cells was detected if cells were exposed to high doses of gamma irradiation before culture. These data further support the existence of cell surface nuclear antigens on selected cell subsets, which may provide insight into the immunopathogenesis of systemic lupus erythematosus and related autoimmune diseases. Images PMID:3876357

  13. Monoclonal antibodies against an identical short peptide sequence shared by two unrelated proteins.

    PubMed

    Schulze-Gahmen, U; Wilson, I A

    1989-01-01

    Antipeptide antibodies provide the opportunity to explore the molecular basis for antigen-antibody recognition and to test theories of immune recognition. We investigated the possibility of raising monoclonal antipeptide antibodies against a specific epitope consisting of six amino acid residues, which is common to two unrelated proteins. The goal of this investigation was to analyze the reactivity of these epitope specific antibodies towards the same sequence in these two different proteins. A correlation between antibody reactivity and secondary structures of the same peptide sequence in different proteins could help to understand the ability of antipeptide antibodies to react with their cognate sequence in intact folded proteins. Monoclonal antibodies were raised against one hexamer sequence, PGTAPK, that is present in both thioredoxin and Fab New lambda-light chain. The antipeptide antibodies reacted only with thioredoxin but not with Fab New in ELISA's, immune precipitation and Western blots. Determination of the antibody specificity through binding tests with peptide analogs revealed the influence of the residue N-terminal from the hexamer epitope on antibody binding. Because of the observed influence of the N-1 adjacent residue in peptide analogs, the discrimination between the protein antigens could not be interpreted clearly as the result of the different hexamer conformations present in the native structures of the two proteins. However, analysis of the antibody reactivity with peptide analogs with varying "frame residues" surrounding the hexamer epitope indicates the possible discrimination of different peptide conformations by the antibody.

  14. Development, characterization, and use of monoclonal and polyclonal antibodies against the myxosporean, Ceratomyxa shasta

    USGS Publications Warehouse

    Bartholomew, J.L.; Rohovec, J.S.; Fryer, J.L.

    1989-01-01

    Both monoclonal and polyclonal antisera were produced against Ceratomyxa shasta. Ascites containing trophozoites of the parasite was collected from infected fish and used as antigen for immunization of mice. The resulting monoclonal antibodies reacted specifically with trophozoite and sporoblast stages but did not react with C. shasta spores by either indirect fluorescent antibody techniques or in Western blots. This indicates that some C. shasta antigens are specific to certain life stages of the parasite. Polyclonal antiserum was produced in a rabbit by injecting a spore protein electro-eluted from an SDS-polyacrylamide gel. This antiserum reacted with both trophozoites and spores by indirect fluorescent antibody techniques and in Western blots. All antisera were tested for cross-reactivity to trout white blood cells, a contaminant of the ascites, and to other myxosporea. Two monoclonal antibodies reacted with white blood cells and myxosporea of the genera Sphaerospora and Myxobilatus. One hybridoma produced antibodies of high specificity for C. shasta pre-spore stages. This is the first report of a monoclonal antibody produced against a myxosporean parasite.

  15. Monoclonal antibodies directed against human Rh antigens in tests with the red cells of nonhuman primates.

    PubMed

    Socha, W W; Ruffie, J

    1990-01-01

    Monoclonal antibodies against Rh related antigens on human red cells often crossreact with the red cells of the highest subhuman primate species. Depending on specificity of antibody, the species tested, and technique used, these reactions can be either species-specific or type specific. In tests with chimpanzee red cells, some of the latter type reactions have specificities related to the R antigen of the R-C-E-F blood group system of chimpanzee; specificities of some others seem to be unrelated to any known chimpanzee blood groups. Monoclonal anti-D reagents that give uniformly positive reactions with human D-positive (common and rare types) red cells, display wide individual differences in tests with chimpanzee blood. This indicates that there are minute structural variations of antibody molecules from one monoclonal anti-D antibodies apparently have no bearing on recognition of the D combining site on the human red cells, but come into play when in contact with chimpanzee rbcs. Some of the monoclonal antibodies directed against Rh and LW molecules are distinguished by unusually strong reactions with the red cells of the Old World monkeys (macaques and baboons), which is in contrast with negative or weak reactions of the same antibodies with the red cells of anthropoid apes and human bloods. One may recall, that polyclonal anti-Rh sera do not react with the blood of rhesus monkeys, the phenomenon that was the source of controversy surrounding the discovery of the rhesus factor of the human blood.

  16. Boronated monoclonal antibody 225. 28S for potential use in neutron capture therapy of malignant melanoma

    SciTech Connect

    Tamat, S.R.; Moore, D.E.; Patwardhan, A.; Hersey, P. )

    1989-07-01

    The concept of conjugating boron cluster compounds to monoclonal antibodies has been examined by several groups of research workers in boron neutron capture therapy (BNCT). The procedures reported to date for boronation of monoclonal antibodies resulted in either an inadequate level of boron incorporation, the precipitation of the conjugates, or a loss of immunological activity. The present report describes the conjugation of dicesium-mercapto-undecahydrododecaborate (Cs2B12H11SH) to 225.28S monoclonal antibody directed against high molecular weight melanoma-associated antigens (HMW-MAA), using poly-L-ornithine as a bridge to increase the carrying capacity of the antibody and to minimize change in the conformational structure of antibody. The method produces a boron content of 1,300 to 1,700 B atoms per molecule 225.28S while retaining the immunoreactivity. Characterization in terms of the homogeneity of the conjugation of the boron-monoclonal antibody conjugates has been studied by gel electrophoresis and ion-exchange HPLC.

  17. Human monoclonal antibody to a neuroectodermal tumor antigen (OFA-I-2).

    PubMed

    Katano, M; Sidell, N; Irie, R F

    1983-01-01

    Human IgM kappa monoclonal antibody to human tumors of neuroectodermal origin was produced in the spent medium of an Epstein-Barr virus-transformed B-lymphoblastoid cell line, L72. Chemically, the antigen was identified as ganglioside GD2 [Gal NAc beta 1----4 (Neu Ac alpha 2----8 Neu Ac alpha 2---3) Gal beta 1----4 Glc----ceramide]. Twenty-seven mg of pure human IgM were obtained from 10 liters of L72 spent medium using salt and hypotonic precipitation, ultracentrifugation, and Sephacryl-S 300 superfine gel filtration. The monoclonal origin of the antibody was determined by agarose isoelectrofocusing. This human monoclonal antibody may be a particularly useful reagent for immunotherapy trials in cancer patients.

  18. The effect of space flight on monoclonal antibody synthesis in a hybridoma mouse cell line

    NASA Technical Reports Server (NTRS)

    Smiley, S. A.; Gillock, E. T.; Black, M. C.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1997-01-01

    The hybridoma cell line, 3G10G5, producing a monoclonal antibody to the major capsid protein VP1 from the avian polyomavirus budgerigar fledgling disease virus, was produced from a Balb/C mouse. This cell line was used to test the effects of microgravity on cellular processes, specifically protein synthesis. A time course study utilizing incorporation of [35S]methionine into newly synthesized monoclonal antibody was performed on STS-77. After 5.5 days, it was observed that cell counts for the samples exposed to microgravity were lower than those of ground-based samples. However, radiolabel incorporation of the synthesized monoclonal antibody was similar in both orbiter and ground control samples. Overall, microgravity does not seem to have an effect on this cell line's ability to synthesize IgG protein.

  19. A monoclonal antibody for distinction of invasive and noninvasive clinical isolates of Entamoeba histolytica.

    PubMed Central

    Gonzalez-Ruiz, A; Haque, R; Rehman, T; Aguirre, A; Jaramillo, C; Castañon, G; Hall, A; Guhl, F; Ruiz-Palacios, G; Warhurst, D C

    1992-01-01

    Approximately 10% of the world population is infected with Entamoeba histolytica, but only 10% of the carriers develop symptomatic amebiasis. This discrepancy could be explained by the genotypic differences between the morphologically indistinguishable invasive and noninvasive strains of E. histolytica currently identified by zymodeme analysis, a technique that is unsuitable for routine diagnostic laboratories. Here we report the production of a monoclonal antibody against E. histolytica and its use in an immunofluorescence assay to identify invasive isolates cultured from stool samples of infected patients in several regions where amebiasis is endemic: Bangladesh, Colombia, and Mexico. After testing a total of 88 E. histolytica isolates, the correlation between zymodeme characterization and the immunofluorescence assay with the invasive isolate-specific monoclonal antibody was 100%. The epitope detected by the invasive isolate-specific monoclonal antibody resides in a previously undescribed internal protein with molecular masses of 84 and 81 kDa in axenic and polyxenic E. histolytica strains, respectively. Images PMID:1452651

  20. Development of monoclonal antibodies against parathyroid hormone: genetic control of the immune response to human PTH

    SciTech Connect

    Nussbaum, S.R.; Lin, C.S.; Potts, J.T. Jr.; Rosenthal, A.S.; Rosenblatt, M.

    1985-01-01

    Seventeen monocloanl antibodies against the aminoterminal portion of parathyroid hormone (PTH) were generated by using BALB/c mouse for immunization fully biologically active synthetic human PTH-(1-34) and bovine PTH-(1-84) as immunogens, monoclonal antibody methods, and a solid-phase screening assay. Isotypic analysis of these monoclonal antibodies was performed using affinity purified goat antimouse immunoglobulins specific for IgG heavy chains and ..mu..(IgM). All antibodies were IgM as evidenced by 40 times greater than background activity when 25,000 cpm of /sup 125/I-labelled goat anti-mouse IgM was used as second antibody in a radioimmunoassay.

  1. The Cloning and Expression of Human Monoclonal Antibodies: Implications for Allergen Immunotherapy.

    PubMed

    James, Louisa K

    2016-02-01

    Allergic responses are dependent on the highly specific effector functions of IgE antibodies. Conversely, antibodies that block the activity of IgE can mediate tolerance to allergen. Technologies that harness the unparalleled specificity of antibody responses have revolutionized the way that we diagnose and treat human disease. This area of research continues to advance at a rapid pace and has had a significant impact on our understanding of allergic disease. This review will present an overview of humoral responses and provide an up-to-date summary of technologies used in the generation of human monoclonal antibodies. The impact that monoclonal antibodies have on allergic disease will be discussed, with a particular focus on allergen immunotherapy, which remains the only form of treatment that can modulate the underlying immune mechanisms and induce long-term clinical tolerance. PMID:26780523

  2. Monoclonal antibodies that demonstrate specificity for several types of human lung cancer.

    PubMed Central

    Cuttitta, F; Rosen, S; Gazdar, A F; Minna, J D

    1981-01-01

    Monoclonal antibodies with selectivity for human lung cancer were produced by immunizing BALB/c mice with an established line of human small cell lung cancer (NCI-H69) and fusing the mouse spleen cells to mouse myeloma line X63-Ag8.653. The resulting hybrid cells were initially screened by immunoautoradiography for production of antibodies that would react with NCI-H69 and another small cell lung cancer line (NCI-H128) but not its autologous B-lymphoblastoid line (NCI-H128BL). Stable monoclonal antibody-producing lines were isolated by repeated cloning. Three independently derived monoclonal antibodies, designated 525A5, 534F8, and 538F12, were found to react with three of the major types of human lung cancer (small cell, adenocarcinoma, and squamous carcinoma). They did not react with bronchioloalveolar and large cell lung cancers, myeloma, lymphomas, leukemias, osteogeneic sarcoma, mesothelioma, hypernephroma, malignant melanoma, simian virus 40-transformed human fetal lung cells, skin fibroblast lines, human B-lymphoblastoid lines, human erythrocytes, and rodent cells. Interestingly, these antibodies also bound to three out of three human neuroblastomas and two out of three breast cancers but failed to react with mouse neuroblastoma and rat pheochromocytoma. The monoclonal antibodies reacted with human small cell lung cancer tumors obtained at autopsy, but had insignificant reactions with normal human lung, liver, spleen, and skeletal muscle. We conclude that monoclonal antibodies have been generated that react with common antigenic determinants expressed on several human lung cancer types, neuroblastoma, and some breast cancers, but are not detectable by our current assays on a variety of other human tumors or normal adult human tissues. Such antibodies are of potential clinical and biological importance. PMID:6270685

  3. Characterization of a Monoclonal Antibody Against CREPT, a Novel Protein Highly Expressed in Tumors

    PubMed Central

    Ren, Fangli; Wang, Ruoke; Zhang, Yanquan; Liu, Chunxiao; Wang, Yinyin; Hu, Jim; Zhang, Linqi

    2014-01-01

    CREPT (cell-cycle related and expression-elevated protein in tumor), a novel gene also called RPRD1B and C20ORF77, was recently identified to promote tumorigenesis through up-regulation of the expression of genes related to cell cycle. The previous study demonstrated that CREPT is highly expressed in a variety of tumors and enhances the expression of Cyclin D1 by promoting the formation of a chromatin loop. To study the correlation of CREPT expression with clinical factors in different tumors, we generated a monoclonal antibody (3E10) using purified recombinant human GST-CREPT protein as an antigen. In this study, we characterized the specificity of the monoclonal antibody and cloned the gene encoding the antibody for preparation of industrial production. Our results showed that the monoclonal antibody 3E10 was sensitive and specific to recognize human endogenous CREPT protein. We have mapped the epitope of the antibody and cloned the variable region sequence of the gene encoding the antibody. We confirmed that the cloned gene produced an equivalent antibody as that produced by the original hybridoma. This study provided a basis for large-scale production of the CREPT antibody, which will be useful for the study of the role of CREPT in different tumors. PMID:25545209

  4. Single-domain GPC-3 Monoclonal Antibodies for the Treatment of Hepatocellular Carcinoma | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute seeks parties to license human monoclonal antibodies and immunoconjugates and co-develop, evaluate, and/or commercialize large-scale antibody production and hepatocellular carcinoma (HCC) xenograft mouse models.

  5. Additive cytotoxicity of different monoclonal antibody-cobra venom factor conjugates for human neuroblastoma cells.

    PubMed

    Juhl, H; Petrella, E C; Cheung, N K; Bredehorst, R; Vogel, C W

    1997-11-01

    Insufficient numbers of antigen molecules and heterogeneity of antigen expression on tumor cells are major factors limiting the immunotherapeutic potential of the few clinically useful monoclonal antibodies capable of mediating complement cytotoxicity and antibody-dependent cellular cytotoxicity. To overcome this limitation, we converted two non-cytotoxic monoclonal anti-neuroblastoma antibodies, designated 3E7 (IgG2b) and 8H9 (IgG1), and the non-cytotoxic F(ab')2 fragment of the cytotoxic monoclonal anti-GD2 antibody 3F8 (IgG3) into cytotoxic antibody conjugates by covalent attachment of cobra venom factor (CVF), a structural and functional homologue of the activated third component of complement. Competitive binding experiments confirmed the different specificities of the three antibodies. In the presence of human complement, all three antibody-CVF conjugates mediated selective complement-dependent lysis of human neuroblastoma cells. Consistent with the kinetics of the alternative pathway of complement, approximately seven hours incubation were required to reach maximum cytotoxicity of up to 25% for the 3E7-CVF conjugate, up to 60% for the 8H9-CVF conjugate, and up to 95% for the 3F8 F(ab')2-CVF conjugate. The different extent of maximal cytotoxic activity of the three conjugates was reflected by corresponding differences in the extent of binding of both unconjugated antibodies and the respective conjugates. Any combination of the three antibody-CVF conjugates caused an additive effect in complement-mediated lysis. Using a cocktail of all three conjugates, the extent of complement-mediated killing could be increased up to 100%. These data demonstrate that by coupling of CVF the relative large number of non-cytotoxic monoclonal anti-tumor antibodies of interesting specificity can be used to design cocktails of cytotoxic conjugates and, thereby, to overcome the problem of insufficient and heterogeneous antigen expression on tumor cells for immunotherapy.

  6. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix

    PubMed Central

    Liang, Hui; Li, Xiaoran; Wang, Bin; Chen, Bing; Zhao, Yannan; Sun, Jie; Zhuang, Yan; Shi, Jiajia; Shen, He; Zhang, Zhijun; Dai, Jianwu

    2016-01-01

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn’t showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody–drug conjugates (ADC) or immunotoxins. PMID:26883295

  7. Monoclonal antibody, mAb 4C13, an effective detoxicant antibody against ricin poisoning.

    PubMed

    Dong, Na; Luo, Longlong; Wu, Junhua; Jia, Peiyuan; Li, Qian; Wang, Yuxia; Gao, Zhongcai; Peng, Hui; Lv, Ming; Huang, Chunqian; Feng, Jiannan; Li, Hua; Shan, Junjie; Han, Gang; Shen, Beifen

    2015-07-31

    Ricin is a glycoprotein produced in castor seeds and consists of two polypeptide chains named Ricin Toxin A Chain (RTA) and Ricin Toxin B Chain (RTB), linked via a disulfide bridge. Due to its high toxicity, ricin is regarded as a high terrorist risk for the public. However, antibodies can play a pivotal role in neutralizing the toxin. In this research, the anti-toxicant effect of mAb 4C13, a monoclonal antibody (mAb) established using detoxicated ricin as the immunized antigen, was evaluated. Compared with mAb 4F2 and mAb 5G6, the effective mechanism of mAb 4C13 was analyzed by experiments relating to its cytotoxicity, epitope on ricin, binding kinetics with the toxin, its blockage on the protein synthesis inhibition induced by ricin and the intracelluar tracing of its complex with ricin. Our result indicated that mAb 4C13 could recognize and bind to RTA, RTB and exert its high affinity to the holotoxin. Both cytotoxicity and animal toxicity of ricin were well blocked by pre-incubating the toxin with mAb 4C13. By intravenous injection, mAb 4C13 could rescue the mouse intraperitoneally (ip) injected with a lethal dose of ricin (20μg/kg) even at 6h after the intoxication and its efficacy was dependent on its dosage. This research indicated that mAb 4C13 could be an excellent candidate for therapeutic antibodies. Its potent antitoxic efficiency was related to its recognition on the specific epitope with very high affinity and its blockage of protein synthesis inhibition in cytoplasm followed by cellular internalization with ricin.

  8. Kinetics of Cryptosporidium parvum sporozoite neutralization by monoclonal antibodies, immune bovine serum, and immune bovine colostrum.

    PubMed Central

    Perryman, L E; Riggs, M W; Mason, P H; Fayer, R

    1990-01-01

    Monoclonal antibodies, immune bovine serum, and immune bovine colostral whey neutralized infectivity of Cryptosporidium parvum sporozoites for mice in a time-dependent manner. Immune colostral whey neutralized sporozoites more rapidly and completely than immune serum, monoclonal antibody (MAb) 18.44, or a combination of MAb 18.44 and MAb 17.41. Mice were partially protected against oral challenge with C. parvum oocytes when treated with immune colostral whey, MAb 17.41, or a combination of MAb 17.41 and MAb 18.44. PMID:2294054

  9. Characterization of a humanized monoclonal antibody recognizing clumping factor A expressed by Staphylococcus aureus.

    PubMed

    Domanski, Paul J; Patel, Pratiksha R; Bayer, Arnold S; Zhang, Li; Hall, Andrea E; Syribeys, Peter J; Gorovits, Elena L; Bryant, Dawn; Vernachio, John H; Hutchins, Jeff T; Patti, Joseph M

    2005-08-01

    We report the humanization and characterization of monoclonal antibody (MAb) T1-2 or tefibazumab, a monoclonal antibody that recognizes clumping factor A expressed on the surface of Staphylococcus aureus. We demonstrate that the binding kinetics of MAb T1-2 is indistinguishable compared to that of its murine parent. Furthermore, MAb T1-2 is shown to enhance the opsonophagocytic uptake of ClfA-coated latex beads, protect against an intravenous challenge in a prophylactic model of rabbit infective endocarditis, and enhance the efficacy of vancomycin therapy in a therapeutic model of established infective endocarditis. PMID:16041045

  10. [Monoclonal antibodies to the Machupo virus: their isolation and preliminary characteristics].

    PubMed

    Malakhova, I V; Kunitskaia, L Ia; Surikova, L E; Bystrova, S I; Shkolina, T V; Vladyko, A S

    1991-01-01

    Six monoclonal antibody-producing hybridoma cell lines were generated by fusion of NS-1 myeloma cells with BALB/c immune splenocytes. Monoclonal antibodies (MCA) specific to Machupo virus NP protein were used to study cross-reactivity between pathogenic and nonpathogenic arenaviruses. It was shown that 3140 MCA cross-reacted in IFA with Lassa, Tacaribe, and Tamiami arenaviruses whereas 3101 MCA reacted with Machupo virus alone. It was assumed that these 3101 MCA could be used for differentiation of Machupo virus in IFA.

  11. Monoclonal antibodies and an indirect ELISA for detection of psychrotrophic bacteria in refrigerated milk.

    PubMed

    Gutiérrez, R; González, I; García, T; Carrera, E; Sanz, B; Hernández, P E; Martín, R

    1997-01-01

    Monoclonal antibodies generated against live cells of Pseudomonas fluorescens have been used in an indirect ELISA format for the detection of Pseudomonas spp. and related psychrotrophic bacteria in refrigerated milk. The immunorecognition of monoclonal antibodies adsorbed to bacteria bound to the wells of a microtiter plate was performed with rabbit anti-mouse immunoglobulins conjugated to horseradish peroxidase. Subsequent enzymic conversion of the substrate resulted in distinct absorbance differences when assaying milk samples containing psychrotrophic bacteria in the range 10(5) to 10(9) CFU ml(-1) . The detection threshold for the ELISA assay developed in this work is 10(5) CFU ml(-1).

  12. RIA of thyroglobulin using monoclonal antibodies: Minimal interference by anti-thyroglobulin autoantibodies

    SciTech Connect

    Nakashima, T.; Koizumi, M.; Sakahara, H.; Ohta, H.; Kohsaka, T.; Misaki, T.; Iida, Y.; Kasagi, K.; Endo, K.; Konishi, J.

    1985-05-01

    Thyroglobulin (Tg) is considered to be secreted from the thyroid gland with the stimulation of TSH and/or thyroid stimulating immunoglobulins. However its use as a prognostic marker for Graves' disease is hampered by anti-Tg autoantibodies in patients' serum. In order to resolve this drawback, the authors have developed monoclonal antibodies to human Tg with very little cross-reactivities with autoantiobodies. Nine monoclonal antibodies were produced by the immunization with Tg prepared from Graves' thyroid and one of them (IgGl), designated as 59A, showed the highest affinity to Tg (3.6 x 10/sup 40/M/sup -1/) and the least cross-reactivity with anti-Tg autoantibodies. The binding of I-125 labeled 59A to beads coated with Tg was not inhibited by the addition of purified IgG obtained from various thyroid diseases except a few Hashimoto's patients with very high titer of anti-Tg antibodies, although the binding of other monoclonal antibodies to Tg was greatly influenced even in the presence of Graves' IgG. The sensitivity of the assay using 59A was enough to detect 20ng Tg/ml and Tg concentrations, in patients with no detectable anti-Tg antibodies, were comparable to those determined by the conventional RIA kit (Eiken), using radioiodinated Tg and polyclonal rabbit anti-Tg antiserum. Further, the shelf-life of I-125 labeled monoclonal antibody was much longer than the radioiodinated Tg. These results indicated that RIA of Tg using monoclonal antibodies would be useful for measuring Tg values not only in patients with thyroid cancer but also in Graves' disease with anti-Tg autoantibodies.

  13. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants

    PubMed Central

    Hehle, Verena K.; Paul, Matthew J.; Roberts, Victoria A.; van Dolleweerd, Craig J.; Ma, Julian K.-C.

    2016-01-01

    This study examined the degradation pattern of a murine IgG1κ monoclonal antibody expressed in and extracted from transformed Nicotiana tabacum. Gel electrophoresis of leaf extracts revealed a consistent pattern of recombinant immunoglobulin bands, including intact and full-length antibody, as well as smaller antibody fragments. N-terminal sequencing revealed these smaller fragments to be proteolytic cleavage products and identified a limited number of protease-sensitive sites in the antibody light and heavy chain sequences. No strictly conserved target sequence was evident, although the peptide bonds that were susceptible to proteolysis were predominantly and consistently located within or near to the interdomain or solvent-exposed regions in the antibody structure. Amino acids surrounding identified cleavage sites were mutated in an attempt to increase resistance. Different Guy’s 13 antibody heavy and light chain mutant combinations were expressed transiently in N. tabacum and demonstrated intensity shifts in the fragmentation pattern, resulting in alterations to the full-length antibody-to-fragment ratio. The work strengthens the understanding of proteolytic cleavage of antibodies expressed in plants and presents a novel approach to stabilize full-length antibody by site-directed mutagenesis.—Hehle, V. K., Paul, M. J., Roberts, V. A., van Dolleweerd, C. J., Ma, J. K.-C. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. PMID:26712217

  14. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants.

    PubMed

    Hehle, Verena K; Paul, Matthew J; Roberts, Victoria A; van Dolleweerd, Craig J; Ma, Julian K-C

    2016-04-01

    This study examined the degradation pattern of a murine IgG1κ monoclonal antibody expressed in and extracted from transformedNicotiana tabacum Gel electrophoresis of leaf extracts revealed a consistent pattern of recombinant immunoglobulin bands, including intact and full-length antibody, as well as smaller antibody fragments. N-terminal sequencing revealed these smaller fragments to be proteolytic cleavage products and identified a limited number of protease-sensitive sites in the antibody light and heavy chain sequences. No strictly conserved target sequence was evident, although the peptide bonds that were susceptible to proteolysis were predominantly and consistently located within or near to the interdomain or solvent-exposed regions in the antibody structure. Amino acids surrounding identified cleavage sites were mutated in an attempt to increase resistance. Different Guy's 13 antibody heavy and light chain mutant combinations were expressed transiently inN. tabacumand demonstrated intensity shifts in the fragmentation pattern, resulting in alterations to the full-length antibody-to-fragment ratio. The work strengthens the understanding of proteolytic cleavage of antibodies expressed in plants and presents a novel approach to stabilize full-length antibody by site-directed mutagenesis.-Hehle, V. K., Paul, M. J., Roberts, V. A., van Dolleweerd, C. J., Ma, J. K.-C. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. PMID:26712217

  15. In-situ Detection of Squalane in Sedimentary Organic Matter Using Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Bailey, J. V.; Corsetti, F. A.; Moldowan, J. M.; Fago, F.; Caron, D.

    2008-12-01

    Sedimentary geolipids can serve as powerful tools for reconstructing ancient ecosystems, but only if investigators can demonstrate that the hydrocarbons are indigenous to their host rocks. The association of molecules with primary sedimentary fabrics could indicate a syngenetic relationship. However, traditional biomarker analyses require extraction from large quantities of powdered rock, confounding detailed spatial correlations. Biological studies commonly use antibodies as extremely sensitive molecular probes. When coupled with fluorescent labels, antibodies allow for the visual localization of molecules. Here we show that monoclonal antibodies that bind specifically to geolipid compounds can be used for in situ detection and labeling of such compounds in mineral-bound organic macerals. Monoclonal antibodies to squalene, produced for human health studies, also react with the geolipid, squalane. We show that squalene antibodies do not react with other common sedimentary hydrocarbons. We also show that squalane antibodies bind specifically to isolated organic-rich lamina in Eocene-age, squalane-containing rocks. These results suggest that squalane is confined to discrete organo-sedimentary fabrics within those rocks, providing evidence for its syngeneity. The chemical similarity of squalane to other sedimentary hydrocarbons hints at the potential for developing monoclonal antibodies to a variety of biomarkers that could then be localized in rocks, sediments, and extant cells.

  16. Molecular Insights into Fully Human and Humanized Monoclonal Antibodies: What are the Differences and Should Dermatologists Care?

    PubMed

    Mallbris, Lotus; Davies, Julian; Glasebrook, Andrew; Tang, Ying; Glaesner, Wolfgang; Nickoloff, Brian J

    2016-07-01

    In recent years, a large number of therapeutic monoclonal antibodies have come to market to treat a variety of conditions including patients with immune-mediated chronic inflammation. Distinguishing the relative clinical efficacy and safety profiles of one monoclonal antibody relative to another can be difficult and complex due to different clinical designs and paucity of head-to-head comparator studies. One distinguishing feature in interpreting clinical trial data by dermatologists may begin by determining whether a monoclonal antibody is fully human or humanized, which can be discerned by the generic name of the drug. Herein, this commentary highlights the distinctions and similarities of fully human and humanized monoclonal antibodies in their nomenclature, engineering, and clinical profiles. While there are a number of differences between these types of monoclonal antibodies, current evidence indicates that this designation does not impart any measurable impact on overall clinical efficacy and safety profiles of a given drug. Based on molecular insights provided in this commentary, it is clear that each monoclonal antibody, irrespective of being fully human or humanized, should be individually assessed for its clinical impact regarding safety and efficacy. Going beyond the type of generic name ascribed to a monoclonal antibody will be an ever-increasing theme for dermatologists as more therapeutic monoclonal antibodies emerge to potentially treat a wider scope of diseases with cutaneous manifestations. PMID:27672407

  17. Characterization of Two Human Monoclonal Antibodies Neutralizing Influenza A H7N9 Viruses

    PubMed Central

    Wang, Jianmin; Chen, Zhe; Bao, Linlin; Zhang, Weijia; Xue, Ying; Pang, XingHuo; Zhang, Xi

    2015-01-01

    H7N9 was a cause of significant global health concern due to its severe infection and approximately 35% mortality in humans. By screening a Fab antibody phage library derived from patients who recovered from H7N9 infections, we characterized two human monoclonal antibodies (HuMAbs), HNIgGD5 and HNIgGH8. The epitope of these two antibodies was dependent on two residues in the receptor binding site at positions V186 and L226 of the hemagglutinin glycoprotein. Both antibodies possessed high neutralizing activity. PMID:26063436

  18. Production and characterization of monoclonal antibodies to budgerigar fledgling disease virus major capsid protein VP

    NASA Technical Reports Server (NTRS)

    Fattaey, A.; Lenz, L.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Eleven hybridoma cell lines producing monoclonal antibodies (MAbs) against intact budgerigar fledgling disease (BFD) virions were produced and characterized. These antibodies were selected for their ability to react with BFD virions in an enzyme-linked immunosorbent assay. Each of these antibodies was reactive in the immunofluorescent detection of BFD virus-infected cells. These antibodies immunoprecipitated intact virions and specifically recognized the major capsid protein, VP1, of the dissociated virion. The MAbs were found to preferentially recognize native BFD virus capsid protein when compared with denatured virus protein. These MAbs were capable of detecting BFD virus protein in chicken embryonated cell-culture lysates by dot-blot analysis.

  19. Monoclonal antibodies to human hemoglobin S and cell lines for the production thereof

    DOEpatents

    Jensen, R.H.; Vanderlaan, M.; Bigbee, W.L.; Stanker, L.H.; Branscomb, E.W.; Grabske, R.J.

    1984-11-29

    The present invention provides monoclonal antibodies specific to and distinguishing between hemoglobin S and hemoglobin A and methods for their production and use. These antibodies are capable of distinguishing between two hemoglobin types which differ from each other by only a single amino acid residue. The antibodies produced according to the present method are useful as immunofluorescent markers to enumerate circulating red blood cells which have the property of altered expression of the hemoglobin gene due to somatic mutation in stem cells. Such a measurement is contemplated as an assay for in vivo cellular somatic mutations in humans. Since the monoclonal antibodies produced in accordance with the instant invention exhibit a high degree of specificity to and greater affinity for hemoglobin S, they are suitable for labeling human red blood cells for flow cytometric detection of hemoglobin genotype. 4 figs.

  20. Characterization of a Novel Neutralizing Monoclonal Antibody Against Ebola Virus GP.

    PubMed

    Reynard, Olivier; Volchkov, Viktor E

    2015-10-01

    Ebola virus is the etiological agent of a severe hemorrhagic fever with a high mortality rate. As the only protein exposed on the surface of viral particles, the spike glycoprotein GP is the unique target for neutralizing monoclonal antibodies. In this study, we demonstrate the strong neutralization capacity of the monoclonal antibody #3327 and characterize its activity. GP residues that are required for recognition and neutralization were found to be located both in the internal fusion loop and in the receptor-binding domain. Analysis of Ebola virus entry in the presence of #3327 allows us to hypothesize that this antibody binds to the virus particle before internalization and endosomal processing of GP and likely prevents the final viral fusion step. Importantly, #3327 is able to block entry of virions bearing GP that contain the Q508 escape mutation common to a number of virus-neutralizing antibodies, and therefore provides future perspectives for treatment strategies against Ebola virus infection.

  1. Monoclonal antibodies to human hemoglobin S and cell lines for the production thereof

    DOEpatents

    Jensen, Ronald H.; Vanderlaan, Martin; Bigbee, William L.; Stanker, Larry H.; Branscomb, Elbert W.; Grabske, Robert J.

    1988-01-01

    The present invention provides monoclonal antibodies specific to and distinguish between hemoglobin S and hemoglobin A and methods for their production and use. These antibodies are capable of distinguishing between two hemoglobin types which differ from each other by only a single amino acid residue. The antibodies produced according to the present method are useful as immunofluorescent markers to enumerate circulating red blood cells which have the property of altered expression of the hemoglobin gene due to somatic mutation in stem cells. Such a measurement is contemplated as an assay for in vivo cellular somatic mutations in humans. Since the monoclonal antibodies produced in accordance with the instant invention exhibit a high degree of specificity to and greater affinity for hemoglobin S, they are suitable for labeling human red blood cells for flow cytometric detection of hemoglobin genotype.

  2. An alternative oxidase monoclonal antibody recognises a highly conserved sequence among alternative oxidase subunits.

    PubMed

    Finnegan, P M; Wooding, A R; Day, D A

    1999-03-19

    The alternative oxidase is found in the inner mitochondrial membranes of plants and some fungi and protists. A monoclonal antibody raised against the alternative oxidase from the aroid lily Sauromatum guttatum has been used extensively to detect the enzyme in these organisms. Using an immunoblotting strategy, the antibody binding site has been localised to the sequence RADEAHHRDVNH within the soybean alternative oxidase 2 protein. Examination of sequence variants showed that A2 and residues C-terminal to H7 are required for recognition by the monoclonal antibody raised against the alternative oxidase. The recognition sequence is highly conserved among all alternative oxidase proteins and is absolutely conserved in 12 of 14 higher plant sequences, suggesting that this antibody will continue to be extremely useful in studying the expression and synthesis of the alternative oxidase.

  3. Imaging of bone tumors using a monoclonal antibody raised against human osteosarcoma

    SciTech Connect

    Armitage, N.C.; Perkins, A.C.; Pimm, M.V.; Wastie, M.; Hopkins, J.S.; Dowling, F.; Baldwin, R.W.; Hardcastle, J.D.

    1986-07-01

    The radiolabeled monoclonal antibody 791T/36 raised against a human osteosarcoma was injected into 20 patients with known or suspected bone tumors. Gamma camera images were acquired at 48 or 72 hours after injection, and assessed for antibody localization. Positive images were obtained in all five osteosarcomas and four other primary malignant sarcomas. Two of the four other primary bone tumors gave positive images. Three patients with trauma had negative images as did one patient with Paget's disease. Two patients with suppurative disease gave positive images. The antibody localized in the majority of malignant sarcomas tested. In one tumor where tissue was available, a tumor:non-tumor ratio of 2.8:1 was measured. Repeat imaging was performed in five patients. Immunoscintigraphy using the monoclonal antibody 791T/36 has shown tumor localization in patients with bone and soft tissue sarcomas.

  4. Human Monoclonal Antibodies Against a Plethora of Viral Pathogens From Single Combinatorial Libraries

    NASA Astrophysics Data System (ADS)

    Williamson, R. Anthony; Burioni, Roberto; Sanna, Pietro P.; Partridge, Lynda J.; Barbas, Carlos F., III; Burton, Dennis R.

    1993-05-01

    Conventional antibody generation usually requires active immunization with antigen immediately prior to the preparation procedure. Combinatorial antibody library technology offers the possibility of cloning a range of antibody specificities at a single point in time and then accessing these specificities at will. Here we show that human monoclonal antibody Fab fragments against a plethora of infectious agents can be readily derived from a single library. Further examination of a number of libraries shows that whenever antibody against a pathogen can be detected in the serum of the donor, then specific antibodies can be derived from the corresponding library. We describe the generation of human Fab fragments against herpes simplex virus types 1 and 2, human cytomegalovirus, varicella zoster virus, rubella, human immunodeficiency virus type 1, and respiratory syncytial virus. The antibodies are shown to be highly specific and a number are effective in neutralizing virus in vitro.

  5. Modulating the structure of EGFR with UV light: new possibilities in cancer therapy.

    PubMed

    Correia, Manuel; Thiagarajan, Viruthachalam; Coutinho, Isabel; Gajula, Gnana Prakash; Petersen, Steffen B; Neves-Petersen, Maria Teresa

    2014-01-01

    The epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases. EGFR is activated upon binding to e.g. epidermal growth factor (EGF), leading to cell survival, proliferation and migration. EGFR overactivation is associated with tumor progression. We have previously shown that low dose UVB illumination of cancer cells overexpressing EGFR prior to adding EGF halted the EGFR signaling pathway. We here show that UVB illumination of the extracellular domain of EGFR (sEGFR) induces protein conformational changes, disulphide bridge breakage and formation of tryptophan and tyrosine photoproducts such as dityrosine, N-formylkynurenine and kynurenine. Fluorescence spectroscopy, circular dichroism and thermal studies confirm the occurrence of conformational changes. An immunoassay has confirmed that UVB light induces structural changes in the EGF binding site. A monoclonal antibody which competes with EGF for binding sEGFR was used. We report clear evidence that UVB light induces structural changes in EGFR that impairs the correct binding of an EGFR specific antibody that competes with EGF for binding EGFR, confirming that the 3D structure of the EGFR binding domain suffered conformational changes upon UV illumination. The irradiance used is in the same order of magnitude as the integrated intensity in the solar UVB range. The new photonic technology disables a key receptor and is most likely applicable to the treatment of various types of cancer, alone or in combination with other therapies. PMID:25386651

  6. Modulating the Structure of EGFR with UV Light: New Possibilities in Cancer Therapy

    PubMed Central

    Thiagarajan, Viruthachalam; Coutinho, Isabel; Gajula, Gnana Prakash; Petersen, Steffen B.

    2014-01-01

    The epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases. EGFR is activated upon binding to e.g. epidermal growth factor (EGF), leading to cell survival, proliferation and migration. EGFR overactivation is associated with tumor progression. We have previously shown that low dose UVB illumination of cancer cells overexpressing EGFR prior to adding EGF halted the EGFR signaling pathway. We here show that UVB illumination of the extracellular domain of EGFR (sEGFR) induces protein conformational changes, disulphide bridge breakage and formation of tryptophan and tyrosine photoproducts such as dityrosine, N-formylkynurenine and kynurenine. Fluorescence spectroscopy, circular dichroism and thermal studies confirm the occurrence of conformational changes. An immunoassay has confirmed that UVB light induces structural changes in the EGF binding site. A monoclonal antibody which competes with EGF for binding sEGFR was used. We report clear evidence that UVB light induces structural changes in EGFR that impairs the correct binding of an EGFR specific antibody that competes with EGF for binding EGFR, confirming that the 3D structure of the EGFR binding domain suffered conformational changes upon UV illumination. The irradiance used is in the same order of magnitude as the integrated intensity in the solar UVB range. The new photonic technology disables a key receptor and is most likely applicable to the treatment of various types of cancer, alone or in combination with other therapies. PMID:25386651

  7. Effect of the anti-receptor ligand-blocking 225 monoclonal antibody on EGF receptor endocytosis and sorting

    SciTech Connect

    Jaramillo, Maria L. . E-mail: maria.jaramillo@nrc.ca; Leon, Zully; Grothe, Suzanne; Paul-Roc, Beatrice; Abulrob, Abedelnasser; O'Connor McCourt, Maureen

    2006-09-10

    The anti-receptor antibody, 225 mAb, is known to block binding of ligand to the epidermal growth factor receptor (EGFR). However, the effect of this neutralizing antibody on EGFR endocytosis, trafficking and degradation remains unclear. Here, we demonstrate that endocytosis of {sup 125}I-225 mAb occurs, albeit with a slower rate than that of EGF. Using pulse chase assays, we show that internalized {sup 125}I-225 mAb is recycled to the surface much more efficiently than internalized {sup 125}I-EGF. Also, we found that internalization of {sup 125}I-225 mAb, in contrast to that of EGF, is independent of receptor tyrosine kinase activity, as evidenced by its insensitivity to AG1478, a specific EGFR tyrosine kinase inhibitor. Analysis of the levels of cell surface and total EGFR showed that treatment with 225 mAb results in a 30-40% decrease in surface EGFR and a relatively slow downregulation of total EGFR. Taken together, these data indicate that 225 mAb induces internalization and downregulation of EGFR via a mechanism distinct from that underlying EGF-induced EGFR internalization and downregulation.

  8. Combination epigenetic and immunotherapy overcomes resistance to monoclonal antibodies in hematologic malignancies: A new therapeutic approach.

    PubMed

    Epner, Elliot M; Saroya, Bikramajit Singh; Hasanali, Zainul S; Loughran, Thomas P

    2016-03-01

    We recently reported that addition of epigenetic agents could overcome resistance of leukemic cells to monoclonal antibody-mediated anti-tumor effects in T-cell prolymphocytic leukemia. We also reported that epigenetic agents could induce expression of the CD30 gene, thus providing a therapeutic target for the antibody drug conjugate brentuximab vedotin. Here we discuss these findings and their generality to treatment of other hematologic and solid malignancies. PMID:26802532

  9. Combination epigenetic and immunotherapy overcomes resistance to monoclonal antibodies in hematologic malignancies: A new therapeutic approach.

    PubMed

    Epner, Elliot M; Saroya, Bikramajit Singh; Hasanali, Zainul S; Loughran, Thomas P

    2016-03-01

    We recently reported that addition of epigenetic agents could overcome resistance of leukemic cells to monoclonal antibody-mediated anti-tumor effects in T-cell prolymphocytic leukemia. We also reported that epigenetic agents could induce expression of the CD30 gene, thus providing a therapeutic target for the antibody drug conjugate brentuximab vedotin. Here we discuss these findings and their generality to treatment of other hematologic and solid malignancies.

  10. In vivo Therapy with Monoclonal Anti-I-A Antibody Suppresses Immune Responses to Acetylcholine Receptor

    NASA Astrophysics Data System (ADS)

    Waldor, Matthew K.; Sriram, Subramaniam; McDevitt, Hugh O.; Steinman, Lawrence

    1983-05-01

    A monoclonal antibody to I-A gene products of the immune response gene complex attenuates both humoral and cellular responses to acetylcholine receptor and appears to suppress clinical manifestations of experimental autoimmune myasthenia gravis. This demonstrates that use of antibodies against immune response gene products that are associated with susceptibility to disease may be feasible for therapy in autoimmune conditions such as myasthenia gravis.

  11. Monoclonal antibody to human endothelial cell surface internalization and liposome delivery in cell culture.

    PubMed

    Trubetskaya, O V; Trubetskoy, V S; Domogatsky, S P; Rudin, A V; Popov, N V; Danilov, S M; Nikolayeva, M N; Klibanov, A L; Torchilin, V P

    1988-02-01

    A monoclonal antibody (mAb), E25, is described that binds to the surface of cultured human endothelial cells. Upon binding E25 is rapidly internalized and digested intracellularly. Selective liposome targeting to the surface of the cells is performed using a biotinylated E25 antibody and an avidin-biotin system. Up to 30% of the cell-adherent liposomal lipid is internalized.

  12. Radioimmunodetection in rhabdo- and leiomyosarcoma with sup 111 In-anti-myosin monoclonal antibody complex

    SciTech Connect

    Planting, A.; Verweij, J.; Cox, P.; Pillay, M.; Stoter, G. )

    1990-02-01

    In patients with rhabdo- and leiomyosarcoma a radioimmunodiagnostic study was performed with {sup 111}In labeled F(ab) fragments of a monoclonal antibody against myosin. Eight patients with rhabdomyosarcoma and 18 patients with leiomyosarcoma were studied. Scanning was performed at 4, 24, and 48 h after administration of 74 MBeq of the antibody complex. A high uptake with a tumor:background ratio of 10:1 was observed in several patients with rhabdomyosarcoma but the results were less accurate in leiomyosarcoma.

  13. Production and characterization of monoclonal antibodies to the macrocyclic trichothecene roridin A.

    PubMed

    Hack, R; Märtlbauer, E; Terplan, G

    1988-09-01

    Two murine monoclonal antibodies to the macrocyclic trichothecene roridin A are described. Screening for antibody production was performed on absorbed anti-mouse immunoglobulin serum as double-antibody solid phase, and further characterization was done on affinity-purified anti-mouse IgG serum. The antibodies, designated 5G11 and 4H10, had affinity constants for roridin A of 9.25 X 10(7) and 1.7 X 10(7) liters/mol, respectively. In monoclonal antibody-based direct enzyme immunoassays, these IgG1 antibodies had detection limits for roridin A of 0.4 ng/ml (0.02 ng per assay) and 1.8 ng/ml (0.09 ng per assay), respectively. Both antibodies were most specific for the tested macrocyclic trichothecenes. The relative cross-reactivities of antibody 5G11 with roridin A, roridin J, verrucarin A, satratoxin G, and satratoxin H were 100.0, 43.8, 16.7, 3.7, and 18.9%, respectively; for antibody 4H10 they were 100.0, 6.3, 64.0, 4.4, and 4.9%, respectively.

  14. Analysis of reduced monoclonal antibodies using size exclusion chromatography coupled with mass spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Hongcheng; Gaza-Bulseco, Georgeen; Chumsae, Chris

    2009-12-01

    Size-exclusion chromatography (SEC) has been widely used to detect antibody aggregates, monomer, and fragments. SEC coupled to mass spectrometry has been reported to measure the molecular weights of antibody; antibody conjugates, and antibody light chain and heavy chain. In this study, separation of antibody light chain and heavy chain by SEC and direct coupling to a mass spectrometer was further studied. It was determined that employing mobile phases containing acetonitrile, trifluoroacetic acid, and formic acid allowed the separation of antibody light chain and heavy chain after reduction by SEC. In addition, this mobile phase allowed the coupling of SEC to a mass spectrometer to obtain a direct molecular weight measurement. The application of the SEC-MS method was demonstrated by the separation of the light chain and the heavy chain of multiple recombinant monoclonal antibodies. In addition, separation of a thioether linked light chain and heavy chain from the free light chain and the free heavy chain of a recombinant monoclonal antibody after reduction was also achieved. This optimized method provided a separation of antibody light chain and heavy chain based on size and allowed a direct measurement of molecular weights by mass spectrometry. In addition, this method may help to identify peaks eluting from SEC column directly.

  15. Isolation and characterization of monoclonal antibodies specific for chondroitin sulfate E.

    PubMed

    Watanabe, Ippei; Hikita, Tomoya; Mizuno, Haruka; Sekita, Risa; Minami, Akira; Ishii, Ami; Minamisawa, Yuka; Suzuki, Kiyoshi; Maeda, Hiroshi; Hidari, Kazuya I P J; Suzuki, Takashi

    2015-09-01

    Chondroitin sulfate E (CSE) is a polysaccharide containing mainly disaccharide units of D-glucuronic acid (GlcA) and 4,6-O-disulfated N-acetyl-D-galactosamine (GalNAc) residues (E-unit) in the amount of ∼ 60%. CSE is involved in many biological and pathological processes. In this study, we established new monoclonal antibodies, termed E-12C and E-18H, by using CSE that contained more than 70% of E-units as an immunogen. These antibodies recognized CSE but not other CSs isomers or dermatan sulfate (DS). We evaluated the reactivities of the antibodies to 6-O-sulfated CSA (6S-CSA) and DS (6S-DS) that possessed ∼ 60% of GalNAc (4S, 6S) moieties in their structures. Neither of the antibodies reacted with 6S-DS. The antibodies strictly distinguished the structural difference of GlcA and L-iduronic acid in the polysaccharide. Binding affinities of the antibodies were determined by a surface plasmon resonance assay using CSE and 6S-CSA. The binding affinities were strongly associated with the molecular weight of CSE and the E-unit content of 6S-CSA. Moreover, we demonstrated that the antibodies are applicable to histochemical analysis. In conclusion, the new anti-CSE monoclonal antibodies specifically recognize the E-unit of CSE. The antibodies will become useful tools for the investigation of the biological and pathological significance of CSE.

  16. Monoclonal antibody analysis of neutralization and antibody-dependent enhancement of feline infectious peritonitis virus.

    PubMed

    Corapi, W V; Olsen, C W; Scott, F W

    1992-11-01

    Fifty-four monoclonal antibodies (MAbs) to feline infectious peritonitis virus (FIPV) were characterized according to protein specificity, immunoglobulin subclass, virus neutralization, reactivity with different coronaviruses, and ability to induce antibody-dependent enhancement (ADE) of FIPV infection in vitro. The MAbs were found to be specific for one of three structural proteins of FIPV. A total of 47 MAbs were specific for the 205-kDa spike protein (S), 3 MAbs were specific for the 45-kDa nucleocapsid protein (N), and 4 MAbs were specific for the 26- to 28-kDa membrane protein (M). The S-specific MAbs showed various degrees of cross-reactivity with strains of FIPV, feline enteric coronavirus, canine coronavirus, and porcine transmissible gastroenteritis virus. Nineteen S-specific MAbs neutralized FIPV. A total of 15 of the neutralizing MAbs induced ADE, and all but 1 were of the immunoglobulin G2a subclass. The remaining four neutralizing MAbs that did not induce ADE were of the immunoglobulin G1 subclass. Two S-specific MAbs induced ADE but were nonneutralizing. None of the N- or M-specific MAbs was neutralizing or induced ADE. On the basis of the reactivity patterns of the MAbs with FIPV and related coronaviruses, it was concluded that there is a minimum of five neutralizing sites on S. In most instances, neutralizing MAbs were able to induce ADE, demonstrating a direct relationship between neutralization and enhancement. The difference in immunoglobulin subclass between neutralizing MAbs that induced ADE and those that did not induce ADE suggests that there may be a restriction in the immunoglobulin subclasses capable of mediating ADE.

  17. Monoclonal Antibodies to Ferric Pseudobactin, the Siderophore of Plant Growth-Promoting Pseudomonas putida B10

    PubMed Central

    Buyer, Jeffrey S.; Sikora, Lawrence J.; Kratzke, Marian G.

    1990-01-01

    Monoclonal antibodies to ferric pseudobactin, the siderophore (microbial iron transport agent) of plant growth-promoting Pseudomonas putida B10, have been developed. Three immunoglobulin G subclass 1-type monoclonal antibodies have been characterized. Each antibody appears to be unique on the basis of their reactions with ferric pseudobactin and with culture supernatants from other pseudomonads. None of the three cross-reacts with ferric pseudobactin-type siderophores produced by seven other pseudomonads. However, P. aeruginosa ATCC 15692 and P. fluorescens ATCC 17400 produced relatively high-molecular-mass compounds (mass greater than approximately 30,000 daltons) that did react with the antibodies. The compound from P. aeruginosa was not iron regulated, while the compound from P. fluorescens was produced only under iron-limiting conditions. A competitive assay using these antibodies has a detection limit of 5 × 10−12 mol of ferric pseudobactin. This is, to our knowledge, the first report of monoclonal antibodies reactive with siderophores. PMID:16348116

  18. Production, isolation and characterization of monoclonal antibodies to cytochromes c of beef heart and Paracoccus denitrificans.

    PubMed

    Kuo, L M; Davies, H C

    1983-08-01

    Hybridoma cell lines secreting monoclonal antibodies which bind beef heart cytochrome c or Paracoccus denitrificans cytochrome c have been produced using spleen cells from BALB/c mice immunized with cytochrome c. Immunization was performed with either the native cytochrome c, succinylated hemocyanin-conjugated cytochrome c, or beef heart cytochrome c polymerized with glutaraldehyde. Of 10 such fusions, the hybridization frequency ranged from 0 to 42%. The cell fusion efficiency, the possible factors involved in the cell fusion efficiency and the frequency of antibody producing hybridomas are described. The percentage of hybridomas positive for anti-cytochrome c antibody production as screened for by radioimmunoassay or ELISA was 2%. Of the antibodies from 12 hybridoma cell lines which resulted from 10 fusions, three were specific to beef heart cytochrome c, another three were specific to P. denitrificans cytochrome c, and the remainder reacted with both cytochromes c. These groups of monoclonal antibodies react to different sets of sites on these two cytochromes c. The monoclonal antibodies from ten representative clones have been isolated and characterized by different methods.

  19. Monoclonal antibodies to synthetic pyrethroids and method for detecting the same

    DOEpatents

    Stanker, L.H.; Vanderlaan, M.; Watkins, B.E.; Van Emon, J.M.; Bigbee, C.L.

    1992-04-28

    Methods are described for making specific monoclonal antibodies which may be used in a sensitive immunoassay for detection of synthetic pyrethroids in foods and environmental samples. Appropriate sample preparation and enzyme amplification of the immunoassay for this widely-used class of pesticides permits detection at low levels in laboratory and field tested samples. 6 figs.

  20. Monoclonal antibodies to synthetic pyrethroids and method for detecting the same

    DOEpatents

    Stanker, Larry H.; Vanderlaan, Martin; Watkins, Bruce E.; Van Emon, Jeanette M.; Bigbee, Carolyn L.

    1992-01-01

    Methods are described for making specific monoclonal antibodies which may be used in a sensitive immunoassay for detection of synthetic pyrethroids in foods and environmental samples. Appropriate sample preparation and enzyme amplification of the immunoassay for this widely-used class of pesticides permits detection at low levels in laboratory and field tested samples.

  1. Crystallization of the Fab fragments of anti-peptide monoclonal antibodies and a complex with peptide.

    PubMed

    Griest, R E; Jeffrey, P D; Taylor, G L; Rees, A R

    1992-01-01

    The antigen-binding fragments of four monoclonal antibodies that cross-react with both the "loop" peptide of hen egg-white lysozyme (residues 57 to 84) against which they were raised, and with the native protein (HEL) have been crystallized. One of these fragments also crystallizes as a complex with the peptide antigen. PMID:1731084

  2. Characterization and application of monoclonal antibodies against Shewanella marisflavi, a novel pathogen of Apostichopus japonicus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shewanella marisflavi strain AP629 was certified as a novel pathogen of the sea cucumber Apostichopus japonicus. In this study, four monoclonal antibodies (MAbs) (3C1, 3D9, 2F2, 2A8) against strain AP629 were developed by immunizing Balb/C mice. 3C1 and 3D9 recognized S. marisflavi only, showing no ...

  3. Survey of citrus tristeza virus populations in Central California that react with MCA13 monoclonal antibody

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Citrus Pest Detection Program (CPDP) of the Central California Tristeza Eradication Agency monitors Citrus tristeza virus (CTV) in Central California. MCA13 is a severe strain discriminating monoclonal antibody used to screen for potentially virulent CTV isolates. MCA13-reactive CTV isolates are...

  4. Development and Characterization of Mouse Monoclonal Antibodies Reactive with Chicken CD83

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was carried out to develop and characterize mouse monoclonal antibodies (mAbs) against chicken CD83 (chCD83), a membrane-bound glycoprotein belonging to the immunoglobulin superfamily that is primarily expressed on mature dendritic cells (DCs). A recombinant chCD83/IgG4 fusion protein con...

  5. Detection of primary colorectal cancer with indium 111 monoclonal antibody B72. 3

    SciTech Connect

    Doerr, R.J.; Abdel-Nabi, H.; Baker, J.M.; Steinberg, S. )

    1990-12-01

    B72.3 is a murine monoclonal antibody of the immunoglobulin subclass IgG1 directed against TAG-72, a cell surface antigen present on colorectal carcinoma cells. We investigated the utility of scanning with indium 111-labeled B72.3 in 16 patients with a high clinical suspicion of or biopsy-proven primary colorectal cancer. Each patient received 1 or 2 mg of B72.3 monoclonal antibody labeled with 152 MBq of indium 111. Patients underwent scanning 2 to 3 days and 7 days after infusion by planar and emission computed tomography. Nineteen lesions were confirmed in 12 patients. Three patients with benign polyps had true-negative monoclonal antibody scans. Indium 111-labeled imaging of B72.3 detected nine of 19 lesions. Unsuspected tumor sites were identified by monoclonal antibody scan in three patients. By detection of additional abdominal disease and extra-abdominal spread, indium 111-labeled scanning of B72.3 directly affected treatment in 18% of patients.

  6. Harnessing the immune system's arsenal: producing human monoclonal antibodies for therapeutics and investigating immune responses

    PubMed Central

    Sullivan, Meghan; Kaur, Kaval; Pauli, Noel

    2011-01-01

    Monoclonal antibody technology has undergone rapid and innovative reinvention over the last 30 years. Application of these technologies to human samples revealed valuable therapeutic and experimental insights. These technologies, each with their own benefits and flaws, have proven indispensable for immunological research and in our fight to provide new treatments and improved vaccines for infectious disease. PMID:21876728

  7. INITIAL CHARACTERIZATION OF MONOCLONAL ANTIBODIES AGAINST THE FUNGAL HEMOLYSIN STACHYLYSIN FROM STACHYBOTRYS CHARTARUM

    EPA Science Inventory

    Stachybotrys chartarum is known to produce the hemolysin stachylysin and its detection in human serum has been proposed as a biomarker for exposure to the fungus. In this study we report the initial characterization of monoclonal antibodies (mAbs) against stachylysin and the dev...

  8. Monoclonal antibody against dnmt1 arrests the cell division of xenopus early-stage embryos.

    PubMed

    Hashimoto, Hideharu; Suetake, Isao; Tajima, Shoji

    2003-06-10

    DNA methylation plays a crucial role in embryogenesis, and Dnmt1 is known to be a key enzyme in the maintenance of DNA methylation. Dnmt1 is highly accumulated in mature oocytes and eggs. To analyze the function of the maternally accumulated Dnmt1, we injected monoclonal antibodies that specifically recognize the amino terminus of Xenopus Dnmt1 into Xenopus laevis embryos. The monoclonal antibodies inhibited the cell division of the embryos before the midblastula transition. Monoclonal antibody neither inhibited DNA methylation activity of Dnmt1 in vitro nor affected its stability in embryos. In addition, injection of alpha-amanitin, an inhibitor of transcription, did not rescue the cell division arrest. The results suggest that the inhibition of cell division by monoclonal antibodies was due neither to the direct inhibition of DNA methylation activity of Dnmt1 nor to aberrant transcription before the midblastula transition. The morphology of chromatin of the arrested cells showed that the cell cycle was arrested at interphase. This was supported by the biochemical analysis in which the arrested cells demonstrated low histone H1 kinase activity, which indicated that the cells had not entered M phase. Dnmt1 may have an important function other than DNA methylation activity for early embryogenesis in Xenopus laevis. PMID:12749854

  9. Mouse monoclonal antibodies detect an allotypic determinant common to several ruminant species.

    PubMed

    Capparelli, R; Iannelli, D

    1989-06-01

    A monoclonal antibody against goat immunoglobulins recognizes an allotypic determinant (A1) which is common to goat, sheep, cattle and water buffalo. The frequency of the corresponding gene (A') is about the same in all four species, indicating the existence of a polymorphism that remained stable over a period of about 18-20 million years.

  10. Monoclonal antibody specific for human colon fibroblast-derived T-PA

    SciTech Connect

    Schaumann, J.P.; Olander, J.V.; Harakas, N.K.; Feder, J

    1989-05-23

    This patent describes a murine-derived hybridoma cell line capable of producing monoclonal antibody against human colon fibroblast-derived tissue plasminogen activator and the cell line selected from the group consisting of cell lines 63-4 (ATCC HB 9155), 54-2 (ATCC HB 9157) or 79-7 (ATCC HB 9156).

  11. Characterization of anti-channel catfish MHC class II monoclonal antibodies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study characterizes four monoclonal antibodies (mAb) developed against the major histocompatibility complex (MHC) class II beta chain of the channel catfish, Ictalurus punctatus. Immunoprecipitations using catfish clonal B cells revealed that each of these mAbs immunoselected proteins of appro...

  12. Limited cross-reactivity of mouse monoclonal antibodies against Dengue virus capsid protein among four serotypes

    PubMed Central

    Noda, Megumi; Masrinoul, Promsin; Punkum, Chaweewan; Pipattanaboon, Chonlatip; Ramasoota, Pongrama; Setthapramote, Chayanee; Sasaki, Tadahiro; Sasayama, Mikiko; Yamashita, Akifumi; Kurosu, Takeshi; Ikuta, Kazuyoshi; Okabayashi, Tamaki

    2012-01-01

    Background Dengue illness is one of the important mosquito-borne viral diseases in tropical and subtropical regions. Four serotypes of dengue virus (DENV-1, DENV-2, DENV-3, and DENV-4) are classified in the Flavivirus genus of the family Flaviviridae. We prepared monoclonal antibodies against DENV capsid protein from mice immunized with DENV-2 and determined the cross-reactivity with each serotype of DENV and Japanese encephalitis virus. Methods and results To clarify the relationship between the cross-reactivity of monoclonal antibodies and the diversity of these viruses, we examined the situations of flaviviruses by analyses of phylogenetic trees. Among a total of 60 prepared monoclonal antibodies specific for DENV, five monoclonal antibodies stained the nuclei of infected cells and were found to be specific to the capsid protein. Three were specific to DENV-2, while the other two were cross-reactive with DENV-2 and DENV-4. No monoclonal antibodies were cross-reactive with all four serotypes. Phylogenetic analysis of DENV amino acid sequences of the capsid protein revealed that DENV-2 and DENV-4 were clustered in the same branch, while DENV-1 and DENV-3 were clustered in the other branch. However, these classifications of the capsid protein were different from those of the envelope and nonstructural 1 proteins. Phylogenetic distances between the four serotypes of DENV were as different as those of other flaviviruses, such as Japanese encephalitis virus and West Nile virus. Large variations in the DENV serotypes were comparable with the differences between species of flavivirus. Furthermore, the diversity of flavivirus capsid protein was much greater than that of envelope and nonstructural 1 proteins. Conclusion In this study, we produced specific monoclonal antibodies that can be used to detect DENV-2 capsid protein, but not a cross-reactive one with all serotypes of DENV capsid protein. The high diversity of the DENV capsid protein sequence by phylogenetic

  13. Pharmacokinetics of internally labeled monoclonal antibodies as a gold standard: comparison of biodistribution of /sup 75/Se-, /sup 111/In-, and /sup 125/I-labeled monoclonal antibodies in osteogenic sarcoma xenografts in nude mice

    SciTech Connect

    Koizumi, M.; Endo, K.; Watanabe, Y.; Saga, T.; Sakahara, H.; Konishi, J.; Yamamuro, T.; Toyama, S.

    1989-04-01

    In order to know the true biodistribution of anti-tumor monoclonal antibodies, three monoclonal antibodies (OST6, OST7, and OST15) against human osteosarcoma and control antibody were internally labeled with 75Se by incubating (75Se)methionine and hybridoma cells. 75Se-labeled monoclonal antibodies were evaluated both in vitro and in vivo using the human osteogenic sarcoma cell line KT005, and the results were compared with those of 125I- and 111In-labeled antibodies. 75Se-, 125I- and 111In-labeled monoclonal antibodies had identical binding activities to KT005 cells, and the immunoreactivity was in the decreasing order of OST6, OST7, and OST15. On the contrary, in vivo tumor uptake (% injected dose/g) of 75Se- and 125I-labeled antibodies assessed using nude mice bearing human osteosarcoma KT005 was in the order of OST7, OST6, and OST15. In the case of 111In, the order was OST6, OST7, and OST15. High liver uptake was similarly seen with 75Se- and 111In-labeled antibodies, whereas 125I-labeled antibodies showed the lowest tumor and liver uptake. These data indicate that tumor targeting of antibody conjugates are not always predictable from cell binding studies due to the difference of blood clearance of labeled antibodies. Furthermore, biodistribution of both 111In- and 125I-labeled antibodies are not identical with internally labeled antibody. Admitting that internally labeled antibody is a ''gold standard'' of biodistribution of monoclonal antibody, high liver uptake of 111In-radiolabeled antibodies may be inherent to antibodies. Little, if any, increase in tumor-to-normal tissue ratios of antibody conjugates will be expected compared to those of 111In-labeled antibodies if stably coupled conjugates are administered i.v.

  14. A collagen-binding EGFR single-chain Fv antibody fragment for the targeted cancer therapy.

    PubMed

    Liang, Hui; Li, Xiaoran; Chen, Bing; Wang, Bin; Zhao, Yannan; Zhuang, Yan; Shen, He; Zhang, Zhijun; Dai, Jianwu

    2015-07-10

    Collagen, a primary component of the extracellular matrix (ECM), is highly expressed in a variety of cancers and influences the tumor microenvironment by increasing the recruitment of macrophages and endothelial cells. Therefore, collagen is a highly promising target for cancer therapy. The collagen-binding domain (CBD) can dynamically bind to collagen and achieve the sustained release of CBD-fused protein in the collagen network. Here, we developed a collagen-binding epidermal growth factor receptor (EGFR) antibody fragment for targeting the collagen-rich ECM in tumors. The single chain fragment variable (scFv) of cetuximab was fused to CBD (CBD-scFv) and expressed in Pichia pastoris. CBD-scFv preserved the antigen binding domain and anti-tumor activity of cetuximab in vitro. Moreover, CBD-scFv displayed a collagen binding ability due to the function of CBD. In vivo experiments revealed that CBD-scFv bound to collagen and achieved sustained release in tumors. Furthermore, CBD-scFv significantly suppressed the growth of tumors in A431 xenografts. Therefore, CBD-scFv had a potential therapeutic value for the collagen-rich carcinomas. The specific target and sustained release of CBD-scFv in tumors could be a new approach for targeted drug delivery in cancer therapy.

  15. Mice are actively immunized after passive monoclonal antibody prophylaxis and ricin toxin challenge. (Reannouncement with new availability information)

    SciTech Connect

    Lemley, P.V.; Wright, D.C.

    1992-12-31

    Mice passively immunized by a protective, anti-ricin A-chain monoclonal antibody, then challenged intravenously with ricin, were protected from a subsequent ricin challenge, and were actively immunized. Two significant advantages accrued from this experiment: the monoclonal antibody neutralized the toxicity of the ricin immunogen, and active immunization was achieved with very low antigen load (approx. 0.5 micrograms/mouse). We ruled out the possibility that residual monoclonal antibody provided the protection by using three independent criteria. There was significant (four orders of magnitude) enhancement of the immune response in the presence of the monoclonal antibody; control immunizations of mice with ricin A-chain, ricin B-chain or either chain with the monoclonal antibody did not induce active immunity; and the active immunization could not be replicated when protective goat polyclonal antibody was substituted for the monoclonal antibody. Because high titers were achieved rapidly without any adjuvant, we are currently investigating haptenized ricin to determine if anti-hapten monoclonal antibodies can be produced by this refined procedure.

  16. Motility assays using myosin attached to surfaces through specific binding to monoclonal antibodies.

    PubMed Central

    Winkelmann, D. A.; Bourdieu, L.; Kinose, F.; Libchaber, A.

    1995-01-01

    We have analyzed the dependence of actin filament movement on the mode of myosin attachment to surfaces. Monoclonal antibodies that bind to three distinct sites were used to tether myosin to nitrocellulose-coated glass. One antibody reacts with an epitope on the regulatory light chain located at the head-rod junction. The other two react with sites in the rod domain, one in the S2 region near the S2-LMM hinge, and the other at the C terminus of the myosin rod. These monoclonal antibodies were used to provide increasing flexibility in the mode of attachment. Fast skeletal muscle myosin monomers were bound to the surfaces through the specific interaction with these monoclonal antibodies and the sliding movement of fluorescently labeled actin filaments analyzed by video microscopy. Each of these antibodies produced stable, myosin-coated surfaces that supported uniform movement of actin over the course of several hours. Attachment of myosin through the anti-S2 and anti-LMM monoclonal antibodies yielded a maximum velocity of 10 microns/s at 30 degrees C, whereas attachment through anti-LC2 produced a lower velocity of 4-5 microns/s. Each antibody showed a characteristic minimum myosin density below which sliding movement was no longer supported and an exponential dependence of actin filament velocity on myosin surface density below Vmax. Maximum sliding velocity was achieved over a range of myosin surface densities. Thus, the specific mode of attachment can influence the characteristic velocity of actin filament movement and the surface density needed to support movement. These data are being used to analyze the dynamics of sliding filament assays and evaluate estimates of the average number of motor molecules per unit length of actin required to support movement. PMID:7787107

  17. Motility assays using myosin attached to surfaces through specific binding to monoclonal antibodies.

    PubMed

    Winkelmann, D A; Bourdieu, L; Kinose, F; Libchaber, A

    1995-04-01

    We have analyzed the dependence of actin filament movement on the mode of myosin attachment to surfaces. Monoclonal antibodies that bind to three distinct sites were used to tether myosin to nitrocellulose-coated glass. One antibody reacts with an epitope on the regulatory light chain located at the head-rod junction. The other two react with sites in the rod domain, one in the S2 region near the S2-LMM hinge, and the other at the C terminus of the myosin rod. These monoclonal antibodies were used to provide increasing flexibility in the mode of attachment. Fast skeletal muscle myosin monomers were bound to the surfaces through the specific interaction with these monoclonal antibodies and the sliding movement of fluorescently labeled actin filaments analyzed by video microscopy. Each of these antibodies produced stable, myosin-coated surfaces that supported uniform movement of actin over the course of several hours. Attachment of myosin through the anti-S2 and anti-LMM monoclonal antibodies yielded a maximum velocity of 10 microns/s at 30 degrees C, whereas attachment through anti-LC2 produced a lower velocity of 4-5 microns/s. Each antibody showed a characteristic minimum myosin density below which sliding movement was no longer supported and an exponential dependence of actin filament velocity on myosin surface density below Vmax. Maximum sliding velocity was achieved over a range of myosin surface densities. Thus, the specific mode of attachment can influence the characteristic velocity of actin filament movement and the surface density needed to support movement. These data are being used to analyze the dynamics of sliding filament assays and evaluate estimates of the average number of motor molecules per unit length of actin required to support movement.

  18. Discovery and characterization of antibody variants using mass spectrometry-based comparative analysis for biosimilar candidates of monoclonal antibody drugs.

    PubMed

    Li, Wenhua; Yang, Bin; Zhou, Dongmei; Xu, Jun; Ke, Zhi; Suen, Wen-Chen

    2016-07-01

    Liquid chromatography mass spectrometry (LC-MS) is the most commonly used technique for the characterization of antibody variants. MAb-X and mAb-Y are two approved IgG1 subtype monoclonal antibody drugs recombinantly produced in Chinese hamster ovary (CHO) cells. We report here that two unexpected and rare antibody variants have been discovered during cell culture process development of biosimilars for these two approved drugs through intact mass analysis. We then used comprehensive mass spectrometry-based comparative analysis including reduced light, heavy chains, and domain-specific mass as well as peptide mapping analysis to fully characterize the observed antibody variants. The "middle-up" mass comparative analysis demonstrated that the antibody variant from mAb-X biosimilar candidate was caused by mass variation of antibody crystalline fragment (Fc), whereas a different variant with mass variation in antibody antigen-binding fragment (Fab) from mAb-Y biosimilar candidate was identified. Endoproteinase Lys-C digested peptide mapping and tandem mass spectrometry analysis further revealed that a leucine to glutamine change in N-terminal 402 site of heavy chain was responsible for the generation of mAb-X antibody variant. Lys-C and trypsin coupled non-reduced and reduced peptide mapping comparative analysis showed that the formation of the light-heavy interchain trisulfide bond resulted in the mAb-Y antibody variant. These two cases confirmed that mass spectrometry-based comparative analysis plays a critical role for the characterization of monoclonal antibody variants, and biosimilar developers should start with a comprehensive structural assessment and comparative analysis to decrease the risk of the process development for biosimilars. PMID:27214604

  19. Quantification of respiratory syncytial virus polypeptides in nasal secretions by monoclonal antibodies.

    PubMed

    Hendry, R M; Godfrey, E; Anderson, L J; Fernie, B F; McIntosh, K

    1985-08-01

    An indirect enzyme-linked immunosorbent assay (ELISA) which uses monoclonal antibody as solid-phase immunosorbent was developed to measure specific polypeptides of respiratory syncytial virus (RSV). The assay was used to examine 43 nasopharyngeal (NP) aspirates from RSV-positive infants that had been examined previously for RSV by culture, direct immunofluorescence, and polyclonal antibody ELISA. Frozen NP aspirates were serially diluted and examined for the 66K mol. wt. fusion glycoprotein (F), the 84K large surface glycoprotein (G) and the 41K nucleoprotein (N) by monoclonal capture ELISA. F protein was detected in all 43 specimens, G protein was detectable in 20 (47%) and N protein in 22 (51%) of 43 NP aspirates. In specimens with detectable G and N proteins, F was detected by endpoint titration at approximately tenfold greater dilutions than either G or N. In 19 sequential NP aspirates from five patients with RSV infection, F was present in higher titre throughout infection. In 20 cases, matching cell culture isolates were examined by immunofluorescence with strain-specific monoclonal antibodies. Three of 20 isolates showed strain-specific differences by their lack of reaction with anti-G monoclonal antibody. Titration of the 20 cell culture isolates by monoclonal antibody capture ELISA showed the relative amount of F and N proteins to be equal in all cases, whereas levels of G protein tended to be slightly lower. Reconstruction experiments with NP aspirates demonstrated that degradation of F and N proteins did not occur in NP aspirates, but that G protein antigenicity appeared to be affected by nasal secretions. When compared with cell culture-grown material, nasal secretions contained abundant F protein but a surprisingly low concentration of N protein.

  20. Model-based prediction of monoclonal antibody retention in ion-exchange chromatography.

    PubMed

    Guélat, Bertrand; Delegrange, Lydia; Valax, Pascal; Morbidelli, Massimo

    2013-07-12

    In order to support a model-based process design in ion-exchange chromatography, an adsorption equilibrium model was adapted to predict the protein retention behavior from the amino acid sequence and from structural information on the resin. It is based on the computation of protein-resin interactions with a colloidal model and accounts for the contribution of each ionizable amino acid to the protein charge. As a verification of the protein charge model, the experimental titration curve of a monoclonal antibody was compared to its predicted net charge. Using this protein charge model in the computation of the protein-resin interactions, it is possible to predict the adsorption equilibrium constant (i.e. retention factor or Henry constant) with an explicit pH and salt dependence. The application of the model-based predictions for an in silico screening of the protein retention on various stationary phases or, alternatively, for the comparison of various monoclonal antibodies on a given cation-exchanger was demonstrated. Furthermore, considering the structural differences between charge variants of a monoclonal antibody, it was possible to predict their individual retention times. The selectivity between the side variants and the main isoform of the monoclonal antibody were computed. The comparison with the experimental data showed that the model was reliable with respect to the identification of the operating conditions maximizing the selectivity, i.e. the most promising conditions for a monoclonal antibody variant separation. Such predictions can be useful in reducing the experimental effort to identify the parameter space. PMID:23759301

  1. A human monoclonal antibody to high-frequency red cell antigen Jra.

    PubMed

    Miyazaki, T; Kwon, K W; Yamamoto, K; Tone, Y; Ihara, H; Kato, T; Ikeda, H; Sekiguchi, S

    1994-01-01

    A human-mouse heterohybridoma (HMR0921) secreting human monoclonal IgG3, lambda antibody was produced from peripheral blood lymphocytes of a healthy blood donor with serum antibody to Jra, by EBV transformation and hybridization with mouse myeloma cell line P3X63Ag8.653. The reactivity of HMR0921 antibody was assessed by antiglobulin test with a panel of red cells including 14 different rare blood types. Only Jr(a-) red cells were negative. The strict specificity of this antibody to Jra antigen was further confirmed by absorption test with fluorescence flow cytometry. On screening of 28,744 blood donor samples by HMR0921 antibody, we detected 19 agglutination-negative samples, which were confirmed as Jr(a-) by conventional anti-Jra antisera. Therefore, our HMR0921 antibody is extremely useful for detecting rare Jr(a-) blood.

  2. Cathepsin B-deficient mice as source of monoclonal anti-cathepsin B antibodies.

    PubMed

    Weber, Ekkehard; Barbulescu, Elena; Medek, Rita; Reinheckel, Thomas; Sameni, Mansoureh; Anbalagan, Arulselvi; Moin, Kamiar; Sloane, Bonnie F

    2015-03-01

    Cathepsin B has been demonstrated to be involved in several proteolytic processes that support tumor progression and metastasis and neurodegeneration. To further clarify its role, defined monoclonal antibodies are needed. As the primary structure of human cathepsin B is almost identical to that of the mouse, cathepsin B-deficient mice were used in a novel approach for generating such antibodies, providing the chance of an increased immune response to the antigen, human cathepsin B. Thirty clones were found to produce cathepsin B-specific antibodies. Seven of these antibodies were used to detect cathepsin B in MCF10-DCIS human breast cancer cells by immunocytochemistry and immunoblotting. Five different binding sites were identified by epitope mapping giving the opportunity to combine these antibodies in oligoclonal antibody mixtures for an improved detection of cathepsin B. PMID:25205719

  3. Understanding the Cellular Function of TRPV2 Channel through Generation of Specific Monoclonal Antibodies

    PubMed Central

    Cohen, Matthew R.; Huynh, Kevin W.; Cawley, Daniel; Moiseenkova-Bell, Vera Y.

    2013-01-01

    Transient receptor potential vanilloid 2 (TRPV2) is a Ca2+-permeable nonselective cation channel proposed to play a critical role in a wide array of cellular processes. Although TRPV2 surface expression was originally determined to be sensitive to growth factor signaling, regulated trafficking of TRPV2 has remained controversial. TRPV2 has proven difficult to study due to the lack of specific pharmacological tools to modulate channel activity; therefore, most studies of the cellular function of TRPV2 rely on immuno-detection techniques. Polyclonal antibodies against TRPV2 have not been properly validated and characterized, which may contribute to conflicting results regarding its function in the cell. Here, we developed monoclonal antibodies using full-length TRPV2 as an antigen. Extensive characterization of these antibodies and comparison to commonly used commercially available TRPV2 antibodies revealed that while monoclonal antibodies generated in our laboratory were suitable for detection of endogenous TRPV2 by western blot, immunoprecipitation and immunocytochemistry, the commercially available polyclonal antibodies we tested were not able to recognize endogenous TRPV2. We used our newly generated and validated TRPV2 antibodies to determine the effects of insulin-like growth factor 1 (IGF-1) on TRPV2 surface expression in heterologous and endogenous expression systems. We found that IGF-1 had little to no effect on trafficking and plasma membrane expression of TRPV2. Overall, these new TRPV2 monoclonal antibodies served to dispel the controversy of the effects of IGF-1 on TRPV2 plasma membrane expression and will clarify the role TRPV2 plays in cellular function. Furthermore, our strategy of using full-length tetrameric TRP channels may allow for the generation of antibodies against other TRP channels of unclear function. PMID:24392006

  4. An OspC-specific monoclonal antibody passively protects mice from tick-transmitted infection by Borrelia burgdorferi B31.

    PubMed

    Mbow, M L; Gilmore, R D; Titus, R G

    1999-10-01

    A murine monoclonal antibody directed against Borrelia burgdorferi B31 outer surface protein C (OspC) antigen was generated by a method whereby borreliae were inoculated into the mouse via the natural transmission mode of tick feeding. Passive immunization with this antibody resulted in protection of C3H/HeJ and outbred mice from a tick-transmitted challenge infection. Immunofluorescence staining of borrelia cells indicated surface exposure of the OspC epitope reactive with the monoclonal antibody.

  5. Development of VHH antibodies against dengue virus type 2 NS1 and comparison with monoclonal antibodies for use in immunological diagnosis.

    PubMed

    Fatima, Aneela; Wang, Haiying; Kang, Keren; Xia, Liliang; Wang, Ying; Ye, Wei; Wang, Jufang; Wang, Xiaoning

    2014-01-01

    The possibility of using variable domain heavy-chain antibodies (VHH antibodies) as diagnostic tools for dengue virus (DENV) type 2 NS1 protein was investigated and compared with the use of conventional monoclonal antibodies. After successful expression of DENV type 2 NS1 protein, the genes of VHH antibodies against NS1 protein were biopanned from a non-immune llama library by phage display. VHH antibodies were then expressed and purified from Escherichia coli. Simultaneously, monoclonal antibodies were obtained by the conventional route. Sequence analysis of the VHH antibodies revealed novel and long complementarity determining regions 3 (CDR3). Epitope mapping was performed via a phage display peptide library using purified VHH and monoclonal antibodies as targets. Interestingly, the same region of NS1, which comprises amino acids 224HWPKPHTLW232, was conserved for both kinds of antibodies displaying the consensus motif histidine-tryptophan-tryptophan or tryptophan-proline-tryptophan. The two types of antibodies were used to prepare rapid diagnostic kits based on immunochromatographic assay. The VHH antibody immobilized rapid diagnostic kit showed better sensitivity and specificity than the monoclonal antibody immobilized rapid diagnostic kit, which might be due to the long CDR3 regions of the VHH antibodies and their ability to bind to the pocket and cleft of the targeted antigen. This demonstrates that VHH antibodies are likely to be an option for developing point-of-care tests against DENV infection. PMID:24751715

  6. XGFR*, a novel affinity-matured bispecific antibody targeting IGF-1R and EGFR with combined signaling inhibition and enhanced immune activation for the treatment of pancreatic cancer.

    PubMed

    Schanzer, Juergen M; Wartha, Katharina; Moessner, Ekkehard; Hosse, Ralf J; Moser, Samuel; Croasdale, Rebecca; Trochanowska, Halina; Shao, Cuiying; Wang, Peng; Shi, Lei; Weinzierl, Tina; Rieder, Natascha; Bacac, Marina; Ries, Carola H; Kettenberger, Hubert; Schlothauer, Tilman; Friess, Thomas; Umana, Pablo; Klein, Christian

    2016-01-01

    The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the "knobs-into-holes" technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2-3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer. PMID:26984378

  7. XGFR*, a novel affinity-matured bispecific antibody targeting IGF-1R and EGFR with combined signaling inhibition and enhanced immune activation for the treatment of pancreatic cancer

    PubMed Central

    Schanzer, Juergen M.; Wartha, Katharina; Moessner, Ekkehard; Hosse, Ralf J.; Moser, Samuel; Croasdale, Rebecca; Trochanowska, Halina; Shao, Cuiying; Wang, Peng; Shi, Lei; Weinzierl, Tina; Rieder, Natascha; Bacac, Marina; Ries, Carola H.; Kettenberger, Hubert; Schlothauer, Tilman; Friess, Thomas; Umana, Pablo; Klein, Christian

    2016-01-01

    ABSTRACT The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the “knobs-into-holes” technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2–3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer. PMID:26984378

  8. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma.

    PubMed

    van de Donk, Niels W C J; Moreau, Philippe; Plesner, Torben; Palumbo, Antonio; Gay, Francesca; Laubach, Jacob P; Malavasi, Fabio; Avet-Loiseau, Hervé; Mateos, Maria-Victoria; Sonneveld, Pieter; Lokhorst, Henk M; Richardson, Paul G

    2016-02-11

    Immunotherapeutic strategies are emerging as promising therapeutic approaches in multiple myeloma (MM), with several monoclonal antibodies in advanced stages of clinical development. Of these agents, CD38-targeting antibodies have marked single agent activity in extensively pretreated MM, and preliminary results from studies with relapsed/refractory patients have shown enhanced therapeutic efficacy when daratumumab and isatuximab are combined with other agents. Furthermore, although elotuzumab (anti-SLAMF7) has no single agent activity in advanced MM, randomized trials in relapsed/refractory MM have demonstrated significantly improved progression-free survival when elotuzumab is added to lenalidomide-dexamethasone or bortezomib-dexamethasone. Importantly, there has been no significant additive toxicity when these monoclonal antibodies are combined with other anti-MM agents, other than infusion-related reactions specific to the therapeutic antibody. Prevention and management of infusion reactions is important to avoid drug discontinuation, which may in turn lead to reduced efficacy of anti-MM therapy. Therapeutic antibodies interfere with several laboratory tests. First, interference of therapeutic antibodies with immunofixation and serum protein electrophoresis assays may lead to underestimation of complete response. Strategies to mitigate interference, based on shifting the therapeutic antibody band, are in development. Furthermore, daratumumab, and probably also other CD38-targeting antibodies, interfere with blood compatibility testing and thereby complicate the safe release of blood products. Neutralization of the therapeutic CD38 antibody or CD38 denaturation on reagent red blood cells mitigates daratumumab interference with transfusion laboratory serologic tests. Finally, therapeutic antibodies may complicate flow cytometric evaluation of normal and neoplastic plasma cells, since the therapeutic antibody can affect the availability of the epitope for binding

  9. Characterization of a monoclonal antibody that specifically inhibits triosephosphate isomerase activity of Taenia solium.

    PubMed

    Víctor, Sanabria-Ayala; Yolanda, Medina-Flores; Araceli, Zavala-Carballo; Lucía, Jiménez; Abraham, Landa

    2013-08-01

    In the present study, we obtained and characterized partially a monoclonal antibody (4H11D10B11 mAb) against triosephosphate isomerase from Taenia solium (TTPI). This antibody recognized the enzyme by both ELISA and western blot and was able to inhibit its enzymatic activity in 74%. Moreover, the antigen-binding fragments (Fabs), products of digestion of the monoclonal antibody with papain, retained almost the same inhibitory effect. We determined the binding site by ELISA; synthetic peptides containing sequences from different non-conserved regions of the TTPI were confronted to the 4H11D10B11 mAb. The epitope recognized by the monoclonal antibody was located on peptide TTPI-56 (ATPAQAQEVHKVVRDWIRKHVDAGIADKARI), and an analysis of mimotopes, obtained with the 4H11D10B11 mAb, suggests that the epitope spans the sequence WIRKHVDAGIAD, residues 193-204 of the enzyme. This epitope is located within helix 6, next to loop 6, an essential active loop during catalysis. The antibody did not recognize triosephosphate isomerase from man and pig, definitive and intermediary hosts of T. solium, respectively. Furthermore, it did not bind to the catalytic site, since kinetic analysis demonstrated that inhibition had a non-competitive profile.

  10. Development and characterisation of monoclonal antibodies reactive with porcine CSF1R (CD115).

    PubMed

    Moffat, L; Rothwell, L; Garcia-Morales, C; Sauter, K A; Kapetanovic, R; Gow, D J; Hume, D A

    2014-11-01

    Macrophage colony-stimulating factor (CSF1) controls the proliferation and differentiation of cells of the mononuclear phagocyte system. CSF1, alongside a second ligand, interleukin-34 (IL-34), acts by binding to a cell surface receptor (CSF1R). We previously cloned and expressed pig CSF1 and IL-34. Here we produced a pig CSF1R-Ig+pFUSE Fc fusion protein and used it as an immunogen to produce three monoclonal antibodies (ROS8G11, ROS3A5 and ROS3B10) targeted against porcine CSF1R. Specific binding of each monoclonal antibody was confirmed by ELISA, Western blot, flow cytometry and immunocytochemistry. The antibodies did not block CSF1 signalling. The surface expression of CSF1R in pig peripheral blood was restricted to CD14-positive monocytes and was also detected on lung macrophages. These antibodies provided an opportunity to investigate the increase of available CSF1R during pig BMDM differentiation. The new monoclonal antibodies provide useful reagents to support the study of monocyte and macrophage biology in the pig.

  11. Radiolabeled Monoclonal Antibodies and Hyperthermia. Final Progress Report for November 1, 1998 - April 30, 2003

    SciTech Connect

    Zalutsky, M. R.

    2004-06-23

    The overall objective of this project was to investigate the use of local hyperthermia as a means for improving the potential utility of radiolabeled monoclonal antibodies for tumor therapy. Hyperthermia not only can alter tumor hemodynamics but also can affect antigen expression, catabolism and cytotoxicity. These studies were performed with the human/mouse chimeric anti-tenascin 81C6 antibody in an athymic mouse xenograft model. Variables that were found to be important included the duration and temperature of heating, as well as the timing of the hyperthermia relative to the time of labeled antibody administration.

  12. Monoclonal antibodies for the separate detection of halodeoxyuridines and method for their use

    DOEpatents

    Vanderlaan, Martin; Watkins, Bruce E.; Stanker, Larry H.

    1991-01-01

    Monoclonal antibodies are described which have specific affinities for halogenated nucleoside analogs and are preferentially selective for one particular halogen. Such antibodies, when incorporated into immunochemical reagents, may be used to identify and independently quantify the cell division character of more than one population or subpopulation in flow cytometric measurements. Independent assessment of division activity in cell sub-populations facilitates selection of appropriate time and dose for administration of anti-proliferative agents. The hybridomas which secrete halogen selective antibodies and the method of making them are described.

  13. A rapid method for comparing monoclonal antibodies by limited proteolysis and electrophoresis.

    PubMed

    Weissman, D; Rothstein, T L; Marshak-Rothstein, A

    1985-01-01

    A rapid and sensitive method for comparing the primary structure of proteins has been adapted to the study of monoclonal antibodies. Samples were digested with alpha-chymotrypsin in the presence of sodium dodecyl sulfate after which peptide fragments were separated into distinctive banding patterns by polyacrylamide gel electrophoresis. This method could easily detect differences in the primary structure of antibodies with related as well as unrelated binding specificities. In addition, antibody molecules derived by somatic diversification from the same germ line gene segments could be distinguished from one another.

  14. Monoclonal antibodies for the separate detection of halodeoxyuridines and method for their use

    DOEpatents

    Vanderlaan, M.; Watkins, B.E.; Stanker, L.H.

    1991-10-01

    Monoclonal antibodies are described which have specific affinities for halogenated nucleoside analogs and are preferentially selective for one particular halogen. Such antibodies, when incorporated into immunochemical reagents, may be used to identify and independently quantify the cell division character of more than one population or subpopulation in flow cytometric measurements. Independent assessment of division activity in cell sub-populations facilitates selection of appropriate time and dose for administration of anti-proliferative agents. The hybridomas which secrete halogen selective antibodies and the method of making them are described. 14 figures.

  15. Neutralizing monoclonal antibodies recognize antigenic variants among isolates of infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Winton, J.R.; Arakawa, C.N.; Lannan, C.N.; Fryer, J.L.

    1988-01-01

    eutralizing monoclonal antibodies were developed against strains of infectious hematopoietic necrosis virus (IHNV) from steelhead trout Salmo gairdneri in the Deschutes River of Oregon, chinook salmon Oncorhynchus tshawytscha in the Sacramento River of California, and rainbow trout Salmo gairdneri reared in the Hagerman Valley of Idaho, USA. These antibodies were tested for neutralization of 12 IHNV isolates obtained from salmonids in Japan, Alaska, Washington, Oregon, California, and Idaho. The antibodies recognized antigenic variants among the isolates and could be used to separate the viruses into 4 groups. The members of each group tended to be related by geographic area rather than by source host species, virulence, or date of isolation.

  16. Dashboard systems: Pharmacokinetic/pharmacodynamic mediated dose optimization for monoclonal antibodies.

    PubMed

    Mould, Diane R; Dubinsky, Marla C

    2015-03-01

    Many marketed drugs exhibit high variability in exposure and response. While these drugs are efficacious in their approved indications, finding appropriate dose regimens for individual patients is not straightforward. Similar dose adjustment problems are also seen with drugs that have a complex relationship between exposure and response and/or a narrow therapeutic window. This is particularly true for monoclonal antibodies, where prolonged dosing at a sub-therapeutic dose can also elicit anti-drug antibodies which will further compromise safety and efficacy. Thus, finding appropriate doses quickly would represent a substantial improvement in healthcare. Dashboard systems, which are decision-support tools, offer an improved, convenient means of tailoring treatment for individual patients. This article reviews the clinical need for this approach, particularly with monoclonal antibodies, the design, development, and testing of such systems, and the likely benefits of dashboard systems in clinical practice. We focus on infliximab for reference.

  17. Production, characterization and use of monoclonal antibodies to grapevine virus A.

    PubMed

    Boscia, D; Aslouj, E; Elicio, V; Savino, V; Castellano, M A; Martelli, G P

    1992-01-01

    Four stable hybridoma cell lines secreting monoclonal antibodies to grapevine closterovirus A (GVA) were obtained by fusing spleen cells of immunized BALB/c mice with mouse myeloma cell line Sp2/0-Ag 14. In ELISA all MAbs reacted with virus in leaf extracts from Nicotiana benthamiana, glass-house-, field-, or in vitro-grown grapevines, or with cortical shavings from mature grape canes. In IEM tests, only one of the MAbs (PA3.F5) decorated virus particles on the entire surface. This MAb was likely induced by a surface antigenic determinant, whereas the other three MAbs (PA3.D 11, PA3.C 6, and PA3.B 9) were originated by cryptotopes. Coupling polyclonal antibodies for coating protein A-sensitized plates, and monoclonal antibody conjugates for antigen detection, gave highly efficient and reproducible results for identification of GVA in field-grown grapevines.

  18. Antibacterial monoclonal antibodies and the dawn of a new era in the control of infection

    SciTech Connect

    Macario, A.J.L.; Conway de Macario, E.

    1984-01-01

    Literature reports concerned with monoclonal antibodies against bacteria or their toxins, which are pathogens for man and animals were surveyed. These antibodies have important potential uses in human and veterinary pathology and medicine. They are likely to become key elements in a fast progression toward a more complete understanding and control of infectious diseases and of toxin poisoning. A new area of bacteriology relevant to sanitary engineering is also being advanced with the help of antibacterial monoclonal antibodies. This area involves bacteria that produce the biofuel methane, along with other molecules of nutritional value, through a process which brings about the recycling of organic wastes and thereby limits or controls microbial contamination of soil and water. 52 references.

  19. Escape From Monoclonal Antibody Neutralization Affects Henipavirus Fitness In Vitro and In Vivo.

    PubMed

    Borisevich, Viktoriya; Lee, Benhur; Hickey, Andrew; DeBuysscher, Blair; Broder, Christopher C; Feldmann, Heinz; Rockx, Barry

    2016-02-01

    Henipaviruses are zoonotic viruses that can cause severe and acute respiratory diseases and encephalitis in humans. To date, no vaccine or treatments are approved for human use. The presence of neutralizing antibodies is a strong correlate of protection against lethal disease in animals. However, since RNA viruses are prone to high mutation rates, the possibility that these viruses will escape neutralization remains a potential concern. In the present study, we generated neutralization-escape mutants, using 6 different monoclonal antibodies, and studied the effect of these neutralization-escape mutations on in vitro and in vivo fitness. These data provide a mechanism for overcoming neutralization escape by use of cocktails of cross-neutralizing monoclonal antibodies that recognize residues within the glycoprotein that are important for virus replication and virulence.

  20. Discrimination between Fibrin and Fibrinogen by a Monoclonal Antibody against a Synthetic Peptide

    NASA Astrophysics Data System (ADS)

    Scheefers-Borchel, Ursula; Muller-Berghaus, Gert; Fuhge, Peter; Eberle, Reinhard; Heimburger, Nobert

    1985-10-01

    Circulating soluble fibrin, observed in the blood of patients with ongoing intravascular coagulation, is generated from the plasma protein fibrinogen by the limited proteolytic action of thrombin. We report the production of a monoclonal antibody that discriminates between fibrin and fibrinogen in blood. The synthetic hexapeptide Gly-Pro-Arg-Val-Val-Glu, representing the amino terminus of the α chain of human fibrin, was used as immunogen. This hexapeptide is located within the Aα chain of fibrinogen but becomes the amino terminus of the fibrin α chain, after fibrinopeptide A is removed by the action of thrombin, and thus becomes accessible for antibody binding. The monoclonal antibody we have prepared can discriminate between fibrin and fibrinogen and thus can be used in assay systems to quantitate soluble fibrin or, potentially, to image fibrin-rich thrombi.

  1. New monoclonal-antibody two-site solid-phase immunoradiometric assay for human thyrotropin evaluated

    SciTech Connect

    Pekary, A.E.; Hershman, J.M.

    1984-07-01

    The authors compared results with a commercial solid-phase two-site immunoradiometric assay kit for human thyrotropin in which monoclonal antibodies are used with those by our radioimmunoassay, which is optimized for measurement of low concentrations of thyrotropin. In the immunoradiometric assay a specific antibody to the beta subunit of human thyrotropin is immobilized on a polystyrene bead, and a radiolabeled monoclonal antibody directed against the alpha subunit provides a measure of bead-immobilized hormone. The mean thyrotropin concentrations in 70 euthyroid serum samples were similar in the two assays. Values for hypothyroid patients were clearly higher in both assays than values for euthyroid individuals. In commercial assays the major source of error in measurement of thyrotropin response to thyroliberin in terms of the increment over the basal concentration of thyrotropin has been systematic errors in the measurement of those basal concentrations. With the present assay, however, basal values are obtained with good precision and accuracy.

  2. A technetium-labeled monoclonal antibody for imaging metastatic melanoma

    SciTech Connect

    Frytak, S.; Creagan, E.T.; Brown, M.L.; Salk, D.; Nelp, W. )

    1991-04-01

    Twenty patients with histologically proven metastatic melanoma were scanned with a 99mtechnetium ({sup 99}mTc)-labeled melanoma antibody to determine the detection rate of known malignant lesions and to evaluate the antibody's ability to discover occult metastases. Isotope localization in different organs was as follows: liver 100%, bone 100%, subcutaneous lesions 80%, lymph nodes 54%, and lung 33%. Four unsuspected bone lesions and 16 occult subcutaneous lesions were found. False positive lesions were noted in two instances--one benign thyroid adenoma, and one arthritic bone lesion. One patient developed an atypical serum sickness reaction with a rash and arthralgias that responded rapidly to treatment. The {sup 99}mTc antimelanoma antibody is a safe and effective method to detect metastatic melanoma. It has potential use for screening newly diagnosed melanomas that carry an increased risk of recurrence.

  3. Two monoclonal antibodies selective for human mammary carcinoma.

    PubMed

    White, C A; Dulbecco, R; Allen, R; Bowman, M; Armstrong, B

    1985-03-01

    Mouse myeloma cells were fused with spleen cells from BALB/c mice immunized with the MCF-7 human mammary carcinoma cell line. Among hybridomas, two (3B18 and 15A8) were selected and cloned. Hybridoma 3B18 produces kappa-IgG1 antibodies that react with a cytoplasmic component of MCF-7 cells. In immunoperoxidase assays, 3B18 reacts with 27 of 31 specimens of human mammary carcinoma. It reacts most consistently with poorly differentiated and infiltrating ductal breast cancers, but it also reacts with isolated cells in 3 of 5 benign mammary pathological lesions with a variable distribution. The antibody does not react with normal mammary epithelium. It does not react with any normal human tissues, and it reacts with only one of 19 other cancers tested. Hybridoma 15A8 produces kappa-IgG1 antibodies that react with the surface membranes of the cells of two human breast cancer cell lines but not with a human fibroblast cell line. In immunoperoxidase assays, the antibody reacted with 28 out of 31 human mammary carcinomas. The antibody also reacts more weakly with normal human epithelial cells of breast, renal proximal tubule, skin, esophagus, and salivary gland, but no other normal tissue. The antibody was unreactive with 14 of 18 other malignant tissues tested. Since 3B18 and 15A8 detect antigens found predominantly in human mammary carcinomas and, possibly, distinguish overlapping categories of human mammary carcinomas, they may prove useful in determining the cellular lineage from which human mammary carcinomas arise, or they may have other clinical applications in breast cancer.

  4. High-sensitivity epidermal growth factor receptor immunostaining for colorectal carcinomas, compared with EGFR PharmDx™: a study of diagnostic accuracy.

    PubMed

    Shiogama, Kazuya; Wongsiri, Trai; Mizutani, Yasuyoshi; Inada, Ken-ichi; Tsutsumi, Yutaka

    2013-01-01

    Immunostaining for epidermal growth factor receptor (EGFR) is important in the contemporary therapeutic strategy of colorectal carcinomas. We tried to increase detection sensitivity, and compared the high-sensitivity EGFR immunostaining with a worldwide standard, EGFR PharmDx™ (Dako). In order to pursue high-sensitivity EGFR detection, deparaffinized sections were pressure-cooked in 1 mM EDTA solution, pH 8.0. Two mouse monoclonal antibodies against EGFR, clone EGFR2.5 and DAK-H1-WT, and six kinds of secondary detection reagents, including biotin-free catalyzed signal amplification (CSA II), Simple Stain MAX-PO, PolyVue, Novolink, EnVision™ FLEX+, and MACH3, were evaluated to compare the results with those with EGFR PharmDx™, employing a combination of 2-18-C9 as the primary monoclonal antibody and EnVision™ as the secondary reagent. Furthermore, we replaced EnVision™ in the EGFR PharmDx™ kit with CSAII. EGFR detection sensitivity was higher with DAK-H1-WT than with EGFR2.5, and among the secondary reagents, the strongest signals were observed with Novolink. All 30 colorectal carcinomas showed distinct expression of EGFR with our high-sensitivity EGFR immunostaining, while only 16 (53%) gave focal positivity with EGFR PharmDx™. When EnVision™ in EGFR PharmDx™ was replaced by CSA II, strong signals were seen in all cases, and the expression pattern was comparable with our sequence. Non-neoplastic crypt epithelial cells often showed weakly signal with the standard EGFR PharmDx™, but consistently revealed strong membrane staining in the two high-sensitivity sequences. EGFR PharmDx™ frequently gave false negativity. Importantly, EGFR was consistently and sensitively detected when the secondary polymer in the EGFR PharmDx™ kit was simply replaced by CSA II.

  5. Production of mouse monoclonal antibodies which inhibit in vitro adherence of Entamoeba histolytica trophozoites.

    PubMed Central

    Ravdin, J I; Petri, W A; Murphy, C F; Smith, R D

    1986-01-01

    Adherence by axenic Entamoeba histolytica trophozoites to mammalian cells is mediated by an N-acetylgalactosamine (GalNAc)-inhibitable adhesin on the surface of the parasite. We isolated 35 hybridoma cell lines producing antibodies to E. histolytica as indicated by ELISA with sonicated amebic protein or by immunofluorescence assay with fixed whole trophozoites. Tissue culture supernatants were further screened for subcloning by the ability to bind to Chinese hamster ovary (CHO) cells which were first exposed to a partially purified soluble preparation of the amebic GalNAc-inhibitable lectin. Eight tissue culture supernatants were positive in this assay. Antibodies from four subcloned cell lines (D3-14, H8-5, I12-2, and I1-21) inhibited amebic adherence to CHO cells (P less than 0.01). Of the original 35 tissue culture supernatants, 3 also inhibited amebic adherence (P less than 0.01; F1, F14, and J10); monoclonal antibodies in these supernatants did not bind to lectin-exposed CHO cells. Three purified monoclonal antibodies (H8-5, I12-2, and I1-21) inhibited amebic adherence at greater than or equal to 2 micrograms/10(4) amebae (P less than 0.05). None of these inhibitory monoclonal antibodies immunoprecipitated with a soluble amebic protein preparation following sodium dodecyl sulfate-polyacrylamide gel electrophoresis under denaturing conditions. Monoclonal antibodies which inhibit in vitro adherence by E. histolytica will be useful in purification of the GalNAc-inhibitable lectin. PMID:2873102

  6. [Influence of different products of platelet membrane glycoprotein monoclonal antibodies used internationally on tests for monoclonal antibody-specific immobilization of platelet antigens].

    PubMed

    Tang, Qiu-Min; Shen, Wei-Dong; Zhong, Zhou-Lin; Zhou, Yan; Wu, Guo-Guang

    2009-08-01

    This study was aimed to investigate the influence of different platelet membrane glycoprotein monoclonal antibodies (McAb) which are common used in laboratories on the monoclonal antibody-specific immobilization of platelet antigens (MAIPA) technique according to the request of 14th International Society of Blood Transfusion Platelet Immunology Workshop. 30 participant laboratories were provided with 10 known human platelet antigen (HPA) antibodies, 1 normal serum, 9 different McAbs (against GPIIb/IIIa, GPIa/IIa, GPIb/IX and GPIV respectively), and the same protocol. Each participant laboratory carried out the test as the protocol to compare the results of different McAbs against the same glycoprotein and submitted the data to organizer. The results indicated that in McAbs against GPIIb/IIIa, AP2, Gi-5 and PL2-73 showed higher mean S/CO than that of others; in GPIa/IIa, MBC202.2 and 143.1 showed higher mean S/CO than that of others; in GPIb/IX, 142.11 and CLB-MB45 (CD42b) showed higher mean S/CO than that of others; as to GPIV, 131.4 showed higher mean S/CO. In conclusion, capture effects of various McAbs are different, so that different products of McAbs exert influences on the sensitivity of MAIPA. To use a panel of McAbs against the same glycoprotein may avoid the false negative results. PMID:19698264

  7. Cell-, tissue-, and position-specific monoclonal antibodies against the planarian Dugesia (Girardia) tigrina.

    PubMed

    Bueno, D; Baguñà, J; Romero, R

    1997-02-01

    To obtain specific immunological probes for studying molecular mechanisms involved in cell renewal, cell differentiation, and pattern formation in intact and regenerating planarians, we have produced a hybridoma library specific for the asexual race of the fresh-water planarian Dugesia (Girardia) tigrina. Among the 276 monoclonal antibodies showing tissue-, cell-, cell subtype-, subcellular- and position-specific staining, we have found monoclonal antibodies against all tissues and cell types with the exception of neoblasts, the undifferentiated totipotent stem-cells in planarians. We have also detected position-specific antigens that label anterior, central, and posterior regions. Patterns of expression uncovered an unexpected heterogeneity among previously thought single cell types, as well as interesting cross-reactivities that deserve further study. Characterization of some of these monoclonal antibodies suggests they may be extremely useful as molecular markers for studying cell renewal and cell differentiation in the intact and regenerating organism, tracing the origin, lineage, and differentiation of blastema cells, and characterizing the stages and mechanisms of early pattern formation. Moreover, two position-specific monoclonals, the first ones isolated in planarians, will be instrumental in describing in molecular terms how the new pattern unfolds during regeneration and in devising the pattern formation model that best fits classical data on regeneration in planarians.

  8. Biokinetics of radiolabeled monoclonal antibodies in heterotransplanted nude rats: Evaluation of corrected specific tissue uptake

    SciTech Connect

    Ingvar, C.; Norrgren, K.; Strand, S.E.; Brodin, T.; Joensson, P.E.S.; Sjoegren, H.O. )

    1989-07-01

    A tumor model is presented to study the biokinetics and localization of radiolabeled monoclonal antibodies (MAb) in the nude rat (Rowett RNu/RNu) heterotransplanted with human melanoma metastases. The nude rat is larger, less sensitive, and lives longer than the nude mouse. It is, therefore, well suited for in vivo studies of tumor localization with radiolabeled monoclonal antibodies. The tumor-to-host weight ratio was closer to the human situation for the nude rat than for the mouse, and quantitative imaging could be performed with a parallel hole collimator. We followed the antibody biokinetics for as long as 8 days, with repeated blood sampling and imaging. Specific uptake of MAb was higher in tumor tissue than in all other tissues except blood. Initial high uptake was also recorded in the bone marrow. The lymph glands showed a slow uptake of specific and control antibody. A simple in vitro correction procedure is described to calculate the corrected specific tissue uptake (STUcorr) that takes the blood activity into account. Thus it was shown that 80% of the tissue uptake in the dissected liver at 30 hr was due to labeled antibodies circulating in the blood. The specific tissue uptake ratio of antibodies 96.5 and OKT3 (nonspecific control) was unity for all other organs except for tumor tissue, where the ratio was greater than two and even higher when correction for blood content of labeled antibody was made.

  9. Monoclonal antibodies to monoamine oxidase B and another mitochondrial protein from human liver.

    PubMed Central

    Billett, E E; Mayer, R J

    1986-01-01

    A monoclonal antibody has been generated to human liver monoamine oxidase (MAO) B by fusion of mouse myeloma cells with spleen cells from a mouse immunized with a mixture of semi-purified MAO A and MAO B. The antibody, 3F12/G10, an immunoglobulin G1, reacts with its antigen in cryostat sections of human liver, showing an intracellular particulate distribution as demonstrated by immunoperoxidase staining. The antibody indirectly precipitates [3H]pargyline-labelled human MAO B both from liver and platelet extracts but fails to precipitate MAO A from liver extracts. The antibody does not recognise rat liver MAO B, showing that the determinant is not universally expressed on MAO B. The antibody has no effect on the catalytic activity of MAO B. Other monoclonal antibodies were generated but they are directed to a protein with a subunit Mr of 54 000, a contaminant of the MAO preparation. One of these antibodies, A8/C2, an IgG2a, reacts with the same protein in both rat and human liver extracts. Images Fig. 1. Fig. 3. PMID:3527152

  10. [Monoclonal antibodies to type A, B, E and F botulinum neurotoxins].

    PubMed

    Abbasova, S G; Ruddenko, N V; Gorokhovatskiĭ, A Iu; Kapralova, M V; Vinogradova, I D; Vertiev, Iu V; Nesmeianov, V A; Grishin, E V

    2011-01-01

    Mouse monoclonal antibodies against the most acutely toxic substances, botulinum neurotoxins (BoNTs) of types A, B, E, and F, was generated and characterized, that recognize their respective toxins in natural toxin complex. Based on these antibodies, we developed sandwich-ELISA for quantitative detection of these toxins. For each respective toxin the detection limit of the assay was: BoNT/A - 0.4 ng/ml, BoNT/B - 0.5 ng/ml; BoNT/E - 0.1 ng/ml; and for BoNT/F - 2.4 ng/ml. The developed assays permitted quantitative identification of the BoNTs in canned meat and vegetables. The BNTA-4.1 and BNTA-9.1 antibodies possessed neutralizing activity against natural complex of the botulinium toxin type A in vivo, both individually and in mixture, the mixture of the antibodies neutralized the higher dose of the toxin. The BNTA-4.1 antibody binds specifically the light chain (the chain with protease activity) of the toxin, whereas BNTA-9.1 interacts with the heavy chain. We believe that the BNTA-4.1 and BNTA-9.1 monoclonal antibodies are prospective candidates for development of humanized therapeutic antibodies for treatment of BoNT/A-caused botulism.

  11. Monoclonal Antibodies to the Apical Chloride Channel in Necturus Gallbladder Inhibit the Chloride Conductance

    NASA Astrophysics Data System (ADS)

    Finn, Arthur L.; Tsai, Lih-Min; Falk, Ronald J.

    1989-10-01

    Monoclonal antibodies raised by injecting Necturus gallbladder cells into mice were tested for their ability to inhibit the apical chloride conductance induced by elevation of cellular cAMP. Five of these monoclonal antibodies bound to the apical cells, as shown by indirect immunofluorescence microscopy, and inhibited the chloride conductance; one antibody that bound only to subepithelial smooth muscle, by indirect immunofluorescence microscopy, showed no inhibition of chloride transport. The channel or a closely related molecule is present in the membrane whether or not the pathway is open, since, in addition to inhibiting the conductance of the open channel, the antibody also bound to the membrane in the resting state and prevented subsequent opening of the channel. The antibody was shown to recognize, by ELISA, epitopes from the Necturus gallbladder and small intestine. Finally, by Western blot analysis of Necturus gallbladder homogenates, the antibody was shown to recognize two protein bands of Mr 219,000 and Mr 69,000. This antibody should permit isolation and characterization of this important ion channel.

  12. Serrumab: a human monoclonal antibody that counters the biochemical and immunological effects of Tityus serrulatus venom.

    PubMed

    Pucca, Manuela Berto; Zoccal, Karina Furlan; Roncolato, Eduardo Crosara; Bertolini, Thaís Barboza; Campos, Lucas Benício; Cologna, Camila Takeno; Faccioli, Lúcia Helena; Arantes, Eliane Candiani; Barbosa, José Elpidio

    2012-01-01

    In Brazil, the species Tityus serrulatus is responsible for the most severe cases of scorpion envenomation. There is currently a need for new scorpion anti-venoms that are more effective and less harmful. This study attempted to produce human monoclonal antibodies capable of inhibiting the activity of T. serrulatus venom (TsV), using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Four rounds of phage antibody selection were performed, and the round with the highest phage antibody titer was chosen for the production of monoclonal phage antibodies and for further analysis. The scFv 2A, designated serrumab, was selected for the production and purification of soluble antibody fragments. In a murine peritoneal macrophage cell line (J774.1), in vitro assays of the cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-10 were performed. In male BALB/c mice, in vivo assays of plasma urea, creatinine, aspartate transaminase, and glucose were performed, as well as of neutrophil recruitment and leukocyte counts. It was found that serrumab inhibited the TsV-induced increases in the production of IL-6, TNFα, and IL-10 in J774.1 cells. The in vivo inhibition assay showed that serrumab also prevented TsV-induced increases in the plasma levels of urea, creatinine, aspartate transaminase, and glucose, as well as preventing the TsV-induced increase in neutrophil recruitment. The results indicate that the human monoclonal antibody serrumab is a candidate for inclusion in a mixture of specific antibodies to the various toxins present in TsV. Therefore, serrumab shows promise for use in the production of new anti-venom. PMID:22424317

  13. Progress with the use of monoclonal antibodies for the treatment of systemic lupus erythematosus.

    PubMed

    Jordan, Natasha; Lutalo, Pamela Mk; D'Cruz, David P

    2015-01-01

    In recent years, significant progress has been made in the use of monoclonal antibodies in the treatment of systemic lupus erythematosus (SLE). Advances in our understanding of the complexity of SLE immunopathogenesis have led to the testing of several biologic agents in clinical trials. Monoclonal therapies currently emerging or under development include B-cell depletion therapies, agents targeting B-cell survival factors, blockade of T-cell co-stimulation and anticytokine therapies. Issues remain, however, regarding clinical trial design and outcome measures in SLE which need to be addressed to optimize translation of these promising therapies into clinical practice.

  14. Data on the characterization of follicle-stimulating hormone monoclonal antibodies and localization in Japanese eel pituitary.

    PubMed

    Kim, Dae-Jung; Park, Chae-Won; Byambaragchaa, Munkhzaya; Kim, Shin-Kwon; Lee, Bae-Ik; Hwang, Hyung-Kyu; Myeong, Jeong-In; Hong, Sun-Mee; Kang, Myung-Hwa; Min, Kwan-Sik

    2016-09-01

    Monoclonal antibodies were generated against recombinant follicle-stimulating hormone (rec-FSH) from Japanese eel Anguilla japonica; rec-FSH was produced in Escherichia coli and purified using Ni-NTA Sepharose column chromatography. In support of our recent publication, "Production and characterization of monoclonal antibodies against recombinant tethered follicle-stimulating hormone from Japanese eel Anguilla japonica" [1], it was important to characterize the specificity of eel follicle-stimulating hormone antibodies. Here, the production and ELISA system of these monoclonal antibodies are presented. The affinity-purified monoclonal antibodies specifically detected eel rec-FSH in ELISA and on western blots of rec-FSH produced from CHO cells. Immunohistochemical analysis revealed that FSH staining was specifically localized in the eel pituitary. PMID:27331121

  15. Monoclonal antibody proteomics: use of antibody mimotope displaying phages and the relevant synthetic peptides for mAb scouting.

    PubMed

    Hajdú, István; Flachner, Beáta; Bognár, Melinda; Végh, Barbara M; Dobi, Krisztina; Lőrincz, Zsolt; Lázár, József; Cseh, Sándor; Takács, László; Kurucz, István

    2014-08-01

    Monoclonal antibody proteomics uses nascent libraries or cloned (Plasmascan™, QuantiPlasma™) libraries of mAbs that react with individual epitopes of proteins in the human plasma. At the initial phase of library creation, cognate protein antigen and the epitope interacting with the antibodies are not known. Scouting for monoclonal antibodies (mAbs) with the best binding characteristics is of high importance for mAb based biomarker assay development. However, in the absence of the identity of the cognate antigen the task represents a challenge. We combined phage display, and surface plasmon resonance (Biacore) experiments to test whether specific phages and the respective mimotope peptides obtained from large scale studies are applicable to determine key features of antibodies for scouting. We show here that mAb captured phage-mimotope heterogeneity that is the diversity of the selected peptide sequences, is inversely correlated with an important binding descriptor; the off-rate of the antibodies and that represents clues for driving the selection of useful mAbs for biomarker assay development. Carefully chosen synthetic mimotope peptides are suitable for specificity testing in competitive assays using the target proteome, in our case the human plasma.

  16. Use of monoclonal antibodies in an ELISA to detect IgM class antibodies specific for Toxoplasma gondii.

    PubMed Central

    Balfour, A H; Harford, J P; Goodall, M

    1987-01-01

    Two monoclonal antibodies CH6 and C1E3 were used in an antibody class capture assay for the detection of IgM antibodies specific for Toxoplasma gondii. CH6 was used on the solid phase to capture human IgM. After a Toxoplasma gondii antigen had been added, specifically bound material was detected using C1E3 coupled to horseradish peroxidase. The assay was compared with an established system using polyclonal antisera at both the capture and antigen detection stages. A good correlation was found, with 97.3% (125 of 128) of sera giving the same classification in both assays. Three sera were positive only in the polyclonal system. No false positive results were found when 118 negative sera were examined. The two monoclonal antibodies provide a viable alternative to the use of polyclonal sera at the capture and antigen detection stages in the antibody class capture assay for the measurement of specific IgM against T gondii. PMID:3654986

  17. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles.

    PubMed

    El-Sayed, Ivan H; Huang, Xiaohua; El-Sayed, Mostafa A

    2006-07-28

    Efficient conversion of strongly absorbed light by plasmonic gold nanoparticles to heat energy and their easy bioconjugation suggest their use as selective photothermal agents in molecular cancer cell targeting. Two oral squamous carcinoma cell lines (HSC 313 and HOC 3 Clone 8) and one benign epithelial cell line (HaCaT) were incubated with anti-epithelial growth factor receptor (EGFR) antibody conjugated gold nanoparticles and then exposed to continuous visible argon ion laser at 514nm. It is found that the malignant cells require less than half the laser energy to be killed than the benign cells after incubation with anti-EGFR antibody conjugated Au nanoparticles. No photothermal destruction is observed for all types of cells in the absence of nanoparticles at four times energy required to kill the malignant cells with anti-EGFR/Au conjugates bonded. Au nanoparticles thus offer a novel class of selective photothermal agents using a CW laser at low powers. The potential of using this selective technique in molecularly targeted photothermal therapy in vivo is discussed. PMID:16198049

  18. Tumor-penetrating peptide fused EGFR single-domain antibody enhances cancer drug penetration into 3D multicellular spheroids and facilitates effective gastric cancer therapy

    PubMed Central

    Sha, Huizi; Zou, Zhengyun; Xin, Kai; Bian, Xinyu; Cai, Xueting; Lu, Wuguang; Chen, Jiao; Chen, Gang; Huang, Leaf; Blair, Andrew M.; Cao, Peng; Liu, Baorui

    2016-01-01

    Human tumors, including gastric cancer, frequently express high levels of epidermal growth factor receptors (EGFRs), which are associated with a poor prognosis. Targeted delivery of anticancer drugs to cancerous tissues shows potential in sparing unaffected tissues. However, it has been a major challenge for drug penetration in solid tumor tissues due to the complicated tumor microenvironment. We have constructed a recombinant protein named anti-EGFR-iRGD consisting of an anti-EGFR VHH (the variable domain from the heavy chain of the antibody) fused to iRGD, a tumor-specific binding peptide with high permeability. Anti-EGFR-iRGD, which targets EGFR and αvβ3, spreads extensively throughout both the multicellular spheroids and the tumor mass. The recombinant protein anti-EGFR-iRGD also exhibited antitumor activity in tumor cell lines, multicellular spheroids, and mice. Moreover, anti-EGFR-iRGD could improve anticancer drugs, such as doxorubicin (DOX), bevacizumab, nanoparticle permeability and efficacy in multicellular spheroids. This study draws attention to the importance of iRGD peptide in the therapeutic approach of anti-EGFR-iRGD. As a consequence, anti-EGFR-iRGD could be a drug candidate for cancer treatment and a useful adjunct of other anticancer drugs. PMID:25553823

  19. Monoclonal antibody that inhibits infection of HeLa and rhabdomyosarcoma cells by selected enteroviruses through receptor blockade

    SciTech Connect

    Crowell, R.L.; Field, A.K.; Schleif, W.A.; Long, W.L.; Colonno, R.J.; Mapoles, J.E.; Emini, E. A.

    1986-02-01

    BALB/c mice were immunized with HeLa cells, and their spleen cells were fused with myeloma cells to produce hybridomas. Initial screening of culture fluids from 800 fusion products in a cell protection assay against coxsackievirus B3 (CB3) and the CB3-RD virus variant yielded five presumptive monoclonal antibodies with three specificities: (i) protection against CB3 on HeLa, (ii) protection against CB3-RD on rhabdomyosarcoma (RD) cells, and (iii) protection against both viruses on the respective cells. Only one of the monoclonal antibodies (with dual specificity) survived two subclonings and was studied in detail. The antibody was determined to have an immunoglobulin G2a isotype and protected cells by blockade of cellular receptors, since attachment of (/sup 35/S)methionine-labeled CB3 was inhibited by greater than 90%. The monoclonal antibody protected HeLa cells against infection by CB1, CB3, CB5, echovirus 6, and coxsackievirus A21 and RD cells against CB1-RD, CB3-RD, and CB5-Rd virus variants. The monoclonal antibody did not protect either cell type against 16 other immunotypes of picornaviruses. The monoclonal antibody produced only positive fluorescence on those cells which were protected against infection, and /sup 125/I-labeled antibody confirmed the specific binding to HeLa and RD cells. The results suggest that this monoclonal antibody possesses some of the receptor specificity of the group B coxsackieviruses.

  20. Effect of monoclonal antibodies on limited proteolysis of native glycoprotein gD of herpes simplex virus type 1

    SciTech Connect

    Eisenberg, R.J.; Long, D.; Pereira, L.; Hampar, B.; Zweig, M.; Cohen, G.H.

    1982-02-01

    We examined the properties of 17 monoclonal antibodies to glycoprotein gD of herpes simplex type 1 (HSV-1) (gD-1) and HSV-2 (gD-2). The antibodies recognized eight separate determinants of gD, based on differences in radioimmuno-precipitation and neutralization assays. The determinants were distributed as follows: three were gD-1 specific, one was gD-2 specific, and four were type common. Several type-specific and type-common determinants appeared to be involved in neutralization. We developed a procedure for examining the effect that binding of monoclonal antibody has on proteolysis of native gD-1 by Staphylococcus aureus protease V8. We showed that several different patterns of protease V8 cleavage were obtained, depending on the monoclonal antibody used. The proteolysis patterns were generally consistent with the immunological groupings. With four groups of antibodies, we found that fragments of gD-1 remained bound to antibody after V8 treatment. A 38,000-dalton fragment remained bound to antibodies in three different groups of monoclonal antibodies. This fragment appeared to contain one type-common and two type-specific determinants. A 12,000-dalton fragment remained bound to antibodies belonging to one type-common group of monoclonal antibodies. Tryptic peptide analysis revealed that the 12,000-dalton fragment represented a portion of the 38,000-dalton fragment and was enriched in a type-common arginine tryptic peptide.

  1. Developing the next generation of monoclonal antibodies for the treatment of rheumatoid arthritis

    PubMed Central

    Campbell, Jamie; Lowe, David; Sleeman, Matthew A

    2011-01-01

    Rheumatoid arthritis is one of the commonest autoimmune diseases affecting 0.8% of the population. Over the last decade the treatment of this chronic disease has been revolutionized by the use of monoclonal antibodies and fusion proteins, targeting molecules like tumour necrosis factor alpha. Nevertheless, approximately one-third of subjects fail to respond to these therapies and therefore significant unmet medical need remains. Following a decade of use, clinical, government and regulatory agency expectations have changed for new antibodies therapies entering this highly competitive area. In this review, we discuss the current advances being made in antibody engineering and how they are being considered and used in the development of the next generation of antibodies to meet future expectations of healthcare providers, physicians and patients. Moreover, we discuss how pattern recognition receptors may provide new antibody tractable targets that may break the cycle of autoimmunity in rheumatoid arthritis. PMID:21182494

  2. Utility of a Dengue-Derived Monoclonal Antibody to Enhance Zika Infection In Vitro

    PubMed Central

    Charles, Anu Susan; Christofferson, Rebecca C.

    2016-01-01

    Introduction: Zika virus (ZIKV) has emerged in dengue (DENV) endemic areas, where these two related flaviviruses continue to co-circulate. DENV is a complex of four serotypes and infections can progress to severe disease. It is thought that this is mediated by antibody dependent enhancement (ADE) whereby antibodies from a primary DENV infection are incapable of neutralizing heterologous DENV infections with another serotype. ADE has been demonstrated among other members of the Flavivirus group. Methods: We utilize an in vitro ADE assay developed for DENV to determine whether ZIKV is enhanced by a commonly available DENV serotype 2-derived monoclonal antibody (4G2). Results: We show that ZIKV infection in vitro is enhanced in the presence of the 4G2 mAb. Discussion: Our results demonstrate that ADE between ZIKV and DENV is possible and that the 4G2 antibody is a useful tool for the effects of pre-existing anti-DENV antibodies during ZIKV infections.

  3. Monoclonal antibody to alkaline phosphatase from the intestinal mucosa of the harp seal, Phoca groenlandica.

    PubMed

    Sakharov IYu; Mechetner, E B; Stepanova, I E; Shekhonin, B V; Pletjushkina OYu

    1992-04-01

    1. Hybridoma secreting a monoclonal antibody APP.1 to the harp seal alkaline phosphatase (A1Ph) was obtained by fusing murine myeloma Sp 2/0 cells with the splenocytes of BALB/c mice immunized with purified isozyme K. 2. The antibody has no effect on the enzyme activity and shows a high affinity for harp seal A1Ph (KD = 8.5 x 10(-10) M). The antibody has similar affinities for the AlPh of harp seal, fur seal, common seal and deer. 3. The antibody APP.1 was coupled to Sepharose and employed in chromatographic purification of the harp seal intestinal AlPh. Alkaline phosphatase isolated on this immunosorbent has a spec. act. of 20,800 units per mg of protein. 4. The antibody-enzyme complex gives an excellent immunocytochemical labeling of tissue sections, cell cultures and smears.

  4. A study of the chick thymus microenvironment during development: analysis by monoclonal antibodies against thymic epithelium.

    PubMed

    Paz, P; Sánchez, A; Melcón, C; Fernández, J G; Chamorro, C A

    1993-02-01

    The process of T-lymphocyte differentiation within the thymus involves a series of molecular interactions. In this work we have carried out an analysis of the chick thymus microenvironment in order to evaluate its heterogeneity during development. We have produced 11 monoclonal antibodies whose staining patterns detected by the immunoperoxidase technique allowed us to divide them into five groups. A first group (E19-E2, P0-E5, and P15-T1) binds to thymic medullary stroma showing a reticular pattern on medullary epithelial cells and whose significance would be related to thymic stromal secretion. The second group of monoclonal antibodies (P15-T3) stains thymic corpuscles of 10- and 15-day chicks. The third group of antibodies includes P0-E1, P0-E3, P5-A6, and P15-T2 whose staining pattern is both medullary and cortical. The fourth group (P10-HB1 and P10-HB2) binds to thymic stromal and cortical thymocytes, and the fifth group (P5-A1) is characterized by the staining of medullary vessels of 5-day chicks. These five groups of monoclonal antibodies corroborate the existence of an antigenic diversity of the chick thymus microenvironment. Their possible relationships with T-cell differentiation and stromal-thymocyte interactions are discussed.

  5. Production and characterization of monoclonal antibodies to peste des petits ruminants (PPR) virus.

    PubMed

    Singh, R P; Bandyopadhyay, S K; Sreenivasa, B P; Dhar, P

    2004-10-01

    Peste des petits ruminants (PPR) is an acute, febrile viral disease of small ruminants, caused by a virus of the genus Morbillivirus. PPR and rinderpest viruses are antigenically related and need to be differentiated serologically. In the present study, 23 mouse monoclonal antibodies were produced by polyethyleneglycol (PEG)-mediated fusion of sensitized lymphocytes and myeloma cells. Among these, two belong to the IgM class and the remaining 21 to various subclasses of IgG. The MAbs from the IgG class designated 4B6 and 4B11 neutralized PPR virus in vitro. In radioimmunoprecipitation assay, 10 MAbs recognized nucleoprotein, 4 recognized the matrix protein and one each haemagglutinin and phosphoprotein. The remaining 7 MAbs failed to precipitate any defined viral protein. The reactivity pattern of the monoclonal antibodies in indirect ELISA indicated a close antigenic relationship within three Indian PPR (lineage 4) virus isolates and also within two rinderpest vaccine strains. All PPR virus isolates could be distinguished from rinderpest vaccine viruses on the basis of the reactivity pattern of all MAbs and anti-N protein MAbs. A set of six monoclonal antibodies specific to PPR virus could also be identified from the panel. From the panel of MAbs available, two MAbs were selected for diagnostic applications, one each for the detection of antigens and antibodies to PPR virus.

  6. Capillary ion-exchange chromatography with nanogram sensitivity for the analysis of monoclonal antibodies.

    PubMed

    Rea, Jennifer C; Freistadt, Benny S; McDonald, Daniel; Farnan, Dell; Wang, Yajun Jennifer

    2015-12-11

    Ion-exchange chromatography (IEC) is widely used for profiling the charge heterogeneity of proteins, including monoclonal antibodies (mAbs). Despite good resolving power and robustness, ionic strength-based ion-exchange separations are generally product specific and can be time consuming to develop. In addition, conventional analytical scale ion-exchange separations require tens of micrograms of mAbs for each injection, amounts that are often unavailable in sample-limited applications. We report the development of a capillary IEC (c-IEC) methodology for the analysis of nanogram amounts of mAb charge variants. Several key modifications were made to a commercially available liquid chromatography system to perform c-IEC for charge variant analysis of mAbs with nanogram sensitivity. We demonstrate the method for multiple monoclonal antibodies, including antibody fragments, on different columns from different manufacturers. Relative standard deviations of <10% were achieved for relative peak areas of main peak, acidic and basic regions, which are common regions of interest for quantifying monoclonal antibody charge variants using IEC. The results herein demonstrate the excellent sensitivity of this c-IEC characterization method, which can be used for analyzing charge variants in sample-limited applications, such as early-stage candidate screening and in vivo studies.

  7. Murine monoclonal antibody which can distinguish cystatins SA1 and SA2.

    PubMed

    Ito, Taichi; Komiya-Ito, Akiyo; Okuda, Katsuji; Minaguchi, Kiyoshi; Saitoh, Eiichi; Yamada, Satoru; Kato, Tetsuo

    2005-06-01

    To develop a diagnostic trial enabling the selective examination for a target cystatin in human body fluids, we attempted to prepare monoclonal antibodies against human cystatin SA1 (originally cystatin SA) and its variant form (cystatin SA2). BALB/c mice were immunized with recombinant (r-) cystatins SA1 and SA2. Two monoclonal antibodies designated Cys3F11 and Cys2E5 were selected. By ELISA analyses, the Cys2E5 was shown to react with r-cystatin SA2 but also somewhat with r-cystatin SA1 (22% cross-reactivity) and with plasma cystatin C (18% cross-reactivity), indicating a high specificity for cystatin SA2. The Cys3F11 reacted not only with r-cystatin SA1 but also with r-cystatin SA2 (89% cross-reactivity) and plasma cystatin C (47% cross-reactivity). This finding was further emphasized by immunoblotting of human submandibular-sublingual saliva samples. ELISA additivity test suggests that the two monoclonal antibodies bind to distinct epitopes. In conclusion, we have succeeded in producing two antibodies that discriminate the structural differences between salivary cystatins S and SN, which share more than 90% identity in amino acid sequence with cystatin SA.

  8. Anti-tick monoclonal antibody applied by artificial capillary feeding in Rhipicephalus (Boophilus) microplus females.

    PubMed

    Gonsioroski, Andressa Varella; Bezerra, Isis Abel; Utiumi, Kiyoko Uemura; Driemeier, David; Farias, Sandra Estrazulas; da Silva Vaz, Itabajara; Masuda, Aoi

    2012-04-01

    The tick Rhipicephalus microplus is an ectoparasite harmful to livestock, a vector of disease agents that affects meat and milk production. However, resistance to acaricides reflects the need for alternative tick control methods, among which vaccines have gained increasing relevance. In this scenario, monoclonal antibodies can be used to identify and characterize antigens that can be used as vaccine immunogens. Capillary tube artificial feeding of partially engorged R. microplus females with monoclonal antibodies against proteins from the gut of tick were used to test the effects of immunoglobulins in the physiology of the parasite. The results of artificial feeding showed that female ticks over 25mg and under 60 mg in weight performed better in the artificial feeding process, with a 94-168% weight increase after 24h of feeding. Results showed that artificial feeding of ticks proved to be a viable technique to study the effects of antibodies or drugs in the physiology of the parasite. One monoclonal antibody (BrBm2) induced decreased oviposition. Moreover, the antigen recognized by BrBm2 was identified as a 27-kDa protein and immunolabeled on digestive vesicles membranes of digestive cells of partially and fully engorged females.

  9. Radioimmunoassay of circulating schistosome antigen with a radiation-immobilized monoclonal antibody : Preliminary results

    NASA Astrophysics Data System (ADS)

    Dessaint, J. P.; Nogueira-Queiroz, J. A.; Capron, A.

    A two-site immunoradiometric assay with a mouse monoclonal antibody to a circulating schistosome antigen was comparatively investigated using the monoclonal antibody either absorbed to microtiter plates (reference IRMA) or immobilized by several techniques. Radiation polymerization methods were carried out at Takasaki Radiation Chemistry Research Establishment, Takasaki, Gunma (I. Kaetsu, M. Kumakura), using 2-hydroxyethyl methacrylate monomers and 1 Mrad irradiation. A significant correlation was obtained with the reference IRMA and the assay using radiation polymerization-immobilized antibody ( r = 0.94), although non-specific binding to the polymer discs was higher (x 10) than with microtiter plates. Immobilization of the monoclonal antibody onto polypropylene/polyethylene copolymer films grafted with methacrylic acid irradiated at 0.68 Mrads and treated with carbodiimide/N-hydroxysuccinimide, was carried out at the Dept of Bioengineering, University of Washington, Seattle, Washington (A.S. Hoffman, W.R. Gombotz, S. Uenoyama). A significant correlation ( r = 0.90) was obtained with the reference IRMA. Non-specific binding was also higher than with microtiter plates (x 6). An important result was the increased shelf life of the immobilized reagent.

  10. Tumor immunotherapy in the mouse with the use of 131I-labeled monoclonal antibodies

    SciTech Connect

    Zalcberg, J.R.; Thompson, C.H.; Lichtenstein, M.; McKenzie, I.F.

    1984-03-01

    This report describes the use of 131I-labeled monoclonal antibodies in two experimental models for tumor immunotherapy. In vitro treatment of the radiation-induced murine thymoma ITT-1-75NS with radiolabeled anti-Ly-2.1 significantly impaired subsequent tumor growth in vivo. However, in vivo treatment of this tumor, which previously had been injected into C57BL/6 mice, was unsuccessful. By contrast, in vitro treatment of a human colorectal tumor cell line (COLO 205) with 131I-labeled 250-30.6--a monoclonal antibody directed against a secretory component of normal and malignant gastrointestinal epithelium--completely inhibited subsequent tumor growth in BALB/c nude (nu/nu) mice. Furthermore, in vivo treatment of preexisting human colorectal tumor xenografts significantly impaired progressive tumor growth. Although some tumor inhibition was also produced by unlabeled 250-30.6 antibody, this response was considerably amplified by treatment with (131I)-labeled 250-30.6 (P less than .05), suggesting that in vivo treatment of human tumors with the use of 131I-labeled monoclonal antibodies may be clinically beneficial. The antithyroid drug propylthiouracil was used to reduce dehalogenation of the radiolabeled immunoglobulins in an attempt to improve their therapeutic efficacy.

  11. SPECT assay of radiolabeled monoclonal antibodies. Third yearly progress report, September 1991--February 1992

    SciTech Connect

    Jaszczak, R.J.

    1992-02-01

    The accurate determination of the biodistribution of radiolabeled monoclonal antibodies (MoAbs) is important for calculation of dosimetry and evaluation of pharmacokinetic variables such as antibody dose and route of administration. The hypothesis of this application is that the biodistribution of radiolabeled monoclonal antibodies (MoAbs) can be quantitatively determined using single photon emission computed tomography (SPECT). The major thrusts during the third year include the continued development and evaluation of improved 3D SPECT acquisition and reconstruction approaches to improve quantitative imaging of radiolabeled monoclonal antibodies (MoAbs), and the implementation and evaluation of algorithms to register serial SPECT image data sets, or to register 3D SPECT images with 3D image data sets acquired from positron emission tomography (PEI) and magnetic resonance images (MRI). The research has involved the investigation of statistical models and iterative reconstruction algorithms that accurately account for the physical characteristics of the SPECT acquisition system. It is our belief that SPECT quantification can be improved by accurately modeling the physical processes such as attenuation, scatter, geometric collimator response, and other factors that affect the measured projection data.

  12. Production and characterization of a monoclonal antibody against P60-katanin.

    PubMed

    Akkor, Meray; Karabay, Arzu

    2010-12-01

    Katanin is a microtubule severing protein composed of two subunits, P60 and P80. The P60 subunit severs microtubules and P80 controls the microtubule severing activity of P60. Katanin promotes spindle shortening and severing processes in mitotic and meiotic spindles. In neurons, the level of P60-katanin was found to be very high in actively growing axons and at the tips of growing neuronal processes and in dendritogenesis. Inhibition of P60-katanin increases microtubule length throughout the neuronal cell body and mitotic/meiotic spindles, indicating that katanin is one of the key proteins for organizing microtubular structure in a variety of cell types. In this study, we produced 1G6, the first monoclonal antibody against P60-katanin. Recombinant P60-katanin (RecP60) protein, which was produced based on a specific region of rat P60-katanin, was expressed in Escherichia coli and used as antigen. 1G6 recognized the endogenous P60-katanin in Western blot analysis and immunocytochemistry in which monoclonal antibody would increase the range of applications. Since P60-katanin polyclonal antibodies have been used in studies until now, obtaining the hybridoma cell, the unlimited source of a monoclonal antibody against P60, results in an advantage in investigating P60-katanin functions.

  13. Molecular modeling of the affinity chromatography of monoclonal antibodies.

    PubMed

    Paloni, Matteo; Cavallotti, Carlo

    2015-01-01

    Molecular modeling is a methodology that offers the possibility of studying complex systems such as protein-ligand complexes from an atomistic point of view, making available information that can be difficultly obtained from experimental studies. Here, a protocol for the construction of molecular models of the interaction between antibodies and ligands that can be used for an affinity chromatography process is presented. The outlined methodology focuses mostly on the description of a procedure that may be adopted to determine the structure and free energy of interaction between the antibody and the affinity ligand. A procedure to extend the proposed methodology to include the effect of the environment (buffer solution, spacer, support matrix) is also briefly outlined. PMID:25749965

  14. Discovery and Characterization of Phage Display-Derived Human Monoclonal Antibodies against RSV F Glycoprotein

    PubMed Central

    Tang, Aimin; Callahan, Cheryl; Pristatsky, Pavlo; Swoyer, Ryan; Cejas, Pedro; Nahas, Debbie; Galli, Jennifer; Cosmi, Scott; DiStefano, Daniel; Hoang, Van M.; Bett, Andrew; Casimiro, Danilo

    2016-01-01

    Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in infants, the elderly and in immunosuppressed populations. The vast majority of neutralizing antibodies isolated from human subjects target the RSV fusion (F) glycoprotein, making it an attractive target for the development of vaccines and therapeutic antibodies. Currently, Synagis® (palivizumab) is the only FDA approved antibody drug for the prevention of RSV infection, and there is a great need for more effective vaccines and therapeutics. Phage display is a powerful tool in antibody discovery with the advantage that it does not require samples from immunized subjects. In this study, Morphosys HuCAL GOLD® phage libraries were used for panning against RSV prefusion and postfusion F proteins. Panels of human monoclonal antibodies (mAbs) against RSV F protein were discovered following phage library panning and characterized. Antibodies binding specifically to prefusion or postfusion F proteins and those binding both conformations were identified. 3B1 is a prototypic postfusion F specific antibody while 2E1 is a prototypic prefusion F specific antibody. 2E1 is a potent broadly neutralizing antibody against both RSV A and B strains. Epitope mapping experiments identified a conformational epitope spanning across three discontinuous sections of the RSV F protein, as well as critical residues for antibody interaction. PMID:27258388

  15. Discovery and Characterization of Phage Display-Derived Human Monoclonal Antibodies against RSV F Glycoprotein.

    PubMed

    Chen, Zhifeng; Zhang, Lan; Tang, Aimin; Callahan, Cheryl; Pristatsky, Pavlo; Swoyer, Ryan; Cejas, Pedro; Nahas, Debbie; Galli, Jennifer; Cosmi, Scott; DiStefano, Daniel; Hoang, Van M; Bett, Andrew; Casimiro, Danilo; Vora, Kalpit A

    2016-01-01

    Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in infants, the elderly and in immunosuppressed populations. The vast majority of neutralizing antibodies isolated from human subjects target the RSV fusion (F) glycoprotein, making it an attractive target for the development of vaccines and therapeutic antibodies. Currently, Synagis® (palivizumab) is the only FDA approved antibody drug for the prevention of RSV infection, and there is a great need for more effective vaccines and therapeutics. Phage display is a powerful tool in antibody discovery with the advantage that it does not require samples from immunized subjects. In this study, Morphosys HuCAL GOLD® phage libraries were used for panning against RSV prefusion and postfusion F proteins. Panels of human monoclonal antibodies (mAbs) against RSV F protein were discovered following phage library panning and characterized. Antibodies binding specifically to prefusion or postfusion F proteins and those binding both conformations were identified. 3B1 is a prototypic postfusion F specific antibody while 2E1 is a prototypic prefusion F specific antibody. 2E1 is a potent broadly neutralizing antibody against both RSV A and B strains. Epitope mapping experiments identified a conformational epitope spanning across three discontinuous sections of the RSV F protein, as well as critical residues for antibody interaction. PMID:27258388

  16. Function and glycosylation of plant-derived antiviral monoclonal antibody

    PubMed Central

    Ko, Kisung; Tekoah, Yoram; Rudd, Pauline M.; Harvey, David J.; Dwek, Raymond A.; Spitsin, Sergei; Hanlon, Cathleen A.; Rupprecht, Charles; Dietzschold, Bernhard; Golovkin, Maxim; Koprowski, Hilary

    2003-01-01

    Plant genetic engineering led to the production of plant-derived mAb (mAbP), which provides a safe and economically feasible alternative to the current methods of antibody production in animal systems. In this study, the heavy and light chains of human anti-rabies mAb were expressed and assembled in planta under the control of two strong constitutive promoters. An alfalfa mosaic virus untranslated leader sequence and Lys-Asp-Glu-Leu (KDEL) endoplasmic reticulum retention signal were linked at the N and C terminus of the heavy chain, respectively. mAbP was as effective at neutralizing the activity of the rabies virus as the mammalian-derived antibody (mAbM) or human rabies Ig (HRIG). The mAbP contained mainly oligomannose type N-glycans (90%) and had no potentially antigenic α(1,3)-linked fucose residues. mAbP had a shorter half-life than mAbM. The mAbP was as efficient as HRIG for post-exposure prophylaxis against rabies virus in hamsters, indicating that differences in N-glycosylation do not affect the efficacy of the antibody in this model. PMID:12799460

  17. Dengue Virus Envelope Dimer Epitope Monoclonal Antibodies Isolated from Dengue Patients Are Protective against Zika Virus

    PubMed Central

    Swanstrom, J. A.; Plante, J. A.; Plante, K. S.; Young, E. F.; McGowan, E.; Gallichotte, E. N.; Widman, D. G.; Heise, M. T.; de Silva, A. M.

    2016-01-01

    ABSTRACT Zika virus (ZIKV) is a mosquito-borne flavivirus responsible for thousands of cases of severe fetal malformations and neurological disease since its introduction to Brazil in 2013. Antibodies to flaviviruses can be protective, resulting in lifelong immunity to reinfection by homologous virus. However, cross-reactive antibodies can complicate flavivirus diagnostics and promote more severe disease, as noted after serial dengue virus (DENV) infections. The endemic circulation of DENV in South America and elsewhere raises concerns that preexisting flavivirus immunity may modulate ZIKV disease and transmission potential. Here, we report on the ability of human monoclonal antibodies and immune sera derived from dengue patients to neutralize contemporary epidemic ZIKV strains. We demonstrate that a class of human monoclonal antibodies isolated from DENV patients neutralizes ZIKV in cell culture and is protective in a lethal murine model. We also tested a large panel of convalescent-phase immune sera from humans exposed to primary and repeat DENV infection. Although ZIKV is most closely related to DENV compared to other human-pathogenic flaviviruses, most DENV immune sera (73%) failed to neutralize ZIKV, while others had low (50% effective concentration [EC50], <1:100 serum dilution; 18%) or moderate to high (EC50, >1:100 serum dilution; 9%) levels of cross-neutralizing antibodies. Our results establish that ZIKV and DENV share epitopes that are targeted by neutralizing, protective human antibodies. The availability of potently neutralizing human monoclonal antibodies provides an immunotherapeutic approach to control life-threatening ZIKV infection and also points to the possibility of repurposing DENV vaccines to induce cross-protective immunity to ZIKV. PMID:27435464

  18. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A

    NASA Astrophysics Data System (ADS)

    Leserman, Lee D.; Barbet, Jacques; Kourilsky, François; Weinstein, John N.

    1980-12-01

    Many applications envisioned for liposomes in cell biology and chemotherapy require their direction to specific cellular targets1-3. The ability to use antibody as a means of conferring specificity to liposomes would markedly increase their usefulness. We report here a method for covalently coupling soluble proteins, including monoclonal antibody and Staphylococcus aureus protein A (ref. 4), to small sonicated liposomes, by using the heterobifunctional cross-linking reagent N-hydroxysuccinimidyl 3-(2-pyridyldithio)propionate (SPDP, Pharmacia). Liposomes bearing covalently coupled mouse monoclonal antibody against human β2-microglobulin [antibody B1.1G6 (IgG2a, κ) (B. Malissen et al., in preparation)] bound specifically to human, but not to mouse cells. Liposomes bearing protein A became bound to human cells previously incubated with the B1.1G6 antibody, but not to cells incubated without antibody. The coupling method results in efficient binding of protein to the liposomes without aggregation and without denaturation of the coupled ligand; at least 60% of liposomes bound functional protein. Further, liposomes did not leak encapsulated carboxyfluorescein (CF) as a consequence of the reaction.

  19. Detection of complement activation using monoclonal antibodies against C3d

    PubMed Central

    Thurman, Joshua M.; Kulik, Liudmila; Orth, Heather; Wong, Maria; Renner, Brandon; Sargsyan, Siranush A.; Mitchell, Lynne M.; Hourcade, Dennis E.; Hannan, Jonathan P.; Kovacs, James M.; Coughlin, Beth; Woodell, Alex S.; Pickering, Matthew C.; Rohrer, Bärbel; Holers, V. Michael

    2013-01-01

    During complement activation the C3 protein is cleaved, and C3 activation fragments are covalently fixed to tissues. Tissue-bound C3 fragments are a durable biomarker of tissue inflammation, and these fragments have been exploited as addressable binding ligands for targeted therapeutics and diagnostic agents. We have generated cross-reactive murine monoclonal antibodies against human and mouse C3d, the final C3 degradation fragment generated during complement activation. We developed 3 monoclonal antibodies (3d8b, 3d9a, and 3d29) that preferentially bind to the iC3b, C3dg, and C3d fragments in solution, but do not bind to intact C3 or C3b. The same 3 clones also bind to tissue-bound C3 activation fragments when injected systemically. Using mouse models of renal and ocular disease, we confirmed that, following systemic injection, the antibodies accumulated at sites of C3 fragment deposition within the glomerulus, the renal tubulointerstitium, and the posterior pole of the eye. To detect antibodies bound within the eye, we used optical imaging and observed accumulation of the antibodies within retinal lesions in a model of choroidal neovascularization (CNV). Our results demonstrate that imaging methods that use these antibodies may provide a sensitive means of detecting and monitoring complement activation–associated tissue inflammation. PMID:23619360

  20. Immunochemical identification of three proteinic determinants on the archaebacterium Methanococcus vannielii by monoclonal antibodies

    SciTech Connect

    de Macario, E.C.; Macario, A.J.L.; Magarinos, M.C.

    1983-01-01

    Archaebacteria evolved independently from Eubacteria and Eukaryotes and present unique biochemical features. One group, the methanogens, show a variety of cell-walls paralleling their own evolutionary diversity. Chemical analyses revealed proteins in the cell-wall of Methanococcacea but no murein or pseudomurein. Immunochemical studies were begun using a panel of monoclonal antibodies against M. vannielii SB and quantitative micro-immunoenzymatic methods developed for this purpose. Direct binding and inhibition-blocking assays using sugars and aminosugars also indicated absence of these residues in the SB's cell-wall. Three antibodies, however, recognized three different antigenic determinants involving amino acids: Lys, Phe and Thr (antibody 5A); Ser, Try and Tyr (antibody 5B); and Arg, Lys and Phe (antibody 5F). Each site was recognized by one antibody only, and vice versa. These results agree with those provided by well established chemical methods and support the notion that SB possesses a peculiar cell-wall with proteins only. The data also show the resolution power and reliability of monoclonal probes for structural analysis of the bacterial envelope.

  1. Relationship between in vitro binding activity and in vivo tumor accumulation of radiolabeled monoclonal antibodies

    SciTech Connect

    Sakahara, H.; Endo, K.; Koizumi, M.; Nakashima, T.; Kunimatsu, M.; Watanabe, Y.; Kawamura, Y.; Nakamura, T.; Tanaka, H.; Kotoura, Y.

    1988-02-01

    The relationship between in vitro cell binding and in vivo tumor accumulation of radiolabeled antibodies was studied using /sup 125/I- and /sup 111/In-labeled monoclonal antibodies to human osteosarcoma, and a human osteosarcoma xenograft (KT005) in nude mice. Three monoclonal antibodies--OST6, OST7, and OST15--raised against human osteosarcoma recognize the same antigen molecule. Although the binding of both /sup 125/I- and /sup 111/In-labeled OST6 to KT005 cells was higher than that of radiolabeled OST7 in vitro, /sup 125/I-labeled OST6 showed a faster clearance from the circulation and a lower accumulation in the transplanted tumor than /sup 125/I-labeled OST7. In contrast to the radioiodinated antibodies, the in vivo tumor accumulation of /sup 111/In-labeled OST6 was higher, although not significantly, than that of /sup 111/In-labeled OST7. OST15 showed the lowest binding in vitro, and its in vivo tumor localization was also lower than the others. The discrepancy in tumor uptake between OST6 and OST7 labeled with either /sup 125/I or /sup 111/In may have been a result of differing blood clearance. These results suggest that binding studies can be used to exclude from in vivo use those antibodies which show very poor binding in vitro, while in vivo serum clearance may be a better test for choosing antibodies with similar binding.

  2. Identification of human plasma cells with a lamprey monoclonal antibody

    PubMed Central

    Yu, Cuiling; Liu, Yanling; Chan, Justin Tze Ho; Tong, Jiefei; Li, Zhihua; Shi, Mengyao; Davani, Dariush; Parsons, Marion; Khan, Srijit; Zhan, Wei; Kyu, Shuya; Grunebaum, Eyal; Campisi, Paolo; Propst, Evan J.; Jaye, David L.; Trudel, Suzanne; Moran, Michael F.; Ostrowski, Mario; Herrin, Brantley R.; Lee, F. Eun-Hyung; Sanz, Ignacio; Cooper, Max D.; Ehrhardt, Götz R.A.

    2016-01-01

    Ab-producing plasma cells (PCs) serve as key participants in countering pathogenic challenges as well as being contributors to autoimmune and malignant disorders. Thus far, only a limited number of PC–specific markers have been identified. The characterization of the unique variable lymphocyte receptor (VLR) Abs that are made by evolutionarily distant jawless vertebrates prompted us to investigate whether VLR Abs could detect novel PC antigens that have not been recognized by conventional Abs. Here, we describe a monoclonal lamprey Ab, VLRB MM3, that was raised against primary multiple myeloma cells. VLRB MM3 recognizes a unique epitope of the CD38 ectoenzyme that is present on plasmablasts and PCs from healthy individuals and on most, but not all, multiple myelomas. Binding by the VLRB MM3 Ab coincides with CD38 dimerization and NAD glycohydrolase activity. Our data demonstrate that the lamprey VLRB MM3 Ab is a unique reagent for the identification of plasmablasts and PCs, with potential applications in the diagnosis and therapeutic intervention of PC or autoimmune disorders. PMID:27152361

  3. Optimization of monoclonal antibody delivery via the lymphatics: the dose dependence

    SciTech Connect

    Steller, M.A.; Parker, R.J.; Covell, D.G.; Holton, O.D. 3d.; Keenan, A.M.; Sieber, S.M.; Weinstein, J.N.

    1986-04-01

    After interstitial injection in mice, antibody molecules enter local lymphatic vessels, flow with the lymph to regional lymph nodes, and bind to target antigens there. Compared with i.v. administration, delivery via the lymphatics provides a more efficient means for localizing antibody in lymph nodes. An IgG2a (36-7-5) directed against the murine class I major histocompatibility antigen H-2Kk has proved useful for studying the pharmacology of lymphatic delivery. At very low doses, most of the antibody remains at the injection site in Kk-positive animals. As the dose is progressively increased, most effective labeling occurs first in nodes proximal to the injection site and then in the next group of nodes along the lymphatic chain. At higher doses, antibody overflows the lymphatic system and enters the blood-stream via the thoracic duct and other lymphatic-venous connections. Once in the blood, antibody is rapidly cleared, apparently by binding to Kk-bearing cells. These findings indicate that the single-pass distribution of monoclonal antibodies in the lymphatics can be strongly dose dependent, a principle which may be of clinical significance in the improvement of immunolymphoscintigraphic imaging, especially with antibodies directed against normal and malignant lymphoid cells. Monoclonal antibodies directed against normal cell types in the lymph node may be useful for assessing the integrity of lymphatic chains by immunolymphoscintigraphy or, more speculatively, for altering the status of regional immune function. The results presented here indicate that a low or intermediate antibody dose may optimize the signal:noise ratio for imaging. In Kk-negative animals, the percentage of dose taken up in the major organs was essentially independent of the dose administered; there was no evidence for saturable sites of nonspecific binding.

  4. Novel conformation-specific monoclonal antibodies against amyloidogenic forms of transthyretin

    PubMed Central

    Higaki, Jeffrey N.; Chakrabartty, Avi; Galant, Natalie J.; Hadley, Kevin C.; Hammerson, Bradley; Nijjar, Tarlochan; Torres, Ronald; Tapia, Jose R.; Salmans, Joshua; Barbour, Robin; Tam, Stephen J.; Flanagan, Ken; Zago, Wagner; Kinney, Gene G.

    2016-01-01

    Abstract Introduction: Transthyretin amyloidosis (ATTR amyloidosis) is caused by the misfolding and deposition of the transthyretin (TTR) protein and results in progressive multi-organ dysfunction. TTR epitopes exposed by dissociation and misfolding are targets for immunotherapeutic antibodies. We developed and characterized antibodies that selectively bound to misfolded, non-native conformations of TTR. Methods: Antibody clones were generated by immunizing mice with an antigenic peptide comprising a cryptotope within the TTR sequence and screened for specific binding to non-native TTR conformations, suppression of in vitro TTR fibrillogenesis, promotion of antibody-dependent phagocytic uptake of mis-folded TTR and specific immunolabeling of ATTR amyloidosis patient-derived tissue. Results: Four identified monoclonal antibodies were characterized. These antibodies selectively bound the target epitope on monomeric and non-native misfolded forms of TTR and strongly suppressed TTR fibril formation in vitro. These antibodies bound fluorescently tagged aggregated TTR, targeting it for phagocytic uptake by macrophage THP-1 cells, and amyloid-positive TTR deposits in heart tissue from patients with ATTR amyloidosis, but did not bind to other types of amyloid deposits or normal tissue. Conclusions: Conformation-specific anti-TTR antibodies selectively bind amyloidogenic but not native TTR. These novel antibodies may be therapeutically useful in preventing deposition and promoting clearance of TTR amyloid and in diagnosing TTR amyloidosis. PMID:26981744

  5. Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody

    PubMed Central

    Luo, Wenjie; Liu, Wencheng; Hu, Xiaoyan; Hanna, Mary; Caravaca, April; Paul, Steven M.

    2015-01-01

    Microglia have been shown to contribute to the clearance of brain amyloid β peptides (Aβ), the major component of amyloid plaques, in Alzheimer’s disease (AD). However, it is not known whether microglia play a similar role in the clearance of tau, the major component of neurofibrillary tangles (NFTs). We now report that murine microglia rapidly internalize and degrade hyperphosphorylated pathological tau isolated from AD brain tissue in a time-dependent manner in vitro. We further demonstrate that microglia readily degrade human tau species released from AD brain sections and eliminate NFTs from brain sections of P301S tauopathy mice. The anti-tau monoclonal antibody MC1 enhances microglia-mediated tau degradation in an Fc-dependent manner. Our data identify a potential role for microglia in the degradation and clearance of pathological tau species in brain and provide a mechanism explaining the potential therapeutic actions of passively administered anti-tau monoclonal antibodies. PMID:26057852

  6. Application of a monoclonal antibody to a comparative study of alpha-lactalbumins from various species

    SciTech Connect

    Kaminogawa, S.; Shimoda, M.; Kurisaki, J.; Yamauchi, K.

    1989-05-01

    A monoclonal antibody to bovine alpha-lactalbumin was prepared and purified. The binding ability of alpha-lactalbumin from different species (cow, goat, giraffe, horse, pig, human, monkey, and guinea pig) was examined by a competitive radioimmunoassay. The order in strength of the binding affinity was cow goat, giraffe, horse, cynomolgus monkey and human, pig, and guinea pig. The order of evolutional divergence calculated from the amino acid composition was cow, goat, giraffe, horse, pig, guinea pig and human, and monkey. The orders in both cases were similar. Hence, it is suggested that immunological divergence as deduced by a monoclonal antibody is likely to be close to the evolutional divergence of alpha-lactalbumin.

  7. Improving impurities clearance by amino acids addition to buffer solutions for chromatographic purifications of monoclonal antibodies.

    PubMed

    Ishihara, Takashi; Hosono, Mareto

    2015-07-15

    The performance of amino acids in Protein A affinity chromatography, anion exchange chromatography and cation exchange chromatography for monoclonal antibody purification was investigated. Glycine, threonine, arginine, glutamate, and histidine were used as buffer components in the equilibration, washing, and elution steps of these chromatographies. Improved clearance of impurity, high molecular weight species (HMW) and host cell proteins (HCP) was observed in the purification processes when using the amino acids as base-buffer constituents, additives or eluents compared with that of buffers without these amino acids. In addition, we designed a buffer system in which the mobile phases were composed of only a single amino acid, histidine, and applied it to the above three chromatographies. Effective HMW and HCP clearance was also obtained in this manner. These results suggest that amino acids may enhance impurity clearance during the purification of monoclonal antibodies. PMID:26057847

  8. Isolation of hybridomas secreting monoclonal antibodies against Physalia physalis (Portuguese man-o'war) nematocyst venom.

    PubMed

    Gaur, P K; Anthony, R L; Calton, G J; Burnett, J W

    1982-01-01

    Balb/C mice were immunized with crude Portuguese Man-O'War (Physalia physalis) nematocyst venom and their spleen immunocytes were fused with plasmacytoma cells. Nine hybridomas which produced IgG specific for Man-O'War venom were identified using a specific ELISA technique. Ammonium sulfate and DEAE cellulose-purified monoclonal anti-venom antibody had an ELISA titer of 1:4000 and an ability to neutralize the lethal activity (4 LD50/0.6 ml ascites fluid) of an i.v. challenge of crude venom. Indirect immunofluorescence testing demonstrated that the monoclonal antibody isolated in these experiments reacted against a venom component located in the nematocyst wall and thread. PMID:6123165

  9. Legionella pneumophila serogroup 1 subgrouping by monoclonal antibodies--an epidemiological tool.

    PubMed Central

    Watkins, I. D.; Tobin, J. O.; Dennis, P. J.; Brown, W.; Newnham, R.; Kurtz, J. B.

    1985-01-01

    A panel of 10 monoclonal antibodies was used to subgroup 326 strains of Legionella pneumophila serogroup 1. All but two strains could be classified into three major subgroups named after their representative strains Pontiac 1, Olda and Bellingham 1. Of the 50 isolates from patients, 44 representing 32 separate incidents were of the Pontiac subgroup. This subgroup was also found in 16 of 18 buildings epidemiologically associated with Legionnaires' Disease. In contrast, strains of the Olda subgroup predominated in buildings where no infections had occurred. In 9 of the 11 incidents where isolates were available from at least one patient as well as from the suspected environmental source, the monoclonal antibody reaction patterns of strains from patients were identical to those of one or more of their environmental counterparts. PMID:3905954

  10. Preparation of factor IX deficient human plasma by immunoaffinity chromatography using a monoclonal antibody.

    PubMed

    Goodall, A H; Kemble, G; O'Brien, D P; Rawlings, E; Rotblat, F; Russell, G C; Janossy, G; Tuddenham, E G

    1982-03-01

    A murine hybridoma clone is described that grows continuously in culture and produces a monoclonal antibody we have called Royal Free Monoclonal Antibody to factor IX No. 1 (RFF-IX/1). This has high affinity for a coagulation site on factor IX. RFF-IX/1 immobilised on sepharose can be used to deplete factor IX from normal human plasma. This immunoaffinity depleted plasma is indistinguishable from severe Christmas disease plasma and can be used as the substrate in a one stage coagulation assay for factor IX. The affinity column has high capacity and can be regenerated so that large scale production from normal plasma of factor IX deficient plasma as a diagnostic reagent is now feasible.

  11. Development of an ErbB4 monoclonal antibody that blocks neuregulin-1-induced ErbB4 activation in cancer cells.

    PubMed

    Okazaki, Shogo; Nakatani, Fumi; Masuko, Kazue; Tsuchihashi, Kenji; Ueda, Shiho; Masuko, Takashi; Saya, Hideyuki; Nagano, Osamu

    2016-01-29

    The use of monoclonal antibodies (mAbs) for cancer therapy is one of the most important strategies for current cancer treatment. The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases, which regulates cancer cell proliferation, survival, and migration, is a major molecular target for antibody-based therapy. ErbB4/HER4, which contains a ligand-binding extracellular region, is activated by several ligands, including neuregulins (NRGs), heparin-binding EGF-like growth factor, betacellulin and epiregulin. Although there are clinically approved antibodies for ErbB1 and ErbB2, there are no available therapeutic mAbs for ErbB4, and it is not known whether ErbB4 is a useful target for antibody-based cancer therapy. In this study, we developed an anti-ErbB4 mAb (clone P6-1) that suppresses NRG-dependent activation of ErbB4 and examined its effect on breast cancer cell proliferation in the extracellular matrix. PMID:26780728

  12. Monoclonal Antibodies Detect a Spectrin-Like Protein in Normal and Dystrophic Human Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Appleyard, S. T.; Dunn, M. J.; Dubowitz, V.; Scott, M. L.; Pittman, S. J.; Shotton, D. M.

    1984-02-01

    Spectrin is the major protein of the erythrocyte membrane skeleton, which is bound to the cytoplasmic surface of the membrane's lipid bilayer and is responsible for cell shape and membrane elasticity. Inability to identify spectrin in other cell types led to the assumption that this protein was unique to erythrocytes. However, spectrin-like proteins have been demonstrated recently in a variety of cell types, including skeletal and cardiac muscle, in several species. We used monoclonal antibodies against human erythrocyte spectrin subunits in an immunocytochemical study to detect related proteins in normal and diseased human skeletal muscle. Six of seven monoclonal antibodies against β -spectrin determinants were bound at the cytoplasmic surface of muscle fiber plasma membranes, whereas none of six monoclonal antibodies against α -spectrin determinants was bound. Muscle fibers of patients with neuromuscular diseases showed similar distribution and specificity of antibody binding to those of normal subjects, but the intensity of binding was increased. In contrast, probable regenerating fibers in muscle of patients with muscular dystrophies showed reduced binding of antibodies, but reduced binding was not seen in fetal muscle fibers nor in those of a patient with a myotubular myopathy. We conclude that human skeletal muscle fibers possess a spectrin-related protein associated with their plasma membrane that shows extensive β -chain similarities to erythrocyte spectrin but differs significantly with respect to the α -subunit. Its function may be associated with the maintenance of membrane and myofibril integrity during contraction, and the increased antibody binding in diseased muscle may reflect a structural rearrangement of spectrin or a compensatory increase in spectrin abundance in response to increased stress on these systems.

  13. Combining phage display with de novo protein sequencing for reverse engineering of monoclonal antibodies.

    PubMed

    Rickert, Keith W; Grinberg, Luba; Woods, Robert M; Wilson, Susan; Bowen, Michael A; Baca, Manuel

    2016-01-01

    The enormous diversity created by gene recombination and somatic hypermutation makes de novo protein sequencing of monoclonal antibodies a uniquely challenging problem. Modern mass spectrometry-based sequencing will rarely, if ever, provide a single unambiguous sequence for the variable domains. A more likely outcome is computation of an ensemble of highly similar sequences that can satisfy the experimental data. This outcome can result in the need for empirical testing of many candidate sequences, sometimes iteratively, to identity one which can replicate the activity of the parental antibody. Here we describe an improved approach to antibody protein sequencing by using phage display technology to generate a combinatorial library of sequences that satisfy the mass spectrometry data, and selecting for functional candidates that bind antigen. This approach was used to reverse engineer 2 commercially-obtained monoclonal antibodies against murine CD137. Proteomic data enabled us to assign the majority of the variable domain sequences, with the exception of 3-5% of the sequence located within or adjacent to complementarity-determining regions. To efficiently resolve the sequence in these regions, small phage-displayed libraries were generated and subjected to antigen binding selection. Following enrichment of antigen-binding clones, 2 clones were selected for each antibody and recombinantly expressed as antigen-binding fragments (Fabs). In both cases, the reverse-engineered Fabs exhibited identical antigen binding affinity, within error, as Fabs produced from the commercial IgGs. This combination of proteomic and protein engineering techniques provides a useful approach to simplifying the technically challenging process of reverse engineering monoclonal antibodies from protein material.

  14. Preparation of Recombinant Human Monoclonal Antibody Fab Fragments Specific for Entamoeba histolytica

    PubMed Central

    Tachibana, Hiroshi; Cheng, Xun-Jia; Watanabe, Katsuomi; Takekoshi, Masataka; Maeda, Fumiko; Aotsuka, Satoshi; Kaneda, Yoshimasa; Takeuchi, Tsutomu; Ihara, Seiji

    1999-01-01

    Genes coding for human antibody Fab fragments specific for Entamoeba histolytica were cloned and expressed in Escherichia coli. Lymphocytes were separated from the peripheral blood of a patient with an amebic liver abscess. Poly(A)+ RNA was isolated from the lymphocytes, and then genes coding for the light chain and Fd region of the heavy chain were amplified by a reverse transcriptase PCR. The amplified DNA fragments were ligated with a plasmid vector and were introduced into Escherichia coli. Three thousand colonies were screened for the production of antibodies to E. histolytica HM-1:IMSS by an indirect fluorescence-antibody (IFA) test. Lysates from five Escherichia coli clones were positive. Analysis of the DNA sequences of the five clones showed that three of the five heavy-chain sequences and four of the five light-chain sequences differed from each other. When the reactivities of the Escherichia coli lysates to nine reference strains of E. histolytica were examined by the IFA test, three Fab fragments with different DNA sequences were found to react with all nine strains and another Fab fragment was found to react with seven strains. None of the four human monoclonal antibody Fab fragments reacted with Entamoeba dispar reference strains or with other enteric protozoan parasites. These results indicate that the bacterial expression system reported here is effective for the production of human monoclonal antibodies specific for E. histolytica. The recombinant human monoclonal antibody Fab fragments may be applicable for distinguishing E. histolytica from E. dispar and for use in the serodiagnosis of amebiasis. PMID:10225840

  15. Characterization and immunotherapeutic potential of a monoclonal antibody against a ras oncogene transformed cell line

    SciTech Connect

    Ames, R.S. Jr.

    1986-01-01

    Transformed cells express cell surface antigens not present, or present in diminished amounts on normal cells. Monoclonal antibodies can be used to identify and biochemically characterize tumor-associated antigens. Monoclonal antibody (MoAb) 45-2D9 was produced by immunization of BALB/c mice with a transformed cell line (45-2D9) induced by transfection of NIH 3T3 cells with a c-H-ras oncogene in DNA isolated from a human lung carcinoma. By immunoperoxidase staining, this antibody binds to the 45-342 cells as well as to the ras transformed primary and 3 secondary transfectants, including the one used to induce 45-342, but not to other ras transformed cell lines. Murine tumors as well as human fetal and most normal adult tissues are not stained. This antibody does bind to a variety of human tumors, including lung adenocarcinomas, as well as breast, colon and esophageal carcinomas. The ability of MoAb 45-2D9 to target ricin toxin A chain (RTA) and radio-isotopes to gp74 expressing cells was investigated. An immunotoxin generated by conjugating RTA to MoAb 45-2D9 inhibits protein and DNA synthesis by the 45-342 cells. Radiolabeled antibody specifically localizes to and can be used to image subcutaneous and pulmonary gp74 expressing tumors in nu/nu mice. Monoclonal antibodies against oncogene transformed cell lines may be useful for the detection and characterization of tumor-associated antigens as well as for the development of new tumor therapeutic and diagnostic reagents.

  16. Verification of the Cross Immunoreactivity of A60, a Mouse Monoclonal Antibody against Neuronal Nuclear Protein

    PubMed Central

    Mao, Shanping; Xiong, Guoxiang; Zhang, Lei; Dong, Huimin; Liu, Baohui; Cohen, Noam A.; Cohen, Akiva S.

    2016-01-01

    A60, the mouse monoclonal antibody against the neuronal nuclear protein (NeuN), is the most widely used neuronal marker in neuroscience research and neuropathological assays. Previous studies identified fragments of A60-immunoprecipitated protein as Synapsin I (Syn I), suggesting the antibody will demonstrate cross immunoreactivity. However, the likelihood of cross reactivity has never been verified by immunohistochemical techniques. Using our established tissue processing and immunofluorescent staining protocols, we found that A60 consistently labeled mossy fiber terminals in hippocampal area CA3. These A60-positive mossy fiber terminals could also be labeled by Syn I antibody. After treating brain slices with saponin in order to better preserve various membrane and/or vesicular proteins for immunostaining, we observed that A60 could also label additional synapses in various brain areas. Therefore, we used A60 together with a rabbit monoclonal NeuN antibody to confirm the existence of this cross reactivity. We showed that the putative band positive for A60 and Syn I could not be detected by the rabbit anti-NeuN in Western blotting. As efficient as Millipore A60 to recognize neuronal nuclei, the rabbit NeuN antibody demonstrated no labeling of synaptic structures in immunofluorescent staining. The present study successfully verified the cross reactivity present in immunohistochemistry, cautioning that A60 may not be the ideal biomarker to verify neuronal identity due to its cross immunoreactivity. In contrast, the rabbit monoclonal NeuN antibody used in this study may be a better candidate to substitute for A60. PMID:27242450

  17. Characterization and pathological significance of monoclonal DNA-binding antibodies from mice with experimental malaria infection.

    PubMed Central

    Lloyd, C M; Collins, I; Belcher, A J; Manuelpillai, N; Wozencraft, A O; Staines, N A

    1994-01-01

    Malaria infection is accompanied by the production of a number of autoantibodies, including some that react with DNA. Epidemiological evidence implicates these in the nephritides that arise in human quartan malaria and in experimental malaria infections in mice. Through parallels with the involvement of DNA-reactive antibodies in the autoimmune syndrome systemic lupus erythematosus, a role for DNA-reactive antibodies in forming phlogistic immune deposits in the kidneys is implied. To more fully understand the relationship between antibodies of this specificity made in malaria and systemic lupus erythematosus, we prepared monoclonal DNA-reactive antibodies from BALB/c mice infected with Plasmodium berghei (clone RC) and compared their properties with those of other antibodies previously isolated from lupous MRL/Mp lpr/lpr and (NZB x NZW)F1 mice. Antibodies from malarial mice were all immunoglobulin M class and bound to single-stranded but not double-stranded DNA in an enzyme-linked immunosorbent assay. They also reacted with synthetic polyribonucleotides in the enzyme-linked immunosorbent assay and with parasitized erythrocytes and parasite pigment in kidney sections. None of the antibodies from lupous mice had identical specificities. The potential involvement of the DNA-reactive antibodies in malarial nephritis was demonstrated, by use of immunocytochemical methods, on the basis of their binding to existing immune deposits in kidney sections from malarial mice, a similar property having been previously demonstrated for antibodies from lupous mice. Furthermore, antibodies from malarial mice expressed public idiotypes, notably Id.V-88, which is a member of the Id.16/6 family, commonly found on DNA-reactive antibodies in lupus and other infectious and connective tissue diseases. This study indicates that DNA-reactive antibodies in malaria have immunochemical properties similar but not identical to those of such antibodies in systemic lupus erythematosus and that they

  18. Humanized Monoclonal Antibody That Passively Protects Mice against Systemic and Intranasal Ricin Toxin Challenge.

    PubMed

    Van Slyke, Greta; Sully, Erin K; Bohorova, Natasha; Bohorov, Ognian; Kim, Do; Pauly, Michael H; Whaley, Kevin J; Zeitlin, Larry; Mantis, Nicholas J

    2016-09-01

    PB10 is a murine monoclonal antibody against an immunodominant epitope on ricin toxin's enzymatic subunit. Here, we characterize a fully humanized version of PB10 IgG1 (hPB10) and demonstrate that it has potent in vitro and in vivo toxin-neutralizing activities. We also report the minimum serum concentrations of hPB10 required to protect mice against 10 times the 50% lethal dose of ricin when delivered by injection and inhalation. PMID:27466351

  19. The laboratory of clinical virology in monitoring patients undergoing monoclonal antibody therapy.

    PubMed

    Cavallo, R

    2011-12-01

    The relevant efficacy of monoclonal antibodies (mAbs) has resulted in the successful treatment of several diseases, although susceptibility to infections remains a major problem. This review summarizes aspects of the literature regarding viral infections and mAbs, specifically addressing the risk of infection/reactivation, the measures that can reduce this risk, and the role played by the laboratory of clinical virology in monitoring patients undergoing mAb therapy.

  20. Rabies-related Yuli virus; identification with a panel of monoclonal antibodies.

    PubMed

    Selimov, M A; Tatarov, A G; Botvinkin, A D; Klueva, E V; Kulikova, L G; Khismatullina, N A

    1989-12-01

    Yuli virus was isolated by intracerebral (i.c.) inoculation of suckling mice with a 10% brain suspension from 11-year-old patient who died under signs of atypical hydrophobia after a bat bite into lower lip. Identification with a panel of monoclonal antibodies (MoAb) to nucleocapsid protein (NP) confirmed that Yuli virus belongs to Lyssavirus genus, as an antigenic variant of the European Duvenhage virus. PMID:2576595